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ABSTRACT 

 

Diffusion tensor imaging (DTI) provides a unique approach to probing the microstructure 

of biological tissues noninvasively and DTI-based tractography is an irreplaceable tool to 

measure anatomical connectivity in human brain in vivo. However, due to the limitations 

of DTI techniques and tractography algorithms, tracked pathways might not be 

completely accurate. Thus, quantifying the agreement between DTI tractography and 

histological measurements of true fiber pathways is critical for progress in the field. A 

series of validation studies of DTI tractography is presented in this thesis, including (1) 

assessment of the relationship between DTI tractography-derived corticocortical 

connectivity and histological 'ground truth' on a regional and voxelwise basis; (2) 

localizing the divergence between DTI tractography and histology, followed by 

qualitative analysis of the reasons for those discrepancies. The work presented here is 

based on a non-human primate animal model, which has comparable parameters to 

magnetic resonance imaging (MRI) human data, and thus provides an important guide to 

interpreting the results of DTI-based tractography measures in the human brain.         
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CHAPTER I 

INTRODUCTION 

1.1 Objective and Specific Aims 

Diffusion tensor imaging (DTI) is a technique for non-invasive measurement of the 

structural connectivity of the brain. Like any other measuring technique, DTI has 

limitations in accuracy and precision. Therefore, it is necessary to validate the DTI 

technique as a measure of structural connectivity. The long term objective of this 

study is to investigate the relationship (i.e., agreement and discrepancy) between 

structural connectivity measured by DTI tractography and the 'ground truth' 

connectivity measured by anatomical procedures in an animal model. Two specific 

aims for this study are as follows:      

1. Quantify the correspondence between DTI tractography and histology derived 

connectivity.  

a. We quantify the correspondence of connectivity strength derived from DTI 

tractography (using both deterministic and probabilistic algorithms) and from 

an anatomical tracer across all cortical regions that have well-known 

connections to the primary motor cortex. We test the following hypotheses: 1) 

the number of DTI derived streamlines is proportional to the histological 

connectivity strength across functional regions; 2) DTI tractography is better 

able to reveal true inter-regional connectivity for those cortical regions with 
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stronger connections to the primary motor cortex. Measurements of weaker 

connections are less reliable.   

b. We quantitatively compare the DTI-tractography-derived streamline 

distribution (using both deterministic and probabilistic algorithms) on the 

white/grey matter interface with the histological fiber distribution within each 

specific cortical region that has well-known connections with the primary 

motor cortex. We test two hypotheses: 1) the number of DTI derived 

streamlines is proportional to the histological connectivity strength within a 

functional region; 2) DTI tractography is more likely to reveal the true fiber 

distribution within cortical regions with stronger connections to primary 

motor cortex.   

2. Localize and analyze the divergence between DTI tractography and histology 

derived connectivity.   

We first localize the voxels where DTI streamlines deviated from histological 

pathways (so called 'error' voxels) by superimposing 3D histological fiber 

pathways on the DTI-tractography-derived streamlines. Then we quantitatively 

analyze the underlying reasons (e.g., crossing fibers) for some 'error' voxel. We 

test the hypothesis that DTI tractography reconstructs the true fiber pathways in 

regions of parallel fibers with less fitting error, but is more likely to make errors 

in regions of crossing fibers. 
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1.2 Significance 

DTI tractography has become the one of most popular tools to investigate structural 

connections in the human brain because this technique obviates the invasiveness of 

traditional methods, the so called ‘gold standard’ of neuroanatomy. However, it is not 

clear to what extent DTI tractography can reveal true anatomical connectivity. A number 

of well-examined factors (e.g., signal to noise ratio, partial volume effects, imperfect 

tensor model and tractography algorithms) challenge the fidelity with which DTI 

tractography can accurately reveal anatomical structures, hence the agreement between 

tractography-derived and anatomical connectivity needs to be evaluated quantitatively. 

Moreover, further analysis of the possible reasons for disagreements between these two 

connectivity measures could help to understand better the limitations of DTI tractography. 

This, in turn, would help to improve interpretation of tractography results and optimize 

the employment of this technique in further studies of human brain connectivity.   
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CHAPTER II 

BACKGROUND 

2.1 Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is capable of noninvasively probing the microstructure of 

biological tissue [1]. It has been applied in a wide variety of studies on human brain in 

health and disease, including stroke [2], multiple sclerosis [3, 4], Alzheimer's disease [5, 

6], depression [7], schizophrenia [8] , autism [9] and normal brain development [10, 11].     

"Diffusion" in the term Diffusion Tensor Imaging refers to Brownian motion of water 

molecules. Assuming free diffusion, Einstein proved that the mean squared displacements 

of water molecules, 〈𝑟2〉, is directly proportional to the diffusion time, t, and self-

diffusion coefficient, 𝐷, [12], given by  

〈𝑟2〉 = 𝑛𝐷𝑡,                          (2.1-1) 

where 𝑛 is a numerical constant that depends on dimensionality (𝑛 = 2, 4, or 6, for 1, 2, 

or 3 dimensional diffusion). This random thermal motion of spins reduces the amplitude 

of the spin echo signal in the presence of a magnetic field inhomogeneity, an effect first 

observed by Hahn [13] and theoretically described by Carr, Purcell [14] and Bloch-

Torrey [15]. 

In diffusion imaging, it is the diffusion coefficient, 𝐷 , that is inferred from 

measurements of mean squared water displacement over a given diffusion time. If the 
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diffusing water molecules encounter any hindrances or restrictions along their random 

walk, the calculated diffusion coefficient (the so-called apparent diffusion coefficient, 

ADC) will be lower than the free diffusion coefficient.  

Stejskal and Tanner [16] developed the pulsed gradient spin-echo (PGSE) [16] 

sequence to measure the molecular diffusion coefficients directly and quantitatively. This 

pulse sequence is shown in Figure 2.1-1: the diffusion-encoding gradient is applied in 

two matched pulses (blue squares) with equal magnitude G and duration δ, placed on 

each side of the 180˚ RF pulse, with leading edges separated by an interval ∆.  

 

Figure 2.1-1. Timing diagram of a PGSE sequence. The bipolar diffusion pulses (blue 

squares) with magnitude G and duration δ, are placed on each side of the 180˚ refocusing 

pulse, with leading edges separated by an interval ∆. All other gradients required for 

imaging are ignored in this diagram.   

Employing the PGSE sequence with diffusion gradient applied along a single 

direction, the diffusion weighted (DW) signal, S1, is attenuated relative to the non-DW 

signal, 𝑆0, by a factor given by the exponential product of the diffusion weighting ‘b 

value’ and the ADC along that diffusion gradient direction, where b is given by 
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𝑏 = 𝛾2𝐺2𝛿2 (∆ −
𝛿

3
 ),                    (2.1-2)  

and 𝛾 is the gyromagnetic ratio. To characterize anisotropic diffusion in biological 

tissue, Basser et al. [1, 17] introduced a diffusion tensor model, defined by 

 𝑫 = |

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

|,                     (2.1-3) 

where Dxx, Dyy and Dzz correspond to diffusivities along three orthogonal axes, while 

Dxy, Dxz and Dyz correspond to the correlations between the displacements along the 

orthogonal axes. Given the tensor model, we have: 

𝑆𝑖 = 𝑆0𝑒−𝑏𝒈𝒊
𝑇𝑫𝒈𝒊 , with 𝑖 = 1,2, … , 𝑁,             (2.1-4) 

where gi is a unit vector representing the direction of the ith diffusion gradient, Si is the 

DW signal for that direction and 𝑁  is the total number of diffusion gradients. 

Diagonalizing 𝑫  yields three eigenvectors ( 𝒗1 , 𝒗𝟐 , 𝒗𝟑 ) and their corresponding 

eigenvalues (λ1, λ2, λ3; λ1≥λ 2≥λ3). The eigenvectors identify the symmetry axes of 

diffusion while the eigenvalues are the diffusion coefficients along the axes. Since water 

diffusion is anisotropically hindered by structural elements in organized tissue, especially 

by ordered fibers [18], the diffusion tensor serves as a sensitive probe of fiber orientation 

[19]. 

  

2.2 Tractography 

Diffusion imaging lays a foundation to reconstruct neural fiber pathways by tracking 
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fiber orientations inferred from the diffusion tensor. The reconstruction of fiber pathways 

based on diffusion imaging data is referred to as DTI tractography. Among the many 

tractography methods that have been developed [20-25], the deterministic streamline 

method, based on a single tensor model, and a Bayesian method with a multi-tensor 

model [26] are our focus because of their wide adoption in human brain research and 

implementation in mature software, such as DTIStudio (DS, http://mristudio.org/) and the 

FMRIB (Functional Magnetic Resonance Imaging of the Brain, Oxford, UK) software 

library (FSL, http://fmrib.ox.ac.uk/fsl/).  

The most intuitive way of reconstructing a 3D streamline from a field of single-

tensors is to propagate a line (so called 'streamline') from a seed point by following the 

primary eigenvector direction of the tensor as the local fiber orientation. The key point to 

achieve a smooth streamline is to propagate with a small step size (smaller than 1/3 pixel 

width or height) and move along the distance-averaged orientation within the local 

neighborhood, as shown in Figure 2.2-1. Such streamline propagation is terminated when 

the anisotropy falls below a threshold value or the propagation direction changes by too 

large an angle (the ‘bending’ angle) between steps. These stopping criteria are based on 

underlying assumptions that low anisotropy tends to be associated with high uncertainty 

in the primary diffusion direction and that a sharp turn between consecutive steps is more 

likely to be caused by erroneous measurement than fiber biophysics. The advantages of 

this simple approach to streamline tractography are conceptual straightforwardness and 

computational efficiency.  
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Figure 2.2-1. Schematic plot of the interpolation approach to performing tract 

propagation. The large blue arrows indicate the fiber orientations estimated from 

diffusion tensors. Each small black arrow shows the distance-weighted average of nearby 

orientations for one propagating step [27].  

Considering the uncertainty of fiber orientation estimation, Behrens et al. proposed a 

probabilistic method based on a multiple fiber model [25]. They used Bayesian 

estimation to fit the parameters of the multi-compartment model as follows: 

𝑆𝑖 = 𝑆0 ((1 − ∑ 𝑓𝑗
𝑁
𝑗=1 )𝑒−𝑏𝑑 + ∑ 𝑓𝑗

𝑁
𝑗=1 𝑒−𝑏𝑑𝒈𝒊

𝑇𝑹𝒋𝑨𝑹𝒋
𝑻𝒈𝒊)  (𝐴 = (

1 0 0
0 0 0
0 0 0

)),  (2.2-1) 

where d is the diffusivity, fj and RjARjT are the signal fraction and orientation of the jth 

fiber, and N is the maximum number of fibers. Instead of progressing along the most 

likely primary diffusion direction, sample streamlines are draw from posterior 

distributions on a set of diffusion directions, and each orientation, i, is chosen with a 

probability proportional to fj at each step. In a crossing fiber region, the tracking scheme 

will tend to maintain the previous orientation of the streamline, allowing the tracking of 

non-dominant pathways through the crossing regions.    

Compared to the deterministic streamline method, the Bayesian approach is better 
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able to handle partial volume effects, but is also much slower due to the large amount of 

sampling required. Therefore, both tractography approaches have become common  

research tools for in vivo studies of neural tissue morphology, pathway location, and 

other properties which directly relate to the neuropsychiatric/neurologic disorders [8], 

brain organization and development [10, 11].     

2.3 Measurement of Brain Structural Connectivity 

Structural connectivity of the human brain is the anatomical basis of brain function. 

Knowledge of structural connectivity is fundamental to understanding the organization of 

the brain and its response to disease and injury. The two major categories of connectivity 

measurements–anatomical measurement and DTI tractography-based measurement--are 

briefly described next.  

2.3.1 Anatomical measurement   

    Early experimental methods to reveal connectivity employed gross dissection [28] 

and bare neural degeneration procedures [29-31], which provided limited visibility for 

observing neural pathways and severe damage to the brain tissue. Contemporary 

experimental tracking relies on exploiting various neural tracers, which capitalize on 

cytoplasmic flow mediated specifically by the axoplasmic transport system [32], starting 

from horseradish peroxidase (HRP) [33, 34], lectins [35], toxins [36] and their conjugates 

[37], followed by fluorescent compounds [38, 39], dextrans and viruses [40]. Tracer 

methods provide much more connectivity detail, yet the whole acquisition process is 
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labor intensive and again, their highly invasive nature prevents their implementation for 

in vivo connectivity mapping.            

2.3.2 DTI tractography-based measurement 

DTI tractography overcomes the problem of invasiveness in brain mapping. In 1999, 

Xue et al. reconstructed eight well-known fiber bundles in the anesthetized rat brain 

using the Fiber Assignment by Continuous Tracking (FACT) algorithm [21], which was 

the first example of in vivo tractography using an animal model [41]. Catani et al. 

applied a streamline procedure to visualize major white matter fasciculi (e.g., the superior 

longitudinal fasciculus and inferior longitudinal fasciculus) within the living human brain 

[42]. However, those deterministic tractography-derived connectivity probes were 

assumed to provide limited accuracy and angular resolution in complex fiber structures 

(e.g., crossing, kissing, bending and merging fibers) within a voxel. To include the effect 

of uncertainty of fiber orientation estimation, probabilistic tractography strategies 

appeared and bloomed, and were applied to exploratory studies of connectivity. The 

Hagmann group first employed a statistical random-walk algorithm to reconstruct white 

matter density maps, which offered a measure of the probability that a given voxel 

connects with the white matter region of interest (ROI) [43]. Further progress was made 

on corticocortical mapping using DTI tractography approaches. Behrens et al. first 

qualitatively identified anatomical connections between human grey matter structures 

(i.e., thalamus and cortex) using a probabilistic tractography algorithm and moreover 

subdivided the human thalamus based on connectivity to predefined cortical targets [44]. 

Johansen-berg et al. performed a similar tractography analysis to derive connectivity 
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profiles for points along cortical ROIs and then used the changes in connectivity profiles 

to define functionally distinct regions, i.e., the supplementary motor area (SMA) and pre-

SMA [45]. A common assumption used in most connectivity research is that a greater 

number of calculated fibers or samples within one voxel (also termed higher density) 

indicates higher connectivity between the seed region and this voxel. 

    

2.4 Validation Studies 

Despite the promise of MRI-based connectivity measurements, a concern about the 

accuracy of DTI tractography is inevitable: to what extent does it reflect 'ground truth' 

anatomical connectivity? A number of well-known factors (e.g., signal to noise ratio [46] 

and partial volume effect [47]) may limit the reliability of DTI tractography [48]. For this 

reason, the agreement between tractography-derived and true anatomical connectivity 

needs to be fully evaluated. Existing in vivo or in vitro validation studies [49-51] mainly 

involve comparing tractography-derived pathways with the 'ground truth' white matter 

fiber tracts obtained by means of surgical dissection, histological tracer tracking and MR-

visible tracer tracking in different species, which will be discussed below.  

From averaged DTI data of 15 human subjects, Lawes et al. constructed a white 

matter atlas by assigning each individual streamline to a predefined-cortical-connected 

tract based on the location of the termination of this streamline and then qualitatively 

compared those tracts with corresponding dissected fasciculi. The observational result 

showed a close correspondence between tracts generated from the atlas and grossly 

dissected tracts [49].  
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Surgical dissection based validation could only assess tract correspondence on a 

relatively coarse scale. Histochemical procedures, conversely, allow more detail to be 

visualized. Burgel et al. used modified myelin stained histological sections of ten 

postmortem human brains to reconstruct 3D registered maps of the topography, course 

and intersubject variability of major fiber tracts in an MRI reference space [52]. Their 

purpose in making these microstructural maps was to evaluate DTI fiber bundles 

qualitatively, although they didn't perform any direct comparison in this study.  

As an alternative to non-selectively staining the myelinated fibers throughout a 

section of the brain, a number of neural tracers can be transported inside axons and thus 

used to investigate the connectivity of specific tracts. Dauguet et al. injected wheat germ 

agglutinin conjugated to horseradish peroxidase (WGA-HRP) into a cortical region of a 

macaque monkey and compared the WGA-HRP labeled white matter region with DTI 

streamlines in the MRI space [51]. In vivo diffusion weighted imaging (DWI) was 

performed on the same monkey and tractography was implemented using a standard 

hyperstreamline-based method [23] with the transformed WGA-HRP injection region as 

the seed region. The spatial similarity between histology and DTI tractography was 

defined by the Dice coefficient [53] and found to be high in their experiment.  

The paramagnetic manganese ion (Mn2+), a MR-visible tracer, can highlight many 

pathways because it shortens T1 and is transported in axons. Its use as a 'gold standard' is 

not established, as the specificity of the tracer needs further investigation [48], but a 

number of validation experiments on the basis of manganese tracing have been performed. 

Dyrby et al., validated probabilistic tractography against both histological and MR-
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visible tracers in three porcine brains [50]. Biotinylated dextran amine (BDA) and 

manganese chloride (MnCl2) were injected into the right somatosensory cortex (SC), the 

right prefrontal cortex (PFC), or left motor cortex (MC) separately in the three brains. 

The DWI images were acquired both in vivo and in vitro and the Probabilistic Index of 

Connectivity (PICo) algorithm [54] was used to track the fibers originating from injection 

sites. To measure the spatial agreement between white matter regions labeled by 

manganese and tractography, a so-called 'overlap fraction' (OF), the ratio of overlap 

between those two regions to the tractography-labeled region, was calculated. The OF for 

three tracts (i.e., corticocortical, corticothalamic and corticonigral tracts) ranged from 

0.59 to 0.98, which indicated the reliable detection of these pathways.  

In contrast to experiments performed at clinical spatial resolution (i.e., on the order of 

a mm), another validation study focused on a scale of tens of microns by comparing 

cellular-level diffusion tensor microscopy and histology [55]. Flint et al. used a prototype 

microsurface coil (Bruker Inc., [56, 57]) to perform DTI at a resolution of 15µm on 

excised pieces of rat/pig spinal cord and compared the FACT derived in-plane tract map 

to the corresponding Nissl-stain histology. The fiber overlap fraction in rat/pig tissue was 

high, between 84%-100%.        

Although the agreement between DTI tractography-based fiber bundles and the main 

course of corresponding white matter is encouraging, white matter projections to grey 

matter regions—corticocortical connectivity—presents more challenges to DTI 

tractography. In the study of Johansen-Berg et al., the human thalamus was parcellated 

based on the probability of connections (inferred from probabilistic diffusion 
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tractography [44]) to predefined cortical regions. Further, the volumes of the thalamic 

parcels were associated with histological volumes obtained from a cytoarchitectonic atlas 

[58]. The resulting associations were 0.71 and 0.70 for the two hemispheres respectively, 

which were interpreted as high correlations. Klein et al. explored the reproducibility, 

generalizability and validity of DTI tractography-based localization in four cortical areas 

(i.e. SMA, pre-SMA, Brodmann's area 44 and 45) across human subjects, timepoints as 

well as scanners, and validated results against fMRI and post-mortem cytoarchitectonic 

data [59]. The final reproducibility across modalities, clustering methods, scanners, 

timepoints, and subjects was in the order of 80-90%, which indicated that diffusion 

tractography can reproducibly parcellate the human cortex. Recently, Stephan et al. 

implemented a connectivity database – the 'Collation of Connectivity data on the 

Macaque brain' (CoCoMac, cocomac.org) which contains information on substantial 

parts of the corticocortical network [60]. Hagmann et al. employed the CoCoMac data to 

derive an anatomical connection matrix (composed of 'known present', 'unknown' and 

'known absent' entries) and compared this to a connectivity matrix derived from diffusion 

spectrum imaging (DSI) data. They found that 78.9% of all DSI fibers were identified in 

positions where connections had been identified and recorded in CoCoMac [61]. This is 

one of the few studies related to DSI corticocortical validation; however, its limits are 

obvious: 1) it only provided positive predictive value instead of correlation, due to the 

lack of detailed information (e.g., fiber density or distribution) on corticocortical 

connections in the CoCoMac database; 2) DSI is not feasible for clinical use currently.  

To the best of our knowledge, DTI-tractography-based corticocortical connectivity 
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has not been rigorously validated in previous work. Our first aim is to assess the accuracy 

of DTI tractography as a measure of corticocortical connectivity. Among the various 

available methods (i.e., gross dissection, histological tracers, MR-visible tracer and 

functional imaging) for obtaining 'gold standard' connectivity, histochemical tracers are 

preferable because of their fine-scale labeling (compared to gross dissection), proven 

specificity (compared to the MR-visible tracer) and direct visualization of tracts 

(compared to functional imaging). Among a number of histological tracers, BDA is a 

good choice because of its detailed labeling and bidirectional transport capability [62]. 

Since BDA-labeled fibers can only be investigated after sacrifice and post-processing, ex 

vivo DWI scans provide the best data acquisition strategy. Thus we will study histological 

and DTI tractography-derived corticocortical connectivity in an animal model ex vivo and 

quantitatively evaluate the histology-tractography association based on regional and 

voxelwise analyses.            

    Based on the results of previous validation studies, DTI tractography is not expected 

to be a perfect predictor of anatomical white matter pathways or corticocortical 

connectivity. Thus it is also important to quantify the disagreement between 

tractography-derived pathways and histological labels and to investigate the reasons (i.e. 

crossing fibers, bending fibers, model fitting errors, see [63] for review) for the 

disagreement. The second part of this work will emphasize the limitations of tractography, 

to improve our ability to anticipate tracking errors and improve tractography methods in a 

more effective way.   
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CHAPTER III 

VALIDATION OF DTI TRACTOGRAPHY-BASED MEASURES OF PRIMARY 

MOTOR AREA CONNECTIVITY 

3.1 Introduction 

Diffusion tensor imaging (DTI) is a noninvasive method to characterize the 

microstructure of biological tissue [1]. It is based on measurements of the mean squared 

displacement of water molecules along the predetermined directions, estimated from the 

signal decay in a pulsed gradient spin echo acquisition [16]. Water diffusion is 

anisotropic in many tissues, especially in fibers of tightly packed, parallel axons [18] in 

brain white matter. Hence, DTI serves as a sensitive probe of axonal fiber orientation [19]. 

Based on these concepts, white matter pathways can be reconstructed by tracking the 

inferred axonal orientations step by step (with voxel or subvoxel step size) from seed 

points. Deterministic tracking algorithms [20-24] construct a unique path from each seed 

point whereas probabilistic algorithms [25, 43, 54, 64, 65] generate multiple possible 

paths from each seed point. Both families of tractography algorithms have become 

valuable research tools for the in vivo study of neuronal tissue morphology, pathway 

location, and other properties which directly relate to neuropsychiatric/neurologic 

disorders [8], brain organization and development [10, 11]. 

 Among many potential applications of DTI tractography, mapping anatomical 
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connectivity [66] has attracted the attention of many neurologists, neuroscientists and 

psychiatrists, since knowing the network structure within and between brain regions is a 

fundamental prerequisite for understanding mechanisms behind brain functions and 

dysfunctions. Early experimental methods to reveal connectivity employed gross 

dissection [28] and neural degeneration procedures [29-31]. More recent experiments 

exploit neural tracers, which capitalize on cytoplasmic flow and the axoplasmic transport 

system [32]. Different tracers such as horseradish peroxidase (HRP), lectins, toxins and 

their conjugates, fluorescent dyes, dextrans and viruses (for review see [67]) have been 

used in countless investigations that have contributed valuable descriptions of 

connectivity in the mammalian brain. These very important studies, however, are highly 

invasive and require fixed, processed tissue for data analysis, preventing their use for in 

vivo connectivity mapping. The recently introduced manganese technique offers an 

opportunity to study neuronal connectivity in vivo by means of MRI [68], but the 

technique has several drawbacks that can reduce its applicability, the most important 

being the potential toxicity of the Mn2+ ions.              

DTI tractography overcomes the problem of invasiveness, but whether or to what 

extent it reveals true anatomical connectivity is unclear. A number of well-examined 

factors, e.g., signal to noise ratio [46] and partial volume effects [69], may degrade the 

fidelity with which tractography can represent the anatomical connectivity [48]. Hence, 

the agreement between tractography-derived and anatomical connectivity needs to be 

evaluated quantitatively. Previous in vivo or in vitro validation studies [49-51] mainly 

compare tractography-derived pathways with the 'ground truth' white matter fiber bundles 
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revealed using surgical dissection, neural tracer tracking or MR-visible tracer tracking in 

different animal models. They demonstrated general agreement in a number of specific 

bundles between tractography-derived pathways and the 'ground truth'. Besides the 

morphology of white matter pathways, there is increasing interest in measuring 

corticocortical connectivity using DTI tractography [66]. However, to the best of our 

knowledge, such measurements have not yet been rigorously validated.            

This chapter aims to assess the reliability/sensitivity/accuracy of DTI tractography as 

a measure of corticocortical connectivity. For this purpose, we studied histological and 

DTI tractography-derived corticocortical connectivity in an animal model and 

quantitatively evaluated the histology-tractography association based on regional and 

voxelwise analysis.            

  

3.2 Methods 

3.2.1 Data acquisition  

i) Tracer injection 

The experiment was carried out on a New World squirrel monkey which shares many 

functional organization and microstructural complexities with the human nervous system, 

although the cortical surface is less gyrated. The motor cortex, for example, is completely 

exposed on the brain surface, so it is easily accessible for electrical microstimulation and 

injection of tracers. Other advantages of New World monkeys are that the cortical 

connections of the primary motor cortex (M1) are well known from previous studies [70] 
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and their smaller brains reduce the time of histological processing and anatomical data 

analysis.  

Under general anesthesia using aseptic techniques, a bidirectional tracer, biotinylated 

dextran amine (BDA; Molecular Probes Inc., Eugene, OR) was injected (as a 10% 

solution in phosphate buffer) into left hemisphere M1. Pressure injections of BDA were 

carried out using a 2ul Hamilton syringe. Eight injections (1µl/site; indicated by the black 

squares in Figure 3.2-1) were made to cover a large M1 region representing the forearm 

and identified by intracortical microstimulation (see the stimulation sites labeled 'Fa' in 

Figure 3.2-1). After each injection, the needle was left in the brain for 5-10 minutes and 

then retracted stepwise to avoid leakage of the tracer along the needle track. Surgical, 

microstimulation and injection procedures have been described in detail elsewhere [70]. 

All used procedures were approved by the Vanderbilt University Animal Care and Use 

Committee, and followed National Institutes of Health guidelines.  

After surgery, the monkey was allowed to recover from the procedure, giving the 

tracer time to be transported along axons to all regions connected to M1.  
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Figure. 3.2-1. Functional map of the primary motor cortex used to guide BDA injections. 

Results of microstimulation mapping and BDA injection sites overlaid on the exposed 

lateral surface of the squirrel monkey brain. Cortical sites marked as white dots were 

stimulated by micro electrode, which evokes body movements of the anesthetized 

monkey. Letter(s) above each dot indicate the specific elicited movement(s) 

corresponding to this stimulation site. The number below each dot represents the current 

threshold (in units of µA) needed to evoke the movement. Thick dashed lines indicate 

approximate borders of M1, which were identified by the magnitude of threshold 

(thresholds lower than approximately 40 µA were used to infer the M1 region). Thin 

dashed lines indicate approximate borders between M1 body representation areas. Black 

squares show the BDA injection sites covering the forearm movement representation area. 

ii) Ex vivo MRI data acquisition 

One week after surgery, the monkey was given a lethal dose of barbiturate, and 

○ Stimulation sites:    

EB-eye blink, F-face 

W-wrist, Fa-forearm  

E-elbow, S-shoulder  

UT-upper trunk  

■ BDA injection site  
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perfused through the heart. All blood was rinsed out with physiological saline (0.9% 

NaCl) followed by fixative (4% paraformaldehyde). The brain was removed from the 

skull and stored in buffered saline overnight. The next day, the brain was scanned on a 

9.4 Tesla, 21cm bore Varian scanner (Varian Inc., Palo Alto, CA). First, T2-weighted 

structural images were acquired by running a standard gradient echo multi-slice (GEMS) 

sequence with full brain coverage (TR = 963ms, TE = 4ms, flip angle = 20˚, slice gap = 

0mm, voxel size = 300×300×300µm3, data matrix = 128×128×192, SNR ≈ 50). Then 

diffusion weighted imaging was performed using a pulsed gradient spin echo (PGSE) [16] 

multishot spinwarp imaging sequence with the same FOV as the structural images (TR = 

5.2s, TE = 26ms, number of diffusion gradient directions = 31, b = 0, 1200s/mm2, voxel 

size = 300×300×300µm3, data matrix = 128×128×192, number of acquisitions = 10, SNR 

≈ 25, scanning time ≈ 50hr). The b value used in this experiment was lower than is 

optimal for diffusion studies in fixed tissue [71], due to hardware limitations. A low b 

value decreases the available diffusion contrast-to-noise ratio (CNR) in the image data, 

which has the same effect as higher image noise. To compensate for this shortcoming, we 

extended the scan time to 50 hours, which yielded a CNR comparable to in vivo human 

studies (equivalent to an in vivo study with mean diffusivity = 0.7×10-3 mm2/s and SNR 

≈20).  

iii) Block/micrograph data acquisition 

Following MRI scanning, and before sectioning, the entire brain was placed in 30% 

sucrose for cryoprotection. Two days later the brain was cut serially on a microtome in a 

coronal plane to produce 50μm thick frozen sections. All sections were collected in the 
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phosphate buffer, but prior to cutting every third section (i.e., at 150μm intervals), the 

frozen tissue block was photographed using a Cannon digital camera (image 

resolution=50µm/pixel, image size=3330×4000pixels, number of images=286), rigidly 

mounted above the microtome to facilitate intermodality image registration (shown in 

figure 3.2-2B).  

 

 

 

  

 

 

 

Figure 3.2-2. Overview of anatomical section acquisition after the MRI scan. (A) The left 

lateral view of the extracted brain with the surface of the injection region outlined with a 

pink dashed ellipse. The brain was frozen and sectioned coronally as in (B) – a 

photograph of the block face with the injection region indicated by the pink dashed 

ellipse. Every sixth section was processed for BDA-the brown color shown in (C) – the 

BDA stained tissue section with the injection region indicated by the pink dashed ellipse. 

One series of sections was Nissl stained as shown in (D) to acquire cytoarchitectural 

information and another series of sections was stained for myelin in (E) to visualize all 

the axons.  

Sections were divided into six series. Every sixth thin section was processed for BDA 
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histochemistry [62], producing a series of 74 sections covering all regions connected to 

M1. These sections were photographed under 0.5X magnification using a Nikon 

DXM1200F digital camera mounted on a Nikon E-800 microscope (image 

resolution=7µm/pixel, image size=3840×3072 pixels), shown in figure 3.2-2C. More than 

one photograph was needed to cover the entire section. Those component photographs 

were merged into a panoramic micrograph using Adobe Photoshop CS3 (San Jose, CA) 

and the background of each panorama was extended to a net image size of 6660×6660 

pixels. The resulting stack of images defined a "standard micrograph space" which is the 

target space of all higher resolution microscopic data.  

One adjacent series of sections was stained for Nissl substance, shown in figure 3.2-

2D, to identify the cytoarchitectonic borders of M1 and other cortical regions connected 

to M1. Another adjacent series of sections was stained for myelinated fibers, shown in 

figure 3.2-2E, to visualize all the axons distributed throughout the white matter tissue. 

The remianing sections were used for other purposes.  

3.2.2 Data processing 

i) Micrograph-space to DTI-space registration 

High resolution micrograph (higher than 0.5X) were registered to the DTI space using 

a multi-step procedure, illustrated by figure 3.2-3. First, every high resolution BDA-

labeled micrograph was down-sampled (to 256×256 pixels) and registered to the 

corresponding low resolution micrograph (256×256 pixels) using a 2D rigid 

transformation. Second, every low resolution micrograph of BDA-labeled sections 

(256×256) was registered to the downsampled photograph of the corresponding tissue 
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block (256×256) using 2D affine transformation followed by 2D non-rigid transformation 

semi-automatically calculated via the Thin-Plate Spline algorithm [72]. Next, all the 

downsampled block micrographs were assembled into a block volume and all the non-

diffusion weighted MRI images were similarly stacked into a DTI volume. Then the 

block volume was registered to the DTI volume using a 3D affine transformation 

followed by 3D non-rigid transformation automatically calculated via the Adaptive Bases 

Algorithm [73]. The multi-step registration described here was very similar to the 

registration procedure validated in an early study [74], which showed that the accuracy of 

the overall registration was around one MRI voxel size (0.3mm). The deformation fields 

produced by all the above registration steps were saved in order to transfer other data 

acquired from the same micrograph space into DTI space. 

 

                             

Figure 3.2-3. Schematic overview of the registration strategy. The spatial transformation 

between the high resolution micrograph space and DTI space was calculated in multiple 

steps: high to low resolution micrograph, to tissue block and then to DTI volume.   

ii) Fiber and density distribution map (DDM) reconstruction  

Our ultimate goal in this part of the study was to reconstruct histological and DTI-

tractography-based fiber density distribution maps (DDMs) in DTI space and render them 

 High Resolution 

Micrograph Space 

Standard Micrograph 

Space 

DTI Space Frozen Block  

Space 

 

2D 2D 3D 
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on the white-grey matter (WGM) interface. Prior to calculating DDMs, we reconstructed 

the 3D WGM interface in DTI space: the T2w image volume was rigidly registered to the 

DTI volume; white matter was segmented using a variational level set approach [75] on 

the aligned T2w images; the 3D outline of white matter was extracted to generate triangle 

meshes representing the WGM interface. In addition, the BDA-injection region and 

different cortical projection regions were segmented manually in the standard micrograph 

space based on architecture revealed by Nissl-stained sections [70] and then transferred to 

DTI space.  

To resolve each individual BDA-labeled fiber, 4X micrographs (0.87µm/pixel) 

covering the WGM boundary were acquired using a Nikon D1R1 digital camera mounted 

on a Nikon MULTIZOOM AZ100M microscope. The BDA-labeled fibers were 

segmented by a series of morphological processes: top-hat filtering was performed to 

correct uneven illumination, global thresholding was applied to extract fibers, and a set of 

statistical properties (e.g., area of object, ratio of object perimeter to area, etc.) of each 

extracted object were calculated and used to remove the non-fiber objects. For each 

micrograph, we manually selected the points along the WGM boundary and fit these 

points to a curve with 6 pixels (~5µm) width to represent the histological WGM 

boundary. Segmented fibers that overlapped the fitted boundary were extracted 

automatically. The centroids of these overlapping fibers were rigidly transferred to the 

standard micrograph space, slice by slice.  

Next, the standard size micrograph (6660×6660 pixels) was divided into 256×256 

square units and the number of centroids in each unit area, ni,j (i,j = 1,2,…,256), was 
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determined. These ni,j values served as the intensity of the 2D DDM. The DDMs were 

transferred from micrograph space to block space then to DTI space using the 

deformation field associated with the registration procedure described earlier (see i) in 

section 3.2.2). Immediately following each spatial transformation step, the Jacobian 

matrix of the corresponding deformation field was calculated and then used to 

compensate the density change caused by the raw geometric transformation. Finally, to 

facilitate visualizing the density information in 3D, we mapped these grey-matter-

distributed densities onto the WGM interface in 3D DTI space. Thus, ideally, the value of 

a certain voxel on the WGM interface in 3D DTI space represented the number of BDA-

labeled fibers whose centroids were located on the WGM boundary in high resolution 

micrograph space.    

To identify the locations of BDA-labeled somas in the micrographic volume, we 

exhaustively plotted the centers of these somas and the outline of the brain tissue for each 

BDA-labeled section under the 6.3X objective of a Zeiss microscope equipped with the 

vector graphing software Igor Pro 2.0 (Wavemetrics, Inc., Lake Oswego, OR). Using 

Canvas 11 (ACD Systems, Victoria, British Columbia, Canada), each vector graph was 

converted to a bitmap image with resolution high enough to resolve any two adjacent 

soma markers. The bitmap image was rigidly aligned with the 0.5X micrograph of the 

corresponding BDA-labeled section by matching the outline of the brain tissue and then 

was cropped into a standard size image. Next, each labeled soma was segmented by 

simple thresholding and the centroid of the soma was extracted automatically; the 

procedures (including gridding, counting, and calculating, then transferring and 
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compensating the DDM) were similar to those for processing BDA-labeled fiber data. 

Finally, we mapped these grey-matter-distributed densities onto the WGM interface in 

3D DTI space: the density value of every grey matter voxel was added to the closest 

voxel (in 3D) located on the WGM interface. Thus, ideally, the value of each voxel at the 

interface was the sum of the number of BDA-labeled somas located vertically (i.e., 

normal to the surface) beyond this voxel. 

DTIStudio [76] software was used to perform tensor fitting and fiber tracking (using 

the FACT algorithm, [21]) over the whole brain (tensor fitting method: standard linear-

fitting; tracking parameters: start fractional anisotropy (FA) = 0.1, stop FA = 0.2 and stop 

angle = 70˚). Streamlines penetrating both of the following two ROIs were selected: (i) 

the BDA-injection region transferred from the micrograph space and (ii) the WGM 

interface just underneath (i). The above deterministic tracking scheme is referred to as the 

'DS' scheme below. The DDM for this tracking method was produced by counting the 

number of the streamlines passing through or terminating within the voxels at the WGM 

interface. In addition, the streamline terminals distributed within the cortical regions 

connected to M1 were also mapped onto the interface and then counted for each interface 

voxel to produce a DTI ‘streamline terminal’ DDM.  

Probabilistic fiber tracking were performed with FMRIB's Diffusion Toolbox (FDT) 

v2.0 from the commonly-used FMRIB's Software Library (FSL, http://fmrib.ox.ac.uk/fsl). 

First, the bedpostx command was run to calculate the distributions of diffusion 

parameters at each brain voxel using the Markov Chain Monte Carlo sampling method 

[25], with the automatic relevance determination (ARD) weight assigned to 1 (default) 

http://fmrib.ox.ac.uk/fsl
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and 0.5, respectively. The probtrackx command was used to generate probabilistic 

streamlines (using the following parameters: sample number=10000, curvature 

threshold=0.2, modified Euler streamlining=on, step length=0.1 mm and distance 

correction=on. The BDA-injection region was used as the seed mask, the WGM interface 

underneath the injection region as the waypoint mask and the grey matter mask 

(excluding the injection region) as the termination mask. These probabilistic tracking 

schemes are referred to as 'FSL1' (ARD weight=1) and 'FSL2' (ARD weight=0.5), 

respectively. The voxel value in the resulting dataset represents the number of streamline 

samples passing through this voxel times the expected length of these samples. The 

probabilistic-tractography-derived DDM was generated just by keeping the values of 

those voxels located at the WGM interface and setting the remaining voxels to zero. 

Again, the DDM were finally rendered on the WGM interface in 3D DTI space.   

Figure 3.2-4. Schematic workflow for production of density distribution maps (DDMs). 

The first row shows how the BDA-labeled fiber DDM was generated. The second and 
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third rows show how deterministic and probabilistic streamline DDMs, respectively, were 

created. The general processes for each step are shown in italics. The DDMs will be used 

for further analysis and comparison.   

3.2.3 Data analysis 

i) Connectivity Correlation Analysis 

When the number of DTI-tractography-derived streamlines was proposed as a 

measure of corticocortical connectivity [66], one of the hypotheses was that the number 

of streamlines is proportional to the number of axons connecting cortical regions. To 

test this hypothesis for inter-regional connectivity, the numbers of BDA-labeled fibers 

(𝑁𝐵) passing into cortical ROIs and the numbers of DTI streamlines (𝑁𝐷) going into the 

same ROIs were quantified. These data were fit to a linear model: 

𝑁𝐷 = 𝑎 + 𝑏𝑁𝐵 + 𝑒,                          (3.2-1) 

where 𝑎 and 𝑏 are, respectively, the estimated intercept and slope of the regression line, 

and 𝑒 is the error term. If 𝑎=0 lay within the 95% of confidence interval of the intercept, 

then the data were fit to a second tier linear model with intercept 𝑎 equal to zero: 

𝑁𝐷 = 𝑏′𝑁𝐵 + 𝑒′.                           (3.2-2) 

The Pearson’s correlation coefficient of the fit, 𝑟, was calculated to indicate the degree 

of correlation between tractography and histology fiber data.    

   To verify the hypothesis in the case of intra-regional connectivity, we calculated the 

Pearson's correlation coefficient, 𝑟𝑝, between tractography and histology fiber DDMs 

within each cortical projection region on a voxel-by-voxel basis:  
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𝑟𝑝 = ∑ (𝐵𝑖 − 𝐵̅)(𝐷𝑖 − 𝐷̅)/ {√∑ (𝐵𝑖 − 𝐵̅)2𝑛
𝑖=1 √∑ (𝐷𝑖 − 𝐷̅)2𝑛

𝑖=1 }𝑛
𝑖=1 ,       (3.2-3) 

where 𝐵𝑖  and 𝐷𝑖  are, respectively, the numbers of BDA-labeled fibers and DTI 

streamlines, distributed in the 𝑖 th voxel located at the WGM interface directly 

underneath this projection region, 𝑛 is the total number of these voxels, and the bar 

represents the mean.  

The original seed region covered the grey matter in the injection region, but it was 

found that DTI tractography was more effective when the seed region was intentionally 

extended one or two voxels into the white matter under the WGM interface. To examine 

the effect of extending the depth, 𝑑𝑤, of the seed region into the white matter, we 

calculated all the correlations using seed masks with 𝑑𝑤=0, 1 and 2 voxels (= 0, 0.3 and 

0.6mm).    

In addition, since obtaining the DDM of BDA-labeled somas was less time-

consuming, we studied the feasibility of using soma number to represent histological 

connectivity. We therefore calculated the relationship between numbers of BDA-labeled 

somas and BDA-labeled fibers across all projection regions. We also calculated the 

association between numbers of BDA-labeled somas and numbers of DS streamline-

terminals across all the projection regions.       

ii) Variability Analysis --Bootstrap  

Due to limited scanning time and the desire to acquire more diffusion directions 

instead of multiple repetitions of the same directions, only one single set of ex vivo DWI 

data was obtained during the two day scanning measurement. To estimate the variability 
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of density distribution of the DTI tractography-derived fibers, the residual bootstrap [77] 

and wild bootstrap were implemented for the basic single tensor model and ball-and-stick 

model [25, 26] respectively, because these two approaches are applicable to single 

acquisition DWI data and were reported to have small biases and overall errors compared 

to other resampling approaches [77].  

Basically, the residual bootstrap is a resampling technique applied to the linear 

regression model, where the regression residuals are assumed to have similar 

distributions and therefore can be freely resampled among them without stratification 

[77]. The details of the residual bootstrap procedure on the single tensor model are 

described as follows. 

The diffusion signal, 𝑆, in single tensor model is modeled by 

ln(𝑆(𝒈𝑖)) = ln(𝑆0) − 𝑏𝒈𝑖
𝑇𝑫𝒈𝑖, with 𝑖 = 1,2, … , 𝑁,            (3.2-4) 

which can be structured into linear regression form  

𝒚 = 𝑿𝜷 + 𝜀,                         (3.2-5)  

with 

𝒚 = [ln(𝑆(𝒈1)) , ln(𝑆(𝒈2)), … , ln(𝑆(𝒈𝑁))]𝑇, 

𝜷 = [𝐷𝑥𝑥 , 𝐷𝑦𝑦, 𝐷𝑧𝑧 , 𝐷𝑥𝑦, 𝐷𝑥𝑧 , 𝐷𝑦𝑧 , ln (𝑆0)]𝑇, 

design matrix  

𝑿 = −𝑏 [

𝑔1𝑥
2 𝑔1𝑦

2 𝑔1𝑧
2 2𝑔1𝑥𝑔1𝑦 2𝑔1𝑥𝑔1𝑧 2𝑔1𝑦𝑔1𝑧 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑔𝑁𝑥

2 𝑔𝑁𝑦
2 𝑔𝑁𝑧

2 2𝑔𝑁𝑥𝑔𝑁𝑦 2𝑔𝑁𝑥𝑔𝑁𝑧 2𝑔𝑁𝑦𝑔𝑁𝑧 1
], 

and error terms 𝜀 = [𝜀0, 𝜀1, … , 𝜀𝑁]𝑇. The weighted least squares (WLS) estimate of 𝜷 

was calculated by  
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𝜷̂ = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒚,                      (3.2-6) 

in which the weighting matrix 𝑾 = 𝑑𝑖𝑎𝑔(𝑺̂𝒈
2 ) . Here 𝑺̂𝒈  is the diffusion signal 

estimated by ordinary least square (OLS) fitting: 𝑺̂𝒈 = exp (𝐗(𝑿𝑇𝑿)−1𝑿𝑇𝒚). Then the 

WLS fitted log measurements 𝝁̂ = 𝑿𝜷̂ were used to compute the residual vector 𝒆 =

𝒚 − 𝝁̂. Each raw residual 𝑦𝑗 − 𝜇̂𝑗 was modified to have constant variance by 

𝑟𝑗 =
𝑦𝑗−𝜇̂𝑗

𝑤𝑗
−1 2⁄

(1−ℎ𝑗)1/2
,                      (3.2-7)  

where the weighting factor 𝑤𝑗 is the jth diagonal element of 𝑾 and the leverage value 

ℎ𝑗 is the diagonal element of the matrix 𝑯 given by 𝑯 = 𝑿(𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾. The final 

residual bootstrap resampling is defined by 

𝑦𝑗
∗ = 𝒙𝑗𝜷̂ + 𝑤𝑗

−1/2
𝜀𝑗

∗,                    (3.2-8) 

where 𝑦𝑗
∗ is 𝑗th element of resampled log measurements, 𝒙𝑗 is the jth row of 𝑿, and 

𝜀𝑗
∗ is randomly resampled with replacement from the set of centered modified residuals 

𝑟1 − 𝑟̅, 𝑟2 − 𝑟̅, …, 𝑟𝑁 − 𝑟̅.  

One bootstrap sample set 𝒚𝒋
∗ = [𝑦1

∗, 𝑦2
∗, … , 𝑦𝑁

∗ ]𝑇 led to one signal sample set 𝑺𝒋
∗ =

[𝑆1
∗, 𝑆2

∗ , … , 𝑆𝑁
∗ ]𝑇, with 

 𝑆𝑗
∗ = exp (𝑦𝑗

∗),                        (3.2-9) 

in the resampled DWI dataset.  

In our analysis of single tensor methods, 30 independent sets of resampled DWI 

signals were acquired using the above steps. Then those sample sets were used to 

calculate tensors, track fibers and then compute the density distribution of fibers using the 

tracking schemes described in the next section.  
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With regard to the ball-and-stick model, we specified two sticks in our experiments, 

so the model becomes:  

𝑆𝑖 = 𝑆0(1 − 𝑓1 − 𝑓2) exp(−𝑏𝑖 𝑑) + ∑ 𝑓𝑘exp (−𝑏𝑖𝑑𝒈𝑖
𝑇𝑹𝑘𝑨𝑹𝑘

𝑇𝒈𝑖)2
𝑘=1 ,     (3.2-10)  

where 𝑆𝑖 is the predicted signal, 𝑆0 is the non-diffusion-weighted signal, 𝑑 is the 

diffusivity, 𝑏𝑖 is the b-value applied along the diffusion gradient direction, 𝒈𝑖, and 𝑓𝑘  

and 𝑹𝑘𝑨𝑹𝑘
𝑇 are the fraction of signal contributed by and the anisotropic diffusion 

tensor along, the kth fiber orientation (𝜃𝑘 , 𝜑𝑘). The matrix 𝑨 = (
1 0 0
0 0 0
0 0 0

) and 𝑹𝑘 

rotates 𝑨 to (𝜃𝑘 , 𝜑𝑘).   

For this ball-and-stick model, we were able to obtain all the fitted parameters (i.e., 

𝑑, 𝜃𝑘 , 𝜑𝑘, 𝑓1, 𝑓2) from FSL, so we could calculate the residual along each diffusion 

gradient direction, change the sign of the residual randomly, and add the new residual 

back to the predicted signal. The new synthetic signals are the wild bootstrap samples 

from which we calculated the variability of correlation coefficients for FSL schemes.     

  

3.3 Results 

3.3.1 M1-connecting cortices 

BDA labeling originating from the forelimb representation area in the M1 cortex reveals 

somatotopically distributed connections with the ipsi-/contra-lateral supplementary motor 

areas (iSMA/cSMA); ipsi-/contra-lateral anterior cingulate cortex (iAC/cAC); ipsi-

/contra-lateral premotor cortex (iPM/cPM); ipsilateral M1 excluding the injection region 
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(iM1ex); contra-lateral M1 (cM1); ipsi-/contra-lateral anterior parietal cortex (iPA/cPA); 

ipsi-/contra-lateral posterior parietal cortex (iPP/cPP); anterior part of upper bank of ipsi-

lateral lateral sulcus—a combination of parietal ventral and rostral areas (iPVR); 

posterior part of upper bank of ipsi-/contra-lateral lateral sulcus—secondary 

somatosensory cortex (iS2/cS2). Labeling of ipsi-/contra-lateral prefrontal cortex 

(iPF/cPF) and contra-lateral PVR (cPVR) were not observed in this case. All the above 

listed regions served as our ROIs. The borders of these ROIs were identified based on 

their cytoarchitectural features seen in Nissl preparations [78]. Figure 3.3-4A shows those 

ROIs as well as the BDA injection region (IR) mapped on the WGM interface in the DTI 

space.  

3.3.2 Detection and counting of cross-interface BDA-labeled fibers 

Figure 3.3-1 illustrates the pipeline of semi-automatic detection of cross-interface BDA-

labeled fibers in the high resolution micrograph space. The WGM boundary (yellow 

curve shown in figure 3.3-1C) was estimated by fitting a series of manually-placed 

markers (red dots in figure 3.3-1B) on 4X micrographs covering a specific ROI (the blue 

frame in figure 3.3-1A shows the ROI location in the brain). Interface-crossing fibers 

(fibers with color contours shown in figure 3.3-1D) were detected automatically by 

performing an "AND" operation on the fiber and the boundary binary masks. Locations 

of the interface-crossing fibers were defined by the centroids of these fibers; meanwhile 

the number of interface-crossing fibers was counted (red numbers in figure 3.3-1D). It 

was verified that shifting the WGM boundary towards white matter or grey matter by 50 

pixels (~44µm) did not significantly change the number of interface-crossing fibers. The 
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deviation of semi-automated counting from manual counting as the "gold standard" was 

also studied. Four to five sections for each ROI were randomly drawn for verification. 

The deviations for all the ROIs were in the range of 3% -5%.      

 

Figure 3.3-1. Pipeline for detecting and counting interface-crossing BDA-labeled fibers.  

Acquired grayscale 4X micrograph (B) covering a specific ROI (iPM in this example), 

aligned to the corresponding 0.5X micrograph (A) in standard micrograph space. (B)  

shows manually placed markers (red dots) used to identify the WGM boundary. (C) 

shows the fit of the markers to a continuous curve (yellow). (D) shows segmented BDA-

tagged fibers (those with color contours) that touch the WGM boundary along with their 

numerical index (red numbers beside the fibers). 

3.3.3 Tensor fitting results 

The DWI data were fitted to single-tensors using DTIStudio. The primary diffusion 

direction and FA were calculated in each voxel. Figure 3.3-2 shows a color-coded map of 

primary diffusion direction and the FA scalar map of the same coronal slice.  
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Figure 3.3-2. Maps of color-coded primary diffusion direction (red = Right/Left, green = 

Anterior/Posterior, and blue = Superior/Inferior) and scalar FA value. (CC - corpus 

callosum, IC - internal capsule and AC - anterior commissure). 

3.3.4 Correlation of inter-ROI connectivity strength  

To test the hypothesis that the number of streamlines, 𝑁𝐷, connecting two cortical 

regions is proportional to the number of anatomical fibers, 𝑁𝐵, connecting those regions, 

we identified the number pair for connections between M1 and each ROI and plotted 

them in figure 3.3-3 as well as displayed them as connectivity backbones, shown in figure 

3.3-4. The number pairs lying on the horizontal axis (𝑁𝐷=0) and vertical axis (𝑁𝐵=0) in 

figure 3.3-3 reveal false negative and false positive connections, respectively. 

Approximately 75%-98% of streamlines reached the true positive ROIs for our nine 

predefined regions. By performing linear regression based on the model in Eq. 3.2-1 and 

calculating the 95% confidence interval for the intercept, we found that all nine 

confidence intervals included the origin. Therefore, we fit to the constrained linear model 

in Eq. 3.2-2 to generate the regression lines in figure 3.3-3. The Pearson’s correlation 

coefficient 𝑟  and corresponding 𝑝  value for each case are shown in Table 3.3-1. 

Because the data span many orders of magnitude, the Pearson’s correlation coefficient 

CC 

AC 

IC 
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(and corresponding 𝑝) is dominated by the largest values. For this reason, we also 

calculated the Spearman rank correlation coefficient, 𝑟𝑠, and corresponding 𝑝 value, 

which depends only on the relative rank of connection strengths measured by the two 

methods. The values of 𝑟𝑠 in Table 3.3-1 are quite low and do not reach statistical 

significance. To focus on the strongest connections, we chose the ten regions with the 

highest number of BDA-labeled fibers (i.e., number of BDA fibers > 100) and calculated 

the Spearman rank correlation coefficient, (𝑟𝑠)10, and corresponding 𝑝 value for this 

subset of the data.      

Comparison across the three tractography schemes with 𝑑𝑤= 0 or 0.3mm (distance of 

zero or one voxel from the WGM interface) indicates that the linear correlations for the 

two probabilistic schemes are significantly lower than those of the deterministic scheme. 

When 𝑑𝑤 = 0.6mm, however, the linear correlations for these three schemes are quite 

similar and deterministic tractography gave no false negative results. In addition, under 

any fixed 𝑑𝑤, the FSL1 and FSL2 schemes have similar 𝑟 value, but FSL2 has a 

smaller number of false negative ROIs than FSL1 does.      

The influence of 𝑑𝑤 on the three tractography schemes, shown in the rows of figure 

3.3-3A-C and first six rows of Table 3.3-1 are different. As 𝑑𝑤 increases, the number of 

false negative ROIs decreases except for the FSL2 scheme. For the FSL1 and FSL2 

schemes, as 𝑑𝑤 increases, the 𝑟 value increases significantly. For the DS scheme, the 

𝑟 value increases less strongly than for the FSL1 and FSL2 schemes.     

The proportional relation between the number of BDA-labeled somas and the number 

of streamline-terminals, shown in figure 3.3-3D and Table 3.3-1 row 7, is similar to the 
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relationship between BDA-labeled fibers and streamlines in figure 3.3-3A and Table 3.3-

1 row 1, except the number of false negative ROIs were more for the soma-terminals case. 

The proportional relationship between BDA-labeled soma and fibers, shown in figure 

3.3-3E and bottom 2 rows in Table 3.3-1, is statistically significant.  

Figure 3.3-4 shows the backbones of the BDA-labeled, DS and FSL2 derived inter-

regional connectivity. There are no edges connecting IR to iPF, cPF and cPVR shown in 

figure 3.3-4A but there are edges between IR to those regions in figure 3.3-4BC, which 

indicates iPF, cPF and cPVR are false positive regions detected by DS and FSL2 with 

𝑑𝑤=0.6mm.      
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Figure 3.3-3. Relationship between tractography-histology variables as well as histology-

histology variables: (A-C) shows tractography-derived streamline vs. BDA-tagged fiber 

data; (D) shows streamline terminals vs. BDA-tagged soma data; and (E) shows BDA-

tagged soma vs. BDA-tagged fiber data. DS (A and D), FSL1 (B) and FSL2 (C) schemes 

were used to obtain tractography-derived streamlines when 𝑑𝑤 is 0, 0.3 and 0.6mm. 

Proportional relationships were fitted based on least squares regression. The correlation 

coefficients with corresponding 𝑝 values of the regressions are listed in Table 3.3-1.  

 

     

Figure 3.3-4. Dorsal view of the inter-regional connectivity backbones. (A), (B) and (C) 

show the BDA-labeled fibers (the gold standard), DS and FSL2 derived (𝑑𝑤=0.6mm) 

connectivity backbones, respectively. Green and blue nodes indicate the center of mass of 

the injection and individual projection regions, respectively. The radius of each node is 

scaled by the square root of the volume of the corresponding region. The thickness of 

each edge represents the logarithmic connection strength and the color of the edge is 

coded according to connection weight (strength divided by volume of the projection 

region).  
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Table 3.3-1. Pearson’s correlation, r, and Spearman’s rank correlation, 𝑟𝑠 and (𝑟𝑠)10, 

coefficients with corresponding 𝑝 values of tractography-histology variables as well as 

histology-histology variables. Significant correlations are shown in bold. 

 𝒅𝒘 = 0mm 𝒅𝒘 = 0.3mm 𝒅𝒘 = 0.6mm 

BDA fibers vs. 

DS streamlines 
𝒓   =0.75 (𝒑<0.0005) 𝒓   =0.82 (𝒑<0.0001) 𝒓   =0.86 (𝒑<0.0001) 

𝑟𝑠   =0.30 (𝑝<0.24) 𝑟𝑠   =0.36 (𝑝<0.16) 𝑟𝑠   =0.45 (𝑝<0.07) 

(𝑟𝑠)10=0.44 (𝑝<0.21)  (𝑟𝑠)10=0.49 (𝑝<0.15) (𝒓𝒔)𝟏𝟎=0.67 (𝒑<0.035) 

BDA fibers vs. 

FSL1 streamlines 
𝑟   =0.33 (𝑝<0.10) 𝒓   =0.73 (𝒑<0.0008) 𝒓   =0.92 (𝒑<0.0001) 

𝑟𝑠   =0.23 (𝑝<0.38) 𝑟𝑠   =0.27 (𝑝<0.30) 𝑟𝑠   =0.29 (𝑝<0.26) 

(𝒓𝒔)𝟏𝟎=0.74 (𝒑<0.015) (𝒓𝒔)𝟏𝟎=0.86 (𝒑<0.0014) (𝒓𝒔)𝟏𝟎=0.89 (𝒑<0.0006) 

BDA fibers vs. 

FSL2 streamlines 
𝒓   =0.41 (𝒑<0.03) 𝒓    =0.75 (𝒑<0.0005) 𝒓   =0.92 (𝒑<0.0001) 

𝑟𝑠   =0.25 (𝑝<0.34) 𝑟𝑠   =0.35 (𝑝<0.17) 𝑟𝑠   =0.36 (𝑝<0.15) 

(𝑟𝑠)10=0.61 (𝑝<0.067) (𝒓𝒔)𝟏𝟎=0.66 (𝒑<0.044) (𝒓𝒔)𝟏𝟎=0.66 (𝒑<0.044) 

BDA soma vs. 

DS streamline-ends 
𝒓   =0.80 (𝒑<0.0001) 𝒓   =0.81 (𝒑<0.0001) 𝒓   =0.84 (𝒑<0.0001) 

𝑟𝑠   =0.19 (𝑝<0.47) 𝑟𝑠   =0.23 (𝑝<0.38) 𝑟𝑠   =0.23 (𝑝<0.37) 

(𝒓𝒔)𝟏𝟎=0.63 (𝒑<0.050) (𝒓𝒔)𝟏𝟎=0.63 (𝒑<0.050) (𝒓𝒔)𝟏𝟎=0.69 (𝒑<0.026) 

BDA fibers vs. 

BDA soma 
𝒓   = 0.97 (𝒑<1.0e-10) 

𝒓𝒔  = 0.95 (𝒑<4.5e-9) 

 

3.3.5 Correlation of spatial distributions of connectivity within ROIs 

To visualize the spatial distribution of BDA-labeled fibers (or somas) as well as DTI  

streamlines (or streamline-terminals) from the ROI scale down to the voxel scale, the 

density distribution of BDA somas, BDA interface-crossing fibers, DTI streamline-

terminals and DTI interface-crossing streamlines were rendered on the WGM interface in 

3D DTI space (figure 3.3-5). Comparison between figure 3.3-5B and figure 3.3-5C-E 

indicated that distribution patterns of BDA and DTI fibers (DS and FSL schemes) are 
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quite different. Likewise, comparison between figure 3.3-5F and figure 3.3-5G exhibits 

different distribution patterns of BDA somas and DTI streamline-terminals. Table 3.3-2 

lists the quantitative evaluation of the agreement: the Pearson's correlation coefficient, 𝑟𝑝, 

of anatomical and DTI derived distributions in each individual ROI. Overall, the 

significant linear correlations for all the ROIs were lower than 0.5. The FSL2 scheme 

provided stronger linear correlations than FSL1 did, but comparable correlations to the 

DS scheme for most of ROIs. The agreement in iPM is higher than the other projection 

regions due to higher sensitivity of DTI along this fiber pathway.  
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Figure 3.3-5. Dorsal view of 3D fiber density distribution maps (DDMs) rendering on the 

white-grey matter (WGM) interface. (A) shows territories of all the ROIs and the BDA 

injection region (upper-dorsal view; bottom-ventral view). (B) shows the BDA fiber 

DDM and (C-E) show respectively the streamline DDMs using DS, FSL1 and FSL2 

tractography schemes (in rows) with different 𝒅𝒘 (in columns). (F) shows BDA soma 

DDM and (G) shows streamline terminal DDMs with different 𝒅𝒘 (in columns). 

    We also investigated whether deeper seed regions could help to achieve better 

distribution accuracy by increasing the probability that streamlines could bypass crossing 

fibers directly underneath the WGM interface. Results for 𝑑𝑤=0, 0.3 and 0.6mm for each 

tractography scheme are shown in rows of Table 3.3-2. For the DS scheme, no significant 

trend in correlations with BDA connectivity was found as 𝑑𝑤  increased (p>0.99 in one-

way ANOVA test). For the FSL1 and FSL2 schemes, correlations for ipsilateral ROIs did 

not have statistically significant differences (p>0.75 and p>0.72) although they seemed to 

have subtle increasing trends as 𝑑𝑤  increased. No test was performed for contralateral 

ROIs, since the correlations were weak in those cases.
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Table 3.3-2. Pearson's correlation coefficients, 𝑟𝑝, (with p values) of histological and DTI tractography-derived distributions for all 

the projection regions. Significant correlations are shown in bold, and correlation results for tagged somas are shown in italics.  

  iAC iSMA iPM iM1 iPA iPP iPVR iS2 cAC cSMA cPM cM1 cPA cPP cPVR cS2 

𝒅
𝒘

=
 
0
 
m

m
 

 

BDA-DS fibers rp -.02 .01 .35 .22 .41 .18 -.00 .00 -.02 -.00 -.05 -.04 .22 .00 -.00 -.00 

p .64 .86 .00 .00 .00 . 00 1 1 .65 1 .26 .32 .00 1 1 1 

BDA-FSL1 fibers rp .00 .19 .39 .31 .12 .00 -.00 .00 .00 -.00 -.00 -.00 -.00 .00 .00 -.00 

p 1 .00 .00 .00 .00 1 1 1 1 1 1 1 1 1 1 1 

BDA-FSL2 fibers rp -.02 .24 .38 .34 .18 -.00 -.02 .00 -.01 .04 -.06 .01 .20 .00 .00 .02 

p .68 .00 .00 .00 .00 .94 .80 1 .79 .45 .14 .01 .00 1 1 .72 

BDA-DS somas rp .00 .07 .34 .24 .33 .37 -.00 .00 .00 -.00 .01 .07 .05 -.01 .00 .59 

p 1 .11 .00 .00 .00 .00 1 1 1 1 .89 .03 .09 .85 1 .00 

𝒅
𝒘

=
 
0

.3
m

m
 

 

BDA-DS fibers rp -.02 .02 .33 .22 .43 .18 -.02 -.04 -.02 -.04 -.04 -.07 .23 -.00 -.00 -.01 

p .64 .67 .00 .00 .00 .00 .77 .35 .66 .44 .29 .04 .00 .94 1 .80 

BDA-FSL1 fibers rp .00 .20 .43 .40 .15 .08 -.00 .00 -.01 -.00 -.00 -.00 -.00 .00 .00 -.00 

p 1 .00 .00 .00 .00 .19 1 1 .87 1 1 1 1 1 1 1 

BDA-FSL2 fibers rp -.03 .26 .43 .45 .20 .17 -.03 .00 -.01 .11 -.06 .04 .26 .00 .00 -.03 

p .58 .00 .00 .00 .00 .01 .67 1 .84 .02 .14 .28 .00 1 1 .55 

BDA-DS somas rp .00 .10 .34 .24 .31 .24 -.00 -.00 .00 -.02 -.00 .03 .10 -.01 .00 .41 

p 1 .04 .00 .00 .00 .00 1 1 1 .66 .95 .35 .00 .82 1 .00 

𝒅
𝒘

=
 
0
.6

 
m

m
 

 

BDA-DS fibers rp .09 .02 .36 .26 .41 .13 -.04 -.03 -.02 -.03 -.05 -.07 .23 -.01 -.00 -.02 

p .05 .69 .00 .00 .00 .04 .57 .56 .65 .47 .26 .04 .00 .91 1 .62 

BDA-FSL1 fibers rp .00 .22 .43 .44 .20 . 16 -.01 .00 -.01 -.00 -.00 -.00 -.00 .00 .00 -.00 

p 1 .00 .00 .00 .00 .01 .88 1 .87 1 1 1 1 1 1 1 

BDA-FSL2 fibers rp .01 .26 .45 .48 .21 .22 -.04 .00 -.01 .10 -.06 .05 .23 .00 .00 -.02 

p .83 .00 .00 .00 .00 .00 .57 1 .80 .03 .14 .13 .00 1 1 .60 

BDA-DS somas rp .00 .08 .41 .29 .30 .32 -.00 -.00 .00 -.02 -.01 .05 .11 -.02 .00 .16 

p 1 .09 .00 .00 .00 .00 1 1 1 .61 .86 .15 .00 .74 1 .00 
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3.3.5 Variability of inter-ROI connectivity correlations 

Table 3.3-3 gives the Pearson’s correlation (r) and Spearman’s rank correlation (𝑟𝑠 and 

(𝑟𝑠)10) coefficients (mean value ± one standard deviation) with corresponding 𝑝 values 

(mean value) of tractography-histology variables calculated from 30 DWI bootstrap 

samples. Figure 3.3-6 uses red markers to show the number pairs of bootstrap streamlines 

(mean and ± one standard deviation) and BDA-tagged fibers connecting to each one of 

the 17 projection regions for DS, FSL1 and FSL2 schemes with dw = 0, 1 and 2 voxels. 

Each red line indicates the fitting line of these number pairs. The black markers and lines 

indicate the number pairs and regression lines calculated from the original dataset, which 

are also shown in Figure 3.3-3. Figure 3.3-7 illustrates the number of streamlines 

connecting to each one of the 17 projection regions based on both bootstrap samples and 

the original dataset for DS, FSL1 and FSL2 schemes with dw = 0, 1 and 2 voxels. For the 

FSL1 and FSL2 cases in Figure 3.3-7, the number pair of bootstrap means vs. original 

number (indicated by red cross) for most of the projection regions fall close to the 

identity lines.    
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Table 3.3-3. Pearson’s correlation, r, and Spearman’s rank correlation, 𝑟𝑠 and (𝑟𝑠)10, 

coefficients (mean value ± one standard deviation) with corresponding 𝑝 values (mean 

value) of tractography-histology variables calculated from 30 DWI bootstrap samples. 

Significant correlations are shown in bold. 

 

𝒅𝒘 = 0mm 𝒅𝒘 = 0.3mm 𝒅𝒘 = 0.6mm 

 

BDA fibers vs. 

DS streamlines 

𝒓   =0.83±0.02 

𝒑 < 0.0005 

𝒓  =0.90±0.01 

𝒑 < 0.0001 

𝒓   =0.92±0.005 

𝒑 < 0.0001 

𝑟𝑠   =0.30±0.07 

𝑝 < 0.24 

𝑟𝑠  =0.37±0.08 

𝑝 < 0.16 

𝑟𝑠   =0.46±0.07 

𝑝 < 0.07 

(𝑟𝑠)10=0.61±0.10 

𝑝 < 0.21  

(𝑟𝑠)10=0.65±0.12 

𝑝 < 0.15 

(𝒓𝒔)𝟏𝟎=0.72±0.10 

𝒑 < 0.035 

 

BDA fibers vs. 

FSL1 streamlines 

𝑟   =0.37±0.04 

𝑝 < 0.10 
𝒓   =0.76±0.07 

𝒑 < 0.0008 

𝒓   = 0.92±0.04 

𝒑 < 0.0001 

𝑟𝑠  =0.23±0.07 

𝑝 < 0.38 

𝑟𝑠   =0.34±0.08 

𝑝 < 0.30 

𝑟𝑠   =0.38±0.06 

𝑝 < 0.26 

(𝒓𝒔)𝟏𝟎=0.74±0.06 

𝒑 < 0.015 

(𝒓𝒔)𝟏𝟎=0.86±0.08 

𝒑 < 0.0014 

(𝒓𝒔)𝟏𝟎=0.88±0.06 

𝒑 < 0.0006 

 

BDA fibers vs. 

FSL2 streamlines 

𝒓   =0.43±0.03 

𝒑 < 0.03 

𝒓   =0.79±0.06 

𝒑 < 0.0005 

𝒓   =0.92±0.01 

𝒑 < 0.0001 

𝑟𝑠   =0.26±0.03  

𝑝 < 0.34 

𝑟𝑠  =0.38±0.03 

𝑝 < 0.17 

𝑟𝑠   =0.40±0.04 

𝑝 < 0.15 

(𝑟𝑠)10=0.54±0.08 

𝑝 < 0.067 

(𝒓𝒔)𝟏𝟎=0.66±0.05 

𝒑 < 0.044 

(𝒓𝒔)𝟏𝟎=0.77±0.05 

𝒑 < 0.044 
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Figure 3.3-6. Bootstrap and original connectivity correlations between numbers of 

tractography-derived streamlines and numbers of BDA-tagged fibers across all the 

projection regions. The black markers in each plot indicate the original numbers pairs of 

tractography-BDA fibers connecting to the projection regions (as same as Figure 3.3-3). 

The black line in each plot indicates the least square fitting line calculated from the 

original number pairs. The red markers in each plot indicate the number of tractography-

derived streamlines [mean (red marker) ±standard deviations (red error bar)] calculated 

from 30 bootstrap samples. Each red fitting line was calculated from the number pairs of 

the mean of bootstrap streamlines and BDA fibers. 

dw= 0mm 
dw= 0.3mm dw= 0.6mm 
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Figure 3.3-7. Mean (with standard deviation) number of bootstrap-derived streamlines 

and scaled number of BDA-tagged fibers connected to each individual target projection 

region vs number of original streamlines connected to the same target region. The dash 

line indicates the identity line. The red crosses and associated error bars respectively 

indicate the mean and standard deviation of the number of bootstrap-derived streamlines 

terminating in a specific projection region. The blue circle indicates the scaled number of 

BDA-tagged fibers (i.e., number of BDA fibers scaled such that the highest BDA count 

matches the highest tractography fiber count). 

dw= 0mm dw= 0.3mm 
dw= 0.6mm 
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3.4 Discussion 

In this study, we evaluated the correlation of histology- and tractography- derived 

connectivity between M1 and 17 other cortical regions. In each case, histology and 

tractography density maps were compared both between (Figures 3.3-2 and 3.3-3) and 

within (Table 3.3-2, Figure 3.3-4) regions. To the best of our knowledge, this is the first 

work to make direct comparisons of corticocortical connectivity derived from histology 

and DTI tractography. 

Our results show that DTI tractography was capable of detecting all the cortical 

regions anatomically connected to M1 area (as in the DS scheme with 𝑑𝑤=0.6mm), but 

also produced false positive connections to other regions (all schemes). In addition, the 

correlation of inter- and intra- ROI connection strengths indicates that the tractography 

schemes we used do not have uniform sensitivity to anatomical connections, either across 

all ROIs or within a single ROI. Statistical analysis of Table 3.3-1 and visual inspection 

of Figure 3.3-2 support the conclusion that DTI tractography reliably identifies the 

regions with highest connectivity to M1. The Pearson correlation 𝑟 (p < 0.0001) was 

highly significant for all schemes with dw = 0.6mm in Table 3.3-1, however this measure 

emphasizes the strongest connections. When regions with weaker M1 connectivity are 

included in the Spearman correlation test, DTI tractography is not able to determine the 

rank order reliably (non-significant Spearman rs for all schemes and seed depths). When 

the test is repeated with only the 10 regions most strongly connected to M1 included, the 

Spearman (𝑟𝑠)10 is highly significant. Hence, DTI tractography was not reliable in 

ranking the regions with weaker connectivity (i.e., number of BDA-labeled fibers smaller 
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than 100). 

The two tractography algorithms used in the study were not compared in a rigorously 

equivalent manner. For example, the seed volume for DTIStudio was the entire brain 

whereas FSL was seeded only in the injection region. These seeding strategies were 

chosen to match the way the algorithms are generally used, in practice. Our aim was less 

to make a head-to-head comparison of the two methods and more to assess the accuracy 

of DTI tractography as usually practiced. 

The standard deviations of the connectivity correlations based on bootstrap samples 

in Table 3.3-3 indicate that the variability of the correlations is increasingly small as dw 

increases. However, comparison of the bootstrap-derived mean correlations in Table 3.3-

3 with the original correlations in Table 3.3-1 reveals that the bootstrap-derived mean 

correlation coefficients were biased relative to the correlation coefficients computed from 

the original DWI data for some cases, especially for the DS cases. Moreover, from Figure 

3.3-6 and Figure 3.3-7, we found that in the case of DS, most of the projection regions 

with strong histological connections to M1 have fewer bootstrap streamlines than the 

original streamlines and yet the decrease of bootstrap streamlines connecting to iPA 

cortex (the strongest histological connection to M1) increases the correlation coefficients. 

On the other hand, for FSL, the numbers of bootstrap streamlines connecting to the 17 

projection regions do not have a significantly coherent change compared to the numbers 

of original streamlines, which keeps the bootstrap-based correlations consistent with 

original ones. Why then does the bootstrap for DS schemes decrease the number of 

streamlines? To find the answer, we listed the number of streamlines originating from the 
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IS and terminating in all target cortices, the average length of those streamlines, as well 

as the mean number of streamlines per voxel. These quantities were calculated from both 

original and bootstrap datasets for DS cases, as shown in Table 3.4-1. We found 

decreases in all three indices in DS bootstrap samples relative to the original (measured) 

data. The decreases occur mostly because the bootstrap-derived tensor orientations along 

the tracts were less coherent, as indicated by Figure 3.4-1AB, which implies that turning 

angles along the tract became larger so that streamlines stop faster than fibers calculated 

from the original data indicated by Figure 3.4-1CD. A possible underlying reason for 

greater noise in the bootstrap samples for DS cases is that the bootstraps overestimate the 

residuals, especially for the voxels with low FA, because the residuals also include the 

model errors from single-tensor estimation (see Figure 3.4-2). 

Table 3.4-1. Number of selected streamlines, average length of selected streamlines and 

mean number of streamlines per voxel calculated from originally acquired DWI data and 

residual bootstrap DWI samples.    

 Number of 

Streamlines 

Original  Bootstrap 

Average Length of 

Streamlines (mm) 

Original  Bootstrap  

Mean Number of 

Streamlines/Voxel 

Original  Bootstrap 

DS dw=0 7587 5262±92 14.6 8.2±0.2 15.9 9.6±0.4 

dw=1 9516 6379±132 17.6 9.2±0.3 18.2 10.5±0.4 

dw=2 11219 7532±154 19.0 9.9±0.4 19.0 11.0±0.4 
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Figure 3.4-1. Color-coded maps of the primary eigenvector and DS streamlines 

calculated from the original DWI dataset and one bootstrap sample dataset. The color-

coded map of primary eigenvectors (A) based on original DWI dataset shows smoother 

change of color than the color-coded map (B) based on the bootstrap dataset. The 

selected fibers (C) calculated from the original DWI dataset are greater in number and 

length than the fibers (D) calculated from bootstrap dataset. This relation is clearly 

observed in the red, yellow and orange circles.      

 

    

Figure 3.4-2. Mean square error (MSE), FA scalar map and MSE vs. FA plot for the same 

coronal slice extracted from one bootstrap sample dataset.  

The proportional relationship between the BDA-labeled somas and BDA-labeled 

fibers across all the ROIs was significant in our study, due to the reciprocal nature (i.e., 

the number of afferent nerve fibers is comparable to the number of efferent nerve fibers) 

of motor cortex cortical connections. However, other networks may not have reciprocal 

connections, and therefore the utility of BDA-labeled somas in validation studies is 

A B 

C D 
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probably limited.  

The tracer BDA was used in this study because it is transported in both anterograde 

and retrograde directions, labeling both afferent and efferent projections of the injected 

cortical region, which is analogous to the propagation of DTI streamlines from the seed 

region. Moreover, since BDA (in contrast to WGA-HRP [79]) does not diffuse much in 

brain tissue, the injected tracer was confined to the forearm M1 representation area. Most 

importantly, BDA provides highly sensitive and exquisitely detailed Golgi-like labeling 

of somas, axons and terminals [62], which better facilitates quantitative analysis of 

individual fibers than WGA-HRP does.      

 There are several limitations to the study. First, only connections to the forearm 

region of M1 were quantified—measurements of the accuracy of DTI connectivity to this 

region may not generalize to other areas in M1 or to other cortical networks. Second, 

BDA was injected at approximately 1mm intervals covering the forearm region (Figure 

3.2-1). This interval was chosen because the tracer spreads in the tissue about 0.5mm 

from the needle location and the goal was to tag all axons in the region. However, it is 

possible that uptake of the tracer was not uniform over the forearm area while the 

distribution of tractography seed points was uniform. Hence, it is possible that the BDA 

and seed point distributions were not identical in the injection region, which could bias 

the results toward those locations within the region where BDA uptake was higher. In 

addition, in the radial direction, the BDA injection was not strictly confined to gray 

matter, but extended slightly into the white matter immediately underneath the cortex, 

which means that fibers of passage underneath the injected cortex may have taken up 
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BDA as well. Seed regions that extended one or two voxels (dw = 0.3 and 0.6mm) into 

the subcortical white matter helped to match the injection volume. Third, imperfect 

micrograph-to-DTI spatial registration may introduce bias in DDMs. Although the 

overall error in our registration procedure was likely on the order of 1 voxel (=0.3mm) 

[74], the local error close to the GWM-interface was more difficult to control and 

estimate because there were fewer apparent features to be captured as landmarks. Fourth, 

the MRI acquisition had limited SNR (~30) and number of diffusion directions (n=31), 

which likely affected sensitivity to small fiber components. However, these are typical 

parameters for many DTI experiments, including in vivo human studies. Finally, this 

study used two approaches to tractography (deterministic and probabilistic), implemented 

in two of the most commonly used analysis packages (DTIStudio and FSL). However, 

the results may not apply to other algorithms. The framework for comparison to histology 

used in this study could be applied to other algorithms.    

Probabilistic tractography schemes were expected to provide stronger correlations 

than deterministic tractography due to higher sensitivity to the non-dominant pathways 

where fibers cross. However, our results show no significant difference in correlations 

between these methods. This might be due to the limitations of our DWI acquisition, 

since 32 diffusion directions only allow FSL to resolve crossing angles more than 60˚ 

within a voxel [26]. Additionally, due to partial volume averaging, the termination mask 

used in FSL tended to stop some streamlines which otherwise would travel along the 

WGM interface and then stop at locations father away from seed mask. This phenomenon 

is shown as a ‘hot color’ ring surrounding the injection region in the Fig. 3.3-5D and E.     

The results of this study show that connectivity measured by DTI tractography is 
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strongly correlated with anatomical connectivity when measured on the scale of major 

cortical regions (Figure 3.3-3). At a finer scale (i.e., within regions), the DTI DDMs are 

somewhat less reliable (Table 3.3-2). This implies that as cortical parcels are subdivided 

to achieve higher resolution in connectivity maps, the reliability of those maps may 

decrease dramatically, due to inaccuracies in streamline terminal location. Our results 

suggest that interference from strongly anisotropic bundles that cross pathways of interest 

tends to bias DTI connectivity measurements. Such bias would likely be consistent across 

repeated scans and across individuals, if the fiber geometry was consistent. Hence, 

reproducibility of DTI connectivity measurements is not, in and of itself, an indication of 

reliability. More accurate connectivity measurements will rely on detection of fibers that 

comprise a small minority of the total fiber population within a voxel. This may be 

possible with High Angular Resolution Diffusion Imaging (HARDI) methods, although 

the sensitivity of HARDI to small fiber populations has not been studied extensively. 

Improvements in modeling fiber orientation distributions and tracking fibers of interest 

through ambiguous crossing regions will be critical to increasing the accuracy of 

diffusion MRI measurements of cortical connectivity.    

Finally, the squirrel monkey replicates much of the macroscopic structure of the 

human nervous system, yet it is possible that the human brain has more complex 

microstructure. Thus we need to be cautious when interpreting the accuracy of DTI 

measurements in human brain data given only the monkey’s validation results.     
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3.5 Conclusion 

DTI tractography is capable of providing true positive connectivity for most or all 

cortical regions with anatomical connections to M1 in the squirrel monkey, but may also 

produce false positive connections. Deterministic tractography can provide inter-regional 

connectivity measures as accurate as probabilistic tractography under some situations. 

However, DTI tractography is not uniformly sensitive to connection strength either across 

or within connecting to regions.  
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CHAPTER IV 

CAUSES OF DISAGREEMENT BETWEEN DTI TRACTOGRAPHY AND 

MICROSCOPY 

4.1 Introduction 

Diffusion tensor imaging (DTI) is a popular tool for non-invasive assessment of structural 

connectivity of the human brain. However, the accuracy of connectivity measurements 

based on DTI techniques has not been thoroughly investigated. In chapter III, the 

corticocortical connectivity measured by DTI tractography was compared to the 

connectivity traced by traditional histology methods – the current ‘gold standard’. 

Although a basic level of agreement was found in our study, disagreements with the true 

connectivity were expected and found for both deterministic and probabilistic methods. 

To further understand and interpret these results, we did experiments to reveal the 

correspondence between DTI tractography-derived white matter pathways and the 

anatomical pathways, since it is the white matter that connects one cortical area to 

another. The deviations were localized by comparing the two sets of pathways. Potential 

causes of the deviations were investigated by comparing the primary direction of the 

tensor to the high resolution anatomical fibers within the same ‘error’ voxel. The key step 

to extend 2D analysis on anatomical data to 3D is to obtain 3D histological fiber 

orientation distribution (hFOD) data, thus we obtained z-stack micrographs of anatomical 
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sections and developed a framework to extract 3D hFOD information.     

  

4.2 Methods 

The original anatomical tissue sections and diffusion-weighted images were the same 

data acquired in part 3.2.1. The multi-step registration process from standard micrograph 

space (0.5X) to the DTI space was described in part 3.2.2 and the stored deformation file 

was used to transfer data from one space to another.       

4.2.1 Overlaying anatomical white matter pathways in DTI space 

To find voxels where the DTI streamlines deviate from anatomical pathways, we need to 

compare DTI and anatomical pathways in the same space. For this reason, we 

reconstructed the BDA-labeled fiber pathways in DTI space and overlaid the DTI 

streamline pathways on the BDA-labeled pathways, which are described below. 

To obtain BDA-labeled fiber pathways, 1.25X (the minimum magnification required 

to distinguish two adjacent BDA fibers) panoramic micrographs covering the entire tissue 

section were acquired for all the BDA-visible sections. Each component micrograph was 

taken by a Nikon DS-Ri1 color camera mounted on a Nikon AZ100M widefield 

microscope. The commercial software Adobe Photoshop CS3 (San Jose, CA) was used to 

merge the component photographs into a panoramic micrograph. Then we registered each 

1.25X panoramic photo to its corresponding microphotograph in ‘standard micrograph 

space’ (0.5X, see more detail in part 3.2.1).   

Because BDA-labeled fibers and grey matter did not present enough distinct features 
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for the fiber segmentation algorithm to detect, the whole white matter area in each 

registered micrograph was manually extracted first, to prevent the fiber segmentation 

algorithm from failing to distinguish BDA-labeled fibers from grey matter. Then, all the 

fibers were segmented by a series of morphological processes. We then divided each 

micrograph into 256×256 square grids, calculated the number of fiber-occupied-voxels in 

each square and generated 'fiber volume maps' whose voxel values represented the fiber 

occupied volume fraction within that voxel. Spatial transformation and compensation 

were calculated as in part 3.2.2. The final step was to extract isosurfaces from volume 

maps and reconstruct the tubular surface delineating the BDA-labeled fiber pathways.   

We used the same scheme to obtain deterministic and probabilistic tractography 

results as described in part 3.2.2. For the ‘DS’ scheme, continuous 3D coordinates of 

fibers produced by DTIStudio were used to reconstruct explicit fiber pathways. The fiber 

density of each voxel was defined by the number of fibers passing through or ending 

within that voxel. For ‘FSL’ (i.e., FSL1 and FSL2) schemes, we obtained the 3D fiber 

density map instead of the explicit fiber pathways, which is the direct output of FSL tool 

‘probtrackx’. Then we reconstructed isosurfaces of the density maps to help visualizing 

the fiber-occupied pathways.     

To indicate the general agreement between DTI tractography-derived and anatomical 

white matter pathway, we calculated the agreement coefficient (𝐴𝐶) given by, 

 𝐴𝐶 =
2(VB∩VD)

VB+VD
,                          (4.2-1) 

where VB(or VD) is the density-weighted BDA (or DTI) volume. The densities were the 

normalized fiber densities calculated from ‘DS’ scheme or ‘FSL’ schemes. This density-



 

 61 

weighted agreement coefficient provides a more realistic estimate of agreement than a 

simple measurement of volume overlap [51]. 

For deterministic streamlines, we were able to determine the spatial coordinates for 

each streamline; thus we could localize the 'error' voxel by judging whether the 

coordinates along an individual fiber lie outside the BDA-labeled fiber pathways. For 

probabilistic streamlines, we only had density maps from FSL instead of fiber 

coordinates, so we needed to find the 'error' voxel by searching the voxels outside the 

BDA fiber pathways that had significant FSL density values.      

4.2.2 Overlaying DTI output in high resolution microscopy space 

To visualize more details than just isosurfaces of the DTI-derived and anatomical fiber 

pathways, we transferred DTI related information to the high resolution microscopy 

space and compared them with the anatomical information in the microscopy space.  

The continuous coordinates of the fibers calculated by DTIStudio were transferred 

to standard micrograph space using the stored inverse deformation files computed by our 

multi-step registration process. A 3D fiber segment was assigned to a certain 2D 

anatomical micrograph if the fiber segment was closest to this section.  

DTI tensors were fitted by DTIStudio and the locations of the tensors were 

transferred to block face space and then to the standard micrograph space also using the 

inverse deformation files computed before. Additionally, the orientations of the tensors in 

micrograph space were recalculated using the Preservation of Principal Direction (PPD) 

[80] method. Finally, the isosurfaces of those reoriented tensors were rendered and 
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overlaid on the high resolution micrograph.      

4.2.3 Analysis of crossing fibers in 'error' voxels 

DTI is sensitive to all fibers lying in a voxel while BDA only labeled the fibers 

connecting to M1, which means BDA labeled fibers in one voxel might be the subset of 

the DTI-detected fibers. Therefore, we chose a non-selective labeling method, i.e., a 

myelin stain, to tag all the anatomical fibers for the purpose of white matter comparison.  

Confocal microscopy was used to provide 3D histological information by scanning 

the confocal plane from bottom to top of the myelin-stained section (z-direction) and then 

capturing micrographs of different fields of view in the confocal planes (x-y plane). 

Three dimensional histological fiber orientation distribution (hFOD) functions for each 

DTI voxel were exacted from the z-stacks as follows.  

Two optional methods were tried in order to obtain more accurate hFODs. The 

preprocessing steps (i.e., denoising, intensity normalization, deconvolution [81], 

segmentation and spur removal) for those two methods were the same. One method 

included the following steps: 1) repeatedly thinning the segmented fibers until the fiber 

skeletons were obtained; 2) detecting all the crossing points of the skeletons; 3) for 

skeletons without any crossing points, extracting the coordinates of the center of all the 

skeleton voxels for each fiber and then fitting those coordinates to a smooth curve; 4) for 

the skeleton with crossing point(s), dividing this skeleton into sub-skeletons using the 

crossing point as the cutoff point, and then fitting each sub-skeleton into a curve as in 

step 3); 5) estimating the 3D angle for each fitted curve and then adding up the number of 

voxels in fiber segments of the same orientation—this is interpreted as the value of the 
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distribution at that orientation and voxel (we should notice that the calculated 3D angles 

are continuous variables with some uncertainty, so we divided the azimuthal angle range 

of 360° into 36 bins and the polar angle range of 180° into 36 bins to hold the 

orientations); 6) plotting the discrete hFOD.  

The other optional method employed a 3D extension of the 2D Fourier directional 

filtering method [82, 83] and included the following steps: 1) converting the segmented 

data to the frequency domain by performing 3D Fourier transformation; 2) in the 

frequency domain, employing, respectively, a set of 3D directional filters with different 

angular orientations uniformly distributed on the unit sphere; 3) performing inverse 

Fourier transformation to each filtered image and summing up the number of voxels 

above the assigned threshold; 4) plotting the hFOD.   

 To compare the diffusion tensor to the hFOD in the same space, the tensor 

corresponding to each position in the micrograph space was calculated using partial 

volume interpolation of the original DW images. In order to preserve the tensor 

orientation in the micrograph space after registration, the tensor was rotated using the 

preservation of principal directions reorientation strategy [80]. 

 

4.3 Results 

4.3.1 Correspondence of white matter pathways in DTI space 

Figure 4.3-1 displays the volume of BDA-labeled fibers overlaid respectively on the DS 

fibers (first row of figure 4.3-1) and the volume occupied by FSL fibers (last two rows of 
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figure 4.3-1) with 𝑑𝑤 = 0mm, 0.3mm and 0.6mm, rendered within the external surface 

of the grey matter (glassy blue surface) to provide an anatomical reference. The 

superimposition of BDA pathways and tractography-derived pathways provides a visual 

overview of the correspondence of the two pathways in white matter. False negative 

results of DTI measurements are those voxels occupied only by BDA-labeled fibers (red 

color in figure 4.3-1), e.g., the red voxels in the left internal capsule pointed to by black 

solid arrows in the first column and those voxels in the left posterior part of anterior 

parietal lobe pointed to by black solid arrows in the second column. False positive results 

are those voxels only occupied by DTI-tractography fibers (blue lines in the first row and 

green volume in the last two rows), e.g., the voxels in the right premotor area pointed to 

by empty black arrows.       
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Figure 4.3-1. Frontal and dorsal view of the volume occupied by BDA-labeled fibers (red 

volume) overlaid on the ‘DS’ fibers (blue lines in first row) and ‘FSL’ fiber-occupied 

volumes (green volume in last two rows) with 𝑑𝑤  = 0mm, 0.3mm and 0.6mm 

(corresponding to the first two columns, the third column and the fourth column), 

rendered within the external surface of grey matter (outermost transparent blue surface). 

Some false negative and false positive voxels are highlighted by the solid and empty 

black arrows, respectively.  
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Table 4.3-1 shows the density-weighted agreement coefficient, 𝐴𝐶 , for each 

tractography scheme using seed region with different 𝑑𝑤. For all three tractography 

schemes, as 𝑑𝑤 increases, the agreement coefficients increase. The two FSL schemes 

(i.e., FSL1 and FSL2 schemes) have higher agreement coefficients than the DS scheme 

for each 𝑑𝑤.   

Table 4.3-1. Density-weighted agreement coefficients ( 𝐴𝐶 ) of three specified 

tractography schemes (in rows) using seed regions with three depths into white matter, 

𝑑𝑤 (in columns). 

 𝒅𝒘 

0mm 0.3mm 0.6mm 

DS 0.55 0.62 0.67 

FSL1 0.62 0.68 0.71 

FSL2 0.71 0.78 0.81 

 

4.3.2 Overlay white matter pathways in micrograph space  

Figure 4.3-2 shows DTI-tractography-derived pathways (blue streamlines) superimposed 

on five BDA-labeled sections (0.5X, 256×256 pixels). Adjacent BDA sections are 

separated by 3mm in the intact brain. In section s174, there were only a few BDA-labeled 

fibers extending along the anterior-posterior direction to or from the left SMA, but the 

DTI streamlines also propagated to lower white matter of the left hemisphere and the 

right hemisphere as well as the left SMA. In section s234, the BDA-labeled fibers went 

up to the left SMA and ran to the right hemisphere along the corpus callosum (CC), while 

DTI fibers didn’t go to the left SMA and propagated much farther in the right hemisphere 

than the BDA fibers. In the section 294, DTI fibers didn’t cover the BDA fibers 
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propagating along corpus callosum. In the section 354, DTI fibers covered less than the 

BDA fibers in the left hemisphere. In the section 414, the BDA fibers covered the bottom 

2/3 part of left parietal lobe, but the DTI fibers only covered the bottom 1/3 part.        

              

 

Figure 4.3-2. DTI fibers overlaid on five BDA-labeled sections. (A) shows the positions 

of five sections depicted by the straight black lines in 3D volume. The blue streamlines 

represent the fibers calculated from ‘DS’ scheme and the red surface encloses the BDA-

labeled fiber volume. (B-F) show the DTI fibers overlaid on five selected BDA-labeled 

sections.        

Section 294 was analyzed at higher resolution to display 3D diffusion isosurfaces 

overlaid on the high resolution BDA-labeled fibers, shown in figure 4.3-3. Although 

BDA-labeled fibers connecting the injection region to the contralateral hemisphere run 

along the left-right direction through the corpus callosum in the plane of figure 4.3-3A, 
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the principal diffusion direction (corresponding to the direction of most fibers in these 

voxels) estimated from DWI data is oriented along the anterior-posterior direction just 

under the injection region (indicated by the green color of diffusion isosurfaces at the 

foreground of Figure 4.3-3C) and superior-inferior direction in deeper white matter 

(indicated by the blue color of diffusion isosurfaces in the foreground of Figure 4.3-3D). 

The disagreement between the BDA fibers bound for the contralateral hemisphere and the 

dominant fiber orientation estimated from DWI data prevents most DTI streamlines from 

reaching the midline and the other hemisphere. In fact, the strong anterior-posterior 

orientation of tensors immediately under the injection region is partially responsible for 

the strong (false positive) connectivity to the ipsilateral prefrontal cortex (Figure 3.3-4 in 

the previous chapter) measured with both the DS and FSL2 schemes.  
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Figure 4.3-3. 3D diffusion isosurfaces overlaid on BDA-labeled fibers in crossing fiber 

regions in the high resolution micrograph space. (A) shows the left hemisphere of the 

BDA-labeled section 294 (0.5X). The background of (B) is the high resolution BDA 

micrograph (4X) of the white matter under the injection/seed region. Diffusion 

isosurfaces calculated from the tensors are color-coded according to anatomical 

orientation and scaled in size by the local fractional anisotropy. (C) and (D) show details 

immediately under the injection region (IR) and in deeper white matter, respectively.  

Probabilistic tracking methods based on the multi-tensor model are predicted to be 

better able to resolve crossing fibers. However, the histology versus FSL fiber 

correlations shown in Table 3.3-1 are not significantly higher than the histology versus 

DS fiber correlations in this study. Figure 4.3-4AB shows that FSL2 scheme was also 

limited by partial volume averaging in our dataset. The FSL2 streamlines did not reach 

the WGM interface (indicated by the translucent white contour) under the contralateral 

PM cortex. Figure 4.3-4C displays the two fiber orientations (indicated by the short blue 

line and red line) estimated by the FSL2 scheme in each white matter voxel immediately 
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underneath the contralateral PM cortex. The vast majority of axons in these voxels travel 

parallel to the WGM interface and strongly bias the FSL-estimated fiber orientations also 

to be nearly parallel to the WGM interface. All six FSL cases (two ARD values, three 

seed region depths) were subject to similar limitations (although it is possible that the 

estimated orientations could be more accurate at higher SNR and/or b-value [26]). In 

summary, partial volume averaging of diffusion tensor data is likely a major source of 

error in our cortical connectivity measurements for both deterministic and probabilistic 

tracking algorithms.  

  

Figure 4.3-4. FSL2 (𝒅𝒘=0.6mm) outputs overlaid on a fractional anisotropy (FA) map in 

DTI space. (A) Coronal slice showing the FSL2 output density map, i.e., yellow-red color 

map, superimposed on a grayscale FA map. The white contour labels the WMG interface. 

(B) and (C) show an enlarged region of interest in the superior part of the contralateral 

hemisphere. Blue and red lines in (C) represent dominant fiber orientations, estimated by 

the FSL bedpost tool.       

    Because BDA only stained fibers originating from the left M1 cortex while myelin 

stained all the axons existing in the tissue, high resolution micrographs of BDA-labeled 

fibers and myelin-stained fibers within the same area were compared. Figure 4.3-5 

illustrates an example of 2D BDA-labeled fibers, myelin-stained fibers and 3D DS 
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diffusion isosurface within the same voxel (0.3mm×0.3mm) located in the left 

hemisphere about 2mm directly under the premotor (PM) cortex. The BDA reveals two 

major fibers bundles which run from superior to inferior and from left to right, shown in 

figure 4.3-5B. It appears that the bundle propagating from left to right is denser in axons 

than the other. Figure 4.3-5C shows two major bundles running along the same directions 

as the BDA fibers, but the major bundle is the one running from top to bottom, which is 

the same direction as indicated by the shape of diffusion isosurface in figure 4.3-5D.     

  
(A)            (B)               (C)               (D)        

Figure 4.3-5. An example of (B) BDA-labeled fibers (4X), (C) myelin-stained fibers (4X) 

and (D) the diffusion isosurface within the same 0.3mm×0.3mm voxel located in (A) the 

left hemisphere of a BDA-labeled section (0.5X) far under the premotor (PM) cortex (A).   

4.3.3 Z-stack analysis framework 

Figure 4.3-6 displays the results of extracting an hFOD from a simulated z-stack. The 

simulated fiber bundles have two directions ([1 1 0] and [-1 -1 -1]) with equal fraction 

(0.5 for each bundle), as shown in figure 4.3-6A. The diameter of each cylinder bundle is 

2μm, which is comparable to the actual size of BDA-labeled fibers. The FOV, 

300μm×300μm×20μm, of the simulated data is chosen to be comparable to the actual 

300 
μm 

PM 
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BDA section (i.e., the thickness of the shrunken BDA section is about 20μm) and the real 

DTI voxel size (i.e., 300μm×300μm). After applying the skeletonization algorithm, the 

3D skeleton voxels of each fiber bundle are shown by the yellow sticks in figure 4.3-6B, 

and then fitted by connecting straight red lines centered on the skeleton. The FOD in 

figure 4.3-6C was obtained from the angles and number of voxels in those fitted lines. 

The color and peak orientation of each FOD lobe represent the orientation of the fiber 

bundle, and the length of the lobe represents the relative number of fibers propagating 

along that direction. Figure 4.3-6D shows the 3D filter (yellow shadow) overlaid on the 

Fourier transformation of the simulated data. The FOD in figure 4.3-6E was rendered 

using a spherical harmonic algorithm [84].        

    Figure 4.3-7 illustrates an example of a real Z-stack of BDA-labeled fibers imaged 

in differential interference contrast (DIC) mode. Three planes are located in the top (A), 

middle (B) and bottom (C) of the stack which has 44 planes in total. The fiber segment 

pointed to by the black arrows appears more and more apparent, and the fiber branch 

pointed to by red arrows gradually disappears from the top to bottom, which indicates the 

through-plane information of the BDA-labeled fibers can be captured in DIC z-stack 

micrographs.                
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Figure 4.3-6. An example of extracting histological fiber orientation distributions (hFODs) 

from a simulated Z-stack using the skeletonization and Fourier filtering methods. The 

original simulated crossing fiber bundles (A) with two orientations and equal fractions. 

The skeleton voxels of the bundles and the fitting lines of the skeleton are shown by 

yellow volume and red lines in (B). The Fourier transformation of the original data in (D) 

was overlaid by an orientation filter represented by the yellow shadow. The FODs 

obtained from the two different methods were rendered directly (C) and using a spherical 

harmonic fitting algorithm (E).  

Figure 4.3-7. An example of a real Z-stack of micrographs showing BDA-labeled fibers 

in differential interference contrast (DIC) mode. Three planes located in the top (A), 

middle (B) and bottom (C) of the whole stack are selected to show the gradual change of 

the fibers which carries z-direction information on orientation. The black and red arrows 

point to the examples of fiber braches changing significantly from the top to bottom plane.   
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    The FODs calculated from the real Z-stack of BDA-labeled fibers using the two 

(skeletonization and Fourier) methods are shown in figure 4.3-8. Both results are 

rendered using spherical harmonic representations. The major FOD lobe from figure 4.3-

8A points approximately 30 degrees (counterclockwise) from the horizontal direction 

while the major FOD lobe from figure 4.3-8B points about 20 degrees up from the 

horizontal direction.     

   

Figure 4.3-8. An example of the extracted hFODs using the skeletonization (A) and 

Fourier filtering (B) methods, overlaid on one plane of the real Z-stack micrographs.   

A B 



 

 75 

4.4 Discussion 

Several comparison examples in this chapter demonstrate that crossing fibers and the 

partial volume effect might lead to inaccurate or incomplete fiber tracking results even 

when the multi-tensor model is used to estimate multiple fiber orientations in one voxel. 

They also demonstrate that these factors might significantly bias the fiber tracking results, 

particularly if they occur close to the seed points. Although the quantitative comparisons 

between DTI tractography-derived and histological fibers connecting to M1 in Chapter 

III could not be generalized to other cortical networks, the reasons for the disagreement 

shown in this chapter could be applicable to all fiber bundles which run into crossing 

fibers or partial volume effects.       

Each of the two methods we used to analyze micrograph z-stacks is limited in a 

different way. For the skeletonization method, there are two key steps that determine the 

quality of the result: 3D segmentation and skeletonization. We used the free skeletonize-

3D plugin (http://fiji.sc/wiki/index.php/Skeletonize3D) [85] in the FIJI package 

(http://fiji.sc/ wiki/index.php/Fiji) to find the centerline of each fiber (or segment) in our 

study; however, the skeletonization result depends critically on the segmentation result 

due to its sensitivity to noise spurs in the real data. If the spurs cannot be removed 

effectively, they will form a ‘false branch’ of the centerline, which will bias the analysis 

of the orientation distribution. Additionally, the skeletonization method could be only 

used to analyze those micrograph data in which the individual fiber objects could be 

segmented. Accordingly, myelin-stained data in our study could not be analyzed by this 

method. For the Fourier filtering method, segmenting individual fiber objects is not 

http://fiji.sc/wiki/index.php/Skeletonize3D
http://fiji.sc/%20wiki/index.php/Fiji
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necessary, but a set of directional filters need to be used in Fourier domain to filter out 

fibers distributed along other directions. The accuracy of the resulting orientation 

distribution depends on the spread angle of each cone-shaped filter. Therefore, in the 

future work, the accuracy and noise sensitivity of these two methods could be further 

investigated so that the optimal one could be used to do the batch processing of all 

available voxels.   

 

4.5 Conclusion 

The three tractography schemes produced false positive (FP) and false negative (FN) 

white matter pathways in the monkey brain, which might lead to the FP and FN 

corticocortical connectivity given in chapter III. Comparison of the agreement 

coefficients for different tractography methods indicates that probabilistic tractography 

has the potential to provide white matter pathways with better agreement with histology 

than deterministic tractography does. In addition, the agreement coefficient increases as 

the 𝑑𝑤 of the seed region increases, which is also consistent with the results in Chapter 

III.  

    One of the reasons for the disagreement between DTI tractography-derived and 

histological pathways is that DTI tractography fails to reliably resolve all the orientations 

of fiber bundle components within one voxel due to the limitation of the tensor model 

and so on.    
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CHAPTER V 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

Diffusion tensor imaging (DTI) tractography has the potential to map corticocortical 

connectivity of human brain non-invasively. However, some well-known factors might 

corrupt the accuracy and precision of tractography, and hence bias connectivity 

measurements using DTI. Therefore, whether or to what extent DTI tractography is able 

to reveal true corticocortical connectivity of the human brain is an important question to 

be investigated. This dissertation describes the direct comparison of DTI tractography-

derived (deterministic and probabilistic tractography) connectivity with the ‘ground 

truth’-neuroanatomical connectivity in the monkey brain—and found that:      

(1) DTI tractography is capable of providing true positive connectivity for most or all 

cortical regions connected anatomically to M1 in the squirrel monkey, but may also 

produce false positive connections. Deterministic tractography can provide inter-regional 

connectivity measures as accurate as probabilistic tractography under some situations. 

DTI tractography is not uniformly sensitive to connection strength either across or within 

connecting regions.  

(2) The three tractography schemes produced false positive and false negative white 

matter pathways in the monkey brain, which might lead to the false positive and false 

negative corticocortical connectivity. Probabilistic tractography has the potential to 
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provide white matter pathways with better agreement with histology than deterministic 

tractography does. In addition, the agreement coefficient increases as the depth (𝑑𝑤) of 

the seed region increases, which is consistent with the corticocortical connectivity results.  

(3) A major source of discrepancy between histological and tractography-based 

connectivity is the presence of crossing fibers, which may prevent streamlines from 

reaching the correct bundle from the cortical seed region or prevent them from leaving a 

strongly anisotropic white matter bundle to find the correct cortical terminals. Such 

failures of DTI tractography might be due to limitations of the single tensor model or the 

limited sensitivity of the multi-tensor model used in our analysis.    

    Although only three schemes (i.e., DS, FSL1 and FSL2) were investigated in our 

study, the correlation procedure proposed here provides a framework for qualitative 

comparison of more generic tractography-derived connectivity measures with histological 

connectivity. Therefore, in the future, the entire procedure, especially the 

neuroanatomical data, are worth distributing in a public resource so more tractography-

derived measures of connectivity can be assessed more efficiently.  
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