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CHAPTER I 

 

INTRODUCTION TO WNT SIGNALING AND THE UBIQUITIN SYSTEM 

 

Introduction 

 The canonical Wnt signaling pathway is a highly conserved cell signaling 

pathway present in all metazoans that regulates many fundamental processes 

during development and maintains tissue homeostasis in adults. Misregulation of 

this pathway results in a variety of disease states in humans, including cancer.  

Wnt signaling is initiated upon Wnt ligand binding to its two co-receptors Frizzled 

(Fz) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), which 

leads to stabilization and nuclear translocation of the main cytoplasmic effector β-

catenin.  Once in the nucleus, β-catenin converts the Wnt transcription factor 

TCF/Lef from a transcriptional repressor into an activator to initiate a Wnt-specific 

transcriptional program.  The Wnt pathway is heavily regulated by ubiquitylation, 

a post-translational modification in which the small protein ubiquitin is covalently 

attached to target proteins by a series of enzymes.  In this chapter, I begin with 

an introduction to cellular communication, Wnt signal transduction, and 

ubiquitylation to provide a background for understanding the studies I present in 

Chapters III-V.  In Chapter III, I describe a RNAi screen I performed to identify 

novel ubiquitin system components involved in regulating Wnt signaling and in 

Chapters IV and V I describe the identification of a novel E3 ubiquitin ligase and 
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de-ubiquitylase (DUB) involved in Wnt signal transduction, respectively.  I 

summarize these collective findings in Chapter VI.       

 

Signal Transduction:  How Cells Communicate 

The discovery of “animalcules” by Anton van Leeuwenhoek and of “cells” 

by Robert Hooke in the later half of the 17th century provided the foundation for 

the first unifying “cell theory” put forth nearly 200 years later by the botanist 

Matthias Jakob Schleiden and the zoologist Theodore Schwann (Mazzarello, 

1999).  Based on their work in which they discovered that both plants (Schleiden, 

1838) and animal tissues (Schwann, 1839) are composed of many individual 

cells, Schwann published a treatise in which he proposed that all living things are 

composed of cells and that cells are the fundamental units of life (Schwann, 

1839).  This was a pivotal moment in the history of biology as it indicated that 

organisms are “republics of living elementary units” (Mayr, 1982) and that by 

studying the “elementary units” (i.e. cells) one could thus learn how whole 

“republics” (i.e. whole plants and animals) form and function.  These findings 

quickly led to a reductionist approach to studying biology with a central focus on 

discovering how the minimal units of life (cells) function individually and in 

cooperation. 

Much has been learned about the function of cells since their initial 

discovery, but many fundamental questions still remain, including: What 

constitutes a cell?  How does it function?  How do cells respond to their 
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environment?  How do cells interact with other cells to form more complex life 

forms?  Initially, cells were thought to consist merely of a cell wall, cytoplasm, 

and a nucleus (Mazzarello, 1999).  We now know animal cells are separated 

from their external environment by a lipid bilayer (the plasma membrane) and 

contain water, multiple organelles, DNA, RNA, proteins, lipids, sugars, and ions 

that all interact in exquisitely complicated ways to ensure cells are able to survive 

and appropriately respond to their environment (Alberts, 2002).  While there is 

still much more to be learned about the make-up of a cell, there is even more to 

be learned about how cells are able to respond to an ever-changing environment 

and able to interact and communicate with multiple other cells to form multi-

cellular organisms. 

One of the major ways cells respond to their environment and 

communicate with other cells is through a process referred to as “signal 

transduction” (Gomperts, 2009).  Signal transduction is the process by which 

cells receive input from their surroundings (i.e. a “signal”) that can be in the form 

of light, temperature, chemicals, protein ligands, or physical forces that bind, or 

otherwise affect the function of, cell surface receptors, which then transmit the 

signal intracellularly (Gomperts, 2009). Cell surface receptors are typically 

proteins that span the plasma membrane (transmembrane proteins) and contain 

an extracellular domain that is able to interact with the extracellular environment 

and an intracellular domain that is able to transmit the signal intracellularly.  Once 

a signal is received by a cell surface receptor it initiates a cascade of intracellular 
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biochemical reactions that result in a variety of events depending on the signal, 

including changes in cellular metabolism, motility, gene transcription and even 

initiation of cell death (Gomperts, 2009). 

Single-celled organisms contain mostly two-component signaling systems 

to allow for appropriate environmental responses (Stock et al., 2000), whereas 

multi-cellular organisms (metazoa) require more complex signal transduction 

pathways to coordinate the development and maintenance of multiple cell types 

and tissues (Gerhart, 1999).  In fact, it is widely believed that the evolution of 

intercellular communication (cell-to-cell communication vs environment-to-cell 

communication) is what initially allowed the development of multi-cellular animals 

and plants (Alberts, 2002).  It is now clear that intercellular communication via 

signal transduction pathways is essential for coordinating the embryonic 

development of all animals (Gerhart, 1999; Pires-daSilva and Sommer, 2003).   

Despite the vast array of cell-types, tissue-types and morphologies found 

in the animal kingdom, it is estimated that only 17 signal transduction pathways 

exist to produce such diversity (Gerhart, 1999).  Even more striking is that only a 

few of the 17 total signal transduction pathways found in metazoa are repeatedly 

used during embryonic development.  This indicates that these few core, 

conserved pathways are utilized in many different ways to produce the 

abundance of phenotypes found throughout the animal kingdom (Gerhart, 1999; 

Pires-daSilva and Sommer, 2003).  These core pathways include:  Wnt, 

Hedghog (Hh), Notch, transforming growth factor β (TGF-β), receptor tyrosine 
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kinase (RTK), Janus kinase (JAK)/signal transducer and activator of transcription 

(STAT), and nuclear hormone pathways.  A major remaining challenge for 

biologists is to define how these signaling pathways function, how they are 

employed during metazoan development to generate such diverse phenotypic 

outcomes, and how their misregulation leads to both aberrant development and 

to disease states in adults. 

 

Historical Perspective: Wnt Signaling 

 The Wnt signal transduction pathway is critical for the development of all 

multi-cellular organisms and is highly conserved from the most basal metazoan, 

Amphimedon queenslandica (a demosponge), to humans (Adamska et al., 2010; 

Gerhart, 1999; Richards and Degnan, 2009).  The Wnt pathway was discovered 

more than 30 years ago through a series of events that highlight its importance in 

both development and disease.   

 In 1976 Sharma and Chopra reported a Drosophila melanogaster 

mutant they named Wingless (Wg) because it lacked wings (Sharma and 

Chopra, 1976).  A few years later Eric Wieschaus and Christiane Nusslein-

Volhard performed their Nobel Prize-winning mutagenesis screen for segment 

polarity genes in Drosophila in which they showed Wg was required for proper 

segmentation of the early embryo (Nusslein-Volhard and Wieschaus, 1980).  

Together, these findings indicated an important role for Wg in Drosophila 

development.  In 1982, Roel Nusse and Harold Varmus reported that the Mouse 
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Mammary Tumor Virus integrates upstream of a novel proto-oncogene they 

called Integration 1 (Int1) (Nusse and Varmus, 1982).  Five years later it was 

discovered that Wg was the Drosophila ortholog of the mouse Int1 gene (Cabrera 

et al., 1987; Rijsewijk et al., 1987).  Subsequently the two names were combined 

into the mnemonic “Wnt;” a term which reflects its role in both fly development 

and carcinogenesis in mice (Nusse et al., 1991).  Around the same time, it was 

shown that injection of Int1 mRNA into Xenopus laevis embryos could induce a 

second body axis, demonstrating an important role for Int-1 in frog development 

in addition to its functions in flies and mice (McMahon and Moon).  Together, 

these findings indicated that the Wnt family of proteins are highly conserved 

across phyla and play important roles in both embryonic development and 

cancer.   

After Nusslein-Volhard and Wieschaus published their initial pioneering 

Drosophila mutagenesis screen for segment polarity regulators in which they 

identified Wg in 1980 (Nusslein-Volhard and Wieschaus, 1980), numerous 

papers followed that reported more Drosophila mutants with early embryonic 

patterning defects.  Many of these mutants turned out to be components of the 

Wnt signaling pathway including Armadillo (the Drosophila ortholog of β-catenin) 

(Riggleman et al., 1990; Wieschaus and Riggleman, 1987), Dishevelled (Dsh) 

(Perrimon and Mahowald, 1987), Shaggy (the Drosophila ortholog of glycogen 

synthase kinase 3 (GSK3)) (Siegfried et al., 1992), and Frizzled (Fz) (Bhanot et 

al., 1996).  These will be discussed further below.   
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In addition to the extensive work on the role of Wg in Drosophila 

development, much work was also performed in Xenopus embryos to further 

confirm a critical developmental role for Wnt signaling.  The initial finding that 

injection of Int1 mRNA into the ventral blastomeres of Xenopus embryos was 

sufficient to induce a second body axis (McMahon and Moon, 1989) was a 

monumental discovery as it finally provided a molecular explanation for the work 

of Spemann and Mangold who had shown 65 years earlier that transplantation of 

dorsal tissue to the ventral region of amphibian embryos resulted in twinned axes 

(Spemann, 1924).  After their discovery of a dorsal head “organizer” 

developmental biologists had struggled for years trying to identify the organizer-

inducing signal emanating from the dorsal tissue.  With the discovery of Wnt and 

its ability to induce a twinned axis, this inducing signal had finally been found and 

made it clear that Wnt signaling has a profound effect on frog development.  

Since then, almost all Wnt pathway components have been validated through 

Xenopus axis specification studies.  

These early studies laid the foundation for further work in multiple model 

systems showing that Wnt signaling plays critical roles in all aspects of 

development and in adult stem cell maintenance (Reya and Clevers, 2005).  

Thus, it is no surprise that misregulation of this pathway results in a variety of 

disease states in humans from birth defects to cancer (MacDonald et al., 2009).  

The most well-characterized link between misregulated Wnt signaling and 

disease is found in colorectal cancer where over 85% of patients have a mutation 
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in adenomatous polyposis coli (APC), a negative regulator of Wnt signaling 

(Kinzler and Vogelstein, 1996).  Mutation of APC results in hyperactive Wnt 

signaling, leading to un-regulated cell growth and tumor formation (the role of 

APC in Wnt signaling will be discussed further below).  In addition to the well-

established role of Wnt signaling in colorectal cancer, numerous other cancer 

types have now been shown to exhibit misregulated Wnt signal transduction, 

including hepatocellular carcinoma, lung cancer, skin cancer, prostate cancer, 

breast cancer, and Wilms’ tumor (Klaus and Birchmeier, 2008; Polakis, 2007). 

Wnt pathway mutations are also known to cause a variety of developmental 

defects including tetra-amelia (defect in limb formation), bone density defects, 

tooth agenesis, and defects in eye vascularization (MacDonald et al., 2009)(see 

also The Wnt Homepage: wnt.standford.edu ).  In order to understand these 

various diseases and to design rational therapies with which to treat them, a 

detailed understanding of the molecular mechanisms of Wnt signal transduction 

is required. 

 

Current Model of Wnt Signaling 

Wnt protein family members are able to activate both “canonical” and 

“non-canonical” Wnt signal transduction pathways.  My work focuses exclusively 

on “canonical,” or β-catenin-mediated, Wnt signaling so I will only discuss this 

pathway.  The key feature of canonical Wnt signaling is the constant synthesis 

and degradation of the main cytoplasmic effector β-catenin (Figure 1.1).  In the  
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absence of a Wnt signal, β-catenin is constitutively degraded by a “β-catenin 

destruction complex” composed of the scaffolds APC and Axin and the kinases 

GSK3 and casein kinase I alpha (CK1α) (Behrens et al., 1998; Gao et al., 2002).  

Within this complex β-catenin is phosphorylated by CK1α at serine 45, which 

primes for GSK3 phosphorylation at serines 33 and 37, and threonine 41 (Amit et 

Figure 1.1.  Schematic of Canonical Wnt Signaling.   
(A) In the absence of Wnt ligand, cytoplasmic β-catenin is bound by the β-catenin 
destruction complex, composed of Axin, APC, CK1α and GSK3.  Within this 
complex, β-catenin is first phosphorylated by CK1α, which primes for GSK3 
phosphorylation.  Phosphorylated β-catenin is recognized by the E3 ligase, SCFβ-

TRCP, which polyubiquitylates β-catenin targeting it for proteasome-mediated 
degradation.  In the nucleus, Wnt target genes are repressed by Groucho/TLE 
and associated HDACs.  (B) In the presence of Wnt ligand, Wnt binds the co-
receptors Fz and LRP5/6, which leads to membrane recruitment of Dvl and Axin.  
Axin-associated GSK3 and CK1α phosphorylate LRP5/6, which inhibits the 
activity of the β-catenin destruction complex.  As a result, β-catenin levels rise in 
the cytoplasm and β-catenin translocates to the nucleus where it binds TCF/Lef to 
activate Wnt target gene transcription.  Figure from (Macdonald et al., 2009). 
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al., 2002; Liu et al., 2002).  Phosphorylated β-catenin is then recognized by the 

E3 ubiquitin ligase Skp1-Cullin-F-box (SCF)β-TRCP, which polyubiquitylates β-

catenin targeting it for degradation by the 26S proteasome (Latres et al., 1999; 

Liu et al., 1999).  Thus, in the absence of a Wnt signal, cytoplasmic levels of β-

catenin are kept low.   

The Wnt family of proteins, for which the pathway is named, are secreted 

lipid-modified glycoproteins that participate in both cell-to-cell communication and 

long-range signaling by acting as morphogens to pattern the development of 

various tissues (MacDonald et al., 2009; Port and Basler, 2010).  At present, 19 

different Wnt family members have been identified in mammals.  Wnts are ~350-

400 amino acids in length and contain an N-terminal signal sequence that targets 

them to the secretory pathway where they are N-linked glycosylated and cysteine 

and serine palmitoylated (Komekado et al., 2007; Takada et al., 2006; Willert et 

al., 2003).  Once secrected, Wnt proteins reach their target cell by way of lateral 

diffusion involving heparan sulfate proteoglycans or via cytoneme projections 

from receptor cells, or can travel up to 20 cell diameters by forming soluble 

micelles, binding soluble lipid-binding proteins, as part of lipoprotein particles, or 

by traveling on exosomes (Port and Basler, 2010).  Wnt proteins can be 

prevented from binding their receptors by a number of secreted molecules.  The 

secreted Frizzled-related protein (sFRP) family of proteins and Wnt inhibitory 

factor (WIF) bind to Wnt and antagonize its ability to interact with Frizzled (Fz) 

(Bovolenta et al., 2008), while the Dickkopf (Dkk) family and Wise/Sclerostin 
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(SOST) family prevent Wnt binding and activation of the co-receptor LDL-

receptor related proteins 5 and 6 (LRP5/6) (Itasaki et al., 2003; Semenov et al., 

2005; Semenov et al., 2001).  Wnt agonists of the Norrin and R-spondin families 

also exist that stimulate Fz-LRP5/6 activity either independent of or in 

coordination with Wnts, respectively (Kazanskaya et al., 2004; Xu et al., 2004).   

Once a Wnt ligand has traversed the extracellular space and avoided any 

potential inhibitors, it will arrive at its target cell where it can bind its two co-

receptors LRP5/6 and Fz, which are both required for pathway activation.  There 

are 10 Fz family members in mammals, which are all seven-pass 

transmembrane receptors, while both LRP5 and LRP6 contain a single 

transmembrane domain (He et al., 2004; Malbon, 2004).  Data generated thus far 

suggest a model in which Wnt binding induces the formation of a LRP5/6-Fz 

complex.  Close association of the two receptors appears to be important as 

synthetically fusing LRP5/6 and Fz together in cultured cells is sufficient to 

activate the pathway (Holmen et al., 2005), but such endogenous receptor 

association upon Wnt stimulation has not been well-established.   

Upon Wnt ligand binding, a key event in LRP5/6 receptor activation is 

phosphorylation of each of its five PPPSPxS motifs found in its intracellular 

domain (Tamai et al., 2004).  Surprisingly, the kinases involved in LRP5/6 

phosphorylation are the same kinases involved in β-catenin degradation:  GSK3 

and CKI, although in this case CKIγ is involved instead of CKIα.  In the case of 

LRP5/6, it is thought that GSK3 serves as the priming kinase by phosphorylating 
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the serine in the PPPSP motifs, which then induces xS phosphorylation by CKIγ 

(Davidson et al., 2005; Zeng et al., 2005).  Thus, GSK3 has both negative and 

positive roles in Wnt signal transduction.  Phosphorylation of the PPPSPxS 

motifs recruits cytoplasmic Axin/GSK3 complexes to LRP5/6 upon Wnt 

stimulation, thus enhancing GSK3-mediated phosphorylation of LRP5/6 

(Davidson et al., 2005; Tamai et al., 2004; Zeng et al., 2005).  Additionally, 

CKIγ also phosphorylates a conserved S/T cluster outside of the PPPSPxS 

motifs in LRP5/6, which induces GSK3 binding (Davidson et al., 2005).  Thus, 

multiple mechanisms exist to recruit additional GSK3 to LRP5/6 in response to 

Wnt stimulation in order to amplify the signal.   

Fz function is required for phosphorylation of LRP5/6 upon Wnt ligand 

binding (Zeng et al., 2008).  In the presence of a Wnt signal, the cytoplasmic 

scaffold Dishevelled (Dsh) becomes phosphorylated and associates with the C-

terminal tail of Fz (Umbhauer et al., 2000; Wong et al., 2003).  As Dsh and Axin 

can interact and polymerize through their DIX domains (Schwarz-Romond et al., 

2007), it has been postulated that Fz-bound Dsh recruits the Axin-GSK3 complex 

to the plasma membrane to initiate LRP5/6 phosphorylation by GSK3 (Zeng et 

al., 2008).  This has led to a model involving both an “initiation” and 

“amplification” step in Wnt signal transduction where Fz recruitment of Dsh and 

the Axin/GSK3 complex functions to initiate a Wnt signal by phosphorylating the 

PPPSPxS motifs and S/T sites in LRP5/6, while the phosphorylated PPPSPxS 
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and S/T-mediated recruitment of more Axin and GSK3 serve to amplify the signal 

(Baig-Lewis et al., 2007).   

 The mechanism by which receptor activation leads to β-catenin 

destruction complex inhibition is not well understood.  Multiple mechanisms have 

been proposed, all of which ultimately result in the inhibition of GSK3’s ability to 

phosphorylate β-catenin.  While dissociation of the destruction complex has been 

proposed as a potential mechanism (Liu et al., 2005a), solid evidence for this is 

lacking and, in fact, recent studies have shown that the complex remains intact 

and co-localizes with Fz and LRP5/6 soon after Wnt stimulation (Bilic et al., 2007; 

Hendriksen et al., 2008; Mao et al., 2001; Yamamoto et al., 2006).  More recent 

evidence suggests that translocation of the entire destruction complex to the 

plasma membrane may lead to direct inhibition of GSK3 activity by LRP5/6 

(Cselenyi et al., 2008; Piao et al., 2008; Wu et al., 2009).  This is consistent with 

the finding that de-phosphorylated β-catenin is present on phosphorylated LRP6-

bound Axin soon after Wnt stimulation (Hendriksen et al., 2008).  Degradation of 

Axin has also been proposed as an important event in β-catenin stabilization 

upon Wnt signaling (Kofron et al., 2007; Tolwinski et al., 2003; Yamamoto et al., 

1999), as Axin is the limiting component in the destruction complex (Lee et al., 

2003).  Thus, affecting Axin levels would be predicted to have a profound effect 

on destruction complex formation.  However, β-catenin is stabilized prior to Axin 

degradation (Liu et al., 2005a; Willert et al., 1999; Yamamoto et al., 1999).  Thus, 

it is likely that GSK3 activity within the destruction complex is rapidly and directly 
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inhibited by LRP5/6 at the membrane upon Wnt ligand binding, and that Axin 

degradation serves as a subsequent step to prevent further destruction complex 

formation.   

 Once the β-catenin destruction complex is inhibited, β-catenin is no longer 

phosphorylated by GSK3 and, thus, no longer ubiquitylated and degraded by 

SCFβ-TRCP.  Consequently, cytoplasmic β-catenin levels rapidly increase due to 

the unopposed constitutive synthesis of β-catenin (Bryja et al., 2007; Liu et al., 

2005a).  Elevated β-catenin translocates to the nucleus through a poorly 

understood process potentially involving the GTPase Rac1 (Wu et al., 2008).  

APC and Axin have been implicated in exporting β-catenin out of the nucleus 

while the co-activators Pygopus and BCL9 (see below) have been implicated in 

nuclear retention of β-catenin, but none of these proteins have been shown to 

affect the rate of export or import indicating they only play roles in the retention, 

and not shuttling, of β-catenin (Cong and Varmus, 2004; Henderson and Fagotto, 

2002; Krieghoff et al., 2006).  Thus, it remains to be determined how β-catenin is 

trafficked in and out of the nucleus.     

Once in the nucleus, β-catenin binds the TCF/Lef family of DNA-binding 

transcription factors to activate Wnt target gene transcription (Arce et al., 2006).  

There are four TCF/Lef family members in mammals:  TCF1, Lef1, TCF3, and 

TCF4.  All TCF/Lef family members bind the consensus sequence CCTTTGWW 

(W indicates either T or A), known as the Wnt responsive element (WRE), found 
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in the promoters of Wnt target genes.  In the absence of a Wnt signal TCF/Lef 

serves as a transcriptional repressor by binding the Groucho/TLE family of 

transcriptional co-repressors.  Groucho is the Drosophila homolog of the human 

transducin-like enhancer of split (TLE) family of proteins, of which there are five:  

TLE1-4 and a truncated isoform named amino-terminal enhancer of split (AES) 

(Gasperowicz and Otto, 2005).  All TLE family members can interact with all 

TCF/Lef family members to mediate repression (Brantjes et al., 2001).  It is 

thought that Groucho/TLE proteins mediate repression by binding to TCF/Lef and 

recruiting histone deacetylases (HDACs), which compress chromatin locally, as 

well as by forming oligomeric structures, which mediate long-range chromatin 

condensation (Buscarlet and Stifani, 2007; Jennings and Ish-Horowicz, 2008).   

The prevailing model for how TCF/Lef is turned from a transcriptional 

repressor into a transcriptional activator involves the direct displacement of 

Groucho/TLE by β-catenin through competition for overlapping binding sites on 

TCF/Lef (Daniels and Weis, 2005).  This model was proposed based primarily on 

in vitro data using purified proteins in which it was found that β-catenin and 

Groucho/TLE bind TCF/Lef in a mutually exclusive manner.  However, this model 

was never tested in vivo.  The work I present in Chapter IV indicates that turning 

TCF/Lef from a repressor into an activator in vivo involves more than a simple 

competition between β-catenin and Groucho/TLE.  I provide evidence indicating 

that mono-ubiquitylation of Groucho/TLE by the E3 ubiquitin ligase XIAP is 
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required to remove Groucho/TLE from TCF/Lef to allow β-catenin-TCF/Lef 

complex formation and Wnt-mediated transcriptional activation.  

Upon TCF/Lef binding, β-catenin nucleates a transcriptional activation 

complex consisting of Pygopus, BCL9, p300/CBP and TRRAP/TIP60 histone 

acetyltransferases, MLL1/2 histone methyltransferases, the SWI/SNF family of 

ATPases for chromatin remodeling, Mediator for transcription initiation, and the 

PAF1 complex for transcription elongation and histone modifications (Mosimann 

et al., 2009; Willert and Jones, 2006).  This β-catenin-mediated multi-protein 

complex functions to activate the transcription of an estimated 300-400 Wnt 

target genes, which regulate many cellular processes including cell survival, 

proliferation, and differentiation (Hatzis et al., 2008).  In addition to β-catenin’s 

role as a transcriptional activator, recent evidence indicates that β-catenin-

TCF/Lef complexes can function as transcriptional repressors by binding to both 

canonical WREs and to a novel TCF binding element, AGAWAW (Blauwkamp et 

al., 2008; Theisen et al., 2007).  To add even more complexity to β-catenin-

mediated transcriptional regulation, it has been shown that β-catenin can interact 

with a number of other DNA-binding transcription factors besides TCF/Lef to 

activate or repress transcription of even more genes (e.g. Smad4, MyoD, c-Jun, 

and RAR, among many others) (MacDonald et al., 2009).  Thus, it is clear that 

Wnt-mediated β-catenin stabilization and nuclear translocation has a profound 
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effect on total cellular gene expression and, thus, on the overall physiology of the 

cell; most of which remains to be discovered. 

 

Historical Perspective:  The Ubiquitin System 

The discovery of the ubiquitin system highlights the importance of asking 

basic, and sometimes unpopular, questions in scientific discovery, such as:  how 

do proteins degrade in the cell?  In the decades prior to the discovery of the 

ubiquitin system, most scientists were fascinated by the discovery of DNA and 

how genes are transcribed and translated into proteins, while very little attention 

was paid to the stability of proteins once they had been synthesized. At that time, 

it was generally thought that proteins were long-lived, static molecules.  Thus, 

very few scientists were interested in, or even believed in, the concept of protein 

degradation (Ciechanover, 2009; Varshavsky, 2006).  Afterall, why would the cell 

expend so much energy to synthesize a protein just to degrade it?  The idea that 

proteins might be in a dynamic state of synthesis and degradation was first 

proposed about 70 years ago when Rudolf Schoenheimer showed that only 50% 

of the 15N-labeled tyrosine he administered to rats was recovered in the urine, 

and that the rest had been deposited in the rat’s tissues, indicating that protein 

synthesis had occurred.  Additionally, he found an equivalent amount of protein 

nitrogen excreted, indicating, for the first time, that protein degradation had taken 

place in the rat (Schoenheimer, 1942).   
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The idea that proteins turn over was not well accepted until the discovery 

of the lysosome in the mid-1950s (De Duve et al., 1953; Gianetto and De Duve, 

1955).  After the discovery of the lysosome, it was assumed that all proteins were 

degraded in this cellular compartment, but three important discoveries indicated 

the existence of non-lysosomal-mediated protein degradation:  1.)  Differing 

protein half-lives, as it was predicted that proteins degraded by lysosomal 

proteases should be degraded at the same rate, but this was not found to be the 

case (Goldberg and St John, 1976; Schimke and Doyle, 1970), 2.) The fact that 

proteins were still degraded in the presence of lysosomal inhibitors, indicating 

there must be an alternative mode of protein degradation in the cell (Knowles 

and Ballard, 1976; Neff et al., 1979), and 3.) A paradoxical energy requirement 

for protein degradation, which was not expected to be necessary for lysosomal 

protease-mediated protein degradation (Mandelstam, 1958; Simpson, 1953; 

Steinberg and Vaughan, 1956).  Regardless of these obvious inconsistencies, 

most scientists still believed that proteins were degraded in the lysosome and 

that the mystery of protein degradation had been solved by the discovery of this 

intracellular organelle. 

A big breakthrough in support of non-lysosomal-mediated protein 

degradation came when Rabinovitz and Fisher observed that abnormal 

hemoglobin is degraded in rabbit reticulocytes, which do not contain lysosomes 

(Rabinovitz and Fisher, 1964).  Subsequently, two groups independently 

prepared cell-free rabbit reticulocyte lysates in which they showed degradation of 
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abnormal hemoglobin was ATP-dependent and occurred optimally at neutral pH 

(unlike in the lysosome where protein degradation occurs optimally at an acidic 

pH) (Etlinger and Goldberg, 1977; Hershko, 1978).  It was with this newly 

prepared rabbit reticulocyte lysate that Aaron Ciechanover, Avram Hershko and 

Irwin Rose performed their Nobel-Prize winning experiments in which they 

purified and characterized all of the main components of the hitherto unidentified 

“ubiquitin system” (described in more detail below): the small protein ubiquitin 

that is covalently attached to substrate proteins by a sequence of events 

involving an E1 (activating enzyme), E2 (conjugating enzyme), and E3 (ligating 

enzyme), as well as ubiquitin hydrolases, which cleave ubiquitin from target 

proteins (reviewed in (Ciechanover, 2009; Varshavsky, 2006)).  These initial 

discoveries, along with the many others that followed, proved unequivocally that 

protein degradation occurs outside of lysosomes in a very complex and highly 

regulated manner.  We are just beginning to understand the immense impact of 

this groundbreaking work.   

 

Current Model of The Ubiquitin System 

We now know the ubiquitin system regulates many fundamental cellular 

processes including the cell cycle, endocytosis, the immune response, 

development, and cell signaling pathways.  This broad regulation occurs through 

“ubiquitylation” of proteins, a term which refers to the post-translational 

modification of proteins in which the small (76 amino acid), highly conserved 
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protein ubiquitin is covalently attached to target proteins in the form of monomers 

or polymers.  The addition of ubiquitin to target proteins changes the activity, 

localization, or stability of the target protein depending on which type of ubiquitin 

modification is added (reviewed in (Hershko and Ciechanover, 1998; Pickart, 

2001, 2004)). 

 Three enzymes catalyze the process of ubiquitin conjugation in sequence 

(Figure 1.2) (reviewed in (Hershko and Ciechanover, 1998; Pickart, 2001, 2004)).  

First, an E1 activating enzyme activates ubiquitin in an ATP-dependent manner 

and subsequently forms a thiolester bond between a cysteine residue in its active 

site and the carboxy-terminal glycine residue of ubiquitin.  Next, the E1 catalyzes 

the transfer of the ubiquitin molecule to the active site cysteine of an E2 

conjugating enzyme.  Finally, the E2 catalyzes the transfer of ubiquitin from itself 

onto a lysine residue of the target protein by way of an E3 ubiquitin ligase.  There 

are between several hundred to over a thousand E3 ligases in the human 

genome that fall into one of two major families: the Really Interesting New Gene 

(RING) and Homologous to E6AP Carboxy Terminus (HECT) families.  RING 

E3s catalyze the transfer of ubiquitin from the E2 to the target protein by serving 

as bridges to bring the lysine residue of the target protein close to the E2-

ubiquitin intermediate, thereby increasing the probability of reaction.  HECT E3s 

form a thiolester intermediate with ubiquitin before it is transferred to the target 

protein (Pickart and Eddins, 2004).  Once one ubiquitin molecule has been 

covalently attached to a lysine residue on the target protein, multiple ubiquitin 
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molecules can be added in succession through a poorly understood mechanism 

to produce a ubiquitin polymer consisting of many covalently-linked ubiquitin 

molecules (polyubiquitylation) (Hochstrasser, 2006). 

 

 

Ubiquitin contains seven internal lysine residues, each of which can be 

used for ubiquitin conjugation resulting in the formation of different lysine-linked 

ubiquitin chains (K6, K11, K27, K29, K33, K48, K63) (Behrends and Harper, 

2011; Peng et al., 2003).  The best understood polymer is the K48-linked 

ubiquitin chain, which typically marks the target protein for degradation by the 

26S proteasome (Thrower et al., 2000).  K63-linked chains typically do not mark 

a protein for proteasomal degradation, but rather activate specific proteins for 

Figure 1.2.  Schematic of the ubiquitin system.  Figure adapted from 
(Dikic et al., 2009).   
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DNA repair, signal transduction, endocytosis, etc. (Pickart and Fushman, 2004; 

Sun and Chen, 2004).  Target proteins can also be covalently attached to a 

single ubiquitin molecule at one lysine residue (monoubiquitylation) or at multiple 

lysine residues (multi-monoubiquitylation), resulting in different effects on target 

protein function such as regulating sub-cellular localization or the recruitment of 

ubiquitin-binding proteins (d'Azzo et al., 2005; Welchman et al., 2005).    

 The process of ubiquitin conjugation can be reversed by cleavage of the 

isopeptide bond between ubiquitin and the lysine residue of the target protein by 

deubiquitylating enzymes (DUBs) (Figure 1.2).  This results in the release of free 

ubiquitin and free enzyme and reverses the effects of the ubiquitin modification 

(reviewed in (Amerik and Hochstrasser, 2004; Komander et al., 2009; Nijman et 

al., 2005)). There are approximately 79 functional DUBs in the human genome, 

most of which are cysteine proteases that contain a highly conserved cysteine 

residue in their active sites.  DUBs fall into one of five subclasses based on their 

ubiquitin-protease domains:  ubiquitin-specific proteases (USPs, 58 total), 

ubiquitin C-terminal hydrolases (UCHs, 4 total), Otubain proteases (OTUs, 14 

total), Machado-Joseph disease proteases (MJDs, 5 total), and one class of 

metalloproteases called JAMM (JAB1/MPN/Mov34 metalloenzyme, 14 total).  It is 

thought that DUBs regulate a limited number of substrates by recognizing either 

specific ubiquitin polymers or monomers (substrate specificity) and/or the target 

protein to which the ubiquitin moiety is attached (target specificity), giving DUBs 

two mechanisms by which to target specific sets of proteins (Nijman et al., 2005).   
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 According to the current ubiquitin system model, the two enzymes that 

confer substrate specificity to the system are the E3 ligases and the DUBs.  

Thus, it is these two classes of enzymes that are likely to play specific roles in 

regulating cellular functions.  Indeed, many E3s and DUBs have now been 

identified as key Wnt signaling regulators.    

 

Regulation of Wnt signaling by The Ubiquitin System 

Ubiquitylation plays a critical role in regulating Wnt signal transduction, 

most notably by regulating cytoplasmic levels of β-catenin, the key component of 

the pathway.  The first E3 ubiquitin ligase (E3) identified for β-catenin was the 

multi-subunit E3 Skp1-Cullin-F-box (SCF)β-TRCP, which recognizes phosphorylated 

β-catenin in the β-catenin destruction complex and targets it for proteasomal 

degradation (Aberle et al., 1997; Jiang and Struhl, 1998).  Thus, SCFβ-TRCP is 

critical for keeping cytoplasmic levels of β-catenin low in the absence of a Wnt 

signal.  More recent findings indicate the existence of an additional E3 for β-

catenin, Siah-1, which mediates K11-linked polyubiquitylation of β-catenin upon 

genotoxic stress (Liu et al., 2001; Matsuzawa and Reed, 2001).  In response to 

DNA damage, it is thought that activated p53 induces the expression of Siah-1, 

which can ubiquitylate β-catenin independent of its phosphorylation status and 

independent of SCFβ-TRCP.  Thus, it appears that cytoplasmic levels of β-catenin 

can also be directly affected by cellular stress through upregulation of Siah-1.  
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Jade-1 is an additional recently discovered E3 for β-catenin that appears to 

mainly regulate its nuclear levels (Chitalia et al., 2008).  Like SCFβ-TRCP, Jade-1 

only recognizes GSK3-phosphorylated β-catenin, but unlike SCFβ-TRCP Jade-1 

functions mostly in the nucleus and ubiquitylates β-catenin in both the absence 

and presence of Wnt signaling.  At present Jade-1 mediated β-catenin regulation 

has only been observed in kidney tissues.  It remains to be determined if this is a 

more general Wnt signaling regulatory mechanism.  

In addition to the critical regulation of β-catenin levels by ubiquitylation, the 

two β-catenin destruction complex scaffolding proteins Axin and APC are also 

both regulated by the ubiquitin system.  As discussed above, various groups have 

observed Axin degradation and, because it is a limiting component in the β-

catenin destruction complex, Axin degradation has been proposed to be a critical 

Wnt signaling event.  Until recently, however, the proteins involved in regulating 

Axin stability remained elusive.  Axin was first shown to be parsylated by 

tankyrase 1 and 2, which was determined to be required for its ubiquitylation and 

degradation (Huang et al., 2009a).  Subsequently a DUB, USP34, was discovered 

to regulate Axin stability, presumably by reversing the effects of an E3 ubiquitin 

ligase that had not been identified (Zhang et al., 2011).  Just recently, an E3 

ligase for Axin was discovered, RNF146, which recognizes parsylated Axin and 

targets it for proteasomal degradation (Zhang et al., 2011).  Thus, three key 
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components for regulating Axin levels have been identified indicating regulating 

Axin stability is a critical event in Wnt signal transduction.    

It has been known for some time that APC is ubiquitylated and degraded 

by the proteasome (Choi et al., 2004), but no E3 for APC has been identified.  

Recently the DUB, USP15, has been implicated in protecting APC from 

degradation as part of the COP9 signalasome (CSN) (Huang et al., 2009b).  The 

CSN has been reported to bind to SCFβ-TRCP to enhance its activity towards 

phosphorylated β-catenin.  Thus, it appears that USP15 functions to stabilize APC 

in the destruction complex to allow for efficient degradation of β-catenin via the 

combined effects of CSN and SCFβ-TRCP.  Another DUB, Trabid, has been shown 

to interact with and to remove K63-linked polyubiquitin chains from APC, although 

the functional consequence of both the addition of K63-linked chains to APC and 

their removal remains to be determined (Tran et al., 2008).   

Wnt signaling events at the plasma membrane are also regulated by 

ubiquitylation.  Most notably, the amount of the two co-receptors, LRP5/6 and Fz, 

available for initiation of Wnt signaling on the cell surface are regulated by 

components of the ubiquitin system.  In the case of LRP5/6, mono-ubiquitylation 

serves as a quality control step to ensure the receptor is palmitoylated and 

properly folded before it exits the endoplasmic reticulum (ER) (Abrami et al., 

2008).  If LRP5/6 is not palmitoylated it becomes mono-ubiquitylated and retained 

in the ER.  Neither the E3 that adds the mono-ubiquitin moiety onto LRP5/6 or the 

DUB that removes it have been identified.  Recent work showed that Fz is also 
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modified by ubiquitin conjugation; a modification that results in translocation of Fz 

to the lysosome where it is degraded (Mukai et al., 2010).  Mukai and colleagues 

identified a DUB, USP8, that removes the ubiquitin modification from Fz to 

prevent its lysosomal targeting and degradation, thereby increasing the amount of 

Fz on the cell surface available for Wnt signaling.  The E3 ligase that targets Fz 

for lysosomal degradation remains to be identified.    

Downstream of the two co-receptors lies the cytoplasmic protein Dsh, 

which has been shown to be ubiquitylated by the Kelch-like 12 (KLHL12)-Cullin3 

E3 ligase complex in response to Wnt stimulation (Angers et al., 2006).  

Ubiquitylation of Dsh by KLHL12 leads to its proteasomal degradation.  Thus, 

KLHL12 serves as a negative regulator of Wnt signaling.  In addition to its 

regulation by KLHL12, Dsh is also regulated by K63-linked polyubiquitylation, 

which appears to positively regulate Dsh function in the Wnt pathway.  The K63-

linked ubiquitin chains are removed by the DUB CYLD (Tauriello et al., 2010); a 

process that inhibits Wnt signaling.  It remains to be determined which E3 

conjugates the K63-linked polyubiquitin chains onto Dsh and what effect this 

modification has on Dsh activity.   

Clearly, the ubiquitin system is intimately involved in regulating Wnt signal 

transduction.  Although numerous E3s and DUBs have now been identified as 

key Wnt regulators, at the time I began my thesis work only the E3 ligases for β-

catenin (SCFβ-TRCP) and Dsh (KLHL12-Cullin3) had been identified. No other E3s 

or DUBs had been identified for the other components of the pathway that were 
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known to be ubiquitylated.  Thus, I performed a targeted RNAi screen in 

Drosophila S2 cells to identify novel E3 ligases and DUBs involved in the 

regulation of Wnt signal transduction, which I describe in Chapter III.  

Identification and characterization of novel E3 ligases and DUBs involved in Wnt 

signaling will greatly enhance our understanding of how this important pathway is 

regulated by the complex ubiquitin system and potentially lead to the design of 

novel therapeutics with which to treat Wnt-driven diseases.    
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Drosophila dsRNA Generation and S2 Cell RNAi Screen 

Verified or predicted E3 ligases were identified using the “Termlink” function on 

www.flybase.org. The following search terms were used: ubiquitin protein ligase 

activity, E3, and ubiquitin ligase complex. We pooled the search results to give a 

final list of 146 E3 ligases, of which we were able to screen a subset of 122 of 

these clones. We used the Drosophila Gene Collection (DGC) to isolate plasmid 

cDNAs encoding each E3 ligase (see Figure 3.1A). T7 and T3 RNA polymerase 

promoters were added to the 5’ and 3’ end of each cDNA, respectively, via PCR 

using primers specific for the vector, similar to the methods described in 

(Clemens et al., 2000). Primer sequences are as follows for E3 ligases in 

pOTB7/pOT2: Forward-5’-

CAGAGATGCATAATACGACTCACTATAGGGAGATTAGGTGACACTATAGAAC

T-3’, Reverse-5’-

CCAAGCCTTCAATTAACCCTCACTAAAGGGAGAAAGCCCGCTCATTAGGCG

GGTTAAA-3’ 

For E3 ligases in pBSSK/pFlc1: Forward-5’-

CAGAGATGCATAATACGACTCACTATAGGGAGACGACTCACTATAGGGCGA

AT-3’, Reverse-5’-



 29 

CCAAGCCTTCAATTAACCCTCACTAAAGGGAGATTAACCCTCACTAAAGGGA

ACAAAA-3’.  

dsRNA was synthesized in an in vitro transcription reaction using mMessage 

mMachine (Ambion) according to manufacturer’s instructions using T3 and T7 

RNA polymerases, purified using RNeasy Mini Kit (Qiagen), and added to 

Drosophila S2 reporter cells stably transfected with a Wg TOPflash luciferase 

transcriptional reporter and a vector containing a constitutively expressed LacZ 

gene (gift from R. Nusse, Stanford). The S2 reporter cells were incubated with 

dsRNA for 72 hrs prior to incubation for 24 hrs in Wg-conditioned media.  Cells 

were lysed in 1X Passive Lysis Buffer (Promega), and luciferase and β-

galactosidase activities were measured using Steady Glo and β-Glo Assays 

(Promega), respectively. Luciferase activity was normalized to β-galactosidase 

activity (a measure of cell number).   

 

Plasmids and Purified Proteins 

pCS2-XIAP, pCS2-myc-XIAP, pCS2-HA-XIAP, pCS2-myc-cIAP1, pCS2-myc-

cIAP2, pCS2-myc-TLE3, pCS2-myc-TLE3-Q, pCS2-myc-TLE1, pCS2-myc-AES, 

pCS2-HA-SMAC, and pMAL-XIAP, pCS2-USP47, pCS2-USP47mut, pCS2-GFP-

USP47, were all generated using standard PCR-based cloning strategies. The 

following plasmids were purchased from Addgene and described previously 

(Lewis et al., 2004; Yang et al., 2000): pEBB-XIAP, pEBB-XIAPΔRING (1-351), 

pGEX-XIAP, pGEX-XIAPΔRING.  The following plasmids were generous gifts: 
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pEBB-XIAPcasp-mut (D148A/W310A) (C. Duckett, University of Michigan), 

pMT107 (His-Ub) (W. Tansey, Vanderbilt University), pMP-SUMO-H6-Groucho-Q 

(A. Courey, UCLA), pGEX-TCF4 (J. Eid, Vanderbilt University), pcDNA3-HA-

TLE3 (A. Kispert, Hannover Medical School), pHR-myc-β−TRCP-1 (S. Elledge, 

Harvard Medical School), pCMV-Script-Smad4 (D. Beauchamp, Vanderbilt 

University) and TP1-Luc and NotchICV (S. Huppert, Vanderbilt University). TK-

Renilla (Promega) and TOPflash (Korinek et al., 1997) were described 

previously. GST-XIAP, GST-XIAPΔRING (Lewis et al., 2004), SUMO-H6-

Groucho-Q (Kuo et al., 2010), and GST-TCF4 (Poy et al., 2001) were purified as 

described previously. MBP-XIAP was expressed in bacteria and purified 

according to manufacturer’s instructions (New England Biolabs).  

 

Cell Lines and Transfections 

HEK293, HeLa, SW480, and L and L-Wnt3a cell lines were purchased from the 

American Type Culture Collection. Wg-secreting cells were purchased from the 

Drosophila Genomics Resource Center. HEK293 CMV-Luc was reported 

previously (Thorne et al., 2010). The following cell lines were gifts: HEK293 STF 

(J. Nathans, Johns Hopkins University), HCT116 XIAP WT and HCT116 XIAP 

KO (B. Vogelstein, Johns Hopkins University), S2 reporter cells (R. Nusse, 

Stanford University). Mammalian cell lines were cultured in DMEM plus 10% (v/v) 

FBS and antibiotics. Drosophila S2 cells were cultured in Schneider's medium 

plus 10% (v/v) FBS. DNA transfections were performed with Lipofectamine 2000 
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transfection reagent (Invitrogen) according to the manufacturer’s protocol. siRNA 

transfections were performed using Dharmafect-1 (HEK293 and HeLa cells) or 

Dharmafect-4 (HCT116 and SW480 cells) according to the manufacturer’s 

protocol with the following siRNA constructs: XIAP siRNA#1: 5’-

AAGUGGUAGUCCUGUUUCAGCUU-3’, XIAP siRNA#2: 5’-

GGUAAGAACUACUGAGAAAUU-3’, USP47 siRNA#1:  5’-

UUGUUCACCAUCUUUAUCUdTdT-3’,  

USP47 siRNA#2: 5’-AAAUGCUAUAGCUUUCUUCdTdT-3’,  

or siGENOME Non-Targeting siRNA #5 (Thermo Scientific Dharmacon). 

 

Reporter Assays 

For cell-based luciferase assays, cells were plated and transfected with siRNA or 

DNA, as described above. L cell-conditioned media or Wnt3a-conditioned media 

was added to HEK293 STF cells 24 hrs after transfection. Cells were lysed 48 

hrs after transfection with 1X Passive Lysis Buffer (Promega) and luciferase 

activity measured with Steady Glo (Promega). Luciferase activities were 

normalized to viable cell number using the CellTiter-Glo Assay (Promega). 

TOPflash experiments in HCT116 and SW480 cells were normalized to co-

transfected Renilla gene expression. TP1 reporter assay was performed in 

HEK293 cells as previously described (Huppert et al., 2005). All graphs were 

made using Prism 4 (GraphPad Software, Inc.). Statistical analysis was 
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performed using the Student's t test. A value of p < 0.05 is considered statistically 

significant. 

 

Ubiquitylation Assays 

In vitro ubiquitylation assays were carried out in 20 ul reactions using the 

Ubiquitin Thioester/Conjugation Initiation Kit (Boston Biochem) and the following: 

1 uM UbcH5a (Boston Biochem); 2.5 ug GST-XIAP, GST-XIAPΔRING, or MBP-

XIAP; and 1 mM DTT. In vitro-translated myc-TLE3 or HA-TCF4 or recombinant 

SUMO-H6-Groucho-Q were used as substrates. Reactions were carried out at 

30°C for 90 min and stopped by addition of sample buffer. Reaction products 

were resolved by SDS/PAGE and visualized by immunoblotting. In vivo 

ubiquitylation assays were performed using the His-tagged ubiquitin method as 

previously described (Salghetti et al., 1999). 

 

Gel Filtration 

Gel filtration was performed using an AKTA FPLC apparatus with Superose 6 or 

Superdex 200 columns (GE Healthcare). The following standards were used for 

calibration: thyroglobulin (670 kDa), γ-globulin (158 kDa), ovalbumin (44 kDa), 

myoglobin (17 kDa), and vitamin B12 (1.35 kDa) (Bio-Rad). In vitro-translated and 

ubiquitylated myc-TLE3 and myc-TLE3-Q were chromatographed at 4°C in 

50 mM Tris (pH 7.4) and 200 mM NaCl, as described previously for SUMO-H6-

Groucho-Q (Kuo et al., 2010). 
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Antibodies 

The following antibodies were used for immunoprecipitation, immunoblotting and 

immunofluorescence: anti-β-catenin (BD Transduction Labs), anti-GAPDH 

(Abcam), anti-HA (3F10, Roche), anti-XIAP (R&D Systems (immunoprecipitation) 

and BD Transduction (immunoblotting)), anti-TLE3 (M-201, Santa Cruz), anti-

Myc (9E10), anti-TCF4 (Cell Signaling Technologies), anti-Flag (M2, Sigma), 

anti-His (Novagen), anti-USP47 (Bethyl), anti-β-TRCP (Zymed, 37-3400), and 

anti-Smad4 (Santa Cruz, sc7966). 

 

Immunoblots, Immunoprecipitations, and GST Pull-Downs 

For immunoblots, cells were lysed in non-denaturing lysis buffer (NDLB) (50 mM 

Tris-Cl (pH 7.4), 300 mM NaCl, 5 mM EDTA, 1% (w/v) Triton X-100, protease 

inhibitor cocktail (Roche)) and soluble fractions were obtained. For cycloheximide 

(CHX)-chase experiments, cells were treated with 50 ug/ml CHX for the indicated 

time. For co-immunoprecipitations, cells were lysed in NDLB supplemented with 

250 ng/ml ubiquitin aldehyde. Lysates were diluted to 1 mg/ml with NDLB and 

incubated with antibody O/N with rotation at 4°C followed by addition of Protein 

A/G beads (Santa Cruz) for 2 hrs. Beads were then washed five times with 

NDLB. Bound proteins were eluted from beads with protein sample buffer and 

analyzed by SDS-PAGE/immunoblotting. For in vitro binding assays, GST or 

GST-TCF4-bound glutathione beads were diluted into binding buffer (20 mM 

Tris-HCl (pH 8.0), 150 mM NaCl, 0.5% NP-40, 1 mM DTT, and protease inhibitor 
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cocktail) and incubated with in vitro translated myc-TLE3 or myc-TLE-Q or 

recombinant MBP-XIAP for 2 hrs with rotation at 4°C. Beads were washed five 

times for 10 min at RT in binding buffer, and proteins eluted with sample buffer 

and analyzed by SDS-PAGE/immunoblotting. 

 

Xenopus laevis Studies 

Xenopus embryos were in vitro fertilized, dejellied, cultured, and injected as 

previously described (Peng, 1991).  Morpholinos with the following sequences 

were purchased from Gene Tools. Standard Control MO: 5’-

CCTCTTACCTCAGTTACAATTTATA-3’, XIAP MO#1: 5’-

GCATGTCATCTCCTCTTTAAATACG-3’, XIAP MO#2: 5’-

GGAACCACAACCTTCCTACCGGCTC-3’, USP47 MO:  5’-

GCTGACTCTCTTCTCCAGGCCTCAT-3’.  Capped Xwnt8, XIAP, and USP47 

mRNA were generated using mMessage mMachine (Ambion) according to 

manufacturer’s instructions. Animal caps were excised from stage 9 embryos, 

cultured until stage 11, and RT-PCR of Siamois, Xnr3, Chordin, and ODC 

transcripts was performed as described (Cselenyi et al., 2008).  In situ 

hybridization analysis was performed as described (Harland, 1991) using a probe 

against Xenopus USP47 using Sp6 polymerase for the antisense strand.  For 

whole embryo sectioning and staining, embryos were formalin fixed, processed, 

embedded into paraffin and stained with hematoxylin and eosin for histological 

analysis.  Statistical analysis was performed using the Fisher’s exact test. A 
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value of p < 0.05 is considered statistically significant. All the work performed on 

Xenopus embryos was approved by the Institutional Animal Care and Use 

Committee (IACUC) at Vanderbilt University Medical Center and was in 

accordance with their policies and guidelines. 

 

Immunofluorescence 

Cells were grown on fibronectin-coated coverslips, fixed in 3.7% formaldehyde, 

permeabilized, incubated with primary antibody (anti-myc 1:1000, anti-XIAP 

1:200, anti-TLE3 1:200, anti-β-catenin 1:1000) followed by secondary antibodies 

conjugated to Cy3 or Alexa 488, and mounted in ProLong Gold with DAPI 

(Invitrogen). Cells were visualized using a Cascade 512B camera mounted on a 

Nikon Eclipse TE2000-E confocal microscope. 

 

Real-Time RT-PCR 

HEK293 cells were transfected with siRNA as described above and incubated for 

24 hrs. Cells were then serum starved (0.5% FBS) for 16 hrs and incubated with 

Wnt3a-CM for 24 hrs. Total RNA was isolated using RNAeasy RNA extraction kit 

(Qiagen) and cDNA generated using High Capacity cDNA Reverse Transcription 

kit (Applied Biosystems, ABI). Real-time RT-PCR assays were performed in 

quadruplicate using TaqMan Gene Expression Master Mix (ABI), gene specific 

TaqMan TAMRA probes (ABI), and an ABI 7000 sequence detection system. 

The following AXIN2 primer sequences were used. Forward: 5’-
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GTCCAGCAAAACTCTGAGGG-3’, Reverse: 5’-CTGGTGCAAAGACATAGCCA-

3’.  



 37 

CHAPTER III 

 

RNAi SCREEN TO IDENTIFY NOVEL UBIQUITIN SYSTEM COMPONENTS 

INVOLVED IN WNT SIGNALING 

 

Introduction 

 As I discussed in Chapter I, the Wnt signaling pathway is heavily regulated 

by ubiquitylation, but not many of the ubiquitin system components (i.e. E3 

ligases and DUBs) involved in Wnt pathway regulation had been identified at the 

time I began my graduate studies.  Thus, I designed a RNA interference (RNAi) 

screen in Drosophila S2 cells to identify novel E3s and DUBs involved in Wg/Wnt 

signaling.  RNAi is a potent method for knocking down expression of specific 

mRNA molecules.  This approach has been well established using the 

Drosophila S2 cell system (Clemens et al., 2000; Goshima et al., 2007), which 

has many advantages:  1) there are fewer genes in Drosophila than in 

mammalian systems, simplifying the screen; 2) uptake of dsRNA is very robust in 

S2 cells and does not require use of a transfection reagent; and 3) Drosophila 

dsRNA can be synthesized in the laboratory using Drosophila Gene Collection 

cDNA clones (which we have in our laboratory) and adding a second T7 

polymerase promoter (within the primer) via PCR to generate full-length dsRNA 

for each gene of interest.  This generally results in very efficient knockdown of 

target gene expression.   
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Thus, I designed a RNAi screen targeting all of the predicted E3 ligases 

and DUBs in the Drosophila genome (see Chapter II for details).  I used the 

Drosophila Gene Collection to collect plasmid cDNAs encoding each DUB and 

E3 ligase.  An additional T7 RNA polymerase promoter was added to the 3’ end 

of the reverse strand of each cDNA via PCR, and dsRNA was synthesized in an 

in vitro transcription reaction using T3 and T7 RNA polymerases (Figure 3.1).  

The dsRNA was then purified and added to Drosophila S2 reporter cells 

(obtained from R. Nusse, Stanford University), which have been stably 

transfected with the well-characterized TOPflash luciferase transcriptional 

reporter and with a vector containing a constitutively expressed LacZ gene.  The 

TOPflash reporter contains 8 TCF/LEF binding sites upstream of a minimal 

promoter, which drives expression of luciferase (Korinek et al., 1997).  In these 

S2 reporter cells, luciferase activity is a measure of Wg signaling activity that can 

be normalized to β-galactosidase activity, which is a measure of cell number.  

The dsRNA was incubated with the S2 reporter cells for 72 h at which time Wg 

(the Drosophila Wnt homolog)-conditioned media was added to the cells in a 1:1 

ratio.  The cells were incubated for an additional 24 h, lysed, and luciferase and 

β-galactosidase activity were measured.  Luciferase activity was then normalized 

to β-galactosidase activity to obtain the final results.  
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Results 

 

Results of the Drosophila E3 ligase RNAi screen 

In both the E3 ligase and DUB RNAi screen, Axin (a potent negative 

regulator of Wg signaling) and Armadillo (Arm, the Drosophila β-catenin homolog 

and potent positive regulator of Wg signaling) dsRNA served as controls to 

confirm effective knockdown in each experiment.  Both the Axin and Arm controls 

are shown in Figure 3.2A, but the Axin control is not shown in the rest of the 

figures to make it easier to visualize differences between the samples treated 

with dsRNA targeting the E3s and the Wg-treated samples.  Axin control dsRNA 

Figure 3.1.  Schematic of Drosophila RNAi screen to identify E3 ligases 
and DUBs involved in regulating Wg/Wnt signlaling.  See text and 
Chapter II (Materials and Methods) for details.   
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significantly increased Wg signaling, while Arm control dsRNA significantly 

decreased Wg signaling in all samples, indicating that the dsRNA treatment was 

effective.    

Of the 118 E3 ubiquitin ligases screened (Table 3.1 and Figure 3.2), the 

knockdown of one (number 112) was particularly potent in inhibiting Wg 

signaling, reducing TOPflash activity to a similar extent as knocking down Arm. 

dsRNA number 112 targets Drosophila Inhibitor of Apoptosis 1 (DIAP1), a well-

characterized anti-apoptotic effector and a member of the evolutionarily 

conserved Inhibitor of Apoptosis protein (IAP) family (Srinivasula and Ashwell, 

2008). I chose to pursue this “hit” further because it suggested an unexpected 

link between a classic IAP family member and regulation of the Wg signaling 

pathway.  This result is described in detail in Chapter IV.   

In addition to E3 number 112, two other interesting “hits” were recovered.  

One of these was number 52, which corresponds to the Drosophila gene 

Trithorax (Trx) (Figure 3.2E).  Knockdown of Trx activates Wg signaling, 

indicating it is a negative Wg signaling regulator in S2 cells, however, the human 

homolog of Trx  (Mixed-Lineage Leukemia (MLL), a methyltransferase) has now 

been shown to associate with β-catenin to promote histone H3 lysine 4 (H3K4) 

methylation to activate Wnt target gene transcription (Sierra et al., 2006).  The 

discrepancy between my data and the data of Sierra et al. could simply be due to 

differences in regulation of Wg/Wnt signaling in Drosophila versus human cells.  

Additionally, it is not clear how a methyltransferase was included in the predicted 
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E3 ligase list obtained from www.flybase.org (see Chapter II for details).  It may 

be due to the fact that MLL contains a zinc finger domain, which is found in RING 

domain-containing E3 ligases.  Regardless of the fact that MLL is not an E3 

ligase and that my data indicates its fly homolog is a negative Wg signaling 

regulator, the fact that knockdown of the gene affected Wg activity validated that 

I was able to identify Wg signaling regulators using this method.  

The other interesting “hit” was E3 number 106, which corresponds to the 

Drosophila gene Something That Sticks Like Glue (SNAMA), whose human 

homolog is Retinoblastoma Binding Protein 6 (RBBP6).  My results indicate 

SNAMA/RBBP6 is a negative regulator of Wg/Wnt signaling as its knockdown 

activates TOPflash activity (Figure 3.2H).  Nothing has been published indicating 

a role for SNAMA/RBBP6 in Wg/Wnt signaling to date.  The few studies that 

have been published on RBBP6 have failed to reach a conclusion regarding its 

function, but it has been strongly implicated in tumorigenesis and is required for 

development; two roles which have largely been attributed to its capacity to bind 

the tumor suppressor proteins p53 and pRB (Li et al., 2007; Motadi et al., 2011; 

Rowe et al., 2006; Simons et al., 1997).  Interestingly, it has recently been 

predicted to be a transcriptional repressor, which is consistent with my data 

indicating it represses Wg signal transduction (Peidis et al., 2010).  It will be 

interesting to determine if RBBP6 acts as a transcriptional repressor in the Wnt 

pathway and how this may or may not be influenced by its interaction with p53 or 

pRB.      
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There were other E3 ligases screened that affected Wg signaling either 

positively or negatively, but many do not have obvious human homologs.  It will 

be interesting to see how many of them turn out to be bona fide Wnt signaling 

regulators. 
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Figure 3.2.  Results of Drosophila E3 ligase RNAi screen for 
Wg/Wnt signaling regulators.   
(A-I)  Results of TOPflash activity normalized to β-galactosidase 
activity relative to –Wg treatment.  Mean ± standard deviation (SD) 
of each dsRNA treatment performed in triplicate is shown.  Axin (A 
only) and Arm serve as controls for negative and positive 
regulators of Wg/Wnt signaling, respectively.  Asterisk indicates 
the most potent “hit” identified in the screen, which is described 
further in Chapter IV.      
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E3 Collection # FULL NAME SYMBOL CLONE ID PLATE ROW COLUMN VECTOR Antibiotic SIZE

1 CG31716 CG31716 RE04975 1 I 4 PFLC1 Amp 3500

2 CHIP CHIP RE01069 1 A 11 PFLC1 Amp 1278

3 l(3)73Ah CG4195 RE11339 1 J 2 PFLC1 Amp 1964

4 ppa CG9952 RE01138 1 A 15 PFLC1 Amp 3449

5 hyd CG9484 RE13070 1 P 8 PFLC1 Amp 9074

6 CG11419 CG11419 RE25242 2 P 20 PFLC1 Amp 1100

7 Trim9 CG31721 RE22018 2 B 14 PFLC1 Amp 3105

8 cdc16 cdc16 RE28575 3 A 24 PFLC1 Amp 2583

9 CG5087 CG5087 RE40614 4 I 1 PFLC1 Amp 3943

10 CG9153 CG9153 RE53774 4 L 6 PFLC1 Amp 3818

11 ARIADNE ari-1 RE69116 5 N 24 PFLC1 Amp 2672

12 CG2617 CG2617 RE60872 5 M 14 PFLC1 Amp 1263

13 Cul-5 CG1401 RE55959 5 G 3 PFLC1 Amp 3511

14 dx CG3929 RE59350 5 G 8 PFLC1 Amp 3824

15 Mes-4 CG4976 RE61305 5 O 8 PFLC1 Amp 4585

16 Roc2 CG8998 RE61847 5 B 5 PFLC1 Amp 590

17 Vhl CG13221 RH61560 9 K 3 PFLC1 Amp 1308

18 lack CG4943 LD16661 10 C 11 pBS-SK- Amp 4865

19 lmg CG18042 AT07979 11 F 13 POTB7 Chlor 2956

20 CG1134 CG1134 AT15655 12 C 20 POTB7 Chlor 1239

21 CG12362 CG12362 AT17761 12 O 2 POTB7 Chlor 1962

22 CG17329 CG17329 AT18988 12 F 23 POTB7 Chlor 673

23 CG5071 CG5071 AT17603 12 M 6 POTB7 Chlor 2241

24 Roc1b  CG16988 AT21612 12 F 2 POTB7 Chlor 514

25 CG4238 CG4238 AT17882 12 O 12 POTB7 Chlor 3515

26 HERC2 CG11734 AT22791 12 L 2 POTB7 Chlor 15796

27 ariadne 2 ari-2 GH07166 13 J 18 POT2 Chlor 3002

28 CG11321 CG11321 GH08772 13 N 6 POT2 Chlor 8769

29 CG13030 CG13030 AT26312 13 I 23 POTB7 Chlor 1448

30 elfless CG15150 AT24563 13 C 1 POTB7 Chlor 1166

31 Cbl Cbl LD46082 14 N 22 POT2 Chlor 3889

32 CG9014 CG9014 LP07794 15 B 15 POT2 Chlor 1359

33 skpF CG12227 LP10147 15 J 11 POT2 Chlor 697

34 CG5604 CG5604 LP05936 15 G 10 POT2 Chlor 8344

35 Roc1a  CG16982 SD23839 16 I 12 POT2 Chlor 1168

36 CG5382 CG5382 GM05688 DGC.1 J 15 pBS SK- amp 1200

37 Cul-3 (guftagu?) CG11861 DGC.1 I 21 pBS SK- amp 2725

38 Gbp CG5519 LD02793 DGC.1 E 21 pBS SK- amp 1774

39 CG4973 CG4973 LD35003 DGC.10 P 22 pOT2 1403

40 d4 CG2682 LD29238 DGC.10 J 9 pOT2 1766

41 Iap2 CG8293 LD34777 DGC.10 P 18 pOT2 2095

42 unk CG4620 LD33756 DGC.10 L 16 pOT2 2710

43 CG10542 CG10542 LD35285 DGC.11 A 21 pOT2 2210

44 CG11982 CG11982 LD47007 DGC.11 F 18 pOT2 1571

45 CG13605 CG13605 LD44641 DGC.11 J 15 pOT2 2122

46 CG17033 CG17033 LD41235 DGC.11 I 14 pOT2 1554

47 CG17260 CG17260 LD44813 DGC.11 L 3 pOT2 1282

48 CG32486 CG32486 LD47625 DGC.11 L 8 pOT2 2347

49 mr (morula) CG3060 LD45730 DGC.11 P 5 pOT2 1451

50 neur (neuralized) CG11988 LD45505 DGC.11 N 19 pOT2 2656

51 shtd (shattered) CG9198 LD37115 DGC.11 I 3 pOT2 1799

52 trx (trithorax) CG8651 LD39445 DGC.11 A 2 pOT2 2552

53 CG11414 CG11414 SD03374 DGC.12 E 8 pOT2 1571

54 CG17019 CG17019 SD05126 DGC.12 K 22 pOT2 2855

55 CG5140 CG5140 GH03577 DGC.12 D 16 pOT2 1539

56 sip3 CG1937 GH11117 DGC.12 L 10 pOT2 2282

57 park (parkin) CG10523 SD01679 DGC.12 M 5 pOT2 1569

58 CG32369 CG32369 GH21463 DGC.13 G 7 pOT2 2452

59 CG4030 CG4030 LD23155 DGC.13 G 20 pOT2 2311

60 CG6752 CG6752 LD30968 DGC.13 D 11 pOT2 2785

61 CG9772 CG9772 GM13370 DGC.13 O 15 pOT2 1975

62 Cul-2 CG1512 LD36177 DGC.13 J 13 pOT2 2817

63 dor CG3093 SD04291 DGC.13 L 6 pOT2 3173

64 CG11261 CG11261 LD29662 DGC.14 G 24 pOT2 2210

65 CG15105 CG15105 GH06739 DGC.14 P 15 pOT2 4683

66 Cul-6 CG11261 LD29662 DGC.14 G 24 pOT2 2210

67 Gol (goliath) CG2679 GH20973 DGC.14 E 15 pOT2 2586

68 msl-2 CG3241 GH22488 DGC.14 N 24 pOT2 3715

69 CG6923 CG6923 LD22771 DGC.15 E 19 pOT2 4531

70 CG9934 CG9934 SD06937 DGC.15 H 12 pOT2 4432
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71 mib1 CG5841 SD05267 DGC.15 D 14 pOT2 4073

72 mib2 CG17492 GH28686 DGC.15 E 5 pOT2 3511

73 POSH CG4909 LD45365 DGC.15 B 23 pOT2 3149

74 CG8184 CG8184 SD03277 DGC.15 P 11 pOT2 3685

75 Nedd4 CG7555 SD04682 DGC.15 B 24 pOT2 3641

76 ARCHIPELAGO ago CG15010 DGC.16 P 2 pOT2 5312

77 CG33144 CG33144 GH08706 DGC.16 A 11 pOT2 4533

78 CG5591 CG5591 GH27953 DGC.16 K 3 pOT2 3354

79 CG9086 CG9086 LD31957 DGC.16 P 12 pOT2 6381

80 Cul-4 CG8711 GM14815 DGC.16 K 19 pOT2 3314

81 rols CG32096 GH15583 DGC.16 J 4 pOT2 5122

82 Topors CG15104 LD43109 DGC.16 E 6 pOT2 4038

83 As CG6190 LD21888 DGC.16 B 17 pOT2 3667

84 CG3356 CG3356 LP03102 DGC.16 G 12 pOT2 3917

85 CG32210 CG32210 SD01201 DGC.17 G 5 pOT2 5405

86 CG10981 CG10981 GM01182 DGC.2 A 3 pBS SK- amp 1660

87 CG15011 CG15011 LD05244 DGC.2 O 11 pBS SK- amp 2903

88 CG32350 CG32350 LD20292 DGC.2 F 4 pBS SK- amp 2870

89 CG7376 CG7376 LD03886 DGC.2 K 23 pBS SK- amp 2250

90 skpA CG16983 HL01263 DGC.2 C 17 pBS SK- amp 1533

91 Trc8 CG2304 LD08152 DGC.2 G 2 pBS SK- amp 1493

92 cdc23 cdc23 LD09850 DGC.3 L 2 pBS SK- amp 2245

93 CG13344 CG13344 GM02568 DGC.3 B 19 pBS SK- amp 1925

94 CG15439 CG15439 LD18949 DGC.3 H 3 pBS SK- amp 2617

95 CG1815 CG1815 LD02460 DGC.3 P 13 pBS SK- amp 2862

96 CG31687 CG31687 LD09850 DGC.3 L 2 pBS SK- amp 2245

97 Cul-1 (lin19) CG1877 LD20253 DGC.3 H 19 pBS SK- amp 2984

98 slmb CG3412 LD08669 DGC.3 H 6 pBS SK- amp 2534

99 CG17735 CG17735 HL01545 DGC.3 D 21 pBS SK- amp 2452

100 Su(dx) CG4244 LD10565 DGC.3 N 24 pBS SK- amp 2901

101 CG16807 CG16807 LD12033 DGC.4 K 10 pBS SK- amp 3332

102 CG2926 CG2926 LD09942 DGC.4 L 15 pBS SK- amp 4435

103 CG2991 CG2991 LD08641 DGC.4 E 4 pBS SK- amp 3147

104 CG9461 CG9461 GM01353 DGC.4 O 16 pBS SK- amp 4150

105 CG11070 CG11070 LD34475 DGC.5 A 24 pOT2 3416

106 CG3231 CG3231 LD21643 DGC.5 E 12 pOT2 3937

107 CG7864 CG7864 GM14467 DGC.5 D 8 pOT2 1048

108 mei-P26 CG12218 GH10646 DGC.5 D 1 pOT2 5254

109 morgue CG15437 GH02435 DGC.5 I 19 pOT2 1698

110 stc CG3647 LD22726 DGC.5 I 8 pOT2 4067

111 CG2681 CG2681 GH02982 DGC.6 E 6 pOT2 1079

112 th (thread) CG12284 GH15335 DGC.6 F 3 pOT2 1484

113 CG7081 CG7081 LD46714 DGC.7 M 7 pOT2 1041

114 poe CG14472 LP02909 DGC.7 A 6 pOT2 1065

115 CG5555 CG5555 GH07062 DGC.8 J 3 pOT2 1976

116 CG8974 CG8974 GH14055 DGC.8 P 22 pOT2 1703

117 Sce CG5595 LD23953 DGC.8 A 14 pOT2 1534

118 sina CG9949 HL08111 DGC.8 C 21 pOT2 2280

119 Traf2 CG10961 GH01161 DGC.8 I 20 pOT2 2785

120 CG15141 CG15141 LD24839 DGC.8 G 12 pOT2 1688

121 CG11534 CG11534 GH12489 DGC.9 M 20 pOT2 1627

122 CG1909 CG1909 GH22690 DGC.9 P 24 pOT2 2405
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Results of the Drosophila DUB RNAi screen 

Of the 29 DUBs screened (out of the 30 predicted in the Drosophila 

genome) (Table 3.2 and Figure 3.3), two “hits” were recovered, both of which 

inhibit Wg signaling when knocked down, indicating they are Wg signaling 

activators.  One of the DUB hits, Cylindromatosis (CYLD, and dsRNA number 11 

in Figure 3.3A), was shown to be a Wnt pathway regulator by the Clevers 

DON'T HAVE bon CG5206

DON'T HAVE CG11360 CG11360

DON'T HAVE CG15800 CG15800

DON'T HAVE CG17048 CG17048

DON'T HAVE CG2709 CG2709

DON'T HAVE CG31053 CG31053

DON'T HAVE CG1392 CG1392

DON'T HAVE CG31807 CG31807

DON'T HAVE CG32581 CG32581

DON'T HAVE CG32847 CG32847

DON'T HAVE CG3639 CG3639

DON'T HAVE CG6613 CG6613

DON'T HAVE CG6688 CG6688

DON'T HAVE CG8419 CG8419

DON'T  HAVE CG9941 CG9941

DON'T HAVE Dnr1 Dnr1

DON'T HAVE hiw (highwire) hiw 

DON'T HAVE ida 

DON'T HAVE lt (light)

DON'T HAVE mat1

DON'T HAVE Mi-2

DON'T HAVE Psc 

DON'T HAVE Su(z)2 

DON'T HAVE CG3099 CG3099

Table 3.1.  List of the predicted E3 ligases in the Drosophila genome used 
for the RNAi screen.   
The numbers in the left-hand column correspond to the numbers of the dsRNAs 
graphed in Figure 3.2.  The corresponding gene names and symbols are 
indicated next to each number in the table. Information regarding the vector in 
which each cDNA is cloned as well as where each clone is located in the 
Drosophila Gene Collection (DGC) 1 and 2 is shown at right.  The clones that 
are not found in the DGC, and thus were not screened, are noted at the end of 
the table.      
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laboratory (Wnt Meeting, Berlin) at the time I performed this screen, further 

validating my approach for identifying bona fide Wg/Wnt regulators in my DUB 

RNAi screen.  They have now published a paper indicating CYLD cleaves K63-

linked polyubiquitin chains from Dsh, which inhibits Wnt signaling, as described in 

Chapter I (Tauriello et al., 2010).  Thus, again, my results were opposite of those 

found in human cells as my data gathered in S2 cells indicated that CYLD is a 

positive Wg signaling regulator.  Regardless of this discrepancy, my screen 

identified CYLD as a potential Wnt pathway regulator indicating I was able to 

identify novel Wnt pathway components using this method.     

Because CYLD was already under investigation by another laboratory, I 

decided to focus on the other DUB hit, Ubiquitin Binding Protein 64 E (Ubp64E, 

and dsRNA number 15 in Figure 3.3A), whose human homolog is Ubiquitin 

Specific Peptidase 47 (USP47), a putative DUB that had no known function at the 

time I began my studies.  Characterization of this DUB hit is described in Chapter 

V.   
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Figure 3.3.  Results of Drosophila DUB RNAi screen for Wg/Wnt 
signaling regulators.   
(A and B)  Results of TOPflash activity normalized to β-galactosidase 
activity relative to –Wg treatment.  Mean ± standard deviation (SD) of each 
dsRNA treatment performed in triplicate is shown. Arm serves as a control 
for positive regulators of Wg/Wnt signaling.  Asterisk indicates the “hit” I 
chose to pursue and is described in Chapter V. 
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Discussion 

Performing a targeted RNAi screen in Drosophila S2 cells provided two 

advantages over performing an RNAi screen in mammalian cells or over 

previously reported Wnt pathway RNAi screens:  1) there is less redundancy in 

DUB Collection # SYMBOL Clone ID Predicted Gene  Plate  Row Column Vector Antibiotic Size cDNA Accession

1 CG8494 HL02756 3 E 18 pBS SK- amp 1990 AY069300

2 isopep-T-3 LD10242 CG11025 3 L 24 pBS SK- amp 2404 BT004899

3 CG7023 RE52890 4 H 2 PFLC1 Amp

4 CG15817 LD22910 5 I 10 pOT2 4860 AF181650

5 CYLD RE64280 CG5603 5 N 1 PFLC1 Amp

6 faf LD22582 CG1945 5 I 4 pOT2 5393 AF145677

7 Uch GH02396 CG4265 5 I 13 pOT2 1068 AF145600

8 Uch-L3 LD24440 CG3431 5 E 9 pOT2 1153 AF132567

9 Ulp1 GH02751 CG12359 5 K 9 pOT2 3449 AF145608

10 CG12082 RE70722 6 E 13 PFLC1 Amp

11 dp SD02173 CG33196 7 G 24 pOT2 1245 AY122242

12 CG8445 GH01941 8 O 12 pOT2 2148 AY047515

13 CG1950 AT10439 11 D 20 POTB7 Chlor

14 not LD43147 CG4166 11 B 19 pOT2 2508 AY058707

15 Ubp64E LD38333 CG5486 11 M 7 pOT2 3143 AY058672

16 CG3016 LD41827 13 N 17 pOT2 2314 AY069649

17 CG5384 LD40495 13 L 23 pOT2 1715

18 CG5794 AT30546 13 D 15 POTB7 Chlor

19 CG7288 LD38070 13 L 7 pOT2 1700 AY061442

20 Usp7 LD41613 CG1490 13 N 15 pOT2 2224 AY061459

21 CG8232 LD22095 14 B 19 pOT2 AY119601

22 CG14619 SD04280 15 B 10 pOT2 3450 AY069803

23 CG4165 LD34905 15 G 2 pOT2 4221 AY051846

24 CG5798 SD04548 15 B 16 pOT2 3208 AY122247

25 mule LD40339 CG5505 15 K 18 pOT2 3515 AY051916

26 CG30421 GH27809 16 L 8 pOT2 5184 AY060809

27 CG32479 LD28815 16 N 6 pOT2 6352 AY122170

28 CG8334 SD15907 16 E 23 POT2 Chlor

29 CG8830 LD36231 16 C 14 pOT2 3195

30 ec CG2904

Table 3.2.  List of the predicted DUBs in the Drosophila genome used for 
the RNAi screen.   
The numbers in the left-hand column correspond to the numbers of the 
dsRNAs graphed in Figure 2.3.  The corresponding gene names and symbols 
are indicated next to each number in the table. Information regarding the 
vector in which each cdna is cloned as well as where each clone is located in 
the Drosophila Gene Collection 1 and 2 is shown at right.    
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gene function in S2 cells than in mammalian cells, making it easier to identify 

genes that affect Wg/Wnt signaling, and 2) focusing solely on E3s and DUBs 

instead of the entire genome (as was done by (DasGupta et al., 2005)), reduced 

the amount of error that comes with handling a large number of samples as well 

as simplified the data analysis once the screen was completed.  Additionally, the 

smaller number of samples allowed re-testing of the most promising hits in a time-

efficient manner.   

While no screen is perfect and false negatives and false positives are 

always identified, I deem a screen successful if it uncovers any novel biology.  To 

this end, both the E3 and DUB RNAi screens I performed as described here were 

successful.  The E3 ligase screen allowed me to identify DIAP1, whose human 

homolog is XIAP, as a novel key Wg/Wnt signaling regulator.  My E3 screen did 

not identify the key Wg/Wnt signaling regulator Slimb/β-TRCP, indicating there 

are false negatives in my data set, but it did pick up Trithorax/MLL as a Wg/Wnt 

signaling component, which has now been shown to be a Wnt pathway regulator.  

Thus, I was able to identify a bona fide Wnt pathway regulator in my E3 RNAi 

screen.   

Similarly, I identified the DUB Ubp46E, whose human homolog is USP47, 

as a novel Wg/Wnt pathway regulator in my DUB RNAi screen.  I did not identify 

the other DUBs that have now been shown to be Wnt pathway regulators, as 

discussed in Chapter I, indicating there are also false negatives in my DUB data 

set.  However, I did identify CYLD as a Wg/Wnt pathway regulator, which has now 
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been shown to be a bona fide Wnt pathway component indicating I was able to 

identify novel DUBs involved in regulating Wnt signaling.           

While these screens identified other E3s and DUBs that remain to be 

characterized, I chose to focus on one E3 and one DUB for my thesis work.  I will 

discuss the E3 ligase screen hit, XIAP, in detail in Chapter IV and the DUB screen 

hit, USP47, in Chapter V.  
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CHAPTER IV 

 

XIAP MONO-UBIQUITYLATES GROUCHO/TLE TO PROMOTE CANONICAL 

WNT SIGNALING 

 

Introduction 

The canonical Wnt signaling pathway is present in all metazoans and 

regulates many developmental processes (Logan and Nusse, 2004; MacDonald 

et al., 2009). Misregulation of the Wnt pathway results in a variety of disease 

states in humans, including cancer. β-catenin is the main cytoplasmic effector in 

the Wnt pathway. In the absence of Wnt ligand, a β-catenin destruction complex, 

composed of Axin, glycogen synthase kinase 3 (GSK3), casein kinase I α (CKIα), 

and the tumor suppressor adenomatous polyposis coli (APC), promotes 

phosphorylation of β-catenin, targeting it for ubiquitin-mediated proteasomal 

degradation. Binding of a Wnt ligand to its two cell-surface receptors, Frizzled (Fz) 

and LDL receptor-related protein 5/6 (LRP5/6), results in inhibition of β-catenin 

phosophorylation and, thus, stabillzation of β-catenin. Stabilized β-catenin 

translocates to the nucleus where it binds to TCF/Lef to activate a Wnt-specific 

transcriptional program. 

A critical nuclear event that occurs upon Wnt pathway activation is the β-

catenin-mediated conversion of TCF/Lef from a transcriptional repressor to a 

transcriptional activator. In the absence of a Wnt signal, TCF/Lef is bound to the 
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Groucho (Gro)/TLE family of transcriptional co-repressors to repress transcription 

of Wnt target genes (Cavallo et al., 1998; Roose et al., 1998). This transcriptional 

repression is thought to involve recruitment of histone deacetylases by Gro/TLE 

to alter local chromatin structure as well as a role for Gro/TLE oligomerization, 

which promotes long-range chromosome condensation (Buscarlet and Stifani, 

2007; Jennings and Ish-Horowicz, 2008). According to the current model of Wnt 

signaling, a pool of β-catenin that enters the nucleus upon Wnt pathway 

activation directly competes with Gro/TLE for TCF/Lef binding (Daniels and Weis, 

2005). Once bound to TCF/Lef on chromatin, β-catenin recruits a co-activator 

complex, thereby converting TCF/Lef into a transcriptional activator.  

The Wnt pathway contains many components that are known to be 

regulated by ubiquitylation (Tauriello and Maurice, 2010). E3 ubiquitin ligases for 

β-catenin (Jiang and Struhl, 1998; Marikawa and Elinson, 1998) and Dishevelled 

(Angers et al., 2006) have been reported, but little was known about other E3 

ligases that regulate Wnt signaling at the time we began our study. Thus, we 

sought to identify novel E3 ligases involved in Wnt signaling to gain a better 

understanding of how the ubiquitin system regulates this pathway. 

Here, we performed a targeted RNAi screen in Drosophila S2 cells to 

identify novel E3 ubiquitin ligases involved in Wingless (Wg, the Drosophila 

homolog of Wnt) signal transduction that led to our identification of Drosophila 

Inhibitor of Apoptosis 1 (DIAP1) as a critical Wg pathway component. We 

demonstrate that the human homolog, X-linked Inhibitor of Apoptosis (XIAP), is 
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similarly required for Wnt signaling in cultured human cells and Xenopus 

embryos, indicating evolutionary conservation of function. In response to Wnt 

pathway activation, we show that XIAP is recruited to TCF/Lef transcriptional 

complexes where it binds and ubiquitylates Gro/TLE, thereby decreasing the 

affinity of Gro/TLE for TCF/Lef. Together, our data reveal a mechanism by which 

ubiquitin-mediated removal of Gro/TLE from TCF/Lef bound to chromatin is 

required in order to allow assembly of β-catenin-TCF/Lef complexes that can 

initiate a Wnt-specific transcriptional program. In contrast to a direct 

displacement model in which β-catenin and Gro/TLE simply compete for TCF/Lef 

binding (Daniels and Weis, 2005), we provide evidence for a more intricate 

transcriptional switch in the Wnt pathway. This Wnt signaling circuitry, involving 

the coincident activities of β-catenin and XIAP, may explain why modest changes 

in β-catenin levels in response to Wnt ligand are sufficient to robustly activate the 

pathway.  

 

Results 

 

Drosophila RNAi screen identifies DIAP1 as a critical component of the 

Wingless signaling pathway 

To identify novel E3 ubiquitin ligases involved in Wingless (Wg) signaling, 

we performed a genome-scale RNAi-based screen targeting E3 ubiquitin ligases 

in Drosophila S2 cells (Figure 4.1A, see Chapter II for details). Plasmids 
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encoding experimentally verified and predicted E3 ubiquitin ligases (122 clones 

total) were obtained from the Drosophila Gene Collection Release 1 and 2, and a 

PCR approach was used to generate linear cDNA products suitable for in vitro 

dsRNA synthesis. For the screen, dsRNA was added to a Drosophila S2R+ 

reporter cell line stably transfected with the Wg responsive TOPflash luciferase 

reporter (Korinek et al., 1997).   
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Figure 4.1.  Drosophila S2 cell RNAi screen identifies the E3 ligase 
DIAP1 as a positive regulator of Wingless signaling.  
(A) Schematic of RNAi screen to identify E3 ubiquitin ligases that regulate 
Wingless signaling in Drosophila S2 cells (see text for more details).  
(B) Results of RNAi screen. Graph represents mean ± standard deviation 
(SD) of TOPflash normalized to cell number. Axin and Armadillo (Arm) 
dsRNA treatments were performed as controls. Results for DIAP1 dsRNA 
(112) and 12 additional dsRNAs included in the screen are shown. Results 
are representative of at least three experiments performed in quadruplicate. 
*p-value < 0.01, **p-value < 0.001 versus +Wg.  
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Axin (a potent negative regulator of Wg signaling) and Armadillo (Arm, the 

Drosophila β-catenin homolog and potent positive regulator of Wg signaling) 

served as controls to confirm effective knockdown by dsRNA treatment in our 

screen (Figure 4.1B). Of the 122 E3 ubiquitin ligases screened, the knockdown of 

one (no. 112) was particularly potent in inhibiting Wg signaling, reducing 

TOPflash activity to a similar extent as knocking down Arm. dsRNA no. 112 

targets Drosophila Inhibitor of Apoptosis 1 (DIAP1), a well-characterized anti-

apoptotic effector and a member of the evolutionarily conserved Inhibitor of 

Apoptosis protein (IAP) family (Srinivasula and Ashwell, 2008). We chose to 

pursue this hit further because it suggested an unexpected link between a classic 

IAP family member and regulation of the Wg signaling pathway. 

 

XIAP is required for Wnt signaling in cultured mammalian cells 

We next sought to determine if XIAP, the homolog of DIAP1, is similarly 

required for Wnt signaling in mammalian cells. We tested the effects of XIAP 

knockdown on Wnt3a-induced transcriptional activation using a human 

embryonic kidney (HEK) 293 cell line stably transfected with the TOPflash 

reporter (STF293) (Xu et al., 2004). Knockdown of XIAP with two independent 

short-interfering RNA (siRNA) constructs significantly blocked Wnt3a-induced 

TOPflash activation (Figure 4.2A), while having no observable effect on the 

activity of a constitutively active luciferase reporter (CMV-Luciferase) (Thorne et 
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al., 2010) or a Notch reporter (Minoguchi et al., 1997) (Figure 4.3), indicating 

specific  
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Figure 4.2. XIAP is required for Wnt signaling in cultured mammalian cells.  
(A and B) Knockdown of XIAP by siRNA inhibits Wnt signaling. (A) HEK293 STF 
(STF293) cells were transfected with non-targeting control (Con) or two 
independent XIAP siRNAs and treated with L cell (L-CM) or Wnt3a cell- (Wnt3a-
CM) conditioned media for 24 hrs. Graph shows mean ± SD of TOPflash 
normalized to cell number. Immunoblotting confirmed knockdown of XIAP 
protein and Wnt3a-mediated stabilization of β-catenin. GAPDH is loading 
control. *p-value < 0.0001 versus Wnt3a-CM-treated Con. (B) Quantitative real-
time RT-PCR of endogenous Wnt target gene, AXIN2, in HEK293 cells treated 
with XIAP siRNAs or non-targeting control. Graph is ratio of AXIN2 to PMMD1 
mRNA (control). Results (mean ± SD) of four independent real-time RT-PCR 
reactions are shown. *p-value < 0.0005 versus Wnt3a-CM-treated Con. 
(C and D) XIAP is required downstream of β-catenin stabilization for Wnt 
signaling in multiple cell types. (C) STF293 cells were transfected with XIAP 
siRNAs or non-targeting control and treated with 30 mM LiCl. Graph shows 
mean ± SD of TOPflash normalized to cell number. Immunoblots confirmed 
knockdown of XIAP protein and LiCl-mediated stabilization of β-catenin. GAPDH 
is loading control. *p-value < 0.0001 versus LiCl-treated Con. (D) Knockdown of 
XIAP inhibits Wnt signaling in the colon cancer lines SW480 and HCT116. 
SW480 cells were transfected with TOPflash and XIAP siRNAs or non-targeting 
control. XIAP-deficient HCT116 cells (XIAP KO) were transfected with 
TOPflash. Graphs show mean ± SD of TOPflash normalized to Renilla 
luciferase (transfection control). Immunoblots confirmed loss of XIAP protein. No 
observable change in β-catenin levels was detected. GAPDH is loading control. 
*p-value < 0.0005, **p-value < 0.0001 versus Con or XIAP WT. 
(E) Overexpression (OE) of XIAP does not increase TOPflash activity. STF293 
cells were transfected with XIAP and treated with L-CM or Wnt3a-CM for 24 hrs. 
Graph shows mean ± SD of TOPflash activity normalized to cell number. 
Immunobloting confirmed increased XIAP expression and Wnt3a-induced β-
catenin stabilization. GAPDH is loading control. All TOPflash results are 
representative of at least three independent experiments performed in triplicate.  
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Figure 4.3. Knockdown of XIAP does not inhibit CMV-Luciferase or Notch 
signaling.  
(A) HEK293 cells stably transfected with CMV-Luciferase (CMV-Luc) were 
transfected with non-targeting control (Con) or two independent XIAP siRNAs. 
Graph shows mean ± SD of CMV-luc normalized to cell number. Immunoblot 
confirmed knockdown of XIAP protein by XIAP siRNA but not control siRNA. 
GAPDH is loading control. Results represent at least three independent 
experiments performed in triplicate.  
(B) To assess the effect of XIAP knockdown on Notch signaling, HEK293 cells 
were transfected with TP1-Luc (Notch reporter) and Notch intracellular domain 
(ICV) plus either non-targeting control (Con) or two independent XIAP siRNAs. 
Graph shows mean ± SD of reporter firefly luciferase activity normalized to 
Renilla luciferase (transfection control). Immunoblotting confirmed knockdown 
of XIAP. GAPDH is loading control. Results represent at least three 
independent experiments performed in triplicate.  
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inhibition of TOPflash activity. XIAP knockdown also inhibited Wnt3a-induced 

expression of endogenous AXIN2 transcripts, further indicating that XIAP is 

required for Wnt-mediated transcriptional activation (Figure 4.2B). 

Figure 4.4. XIAP loss or knockdown has no effect on β-catenin levels 
or localization.  
(A) A HCT116 cell line in which XIAP has been stably knocked out 
(HCT116 XIAP KO) and a corresponding wild-type control (HCT116 XIAP 
WT) were fixed, and immunostained for β-catenin. No change in β-catenin 
levels or localization were observed (greater than 300 cells scored per 
condition). Scale bars, 5 µm.  
(B) HeLa cells were transfected with control (Con) or XIAP siRNA, treated 
with LiCl as indicated, and stained for β-catenin and DNA. 20.8% (33/158) 
of control-siRNA and 20.6% (32/155) of XIAP-siRNA cells treated with LiCl 
were positive for nuclear β-catenin. Scale bars, 5 µm. 
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Knockdown of XIAP did not change the levels of cytoplasmic β-catenin, 

suggesting that XIAP is functioning downstream of the β-catenin destruction 

complex (Figure 4.2A and 4.4). To further test this possibility, we investigated 

whether knockdown of XIAP could inhibit Wnt signaling in cells treated with 

lithium (which inhibits the destruction complex kinase GSK3). We found that 

knockdown of XIAP inhibited TOPflash activation in STF293 cells even when the 

β-catenin destruction complex is inhibited by lithium and elevated levels of β-

catenin are present (Figure 4.2C).  

The SW480 and HCT116 colon cancer cell lines have significantly 

decreased capacity to degrade β-catenin due to mutations in APC and β-catenin, 

respectively (Korinek et al., 1997; Morin et al., 1997). Both cell lines exhibit 

constitutively active, ligand-independent Wnt signaling. Knockdown of XIAP by 

RNAi inhibited Wnt signaling in SW480 cells but had no observable effect on β-

catenin protein levels (Figure 4.2D). Wnt signaling was also significantly reduced 

without reduction in β-catenin levels in HCT116 cells deficient for XIAP (generous 

gift from B. Vogelstein, Johns Hopkins University). Furthermore, we did not 

detect any change in the localization of β-catenin in the absence of XIAP (Figure 

4.4A) or when XIAP was knocked down by RNAi (Figure 4.4B).  

In contrast to downregulation of XIAP, overexpression of XIAP had no 

observable effect on Wnt pathway signaling in the absence or presence of Wnt 

ligand, suggesting that XIAP is not a limiting Wnt pathway component in the cell 

lines we tested (Figure 4.2E). Together, these data indicate that XIAP is required 
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for activation of Wnt target genes in cultured mammalian cells and that it likely 

functions downstream of β-catenin stabilization.  

 

XIAP is required for Wnt signaling in Xenopus embryos 

To determine if XIAP is required for Wnt signaling in a developing 

organism, we investigated its role in dorsal-anterior structure formation in 

Xenopus laevis embryos; a process that is critically regulated by Wnt signaling 

(Heasman, 2006). Consistent with Wnt pathway inhibition, knockdown of XIAP by 

dorsal injection of two independent XIAP morpholinos inhibited dorsal-anterior 

structure formation and resulted in severely ventralized embryos (Figure 4.5A). 

To more specifically examine whether the ventralized phenotype we 

observed was due to Wnt pathway inhibition, we tested the effect of XIAP 

knockdown on Xwnt8-induced secondary axes. There was a significant reduction 

in the number of secondary axes when Xwnt8 mRNA was co-injected ventrally 

with XIAP morpholino versus control morpholino (Figure 4.5B). Additionally, co-

injection of XIAP morpholino with Xwnt8 mRNA into Xenopus animal caps 

significantly reduced expression of the Xwnt8 target genes Xnr3 and Siamois, 

further demonstrating a requirement for XIAP for Wnt signaling in Xenopus 

embryos (Figure 4.5C).  

Ventral injection of XIAP mRNA induced partial secondary axes, 

consistent with Wnt pathway activation (McMahon and Moon, 1989). In contrast 

to the cultured mammalian cell results where overexpression of XIAP did not 
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observably affect Wnt signaling, overexpression of XIAP in Xenopus embryos 

was sufficient to ectopically activate the Wnt pathway (Figure 4.5D). Together, 

these results show that XIAP is required for Wnt signaling and dorsal axis 

formation during Xenopus development.  



 69 

 

Figure 4.5. XIAP is required for Wnt signaling in vivo.  
(A) XIAP is required in Xenopus embryos for dorsal-anterior patterning. Embryos 
(4-cell stage) were injected dorsally with control (Con MO) or two independent 
XIAP morpholinos (XIAP MO#1 and #2) (25 ng) and dorsal-anterior index (DAI) 
determined (Kao and Elinson, 1988). The percentage of ventralized embryos 
(DAI <= 2) is graphed on the left (absolute numbers above bars) with 
representative embryos on the right. *p-value < 0.0001 versus Con MO. 
(B) Downregulating XIAP by morpholino injection inhibits Xwnt8-induced 
secondary axis formation. Embryos (4-cell stage) were co-injected ventrally with 
Xwnt8 mRNA (0.7 pg) plus control or XIAP morpholino (25 ng). The percentage 
of embryos with secondary axis formation is graphed on the left (absolute 
numbers above bars) with representative embryos on the right. *p-value < 0.0001 
versus Xwnt8/Con MO.  
(C) XIAP is required for Xwnt8-induced expression of Wnt target genes in 
Xenopus ectodermal explants. Total RNA was extracted from animal caps co-
injected with Xwnt8 mRNA (0.7 pg) and control or XIAP morpholino (25 ng) and 
Siamois and Xnr3 gene expression assayed by RT-PCR. WE = whole embryo 
control. RT = reverse transcriptase. Ornithine decarboxylase (ODC) is loading 
control.  
(D) XIAP induces secondary axis formation. Embryos (4-cell stage) were injected 
ventrally with control (Con) or XIAP mRNA (2 ng) and allowed to develop. The 
percentage of embryos with secondary axis formation is graphed on the left 
(absolute numbers above bars) with representative embryos on the right. *p-
value < 0.0001 versus Con. 
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XIAP binds and ubiquitylates Groucho/TLE 

 Having demonstrated that XIAP is required for Wnt signaling across phyla, 

our next aim was to elucidate the molecular mechanism of its function in the Wnt 

pathway. Based on our cultured mammalian cell studies, it is likely that XIAP acts 

in the Wnt pathway downstream of the destruction complex. Thus, we took a 

candidate approach and performed co-immunoprecipitation experiments with 

tagged XIAP and tagged versions of a majority of the known nuclear Wnt 

pathway components. Of all of the proteins screened, only the transcriptional co-

repressor Transducin-like enhancer of split 3 (TLE3, the mammalian homolog of 

Drosophila Groucho) co-immunoprecipitated with XIAP (Figure 4.6A and data not 

shown). The interaction between XIAP and TLE3 was confirmed by 

demonstrating that endogenous XIAP co-immunoprecipitated with endogenous 

TLE3 in the absence and presence of Wnt stimulation (Figure 4.6B).  

These results prompted us to ask where XIAP and TLE3 interact in the 

cell.  XIAP is thought to be primarily a cytoplasmic protein, although it can be 

translocated to the nucleus under certain conditions (Liston et al., 2001; Russell 

et al., 2008), while TLE3 is found almost exclusively in the nucleus. We analyzed 

the subcellular localization of XIAP and TLE3 in the absence and presence of 

Wnt signaling and detected no observable changes in the localization of either 

protein upon Wnt stimulation (Figure 4.7A and data not shown). Notably, 

although the majority of XIAP is found in the cytoplasm, there is an observable 
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nuclear pool of endogenous XIAP (in the presence and absence of Wnt 

stimulation), which can be dramatically enhanced by overexpression of TLE3 

(Figure 4.7B), indicating these two proteins can co-localize in the nucleus and 

that TLE3 levels can alter the population of XIAP in the nucleus. 
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Figure 4.6. XIAP binds and ubiquitylates Groucho/TLE. 
(A and B) XIAP interacts with Groucho/TLE3. (A) Tagged XIAP co-
immunoprecipitates with tagged Groucho/TLE. HEK293 cells were 
transfected as indicated with Flag-XIAP and HA-TLE3 and treated with 
Wnt3a-CM. Cells were lysed and XIAP immunoprecipitated with anti-Flag 
antibody. Co-immunoprecipitated TLE3 was detected by anti-HA antibody. 
(B) Endogenous XIAP co-immunoprecipitates with endogenous TLE3. 
HEK293 cells were treated with L-CM or Wnt3a-CM for 3 hrs, lysed, and 
immunoprecipitated with anti-XIAP antibody. Co-immunoprecipitated 
proteins were detected by immunoblotting.  
(C, D, and E) His-ubiquitylation assays.  HEK293 cells were transfected as 
indicated, lysed under denaturing conditions, and His-Ub modified proteins 
isolated by nickel affinity purification. XIAP and TLE were detected by 
immunoblotting with anti-myc and anti-Flag antibodies, respectively. WCL = 
whole cell lysates. IB = immunoblot. (C) XIAP ubiquitylates Groucho/TLE3 in 
cultured mammalian cells. (D) XIAP ubiquitylates Groucho/TLE independent 
of its anti-apoptotic function. Flag-XIAP casp-mut is a mutant form of XIAP 
that cannot bind and inhibit caspases. (E) Knockdown of XIAP inhibits 
Groucho/TLE ubiquitylation.  
(F) XIAP ubiquitylates Groucho/TLE in vitro. In vitro-translated myc-TLE3 
was incubated in an in vitro ubiquitylation assay with recombinant proteins 
as indicated and visualized by immunoblotting with anti-myc antibody. Ub 
KO is a mutant form of ubiquitin in which all seven lysines have been 
mutated to arginines, allowing only for mono-ubiquitylation of substrates. 
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Figure 4.7. TLE3 promotes XIAP nuclear localization. 
(A) Wnt stimulation does not alter nuclear localization of XIAP. HEK293 cells 
were treated with L-CM or Wnt3a-CM, fixed, and immunostained for XIAP.  
For each condition, greater than 300 cells were assessed. No change in XIAP 
staining was detected for any cells. Scale bars, 5 µm. 
 (B) TLE3 promotes nuclear localization of XIAP. HEK293 cells were 
transfected with myc or myc-TLE3 as indicated and stained for endogenous 
XIAP and myc. Greater than 300 cells were scored for each condition. All cells 
expressing myc-TLE3 showed enhanced XIAP nuclear staining. In contrast, no 
enhanced nuclear XIAP staining was detected in the myc control cells. Scale 
bars, 5 µm. 
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Figure 4.8.  Domain Structure of the IAP Protein Family. 
The characteristic BIR domains are indicated by red rectangles, CARD 
domains by purple rectangles, RING domains by green ovals, NBD 
domains by diamonds, LRR domains by teal circles, and UBC domains 
(conserved domains found in E2 ubiquitin-conjugating enzymes) by 
yellow hexagons. Diap1, Diap2, Deterin, and dBruce are Drosophila 
IAPs, while SfIAP1 and TnIAP are lepidopteran IAPs. IAP, inhibitor of 
apoptosis; XIAP, X-linked IAP; BIRC, baculoviral IAP repeat containing; 
hILP, human IAP-like protein; Ts-IAP, testis-specific IAP; c-IAP, cellular 
IAP; ML-IAP, melanoma-IAP; NAIP, neuronal apoptosis inhibitory protein; 
DIAP, Drosophila IAP; SfIAP1, Spodoptera frugiperda IAP; TnIAP, 
Trichoplusia ni IAP; CeBIR-1,-2, Caenorhabditis elegans BIRC; SpIAP, 
Schizosaccharomyces pombe IAP; ScIAP, Saccharomyces cerevisiae 
IAP; BIR, baculoviral IAP repeat; CARD, caspase recruitment domain; 
NBD, nucleotide binding oligomerization domain; LRR, leucine rich 
repeat.  Figure from (O’Riordan et al., 2008).   
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XIAP is a member of the highly conserved Inhibitor of Apoptosis (IAP) 

protein family (Figure 4.8).  The IAP family was originally named after the 

discovery of the first family member, which was shown to be an inhibitor of 

apoptosis in baculovirus in 1994 (O'Riordan et al., 2008).  For many years the 

IAP proteins have thus been studied primarily in terms of their anti-apoptotic 

functions, but it is becoming clear that IAPs have diverse roles in the cell in 

addition to inhibiting apoptosis (Galban and Duckett, 2010; O'Riordan et al., 

2008; Srinivasula and Ashwell, 2008).  Members of the IAP protein family contain 

two classic structural features:  the baculovirus IAP repeat (BIR) and the Really 

Interesing New Gene (RING) domain.  The BIR domain is the defining feature of 

IAP family members, with IAPs containing between one and three BIRs (Figure 

4.8).  It was originally thought that the BIR domains function to inhibit cell death 

by directly binding and inhibiting caspases, but it is now known that XIAP is the 

only family member that inhibits apoptosis through direct binding and inhibition of 

effector caspases 3, 7, and 9.  The other IAP family members, of which there are 

seven in humans, are thought to bind caspases via their BIR domains, but are 

unable to directly inhibit caspase enzymatic activity (O'Riordan et al., 2008; 

Srinivasula and Ashwell, 2008).    

In addition to the classic BIR domain, many IAPs contain a C-terminal 

RING domain.  For many years the RING domain of IAPs was ignored because 

the function of RING domains was not known.  Thus, most work tended to focus 

on the anti-apoptotic effects of IAPs via their BIR domains.  It has since been 
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discovered that RING domains confer E3 ligase activity to their cognate proteins 

and, consequently, a variety of apoptotic and non-apoptotic functions for the 

RING domains of IAPs have now been uncovered (O'Riordan et al., 2008; 

Srinivasula and Ashwell, 2008).  The most well characterized RING-containing 

human IAP is XIAP, which contains three BIR domains and a C-terminal RING 

domain (Figure 4.8) (O'Riordan et al., 2008).  For years XIAP was studied 

primarily as an inhibitor of apoptosis via its BIR domains, but has now been 

shown to be involved in diverse cellular processes, many of which require its 

RING domain (Galban and Duckett, 2010).  The RING domain of XIAP is even 

thought to be required for its anti-apoptotic activity via ubiquitylation and 

degradation of pro-apoptotic factors such as the XIAP inhibitor second 

mitochondria-derived activator of caspase (Smac) (MacFarlane et al., 2002).  

Additionally, it has been proposed that XIAP may ubiquitylate caspases, which 

does not lead to their proteasomal degradation, but rather, inhibits their 

enzymatic activity (Ditzel et al., 2008).  Aside from these apoptotic functions, 

roles for XIAP and its RING domain have been identified in NF-κB and TGFβ 

signaling, innate immunity, cell division, and copper homeostasis (Galban and 

Duckett, 2010).  Aside from Copper metabolism (Murr1) domain containing 1 

(COMMD1), which is ubiquitylated by XIAP and subsequently degraded (Burstein 

et al., 2004), no other true “targets” for XIAP-mediated ubiquitylation in these 

non-apoptotic roles have been discovered.  
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Given the emerging role of XIAP and its RING domain in non-apoptotic 

functions, we sought to determine if XIAP is functioning as an E3 ligase for 

Gro/TLE in the Wnt pathway via its RING domain using a previously described 

assay (Salghetti et al., 1999). Cells were transfected with myc-TLE3, His-

Ubiquitin, and either Flag-XIAP or Flag-XIAP-ΔRING. His-ubiquitylated proteins 

were isolated under denaturing conditions by nickel affinity purification, and myc-

TLE3 was detected by immunoblotting. In the absence of XIAP, a band 

corresponding to the mono-ubiquitylated species of TLE3 was detected that is 

significantly enhanced when full-length XIAP, but not XIAP-ΔRING, was 

overexpressed, indicating the RING domain of XIAP is required for the enhanced 

ubiquitylation of TLE3 by XIAP (Figure 4.6C). Higher molecular weight species of 

TLE3 were also present in the whole cell lysate in the presence of full-length 

XIAP, but not XIAP-ΔRING, further supporting the His-Ubiquitin pull-down results.  

To investigate whether the anti-apoptotic activity of XIAP is required for 

ubiquitylation of TLE3, we overexpressed a previously characterized form of 

XIAP with point mutations in each of its three BIR domains that abolish its 

capacity to bind and inactivate caspases (Lewis et al., 2004). Overexpression of 

this mutant form of XIAP enhanced the ubiquitylation of TLE3 to a similar extent 

as wild-type XIAP, indicating that the anti-apoptotic functions of XIAP are not 

required for its capacity to ubiquitylate TLE3 (Figure 4.6D). Overexpression of 

Second mitochondria-derived activator of caspases (Smac), a small peptide that 

binds to the BIR2 and BIR3 domains of XIAP and inhibits its anti-apoptotic 
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activity (Huang et al., 2003), similarly had no effect on the capacity of XIAP to 

ubiquitylate TLE3 (Figure 4.9). Based on these results, we conclude that the 

capacity of XIAP to enhance TLE3 ubiquitylation requires its C-terminal RING 

domain but is independent of its anti-apoptotic functions.  

 

 

XIAP has two closely related homologs, cellular Inhibitor of Apoptosis 1 

and 2 (cIAP1 and cIAP2) (Figure 4.8). In some cases cIAP1 and cIAP2 have 

redundant activity with XIAP and have been shown to be capable of 

compensating for loss of XIAP (Srinivasula 2008). To determine if c-IAP1 or c-

IAP2 are also capable of ubiquitylating TLE3, we performed an ubiquitylation 

assay in cells using tagged versions of both proteins. We found that, in contrast 

Figure 4.9. Overexpression of Smac does not inhibit XIAP-mediated 
Groucho/TLE ubiquitylation.  
HEK293 cells were transfected as indicated and His-ubiquitylated 
proteins were isolated by nickel affinity purification.   
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to XIAP, neither c-IAP1 or c-IAP2 have the capacity to promote the ubiquitylation 

of TLE3 (Figure 4.10). This finding suggests that ubiquitylation of TLE3 is not a 

general property of IAP family members, but is specific to XIAP. 

 

 

 

 

 

 

Figure 4.10. Overexpression of cIAP1 or cIAP2 fails to promote 
Groucho/TLE3 ubiquitylation. 
HEK293 cells were transfected as indicated, lysed under denaturing 
conditions, and His-Ub modified proteins isolated by nickel affinity 
purification.  TLE3 was detected by immunoblotting with anti-HA 
antibodies. XIAP, cIAP1, and cIAP2 were detected by immunoblotting 
with anti-Flag and anti-myc antibodies, respectively. 
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To investigate whether endogenous XIAP is required for TLE3 

ubiquitylation, we knocked down XIAP in HEK293 cells using siRNA and 

performed an ubiquitylation assay using His-Ubiquitin and myc-TLE3 as 

described above. Our results show that the ubiquitylation of TLE3 is significantly 

decreased when XIAP is knocked down, indicating that endogenous XIAP is 

likely required for ubiquitylation of TLE3 in cells (Figure 4.6E).    

To more directly determine if XIAP can bind and ubiquitylate TLE3, we 

performed an in vitro ubiquitylation assay using recombinant XIAP (Figure 4.6F). 

We find that recombinant XIAP, but not XIAP-ΔRING, is capable of ubiquitylating 

TLE3 in vitro.  The addition of wild-type ubiquitin and KO ubiquitin (ubiquitin in 

which all lysines have been mutated to arginine, making this mutant incapable of 

forming polyubiquitin chains) resulted in identical patterns of ubiquitylated TLE3 

species as detected by immunoblotting. In contrast, ubiquitylated TLE3 species 

were not detected in the absence of added ubiquitin. The XIAP-mediated in vitro 

ubiquitylation pattern of TLE3 is essentially identical to the ubiquitylation pattern 

of TLE3 we observed when XIAP is overexpressed in cultured cells (Figure 

4.6C). These results suggest that XIAP has the capacity to directly ubiquitylate 

TLE3 via its RING domain and that it likely conjugates multiple monoubiquitin 

moieties onto TLE3 (a prominent single mono-ubiquitin moiety as well as a less-

abundant second mono-ubiquitin moiety).  
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Ubiquitylation of Groucho/TLE does not affect its turnover, localization, or 

capacity to tetramerize 

Having established that XIAP binds and ubiquitylates TLE3, we next 

asked how ubiquitylation of TLE3 might affect its function in the Wnt pathway. 

Ubiquitylation of proteins often serves as a signal for proteasomal degradation 

(Ravid and Hochstrasser, 2008). Thus, we sought to determine if gain or loss of 

XIAP has any effect on TLE3 levels. Neither overexpression nor siRNA 

knockdown of XIAP had any effect on the steady-state levels of TLE3 either in 

the presence or absence of Wnt stimulation (Figure 4.11A and B). Furthermore, 

overexpression and siRNA knockdown of XIAP had no effect on the turnover rate  
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of TLE3 (Figure 4.11C and D). The stabilization of XIAP seen in Figure 4.11C is 

likely due to overwhelming of the endogenous XIAP degradation machinery 

caused by the significant overexpression of XIAP. These results indicate that 

ubiquitylation of TLE3 by XIAP does not affect TLE3 stability. 

 Recent studies have shown a role for mono-ubiquitylation in regulating the 

subcellular localization of transcription factors (Dupont et al., 2009; Li et al., 

2003; van der Horst et al., 2006). Thus, we examined whether siRNA knockdown 

of XIAP has any effect on the nuclear localization of TLE3. Prominent nuclear 

staining of TLE3 could be detected in both control and XIAP-siRNA cells (Figure 

Figure 4.11. Ubiquitylation of Groucho/TLE by XIAP does not affect its 
stability, nuclear localization, or capacity to tetramerize.  
(A and B) Overexpression or knockdown of XIAP in cultured mammalian cells 
does not affect steady-state Groucho/TLE levels. HEK293 cells were 
transfected with vector control (Con) or XIAP expression plasmid (A) or with 
control (Con) or XIAP siRNA (B) as indicated, treated with L-CM or Wnt3a-CM, 
and immunoblotting performed. 
(C and D) Overexpression or knockdown of XIAP does not affect the rate of 
Groucho/TLE turnover. HEK293 cells were transfected with vector control or 
XIAP expression plasmid (C) or with control or XIAP siRNA (D) followed by 
treatment with cyclohexamide (CHX). Cells were then harvested at the 
indicated time points for immunoblotting.  
(E) Knockdown of XIAP does not affect Groucho/TLE nuclear localization. 
HEK293 cells were transfected with control (Con) or XIAP siRNA and 
immunostained for TLE3. No change in TLE3 localization was observed. 
Greater than 300 cells were scored per condition. Scale bars, 5 µm.  
(F) Ubiquitylation of Groucho/TLE does not affect its capacity to tetramerize. In 
vitro-translated full-length TLE3 (Top) or TLE3-Q (Bottom) proteins (both myc-
tagged) were ubiquitylated in vitro and resolved by gel filtration. Fractions were 
immunobloted with anti-myc antibody. Asterisks indicate ubiquitylated species. 
Elution profiles of protein standards are indicated by arrows. GADPH is 
loading control in (A-E).  
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4.11E), indicating loss of XIAP does not cause a shift in the subcellular 

localization of TLE3. Overexpression of XIAP similarly does not result in a shift in 

the nuclear localization of TLE3 (data not shown).  

TLE3 is a member of the highly conserved Gro/TLE family of proteins that 

function as transcriptional co-repressors in the Wnt pathway. Five isoforms of 

TLE proteins have been identified in humans (Gasperowicz and Otto, 2005). By 

performing the same ubiquitylation assay as described above (Figure 4.6C), we 

demonstrated that XIAP has the capacity to ubiquitylate all human TLE isoforms, 

including the truncated isoform Amino-terminal enhancer of split (AES) (Figure 

4.12A). Because AES only contains the first 197 amino acids found in full-length 

TLE isoforms (including the N-terminal glutamine-rich (Q) and Glycine-Proline 

rich (GP) domains), this narrows the potential target sites of XIAP-mediated 

ubiquitylation to this region of the TLE proteins (Figure 4.12C). We further 

narrowed the potential XIAP target sites by demonstrating that recombinant XIAP 

can ubiquitylate recombinant Drosophila Groucho Q domain in vitro (Figure 

4.12B).  The Q domains of Gro/TLE proteins are highly conserved and contain 

eight lysines that are present in Drosophila Gro and all human TLE isoforms 

(Figure 4.12C and D). Thus, based on our results, XIAP likely targets one (or 

two) of the conserved lysines in the Q domain of the Gro/TLE proteins.  

Mapping the potential XIAP-mediated ubiquitylation sites on Gro/TLE to 

the Q domain provided clues regarding the functional consequence of this 

modification. Gro/TLE proteins have been shown to homo-tetramerize through 
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their Q-domain, a property that is required for TCF/Lef binding and for mediating 

transcriptional repression (Gasperowicz and Otto, 2005; Jennings and Ish-

Horowicz, 2008). Thus, we next tested if ubiquitylation of TLE3 by XIAP disrupts 

its capacity to tetramerize by assessing the hydrodynamic properties of in vitro-

translated ubiquitylated and non-ubiquitylated species of TLE3. We analyzed the 

effect of XIAP-mediated ubiquitylation on both the N-terminal Q domain of TLE3 

(TLE3-Q) and full-length TLE3 by performing gel-filtration analysis (Figure 

4.11F). We found that the ubiquitylated forms of TLE3-Q and full-length TLE3 

eluted in the same peak fractions as that of their non-ubiquitylated forms, 

indicating that ubiquitylation of TLE3 does not disrupt its capacity to tetramerize. 

The larger than expected apparent molecular weight of TLE3-Q and full-length 

TLE3 on gel filtration chromatography likely reflects an elongated tetrameric 

protein complex and has been previously reported (Kuo et al., 2010). 

 



 86 

 

 

Figure 4.12. XIAP ubiquitylates all human TLE isoforms and Drosophila 
Groucho. 
(A) XIAP ubiquitylates all human TLE isoforms. HEK293 cells were transfected as 
indicated, His-ubiquitylated proteins were isolated and analyzed by 
immunoblotting.  
(B) XIAP ubiquitylates Drosophila Groucho Q domain. Recombinant SUMO-His6-
Groucho-Q was used in an in vitro XIAP ubiquitylation reaction.  
(C) Cartoon of Drosophila Groucho and human TLE isoforms. Percentage identity 
of the Q-domains of human TLE/AES compared to the Q-domain of Drosophila 
Groucho is indicated.  
(D) Amino acid sequence alignment of the Drosophila Groucho and human TLE Q 
domains is shown. Identical amino acids are shaded in yellow. Asterisks indicate 
conserved lysine residues.  
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Ubiquitylation of Groucho/TLE by XIAP disrupts its binding to TCF/Lef 

Although we found that ubiquitylation of TLE3 did not interfere with its 

tetramerization in our hydrodynamic studies, we hypothesized ubiquitylation of 

TLE3 may interfere with its capacity to bind TCF/Lef as Gro/TLE interacts with 

TCF/Lef via its Q domain. To test this possibility, we ubiquitylated TLE3-Q and 

full-length TLE3 in vitro and assessed their capacity to bind TCF4. In contrast to 

their non-ubiquitylated forms, the ubiquitylated species of TLE3-Q and full-length 

TLE3 were not pulled down by recombinant GST-TCF4 protein, indicating that 

ubiquitylation of TLE3 inhibits its capacity to bind TCF4 (Figure 4.13A). To further 

confirm that TCF/Lef has reduced affinity for ubiquitylated Gro/TLE in vivo, myc-

TLE3 and HA-TCF4 were transfected into cells (along with ubiquitin and XIAP to 

enhance TLE3 ubiquitylation) (Figure 4.13B). The presence of ubiquitylated or 

non-ubiquitylated TLE3 in HA-TCF4 immunoprecipitates was assessed by 

immunoblotting. In contrast to total cellular lysates, which contained a noticeable 

band representing ubiquitylated TLE3, only the non-ubiquitylated TLE3 co-

immunprecipiated with TCF4, thereby providing further evidence that 

ubiquitylation of Gro/TLE inhibits its capacity to bind TCF/Lef.  

These findings suggest that ubiquitylation of TLE3 by XIAP may be 

required during Wnt pathway activation to remove TLE3 from TCF/Lef, allowing 

subsequent β-catenin binding and transcriptional activation. To determine if XIAP 

might also bind TCF/Lef in the process of binding and ubiquitylating Gro/TLE, we 

performed an in vitro binding assay with recombinant XIAP and TCF4. We found 
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that XIAP is pulled down with TCF4, but not the control, indicating XIAP can 

directly bind TCF4 (Figure 4.13C). In contrast to Gro/TLE, however, we were 

unable to detect ubiquitylation of TCF4 by XIAP in an in vitro ubiquitylation assay 

(Figure 4.13D), indicating specificity of the E3 ubiquitin ligase activity of XIAP for 

Gro/TLE. 
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Figure 4.13.  Ubiquitylation of Groucho/TLE by XIAP disrupts TCF/Lef 
binding.  
(A) Ubiquitylation of Groucho/TLE disrupts TCF/Lef binding in vitro. In vitro-
translated full-length myc-TLE3 (Top) or myc-TLE3-Q (Bottom) proteins were 
ubiquitylated in vitro and tested in an in vitro binding assay with recombinant 
GST-TCF4 or GST proteins immobilized on glutathione beads. myc-TLE3 was 
visualized by immunoblotting with anti-myc antibody. Arrowheads indicate 
ubiquitylated species.  
(B) Ubiquitylation of Groucho/TLE disrupts TCF/Lef binding in cultured cells. 
HEK293 cells were transfected with Flag-XIAP, His-Ub, myc-TLE3 and HA-
TCF4. HA-TCF4 was immunoprecipitated with anit-HA antibody and co-
immunoprecipitated myc-TLE3 was detected by immunoblotting. IgG antibody 
(Con) was used as control.  
(C) XIAP directly interacts with TCF4. An in vitro binding assay was performed 
using recombinant MBP-tagged XIAP and either recombinant GST-TCF4 or 
GST proteins immobilized on glutathione beads. XIAP was detected using an 
anti-XIAP antibody.  
(D) XIAP fails to ubiquitylate TCF/Lef. An in vitro XIAP ubiquitylation assay 
was performed with in vitro-translated HA-TCF4 as the test substrate. In 
parallel, ubiquitylation of myc-TLE3 was observed (positive control, data not 
shown). 
(E and F) XIAP is recruited to TCF/Lef and is required for efficient binding of 
TCF/Lef to β-catenin upon Wnt pathway activation. (E) HEK293 cells 
transfected with control (Con) or XIAP siRNA were treated with 30 mM LiCl for 
3 hrs and endogenous TCF4 immunoprecipitated.  Co-immunoprecipitated 
endogenous β-catenin and XIAP were detected by immunoblotting. (F) 
HEK293 cells were treated as in (E) except L-CM or Wnt3a-CM was added for 
3 hrs.  
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If XIAP ubiquitylates Gro/TLE in response to a Wnt signal in order to 

remove it from TCF/Lef, one might predict that ubiquitylation of Gro/TLE would 

increase upon Wnt signaling. We detected no change, however, in the degree of 

Gro/TLE ubiquitylation in response to Wnt stimulation (Figure 4.14). Because we 

also found that XIAP interacts with TLE3 in the absence or presence of Wnt 

signaling (Figure 4.6B), this would suggest that XIAP constitutively binds and 

ubiquitylates non-TCF-bound Gro/TLE in the nucleus.  Thus, XIAP may regulate 

the nuclear pool of Gro/TLE that is available for binding TCF/Lef. 

Given that XIAP binds TCF4, it is possible that XIAP may be recruited to 

the TCF/Lef transcriptional complex to specifically ubiquitylate TCF-bound 

Figure 4.14. Wnt signaling does not increase TLE3 ubiquitylation. 
HEK293 cells were transfected with myc-TLE3 and His-Ub and treated with 
L-CM or Wnt3a-CM. His-ubiquitylated proteins were isolated and analyzed 
by immunoblotting. 
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Gro/TLE upon Wnt pathway activation. To test whether XIAP is recruited to the 

TCF/Lef transcriptional complex in a Wnt-dependent manner, we performed co-

immunoprecipitation assays in cells using an antibody against endogenous TCF4 

(Figure 4.13E and F). In the absence of lithium (Figure 4.13E), XIAP was not 

detectable in TCF4 immunoprecipitates. Upon Wnt pathway stimulation by 

lithium, however, XIAP co-immunoprecipitated with TCF4. Wnt pathway 

activation normally leads to recruitment of β-catenin onto TCF/Lef. Accordingly, 

we observed endogenous β-catenin co-immunoprecipitating with TCF4 upon 

lithium treatment whereas no detectable β-catenin co-immunoprecipitated with 

TCF4 in the absence of lithium treatment.  Significantly, knockdown of XIAP by 

siRNA reduced the amount of β-catenin that co-immunoprecipitated with TCF4 in 

the presence of lithium. These results were confirmed using Wnt3a-conditioned 

media, suggesting this is not due to global inhibition of GSK3 activity (Figure 

4.13F). These data indicate XIAP is recruited to TCF4 transcriptional complexes 

in response to Wnt pathway activation and that XIAP is required for efficient 

recruitment of β−catenin to TCF4 transcriptional complexes.  

Together, our data suggest a model (Figure 4.15) in which XIAP 

constitutively binds and ubiquitylates non-TCF-bound Gro/TLE in the nucleus, 

thereby limiting the amount of Gro/TLE available to form co-repressor complexes 

with TCF/Lef. In the presence of a Wnt signal, XIAP is recruited to TCF/Lef 

transcriptional complexes where it ubiquitylates Gro/TLE.  Ubiquitylation of 

Gro/TLE decreases its affinity for TCF/Lef and allows for the efficient recruitment 
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and binding of the transcriptional co-activator β-catenin to TCF/Lef in order to 

initiate a Wnt-specific transcriptional program. 

 

 

Summary 

 A key event in Wnt signaling is conversion of TCF/Lef from a transcriptional 

repressor to an activator, yet how this switch occurs is not well understood. Here, 

we report an unanticipated role for X-linked Inhibitor of Apoptosis (XIAP) in 

regulating this critical Wnt signaling event that is independent of its anti-apoptotic 

function. We identified DIAP1 as a positive regulator of Wingless signaling in a 

Drosophila S2 cell-based RNAi screen. XIAP, its vertebrate homolog, is similarly 

required for Wnt signaling in cultured mammalian cells and in Xenopus embryos, 

indicating evolutionary conservation of function. Upon Wnt pathway activation, 

XIAP is recruited to TCF/Lef where it mono-ubiquitylates Groucho/TLE: this 

Figure 4.15.  Model of XIAP-mediated regulation of Groucho/TLE in the 
Wnt pathway.   
See text for details. 
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modification decreases the affinity of Groucho/TLE for TCF/Lef. Our data reveal 

a transcriptional switch involving XIAP-mediated ubiquitylation of Groucho/TLE 

that facilitates its removal from TCF/Lef, thus allowing assembly of β-catenin-

TCF/Lef complexes and initiation of a Wnt-specific transcriptional program. 
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CHAPTER V 

 

THE DUB USP47 IS REQUIRED FOR WNT SIGNALING 

 

Introduction 

The canonical Wnt signaling pathway regulates many fundamental 

processes during metazoan development and is critical for tissue homeostasis in 

the adult (Logan and Nusse, 2004; MacDonald et al., 2009).  A key event in Wnt 

signal transduction is the stabilization of the cytoplasmic protein β-catenin.  In the 

absence of a Wnt ligand, a β-catenin destruction complex, composed of Axin, 

glycogen synthase kinase 3 (GSK3), casein kinase I α (CKIα), and the tumor 

suppressor adenomatous polyposis coli (APC), promotes phosphorylation of β-

catenin, targeting it for ubiquitin-mediated proteasomal degradation.  Binding of a 

Wnt ligand to its two cell-surface receptors, Frizzled (Fz) and LDL receptor-

related protein 5/6 (LRP5/6), results in inhibition of β-catenin phosophorylation 

and, thus, stabillzation of β-catenin. Stabilized β-catenin translocates to the 

nucleus where it binds to TCF/Lef to activate a Wnt-specific transcriptional 

program. 

The Wnt pathway is heavily regulated by ubiquitylation (Tauriello and 

Maurice, 2010).  At the time I began these studies, however, only the E3 ligases 

for β-catenin (Jiang and Struhl, 1998; Marikawa and Elinson, 1998) and 

Dishevelled (Angers et al., 2006) had been identified, and no deubiquitylases 
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(DUBs) in the Wnt pathway had been reported.  Thus, I sought to identify novel 

DUBs involved in Wnt signaling to gain a better understanding of how the 

ubiquitin system regulates this pathway. 

Here, I performed a targeted RNAi screen in Drosophila S2 cells to identify 

novel DUBs involved in Wingless (Wg, the Drosophila homolog of Wnt) signal 

transduction that led to the identification of Ubiquitin-specific protease 64 E 

(Ubp64E) as a critical Wg pathway component.  I demonstrate that the human 

homolog, Ubiquitin Specific Protease 47 (USP47), is similarly required for Wnt 

signaling in cultured human cells and is required for primary body axis formation 

in Xenopus embryos, indicating evolutionary conservation of function.  At the 

molecular level, I show that USP47 interacts with two Wnt pathway E3 ligases, β-

TRCP and XIAP, although this interaction does not affect the stability of β-TRCP 

or XIAP.  Together, these studies identify USP47 as a novel DUB involved in the 

regulation of Wnt signal transduction and provide insight into its potential 

mechanism of action.     

 

Results 

 

Drosophila RNAi screen identifies the DUB Ubp64E as a novel Wingless 

signaling component. 

To identify novel de-ubiquitylases (DUBs) involved in Wingless (Wg) 

signaling, I performed a genome-scale RNAi-based screen targeting DUBs in 
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Drosophila S2 cells (Figure 5.1A, see Chapter II for details). Briefly, plasmids 

encoding experimentally verified and predicted DUBs (29 clones total) were 

obtained from the Drosophila Gene Collection Release 1 and 2, and a PCR 

approach was used to generate linear cDNA products suitable for in vitro dsRNA 

synthesis. For the screen, dsRNA was added to a Drosophila S2R+ reporter cell 

line stably transfected with the Wg responsive TOPflash luciferase reporter 

(Korinek et al., 1997). 
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 Axin (a potent negative regulator of Wg signaling) and Armadillo (Arm, the 

Drosophila β-catenin homolog and potent positive regulator of Wg signaling) 

served as controls to confirm effective knockdown by dsRNA treatment in the 

screen Of the 29 DUBs screened, the knockdown of two, no. 11 and no. 15, were 

particularly potent in inhibiting Wg signaling (Figure 5.1B).  dsRNA no. 11 targets 

Cylandromatosis (CYLD), a DUB that had been reported as a Wnt signaling 

regulator at the “Wnt Singaling in Development and Disease Meeting” (Berlin, 

Germany, 2007).  Thus, I decided to focus on the other DUB, no. 15, which 

encodes Ubiquitin-specific protease 64E (Ubp64E), a putative DUB that had no 

known function at the time I began this work.   

  

Figure 5.1. Drosophila RNAi screen identifies the DUB Ubp64E as a novel 
Wingless signaling component.  
(A) Schematic of RNAi screen to identify DUBs that regulate Wingless signaling 
in Drosophila S2 cells (see text for more details).  
(B) Results of RNAi screen. Graph represents mean ± standard deviation (SD) 
of TOPflash normalized to cell number. Axin and Armadillo (Arm) dsRNA 
treatments were performed as controls. Results for Ubp64E dsRNA (15) and 12 
additional dsRNAs included in the screen are shown. Results are representative 
of at least three experiments performed in quadruplicate.  
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Figure 5.2.  USP47 is required for Wnt signaling in cultured mammalian 
cells.  
(A) Knockdown of USP47 by siRNA inhibits Wnt signaling.  HEK293 STF 
(STF293) cells were transfected with non-targeting control (Con) or two 
independent USP47 siRNAs and treated with L cell (L-CM) or Wnt3a cell- 
(Wnt3a-CM) conditioned media for 24 hrs. Graph shows mean ± SD of 
TOPflash normalized to cell number. Immunoblotting confirmed knockdown 
of XIAP protein and Wnt3a-mediated stabilization of β-catenin. GAPDH is 
loading control.  

(B) Overexpression (OE) of USP47 enhances TOPflash activity.  STF293 
cells were transfected with USP47 or USP47-mut and treated with L-CM or 
Wnt3a-CM for 24 hrs. Graph shows mean ± SD of TOPflash activity 
normalized to cell number.  
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USP47 is required for Wnt signaling in cultured mammalian cells. 

 To determine if USP47, the human homolog of Ubp64E, is similarly 

required for Wnt signaling in mammalian cells, I next tested the effects of USP47 

knockdown on Wnt3a-induced transcriptional activation using a human 

embryonic kidney (HEK) 293 cell line stably transfected with the TOPflash 

reporter (STF293) (Xu et al., 2004). Knockdown of USP47 with two independent 

short-interfering RNA (siRNA) constructs blocked Wnt3a-induced TOPflash 

activation (Figure 5.2A), indicating that USP47 is required for Wnt-mediated 

transcriptional activation.  Notably, knockdown of USP47 did not change the 

levels of cytoplasmic β-catenin, suggesting that USP47 is likely functioning 

downstream of the β-catenin destruction complex (Figure 5.2A).   

In contrast to loss of USP47 function, overexpression of USP47 activated 

Wnt signaling in STF293 cells to a similar extent as β-catenin overexpression, 

while the catalytically dead USP47 mutant (in which the active site cysteine has 

been mutated to an alanine) inhibited Wnt signaling similar to overexpression of 

the potent negative regulator Axin (Figure 5.2B).  This suggests that the DUB 

activity of USP47 is required for its capacity to activate Wnt signaling and that the 

catalytically dead USP47 mutant acts as a dominant negative Wnt signaling 

inhibitor.  Together, these results indicate that the DUB activity of USP47 is 

required for Wnt signaling and that USP47 likely functions downstream of the β-

catenin destruction complex in the Wnt pathway.   
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USP47 is localized in the cytoplasm 

 To determine where USP47 is found in the cell, I first expressed GFP-

USP47 in HEK293 cells and visualized its localization using fluorescence 

microscopy (Figure 5.3A).  GFP-USP47 is localized predominantly in the 

cytoplasm while the GFP control is found throughout the cell.  The localization 

pattern of GFP-USP47 did not change in the presence of Wnt signaling (data not 

shown).  Interestingly, GFP-USP47 is found at the leading edge of the cell in 

what appear to be lamellipodial structures (Alberts, 2002), although more specific 

co-staining (e.g. with actin) is needed to prove the leading edge structures are 

indeed lamellipodia.  This localization pattern is consistent with the findings of 

Rorth and colleagues who showed that Ubp64E is critical for border cell 

migration during Drosophila oogenesis by regulating the stability of the 

transcription factor Slowborders (Slbo) (Rorth et al., 2000).  Thus, Ubp64E and 

USP47 may play important roles in cell migration in both Drosophila and 

mammalian cells, respectively.    

 In addition to the fluorescence imaging studies, cellular fractionation and 

Western blot analysis also indicated that USP47 is found predominantly in the 

nucleus; a localization that does not change upon Wnt stimulation (Figure 5.3B).  

These findings indicate that USP47 is predominantly a cytoplasmic protein and 

that Wnt signaling does not affect its subcellular localization. 
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Figure 5.3.  USP47 is located in the cytoplasm. 
(A) HEK293 cells transfected with GFP-USP47 or GFP control were fixed and 
visualized with immunofluorescence microscopy.  
(B) HEK293 cells were treated with LiCl (30 mM) as indicated for 24 hr, 
fractionated, and immunoblotted as indicated.   
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USP47 is expressed throughout Xenopus development 

 To determine if USP47 plays a critical role in Wnt signaling in a whole 

organism, I used the classic Wnt model system Xenopus laevis.  Before 

performing loss or gain-of-function studies in Xenopus, however, I first 

determined when and where USP47 is expressed during Xenopus development.  

Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis using 

primers specific for Xenopus USP47 (XUSP47) showed that XUSP47 is 

expressed at all developmental time points tested (Figure 5.4A). 

 In situ hybridization analysis with an anti-sense probe targeting XUSP47 

similarly showed that XUSP47 is expressed at all time points tested during 

Xenopus development and that it is dynamically localized in a manner similar to 

the key Wnt component, β-catenin (Figure 5.4B-H) (β-catenin images from 

(DeMarais and Moon, 1992)).  Figure 5.4B-E shows XUSP47 is localized to the 

animal half of the early embryo.  At the neurula stage (Figure 5.4F), XUSP47 is 

primarily localized to the anterior (right) and posterior (left) ends of the embryo 

similar to Xβ-catenin, while at the tail bud stage (Figure 5.4G) XUSP47 is 

localized to the branchial arches, the eye, and the posterior end of the embryo, 

also similar to Xβ-catenin.  At the tadpole stage (Figure 5.4H), XUSP47 is 

localized to the head and spinal cord, again similar to Xβ-catenin.  Together, 

these studies indicate that XUSP47 is expressed during Xenopus development in 

a manner that is consistent with USP47 being a Wnt signaling regulator.    
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USP47 affects primary body axis formation in Xenopus embryos. 

 Once I had established that XUSP47 is expressed in the early Xenopus 

embryo in a manner consistent with Wnt pathway regulation, I next tested if loss 

or gain of USP47 function is able to perturb primary body axis formation in 

Xenopus embryos; a process critically regulated by Wnt signaling (Heasman, 

2006).  Knockdown of USP47 by dorsal injection of a USP47 morpholino resulted 

in severely ventralized embryos, consistent with Wnt pathway inhibition (Figure 

5.5A).  This phenotype was rescued by co-injection of mouse USP47 mRNA with 

the USP47 morpholino indicating the observed phenotype is specifically due to 

USP47 knockdown and not some other non-specific morpholino effect.   

 Overexpression of USP47 by ventral injection of USP47 mRNA resulted in 

partial axis duplication, consistent with Wnt pathway activation (Figure 5.5B).  To 

examine the partially duplicated axes in more detail, the embryos were sectioned 

and stained with hematoxylin and eosin (Figure 5.5C).  These studies revealed 

that the primary tissue induced by USP47 injection is mesodermal tissue and that 

Figure 5.4.  USP47 is dynamically expressed throughout Xenopus 
development.   
(A) RT-PCR analysis of XUSP47 expression during Xenopus development.  
Embryos were collected at the indicated stages, RNA extracted, and RT-
PCR performed. Ornithine decarboxylase (ODC) is loading control.  
(B-H) In situ hybridization detects dynamic XUSP47 expression throughout 
Xenopus development.  (B) Egg, (C) 2-cell stage, (D) 4-cell stage, (E) 
Stage 10-11, (F) Neurula stage, (G) Tailbud stage, (H) Tadpole stage.  Red 
arrows point to pharyngeal arches (1) and eye (2).  Images of Xβ-catenin In 
situs are from (DeMarais and Moon, 1992).  
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the partial secondary axes induced by USP47 injection look nearly identical to 

those induced by injection of a small amount of Xwnt8 mRNA, further indicating 

that overexpression of USP47 activates Wnt signaling in Xenopus embryos.   

To further confirm that USP47 is capable of inducing ectopic head 

organizer formation, I tested the capacity of USP47 to induce the expression of 

the classic organizer marker Chordin.  Injection of USP47 mRNA into Xenopus 

animal caps induced the expression of Chordin to a greater extent than injecting 

a small amount of Xwnt8 (a key organizer inducer) (Figure 5.5D).  Co-injection of 

Xwnt8 with USP47 did not result in enhanced Chordin expression, indicating 

these two molecules do not synergize.  Together, these results indicate that 

USP47 is required for proper axis formation and that USP47 is capable of ectopic 

organizer formation in Xenopus embryos; two features consistent with USP47 

playing a critical role in Wnt signaling during Xenopus development.   
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USP47 interacts with β-TRCP and Smad4, but does not affect their stability 

 Having demonstrated that USP47 regulates Wnt signaling across phyla, I 

next sought to elucidate the molecular mechanism of its function in the Wnt 

pathway.  Work in Drosophila indicated that Ubp64E interacts with Slimb (the 

Drosophila homolog of β-TRCP, the E3 ligase that targets β-catenin for 

proteasomal degradation) (Bajpe et al., 2008).  Thus, I tested if USP47 also 

interacts with β-TRCP in mammalian cells by overexpressing USP47 and myc-

β−TRCP and performing a co-immunoprecipitation experiment in the presence 

and absence of Wnt stimulation.  The results indicate that USP47 co- 

Figure 5.5. Loss and gain of USP47 perturbs axis formation in Xenopus 
embryos.  
(A) USP47 is required in Xenopus embryos for primary body axis formation. 
Embryos (4-cell stage) were injected dorsally with control (Con MO), USP47 
morpholino (USP47 MO) alone (25 ng), or USP47 MO and USP47 mRNA (2 
ng) and dorsal-anterior index (DAI) determined (Kao and Elinson, 1988). The 
percentage of ventralized embryos (DAI <= 2) is graphed on the left 
(absolute numbers above bars) with representative embryos on the right.  
(B) USP47 induces secondary axis formation. Embryos (4-cell stage) were 
injected ventrally with control (Con) or USP47 mRNA (2 ng) and allowed to 
develop. The percentage of embryos with secondary axis formation is 
graphed on the left (absolute numbers above bars) with representative 
embryos on the right.  
(C) USP47 induces mesoderm formation. Embryos treated as in (B) were 
fixed, sectioned, and stained with hemotoxylin and eosin.  NT = Neural Tube, 
NC = Notochord.  Arrows point to induced mesoderm in both the USP47- 
and Xwnt8-injected embryos.  
(D) USP47 induces expression of the head organizer marker Chordin in 
Xenopus ectodermal explants. Total RNA was extracted from animal caps 
injected with Xwnt8 mRNA (0.35 pg), USP47 mRNA (2 ng), or both and 
Chordin gene expression was assayed by RT-PCR. WE = whole embryo 
control. Ornithine decarboxylase (ODC) is loading control.  
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immunoprecipitates with β-TRCP in both the absence and presence of Wnt  
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signaling (Figure 5.6A).  Peschiaroli and colleagues recently reported that USP47 

interacts with β-TRCP via the β-TRCP WD40-repeat region (Peschiaroli et al., 

2010), confirming that USP47 and β-TRCP are associated in mammalian cells.   

 That USP47 (a DUB) interacts with β-TRCP (an E3 ligase) is not 

surprising given that most E3s are associated with DUBs, which often function to 

regulate the stability of their partner E3s (Sowa et al., 2009).  However, 

overexpression of USP47 does not have any observable effect on the steady 

state levels of β-TRCP (Figure 5.6C).  Loss (Figure 5.2A) or gain (Figure 5.6C) of 

USP47 also has no effect on the steady state levels of the most well 

characterized Wnt pathway β-TRCP substrate, β-catenin.  Thus, USP47 does not 

likely regulate the stability of β-TRCP or β-catenin in the Wnt pathway.     

Given that USP47 interacts with β-TRCP, I next sought to determine if β-

TRCP has other Wnt-relevant substrates in addition to β-catenin.  One group has 

Figure 5.6.  USP47 interacts with β-TRCP and Smad4. 
(A) USP47 interacts with β-TRCP.  HEK293 cells were transfected with 
USP47 and myc-β-TRCP and treated with Wnt3a-CM. Cells were lysed 
and USP47 immunoprecipitated. Co-immunoprecipitated β-TRCP was 
detected by anti-myc antibody.  
(B) USP47 interacts with Smad4.  HEK293 cells were transfected with 
Smad4 and USP47 and treated with L-CM or Wnt3a-CM for 3 hrs, lysed, 
and immunoprecipitated with anti-USP47 antibody. Co-immunoprecipitated 
Smad4 was detected by anti-Smad4 antibody.  
(C) Overexpression of USP47 in cultured mammalian cells does not affect 
steady-state β-TRCP, Smad4, or β-catenin levels. HEK293 cells were 
transfected with vector control (Con) or USP47 expression plasmid as 
indicated, treated with L-CM or Wnt3a-CM, and immunoblotting performed. 
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shown that β-TRCP also ubiquitylates Smad4, targeting it for proteasomal 

degradation (Wan et al., 2004).  This is interesting as work performed by Josh 

Smith in the Beauchamp laboratory (Vanderbilt University, personal 

communication) indicated that Smad4 inhibits Wnt signaling in colorectal cancer 

cells, potentially through downregulation of β-catenin transcription.  This 

hypothesis was confirmed by a group showing that restoring Smad4 expression 

in SW480 cells (colorectal cancer cells containing a mutant, truncated APC 

protein) suppresses Wnt signaling by decreasing β-catenin expression and re-

localizing β-catenin to the plasma membrane (Tian et al., 2009).  These studies 

indicated the existence of cross-talk between Smad4 (traditionally thought of as a 

TGF-β or BMP pathway component) and Wnt signaling.  Thus, I performed a co-

immunoprecipitation experiment to determine if USP47 interacts with Smad4.  

For this, USP47 and Smad4 were overexpressed in the absence and presence of 

Wnt signaling.  USP47 was immunoprecipitated and co-immunoprecipitated 

Smad4 was detected with anti-Smad4 antibody.  The results indicate that USP47 

interacts with Smad4 in both the absence and presence of Wnt signaling (Figure 

5.6B), however, overexpression of USP47 has no observable effect on the 

steady state levels of Smad4, indicating that USP47 does not affect Smad4 

stability (Figure 5.6C).  Together, these findings indicate a possible role for β-

TRCP or Smad4 as part of the molecular mechanism of USP47 in the Wnt 

pathway.   
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USP47 interacts with XIAP, but does not affect TLE3 or XIAP stability. 

In addition to binding the E3 ligase β-TRCP, data I collected in a mass 

spectrometry screen to identify USP47 binding partners indicated that USP47 

might also interact with the E3 ligase XIAP.  One of the USP47 binding partners 

identified in the mass spectrometry screen was Apoptosis Inhibitory Factor (AIF), 

which has been shown to interact with XIAP, the E3 ligase that mono-

ubiquitylates Groucho/TLE (see Chapter III) (mass spectrometry data not 

shown).  Thus, I tested if USP47 associates with XIAP by performing a co-

immunoprecipitation experiment with overexpressed, tagged versions of both 

proteins.  Figure 5.7A shows that XIAP is immunoprecipitated with USP47 when 

both proteins are expressed together, but not when they are expressed alone,  

 

Figure 5.7.  USP47 interacts with XIAP. 
(A) Tagged USP47 co-immunoprecipitates with tagged XIAP. HEK293 cells 
were transfected as indicated with HA-USP47 and myc-XIAP and treated 
with Wnt3a-CM. Cells were lysed and USP47 immunoprecipitated with anti-
HA antibody. Co-immunoprecipitated XIAP was detected by anti-myc 
antibody.  
(B) Endogenous USP47 co-immunoprecipitates with tagged XIAP. HEK293 
cells were transfected with Flag-XIAP, lysed, and immunoprecipitated with 
anti-XIAP antibody. Co-immunoprecipitated USP47 was detected with anti-
USP47 antibody.  
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indicating a specific interaction.  The interaction between USP47 and XIAP was 

confirmed by demonstrating that endogenous USP47 co-immunoprecipitates with 

tagged XIAP (Figure 5.7B).   

Given that XIAP ubiquitylates Groucho/TLE, and that many DUBs regulate 

the stability of their partner E3s, I next sought to determine if loss of USP47 

function affects the steady state levels of TLE3 or XIAP.  Figure 5.8A shows that 

knockdown of USP47 with two independent siRNA constructs has no observable 

effect on the steady state levels of either TLE3 or XIAP.  Overexpression of 

USP47 also has no observable effect on the steady state levels of TLE3 or XIAP  
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Figure 5.8.  USP47 and XIAP do not affect the stability of each other. 
(A)  Knockdown of USP47 in cultured mammalian cells does not affect steady-
state XIAP or TLE3  levels.  HEK293 cells were transfected with non-targeting 
control (Con) or two independent USP47 siRNAs (USP47-1 and USP47-2) as 
indicated, and immunoblotting performed. 
(B and C)  Overexpression or knockdown of XIAP in cultured mammalian cells 
does not affect steady-state USP47 levels. HEK293 cells were transfected 
with vector control (Con) or XIAP expression plasmid (B) or with control (Con) 
or XIAP siRNA (C) as indicated, treated with L-CM or Wnt3a-CM, and 
immunoblotting performed. 
(D)  XIAP does not ubiquitylate USP47 in vitro. In vitro-translated USP47 was 
incubated in an in vitro ubiquitylation assay with recombinant proteins as 
indicated and visualized by immunoblotting with anti-USP47 antibody.  
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(data not shown).  These data indicate that USP47 does not regulate the stability 

of the E3 ligase XIAP or its Wnt pathway substrate, Groucho/TLE. 

To determine if gain or loss of XIAP may affect USP47 stability, I 

overexpressed XIAP (Figure 5.8B) or knocked down XIAP with two independent 

siRNA constructs (Figure 5.8C) and saw no observable changes in the steady 

state levels of USP47.  These data indicate that XIAP does not affect the stability 

of USP47.  These findings are consistent with the finding that XIAP does not 

ubiquitylate USP47 in vitro in the same assay in which XIAP efficiently 

ubiquitylates TLE3 (Figure 5.8D and see Chapter III, Figure 4.6F).  These results 

indicate that USP47 is not a XIAP substrate.   

 

Summary 

 Canonical Wnt signaling regulates many fundamental developmental 

processes and is misregulated in a variety of disease states in humans.  The 

central event of Wnt signal transduction is the stabilization of the cytoplasmic 

protein β-catenin.  When stabilized, β-catenin enters the nucleus to activate a 

Wnt-specific transcriptional program by binding to the Wnt transcription factor 

TCF/Lef.  Here, we identified the de-ubiquitylase Ubp64E as a positive regulator 

of Wingless (the Drosophila Wnt homolog) signaling in a Drosophila S2 cell-

based RNAi screen.  USP47, its vertebrate homolog, is similarly required for Wnt 
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signaling in cultured mammalian cells and in Xenopus embryos, indicating 

evolutionary conservation of function.  Our data indicate that USP47 likely 

functions at the level of transcription in the nucleus potentially through its 

interaction with the E3 ligases β-TRCP or XIAP or an as yet unidentified target.   

 

 

 

  



 117 

CHAPTER VI 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Introduction 

 The work presented in this thesis describes the identification of two novel 

ubiquitin system components involved in regulating Wnt signaling:  the E3 ligase 

XIAP and the de-ubiquitylase USP47.  Here, I will discuss the results presented 

in the last two chapters and provide future directions.  I have broken this chapter 

into two parts.  In Part I I discuss the implications of XIAP as a Wnt pathway 

regulator and in Part II I discuss the implications of USP47 as a Wnt pathway 

regulator.  I conclude with a general discussion of the significance of my findings. 

 

Part I 

 

Discussion 

Conversion of the Wnt transcription factor TCF/Lef from a transcriptional 

repressor to a transcriptional activator is a critical event in Wnt signal 

transduction, yet our understanding as to how this switch occurs in cells is limited. 

The current model, based primarily on reconstitution studies using purified 

proteins, proposes direct displacement of the transcriptional co-repressor Gro/TLE 

by the co-activator β-catenin through competition for overlapping binding sites on 



 118 

TCF/Lef (Daniels and Weis, 2005). Here, we provide evidence for a more finely 

tuned transcriptional switch that involves the facilitated removal of Gro/TLE from 

TCF/Lef upon its ubiquitylation by the E3 ligase XIAP.  

Our data suggest a model (Figure 6.1) in which XIAP constitutively binds 

and ubiquitylates non-TCF-bound Gro/TLE in the nucleus, thereby limiting the 

amount of Gro/TLE available to form co-repressor complexes with TCF/Lef. In the 

presence of a Wnt signal, XIAP is recruited to TCF/Lef transcriptional complexes 

where it ubiquitylates Gro/TLE.  Ubiquitylation of Gro/TLE decreases its affinity for 

TCF/Lef and allows for the efficient recruitment and binding of the transcriptional 

co-activator β-catenin to TCF/Lef in order to initiate a Wnt-specific transcriptional 

program. 

 

 

 

Figure 6.1.  Model of XIAP-mediated regulation of Groucho/TLE in the 
Wnt pathway.   
See text for details. 
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Our proposed model for Wnt-mediated transcriptional activation parallels 

the findings of Sierra and colleagues who proposed that inactivation of Wnt target 

gene transcription similarly occurs as a multi-step process (Sierra et al., 2006). 

Their data suggest that APC and β-TRCP (an E3 ligase) mediate the removal of 

β-catenin from Lef1 to allow for subsequent TLE1 binding. Together, these 

experiments, and our current study, have revealed that transcriptional activation 

and inactivation in the Wnt pathway are highly regulated processes.  

β-catenin protein levels are tightly regulated in the cell via constant 

synthesis and degradation by the β-catenin destruction complex. Why, then, 

would a cell evolve an additional layer of regulation for Wnt transcriptional 

activation, as we propose here, as opposed to a mechanism driven simply by the 

bimolecular association between β-catenin and TCF/Lef?  We propose that this 

Wnt signaling circuitry provides a mechanism to dampen transcriptional noise 

without a corresponding loss in sensitivity. Binding of Gro/TLE to TCF/Lef allows 

the system to be resistant to stochastic fluxes in β-catenin levels in the absence of 

Wnt pathway activation. In the presence of a Wnt signal, a coincident circuit 

involving nuclear accumulation of β-catenin and recruitment of XIAP to TCF/Lef is 

established. Such circuitry ensures that transcriptional activation only occurs upon 

Wnt ligand binding and provides an additional mechanism for reducing 

spontaneous activity. Sensitivity to a Wnt signal is maintained by the facilitated 
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removal of Gro/TLE from TCF/Lef, which ensures that even low levels of β-catenin 

would be sufficient to bind TCF/Lef and activate transcription.  

Support for this model comes from a study demonstrating that β-catenin 

levels change only modestly (~2-6-fold) upon Wnt signaling in human cells and 

Xenopus embryos (Goentoro and Kirschner, 2009). It is unlikely that the modest 

accumulation of nuclear β-catenin that occurs upon Wnt pathway activation is 

sufficient to effectively displace Gro/TLE from TCF/Lef. This suggests that a 

facilitated mechanism for the removal of Gro/TLE is required prior to formation of 

a β-catenin-TCF/Lef complex.  

In addition to its role in regulating the TCF/Lef transcriptional switch, our 

data indicate that XIAP may also regulate the nuclear pool of Gro/TLE that is 

available to form co-repressor complexes with TCF/Lef. Here, we find that XIAP 

is associated with Gro/TLE in the presence and absence of Wnt signaling. 

Additionally, whereas ubiquitylated Gro/TLE is readily observed in total cellular 

lysates, only the non-ubiquitylated form of Gro/TLE binds to TCF/Lef. This 

suggests a model in which XIAP functions to constitutively ubiquitylate free 

Gro/TLE to control the pool of Gro/TLE that can bind TCF/Lef. Our data also 

suggest the presence of an as yet unidentified de-ubiquitylase (DUB) that 

facilitates the removal of ubiquitin from Gro/TLE, which would allow TCF/Lef 

binding (Figure 6.1). This cycle of mono-ubiquitylation and de-ubiquitylation has 

been shown to regulate the activity of the transcriptional activators Smad4, p53, 

and FoxO (Dupont et al., 2009; Li et al., 2003; van der Horst et al., 2006). Our 
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study provides the first evidence for similar regulation of a transcriptional 

repressor, indicating this may be a general mechanism for transcription factor 

regulation in the cell.  

Until recently, most studies have focused on transcriptional co-activator 

activity because it was generally believed that co-repressors are abundant 

proteins subject to little regulation. It is becoming clear, however, that co-

repressor activity is highly complex and can be controlled through a variety of 

mechanisms (Cinnamon and Paroush, 2008; Perissi et al., 2010). Here, we show 

that the co-repressor Gro/TLE is regulated by ubiquitylation in a manner that may 

be Wnt-pathway specific. Gro/TLE has been shown to participate in 

transcriptional repression of multiple signaling pathways (Buscarlet and Stifani, 

2007). The co-repressor function of Gro/TLE occurs locally through its binding to 

DNA-bound transcription factors (primarily via its C-terminal WD40 domain) and 

histone deacetylase recruitment, and globally via its N-terminal Q domain, which 

mediates oligomerization to alter chromatin structure and mediate long-range 

repression. Our finding that XIAP ubiquitylates Gro/TLE on its N-terminal Q 

domain (which disrupts TCF/Lef binding), but does not disrupt its capacity to 

oligomerize, suggests that XIAP modification of Gro/TLE may specifically affect 

its Wnt repressive function. This possibility is consistent with our observation that 

XIAP knockdown had no observable effect on Notch signaling. In the absence of 

Notch signaling, Gro/TLE normally binds to the Hairless protein to repress Notch 

target gene activation by the transcription factor, Suppressor of Hairless (Barolo 
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et al., 2002; Nagel et al., 2005). Binding to Hairless occurs via the C-terminal 

WD40 domain of Gro/TLE (Jennings et al., 2006). Thus, ubiquitin modifications of 

Gro/TLE on its N-terminal Q domain would not be expected to disrupt its 

interaction with Hairless in the Notch pathway or other pathways in which 

repression by Gro/TLE occurs via the WD40 domain or via Gro/TLE 

oligomerization.  

The identification of XIAP as a novel Wnt pathway component provides a 

link between apoptosis and Wnt signaling and represents a way for the cell to 

coordinate both survival and proliferation. Wnt signaling has been shown to 

inhibit apoptosis and to be required for the expression of XIAP in cancer cells 

(Chen et al., 2001; Gandhirajan et al., 2010; Suzuki et al., 2004; Wang et al., 

2010). Thus, XIAP may be part of a positive feedback loop involving Wnt 

pathway-induced proliferation and inhibition of apoptosis. Surprisingly, the XIAP 

knock-out mouse has no obvious apoptotic or Wnt phenotypes as would be 

expected given its important role in apoptotic inhibition and our findings indicating 

that XIAP is required for Wnt signaling in cultured human cells and in Xenopus 

embryos. Only exon 1 of XIAP was deleted in the knockout mouse (Harlin et al., 

2001). Thus, it is possible that there is read through that permits expression of 

the C-terminus of XIAP, which includes the RING domain. Alternatively, there 

may be other IAP family members or other E3 ligases that can compensate for 

XIAP function when it is knocked out in the mouse. 
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Our findings may have important clinical implications as XIAP is 

upregulated in a majority of human cancers, and inhibitors of XIAP are currently 

in clinical trials (LaCasse et al., 2008). Drug development has been largely 

focused on developing small molecule and peptide Smac mimetics that bind to 

the BIR domains of XIAP to inhibit its anti-apoptotic function. Here, we show that 

the critical role XIAP plays in Wnt signaling depends on its E3 ligase RING 

domain and is distinct from its anti-apoptotic function. Our results predict that 

small molecules targeting the RING domain of XIAP, rather than its BIR domains, 

would represent more selective inhibitors of Wnt signaling. Alternatively, drugs 

targeting both the anti-apoptotic (caspase binding BIR domains) and pro-Wnt (E3 

ligase RING domain) functions of XIAP (e.g. downregulating XIAP by RNA 

interference) may be particularly effective therapeutics against Wnt-driven 

cancers. Moreover, recent findings indicate that inducing apoptosis results in 

“compensatory proliferation” of surrounding surviving cells due to release of 

mitogenic signals (e.g. Wnt) from dying cells (Bergmann and Steller, 2010), 

further indicating that drugs targeting both aspects of XIAP function may be 

particularly effective anti-cancer therapies even in non-Wnt-driven tumors. 

 

Future Directions 

 Like all scientific inquiry, these studies have raised more questions than 

they have answered.  I will outline some of these important unanswered 

questions here.   
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Is XIAP required for Wnt signaling in the absence of Groucho/TLE? 

 To validate that Groucho/TLE is truly the Wnt pathway target of XIAP, it 

will be important to determine if XIAP is required for Wnt signaling in the absence 

of Groucho/TLE.  If Groucho/TLE is not present to repress Wnt signaling, then 

XIAP should not be required for Wnt signal transduction.  This experiment is 

complicated in mammalian cells as there are five Groucho/TLE isoforms.  Thus, 

the simplest approach would be to knockdown Groucho in Drosophila S2 cells, 

as there is only one Groucho in flies, and ask if DIAP1 is still required for Wg 

signaling using the same assay that was used in my original RNAi screen.  This 

is also complicated by the fact that DIAP1 is thought to be required for cell 

survival in S2 cells and, thus, when it is depleted, cells undergo apoptosis.  I 

have found this to be the case to some extent.  Thus, it may be necessary to 

knock down an effector caspase (i.e. DRONC) to prevent the S2 cells from 

undergoing apoptosis when DIAP1 is knocked down in order to answer this 

question.  

 

What are the sites of XIAP-mediated ubiquitylation on Groucho/TLE? 

 I have narrowed the sites of XIAP-mediated ubiquitylation on 

Groucho/TLE to the N-terminal Q domain of Groucho/TLE, which contains eight 

totally conserved lysine residues.  However, it will be important to determine 

which of the eight lysine residues in the Q domain are the XIAP targets.  
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Identifying the ubiquitylation sites on Groucho/TLE will allow the synthesis of 

Groucho/TLE lysine-to-arginine mutants that are unable to be ubiquitylated by 

XIAP.  These mutants could then be used in experiments to determine if the non-

ubiquitylated form of Groucho/TLE is a better repressor than the wild type form of 

Groucho/TLE.  This could be accomplished by overexpressing the ubiquitylation 

mutant and wild type forms of Groucho/TLE in cultured cells and assaying their 

capacity to inhibit TOPflash activity.  I would predict that the ubiquitylation mutant 

form of Groucho/TLE would be able to inhibit TOPflash at a lower concentration 

than the wild type form of Groucho/TLE.  Alternatively, the kinetics of 

Groucho/TLE dissociation from TCF/Lef in response to Wnt stimulation could be 

tested via chromatin immunoprecipitation (ChIP) to determine if the ubiquitylation 

mutant Groucho/TLE cycles off of TCF/Lef slower than the wild type form, or if it 

does not dissociate from TCF/Lef at all.  These experiments may be potentially 

complicated by the presence of wild type Groucho/TLE in the cell, however, as 

the mutant Groucho/TLE will be able to oligomerize with the wild type form, 

perhaps masking any defects in TCF/Lef dissociation.  Thus, the cleanest 

experiment would involve eliminating all wild type forms of Groucho/TLE and 

then asking questions about the behavior of the ubiquitylation mutant form, which 

is a complicated task.   

 Mapping the ubiquitylation sites on Groucho/TLE will be useful for 

functional assays as just described as well as for determining how modification 

on specific residues might affect the structure and binding interfaces of 
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Groucho/TLE.  At present, the structure of Groucho/TLE has not been solved as 

it is a hard protein to purify, but there are groups working on it.  Once the 

structure of the Q domain of Groucho/TLE is known it will be very interesting to 

see where the modified lysine residues reside within that structure.  Based on a 

protein structure predictor program, (http://swissmodel.expasy.org/) it is predicted 

that all eight lysine residues in the Groucho/TLE Q domain reside on the external 

surface of the molecule and would therefore be available for modification by 

XIAP.  More information is required to know which residues are modified and 

how these modifications might specifically affect interactions between 

Groucho/TLE and TCF/Lef, but not affect Groucho/TLE oligomerization.    

 

What are the concentrations of β-catenin and Groucho/TLE in the nucleus? 

 As discussed above, the prevailing model for how TCF/Lef is converted 

from a transcriptional repressor into an activator involves direct displacement of 

Groucho/TLE by accumulating nuclear β-catenin in response to Wnt stimulation 

(Daniels and Weis, 2005).  However, recent evidence suggests there is not 

enough nuclear β-catenin present in response to Wnt stimulation to simply 

outcompete Groucho/TLE for TCF/Lef binding (Goentoro and Kirschner, 2009).  

My data show that Groucho/TLE must be removed from TCF/Lef before β-

catenin can bind, further suggesting that β-catenin cannot directly displace 

Groucho/TLE on its own.  In order to really prove that Groucho/TLE must be 

removed from TCF/Lef in order for β-catenin to bind, however, some rigorous 
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biochemical measurements and mathematical modeling must be performed.  At 

present, the only precise measurement known for these three proteins in the cell 

is the Kd for the β-catenin-TCF/Lef interaction, which was reported to be about 20 

nM (Daniels and Weis, 2005).  Thus, the Kd for the Groucho/TLE-TCF/Lef 

interaction must be determined as well as the nuclear concentrations of Groucho, 

TCF/Lef and β-catenin in the absence and presence of Wnt stimulation.  With 

these measurements, it will be possible to determine if, in fact, enough β-catenin 

enters the nucleus upon Wnt signaling to simply outcompete Groucho/TLE for 

TCF/Lef binding.  This can also be tested theoretically with ordinary differential 

equations (ODEs) for the three proteins using the experimentally verified 

concentrations and Kd’s for each protein to predict the relationship between them 

in the absence and presence of Wnt signaling.  Such precise measurements and 

analysis will give much needed insight into this important nuclear Wnt signaling 

event.   

 

How and when is XIAP recruited to the TCF/Lef transcriptional complex? 

 I have shown that XIAP is recruited to the TCF/Lef transcriptional complex 

upon Wnt stimulation.  The obvious question is:  how?  Some insight comes from 

the fact that XIAP is recruited to TCF/Lef upon LiCl treatment, meaning inhibition 

of GSK3 is sufficient to recruit XIAP to TCF/Lef.  This suggests that this event is 

controlled downstream of β-catenin stabilization in the Wnt pathway.  Perhaps 

XIAP binds β-catenin and is recruited to TCF/Lef along with β-catenin and its 
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binding partners in order to displace Groucho/TLE; this possibility, and others, 

remain to be tested. 

 The more interesting questions are:  what are the kinetics of XIAP-

TCF/Lef association?  When does XIAP come on to TCF/Lef and when does it 

come off?  Is the binding of XIAP to TCF/Lef coordinated with Groucho/TLE 

removal and β-catenin association?  Is XIAP really required for removal of 

Groucho/TLE from TCF/Lef?  What happens when XIAP is knocked down by 

siRNA?  Does Groucho/TLE still cycle off of TCF/Lef in response to Wnt or are 

the kinetics of Groucho/TLE removal slower?  All of these important questions 

can be answered using ChIP assays to look at association and dissociation of 

multiple factors on endogenous Wnt target gene promoters in response to Wnt 

stimulation at different time points.  Such studies have been beautifully 

performed in the laboratory of Katherine Jones (Sierra et al., 2006).  We are now 

working with her laboratory to carry out these experiments to address these 

interesting questions.   

 

Does loss of XIAP inhibit tumor formation? 

 One major outstanding question is:  does inhibition of XIAP affect tumor 

growth or formation?  Many drug companies are currently targeting XIAP to 

inhibit tumor growth in combination with chemotherapeutic agents based on its 

anti-apoptotic function.  It would be very interesting to determine if the patients 

who are receiving an anti-sense XIAP oligonucleotide (which would knockdown 
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the entire protein and thus affect the pro-Wnt RING domain of XIAP) have 

decreased Wnt signaling in their tumors.  Given that pharmaceutical companies 

are involved in all of the current XIAP inhibitor clinical trials, patient samples are 

not readily available.  Thus, the next best option is to turn to the APCMin/+ mouse 

model, which is a well-established system for studying the effects of aberrant 

Wnt signaling on intestinal tumorigenesis (Clarke, 2006), to see if loss of XIAP 

inhibits Wnt signaling and tumor growth in this context.  This would be the most 

definitive way to test if XIAP inhibition may be a useful way to inhibit Wnt-driven 

tumor formation.  If that looks promising, it would be interesting to see how 

effective XIAP inhibition might be in preventing the formation or growth of non-

Wnt-driven tumors as well.   

 

What is the DUB that opposes XIAP-mediated Groucho/TLE ubiquitylation? 

 The last major unanswered question raised by this work is:  what is the 

DUB that opposes Groucho/TLE ubiquitylation by XIAP?  I found that 

Groucho/TLE is constitutively ubiquitylated by XIAP, a modification that inhibits 

Groucho/TLE-TCF/Lef binding.  This suggests the existence of a DUB that would 

function to remove the ubiquitin modification on Groucho/TLE to allow TCF/Lef 

binding.  Considering that there are only approximately 79 human DUBs, a small 

functional screen could be performed in which XIAP, His-ub, Groucho/TLE, and 

one of each of the DUBs could be overexpressed in cultured mammalian cells 

and a His-ub assay performed as described above.  Potential “hits” would be 
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DUBs that decrease the amount of XIAP-ubiquitylated Groucho/TLE.  These hits 

could then be followed up with overexpression/knockdown studies to determine 

effects on Wnt signaling in cultured cells and Xenopus embryos, and, ultimately, 

to determine if they affect the pool of Groucho/TLE available for TCF/Lef binding, 

as would be predicted.     

 

Part II 

 

Discussion 

 Ubiquitylation plays an important role in regulating many Wnt pathway 

components.  Prior to beginning this work, however, no DUBs in the Wnt 

pathway had been identified.  At present, DUBs for TCF (Zhao et al., 2009), Axin 

(Zhang et al., 2011), APC (Tran et al., 2008), and Dsh (Tauriello et al., 2010) 

have now been reported that regulate either the stability or activity of these 

proteins.  In this work, I identified USP47 as a novel DUB involved in the 

regulation of Wnt signaling and show that it associates with two Wnt pathway E3 

ligases, β-TRCP and XIAP.   

 

USP47 and β-TRCP 

 The finding that USP47 interacts with β-TRCP was very interesting given 

that β-TRCP is the primary E3 ligase responsible for regulating cytoplasmic β-

catenin levels in the Wnt pathway.  Given that many DUBs regulate the stability 
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of their cognate E3s, I expected to find that USP47 plays a role in stabilizing β-

TRCP.  However, my data, and that of Peschiaroli and colleagues show this is 

not likely the case (Peschiaroli et al., 2010).  The work of Peschiaroli et al. also 

showed that β-TRCP has no effect on the stability of USP47 even though USP47 

binds the substrate-recognition WD-40 domain of β-TRCP.  Thus, USP47 and β-

TRCP do not likely regulate the stability of each other.   

 Another possibility is that USP47 may affect the levels of the classic Wnt 

pathway β-TRCP substrate, β-catenin.  Although USP47 does not appear to 

interact with β-catenin (data not shown), it is still possible that USP47 can affect 

the ubiquitylation or stability of β-catenin via its interaction with β-TRCP; 

however, my data indicate that USP47 does not affect the stability of β-catenin, 

ruling out this possibility. 

    The last apparent possibility for how USP47 may be affecting Wnt 

signaling via its interaction with β-TRCP is by affecting the ubiquitylation or 

stability of the β-TRCP substrate, Smad4.  A paper published by Wan et al., 

showed that Smad4 is ubiquitylated by β-TRCP and subsequently degraded by 

the proteasome (Wan et al., 2004).  Numerous papers have now shown that 

Smad4 can act as both a positive and negative regulator of Wnt signaling in 

different contexts (Li et al., 2011; Lim and Hoffmann, 2006; Romero et al., 2008; 

Tian et al., 2009).  Thus, I sought to determine if USP47 might be affecting Wnt 

signaling by affecting Smad4 levels.  Even though my data indicate that USP47 
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can interact with Smad4, it does not appear that USP47 has any effect on its 

stability.   

 Ubiquitylation of a protein can have many consequences besides targeting 

it for proteasomal degradation.  Thus, even though USP47 does not observably 

affect the stability of β-TRCP, β-catenin, or Smad4, it is possible that USP47 may 

affect a non-degradative ubiquitin modification on these proteins, which could 

result in changes in their localization, binding partners, or activity.  Most notably, 

mono-ubiquitylation of Smad4 has been shown to be critical in regulating its 

transcriptional activity by regulating its association with its transcriptional co-

activator Smad2 and its nuclear localization (Dupont et al., 2009; Tian et al., 

2009).  Thus, it will be important to test whether USP47 affects non-degradative 

ubiquitin modifications on these proteins in the future, as described below.            

 

USP47 and XIAP 

 In light of my discovery of XIAP as a new Wnt pathway component (see 

Chapter III), it was exciting to find that USP47 also interacts with this E3 ligase.  

My data indicate that USP47 is likely a positive Wnt regulator.  Because XIAP is 

also a positive Wnt regulator, if USP47 affects XIAP function in the Wnt pathway, 

it must be doing so in a positive manner.  This rules out the possibility that 

USP47 could be a DUB for XIAP’s substrate, Groucho/TLE, as removing the 

XIAP-mediated ubiquitin modification on Groucho/TLE would be predicted to 

inhibit, not enhance, Wnt signaling (see Chapter III for details).  This leaves the 
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possibility that USP47 might affect the ubiquitylation or stability of XIAP itself; 

however, my data do not show any observable effects on XIAP levels in either 

the presence or absence of USP47.  There are also no observable changes in 

USP47 levels in the presence or absence of XIAP, ruling out the possibility that 

XIAP and USP47 regulate the stability of one another in the cell.        

 As discussed above, it is possible that USP47 affects a non-degradative, 

inhibitory ubiquitin modification on XIAP that must be removed to allow XIAP to 

ubiquitylate Groucho/TLE to promote Wnt signaling.  This possibility remains to 

be tested as discussed below.   

It is interesting to note the recently reported role for USP47 in regulating 

cell growth and survival, which is similar to the role of XIAP in promoting cell 

survival.  Peschiaroli et al., reported significant decreases in cell growth and 

survival when USP47 was knocked down with siRNA, which was enhanced upon 

treatment with chemotherapeutic agents (Peschiaroli et al., 2010), much like in 

cells that are XIAP deficient (Engesaeter et al., 2011; Wang et al.).  One 

explanation for this comes from the discovery that USP47 is a critical component 

of the DNA base excision repair process in cells by functioning as a DUB for 

polymerase β (Pol β) (Parsons et al., 2011).  Parsons et al., show that USP47 

rescues Pol β from ubiquitin-mediated degradation when it is needed in response 

to DNA damage.  Thus, without USP47 there is not enough Pol β present in the 

cell and the cell becomes more susceptible to DNA damage resulting in 

decreased growth and survival.  Another explanation is possible, however.  
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USP47 may affect XIAP function in the Wnt pathway (a possibility that remains to 

be determined) as well as its function as an inhibitor of apoptosis.  Just as 

USP47 may be required for XIAP to effectively ubiquitylate Groucho/TLE, it may 

also be required for XIAP to effectively inhibit apoptosis.  In support of this 

possibility, the Drosophila homolog of USP47, Ubp64E, has recently been shown 

to genetically interact with dcp-1 (one of the major effector caspases in the fly) 

(Kim et al., 2010), indicating USP47 may regulate apoptotic events in the cell, 

potentially through its interaction with XIAP.  These interesting possibilities 

remain to be tested.    

 

USP47 and Transcription 

My findings indicate that USP47 is required downstream of the β-catenin 

destruction complex in the Wnt pathway as knockdown or overexpression of 

USP47 has no effect on β-catenin levels in the cell.  Thus, even though USP47 

appears to be predominantly a cytoplasmic protein based on my data and 

(Parsons et al., 2011), it is likely playing a role at the level of transcription in the 

nucleus in the Wnt pathway.  This discrepancy in localization and function is not 

novel.  XIAP is predominantly a cytoplasmic protein and β-TRCP’s role in the Wnt 

pathway has largely been attributed to its cytoplasmic role of regulating β-catenin 

levels in the β-catenin destruction complex, but both XIAP and β−TRCP have 

newly discovered critical nuclear Wnt signaling functions.  XIAP is recruited to 

TCF/Lef upon Wnt stimulation in order to ubiquitylate Groucho/TLE to allow β-
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catenin binding (Chapter III), while β-TRCP appears to be required for the 

removal of β-catenin from the TCF/Lef complex to allow for association of 

Groucho/TLE (Sierra et al., 2006).  What recruits XIAP, β-TRCP, and potentially 

USP47 to the nucleus is an important unanswered question.   

That USP47 may be involved in transcriptional events in the Wnt pathway 

is consistent with the reported functions of its homolog, Ubp64E, in Drosophila.  

Ubp64E was originally identified as a strong dominant enhancer of position effect 

variegation (PEV) in Drosophila (Henchoz et al., 1996).  PEV refers to the 

process of a gene becoming inactivated by random insertion next to 

heterochromatin, most often in peri-centrosomal regions (Girton and Johansen, 

2008).  In their study, Henchoz et al. showed that loss of Ubp64E increased the 

spread of heterochromatin in the white gene locus while gain of Ubp64E 

suppressed the spread of heterochromatin, indicating Ubp64E promotes 

chromosome de-condensation.  Ubp64E was the first enzyme discovered to be 

either a suppressor or an enhancer of PEV as almost all other suppressors or 

enhancers identified at that time were transcription factors.  To date, only one 

other DUB, USP22, has been identified as a modulator of PEV and an important 

regulator of chromatin dynamics (Fodor et al., 2010).  USP22 is known to de-

ubiquitylate Histone H2B, which is required for chromosome de-condensation 

(Zhang et al., 2008; Zhao et al., 2008).  It remains to be determined how Ubp64E 

promotes euchromatin formation.  One intriguing possibility is that Ubp64E 

disrupts Groucho/TLE function in coordination with XIAP.   
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In addition to the role of Ubp64E in PEV, it has also been shown to 

regulate the stability of two transcription factors:  Slowborders (a transcriptional 

activator required for border cell migration in fly ovaries), and Tramtrack (a 

transcriptional repressor involved in fly eye development) (Bajpe et al., 2008; 

Rorth et al., 2000).  Thus, even though USP47 is mostly found in the cytoplasm, 

much evidence exists to suggest one of its primary roles in the cell is to regulate 

chromosome dynamics and gene transcription.  This implies that USP47 may be 

involved in regulating one of the many important transcriptional events in the Wnt 

pathway either through XIAP, β-TRCP, their substrates, or an as yet unidentified 

target.    

 

Future Directions 

 The data presented in Chapter V are part of a work in progress.  Thus, 

additional experiments must be performed to confirm and support the results as 

stated.  I will briefly go over the important missing pieces required to interpret the 

current data before focusing on the broader, more interesting future directions of 

this project. 

 

Is USP47 required for Wnt signaling in mammalian cells? 

 To confirm that USP47 is required for Wnt signaling in mammalian cells, it 

will be important to determine if USP47 is required for transcription of 

endogenous Wnt target genes such as AXIN2 or c-myc via RT-PCR analysis of 
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USP47 siRNA-treated samples.  Additionally, determining the requirement for 

USP47 in different cell lines is important to confirm that USP47 is required for 

Wnt signaling in multiple cell types.  To confirm that USP47 is acting downstream 

of the β-catenin destruction complex, it will be necessary to determine if 

knockdown of USP47 via siRNA is able to inhibit LiCl-mediated activation of Wnt 

signaling.  Lastly, to confirm that USP47 enhances Wnt signaling in mammalian 

cells, it will be necessary to repeat the overexpression studies and to immunoblot 

for both the wild type and mutant forms of USP47 to ensure they are being 

expressed in the cellular lysates.   

 

Is USP47 required for Wnt signaling in Xenopus embryos? 

 While the data presented here strongly indicate that USP47 is required for 

Wnt signaling in Xenopus embryos, more rigorous studies must be performed to 

fully support this statement.  First, it must be shown that knockdown of USP47 

via injection of USP47 morpholino inhibits the formation of Xwnt8-induced 

secondary axes, which would show loss of USP47 specifically inhibits Wnt 

signaling.  Second, effects of gain and loss of USP47 function on endogenous 

Xwnt8 target gene expression (i.e. Siamois and Xnr3) in animal caps must be 

determined to show truly specific effects of USP47 on Wnt signaling in Xenopus 

embryos.   

 

 



 138 

Does USP47 bind endogenous Smad4 and XIAP? 

 The co-immunoprecipitation experiment (Figure 5.6B) indicating 

overexpressed USP47 and Smad4 interact is weak and needs to be repeated in 

order to determine if USP47 really binds Smad4.  Additionally, it would be best to 

test if endogenous USP47 and Smad4 can interact to determine if they normally 

form a complex in untreated cells.  Given that USP47 and β-TRCP have now 

been reported to interact (Peschiaroli et al., 2010), that data does not need to be 

repeated.  However, it would be good to show that endogenous USP47 interacts 

with endogenous XIAP to confirm the interaction of these two proteins as well.    

 

Does USP47 affect the localization or ubiquitylation of β-TRCP, β-catenin, 

Smad4, XIAP or Groucho/TLE? 

 Given that USP47 does not affect the stability of β-TRCP, β-catenin, 

Smad4, XIAP, or Groucho/TLE the question remains:  does USP47 affect either 

the localization or ubiquitylation of any of these proteins?  Changes in protein 

localization can be assessed by overexpression or siRNA knockdown of USP47 

followed by immunofluorescence microscopy using antibodies against the 

endogenous proteins where available.  If no immunofluorescence amenable 

antibodies exist, tagged versions of proteins can be used instead.  In addition, 

nuclear and cytoplasmic fractionation studies can be employed to determine if 

overexpression or knockdown of USP47 induces changes in the localization of 

each protein.  These studies should also be performed in the presence and 
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absence of Wnt stimulation to determine if Wnt signaling has any effect on the 

subcellular localization of each protein.   

 The next step is to determine if USP47 might affect a non-degradative 

ubiquitin modification on any of the aforementioned proteins.  There are currently 

no reports of non-degradative ubiquitin modifications on β-TRCP, β-catenin, or 

XIAP, however, that does not mean they do not exist.  Smad4 and Groucho/TLE, 

on the other hand, are both critically regulated by non-degradative mono-

ubiquitylation (Dupont et al., 2009)(Chapter IV).  Thus, it will be important to 

determine if gain or loss of USP47 has any effect on the ubiquitylation status of 

each of these proteins by performing in vivo His-ubiquitylation assays when 

USP47 is overexpressed or knocked down via siRNA.  If a change is observed in 

the ubiquitylation status of a protein, it will be important to determine what kind of 

ubiquitin modification it is using ubiquitin mutants and to show that USP47 can 

de-ubiquitylate that substrate both in vivo and in vitro.  

 

Is USP47 involved in Wnt-mediated transcriptional events in the nucleus? 

 As discussed above, much evidence exists to suggest USP47 is an 

important regulator of transcriptional events in the cell and my data indicate that 

USP47 is likely functioning at the level of transcription in the Wnt pathway.  Thus, 

it will be important to probe this interesting possibility.  First, it will be interesting 

to determine if USP47 might be functioning with XIAP as part of the mechanism 

to disrupt Groucho/TLE-TCF/Lef binding.  To this end, it will be necessary to test 
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whether USP47 is recruited to the TCF/Lef complex in response to Wnt signaling 

in the same manner as XIAP.  This can be done by performing co-

immunoprecipitation experiments or chromatin immunopreciptiation (ChIP) 

analyses looking at various time points after Wnt stimulation to see when USP47, 

XIAP, and Groucho/TLE might come on and off TCF/Lef on Wnt target genes 

and whether these events are coordinated.   

Alternatively, perhaps USP47 functions as part of the mechanism to 

remove β-catenin from TCF/Lef via β-TRCP.  This possibility could also be tested 

using ChIP analysis to determine if USP47 might cycle on and off of TCF/Lef in a 

manner similar to β-TRCP or β-catenin, which might give insight into its function 

within the Wnt transcriptional complex.  

Lastly, it might be useful to examine Smad4-TCF/Lef interactions in the 

absence and presence of USP47 to determine if USP47 may affect the ability of 

Smad4 to form a transcriptional complex with TCF/Lef in the Wnt pathway.  This 

can also be accomplished using both co-immunoprecipiation experiments and 

ChIP analysis in cultured cells in which USP47 has been either overexpressed or 

knocked down.  

 

What is the USP47 substrate in the Wnt pathway? 

 After all of the above experiments have been performed, it is still possible 

that the substrate and molecular mechanism of USP47 will not be determined.  If 

that is the case, more screening will be needed.  Two approaches can be utilized 
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in this instance:  1.  Purification of USP47 from cultured mammalian cells 

followed by mass spectrometry analysis to identify novel binding partners, or 2.  

A candidate approach in which USP47 is immunoprecipitated from cultured cells 

in the presence and absence of Wnt stimulation and assayed for interaction with 

all of the known nuclear Wnt components via immunoblotting.  If a novel USP47 

interactor is found via one of these methods, its stability, localization, and 

ubiquitylation status should be tested in the context of USP47 gain and loss of 

funciton to determine the likelihood that it is, in fact, a Wnt-pathway substrate of 

USP47.  

 

Significance 

 Through a siRNA screen performed in Drosophila S2 cells I identified a 

novel E3 ligase and deubiquitylase involved in regulating Wg/Wnt signaling.  

Although the significance of the discovery of Ubp64E/USP47 as a Wg/Wnt 

signaling regulator remains to be determined, the significance of the identification 

of DIAP1/XIAP as a novel Wg/Wnt signaling component is readily apparent given 

the well-established role for XIAP in human cancer.  Overexpression of XIAP has 

been observed in nearly every cancer type analyzed, including all 60 cell lines of 

the National Cancer Institute tumor cell line panel (Fong et al., 2000; Tamm et 

al., 2000).  The most often-cited explanation for why XIAP is routinely 

upregulated in cancer cells focuses on the capacity of XIAP to inhibit apoptosis 

and, thus, prevent cancer cell death.  While this is certainly part of the reason, 
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my studies, and those of others, provide evidence that cancer cells not only 

upregulate XIAP to prevent apoptosis, but also to increase proliferation (via Wnt 

signaling) and to promote metastasis (via NF-κB signaling) (Mehrotra et al., 

2010).   

  In the work presented here, I identify XIAP as a critical Wnt signaling 

component.  This finding provides a novel link between apoptosis and Wnt 

signaling and represents a way for a cell to coordinate both survival and 

proliferation within one protein.  The requirement of XIAP for Wnt signal 

transduction ensures that Wnt-induced proliferation will only occur in non-

apoptotic cells, as XIAP inhibits apoptosis.  In fact, it has been reported that Wnt 

signaling promotes the expression of XIAP (Chen et al., 2001; Gandhirajan et al., 

2010; Suzuki et al., 2004; Wang et al., 2010), thus forming a positive feedback 

loop within a cell involving Wnt pathway-induced proliferation and inhibition of 

apoptosis.  

 This positive feedback loop between Wnt signaling and XIAP may be part 

of the reason why many cancers exhibit hyperactive Wnt signaling (Reya and 

Clevers, 2005).  Mutations that render the Wnt pathway constitutively active 

provide a potential cancer cell with a dual advantage:  growth factor independent 

proliferation and enhanced cell survival, two traits critical for cancer formation 

(Hanahan and Weinberg, 2011).  In colorectal cancer (CRC), the most well 

studied Wnt-driven cancer, it is thought that cancer cells must survive long 

enough to acquire a series of step-wise mutations that occur over a period of 
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decades in order for an invasive tumor to form (Figure 6.2)(Kinzler and 

Vogelstein, 1996).  During this long progression from tumor initiation to invasion, 

there are many circumstances in which a cancer cell is exposed to harsh 

environments that would normally cause cell death.  A successful cancer cell 

must survive loss of cell-cell and cell-matrix attachments, hypoxia,  

overexpression of oncogenes, and massive DNA damage, in order to become a 

fully invasive and malignant tumor (Hanahan and Weinberg, 2011).  Thus, 

constitutive Wnt signaling, and resultant XIAP expression, not only increases the 

proliferative potential of a cell, but it makes it more likely to survive long enough 

to acquire the other mutations needed to form a fully invasive tumor.     

Figure 6.2. Genetic changes associated with colorectal tumorigenesis. 
APC mutations initiate the neoplastic process, and tumor progression results 
from mutations in the other genes indicated. Patients with Familial 
Adenomatous Polyposis inherit APC mutations and develop numerous 
dysplastic aberrant crypt foci (ACF), some of which progress as they acquire 
the other mutations indicated in the figure.   K-RAS is an oncogene that 
requires only one genetic event for its activation. The other specific genes 
indicated are tumor suppressor genes that require two genetic events (one in 
each allele) for their inactivation. Chromosome 18q21 may contain several 
different tumor suppressor genes involved in colorectal neoplasia, with DCC, 
DPC4, and JV18–1 genes proposed as candidates. A variety of other genetic 
alterations have each been described in a small fraction of advanced 
colorectal cancers. These may be responsible for the heterogeneity of biologic 
and clinical properties observed among different cases.  Figure adapted from 
(Kinzler and Vogelstein, 1996). 
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 This dual role of Wnt signaling may partly explain why mutations in the 

Wnt pathway are most often the first “hit” in the progression of CRC (Figure 6.2).  

Why Wnt pathway activation most often occurs before Ras activation is unclear, 

based on this proposed hypothesis, as Ras also induces proliferation and has 

also been shown to upregulate XIAP expression to enhance cell survival (Liu et 

al., 2005b).  Perhaps Wnt mutations are favored early to select for a stem cell-

like cell as Wnt signaling has been shown to be required for maintaining 

“stemness” in the colon and “cancer stem cells” have been postulated as the 

major driving force in tumor initiation and progression (Beachy et al.; Reya and 

Clevers, 2005).  Once a stem cell-like cell is selected, it may then be further 

transformed by an activating Ras mutation that has many oncogenic effects on 

the cell in addition to the myriad Wnt signaling effects.      

 The real question, then, is why do CRC cells, and cancer cells in general, 

so often lose p53 if XIAP is so often expressed at high levels, which presumably 

inhibits apoptosis?  One possibility is that p53 is lost not because of its role as an 

apoptotic effector, but because of its many other tumor suppressor functions 

within cells.  This appears to be the case given that loss of p53 had no effect on 

the frequency of apoptosis in ApcMin/+ mouse early or late stage adenomas, 

leading the authors of this study to conclude that p53 is most likely lost either to 

prevent cellular senescence or to increase the angiogenic potential of cancer 

cells (Fazeli et al., 1997).  Alternatively, or additionally, p53 may be lost to allow 

cell migration.  In CRC, p53 is most often lost just prior to tumor invasion and 
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metastasis (Figure 6.2) suggesting that p53 may be functioning as a metastasis 

suppressor that must be lost in order for tumor invasion to occur.  There is a lot 

of evidence to support this idea.  p53 has been shown to regulate the expression 

of the important metastasis suppressors KIA1, Nm23, and E-cadherin (Marreiros 

et al., 2005; Mashimo et al., 1998; Roger et al., 2010).  Thus, loss of p53 results 

in loss of expression of these genes, which significantly increases the metastatic 

potential of cancer cells.  p53 has also been shown to prevent RhoA activation by 

Ras, suggesting an important function of p53 is to prevent Ras-mediated cell 

migration (Xia and Land, 2007).  Thus, p53 may be lost in CRC, and other 

cancers containing anti-apoptotic activity, not because it increases apoptotic-

resistance, but rather because losing p53 confers other important growth 

advantages to cancer cells.  

 Interestingly, a recent study showed that XIAP also directly promotes 

metastasis independently of its anti-apoptotic function.  XIAP induces NF-κB 

signaling in cooperation with another IAP family member, Survivin, which leads to 

increased fibronectin expression, β1 integrin signaling, and activation of the cell 

motility kinases FAK and Src (Mehrotra et al., 2010).  Thus, XIAP is a triple threat 

in terms of cancer:  it is required for Wnt-induced proliferation, which is 

commonly found in many cancer types, it prevents cancer cell death by inhibiting 

apoptosis, and it directly promotes metastasis.  

 Given the multi-faceted role of XIAP in cancer, targeting XIAP would be 

predicted to be a particularly effective chemotherapeutic strategy.  Indeed, many 
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drug companies are targeting XIAP and clinical trials with XIAP inhibitors are 

currently underway (Hunter et al., 2007; LaCasse et al., 2008).  To date, 

however, much work has focused on inhibiting the anti-apoptotic BIR domains of 

XIAP, while my studies, and those of Mehrotra et al., reveal that the anti-

apoptotic function of XIAP is dispensable for its Wnt pathway function and its 

ability to promote metastasis (Mehrotra et al., 2010).  Thus, targeting the entire 

XIAP protein (e.g. with siRNA constructs) would be predicted to be a more 

effective chemotherapeutic strategy as loss of the entire protein would inhibit all 

of the oncogenic functions of XIAP.  One pharmaceutical company, Aegera 

Therapeutics (Montreal, QC, Canada), has designed a XIAP anti-sense 

oligonucleotide (AEG35156) that has proven effective in multiple cancer types in 

pre-clinical studies including pediatric tumors, acute myeloid leukemia (AML), 

breast, ovarian, prostate, lung, and colon cancer (Holt et al., 2011; LaCasse et 

al., 2006; Shaw et al., 2008; Tamm, 2008).  There are currently multiple ongoing 

clinical trials using AEG35156 as a single agent or in combination with other 

chemotherapy drugs (Tamm, 2008).  The only results published from these 

studies so far are from a phase I/II clinical trial evaluating the effects of 

AEG35156 in patients with relapsed/refractory AML, which indicate that 

AEG35156 is very effective in this patient population in combination with 

idarubicin and cytarabine (Schimmer et al., 2009).  It will be interesting to see 

how effective such XIAP antagonists are in multiple cancer types in the future.    

 In conclusion, the work presented here identifies a novel role for XIAP in 
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Wnt signaling, which provides further insight into why XIAP might be highly 

expressed in cancer cells.  These findings also provide rationale for targeting the 

entire XIAP protein in cancer treatment as the role of XIAP in Wnt signaling and 

metastasis is independent of the anti-apoptotic functions of its BIR domains.         
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