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CHAPTER I 

 

INTRODUCTION 

 

A conventional way to understand an individual’s cognitive abilities is to assess 

independent performance as a final learned product; thus, traditional assessment is suited for 

phenomena that are static in nature. However, this static assessment may not inform what one 

will be able to do in the near future nor does it often reflect one’s process of learning, but only 

what has already been learned (e.g., Sternberg, 1996; Tzuriel & Haywood, 1992). An alternative 

to static assessment is dynamic assessment (DA). DA is an umbrella term for assessment 

procedures that embed interaction between the examiner and examinee within the test (Lidz, 

1987; Grigorenko & Sternberg, 1998). This allows the examiner to make judgments about 

students’ responsiveness to instruction. The students’ responsiveness then serves as a measure of 

learning potential, which is less dependent on prior educational history or preexisting knowledge 

and skills than static assessment. Because DA was developed to measure learning potential, a 

distinct construct from what is measured in static assessments, it is believed to provide additional 

information about academic achievement beyond what can be gathered from static assessments 

alone: hence, DA may be diagnostically useful in educational settings (for a comprehensive DA 

review, see Grigorenko & Sternberg, 1998).   

Measuring learning potential is intuitively appealing and some empirical evidence 

suggests that DA has unique, but small, additive value in the prediction of concurrent and future 

academic achievement (see Caffrey, Fuchs, & Fuchs, 2008). However, further work is needed to 

ascertain whether this new construct of learning potential, as measured with DA, is valid and 



 

2 

superior to other means of measuring the related constructs in explaining academic achievements. 

The purpose of this study, therefore, was to examine the nature of learning potential that is 

measured via DA of decoding by addressing the following three questions: (a) Is DA measuring 

learning potential for acquiring decoding skills distinct from conventional static measures of IQ 

and decoding?; (b) Does DA of decoding have incremental validity in explaining word reading 

skills beyond that which can be explained by the known predictors of early reading 

development?; and (c) Does DA of decoding have incremental validity across domains in that it 

can explain arithmetic performance beyond the predictors of math?  
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CHAPTER II 

 

LITERATURE REVIEW 

 

Static Assessment versus Dynamic Assessment 

Conventional ways of assessing cognitive abilities use static methods to measure pre-

existing knowledge and skills. With these methods, no feedback is given during the testing 

session, and examiners stay in a neutral relationship with examinees. Furthermore, examiners 

adhere to the standardized testing procedure, and any deviance from it is considered a threat to 

the validity of the test score interpretation. The initial purpose of the development of such static 

intelligence tests was to select persons for military, educational, and industrial placement so that 

outcome could be maximized given the least investment (Lidz, 1987). In contrast, one of the 

unique purposes of educational assessment is to forecast academic achievement in order to select 

students who may need special instructional assistance so that instruction can be modified, 

allowing them to achieve their full potential. Critics of static assessments (including intelligence 

tests) assert that such tests do not provide the information needed to meet the goals of the 

educational assessment. These critics believe that static assessments fail to provide information 

about intra-individual change, neglect to sample enough items of basic skills which precludes 

sensitivity in identifying low performing students (i.e., floor effects), and are unable to 

discriminate poor performances due to intrinsic cognitive deficits from those with lack of 

educational opportunities (Sternberg, 1996). In response to these failures, DA has gained 

attention as an alternative (Grigorenko & Sternberg, 1998; Jitendra & Kameenui, 1993). 
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 DA emphasizes assessment of the potential for learning rather than past learning. 

Therefore, assistance is given during the test either in the form of instruction or in a sequence of 

progressively explicit prompts. Examiners no longer stay neutral, but interact with examinees. In 

this way, DA indexes the individual’s learning potential either by quantifying gains during the 

assisted phase or by indexing the number of prompts required to master the given task.  

The theoretical root of DA can be traced back to the work of Lev Vygotsky (1934/1962) 

and his notion of the zone of proximal development (ZPD). According to Vygotsky, children’s 

cognitive abilities can be fully understood by recognizing the two developmental levels: the 

actualized and the actualizing. The actualized abilities are seen as those that are complete and 

fully developed, reflecting what students have learned, whereas the actualizing abilities are those 

that are not yet fully developed but can become actualized in the course of interaction with more 

advanced individuals. The ZPD is the gap between these two levels. Consider two students who 

perform similarly poorly on a conventional static assessment. One may require little assistance to 

reach the desired competence level, whereas the other may need extensive support. In this 

example, the former is considered to have a higher learning potential than the latter. Thus, the 

ZPD is considered an important source of individual differences in learning, and DA was 

developed in an attempt to measure ZPD.  

The construct being measured via DA is theoretically different from those assessed by 

static measures. DA focuses on future performance, that is, individuals’ ability to respond to 

instructions (i.e., learning potential), whereas static measures only focus on independent 

performance at the time of the testing (i.e., what has already been learned). In other words, DA 

estimates the upper boundary of ZPD, which is how well an individual can learn given assistance, 

whereas static assessments measure the lower boundary of ZPD, which is what has been learned 
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and how well he/she can perform independently. DA provides additional information to that 

provided by static assessments by comprehensively explaining individual differences in learning. 

 Currently, there is no consensus about how best to assess students’ learning potential. In 

fact, several different approaches to DA exist including learning potential assessment (e.g., 

Budoff, 1967), testing-the-limits (Carlson & Wiedl, 1979), mediated assessment (e.g., Feuerstein, 

1979), and assisted learning and transfer (e.g., Bransford, Delclos, Vye, Burns, & Hasselbring, 

1987; Campione, Brown, Ferrara, Jones, & Steinberg, 1985). These approaches differ in terms of 

the nature of the interaction (e.g., standardized vs. individualized), the format (e.g., test-teach-

retest vs. graduated prompts), and how learning potential is indexed (e.g., amount of change 

from pretest to posttest vs. the number of prompts needed to master the skill). The test-teach-

retest format typically incorporates individualized interaction with a blocked scheduling of 

instruction between pre- and posttest to index the improvement on the posttest. Alternatively, the 

graduated prompts approach uses progressive scheduling of a predetermined hierarchy of 

prompts and assesses the amount of help students require to master the skill. With the ease 

associated with using standardized prompts, the graduated prompts approach has been widely 

accepted by researchers in school settings interested in academic achievement for screening and 

identification of students with special needs (Daniel, 1997). Hence, the present study uses the 

graduated prompts DA, which provides a predetermined set of increasingly helpful prompts.  

 

Two Challenges in Dynamic Assessment Research 

When new constructs are proposed and assessment tools are developed, two things must 

be accomplished (Lubinski, 2004).  First, the construct has to be validated within a nomothetic 

span that establishes the network of correlates surrounding measures of the construct to see how 
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it is different from and similar to existing measures (Embretson, 1983). Second, incremental 

validity, which refers to the degree to which a measure explains a phenomenon relative to other 

measures, should be documented to judge the utility of the new construct and the measure 

(Haynes & Lench, 2003). Therefore, the construct of learning potential should be validated 

within a network of supposedly related measures, and DA should be examined for its 

incremental predictive validity.  

Despite its theoretical appeal and potential utility, DA research poses two challenges.  

First, because the term dynamic assessment is used to encompass all different approaches that 

incorporate instruction into assessment to measure learning potential, one of the challenges is 

that there is no single definition of what DA measures (Caffrey, Fuchs, & Fuchs, 2008; 

Grigorenko, 2008; Jitendra & Kameenui, 1993). Similarly, there is lack of a clear distinction in 

the literature between the definition of intelligence and learning potential, despite their different 

theoretical orientations. Unfortunately, this vagueness in learning potential constructs could 

result in the jangle fallacy (Kelly, 1927). The jangle fallacy refers to a situation when different 

terms are used to explain the same or similar phenomenon. The jangle fallacy can be problematic 

because it obstructs the synthesis of research findings. In addition, given the fact that it takes 

resources and effort to develop and validate a measure, committing the jangle fallacy may negate 

the effort put forth. One may be developing a measure (e.g., DA) that assesses the same construct 

that already exists (e.g., intelligence).  

The definition of learning potential shows a considerable overlap with the definition of 

intelligence in the literature. Although an exact definition of what DA measures varies across 

different DA approaches, learning potential is commonly defined either as the capacity to master 

and reapply knowledge and skills taught during instruction (Grigorenko & Sternberg, 1998), or 
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as the responsiveness of the learner to instruction (Lidz, 1987). Proponents of DA assert that 

learning potential is distinct from intelligence. However, intelligence is often and commonly 

defined as the capacity to learn from experience (Sternberg & Detterman, 1986). If we substitute 

experience with instruction, the definition looks nearly identical to that of learning potential. The 

overlap in the definition can also be seen with the graduated prompts approach. The key concept 

of the graduated prompts approach is learning and transfer, which is an ability to use learned 

information in a variety of contexts, and the outcome is regarded as the efficiency of learning 

(Campione & Brown, 1987; Campione, Brown, & Bryant, 1985; Day, Engelhardt, Maxwell, & 

Bolig, 1997). Likewise, intelligence can be understood as how one learns from experience and 

how quickly one learns (Gottfredson, 1997). It is possible, then, that the same construct, ability 

to learn, is being labeled with two different terms (i.e., learning potential and intelligence). Thus, 

it is important to determine whether DA is a valid measure of learning potential rather than just 

another measure of intelligence. These concerns about whether intelligence and learning 

potential are qualitatively different have also been raised by Grigrenko and Sternberg (1998) 

stated as follows:  

 

Another concern that needs to be investigated is whether the way 

learning potential is defined in this paradigm (graduated prompts) is 

really qualitatively different from the traditional way ability is defined 

in the static-testing paradigm, or whether it is another measure of it that 

complements (but is nonidentical to) an existing measure. (p. 95)  

 

Second, in addition to the challenge of validating learning potential as a distinct 

psychological entity, another challenge is that DA needs to show incremental validity to 

demonstrate its utility as a psychological construct. It has been noted that some innovative 
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constructs that make intuitive sense have frequently failed to add value when compared with 

preexisting measures (e.g., Sanders, Lubinski, & Benbow, 1995). Verifying the incremental 

validity of DA is important for two reasons. First, DA should be tested against other cognitive 

indicators that could affect performance on DA. Typically, a single measure taps many cognitive 

processes to varying degrees. For example, performance on math word problems may be affected 

by students’ attention, reading, as well as their math skills. Thus, controlling for the sources of 

construct-irrelevant variance and showing incremental validity of the test is an important step to 

evaluate the validity of test score interpretation. Second, verifying the incremental validity of DA 

by showing its value above and beyond the competing predictors would establish the degree to 

which it might be practically useful in educational settings. DA has been criticized for being 

labor intensive in administration (Jitendra & Kameenui, 1993). If DA does not add a significant 

amount of information to the existing measures in explaining students’ academic performance, 

the benefits of DA may not outweigh its costs.  

 

Prior Dynamic Assessment Studies 

To contextualize the present study, two lines of DA research that utilize the graduated 

prompts approach are reviewed. First, prior research examining the construct validity of DA in 

relation to intelligence or other constructs measured by static assessments (e.g., comparing static 

computation vs. dynamic computation) using factor analytic methods is reviewed. Second, 

results from previous studies that have explored the incremental validity of DA for explaining 

basic word reading skills or arithmetic outcomes are summarized.  
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Empirical evidence of the construct validity 

Three studies were identified that used factor analytic methods to validate DA as a 

distinct construct from constructs measured with static assessments, including intelligence. First, 

Swanson and Howard (2005) measured information processing potential with two sets of DA, 

both employing verbal working memory tasks. One DA measured phonological working 

memory (rhyming task) and the other measured semantic working memory (digit/sentence). In 

both DA tasks, students were asked to retrieve information after performing an interference task. 

When students failed to accurately retrieve the information, students were given a series of 

graduated prompts based on the forgotten information. These working memory tests were given 

in three different conditions: initial, dynamic, and maintenance. Four scores were derived, three 

of which were the highest scores obtained during initial (initial score), dynamic (gain score), and 

maintenance condition (maintenance score), respectively. The fourth score was the probe score 

that was the total number of hints provided by the examiner during the dynamic testing trials. 

The authors tested a five-factor model using a common factor analysis. These five factors 

were: static semantic, static phonological, verbal IQ, semantic responsiveness (i.e., semantic 

learning potential), and phonological responsiveness (i.e., phonological learning potential). 

Extracting learning potential factors separately for phonological and semantic tasks using probe 

and gain scores yielded a good fit to the data. These learning potential factors were found to be 

distinct from static semantic and phonological working memory, as well as verbal IQ. Results 

indicate that, within a task domain, empirical data were well represented by the model with a 

learning potential factor that was distinct from other factors comprising static measures. 

However, one weakness of this study was that nonverbal IQ, which could affect performance on 
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DA, was not part of the analysis. Also, their model was not compared with any competing 

models that may have been more parsimonious.  

Fuchs et al. (2008) extended Swanson and Howard’s study in three ways. First, based on 

prior findings that the more a DA task aligns with the academic content, the higher its predictive 

power, the authors developed DA of algebraic learning instead of basic cognitive skills. Second, 

Fuchs and colleagues included a variety of measures that could potentially influence the 

performance on DA including nonverbal IQ and static measures external to the DA tasks. Finally, 

the authors used structural equation modeling to test several competing measurement models. 

The DA of algebraic learning contained three algebraic skills, each of which had five levels of 

graduated prompts that were provided until mastery was shown. Three indicators of learning 

potential in algebra were used to create a latent factor (number of prompts for each skill). 

Researchers then compared models to see whether DA was a separate factor from language 

(including verbal IQ), attention, calculation, nonverbal reasoning (i.e., nonverbal IQ), and word 

problems. Results showed that a six-factor model was a better fit than the five-factor models (DA 

collapsed with one of other factors) and the one-factor model (general factor). Similar to results 

found by Swanson and Howard, Fuchs and colleagues found that learning potential for algebra 

was distinct from static measures of math (i.e., calculation, word problem solving skills) and 

from domain general abilities such as attention, nonverbal reasoning, and language. 

 Despite some consistency in findings in the above two studies, another study by D. Fuchs 

et al. (2011) produced somewhat different results. In this study, DA was developed for three 

decoding skills with graduated prompts embedded within each skill. Using the sum of the total 

number of prompts given across the three decoding skills, they conducted exploratory factor 

analysis with other language and reading related variables as well as measures of attention and 
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behavior. Results supported a three-factor structure in which DA loaded onto the first factor 

along with language, non-speeded reading, and IQ; the other two factors were behavior and rapid 

naming. The discrepancy between these results and previous ones might be due to several factors 

including the domain of the DA tasks (working memory and math vs. reading), the methods used 

to index learning potential (latent factor of DA vs. manifest variable), and the analytic method 

(confirmatory vs. exploratory). A limitation of this exploratory approach is that it explained what 

DA has in common with other measures, but did not provide information about how learning 

potential for decoding is different from static decoding skills or intelligence.  

Overall, given the small number of studies that differ in various dimensions, limited 

empirical evidence exists to suggest that DA measures learning potential as a construct that is 

distinguishable from what can be measured by static assessments, including intelligence. 

Therefore, further studies (including the present one) are needed to examine the construct 

validity of DA.  

Empirical evidence of the incremental validity 

Evaluating the incremental validity of a measure depends on which criterion measures are 

being explained (Haynes & Lench, 2003). Accordingly, in the literature review of DA, Caffrey et 

al. (2008) reports that predictive validity of DA differs across types of criterion measures. 

Therefore, criterion for prediction was limited to word reading and arithmetic skills because they 

are critical milestones of reading and math development in earlier grades and because DA has 

been suggested as useful for supplemental screening or as an early identification tool for 

academic difficulties.  

DA as a predictor of word reading. In the same study previously described, Swanson and 

Howard (2005) concurrently predicted word reading with five factors based on their factor 
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analysis results. Results from hierarchical regression indicated the phonological responsiveness 

factor did not significantly add to the prediction of word reading above the other factors.  

However, the semantic responsiveness factor was a significant predictor of word reading above 

the other factors. As a whole, the five factors accounted for 44% of the variance in word reading. 

When the two responsiveness factors were removed, the variance explained reduced to 38%. 

Thus, approximately 6% of the variance in word reading was accounted for by the 

responsiveness factors. However, given that the predictive ability of DA is higher when using 

domain specific tasks, this percentage may be higher when reading is assessed.  

Several studies focusing on phonological awareness (PA) and decoding tasks in DA were 

identified in the reading domain. Spector (1992) investigated how well DA of PA predicts later 

word reading beyond three static measures of PA (i.e., phoneme segmentation, deletion, and 

invented spelling). DA in this study was adapted from a commonly used static PA measure that 

uses a form of graduated prompts with six levels. Responsiveness was operationalized as the 

total number of prompts provided. Results of a multiple regression provided strong support for 

the predictive validity of DA beyond all three static PA measures in word reading after 

controlling for verbal ability. In fact, DA was the only significant predictor of later word reading, 

and it explained 21% of variance in word reading. Thus, Spector’s DA demonstrated incremental 

validity over static PA measures in word reading.  

Another study that used PA tasks in DA was conducted by Bridges and Catts (2011). 

They used a sequence of three graduated prompts: first repeating the item, then emphasizing the 

sounds, and finally using pictures. They compared the predictive validity of their DA, first to its 

static version (score without prompts), and then to the common screening tool used in schools. 

Results from hierarchical regression indicated that DA only explained 4% more for word reading 
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and 9% more for decoding after controlling for the static version of PA task. Similarly, when 

compared to the widely used screening tool, DA accounted for a nonsignificant amount of the 

variance in word reading (2%) and 5% of the unique variance in decoding. Overall, less than 5% 

of the total variance explained was uniquely attributable to DA. Although Spector’s (1992) study 

demonstrated promising results of DA using domain-specific tasks, overall findings are 

consistent in terms of the small amount of variance uniquely explained by DA in word reading 

skills. Additionally, all of these studies compared DA to only a small set of measures. The 

unique but small variance explained by DA may not be present when compared to a wide range 

of word reading predictors.    

Some studies have specifically investigated the predictive validity of DA that focuses on 

decoding, which is a more proximal indicator of word reading than PA, for explaining later word 

reading outcomes. These studies used a stringent criterion for establishing the incremental 

validity of DA by comparing DA to a number of predictors that could potentially influence word 

reading outcome. Fuchs et al. (2011) also investigated the predictive validity of DA of decoding 

for predicting future word reading. The authors found that decoding DA was a significant 

predictor of word reading, even when controlling for the static measures of decoding. 

Approximately 4% of the variance was uniquely explained by DA depending on whether the 

outcome was a timed or untimed measure. Even when the other predictors were added to the 

model, including rapid naming, PA, language, behaviors, and IQ, DA of decoding still explained 

2.3% of variance in untimed word reading, but DA lost predictive power for timed word reading.  

An extension study of Fuchs et al. (2011) was conducted by Cho, Compton, Fuchs, Fuchs, 

and Bouton (in press). The authors used the same DA as Fuchs et al. to predict responsiveness to 

supplemental small group tutoring. Criteria for prediction were the final level and growth of 
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word reading fluency during small group phonics based intervention. DA was competed with 

three sets of predictors: both timed and untimed static decoding measures, final level and growth 

of word reading fluency during general classroom instruction, and four precursors of reading 

including PA, rapid letter naming, oral vocabulary, and IQ. Results from individual growth 

modeling indicated that DA was a significant predictor of final level and growth, uniquely 

explaining 3% to 13% of the variance in responsiveness to small group tutoring depending on the 

competing predictors.  

As a whole, the present review suggests that DA measures have incremental validity in 

explaining or predicting word reading and its growth (Bridges & Catts, 2011; Cho et al., in press; 

Fuchs et al., 2011; Spector, 1992; Swanson & Howard, 2005). Although the consistent findings 

across these studies are that DA was a significant predictor of word reading skills, the amount of 

variance uniquely explained by DA was small. Additionally, the majority of these studies have 

mainly focused on comparing DA to its static version or to a small set of competing predictors. 

Such studies may overstate the utility of DA because they did not compare DA against other 

established predictors of word reading.  

DA as a predictor of arithmetic. Only two studies were identified that specifically 

focused on arithmetic outcomes. Swanson and Howard (2005) concurrently predicted arithmetic 

using the same models applied to word reading outcomes. Similarly, only the semantic 

responsiveness factor was a significant predictor of arithmetic when controlling for the other 

factors, but not the phonological responsiveness factor. All five factors accounted for 54% of the 

variance in arithmetic and approximately 25% of the arithmetic variance was accounted for by 

the two responsiveness factors. This seemingly large amount of unique variance explained by 
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DA should be interpreted with caution because other predictors of arithmetic such as number 

sense and attention have not been taken into account.    

Seethaler, Fuchs, Fuchs, and Compton (2011) developed the DA of balancing equations 

to measure students’ learning potential for solving missing variables in nonstandard addition and 

subtraction expressions. Four types of equations were used and four or five graduated prompts 

were embedded for each type of DA. The authors predicted later computation performance using 

the sum of the total prompts provided. Unlike Swanson and Howard (2005), Seethaler and 

colleagues used a more stringent criterion for testing the incremental validity of DA. As 

competing predictors, two types of numerical competency measures (timed and untimed) were 

used in addition to domain-general cognitive functions such as verbal ability and nonverbal 

reasoning. Regression results indicated that DA was a significant predictor of later calculations 

beyond the competing predictors. As expected, commonality analysis results suggested smaller 

variance was uniquely explained by DA (2.8%) than that of Swanson and Howard.  

Across word reading and arithmetic outcomes, results are promising. The reviewed 

studies documents unique, although small, predictive validity for DA beyond traditionally used 

static measures. However, less is known about the benefits DA when compared to wide range of 

other known predictors. Also, studies have rarely investigated whether DA in certain domain has 

incremental validity across different domains.  

 

Present Study 

Study purpose 

This study comprises two major components. First, a DA of decoding that taps the basic 

cognitive processes involved in decoding (i.e., letter-sound correspondence learning, blending, 
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and rule-based decoding) was developed and its construct validity was tested. The purpose of 

this examination was to explore whether learning potential for acquiring skills necessary for 

decoding is a construct distinct from domain-general learning aptitude (intelligence) and from 

current decoding skills.  

Second, incremental validity of DA of decoding predicting concurrent word reading skills 

was examined. Compared to prior studies, a more stringent criterion was used to test the 

incremental validity of DA. Not only was a comprehensive lists of competing predictors of word 

reading included, but also domain-general cognitive predictors, which are assumed to play key 

roles in the initial stages of learning novel skills. These various domain-general covariates were 

included to compete with DA. In addition, the differential predictive validity of DA for 

explaining real word reading (word recognition) and nonword reading (decoding) was examined. 

Similarly, whether DA of decoding has incremental validity across domains was explored 

by examining whether it has additive value in explaining arithmetic performance. Previous work 

indicates that as DA tasks move closer to the relevant academic content, the utility of DA for 

predicting academic learning improves. Thus, except for Swanson and Howard (2005), the rest 

of the reviewed studies focused on predictive validity within a certain domain. However, we do 

not know whether learning potential is governed by a domain-general mechanism or whether 

learning potential in one domain can be generalized to other domains (Grigorenko, 2009). 

Unfortunately, prior work has rarely examined whether responsiveness in a certain domain 

predicts academic performance across domains.   

Research questions and hypotheses 

Research question 1. Is DA measuring learning potential for acquiring decoding skills 

distinct from conventional static measures of intelligence and decoding? DA is hypothesized to 
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be distinct from intelligence as well as from static decoding skills. And although distinct, these 

constructs are hypothesized to be moderately correlated.     

Research question 2. Does DA of decoding have incremental validity in explaining word 

reading skills beyond what can be explained by the known predictors of reading and domain-

general learning indicators? Precursors of word reading skills are well established, and they 

include: PA (for a review, see Bus & Ijzendoorn, 1999), and rapid automatized naming (RAN; 

Blachman, 1984; Compton, 2000; Wolf, 1986) including rapid letter naming (RLN) and rapid 

digit naming (RDN). The domain-general indicators of learning included in the present study 

were verbal intelligence, nonverbal intelligence, and attentive behavior. Based on the prior 

findings and the theory that DA adds unique information to what static measures are unable to 

provide, DA of decoding is hypothesized to provide unique additional information above and 

beyond these reading and domain-general predictors for explaining word reading skills, both 

word recognition and decoding. Further, DA is hypothesized to be a stronger predictor of 

decoding than word recognition.  

Research question 3. Does DA of decoding have incremental validity across domains? 

As previously mentioned, the definition and nature of learning potential are vague. Grigorenko 

(2009) has also pointed out that whether learning potential is generalizable or domain specific is 

a contentious issue that has rarely been investigated. Some researchers have conceptualized 

learning potential measured via DA as cognitive modifiability that is governed by a domain-

general mechanism (e.g., Campion & Brown, 1990). If learning potential is a domain-general 

learning mechanism, DA in one domain may predict performance in other domains. The present 

study included arithmetic as a cross-domain criterion while taking into account predictors of 

math such as number sense. Learning potential is hypothesized to be domain-specific for the 
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following two reasons. First, Day et al.’s (1997) study suggests the domain specificity of 

learning potential. Comparing DA of similarities (i.e., verbal domain) and block design (i.e., 

nonverbal domain) tasks, the researchers found that responsiveness indices of the two tasks were 

not correlated. The second reason for hypothesizing domain-specificity of DA is that DA has 

shown differential patterns of predictive validity for explaining two different outcomes even 

within the same domain (e.g., Bridges & Catts, 2011; Fuchs et al., 2011; Seethaler et al., 2011).  
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CHAPTER III 

 

METHOD 

 

Participants 

One hundred and twelve first grade students with various levels of reading ability 

participated in this study. Based on teacher reports, only those students whose native language is 

English were included. Demographic information of the participants is summarized in Table 1.  

Table 1.  

Demographics of the Participants (N=112) 

 Frequencies (%) 

Gender  

   Male 64 (57.14) 

   Female 48 (42.86) 

Race  

   African American 43 (38.74) 

   Caucasian 55 (49.55) 

   Others 13 (11.61) 

Free/Reduced Lunch  

   No 53 (47.32) 

   Yes 59 (52.68) 

IEP   

   No 102 (91.07) 

   Yes 10 (8.93) 

 M (SD) 

Age 6.718 (.319) 

 

Measures 

Dynamic assessment of decoding 

Three essential skills required for decoding development were assessed in the DA: 

learning symbol-sound correspondence, blending sounds, and inferring decoding rule. The 

learning and mastery of each skill was assessed using the following tasks. For the symbol-sound 
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correspondence task (DA 1), students were asked to make connections between six new symbols 

(adopted from Chinese characters) and their corresponding English sounds (s, m, t, p, f, a). For 

the blending task (DA 2), students were asked to read consonant-vowel-consonant (CVC) words 

written with the new symbols they learned in DA 1. For the inferring decoding rule task (DA3), 

students were required to discover the ‘silent e’ rule and read CVCe words.  

For each task, students were given multiple trials to master the skill. Each learning trial 

was composed of two parts: Instructional prompts and a six-item posttests. The general 

procedure was as follow: the tester began with a simple presentation of the required skill. If 

students failed to master the skill at the first learning trial, the next trial was given with the 

provision of instructional prompts to help them master the skill. If students failed again, they 

were given the next learning trail with more explicit prompts. Increasingly explicit prompts were 

given until the student reached mastery or until all predetermined prompts were provided. If 

mastery was achieved, students moved to the next task and received a perfect score for the 

remaining unadministered items. If students did not show evidence of learning even after all the 

levels were provided, the tester stopped administration. In this case the students received a 0 

score for the remaining unadministered tasks. Students were provided 9 learning trials at most 

for DA 1, 4 trials for DA 2, and 5 trials for DA 3.   

Description of the increasingly explicit prompts for each DA task was as follows: In DA 

1, students were presented with the novel symbols and asked to say the sounds. Initially for the 

first 5 trials, students were provided only with corrective feedback; then, students were provided 

with a key word representing its sound (e.g., /a/ as in apple); then, provided with partial picture 

clues (e.g., apple-like picture that resembles the /a/ symbol); then, provided with complete 

picture clues (e.g., apple picture); and finally, students were asked to trace over the symbol with 
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their finger. In DA 2, students were presented with CVC words (i.e., sam, fat) written with the 

novel symbols. First, the tester read the word; second, the tester modeled sounding out 

(blending); third, the tester modeled tapping out by breaking down each individual sounds, and 

then sounded out; and finally, along with the sounding and tapping out, students were provided 

with picture clues to help them remember the sound as they blended the sounds. In DA 3, 

students were presented with CVC words and CVCe words (i.e., sam/same, fat/fate). To 

represent CVCe words, another novel symbol was added that represents ‘e’ to CVC words. First, 

the tester read the word; second, the tester tapped out the sound in the word; third, the tester 

directed students’ attention to the middle sound and instructed them that the middle sound of the 

CVCe word was different from the CVC word; fourth, the tester explicitly taught the “silent e” 

rule that when another symbol appears at the end, it changes the sound of the middle letter; 

finally, the tester provided picture clues to remember the “silent e” rule.  

After each of the instructional prompts, students’ learning was assessed using the posttest. 

The test comprised six items. The items were repeated across the tests but were presented in a 

random order in each mastery test. Mastery test items were not used for instructional prompts. 

Outcome was the total number of correct items across the mastery tests. Internal consistency 

was .71 across all mastery tests and .50 for DA 1, .93 for DA2, and .95 for DA 3. Somewhat low 

internal consistency for DA 1 mastery suggests that paired associate learning may be dependent 

on the specific feature of the symbol.   

The DA of decoding used in this study was modified from the measure developed by D. 

Fuchs and colleagues (2007), and incorporated a paired associative learning (PAL) task 

influenced by Elbro, Daugaard, and Gellert’s DA design (2012). I modified the Fuchs et al.’s DA 

of decoding because it has been shown to have incremental validity for predicting later word 
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reading outcomes (e.g., Cho et al., in press; Fuchs et al., 2011) and shown to improve 

classification accuracy (Compton et al., 2010) when added into a comprehensive set of reading 

predictors of (for a detailed description of the previous DA, see Fuchs et al., 2007). 

Based on the fact that Fuchs et al.’s (2011) DA showed floor effects and had shared 

variances with reading and language skills measured with static assessments, modifications were 

made in four ways. First, I centered the DA tasks on the three basic cognitive skills required for 

decoding: (a) learning novel symbol-sound correspondences, (b) blending sounds, and (c) 

learning rule-based decoding. I expected this would make the test more sensitive for 

discriminating individual in the lower end of the distribution because it included prerequisite 

skills required for decoding (letter-sound knowledge). Second, I included five trials of PAL in 

DA1. One reason for inclusion was that PAL has been considered a type of DA because it 

provides corrective feedback (e.g., Elbro et al., 2012). Another reason for the inclusion was that 

there have been reports indicating PAL is a significant predictor of word reading (e.g., 

Warmington & Hulme, 2012). Third, I used novel symbols instead of alphabet letters so that it is 

less dependent on prior knowledge about letter-sound correspondences and on existing decoding 

skills. As suggested by Sternberg and Grigorenko, the task should be novel in order to truly 

assess how the child may learn and transfer learning to a novel setting (1999). Thus, I sought to 

make the DA less dependent on prior reading skills and more dependent on learning potential by 

using novel symbols. Fourth, I attempted to reduce the language load in the DA tasks by 

minimizing verbal explanation. Most of the prompts in the current DA use visual cues and 

modeling.  

 

 



 

23 

Reading measures 

A comprehensive set of static early indicators of reading were collected to include as 

predictors of reading skill: RLN, RDN, and PA. Two measures of decoding (timed and untimed) 

and word recognition (timed and untimed) were assessed as reading outcome measures. 

Rapid automatized naming. The Comprehensive Test of Phonological Processing: Rapid 

Letter Naming (CTOPP: RLN; Wagner, Torgesen, & Rashotte, 1999) and Rapid Digit Naming 

(RDN) were used to measure the speed at which students can name two sets of 36 

letters/numbers. According to the manual, the test-retest reliability for ages 5-7 is .97. 

Decoding. The Woodcock Reading Mastery Test-Revised/NU: Word Attack (WRMT-

R/NU: WAT; Woodcock, 1998) was used to measure untimed pseudoword reading in isolation. 

The manual reports the split-half reliability for first grade students as .94. In addition, the Test of 

Word Reading Efficiency: Phonemic Decoding Efficiency (TOWRE: PDE, Torgesen, Wagner, 

& Rashotte, 1997) was used to measure decoding accuracy and fluency. Test-retest reliability 

reported in the manual is .86 for the first grade sample.     

Word recognition. The WRMT-R/NU: Word Identification (WID; Woodcock, 1998) was 

used to measure untimed real word reading in isolation. The split-half reliability from the manual 

is .98 for first grade students. Also, the TOWRE: Sight Word Efficiency (SWE; Torgesen, 

Wagner, & Rashotte, 1999) was used to measure students’ word recognition fluency. Test-retest 

reliability reported in the manual is .93 for the first grade sample.    

DA word list. Students were asked to read a list of 12 words (6 CVC and 6 CVCe) that 

were used in the DA mastery tests. This measure was included because it provided a baseline for 

static decoding skill that may affect the performance on DA mastery test. Internal consistency 

was .89 for the current sample.   
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Math measures 

Two measures assessing number sense were included in addition to the DA of decoding 

for predicting arithmetic. Also, one standardized measure of arithmetic and two curriculum-

based measures of computation (timed and untimed) were used as outcome. 

Number sense. Quantity Discrimination (QD; Chard et al., 2005; Research Institute on 

Progress Monitoring, 2009) was used to measure students number sense. Test-retest reliability 

reported from prior research is .85 -.99 (Clarke, Baker, Smolkowski, & Chard, 2008). In addition, 

Number Sets (NS; Geary, Bailey, & Hoard, 2009) was used to assess the fluency with which 

students can identify and process quantities represented by Arabic numerals and object sets. 

Students performed four trials. Each trial yielded hit, miss, correct rejection, and false positives. 

Scores subtracting false alarm from hit scores for each form were used in the analysis. 

Arithmetic. The arithmeticsubtest of the Wide Range Achievement Test-3 (WRAT-3: 

Wilkinson, 1993) was used. This consisted of 15 oral questions and 40 written arithmetic items. 

According to the manual, internal consistency reliability is above .81 for age 6 -7. In addition, 

the first grade math curriculum-based measure (CBM; Fuchs, Hamlett, & Fuchs, 1990) was used 

to assess students’ addition and subtraction accuracy and fluency. Alternate form reliability 

reported in the manual exceeds .89.  

Domain-general measures 

Intelligence, attentive behavior, and phonological awareness are considered domain-

general predictors of academic outcome. PA has long been considered to predict reading 

development. However, PA has recently gained attention as important predictor of arithmetic, 

especially for simple problems where math facts are retrieved from memory (De Smedt, Taylor, 

Archinald, & Anasari, 2010; Fuchs, Compton, Fuchs, Paulsen, Bryant, & Hamlet, 2005; Hecht, 
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Torgesen, Wagner & Rashotte, 2001). Thus, it is considered as domain-general predictor of 

learning in this study.  

Intelligence. Wechsler Abbreviated Scale of Intelligence: Matrix Reasoning (WASI: MR; 

Wechsler, 1999) was used to measure nonverbal intelligence. The split-half reliability reported in 

the manual is over .85 for students age 6-7. According to the manual, the intercorrelation of MR 

with performance IQ is .87 and full scale IQ is .86. WASI-Vocabulary (Wechsler, 1999) was 

used to measure verbal intelligence, which includes expressive vocabulary, verbal knowledge, 

and foundation of information. The split-half reliability reported in the manual is over .86 for 

students ages 6-7. According to the manual, the intercorrelation of Vocabulary with verbal IQ 

is .93 and full scale IQ is .87.  

Attentive behavior. In addition, the Strengths and Weaknesses of ADHD-Symptoms and 

Normal-Behavior (SWAN; Swanson et al., 2004) scale was used to assess students’ attentive 

behavior. Only the items 1-9, which relates to the inattention were used. Internal consistency 

reliability coefficient (alpha) for the present sample is .97.  

Phonological awareness. The CTOPP: Elision (Wagner et al., 1999) was used to assess 

student’s phonological awareness. Children were asked to say a word, then to say the word after 

deleting a specified part of the word. According to the manual, the test-retest reliability for ages 

5-7 is .88. 

 

Procedures 

In October and November of first grade, all of the measures were administered to 

students during two one-hour testing sessions. Teachers completed demographic form (including 

date of birth, ethnicity, free/reduced lunch status as a proxy for SES, placement information, 
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ELL status, and native language) and SWAN (Swanson et al., 2004). The testers were trained to 

follow all administration procedures for the tests. Seven testers were trained to criterion using 

standard directions for administration. All individual sessions were audiotaped; 20% of tapes 

were selected randomly, stratifying by tester, for procedural fidelity and scoring reliability by an 

independent scorer. Procedural fidelity was above 97% across all assessment. For scoring 

reliability, measure of reading and oral vocabulary exceeded 90% reliability.  
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CHAPTER IV 

 

DATA ANALYSES AND RESULTS 

 

A series of confirmatory factor analyses were carried out to assess how well DA of 

decoding represents the target construct of learning potential distinct from general intelligence 

and from statically measured decoding ability (Research Question 1). Then, a series of structural 

equation models were used to examine the relationships (a) between a latent variables 

representing learning potential, decoding, and word recognition abilities (Research Question 2) 

and (b) between learning potential and arithmetic performance (Research Question 3) controlling 

for a wide range of competing predictors. These analytic procedures were selected because they 

represent a theory-driven approach for the evaluation of a priori hypotheses about causal 

relations among the variables. Raw scores were used in the analysis and data were analyzed 

using the Mplus 6.0 (Muthén & Muthén, 1998-2010). Judgment of statistical significance was 

based on the unstandardized output, but standardized coefficients are reported to aid the 

interpretation of the results.   

 

Descriptive Statistics and Preliminary Analyses  

Descriptive statistics (means, standard deviations) and zero-order correlation are reported 

in Table 2. No outliers (e.g, > 3.5 SDs from the mean) were identified. Because maximum 

likelihood (ML) estimation assumes univariate and multivariate normality, violation of these 

assumptions can lead to underestimation of standard errors and overestimation of the chi-square 

values. Therefore, distributional estimates of skew and kurtosis were tested using STATA 11.0 
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(StataCorp, 2009). Several variables showed significant skew and kurtosis. Mardia’s normalized 

coefficient of multivariate normality was also checked to ensure the data met the assumptions of 

ML. Mardia’s statistic for multivariate normality revealed significant multivariate nonnormality 

of skewness, 86.21,    (1330) = 1656.68, but not for kurtosis, 403.02,    (1) = .57. Thus, models 

were run with MLM developed by Satorra and Bentler, which uses robust standard errors and 

mean-adjusted chi-square test statistics that are robust to non-normality (1988). Satorra-Bentler 

chi-square incorporates a scaling correction factor for the chi-square statistic when distributional 

assumptions are violated and it has been shown to be the most reliable method for evaluating 

mean and covariance structure models (Curran, West, & Finch, 1996). 
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Table 2.  

Descriptive Statistics and Zero-order Correlation among Manifest Variables  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1. DA1 -                       

2. DA2 .37 -                      

3. DA3 .35 .53 -                     

4. MR .30 .30 .40 -                    

5. VOC .23 .40 .50 .49 -                   

6. ATT .09 .29 .33 .30 .48 -                  

7. PA .27 .42 .52 .35 .50 .17 -                 

8. RDN -.13 -.32 -.27 -.11 -.29 -.41 -.09 -                

9. RLN -.12 -.34 -.30 -.20 -.31 -.44 -.21 .85 -               

10. QD .06 .32 .31 .18 .44 .51 .30 -.63 -.64 -              

11. NS5a .11 .35 .28 .35 .55 .49 .25 -.33 -.27 .56 -             

12. NS5b .22 .47 .46 .41 .64 .48 .44 -.33 -.32 .61 .71 -            

13. NS9a .05 .15 .24 .11 .22 .38 .12 -.33 -.19 .40 .55 .39 -           

14. NS9b .01 .30 .34 .33 .50 .50 .36 -.35 -.31 .52 .66 .69 .63 -          

15. DAW .15 .42 .62 .38 .67 .47 .61 -.33 -.42 .43 .38 .56 .11 .52 -         

16. WAT .24 .50 .64 .42 .57 .47 .66 -.28 -.37 .37 .36 .52 .22 .55 .80 -        

17. PDE .24 .40 .51 .37 .51 .47 .53 -.36 -.40 .40 .35 .52 .27 .57 .70 .83 -       

18. WID .23 .43 .54 .37 .56 .52 .59 -.39 -.48 .44 .35 .54 .22 .56 .79 .88 .84 -      

19. SWE .14 .32 .41 .35 .53 .48 .47 -.44 -.50 .44 .35 .52 .29 .56 .71 .75 .84 .90 -     

20. AR_o .19 .50 .44 .36 .55 .41 .46 -.48 -.49 .56 .46 .60 .23 .54 .59 .59 .48 .57 .50 -    

21. AR_w .12 .29 .34 .33 .50 .41 .45 -.32 -.28 .45 .47 .55 .34 .60 .54 .62 .57 .59 .56 .51 -   

22. CBM2 .04 .30 .30 .16 .33 .36 .25 -.41 -.34 .54 .52 .64 .43 .64 .43 .40 .47 .44 .49 .52 .47 -  

23. CBM5 .03 .35 .47 .29 .56 .40 .42 -.29 -.29 .48 .57 .68 .43 .67 .64 .57 .51 .54 .52 .58 .59 .62 - 

M 44.44 18.95 15.88 52.61 52.87 4.45 8.46 1.40 1.34 31.04 7.71 7.51 5.58 5.69 8.68 16.05 13.94 38.91 34.17 13.71 3.80 8.96 14.65 

SD 7.86 7.54 11.60 11.33 12.03 1.45 4.61 .34 .34 8.05 2.80 3.82 2.50 3.83 3.41 8.67 8.72 14.83 14.62 1.49 1.36 4.92 6.03 

Min 19 0 0 35 20 1 0 .53 .43 5 -1 -5 -1 -6 0 0 0 1 3 8 1 0 0 

Max 54 24 30 77 80 7 19 2.4 2.32 50 13 16 10 15 12 38 45 73 67 15 9 24 25 

Note. Coefficients greater than .18 is significant at α=.05; DA1-3it = total number of item correct for DA 1-3; DA1-3lv = total number of prompts given for DA 1-3; MR = matrix reasoning 

(nonverbal intelligence); VOC =  vocabulary (verbal intelligence); ATT = attentive behavior; PA = phonological awareness; RDN = rapid digit naming; RLN = rapid letter naming; QD = quantity 

discrimination; NS5a = first probe of number set for 5; NS5b  = second probe of number set 5;  NS9a = first probe of number set for 9; NS9b  = second probe of number set 9; DAW = DA word list; 

WAT = word attack; PDE = phonemic decoding efficiency; WID = word identification; SWE = sight word efficiency; AR_o = Wide Range Achievement Test 3rd Arithmetic oral section; AR_w= 

Wide Range Achievement Test 3rd Arithmetic written section; CBM2 = computation curriculum based measure timed for 2 min; CBM5 = computation curriculum based measure timed for 5 min. 
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Model Fit Indices 

Model fit in these analyses were evaluated based on multiple fit indices including 

absolute fit indices and incremental fit indices. As recommended by Hu and Bentler (1998), 

standardized root-mean-square residual (SRMR; absolute fit) was reported with other 

supplementary fit indices such as comparative fit index (CFI; incremental fit Type 3) and 

nonnormed fit index (incremental fit Type 2) also known as Tucker-Lewis index (TLI). These fit 

indices are sensitive to model misspecification, less sensitive to distribution and sample sizes, 

and stable across different estimation methods in ML (Hu & Bentler, 1998). CFI is an especially 

good index with small sample size. TLI penalizes for model complexity and allows researchers 

to evaluate models for parsimony. When evaluating model fit, greater weights were given in the 

following order: SRMR, CFI, and TLI. A cutoff value of .08 is used for SRMR (Hu & Bentler, 

1998; Browne & Cudeck, 1993). Although it is recommended that TLI and CFI be close to .95, 

models with values close to .90 were considered acceptable (Bentler, 1992; Kline, 2005). In 

addition, chi-square difference tests, adjusted with the scaling correction factor, were conducted 

to inform whether the base model provides better fit than competing models. The base model 

was considered to yield better fit because it includes a larger number of estimated parameters 

(i.e., less restrictive). However, if nested models (more restrictive) fail to have significantly 

poorer fit than the base model, the more parsimonious model was selected.  

 

Research Question 1 

A series of confirmatory factor analyses were conducted to address the issue of construct. 

The first latent factor, learning potential, composed of indicators from all three DA tasks (Figure 

1): DA 1, DA 2, and DA 3. The second factor, general learning aptitude, composed of WASI 
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Vocabulary (verbal intelligence) and MR (nonverbal intelligence). The third factor, decoding, 

included WAT (untimed decoding), SWE (timed decoding), and DA word list. Reading DA 

word list was considered as a decoding process because it comprised words that follow the 

decoding rule (e.g., CVC, and silent e rule)    

Four hypothetical models were tested. Model 1 had three separate, correlated factors 

(learning potential, decoding, general learning aptitude). This model assumed that potential for 

learning to decode is different from present level of decoding skills and from domain general 

learning aptitude. This model supposedly has the best fit because it has the fewest constraints. 

Thus, Model 1 served as a baseline from which to evaluate the fit of the other models.  

Model 2 had two separate, correlated factors (learning potential + general learning 

aptitude, decoding) and assumed learning potential for decoding and general learning aptitude as 

a unitary construct. The rationale for this model comes from the concern of the Jangle fallacy 

that we might be labeling one construct (learning aptitude) with two labels, intelligence and 

learning potential. Model 3 had two separate, correlated factors (learning potential + decoding, 

general learning aptitude). According to this model, student’s potential for learning to decode is 

not different from to how well one can decode. The last model, Model 4, assumed a single 

general factor. According to this model, there is a single underlying ability that is manifested in 

individual differences on learning to read in general.    

Results showed that the three factor model (Model 1), with separate but correlated factors 

representing learning potential, general learning aptitude, and decoding, was a good 

representation of the data structure,   (17) = 36.420, p = .004, CFI = .960, TLI = .935, SRMR 

= .042 (see Model 1 in Table 3). Because alternate models were nested within the three factor 

model, adjusted chi-square difference tests were conducted. Adjusted chi-square values were 
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7.019 ( df = 2), 18.066 ( df = 2), and 22.92 ( df = 3) for Model 2 - 4, respectively. All of them 

were significant at a .05 alpha level; thus, Model 1 was preferred over the alternative models 

(Table 3). I therefore concluded that DA measures the construct of learning potential that is 

distinct from static decoding skills and general learning aptitude. Although separate, correlations 

of these latent constructs suggest that these three dimensions are highly correlated (Figure 1). All 

observed variable loaded reliably onto their respective factors in Model 1 (standardized 

coefficients of .420 - .959, ps < .001).  

Table 3.  

Fit Indices and Model Comparisons for the Competing Models for Research Question 1.  
Model df χ

2
 SCF p CFI TLI SRMR ∆χ

2
 Model 1 

Three factor model         

   Model 1: LP, IQ, DEC 17 36.420 .945 .004 .960 .935 .042  

Two factor model         

   Model 2: LP + IQ, DEC 19 44.015 .969 .000 .949 .925 .050 7.019* 

   Model 3: LP + DEC, IQ 19 56.795 .964 .000 .923 .886 .063 18.066** 

One Factor Model         

   Model 4: LP+ IQ + DEC  20 60.801 .960 .000 .912 .877 .065 22.92** 

Note. LP = learning potential; D = decoding; χ2 = Satorra-Bentler corrected chi-square statistics; SCF = 

scaling correction factor for Satorra-Bentler  χ
2
; CFI = comparative fit index; TLI = Tucker-Lewis index; 

SRMR =  standardized root-mean-square residual; ∆χ
2 
= adjusted chi-square difference test 

* p < .05 

** p < .001 
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Figure 1.  Three-factor model for research question 1. All coefficients are depicted in the figure 

are significant. Verbal intelligence (Wechsler Abbreviated Scale of Intelligence [WASI] 

Vocabulary [VOC]), nonverbal intelligence (WASI Matrix Reasoning [MR]), learning Potential 

(total number of correct items in mastery tests for DA1, DA2, DA3), untimed decoding 

(Woodcock Reading Mastery Test [WRMT] Word Attack, timed decoding (Test of Word 

Reading Efficiency [TOWRE] Phonemic Decoding Efficiency), cvc and cvce words (DA word 

list) 

 

 

Research Questions 2 and 3 

A series of structural equation modeling progressed in two stages. First, the measurement 

models were estimated separately for predictors and outcomes. Second, various relational models 

were tested using structural equation modeling. The model building process of the measurement 

models was guided by both theory and data. Initially, I assumed the most parsimonious predictor 

model with five latent factors including general learning aptitude (MR, VOC), attentive behavior 

(SWAN), learning potential (DA1, DA2, DA3), pre-reading (PA, RLN, RDN), and pre-math 

(PREM; QD, NS5a, NS5b, NS9a, NS9b). However, this measurement model did not fit the data 

structure well,   (94) = 233.267, p = .000, CFI = .884, TLI = .852, SRMR = .108. An alternative 
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model was estimated with three latent factors including learning potential, rapid automatized 

naming (RAN; RLN, RDN), and PREM as well as four manifest variables including nonverbal 

intelligence (MR), verbal intelligence (VOC), attentive behavior (SWAN), and phonological 

awareness (PA). Factors with only one indicator were entered in the model as manifest variables 

(Figure 2). 

Theoretical justification for separating general intelligence into nonverbal and verbal 

domain was as follows: Nonverbal and verbal intelligence represent two distinct sub-dimensions 

in the hierarchical structure of the intelligence (e.g., Carroll, 1993; Cattell, 1971; Spearman, 

1927). Nonverbal intelligence refers to the speed and accuracy of abstract reasoning for novel 

problems, whereas verbal intelligence refers to the accumulated knowledge and vocabulary from 

experience. These two separate dimensions of intelligence structure are empirically supported 

(Ryan et al., 2003; Weschler, 1999). In the case of the PA and RAN, although some have argued 

both skills fall under a unitary structure of phonological processing skills, others have argued for 

separable, though related, phonological ability constructs (e.g., Wagner, Torgesen, Laughon, 

Simmons, & Rashotte, 1993). PA is the awareness of and ability to manipulate the sound 

structure in spoken language, and RAN is the efficiency of the phonological code retrieval from 

a long-term storage. The speediness, cross-modality of stimulus and response, and retrieval of 

the phonological code make RAN distinguishable from PA. In fact, RAN and PA have been 

proposed as separate sources of deficits in reading development (e.g., Wolf & Bowers, 1999). 

This predictor measurement model provided an acceptable fit of the data,    (60) = 129.726, p 

= .000, CFI = .909, TLI = .861, SRMR = .063. All factor loadings for the latent factor were 

significant (standardized coefficient of .458-.920, ps < .001).  
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Figure 2. Measurement model for research questions 2 and 3 predictors. Only significant 

coefficients are depicted in the figure. The predictor model incorporated 7 dimensions of abilities: 

verbal intelligence (Wechsler Abbreviated Scale of Intelligence [WASI] Vocabulary [VOC]), 

nonverbal intelligence (WASI Matrix Reasoning [MR]), attentive behavior (SWAN Rating 

Scale), phonological awareness (Comprehensive Test of Phonological Processing [CTOPP] 

Elision), rapid automatized naming (CTOPP Rapid Letter Naming [RLN], Rapid Digit Naming 

[RDN]), Learning Potential (total number of correct items in mastery tests for DA1, DA2, DA3), 

predictors of math (Quantity Discrimination, Number Set [NS]5 set a, NS5 set b, NS9 set a, NS9 

set b)    
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The measurement model for outcome included three correlated dimensions (Figure 3). 

The first factor, decoding, included WAT and PDE; the second factor, word recognition, 

included WID and SWE; and the third factor, arithmetic, included oral and written section of 

WRAT Arithemetic, 2-minute timed CBM (CBM 2), and 5-minute timed CBM (CBM 5). The 

three-factor solution represented the data structure well,    (11) = 55.697, p = .000, CFI = .951, 

TLI = .919, SRMR = .037. All observed variables loaded substantially and reliably onto their 

respective three-factors (standardized coefficients of .691-.922, ps < .001). An alternative two 

factor model comprised word reading (WAT, PDE, WID, SWE) and arithmetic (WRAT oral, 

WRAT written, CBM2, CBM5) also fit the data adequately. Yet, this alternative model fit 

significantly worse than the three factor model, adjusted      (2) = 10.035, p < .05. Therefore, 

three-factor model was selected as a final outcome model.  

 

Figure 3. Measurement model for research questions 2 and 3 outcomes. All coefficients are 

depicted in the figure are significant. The outcome model incorporated 3 dimensions of academic 

skills: decoding (Woodcock Reading Mastery Test [WRMT] Word Attack, Test of Word 

Reading Efficiency [TOWRE] Phonemic Decoding Efficiency), word reading (WRMT Word 

Identification, TOWRE Sight Word Efficiency), arithmetic (Wide Range Achievement Test 

[WRAT] Arithmetic Oral Section, Written Section, 1
st
 grade computation curriculum based 

measures [CBM] timed for 2 minutes and 5 minutes. WR = Word Recognition; Math = 

arithmetic.    
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The second stage of model building tested whether sequentially fixing the paths from 

learning potential to outcomes yielded significantly poorer fit than the comparison models. This 

procedure was used to examine whether learning potential is necessary in forecasting decoding, 

word recognition, and arithmetic performances. Four hypothetical models, depicted in Figure 4, 

were tested to represent the relationship between DA and the outcome measures.  

 

Figure 4. Four structural models explaining relations among predictor abilities and academic 

outcomes. Dotted line indicates the path coefficient is fixed to zero. The domain-general model 

is the least parsimonious structural, in which DA is included as a predictor for decoding, word 

recognition, and arithmetic outcome. Each of the subsequent (nested) models is more 

parsimonious. In domain-specific model, DA is included as a predictor only for decoding and 

word recognition. In task-specific model, DA is included as a predictor only for decoding. In the 

null model, DA is included as a predictor of none of the outcomes. WR = Word Recognition; 

Math = arithmetic 
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The base model (Model 1) was the least parsimonious structural model where domain-

general predictors had paths to all three outcomes; reading predictors had paths only to decoding 

and word recognition; and math predictor had a path only to math. In Model 1, learning potential 

factor was considered domain-general predictor and had paths to all three outcomes. It was 

termed as the domain-general model because I hypothesized that learning potential in one 

domain is generalizable to other domains. That is, the underlying mechanism of learning to 

decode can account not only for the concurrent decoding and word recognition skills but also for 

arithmetic performance. Model 1 served as the base model for determining the utility of DA in 

explaining academic outcomes. In Model 2, learning potential factor had paths to reading 

outcomes, decoding and word recognition, given the hypothesis that learning potential measured 

by DA is domain-specific and that learning potential for decoding is unnecessary for explaining 

individual differences in arithmetic. Thus, Model 2 was termed as the domain-specific model. In 

Model 3, learning potential factor had a path only to decoding based on the possibility that DA of 

decoding may measure learning potential that is specific to decoding. In this model, I assumed 

that learning potential for decoding is unnecessary for explaining individual differences in word 

recognition and arithmetic. Thus, Model 3 was termed as the task-specific model. In Model 4, 

learning potential did not have paths to any of the outcomes, and I assumed that DA does not 

have incremental validity. This model posited that learning potential for decoding does not give 

additional information for explaining individual differences associated with basic academic 

outcomes beyond what can be gathered from traditional assessments. Model 4 was termed as the 

null model. Summaries of the model fit results are presented in Table 6.  

Research question 2 and 3 were answered by sequentially comparing three structural 

models (Table 4). First, Model 1 was compared with Model 4 to address whether DA is 
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necessary for explaining academic outcomes in general, in the presence of all other academic 

predictors. Results indicated that Model 1 represents the data structure better than Model 4,      

(3) = 12.14, p < .05, suggesting DA has incremental validity in explaining academic outcomes. 

Because Model 1 fit statistics provide evidence for the incremental validity of DA as a predictor 

of academic skill, alternative models were run to further examine the specific relationship of DA 

with each outcome. This allowed me to pinpoint the domain in which DA has predictive value. I 

fixed the path coefficient of the learning potential factor to arithmetic (Model 2), word 

recognition (Model 3), cumulatively and sequentially. To examine whether DA has incremental 

validity within the domain of reading but not in arithmetic, Model 1 was compared with Model 2. 

Model 2 did not result in poorer fit to the data structure than Model 1,      (1) = .80, p > .05. 

Thus, Model 2 was selected given its parsimony. Model 2 was then compared with Model 3 to 

investigate whether DA was only necessary for explaining decoding. Model 3 did not fit to the 

data significantly worse than Model 1,    (1) = .91, p > .05, indicating Model 3 would be the 

model that best represents the data in the most parsimonious way.  

 

Table 4.  

Fit Indices for the Competing Models for Research Question 2 and 3. 
Model df χ

2
 SCF p CFI TLI SRMR 

Measurement Models        

   Predictor Model 60 129.726 1.014 .000 .909 .861 .063 

   Outcome Model 11 55.697 .989 .000 .951 .919 .037 

Structural Models        

   Model 1: Domain-general model 171 330.642 .990 .000 .906 .876 .062 

   Model 2: Domain-specific model 172 331.244 .991 .000 .906 .877 .063 

   Model 3: Task-specific model 173 332.153 .991 .000 .906 .878 .062 

   Model 4: Null model 174 343.146 .991 .000 .900 .871 .064 
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Figure 5. Final model for research questions 2 and 3. Only the significant coefficients are 

depicted in the figure. Coefficients were all significant at .05 alpha level. WR = Word 

Recognition; Math = arithmetic 
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CHAPTER V 

 

DISCUSSION 

 

General Discussion 

The primary purposes of the present study were (a) to examine whether students’ learning 

potential for decoding, measured with DA, is a separable dimension from general learning 

aptitude and static decoding level (construct validity), (b) to investigate whether DA has additive 

value in explaining students’ basic academic skills (incremental validity within domain), and (c) 

to examine the possibility of using DA to predict math performance as well (incremental validity 

across domain). Despite growing interest in DA for its utility as an early screening tool for 

academic difficulties, there have been relatively few attempts to empirically investigate the 

nature of the construct that DA measures. There are multiple possibilities for what DA could tell 

us about individual differences in learning in comparison to other traditional static measures. 

First, it is possible that DA may not offer anything new. Second, DA could measure students’ 

learning potential that represents a unique source of individual differences in learning rather than 

already learned knowledge and acquired skills. If this is the case, important theoretical and 

practical questions arise about the utility of the DA measure. For instance, does DA explain 

students’ academic skill beyond which that can be explained by other predictors of the academic 

skill? Can learning potential measured with DA be generalized across domains and have 

predictive validity across domains? In addressing these questions, the present study extended 

prior reading DA literature in three ways: (a) by taking a confirmatory approach to test the 
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construct validity of DA; (b) by including a broad range of competing predictors to test the 

incremental validity of DA; and (c) by incorporating cross-domain academic criterion (arithmetic) 

to test the generalizability of the learning potential factor. 

Construct validity of DA 

First, given the different theoretical orientations between DA and static assessments, 

confirmatory factor analyses were conducted to empirically test the distinctiveness of the 

construct measured via DA. Two other important factors considered in the nomothetic span of 

learning potential for decoding were static decoding skills and general learning aptitude (i.e., 

general intelligence). Prior DA studies in reading were limited in testing the theory because of 

their exploratory approach (Fuchs et al., 2011) or of their lack of appropriate model comparisons 

(Swanson & Howard, 2005). Comparing competing theoretical models with confirmatory factor 

analyses allowed me to picture relationships among the measures of general cognitive abilities, 

decoding, and DA. Results of the present study indicate that DA is a measure of a construct 

distinct from general cognitive ability and decoding. This finding coincides with others’ results 

who found models that have DA as a separate construct from the pretest performance on DA 

(Day et al., 1997) or from other static assessments (Fuchs et al., 2008) provided better fit to the 

data than the models that collapsed DA with static measures.  

The distinction between static decoding measures and DA may have risen from the 

particular focus of each assessment. Static measures focus on assessing past learning whereas 

DA focuses on measuring future learning. Beginning readers’ phonological processing skills 

(including decoding) develop rapidly with reading instruction (Wagner et al., 1993). Thus, a 

statically assessed decoding skill is heavily influenced by environmental factors such as 

educational opportunities in school or at home. On the contrary, the DA of decoding attempted to 
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eliminate the possibility of such influences by teaching students to decode using new 

orthographic system as part of the assessment. This allowed me to level the playing field and 

assess students’ learning potential for decoding that is relatively independent from prior learning 

experiences. This claim can be, in part, supported by the fact that I found significant differences 

in schools for all of the indicators of decoding (F (5, 106) = 3.65, p < .05 for untimed decoding,  

F (5, 106) = 5.18,  p < .05 for timed decoding, and F (5, 106) = 5.04, p < .05 for DA word list). 

However, no significant school differences were found in DA. Also supporting the claim that the 

DA may be relatively independent of prior reading skills comes from correlation results. 

Correlations between the individual words in DA word list and the corresponding items in DA 

mastery test ranged between .18 - .56. This suggests that the ability to read a certain English 

word had small to moderate relationships with students’ learning potential to read that word 

using novel symbols, which had the same sound of that word.   

The distinction between traditional intelligence assessments and DA may have been 

caused by two possible explanations. First, traditional assessments may measure cognitive 

abilities independently performed whereas DA may measure response to instructional prompts 

that are qualitatively different from each other. In fact, prior research provides evidence that DA 

of decoding is predictive of students’ growth (slope) in response to small group reading 

instruction when controlling for verbal intelligence (Cho et al., in press). Another reason why 

traditional intelligence assessments and DA were separated may be attributed to domain 

specificity of DA. Traditional intelligence assessments tap domain general learning aptitude, 

whereas DA of decoding taps learning potential specific to its task domain. The plausibility of 

this explanation is addressed in the third research question, which will be discussed later. 
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Incremental validity of DA 

Because DA used in this study provided unique information of individual differences in 

learning to read, the next step was to ask whether this information gathered from DA, learning 

potential, is important in explaining students’ academic performance even when all other 

predictors are controlled. This relates to the second contribution of this study to the extant DA 

literature. In the present study, incremental validity of DA was examined using a more stringent 

criterion than previous studies by including a wide range of potentially important predictors of 

word reading. I included domain general cognitive abilities, both verbal and nonverbal 

intelligence, and the teacher’s rating of attentive behavior in addition to phonological awareness 

and rapid automatized naming for explaining decoding and word recognition.  

Testing the incremental validity of DA as a measure is a practically important issue. 

Phonological awareness and rapid automatized naming of letters/digits are considered two 

important factors of dyslexia (e.g., Wolf & Bowers, 1999), and they are the most common and 

strongest measures that were used to predict beginning reading development (e.g., Compton, 

2000). If DA provides additional information to what commonly used predictors of reading can 

offer, DA may be used as a helpful tool for practitioners to correctly identify students with 

reading difficulties.  

Results suggest that DA indeed provides important information of individual differences 

in decoding. Students’ potential for learning to decode provided more comprehensive picture of 

students’ decoding skills in addition to students’ phonological skills and attentive behaviors. 

Results suggest students’ cognitive ability is best understood as a process. Instead of focusing on 

the end product of students’ development, students’ cognitive abilities can be fully understood by 

considering his/her continually developing abilities mediated by interaction with others. 
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Therefore, how well students learned to decode in response to instruction provided a more 

comprehensive picture of their concurrent decoding skills.  

Although DA showed significant positive relationship with word recognition, DA was 

not necessary for explaining word recognition in the presence of competing predictors. This may 

be due to the fact that the development of word recognition skills involves more than learning 

grapheme-phoneme relations and how to use these relations to decode words. In fact, English 

includes numerous high-frequency words that are not decodable and can only be read from 

memory. Another reason why DA failed to have incremental validity for word recognition is due 

to the limited number of vowel sounds used in DA. Decoding tasks used in DA included only 

one vowel sound, /a/, when the understanding of the variants of vowel sounds is critical for 

developing more complete representations of sight words in memory (Ehri, 1999).  

This study also contributed to the DA literature in terms of the breadth of the outcomes. 

Prior studies that had both reading and math outcomes used DA tasks that are more domain-

general in nature measuring basic intelligence or working memory (Swanson & Howard, 2005). 

Studies that had DA tasks in a specific academic domain did not include outcomes outside of that 

domain (Bridges & Catts, 2011; Cho et al., in press; Fuchs et al., 2008; Fuchs et al., 2011; 

Seethaler et al., 2011; Spector, 1992). I used domain-specific DA tasks (decoding) while 

including arithmetic outcome to examine whether learning potential is generalizable across 

domains. Including arithmetic outcomes served two purposes in this study. First, it allowed me to 

test whether DA measures domain-general or domain-specific learning potential. In 

Grigorenko’s (2009) theoretical paper comparing DA and response to intervention (RTI), she 

pointed out that domain generality of learning potential is an unsettled issue whereas RTI 

measures students’ responsiveness that is domain-specific. If DA and RTI are truly parallel 
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concepts, DA may also measure response to instructional prompts specific to the domain of the 

task. Results from this study suggest that DA measures learning potential that is not 

generalizable across domains. Second, given the fact that DA is highlighted as a useful screening 

tool that can supplement existing static measures, examining incremental validity of DA across 

domains could guide practitioners whether different DA should be used in screening for different 

outcomes. The present results suggest not using a single DA for documenting students’ 

responsiveness across different domains.  

 

Limitation and Future Direction 

Although the present study extended existing DA research in important ways, the results 

must be interpreted in light of the three study limitations. Two of the limitations deal with 

statistical concerns and the other is related to theoretical and practical issues. Each limitation 

suggests areas for future research.  

The first statistical concern is small sample size. Results should be interpreted with 

caution because of the small sample size. It may be noted, however, that even with a relatively 

small sample size and with limited power to detect differences between models, I did detect 

significant differences using the chi-square difference tests across competing models. The other 

statistical concern is the use of manifest variables. Because the initially proposed measurement 

model did not represent the data structure well enough, the use of manifest variables in the 

models was unavoidable. Although the measures entered as manifest variables had high 

reliabilities, path coefficients can be over- or under- estimated when fallible measures are used in 

the analyses. Thus, future research on DA using structural equation modeling may benefit from 
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incorporating larger samples and obtaining multiple measures for use in modeling to get more 

stable estimates.  

Results are limited to DA’s concurrent prediction of academic skills. I did not examine 

the DA’s predictive validity in forecasting future performances. One of the advantages of DA 

over traditional assessments is that DA focuses on measuring what students can do in the future 

instead of what students can do at the time of testing. Thus, in theory, DA should have additive 

value in predicting students’ future performance. Moreover, its predictive value may be greater 

when explaining future performances than concurrent ones because DA is a more sensitive 

measure for growth than for the present level of performance.  

Depending on when the outcomes are measured, different results could occur. 

Interestingly, Seethaler et al. (2011) found that DA of math using balancing equation tasks had 

stronger incremental validity for predicting future outcomes that were more distal to the DA 

tasks (word problem) than for more proximal task (computation). This is somewhat contrary to 

the present results, which found incremental validity of DA for outcomes that are proximal to 

DA task (decoding) but not for distal to DA tasks (word recognition and arithmetic). In the 

present study, DA had incremental validity only when the outcome was strictly aligned to the 

task demand of DA.  

 There are two important differences between Seethaler et al. (2011) and the present 

study that could account for the different patterns of results. First, the domain is different. 

Seethaler and her colleagues used math DA, whereas the present study used reading DA. Second, 

Seethaler et al. used DA to predict future performance, and the present study focused on 

concurrent prediction. Thus, DA may work better when the outcome closely aligns with the DA 

tasks than distal outcome when predicting concurrent outcomes. On the other hand, DA may 
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work better when the outcome is distal to the DA tasks when predicting future outcomes. It is 

noteworthy that learning and transfer is the key concept of graduated prompts approach 

(Campione & Brown, 1990). Students who can master the decoding skills only with implicit 

instruction prompts have better transfer ability than those who need more explicit instructional 

prompts. Given this premise, I would expect to find such patterns, were I to examine predictive 

validity. For example, DA of decoding may have incremental validity for predicting future word 

recognition for the following reason. According to the self-teaching hypothesis (Share, 1995), 

decoding skills transfers to word recognition skills. In other words, repeated practice in decoding 

is critical in building accurate representation of word’s orthographic unit and in strengthening of 

phonological information associated to the letters. Substantial practice time is also required for 

decoding skills to transfer to word recognition skills. Thus, if the present DA of decoding 

measures students’ learning potential for decoding and quantifies ability to transfer, it might 

predict how well students can transfer their decoding skills to word recognition skills. If I had 

allowed time for such transfer to occur and predicted future word recognition skills, as in prior 

studies (Bridges & Catts, 2011; Cho et al., in press; Fuchs et al., 2011; Spector, 1992), I could 

find incremental validity of DA for predicting word recognition development. Thus, the next step 

in this line of research is to examine the predictive validity of DA.  

 

Conclusion 

Overall findings of this study provide insight into cognitive processes involved in first 

graders’ reading and math performance. Particularly, this research supports the existence of 

Vygotsky’s notion of ZPD by providing empirical evidence that there are differences between 

what students can do independently and what students can accomplish given assistance (learning 
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potential). In addition, DA of decoding provided a more complete picture of students’ decoding 

skills beyond that which conventional assessment can provide.  
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APPENDIX 

Instructional Prompts for DA 

Introduction 

Hi, my name is _________________________. Today, we’re going to learn how to read words that people 

from another planet use. These people use funny letters. Let’s learn how to read one of their books. Try to 

see if you can read their words the way they do. Your work will not be part of your grade, but I want you to 

work really hard and pay careful attention to what I say. 

 

DA 1: Letter-Sound Correspondence Task 

 DA 1: Level 1-5 (PAL) 
Now I will show you funny letters and say the sounds that each funny letter makes. Listen carefully and try 

to remember what sound each funny letter makes. 

This says /m/. What sound? 

 
This says /p/. What sound? 

 
This says /f/. What sound? 

 
This says /s/. What sound? 

 
This says /t/. What sound? 

 
This says /a/. What sound? 

 
Mastery Test DA1: 1-5 

Tell me the sounds of these letters. Starting from top to bottom, from left to right. (Immediate corrective 

feedback is provided) 

 DA 1: Level 6 
Now I will tell you the sounds each funny letter makes. And I’ll give you key words for each funny letter. 

This says /m/ as in mountain. What sound? What word?  

 
This says /p/ as in person. What sound? What word?  

 
This says /f/ as in fish. What sound? What word? 

 
This says /s/ as in sun. What sound? What word? 

 
This says /t/ as in top. What sound? What word? 

 
This says /a/ as in apple. What sound? What word? 

 
Mastery Test DA1: 6 

Tell me the sounds of these letters. (No feedback is provided) 

 DA 1: Level 7 
Now I will give you picture clues to remember.  

This says /m/ as in mountain.  Do you know why? Look at this picture. This 

is an easy way of drawing a mountain. And it looks like the funny letter that 

says /m/. So, this says /m/ as in mountain. What sound? What word? (point to 

each picture)  

 

This says /p/ as in person.  Do you know why? Look at this picture. This is an 

easy way of drawing a person. And it looks like the funny letter that says /p/. 

So, this says /p/ as in person. What sound? What word? (point to each 

picture) 
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This says /f/ as in fish.  Do you know why? Look at this picture. This is an 

easy way of drawing a fish. And it looks like the funny letter that says /f/. So, 

this says /f/ as in fish. What sound? What word? (point to each picture)  

This says /s/ as in sun.  Do you know why? Look at this picture. This is an 

easy way of drawing a sun. And it looks like the funny letter that says /s/. So, 

this says /s/ as in sun. What sound? What word? (point to each picture)  

This says /t/ as in top.  Do you know why? Look at this picture. This is an 

easy way of drawing a top. And it looks like the funny letter that says /t/. So, 

this says /t/ as in top. What sound? What word? (point to each picture)  

This says /a/ as in apple.  Do you know why? Look at this picture. This is an 

easy way of drawing an apple. And it looks like the funny letter that says /a/. 

So, this says /a/ as in apple. What sound? What word? (point to each picture)  

Mastery Test DA1:7 

Tell me the sounds of these letters. (No feedback is provided) 

 DA 1: Level 8 
I will give you more helpful clues to remember these sounds. 

This is a mountain. And this is an easy way of drawing a mountain. Now, do 

you see why this makes /m/ sound as in mountain? Because it came from the 

shape of a mountain, this says /m/ as in mountain. What sound? What word? 
 

This is a person. And this is an easy way of drawing a person. Now, do you 

see why this makes /p/ sound as in person? Because it came from the shape 

of a person, this says /p/ as in person. What sound? What word? 
 

This is a fish. And this is an easy way of drawing a fish. Now, do you see 

why this makes /f/ sound as in fish? Because it came from the shape of a fish, 

this says /f/ as in fish. What sound? What word? 

 

This is a sun. And this is an easy way of drawing a sun. Now, do you see why 

this makes /s/ sound as in sun? Because it came from the shape of a sun, this 

says /s/ as in sun. What sound? What word? 

 

This is a top. And this is an easy way of drawing a top. Now, do you see why 

this makes /t/ sound as in top? Because it came from the shape of a top, this 

says /t/ as in top. What sound? What word? 

 

This is a apple. And this is an easy way of drawing a apple. Now, do you see 

why this makes /a/ sound as in apple? Because it came from the shape of an 

apple, this says /a/ as in apple. What sound? What word? 
 

Mastery Test DA1:8 

Tell me the sounds of these letters. (No feedback is provided) 

 DA 1: Level 9 
This time, I want you to use your finger to trace over the letter and say the sounds. 

This says /m/ as in mountain.  Now, use your finger to trace over the letter. 

What sound?  
 

This says /p/ as in person.  Now, use your finger to trace over the letter. What 

sound?  
 

This says /f/ as in fish.  Now, use your finger to trace over the letter. What 

sound?  
 

This says /s/ as in sun.  Now, use your finger to trace over the letter. What 

sound?  
 

This says /t/ as in top.  Now, use your finger to trace over the letter. What 

sound?   
This says /a/ as in apple.  Now, use your finger to trace over the letter. What 

sound?  
 

Mastery Test DA1:9 

Tell me the sounds of these letters. (No feedback is provided) 
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DA 2:Blending Sounds (CVC) 

 DA 2: Level 1 
Because you learned your funny letter-sounds, it is time to put together the sounds to make the words you 

know.  

Sam. Your turn. What word? 

 
Fat. Your turn. What word? 

 
Mastery Test DA 2-1 

Read these words to me. (No feedback is provided) 

 DA 2: Level 2 

Let’s try some more. I will show you how to read these words.  

I will stretch out the sounds in the word, and say them fast. 

s-a-m, sam (use your index finger). Your turn. 

 
f-a-t, fat (use your index finger). Your turn. 

 
Mastery Test DA 2-2 

Read these words to me. (No feedback is provided) 

 DA 2: Level 3 

Let’s try some more. This time, I am going to tap out the sounds in the word and say them fast. 

s.a.m. s-a-m, sam, (use your index finger), Your turn.  

 
f.a.t. f-a-t, fat, (use your index finger), Your turn. 

 
Mastery Test DA 2-3 

Read these words to me. (No feedback is provided) 

 DA2: Level 4 

Let’s try some more. This time, I used the letters with pictures related with the keywords of its sound. 

/s/ as in sun, /a/ as in apple, /m/ as in mountain. 

s.a.m. s-a-m. sam. (use your index finger). Your turn.  

 
/f/ as in fish, /a/ as in apple, /t/ as in top. 

f.a.t.f-a-t. fat. (use your index finger). Your turn. 

 
Mastery Test DA 2-4 

Read these words to me. (No feedback is provided) 

DA 3: Rule-based learning (CVCe) 

 DA 3: Level 1 
Because you are doing a good job working hard, let’s try something new. 

Sam. What word? 

Same. What word? 

(point to each word) 
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Fat. What word? 

Fate. What word? 

(point to each word) 

 
Mastery Test DA 3-1 

Read these words to me. (No feedback is provided) 

 DA 3: Level 2 
This time, I am going to tap out each sound and say them fast. 

S.a.m. s-a-m. sam. Your turn. 

s. ā.m. s- ā-m. same. Your turn. 

(point to each word) 

 
 

F.a.t. f-a-t. fat. Your turn. 

f. ā.t. f- ā-t. fate. Your turn. 

(point to each word) 

 
 

Mastery Test DA 3-2 

Read these words to me. (No feedback is provided) 

 DA 3: Level 3 
I am going to tap out each sound and say them fast, again. This time, listen to the middle sound to see how 

it changes. 

S.a.m. sam. Your turn. s. ā.m. same. Your turn. (point to each word). Does 

this letter in sam and same say the same sound? 

(point to middle sound). No, this letter in sam, says /a/ sound as in apple.  But 

this letter in same, says /ā/ sound, as in apricot. 

 

 
F.a.t. fat. Your turn. f. ā.t. fate. Your turn. (point to each word). Does this 

letter in fat and fate say the same sound? 

(point to middle sound). No, this letter in fat, says /a/ sound as in apple.  But 

this letter in fate, says /ā/ sound, as in apricot. 

 

 
Mastery Test DA 3-3 

Read these words to me. (No feedback is provided) 

 DA 3: Level 4 
Now, I will tell you why this letter makes different sounds. 

This last funny letter in same does not have a sound. But, instead, it changes 

the sound of the middle letter. We call this the magic square because it 

changes the middle sound. 

S.a.m. sam. Your turn. See this magic square? Listen carefully. s. ā.m. same. 

Your turn. 

(point to each word). 
 

This last funny letter in same does not have a sound. But, instead, it changes 

the sound of the middle letter. We call this the magic square because it 

changes the middle sound. 

f.a.t. fat. Your turn. See this magic square? Listen carefully. 

f. ā.t. fate. Your turn. 

(point to each word). 
 

Mastery Test: DA 3-4 

Read these words to me. (No feedback is provided) 
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DA 3: Level 5 
Now, I will give you the key word and picture to help you remember. 

This is a picture of an apricot. 

This is a funny letter that comes from the shape of an apricot. So, it says /ā/ 

as in apricot. 

 This looks like this funny letter /a/ 

 but it has a big seed inside like an apricot 

 

 

 

When there is a magic square, and it changes the middle sound, /a/ as in 

apple becomes / ā / as in apricot. Like this!  

So, this says s.  ā (as in apricot). m. same. 

Let’s try. 

s.a.m. sam. Your turn. 

s. ā.m. same. Your turn. 

 

 

  
 

When there is a magic square, and it changes the middle sound, /a/ as in 

apple becomes / ā / as in apricot. Like this!  

So, this says s.  ā (as in apricot). m. same. 

Let’s try. 

s.a.m. sam. Your turn. 

s. ā.m. same. Your turn. 

 
 

Mastery Test DA 3-5 

Read these words to me. (No feedback is provided) 
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