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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Personalized Medicine 

The goal of personalized medicine is to overcome the person-to-person variability of drug 

response by using biomarkers that assist in the delivery of the optimum treatment for 

individualized patient care
1, 2

.  A biomarker can be a range of biological information about a 

patient including gene expression, proteomics, metabolomic analysis, or genetic variants that 

have been discovered to associate with a particular drug outcome.  Health care professionals can 

use this information to guide a dosing strategy, drug selection, and to identify patients at high 

risk for adverse drug events
3
.  

The practice of identifying of genetic variants involved in drug response for personalized 

medicine is called pharmacogenetics
4
.  Genetic variants are attractive for use in personalized 

medicine for the following reasons.   First, germline genetic variants are generally static over an 

individual’s lifetime regardless of physiological status and environmental exposures.  Germline 

genetic variants are also consistent across all tissues in the absence of somatic variation early in 

the developmental process
5
. Therefore, genetic data collected in youth are still useful in an 

individual’s adult life.  Secondly, the ease at which genetic information can be collected also 

promotes its usage as a patient’s DNA can be collected from a saliva sample or routine blood 

draw.  With a single sample of DNA, over a million genetic variants can be easily sequenced in a 

laboratory
6
 .  These raw data are initially complex; however, through bioinformatic methods, the 

relevant data can be extracted and streamlined into the clinic for its utilization by health care 
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professionals
7, 8

.  Third, for the reasons mentioned above, there has been a recent explosion of 

drug- and disease- relevant genetic information, with potential to improve patient care.   

 

 

What is a Pharmacogene? 

According to the University of California at Santa Cruz Genome Browser, the human 

genome contains 21,814 protein coding genes, which are the workhorses of the biochemical 

reactions behind human physiology
9
.  While potentially all of these genes could interact with a 

drug in some capacity, only a subset of these genes termed “pharmacogenes” consistently 

participate in the absorption, distribution, metabolism, and excretion of drugs (ADME)
10, 11

.  

Based on the nature of their interaction with drugs, pharmacogenes are categorized as either 

pharmacokinetic or pharmacodynamic.  Pharmacokinetic genes encode proteins involved in drug 

metabolism: they govern the absorption of the drug into the body, its distribution across organs 

and tissues, and its clearance through enzymatic breakdown and excretion.  Genetic variation in 

pharmacokinetic genes can reduce or enhance the rate of metabolism resulting in the under or 

over exposure of the patient to medication, respectively
12

.  This in turn can result in a reduced 

efficacy of the medication or risk of adverse drug events
13

. 

Pharmacodynamic genes are those that interact with drugs to produce a physiological 

response. These responses include the therapeutic benefits the drugs are designed to elicit and 

also unintended adverse drug reactions that drug developers wish to avoid.  Adverse drug 

reactions can be categorized into two broad classes, Type A and Type B
14

.  Type A reactions are 

morbidities caused by an exaggeration of the primary or secondary action of the drug and are 

usually dose-dependent.    Type B reactions, which are often fatal, unexpected, dose independent 
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and cannot be explained by the drugs mechanism of action
15

.  Both Type A and Type B adverse 

drug reactions can be the result of unintended interactions with off-target gene products or even 

with the intended target at too strong of an affinity. Genetic variation in pharmacodynamic genes 

can change the relationship between gene products and a drug, which can result in inter-

individual variation in response.  Most of the research and background presented in this 

dissertation is focused on the former, with the exception of the gene VKORC1.  

 

 

ADME Core 

In the field of pharmacology, the pharmacokinetic profile of a drug is often described by 

four reference points: absorption, distribution, metabolism, and elimination
2
.  Collectively 

abbreviated as ADME, each of these four reference points is controlled by different families of 

genes acting across the body.  According to Illumina, the ADME Core is a list of 184 variants 

across 34 genes considered to be the most influential variants on the ADME of most drugs (for 

the complete gene list see ) 
16

. 

 

Absorption, Distribution, and Elimination 

The factors that influence the bio-availability of a drug after its administration include: 

absorption from the stomach or intestines; movement across tissues to the target site; and finally 

elimination from the body. On the genetic level, protein complexes called transporters can 

facilitate these three steps.  Transporter proteins are integral membrane proteins that facilitate the 

movement of substances across the cell membrane. The ADME Core list includes variants in 
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three and six members of the solute carrier (SLC) and ATP-binding cassette (ABC) 

superfamilies of transporters, respectively  

The SLC group of transporters is a highly diverse group of 400 transporters categorized 

into 47 families
17

.  The Human Genome Organization (HUGO) classifies members of a family as 

having a shared substrate and 20-25% amino-acid sequence identity
18

.  While little sequence 

homology is observed across families, solute carriers are typically composed of one large domain 

consisting of 10-14 transmembrane alpha-helices
19

.   The ABC superfamily consists of primary 

active transporters that utilize the energy from ATP hydrolysis to facilitate the transport of 

substrates across cellular membranes.  The ABC genes included on the panel are ABCB1, 

ABCC2, and ABCG2 are expressed predominantly on the apical membranes of the liver and 

kidney.    

 

Relevance of SLC family: Statin Myopathy  

Transporters have been shown to be of significant importance to several adverse drug 

reactions.  For example, muscle disorders are a potential side effect of simvastatin, commonly 

prescribed low-density lipoprotein cholesterol (LDL-C) lowering medication
20

.  The clinical 

spectrum of statin-induced myopathy ranges from muscle aches (myalgia) to the degeneration of 

muscle tissue (rhabdomyalsis)
21

.  The risk for these disorders is increased by polymorphisms in 

the transporter, solute carrier organic anion transporter family member 1B1 (SLCO1B1)
22

.  The 

gene encodes OATP1B1, a key enzyme in the hepatic clearance of statins.   SLCO1B1*5 encodes 

an amino acid change in OATP1B1 that reduces transport activity of the polypeptide
23

.  The 

Clinical Pharmacogenetics Implementation Consortium (CPIC) suggests consideration of routine 
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creatine kinase surveillance, a biomarker for muscle damage,  or prescription of alternate statins 

in patients homozygous for two SLCO1B1*5 alleles
24

. 

 

Metabolism:  Phase I 

In the ADME nomenclature, metabolism specifically refers to the enzymatic modification 

and conjugation of functional groups by Phase I and Phase II genes, respectively.   These genes 

act in concert either to convert a pro-drug into its active form or to detoxify a drug and promote 

its elimination from the body.  The ADME Core list includes 12 Phase I genes, 11 of which are 

from the Cytochrome p450 family (CYP) of enzymes and DPYD.  Seven Phase II genes are 

included on the panel: TPMT, SULT1A1, GSTM1, GSTP1, GSTT1, NAT1, and NAT2.   

 Phase I metabolism, the addition of reactive polar groups to xenobiotics, occurs in the 

liver predominantly by the cytochrome p450 enzymes.  Members of the CYP family catalyze a 

monooxygenase reaction that results in the oxidation of organic substrates. The Human Genome 

Project has identified 57 genes encoding members of this family
25

. The nomenclature for CYP 

families and subfamilies is based on sharing an amino acid identity of >40% and >55%, 

respectively
26

.   

 CYP genes are highly polymorphic for variants that impact enzymatic function, which in 

many cases have consequences to the therapeutic effect or the patient’s sensitivity to a particular 

drug (Table 1.1).   Depending on the ingested form of the drug, active drug concentrations in 

circulation can be directly or inversely correlated with the rate of metabolism.  If a drug is a pro-

drug and requires CYP genes for bioactivation into an active metabolite, compared to carriers of 

the wild-type allele, patients with a mutation will be underexposed and require a higher dose to 

achieve the same therapeutic effect.  On the other hand, other drugs may depend on the CYP 
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genes for elimination, and carriers with mutations may have higher circulating levels and 

increased sensitivity.  Warfarin and clopidogrel, described below, are examples of CYP genes on 

both sides of drug metabolism.   

 

Relevance of CYP family:  Metabolism and Pharmacogenetics of Warfarin and Clopidogrel 

Warfarin is an anticoagulant prescribed to patients who have recently suffered an 

ischemic stroke.  It targets the enzyme vitamin K epoxide reductase (VKORC1), which inhibits 

the maturation of clotting factors by blocking the recycling of vitamin K, their essential 

cofactor
27

.  The anticoagulant effect prevents the further production of blood clots and their 

migration elsewhere.   Significant hazards are associated with warfarin therapy are  if it is not 

delivered within a narrow therapeutic window.   Delivery of too low of a dose and the patient can 

remain at high risk for blood clots and too high of a dose can cause fatal hemorrhaging events.  

Its anticoagulation effect has to be carefully monitored by blood testing of the internalized 

normalized ratio (INR) to ensure a therapeutic dose is maintained in circulation.   

There is significant inter-individual variability in the range of the therapeutic window of 

warfarin dosing.  Clinical factors such as age, body mass index (BMI), sex, gender, 

race/ethnicity, and genetics are the principal factors used to predict dose
28

.  Warfarin is 

eliminated from circulation by CYP2C9, a highly polymorphic enzyme located in a CYP2C gene 

cluster on chromosome 10q24.  CYP2C9*2 and CYP2C9*3 are loss of function (LOF) forms of 

the enzyme and carriers are poor metabolizers of warfarin.  The CPIC guidelines suggest that 

patients with these genotypes should be started at lower doses of warfarin compared with carriers 

of wild type alleles
29

.  However, further complicating the genetics of warfarin dosing are 
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polymorphisms in warfarin’s target VKORC1, which have an even greater contribution to the 

variance of warfarin dosing
30

. 

The accumulated plaques in the coronary arteries of patients with atherosclerosis 

constrict blood flow to the point that circulating blood clots can cause myocardial infarctions.  

Clopidogrel is an antiplatelet medication that reduces the risk of atherosclerotic events 

(myocardial infarction (MI), stroke, vascular death) in patients with atherosclerosis who have 

recently suffered a stroke, MI, or peripheral heart disease.  It is also prescribed to prevent 

thrombosis in patients who have undergone a coronary angioplasty procedure, where a stent is 

used to open and prevent further blockage of a coronary artery.   

 The active metabolite of clopidogrel targets the ADP P2Y
12 

platelet receptor.  Its binding 

to the receptor reduces activations of platelets by preventing cross-linking by the protein fibrin. 

Clopiogrel’s bio-activation occurs in the liver where it undergoes extensive and rapid hydrolysis 

into main circulating metabolites by CYP2C19.  CYP2C19*2 and CYP2C19*3 are common loss 

of function (LOF) alleles that result in reduced ADP P2Y
12 

inhibition by clopidogrel and 

increased residual platelet aggregation
31

.  Guidelines for prescribing clopidgrel based on genetic 

status reported by CPIC suggest that carriers of CYP2C19 LOF alleles take alternative 

antiplatelet therapy such as prasugrel or ticagrelor
32

.   Interestingly, there are also studies that 

show carriers of a hyperactive allele, CYP2C19*17, benefit more from clopidogrel’s therapeutic 

effect but could also be at higher risk for Type A adverse events such as gastrointestinal 

bleeding
33

. 
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Table 1.1 Examples of Adverse Drug Reactions (ADRs) associated with variant p450 alleles 

p450 enzyme Variant alleles and 

frequencies in European 

Americans 

Examples of ADRs associated with 

variant p450 alleles  

CYP1A2 CYP1A2*1F (68%) Antipsychotics, tardive dyskinesia 

CYP2C9 CYP2C9*2 (8/13%), 

CYP2C9*3 (7/9%) 

Warfarin, haemorrhage; Phenytoin, 

phenytoin toxicity; 

 Tolbutamide, hypoglycaemia 

CYP2C19 CYP2C19*2 (13%), 

CYP2C19*3 (0%) 

Mephenytoin, toxicity; Clopidogrel major 

bleeding 

CYP2D6 CYP2D6*4 (12- 21%), 

CYP2D6*5 (4 /6%),  

CYP2D6*10 (1  /2%), 

CYP2D6*17 (0%) 

Nortriptyline, confusion; Opioids, 

dependence;  

Phenformin, lactic acidosis; Perhexilene, 

hepatotoxicity;  

Propafenone, arrhythmias; Propafenone, 

arrhythmias; 

CYP3A4 CYP3A4*1B (5.5%) Epidophyllotoxins, treatment-related 

leukaemia 

CYP3A5 CYP3A5*3 (3.6%) Tacrolimus, Nephrotoxicity 

(Adapted from Pirmohammad et al. 2003)
34

 

 

 

Metabolism: Phase II 

In the subsequent Phase II reactions, enzymes catalyze the conjugation of a functional 

group to the resulting drug metabolites. This additional functional group increases the size of the 

resulting substrate and generally decreases its activity.  In contrast to the Phase I enzymes, Phase 

II genes are not liver-specific and are expressed across tissue types.  The N-actetyl transferase 

(NAT) genes conjugate an acetyl group from acetyl-CoA to a variety of xenobiotics, and the UGT 

and GTT families conjugate glucuronic acid and glutionine, respectively.  These genes play 

major roles in the detoxification environmental agents such as pesticides, herbicides, and 

carcinogens
35, 36

.   
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Thiopurines 

Thiopurine drugs are widely used in the treatment of autoimmune disorders, allograph 

rejection in transplant recipients, and cancer.  The phase II enzyme Thiopurine S-

methyltransferase (TPMT) catalyzes the methylation of active thiopurine metabolites, which 

promotes their deactivation and excretion through the urine.  Carriers of TMPT LOF alleles are at 

increased risk for myeloid suppression, a potentially fatal Type A ADR.  The CPIC guidelines 

for thiopurines (i.e. azathiopurine, mercaptopurine, and thioguanine) suggest starting 

dramatically lower doses or alternative treatments for TMPT LOF homozygotes to reduce risk of 

an ADR
37

.  

 

 

Biorepositories linked to Electronic Medical Records 

The adoption of electronic medical records (EMR) systems has improved routine patient 

care by improving the information accuracy and legibility.  Furthermore, the patient’s entire 

medical history is streamlined into a single source.  This is a vast improvement over paper-based 

records in terms of accessibility for clinicians and researchers alike.  By aggregating a wealth of 

clinical data across patients in a single system, investigators can search, record, and analyze a 

depth of longitudinal phenotypic data for the generation of large datasets
38

.  For research, these 

data can be condensed and organized into anthropometric and physiological traits, diseases, and 

drug interactions
39

. 

 Vanderbilt University Medical Center (VUMC) and medical centers across the country 

have linked DNA biobanks to their EMR systems to identify the genotype-phenotype 

associations that may underlie complex human traits and diseases
40

.  Implementation of 
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VUMC’s EMR-linked DNA biobank, BioVU, was a significant undertaking that required not 

only substantial financial resources but also ethical and technical considerations
41, 42

. 

 

BioVU: “Non-human subjects” and the “Opt-Out” Model  

 BioVU is among the growing number of biobanks in the United States
43, 44

.  Sample and 

information capture methods vary across biobanks; however, all fall within the scope of U.S. 

regulations of human subjects research and Institutional Review Boards (IRB).  BioVU follows 

an operational protocol that adheres to the guidelines fornon-human subjects research as 

determined by the federal Office of Human Research Protections (OHRP) and the Vanderbilt 

IRB
45

.  Federal regulations state that research on human subjects involves intervention or 

interaction with the individuals studied.  If research is conducted with identifiable private 

information, even without intervention or interaction, then the individual behind the data also 

becomes a human subject.  BioVU accrues DNA samples extracted from blood that otherwise 

would have been discarded after routine clinical testing.  In this protocol for sample acquisition 

there is no intervention or interaction with individuals.  In BioVU, these samples are linked to 

the synthetic derivative, a de-identified version of the electronic medical record in which 

virtually all private information has been systematically removed.  Thus, the use of DNA 

samples in BioVU does constitute human subjects research. 

After review by the Vanderbilt IRB, an “opt-out” model was implemented for sample 

acquisition.  Those who have visited VUMC and have had a blood draw are enrolled into BioVU 

unless they choose to opt-out by checking a box on a modified “consent to treatment” form. A 

controlled process excludes individuals at random from BioVU. Therefore, no individual knows 

with certainty the status of their enrollment. .” Initially, this opt-out process was conducted using 
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paper forms.  However, most VUMC clinics have switched from using paper forms to electronic 

pads with touch-screen technology, which present the opt-out option after a summary of how 

their blood sample will be used for research.  The opt-out rate is ~2.5% of all patients who sign 

the form
41

.   

The “opt-out” model has several advantages and unique challenges in comparison with 

the “opt-in” (consented model).  One advantage is that it does not require intervention or 

interaction with the patient, which saves resources in comparison with the opt-in model.  Often, 

because consented models are resource-intensive, overhead includes employment of staff trained 

to conduct informed consent and to provide information to study subjects about how their 

samples will be used.  .  Typically in opt-in models, patients with specific diseases or those 

undergoing specific therapies are ascertained for research.   Surveys have shown that the 

consented model fail to enrolllarge segments of the population, while the “opt-out” model has 

the potential to capture a broad spectrum of phenotypes
46, 47, 47

.  The major challenge of the “opt-

out” model is the absolute requirement that the EMR linked to the DNA biorepository be de-

identified.  Given the wide variety of information in the clinical notes, it is an extensive 

informatics undertaking to completely scrub all identifiers.  However, a major advantage 

stemming from this de-identification effort is that when faced with an unlawful and/or 

unintended release of the clinical data to the public, de-identified records are much less 

susceptible for discriminatory use than an identified record
41

. 

 

De-identification of the EMR (Synthetic Derivative) 

The material scrubbed in the de-identification process is based primarily on the privacy rule of 

the Health Insurance Portability and Accountability Act (HIPAA), which specifies what 
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information should be protected
48

.  With removal of the following items, the data are said to be 

de-identified: names; all geographic subdivisions smaller than a state; telephone and fax 

numbers; e-mail addresses; social security numbers; medical record numbers; health plan 

beneficiary numbers; account numbers; certificate/license numbers; vehicle serial numbers; 

device identifiers and serial numbers; web universal resource locators; internet protocol address 

numbers; biometric identifiers, including finger and voice prints; and full face photographic 

images and comparable images. Personal identifiers are scrubbed from records with the 

commercially available software DE-ID from Data Corp
49

. The de-identified mirror image of the 

EMR system is called the Synthetic Derivative (SD)
42

. The VUMC SD goes beyond HIPAA 

requirements to de-identify data.  For example, all dates of items in the EMR are shifted between 

1-364 days into the past, and each shift in the database is different across patient records but 

constant within a given patient’s record.  The SD at VUMC is available for research purposes 

and currently contains over 2.2 million records
42

. 

 

DNA Biorepository 

 As stated above, the VUMC biobank accrues samples by collecting discarded blood from 

routine clinical testing.  These samples are sent to the Vanderbilt Technologies for Advanced 

Genomics (VANTAGE), formerly the Center for Human Genetics Resources Core, where DNA 

is extracted then linked to the SD.  The linkage between the SD and the biobank is via a one-way 

hash.  The secure hash algorithm (SHA-512) is a publically available hash function developed by 

the National Security Agency of the US Federal government.  The function of the algorithm is to 

produce a string of 128 characters that is unique to a particular input. The same input always 

produces the same string; however, the input cannot be reconstructed by the output.  In BioVU, 
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the medical record number is processed with SHA-512 to produce a research unique identifier 

(RUI), which is attached to the de-identified medical record on the SD side.  

 

Phenomic Data Within the EMR 

Analysis plans for most pharmacogenetic studies conducted in EMR-linked 

biorepositories begin with the development of the drug response phenotype.  Depending on the 

clinical characteristics of the phenotype, different strategies are employed to identify cases and 

controls within the de-identified EMR (SD) database.  The clinical data utilized for capturing 

phenotypic information within the SD is classified as either structured or unstructured.  The 

structured data include prescription lists, labs, billing codes, measurements of vital signs and 

demographic information. Unstructured data are the free text clinical documents, including the 

physician’s notes, pathology and radiology reports, and medical history.  In most 

pharmacogenetic studies, the sample population is identified with a broad net cast across the SD 

database using a search of medication data to identify patients prescribed or actively taking a 

particular drug
50

.  The next step is to identify cases for the drug response by identifying patients 

whose structured and unstructured clinical data match the clinical characteristics of the 

phenotype of interest.  

 

Structured Data:  Administrative Codes, Vital Signs, Labs, and Medications Data 

 Within the EMR, physicians assign codes to patients based on the purpose of the clinic 

visit, the diagnosis given, and the procedures performed, and these codes are used for billing and 

administrative purposes.  Health care providers report billing codes to health insurance 

companies to receive payments for services rendered to patients.  The two forms of billing and 
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administrative codes most frequently used in health care systems are International Classification 

of Diseases (ICD) codes and Current Procedural Terminology (CPT) codes.   

Diagnoses codes are derived from the World Health Organization’s ICD codes.  The 

United States currently uses the 9
th

 revision of the codes.  However, the current Center for 

Medicare and Medicaid Services guidelines mandate a transition to ICD-10-CM in the United 

States by October 1, 2014.    This hierarchical system of nearly 17,000 codes includes diagnoses 

for a variety of chronic and congenital diseases, injuries, abnormal findings, complaints, and 

social circumstances.  A standardization and organization of diagnoses into an easily extractable 

format has become a mainstay resource for clinical research.  

The hierarchy of the codes allows for investigation at variable degree of phenotypic 

resolution
51

.  For example, ICD code 250 is the all-inclusive diagnostic code for patients with 

diabetes.  The one-tenth digit specifies the disease context; for instance ICD codes 250.4, 250.6, 

and 250.7 are diabetes with renal, neurologic manifestations, and peripheral circulatory 

disorders, respectively.  The one-hundredth digit specifies the type (type 1 or type 2) and if the 

disease is controlled or uncontrolled (ex. 250.52 is the code for diabetes type II or unspecified 

type, uncontrolled).    The phenotypic spectrum captured by ICD codes  varies by the disease. 

For example, there are ~500 tuberculosis ICD codes, but only one HIV ICD code.  The 

American Medical Association’s CPT procedural codes describe medical, surgical, and 

diagnostic services.  These are five digit codes grouped into six main sections: evaluation and 

management; anesthesia; surgery; radiology; pathology and laboratory; and medicine. 

The ICD9 and CPT codes are often the most effective query terms in the initial survey of 

phenotypes in the EMR.  However, while the flexibility and expansive range of information they 

can capture is appealing, the codes collectively have drawbacks.  ICD9 codes are often assigned 
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during the screening of a disease before the physician makes an actual diagnosis, which of course 

reduces their specificity.  Investigators can partially mitigate this issue by requiring two or three 

mentions of the ICD9 code in the patient record at separate clinic visits
52

. This approach works 

well for chronic diseases such as diabetes, kidney disease, and rheumatoid arthritis but is likely 

to be problematic for short-lived conditions and drug reactions.  Overall, the strength of ICD9 

codes lies in their sensitivity, and the weakness lies in their specificity.  On the other hand, CPT 

codes are less sensitive but more specific than their ICD9 counterparts.  In non-HMO hospitals 

such as VUMC, the most detrimental factor to the sensitivity of CPT codes is that procedural 

information will be lost if the service was performed at another hospital.  However, unlike ICD9 

codes, procedural codes are not susceptible to the pre-diagnosis mis-coding, and a mention of a 

CPT code in the patient’s record confirms the event. 

 Demographics, vital signs and lab results are also important components of phenotype 

design.  For instance, in the PheKB database, the selection algorithm for diabetes mellitus cases 

includes ICD9 billing codes, medications, fasting blood glucose, random blood glucose, and 

HbA1c lab values.  Demographics and anthropometric measurements are the primary factors for 

the algorithm for childhood obesity, which requires age, height, and weight.  

The prescription list is a structured form of medication data that has been widely used in 

pharmacoepidemiology, pharmacoeconomic, and service-related health care investigations
53

.   

Similar to the CPT codes, medication data can be highly specific to the disease outcome of 

interest, as many medications are prescribed for a narrow range of illnesses.  However, not all 

medication data can be easily captured in structured data; a significant amount can only be 

accessed in the free text.  Further complicating extraction of medication data are the issues of 
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abbreviations/misspellings, alternate brand and generic names for the same drug, and a lack of 

hierarchical classification.   

 

Unstructured Data: Clinical Notes and other Free-Text Documents 

 Clinician notes are included in most EMR records.  They provide the physician’s 

thoughts on the patient’s health status and are a valuable source of clinical information for 

researchers.  The records often include the patient’s verbal confirmations or denials of symptoms 

and medications, which in turn can be used to validate phenotype information gathered from the 

structured data.  Some medication data and the results of certain medical tests are imbedded in 

the unstructured free text.  Laboratory tests performed at outside intuitions also will only be 

available in the free text. To extract this information, manual review for small datasets or more 

sophisticated techniques for large ones, such as Natural Language Processing (NLP) are 

required.  NLP, a discipline in computer science, is concerned with developing computational 

approaches to analyzing text
54

.  A recent report of a phenotype selection algorithm for multiple 

sclerosis demonstrates that NLP is a crucial component of selection algorithms for complex 

phenotypes with complicated diagnoses
55

.  MedEX is one such NLP tool designed to extract 

detailed medication data from clinical documentation including drug names, signature 

information, such as strength, route, and frequency
50

. 

 

 

Pharmacogenetic Study Design in the EMR 

 Researchers can transform the extensive medication and longitudinal clinical data within 

the EMR into high-powered pharmacogenetic studies.  Compared with physically ascertaining 
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patients through a genetic clinic, performing pharmacogenetic studies in the EMR is a more cost-

effective and timely approach.  In BioVU, the workflow of pharmacogenetic analysis in the 

EMR proceeds typically as follows:  1) define the phenotype of interest; 2) identify the study 

population in the SD; 3) genotype or sequence the samples; 4) perform the statistical analysis; 

and 5) interpret the results.  

 

Defining the Drug Response Phenotype 

Drug response phenotype algorithms are often structurally similar to those of complex 

disease (www.phekb.com).  The difference being that the search item in the initial screen for 

samples is a medication and often a diagnostic code related to disease that requires the 

medication.  Common practice for defining controls in pharmacogenetic studies is requiring a 

lengthy follow-up time while exposed to the medication.   

 For instance, the “clopidogrel poor metabolizer” phenotype algorithm utilized by an early 

study in BioVU began with a screen for the ICD9 code for myocardial infarction (MI) and 

clopidogrel at discharge or an intracoronary stent defined by a CPT code or a mention in the 

text
56

.  Patients who are prescribed clopidogrel but unable to convert the pro-drug into its active 

metabolite (poor metabolizers) are at a higher risk for a second MI compared with efficient 

metabolizers of the drug.  In this algorithm, case status was defined as second MI, stroke, 

revascularization or death between 30 and 270 days of the second event.  The respective controls 

for this study were defined by 730 days of follow-up without one of the adverse events 

mentioned above and without a clopidogrel platelet function test within 730 days of the initial 

event
56

. 
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Genotyping for Pharmacogenetic Studies 

The four primary approaches for genotyping in pharmacogenetic studies are the candidate 

gene study, genome-wide analysis study (GWAS), pharmacogenetic-targeted study, and exome 

and pharmacogene targeted sequencing.  These approaches vary widely in content, cost, and 

quality of genotyping.   Their usefulness is also highly dependent on the drug phenotype of 

interest (ADR or efficacy), the hypothesized genetic interaction (pharmacodynamic or 

pharmacokinetic), sample size, frequency of the genotyped variant alleles, and the frequency of 

the trait of interest.  A discussion on whole genome and exome sequencing are beyond the scope 

of this dissertation, but a review of their use in pharmacogenetics can be found here 
57

. 

 In candidate gene studies, one or more variants in a target gene or pathway are tested for 

an association with a trait of interest
58

.  The Life Technology’s Taqman assay, Sequenom’s 

iPLEX SNP, Illumina’s BeadXpress, and Sanger sequencing are commonly used methods for 

genotyping, and they vary in cost, scalability, time, and accuracy
59

.  With the declining cost of 

genome-wide panels, this approach might become obsolete for genetic studies of complex 

disease
60

.  Selection of functional variants in candidate genes can also pose problems. There 

currently is a lack of experimental evidence about the impact of common genetic variants on 

biologybeyond gene expression
61, 62

. 

 However, candidate gene studies are still a valuable approach to pharmacogenetic studies 

of drugs with well-understood pharmacokinetic and pharmacodynamic pathways.  With respect 

to the impact of variation on function, pharmacogenes are some of the most highly characterized 

and best annotated genes in the human genome
63

. The discovery of these genetic polymorphisms 

was made possible by observations of unusual drug response by perceptive clinicians
64

 . Since 

then, the pharmacology literature has become rich with in vivo and in vitro experiments that 
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describe the impact of these variants on drug metabolism.  One approach for candidate 

pharmacogenetic studies is to categorize individuals into metabolizer phenotypes by collapsing 

variants of similar function into a single group.  For example, the CPIC guidelines for 

prescribing clopidogrel, poor metabolizers (PMs) are defined as homozygous for two LOF 

alleles (*2 and *3), intermediate metabolizers (IMs) are heterozygous with one LOF and one 

wild-type allele (*1), efficient metabolizers are homozygous for two wild-type alleles or the 

combination of a LOF and ultra-rapid metabolizer allele (*17), and ultra-rapid metabolizers are 

homozygous for two ultra-rapid metabolizer alleles
32

.  Collapsing variants increases statistical 

power by reducing the multiple-testing threshold and by increasing observations of the allele of 

interest.  

 

Genome-wide Studies for Pharmacogenetics 

Genome-wide platforms allow for a broad interrogation of the vast multitude of variants 

discovered in reference populations such as HapMap and 1000 Genomes
65, 66

.  In recent years, 

GWAS platform costs have been falling, resulting in a wide-spread application of the tool in 

pharmacogenetics.  Their extensive coverage of the genome makes them suitable tool for 

identifying the pharmacodynamic genes responsible for adverse drug reactions.  In a recent 

pharmacogenetic GWAS, skin toxicity and hypersensitivity to carbamazepine a 

pharmacodynamic association was reported with the *3101 allele of the Human Leukocyte 

Antigen-A (HLA-A) in a European population
67

.  Genome-wide studies of warfarin dosing in 

European and African Americans have revealed associations in genes beyond CYP2C9 and 

VKORC1
68, 69

. 
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 Beyond single SNP associations, GWAS data also allow the investigator to infer ancestry 

information from individuals in the sample population.  Ancestry can be inferred by either 

principal components analysis (PCA) methods (ex. Eigenstrat) or MCMC clustering methods 

such as that implemented in STRUCTURE
70, 71

.  Ancestry differences between cases and 

controls can lead to population stratification, which results in spurious genotype-phenotype 

associations.  Spurious associations are caused by the underlying structure of the population and 

not a disease associated allele. When available, genetic ancestry information can be used in 

genetic studies to avoid population stratification by including ancestry in the modeling of the 

association with PCAs.  If performing an analysis stratified by genetic ancestry, clustering 

methods can be used to remove ethnic outliers.  Genetic ancestry inferred from genome-wide 

data can also be used in the mapping of pharmacogenetic loci.  For instance, admixture mapping 

is the localization of regions in the genome that show a degree of correlation between the local 

ancestry at a genetic locus with the phenotype or disease of interest
72

.  An admixture study of 

ancestry and pharmacogenomics reported on the risk of relapse in acute lymphoblastic leukemia  

which identified a genomic component associated with Native American ancestry that is highly 

correlated with risk
73

. 

However, the GWAS design has several limitations that can reduce its effectiveness for 

pharmacogenetic studies.  First, pharmacogenetic studies often have limited statistical power:  

the probability that the test will reject the null hypothesis when the alternative hypothesis is true.  

Statistical power is correlated with sample size, which can be difficult for pharmacogenetic 

studiesbecause adverse outcomes tend to be rare, on the scale of 1 in 10,000 to 100,000 patients 

treated.   The problem of statistical power in GWAS also comes from the need to apply a high 

statistical threshold of statistical significance (e.g. p < 5 x 10
-8

) for multiple-testing with the 
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Bonferroni correction
74

.  In a GWAS, to surpass the genome-wide significance level, moderate 

effect sizes (OR = 1.3) are detectable with sample sizes in the order of 1,000, while detection of 

the small effect size often observed in GWAS (OR =1.1) requires sample sizes on the order of 

10,000, which can be nearly impossible to obtain in a single cohort for many pharmacogenetic 

phenotypes
75

. 

Another drawback is that while the coverage of genome-wide platforms is extensive, it 

often falls short in capturing the functional variants known to affect pharmacokinetic and 

pharmacodynamic pathways.  This is in part due to the localization and structure of many 

pharmacogenes that make it difficult to accurately assay their variation.  Therefore, they are 

either missing from the reference or excluded from the panel by the platform developer due to 

poor performance.   For instance, of the 83 variants in the Pharmacogenomics Research 

Network’s (PGRN) Very Important Pharmacogenes (VIP), only 45 are covered in HapMap.
76

. 

 

Pharmacogenetic Targeted Panels 

Pharmacogenetic-targeted platforms are an emerging alternative or complementary 

technology to genome-wide platforms for genotyping.  These panels are designed to genotype 

the functional variants in pharmacogenes that have been reported to impact drug metabolism 

pathways in clinical and pharmacologic studies.  There are several curated lists of 

pharmacogenes in the literature: Affymetrix’s Drug Metabolism Enzymes and Transporters 

(DMET); PharmaADME’s Absorption, Distribution, Metabolism, and Transporters (ADME 

Core List); and PGRN’s VIP.  In BioVU, Vanderbilt’s Electronic Systems for Pharmacogenetic 

Assessement (VESPA) has genotyped ~9,000 samples on the Illumina ADME Core Panel, which 

is the source of the genotype data for all research within this dissertation. 
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The ADME Core Panel targets 184 genetic markers in 34 genes selected by 

PharmADME, a committee that includes representatives from industry and academia
16

.  The 

advantage of this panel over other genome-wide panels can be seen in the targeting of the 

cytochrome P450 family of enzymes, which are often located in repetitive regions due to the 

presence of pseudogenes.  Developers of genome-wide arrays often avoid including variants in 

CYP genes in order to simplify the design of the genotyping array
76

.  To circumvent this 

problem, the ADME Core Panel has tailored specific assays for such hard to genotype SNPs. A 

single primer extension step of genomic regions is performed to avoid conflicting regions of the 

genome.  This is then followed by an allelic specific primer extension and ligation step for an 

accurate genotype.  This is especially important in genotyping CYP2C9*2, where a tough 

genomic region (CYP2C9 lies in a gene cluster with CYP2C8 and other highly homologous 

genes) hinders stable PCR primer binding.  

 

Overview of Dissertation Work 

The work presented in this dissertation is a small component of Vanderbilt Electronic 

Systems for Pharmacogenomics Assessment (VESPA), which overall has been a successful 

demonstration of the potential of pharmacogenetics in EMR-linked biobanks
77

.   .   In Chapter 1, 

we used BioVU to make an assessment the quality and utility of using a  pharmacogenetic 

genotyping panel for research.  Illumina’s ADME Core Panel was one of the first of the 

pharmacogenetic genotyping platforms, designed to accurately genotype the 184 ADME Core 

variants for both research and clinical purposes.  We published a description of the performance 

of the panel on 326 samples from BioVU on Illumina’s ADME Core Panel
78

.  
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The two subsequent studies were focused on using the ADME Core Panel for 

pharmacogenetic discovery in BioVU.  Chapter 2 is a longitudinal study of the pharmacogenetics 

of immunosuppressant-induced nephrotoxicity.  Here, we extracted data pertaining to the decline 

in kidney function in a cohort of heart transplant recipients prescribed calcineurin-inhibitors.   

We were able to identify cases of nephrotoxicity with creatinine labs from the structured data.  In 

our genetic analysis with the ADME Core Panel, we were able to identify genetic variants that 

are putatively associated with risk of the adverse event.  Chapter 3 is a phenome-wide 

association study of the markers from the ADME Core Panel.  A phenome-wide association 

study is an emerging method for exploring pleiotropy by testing genetic variants across diverse 

phenotypic data.  This study also focuses on the use of structured data, in this case ICD9 codes, 

for pharmacogenetic research.  The results of this study replicated some previously known 

phenotype-genotype associations of pharmacogenetic markers and also generated some novel 

pleiotropic characteristics of these variants. 
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CHAPTER 2 

 

 

ASSESSMENT OF A PHARMACOGENOMIC MARKER PANEL IN A POLYPHARMACY POPULATION 

IDENTIFIED FROM ELECTRONIC MEDICAL RECORDS
a
 

 

 

Introduction 

There is considerable inter-individual variation in the efficacy and risk of adverse events 

for many commonly prescribed medications.  This inter-individual variation can be explained, in 

part, by genetic variation
79, 80

.  One vision of personalized medicine is to use knowledge of a 

patient’s genetic profile inform prescription decisions to maximize the likelihood of a beneficial 

outcome and minimize the risk of side effects.  In response to this vision, patient genotypes for 

variants known to affect the efficacy of certain drugs (such as warfarin, clopidogrel and 

tamoxifen) are being deposited into patients’ medical records in clinics to aid clinicians in 

formulating treatment plans
81

. 

The interest in using genetic variation to inform clinical care is driving a demand for the 

generation of high-quality genomic data in both research and clinical settings.  However, many 

relevant loci in pharmacogenes are located in regions that are difficult to assay with conventional 

multiplexing methods used in arrays
76

.  Moreover, unlike genome-wide association studies 

(GWAS), pharmacogenomic studies cannot rely on linkage disequilibrium (LD) to indirectly test 

or tag the relevant variation given the low coverage of pharmacogenes in general on these fixed-

content GWAS products
76

.  As an example, the CYP family of enzymes is responsible for 75% 

                                                 
a
 Adapted from Assessment of a Pharmacogenomic Marker panel in a Polypharmacy Population Identified From 

Electronic Medical Records
78
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of phase I-dependent drug metabolism, and variants in these genes have been associated with the 

outcomes of many drug responses
63

.  Duplication events in the human genome have resulted in 

57 functional genes in the CYP family and numerous pseudogenes
82

.  However, many clinically 

important CYP genes have high sequence similarity with pseudogenes and/or are located in 

repetitive gene clusters.  Probes designed to genotype variants in these genes have been known to 

suffer from cross-hybridization problems and, therefore, often havebeen dropped during the 

development of genome-wide platforms
83

.  Several pharmacogenetic platforms have been 

introduced to the market that target these variants directly and avoid cross-reactivity with other 

homologous regions
83

. 

 The first released multiplexed assay focused on pharmacogenomics was the Affymetrix 

DMET Panel, which has been used in multiple pharmacogenetic studies
83, 84

.  Unlike the DMET 

Panel, there are currently no published descriptions of the performance of two other marketed 

pharmacogenetic panels, Illumina’s ADME Core Panel and Sequenom’s iPLEX
®
 ADME PGx. 

In contrast to the Affymetrix DMET, which covers 1936 markers across 231 genes, the two 

newer panels both include the 184 markers in 34 genes that were identified by the PharmaADME 

group as the most important predictors for pharmacokinetic variability. 

As part of an extensive institutional investment into personalized medicine, Vanderbilt 

University Medical Center has begun both a large-scale research effort and a translational effort 

involving the Illumina ADME Core Panel. VESPA, is the genotyping of almost 10,000 

individuals for EMR-based pharmacogenomics studies.  The translational effort, known as the 

Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment (PREDICT) 

program, is an effort to proactively genotype Vanderbilt University Medical Center patients 
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using the Illumina ADME Core Panel in a Clinical Laboratory Improvement Amendments 

(CLIA)-certified environment as part of routine clinical care
84

. 

 We present here an assessment of the performance of the ADME Core Panel in a sample 

of individuals with multiple prescribed medications identified in BioVU, the Vanderbilt 

biorepository linked to de-identified EMRs
41

.  Our primary goal was to assess the ADME Core 

Panel’s content and quality with respect to pharmacogenomic research in clinical populations.  

We also considered the ADME Core Panel’s coverage of variants in comparison with other 

available pharmacogenetic genotyping methods.  As a secondary analysis, while we expect a 

European descent polypharmacy population to have similar allele frequencies to European 

descent reference populations, we tested if our polypharmacy population within BioVU was 

enriched for pharmacokinetic functional variants compared with reference populations. Our data 

demonstrate that, as expected, the polypharmacy sample did not differ from reference 

frequencies and that most of the data quality was high.  However, the quality and utility of the 

variant content can vary dramatically, indicating that fixed-content panels are likely to be useful 

only in specific pharmacogenomic research or clinical settings. 

 

 

Methods 

Study population 

 Our study population consisted of de-identified medical records from 326 ‘frequently 

medicated’ individuals, who were defined as being prescribed warfarin or clopidogrel in addition 

to more than five drugs from the following classes: heparin, statins, immunosuppressives 

(sirolimus, tacrolimus, cyclosporine and mycophenolate mofetil), tamoxifen, codeine, selective 
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serotonin reuptake inhibitors and antipsychotics.  These medications were chosen because at 

least one medication within the class has known pharmacogenomic interactions.  All study 

samples were retrieved from BioVU
b
. All records used in this study were coded by 

administrative staff as European–American, which has been shown to be highly correlated in 

BioVU with European genetic ancestry as determined by ancestry informative markers
85

.  De-

identified records in the synthetic derivative that fit our ‘frequently medicated’ definition were 

selected using the natural language processing system, MedEX. MedEX extracts medications 

from EMRs with at least one mention of a dose, route, frequency or strength.  A more detailed 

description of the software has been published elsewhere
50

. 

 

Genotyping 

 Illumina’s pharmacogenetic-targeted ADME Core Panel is designed for the genotyping 

of 184 markers in 34 genes.  The panel’s genotyping assay is a specific application of the 

GoldenGate assay technology
86

.  The ADME Core Panel utilizes an additional primer extension 

step to avoid cross-reactivity with other homologous genes or regions that could interfere with 

probe hybridization.  This initialization step is then followed by allele-specific primer extension 

and a ligation step. 

 

 

 

 

 

 

 

 

 

                                                 
b
 Described in Chapter 1:  Biorepositories linked to Electronic Medical Records 
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Table 2.1:  Functional Distribution of ADME Core Panel Markers
c
 

Category Number of 

Variants 

Coding 123 

Frameshift 16 

CNVs 10 

Non-Coding 24 

Duplications 1 

Splicing Defects 10 

Monomorphic 67 

0.00 < MAF < 0.01 35 

0.01 < MAF < 0.05 22 

0.05 < MAF < 0.25 26 

0.25 < MAF < 0.5 23 

Abbreviations:  copy number variants (CNVs) and minor allele frequency (MAF).  MAFs are of 

non CNV diallelic markers.  

 

 

 Two-thirds of the 184 variants that the ADME Core Panel was designed to capture 

encode synonymous and nonsynonymous amino acid changes; whereas only 24 markers on the 

panel are noncoding (Table 2.1).  Frameshift and splicing defects are encoded by 16 and 10 

markers on the panel, respectively.  A total of ten copy number variants (CNVs) are targeted by 

the panel for the following genes:  SULT1A1 (five CNVs), CYP2A6, CYP2D6, GSTM1, 

GSTT1, and UGT2B17.  Compared to the Pharmacogenetics Research Network’s (PGRN) Very 

Important Pharmacogenes (VIP) marker list of 135 variants in 46 genes, which includes variants 

that have been identified as having either in vitro or in vivo functional effects on drug response
87

, 

the ADME Core Panel directly assays 25 of the 41 CYP variants (61%) and 18 of the 36 variants 

in other important pharmacogenes (50%). 

 

                                                 
c
 The full list and allele frequencies of variants captured by the ADME Core Panel can be found in Table 6.1. 
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Table 2.2: Study population characteristics (n = 326) 

Variable Mean or 

% 

Standard Deviation  

(Min., Max.) 

European American 100 - 

% Female 45 - 

Age at First Drug 56.99 12.86 (24.33,84.94) 

Age at Last Drug 63.73 12.64 (32.77,93.04) 

BMI (kg/m
2
) 29.67 6.18 (15.4,65.7) 

 

 

 

 Genotyping for this study was conducted at the Vanderbilt University DNA Resources 

Core. ADME Core Panel genotype calling was performed with ADME Module Version 1.0.0.3.  

In addition to genotype calls by variant, the ADME Module software outputs star nomenclature 

gene results for each gene.  Star nomenclature is a system from clinical pharmacology for 

categorizing variants in drug metabolizing genes
64

.  Of the individuals, 98 were also genotyped 

on Illumina’s Human Omni1-Quad as part of other genotyping efforts.  The Illumina 

HumanOmni1-Quad is a genome-wide BeadChip that targets over one million SNPs selected 

from all three HapMap phases, the 1000 Genomes Project and previously confirmed genetic 

associations from the NHGRI GWAS catalog
88

.  Genotype calling for the HumanOmni1-Quad 

was performed using Illumina’s Genome Studio Version 1.7.4.  Genotyping runs of individual 

samples in the laboratory that did not produce data are referred to in this study as sample failures.  

We defined failed markers as those with a genotyping efficiency below 90%. 

 



 

30 

 

Statistical methods 

We used PLINK’s (v1.07) function for tagging SNPs to assess the coverage of the ADME Core 

variants in the HumnOmni1-Quad.
89

.  We restricted our search to a 250 kb window around each 

marker.  Concordance for overlapping samples genotyped with the ADME Core Panel and the 

HumanOmni1-Quad was calculated using PLATO
90

. 

 Quality control measures for diallelic ADME SNPs and 70 SNPs from the HumanOmni1-

Quad including genotyping efficiency, Hardy–Weinberg equilibrium (HWE) and minor allele 

frequency (MAF) were calculated using PLINK. Tests of HWE for triallelic SNPs were 

calculated manually using Pearson’s χ
2
 test.  ADME Core Panel marker allele frequencies for 

comparison with the present study were abstracted from the primary literature, the International 

HapMap Project, 1000 Genomes Project, dbSNP, PharmGKB, the Environmental Genome 

Project and SNP500Cancer
65, 91-94

.  All frequencies were selected from populations of European 

descent, similar to the study population described here.  Tests of association were calculated with 

the χ
2
 test, and in the case of cell counts <5, Fisher’s exact test was used.  All statistical analyses 

were performed with the statistical software package STATA 11. 

 

 

Results 

Demographics 

 Table 2.2 presents the clinical characteristics of the study population.  Three hundred and 

twenty six samples were genotyped on the ADME Core Panel for this assessment of the panel’s 

performance.  Overall, there were more males than females in this cohort of frequently 

medicated individuals (55 vs 45%), and the average individual was overweight (BMI >25 kg/m
2
; 
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Table 2.2).  This is unusual but we speculate it is due to the non-random sampling of the 

polypharmacy phenotype.  The mean age of individuals at the time of their first prescription and 

final prescription (± standard deviation) was 57.0 ± 12.9 and 64.8 ± 12.6 years, respectively.  

The frequencies of drug classes prescribed are shown in Figure 2.1. 
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Figure 2.1:  Prescribed medications among the heavily medicated clinical population.  
On the x-axis are the 12 classes of medications selected for our heavily medicated cohort 

definition. The y-axis is the proportion of our clinical population prescribed at least one 

medication of the given drug class.  SSRI: Selective serotonin re-uptake inhibitor. 

 

 

Coverage 

 There are several options available for genotyping pharmacogenetic variants, ranging 

from single variant assays to genome-wide arrays, and each approach has its strengths and 

weaknesses with respect to assay performance and cost–effectiveness.  Given that most data sets 

submitted to dbGaP have genome-wide SNP data
89, 95

, we evaluated in our study sample whether 

these existing data adequately assess known pharmacogenetic variants.  To do this, we 
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characterized the LD patterns in the immediate genomic regions of the ADME Core Panel 

variants and identified HumanOmni1-Quad SNPs that tag ADME Core Panel markers at three 

different LD thresholds (r
2
): 1.0, 0.8 and 0.5.  We found one SNP (CYP2A6 rs28399468) that can 

be indirectly tested or tagged with an r
2
 of 1.0 by a single marker (rs3212976) in populations of 

European descent genotyped on the HumanOmni1-Quad.  When the LD threshold was relaxed to 

0.5, NAT2 rs1208 and SCLO1B3 rs7311358 could also be tagged by single markers (rs1802380 

and rs4149117, respectively) targeted by the HumanOmni1-Quad. 

 We also compared the marker content on the ADME Core Panel to Affymetrix’s 

pharmacogenetic platform, the DMET Plus, to identify overlapping and unique markers to the 

ADME Core Panel
96

.  The DMET Plus interrogates 1,936 markers across 231 genes, with an 

emphasis on pharmacogenes. Of the 184 markers targeted by the ADME Core Panel, 159 overlap 

with DMET Plus.  A total of 25 markers are unique to the ADME Core Panel. The ADME 

specific markers are 18 SNPs with rsIDs, five SULT1A1 CNVs, one multi-SNP assay designed to 

probe the SLC22A1 M420del, and CYP2A6*1B. 

 

Quality & performance 

 We assessed basic quality control metrics on the 326 samples genotyped on the ADME 

Core Panel.  The vast majority of the samples (92%) were genotyped successfully using the 

ADME Core panel.  A total of 27 samples failed and were not considered further in this analysis.  

Of the 184 markers targeted for genotyping on the ADME panel, four SNPs and three CNVs 

failed.  The four failed SNPs included GSTM1 rs1065411, CYP2A6 rs28399447, 

CYP2A6*B and SLCO1B3 rs7311358.  The three failed CNVs were in the following 

genes: GSTM1, GSTT1, and UGT2B17.  The total number of markers (excluding CNVs) with 
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100% and >99% genotyping efficiency were 84 and 114, respectively (Table 2.3).  There were 

four CNVs with 100% (SULT1A1) genotyping efficiency and three more with  >90% 

efficiency(CYP2D6, CYP2A6, and SULT1A1). 

 

 

Table 2.3:  ADME Core Panel genotyping quality control statistics  

 

   

 

 

  

 

 

 

 

 

 

 

 

ADME Genotyping efficiency (GE) was calculated for each of the 174 SNPs and 10 copy 

number variants (CNVs) targeted by the ADME custom assay in 299 samples that were 

successfully genotyped.  Tests of Hardy Weinberg Equilibrium (HWE) were only performed for 

each of the SNPs. 

 

 

 Four SNPs significantly departed from HWE (p < 0.001, Table 2.3):  CYP2B  

rs8192709, GSTM1 rs1065411, CYP2D  rs3892097, and the triallelic marker ABCB1 rs2032582.  

One of these HWE deviating markers, rs1065411, also had very low genotyping efficiency 

Category SNPs 

(%) 

CNVs 

(%) 

Monomorphic 67 

(38.50) 

7 

(70.00) 

   

GE < 90% 4 

(2.22) 

3 

(30.00) 

 

GE < 95% 13 

(7.47) 

4 

(40.00) 

 

GE > 99% 115 

(66.09) 

4 

(40.00) 

 

GE = 100% 88 

(50.57) 

4 

(40.00) 

   

HWE, p < 0.001 4 

(2.29) 

- 
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(49%).  More than one-third of the 173 diallelic markers were monomorphic in our sample 

population (67;  Table 2.1, and one-third (57) of the markers were rare (MAF ≤0.05; Table 2.1).  

The remaining markers (49; 28%) were common (MAF ≥0.05) in this study population. Table 

2.4 displays the frequency of Clinical Pharmacogenetics Implementation Consortium (CPIC) 

‘likely phenotypes’ and star genotypes, as opposed to frequencies by individual RS number, in 

this sample population. 

 Within this frequently medicated de-identified population genotyped on the ADME Core 

Panel, a subset of 98 individuals were genotyped on Illumina’s HumanOmni1-Quad platform for 

previous genetic association studies conducted in BioVU.  More than one-third of markers (41%) 

of 70 diallelic ADME Core Panel markers overlap with the HumanOmni1-Quad.  Out of the set 

of overlapping markers, the majority (59/70) had 100% concordance, and eight SNPs were >99% 

concordant. 

 As a supplemental step in our assessment of panel performance in this study, we 

compared the allele frequencies observed here with reference allele frequencies abstracted from 

multiple sources including the primary literature.  Of the 173 diallelic, non-CNV markers 

targeted by the panel, we were able to abstract allele frequencies from European descent 

populations for 109 variants (63%).  Of the subset of markers that were without a reference 

frequency in the literature or public databases, all but two, SLC22A1 M420del 

and CYP2D6 rs35742686, were rare (MAF < 0.01) or monomorphic in our sample population.  

These data suggest there is little population data on low frequency but functional 

pharmacogenetic variants.  As might be expected, the vast majority of marker allele frequencies 

in this frequently medicated sample from BioVU did not differ from allele frequencies 

previously reported for European-descent populations (Appendix: Table 6.1).  In fact, after 
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accounting for multiple testing, only one marker (CYP2D6 rs1080985) had a significantly 

different allele frequency in this BioVU sample compared with the 1000 Genomes Project CEU 

data: 0.11 versus 0.24, respectively (p = 2.74 × 10
-5

; Appendix: Table 6.1). 
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Table 2.4:  Frequency of CPIC “likely phenotypes” and star genotypes with published 

guidelines for drug dosing 

 

ADME Core Gene CPIC* Categories Frequency 

CYP2D6 Poor Metabolizer (PM) 0.07 

 Intermediate Metabolizer (IM) 0.02 

 Extensive Metabolizer (EM) 0.60 

 Ultrarapid Metbolizer (UM) 0 

 No Call 

Undetermined λ 

0.21 

0.10 

 

CYP2C9 *1/*1 0.61 

 *1/*2 0.20 

 *2/*2 0.02 

 *2/*3 0.03 

 *1/*3 0.12 

 No Call 0.03 

CYP2C19 PM 0.01 

 IM 0.20 

 EM 0.42 

 UM 0.28 

 *2/*17 0.07 

 No Call 0.02 

CYP3A5т  *1/*1 0.01 

 *1/*3 0.11 

 *3/*3 0.88 

TPMT No/Low Activity 0.00 

 Intermediate Activity 0.04 

 Normal Activity 0.89 

 No Call 0.06 

SLCO1B1 *5 0.26 

 WT/*5 0.73 

 *5/*5 0.01 

VKORC1  (-1639G>A) GA 0.36 

 AA 0.13 

 GG 0.51 

Clinical Pharmacogenetics Implementation Consortium (CPIC), т Dutch Working Group 

CYP3A5 categories, λ Samples called *4 HET *10 HET by ADME Module.  The module uses 

the genotype of rs1065852 for calling the *10 haplotype.  However this genotype does not 

distinguish *4 and *10 and these patients could either be *1/*4 (EM) or *4/*10 (IM). 
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 Results of comparisons between this study sample and CPIC likely phenotypes 

frequencies
24, 29, 97-99

 (Table 2.4) were similar to that observed at the single variant level.  The 

difference observed in frequency of CYP2D6 genotypes between CPIC and this study sample is 

likely due to the large proportion of individuals with missing calls for various markers, which in 

such cases were assigned ‘no call’.  This underscores the difficulty in accurately 

assigning CYP2D6 genotypes even with the targeted ADME Panel.  Overall, the small sample 

size and subsequent low power may have impacted our ability to detect small differences in 

frequencies of other alleles tested. 

 

 

Discussion 

We sought to assess the performance of the ADME Core Panel, a fixed content panel for 

pharmacogenomic research and clinical use, in a ‘frequently medicated’ sample of individuals 

from BioVU, a biorepository of DNA samples linked to de-identified EMRs.  These samples did 

not display any convincing evidence of having a different genomic profile of rare variants in 

pharmacogenetic genes compared with reference populations.  The one significant SNP 

(CYP2D6 rs1080985) that differed between this study population and 1000 Genomes CEU 

samples may represent a true difference in frequency or may represent a sequencing error in the 

1000 Genomes pilot study due to the repetitive region of CYP2D6. 

 Our assessment of performance was based upon two major criteria: coverage and quality.  

Overall, the ADME Core Panel targets approximately one-third of the PGRN VIP marker list.  

Of the 184 markers targeted by the panel, the majority is coding or considered functional.  Data 

from DNA samples extracted from frequently medicated individuals in BioVU suggest that the 

ADME Core Panel produced high quality and reproducible genotypes for the majority of variants 
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targeted by the panel.  CNVs targeted by the ADME Core Panel proportionally performed worse 

than SNPs in genotyping efficiency. 

 Overall, the quality of the data produced by the ADME Core Panel was high; however, 

there were variants with low-quality data. In this study, several variants were out of HWE or had 

low quality of genotyping.  Of note are two markers (rs1080985 and rs928286) in the highly 

polymorphic and difficult to genotype gene CYP2D6.  These two markers had lower than 

average call rates of 93.1 and 93.8%, respectively, suggesting that the panel’s assays may not be 

completely optimized. 

 

Limitations 

 A limitation of this study is the sample size.  With only 299 individuals passing quality 

control, a large proportion of markers targeted by the ADME Core Panel were monomorphic in 

this sample.  However, this limitation also reflects a limitation of the ADME Core Panel.  That 

is, more than one-third of the panel targets relatively rare variation based on European descent 

populations. For a variant with a MAF of 1%, fewer than six heterozygotes would be expected in 

this study sample.  Thirty five of the 184 variants (19%) targeted by the ADME Core Panel have 

a MAF <1% in European descent populations (Table 2.1), and these will require thousands of 

samples genotyped to detect heterozygotes at an appreciable frequency for single SNP tests of 

association.  Therefore, depending on the study design and study population, the panel’s content 

may decrease as the number of observed monomorphic markers increases. 
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ADME Core Panel for Genetics Research 

 Despite the potential decrease in content based on sample size and population, it is 

important to note that the ADME Core Panel targets important pharmacogenomic variants that 

are not tagged well by (or in LD with) variants directly assayed by fixed-content GWAS arrays.  

While 70 non-CNVs were directly assayed by the Illumina HumanOmni1-Quad, only three of 

the remaining SNPs not directly assayed were in LD or tagged with a SNP genotyped directly on 

the array.  Since the panel targets specific markers that influence the inter-individual 

pharmacokinetics of drug metabolism, 84 of the 184 variants are functional variants in the 

CYP450 family of genes because of their ubiquitous role in the oxidation step of numerous 

medications.  The remaining genes are phase II enzymes and transporters, which catalyze 

modifications to drugs by catalyzing conjugation reactions and facilitate differential tissue 

distribution, respectively
100

.  Many pharmacogenetic genes are redundant or lack endogenous 

substrates and consequently are presumed to be under less evolutionary pressure.  This relaxed 

selection over human history has produced hypermorphic and highly deleterious alleles at 

relatively common frequencies.  For instance, 7% of individuals of European descent do not have 

a fully functional copy of the CYP2D6 gene; that is, they are homozygotes or compound 

heterozygotes for loss-of-function alleles
101

.  Thus, the variants that the panel targets are 

common functional variants encoding splicing mutations, nonsynonymous SNPs and more 

dramatic structural changes such as indels and CNVs.  Compared with GWAS fixed-content 

arrays where the variants are mostly noncoding and functionality of significant markers can be 

difficult to interpret, markers from the ADME Core Panel in a pharmacogenetic association 

study have moderate to extensive biological data on their function. 
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Comment on array-based pharmacogenomics 

 Perhaps the biggest limitation of the array-based approach for pharmacogenomics 

research and clinical implementation is the fact that only specific variants are being targeted in 

any one experiment or diagnostic order.  As already mentioned, advances in sequencing 

technology now make it possible to generate complete variation data on an individual or patient 

for the whole genome, whole exome and targeted regions in a cost-effective manner (Table 2.5). 
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Table 2.5:  Comparison of pharmacogenetic genotyping methods 
 

  

  

Method Description Cost per sample Optimal 

Study Design 
Drawbacks 

Taqman 

Accurately assays 

the genotype of a 

single nucleotide 

variant 

Low 

Ideal for projects 

testing a small 

number of SNPs 

in a large 

population. 

Cost approaches 

that of GWAs 

platform for 

more than N 

number of SNPs. 

Genome-Wide 

Fixed Content 

Platforms 

Current platforms 

range from 1-5 

million common 

(MAF >1%) variants 

across the genome 

Mid 

Holistic approach 

to most of the 

genome.  Best 

candidate for 

pharmacodynamic 

studies, especially 

if the HLA* 

complex is a 

candidate
13

. 

Overall highly 

accurate but 

drops in quality 

in repetitive 

genomic regions 

found around 

many CYP 

variants. 

ADME Core and 

other PGX* 

Panels 

Accurately targets 

184-1,936* variants 

in PGX genes 

Mid-High 

Selective 

coverage of 

functional variants 

in VIPs*.  Results 

of PGX studies 

have so far 

converged around 

pharmacokinetic 

genes covered 

here (with the 

exception of 

HLA). 

 

Large 

proportions of 

variants are too 

rare and lack 

statistical power 

in small to mid-

range sized study 

designs. 

Exome 

Sequencing 

Selective sequencing 

of the coding regions 

of the genome 

High 

Holistic approach 

to genome limited 

to coding regions.  

Most suitable for 

identifying the 

effect of burden of 

rare variants on 

drug response. 

Massive data 

storage 

requirements and 

unfamiliar 

analysis tools 

available may be 

prohibitive for 

some 

investigators.  

Little 

information in 

the literature on 

performance in 

VIP variants. 
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 In recognition of this genomic evolution of technologies, Illumina recently announced 

that it will no longer be accepting orders for the Illumina BeadXpress, effectively discontinuing 

sales of mid-throughput genotyping instrumentation that process custom and fixed-content 

panels such as the ADME Core Panel.  For research and clinical diagnostics, genotyping will 

likely be replaced by targeted sequencing of genes and genomic regions important in drug 

therapy.  While the generation of the data may be different compared with the arrays, the 

challenges of data quality and interpretation or implementation will continue to be an active area 

of research and clinical oversight. 

 We demonstrate that most of the data produced by the ADME Core Panel is high-quality 

based on conventional quality control metrics.  However, fixed content panels still have 

limitations on the variants that can be targeted for pharmacogenomic research and clinical 

diagnostics.  Targeted or whole genome/exome sequencing will likely remedy the content issue 

typical of genotyping panels and accelerate the understanding of the underlying genetic 

architecture that impacts responses to drug therapy in the clinic. 
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CHAPTER 3 

 

UTILIZATION OF AN EMR-BIOREPOSITORY TO IDENTIFY THE GENETICS PREDICTORS OF 

CALCINEURIN-INHIBITOR TOXICITY IN HEART TRANSPLANT RECIPIENTS
d
 

 

 

Introduction  

Calcineurin-inhibitors (CI), such as tacrolimus and cyclosporine, are 

immunosuppressants prescribed to recipients of allografts to reduce the risk of rejection by the 

immune system.  These drugs function by dampening IL-2 signaling pathway in T-cells and 

avoid the potentinflammation and tissue damage typical of an alloresponse.  While these drugs 

have led to dramatically improved survival among heart transplant recipients, the nephrotoxic 

side-effects of these drugs continue to diminish the long-term survival rates among patients
103, 

104
.  CI are dosed in a narrow therapeutic window requiring close monitoring of serum drug 

levels to prevent allograft rejection while minimizing the risk of adverse events.   

 Post-transplant, patients undergo continuous monitoring of their serum creatinine and 

glomerular filtration rates (GFR) to determine impact of the immunosuppressants on kidney 

function.  A decline in kidney function is nearly universal among heart transplant recipients with 

significant variability in the development of severe kidney disease.  Patients are frequently faced 

with the development of chronic kidney disease (CKD) which is classified into 5 stages of 

increasing severity, each defined by the estimated GFR.  In a retrospective study of 352 heart 

transplant recipients, 3% developed end-stage renal disease or CKD Stage 5 by 5 years and 12% 

by 10 years
105

.  Clinical risk factors for developing post-transplant CKD include pre-transplant 

                                                 
d
Adapted from Utilization of an EMR-Biorepository to Identify the Genetics Predictors of Calcineurin-Inhibitor 

Toxicity in Heart Transplant Recipients
102
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GFR, pre-transplant diabetes mellitus, a female cardiac donor, gender of the recipient, and post-

operative renal replacement therapy
105

.   

 Despite vast structural differences, the pharmacokinetics of cyclosporine and tacrolimus 

are surprisingly similar, and both agents are targets of the P-gp efflux pump ABCB1 and the 

cytochrome p450 CYP3A family of enzymes
106

.  ABCB1, also known as multidrug resistance 

protein, is a cell membrane transporter that pumps xenobiotics out of cells. The CYP3A family 

catalyzes a wide range of reactions that are essential for the systemic elimination of many 

drugs
107

.  These genes are polymorphic for functional alleles, and variants have been examined 

in several pharmacogenetic studies of calcineurin-inhibitor dosing and nephrotoxicity in renal 

transplants
108-110

.  Despite a large number of candidate gene studies on the effects of these 

variants on immunosuppression therapy, many of these analyses are narrow in their scope of 

genes tested.   In this study, we explored the roles of other pharmacokinetic genes outside the 

CYP3A family and ABCB1 on the development of calcineurin inhibitor nephrotoxicity (CNIT).  

For our study, we identified 127 heart transplant recipients in BioVU, Vanderbilt University 

Medical Center’s DNA biorepository linked to de-identified electronic medical records. From 

data collected in this patient population, we developed a longitudinal pharmacogenetic study to 

test the impact of ADME Core variants on the development of CNIT.   

 

 

Methods 

Study Population 

 Our study population of heart transplant recipients was obtained from BioVU.  A full 

description of BioVU as a resource, including its ethical, privacy and other protections has been 

described in detail elsewhere
2
 Using the SD, we identified initial candidates for our study by 
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screening for patients who met the following criteria:  a) a heart transplant documented with 

three or more occurrences of the ICD9 code V42.1 (heart replaced by transplant) and/or one CPT 

code 33945; b) one or more mention of an immunosuppressant; c) DNA available in the 

biorepository and genotyped on the Illumina ADME Core Panel; and d) the patient was over the 

age of 15 at the date of the transplant operation.  This initial screen identified 152 potential 

candidates.  We then manually extracted the date of the transplant operation from each record.  

We excluded 10 patients with an ambiguous or miscoded transplant operation date in the record 

with a kidney, lung, liver, or multiple heart transplants during his/her lifespan.  We extracted 

immunosuppressant data from the de-identified records of this heart transplant sample population 

with MedEx.  MedEx extracts medications and their signature mentions from free-text entries in 

the EMRs.  We used only medications with at least one mention of a dose, route, frequency or 

strength to limit the medications to those the patient was actually prescribed.  A more detailed 

description of the software has been published elsewhere
50, 111

.   

 We also extracted additional clinical information from the SD.  For quantitative 

measurements such as body mass index (BMI, kg/m
2
), serum creatinine (mg/dl), and systolic and 

diastolic blood pressure (mmHg), monthly medians were calculated.  Prior to transplant, chronic 

kidney disease and diabetes mellitus were defined by ICD9 codes before the transplant date.  

Chronic kidney disease was defined by three or more mentions of the following ICD9-codes:  

403 Hypertensive chronic kidney disease; 585.1 Chronic kidney disease, Stage I; 585.2 Chronic 

kidney disease, Stage II (mild); 585.3 Chronic kidney disease, Stage III (moderate); 585.4 

Chronic kidney disease, Stage IV (severe); 585.5 Chronic kidney disease, Stage V; 585.6 End 

stage renal disease; and 585.9 Chronic kidney disease, unspecified. Patients were considered to 

have diabetes mellitus pre-transplant if they had three or more mentions of the following ICD-9 
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codes:  250.3 Diabetes with other coma; 250.32 Diabetes with other coma, type II or unspecified 

type uncontrolled; 250.2 Diabetes with hyperosmolarity; 250.22 Diabetes with hyperosmolarity, 

type II or unspecified type, uncontrolled; 250.9 Diabetes with unspecified complication; 250.92 

Diabetes with unspecified complication, type II or unspecified type, uncontrolled; 250.8 Diabetes 

with other specified manifestations ; 250.82 Diabetes with other specified manifestations, type II 

or unspecified type, uncontrolled; 250.7 Diabetes with peripheral circulatory disorders; 250.72 

Diabetes with peripheral circulatory disorders, type II or unspecified type, uncontrolled; 250.6 

Diabetes with neurological manifestations; 250.62 Diabetes with neurological manifestations, 

type II or unspecified type, uncontrolled; 250.5 Diabetes with ophthalmic manifestations; 250.52 

Diabetes with ophthalmic manifestations, type II or unspecified type, uncontrolled; 250.4 

Diabetes with renal manifestations; 250.42 Diabetes with renal manifestations, type II or 

unspecified type, uncontrolled; 250 Diabetes mellitus; and 250.02 Diabetes mellitus without 

mention of complication, type II or unspecified type, uncontrolled. Pre-transplant hypertension 

was defined as median systolic blood pressure > 140 mmHg, systolic  and /or > 90 mmHg 

diastolic, or having been prescribed one of the following hypertension medications: hydralazine, 

minoxidil, renin antagonist, central alpha agonists, ACE inhibitors (ACEI)/angiotensin receptor 

blockers (ARB), aldosterone antagonists, diuretics, K-sparing diuretics, loop diuretics, alpha 

antagonists, calcium channel blockers (CCB), beta blockers (BB), thiazide/BB, 

thiazide/ACEI/ARB, thiazide/aldosterone antagonist, thiazide/renin antagonist, and diuretic 

combinations, all before the transplant date.   
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Phenotype Definition 

 The outcome of interest was time to develop severe nephrotoxicity clinically attributed to 

CNIT, which we defined in our patient population as the development of CKD stage 4 or 5 in the 

setting of CI use.  To assess kidney function over the course of immunosuppression therapy, we 

estimated the glomerular filtration rate from the “four variable” Modification of Diet in Renal 

Disease formula
112

: 

 

186 × Serum Creatinine-1.154 × Age-0.203 × [1.212 if Black] × [0.742 if Female] 

 

 All patients who had data in the SD by the time of their transplant date were included in 

this study.  Patients who entered the SD post-transplant were included if their initial eGFR 

measurement upon entering the SD was > 30 mL/min/1.73m
2
; this included patients with CKD 

stages 1, 2, and 3.  These patients were assumed not to have CKD 4 or 5 in the setting of CI prior 

to their entry into BioVU and were entered into the analysis at their heart transplant date.  

Patients who entered the SD after their heart transplant date with an eGFR < 30 were excluded 

from the analysis.  Our definition of severe chronic kidney disease 4 was a monthly median 

eGFR of < 30 mL/min/1.73m
2
 for three consecutive months.  This threshold was adapted from 

the National Kidney Foundation’s definition for CKD stage 4: GFR of 15-29 and CKD Stage 5: 

GFR <15 or dialysis
112

.   

 

Genotyping 

 DNA samples from a total of 115 heart transplant recipients were genotyped on 

Illumina’s ADME Core Panel as part of Vanderbilt Electronic Systems for Pharmacogenomic 



 

49 

 

Assessment (VESPA).  
108

.  Genotyping for this study was conducted at Vanderbilt University 

DNA Resources Core. .  Genotype calling was performed with ADME Module Version 1.0.0.3.  

Formatting of the ADME Core Panel data set and quality control of the markers was performed 

with PLATO and PLINK
90, 113

.  SNPs were filtered from the analysis if the allele frequency was 

below 5%, genotyping efficiency <95%, or a statistically significant deviation from Hardy 

Weinberg expectations (p < 0.001) in the European American population.  After filtering, 49 

SNPs remained in our analysis. For estimating relatedness and genetic ancestry we extracted 

333,804 overlapping markers from the samples’ genotype data from the following platforms:  18 

individuals on Illumina’s HumanOmni5-Quad, 109 on the HumanOmni1-Quad, and four on 

Illumina’s 1M-Duo BeadChip. A principal components analysis (PCA) was performed with the 

Eigensoft software using available genome-wide data in the full dataset and in the subset of 

European Americans.  We tested for relatedness of individuals in subsets of samples stratified by 

race/ethnicity.  One sample from a related pair of European Americans was removed.  The 

genome-wide inflation factor for this study was 1, which suggests a low false positive rate.   

 

Statistical Analysis 

 Cox proportional hazard models were calculated using the date of the heart transplant as 

the starting time in a time-to-event analysis.  Genotypes were modeled additively against 

development of CKD stage 4. Factors associated with renal function in univariate analyses (p < 

0.05) were included in the final multivariable model.  Patients who did not develop CKD stage 4 

were censored from the analysis at their final eGFR measurement.  For the linear mixed effects 

modeling of post-transplant eGFR, we used the R package, nlme
114

.  SNPs and covariates that 

met a p < 0.05 threshold in univariate analyses were included as fixed effects and the subject 



 

50 

 

identifier was included as a random effect.  The within subject correlation was 0.70 and we chose 

to account for it in our models with an autoregressive-moving average model with one 

autoregressive and one moving average parameters. Plots were generated with STATA 11 and 

RStudio Version 0.97.551
114, 115

. 

 

 

Table 3.1:  Clinical Characteristics of Heart Transplant Cohort 

 

  

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

    

Patients 115 

European Descent (%) 86.0 

Female (%) 33.9 

Transplant Operation at VUMC (%) 80.8 

Pre-transplant Diabetes Mellitus (%) 10.4 

Median Systolic (mmHg) 100.2, IQR: 94.3-107.0  

Median Diastolic (mmHg) 64.0, IQR: 59.9-66.9        

Pre-transplant Hypertension (%) 66.0 

Pre-transplant Chronic Kidney Disease 9.56 

Median Age at Tx (years) 52.5, IQR: 40.5-58.1 

Required Dialysis Post-Transplant (%) 18.2 

Median Post Tx Follow up Time (years)  8.8, IQR: 4.8 – 12.2 

Median Pre-eGFR (mL/min/1.73m
2
) 68.0, IQR: 57.4-87.2 

Median Body Mass Index (kg/m
2
) 27.4, IQR:24.6-31.1 

Died (%) 21.7 

Cyclosporine Only (%) 35.7 

Tacrolimus Only (%) 25.2 

Cyclosporine and Tacrolimus (%) 39.1 
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 Table 3.1 presents the clinical characteristics of our study population identified in 

BioVU.  Overall, this is an ancestrally cosmopolitan cohort where 80.8% of the patients were 

administratively assigned as being of European descent, while the remainder were reported as 

African American with the exception of one sample reported as Hispanic
85

.  The median age at 

transplant was 52.5 years of age.  This is a slightly overweight population with the median body 

mass index of 27.4 kg/m
2
.  Prior to transplant, 10.4% and 60.6% patients had evidence of 

diabetes mellitus and hypertension, respectively.  A majority of patients (52.7%) had their heart 

transplant at VUMC.  Twenty-five patients died during post-transplant follow up.  All patients 

were prescribed a calcineurin-inhibitor:  35.7% were prescribed cyclosporine alone, 25.2% 

tacrolimus alone, and 39.1% were prescribed a combination of the two (at different times). 

 

Results 

 As expected for this patient population, the eGFR prior to transplant was lower than 

would be expected for a healthy population (median = 68.0 mL/min/1.73m
2
).  Follow up time for 

these patients varied (Figure 3.1):  median time to the final eGFR measurement in the SD was 

8.8 years, and the median frequency of follow-up was 5.5 (IQR: 4.2-7.5) eGFR measurements 

per year.  Kidney function continued to decline over time (Figure 3.1).  In the second year (12-24 

months) post-transplant 14.0, 31.4, 50.0, and 4.6 percent of individuals had median eGFR 

measurements that corresponded with the first four stages of CKD, respectively.  By the fifth 

year (60-72 months), the distribution shifted toward lower median eGFR levels: 3.4, 22.4, 62.0, 

and 12.0 percent of individuals were observed with median eGFRs in range with the first four 

stages of CKD, respectively.   At year ten, 11.7 and 11.7 percent of patients median eGFR 

measurements corresponded to CKD stages four and five, respectively. 
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Figure 3.1:  Post-transplant eGFR measurements plotted on the thresholds of the five 

stages of chronic kidney disease.  Individual post-transplant eGFR measurements are plotted on 

the y-axis against time in months after transplant on x-axis as grey dots.  The dashed line 

represents a polynomial function fit to all eGFR measurements collected in the study. Ten 

randomly selected patients’ eGFR profiles have been fitted with loess lines and colored in red if 

the patient developed Chronic Kidney Disease (CKD) Stage 4 or below.  Thresholds for the 5 

stages of CKD are indicated: CDK1 >90, CKD2 60-89, CKD3 30-59, CKD4 15-29, and CKD5 

<15 mL/min/1.73m
2
.  

 

 

Time to CKD Stage 4 and 5 Survival Analysis 

 Figure 3.2 displays the development of CNIT in this study population in months post-

heart transplant.  Thirty-seven out of 115 patients (25.2) in this heart transplant cohort met the 

CNIT case definition.  By twelve months, eight individuals (7.0%) met the criteria for CNIT, 19 

(16.5%) by 60 months, and 28 (24.3%) by 120 months.   From among the various clinical 

variables tested for an association with CNIT (the three most significant PCAs, gender, systolic 
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and diastolic blood pressure, pre-transplant diabetes, pre-transplant hypertension, pre-transplant 

chronic kidney disease, age at transplant, pre-transplant eGFR, BMI, and prescribed calcineurin 

inhibitor), only pre-transplant eGFR, pre-transplant CKD status, pre-transplant diabetes mellitus 

status,  and age at transplant met a significance threshold of p < 0.05  (Table 3.2).   

  

 

 

Figure 3.2:  Kaplan-Meier plot describing the proportion of non-nephrotoxic heart 

transplant recipients over time.  The y-axis indicates the proportion of event-free subjects and 

tick marks on the plot indicate where individuals were censored from the analysis. 

 

 

 First, in the European American subset (n=99 heart transplant recipients with 35 cases of 

CKD stages 4 and 5) we tested the 49 Illumina ADME Core Panel markers that passed quality 

control for association with CNIT outcome.  In unadjusted analysis, no markers were associated 

with CNIT after adjustment for multiple testing (p < 1.02 x 10
-3

).  Variants in SLC22A1 
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rs34305973 and UGT2B17 rs1902023 trended toward significance in the unadjusted model (p = 

0.02 and p=0.02, respectively).  In models adjusted for pre-transplant CKD, pre-transplant 

diabetes mellitus, age at transplant, and the three most significant PCAs, UGT2B17 rs1902023 

was the most significant (p = 0.01) among all the tested ADME Core Panel markers (Table 3.2).  

Secondly, we expanded our analysis to the full dataset regardless of race/ethnicity (n=115 heart 

transplant recipients with 37 cases of CKD stage 4 and 5) and the results were largely unchanged 

(data not shown).   In the adjusted models for the full dataset, DPYD rs1801265 was the most 

significant (p = 9.24 x 10
-3

, HR: 0.39, CI: 0.19-0.79) among all the tested ADME Core Panel 

markers.  No marker was associated with CNIT in unadjusted or adjusted models after correction 

for multiple testing when the data were limited to cyclosporine only treated patients (n=95 heart 

transplant recipients with 27 cases of CKD stage 4 or 5) or tacrolimus only treated patients (n=79 

heart transplant recipients with 18 cases of CKD stage 4 or 5; data not shown).   
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Table 3.2:  Results of CNIT Analysis in European Americans 

Predictor Hazard Ratio (95% CI) P-value 

 

Univariate Clinical Variable Model 

  

Recipient Age per year 1.05 (1.01-1.08) 9.85 x 10
-3

 

Pre-transplant CKD 3.69 (1.36-10.01) 0.01 

Pre-Transplant eGFR per 

ml/min/1.73m
2
 

0.96 (0.94-0.98) 1.03 x 10
-3

 

Prior Diabetes Mellitus 6.92(2.64-18.54) 8.33 x 10
-5

 

   

Multivariable Genetic Model    

DPYD rs1801265 0.45 (0.22-0.93) 0.03 

UGT2B17 rs1902023 2.23 (1.21-4.11) 0.01 

SLCO1B1 rs4149056 0.38(1.46-8.98) 0.03 

SLC22A1 rs34305973 2.14(1.18-3.90) 0.01 

 

 

Modeling Post-Transplant eGFR  

 As a secondary analysis of post-transplant kidney function, the repeated eGFR 

measurements were analyzed directly using mixed effects models to account for the within 

subject correlation.   In univarate analyses of covariates among European Americans, only 

cyclosporine use (coef(S.E) = -17.05(7.13), p = 0.02), median BMI (coef(S.E) = -1.27(0.62), 

p<0.05), and age at transplant (coef(S.E) = -6.19(-1.01), p = 1.55x 10
-8

) were associated with 

eGFR over time.  No SNP met the significance threshold for multiple testing in unadjusted or 

adjusted analyses.  However, in unadjusted analyses, two of the three SNPs that met a 

significance threshold of p < 0.05 in this study were previously reported in the literature to be 

associated with post-transplant renal function: CYP2C19 rs4244285 (coef(S.E) = 13.28(6.17), p 

= 0.03) and CYP3A5 rs776746 (coef(S.E) = 21.94(8.37),p = 0.01)
110, 116

.  The third SNP was 
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CYP2A6 rs28399433 (coef(S.E) = 20.91(3.46), p = 0.02) in unadjusted analyses.  Two of these 

associations maintained significance at the 0.05 threshold in the multivariate models CYP3A5 

rs776746 (coef(S.E) = 14.60(6.41), p = 0.03) and CYP2A6 rs28399433 (coef(S.E) = 17.14(8.24), 

p = 0.04).  In analyses extended to the full dataset regardless of race/ethnicity, only CYP2A6 

rs28399433 (coef(S.E) = 17.46(6.70), p = 0.01) approached significance in the adjusted analysis 

(data not shown). 

 

 

Discussion 

Summary and Relevance 

 We used a biorepository linked to de-identified electronic medical records to identify 

heart transplant patients for pharmacogenomic studies.  The two outcomes of interest in the 

present pharmacogenomics study were (1) the development of advanced nephropathy (CKD 

Stage 4 or 5) in the setting of calcineurin-inhibitor therapy post-transplant and (2) post-transplant 

eGFR over time.   In this study, we have demonstrated that EMR-based cohorts linked to DNA 

samples provide ample opportunity to identify adverse drug reactions (ADR).  This specific 

study focused on a common ADR to calcineurin-inhibitor therapy among heart transplant 

recipients.  While there are several studies that have explored the relationship between a patient’s 

genetic profile and calcineurin-inhibitor dosing
108, 117, 118

, this is the first study of our knowledge 

to utilize an EMR-based cohort of heart transplant patients to examine the pharmacogenetics of 

calcineurin-induced nephrotoxicity. 

 Our most significant result regarding the time to CNIT survival analysis was DPYD 

rs1801265, which approached our corrected p-value threshold (p = 9.24 x 10
-3

) in the full dataset 
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regardless of race/ethnicity.  DPYD rs1801265 defines the DPYD *9A haplotype and encodes a 

cysteine to arginine missense mutation in the 29th position of the protein that some studies have 

suggested to result in insufficient enzymatic activity
119

.  The gene is located in the centromeric 

region of chromosome one between 1p22 and 1q21
120

.  While the variant did not meet our 

multiple-testing threshold, larger studies may confirm its role in CNIT.  It is interesting to note 

that CYP3A5 variants, which have been strongly associated with tacrolimus dosing in multiple 

studies
108

, were not associated with CNIT, but one marker in this gene trended towards 

significance in modeling eGFR directly.  This marker rs776746 defines the CYP3A5*3 allele, a 

non-expressing variant of the gene found at ahigh frequency in populations of European 

descent
113

.   In this study we found the functional CYP3A5*1 allelewas at comparable frequency 

to other studies (MAF = 0.06) and was positively associated with eGFR post-transplant
121

. 

 The investigation of a heart transplant cohort for the pharmacogenetics of calcineurin-

inhibitor nephrotoxicity has advantages over kidney and liver transplant cohorts, as it removes 

the potential for donor-recipient genetic interactions.  The donor genetic information of kidney 

and liver transplant may play crucial roles in the susceptibility of nephrotoxicity.  The liver is the 

primary site of drug metabolism, and in the case of liver transplants, the donor’s genome 

becomes the driver of metabolism. The donor’s genetic variation may lead to a different 

pharmacokinetic profile of calcinineurin-inhibitor metabolism compared with the recipient.  The 

donor genome in the case of kidney transplant may also be a factor in developing 

nephrotoxicity
122

.  Therefore studies designed at identifying these interactions are presented with 

experimental design challenges unlikely to be overcome in a blood sample focused 

biorepository. 
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Limitations 

 Small sample size is a pervasive challenge to pharmacogenetic study design.  Even in an 

immense resource such as BioVU with over 160,000 samples as of July 2013, we were only able 

to identify 167 patients who met the study criteria, and of those, only 35 of those samples 

developed CKD stage 4 over the course of calcineurin drug therapy.   This highlights the need 

for very large repositories when studying uncommon outcomes of medical interest.  While 

survival analysis did afford us more power as opposed to a  strict case-control analysis using 

logistic regression, we were still underpowered to detect an association.  For example, assuming 

a dominant genetic model with an allele with a frequency of 0.5, a sample size of 191 cases of 

CKD stage 4 would have been required to detect an association with a moderately sized hazard 

ratio of 1.5 at an alpha of 0.05
123

 .   

 Heterogeneity marked another challenge when defining this study population and 

modeling the association.  Clinically, heart transplant recipients are a very diverse population in 

regard to co-morbidities and medications.  Further complicating the issue is that CNIT is not the 

only cause of CKD in this population: other factors include the decline of kidney function with 

age, diabetes, hypertension, heart disease, other medication exposures, and latent infection of the 

BK virus
124

.  In this study, we ignored phenotypic heterogeneity to increase the sample size and 

overall power of the study.   Also, to avoid increasing the type II error rate, we were 

parsimonious in our covariate selection for our statistical model
125

.  Indeed, large multi-center 

studies may be required to fully model the relationship between heart disease and kidney 

function.    Large studies will also be required to fully address the phenotype heterogeneity 

problem or to explore more susceptible subpopulations such as high dose patients, a strategy 

successfully used to identify genetic variants associated with statin-induced ADRs
22

.   
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Conclusions 

 Despite the relatively small sample size for a genetic association study, the current study 

represents a fairly large sample size for pharmacogenomics studies of ADRs.  We have 

demonstrated here that the EMR, rich in clinical data, is an excellent and logical resource to 

establish pharmacogenomics studies for less common ADRs such as CNIT.  While the genetic 

association results presented here require replication and downstream functional and biological 

interpretation, the existence of other biobanks linked to DNA samples in the United States
40

 and 

across the world 
126

 makes this future direction possible for CNIT as well as other ADRs with a 

suspected genetic risk factor. 
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CHAPTER 4 

 

 

A PHENOME-WIDE ASSOCIATION STUDY OF ADME CORE VARIANTS IN AN EMR-LINKED 

BIOBANK 

 

 

Introduction 

The application of genetic information for personalized medicine in modern health care is 

still in its nascent stages, and its future depends on the strength of evidence provided by ongoing 

pharmacogenetic studies.  Despite several persuasive examples of inter-individual differences in 

drug response successfully predicted by genetics, such as statin and warfarin therapy, 

pharmacogenetic research struggles meet the growing expectations of the tool
22, 127, 128

.  Unlike 

genome-wide studies of complex diseases such as type 2 diabetes, multiple sclerosis, 

cardiovascular disease, rheumatoid arthritis
129-132

, to name a few, pharmacogenomics have not 

benefitted from large sample sizes (>100,000).  The outcomes of interests to 

pharmacogeneticists, adverse drug response or non-response, do not occur frequently in the 

population, and statistical power is often a challenge that these studies have yet to overcome.  

Depending on the medication, cases occur in 1:100 to 1:>100,000 of medicated individuals.   

 Another major challenge to pharmacogenetics is phenotyping.  Phenotyping often 

requires a multi-dimensional clinical dataset and longitudinal information on patients to 

accurately confirm cases and controls.  Further complicating the study design is that accurately 
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genotyping the functional variants in pharmacogenes can be problematic on the current standard 

of genome-wide platforms
e
.   

 As a consequence of the difficulty in genotyping pharmacogenes, the role of these 

variants in physiological traits is likely to be underestimated.  This point is underscored by the 

observation of pharmacogenes carrying strongly deleterious variants at a common allele 

frequency (minor allele frequency or MAF > 0.01).  Through catabolism and facilitation of 

excretion, these genes act as biological gatekeepers that keep toxins and carcinogens from 

exerting their pathological effects.  These genes also have innate physiological functions outside 

of xenobiotics in the absorption, distribution, metabolism and excretion (ADME) of endogenous 

compounds.  Polymorphisms that impair transporter function of a liver-specific member of the 

organic anion transporter family, SLCO1B1, exhibit pleiotropy.  Genome-wide association 

studies (GWAS) have identified associations with SLCO1B1 for increased risk of statin 

myopathy and higher serum bilirubin levels
133

.  However, the GWAS often focus on one 

narrowly defined phenotype, and the broader picture of the pleiotropy of interesting variants 

(which in some cases may be more clinically meaningful) is left unexamined.    

 Several pharmacogenetic genotyping platforms have entered the market with custom 

genotyping assays specially designed for ADME Core variants
78, 96

.  The ADME Core is 

considered a comprehensive list of 184 functional variants in the 34 genes that govern the 

pharmacokinetics of most pharmaceuticals
f98

.   The genes can be broadly be divided into four 

categories, the phase I metabolic enzymes (ex. CYP540 family), and phase II conjugation 

enzymes (ex. UGT and NAT families), transporters (ex. SLC and ABC families), and drug 

targets (ex. VKORC1).    

                                                 
e
 Described in Chapter 1:  Biorepositories linked to Electronic Medical Records 

f
 Described in Chapter 2:  Assessment of a pharmacogenomic marker panel in a polypharmacy population identified 

from electronic medical records 
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Our hypothesis is that there is pervasive and unreported pleiotropy of ADME Core 

variants across physiological traits and genotype-drug interactions.  A phenome-wide association 

study (PheWAS) is an emerging method designed to capture pleiotropic relationships between 

genetic variants and a diversity of phenotypic data
134, 135

.   A clinical phenome that captures a 

wide range of physiological traits and outcomes related to adverse drug reactions can be derived 

from the International Classification of Disease bill codes available in electronic medical record 

systems.     

In this study, we conducted a PheWAS in the Vanderbilt University Medical Center 

EMR-linked biorepository, BioVU, utilizing 6,793 blood samples genotyped on Illumina’s 

pharamacogenetic genotyping platform, the ADME Core Panel.  We replicate well-known 

genotype-phenotype associations as well as report novel associations that survive correction for 

multiple testing.  Finally, we also present data that suggest these results can also be utilized as 

catalog of potential side effects from genotype-drug interactions.   Overall, these data generate 

multiple novel hypotheses that could be prioritized for replication and further functional studies 

to better understand the pleiotropic and far-reaching effects of these variants on human health.   

 

Methods 

Study Population 

 This study population consisted of 6,092 and 701 European and African American 

samples, respectively, from Vanderbilt University Medical Center’s (VUMC) DNA databank 

BioVU (2007-2010) located in Nashville, TN (Table 4.1).
g, 41, 42

.   

 

                                                 
g
Described in Chapter 1:  Biorepositories linked to Electronic Medical Records 
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Table 4.1:  Clinical Characteristics of PheWAS Study Population 

  

European Americans (N) 6092 

African Americans (N) 701 

Female (%) 48.1 

Mean BMI (kg/m
2) (S.D) 28.34 (7.19)  

Mean Age at Last Record (S.D.) 55.02 (19.59) 

 

 

 

Genotyping 

 The DNA samples included in this study were genotyped on Illumina’s ADME Core 

Panel at Vanderbilt University’s DNA Resources Core
h
.  These samples were genotyped as part 

of various studies performed in BioVU by VESPA (Table 6.2).   

 

Quality Control 

 The ADME Module calling software utilizes predefined boundaries for calling 

genotypes, which prevents the introduction of errors related to batch effects in the data.  In light 

of this, we chose to relax quality control metrics to increase sample size with a negligible 

reduction in genotype quality. We calculated QC metrics with the genetic analysis software 

PLINK version on our genotype data formatted into PED and MAP files
113

.   

 All markers with an allele frequency greater than > 0.01 (European Americans=71, 

African Americans=74) were included in this analysis. An analysis of Hardy-Weinberg 

equilibrium (HWE) of the remaining SNPs revealed that ten and six markers deviated (p<0.001) 

                                                 
h
 Described in Chapter 2:  Assessment of a pharmacogenomic marker panel in a polypharmacy population identified 

from electronic medical records 
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from in the European and African American datasets, respectively (Figure 6.1).  Compared with 

the other genes on the ADME Core Panel, CYP2D6 showed a considerable burden of deviations 

of HWE expectations.  In European Americans, of the seven variants in this gene that met our 

allele frequency inclusion threshold, five (rs1080985, rs3892097, rs1065852, rs28371725, and 

rs5030655) crossed our significance threshold for deviation from equilibrium.  Unexpectedly, 

given our previous experience genotyping this variant, VKORCI rs9923231 deviated from 

Hardy-Weinberg expectations in European Americans (p=4.53 x10
-11

) but not in African 

Americans (p = 0.53)
136

.  Genotyping efficiency of the samples and call rates of the variants were 

also assessed. We found that 161 samples were genotyped at an efficiency between 0.70-0.90 

and the remaining samples had >0.90 efficiency.   Considering that removal of these individuals 

did not significantly impact Hardy-Weinberg distributions, we elected to include these samples 

in the study population.  Call rates of nine markers (GSTM1 rs1065411, CYP2D6 rs1080985, 

UGT2B15 rs1902023, CYP2C8 rs11572103, CYP2A6 rs28399444, CYP2A6 rs28399454, 

CYP2A6 rs1801272, CYP2A6 rs28399433, and CYP2D6 rs28371706) were below 0.95.  These 

were flagged but included in the analyses  
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Figure 4.1:  Plot of STRUCTURE analysis of European and African American samples.  

We performed a STRUCTURE analysis with the ADME Core genotype markers to identify 

genetic outliers in regards to ancestry.   Model-based clustering on the African American and 

European American samples was performed using the admixture model, with 10,000 burn-in 

iterations, 50,000 simulation cycles and assigned K=2.  In the area plot of the structure data, red 

and blue correspond to individuals of European and African American ancestry, respectively.  

Individuals are on the X-axis are plotted against Q, the probability that an individual’s assigned 

race/ethnicity matches their genetic ancestry.  

 

 

Population Stratification 

 Race/ethnicity in BioVU is administratively assigned (third-party reported) and available 

as a structured field in the electronic medical record.  Previous studies have demonstrated that 

this identifier is highly correlated with ancestry in European Americans and African Americans 

in BioVU
85

   We applied STRUCTURE 2.2 to the ADME Core genotype data to identify outliers 

who have genetic ancestry discordant with third-party reported race/ethnicity (Figure 4.1)
70

.  

Model-based clustering on the African American and European American samples was 
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performed using the admixture model with 10,000 burn in iterations, 50,000 simulation cycles 

and assigned K=2.  In this an analysis we did not anchor clusters to HapMap samples.  Only 71 

of 184 ADME Core variants are available in HapMap, and we choose instead to cluster only on 

samples genotyped on all 184 ADME Core markers.  Two hundred and forty-one samples were 

identified that clustered less than 90% with their genetic ancestry and subsequently removed 

from further analysis.  After removal of the population outliers, deviation from Hardy-Weinberg  

was reduced to only 10 and 6 markers in the European and African decent populations, 

respectively. 

 

Phenome-Wide Association Study 

 The phenome for the present study is derived from ICD9 codes extracted from patient’s 

electronic medical records, de-identified and available in the SD.  These codes are used in the 

health care system for the classification of diagnoses and procedures associated with hospital 

utilization in the United States
137

 .   For our study, we used the open source database MySQL to 

translate the ICD9 codes into 1,368 “phecodes”, which group disease codes in different clinical 

settings into a single code (e.g., ‘‘type 1 diabetes’’ and ‘‘hypertension’’) to reduce redundancy 

and increase statistical power.  To be a case, a subject must have had at least two phecodes in 

his/her record.  In controls the code had to beabsent.   Subjects were excluded from the test of a 

particular phecode if he/she had a single phecode or related code.  Phecodes with less than 35 

cases were excluded from the analysis.  A total of 1,010 and 303 codes in the European 

American and African American datasets, respectively, remained for analysis.  We set a 

Bonferroni corrected phenome-wide significance threshold for tested codes at 4.95 x10
-5 

and 

1.65 x10
-4

 for the stratified analyses of European Americans and African Americans, 
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respectively. 

 

Statistical Methods 

 This PheWAS was performed with a script designed in R, which tests for an association 

using logistic regression adjusted for age (age at first code for cases and the maximum age in the 

records for controls) and gender across all phecode and ADME Core marker combinations that 

meet the criteria outlined above.  Data visualization of the Sun Plots was performed with the 

PheWAS Viewer
138

. 

 

 

Results  

PheWAS of the ADME Core Panel 

We performed tests of association for 74,387 and 25,536 unique genotype-phenotype 

combinations in the European and African Americans, respectively (Figure 4.2, Table 6.4, and 

Table 6.5).  The difference in the number of tests performed European and African Americans 

can be explained by ADME Core MAF differences and number phecodes that meet sample size 

thresholds.  We identified four associations that met the significance threshold for replication of 

previously reported associations (p= 0.05) and one novel association that met phenome-wide 

significance in European Americans at 4.95 x10
-5

. 
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Figure 4.2:  Manhattan Plot of PheWAS Results in European Americans.  Variants grouped 

by gene are plotted on the X-axis against the –log10 of the p-value on the y-axis.  The red and 

blue dashed lines indicate thresholds of 0.05 and phenome-wide significance (4.95 x 10
-5

), 

respectively.  Annotations of the phenome trait are provided for associations that met phenome-

wide significance and/or were considered as a replication of a previous reported association.  

Variants that did not meet Hardy-Weinberg expectations (HWE < 0.001) are not shown.  

 

 

Replication of Genotype-Phenotype Associations Reported in the Literature 

The most statistically significant result in European Americans was ABCG2 rs2231142 

associated with gout at p = 1.94E-07 (odds ratio or OR = 1.72, 95% confidence intervals or CI = 

1.45 – 2.05).  In European Americans, 365 and 5,551 gout cases and controls, respectively, were 

available for analysis. The allele frequency of the rs2231142 A allele was 0.17 in cases and 0.11 

in controls.  The direction of effect and the estimate of the effect size are similar to a previous 

GWAS of gout in the Framingham cohort
139

.  

  Among European Americans, we also replicated a known association involving 

SLCO1B1 rs4149056.  This variant was previously associated with an increase in serum bilirubin 

levels in European-descent populations
133

.  In this PheWAS, rs4149056 was associated with 
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jaundice (p=2.35E-04, OR = 1.67, 95% CI = 1.33 – 2.11). We identified 154 cases and 5,081 

controls of jaundice among European Americans.  The frequency of the C allele, which was 

previously associated with higher bilirubin levels, was 0.23 and 0.15 for cases and controls, 

respectively. The clinical presentation of jaundice is the result of serum bilirubin crossing a high 

concentration threshold of 2.5 mg/dL; therefore, the association observed here between 

SLCO1B1 rs4149056 and jaundice is the result of the SLCO1B1 variants increasing baseline 

bilirubin levels, which in turn can increase the risk of developing jaundice as a clinical endpoint.    

We also identified a potential replication for NAT1 rs4986782.  The NAT1 slow 

acetylator phenotype has been implicated in various cancers (often in the context of exposure to 

cigarette smoke) including breast, lung, bladder, colorectal, and non-Hodgkin’s lymphoma.
140

  

NAT1 rs4986782 is the most common of the “slow acetylator” genetic variants and is referred to 

as NAT1*14B in the pharamacology literature
141

.  In this PheWAS, we identified an association 

between NAT1 rs4986782 and the phecode for chemotherapy (p=6.47E-05, OR 1.84, 95% CI = 

1.43 – 2.38), a procedure that could be interpreted as a crude indicator of the presence of non-

specific cancer among cases.  There were 960 European American cases and 4,664 controls for 

this pan-cancer phenotype surrogate, chemotherapy.  The allele frequency for the rs4986782 A 

allele was 0.03 in cases and 0.02 in controls. Furthermore, we detected associations in two 

cancer and cancer-related phenotypes at a suggestive threshold (p<0.01): cervical cancer (37 

cases, p=7.54E-03, OR = 5.54, 95% CI = 1.93 – 15.89) and abnormal mammogram (210 cases, 

p=0.02, OR = 1.03, CI = 1.03 – 1.05).   

We identified an association between CYP2A6 and tobacco use disorder, a gene 

previously associated by a genome wide study of smoking behavior with an increase in cigarettes 

per day (Table 6.3)
142

.  This further validates a previous study that demonstrated that ICD9 codes 
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are accurate indicators of smoking behavior in the EMR
143

.  Similar to the NAT1 and CYP2A6 

findings described above, we identified several associations with CYP2C19 and phecodes related 

to phenotypes reported in the literature as associated with CYP2C19 variants.  More specifically, 

variants in CYP2C19 have been associated with a decrease in serum pepsinogen I levels in 

patients treated with omeprazole
144

.  In this PheWAS, we found CYP2C19 rs4244285 to be 

associated with atrophic gastritis (p-value = 3.45 x 10
-4

, OR = 1.95, 95% CI = 1.43 – 2.65).  

There are also several published accounts of CYP2C19 poor metabolizers associated with the 

development of gastric cancer in Asian populations
145

.  The association we detected in this 

PheWAS was with atrophic gastritis, a chronic inflammation of the stomach mucosa that 

increases the risk for stomach cancer (p=0.04, OR = 1.08, 95% CI 1.05  – 1.14)
145

.   

 

Novel Associations 

The second lowest p-value observed in this PheWAS was a phenome-wide significant 

association between SLC15A2 and renal osteodystrophy.  There were 207 cases and 3,827 

controls among European Americans for the phecode.  Four variants (rs1143672, rs2293616, 

rs1143671, and rs2257212) at a nearly identical minor frequency (MAF=0.47) in this gene were 

associated at phenome-wide significance with this phecode.  The most significant of these 

variants, the rs1143672 A allele was associated with renal osteodytrophy at a p-value of 2.81 x 

10
-6,

 and the odds ratio of the effect was 0.61 (95% CI = 0.50-0.75).  Renal osteodystrophy is a 

complication of chronic kidney disease, a disorder of mineral and bone metabolism that increases 

risk to fractures and joint pain.   The SLC15A2 rs1143672 A allele was pleiotropic for renal and 

bone related traits such as osteoporosis, renal failure, diabetic nephropathy, and others (Figure 

4.3).  
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Figure 4.3:  Sun plots of SLC15A2 rs1143672.  Sun plots are drawn to compare the pleiotropy between the European (EA) and 

African American (AA) datasets on the left and right, respectively. The most significant genotype-phenotype association is at twelve 

o’clock and p-values increase in a clockwise fashion around the circle.  Renal osteodystrophy is colored in red.  The p-value and odds 

ratios have been included for selected renal and bone traits.
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Associations in African American Dataset 

The associations in the European American samples that were identified as replications 

from the literature were not identified in the African American dataset due to insufficient power 

(lower samples sizes or lower MAF) (Table 6.3Table 6.3).  The association in between ABCG2 

rs2231142 and gout in African Americans is not significant (p=0.74, OR = 1.20, 95 % CI = 0.48 

- 2.97); however, direction of effect was consistent with the result in European Americans.  The 

lack of significance is not unexpected given that the frequency of rs2231142 A allele is much 

lower (MAF=0.03) in African Americans compared with European Americans and the fact that 

we only identified 64 cases gout among African Americans.  Likewise, the African American 

dataset had much fewer cases of jaundice (22) and atrophic gastritis (3).  We were unable to 

replicate the associations with these traits identified in the European American dataset.  The 

allele frequencies of NAT1 rs4986782 (MAF = 0.003) and CYP2A6 rs1801272 (MAF = 0.005) in 

the African American dataset were much lower than in European Americans, and we were 

statically underpowered to detect these associations as well.   

The African American dataset contained 79 cases and 308 controls for renal 

osteodystrophy. The association between SLC15A2 rs1143672 and renal osteodystrophy (p = 

0.07, OR = 0.72, 95% CI = 0.54 – 0.97) while not significant, was consistent with the European 

American dataset in direction and magnitude of effect.  The pleiotropy of renal traits with 

SLC15A2identified in European Americans was consistent in the African American analysis 

(such as nephropathy in various contexts) further suggesting the role of SLC15A2 in renal disease 

(Figure 4.3).  Seven associations met the phenome-wide significance threshold of p< 1.65 x10
-4

 

(Table 6.5).  The strongest association in the African American dataset is ABCC2 rs3740066 and 

a joint disease phecode, arthropathy (p = 4.21E-05, OR = 2.76, 95% CI = 1.84 - 4.15).   
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Discussion 

In the present study we report a PheWAS of the ADME Core variants against an ICD9 

code derived phenome.   As a positive control, this PheWAS reproduced genotype-phenotype 

associations between ABCG2 and gout, SLCO1B1 and jaundice, NAT1 and cancer, and CYP2C19 

and atrophic gastritis.  We also detected a novel and biologically interesting association between 

SLC15A2 and renal osteodystrophy.  Solute carrier family 15 member 2 (SLC15A2) encodes 

PEPT2, a proton-peptide co-transporter expressed in the proximal tubule of the nephron where it 

reabsorbs di- and tri -peptides from the glomerular filtrate.   

The four variants in SLC15A2 on the ADME Core Panel are exonic, three and one encode 

non-synonymous and synonymous changes to PEPT2, respectively.  A previously published 

haplotype analysis in a multi-ethnic sample (100 Caucasian, 100 African American, 30 Asian, 10 

Mexican, and 7 Pacific Islander individuals) revealed that >90% variation in the gene was 

captured by two major haplotypes
146

 *1 and *2.  We also observed striking linkage 

disequilibrium (LD) across the variants in the HapMap data across the CEU, CHB, and YRI 

populations (Figure 4.2).  It has been demonstrated by functional analysis that the major 

haplotypes are different in their uptake of dipeptides, with the *2 allele having significantly 

lower affinity than the *1 allele
146

.  In this PheWAS, we identified a potential protective effect 

against renal osteodystrophy with variants strongly correlated with the PEPT2*2 allele. 

 Renal osteodystrophy is a term used to describe the skeletal complications that often 

occur in patients with severe kidney disease. Our study defines renal osteodystrophy by one 

ICD9 code - 588.0 renal osteodystrophy (Figure 4.4).  Two ICD9 groups were excluded from 

this code: nephritis, nephrotic syndrome, and nephrosis (580-589) and other diseases of urinary 

system (590–599).   By excluding these groups, our test compares patients with renal 
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osteodystrophy against controls without kidney disease (Figure 4.4).  Follow-up analyses are 

needed to determine if SLC15A2 confers risk to the development of renal osteodystrophy in 

patients with chronic kidney disease or if variants in SLC15A2 alter risk for end-stage renal 

disease across clinical strata. 

 

Figure 4.4:  Venn diagram displaying the case definition of the renal osteodystrophy 

phecode.  Cases are defined by a single ICD9 code 588 and controls are excluded from the 

analysis if 580-587 and 589-599 codes are present in the record without a 588 code.   

 

 

Limitations 

 In this analysis, we were statistically underpowered in the African American dataset to 

detect the true positive associations identified in the European American dataset likely because 

of two factors regarding our study populations.  The first is sample size.  BioVU on average 

accuses ~13 African Americans for every 100 European Americans, and this distribution is 
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reflected in our dataset.  For two out five of the associations replicated from the literature, less 

than 25 cases were available in the African American dataset.  It is not currently known if the 

average follow-up time (first record to last record) or frequency  of ICD9 codes is different 

between the groups, but such a difference would be reflected in our ICD9 grouping. The second 

is that many of the common ADME Core variants (MAF > 0.05) in the European dataset were 

rare in the African dataset, and vise-versa.   

 

Conclusions 

The detection of an unreported association between renal osteodystrophy and SLC15A2 

underscores the rich clinical data uniquely available to an ICD9 code derived phenome.  The 

association between CYP2C19 and atrophic gastritis demonstrates that the PheWAS has the 

capacity to uncover genotype-drug interactions.  Many of the traits included in our ICD9 derived 

phenome require extensive follow up and clinical diagnostic measurements and results from 

examinations only available in a hospital setting.  This demonstrates the unique setting in the 

EMR provides compared with other cohorts, as clinical traits that require this depth of clinical 

information are not likely to be captured in the phenotypic scoring methods available to 

traditional epidemiological cohorts. 

At this point in time, little is known about the genetic etiology of renal osteodystrophy.  

The only published account of a genetic association with renal osteodystrophy was reported in 

another phenome-wide association study performed in the eMERGE network
147

.  While no 

variant in the study met phenome-wide significance for the disease, they detected a near 

significant association between ABCC4 rs4148546 (p = 6.54E-06, OR = 2.76).   Similar to 

SLC15A2, ABCC4 is also a transporter expressed in the kidney proximal tubules, suggesting a 
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localized role for genetic variation in the etiology of renal osteodystrophy.
148

  Future studies of 

renal osteodystrophy in the EMR should focus on refining the phenotype with the strategies 

mentioned in the introduction, such as the use of NLP techniques, medication records, and lab 

results.   

Unexpectedly, we did not find associations between the ADME Core variants and an 

obvious drug response phenotype.  However, we did not test for drug-gene interactions, which 

may be underlying several of the associations that may not have passed our strict significance 

threshold.  Given that the study population is highly medicated, testing for interactions for freq 

 

 

Figure 4.2:  Linkage disequilibrium for 67 SLC15A2 SNPs across three populations in 

HapMap.  This figure illustrates the strong linkage disequilibrium (LD) in SLC15A2 in three 

different ancestral populations from HapMap (CEU – European, YRI – Yourban, and CHB – 

Han Chinese Bejing).  Magnitude of LD (r
2
) is illustrated by the color scheme indicated in lower 

right corner. The figure was generated using publically available data on Genome Variation 

Server 134 (http://gvs.gs.washington.edu/GVS134/) 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

Illumina ADME Core Panel  

 The Illumina Core Panel is a powerful technologyfor pharmacogenetic in the EMR.  

However, given the continual advancement of sequencing, the future for pharmacogenetic 

genotyping platforms is unclear.  The most troubling aspect of fixed-content panels is that they 

are difficult to use for replicating results across genetic ancestries. This problem became 

especially noticeable in the PheWAS of the ADME Core variants.  Many of the functional 

variants that are common in one genetic ancestry were rare in the other. As an example, we 

replicated an association with NAT1 and cancer in the European American dataset.  However, we 

were unable to generalize our finding in the African Americans because in that study population 

no NAT1 ADME Core variants met our allele frequency threshold. This makes practical use of 

the panel limited to only studies with a very large sample size, which are rarely available for 

pharmacogenetic studies.  Without very large sample sizes, the statistical tests become 

incomparable.  However, the variants on the ADME Core Panel likely have unexplored 

functional consequences that can be addressed in emerging methods, such as the PheWAS study 

demonstrated here.  
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Future of Pharmacogenetics  

 While pharmacogenetics has been hyped to the public as a new paradigm in medicine, the 

field faces significant challenges if it is to deliver on its promises.  Public perception of 

pharmacogenetics also has been harmed by contradictory reports between biotech companies and 

government agencies on the utility of certain polymorphisms for selection of medications.  For 

instance, Roche Diagnostics, developer of the AmpliChip® CYP450 Test promotes its usage for 

determining the type and dosage of selective serotonin reuptake inhibitors (SSRI).  However, the 

Evaluation of Genomic Applications in Practice and Prevention (EGAPP) report suggests that 

there is no evidence of benefit to the patient
149

.   A recent clinical trial of warfarin dosing also 

failed to demonstrate an added benefit to the incorporation of genetics
150

. 

 However, as biobanks across the country continue to grow in size and advancements in 

sequencing technology continues to climb exponentially, it is likely that the field of 

pharmacogenetics will benefit greatly.  Deeper sequencing and annotation of novel functional 

variation in pharmacogenes should aid greatly in the discovery by allowing access to a greater 

amount of functional variation and increasing confidence in genetic signals
151

.  Longitudinal data 

pooled from large biobanks will also increase statistical power and the scope of phenotypes that 

can be addressed. 

 Findings in pharmacogenetic studies also may aid in the development of model systems 

for studying adverse drug responses and ultimately lead to improving drug development.  The 

statistical genetic associations discovered in pharmacogenetic studies have offered mechanistic 

insight into several adverse drug reactions, such as the HLA genotype and the role of T-cells in 

carbamazepine hypersensitivity and also SLCO1B1 rs4149056 in statin induced myopathy
22, 152

.  

These discoveries give pharmaceutical companies the specific targets to avoid during future drug 
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development.  Multicellular systems involving immune cells and myocytes may be helpful in 

identifying the biological basis of immune-related drug toxicities, such as skin reactions and 

myopathy, respectively
13

. 

 A recent survey of coding variants in cytochrome p450 genes by the NHLBI Exome 

Sequencing Project revealed an extensive amount of rare functional variants that markedly 

contribute to the overall burden of pharmacogenetic alleles
153

.    In these 730 novel non-

synonymous alleles identified in 2203 African American and 4300 Caucasians, virtually all were 

individually rare, often appearing only once on a single chromosome. However, 7.6 -11.7% of 

individuals in the study carry at least one potentially functional allele in a major drug metabolism 

cytochrome p450 gene.  This discovery sheds some light on the difficulty of predicting drug 

response if only utilizing common functional alleles, such as the ADME Core Panel.  Since this 

rare variation was unaccounted for in the clinical trials implementing genetics into the dosing of 

warfarin and selection of SSRIs mentioned above, the full predictive power of the genes was not 

considered
28, 149

.  Future trials should aim to incorporate the non-synonymous private mutations 

discovered in exome sequencing data.  However, the impact of private variants in cytochrome 

p450 genes is difficult to predict exclusively with computational methods and requires manual 

annotation for variants is a logistical challenge
153

.  Prediction for rare alleles may be aided by 

clinical data as biobanks accumulate large amounts of exome data linked electronic medical 

records.   

 This avenue is currently undertaken by the eMERGE network and PGRN, who have 

begun next-generation sequencing projects on pharmacogenes
40, 87

.   These two groups are in the 

process of deep sequencing pharmacogenes in large populations to address biological questions 

and improve clinical diagnostics.   It is quite likely that many of the answers sought regarding the 
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inter-individual variation of drug response will be found in the next-generation sequencing data.  

Perhaps most exciting is that in contrast to the results of genome-wide studies where most 

variants assayed are in non-coding regions, coding variants identified in next generation exome 

studies will be much more adaptable to cell and animal-model systems.  Hypothesis driven 

research into the function of these variants will improve their usefulness for the development of 

safer and more useful drugs.       
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APPENDIX 

Table 6.1:  Allele Frequencies of ADME Core Variants in BioVU and Reference 

Populations. 

SNP Gene Coded Allele 
BioVU 
MAF 

REF 
MAF 

Submitter 
Submitter 
Pop Size 

RS1045642 ABCB1 T 0.47 0.43 HapMap 226 

RS1128503 ABCB1 T 0.4 0.45 HapMap 226 

RS2032582 ABCB1 Triallele 
 

UD - - 

RS3213619 ABCB1 C 0.04 0.03 HapMap 226 

RS2273697 ABCC2 A 0.21 0.24 SNP500CANCER 226 

RS3740066 ABCC2 T 0.34 0.34 HapMap 120 

RS56199535 ABCC2 T 0 0.01 SNP500CANCER 120 

RS56220353 ABCC2 T 0 0 SNP500CANCER 132 

RS56296335 ABCC2 A 0 - - - 

RS717620 ABCC2 T 0.19 0.18 HapMap 226 

RS2231142 ABCG2 A 0.11 0.11 HapMap 226 

RS72552713 ABCG2 T 0 - - - 

RS1048943 CYP1A1 G 0.03 0.03 HapMap 226 

RS1799814 CYP1A1 A 0.05 0.03 HapMap 118 

RS1800031 CYP1A1 C 0 0 SNP500CANCER 656 

RS41279188 CYP1A1 A 0 0.02 
EGP_CEPH-
PANEL 

44 

RS56313657 CYP1A1 A 0 0.01 SNP500CANCER 120 

RS72547509 CYP1A1 A 0 - - - 

RS72547510 CYP1A1 insT 0 - - - 

RS12720461 CYP1A2 T 0.01 0 HapMap 120 

RS2069514 CYP1A2 A 0.11 0.081 SNP500CANCER 62 

RS56107638 CYP1A2 A 0 - - - 

RS762551 CYP1A2 C 0.29 0.28 HapMap 226 

CYP2A6:*1B CYP2A6 *1B 0 - - - 

CYP2A6:CNV CYP2A6 + 0.037 - - - 

RS1801272 CYP2A6 A 0.02 0.04 HapMap 120 

RS28399433 CYP2A6 G 0.07 0.04 
EGP_CEPH-
PANEL 

28 

RS28399444 CYP2A6 delAAA 0 - - - 

RS28399447 CYP2A6 C 0 - - - 

RS28399454 CYP2A6 A 0.01 - - - 

RS28399468 CYP2A6 T 0 - - - 

RS4986891 CYP2A6 A 0 0 SNP500CANCER 90 

RS5031016 CYP2A6 C 0 0 SNP500CANCER 58 

RS12721655 CYP2B6 G 0.01 0.01 SNP500CANCER 574 

RS28399499 CYP2B6 C 0 0 
EGP_CEPH-
PANEL 

186 

RS34097093 CYP2B6 T 0 - - - 

RS3745274 CYP2B6 T 0.24 0.27 HapMap 226 

RS8192709 CYP2B6 T 0.06 0.04 HapMap 222 
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RS12248560 CYP2C19 T 0.25 0.21 1000 Genomes  120 

RS28399504 CYP2C19 G 0 0 SNP500CANCER 170 

RS41291556 CYP2C19 C 0 0.02 SNP500CANCER 120 

RS4244285 CYP2C19 A 0.15 0.16 1000 Genomes  116 

RS4986893 CYP2C19 A 0 0.03 SNP500CANCER 60 

RS55640102 CYP2C19 C 0 0 SNP500CANCER 62 

RS56337013 CYP2C19 T 0 - - - 

RS72552267 CYP2C19 A 0 0.01 SNP500CANCER 132 

RS72558186 CYP2C19 A 0 - - - 

RS10509681 CYP2C8 G 0.12 0.14 HapMap 226 

RS1058930 CYP2C8 G 0.05 0.07 HapMap 226 

RS11572103 CYP2C8 T 0 0 HapMap 120 

RS72558195 CYP2C8 T 0.01 - - - 

RS72558197 CYP2C8 delA 0 - - - 

RS1057910 CYP2C9 C 0.07 0.06 HapMap 226 

RS1799853 CYP2C9 T 0.14 0.1 HapMap 106 

RS2256871 CYP2C9 G 0 0.01 SNP500CANCER 120 

RS28371685 CYP2C9 T 0 0.01 HapMap 262 

RS28371686 CYP2C9 G 0 - - - 

RS56165452 CYP2C9 C 0 - - - 

RS72558188 CYP2C9 
 

delAGAAATGGAA 
0 - - - 

RS72558190 CYP2C9 A 0 - - - 

RS74052158 CYP2C9 C 0 - - - 

RS7900194 CYP2C9 A 0 0 HapMap 896 

RS9332130 CYP2C9 G 0 0.01 HapMap 116 

RS9332131 CYP2C9 delA 0 - - - 

RS9332239 CYP2C9 T 0.02 0 HapMap 116 

CYP2D6:*18 CYP2D6  insGTGCCCACT 0 - - - 

CYP2D6:CNV CYP2D6 + 0 - - - 

RS1065852 CYP2D6 T 0.18 0.23 SNP500CANCER 928 

RS1080985 CYP2D6 G 0.11 0.24 HapMap 254 

RS28371706 CYP2D6 T 0.01 0 SNP500CANCER 120 

RS28371725 CYP2D6 A 0.08 0.15 HapMap 72 

RS35742686 CYP2D6 Del 0.02 - - - 

RS3892097 CYP2D6 A 0.21 0.24 SNP500CANCER 118 

RS5030655 CYP2D6 Del 0.02 0 HapMap 208 

RS5030656 CYP2D6 Del 0.037 - - - 

RS5030862 CYP2D6 A 0 - - - 

RS5030863 CYP2D6 C 0 - - - 

RS5030865 CYP2D6 A 0 - - - 

RS5030867 CYP2D6 C 0 0 SNP500CANCER 132 

RS72549346 CYP2D6 ins 0 - - - 

RS72549347 CYP2D6 T 0 - - - 
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RS72549349 CYP2D6 C 0 - - - 

RS72549351 CYP2D6 delGACT 0 - - - 

RS72549352 CYP2D6 insC 0 - - - 

RS72549353 CYP2D6 delAACT 0 - - - 

RS72549354 CYP2D6 insG 0 - - - 

RS72549357 CYP2D6 insT 0 - - - 

RS72559710 CYP2E1 A 0 - - - 

RS2242480 CYP3A4 A 0.09 0.07 HapMap 218 

RS4646438 CYP3A4 insA 0 - - - 

RS55785340 CYP3A4 C 0 0.03 HapMap 110 

RS67666821 CYP3A4 0 0 - - - 

RS10264272 CYP3A5 A 0 0 SNP500CANCER 118 

RS41279854 CYP3A5 insA 0 - - - 

RS41303343 CYP3A5 insT 0 0 
EGP_CEPH-
PANEL 

44 

RS55965422 CYP3A5 C 0 - - - 

RS776746 CYP3A5 A 0.07 0.04 HapMap 222 

RS1801265 DPYD C 0.2 0.16 HapMap 226 

RS1801266 DPYD T 0 - - - 

RS1801267 DPYD A 0 - - - 

RS1801268 DPYD T 0 - - - 

RS3918290 DPYD A 0 0 HapMap 226 

RS72549309 DPYD del 0 - - - 

GSTM1:CNV GSTM1 + 0 - - - 

RS1065411 GSTM1 C 0.38 - - - 

RS1138272 GSTP1 T 0.1 0.1 HapMap 226 

RS1695 GSTP1 G 0.32 0.41 HapMap 226 

GSTT1:CNV GSTT1 + 0.35 - - - 

RS4986782 NAT1 A 0.01 0.01 HapMap 226 

RS4986783 NAT1 G 0.02 0.04 HapMap 226 

RS4986988 NAT1 T 0.02 0.04 HapMap 226 

RS4986989 NAT1 T 0.02 0.03 
Nakamoto et al 
2007 

82 

RS4986990 NAT1 A 0.02 0.04 HapMap 226 

RS4987076 NAT1 A 0.02 0.03 HapMap 120 

RS5030839 NAT1 T 0 0 SNP500CANCER 62 

RS55793712 NAT1 G 0 - - - 

RS56172717 NAT1 T 0 - - - 

RS56318881 NAT1 T 0 0 SNP500CANCER 90 

RS56379106 NAT1 T 0.01 0.02 SNP500CANCER 500 

RS72554606 NAT1 CC 0 - - - 

RS72554608 NAT1 CCC 0 - - - 

RS72554612 NAT1 delA 0 - - - 

RS1041983 NAT2 T 0.32 0.3 HapMap 226 

RS1208 NAT2 G 0.42 0.43 HapMap 226 

RS1799929 NAT2 T 0.42 0.4 HapMap 224 

RS1799930 NAT2 A 0.3 0.29 HapMap 226 



 

84 

 

RS1799931 NAT2 A 0.02 0.01 HapMap 226 

RS1801279 NAT2 A 0 0.01 HapMap 222 

RS1801280 NAT2 C 0.47 0.44 HapMap 120 

RS1805158 NAT2 T 0 0 HapMap 222 

RS1143671 SLC15A2 T 0.46 0.47 HapMap 226 

RS1143672 SLC15A2 A 0.46 0.48 HapMap 120 

RS2257212 SLC15A2 T 0.46 0.47 HapMap 226 

RS2293616 SLC15A2 A 0.44 0.47 HapMap 224 

RS12208357 SLC22A1 T 0.08 0.08 1000 Genomes 120 

RS2282143 SLC22A1 T 0.01 0 HapMap 118 

RS34059508 SLC22A1 A 0.02 0.04 HapMap 100 

RS34130495 SLC22A1 A 0.04 0.02 1000 Genomes  90 

p.M420del SLC22A1  delATG 0.16 - - - 

RS36103319 SLC22A1 T 0 - - - 

RS4646277 SLC22A1 T 0 0 
EGP_CEPH-
PANEL 

88 

RS4646278 SLC22A1 G 0 - - - 

RS55918055 SLC22A1 C 0 0.01 HapMap 120 

RS628031 SLC22A1 A 0.45 0.42 HapMap 224 

RS316019 SLC22A2 T 0.09 0.1 HapMap 226 

RS8177504 SLC22A2 T 0 - - - 

RS8177507 SLC22A2 A 0 0 HapMap 224 

RS8177516 SLC22A2 T 0 0.01 HapMap 224 

RS8177517 SLC22A2 C 0 0 HapMap 120 

RS11568626 SLC22A6 A 0 - - - 

RS2306283 SLCO1B1 G 0.38 0.4 HapMap 226 

RS4149056 SLCO1B1 C 0.14 0.15 HapMap 226 

RS55737008 SLCO1B1 G 0 - - - 

RS55901008 SLCO1B1 C 0 - - - 

RS56061388 SLCO1B1 C 0 - - - 

RS56101265 SLCO1B1 C 0 - - - 

RS56199088 SLCO1B1 G 0 - - - 

RS59502379 SLCO1B1 C 0 - - - 

RS72559745 SLCO1B1 G 0 - - - 

RS4149117 SLCO1B3 T 0.14 0.14 HapMap 226 

RS7311358 SLCO1B3 G 0.17 0.12 HapMap 118 

RS2306168 SLCO2B1 T 0.04 0.05 HapMap 224 

RS1801030 SULT1A1 G 0.01 0 HapMap 116 

RS72547527 SULT1A1 A 0 - - - 

RS9282861 SULT1A1 A 0.3 0.2 1000 Genomes  62 

SULT1A1:CNV01 SULT1A1 + 0 - - - 

SULT1A1:CNV02 SULT1A1 + 0 - - - 

SULT1A1:CNV03 SULT1A1 + 0 - - - 

SULT1A1:CNV04 SULT1A1 + 0 - - - 

SULT1A1:CNV05 SULT1A1 + 0 - - - 

RS1142345 TPMT G 0.04 0.05 HapMap 226 
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RS1800460 TPMT A 0.04 0.03 HapMap 90 

RS1800462 TPMT C 0 - - - 

RS1800584 TPMT A 0.02 0.01 HapMap 382 

RS56161402 TPMT A 0 0 SNP500CANCER 118 

RS34993780 UGT1A1 del 0 - - - 

RS35350960 UGT1A1 A 0 0 SNP500CANCER 50 

RS4124874 UGT1A1 G 0.43 0.45 HapMap 226 

RS4148323 UGT1A1 A 0 0 HapMap 120 

RS55750087 UGT1A1 G 0 - - - 

RS1902023 UGT2B15 T 0.5 0.53 HapMap 200 

UGT2B17:CNV UGT2B17 + 0.4779 - - - 

RS7439366 UGT2B7 C 0.47 0.5 HapMap 120 

RS9923231 VKORC1 A 0.39 0.4 HapMap 226 
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Figure 6.1:   A Synthesis View plot of p-values from Hardy-Weinberg equilibrium tests of the 

ADME Core Panel markers in our study population  The dashed line indicated the 0.001 significance 

threshold.  The red and blue dots represent samples from European and African Americans, respectively.  

Position (hg19) and chromosome number are indicated above the rs SNP identifier.   
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Table 6.2:  VESPA Studies that Genotyped Samples Utilized in the PheWAS of ADME 

Core Variants   

Study N 

ACEI Cough Cases 777 

Amiodarone Lung Toxicity Cases 15 

Amiodarone Thyroid Toxicity Cases 46 

Amiodarone Toxicity Controls 226 

Anthracycline with fractional shortening 25 

Anthracycline-induced cardiomyopathy 311 

Aspirin anaphylaxis 29 

Atypical Fracture 5 

Bell's Palsy 157 

Biphosphonate ONJ 5 

C. Diff. case 548 

C. Diff. control 1106 

CIDP Cases 5 

Clopidogrel in cerebrovascular disease 1 

COX-2 cardiovascular event case 39 

COX-2 Control 160 

COX-2 Super Control 25 

Early Repolarization 246 

FQ-Tendonitis 49 

GBS Cases 61 

Heart transplant 107 

HIT case 62 

Kidney transplant 621 

Metformin Cases 5 

Myopathy 6 

Peds Warfarin 59 

Rheumatic Heart Disease Cases 72 

Shellfish anaphylaxis 45 

Steriod ON cases 9 

Steroid-induced osteonecrosis controls 269 

Tendon Rupture 17 

Tumor T2D Insulin A3 169 
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Tumor T2D Metformin Users A1 437 

Tumor T2D Other Meds A2 156 

Vanco Ped 10 

Vancomycin Levels 692 

Warfarin Bleeding Case 43 

Warfarin Bleeding Control 34 

WPW 125 

WPW Concealed (SVT) 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

 

Table 6.3:  Replications Identified in PheWAS Results in European (A) and African Americans (B) 

 

A.  European Americans 
 

PheCode SNP Gene 
Coded 

Allele 
Controls Cases 

Control 

CAF 
Case CAF 

Odds Ratio (95%: 

Lower, Upper) 
P Value 

Gout RS2231142 ABCG2 A 5551 365 0.11 0.17 1.72 (1.45, 2.05) 1.94E-07 

Jaundice RS4149056 SLCO1B1 C 5081 154 0.15 0.23 1.67 (1.33, 2.11) 2.35E-04 

Tobacco use 

disorder 
RS1801272 CYP2A6 A 4904 1135 0.03 0.04 1.46 (1.18, 1.81) 3.31E-03 

Atrophic gastritis RS4244285 CYP2C19 A 3383 77 0.15 0.25 1.95 (1.43, 2.65) 3.45E-04 

Chemotherapy RS4986782 NAT1 A 4664 960 0.02 0.03 1.85 (1.43, 2.38) 6.47E-05 
 

B.  African Americans 
 

PheCode SNP Gene Coded 

Allele 

Controls Cases Control 

CAF 

Case CAF Odds Ratio (95%: 

Lower, Upper) 

P Value 

Gout RS2231142 ABCG2 A 617 64 0.03 0.03 1.20 (0.48, 2.97) 0.74 

Jaundice RS4149056 SLCO1B1 C 579 22 0.03 0.02 0.71(0.12, 3.97) 0.75 
Tobacco use 

disorder 

RS1801272 CYP2A6 A 525 163 0.005 0.00 0.00 (0.00, ∞) 0.98 

Atrophic gastritis RS4244285 CYP2C19 A 381 3 0.17 0.00 0.00 (0.00, ∞) 0.99 

Chemotherapy RS4986782 NAT1 A 594 75 0.003 0.00 0.00 (0.00, ∞) 0.98 
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 Table 6.4:  The twenty-five most statistically significant PheWAS results from the 6,092 European Americans. 

PheCode SNP Coded 

Allele 

Gene controls cases Control 

(CAF) 

Case 

(CAF) 

Odds Ratio 

(95% CI) 

p_value 

Gout RS2231142 A ABCG2 5551 365 0.11 0.17 1.72 (1.45, 2.05) 1.94E-07 

Renal osteodystrophy RS1143672 A SLC15A2 3827 207 0.48 0.36 0.61 (0.51, 0.72) 2.81E-06 

Renal osteodystrophy RS2293616 A SLC15A2 3827 207 0.48 0.36 0.61 (0.51, 0.73) 3.19E-06 

Renal osteodystrophy RS1143671 T SLC15A2 3827 207 0.48 0.36 0.61 (0.51, 0.73) 3.35E-06 

Renal osteodystrophy RS2257212 T SLC15A2 3827 207 0.48 0.36 0.61 (0.51, 0.73) 3.55E-06 

Chemotherapy RS4986782 A NAT1 4664 960 0.02 0.03 1.85 (1.43, 2.38) 6.47E-05 

Postinflammatory pulmonary fibrosis RS5030656 del CYP2D6 5666 136 0.03 0.08 2.58 (1.74, 3.82) 7.57E-05 

Hx of malignant neoplasm of oral cavity 

and pharynx RS1801265 C DPYD 311 69 0.18 0.33 2.62 (1.75, 3.93) 8.44E-05 

Epistaxis or throat hemorrhage RS1799931 A NAT2 4340 159 0.02 0.06 2.51 (1.71, 3.69) 8.64E-05 

Cervical radiculitis RS8192709 T CYP2B6 5983 67 0.05 0.14 2.73 (1.79, 4.16) 9.17E-05 

Abnormal sputum RS2069514 A CYP1A2 4030 62 0.03 0.09 3.44 (2.04, 5.82) 1.03E-04 

Pulmonary congestion and hypostasis RS1799853 T CYP2C9 5443 403 0.14 0.09 0.62 (0.5, 0.76) 1.06E-04 

Essential hypertension RS1138272 T GSTP1 1849 3704 0.07 0.09 1.35 (1.19, 1.53) 1.11E-04 

Pulmonary congestion and hypostasis RS10509681 G CYP2C8 5443 403 0.13 0.08 0.6 (0.49, 0.75) 1.14E-04 

Renal sclerosis, NOS RS1143672 A SLC15A2 3827 95 0.48 0.34 0.56 (0.43, 0.72) 1.59E-04 

End stage renal disease RS2293616 A SLC15A2 3827 562 0.48 0.42 0.78 (0.7, 0.87) 1.60E-04 

End stage renal disease RS1143671 T SLC15A2 3827 562 0.48 0.42 0.78 (0.7, 0.87) 1.69E-04 

End stage renal disease RS1143672 A SLC15A2 3827 562 0.48 0.42 0.78 (0.7, 0.87) 1.69E-04 

Renal sclerosis, NOS RS2293616 A SLC15A2 3827 95 0.48 0.34 0.56 (0.43, 0.72) 1.74E-04 

Renal sclerosis, NOS RS2257212 T SLC15A2 3827 95 0.48 0.34 0.56 (0.43, 0.72) 1.83E-04 

Kidney replaced by transpant RS2293616 A SLC15A2 3807 709 0.48 0.43 0.8 (0.72, 0.88) 1.91E-04 

Nausea and vomiting RS4986782 A NAT1 2670 1826 0.02 0.03 1.77 (1.38, 2.28) 1.93E-04 

Essential hypertension RS1695 G GSTP1 1849 3704 0.32 0.36 1.18 (1.1, 1.27) 2.00E-04 

Infections of kidney RS4986782 A NAT1 4185 221 0.02 0.04 2.53 (1.68, 3.83) 2.09E-04 

Kidney replaced by transpant RS1143671 T SLC15A2 3807 709 0.48 0.43 0.8 (0.72, 0.88) 2.12E-04 

End stage renal disease RS2257212 T SLC15A2 3827 562 0.48 0.42 0.78 (0.7, 0.87) 2.22E-04 

Jaundice RS4149056 C SLCO1B1 5081 154 0.15 0.23 1.67 (1.33, 2.11) 2.35E-04 
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Table 6.5:  The twenty-five most statistically significant PheWAS results from the 697 African American individuals 

  

PheCode SNP Coded 
Allele 

Gene controls cases Control 
(CAF) 

Case 
(CAF) 

Odds Ratio (95% 
CI) 

p_value 

Arthropathy NOS RS3740066 T ABCC2 443 39 0.25 0.49 2.76 (1.84, 4.15) 4.21E-05 

Bacterial pneumonia RS8177517 C SLC22A2 412 37 0.01 0.09 8.43 (3.48, 20.44) 7.54E-05 

Cardiac arrhythmia NOS RS316019 T SLC22A2 430 64 0.14 0.27 2.59 (1.74, 3.86) 8.76E-05 

Cardiomegaly RS35191146 del SLC22A1 496 157 0.04 0.10 2.78 (1.81, 4.28) 9.28E-05 

Cardiomegaly RS35167514 del SLC22A1 496 157 0.04 0.10 2.78 (1.81, 4.28) 9.28E-05 

Cardiomegaly RS34305973 del SLC22A1 496 157 0.04 0.10 2.78 (1.81, 4.28) 9.28E-05 

Cough RS628031 A SLC22A1 308 257 0.31 0.21 0.58 (0.46, 0.74) 1.33E-04 

Disorders of lipoid metabolism RS3740066 T ABCC2 331 46 0.24 0.44 2.43 (1.65, 3.56) 1.44E-04 

Heart transplant/surgery RS316019 T SLC22A2 377 38 0.16 0.32 3.21 (1.93, 5.34) 1.58E-04 

Streptococcus infection RS28399454 A CYP2A6 161 50 0.05 0.19 4.68 (2.38, 9.21) 1.76E-04 

Cellulitis and abscess of trunk RS316019 T SLC22A2 472 40 0.15 0.31 2.88 (1.81, 4.58) 1.77E-04 

Nephritis & nephropathy RS28371686 G CYP2C9 308 36 0.00 0.09 

19.55 (5.27, 

72.48) 1.91E-04 

Adverse drug events and drug 

allergies RS2242480 A CYP3A4 593 43 0.76 0.57 0.41 (0.28, 0.61) 2.05E-04 

Adverse drug events and drug 

allergies RS2242480 A CYP3A4 593 43 0.76 0.57 0.41 (0.28, 0.61) 2.05E-04 

Depression RS628031 A SLC22A1 345 135 0.30 0.18 0.51 (0.38, 0.69) 2.21E-04 

Diaphragmatic hernia RS8177517 C SLC22A2 647 39 0.02 0.10 4.24 (2.19, 8.21) 3.34E-04 

Shortness of breath RS628031 A SLC22A1 329 281 0.31 0.22 0.63 (0.5, 0.78) 4.13E-04 

Hypercholesterolemia RS8177517 C SLC22A2 331 137 0.02 0.06 4.11 (2.12, 7.94) 4.28E-04 

Painful respiration RS8177517 C SLC22A2 408 76 0.01 0.08 5.21 (2.4, 11.3) 4.51E-04 

Shortness of breath RS8177517 C SLC22A2 329 281 0.01 0.05 4.91 (2.32, 10.38) 4.69E-04 

Chronic kidney disease, Stage I or II RS12248560 T CYP2C19 308 45 0.22 0.39 2.37 (1.57, 3.59) 5.81E-04 

Edema RS1065411 C GSTM1 322 164 0.17 0.04 0.36 (0.22, 0.59) 5.94E-04 
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