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CHAPTER I 

 

INTRODUCTION 

 

 Topological relationships within the double helix (i.e., DNA supercoiling, 

tangling, and knotting) significantly influence the processes by which the genetic 

information is passed from generation to generation, expressed, and recombined 

in all living systems (1-3). In vivo, the topological structure of DNA is regulated by 

ubiquitous enzymes called topoisomerases (1, 2, 4-7). These enzymes act by 

generating transient breaks in the backbone of the genetic material. 

Topoisomerases are separated into two major classes based on the number of 

DNA strands that they cleave: type I enzymes cut one strand of the double helix, 

while type II enzymes cut both (1, 2, 4-7). Among their many physiological 

functions, type II topoisomerases help to set global levels of DNA supercoiling, 

alleviate the torsional stress that accumulates in front of replication forks and 

transcription complexes, unlink daughter chromosomes that are generated during 

replication, and remove DNA knots that form during recombination events (2, 4, 

7-11). However, because these enzymes generate double-stranded DNA strand 

breaks as requisite intermediates in their catalytic reactions, they also have the 

capacity to fragment the genome (9, 10, 12, 13). This potentially lethal feature of 

topoisomerase II can be amplified by the presence of compounds that stabilize 

enzyme-mediated DNA cleavage intermediates. Rather than depriving cells of 

the essential functions of topoisomerase II, these agents “poison” the enzymes 
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and convert them to potent cellular toxins (4, 7, 10, 14, 15). Thus, they are called 

topoisomerase II poisons to distinguish them from classic catalytic inhibitors. A 

number of laboratory-derived poisons of human topoisomerase II have been 

utilized as effective anticancer drugs (4, 7, 10, 14, 15). Additionally, several 

natural products recently have been identified as topoisomerase II poisons with 

chemotherapeutic and/or chemopreventive potential (16-18). 

 

DNA Topology and Topoisomerases 

 

DNA Topology 

 The genetic information of an organism is encoded in a linear array of DNA 

bases that is stored in the form of a double helix (1-3). Two critical features 

punctuate this elegant structure: base pairing and the intertwining of the two DNA 

strands. Both contribute to the physical integrity of the genome and provide the 

redundancy that is the underlying basis for DNA replication, recombination, and 

repair. In addition to the above, however, the interwound nature of the double 

helix imposes a number of topological constraints on the genetic material that 

affect all of its physiological functions (1-3).  

 Topology is a field of mathematics that is concerned with “relationships that 

are not altered by elastic deformation” (1, 2). How is this subject applied to DNA? 

As long as the ends of DNA are fixed in space and the double helix does not 

have free rotation, it can be considered to be a topologically closed system. 

Under these circumstances, the topological properties of DNA are defined as 
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those that cannot be altered without breaking one or both strands of the double 

helix (1, 2). In virtually every living system, chromosomes consist of extremely 

long DNA molecules that are circular or linear and are attached to membrane or 

protein supports. Thus, in general, this definition can be applied to all 

chromosomal DNA. 

 Topological relationships in DNA can be divided into two categories: 

relationships between the two strands of the double helix (i.e., supercoiling) and 

relationships between different segments of duplex DNA (i.e., tangling and 

knotting) (1, 2). Both affect DNA function in profound, but different, ways and are 

discussed below. 

 

DNA Supercoiling 

 Double-stranded DNA that is free from torsional stress (i.e., the classical 

Watson-Crick structure with ~10.4 base pairs per turn) is defined as “relaxed” 

(Figure 1; note that the DNA molecules in the figure are depicted as circular 

ribbon diagrams for simplicity. Similar topological structures exist in linear DNA 

molecules, as long as the ends of the molecule are fixed in space.) If torsional 

stress is applied by either under- or overwinding the DNA, molecules writhe 

about themselves to form superhelical twists (Figure 1) (1, 2). Hence, DNA that is 

under torsional stress is called “supercoiled” (SC). Underwound DNA molecules 

are defined as negatively supercoiled [(–)SC], and overwound molecules are 

defined as positively supercoiled [(+)SC]. 
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Figure 1. Topological relationships within DNA. Adapted from (2). DNA molecules are shown as 
circular ribbons for simplicity. Top: DNA with no torsional stress is referred to as “relaxed.” 
Underwinding or overwinding DNA results in negative supercoils [(–)SC] or positive supercoils 
[(+)SC], respectively. The directionality of the DNA is shown by internal arrowheads in the (–)SC 
molecule. Supercoils are shown as writhes (DNA crossovers or nodes) for visual ease, but it 
should be noted that supercoils can be interconverted from writhes to twists. By convention, each 
writhe (denoted by the crossing of one DNA segment over another segment) is given an integral 
value of –1 or +1. Bottom: Intramolecular knots and intermolecular tangles also form in DNA. 
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 Globally, chromosomal (and extrachromosomal) DNA in bacteria and 

eukaryotes is underwound ~6% (2). Because the two strands of the double helix 

must be separated in order for the genetic information to be replicated or 

expressed, under- and overwinding have important implications for DNA function 

(1, 2). Negative supercoiling introduces energy into the genetic material and 

facilitates strand separation. As a result, DNA underwinding generally increases 

rates of replication and transcription. In contrast, the movement of replication 

forks or transcription complexes (or other DNA tracking systems) through the 

double helix locally overwinds the DNA ahead of their actions (Figure 2). This 

positive supercoiling makes it more difficult to pull apart the double helix and 

impedes many essential cellular processes.  

 

DNA Tangling and Knotting 

 The second aspect of DNA topology deals with relationships between 

separate segments of the double helix (Figure 1) (1-3). To this point, 

intermolecular tangles (also known as precatenanes) formed between daughter 

DNA molecules are produced during replication (Figure 2) and between sister 

chromatids during some recombination events. Furthermore, intramolecular 

knots are generated during other recombination events. Ultimately, because cells 

contain such a large amount of DNA (the DNA from the 46 chromosomes of a 

single human cell is ~2 meters in length and must be compacted into a nucleus 

that is ~5–10 µm in diameter), any process that involves movement of the 

genetic material is likely to produce DNA entanglements.  
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Figure 2. Generation of positive supercoils (+SC) ahead of and tangles behind DNA tracking 
systems. A. The ends of chromosomal DNA are anchored to membranes or the chromosome 
scaffold (represented by the red spheres) and are not free to rotate. Therefore, the linear 
movement of tracking systems (such as replication machinery represented by the yellow bars) 
through the double helix does not change the number of turns of the DNA. B. The above action 
compresses the turns into a shorter segment of the genetic material. Consequently, the double 
helix becomes increasingly overwound, generating positive (+) supercoils ahead of tracking 
systems. C. Some of the torsional stress induced by positive supercoiling slips behind the 
replication fork, generating DNA tangles (precatenanes). 
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 Tangles and knots adversely affect a variety of essential nucleic acid 

processes. For example, DNA molecules that are tangled cannot be segregated 

during mitosis or meiosis. Moreover, the presence of knots makes it impossible 

to separate the two strands of the double helix. Consequently, DNA tangles and 

knots can be lethal to cells if they are not resolved. 

 

DNA Topoisomerases 

 In order to regulate the superhelical density of DNA or resolve tangles and 

knots from the genetic material, the closed topological system has to be opened. 

This is accomplished by breaking the DNA backbone. However, the cell has to 

deal with these topological relationships in fundamentally different ways. 

Because the torsional stress associated with supercoiling can be modulated by 

either DNA rotation or strand passage, the number of supercoils can be altered 

by cleaving one or both strands of the double helix. In contrast, since the writhes 

associated with tangles and knots contain double-stranded DNA nodes, these 

topological structures can be removed only by creating double-stranded breaks 

in the DNA backbone. 

 Enzymes that regulate the topological structure of DNA are called 

topoisomerases (1, 2, 4-7). Because the ability to regulate DNA topology is 

essential for cell survival, these enzymes are encoded by all known species. 

Topoisomerases can be separated into two major classes, which are 

distinguished by the number of DNA strands that are cleaved and ligated by their 

respective enzymes (1, 2, 4-7). Type I topoisomerases act by cleaving one 
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strand of the double helix. Thus, they are able to regulate levels of DNA 

supercoiling. Type II topoisomerases act by cleaving both strands of the double 

helix. As a result, they can regulate the superhelical density of DNA and also can 

resolve tangles and knots in duplex DNA. (Note: type I topoisomerases can 

untangle and unknot DNA linkages if they are single-stranded in nature.)  In order 

to maintain the integrity of the genome during the required DNA cleavage event, 

all topoisomerases form covalent bonds between active site tyrosyl residues and 

the DNA termini generated during the reaction. This covalent enzyme-cleaved 

DNA complex (known as the “cleavage complex”) is a hallmark of 

topoisomerases. 

 

Type I Topoisomerases 

 There are three classes of type I topoisomerases—type IA, IB, and IC—

which are defined on the basis of homology and catalytic mechanism (1, 2, 4-7, 

19, 20). With the exception of reverse gyrase, type I topoisomerases are denoted 

by “odd” numerals. Type IA enzymes are found in bacteria [topoisomerase I (also 

called ω protein), topoisomerase III, and reverse gyrase in thermophiles and 

hyperthermophiles], eukaryotes (topoisomerase III) and archaea (topoisomerase 

III and reverse gyrase). Type IB topoisomerases are found primarily in 

eukaryotes (nuclear topoisomerase I and mitochondrial Top1mt), but recently 

have been found in some bacterial species. Type IB enzymes also are encoded 

by poxviruses and mimiviruses. Finally, the type IC enzyme (topoisomerase V) is 

found exclusively in hyperthermophilic archaea.  
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Type II Topoisomerases 

 There are two classes of type II topoisomerases—type IIA and IIB—which 

are defined on the basis of homology (2-7, 10, 11, 21, 22). With the exception of 

gyrase, type II topoisomerases are denoted by “even” numerals. Most bacteria 

encode two type IIA enzymes (gyrase and topoisomerase IV). Eukaryotes, in 

contrast, encode only one type IIA enzyme, topoisomerase II. It should be noted, 

however, that vertebrate species express two closely related isoforms of the type 

IIA enzyme, topoisomerase IIα and topoisomerase IIβ. Archaea and plants 

encode the only known type IIB topoisomerase, topoisomerase VI. Because of 

the rarity of the type IIB class of topoisomerases, only type IIA topoisomerases 

will be considered here and “type II” will represent “type IIA” henceforth. 

 Type II topoisomerases regulate superhelical density and remove tangles 

and knots by the double-stranded DNA passage reaction depicted in Figure 3 

(which uses eukaryotic topoisomerase II as a representative enzyme) (2-5, 7, 10, 

22, 23). These enzymes require a divalent metal ion (Mg2+ appears to be the 

physiological ion) and ATP in order to carry out their complete catalytic cycle. 

 Type IIA enzymes bind two segments of DNA (Step 1). The first segment 

bound by the enzyme is the double helix that will be cleaved and is referred to as 

the “Gate-” or “G-segment.” The second segment is the double helix that will be 

transported through the transient DNA gate and is referred to as the “Transport-” 

or “T-segment.” DNA binding requires no cofactors. In the presence of the active 

site Mg2+ ions, type IIA topoisomerases sample the DNA for malleability (Step 2). 

Sequences that can be cleaved are bent to an angle of ~150º (depending on the 
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Figure 3. Catalytic cycle of type II topoisomerases. The homodimeric enzyme is shown in blue, 
the DNA double helix that is cleaved and acts as the DNA gate (G-segment) is shown in green, 
and the double helix that is transported through the DNA gate (T-segment) is shown in yellow. 
Details of the individual reaction steps are given in the text. 
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enzyme). Conversely, sequences that cannot be bent are not cleaved. A double-

stranded break is generated in the G-segment (Step 3) using a noncanonical 

two-metal-ion mechanism. The type II enzymes contain two active site tyrosyl 

residues (located on different subunits), each of which makes a single-stranded 

DNA break. The scissile bonds on the two strands of the double helix are 

staggered, and cleavage generates 5’-termini with four-base single-stranded 

cohesive ends.  During the scission event, type IIA topoisomerases covalently 

attach to the 5’-termini of the cleaved DNA. Two molecules of ATP are bound by 

the enzyme, which triggers the closing of the N-terminal protein gate, the opening 

of the DNA gate, and the translocation of the T-segment through the gate (Step 

4). Although hydrolysis of the cofactor is not a prerequisite for DNA translocation, 

it appears that this step proceeds more rapidly if it is preceded by hydrolysis of 

one of the bound ATP molecules. The cleaved DNA is rejoined (Step 5), the T-

segment is released through the C-terminal protein gate (Step 6), and, upon 

hydrolysis of the second ATP molecule, type IIA enzymes regain the ability to 

initiate a new round of catalysis (Step 7).  

 

Topoisomerase II Function, Domain Organization and Isoforms 

 The eukaryotic type IIA enzyme, topoisomerase II, was discovered in 1980 

(2, 4, 5, 7, 10, 22, 23). The enzyme (and collectively topoisomerase IIα and 

topoisomerase IIβ in vertebrates – see below) plays a number of essential roles 

in eukaryotic cells and participates in virtually every major process that involves 

movement or organization of the genetic material (2, 4, 6, 7, 10, 11). The enzyme 
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unlinks tangled daughter chromosomes following replication and resolves DNA 

knots that are formed during recombination. It also helps to alleviate the torsional 

stress that accumulates ahead of replication forks and transcription complexes. 

Topoisomerase II is required for proper chromosome condensation, cohesion, 

and segregation and appears to play roles in centromere function and chromatin 

remodeling. Furthermore, the enzyme is important for the maintenance of proper 

chromosome organization and structure and is the major non-histone protein of 

the mitotic chromosome scaffold and the interphase nuclear matrix. 

 In concert with histones, the enzyme also is responsible for maintaining the 

global underwinding of chromosomal DNA. Because nucleosomes wrap the 

genetic material in a left-handed superhelix (which underwinds the DNA), 

removal of the resulting compensatory positive supercoils by topoisomerase II 

leads to a net negative supercoiling of the eukaryotic genome (1). (Note: this 

activity is accomplished by gyrase in prokaryotic species, which has the unique 

ability among topoisomerases to introduce negative supercoils into relaxed 

DNA.) 

 Lower eukaryotic species such as yeast and fruit flies encode only a single 

type II topoisomerase (i.e., topoisomerase II). However, as mentioned above, 

vertebrates express two isoforms, topoisomerase IIα and topoisomerase IIβ (2, 4-

7, 10, 11, 22). These two proteins share extensive amino acid sequence identity 

(~70%) but are encoded by separate genes (located at chromosomal bands 

17q21-22 and 3p24 in humans, respectively). Topoisomerase IIα and 
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topoisomerase IIβ also can be distinguished by their protomer molecular masses 

(~170 kDa and ~180 kDa, respectively). 

 Eukaryotic type IIA topoisomerases are homologous to the bacterial type II 

enzymes (Figure 4) (2, 4-6, 10, 11, 21, 24). However, while bacterial type II 

topoisomerases consist of two copies of two separate proteins in an A2B2 

heterotetramer (GyrA and GyrB for gyrase), eukaryotic topoisomerase II 

functions as a homodimer in which the two subunits have fused. On the basis of 

amino acid sequence comparisons with bacterial gyrase, each topoisomerase II 

protomer can be divided into three distinct domains. The N-terminal domain of 

the enzyme is homologous to GyrB and contains the binding site for ATP. The 

central domain is homologous to much of GyrA and contains the active site 

tyrosyl residue. The C-terminal domain of topoisomerase II, which occupies the 

same location on the protein as the C-terminal domain of GyrA, is highly variable. 

This region shares little to no sequence similarity to the equivalent region in DNA 

gyrase or topoisomerase IV and differs considerably between type II 

topoisomerases, even across eukaryotic species. The C-terminal domain of 

eukaryotic topoisomerase II contains nuclear localization sequences as well as 

amino acid residues that interact with cellular components or are phosphorylated 

in vivo. 

 It is not obvious why vertebrates encode two distinct topoisomerase II 

isoforms; differences between topoisomerase IIα and topoisomerase IIβ are 

subtle (2, 4, 5, 7, 10, 11, 22). The only major enzymatic characteristic that 

distinguishes the two isoforms from each other is the ability to recognize the  
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Figure 4. Domain structures of E. coli gyrase, human topoisomerase IIα and human 
topoisomerase IIβ. Regions of homology among the enzymes are indicated by colors. The N-
terminal homology domains (yellow) contain the regions responsible for ATP binding and 
hydrolysis. The central homology domains (blue) contain the active site tyrosyl residue (Y122 for 
GyrA; Y805 and Y826 for the human  isoforms α and β, respectively) that performs cleavage and 
ligation (C-L) and forms the covalent bond with DNA during scission. The variable C-terminal 
domains are shown in green or red. These domains are involved in DNA bending and topology 
sensing. Subunits and domains are drawn proportionally to their length. The active site tyrosyl 
residue is indicated for each enzyme. 
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handedness of DNA supercoils (25). While the α isoform removes positive DNA 

supercoils ~10–fold faster than it does negative, the β isoform removes both at 

similar rates. This topology sensing function of topoisomerase IIα is embodied in 

the C-terminal domain of the protein. 

 Topoisomerase IIα and topoisomerase IIβ have distinct patterns of 

expression and separate nuclear functions (2, 4, 7, 10, 11). Topoisomerase IIα is 

essential for the survival of proliferating cells and is regulated over cell and 

growth cycles. Enzyme levels increase throughout S-phase of the cell cycle and 

peak at the G2/M boundary. Although topoisomerase IIα is nearly non-existent in 

quiescent or differentiated tissues, rapidly proliferating cells contain as many as 

~500,000 copies of the enzyme. Topoisomerase IIα is associated with replication 

forks, and its ability to preferentially relax positive supercoils has led to 

speculation that it helps remove torsional stress ahead of the replication 

machinery. Furthermore, the enzyme remains tightly bound to chromosomes 

during mitosis. In light of the enzymological characteristics, regulation, and cell 

biology described above, it is believed that topoisomerase IIα is the isoform that 

functions in growth-related cellular processes.  

 Topoisomerase IIβ is dispensable at the cellular level, and its presence 

cannot compensate for the loss of topoisomerase IIα in mammalian cells (2, 4, 5, 

7, 10, 11, 26). However, the β isoform is required for proper neural development 

in mice (27). In contrast to topoisomerase IIα, the concentration of topoisomerase 

IIβ is independent of the cell cycle, and high levels of this isoform are found in 

most cell types regardless of proliferation status (26, 28, 29). Topoisomerase IIβ 
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dissociates from chromosomes during mitosis. As with the ability to discern the 

handedness of DNA supercoils, the sequences that govern the 

association/dissociation of topoisomerase II with mitotic chromosomes reside in 

the C-terminal domain. Ultimately, the physiological functions of the β isoform 

have yet to be fully defined. However, recent evidence suggests that 

topoisomerase IIβ plays an important role in the transcription of hormonally- or 

developmentally-regulated genes (30, 31). 

  

DNA Topoisomerase II as a Cellular Toxin 

 

Topoisomerase II-DNA Cleavage Complexes 

 The covalent enzyme-DNA linkage formed during DNA scission (Figure 3, 

Step 3) plays two important roles in the topoisomerase II reaction mechanism (3-

5, 7, 10, 22, 24). First, it conserves the bond energy of the sugar-phosphate DNA 

backbone. Second, because it does not allow the cleaved DNA chain to 

dissociate from the enzyme, the protein-DNA linkage maintains the integrity of 

the genetic material during the cleavage event. The covalent topoisomerase II-

cleaved DNA reaction intermediate is referred to as the cleavage complex and is 

central to the catalytic cycle of the enzyme. The DNA cleavage/ligation 

equilibrium of the enzyme greatly favors ligation (3-5, 7, 10, 22, 24). Thus, 

topoisomerase II-DNA cleavage complexes normally are short-lived and are 

readily reversible. As described below, compounds that increase the longevity of 

cleavage complexes can have serious cellular consequences. 
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Topoisomerase II as a Cellular Toxin 

 Because topoisomerases generate DNA strand breaks as obligate reaction 

intermediates, they are intrinsically dangerous proteins (2, 9, 10, 14, 15, 32, 33). 

Thus, while necessary for cell viability, these enzymes also have the capacity to 

fragment the genome (Figure 5). As a result of this dual “Dr. Jekyll/Mr. Hyde” 

persona, cells maintain levels of cleavage complexes in a critical balance. If 

topoisomerase IIα cleavage drops below threshold levels, daughter 

chromosomes remain entangled following replication (2, 4, 7, 8, 11). 

Consequently, chromosomes cannot segregate properly, and cells die as a result 

of catastrophic mitotic failure (Figure 5). 

 Increased levels of topoisomerase IIα- or IIβ-DNA cleavage complexes also 

cause deleterious physiological effects, but for different reasons (Figure 5) (2, 9, 

10, 14, 15, 32, 33). When replication forks, transcription complexes, or other 

DNA tracking proteins attempt to traverse covalently bound protein “roadblocks” 

in the genetic material, accumulated cleavage intermediates are converted to 

strand breaks that are no longer tethered by proteinaceous bridges. The ensuing 

damage induces recombination/repair pathways that can trigger mutations and 

other chromosomal aberrations. If the number of DNA breaks overwhelms the 

repair process, it can initiate cell death pathways (9, 12, 34-36). Conversely, if 

cells are not killed, DNA breaks can be converted to permanent chromosomal 

translocations that lead to specific forms of leukemia (37, 38). 
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Figure 5. Topoisomerase II-DNA cleavage complex equilibrium. Adapted from (10). The formation 
of covalent DNA cleavage complexes is required for topoisomerases to perform their critical 
cellular functions. If the level of topoisomerase II-DNA cleavage complexes falls below threshold 
levels (left arrow), cells are unable to segregate their chromosomes and ultimately die of mitotic 
failure. If the level of cleavage complexes becomes too high (right arrow) the actions of DNA 
tracking systems can convert these transient complexes to permanent double-stranded breaks. 
The resulting DNA breaks, as well as the inhibition of essential DNA processes, initiate 
recombination/repair pathways and generate mutations, chromosome translocations, and other 
DNA aberrations. If the strand breaks overwhelm the cell, they can trigger apoptosis. This is the 
basis for the actions of several widely prescribed anticancer drugs that target topoisomerase II. 
However, if the increase in enzyme-mediated DNA strand breaks does not kill the cell, mutations 
or chromosomal aberrations may be present in surviving populations. In some cases, exposure to 
topoisomerase II-targeted agents has been associated with the formation of acute myeloid 
leukemias that involve the MLL (mixed lineage leukemia) gene at chromosome band 11q23 
(lower right arrow). 
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Topoisomerase II Poisons 

 Compounds that alter topoisomerase II activity can be separated into two 

categories. Chemicals that decrease the overall activity of the enzyme are known 

as catalytic inhibitors (39, 40). Conversely, chemicals that increase levels of 

topoisomerase II-DNA cleavage complexes are said to “poison” the enzyme and 

convert it to a cellular toxin that initiates the mutagenic and lethal consequences 

described in Figure 5 (2, 9, 10, 14, 15, 32, 33). Because of their actions, these 

latter compounds are referred to as “topoisomerase II poisons” to distinguish 

them from catalytic inhibitors that do not increase the concentration of cleavage 

complexes (2, 9, 10, 14, 15, 32, 33). Although some topoisomerase poisons also 

inhibit overall activity, the “gain of function” induced by these compounds in the 

cell (i.e., increased levels of cleavage complexes) is a dominant phenotype. 

Thus, they kill cells by a fundamentally different mechanism than that of most 

protein-targeted drugs (which act by robbing the cell of an essential function). As 

discussed below, a number of laboratory-synthesized and naturally occurring 

compounds act as topoisomerase II poisons, and thus display anticancer or 

chemopreventive properties. 

 Chemicals that function as topoisomerase II poisons act by two distinct 

mechanisms. Compounds utilizing the first mechanism are referred to as 

interfacial topoisomerase II poisons (2, 9, 10, 14, 15, 32, 33). These chemicals 

form non-covalent interactions with topoisomerase II at the protein-DNA interface 

in the vicinity of the active site tyrosine. They also interact with DNA within the 

ternary enzyme-DNA-poison complex and inhibit ligation by intercalating into the 
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double helix at the cleaved scissile bond. Thus, they present a physical barrier to 

ligation and act as “molecular doorstops.” It is notable that the actions of 

interfacial topoisomerase II poisons are not affected by reducing agents, such as 

dithiothreitol, and that these compounds induce similar levels of enzyme-

mediated DNA cleavage whether they are added to the binary topoisomerase II-

DNA complex or are incubated with the enzyme prior to the addition of nucleic 

acid substrates.  

 Unlike the interfacial poisons, compounds that use the second mechanism 

contain protein reactive groups. Because many of the original compounds that 

were examined underwent redox cycling (or oxidation/reduction reactions) as a 

prerequisite for activity, compounds that utilize this second mechanism were (and 

often still are) collectively referred to as “redox-dependent” topoisomerase II 

poisons (10, 41-44). (In light of the findings described in Chapter IV, the moniker 

“redox-dependent” has been found to be somewhat misleading, and I recommend 

that this class of compounds be referred to as “covalent” topoisomerase II poisons 

henceforth.) Most incorporate sulfhydryl-reactive groups such as quinones, 

isothiocyanates, or maleimides. In contrast to interfacial topoisomerase II poisons, 

covalent poisons adduct to the enzyme at amino acid residues outside of the 

active site. Moreover, their ability to poison topoisomerase II can be abrogated by 

reducing thiol nucleophiles. Finally, compounds within this second group enhance 

DNA cleavage when added to the protein-DNA complex, but display the 

distinguishing feature of inhibiting topoisomerase II activity when incubated with 

the enzyme prior to the addition of DNA.  
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 There is evidence that some covalent topoisomerase II poisons function (at 

least in part) by crosslinking or closing the N-terminal protein gate of 

topoisomerase II (42). This could provide a mechanistic basis for stabilizing pre-

existing cleavage complexes while excluding DNA binding to unoccupied 

enzymes. However, the precise details by which covalent topoisomerase II 

poisons increase levels of DNA cleavage complexes have yet to be determined. 

 

Interfacial Topoisomerase II Poisons 

 Some of the most important and widely prescribed anticancer drugs currently 

in clinical use are interfacial topoisomerase II poisons (Figure 6) (2, 9, 10, 14, 15, 

45). One of the most important topoisomerase II-targeted anticancer drugs is 

etoposide, which is derived from podophyllotoxin (46). This natural product is 

produced by Podophyllum peltatum, more commonly known as the mayapple or 

American mandrake plant. Podophyllotoxin has been used as a folk remedy for 

over a thousand years and is an antimitotic drug that acts by preventing 

microtubule formation. The clinical use of this compound as an antineoplastic 

agent was prevented by high toxicity, but two synthetic analogs, etoposide and 

teniposide, displayed increased antineoplastic activity and decreased toxicity. 

Further analysis revealed that these drugs do not interact with microtubules; 

rather, they act as topoisomerase II poisons. Etoposide was approved for clinical 

use in the mid-1980s and for several years was the most widely prescribed 

anticancer drug in the world.  
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Figure 6. Structures of selected interfacial topoisomerase II poisons. The demethyl-
epipodophyllotoxins etoposide and teniposide, the anthracyclines doxorubicin, daunorubicin, and 
idarubicin, and the anthracenedione mitoxantrone are approved for clinical use in the United 
States. The acridine amsacrine is used in some salvage regimens for acute refractory myeloid 
leukemias. 
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 Etoposide and drugs such as doxorubicin (and its derivatives) are front-line 

therapy for a variety of systemic cancers and solid tumors, including leukemias, 

lymphomas, sarcomas, lung cancers, and germline malignancies (2, 9, 10, 14, 

15). Mitoxantrone is used to treat breast cancer, relapsed acute myeloid 

leukemia, and non-Hodgkins lymphoma. Amsacrine (which is discussed more 

extensively in Chapter III) also is used to treat relapsed acute myeloid leukemia. 

Ultimately, half of all anticancer regimens include topoisomerase II-targeted 

drugs. 

 Bioflavonoids are a diverse group of polyphenolic compounds that are 

constituents of many fruits, vegetables, legumes, and plant leaves (47-52). They 

are an integral component of the human diet and represent the most abundant 

natural source of antioxidants (47-50, 52-54). 

 It is believed that the dietary intake of bioflavonoids provides a number of 

health benefits to adults (47-52, 55, 56). Epidemiological studies suggest that 

these compounds help protect against cancer, cardiovascular disease, 

osteoporosis, age-related diseases, and inflammation. The mechanistic basis for 

the physiological actions of bioflavonoids is not fully described, as they have a 

variety of effects on human cells. Beyond their antioxidant properties, many of 

these polyphenols are potent inhibitors of tyrosine kinases (51, 57-62), display 

anti-proliferative, pro-apoptotic, and genotoxic effects, and decrease the 

expression or function of several proteins that are involved in cell-cycle 

progression (51, 52, 63-66). 
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 A variety of bioflavonoids (specifically flavones, isoflavones, and flavonols) 

have been examined for their abilities to enhance DNA cleavage mediated by 

human topoisomerase IIα and IIβ, and several were found to be potent 

topoisomerase II poisons in vitro and in cultured human cells (Figure 7) (16, 17, 

67, 68). Among the bioflavonoids, genistein appears to have the highest activity 

against the human type II enzymes (16, 17). Many of the chemopreventive, 

cytotoxic, and genotoxic properties of flavones, isoflavones, and flavonols are 

consistent with their activities as topoisomerase II poisons. To this point, the 

sensitivity of cells to genistein has been correlated to the activity of the type II 

enzyme (69, 70). 

 With the exception of (–)-epigallocatechin gallate (EGCG; see below), 

flavones, isoflavones, and flavonols are interfacial topoisomerase II poisons and 

increase levels of cleavage complexes primarily by inhibiting enzyme-mediated 

DNA ligation (16, 17). In general, these compounds appear to be more 

efficacious against topoisomerase IIβ than the α isoform (17). Furthermore, cells 

that are depleted of topoisomerase IIβ are resistant to genistein (70). Therefore, it 

is believed that many of the cellular effects of flavones, isoflavones, and flavonols 

as topoisomerase II poisons are mediated primarily by the β isoform (70). 

 

Covalent Topoisomerase II Poisons 

 Catechins represent another major and important class of bioflavonoids (49, 

50). Green tea, which is one of the most commonly consumed beverages in the 

world, is a rich source of catechins and has been suggested to reduce the 
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Figure 7. Structures of selected bioflavonoids. Adapted from (17). Flavones, flavonols, and 
isoflavones are shown, and the ability of each to enhance topoisomerase II-mediated DNA 
cleavage is indicated as >8-fold (+++), 6- to 8-fold (++), 3- to 6-fold (+), 2- to 3-fold (+/–), or <2-
fold (–) over baseline. 
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incidence of breast, prostate, colorectal, and lung cancer in humans (54, 71-73). 

The most abundant catechins in green tea are EGCG and the related 

compounds (–)-epigallocatechin (EGC), (–)-epicatechin gallate (ECG), and (–)-

epicatechin (EC) (Figure 8) (54, 71-73). Although EGCG and EGC are potent 

topoisomerase II poisons, neither ECG nor EC display any substantial activity 

against the human type II enzymes (16, 74). Thus, the ability of the catechins to 

poison topoisomerase II reflects the presence of three hydroxyl groups on the B-

ring, with the D-ring having little relevance.  

 Surprisingly (and in major contrast to the flavones, isoflavones, and 

flavonols), EGCG and EGC appear to be covalent (rather than interfacial) 

topoisomerase II poisons (18, 74). The mechanistic differences between 

bioflavonoid classes appear to be related to structural elements in the B- and C-

rings (Figure 8) (74). First, while the C-4’ hydroxyl of the B-ring is critical for 

bioflavonoids to act as interfacial topoisomerase II poisons (16, 17, 67), the 

inclusion of two additional B-ring hydroxyl groups increases redox activity (75, 

76) and is required for compounds to act as covalent topoisomerase II poisons 

(18, 74). Second, the C-ring in flavones, isoflavones, and flavonols is aromatic, 

planar, and includes the C-4 keto group that allows the formation of the proposed 

pseudo ring with the C-5 hydroxyl (77). All of these elements are required for 

binding to human type II topoisomerases (17, 74). Because EGCG and EGC 

contain the catechin C-ring, they are unable to act as interfacial topoisomerase II 

poisons and function exclusively as covalent poisons. Moreover, ECG and EC 

lack the critical third hydroxyl group on their B-rings that would allow them to 
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Figure 8. Structures of EGCG and related catechins. 
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function as covalent poisons. Therefore, they show virtually no activity against 

topoisomerase II. As predicted from the above, if three hydroxyl groups are 

included on the B-ring of a flavonol such as myricetin (see Figure 7), the 

compound acts as a dual function topoisomerase II poison and displays both 

interfacial and redox-dependent characteristics (74). 

 Dietary glucosinolates are found in cruciferous vegetables, including 

broccoli, cabbage, cauliflower, and kale (78). They are converted to bioactive 

isothiocyanates such as benzyl-isothiocyanate, phenethyl-isothiocyanate, and 

sulforaphane (Figure 9), upon hydrolysis by myrasinase (79). Many of these 

compounds inhibit cell proliferation, display chemopreventive properties, and 

inhibit tumor growth in xenograft models (80-82). 

 Isothiocyanates are topoisomerase II poisons in vitro and silencing 

topoisomerase IIα in cultured mouse embryonic fibroblasts decreases DNA 

damage induced by these compounds (44). As found for reactive quinone-based 

topoisomerase II poisons (83), isothiocyanates act as covalent poisons and 

modify several cysteine residues in human topoisomerase IIα (44). Consistent 

with a mechanism that requires cysteine modification, the ability of 

isothiocyanates to induce topoisomerase II-mediated DNA cleavage is abolished 

when compounds are co-incubated with excess glutathione (44). 

 

Topoisomerase II-Associated Leukemias 

 Despite the importance of topoisomerase II as a target for anticancer 

drugs and chemopreventive agents, evidence suggests that DNA strand breaks  
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Figure 9. Structures of selected isothiocyanate-based topoisomerase II poisons. 
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generated by the enzyme can trigger chromosomal translocations associated 

with specific types of leukemia (Figure 5) (9, 10, 37, 38, 84). To this point, 2-3% 

of patients who receive regimens that include etoposide subsequently develop 

acute myeloid leukemias (AMLs) (9, 10, 37, 38, 46, 84). Most of these leukemias 

are characterized by translocations with breakpoints in the MLL (mixed lineage 

leukemia) gene at chromosomal band 11q23. The MLL protein is a histone 

methyltransferase that regulates (among other substrates) the Hox genes, which 

control proliferation in hematopoietic cells. Several breakpoints in MLL have been 

identified and are located in close proximity to topoisomerase II-DNA cleavage 

sites that are induced by etoposide (85-89).  

 In addition to treatment-related leukmias, ~80% of infants with AML or acute 

lymphoblastic leukemia (ALL) display translocations that involve the MLL gene 

(9, 10, 37, 90). The chromosomal translocations associated with these cancers 

have been observed in utero, indicating that infant leukemias are initiated during 

gestation. Epidemiological studies indicate that the risk of developing these infant 

leukemias increases >3-fold by the maternal consumption (during pregnancy) of 

foods that are rich in bioflavonoids and other naturally occurring topoisomerase II 

poisons (91-93). Consistent with this finding, treatment of cultured human cells 

with dietary bioflavonoids induces cleavage within the MLL gene (90). 

Compounds that display the highest activity in in vitro topoisomerase II-DNA 

cleavage assays show the greatest propensity to generate breaks in the MLL 

gene in cultured cells (90). Thus, the same topoisomerase II-active 
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phytochemicals that help to maintain health in human adults can have harmful 

effects on developing embryos. 

 

Scope of the Dissertation 

 

 Despite the significance of topoisomerase II poisons for human health, 

details concerning the precise mechanism by which different classes of 

compounds poison the enzyme are not well understood. This dissertation seeks 

to further our understanding of the interaction between the type II enzyme and 

compounds that stimulate its activity, and to inform future studies relating to the 

rational design and discovery of new topoisomerase II poisons from artificial and 

natural sources. 

 An overview of DNA topology and DNA topoisomerases is provided in 

Chapter I. The materials and methods utilized in this dissertation are described in 

Chapter II. 

 Chapter III of this dissertation describes structure-activity relationship studies 

for the synthetic topoisomerase II poison amsacrine (m-AMSA) and investigates 

the role of drug-DNA interactions in the mechanism of action of this intercalative 

anticancer agent. This study grew out of initial efforts to explain the surprising 

difference in activity between the potent topoisomerase II poison m-AMSA and its 

closely related but inactive derivative o-AMSA. Ultimately, it was found that the 

head group of m-AMSA itself is a topoisomerase II poison. Furthermore, the role 
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of the intercalative acridine moiety seems to be to increase the local 

concentration of the drug at the active site of the enzyme. 

 Chapter IV of this dissertation examines the potential of the natural product 

curcumin—the active component of the spice turmeric, which has long been used 

in traditional Chinese and Ayurvedic medicine and is believed to have 

chemopreventive properties—to poison topoisomerase II under oxidizing 

conditions. The identification of quinone methide-containing metabolites of 

curcumin raised the question of whether some of the compound’s activity might 

be effected through topoisomerase II. Although neither the parent compound nor 

the stable end product of oxidative metabolism display any activity towards the 

enzyme, intermediates along this pathway are shown to be potent covalent 

poisons of human topoisomerase II. Additionally, bioactive products of an 

alternate, degradative metabolic pathway of curcumin are found to possess no 

activity towards the type II enzyme. Finally, a complex formulation of turmeric is 

shown to have a stimulatory effect on human topoisomerase II-mediated DNA 

cleavage that reflects the activity of curcumin. 

 Concluding remarks and future directions, including preliminary data 

concerning several newly identified natural product topoisomerase II poisons, are 

found in Chapter V. 
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CHAPTER II 

 

METHODS 

 

Materials 

 

Enzymes, Plasmid DNA, and Compounds  

 Human topoisomerase IIα, topoisomerase IIβ, and the mutant topoisomerase 

IIαC392A/C405A were expressed in Saccharomyces cerevisiae (94) and purified as 

described previously (83, 95). Human topoisomerase I was purchased from 

Topogen. Negatively supercoiled pBR322 DNA was prepared from Escherichia 

coli using a Plasmid Mega Kit (Qiagen) as described by the manufacturer. [γ-

32P]ATP (~6000Ci/mmol) was obtained from Perkin-Elmer. m-AMSA and 

derivatives were synthesized as described previously (96, 97). Curcumin and 

4’,4”-dimethylcurcumin were synthesized as described previously (98). The 

bicyclopentadione oxidative product of curcumin was isolated from autoxidation 

reactions by high-performance liquid chromatography by Odaine N. Gordon. N-

(4-amino-3-methoxyphenyl) methane-sulfonamide hydrochloride (m-AMSA head 

group), etoposide, vanillin, ferulic acid, feruloylmethane, thymoquinone, 

oleuropein and hydroxytyrosol were obtained from Sigma. The m-AMSA head 

group was stored at -20 °C as a 0.5 M stock solution in 100% DMSO. Potassium 

ferricyanide [K3Fe(CN)6] was obtained from Acros and was stored at -20 °C as a 

50 mM stock solution in water. Turmeric was obtained from Spice Islands 
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Trading Company and was stored at -20 °C as a 37.5 mg/mL stock solution in 

100% DMSO. All other drugs were stored at 4 °C as 20 mM stock solutions in 

100% DMSO. All other chemicals were analytical reagent grade. 

 

Procedures 

 

Plasmid DNA Cleavage 

 DNA cleavage reactions were carried out using the procedure of Fortune and 

Osheroff (40). Topoisomerase II DNA cleavage assays contained 220 nM human 

topoisomerase IIα, topoisomerase IIβ, or mutant topoisomerase IIαC392A/C405A and 

10 nM negatively supercoiled pBR322 in a total of 20 µL of DNA cleavage buffer 

[10 mM Tris-HCl (pH 7.9), 5 mM MgCl2, 100 mM KCl, 0.1 mM EDTA, and 2.5% 

(v/v) glycerol]. DNA cleavage buffer contained ~2 µM residual dithiothreitol (DTT) 

that was carried over from the topoisomerase II storage buffer. Unless stated 

otherwise, reaction mixtures were incubated at 37 °C for 6 min, and enzyme-

DNA cleavage complexes were trapped by the addition of 2 µL of 5% SDS 

followed by 2 µL of 250 mM EDTA (pH 8.0). Proteinase K (2 µL of a 0.8 mg/mL 

solution) was added, and samples were incubated at 45 °C for 30 min to digest 

the enzyme. Samples were mixed with 2 µL of agarose gel loading buffer [60% 

sucrose in 10 mM Tris–HCl (pH 7.9), 0.5% bromophenol blue, and 0.5% xylene 

cyanol FF], heated at 45 °C for 5 min, and subjected to electrophoresis in 1% 

agarose gels in 40 mM Tris-acetate (pH 8.3) and 2 mM EDTA containing 0.5 

µg/mL ethidium bromide. DNA bands were visualized with long-range ultraviolet 



 35 

light and quantified using an Alpha Innotech digital imaging system. DNA 

cleavage was monitored by the conversion of supercoiled plasmid DNA to linear 

molecules. 

 Assays were carried out in the absence or presence of 0–50 µM m-AMSA or 

derivatives; 0-3.5 mM m-AMSA head group; 0-50 µM curcumin or derivatives 

(oxidation or degradation); 0-375 mg/mL turmeric solution; 0-50 µM 

thymoquinone; 0-200 µM etoposide; 0-200 µg/mL Phillyrea latifolia extract; 0-200 

µM oleuropein; or 0-200 µM hydroxytyrosol. In some cases, assays were carried 

out in the presence of 0-50 µM K3Fe(CN)6; or in the presence of 0-3 mM DTT, 

which was added either before or after establishing topoisomerase II-mediated 

DNA cleavage complexes as indicated. Unless stated otherwise, curcumin (or a 

derivative) was always the last component added to corresponding reaction 

mixtures.  

 

Molecular Modeling 

 The Calculate Energy Protocol within the Minimization Module of Discovery 

Studio 2.1 (Accelrys, Inc), was used for conformational space searching for m-

AMSA and o-AMSA. Initially, m-AMSA and o-AMSA were input into Discovery 

Studio 2.1 using the Builder module. Atoms were assigned using the CHARMm 

forcefield. Geometries for each of the compounds were optimized using the 

minimization protocol within the simulation tool. Lowest energy structures for 

each of the compounds were derived using the conjugate gradient algorithm, 
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2000 steps, and a RMS gradient of 0.001. A dielectric of 1.0, nonbond list radius 

of 14.0, and spherical cutoff electrostatics were applied. 

 In the lowest energy structures, torsion angles 1 (rotation angle between C9 

and the linking N) for m-AMSA and o-AMSA (-101.78o and -102.82o, respectively) 

were similar. The lowest energy torsion angles 2 (rotation angle between the 

linking N and C4’) were -11.69o for m-AMSA and -3.84º for o-AMSA. Using these 

rotation angles in the starting structures for m-AMSA and o-AMSA, changes to 

torsion 1 and torsion 2 were evaluated for their contributions to the overall 

potential energy of the drugs using the energy calculation module within the 

simulation protocol. Each of the torsion angles was modulated in ± 5º increments 

from its lowest energy value, and the energy was calculated for each torsion 

angle change. This method allowed the relative stability of the drug to be 

determined with respect to the lowest energy structure associated with each 

change in torsion angle. 

 

DNA Cleavage Site Utilization 

 DNA cleavage sites were mapped using a modification (99) of the procedure 

of O’Reilly and Kreuzer (100). The pBR322 DNA substrate was linearized by 

treatment with HindIII. Terminal 5’-phosphates were removed by treatment with 

calf intestinal alkaline phosphatase and replaced with [32P]phosphate using T4 

polynucleotide kinase and [γ-32P]ATP. The DNA was treated with EcoRI, and the 

4332 bp singly-end-labeled fragment was purified from the small EcoRI-HindIII 

fragment by passage through a CHROMA SPIN+TE-100 column (Clontech). 
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Reaction mixtures contained 1 nM labeled pBR322 DNA substrate and 90 nM 

human topoisomerase IIα in 50 µL of DNA cleavage buffer supplemented with 1 

mM ATP in the absence or presence of m-AMSA or derivatives. Reaction 

mixtures were incubated at 37 °C for 30 s, and enzyme-DNA cleavage 

complexes were trapped by the addition of 5 µL of 5% SDS followed by 3.75 µL 

of 250 mM EDTA (pH 8.0). Proteinase K (5 µL of a 0.8 mg/mL solution) was 

added, and samples were incubated at 45 °C for 30 min to digest the enzyme. 

DNA products were ethanol precipitated and resuspended in 5 µL of 

polyacrylamide gel loading buffer (40% formamide, 10 mM NaOH, 0.02% xylene 

cyanol FF, and 0.02% bromophenol blue). Samples were subjected to 

electrophoresis in denaturing 6% polyacrylamide sequencing gels. Gels were 

dried in vacuo, and DNA cleavage products were visualized with a Bio-Rad 

Molecular Imager FX. 

 

DNA Intercalation 

 DNA intercalation was monitored as described previously (40, 101). When 

used as a substrate, relaxed plasmid DNA was generated by incubation with 

topoisomerase I (40, 101). Intercalation reaction mixtures contained 20 nM 

topoisomerase I, 5 nM relaxed or negatively supercoiled pBR322 DNA, and 0–

150 µM m-AMSA or derivatives. Ethidium bromide (10 µM) and etoposide (100 

µM) were included as positive and negative controls, respectively. Assays were 

carried out in a total of 20 µL of 50 mM Tris–HCl (pH 7.5), 0.1 mM EDTA, 50 mM 

KCl, 10 mM MgCl2, and 0.5 mM DTT. Mixtures were incubated at 37 °C for 10 
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min, extracted with a phenol/chloroform/isoamyl alcohol mixture (25:24:1), and 

added to 3 µL of 0.77% SDS and 77 mM EDTA (pH 8.0). Samples were mixed 

with 2 µL of agarose gel loading buffer, heated at 45 °C for 5 min, and subjected 

to electrophoresis in a 1% agarose gel in 100 mM Tris-borate (pH 8.3) and 2 mM 

EDTA. Gels were stained with 1 µg/mL ethidium bromide, and DNA bands were 

visualized as described for plasmid DNA cleavage. 

 

Competition with DNA Intercalators 

 A 50-bp oligonucleotide duplex was designed using a previously identified 

topoisomerase II cleavage site from pBR322 (102). Oligonucleotide sequences 

were generated using an Applied Biosystems DNA synthesizer. The 50-mer top 

and bottom sequences were 5’-

TTGGTATCTGCGCTCTGCTGAAGCC↓AGTTACCTTCGGAAAAAGAGTTGGT-

3’ and 5’-

ACCAACTCTTTTTCCGAAGGT↓AACTGGCTTCAGCAGAGCGCAGATACCAA-

3’, respectively (arrows denote cleavage sites). The bottom strand was labeled 

on the 5’-terminus with [γ-32P]ATP using T4 polynucleotide kinase. Following 

labeling and gel purification, complementary oligonucleotides were annealed by 

incubation at 70 °C for 10 min and cooling to 25 °C. 

 DNA cleavage by human topoisomerase IIα was determined by a 

modification of the procedure of Fortune et al. (102). Reaction mixtures contained 

220 nM human topoisomerase IIα and 100 nM double-stranded oligonucleotide in 

10 µL of DNA cleavage buffer. Assays were carried out in the absence or 
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presence of 25 µM m-AMSA and 0–50 µM acridine, 9-aminoacridine, or ethidium 

bromide. Reactions were incubated for 10 min at 37 °C . DNA cleavage products 

were trapped by the addition of 2 µL of 10% SDS, followed by 1 µL of 375 mM 

EDTA (pH 8.0). Samples were digested with proteinase K, and DNA products 

were ethanol precipitated and resuspended in 5 µL of polyacrylamide gel loading 

buffer. Samples were subjected to electrophoresis in denaturing 14% 

polyacrylamide sequencing gels. Gels were dried in vacuo, and DNA cleavage 

products were visualized as described above. 

 

Cleavage of Phosphorothiolate Oligonucleotides 

 A duplex DNA oligonucleotide containing a single 3'-bridging 

phosphorothiolate linkage at the site of topoisomerase II-mediated cleavage was 

synthesized as described previously (103). DNA cleavage assays were carried 

out by a modification of the procedure of Fortune et al. (40). Oligonucleotide 

substrates were always 5’ end-labeled. All DNA cleavage reactions with human 

topoisomerase IIα contained 200 nM enzyme and 100 nM double-stranded 

oligonucleotide in a total of 20 µL of 10 mM Tris-HCl, pH 7.9, 135 mM KCl, 5 mM 

MgCl2, 0.1 mM EDTA, and 2.5% glycerol. Reactions were initiated by the addition 

of enzyme and were incubated at 37 °C. Assays were carried out in the absence 

or presence of 3.5 mM m-AMSA head group. DNA cleavage products were 

trapped by the addition of 2 µL of 10% SDS followed by 2 µL of 250 mM EDTA, 

pH 8.0. Proteinase K (2 µL of 0.8 mg/mL) was added to digest the enzyme, and 

oligonucleotides were precipitated with ethanol. Cleavage products were 
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resolved by electrophoresis in a 14% denaturing polyacrylamide gel. To inhibit 

oxidation of cleaved oligonucleotides containing 3’-terminal –SH moieties and the 

formation of multimers in the gel, 100 mM DTT was added to the sample loading 

buffer. DNA cleavage products were visualized and quantified using a Bio-Rad 

Molecular Imager. 
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CHAPTER III 

 

AMSACRINE AS A TOPOISOMERASE II POISON: IMPORTANCE OF DRUG-

DNA INTERACTIONS 

 

Introduction 

 Amsacrine (m-AMSA) is an acridine derivative with antineoplastic activity 

(10, 15). The drug is in multiple clinical trials for the treatment of hematological 

cancers in the United States (104) and is used to treat refractory acute 

lymphocytic and non-lymphocytic leukemias as well as Hodgkin’s and non-

Hodgkin’s lymphomas in other countries (10, 105-107). m-AMSA kills cells by 

acting as a topoisomerase II poison and increases levels of covalent enzyme-

cleaved DNA complexes primarily by decreasing rates of ligation (9, 10, 14, 103, 

108-111). In vitro, m-AMSA displays similar activity toward the two isoforms of 

human topoisomerase II, α and β (112, 113). However, evidence suggests that 

the β isoform may be the more important target for the cytotoxic actions of the 

drug (114-117). 

 m-AMSA is a historically significant topoisomerase II-targeted anticancer 

drug. In a pioneering study published by Zwelling et al. in 1981, the authors 

proposed that m-AMSA targeted a topoisomerase based on the ability of the drug 

to induce protein-associated DNA strand breaks in treated human cells (118). 

Three years later, m-AMSA was the first drug demonstrated to poison 

mammalian topoisomerase II in vitro or in human cells (108, 119). 
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 Whereas some topoisomerase II-targeted drugs, such as etoposide, have 

little if any interaction with DNA in the absence of enzyme (46, 120, 121), m-

AMSA was designed to be a DNA binding agent (96, 97). To this point, m-AMSA 

is one of the most widely studied intercalative topoisomerase II poisons (122, 

123). The drug is comprised of an acridine moiety coupled to a 4’-amino-

methanesulfon-m-anisidide head group. It has long been known that moving the 

anisidide methoxy group from the meta (3’) to the ortho (2’) position (see Figure 

10) attenuates drug activity against mammalian topoisomerase II, despite the fact 

that the resulting o-AMSA is a stronger intercalator than m-AMSA (108, 118, 124-

126). 

 The relative activity of m-AMSA vs. o-AMSA against topoisomerase II 

indicates that DNA binding cannot be the sole determinant of drug function. 

Moreover, it brings into question the precise role of DNA intercalation in the 

action of m-AMSA and the contributions of head group substituents to 

topoisomerase II poisoning. Therefore, to more fully analyze structure-function 

relationships and the role of DNA binding in the action of m-AMSA, a series of 

derivatives was analyzed. Results indicate that much of the activity and 

specificity of m-AMSA as a topoisomerase II poison is embodied in the head 

group. DNA intercalation also is important for optimal drug function, being used 

primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA 

cleavage complex. 
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Figure 10. Structure of m-AMSA and derivatives. 
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Results and Discussion 

 

Contributions of m-AMSA Head Group Substituents to Drug-Induced DNA 
Cleavage by Human Type II Topoisomerases 
 
 It has long been known that the activity of o-AMSA as a topoisomerase II 

poison is dramatically lower than that of m-AMSA (see Figure 10 for drug 

structures) (108, 118, 124-126). As seen in Figure 11, m-AMSA enhanced DNA 

cleavage mediated by human topoisomerase IIα or topoisomerase IIβ ~7– to 8–

fold as compared to no drug reactions, whereas o-AMSA displayed almost no 

ability to poison either enzyme. This difference is despite the fact that the only 

change between m- and o-AMSA is the position of the methoxy group (3’ vs. 2’, 

respectively). The molecular basis underlying this difference in drug activity has 

not been delineated and several questions have yet to be addressed. For 

example, does the low activity of o-AMSA reflect the loss of a critical interaction 

between the 3’-methoxy of m-AMSA and topoisomerase II or DNA, or does the 

2’-methoxy of o-AMSA sterically hinder interactions of the drug in the enzyme-

DNA complex (or a combination of both)? 

 Therefore, the ability of AMSA (a derivative of m-AMSA that is lacking the 

methoxy substituent) to stimulate topoisomerase II-mediated DNA cleavage was 

determined. If the activity of AMSA were similar to that of m-AMSA, it would 

suggest that the methoxy group does not enhance drug activity when in the 3’-

position, but rather inhibits activity when in the 2’-position. Alternatively, if the 

activity of AMSA were similar to that of o-AMSA, it would imply that the 3’-

methoxy is critical for topoisomerase II poisoning. Results are shown in panels A  
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Figure 11. Enhancement of topoisomerase II-mediated DNA cleavage by m-AMSA and 
derivatives. The effects of m-AMSA (closed circles), AMSA (open circles), and o-AMSA (squares) 
(panels A and B), 1’-OH 3’-OCH3 (closed circles), 1’-OH (open circles) and 1’-OH 2’-OCH3 
(squares) (panels C and D), and 3’-OCH3 (closed circles), N-phenyl (open circles), and 2’-OCH3 
(squares) (panels E and F) on the cleavage of negatively supercoiled plasmid DNA by human 
topoisomerase IIα (panels A, C, and E) and topoisomerase IIβ (panels B, D, and F) were 
determined. Error bars represent the standard deviation of three independent experiments. Data 
for m-AMSA are included as dashed lines in panels C-F for comparison. 
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and B of Figure 11. The activity of AMSA was intermediate to those of m-AMSA 

and o-AMSA, increasing levels of DNA cleavage ~3–fold. This finding indicates 

that the presence of the 3’-methoxy positively affects drug function and is 

necessary for optimal activity, while the presence of the 2’-methoxy impairs drug 

interactions. 

 To further explore the role of the methoxy group in drug function, the 

activities of compounds that contained a 3’-, 2’-, or no methoxy were compared in 

two additional series: one that replaced the 1’-methanesulfonamide with a 1’-

hydroxy moiety (Figure 11, panels C and D) and another that lacked a 1’-

substituent (panels E and F). Results were similar to those described above for 

the 1’-methanesulfonamide series. Compounds with a 3’-methoxy always 

induced the highest levels of DNA cleavage, compounds with a 2’-methoxy had 

little effect on enzyme activity, and compounds lacking the methoxy were 

intermediate. 

 Although the above relationships regarding the methoxy group were 

consistent across the three series, the nature of the 1’-substituent had a profound 

effect on drug activity. Comparing compounds with a 3’-methoxy, the activity of 

that with a 1’-methanesulfonamide was greater than that with a 1’-hydroxy, which 

was much greater than that with no substituent at the 1’ position. Thus, it appears 

that the ability of the 1’-substituent to form hydrogen bonds (or other interactions) 

is important for drug activity against human type II topoisomerases. 

 The above results indicate that the 3’-methoxy and 1’-methanesulfonamide 

positively impact the ability of m-AMSA to poison topoisomerase II, while the 2’-
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methoxy of o-AMSA impairs this process. However, they do not provide an 

understanding of the underlying mechanism by which these substituents affect 

drug activity. Therefore, modeling studies were carried out with m-AMSA and o-

AMSA to address this issue (Figure 12).  

 As determined by energy minimization calculations, the orientation of the 

head group in m-AMSA appears to be much more constrained than it is in o-

AMSA (Figure 12). The lowest potential energy for m-AMSA (8.85 kcal/mol) was 

observed when torsion angle 1 (rotation angle between C9 and the linking N, see 

Figure 1) was set to -101.78o. Torsion angle 1 could be changed by -15o to +30o 

(a total of 45o) without significant changes in energy (range of 12.63 at -15o to 

12.1 kcal/mol at +30o). Rotations past -15o and +30o resulted in a marked 

increase in the potential energy of the structure. Similar energy profiles were 

observed for changes to torsion angle 2 (rotation angle between the linking N 

and C4’). The lowest energy (8.85 kcal/mol) was observed at an angle of 11.69o. 

Incremental changes to torsion angle 2 followed by energy calculations revealed 

a significant increase in the potential energy of the molecule if torsion angle 2 

was rotated more than -25o and +60o from the starting -11.69o.  

 In contrast to m-AMSA, o-AMSA appears to have a much broader low 

energy conformational space. Starting with the lowest energy conformation (-

102.82o), torsion angle 1 could be changed by -40o to +45o (a total of 85o) with 

relatively small fluctuations in the potential energy of the molecule (range of 14.4 

kcal/mol at -40o to 14.8 kcal/mol at +45o). The lowest energy for torsion angle 2  
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Figure 12. Energy minimization models of m-AMSA and o-AMSA. Low-energy structures (within ± 
5 kcal/mol of the optimized structures for m-AMSA (top) and o-AMSA (bottom) are shown. Front 
and side views are shown at left and right, respectively. Courtesy of Dr. David E. Graves, 
University of Alabama at Birmingham. 
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was observed at -3.84º and the angle could be rotated with near full rotational 

freedom. 

 On the basis of these modeling studies, the following is proposed: the 3’-

methoxy enhances drug activity by restricting the head group to a narrow range 

of favorable conformations. Conversely, when the 3’-methoxy is missing in AMSA 

or moved in o-AMSA, drug activity drops because the head group is no longer 

constrained to a favored orientation. Finally, the activity of o-AMSA is even lower 

than that of AMSA because, in addition to the unrestricted head group, the 

presence of the 2’-methoxy may impose steric constraints that further inhibit 

interactions of the 1’-substituent or other portions of the head group with the 

protein or DNA. 

 To determine whether changes in the above substituents affect the 

specificity of the drug class, sites of DNA cleaved by human topoisomerase IIα in 

the presence of m-AMSA and several derivatives were determined (Figure 13). 

Similar cleavage maps were observed for m-AMSA, AMSA (which lacks the 

methoxy group), and 1’-OH 3’-OCH3 (which contains a hydroxy in place of the 1’-

methanesulfonamide group of the parent drug). However, minor differences with 

regard to site specificity and utilization were observed. This result suggests that 

portions of the m-AMSA head group may have interactions with DNA as well as 

the protein in the ternary enzyme-drug-DNA complex. 
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Figure 13. DNA cleavage site specificity and utilization by human topoisomerase IIα in the 
presence of m-AMSA and derivatives. A singly end-labeled linear 4332 bp fragment of pBR322 
was used as the cleavage substrate. An autoradiogram of a polyacrylamide gel is shown. DNA 
cleavage reactions were carried out in the absence of drug (TIIα), or in the presence of 10 µM m-
AMSA; 25 µM AMSA, 1'-OH 3’-OCH3, or 1’-OH; or 100 µM o-AMSA or 1'-OH 2’-OCH3. DNA 
standards (DNA) also are shown. Results are representative of three independent experiments. 
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DNA Intercalation 

 m-AMSA was originally designed as a DNA-binding drug (96, 97). However, 

there is no clear correlation between the strength of DNA binding (as determined 

by intercalation) and drug activity against topoisomerase II. As discussed earlier, 

o-AMSA, which intercalates more strongly than m-AMSA, displays little ability to 

poison the type II enzyme (108, 118, 124-126). Therefore, to more fully explore 

relationships between DNA binding and topoisomerase II poisoning, the ability of 

the compounds described in Figure 1 to intercalate was determined. 

 The DNA intercalation assay is based on the fact that intercalative agents 

induce constrained negative supercoils and compensatory unconstrained positive 

superhelical twists in covalently closed circular DNA (Figure 14, top). Therefore, 

as the concentration of an intercalative compound increases, a plasmid that is 

negatively supercoiled or relaxed (i.e., contains an equilibrium distribution of 

topoisomers whose mean number of superhelical twists is zero) appears to 

become positively supercoiled. Treatment of an intercalated plasmid with 

topoisomerase I removes the unconstrained positive DNA supercoils. 

Subsequent extraction of the compound allows the local drug-induced unwinding 

to redistribute in a global manner and manifest itself as a net negative 

supercoiling of the plasmid (Figure 14, bottom). Thus, in the presence of an 

intercalative agent, topoisomerase treatment converts plasmids (through a 

completely relaxed intermediate population) to a distribution of negatively 

supercoiled molecules. Representative intercalation assay gels for m-AMSA and 

all derivatives (as well as ethidium bromide) are shown in Figure 15. 



 52 

 

 

 

 
 

 

Figure 14: Schematic of the DNA intercalation assay.  



 53 

 

Figure 15. DNA intercalation by m-AMSA and derivatives. The abilities of 0–150 µM m-AMSA, 
AMSA, o-AMSA, 1’-OH 3’-OCH3, 1’-OH, 1’-OH 2’-OCH3, 3-OCH3, N-Phenyl, 2’-OCH3, 9-
aminoacridine (9AA), acridine, and ethidium bromide to intercalate into DNA were determined 
using a topoisomerase I-based supercoiling assay. Representative ethidium bromide (EtBr)-
stained agarose gels are shown. The effects of 10 µM EtBr and 100 µM etoposide (Etop) are 
included as positive and negative controls, respectively. Relaxed DNA standards (DNA) also are 
shown. Results are representative of three independent experiments. As described and recorded 
in Table 1, concentrations of intercalators required to yield “fully relaxed” (Rel) and “fully 
supercoiled” (SC) plasmid are used for comparative purposes. Lanes that include these 
concentrations for m-AMSA are indicated by a dagger (†) and double dagger (‡), respectively. 
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 In order to compare the relative abilities of compounds to intercalate, two 

data points were employed: the concentration of drug that converts the 

population of plasmids to the most relaxed form  (i.e., the highest band seen on 

the gels in Figure 15) following treatment with topoisomerase I and the 

concentration of drug that converts the initial population to the fully supercoiled 

form (i.e., the lowest band seen on the gels in Figure 15). These values for m-

AMSA and all derivatives are listed in Table 1. 

 The chemical nature of the 1’-substituent had a consistent effect on drug 

intercalation into DNA, with the strength of intercalation being: 1’-hydroxy series 

> 1’-methanesulfonamide series > no 1’-substituent series. The presence and 

position of the methoxy group also affected drug intercalation in a consistent 

manner, with the strength of intercalation being: no methoxy > 2’-methoxy > 3’-

methoxy. Despite these findings, as originally observed for m-AMSA and o-

AMSA (108, 118, 124-126), there appears to be little correlation between the 

strength of DNA binding and enhancement of topoisomerase II-mediated DNA 

cleavage. For example, while members of the 1’-hydroxy series are stronger 

intercalators than corresponding members of the 1’-methanesulfonamide series, 

they are weaker topoisomerase II poisons. 

 One caveat regarding the above observations should be noted: all of the 

m-AMSA derivatives that were examined contained altered substituents on the 

head group. Since portions of the head group are likely to interact with 

topoisomerase II or the scissile bond in the cleavage complex, it is possible that 

the same alterations that strengthen DNA intercalation also interfere with these  



 55 

 

 

 

 Table 1. DNA intercalation by m-AMSA and derivativesa 

Compound Fully Relaxed Fully Supercoiled 

    Concentration (µM) Concentration (µM) 

m-AMSA 25 150 

AMSA 5-10 50 

o-AMSA 10 75 

   
1’-OH 3’-OCH3 15 150 

1’-OH 5 25 

1’-OH 2’-OCH3 5 25-50 

   
3’-OCH3 50-75 >150 

N-Phenyl 15-25 75 

2’-OCH3 15 150 

   
9-aminoacridine 5 50 

4-methyl-m-AMSA 15 75 

Acridine 75 >>150 

Ethidium Bromide 1 5-7.5 
aThe concentrations of compounds required to convert the plasmid 
substrate to a “fully relaxed” or “fully supercoiled” population was 
assessed by the topoisomerase I DNA supercoiling assay described 
in Figure 15.  
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critical interactions (or vice versa). This could explain the lack of correlation 

between drug activity and DNA intercalation. Therefore, to address the issue of 

DNA binding without changing substituents on the head group, the ability of 4-

methyl-m-AMSA to intercalate DNA and poison topoisomerase IIα was 

evaluated. The methyl substituent in this compound is on the acridine ring. A 

previous crosslinking study using a photoactivated m-AMSA analog (127) 

demonstrated that the acridine moiety interacts with DNA in the ternary 

topoisomerase II-drug-DNA complex (128). 

 Intercalation studies (Figure 16 inset and Table 1) indicate that 4-methyl-m-

AMSA binds DNA with an affinity that is approximately twice that of m-AMSA. 

Similarly, the potency of 4-methyl-m-AMSA (as determined by a topoisomerase 

IIα-DNA cleavage assay), was ~2–fold higher than that of m-AMSA. Despite the 

change in potency, the methylated and unmethylated compounds displayed 

comparable efficacies (maximal levels of DNA cleavage).  

 The correlation between DNA binding and cleavage observed for 4-methyl-

m-AMSA suggests that intercalation plays an important role in drug action by 

increasing the affinity of m-AMSA for the ternary complex. If this suggestion is 

correct, inhibiting the ability of m-AMSA to intercalate should attenuate drug 

action. To test this prediction, competition experiments were carried out in the 

presence of acridine (a weak intercalator), 9-aminoacridine (a strong 

intercalator), and ethidium bromide (a stronger intercalator) (see Table 1 and 

Figure 15 for intercalation data).  

 



 57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Enhancement of topoisomerase IIα-mediated DNA cleavage by 4-methyl-m-AMSA. 
The effects of 4-methyl-m-AMSA (open circles) on the cleavage of negatively supercoiled plasmid 
DNA by human topoisomerase IIα are compared to those of m-AMSA (closed circles). Error bars 
represent the standard deviation of three independent experiments. The inset shows a 
representative topoisomerase I-based intercalation assay for 4-methyl-m-AMSA. 
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 As seen in Figure 17, acridine, 9-aminoacridine, and ethidium bromide 

inhibited topoisomerase IIα-mediated DNA cleavage induced by 25 µM m-AMSA 

to an extent proportional to their DNA binding strengths. Acridine showed little 

inhibition of DNA cleavage at 50 µM. In contrast, 9-aminoacridine and ethidium 

bromide inhibited m-AMSA-induced DNA cleavage by 50% at ~21 and ~7 µM, 

respectively.  

 It is notable that intercalators can decrease topoisomerase II-mediated 

cleavage by interfering with DNA binding or by altering the apparent topology of 

DNA (making the substrate appear to be positively supercoiled) in a closed 

topological system (113). To minimize the effects of intercalators on baseline 

levels of DNA cleavage mediated by human topoisomerase IIα, an 

oligonucleotide system was utilized for the competition experiments. Indeed, at 

50 µM ethidium bromide, the highest concentration of the strongest intercalator 

employed (Table 1), baseline levels of enzyme-mediated DNA cleavage dropped 

only 16% (Figure 17, inset). 

 Taken together, the above findings support the conclusion that DNA 

intercalation plays an important role in the actions of m-AMSA as a 

topoisomerase II poison. 

 

Activity of the m-AMSA Head Group 

 A number of topoisomerase II-targeted drugs contain a multi-ring system 

attached to a head group (10, 15). For example, the anticancer drug etoposide is 

comprised of a glycosylated polycyclic core (albeit non-intercalative) that is linked  
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Figure 17. Inhibition of m-AMSA-induced topoisomerase IIα-mediated DNA cleavage by 
intercalators. The abilities of 0–50 µM acridine (ACR, closed circles), 9-aminoacridine (9AA, open 
circles), and ethidium bromide (EtBr, squares) to inhibit DNA cleavage induced by 25 µM m-
AMSA were determined. A singly end-labeled 50-mer oligonucleotide substrate was used as the 
cleavage substrate. The level of DNA cleavage in the presence of 25 µM m-AMSA and the 
absence of competitor was set to 100%. The inset shows the effects of 50 µM ACR, 9AA, and 
EtBr on DNA cleavage mediated by human topoisomerase IIα in the absence of m-AMSA. The 
baseline level of DNA cleavage in the absence of intercalators was set to 100%. Error bars 
represent the standard deviation of three independent experiments for both the figure and the 
inset. 
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to a 3’,5’-dimethoxy-4’-hydroxyphenyl head group (E-ring) (10, 15, 46). A recent 

structure of a covalent human topoisomerase IIβ-DNA cleavage complex formed 

in the presence of etoposide indicates that the polycyclic drug core interacts 

primarily with DNA, while the head group is positioned at the interface between 

the enzyme and the cleaved scissile bond and interacts with both the protein and 

DNA (129). Saturation transfer difference NMR studies of the etoposide-

topoisomerase IIα binary complex coupled with activity studies also suggest 

strong interactions between portions of the polycyclic core/glycosyl group and 

DNA, and between the head group and the enzyme (130-132). 

 Consistent with the studies on etoposide, the findings described above for m-

AMSA imply that the acridine core and head group of the drug may play different 

and complementary functions in stabilizing the topoisomerase II-DNA complex. It 

is proposed that the acridine portion of m-AMSA is largely responsible for DNA 

binding, while the head group interacts with the enzyme and the scissile bond in 

the ternary complex. 

 In order to address this hypothesis, the ability of the isolated m-AMSA 

head group to enhance DNA cleavage mediated by human topoisomerase IIα 

was assessed (unfortunately, the o-AMSA head group was unavailable for 

testing). As seen in Figure 18 (left panel), the detached head group stimulated 

DNA scission ~8– to 9–fold, which is comparable to levels observed with ~25 µM 

m-AMSA. In contrast to the parent drug, however, ~3.5 mM head group was 

required to induce this level of cleavage. Thus, the efficacy of the isolated head  
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Figure 18. Enhancement of topoisomerase IIα-mediated DNA cleavage by the detached m-AMSA 
head group. Panel A shows the effects of the isolated m-AMSA head group (structure shown as 
inset) on the cleavage of negatively supercoiled plasmid DNA by human topoisomerase IIα. 
determined. Panel B shows a series of control experiments that confirm that DNA cleavage 
induced by the isolated head group is mediated by human topoisomerase IIα. Reactions 
contained DNA and enzyme in the absence of m-AMSA head group (TIIα), DNA and 3 mM head 
group in the absence of enzyme, or complete reaction mixtures treated with SDS prior to adding 
EDTA (SDS). The reversibility of DNA cleavage induced by 3 mM head group was determined by 
incubating reactions with EDTA prior to trapping cleavage complexes with SDS (EDTA). To 
determine whether DNA cleavage induced by 3 mM head group was protein-linked, proteinase K 
treatment was omitted (-ProK). Error bars for both panels represent standard deviations for three 
independent experiments. 
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group is similar to that of the parent compound, but the potency is >2 orders of 

magnitude lower.  

 To ensure that the detached head group was inducing DNA cleavage 

through an effect on topoisomerase IIα, several control experiments were carried 

out (Figure 18, right panel). No DNA cleavage was observed in the absence of 

enzyme. In addition, DNA scission was reversed by the addition of EDTA, which 

chelates the essential divalent cation (133), and no free linear DNA was seen in 

reactions that were not treated with proteinase K to digest the topoisomerase II. 

Thus, the isolated head group induces DNA cleavage through its effects on the 

type II enzyme. 

 As discussed in Chapter I, traditional topoisomerase II poisons stabilize 

enzyme-mediated DNA cleavage by blocking religation of the cleaved nucleic 

acid substrate (as opposed to increasing the forward rate of cleavage). To 

determine which of these two mechanisms is utilized by the isolated m-AMSA 

head group, cleavage of a phosphorothiolate oligonucleotide substrate was 

monitored over time. In this modified nucleic acid, the oxygen of the 3’-bridging 

phosphate at the scissile bond has been replaced with a sulfur atom. The 

resulting substrate is readily cleaved by topoisomerase II, but the free 3’-

sulfhydryl group does not facilitate subsequent DNA religation. Thus, treatment of 

phosphorothiolate substrates with topoisomerase II results in an accumulation of 

DNA cleavage products with time, and traditional topoisomerase II poisons have 

little to no effect on this accumulation. Only compounds that stimulate the forward 
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rate of cleavage have a positive effect on cleavage of the phosphorothiolate 

substrate. 

 As seen in Figure 19, the isolated m-AMSA head group had no significant 

effect on the rate of topoisomerase II-mediated cleavage of the 

phosphorothiolate oligonucleotide substrate. Similar results were observed 

previously for the parent compound (103). These findings indicate that the 

isolated m-AMSA head group does not stimulate the forward rate of enzyme-

mediated DNA cleavage, and by inference, that the compound inhibits DNA 

religation much like the parent compound m-AMSA. 

 Studies described above predict that the intercalation of m-AMSA is 

mediated by the acridine portion of the drug. If this is the case, the isolated head 

group would not be expected to intercalate. Indeed, even at concentrations as 

high as 4 mM, no intercalation by the head group was observed (Figure 20).  

 Both the head group and the intercalative acridine moiety are required for 

the high potency of m-AMSA as a topoisomerase II poison. Because intercalation 

alters the structure of DNA, acridine may increase the potency of m-AMSA by a 

specific or a general mechanism. In the first case, intercalation by the acridine 

moiety of an individual m-AMSA molecule increases the affinity of the attached 

head group for the enzyme and the scissile bond. In the second case, 

intercalation by m-AMSA molecules outside of the topoisomerase II active site 

alters the local DNA structure in a manner that increases the affinity of a different 

m-AMSA head group for the scissile bond. To distinguish between these two 

possibilities, the importance of the linkage between the acridine moiety and the  
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Figure 19. Effect of m-AMSA head group on the forward rate of topoisomerase IIα-mediated DNA 
scission. Time courses for cleavage of the bottom strand of the oligonucleotide containing a 
phosphorothiolate S-P linkage at the scissile bond of the bottom strand in the absence (– HG, 
open circles) or presence (+ HG, closed circles) of 3.5 mM m-AMSA head group. Error bars 
represent the standard deviation of three independent experiments. 
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Figure 20. The isolated m-AMSA head group does not intercalate in DNA. Representative 
topoisomerase I-based DNA intercalation assay gels are shown for the isolated m-AMSA head 
group. Assays starting with either relaxed or negatively supercoiled DNA plasmid substrates are 
included. Etoposide (Etop, 100 µM) and ethidium bromide (EtBr, 10 µM) are included as positive 
and negative controls, respectively. DNA standards (DNA) also are shown. Results are 
representative of three independent experiments. 
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head group for drug function was characterized. As seen in Figure 21 the activity 

of a 1:1 mixture of detached head group:acridine was lower than that of the head 

group alone, and the potency of the mixture was considerably lower than that of 

m-AMSA (in which the head group and acridine moiety are linked). This finding 

provides strong evidence that the linkage between the acridine moiety and the 

head group is critical for the potent activity of m-AMSA.  

 Because the m-AMSA head group has para amino substituents, it has the 

potential to undergo redox cycling with concomitant amino-imino transformation. 

Previous studies indicate that quinone-based compounds can poison 

topoisomerase II by a mechanism that differs from that of interfacial poisons such 

as m-AMSA (18, 42, 134, 135). This alternate mechanism involves covalent 

attachment of the drug to the enzyme (10, 18, 42, 83, 135). It is not known 

whether imino-based compounds can also act as covalent poisons of 

topoisomerase II. Therefore, to determine if a proportion of the activity of the m-

AMSA head group against human topoisomerase IIα reflects a covalent 

mechanism, the reducing agent DTT was added to DNA cleavage reactions. DTT 

blocks redox cycling, and reduces quinones to the corresponding hydroquinones 

and imines to the corresponding amines. Thus, it abrogates the effects of 

covalent poisons on topoisomerase II.  

 No significant decrease in the activity of m-AMSA was seen in the 

presence of DTT, but incubation of the head group with the reducing agent did 

lower drug activity (Figure 22). However, because the head group retained the  
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Figure 21. Covalent linkage of the head group to the acridine moiety is necessary for the high 
potency of m-AMSA as a topoisomerase II poison. The ability of the detached head group (HG, 
closed circles) or a 1:1 mixture of head group + acridine (HG + ACR, open circles) to stimulate 
topoisomerase IIα-mediated DNA cleavage is shown. A control experiment assessing the effects 
of acridine alone on the DNA cleavage activity of topoisomerase IIα (ACR, squares) also is 
shown. Error bars represent the standard deviation of three independent experiments. 
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Figure 22. Partial redox-dependence of the isolated m-AMSA head group as a topoisomerase II 
poison. The effects of 25 µM m-AMSA or 3 mM m-AMSA head group on the cleavage of 
negatively supercoiled plasmid DNA by human topoisomerase IIα in the absence (closed bars) or 
presence (open bars) of 3 mM dithiothreitol (DTT) are shown. A control experiment carried out in 
the absence of drugs also is shown (No Drug). DNA cleavage levels are relative to those induced 
by the enzyme in the absence of drug or DTT. Error bars represent the standard deviation of 
three independent experiments. 
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majority of its activity in the presence of DTT, it is concluded that at least part of 

its activity toward topoisomerase IIα reflects a traditional, redox-independent 

mechanism like that of the parent drug.  

 To further explore the properties of the head group, sites of topoisomerase 

IIα-mediated DNA cleavage induced by the compound were determined. Sites 

cleaved in the presence of the head group represented a subset of those induced 

by m-AMSA (Figure 23). Therefore, the head group appears to be responsible for 

much of the specificity of the drug. 

 

Conclusions 

 Although m-AMSA was the first compound shown to poison eukaryotic 

topoisomerase II, the specific functions of the individual components of the drug 

are still undefined. Taken together, the findings of the present study suggest that 

the activity and specificity of m-AMSA reside largely in the head group. Both the 

3’-methoxy and 1’-methanesulfonamide substituents contribute positively to drug 

efficacy. Finally, the linkage between the head group and the intercalative 

acridine moiety provides a strong DNA anchor for the drug and, consequently, 

dramatically increases the affinity of m-AMSA for the topoisomerase II-DNA 

cleavage complex. 
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Figure 23. DNA cleavage site specificity and utilization by human topoisomerase IIα in the 
presence of the m-AMSA head group. A singly end-labeled linear 4332 bp fragment of pBR322 
was used as the cleavage substrate. An autoradiogram of a polyacrylamide gel is shown. DNA 
cleavage reactions were carried out in the absence of drug (TIIα), or in the presence of 1, 5, or 10 
µM m-AMSA or 2 or 3 mM head group. A DNA standard (DNA) also is shown. Results are 
representative of three independent experiments. 
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CHAPTER IV 

 

OXIDATIVE METABOLITES OF CURCUMIN POISON HUMAN TYPE II 

TOPOISOMERASES 

 

Introduction 

  Turmeric is a common spice that is used in curries and a variety of other 

Asian cuisines (136-138). It is isolated from the rhizomes of Curcuma longa, 

which is an herbaceous perennial of the ginger family (138). 

 Curcumin (Figure 24) is the principal flavor and color component of turmeric. 

Beyond its culinary uses, curcumin is believed to positively impact human health 

and commonly is used in traditional Chinese herbal medicine and Ayurvedic 

medicine (137, 138). The compound has antioxidant, anti-inflammatory, and 

antibacterial activities (139, 140). Furthermore, it appears to have 

chemopreventive properties against a variety of human malignancies and 

currently is in clinical trials as an anticancer agent (139-144). 

 Curcumin has poor oral bioavailability and is unstable under physiological 

conditions (98, 145-148). Thus, it has been suggested that curcumin metabolites 

mediate at least some of the biological effects of the parent compound (149-152). 

Several metabolic pathways have been proposed. Following oral administration, 

curcumin often is conjugated to form glucuronides or sulfates. Alternatively, if 

administered intraperitoneally, it can undergo reductive reactions to form a 

variety of hydrogenated curcuminoids. However, most studies have concluded 
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that neither the conjugated nor the reduced products of curcumin are biologically 

active (152). 

 Curcumin also can undergo spontaneous autoxidation in aqueous solutions 

at physiological pH (Figure 24) (98). This reaction gives rise to novel products 

that have potential for biological activity. Autoxidation of curcumin is stimulated 

by peroxidases and oxidizing agents and is initiated by hydrogen abstraction 

from one of the two phenolic hydroxyl moieties (98). Following this abstraction, 

the reaction is proposed to proceed through several unstable and reactive 

intermediates, including an electrophilic quinone methide radical (98). The final 

product of curcumin autoxidation is a dioxygenated bicyclopentadione (98). 

 In addition to oxidation, the heptadienone chain of curcumin can be 

fragmented into vanillin, ferulic acid, feruloylmethane, and related compounds 

(see Figure 31) (152). These fragmentation products have been shown to display 

antioxidant and anti-inflammatory properties (152). However, at physiological pH, 

degradation of the curcumin heptadienone chain appears to be a minor reaction 

(153). 

 As discussed in Chapter I, several naturally occurring polyphenols that can 

form quinones display activity against human type II topoisomerases (10). Many 

of these, including bioflavonoids such as myricetin (which is common in grapes, 

berries, and other fruits and vegetables) and catechols such as EGCG (which is 

the active polyphenol in green tea) (16-18) are believed to have chemopreventive 

properties (54, 72, 73). All of these compounds increase levels of DNA cleavage 

mediated by the type II enzymes (16-18). 
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Figure 24. Oxidative transformation of curcumin. Adapted from Griesser et al. (98) 
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 Treatment of human cells with curcumin induces DNA cleavage complexes 

formed by topoisomerase IIα and IIβ (154). Cleavage complex formation is 

prevented by the addition of an antioxidant, suggesting the importance of 

oxidative pathways in curcumin activity against the type II enzymes (154). 

 An earlier study found that curcumin could induce topoisomerase II-

mediated DNA cleavage in vitro (155). However, because curcumin can undergo 

oxidation and degradation in aqueous solution, it is not clear whether the parent 

compound or metabolites (or both) are the topoisomerase II-reactive species. 

Therefore, the ability of curcumin to poison human type II topoisomerases under 

conditions in which the compound remains stable or undergoes oxidation was 

tested. Additionally, the activities of vanillin, ferulic acid, and feruloylmethane 

toward the human enzymes were examined. Results indicate that oxidative 

metabolites of curcumin poison human topoisomerase IIα and IIβ. In contrast, 

neither the parent compound nor its fragmentation products displayed significant 

activity toward the human enzymes. 

  

Results and Discussion 

 

Oxidative Metabolites of Curcumin Enhance DNA Cleavage Mediated by Human 
Type II Topoisomerases 
 
 Although curcumin increases levels of DNA cleavage mediated by 

topoisomerase IIα and IIβ in cultured human cells (154), the ability of the 

compound to affect enzyme activity in purified systems has not been well 

characterized. Therefore, the effects of the phytochemical on the human type II 
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enzymes were determined. As seen in Figure 25, curcumin displayed no activity 

toward either topoisomerase IIα and IIβ. However, in the presence of an oxidizing 

agent, such as potassium ferricyanide [K3Fe(CN)6], curcumin became a potent 

topoisomerase II poison. Between 4– and 5–fold DNA cleavage enhancement 

was observed with human topoisomerase IIα and IIβ, respectively. The activation 

of curcumin required stoichiometric concentrations of K3Fe(CN)6, and the oxidant 

had no effect on topoisomerase II-mediated DNA cleavage in the absence of the 

phytochemical (Figure 26, left). 

 Curcumin undergoes rapid oxidation in aqueous solutions (Figure 26, top 

right) (98). However, the compound was much more stable in the buffer used for 

topoisomerase II-mediated DNA cleavage assays, and little oxidation was 

observed over the 6-min course of the reaction (Figure 26, bottom right). The 

increase in curcumin stability was due largely to the MgCl2 that was included in 

the assay buffer (data not shown). Complete oxidation of curcumin was observed 

in assay mixtures shortly after addition of K3Fe(CN)6 (Figure 26, bottom right).  

 Several control reactions with human topoisomerase IIα were performed 

to ensure that the DNA cleavage enhancement observed with oxidized curcumin 

was mediated by the type II enzyme (Figure 27). No DNA scission was seen in 

the presence of curcumin and K3Fe(CN)6 when the type II enzyme was left out of 

reactions. Furthermore, topoisomerase IIα-mediated DNA cleavage induced by 

oxidized curcumin was reversed when the active site Mg2+ ions were chelated 

with EDTA prior to trapping cleavage complexes with SDS. This reversibility is 

not consistent with an enzyme-independent reaction. Finally, cleaved plasmid  
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Figure 25. Enhancement of topoisomerase II-mediated DNA cleavage by curcumin in the 
presence of oxidant. The effects of curcumin on the cleavage of negatively supercoiled plasmid 
DNA by human topoisomerase IIα (left) and topoisomerase IIβ (right) were determined in the 
absence (open circles, – Oxidant) or presence (closed circles, + Oxidant) of 50 µM K3Fe(CN)6. 
Error bars represent standard deviations for three independent experiments. 
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Figure 26. Effects of K3Fe(CN)6 on curcumin oxidation and the DNA cleavage activity of human 
topoisomerase IIα. Left: The effects of K3Fe(CN)6 on the cleavage of negatively supercoiled 
plasmid DNA by human topoisomerase IIαwere determined in the absence (open circles) or 
presence (closed circles) of 25 µM curcumin. Error bars represent standard deviations for three 
independent experiments. Right: Ultraviolet/visible spectroscopic analysis of the loss of curcumin 
(maximum wavelength at 430 nm) and appearance of oxidized products (peak at 263 nm) in Tris-
HCl buffer (pH 7.9) (top) and in topoisomerase II assay buffer (pH 7.9) (bottom). Scans were 
obtained at a frequency of one per min. K3Fe(CN)6 was added to the reaction in topoisomerase II 
assay buffer at 10 min. Spectra courtesy of Odaine N. Gordon, Vanderbilt University. 
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Figure 27. DNA cleavage induced by oxidized curcumin is reversible and protein-linked. Assay 
mixtures contained enzyme in the absence of curcumin or oxidant (TIIα), 50 µM curcumin and 50 
µM K3Fe(CN)6 in the absence of enzyme [-TIIα+ Curcumin + Oxidant], or complete reactions 
treated with SDS prior to adding EDTA (SDS). To determine whether DNA cleavage induced by 
oxidized curcumin was reversible, reactions were incubated with EDTA prior to trapping cleavage 
complexes with SDS (EDTA). To determine whether DNA cleavage induced by oxidized curcumin 
was protein-linked, proteinase K treatment was omitted (-ProK). Error bars represent standard 
deviations for three independent experiments. A representative agarose gel is shown at the top. 
DNA lanes correspond to the bars shown in the graph. The positions of negatively supercoiled 
(form I, FI), nicked (form II, FII), and linear (form III, FIII) plasmid DNA are indicated. 
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products were covalently linked to topoisomerase II. In the absence of proteinase 

K, the linear DNA band disappeared and was replaced by a band that remained 

at the origin of the gel (not shown). These results demonstrate that the DNA 

scission observed in the presence of curcumin and K3Fe(CN)6 is mediated by the 

type II enzyme. 

 The findings described above provide strong evidence that oxidized 

metabolites of curcumin, rather than the parent compound, are responsible for 

the enhancement of topoisomerase II-mediated DNA cleavage. As further 

evidence supporting this conclusion, the ability of 4’,4”-dimethylcurcumin to 

poison human topoisomerase IIα was determined. Since the methyl groups 

protect the 4’- and 4”-hydroxyl moieties from hydrogen abstraction, the 

compound undergoes oxidation rates that are >1000–fold slower than that of 

curcumin (98). As seen in Figure 28, no enhancement of topoisomerase II-

mediated DNA cleavage was observed in the absence or presence of K3Fe(CN)6.  

 Upon treatment with an oxidizing agent, curcumin is rapidly converted to a 

stable bicyclopentadione (Figures 24 and 26). En route to this ultimate oxidation 

product, the parent compound moves through a series of reactive quinone 

methide intermediates (Figure 24) (98). As discussed below, a number of 

quinone-based compounds have been shown to poison type II topoisomerases 

(41, 42, 134, 135). Therefore, two experiments were carried out to determine 

whether the quinone methide intermediates (as opposed to the final 

bicyclopentadione) are the more likely compounds that poison topoisomerase II 

in the presence of an oxidant. In the first experiment, curcumin was incubated  
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Figure 28. Effects of 4’,4”-dimethylcurcumin on topoisomerase II-mediated DNA cleavage. The 
effects of 4’,4”-dimethylcurcumin (structure at top, 4’- and 4”-methyl groups highlighted in red) in 
the absence (open circles, – Oxidant) or presence (closed circles, + Oxidant) of 50 µM K3Fe(CN)6 
on the cleavage of negatively supercoiled plasmid DNA by human topoisomerase IIα were 
determined. Data for oxidized curcumin (dashed line from Figure 2) are included for comparison. 
Error bars represent standard deviations for three independent experiments. 
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with K3Fe(CN)6 for 10 min prior to its addition to a topoisomerase IIα-DNA 

cleavage reaction. Under these conditions, the majority of the parent 

phytochemical was converted to the bicyclopentadione (Figure 26, bottom right). 

As seen in Figure 29 (inset), no enhancement of DNA scission was observed. In 

the second experiment, purified bicyclopentadione was added to DNA cleavage 

assays in the absence or presence of K3Fe(CN)6 (Figure 29). Virtually no 

enhancement of topoisomerase IIα-mediated DNA cleavage was observed under 

either condition. Thus, it appears that the quinone methide metabolites of 

curcumin are the chemical species that poison topoisomerase II.  

 

Oxidative Metabolites of Curcumin Are Covalent Topoisomerase II Poisons 

 To reemphasize a point discussed in Chapter I, compounds that poison 

type II topoisomerases can be categorized into two broad classes: interfacial vs. 

covalent (formerly “redox-dependent”). Members of the first group interact with 

topoisomerase II at the protein-DNA interface (in the vicinity of the active site 

tyrosine) in a non-covalent manner (10, 14, 156). Interfacial topoisomerase II 

poisons include several anticancer drugs (e.g., etoposide) and dietary 

bioflavonoids (e.g., genistein) and display a number of characteristic properties 

(10, 18, 41-43, 74, 134). Primarily, because their actions against topoisomerase 

II do not depend on redox chemistry, they are unaffected by the presence of 

reducing agents. Furthermore, these compounds induce similar levels of 

enzyme-mediated DNA scission whether they are added directly to the binary  
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Figure 29. Effects of bicyclopentadione on topoisomerase II-mediated DNA cleavage. The effects 
of bicyclopentadione (structure shown in Figure 1) in the absence (open circles, – Oxidant) or 
presence (closed circles, + Oxidant) of 50 µM K3Fe(CN)6 on the cleavage of negatively 
supercoiled plasmid DNA by human topoisomerase IIα were determined. Inset: curcumin was 
incubated in the absence (-) or presence (+) of K3Fe(CN)6 for 10 min before addition to 
topoisomerase IIα-DNA cleavage assay mixtures that contained 50 µM K3Fe(CN)6. Error bars 
represent standard deviations for three independent experiments. 
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topoisomerase II-DNA complex or are incubated with the enzyme prior to the 

addition of the nucleic acid substrate (10, 41). 

 Topoisomerase II poisons in the second class form covalent adducts with the 

enzyme at amino acid residues distal to the active site (83, 157). The best-

characterized members of this group are quinones, such as 1,4-benzoquinone 

and polychlorinated biphenyl (PCB) metabolites (41, 42, 135). In contrast to 

interfacial topoisomerase II poisons, the ability of covalent poisons to form 

topoisomerase II adducts (and, consequently, increase enzyme-mediated DNA 

cleavage) requires them to be in an oxidized form. Thus, DNA cleavage 

enhancement is blocked by the presence of reducing agents (10, 18, 41-43, 

134). However, once final protein adducts are formed, their oxidation state 

appears to be irrelevant. As a result, if reducing agents are added to assay 

mixtures after DNA cleavage-ligation equilibria have been established in the 

presence of a quinone-based poison, they are unable to reverse the cleavage 

enhancement (10, 41, 42, 134). Finally, while covalent poisons enhance 

topoisomerase II-mediated DNA cleavage when added to the enzyme-DNA 

complex, they inactivate topoisomerase II when incubated with the protein prior 

to the addition of DNA (10, 41, 42, 134). 

 Curcumin requires an oxidant in order for it to increase topoisomerase II-

mediated DNA cleavage. Furthermore, many of the proposed metabolites in the 

oxidation pathway of the compound contain quinones (98). Thus, it seems likely 

that the active metabolites of curcumin function as covalent (as opposed to 
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interfacial) topoisomerase II poisons. Four approaches were utilized to address 

this hypothesis. 

 In the first, a 5–fold molar excess of DTT over curcumin and K3Fe(CN)6 was 

added to assay mixtures prior to the start of reactions. As expected (considering 

that curcumin requires oxidation for activation), no enhancement of 

topoisomerase IIα-mediated DNA cleavage was observed (Figure 30, left).  

 In the second, DTT was added to reaction mixtures after cleavage 

complexes had been established. As seen in Figure 30 (left), levels of DNA 

scission remained high. As discussed above, this finding suggests that the 

oxidized metabolites of curcumin form covalent topoisomerase II adducts.  

 In the third, curcumin was incubated with human topoisomerase IIα in the 

presence of K3Fe(CN)6 prior to the addition of DNA (Figure 30, middle). As 

predicted for covalent poisons, enzyme activity fell to nearly zero with a t1/2 of 0.9 

min. In contrast, the activity of topoisomerase IIα was considerably more stable 

when the enzyme was incubated with either curcumin (t1/2 = 10.4 min) or 

K3Fe(CN)6 (t1/2 = >10 min) alone prior to the addition of DNA (not shown). 

 In the fourth, the ability of oxidized curcumin to stimulate DNA cleavage 

mediated by topoisomerase IIαC392A/C405A was determined. A previous study 

established that quinones can adduct human topoisomerase IIα at Cys392 and 

Cys405 and that topoisomerase IIαC392A/C405A is partially (~2–fold) resistant to 

covalent poisons, such as benzoquinone and PCB quinones, but not to interfacial 

poisons (83). As seen in Figure 30 (right), the ability of oxidized curcumin to  
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Figure 30. Oxidized curcumin intermediates act as covalent topoisomerase II poisons. Left: The 
effects of DTT on the enhancement of topoisomerase IIα-mediated DNA cleavage by oxidized 
curcumin intermediates were determined. Reaction mixtures contained DNA and human 
topoisomerase IIα in the absence or presence of 50 µM curcumin, 50 µM K3Fe(CN)6, or 250 µM 
DTT. In some reactions, DTT was added after the establishment of enzyme-DNA cleavage 
complexes (Post-DTT). Middle: The effects of oxidized curcumin intermediates on topoisomerase 
IIα activity when compounds were incubated with the enzyme prior to the addition of DNA. 
Human topoisomerase IIα was incubated with a combination of 50 µM curcumin and 50 µM 
K3Fe(CN)6 for 0-10 min prior to the addition of DNA to initiate 6 min cleavage reactions. Right: 
The effects of oxidized curcumin intermediates on the enhancement of DNA cleavage by human 
wild-type topoisomerase IIα (WT) and mutant quinone-resistant topoisomerase IIαC392A/C405A 
(C392A/C405A) were determined. Error bars for all three panels represent standard deviations for 
three independent experiments. 
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increase DNA cleavage mediated by topoisomerase IIαC392A/C405A was ~60% that 

of wild-type enzyme. 

 Taken together, these findings are consistent with the hypothesis that the 

oxidized intermediates of curcumin can be classified as covalent topoisomerase 

II poisons. 

 

Degradation Products of Curcumin Do Not Poison Topoisomerase II 

 Under the conditions of the DNA cleavage assays, no significant degradation 

of curcumin to vanillin, ferulic acid, or feruloylmethane was observed (not 

shown). However, because some of these compounds display biological activity 

(152), the effects of vanillin, ferulic acid, and feruloylmethane on topoisomerase 

IIα-mediated DNA cleavage were determined. As seen in Figure 31, none of the 

compounds increased levels of DNA scission in the absence or presence of 

K3Fe(CN)6. Therefore, curcumin fragmentation products do not appear to be 

interfacial or covalent topoisomerase II poisons. 

 

Oxidized Turmeric Is a Topoisomerase II Poison 

 Since curcumin generally is ingested in the form of turmeric (137, 138), 

the powdered spice was dissolved and assessed for its ability to stimulate DNA 

cleavage mediated by human topoisomerase IIα (Figure 32). In the absence of 

an oxidant, the spice had no significant effect on enzyme-mediated DNA 

scission. However, when K3Fe(CN)6 was included in reactions, turmeric 

stimulated DNA cleavage >4–fold at concentrations of 200-400 µg/mL. As  
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Figure 31. Effects of curcumin degradation products on topoisomerase II-mediated DNA 
cleavage. The effects of vanillin (left), ferulic acid (middle), or feruloylmethane (right) on the 
cleavage of negatively supercoiled plasmid DNA by human topoisomerase IIα were determined in 
the absence (open circles, – Oxidant) or presence (closed circles, + Oxidant) of 50 µM 
K3Fe(CN)6. Data for curcumin (dashed line from Figure 2) are included in the left panel for 
comparison. Error bars represent standard deviations for three independent experiments. 
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Figure 32. Effects of turmeric on topoisomerase II-mediated DNA cleavage. The effects of 
turmeric on the cleavage of negatively supercoiled plasmid DNA by human topoisomerase IIα 
were determined in the absence (open circles, – Oxidant) or presence (closed circles, + Oxidant) 
of 50 µM K3Fe(CN)6. The turmeric stock solution was determined to contain ~2.7% curcumin. On 
the basis of this concentration, DNA cleavage results for 5 and 25 µM oxidized curcumin 
intermediates (asterisks) are overlaid at the associated turmeric concentrations for comparison. 
Error bars represent standard deviations for three independent experiments. 
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determined by high-performance liquid chromatography, the turmeric solution 

contained ~2.7% curcumin. On the basis of this value, DNA cleavage data for 5 

and 25 µM curcumin [+K3Fe(CN)6] were overlaid for comparison (asterisks). As 

seen in Figure 32, there is a strong correlation between the activities of turmeric 

and curcumin. Therefore, even within the more complex spice formulation, 

oxidized curcumin appears to function as a topoisomerase II poison. 

 

Conclusions 

 Oxidized metabolites of curcumin, even in a solution of turmeric, are covalent 

poisons of human type II topoisomerases. In contrast, degradation products of 

the parent compound do not affect topoisomerase II-mediated DNA cleavage. 

 Curcumin displays a number of medically relevant biological properties, 

including antioxidant, anti-inflammatory, antibacterial, and chemopreventive 

activities (139-141, 144). The compound also is in cancer chemotherapy trials 

(142, 143). A number of chemopreventive natural products (including genistein 

and EGCG) and several highly successful anticancer drugs (including etoposide 

and doxorubicin) are potent topoisomerase II poisons (4, 7, 10, 14-18, 74). 

Coupled with the findings that 1) curcumin enhances DNA cleavage mediated by 

topoisomerase IIα and IIβ in cultured human cells and 2) cleavage enhancement 

is abrogated by antioxidant treatment (154), the above findings suggest that at 

least some of the anticancer activities of curcumin may be mediated by the 

effects of its oxidized metabolites on the type II topoisomerases. 
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CHAPTER V 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The Role of Drug-DNA Interactions in the Activity of m-AMSA 

 Amsacrine (m-AMSA) is an anticancer agent that displays activity against 

refractory acute leukemias as well as Hodgkin’s and non-Hodgkin’s lymphomas. 

The drug consists of an intercalative acridine moiety coupled to a 4’-amino-

methanesulfon-m-anisidide head group. Although m-AMSA was designed as a 

DNA binding agent, the ability to intercalate does not appear to be the sole 

determinant of drug activity. Therefore, to more fully analyze structure-function 

relationships and the role of DNA binding in the action of m-AMSA, several series 

of derivatives were analyzed for the ability to enhance DNA cleavage mediated 

by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. 

Results suggest that much of the activity and specificity of m-AMSA as a 

topoisomerase II poison is embodied in the head group, while DNA intercalation 

is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA 

cleavage complex. 

 As a result of these findings, it is postulated that new derivatives of m-

AMSA may be synthesized by transplanting the head group onto different 

intercalative moieties. In essence, each one of these could act as a unique 

“vessel” for bringing the enzyme-active head group to the enzyme-DNA interface. 

For example, efforts are underway to synthesize a hybrid of m-AMSA and 

ethidium bromide, the latter of which is a much stronger DNA intercalator than 
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acridine (Figure 33). This compound may provide a scaffold for developing more 

potent poisons of topoisomerase II with varying pharmacokinetics. 

 

Curcumin as a Topoisomerase II-Targeted Anticancer Agent 

 The polyphenol curcumin is the principal flavor and color component of the 

spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact 

human health and displays antioxidant, anti-inflammatory, antibacterial, and 

chemopreventive properties. It also is in clinical trials as an anticancer agent. In 

aqueous solution at physiological pH, curcumin undergoes spontaneous 

autoxidation that is enhanced by oxidizing agents. The reaction proceeds through 

a series of quinone methide and other reactive intermediates to form a final 

dioxygenated bicyclopentadione product. Results suggest that intermediates in 

the curcumin oxidation pathway are covalent topoisomerase II poisons while the 

parent compound and the stable final product have no effect on enzyme activity. 

Degradation products of curcumin (vanillin, ferulic acid, and feruloylmethane) are 

not topoisomerase II poisons. Finally, even in the complex turmeric formulation, 

oxidized curcumin intermediates appear to function as topoisomerase II poisons. 

 Further work is needed to identify the specific oxidative metabolite(s) of 

curcumin that is(are) responsible for poisoning topoisomerase II. A number of 

curcumin derivatives are being synthesized that will help to further characterize 

the oxidation pathway of curcumin. 
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Figure 33: Speculative hybrid of ethidium bromide and m-AMSA. The intercalative ethidium 
moiety is shaded in blue; the head group of m-AMSA is shaded in orange. 
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Natural Products as a Source For Novel Topoisomerase II Poison Discovery 

 Because of the work on curcumin presented in Chapter IV, other bioactive 

constituents of traditional Chinese medical herbs were considered as potential 

topoisomerase II poisons. Thymoquinone—an active component of the spice 

black cumin, or Nigella sativa seeds—has been studied for its anti-inflammatory 

and anticancer activities (158, 159).  

 As seen in Figure 34, thymoquinone is indeed a potent covalent 

topoisomerase II poison, as evidenced by its stimulation of enzyme-mediated 

DNA cleavage ~5–fold at a concentration of 50 µM and its sensitivity to the 

presence of the reducing agent DTT. Further structure-activity studies are 

underway to elucidate the effects of the alkyl side chains on drug activity.

 Another result of studies carried out on natural products is a collaboration 

that has developed between Dr. Osheroff’s laboratory and that of Dr. Avi Golan 

of Ben-Gurion University of the Negev in Israel. A number of desert plant extracts 

are being screened for topoisomerase II poison activity, and at least one 

significant hit has been identified (Figure 35). A solution of Phillyrea latifolia 

extract enhanced DNA cleavage mediated by the enzyme ~7.5–fold at a 

concentration of 200 µg/mL. Two of the extract’s most abundant, active 

components, oleuropein and hydroxytyrosol (160)—(both  of which are also quite 

abundant in olives) (161, 162), also had significant positive effects (~10– and 

~12.5–fold, respectively) on topoisomerase II-mediated DNA cleavage, each at a 

concentration of 200 µM. These levels of activity are comparable to that of the 

well-established anticancer drug etoposide at the same concentration.  
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Figure 34: Enhancement of topoisomerase IIα-mediated DNA cleavage by thymoquinone. The 
effects of thymoquinone on the cleavage of negatively supercoiled plasmid DNA by human 
topoisomerase IIα were determined. The inset shows the effect of DTT on DNA cleavage 
stimulated by thymoquinone. Error bars represent the standard deviation of three independent 
experiments. Courtesy of Rachel Hoffmann, Vanderbilt University. 
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Figure 35: Enhancement of topoisomerase IIα-mediated DNA cleavage by an extract solution of 
Phillyrea latifolia (P. lat.) and two of its most abundant constituent phytochemicals. The effects of 
200 µg/mL P. lat. extract (yellow bar), 200 µM oleuropein (green bar), and 200 µM hydroxytyrosol 
(red bar) on the cleavage of negatively supercoiled plasmid DNA by human topoisomerase IIα 
are compared to those of 200 µM etoposide (blue bar). Error bars represent the standard 
deviation of three independent experiments. Courtesy of Carl Sedgeman, Vanderbilt University. 
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Oleuropein and hydroxytyrosol will be further characterized as topoisomerase II 

poisons, and the search for more novel poisons of the enzyme will continue as 

more plant extracts are screened. 

 Clearly, natural products are a rich source of topoisomerase II poisons, 

and future discoveries of novel enzyme-targeted compounds will be impeded 

primarily by the sheer diversity of plants to screen. Traditional herbal medicine 

systems (Chinese, Ayurvedic, etc.) represent an excellent entry point to this 

search because practitioners of these institutions have collected a wealth of 

knowledge over the centuries concerning specific plants and their associated 

remedies. Until recently, this treasury of information has been largely 

inaccessible to Western medical science due to the scarcity of organized 

records. However, a contemporary study by Ehrman et al. (163) has taken an 

important step towards making this exciting frontier more tractable by analyzing 

the distribution patterns of 8411 compounds from 240 Chinese herbs. Highly 

distinctive patterns emerged linking specific herbs and spices and their uses in 

traditional Chinese medicine with the classes of phytochemicals they contain. As 

a whole, the study suggests that it may be worthwhile to consider links between 

ethnopharmacological and molecular data when probing these largely as-yet 

untapped resources of potential new therapeutic agents. I believe these 

associations will prove invaluable in the search for novel topoisomerase II-

targeted drugs. 
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