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CHAPTER I 

 

GENERAL INTRODUCTION 

 

Significance 

 

The mature pancreas is comprised of two functionally distinct tissue types. The 

exocrine pancreas, consisting of acinar cells that secrete digestive enzymes into a 

complex ductal network, makes up approximately 98 percent of the adult organ. 

Interspersed within the acinar parenchyma are the islets of Langerhans containing 

hormone-producing endocrine cells, which are responsible for maintaining glucose 

homeostasis within the organism. Each islet is a microorgan containing five different 

hormone-producing cell types including β (insulin), α (glucagon), δ (somatostatin), ε 

(ghrelin), and PP (pancreatic polypeptide) cells.  Insulin is the main hormone produced 

by the islet which stimulates the uptake of glucose into peripheral tissues such as the 

liver and muscle. Diabetes mellitus results from insulin insufficiency caused by either a 

selective autoimmune destruction of the β cells (type 1) or a failure of β cells to 

compensate for peripheral insulin resistance, usually associated with obesity (type 2). 

There has been some therapeutic success with transplanted cadaveric islets into 

patients with type 1 diabetes; several patients achieved insulin independence for a 

limited period of time.  However, insufficient amounts of donor tissue and ongoing 

autoimmunity have prevented islet transplantation from becoming a widely available 

treatment option. Consequently, researchers are currently trying to develop ways to 

generate replacement sources of β cells by expanding existing β cells in vivo or 

generating them de novo in vitro (Figure 1-1). One current avenue of study involves the 
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Figure 1-1. Possible sources of cells for restoration of β cell mass include: (1) 
the isolation and expansion of preexisting β cells, (2) the expansion of islets, 
(3) the isolation, expansion, and differentiation of multipotent pancreatic 
precursors into β cells, and (4) differentiation of pluripotent stem cells down 
the normal path of development into β cells. 
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directed differentiation of human embryonic stem (ES) cells or induced pluripotent stem 

(iPS) cells down the normal path of pancreas development into glucose-responsive β 

cells. A thorough understanding of how pancreas organogenesis occurs in the embryo 

should provide insight into how β cells can be generated more efficiently and effectively 

using these differentiation protocols. Of particular interest are the transcription factors, 

signaling molecules, and cell-cell interactions that regulate differentiation of progenitors 

into endocrine cells and their subsequent proliferation and islet morphogenesis 

 

Pancreas development 

 

Pancreas organogenesis can be thought of as a sequential continuum of 

morphological and molecular events including: regionalization of the endoderm and early 

bud formation, bud outgrowth and cell specification, endocrine lineage allocation, 

endocrine proliferation and maturation, and islet morphogenesis (Figure 1-2). 

 

Regionalization of the endoderm and early bud formation 

Pancreas development begins at embryonic day (e) 9.5 in the mouse (gestational 

day 25 in humans) as two evaginations from the posterior foregut that ultimately fuse to 

form the mature organ.  The pancreas forms from a region of the foregut endoderm 

located posterior to the developing liver and anterior to the duodenum. Overlapping 

expression domains of transcription factors initially broadly pattern the endoderm along 

the anterior to posterior axis (Figure 1-3).  For example, Sox2 is expressed in the 

anterior domain of endoderm that will give rise to the esophagus and stomach [1]; Pdx-1 

expression is found in the antral stomach, presumptive pancreas, common bile duct, and 
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Figure 1-2. A schematic of some the morphological and molecular events 
required for pancreas development. (A) The endoderm becomes regionalized 
and the dorsal and ventral pancreatic buds evaginate at e9.5 (red circles are 
pancreatic progenitors). (B) The pancreas undergoes growth and branching 
morphogenesis to form a ductal epithelium. Endocrine progenitors within the 
ductal epithelium delaminate and differentiate into the various hormone-
expressing cell types. (C) At late gestation endocrine cells proliferate and (D) 
organize into islets within the acinar tissue. In the mouse, islets have a 
characteristic architecture with the β cells in the center and the other cell types 
at the periphery.

Branching
Differentiation
Lineage allocation

Endocrine cell proliferation

Islet morphogenesis

C

BA

D
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Figure 1-3. Anterior/posterior patterning of the digestive tract. Expression of 
various transcription factors is regionalized along the anterior-posterior axis of 
the developing gut tube endoderm. Regions of common expression are shown 
in blended colors: purple, overlapping expression of Pdx1 and Cdx2; green, 
overlapping expression of Cdx1 and Cdx2 in the hindgut. The posterior 
boundary of Pdx1 expression is diffuse (purple dots). Abbreviations: ANT, 
anterior; as, antral stomach; co, colon; dp, dorsal pancreas; duo, duodenum; 
eso, esophagus; fs, forestomach; int, intestine; li, liver; lu, lung; POST, 
posterior; tra, trachea; vp, ventral pancreas. From Pancreas Cell Fate. M. 
Guney and M. Gannon. Birth Defects Research C Embryo Today, 87(3), 
Copyright © [2009]. 
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rostral duodenum [2]; and Cdx2 is expressed in the entire post gastric epithelium in the 

regions which will form intestine [3].   

Initially, the presumptive pancreatic domain is marked by overlapping expression 

of Pdx-1, Ptf1a, and homeobox gene 9 (Hb9) [2,4,5,6].  In the absence of Hb9, the 

dorsal pancreatic bud fails to develop although the adjacent endoderm and surrounding 

mesenchyme are patterned normally, indicating Hb9 is absolutely required for epithelial 

bud specification and outgrowth [5,6]. At e9.5, a subset of cells within the Pdx-1 

expression domain begins to express the bHLH transcription factor, Ptf1a/p48 [7]. It is 

the Ptf1a/Pdx-1 double-positive cells that will give rise to the pancreatic anlagen, while 

Pdx-1+/Ptf1a- cells contribute instead to the antral stomach and rostral duodenum 

(Figure 1-3). Ptf1a is the tissue-specific component of a heterotrimeric transcription 

factor complex known as PTF1 that also includes the proteins p65 and p75 [8,9]. 

Although it was originally thought to be required solely for acinar cell development, Ptf1a 

is now known to be indispensable for specification of the pancreas as well as for the 

development of the endocrine and exocrine cell types [4,10]. Lineage tracing analysis 

showed that Ptf1a-expressing progenitors give rise to all of the cell types in the pancreas 

[4]. Mice lacking Ptf1a are apancreatic except for a severely hypoplastic dorsal bud 

[4,10]. Interestingly, in the absence of Ptf1a, cells that would normally become ventral 

pancreas survive and proliferate, are found within the duodenum, and express intestinal 

cell markers, suggesting a role for Ptf1a in directing bipotential endodermal progenitor 

cells towards the pancreatic fate and away from the intestinal lineage [4]. The fact that 

Ptf1a mutant cells adopt an intestinal fate rather than undergo apoptosis indicates the 

highly plastic nature of the endoderm during gut formation. Along these lines, studies 

have shown that ectopic expression of Ptf1a in the Pdx-1 domain can convert the 

duodenum and stomach to pancreas [11,12].  
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Suppression of Wnt signaling in the anterior endoderm is required for both liver 

and pancreas development [13]. As development proceeds, the mesodermal tissues 

surrounding the posterior foregut provide secreted signals that promote either liver or 

pancreas development from a common region of endoderm.  In the ventral foregut, bone 

morphogenetic proteins (BMP2 in zebrafish and chick, and BMP4 in mouse) secreted by 

the septum transversum mesenchyme and FGF1 and 2 produced by the cardiac 

mesoderm promote liver development while concomitantly suppressing the pancreatic 

differentiation program [14,15,16,17,18]. When cultured in the absence of cardiac 

mesoderm, ventral foregut endoderm normally fated to become liver instead expresses 

Pdx-1, suggesting that in vivo, FGFs direct bipotent cells away from the “default” 

pancreatic identity towards the liver fate [14]. Recent work in Xenopus has identified the 

co-repressor, TGF-β induced factor 2 (TGIF2), as a factor that acts to limit BMP 

signaling within the endoderm and promote the expression of pro-pancreas genes [19].  

Retinoic acid (RA) produced by the foregut mesoderm may be involved in setting 

up the anterior and posterior boundaries of the posterior foregut within the endoderm.  

Treatment of both zebrafish and Xenopus embryos with exogenous RA expands the 

pancreatic field anteriorly, although a conserved role for RA in endoderm patterning has 

not yet been shown in mammals [20]. The ability of RA to act as a posteriorizing agent 

has also been shown in organs derived from the other germ layers including the chick 

heart (mesoderm) and neural tube (ectoderm) [21,22]. 

Dorsally, signals from the notochord also induce pancreas formation. From the 

time it is formed, the notochord is in contact with the prepancreatic endoderm until e8 in 

the mouse at which time the dorsal aortae fuse between the notochord and endoderm. 

In experiments using chick embryos, removal of the notochord at a time when it normally 

contacts the presumptive pancreatic endoderm results in a reduction in epithelial 

branching as well as a loss of expression of pancreas/endocrine transcription factors 

7



such as Pdx-1, Islet 1 (Isl1), and Pax6, as well as insulin [23,24]. Interestingly, while 

recombination of the notochord with prepancreatic endoderm induced pancreatic gene 

expression, placing the notochord in contact with endoderm isolated from a more 

posterior location failed to induce pancreas gene expression, suggesting that the 

endoderm is already patterned at this stage and only a particular domain is competent to 

form pancreas in response to notochord signals. The notochord promotes pancreas 

formation by repressing the expression of the secreted morphogen, sonic hedgehog 

(Shh), in the underlying endoderm [24]. Although Shh is highly expressed in the 

endoderm rostral and caudal to the developing pancreas, it is markedly absent from the 

presumptive pancreas epithelium. Studies from the Edlund lab suggest that exclusion of 

Shh from the pancreatic endoderm is required to inhibit intestinal fates. Ectopic 

expression of Shh in the Pdx-1 expression domain is incompatible with normal pancreas 

development; pancreatic mesoderm in Shh over-expressing transgenic mice expressed 

markers of intestinal mesoderm including smooth muscle α-actin [25]. FGF2 and Activin-

β are likely to be endogenous signals secreted from the notochord which mediate its 

suppressive effects on Shh in the pancreatic region [24]. In contrast, the ventral 

pancreas develops in the absence of any contact with the notochord. This is just one 

example of the divergent developmental programs resulting in dorsal versus ventral 

pancreatic bud formation. 

At e9 the two dorsal aortae fuse, disrupting the contact of the notochord with the 

prepancreatic endoderm. Signals from blood vessel endothelial cells are also important 

for pancreas development in vitro and in vivo, although the relevant endothelial-derived 

molecule(s) await identification.  Co-culture experiments demonstrated that signals from 

the endothelium are required for maintenance of Pdx-1 expression, dorsal bud 

outgrowth, and initiation of Ptf1a and insulin gene expression [26,27]. Conversely, 
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transgenic mice over-expressing vascular endothelial growth factor A (VEGFA) under 

control of the Pdx-1 promoter had an increase in pancreatic blood vessels with a 

concomitant increase in pancreatic islets and ectopic insulin positive cells within the 

posterior stomach [26].  Since Pdx-1 is also expressed in this region of the stomach 

early in development, these data suggest that endothelial cells are able to induce β cell 

fate in competent regions of endoderm.  Consistent with other data suggesting the 

ventral pancreas develops quite differently from the dorsal pancreas, ventral bud 

evagination was not affected in the absence of endothelium.    

 In zebrafish, in addition to its role in anterior/posterior patterning, RA signals to 

the underlying endoderm to induce pancreas differentiation [28]. Interfering with RA 

signaling using an RA-receptor antagonist or antisense morpholinos oligonucleotides 

directed against the RA synthesis enzyme RALDH2, leads to a loss of Pdx-1 expression, 

the early endocrine marker Isl1, and ultimately insulin [28,29]. Studies in quail and 

Xenopus provide support for these data by showing that blocking RA receptor signaling 

results in a failure of dorsal, but not ventral, pancreas bud formation [20,30]. An 

important role for RA in pancreas bud formation is also conserved in mammals. Mice 

lacking Raldh2 display dorsal pancreas agenesis [31,32], while mice expressing a 

dominant-negative form of the retinoic acid receptor α driven by the Pdx-1 promoter 

show loss of both dorsal and ventral pancreatic buds [33], suggesting that another RA 

synthesizing enzyme (perhaps Raldh1) acts within the ventral pancreas.  The expression 

patterns of other factors involved in early steps of pancreas development such as Hb9 

and Shh, however, are normal suggesting that RA acts prior to the initiation of Pdx-1 

expression but after pancreas specification [32].  
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Pancreas outgrowth and cell specification 

The pancreatic buds undergo elongation and branching within the pancreatic 

mesenchyme to yield a highly branched ductal network. During this process, the pool of 

pancreatic progenitors is marked by Pdx-1 expression and lineage tracing indicates that 

all of the epithelial lineages in the pancreas come from a Pdx-1-expressing cell [2,34]. 

However, it is unclear whether any or all of these progenitor cells are truly multipotent, 

with the capacity to differentiate into any or all of the different pancreatic cell types, or 

whether these progenitors are already specified to a particular pancreatic cell lineage(s) 

at an early stage within the undifferentiated epithelium. Pdx-1 is critical for pancreas 

outgrowth; loss of Pdx-1 expression leads to pancreas agenesis in mice and humans 

[2,35].  Interestingly, however, Pdx-1 is not required for the specification of pancreatic 

endoderm or for the formation of early endocrine cells, since Pdx-1 null embryos have a 

minimally branched dorsal ductule and low numbers of insulin and glucagon-expressing 

cells [2,36].  

FGFs produced by the mesenchyme surrounding the pancreatic bud are also 

important for outgrowth of the epithelium. Global inactivation of FGF10 in mice leads to 

pancreatic hypoplasia due to decreased proliferation of Pdx-1-positive progenitor cells 

[37]. Conversely, over-expression of FGF10 throughout the pancreatic epithelium 

beginning early in development significantly increased overall pancreas size, enhanced 

proliferation, and impaired endocrine differentiation [38,39]. In vitro culture experiments 

using FGF ligands 1,7, and 10 demonstrated similar effects on epithelial proliferation and 

progenitor expansion, further supporting the idea that FGF stimulates growth of the 

epithelium and inhibits differentiation [40].  

Wnts are another family of extrinsic factors which play a role in pancreas growth 

and differentiation. Wnt ligands bind to Frizzled (Frz) receptors and LRP5/6 co-receptors 

on the cell surface [41]. Activation of Wnt signaling leads to inhibition of the 
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Axin/APC/GSK3-β complex, which in the absence of Wnt, phosphorylates and targets β-

catenin for proteosomal degradation. Stabilization of β-catenin causes it to localize to the 

nucleus where it interacts with TCF/LEF transcription factors and activates transcription. 

Multiple Wnt ligands, Frizzleds, Wnt inhibitors, and LRP5/6 are expressed in the 

pancreas during development and several studies have examined the effects of 

modulating Wnt activity on pancreas development [42]. Data indicate that Wnt signaling 

may have multiple spatiotemporal-specific roles in the pancreas with one of them being 

to regulate epithelial progenitor proliferation [43]. For example, over-expressing a soluble 

dominant-negative form of Frz8 in the pancreas results in a reduction in pancreas size 

which was shown to be due to a reduction in epithelial cell proliferation during mid-

gestation [44].  

 During branching morphogenesis, the pancreatic epithelium repeatedly 

evaginates to form new branches with a lumen that remains contiguous with the main 

pancreatic duct.  Molecular marker analyses and lineage tracing studies suggest that the 

branching pancreatic epithelium consists of molecularly and functionally distinct 

microdomains termed “tip cells” and “stalk cells” [45]. In other branching tissues such as 

the lung and the kidney, multipotent progenitors are physically separated within the 

developing branch from the more differentiated populations of cells [46,47].  Similarly, 

recent lineage tracing evidence in the pancreas suggests that much of branch growth 

and elongation occurs at the tips of the developing ductal tree, while cells left behind in 

the wake of the growing tip become incorporated into the “stalk” of the branch [45].  The 

tips of the branching epithelium are marked by expression of Carboxypeptidase A1 

(Cpa1), Pdx-1, Ptf1a, and c-Myc.  Lineage tracing of tip cells revealed that early in 

pancreas development progeny of these cells give rise to endocrine cells, ducts, and 

acinar cells, and can thus be considered multipotent progenitors (Figure 1-4).  The first 
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Figure 1-4. Location of pancreatic progenitors during branching 
morphogenesis. Multipotent pancreatic progenitors (yellow) are localized to 
tips of developing epithelial branches. As branches elongate at the tips, cells 
remaining in the stalks (red) lose the potential to differentiate as acinar cells. 
Cells that will give rise to definitive duct cells (orange) and endocrine 
progenitors (green) become specified in the stalks as development proceeds. 
Finally, during the secondary transition, cells at the tips begin to differentiate 
as acinar cells (brown). From Pancreas Cell Fate. M. Guney and M. Gannon. 
Birth Defects Research C Embryo Today, 87(3), Copyright © [2009]. 
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cells to be deposited in the stalk or trunk region give rise to endocrine and ductal cells. 

Tip cell progenitors become restricted as development proceeds such that by e14.5 the 

majority differentiate into acinar cells. Thus, in addition to being spatially regulated, the 

decision between endocrine and exocrine differentiation is also temporally regulated with 

the endocrine progenitors being specified earlier and the exocrine cells later.  

Within the trunk ductal epithelium, juxtacrine Notch-Delta signaling regulates the 

differentiation of endocrine progenitor cells [48,49]. It is hypothesized that this occurs in 

a manner similar to what occurs within equivalence groups during Drosophila 

neurogenesis [50]. Cells initially express low levels of both the Notch receptor and its 

ligand, Delta.  Interactions between adjacent cells lead to stochastic up-regulation of 

either Notch or Delta. Stabilization of Notch signaling leads to activation of the target 

gene, Hes1, which represses expression of the pro-endocrine bHLH transcription factor, 

neurogenin 3 (Ngn3) [51]. Cells that fail to activate Ngn3 remain in an undifferentiated 

state while cells in which Ngn3 becomes activated initiate the endocrine differentiation 

program and delaminate from the ductal epithelium [52,53].  

All endocrine cell types arise from a Ngn3-expressing progenitor and currently 

Ngn3 is the earliest known marker of an endocrine progenitor [52,53]. In vivo studies 

have also demonstrated an important role for Ngn3 in regulating the endocrine 

differentiation program within the pancreatic epithelium. Ngn3 expression is biphasic, 

correlating with the “waves” of endocrine cell differentiation [54]. The first wave of 

endocrine cells appear in the pancreas at approximately e10.5; however these cells do 

not express markers of mature endocrine cells and it is thought that they do not 

contribute to mature islets; the ultimate fate of these cells is still unclear 

[55,56,57,58,59]. At approximately e13–16 in the mouse, during a period known as the 

‘‘secondary transition,’’ there is a dramatic increase in the number of endocrine cells 

budding from the ductal epithelium. These endocrine cells contribute to the mature islet. 
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The expression of Ngn3 begins around e9.5 and peaks during the secondary transition 

but by birth Ngn3 expression is nearly undetectable [52]. Consistent with the hypothesis 

that Ngn3 marks endocrine progenitors, Ngn3high-positive cells do not co-express 

pancreatic hormones and are found within or adjacent to the ductal epithelium. Lineage 

tracing analysis has recently been used to show that Ngn3 cells are unipotent, that is, a 

Ngn3 positive cell will only give rise to one endocrine cell type at birth [60]. Ngn3 null 

embryos lack all endocrine cell types and die two to three days after birth due to 

diabetes [52]. The role of Ngn3 in promoting endocrine differentiation is further 

evidenced by over-expressing Ngn3 throughout the pancreas using the Pdx-1 promoter. 

Pdx-1-Ngn3 transgenic embryos have a hypoplastic pancreas, with a dramatic decrease 

in carboxypeptidase-positive acinar cells and an increase in differentiated (mainly 

glucagon-expressing) endocrine cells [48,61]. Ectopic expression of Ngn3 throughout 

the pancreatic epithelium thus leads to a loss of multipotent pancreatic progenitors and 

specifically favors the development of α cells with very few insulin-positive cells 

[48,61,62].   

Expression of a proper level of Hepatic nuclear factor 6 (Hnf6/OC-1) is also 

required for endocrine development. HNF6 is a member of the ONECUT family of 

transcription factors and regulates genes involved in liver and pancreas development. 

Hnf6 expression co-localizes with Pdx-1 in the pancreatic epithelium at e10.5 but is not 

expressed in hormone-positive cells; however, expression is maintained throughout 

adulthood in the ducts and at low levels in exocrine tissue [63],[64],[65]. Hnf6 mutant 

mice have a hypoplastic pancreas, a dramatic decrease in Ngn3 expression, and a 

marked reduction in insulin and glucagon expression [65,66]. After birth, these mice 

have impaired glucose homeostasis. Consistent with these results, Hnf6 binds and 

activates the Ngn3 and Pdx-1 promoters [66,67]. Studies from our laboratory using a 

conditional Hnf6 allele demonstrate that irreversible commitment to the endocrine fate 
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requires a threshold of Hnf6-dependent Ngn3 expression. Ngn3-Cre-mediated 

inactivation of Hnf6 in putative endocrine progenitors results in a significant decrease in 

total endocrine area at birth [65]. Lineage tracing analyses indicate that in the absence 

of sustained Hnf6 expression, a subset of cells (14%) that had activated Ngn3 became 

diverted to the exocrine lineage and express markers of terminally differentiated acinar 

and ductal cells, while in normal development, ~1% of cells that activate the Ngn3 

promoter become incorporated into exocrine tissue [68]. Thus, Ngn3 gene activation 

does not necessarily commit a cell to the endocrine fate. These data also suggest that 

continued Hnf6 activity at the Ngn3 promoter is required in order for Ngn3 protein to 

reach a required level within the cell and commit multipotent pancreatic progenitors to an 

endocrine fate (Figure 1-5). Consistent with this idea, mice carrying a hypomorphic allele 

of Ngn3 have a significant reduction in overall endocrine cell number and an increase in 

acinar and ductal cells [69]. It is likely that a high level of Ngn3 is required to activate 

downstream genes involved in endocrine cell differentiation and maintenance such as 

the transcription factors Neurod1, Myt1, and Pax4.  

Ptf1a also regulates the exocrine vs. endocrine cell fate decision. However, in 

contrast to Ngn3, Ptf1a expression directs progenitor cells away from the endocrine 

lineage and promotes acinar cell fate. Mice hemizygous for a hypomorphic allele of Ptf1a 

and a null allele display decreased pancreatic size and impaired acinar cell 

differentiation [70]. While Pdx-1 is normally only found at low levels in acinar tissue 

postnatally, persistent exocrine Pdx-1 expression is detected in Ptf1a hypomorphic 

pancreata, suggesting these cells may be activating the β cell differentiation program. 

Ptf1a gene dosage may play a role in determining whether pancreatic progenitors adopt 

an exocrine or endocrine fate in zebrafish as well [71]. In fish carrying a hypomorphic 

Ptf1a allele, cells normally fated to become exocrine cells co-express the endocrine cell 

marker, Isl1. These data suggest that high levels of Ptf1a are necessary to fully commit 
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Figure 1-5. A threshold of Ngn3 is required to generate fully committed 
endocrine cells. Inactivation of Hnf6 subsequent to Ngn3 gene activation 
(Hnf6fl/fl;Ngn3CreBAC) results in a reduced number of differentiated endocrine 
cells. In wild type mice (left graph), Hnf6 expression (light blue) precedes 
Ngn3 expression (yellow). Hnf6 expression must be maintained for a certain 
period of time to allow Ngn3 expression to exceed a critical threshold (dotted 
line), allowing for adequate endocrine differentiation (red). When Hnf6 
expression is prematurely extinguished (right graph), Ngn3 levels reach this 
threshold in fewer cells, resulting in reduced endocrine mass. From Pancreas 
Cell Fate. M. Guney and M. Gannon. Birth Defects Research C Embryo 
Today, 87(3), Copyright © [2009]. 
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pancreatic progenitor cells towards the exocrine lineage while concomitantly 

suppressing the endocrine lineage. After e13.5, Ptf1a becomes enriched in acinar cells 

and has been shown to bind the promoters of exocrine genes, such as elastase and 

trypsin [8,72]. Accordingly, Ptf1a is absolutely required for exocrine development and no 

acinar tissue is found in Ptf1a null mice. The switch between the early and late roles of 

Ptf1a in pancreas development is mediated by its interaction with two different isoforms 

of the vertebrate suppressor of hairless protein, RBPJ [73]. The Notch-dependent, 

RBPJκ form of the protein is found in the PTF1 complex early in pancreas development 

and is swapped for the Notch-independent, RBPJL form at the onset of acinar cell 

development [73]. It is exclusively the RBPJL form that is found bound to the promoters 

of acinar-specific genes [73,74].  

A recent study from the Sander lab demonstrates that Ptf1a activity is 

antagonized by the transcriptional repressors Nkx6.1 and Nkx6.2. Nkx6 factors are 

expressed in multipotent pancreatic progenitors and Nkx6.1/Nkx6.2 compound null 

mutants have a reduction in both α and β cell numbers [75]. This reduction in endocrine 

cells is accompanied by an increase Ptf1a expression and in the number of acinar cells 

[76]. Furthermore, over-expression of Nkx6.1 throughout the Pdx-1 domain promoted 

endocrine differentiation and inhibited acinar differentiation; this was shown to be due to 

direct binding of Nkx6.1 to the Ptf1a promoter. Conversely, expression of Ptf1a in Pdx-1 

expressing cells inhibits expression of Nkx6.1 [76]. However, since Ptf1a is thought to be 

a transcriptional activator, the repression of Nkx6.1 by Ptf1a is likely not due to direct 

transcriptional inhibition.   

Loss of the prospero-related transcription factor, Prox1 results in a decrease in 

secondary transition endocrine cells, with a concomitant increase in differentiated acinar 

cells [77]. Prox1 is expressed at higher levels in endocrine progenitors with lower levels 

of expression detected in differentiating exocrine cells [78]. Although it is unclear how 
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Prox1 acts to promote endocrine cell fate,  Prox1 is required for normal branching 

morphogenesis and it is possible that Prox1-deficient embryos lack sufficient numbers of 

stalk cells required for endocrine progenitor specification, and thus more of the 

epithelium differentiates as acinar cells. 

 

Endocrine cell lineage allocation and differentiation 

Transcription factors 

All endocrine cells are derived from Ngn3-expressing progenitors, but the 

mechanisms by which these endocrine progenitors are specified to the individual 

hormone-positive lineages are not well characterized. Genetic analyses have revealed 

that α and β cells develop from independent lineages, while β and PP cells may arise 

from a common endocrine precursor [58]. Hormone-expressing cells differentiate in the 

pancreas in a cell type-specific pattern with α cells appearing earliest followed by β, δ, 

and PP cells. The sequential pattern of hormone expression suggests that endocrine 

differentiation is temporally regulated and that competence of the Ngn3-positive 

progenitors changes as development proceeds. To test this hypothesis, the Grapin-

Botton laboratory used an “add back” strategy, expressing a tamoxifen-inducible Ngn3-

ER fusion protein throughout the pancreatic epithelium using the Pdx-1 promoter at 

different developmental time points in the Ngn3 null background (Figure 1-6).  These 

studies identified specific windows of competence for the differentiation of the individual 

endocrine cell types [79]. The pancreatic epithelium becomes competent to form 

glucagon-positive cells at the earliest stages of pancreas development, consistent with 

previous findings that over-expression of Ngn3 using the Pdx-1 promoter induces the 

differentiation of mostly α cells [48,62,79]. Competency to form insulin-producing cells 

appears to occur between e10.5 and 14.5, with the greatest number of β cells formed 
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Figure 1-6. Temporally-dependent specification of Ngn3-expressing 
endocrine progenitors. Using the Pdx1 promoter to drive expression of a 
tamoxifen (TM)-inducible Ngn3-estrogen receptor (ER) fusion protein, Ngn3
expression was restored to Ngn3 null mutant embryos at different 
developmental time points with the addition of TM. Examination of endocrine 
differentiation two days after a single TM injection revealed that endocrine 
progenitors preferentially differentiate as a particular hormone-producing cell 
depending on when during development they were generated. α cells are 
formed from the earliest Ngn3-producing cells, while β, PP, and δ cells 
subsequently form, in that order. From Pancreas Cell Fate. M. Guney and M. 
Gannon. Birth Defects Research C Embryo Today, 87(3), Copyright © [2009]. 
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when Ngn3 is induced at e12.5. Later in development, the epithelium loses the ability to 

differentiate into glucagon-positive cells and acquires the competence to form PP and δ 

cells. Interestingly, these shifts in developmental competence appear to be mediated by 

intrinsic changes within epithelium rather than in the character of the surrounding 

mesenchyme [79].  

 The formation of β and α cells is thought to be regulated by the opposing actions 

of the transcription factors Pax4 and Arx.  Pax4 is a paired homeodomain factor and its 

mRNA can be detected within cells in the pancreas beginning at e9.5 [80].  Its 

expression is restricted to first and second wave insulin cells, but becomes down-

regulated soon after birth and is not detected in adult islets [81]. Pancreata from Pax4 

null embryos express Pdx-1 and Hb9 and contain first wave insulin-producing cells, but 

lack mature β cells indicating that Pax4 is required during the secondary transition for β 

cell differentiation [80,82].  Additionally, Pax4 null mutant mice have a decrease in δ cells 

and an increase in the numbers of glucagon- and ghrelin-expressing cells [80,83].  Since 

no changes in endocrine cell proliferation or apoptosis were observed in Pax4 mutants, it 

is likely that a common progenitor of both β and δ cells is directed toward alternate 

endocrine lineages in the absence of Pax4 [82].  Many of the glucagon-expressing cells 

in Pax4 null pancreata co-expressed ghrelin [83,84].  Small numbers of glucagon/ghrelin 

co-expressing cells are normally found in wild type embryos; however, the number of 

these cells is significantly increased in Pax4 mutants.   

Pax4 is thought mainly to function as a transcriptional repressor.  It directly binds 

and represses both the glucagon and ghrelin promoters, thus providing a mechanism for 

the increased expression of these two hormones observed in Pax4 mutants [85,86,87].  

In addition, Pax4 inhibits the expression of Arx, a transcription factor that promotes α cell 

differentiation.  Although Pax4 is dispensable for the formation of α and PP cell types, 
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lineage tracing experiments have shown that Pax4-expressing cells give rise to α, β, and 

ε cells, suggesting that Pax4 is expressed in pluripotent endocrine progenitors [87]. 

Furthermore, ectopic expression of Pax4 in pancreatic progenitors or in α cells induces 

their respecification towards a β cell fate [88]. Glucagon deficiency in Pax4-expressing 

mice leads to increased α cell neogenesis; however once α cells differentiate they are 

converted to β cells, resulting in oversized islets [88]. 

In contrast to the role of Pax4, Arx expression within the endocrine progenitor 

population promotes the development of α cells.  Arx acts downstream of Ngn3 and Arx 

null embryos show a complete loss of α cells with a concomitant increase in β cells and 

δ cells [86]. The ability of Arx to direct cells towards the α cell lineage is further 

evidenced by studies in which Arx was over-expressed under control of the Pdx-1 

promoter [89].  These mice have an increased number of α and PP cells at the expense 

of the β and δ lineages; the total number of endocrine cells was unchanged.  

Additionally, the authors used an inducible system to drive Arx expression in mature β 

cells and found that insulin-positive cells were converted to the α and PP lineages [89].  

Arx mutants have an increase in Pax4 expression, and Arx expression is up-regulated in 

Pax4 mutants, indicating that Arx and Pax mutually inhibit each other’s expression 

[86,90].  Indeed, binding sites for Arx were found in the Pax4 promoter and vice versa 

[90].  However, Arx is not is not sufficient to repress Pax4 within the α cell linage since 

Pax4 levels are not reduced in transgenic mice over-expressing Arx. These results 

underscore the importance of the balance of Pax4 and Arx in establishing the β and α 

cell lineages. Inactivation of both Pax4 and Arx leads to a loss of both β and α cell 

lineages along with a dramatic increase in somatostatin-producing cells, suggesting that 

glucagon-producing cells may normally inhibit the development of δ cells.  
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  Pax6, another paired homeodomain transcription factor, is expressed at e9.5 

and e10.5 in a subset of cells in the pancreatic epithelium, and is later expressed in cells 

committed to the endocrine lineage [49,91,92]. Although Pax6 is expressed in both 

insulin-positive and glucagon-positive cells, it only appears to be essential only for the 

formation of α cells.  Pax6 mutant mice have a dramatic loss of glucagon-expressing 

cells and a lesser reduction in the other islet cell types [92,93]. Thus, Pax6 may be 

important not only for allocation to the α cell lineage, but for expansion of the endocrine 

population as a whole [84,94]. In Pax6 mutants there is an increase in ghrelin-

expressing cells without an increase in proliferation of this cell population, suggesting 

that a reduction in Pax6 levels may direct endocrine progenitors towards the ε cell fate 

[84]. 

 The NK homeodomain factor, Nkx2.2, regulates β cell differentiation in a pathway 

parallel to Pax4 [82]. Nkx2.2 is expressed throughout the whole pancreatic bud at early 

developmental stages, as well as in Ngn3-expressing endocrine progenitors [61,95]. 

Although Nkx2.2 expression is detected in all hormone-positive cells except δ cells 

during late gestation, it is only essential for β cell differentiation. Nkx2.2 null embryos 

completely lack β cells but have reduced numbers of α and PP cells [95]. The function of 

Nkx2.2 appears to be conserved; morpholino knockdown in zebrafish leads to a similar 

phenotype as seen in mice [96].  The fact that the expression of early endocrine markers 

such as Isl1 and synaptophysin were normal suggests that cells lacking Nkx2.2 are 

specified correctly as endocrine cells. Similar to embryos lacking Pax4, Nkx2.2 mutants 

also have an increase in ghrelin-expressing cells [83]. Using an Nkx2.2 repressor-fusion 

construct, the Sussel lab demonstrated that the repressor function of Nkx2.2 can 

partially rescue the defects in β and α cell development as well as the increase in ghrelin 

expression found in null mutant mice [97]. Thus, Nkx2.2 acts as a repressor during 
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endocrine specification however its activator function appears to be required for later 

steps of β cell maturation. The rescued β cells in these transgenic mice did not express 

MafA (a marker of mature β cells and a transactivator of the insulin promoter) and, 

consistent with these results, Nkx2.2 was found in other studies to bind and activate the 

MafA promoter [97,98].  

MafB is a member of the large Maf family of basic leucine zipper transcription 

factors that also includes MafA.  MafB is expressed in some Ngn3-positive cells, as well 

as in first and second wave insulin- and glucagon-expressing cells. In the adult 

pancreas, MafB is only detected in α cells [99].  MafB is not required for endocrine 

specification; embryos lacking MafB still express markers of the endocrine lineage such 

as Isl1 and Pax6. However, first wave endocrine cells are absent in MafB mutant 

pancreata and MafB is required for the differentiation of second wave α and β cells 

[100].  MafB mutant embryos have a 50% decrease in insulin- and glucagon-expressing 

cells compared to wild type littermates [100].  Consistent with the reduction of α and β 

cells, MafB was shown to bind to the insulin, glucagon and MafA promoters [100]. 

 Pdx-1 expression becomes elevated in β cells at late gestation during islet 

formation. The Pdx-1 promoter contains a conserved cis-regulatory region, termed 

“Areas I-II-III”. Deletion of this region from the endogenous Pdx-1 locus generates a 

hypomorphic allele [101]. When placed in trans to a Pdx-1 null allele, the hypomorphic 

allele is incapable of promoting normal pancreas development, with defects similar to 

those observed in Pdx-1 null mice. Mice heterozygous for the hypomorphic allele 

displayed altered islet architecture, an increase in α and PP cells, and impaired glucose 

tolerance. The reduction of β cells found in these mice suggests that, similar to Ngn3, a 

threshold of Pdx-1 is required to activate the full β cell differentiation program; reduced 

Pdx-1 levels may favor the differentiation of α and PP cells. 
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Signaling molecules 

The TGF-β superfamily of signaling molecules includes TGF-β, Activin, Nodal, 

and BMP ligands. These ligands bind to type I and type II serine-threonine kinase 

receptors, resulting in phosphorylation of downstream receptor Smad (R-Smad) 

proteins. TGF-β, Activins, and Nodal activate Smads 2 and 3, while ligands in the BMP 

family have been shown to activate Smads 1, 5, and 8 [102]. R-Smad phosphorylation 

leads to interaction with Smad 4, and subsequent nuclear localization where the 

complex interacts with co-factors to activate and repress transcription. There is 

conflicting in vitro evidence that TGF-β signaling regulates the ratio of exocrine and 

endocrine cell types during pancreas development [103,104]. The number of ligands and 

receptors make isolating specific effects of a given ligand difficult. Thus, despite several 

studies inactivating specific ligands or making use of dominant negative receptors, a 

clear requirement for this family of growth factors in endocrine lineage allocation has yet 

to be revealed in vivo [105,106,107]. 

Pancreas-wide over-expression of Smad7, which inhibits signaling mediated by 

Smads 2/3 and 1/5/8, causes a dramatic loss of β cells and an increase in the number of 

α cells without any changes in proliferation or apoptosis, thereby supporting a role for the 

TGF-β signaling pathway in lineage allocation [108]. It must be remembered, however, 

that Smad7 inhibits signaling by multiple ligands. Inactivation of the TGF-β ligand, 

growth differentiation factor 11 (GDF11), leads to an increase in undifferentiated Ngn3-

expressing progenitors and a decrease in the α to β cell ratio, similar to what was seen 

in Smad7 transgenic mice [109]. GDF11 acts through Smad2/3 and, consistent with 

these data, the pancreatic defects in Smad2 heterozygous mice phenocopy those found 

in GDF11 mutants [109,110]. In contrast, an alternative study of GDF11 function in 

pancreas development found an increase in Ngn3-positive cells, but no alterations in 
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endocrine cell mass or ratios [111]. The reason for the conflicting results in these studies 

is not clear, but it may be due to differences in genetic background of the mouse strains 

used. Although GDF11 interacts with the Activin A type IIB (ActRIIB) receptor, 

inactivation of this receptor (in combination with heterozygous deletion of the Activin A 

type IIA receptor) indicates that Activin receptors function to regulate pancreas and islet 

size, but not endocrine lineage specification, since ActR mutant mice show pancreatic 

and islet hypoplasia, with no change in endocrine cell ratio [110,112,113]. 

 

Endocrine cell proliferation 

 Although there is little proliferation of endocrine cells during early and mid-

gestation, the percentage of proliferating endocrine cells substantially increases in late 

gestation and in the early neonatal period. Adequate proliferation is clearly required for 

adequate numbers of endocrine cells in the adult; however, few factors have been 

identified to affect embryonic endocrine proliferation in vivo.  

The eIF2α kinase PERK is required for both endocrine and exocrine function 

[114]. Mice with global PERK inactivation display diabetes due to insufficient β cell mass 

and a progressive loss of exocrine tissue after four weeks of age. These mice also 

display skeletal abnormalities and together with the pancreas dysfunction this model 

bears similarity to human Wolcott-Rallison syndrome [114]. PERK localizes to the 

membrane of the endoplasmic reticulum (ER) and is hyperactivated in response to ER 

stress caused by increasing concentrations of unfolded proteins or inadequate levels of 

protein chaperones. Hyperactivated PERK phosphorylates eIF2α, repressing global 

protein synthesis and ultimately leading to apoptosis. However, inactivation of PERK 

does not cause significant apoptosis in β cells [115]. In fact, β cell proliferation in adult β 

cell-specific PERK knockout animals is not significantly altered; the decrease in β cell 
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mass in the adult can be attributed to significant defects in embryonic and neonatal β cell 

proliferation. The decrease in embryonic proliferation may reveal a role for PERK in 

pathways other than the unfolded protein response. Gene expression profiling of 

postnatal day (P)2 control and knockout islets indicated that the failure of PERK 

neonatal β cells to expand may be due to decreased expression of genes important for 

progression of the G2 and M phases of the cell cycle such as cyclinA and CDK1 [115]. 

PERK may also have roles in regulating β cell maturation or function. Global or 

pancreas-wide inactivation of PERK leads to decreased MafA, Pdx-1, and insulin 

expression as well as impaired glucose stimulated insulin secretion [115].  

β cells may also provide signals regulating the numbers of other cell types, in 

particular the α cell population. Removal of Pdx-1 specifically in embryonic β cells, for 

example, leads to a significant decrease in β cell proliferation and an increase in α cell 

proliferation at late gestation [116]. Mice lacking Pdx-1 in β cells have elevated blood 

sugar at birth and progress to overt diabetes in the adult, possibly also due to the 

misregulation of genes that are required for mature β cell function [117,118]. The fact 

that β and α cell proliferation are reciprocally altered when Pdx-1 is inactivated suggests 

that embryonic β cells normally provide a signal to the α cell population, inhibiting its 

expansion to generate proper numbers of each different cell type within the islets.  

Glucagon-positive cells are found in the pancreas as early as e10.5, but no 

metabolic function is known for these cells at this time. Therefore, some have postulated 

that these early hormone-expressing cells provide a signal that regulates formation of 

other cell types within the developing pancreas. Global inactivation of the glucagon 

receptor or deletion of pro-hormone convertase-2 (PC2), the enzyme responsible for 

converting pro-glucagon to glucagon, leads to an increase in proliferation of the pro-

glucagon-expressing cell population and in the percentage of glucagon- and 
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somatostatin-expressing cells in embryonic islets [119,120]. In addition to negatively 

regulating its own cell population, glucagon-positive cells may also send signals to 

regulate β cell proliferation since both models of glucagon inactivation show increased 

postnatal β cell proliferation [119,120]. Loss of glucagon expression leads to a decrease 

in first wave β cells and in mature β cell markers, suggesting glucagon also has non-cell 

autonomous roles in β cell differentiation [121]. 

 

Islet morphogenesis 

 At e17.5 newly differentiated endocrine cells lie close to the ductal epithelium but 

beginning at e18.5 and continuing after birth, the endocrine cells organize into islets 

within the acinar parenchyma [122]. In the mouse, islets have a characteristic 

architecture with the β cells in the core of the islet and the other cell types such as the α 

and δ cells forming a mantle around the β cells.  This organization is thought to promote 

proper cell-cell communication and enhance islet function [123,124]. Although many of 

the cellular events required for islet morphogenesis have not been identified, they likely 

include changes in expression of cell adhesion molecules, modifications in extracellular 

matrix proteins, and paracrine and juxtacrine cell–cell communication. Real-time imaging 

of GFP-labeled β cells in pancreatic explants revealed that β cells migrate during islet 

development [125]. Similar to other migrating cell types, migrating β cells extend 

cytoplasmic filapodia, suggesting that migration is an active process on the part of the β 

cell. However, it is not clear whether islets are formed by individual cells which lose 

connections to neighboring cells, migrate to form clusters, and reestablish cell adhesions 

or whether groups of cells migrate in clusters while maintaining cell-cell contact. A recent 

study by the Hara lab suggests that during the neonatal period, increased β cell 

proliferation generates extensive cord-like structures of endocrine cells which undergo 

27



fission to form single islets [126]. Although this report favors a model of islet 

morphogenesis that does not involve β cell migration, it does not rule out the possibility 

that active β cell migration is required for earlier steps or that islet morphogenesis is a 

heterogeneous process. 

 Cell migration requires dynamic regulation of cell-cell and cell-extracellular matrix 

(ECM) adhesion. Islets in mice lacking the epidermal growth factor receptor (EGFR) are 

elongated and closely opposed to the ductal epithelium [127].  EGFR may act, in part, by 

modulating activity of Rac1, a Rho-GTPase involved in migration and adhesion in other 

cell types. Expression of a dominant form of Rac1 in β cells also leads to failure of 

endocrine tissue to separate away from ducts due to increased E-cadherin at cell-cell 

contacts [128]. Furthermore, islets expressing dominant negative Rac1 fail to spread on 

ECM when treated with betacellulin, an EGFR ligand, suggesting that Rac1 may function 

downstream of EGFR [128]. Integrin signaling is also involved in modulating interactions 

between endocrine cells and ECM or ductal cells during islet morphogenesis. Inhibiting 

αv integrins using cyclic RGD peptides in fetal pancreas explants blocks the emergence 

of endocrine cells from the ductal epithelium [129]. EGFR and integrin signaling both 

regulate the activity of matrix metalloproteinases (MMPs) and in vitro experiments using 

a chemical inhibitor indicate that MMP2 activity is required for proper budding of 

endocrine tissue [130]. These data suggest that ECM remodeling is required for proper 

islet morphogenesis. However, islet formation is not altered in a mouse model of 

combined MMP2 and 9 inactivation, making it likely that the relevant molecules which 

mediate ECM modeling during islet morphogenesis have not yet been identified [131].  

 While a reduction in adhesion is required for separation of endocrine tissue away 

from the ductal epithelium, cell-cell contacts are required for the formation of islet 

architecture and for cell sorting. Functional E-cadherin is necessary for endocrine cell 
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clustering—β cells expressing a dominant negative form remain dispersed throughout 

the pancreas as individual cells and small aggregates containing only a few cells [132]. 

Neural cell adhesion molecule (N-CAM), which is expressed in aggregating endocrine 

tissue, is not required for islet clustering, but rather is required for cell type segregation; 

loss of N-CAM causes α and β cells to be randomly distributed throughout the islet [133]. 

It has been hypothesized that the segregation of α and β cells may be due to differential 

expression of adhesion molecules making β cells more cohesive than α cells [133,134]. 

These differences in cohesiveness are thought to generate variations in surface tension 

between cell populations and therefore the tissue with the lower surface tension (i.e. α 

cells) will envelop the tissue of higher surface tension (i.e. β cells). In fact, β cell lines are 

substantially more cohesive than α cell lines and when mixed will form islet-like 

aggregates in culture with β cells in the center and α cells towards the outside [134]. 

Furthermore, increasing cohesiveness in α cells by over-expressing the adhesion 

molecule P-cadherin disturbs this architecture [134].   

  

The HNF6 transgenic model of islet dysmorphogenesis and diabetes 

  

Expression of the transcription factor HNF6 in the multipotent progenitor 

population is required for regulating genes involved in endocrine differentiation [66]. 

However, HNF6 expression is downregulated in progenitors specified to the endocrine 

lineage and is not expressed in hormone positive cells [65]. In order to determine 

whether downregulation of HNF6 is required for pancreas development or function, 

transgenic mice were generated which express HNF6 from an islet-specific fragment of 

the Pdx-1 promoter [135]. HNF6 transgenic mice develop diabetes due to impaired 

insulin secretion and have alterations in islet composition and architecture [135,136]. 
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Islets of HNF6 transgenic pups are closely apposed to the ductal epithelium, indicating 

that downregulation of HNF6 in islets is required for the islets to move away from the 

ducts (Figure 1-7) [135]. Furthermore, islet morphology was altered in transgenic mice 

with islets appearing larger than control islets and displaying defects in cell sorting with α 

cells dispersed throughout the β cell core [135]. During development, the number of α 

cells is also increased in HNF6 transgenic embryos due to increased α cell proliferation 

[137]. Together, these data indicate that proper temporal regulation of HNF6 is important 

for islet development and function. 

The defects in islet morphogenesis in the HNF6 transgenic mouse line suggested 

that it may be of interest to use this model to identify factors that are important for normal 

islet formation. To determine which genes may be altered in HNF6 transgenic islets, 

microarray analysis was performed at e18.5 and P1 on control and HNF6 transgenic 

pancreata [137]. It is not surprising that the list of altered genes include those involved in 

insulin biosynthesis, secretion, proliferation, adhesion, and migration. One gene which 

was particularly interesting to the Gannon lab was connective tissue growth factor 

(CTGF). CTGF is downregulated approximately 2-fold in HNF6 transgenic pancreata at 

e18.5 and has been shown in other systems to be important in processes involved in 

islet morphogenesis such as cell migration, adhesion and ECM remodeling suggesting 

that it may play a role in pancreatic islet development [137].  
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Figure 1-7. Transgenic islets over-expressing HNF6 have disrupted islet 
morphology. (A) Four week-old wild type (WT) islets have a characteristic 
architecture with β cells in the core and α cells at the periphery. (B) At the same 
age, HNF6 transgenic (HNF6 TG) islets have increase in α cells and islets 
which are larger and more closely apposed to ducts. α cells are also mixed 
within the core of the islet. (A*) Islets begin to form at e18.5 in wild type 
pancreata. (B*) At e18.5 HNF6 TG pancreata have increased numbers of α
cells and clusters of α cells with only a few, if any, β cells (arrows). 
Abbreviations: bv, blood vessel, d, duct. Modified from Wilding Crawford et al., 
PloS One, 2008. 
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Connective Tissue Growth Factor (CTGF) 

 

CTGF structure and function 

 CTGF, also known as CCN2 and Fisp2, is a member of the CCN family of 

secreted proteins named for the originally identified members cysteine rich 61 (CCN1),  

CTGF, and nephroblastoma over-expressed (Nov/CCN3) (reviewed in Moussad, 2000). 

CTGF was discovered in 1991 as a mitogen secreted into the conditioned media of 

human umbilical vascular endothelial cells (HUVECs).  The CTGF gene has 5 exons 

which encode a 38 kD full length cysteine-rich protein which consists of a signal 

sequence followed by 4 functional domains [138] (Figure 1-8). Module 1 is an insulin-like 

growth factor binding module through which CTGF interacts with IGF, albeit at a lower 

affinity than classical IGF binding proteins [139]. The second module is a von Willebrand 

factor type C repeat that is thought to participate in oligomerization and interacts with 

BMP and TGF-β ligands [140]. Module 3 is a thrombospondin homology domain which is 

found in other secreted proteins and may bind to matrix glycoproteins. It is thought that 

this module mediates interactions with ECM through binding specific integrin subtypes 

as well as through associations with the low-density lipoprotein receptor-associated 

protein (LRP) [141,142]. The fourth module contains a cysteine knot which is also found 

in other growth factors such as TGF-β, nerve growth factor (NGF), and platelet-derived 

growth factor (PGDF). Module 4 also binds to integrins as well as heparin sulfate 

proteoglycans [143,144].  

 Unlike classical growth factors, a specific receptor for CTGF has not been 

identified. Instead, CTGF exerts its biological effects by interacting with integrins 

including αVβ1, αVβ3, α6β1, and α5β1, and elicits specific responses depending on the 

integrin subtypes expressed on the cell [145,146],[147]. CTGF also acts by modulating 
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Figure 1-8. The modular structure of CTGF. The CTGF protein contains four 
domains: an insulin-like growth factor binding protein domain (IGF), a von 
Willebrand type C domain (VWC), a thrombospondin like-1 domain (TSP) and 
a cysteine rich C-terminal domain (CT). CTGF binds TGF-β and BMP ligands 
through its second module and interacts with the Wnt co-receptor LRP and αβ
integrins though its C-terminal domain. CTGF is also proteolyticly cleaved 
between the second and third domains.  
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signaling pathways; it enhances TGF-β and inhibits BMP signaling by binding directly to 

TGF-β and BMP ligands [140]. CTGF also inhibits Wnt signaling through binding to the 

Wnt co-receptor LRP [142]. Overall, CTGF is thought to modify the interactions between 

the cell and the extracellular matrix and affect important cellular functions as 

proliferation, differentiation, adhesion, and extracellular matrix remodeling. Many of 

these downstream effects are not mediated by CTGF alone, but in combination with 

other growth factors or ECM components.  

 MMPs, chymotrypsin, and plasmin proteolytically cleave CTGF between the 

second and third modules to yield two fragments which retain biological activity and 

display different biological activities [148,149].  Treatment of fibroblasts with the purified 

N-terminal fragment of CTGF promotes ECM deposition and myofibroblast 

differentiation, whereas treatment with the C-terminal fragment enhances proliferation 

[150]. Furthermore, modules 3 and 4 interact with heparan sulfate proteoglycans and 

fibronectin localizing them to the ECM suggesting that the C-terminus may participate in 

more local signaling while the N-terminus may participate in long-range signaling 

[144,151]. It is not known how far CTGF can diffuse once secreted; however, CTGF and 

its cleavage products can be detected in serum, cerebrospinal, and peritoneal fluids 

[148,152]. 

 

Biological activities of CTGF 

 The role of CTGF in promoting proliferation has been widely studied in a number 

of different cell types including smooth muscle cells, fibroblasts, mesangial cells, and 

pancreatic stellate cells. CTGF has traditionally been thought to be a downstream 

mediator of TGF-β mitogenic activity. However, the mechanism by which CTGF affects 

proliferation is cell-type specific. In fibroblasts, CTGF is required for TGF-β mediated cell 
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cycle progression [153]. Treatment of cells with CTGF induces S-phase by upregulating 

cyclin A levels. A reduction in the level of the cell cycle inhibitor p27 was also detected in 

CTGF treated cells; however, it is unclear how CTGF might affect p27 expression or 

stability. CTGF treatment increases [3H]thymidine incorporation into cellular DNA in 

isolated hepatic stellate cells (HSCs) [144]. Studies performed by the Brigstock 

laboratory indicate that CTGF-stimulated HSC proliferation is dependent on ERK1/2 

phosphorylation and expression of the immediate early gene c-fos [144]. Although 

extracellular events were not extensively examined in this study, proliferation was shown 

to involve binding to heparan sulfate proteoglycans, In mesangial cells, CTGF acts via 

interactions with heparan sulfate proteoglycans and the tyrosine kinase receptor TrkA to 

promote ERK1/2 phosphorylation, suggesting that proliferation in HSC may be mediated 

by TrkA as well [154]. Interestingly, although integrin signaling is required for the effects 

of CTGF on HSC adhesion, it does not appear to be involved in proliferation in this 

system suggesting that CTGF may exert diverse downstream effects in a cell by 

interacting with multiple cell surface receptors [144].  

Conversely, CTGF induces apoptosis and reduces cell survival in human aortic 

smooth muscle cells, COS-7 cells, and retinal pericytes [155].  Over-expression of CTGF 

in retinal perictytes leads to anoikis, a form of apoptosis caused by decreased ECM 

attachment [156]. CTGF-mediated apoptosis in retinal pericytes and lung cancer cells 

has been shown to involve increased expression of p53 which activates cell cycle 

inhibitors in other cell types [157]. Interestingly, the addition of exogenous CTGF to 

COS-7 cells stimulates growth, while over-expression of a form of CTGF that is 

sequestered in the cytoplasm induces apoptosis [158]. These data suggest that the 

effects of CTGF may depend on whether CTGF interacts with extracellular or 

intracellular factors. Alternatively, the level of CTGF over-expression may be greater 
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than the amount of exogenously added CTGF in these assays and point to an important 

role for CTGF levels in regulating the balance between proliferation vs. apoptosis.  

CTGF also modulates cellular adhesion and migration. Pancreatic stellate cells, 

skin fibroblasts, and human vascular endothelial cells (HUVECs) display increased 

adhesion when plated on CTGF coated plates [145,146,159]. CTGF stimulates both 

directional and non-directional migration and it is thought that the pro-migratory effect of 

CTGF is due in part to ECM remodeling; over-expression of CTGF in vascular smooth 

muscle and chondrosarcoma cells increases migration and MMP activity [160,161].  

Much of the effects of CTGF on adhesion vs. migration are attributed to its interactions 

with specific integrins and heparin sulfate proteoglycans. For example, adhesion of skin 

fibroblasts to CTGF involves formation of α6β1-containing focal adhesion complexes and 

activation of focal adhesion kinase (FAK) and Rac [162]. On the other hand, CTGF-β3 

integrin interactions have been shown to stimulate dephosphorylation of FAK, 

disassembly of the cytoskeleton, and remodeling of focal adhesions to promote 

mesangial cell migration [163]. 

Angiogenesis is another complex physiological process that involves CTGF 

activity. CTGF is angiogenic in vivo; adding CTGF to chick chorioallantoic assays and 

injecting CTGF into the backs of mice stimulates blood vessel formation [164]. 

Additionally, adding CTGF to a monolayer of bovine aortic endothelial cells (BAECs) 

stimulates the formation of a capillary like network of tube structures [164]. In cultured 

endothelial cells, CTGF can also promote many of the biological processes required for 

angiogenesis. Exposure of human dermal microvascular endothelial cells (HMVECs) to 

CTGF promotes migration and adhesion in a dose dependant fashion [145]. CTGF also 

stimulates proliferation of BAECs and HMVECs [145,164]. CTGF may mediate 

endothelial cell proliferation by enhancing the activity of other growth factors such as 
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basic fibroblast growth factor (bFGF), one of the first angiogenic factors characterized 

and a well known endothelial cell mitogen [165]. CTGF is also upregulated by VEGF-A, 

a factor required for vascular formation, in endothelial cells. Interestingly however, CTGF 

complexes with VEGF-A and interferes with the binding of VEGF-A to the VEGF-R2 

receptor suggesting that in some circumstances, CTGF may inhibit angiogenesis [166]. 

Indeed, transgenic over-expression of CTGF in the lung decreased capillary formation 

[167,168]. MMPs and ADAM28 (a disintegrin and metalloproteinase 28) have been 

shown to cleave the CTGF-VEGF complex restoring the angiogenic activity of VEGF-A 

[149,169]. Together, these data suggest that CTGF and VEGF may participate in a 

feedback loop to fine tune angiogenesis.  

 

Genetic modulation of CTGF expression in vivo 

Few studies have examined effects of CTGF loss-of-function in vivo.  A global 

null allele of CTGF was generated by the Lyons lab and first studied in the context of 

skeletogenesis [170]. CTGF null mice have skeletal defects including deformation of the 

craniofacial bones, bent long bones, and kinked ribs. Proliferation and differentiation in 

the lung were later found to be impaired in CTGF null mice as well [171]. The defects in 

rib formation combined with lung hypoplasia leads to respiratory failure and thus CTGF 

null mice die at birth, limiting analysis of the CTGF global loss-of-function phenotype to 

embryonic stages [170]. The defects in skeletal formation are caused by decrease in 

proliferation of pre-hypertrophic chondrocytes and altered expression of cartilage ECM 

components which together impair ossification. VEGF expression and angiogenesis 

within the growth plates was also decreased in CTGF null mutants [170]. Together, the 

phenotype of CTGF global null mice highlights the requirement of CTGF in promoting 

proliferation, ECM remodeling and angiogenesis in vivo.  
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Conditional inactivation of CTGF using a conditional by inversion (COIN) strategy 

was used to bypass the requirement for CTGF in embryonic skeletal development and 

examine the role of CTGF in the perinatal and postnatal skeleton [172]. Inactivation of 

CTGF in the limb bud or in adult bone revealed defects in endochondral bone formation 

and a reduction in spongy bone trabeculae in adult mice further supporting the role of 

CTGF in bone development.  

Recently, an allele of CTGF was generated with which CTGF levels can be 

modulated in a tissue-specific manner [173]. In this system, the endogenous CTGF 

3’UTR was replaced by the mouse FBJ osteosarcoma oncogene (c-Fos) 3’UTR flanked 

by loxP sites. A bovine growth hormone (BGH) 3’UTR was also placed downstream of 

the floxed c-Fos 3’UTR [173]. The c-Fos 3’UTR destabilizes the CTGF message, 

creating a hypomorphic allele by decreasing CTGF expression. In the presence of Cre, 

the c-Fos 3’UTR is excised, placing the CTGF message under the control of the BGH 

3’UTR. The BGH 3’UTR renders the CTGF message more stable than the endogenous 

CTGF 3’UTR and thus increases CTGF expression. CTGF over-expression using a 

globally-expressed Cre led to embryonic lethality before e13.5 and abnormal vascular, 

hindbrain, eye, and pharyngeal arch development [173]. Thus, both global loss and over-

expression of CTGF is incompatible with normal development.   However, 4-fold over-

expression of CTGF in the adult using a global tamoxifen-inducible Cre did not cause 

any gross abnormalities 3 months after tamoxifen administration indicating that this level 

of CTGF over-expression is not lethal after development [173].  

Transgenic mice with tissue-specific over-expression of CTGF have also been 

generated. Mice over-expressing CTGF in developing bone under the direction of either 

the type XI collagen or the osteocalcin promoter have decreased bone mineral density 

and ossification [174,175]. Interestingly, the phenotype of over-expressing CTGF in the 

bone is similar to the defects observed when CTGF is removed in a tissue-specific 
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manner [172]. These data suggest that a certain level of CTGF is very important for 

regulating bone formation and either too much or too little impairs ossification. Similarly, 

while CTGF is required for proper lung development, increased expression of CTGF in 

the neonatal lung also has detrimental effects [168,171]. Lungs over-expressing CTGF 

displayed disrupted alveolarization and vascular development. Furthermore, the lung 

pathology of CTGF over-expressing mice resembled those in human bronchopulmonary 

dysplasia, a disease found in premature infants.  

Over-expression of CTGF specifically in fibroblasts in mice using a fragment of 

the collagen α2(I) promoter leads to accelerated tissue fibrosis in the skin, kidney, and 

vasculature; these mice die between 2 and 6 months of age [176]. The fibrogenic effects 

of CTGF are attributed to increased fibroblast proliferation and upreguation of key matrix 

genes such as fibronectin, TIMPs, and α-smooth muscle actin [176]. In contrast, the 

over-expression of CTGF in hepatocytes and kidney podocytes does not to lead to any 

alterations in normal development or function; however, these mice have an increased 

susceptibility to fibrosis under injury or disease conditions [177,178]. Animals with 

hepatocyte-specific CTGF over-expression display an increased propensity to develop 

liver fibrosis after bile duct ligation or treatment with a heptatotoxin [179].  In human 

diabetic nephropathy, CTGF expression is upregulated in podocytes and mesangial cells 

[178]. Twelve weeks after streptozotocin induced diabetes, podocyte-specific CTGF-

transgenic mice showed a more severe diabetic nephropathy than control mice, 

suggesting that upregulation of CTGF contributes to the development of diabetic 

complications [178].  

Finally, cardiac tissues of mice and rats over-expressing CTGF in 

cardiomyocytes do not show defects in basal function or increased fibrosis [180]. In fact, 

CTGF over-expression has a protective effect on cardiomyocyte function in a cardiac 
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injury model [180]. However, over time CTGF over-expressing mice developed severe 

age dependent cardiac dysfunction, suggesting that a certain level of CTGF may be 

beneficial but long term over-expression may activate pathological pathways. 

 

CTGF and the pancreas 

 In the pancreas, CTGF has mainly been studied in the context of pancreatic 

disease states. CTGF is upregulated in pancreatic ductal adenocarcinoma where it is 

expressed in both the tumor and the surrounding stroma [181]. CTGF expression 

promotes angiogenesis and metastasis of tumors [181]. Knock-down of CTGF levels in 

pancreatic tumor cell lines reduces tumor growth both in vitro and when transplanted 

subcutaneously into nude mice [181]. Furthermore, administration of a neutralizing 

CTGF-specific monoclonal antibody to mice with established tumors inhibited 

angiogenesis, metastasis and tumor growth [182,183]. TGF-β signaling is also thought to 

play an important role in pancreatic cancer, and CTGF may interact with TGF-β signaling 

to promote cancer progression [184]. Examination of the cis-acting elements and 

signaling cascades required for CTGF expression in PANC-1 cells, a pancreatic cancer 

cell line, revealed that CTGF expression is dependent on ras/MEK/ERK signaling rather 

than TGF-β signaling suggesting that multiple signaling pathways may regulate CTGF in 

pancreatic cancer cells [185].  

 Expression of CTGF is also upregulated in pancreatitis, a disease characterized 

by a destruction of the pancreatic acinar cells and subsequent inflammation and fibrosis 

[186]. Stellate cells, resident fibroblast-like cells in the pancreas, are thought to be the 

main CTGF-producing cell type in pancreatitis. TGF-β and ethanol stimulate CTGF 

expression in stellate cells which in turn acts through integrins to promote migration, 

adhesion, collagen synthesis, and ultimately fibrosis [146,187].  
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 CTGF was found to be downregulated in the HNF6 transgenic model of islet 

dysmorphogenesis and diabetes [137]. This data suggested that CTGF may also be 

involved in pancreas development and function. To determine whether CTGF is normally 

expressed in the pancreas during development, antibody labeling and an allele with lacZ 

replacing part of the CTGF coding sequence were used to examine CTGF expression 

[188]. X-gal staining to detect lacZ expression and thus CTGF expression revealed that 

CTGF expression can be detected in the pancreas as early as e12.5 in the developing 

ductal epithelium and in the surrounding mesenchyme (Figure 1-9). As development 

proceeds, CTGF expression is localized to the developing endocrine cords and 

vasculature, but expression cannot be detected in acinar tissue. Cell type-specific 

markers were used along with X-gal staining to determine which cell types in the 

pancreas express CTGF at late gestation [188]. CTGF can be detected in β cells, 

endothelial cells, and ducts but not in α cells or in acinar tissue during development 

(Figure 1-10) [188]. Co-immunofluorescence for β-galactosidase and cell-type specific 

markers was used to confirm the expression pattern of CTGF. In the adult pancreas, 

CTGF can no longer be detected in β cells, but expression is maintained in endothelial 

cells and ducts. Although few studies have examined CTGF expression in normal 

pancreatic tissue in humans, CTGF has also been shown to be expressed in adult 

human pancreatic ducts and endothelial cells [189].  The expression pattern of CTGF in 

the pancreas suggests that CTGF may be involved in the regulation of pancreas 

development.  
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Figure 1-9. X-gal staining was used to examine CTGFLacZ expression 
throughout development. (A) At e12.5 CTGFLacZ is expressed in the pancreatic 
ductal epithelium (de) and in the surrounding mesenchyme (m). (B) At e14.5 
CTGFLacZ is expressed in the ductal epithelium, mesenchyme, but not in 
surrounding acinar (a) tissue. At e16.5 it is evident that CTGFLacZ is expressed 
in the developing endocrine clusters and ductal epithelium but not in acinar 
tissue. Modified from Crawford et al. Mol Endo, 2009.
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Figure 1-10. CTGFLacZ expression in the pancreas localizes with cell type-
specific markers. X-gal staining (left column) along with co-labeling for cell 
type specific markers (middle column) revealed that CTGFLacZ is expressed in 
insulin-positive cells (β cells) (A), PCAM-positive cells (endothelial cells) (B), 
and cytokeratin-positive cells (ducts) (C) at e18.5. Immunolabeling for β-
galactosidase (β -gal) and cell-type specific markers (right column) confirmed 
CTGFLacZ localization. CTGFLacZ contains a transmembrane domain and 
therefore the β-gal staining appears as membrane-localized puncta. Arrows 
indicate cells which co-express CTGF and the cell-type specific marker. 
Asterisks indicate cells which express CTGF but do not express the cell-type 
marker. d=duct. Modified from Crawford et al. Mol Endo, 2009.
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Thesis overview 

 

 Factors which can promote β cell proliferation, differentiation or islet 

morphogenesis in the pancreas may ultimately aid in generating replacement β cells to 

treat diabetes either in vivo or in vitro. Connective tissue growth factor (CTGF) is a 

modular secreted protein which stimulates proliferation, differentiation, adhesion, and 

migration in multiple cell types. The Gannon lab has demonstrated that CTGF is 

expressed in β cells, ducts, and endothelial cells in the pancreas during development. 

Studies using a global null allele of CTGF indicate that CTGF is required for proper 

endocrine cell lineage allocation, β cell proliferation, and islet morphogenesis during 

development. Chapter II of this thesis describes the methods used, and Chapter III 

summarizes the pancreatic phenotype of global CTGF inactivation. Because CTGF has  

been shown to interact with integrin, TGF-β, BMP, and Wnt signaling in other systems, it 

is unclear from these initial studies with which signaling pathways CTGF acts to promote 

pancreas development. Chapter IV describes efforts to examine whether CTGF interacts 

with TGF-β during endocrine development and to explore the mechanism of CTGF 

action in the embryonic pancreas at the cellular level.  

 The fact that CTGF is expressed in multiple pancreatic cell types raises the 

question of whether CTGF acts in an autocrine or paracrine manner to regulate β cell 

proliferation, endocrine cell lineage allocation, and islet morphogenesis. To determine 

which pancreatic cell type(s) are producing the required CTGF for each aspect of 

pancreas development, mice carrying a conditional allele of CTGF were generated and 

interbred to tissue-specific Cre lines to inactivate CTGF in each of the tissues in which it 

is expressed in the pancreas. Chapter V describes our results indicating that CTGF acts 

in both an autocrine and paracrine manner during pancreas development. Because loss 
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of CTGF leads to a reduction in insulin-positive area, we hypothesized that increased 

CTGF levels during embryogenesis may increase β cell mass. Chapter IV describes the 

use of an inducible transgenic system to specifically over-express CTGF in β cells and 

our data which indicates that over-expression of CTGF in β cells is sufficient to increase 

endocrine cell mass and β cell proliferation. Conclusions, implications, and future 

directions for the studies described in this dissertation are presented in Chapter VII.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Mice 

 

CTGFlacZ 

 The generation of the CTGFlacZ allele has been previously described [188]. 

CTGFlacZ mice were maintained on a mixed C57BL/6/129SvJ/B6D2 background. 

Genotyping for the presence of the null allele was performed by PCR amplification of a 

portion of CTGF exon 4 which is missing in the null allele. Amplification of a 193-bp 

fragment from the endogenous allele was performed using the following primers: for 

5’aag aca cat ttg gcc cag ac 3’ and rev 5’ ttt tcc tcc agg tca gct tc rev 3’. CTGFlacZ/+ mice 

were distinguished from wild type by either X-gal staining or PCR amplification of the 

lacZ gene using the following primers: for 5' gcc gtc tga att tga cct ga 3’ and rev 5’ tct gct 

tca atc agc gtc cc 3’. 

 

MIP-GFP  

Mice expressing green fluorescent protein (GFP) from the mouse insulin 

promoter (MIP-GFP) were provided by Dr. David Piston (Vanderbilt University). The 

generation of MIP-GFP mice has been previously described [190]. PCR genotyping was 

performed using the following primers: for 5’ act ggg ctt aca tgg cga tact c 3’ and rev 

5’gaa gac aat agc agg cat gct g 3’.  
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CTGFe2COIN 

The generation of the CTGFe2COIN allele has been previously described [172]. 

Targeted CTGFe2COIN ES cells (Regeneron Pharmaceuticals) were used to generate 

chimeric male mice at the Transgenic/ESC Shared Resource facility at Vanderbilt 

University. Chimeras were bred to mice expressing the FLPE recombinase from the 

Protamine 1 promoter (provided by Dr. Chin Chiang, Vanderbilt University) for the 

removal of the Hyg∆TK selection cassette. The removal of the selection cassette was 

confirmed by PCR using the following primers: for 5’ acg agc ggg ttc ggc cca tt 3’ and 

rev tgc ggc cat tgt ccg tca gg 3’. Mice exhibiting germline transmission of the CTGFe2COIN 

allele were bred to create homozygous CTGFe2COIN/e2COIN mice. Genotyping of 

CTGFe2COIN/e2COIN mice was performed by PCR on DNA isolated from ear punches 

(adults) or pieces of tails (embryos) using the following primers: for 5’ cac ttt cta ctc tgt 

gac 3’; and rev 5’ cct tac atg ttt tac tag 3’. PCR amplification of the CTGF wild type exon 

2 was used to distinguish CTGFe2COIN/e2COIN mice from CTGFe2COIN/+ mice using the 

following primers: for 5’ cct gct atg ggc cag gac tg 3’ and rev 5’ cca aaa ggt gag gcc tct 

gc 3’. Tissue-specific inactivation of CTGF was achieved by breeding CTGFe2COIN/e2COIN 

to the following Cre deleter lines: Tie-1-Cre (provided by Dr. Scott Baldwin, Vanderbilt 

University), Pdx-1-Cre (provided by Dr. Guoqiang Gu, Vanderbilt University) and Ngn3-

CreBAC (provided by Dr. Christopher Wright, Vanderbilt University) [53,68,191]  

Genotyping for the Cre transgene was performed using the following primers: for 5’ tgc 

cac gac caa gtg aca gc 3’ and rev cca ggt tac gga tat agt tca tg 3’. Inversion of the 

CTGFe2COIN allele was confirmed by PCR using DNA isolated from pancreatic tissue 

sections using the following primers for 5’ cct tac atg ttt tac tag 3’ and rev 5’ ctc aga gta 

ttt tat cct cat ctc 3’.  
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RIP-rtTA and TetO-CTGF 

To over-express CTGF in β cells, transgenic mice were generated in which 

expression of the CTGF cDNA (Open Biosystems, Huntsville, AL) is driven by the 

tetracycline operator (TetO, plasmid was a gift from Dr. Tim Blackwell, Vanderbilt 

University) rendering transgene expression DOX-dependent. TetO-CTGF mice were 

interbred to homozygous mice expressing the reverse tetracycline transactivator (rtTA) 

from a fragment of the rat insulin 2 promoter (RIP-rtTA), which were generously provided 

by Dr. Alvin Powers (Vanderbilt University) [192]. The following primers were used to 

genotype animals for the presence of the TetO-CTGF transgene: for 5’ gga ggt cta tat 

aag cag act tcg 3’ and rev 5’ tta agt tac gcc atg tct ccg ta 3’. To genotype for the 

presence of the rtTA transgene, the following PCR primers were used: for 5’ gcg tgt ggg 

gca ttt tac ttt ag 3’ and rev 5’ cat gtc cag atc gaa atc gtc rev 5’. Pregnant mothers were 

given 2 mg/ml of doxycycline (Sigma) in a 2% Splenda solution in their drinking water 

beginning on day 9.5 of gestation to expose the embryos to doxycycline prior to RIP 

activation, which normally occurs at e11.5. Doxycycline was administered in a colored 

water bottle to protect from light exposure and was replaced every 48 hours.  

All animal experiments were approved by the Institutional Animal Care and Use 

Committee of Vanderbilt University Medial Center.  

 

DNA extraction  

 

Ear punches or tails were digested overnight at 55°C in 80 µl per sample of 

tissue buffer [35.2 mM Tris, 2.5 mM, EDTA, 2.5 mM sodium citrate, 8.8 mM ammonium 

sulfate, 5% (v/v) Tween20] supplemented with fresh 0.3 mg/ml Proteinase K and 0.3 

mg/ml RNase A. Tissues were the digested at 37°C for 15 minutes and heat-inactivated 

at 95°C for 10 minutes followed by centrifugation at 13,000 rpm for 10 minutes. The 
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supernatant was stored at 4°C. For DNA extraction from paraffinized tissue sections, 

sections were deparaffinized in xylene and washed with 100% ethanol prior to the 

extraction procedure as described above.  

 

Pancreatic explant cultures 

 

Pancreata were dissected at e12.5 and cultured in 3D collagen gels. To make 

the collagen gel, 10x RPMI, 1N NaOH, and complete medium [1xRPMI (Invitrogen), 10% 

fetal bovine serum (FBS) and 1% Penicillin/Streptomycin] were mixed with type I rat tail 

collagen (BD Biosciences).  50 µl mounds of collagen were placed in a 24-well plate and 

allowed to solidify at 37°C. Pancreata were placed on top of the collagen and 20 µl of  

collagen was added to cover the pancreata. The collagen “sandwiches” were then 

allowed to solidify, and complete media was added to each well.  For the TGF-β 

experiments, 5 ng/ml recombinant human TGF-β1 (R&D systems) was added to both the 

collagen and the media. The media was changed every 48 hours. After 7 days, the 

cultures were fixed overnight at 4°C in 4:1 methanol/DMSO. The collagen gels were then 

washed twice in methanol and immunolabeled in whole mount for insulin and glucagon. 

For confocal imaging, the cultures were cleared in BABB (1:2 benzyl alcohol: benzyl 

benzoate) and placed on slides with footed coverslips. Confocal Z-stacks were taken of 

each bud and Metamorph 6.1 software was used to quantify the percentage of the bud 

epithelium that was composed of insulin-positive and glucagon-positive area.  
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Pancreatic cell migration assays 

 

Transwell inserts (24 well, 8 µm pores, Costar), were coated on the underside 

with either 50 mg/ml ultrapure BSA as a control (Calbiochem) or 10 µg/ml collagen IV 

(Sigma) overnight at 4°C. Wild type pancreata were dissected at e18.5 and placed in 

dissociation buffer [9 ml Hanks buffered saline solution (HBSS), 72 µl of 25 mg/ml 

Liberase RI (Roche), 90 µl of 10 mg/ml DNase I, and 225 µl of 1M CaCl2]. The pancreata 

were incubated at 37°C for 2 minutes while triturating then washed in HBSS. Trypsin 

(0.025% in EDTA) was added and the cells were incubated at 37°C for 5 minutes or until 

a single-cell suspension was obtained. The cells were then washed in complete medium 

and resuspended in migration buffer (1xRPMI 1640, 0.5% ultrapure BSA, and 0.4 mM 

MnCl2). Cells (5x104 cells/well in 100 µl migration buffer) were added to the pre-coated 

transwells. To determine the effect of exogenous CTGF on cell migration, migration 

buffer containing either control high-performance liquid chromatography (HPLC) buffer 

or increasing concentrations of recombinant human CTGF (a gift from Dr. David 

Brigstock, Ohio State University) was added to each well. Each concentration of CTGF 

was performed in triplicate. For migration assays using cells isolated from wild type and 

CTGF null pancreata, CTGFlacZ/+ heterozygotes were interbred to generate litters with 

wild type CTGFlacZ/+, and CTGFlacZ/lacZ embryos. Pancreatic cells were isolated and the 

embryos were genotyped as described above. The isolated cells were stored in 

complete medium at 4°C for 2-3 hours until genotyping was completed.  

After incubation for 24 hours at 37°C, the cells on the underside of the membrane 

were fixed in 4% PFA for 20 minutes at room temperature and the cells on the top of the 

membrane were removed with a cotton swab. The remaining cells were stained with 

toluidine blue (1% toluidine blue O in 1% sodium tetraborate) for 20 minutes at room 

temperature. The membranes were removed from the inserts using a scalpel and 
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mounted on slides. Five random fields of view at 100x magnification were photographed 

of each membrane and all of the cells in each field of view were counted. The average 

number of migrating cells/field of view was determined.  

 

Adhesion assays 

 

To determine whether CTGF stimulates adhesion of pancreatic cells, adhesion 

assays were performed. 96-well medium binding plates (Costar) were coated with either 

50 mg/ml ultrapure BSA or increasing concentrations of CTGF (in triplicate) diluted in 

sterile PBS overnight at 4°C. Non-specific adhesion was blocked by incubating wells 

with ultrapure BSA for 1 hour at room temperature. Dissociated cells from e18.5 

pancreata (see above) were plated at a concentration of 1x105 cells/well in 100 µl of 

migration buffer (see above) and the plate was incubated at 37°C for 1.5 hours. The 

adherent cells were fixed with 4% PFA for 20 minutes at room temperature and the wells 

were then washed with PFA to remove non-adherent cells. The wells were then stained 

with toluidine blue for 20 minutes at room temperature and washed in dH2O.  

 

Real-time PCR 

  

Pancreata were dissected and placed immediately into RNAlater (Ambion). Total 

RNA was extracted using the RNAqueous kit (Ambion) according to the manufacturer’s 

instructions and eluted in 50 µl of elution buffer. RNA samples were treated to remove 

DNA contamination using the Turbo-DNase kit (Ambion). RNA concentration and 

integrity were assessed using the ND-1000 Spectrophotometer (NanoDrop) and the 

2100 Electrophoresis Biolanalyzer (Aligent) at the Vanderbilt Functional Genomics 

Shared Resource. cDNA was synthesized using the Superscript III First-Strand 
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synthesis system (Invitrogen) using 500-1000 ng of RNA. Real-time reactions were 

carried out in technical duplicate with iQ SYBR Green supermix (Bio-Rad) according to 

the manufacturer’s instructions at an annealing temperature of 58°C using the following 

primers to detect total CTGF: for 5’ ttc tgc gat ttc ggc tcc 3’ and rev 5’ acc atc ttt ggc agt 

gca ca 3’. Primers used to detect endogenous CTGF were designed against the 3’UTR 

which is absent from the CTGF cDNA: for 5’ ctg ggg aca atg aca tct 3’ and rev 5’gtt cgt 

gtc cct tac ttc ct 3’. Data were collected using an iCycler iQ Real-time PCR Detection 

System (Bio-Rad) and software (Bio-Rad). Primers were optimized by melting curve and 

standard curve assays first before application. Expression levels were normalized 

against the levels of hypoxanthine-guanine phosphoribosytransferase (HPRT) using the 

following primers: for 5’ agt caa cgg ggg aca taa aa 3’ and rev 5’ tgc att gtt tta cca gtg tca 

a 3’.  

 

Sequencing of CTGF exon 2 

 

The e2COIN intron is placed within exon 2 of the CTGF locus, splitting it into two 

parts. In order to determine if, in the absence of Cre, the splicing of the e2COIN allele 

alters the CTGF message, exon 2 was sequenced using cDNA from CTGFe2COIN/e2COIN 

pancreata. RNA was isolated from whole pancreas from CTGFe2COIN/e2COIN e18.5 

embryos and cDNA was generated as described above. Exon 2 was PCR amplified 

using the high-fidelity DNA polymerase PfuUltra (Agilent) and the following primers: for 

5’ tgc tat ggg cca gga ct 3’ and rev 5’ cga aat cgc aga aga gg 3’. The 250 bp product 

was gel purified and sequenced by the Vanderbilt University DNA sequencing facility 

with the primers used for PCR amplification. The sequence of CTGFe2COIN/e2COIN exon 2 

was compared to wild type mouse CTGF exon 2 as listed on the UCSC genome browser 

(www.genome.ucsc.edu) 
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In situ hybridization 

 

CTGF anti-sense and sense RNA probes were generated to detect CTGF 

expression in a cell type-specific manner. The pCRII vector (Invitrogen) containing a 

CTGF full length cDNA placed with the multiple cloning site was obtained from Dr. David 

Brigstock at Ohio State University. The vector was linearized with restriction enzymes 

SgrAI (anti-sense probe) or EcoRV (sense probe). Digoxigenin-UTP-labeled probes 

were generated by an in vitro transcription reaction using SP6 and T7 RNA polymerases 

(DIG RNA Labeling Kit, Roche). The probes were treated with DNase I and precipitated 

with 4 M LiCl and 100% EtOH at -80°C overnight, washed in 80% EtOH, and 

resuspended in RNase-free water.  

Paraffin slides were dewaxed and rehydrated using a decreasing ethanol series 

and washed in RNase-free 1x PBS. Slides were treated with 4% PFA for 10 minutes at 

room temperature and treated with proteinase K (400 ng/ml) for 4 minutes at room 

temperature. The slides were incubated in TEA (3.7 g triethanolamine, 448 µl 10 N 

NaOH, and 250 µl acetic anhydride in 200 ml RNase-free water) for 10 minutes and then 

washed in 1x PBS. Slides were then pre-hybridized for 2-6 hours in hybridization buffer 

[5 ml 100% formamide, 2.5 ml 20x SSC, 1 ml 50x Denhardt’s Solution (Invitrogen), 250 

µl 10 mg/ml yeast tRNA, 500 µl 10mg/ml herring sperm DNA, and 750 µl RNase-free 

water] at room temperature. Probes were hybridized at a concentration of 0.3 ng/µl 

overnight at 68°C. The next day, sides were washed in 0.2x SSC for 1 hour at 55°C and 

then in maleic acid buffer, pH 7.5 (2.9 g maleic acid and 2.175 g NaCl in 250 ml distilled 

deionized water). The slides were then blocked with commercial blocking powder 

(Roche) and incubated with alkaline phosphatase-conjugated anti-digoxigenin Fab 

fragments (Roche) at a dilution of 1:1500 for 2 hours at room temperature. A 1:1 ratio of 
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nitroblue tetrazolium chloride (NBT, Roche) and 5-bromo-4-chloro-3-indoxyl phosphate 

(BCIP, Roche) was used for detection of the labeled probes.   

 

Tissue dissection, preparation, and histology 

 

For embryonic studies, the morning of the vaginal plug was considered to be 

e0.5.  Digestive organs were dissected in cold PBS and fixed immediately in 4% 

paraformaldehyde at 4 °C for 1-1.5 hours. Tissues were dehydrated, embedded in 

paraffin and sectioned at 5 µm. Serial sections were deparaffinized and rehydrated using 

a decreasing ethanol series to distilled water. Indirect protein localization was obtained 

by incubation of tissue with the following primary antibodies: guinea pig anti-insulin 

(1:1000; Upstate), rabbit anti-glucagon (1:1000, Millipore), rabbit anti-phosphorylated 

histone H3 (pH3, 1:200; Millipore), and mouse anti-Neurogenin3 (Ngn3, 1:1000; 

Developmental Studies Hybridoma Bank, The University of Iowa). Ducts were labeled 

with biotinylated Dolichos biflorus agglutinin (DBA, 1:1000; Vector Laboratories) followed 

by detection with Cy3-conjugated streptavidin (1:500; Vector Laboratories). Detection of 

pH3 and Ngn3 required antigen retrieval in 10 mM sodium citrate buffer, pH 6.0. Slides 

were microwaved at full power until boiling and then boiled for 6 minutes. All primary 

antibodies were incubated overnight in a humid chamber at 4 °C. Primary antibodies 

were detected by species-specific donkey secondary antibodies conjugated to either 

Cy2 or Cy3 fluorophores (1:200; Jackson ImmunoResearch Laboratories, Inc).  Ngn3 

detection required tyramide signal amplification (Invitrogen). Fluorophores were excited 

using an Olympus BX41 research microscope (Tokyo, Japan) and digital images were 

captured using MagnaFire software (Optronics Engineering, Goleta, CA). TIFF images 

from each experiment were processed identically with Adobe Photoshop.  
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Morphometric analyses 

 

α and β cell proliferation 

Entire pancreata were serially sectioned and slides were immunolabeled for pH3 

and insulin or glucagon. One section was photographed every 250 µm (7-10 sections 

per animal) throughout the pancreas. Using Metamorph 6.1 software (Molecular 

Devices), the total number of cells that were positive for insulin or glucagon was counted 

as were the number of proliferating cells (co-labeled for hormone and pH3). The 

percentage of proliferating α or β cells was determined by dividing the number of 

proliferating cells by the total number of hormone-positive cells. 

 

Insulin and glucagon area/percent endocrine area 

Entire pancreata were serially sectioned and slides were immunolabeled for 

insulin and glucagon. One section was photographed every 250 µm throughout the 

pancreas. Using Metamorph 6.1 software, the insulin+ and glucagon+ area of each 

section was determined by thresholding. The percentage of the total endocrine area that 

was composed of insulin or glucagon was calculated. For the CTGF over-expression 

studies, the percentage of the pancreas area composed of endocrine tissue was 

calculated by combining the insulin positive and glucagon positive area on each section 

and dividing it by the total pancreas area of each section.  

 

β cell size 

 Every thirtieth slide of pancreas tissue was immunolabeled for insulin and every 

islet from one section on each slide was photographed. Metamorph 6.1 software was 

used to determine the total β cell area for each islet. The number of β cells in each islet 
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was counted, and average β cell size for each islet was determined by dividing the total 

β cell area by the number of β cell nuclei. β cells from at least 125 islets from three 

animals per genotype were used to determine the average β cell size. As an alternative 

method to measure β cell size, rabbit anti-mouse Glut2 (from Dr. Bernard Thorens, 

University of Lausanne, 1:500) was used to visualize the plasma membrane of β cells. 

Metamorph software was used to determine the area of 100 individual β cells in at least 

5 different islets per mouse. Three mice per genotype were analyzed to determine the 

average β cell size.  

 

Proximity of endocrine tissue to ducts 

 In order to determine whether tissue-specific inactivation of CTGF leads to 

changes in the proximity of the endocrine tissue to the ducts, the distance between the 

endocrine tissue and the ducts was quantified at P1. Every twentieth slide of pancreas 

was immunolabeled with anti-insulin and anti-glucagon antibodies raised in the same 

species. DBA was used to label ducts. One section from each slide was photographed 

and Metamorph software was used to quantify the distance between each endocrine 

cluster and the nearest duct. The average distance between the endocrine tissue and 

the ducts was determined for each animal. At least 3 animals of each genotype were 

examined.  

 

α and β cell number 

Entire pancreata were serially sectioned and slides were immunolabeled for 

insulin and glucagon. One section was photographed every 250 µm throughout the 

pancreas. The number of the insulin-positive and glucagon-positive cells were counted 

and divided by the total area of the section in µm2.   
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Quantification of Ngn3-positive cells 

 Entire pancreata were sectioned and slides were immunolabeled for Ngn3 and 

DAPI. One section every 150 µm was photographed. The number of Ngn3 positive 

nuclei were counted and divided by the total pancreatic epithelial area in µm2.  

 

Statistical analysis 

 

Results are expressed as mean ± SEM. For two group comparison, Student’s t 

test was used. p<0.05 was considered statistically significant.  
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CHAPTER III 

 

GLOBAL CTGF INACTIVATION LEADS TO DEFECTS IN ISLET CELL LINEAGE 
ALLOCATION, β CELL PROLIFERATION AND ISLET MORPHOGENESIS DURING 

DEVELOPMENT 
 
 
 

Introduction 

 

Our lab initially became interested in studying CTGF in the context of pancreas 

development and function because it was found to be downregulated in a transgenic 

mouse model of HNF6 islet cell over-expression [137]. HNF6 transgenic mice display 

islet dysmorphogenesis, insulin secretion defects, and diabetes [135,136]. CTGF has 

also been shown in other systems to regulate proliferation, extracellular matrix 

remodeling, and migration—processes which are all thought to be important for 

pancreas development [122,129,130].  In the developing mouse pancreas, CTGF is 

expressed as early as e12.5 in the mesenchyme, ductal epithelium, endothelial cells, 

and insulin-producing cells [188]. The phenotype of the HNF6 transgenic model 

combined with the embryonic expression pattern of CTGF prompted us to investigate 

whether CTGF is required for proper pancreas development and function. Analysis of 

the CTGF global knockout phenotype was initially performed by a former graduate 

student in the lab, Dr. Laura Crawford. While rotating in the lab I performed some of 

these analyses, and took over the project once Dr. Crawford left the lab.  

CTGF null mice die at birth due to skeletal and lung defects; therefore analysis of 

the CTGF null phenotype was limited to embryonic stages [170]. However, we found that 

CTGF null embryos display defects in islet morphogenesis, alterations in the ratio of 

endocrine cells with an increase in glucagon-positive area and a decrease in insulin-

positive area, and a decrease in β cell proliferation specifically at e18.5 [188]. The 
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phenotype of adult CTGF heterozygous animals was also examined. These mice have 

alterations in islet morphology and an increase in α cells, but β cell area is normalized 

due to an increase in individual β cell size. Together these data demonstrate for the first 

time that CTGF is required for normal pancreas development and may act downstream 

of HNF6 to promote proper lineage allocation, β cell proliferation, and islet 

morphogenesis.   

 

Results 

 

CTGF is required for the proper number of the different endocrine cell types 

Mice carrying a null allele of CTGF which contains the lacZ gene knocked into 

the CTGF locus (CTGFlacZ) were used to examine the role of CTGF in pancreas 

development [188].  In order to determine whether CTGF inactivation led to defects in 

endocrine development, morphometric analysis was used to examine islet endocrine 

composition at e18.5.  The proportion of the islets which were composed of insulin- and 

glucagon-positive area was significantly altered in CTGF null embryos (CTGFlacZ/lacZ) 

compared to wild type embryos [188] (Figure 3-1). Islets from wild type embryos had 

approximately 12% of their endocrine area occupied by glucagon-producing cells 

compared to 25% in CTGFlacZ/lacZ embryos (Figure 3-2A). The increase in glucagon-

positive cells in islets from null embryos was accompanied by a decrease in insulin area 

compared with wild type (70% in wild type vs. 49% in CTGFlacZ/lacZ). This corresponds to 

an α to β cell ratio of 1:4 in wild type and 1:2 in mutant embryos. CTGF heterozygous 

embryos (CTGFlacZ/+) also displayed a similar increase in α cells and a decrease in β 

cells, suggesting one functional copy of CTGF is not sufficient to promote proper 

proportions of the endocrine cell types.  There was no difference in average islet size or 
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Figure 3-1. CTGF is required for proper endocrine cell ratios. Compared to
controls (A), CTGF null embryos displayed an increase in glucagon positive area 
and a decrease insulin positive area at e15.5 (D). The increase in glucagon 
positive area is detected at e13.5 in mutant embryos (E), but not at e12.5 (C and 
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Figure 3-2. CTGF mutant animals have an altered islet composition. 
Morphometric analysis at (A) e18.5, (B) e15.5, and (C) adult stages 
indicated alterations in the proportions of insulin-positive and glucagon-
positive cells in CTGF heterozygous (CTGF+/-) and null (CTGF-/-) animals 
compared to wild type (WT). n=5 for e18.5, n=3 for 15.5 and adult. *p<0.01 
compared with WT; Ψ, p<0.05 compared with CTGF+/-. Modified from 
Crawford et al. Mol Endo, 2009.
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in the distribution of different size islets in CTGF heterozygous or null embryos 

compared to controls (data not shown).  

In order to determine how early the changes in endocrine cell ratio occur, islet 

composition was examined at e15.5 (Figure 3-1). The change in islet cell types seen at 

e18.5 were also present at e15.5—in CTGFlacZ/lacZ embryos nearly 45% of endocrine 

area was occupied by glucagon positive cells, compared with 23% in wild type embryos 

(Figure 3-2B). Insulin-positive cells occupied 37% of endocrine area in CTGFlacZ/lacZ at 

e15.5 compared with 60% in wild type controls. Even in control embryos, there are not a 

significant number of insulin-expressing cells in the pancreas at e13.5; therefore we only 

examined the number of α cells in control and CTGF null embryos at this stage. 

Compared to control embryos, there was an increase in the number of glucagon-positive 

cells in CTGFlacZ/lacZ pancreata as well.  However, one day earlier at e12.5, the number of 

glucagon-positive cells in CTGF null embryos was not significantly different from controls 

suggesting that CTGF plays a role in regulating endocrine cell ratios beginning at the 

secondary transition.  

 

CTGF is required for β cell proliferation and for lineage allocation 

 In order to determine the mechanism leading to altered endocrine cell ratios, 

endocrine cell proliferation and apoptosis was quantified at various stages throughout 

development. TUNEL staining was used to quantify the number of apoptotic cells; 

however, there were no changes in α or β cell apoptosis detected at any stage examined 

(data not shown). The percentage of α and β cells undergoing proliferation at e13.5, 

e14.5, e15.5, e16.5, e17.5 and e18.5 in wild type and CTGF mutant embryos was 

quantified using double immuofluorescence for phosphorylated histone H3 (pH3) and 

insulin or glucagon. Consistent with previous results, we detected few proliferating cells 
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at e13.5, e14.5, e15.5, and e16.5. There were also no significant changes in the 

percentage of pH3-positive α cells between wild type and CTGFlacZ/lacZ or CTGFlacZ/+ 

pancreata at any stage examined (data not shown), indicating that the increase in 

glucagon-positive area is not due to an increase in α cell proliferation. We also detected 

no differences in β cell proliferation between wild type and CTGF mutants at e13.5, 

e14.5, e15.5, e16.5 or e17.5; however, there was a significant decrease in β cell 

proliferation in both CTGFlacZ/lacZ and CTGFlacZ/+ embryos at e18.5 compared with wild 

type (Figure 3-3A) [188]. Whereas nearly 1.0% of β cells were proliferating at e18.5 in 

wild type embryos, CTGFlacZ/+ and CTGFlacZ/lacZ had less than 0.02% and less than 0.01% 

proliferating β cells, respectively. β cell proliferation increases at late gestation and 

continues at relatively high rates during the neonatal stages; therefore we determined 

whether loss of CTGF affects β cell proliferation after birth. Because CTGF null pups die 

at birth, β cell proliferation was examined at P2 in CTGF heterozygotes (Figure 3B). The 

percentage of β cells proliferating in CTGFlacZ/+ tended to be less than in wild type pups 

but did not reach significance, likely due to the variation in the percentage of proliferating 

β cells between individual pancreata. The variability may be due to the fact that the mice 

are on a mixed genetic background or due to differences in individual nutritional intake 

after birth. Together, these data indicate that CTGF is required for β cell proliferation 

specifically at e18.5. Because there were no changes in α or β cell proliferation or 

apoptosis before e18.5, it is likely that the changes in the ratio of endocrine cells 

observed earlier than e18.5 are due to alterations in endocrine cell lineage allocation. 

Thus, in the absence of CTGF a multipotent endocrine progenitor may preferentially 

differentiate into an α cell rather than a β cell.  
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Figure 3-3. CTGF mutant animals have decreased β cell proliferation. (A) β
cell proliferation is significantly decreased compared to wild type (WT) in 
CTGFlacZ/+ (CTGF+/-), and CTGFlacZ/lacZ (CTGF-/-) pancreata at e18.5. (B) CTGF 
heterozygous pancreata (CTGF+/-) trend toward a decrease in β cell 
proliferation at P2, but this does not reach statistical significance. n=3. *p<0.05 
compared with WT. Figure reproduced from: Connective tissue growth factor 
(CTGF) inactivation leads to defects in islet cell lineage allocation and β cell 
proliferation during embryogenesis, Crawford et al. Mol Endo 23(3)324-336, 
Copyright 2009, The Endocrine Society. 
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CTGF mutant embryos have disrupted islet morphogenesis 

 During development, endocrine progenitor cells initially reside within the ductal 

epithelium but delaminate and differentiate into endocrine cells. At e17.5, newly 

differentiated endocrine cells are located close to the ductal epithelium, but beginning at 

e18.5 and continuing after birth they organize into islets within the acinar parenchyma 

[122,193].  HNF6 transgenic islets have alterations in islet morphogenesis; islets appear 

disorganized and remain closely apposed to the ductal epithelium instead of separating 

away from the ducts [135,136]. Because CTGF is downregulated in HNF6 transgenic 

islets, duct and islet morphology were examined in CTGFlacZ/lacZ embryos (Figure 3-4). 

Cytokeratin (a pan-keratin marker of ductal structures) and synaptophysin (a general 

marker of endocrine tissues) co-labeling of wild type and mutant pancreata revealed that 

endocrine clusters in CTGFlacZ/lacZ were very closely apposed to the ductal epithelium at 

e18.5. Thus, similar to the HNF6 transgenic embryos, CTGF null embryos have defects 

in islet formation.  

 

CTGF heterozygous adults display compensatory β cell hypertrophy 

 Studies of adult pancreas structure and function were limited to CTGF 

heterozygous animals. The size and gross morphology of CTGF heterozygous 

pancreata were normal at all ages examined; however analysis of pancreatic tissue from 

adult CTGFlacZ/+ animals revealed alterations in islet architecture. Some islets exhibited 

morphology indistinguishable from wild type islets; while some islets within CTGFlacZ+ 

pancreata had a mixed-islet phenotype, with α cells found within the β cell core [188]. 

Morphometric analysis of pancreata from 3 month old wild type and CTGF heterozygous 

mice revealed a disrupted endocrine cell composition in CTGFlacZ+ animals. In wild type 

animals, only 5% of the islet area was occupied by α cells, whereas in CTGFlacZ+ animals 
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Figure 3-4. CTGF null embryos display islet dysmorphogenesis. Cytokeratin
(keratin, red) and synaptophysin (synap, green) labeling of e18.5 WT (A and B) 
and CTGF null (C and D) pancreata revealed that endocrine tissue in CTGF null 
embryos is more closely apposed to the ductal epithelium than in WT pancreata. 
Figure reproduced from: Connective tissue growth factor (CTGF) inactivation 
leads to defects in islet cell lineage allocation and β cell proliferation during 
embryogenesis, Crawford et al. Mol Endo 23(3)324-336, Copyright 2009, The 
Endocrine Society. 
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α cells make up nearly 15% of islet area (Figure 3-2C). Despite the increase in α cell 

area, the area occupied by β cells was not different between wild type and CTGFlacZ+ 

adult animals; thus CTGFlacZ+ animals showed an overall larger average islet size 

compared with wild type [188]. Analysis of the other endocrine cell types revealed no 

detectable difference in the proportion of δ cells and a slight increase in the number of 

PP cells in CTGFlacZ/+ animals compared with wild type (data not shown).  

 In order to understand why insulin positive area was decreased at e18.5 but 

normal at 3 months of age, β cell proliferation was quantified at 3 months of age to 

determine if proliferation in CTGFlacZ+ animals was increased compared to controls. 

There was no significant difference in the percentage of proliferating β cells between 

control and CTGF heterozygous animals at this stage (data not shown). Therefore we 

hypothesized that the normalization of insulin positive area might be due to an increase 

in individual cell size. Two independent methods were utilized to quantify β cell size. The 

first involved measuring the total insulin positive area of the islet and dividing it by the 

total number of β cell nuclei in the islet. The second involved co-immunolabeling for 

insulin and the membrane-localized glucose transporter (Glut2) and determining the 

area of individual β cells. Both methods yielded similar results; the β cells of CTGF 

heterozygotes were significantly larger than β cells in wild type animals, suggesting that 

β cell hypertrophy contributes to the increase in β cell area that occurs between e18.5 

and 3 months of age (Figure 3-5). Cell hypertrophy in response to an absolute decrease 

in β cell number has been observed in other models of decreased β cell proliferation 

[194]. However, these results do not exclude the possibility that β cell proliferation also 

contributes to the restoration of β cell mass postnatally in CTGF heterozygous animals.  

The ability of CTGF heterozygous animals to respond to a glucose challenge was 

also examined. CTGFlacZ/+ adults had normal fasting blood glucose levels and glucose 
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clearance (data not shown). Wild type and CTGFlacZ/+ adults were also placed on a high-

fat diet for 12 weeks to determine if they are more susceptible to developing defects in 

glucose homeostasis under conditions of metabolic stress. Similar to mice that are on a 

chow diet, CTGFlacZ/+ animals did not display any alterations in glucose tolerance, 

suggesting that a 50% reduction in CTGF levels does not affect glucose homeostasis 

[188]. However, these results do not rule out the possibility that CTGF null mice may 

display defects in adult β cell proliferation or glucose homeostasis that was not revealed 

by these assays.  

 

Discussion 

  

This study represents the first report examining the function of CTGF in the 

developing pancreas. CTGF expression is elevated in pancreatic diseases such as 

cancer and pancreatitis and contributes to pancreatic tumor growth and metastasis, but 

prior to this study, nothing was known about its potential role in pancreas development 

and function. Analysis of the CTGF null phenotype demonstrated that CTGF is required 

for proper islet cell composition, β cell proliferation at e18.5, and islet morphogenesis. 

The fact that endocrine composition is changed beginning at the secondary transition 

without concomitant changes in total endocrine area, islet size, α or β cell proliferation, 

or apoptosis at that stage, suggests that CTGF is also required for the proper allocation 

of endocrine progenitors to the α and β cell fates. 

Although there have been several factors which have been identified to be 

required for postnatal β cell proliferation, there are few genes known to affect the 

proliferation of embryonic β cells.  Thus, CTGF can be added to the small list of genes, 

which include the transcription factor Pdx-1 and the eIF2α kinase PERK, that have been 
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shown to be required for embryonic β cell proliferation in vivo [115,195]. The fact that 

CTGF null embryos have a defect in β cell proliferation specifically at e18.5 suggests 

that CTGF may have a unique time window of action which correlates with the increase 

in endocrine cell proliferation that normally occurs at late gestation. 

The fact that CTGF mutants have defects in the separation of the endocrine 

tissue from the ductal epithelium suggests that CTGF may also be involved in promoting 

the migration of pancreatic epithelial cells during islet morphogenesis. CTGF could affect 

cell migration directly or could be required for extracellular matrix remodeling or for 

changes in cell adhesion, although these possibilities are not mutually exclusive.  

During development, CTGF is expressed in pancreatic ducts, vasculature, and β 

cells. Therefore, it is unclear from the analysis of CTGF null embryos which cell type(s) 

is responsible for the defects in pancreas development. It is possible that the endocrine 

phenotype is due to paracrine effects of loss of CTGF from the ducts or vasculature. 

Early pancreatic endocrine cells delaminate from the ductal epithelium and previous 

studies have shown that blood vessel endothelial cells are a source of developmental 

signals promoting endocrine differentiation [26,27,196,197]. Cell-type specific 

inactivation of CTGF using a conditional allele will reveal which cellular source of CTGF 

functions to promote proper lineage allocation, β cell proliferation, and islet 

morphogenesis. Furthermore, conditional inactivation of CTGF specifically from β cells in 

the adult will be useful to determine whether CTGF is required for adult β cell 

proliferation and function without the confounding effects of embryonic lethality or 

potential changes in peripheral insulin sensitivity that could occur in the global knockout.  

Microarray analysis revealed a 2-fold reduction in CTGF expression in the HNF6 

transgenic model of islet dysmorphogenesis and diabetes [137]. Recently, the CTGF 

promoter was shown to be directly repressed by the pro-endocrine transcription factor, 
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Ngn3 [198]. Ngn3 expression is increased in the HNF6 model, which may partially 

account for the decrease in CTGF expression in these transgenic mice. Interestingly, 

analysis of CTGF mutant animals showed an islet phenotype strikingly similar to the 

HNF6 transgenic phenotype. Both animal models have an increase in α cells at e18.5 

and endocrine tissue which is closely apposed to ducts. These similarities suggest that 

the downregulation of CTGF may be at least partially responsible for the phenotype of 

the HNF6 transgenic mice. While HNF6 and Ngn3 may lie upstream of CTGF, it remains 

unknown which factors and signaling pathways are downstream of CTGF during 

pancreas development. CTGF has been shown to interact with integrins, TGF-β, BMPs 

and Wnts in other systems [199]. The phenotypes of inactivating integrin or TGF-β 

signaling are similar to the phenotype of CTGF inactivation suggesting that CTGF may 

act by enhancing integrin or TGF-β signaling.  Blocking integrin activity in human fetal 

pancreas explants inhibits the separation of endocrine cells from ducts and leads to an 

increase in glucagon producing cells [129]. Additionally, inducible over-expression of 

Smad7, a TGF-β and BMP inhibitor, during pancreas development alters the ratio of 

endocrine cells with a decrease in insulin-positive cells and an increase in glucagon-

positive cells [108]. On the other hand, data from our lab indicates that β-catenin, a 

downstream effector of activated Wnt signaling, is mislocalized in CTGF mutants. In 

control pancreata, β-catenin is localized to the plasma membrane; however, in CTGF 

mutants, there is a decrease in β-catenin at the cell membrane although the total level of 

β-catenin is not changed. We hypothesize that this is due to increased β catenin in the 

nucleus and that Wnt signaling may be activated in CTGF mutants. [188].  Thus, the 

identification of the specific signaling pathways CTGF modulates during pancreas 

development requires further investigation.  
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CHAPTER IV 

 

EXAMINING THE ROLE OF CTGF IN CELL PROLIFERATION, DIFFERENTIATION, 
AND MIGRATION USING EX VIVO CULTURE METHODS 

 
 

Introduction 

 

Analysis of the CTGF global knockout phenotype demonstrated that CTGF is 

required for proper lineage allocation, β cell proliferation, and islet morphogenesis during 

pancreas development. It is unclear from these previous studies how CTGF acts to 

promote these processes at the cellular and molecular level. Therefore, we sought to 

identify the signaling pathways with which CTGF interacts to regulate lineage allocation 

and β cell proliferation and to determine the cellular mechanism underlying the defects in 

islet morphogenesis in CTGF null embryos. We employed ex vivo culture assays to 

address each of these questions.  

 

CTGF participates in a positive feedback loop with TGF-β 

Although a CTGF-specific receptor has not been identified, CTGF exerts its 

downstream effects by interacting with integrins and modulating signaling pathways such 

as TGF-β, BMP, and Wnt. However, it is not known which of these interactions play a 

role during pancreas development. CTGF modulates signaling through several integrins 

including αVβ3. Interestingly, treatment of human fetal pancreas explants with cyclic RGD 

peptide analogues to inhibit αV integrins prevents the separation of endocrine cells from 

ducts and leads to an increase in glucagon-producing cells [129]; a phenotype similar to 

what is observed in the CTGF loss-of-function model. However, the interactions between 
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CTGF and the TGF-β pathway are the most well characterized in other cell types; 

therefore we chose to focus our initial studies on the TGF-β pathway. 

TGF-β mediates its effects by binding to two distinct cell surface type II and type I 

serine/threonine kinase receptors and initiating intracellular signaling cascades (Figure 

4-1). Type II receptors are constitutively active and phosphorylate and activate type I 

receptors upon ligand binding. The activated receptor complex phosphorylates TGF-β 

receptor Smads (R-Smads) 2 and 3 which interact with the Co-Smad, Smad4. The 

phosphorylated R-Smad-Smad4 complex is localized to the nucleus where it binds to 

GC rich sequences and acts with other co-factors to either activate or repress gene 

expression. Smad7 is an inhibitory Smad that negatively regulates TGF-β signaling by 

interfering with Smad-receptor or Smad-Smad interactions [102]. CTGF enhances TGF-

β signaling by physically binding TGF-β ligands extracellularly through its cystine rich 

domain and CTGF may also suppress the transcription of Smad7 [200,201]. Additionally, 

TGF-β regulates the expression of CTGF, as numerous studies have shown that CTGF 

is upregulated in response to the addition of TGF-β in a variety of cell types. A TGF-

β/Smad response element has been identified in the CTGF promoter, further supporting 

the idea that CTGF is an immediate early gene in response to TGF-β signaling [202]. 

Multiple studies have indicated that members the TGF-β signaling family are 

important for pancreas development. In the pancreas, TGF-β isoforms are expressed in 

β cells as well as the ductal epithelium.  The Type II TGF-β receptor localizes to ducts in 

the adult mouse suggesting that TGF-β may play a role in the normal regulation of the 

growth and differentiation of the ducts [203]. Several studies suggest that TGF-β 

signaling in the pancreas promotes the development of the endocrine compartment and 

limits the development of exocrine tissue. Over-expression of TGF-β under the direction 

of the insulin promoter resulted in pancreatic hypoplasia and a relative decrease in 
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Figure 4-1. CTGF participates in a positive feed back loop with TGF-β
signaling. (A) TGF-β binds its type II receptor which recruits a type I receptor. 
(B) The activated receptor complex phosphorylates Smad2/3. (C) Smad2/3 
dimerizes with Smad4 and the complex translocates to the nucleus affecting 
transcription. (D) CTGF expression is increased in response to TGF-β.  (E) 
CTGF reinforces TGF-β signaling by inhibiting the expression of Smad7, an 
inhibitory Smad. (F) CTGF also enhances the binding of TGF-β to its 
receptor. 
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acinar tissue [204].  Interestingly, the islet phenotype observed when certain TGF-β 

signaling components are mutated bears striking similarity to the defects in the islet 

phenotype of CTGF mutants. Mice deficient in GDF11, a TGF-β ligand, have reduced 

numbers of β cells and increased numbers of α cells [109] and pancreas-wide over-

expression of Smad7 also leads to an altered α to β cell ratio [108]. Additionally, Smad7 

transgenic mice have clusters of glucagon positive cells that are not associated with 

islets. The evidence of the link between CTGF and TGF-β signaling combined with 

similarities in their islet phenotypes suggests that CTGF may modulate TGF-β during 

pancreas development and that the defects in CTGF global knockouts may be due to 

impaired TGF-β signaling.  However, this hypothesis has not been previously been 

tested.  

Pancreatic bud culture systems have been used to investigate the role of TGF-β 

in pancreas development. Embryonic pancreata grown in 3-D collagen gels are able to 

differentiate into exocrine tissue and endocrine tissue organized into islet-like structures. 

Treatment of pancreatic bud cultures with exogenous TGF-β leads to an increase in the 

proportion of endocrine tissue and the addition of a TGF-β neutralizing antibody to the 

cultures disrupts the morphogenesis of the explants [104,130]. We utilized this system to 

investigate whether CTGF interacts with TGF-β during pancreas development. We 

hypothesized that if CTGF both enhances TGF-β signaling and is a downstream effector 

of TGF-β, it may be required for the pro-endocrine effects of TGF-β on the epithelium 

(Figure 4-2). Therefore, wild type and CTGF global null pancreatic buds were cultured in 

the presence of TGF-β and endocrine development was examined. In contrast to 

previous results, treatment of wild type pancreatic bud explants with TGF-β did not 

increase the proportion of endocrine tissue in the buds in our experiments. Thus, we 

were unable to determine whether CTGF interacts with TGF-β using this system.  
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Figure 4-2. Schematic of bud culture experiments. (A) TGF-β has been shown 
to increase endocrine mass when added to wild type (WT) buds. (B) If TGF-β
has the same effect on WT and CTGF null (CTGF-/-) buds, CTGF is not acting 
downstream of TGF-β. (C) If TGF-β has less of a pro-endocrine effect on 
CTGF null buds, CTGF may be acting downstream of TGF-β.   
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CTGF regulates cell migration and adhesion 

 CTGF has been shown to affect the processes of cell migration, adhesion, and 

extra cellular matrix remodeling in other tissue types.  For example, pancreatic stellate 

cells, skin fibroblasts, and human vascular endothelial cells (HUVECs) display increased 

adhesion when plated on CTGF [145,146,159].  CTGF also stimulates both directional 

and non-directional migration of multiple cell types. Over-expression of CTGF in vascular 

smooth muscle and chondrosarcoma cells increases migration and MMP activity, 

suggesting that the degradation of extracellular matrix in response to CTGF may 

contribute to changes in cell motility [161,205].  A recent study demonstrated that CTGF 

expression induces migration and metastasis of gastric carcinoma cells in nude mice 

[206]. The effects of CTGF on adhesion and migration are attributed, in part, to its 

interactions with specific integrins and heparin sulfate proteoglycans. Adhesion of skin 

fibroblasts to CTGF involves formation of α6β1-containing focal adhesion complexes 

and activation of focal adhesion kinase (FAK) and Rac [162]. On the other hand, CTGF-

β3 integrin interactions have been shown to stimulate dephosphorylation of FAK and 

focal adhesion and cytoskeleton disassembly leading to mesangial cell migration [163]. 

These data combined with the defects in islet morphogenesis in CTGF null mutants led 

us to ask whether CTGF affects migration or adhesion of cells in the developing 

pancreas. We performed migration and adhesion assays on cells isolated from e18.5 

pancreata in the presence or absence of exogenously added CTGF. Our data indicate 

that CTGF does not promote migration in our system; however, preliminary data 

suggests that CTGF may promote cellular adhesion. Additionally, CTGF null cells did not 

appear to have defects in migration.  
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Results 

 

Examining the role of CTGF in TGF-β-mediated endocrine differentiation and 
proliferation 
 
 We hypothesized that if CTGF acts downstream of the TGF-β pathway during 

pancreas development, it may be required for the effects of TGF-β on endocrine 

differentiation and proliferation (Figure 4-2). To determine whether CTGF null pancreas 

responds similarly to wild type pancreas to treatment with exogenous TGF-β, pancreatic 

buds were dissected at e12.5 from litters containing wild type, CTGF heterozygous, and 

null embryos. Pancreata were cultured in 3D collagen I gels with or without the addition 

of 5 ng/ml TGF-β.  In culture, development of the buds resembles pancreas development 

in vivo; buds grow, undergo branching, and develop exocrine and endocrine tissue 

(Figure 4-3). After 7 days in culture, the explants were fixed and immunolabeled in whole 

mount for insulin and glucagon. Confocal microscopy was used to optically section and 

image the buds. The proportion of the total epithelial area which was composed of 

insulin and glucagon positive tissue was then quantified using Metamorph software.  

 Previous studies indicated that the addition of TGF-β to cultured pancreatic buds 

led to an increase in the proportion of the bud that was composed of endocrine tissue 

[104]. In our cultures, although the mesenchyme exhibited morphological changes with 

the addition of 5 ng/ml of TGF-β, we did not detect a significant increase the amount of 

endocrine tissue or any changes in the percentages of insulin or glucagon-positive area 

in wild type buds (Figure 4-4). The fact that the pancreatic mesenchyme displayed 

morphological changes suggested that the TGF-β was biologically active; however it is 

possible that the TGF-β was unable to diffuse into the center of the culture. In order to 

monitor endocrine development in real-time throughout the culture period without having 

to first fix and immunolabel the buds, e12.5 pancreas buds were cultured from mice 
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Figure 4-3. Pancreatic explants develop normally in culture. An optical section 
taken through a pancreatic bud that was dissected at e12.5, cultured for 7 
days, and stained in whole mount for insulin (green) and glucagon (red).

Insulin/Glucagon
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Figure 4-4. TGF-β does not have a pro-endocrine effect on pancreatic bud 
cultures. Wild type pancreatic explants treated with TGF-β show no difference 
compared to untreated buds (control) in the percentage of the total bud area 
composed of endocrine tissue (A), insulin-positive area (B) or glucagon 
positive-area (C). Buds were dissected at e12.5 and cultured in the presence 
or absence of 5 ng/ml TGF-β for 7 days. n=4 control and 5 TGF-β treated.  
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expressing green fluorescent protein (GFP) from the mouse insulin I promoter (MIP-

GFP) [190]. The MIP-GFP buds developed normally during the 7 day culture period, and 

it was possible to repeatedly visualize GFP expression in the same bud after 2 days in 

culture (Figure 4-5A). The β cells (GFP-positive cells) in explants treated with TGF-β 

appeared more scattered compared to untreated MIP-GFP pancreas buds (Figure 4-5B), 

suggesting that the TGF-β was indeed active within the epithelium. However, it did not 

appear that the number of β cells was increased compared to untreated buds, indicating 

that similar to our previous experiments, TGF-β did not have a pro-endocrine effect on 

pancreatic explants in our hands. Because TGF-β did not increase the amount of 

endocrine tissue in wild type buds, we were unable to use this assay to further examine 

the effect of TGF-β on CTGF null buds.  

 

CTGF does not promote migration of e18.5 pancreatic cells 

 In order to determine whether CTGF affects the migration of embryonic 

pancreatic cells, migration assays were performed using dissociated pancreata from 

embryos at e18.5, the stage at which islet morphogenesis occurs. Cells were plated on 

transwell filter inserts that were coated on the underside with BSA as a control or 

collagen IV, which has been previously shown to stimulate pancreatic cell migration (Dr. 

Vincenzo Cirulli, University of Washington, personal communication). Increasing 

concentrations of recombinant human CTGF were added to the media below the 

transwells. After 24 hours, the cells that migrated to the underside of the transwells were 

fixed and the cells on the upperside of the transwells were removed. The inserts were 

stained with toluidine blue and the number of cells that had migrated to the underside of 

the transwell was quantified. Compared to BSA, 10 µg/ml collagen IV significantly 

stimulated pancreatic cell migration (Figure 4-6A). This data is consistent with previous 
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A

B

Figure 4-5. (A) Time course of MIP-GFP buds cultured for 7 days in collagen 
gels. The GFP image is below the corresponding brightfield image for each 
day. (B) MIP-GFP buds cultured for 7 days with 5 ng/ml TGF-β (right) showed 
scattered GFP positive cells compared to untreated buds (left), but no 
difference in the total number of GFP positive cells.
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Figure 4-6. Migration assays using cells from e18.5 pancreata. (A) CTGF did 
not stimulate migration. Wild type cells were plated either on transwells coated 
with BSA or 10 µg/ml collagen IV (Col IV). Increasing concentrations of CTGF 
were added to the media below the transwells. The dose response curve was 
repeated twice. (B) Wild type (WT), CTGF heterozygous (CTGF+/-) or CTGF 
null (CTGF-/-) cells were plated on col IV coated transwells. No significant 
difference in migration was seen between the WT and CTGF-/- cells.  At least 
3 wells per genotype were used.
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reports that collagen IV stimulates migration of embryonic pancreatic cells and suggests 

that the cells in our system were capable of migration. However, the addition of 

increasing concentrations of CTGF to the culture media did not significantly stimulate 

migration (Figure 4-6A). It may be that migration is maximally stimulated by collagen IV 

and CTGF is unable to induce any further migration. To address this possibility, cells 

were plated on uncoated transwells and increasing concentrations of CTGF were added 

to the media below the filter. Very few cells migrated on uncoated wells, and the addition 

of CTGF did not enhance migration (data not shown). These results suggest that in this 

system, CTGF does not appear to act as a chemoattractant for pancreatic cells. It should 

be kept in mind, however, that the cells used for these assays are a heterogeneous 

mixture of all cell types found in the pancreas and it is unclear exactly which cell types 

are migrating in this assay. 

 While the addition of exogenous CTGF may not be sufficient to stimulate 

migration in vitro, endogenous CTGF may still be required for pancreatic cell migration. 

To determine if cells lacking CTGF have defects in migration, dissociated pancreatic 

cells from wild type, CTGF heterozygous, and CTGF global null embryos were plated on 

transwells coated with collagen IV. No significant difference in migration was seen 

between the different genotypes, suggesting that CTGF is not required for pancreatic 

cells to migrate on a collagen IV matrix (Figure 4-6B).  

 Finally, we asked whether exogenous CTGF affects the adhesion of pancreatic 

cells. Dissociated cells from e18.5 pancreata were plated in well plates coated with BSA 

or increasing concentrations of CTGF and incubated for 1 hour. The non-adherent cells 

were removed and those that remained attached to the plate were quantified. 

Preliminary data suggest that CTGF may stimulate adhesion of pancreatic cells, which is 

consistent with data indicating that CTGF stimulates adhesion of other cell types (Figure 

4-7).  
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Control CTGF 500 ng/well

Figure 4-7. Preliminary data indicates that CTGF may promote adhesion of 
dissociated pancreatic cells. Cells from e18.5 wild  type pancreata were plated 
in wells that were coated with buffer (A) or 500 ng/well CTGF (B). After 1 hour, 
cells that were non-adherent were washed away, and the wells were stained 
with toluidine blue to stain all remaining cells. n=3 wells per treatment, the
experiment was performed once.
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Discussion 

 

Exogenous TGF-β did not promote endocrine differentiation or proliferation in 
vitro 
  

In our assays, exogenous TGF-β did not expand the endocrine population in 

cultured pancreata. The reason for the differing results between these studies and those 

of Sanvito et al. is not known. There may be slight differences in culturing conditions 

between the two studies which are not discernable by examining the published methods 

described in the previous study. Alternatively, since there are not many studies 

published reporting a pro-endocrine role for TGF-β in vitro, perhaps this study is not 

reproducible. The reports in the literature describing the role of TGF-β signaling 

components in pancreas development are seemingly contradictory. Although there is 

data which supports the idea that TGF-β signaling promotes endocrine and β cell 

development [108,109], other data indicates that TGF-β signaling has no effect on the 

endocrine compartment and may be more important for duct and acinar development 

[107,204,207]. Furthermore, some studies demonstrate that TGF-β signaling actually 

may act to limit the amount of endocrine tissue [107]. Thus, it is likely that the role of 

TGF-β in pancreas development is determined by timing, level of activation, and the 

specific ligands and receptors involved.  

 Future studies will be aimed at understanding the signaling pathways with which 

CTGF interacts to regulate pancreas development. To determine whether CTGF 

enhances TGF-β signaling during pancreas development in vitro, pancreatic bud cultures 

could be treated with recombinant human CTGF and the activation of TGF-β could be 

assessed by examining the expression of phosphorylated Smad2/3 or known TGF-β 

target genes.  Alternatively, the relationship between CTGF and TGF-β could be 
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examined in vivo. The global null allele of CTGF could be interbred to mice carrying a 

transgenic reporter allele containing a Smad binding element to assay for TGF-β 

activation in CTGF null embryos. If CTGF normally acts to enhance TGF-β activity, we 

would expect to see reduced reporter activation in the CTGF null embryos. We have 

also generated a transgenic mouse model of inducible CTGF over-expression 

specifically in β cells (see Chapter VI). Over-expression of CTGF during development 

leads to increased endocrine proliferation and endocrine mass. The mechanisms leading 

to the increase in endocrine proliferation could also be examined by interbreeding CTGF 

over-expressing mice to the TGF-β reporter mice to determine whether increased levels 

of CTGF enhances TGF-β activity [208]. Preliminary data from our lab indicates that β-

catenin, an effector of Wnt signaling, may be mislocalized in CTGF null pancreata, 

suggesting that loss of CTGF may affect Wnt signaling. To determine if CTGF inhibits 

Wnt signaling in the pancreas, CTGF over-expressing mice could be interbred with mice 

carrying a reporter allele containing a multimerized LEF/TCF binding site driving lacZ 

expression [209]. Similarly, to examine whether BMP signaling is altered in CTGF over-

expressing pancreata, a BMP reporter allele could be used [210,211]. 

  

CTGF does not act as a chemotactic factor during pancreas development 

 Analysis of CTGF global null embryos indicated that CTGF is required for 

separation of endocrine tissue from the ductal epithelium. We hypothesized that the 

defects in islet morphology may be due to defects in pancreatic cell migration. Therefore, 

migration assays were performed using cells isolated from wild type, CTGF 

heterozygous, and CTGF null pancreata. Our results suggest that CTGF null cells do not 

have defects in migration on transwells coated with collagen IV. Although CTGF null 

cells are able to migrate similarly to wild type cells on collagen IV, CTGF null cells may 
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have defects in signaling though integrins which do not interact with collagen IV. 

Therefore defects in migration may be observed if CTGF null cells are plated on 

transwells coated with a different ECM or a combination of matrices that more closely 

resembles the ECM which is present in the developing pancreas. Alternatively, a scratch 

assay could be used to determine if cells lacking CTGF have defects in migration 

independent of interactions with ECM; however this assay requires a confluent layer of 

cells, which do not form from dissociated pancreatic cells.  Another explanation for these 

data is that loss of CTGF may only affect the migration of endocrine cells, which are a 

small proportion of the total cells in the pancreas. To determine if endocrine cells fail to 

migrate, the underside of the transwells could be immunolabeled with markers of 

endocrine cells and the number of migrating wild type and CTGF mutant endocrine cells 

could be quantified. Alternatively, mice carrying the CTGF global null allele could be 

interbred with MIP-GFP mice to generate CTGF null β cells which are GFP-positive. Live 

cell imaging of control and CTGF null explants could reveal whether lack of CTGF 

impairs β cell migration. Finally, the loss of CTGF may not affect the migration of 

pancreatic cells directly; in the absence of CTGF adhesion or extracellular matrix 

remodeling may be altered instead.  

  These studies also demonstrated that exogenous CTGF does not stimulate 

migration of pancreatic cells isolated from e18.5 embryos that are plated on uncoated 

transwells or transwells coated with collagen IV. One possible explanation for these 

results is that CTGF may not stimulate the migration of dissociated pancreatic cells in 

solution. Cell-cell or cell-ECM interactions may be necessary for CTGF to stimulate 

migration and they are likely disrupted during the enzymatic digestions required to 

dissociate the pancreas into a single cell suspension. The interactions between CTGF 

and MMPs also may be disrupted by the dissociation of these cells. It has previously 
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been shown that MMPs cleave CTGF into different fragments which retain biological 

activity in culture. Furthermore, these fragments have different biological activities. The 

full length CTGF added in our migration assays may not stimulate migration of 

pancreatic cells; CTGF may need to be cleaved into a form which promotes migration. 

Purified CTGF cleavage fragments could be added to the cultures both separately and in 

combination to determine if they can stimulate migration. These results may also 

indicate that CTGF does not act by stimulating the migration of endocrine cells. 

Alternatively, CTGF may promote the degradation of the extracellular matrix surrounding 

the endocrine cells, allowing them to migrate in a manner that is independent of CTGF.  

 Preliminary data indicate that CTGF may promote the adhesion of embryonic 

pancreatic cells. These data are surprising considering that CTGF null embryos have 

endocrine tissue which is more closely apposed to ducts than in wild type embryos. One 

might therefore hypothesize that CTGF promotes migration by inhibiting the adhesion of 

pancreatic cells, thus allowing them to migrate. The fact that CTGF appeared to increase 

the adhesive property of cells in this assay may indicate that CTGF may promote the 

adhesion of specific cell types, for example, ductal cells, thereby allowing endocrine cells 

to migrate. Immunostaining the wells with cell-type specific markers after performing an 

adhesion assay would indicate whether CTGF increases the adhesion of a certain cell 

type. We have data that demonstrates that the level of CTGF in the pancreas is 

important for regulating pancreas development. In our assays, the amount of CTGF 

added to the cultures could shift the biological activity of CTGF from decreasing 

adhesion to stimulating adhesion. Performing a more precise dose response curve 

examining CTGF amount vs. adhesion would address this question. Finally, inactivating 

CTGF in a cell type-specific manner using a conditional allele of CTGF (see Chapter V) 

along with tissue-specific Cre recombinases may provide insight to the role of CTGF in 

pancreatic cell adhesion. Performing adhesion assays using dissociated pancreas from 
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embryos with CTGF inactivated from specific cell types may reveal whether CTGF 

produced by a certain cell type is required for adhesion.  
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CHAPTER V 

 

DISSECTING THE ROLE OF CTGF IN ISLET DEVELOPMENT USING CONDITIONAL 
GENE INACTIVATON 

 
 
 

Introduction 

 

We previously determined that the secreted factor connective tissue growth 

factor (CTGF) is also required for embryonic β cell proliferation. CTGF null embryos 

display a significant decrease in β cell proliferation specifically at e18.5 and also have 

defects in pancreatic endocrine lineage allocation and islet morphogenesis [188]. In the 

mouse, CTGF is expressed in the developing pancreas as early as e12.5 and is 

localized to the developing blood vessels, β cells, ducts, and mesenchyme [188].  As 

development proceeds, CTGF remains highly expressed in ducts and endothelial cells 

but its expression decreases in β cells. By postnatal day (P) 3, CTGF is no longer 

detected in β cells but is still expressed in ducts and endothelial cells in adult mice and 

humans. CTGF null embryos die at birth due to skeletal defects, limiting analysis of the 

pancreatic phenotype to embryonic stages [170]. At early stages, embryos lacking CTGF 

show normal pancreas development but have an altered endocrine cell ratio beginning 

at e13.5; α cells are increased without change in total endocrine area, proliferation or 

apoptosis [188]. These data suggest a role for CTGF in regulating endocrine cell fate 

decisions specifically beginning at the secondary transition, a stage between e13 and 

e16 when it is thought that the majority of endocrine cells that will contribute to the 

mature islet are generated. 

CTGF is a modular protein that acts in other systems as both an autocrine and 

paracrine factor via its interactions with integrins, TGF-β, BMPs, and Wnts [199]. 
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Because CTGF is expressed by multiple cell types in the pancreas, it is not clear from 

our previous studies whether CTGF acts in an autocrine or paracrine manner to promote 

proper endocrine lineage allocation, β cell proliferation, and islet morphogenesis. We 

hypothesized that the various sources of CTGF may act differently to promote the 

cellular processes necessary for pancreas development. To determine how the various 

CTGF-producing cells within the pancreas contribute to its role in endocrine 

differentiation and proliferation, a conditional null allele of CTGF was used along with 

tissue-specific Cre recombinases to inactivate CTGF from the pancreatic epithelium, 

vasculature, or endocrine progenitors. These data indicate that CTGF acts as paracrine 

factor produced by endothelial cells that promotes embryonic β cell proliferation. 

Additionally, CTGF produced by the β cells themselves is required for β cell proliferation, 

making it the first autocrine regulator of embryonic β cell proliferation identified. In 

contrast, different CTGF sources function redundantly to promote lineage allocation and 

islet morphogenesis. Inactivating CTGF from the endothelial cells, epithelium, or β cells 

did not lead to significant alterations in the endocrine cell ratio or in islet morphogenesis, 

suggesting that the remaining sources of CTGF may compensate for the loss of CTGF 

from one source with respect to these processes.  

 

Results 

 

Characterization of a novel conditional-by-inversion (COIN) allele of CTGF 

To address how CTGF-mediated autocrine and paracrine communication 

between the different pancreatic cell types regulates the differentiation of progenitors 

into endocrine cells and their subsequent proliferation and islet morphogenesis, CTGF 

was conditionally inactivated in a cell type-specific manner using a conditional-by-
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inversion (CTGFe2COIN) allele generated by Regeneron Pharmaceuticals (Figure 5-1) 

[172]. The CTGFe2COIN allele contains a GFP cassette placed within exon 2 of the CTGF 

locus, dividing it into two parts (Figure 5-2). In the absence of Cre recombinase, this 

cassette is spliced out due to the presence of splice donor and splice acceptor sites and 

a normal CTGF message is produced. Cre mediates the inversion of the CTGFe2COIN 

allele and places the GFP cassette in the correct orientation to be expressed and a 

polyA sequence such that the transcription of the CTGF message is terminated 

prematurely. The resulting protein is a fusion protein that consists of the CTGF signal 

sequence, a small portion of exon 2, and a transmembrane GFP. Real-time PCR was 

used to determine that the presence of the e2COIN intron within exon 2 did not affect 

CTGF message levels (Figure 5-3A). Furthermore, to determine whether splicing of the 

CTGFe2COIN allele introduces or alters nucleotides that may ultimately disrupt the function 

of the CTGF protein, the region of exon 2 separated by the CTGFe2COIN allele was PCR-

amplified using cDNA from CTGFe2COIN/e2COIN pancreata. The fragment was sequenced 

and the nucleotide sequence was compared to the sequence of wild type CTGF. The 

results showed that the sequence of exon 2 in the CTGFe2COIN allele is identical to the 

wild type allele (data not shown). This data is consistent with previous results from Dr. 

Aris Economides at Regeneron Pharmaceuticals indicating that the splicing of other 

COIN alleles also does not introduce or alter any nucleotides within the mRNA 

sequence. CTGFe2COIN/e2COIN mice develop normally and do not display any overt skeletal 

defects, suggesting that the CTGFe2COIN allele does not act as a hypomorphic allele in 

the absence of Cre. 

In order to confirm the Cre-dependent inversion of the CTGFe2COIN allele, 

CTGFe2COIN/e2COIN mice were interbred to mice expressing Cre from the Sox2 promoter 

[212] (from Dr. Mark Magnuson, Vanderbilt University) to generate mice carrying a 

globally inverted form of the COIN allele (CTGFe2COIN-INV). CTGFe2COIN-INV mice were 
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Epithelium
(Pdx-1-Cre) Vasculature

(Tie-1-Cre)

β cells
(Ngn3-CreBAC)

Figure 5-1. Schematic of tissue-specific CTGF inactivation. In order to 
determine which cellular source(s) of CTGF are required for lineage allocation, 
β cell proliferation and islet morphogenesis, a conditional allele of CTGF was 
bred to tissue specific Cre lines to inactivate CTGF throughout the pancreatic 
epithelium, vasculature, or early in the endocrine lineage. 
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Figure 5-2. A schematic of the CTGFe2COIN allele. (A) The CTGF locus 
contains five exons. (B) The COIN intron is placed within exon2 dividing it into 
two parts (2a and 2b). In the absence of Cre the COIN intron is spliced out. 
The solid lines below each diagram indicate regions that are included in the 
CTGF message after splicing, while the dotted lines indicate regions which are 
spliced out. (C) In the presence of Cre, the COIN intron is inverted, placing the 
GFP (TM-eGFP) in the correct orientation to be expressed and a polyA
sequenence (pA) such that it terminates the transcription of the CTGF 
message. The arrowheads indicate loxp sites.
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Figure 5-3. The COIN allele does not affect CTGF expression in the absence
of Cre. (A) Real-time PCR for Ctgf expression in wild type (WT), CTGFe2COIN/+

(COIN/+), and CTGFe2COIN/e2COIN (COIN/COIN) pancreata. (B) PCR to 
specifically detect the inverted form of the CTGFe2COIN allele (COIN-INV) using 
DNA isolated from pancreatic sections from CTGFe2COIN/+ (C/+) and 
CTGFe2COIN/e2COIN;Pdx-1-Cre (C/C;Cre) pancreata.
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interbred with CTGF global null mice (CTGFLacZ) to generate CTGFe2COIN-INV/LacZ mice. 

Similar to global CTGF null mice, CTGFe2COIN-INV/LacZ pups died at birth and displayed 

skeletal defects. Furthermore, northern blotting analysis of CTGFe2COIN-INV/LacZ pancreata 

revealed that no CTGF message is detected (data not shown). Together, these data 

suggest that the CTGFe2COIN acts as a null allele in its inverted form. The Cre-dependent 

inversion of the CTGFe2COIN allele was confirmed in individual pancreata using PCR on 

DNA isolated from paraffin sections of embryonic pancreata (Figure 5-3B).  In theory, an 

advantage of using the CTGFe2COIN allele over a traditional conditional allele is that 

inactivation of CTGF should coincide with the expression of GFP and allow for 

assessment of recombination efficiency at the cellular level. However, we were unable to 

detect GFP fluorescence or detect GFP expression by indirect protein localization in 

tissues from mice which carried the CTGFe2COIN and expressed Cre. This was later 

determined to be due to the fact that the GFP is linked to a transmembrane domain 

which causes misfolding and degradation of the protein (Dr. Aris Economides, personal 

communication).  

To determine the efficiency of CTGF inactivation in a cell-type specific manner, 

immunohistochemistry was performed using several commercial anti-CTGF antibodies 

as well as with antibodies generated by our collaborator Dr. David Brigstock at Ohio 

State University. In our hands, we were unable to detect a specific CTGF signal in 

pancreatic samples using any of these antibodies. As an alternative, a riboprobe was 

generated in order detect CTGF mRNA by in situ hybridization. Although CTGF mRNA 

could be detected by in situ hybridization using this probe on sections of intestine and 

kidney (Figure 5-4), no specific signal could be detected in pancreatic tissue. This is 

likely due to the abundance of RNAses in pancreatic exocrine tissue which quickly 

degrade RNA during the tissue dissection and RNA isolation process. Thus, at this time 
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Sense Anti-sense

A B

Figure 5-4. CTGF anti-sense probes detect CTGF expression. In situ
hybridization of e18.5 intestine using CTGF sense (A) and anti-sense (B) 
probes.
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we are unable to identify recombined cells or quantify the efficiency of recombination at 

the cellular level. 

 

CTGF acts in both a paracrine and autocrine manner to promote proper levels of β 
cell proliferation during embryogenesis 

 
Previous work demonstrated a role for endothelially-derived factors in regulating 

islet development.  To determine whether CTGF produced by the endothelium promotes 

β cell proliferation during embryogenesis, CTGFe2COIN mice were interbred to transgenic 

mice expressing Cre recombinase from the Tie-1 promoter to ultimately generate litters 

containing embryos in which CTGF is inactivated specifically in the vasculature during 

development (CTGFe2COIN/e2COIN;Tie-1-Cre) [191]. Because the presence of the e2COIN 

intron does not affect expression of CTGF and CTGFe2COIN/+ and CTGFe2COIN/e2COIN mice 

develop normally, CTGFe2COIN/+ and CTGFe2COIN/e2COIN and littermates were used 

interchangeably as controls in all subsequent experiments. β cell replication was 

analyzed in control and CTGFe2COIN/e2COIN;Tie-1-Cre embryos at e18.5 using 

immunohistochemistry to examine expression of phosphorylated histone H3 (pH3) and 

insulin. Compared to control embryos, embryos in which CTGF was inactivated in 

endothelial cells had a significant decrease in β cell proliferation (Figure 5-5A).  At this 

stage, 10.2 ± 0.49% of β cells were proliferating in control embryos, while CTGF mutants 

had nearly a 60% reduction in β cell proliferation (4.4 ± 0.56%, p=0.002), indicating that 

CTGF secreted by endothelial cells is required for embryonic β cell proliferation at late 

gestation. Since CTGF is still produced by the pancreatic epithelium (ducts and β cells) 

in CTGFe2COIN/e2COIN;Tie-1-Cre mutant embryos, we conclude that the level of CTGF 

produced by the epithelium is not sufficient to promote normal β cell proliferation.  

To address whether CTGF produced by an epithelial source in the pancreas, 

either the ducts or the β cells, also affects β cell proliferation, CTGF was inactivated 
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Figure 5-5. CTGF from multiple sources is required for β cell proliferation 
during embryogenesis. Quantification of β cell proliferation normalized to 
control littermate embryos in CTGFe2COIN/e2COIN;Tie-1-Cre (A), 
CTGFe2COIN/e2COIN;Pdx-Cre (B), and CTGFe2COIN/e2COIN;Ngn3-CreBAC (C) 
embryos at e18.5 (A and B) and P1 (C). n=3-5 animals per genotype. 
*p<0.05 compared with Control.
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throughout the pancreatic epithelium beginning at e9.5 by interbreeding mice carrying 

the CTGFe2COIN allele to Pdx-1-Cre mice [53]. Analysis of β cell proliferation at e18.5 

indicated that the apparent percentage of replicating β cells in control mice was 

approximately 10-fold lower than in control mice from Tie-1-Cre litters. This difference 

was determined to be due to a change in pH3 antibody lot availability and an apparent 

change in overall sensitivity of detection between the two lots (Figure 5-6). Nonetheless, 

CTGFe2COIN/e2COIN;Pdx-1-Cre embryos displayed a significant reduction in the percentage 

of replicating β cells compared to control littermates (Figure 5-5B). Control embryos 

displayed 0.5 ± 0.04% β cell proliferation, while Pdx-1-Cre mutants had 0.14 ± 0.34% 

(p=0.001). Thus, CTGF produced by an epithelial source is also required for β cell 

proliferation.  

Because Pdx-1-Cre removed CTGF function from both the ductal epithelium and 

β cells, CTGFe2COIN mice were also bred to Ngn3-CreBAC mice [68] to inactivate CTGF 

early from the endocrine lineage. CTGF expression is not localized to any other 

hormone-expressing cell type in the mouse pancreas; therefore using Ngn3-CreBAC 

assayed for the role of CTGF in autocrine β cell signaling. CTGFe2COIN/e2COIN;Ngn3-CreBAC 

embryos had a significant (36 percent) reduction in β cell proliferation at P1 compared to 

controls (Figure 5-5C). While an average of 0.87 ± 0.06% of β cells were proliferating in 

controls, CTGFe2COIN/e2COIN;Ngn3-CreBAC mutants had an average of 0.56 ± 0.08% 

(p=0.02) proliferating β cells. These data indicate that autocrine CTGF-mediated 

signaling is also required to promote proper levels of embryonic β cell proliferation. 

Currently a Cre driver line with which CTGF can specifically and efficiently be inactivated 

from embryonic ducts is not available. Therefore, we were unable to directly investigate 

the role of CTGF produced by the ducts in β cell proliferation at this time. Inactivating 

CTGF in endothelial cells, the pancreatic epithelium, or β cells each lead to a defect in β 
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Lot A Lot B

A B
Insulin/pH3/DAPI

Figure 5-6. The sensitivity of the pH3 antibody to detect proliferating cells varied 
depending on the lot. Adjacent slides from a CTGFe2COIN/e2COIN pancreas were 
stained with two different lots of pH3 antibody. Lot A (A) appeared to be more 
sensitive at detecting proliferating cells than Lot B (B). Arrows indicate 
proliferating cells. 
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cell proliferation, suggesting that the function of CTGF produced by each one of these 

sources is non-redundant with regards to β cell proliferation.  

 

Different CTGF sources function redundantly to promote lineage allocation and 
islet morphogenesis 
 
 Global inactivation of CTGF leads to defects in endocrine lineage allocation and 

islet morphology. CTGF null mutant islets have an increase in glucagon-positive area 

and a concomitant decrease in insulin-positive area, islets fail to separate from the 

ductal epithelium, and islet architecture is perturbed such that peripheral cell types are 

found scattered throughout the islet [188]. Therefore, we investigated which source(s) of 

CTGF are required for generating the correct proportions of endocrine cell types and for 

islet morphogenesis. The proportion of endocrine tissue composed of insulin and 

glucagon-positive area was quantified at P1 in CTGFe2COIN/e2COIN;Tie-1-Cre, 

CTGFe2COIN/e2COIN;Pdx-1-Cre, and CTGFe2COIN/e2COIN;Ngn3-CreBAC conditional-mutant 

embryos as well as in littermate controls. Endocrine composition was not significantly 

different from controls in any of the tissue-specific mutants (Figure 5-7A-C). The 

proximity of islets to ducts and islet architecture was also examined in each of the tissue-

specific mutants and was found to be similar to controls (Figure 5-7D and E), suggesting 

that the remaining sources of CTGF compensate for the loss of CTGF from one source 

with respect to both lineage allocation and islet morphogenesis. Alternatively, the 

reduction in CTGF levels when CTGF is inactivated from a single source may not be 

significant enough to lead to alterations in lineage allocation. 
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Figure 5-7. Different sources of CTGF function redundantly to promote 
lineage allocation and islet morphogenesis. The proportion of the endocrine 
tissue composed of insulin-and glucagon-positive area was not significantly 
altered in CTGFe2COIN/e2COIN;Tie-1-Cre (A), CTGFe2COIN/e2COIN;Pdx-1-Cre (B) and 
CTGFe2COIN/e2COIN;Ngn3-CreBAC (C) mutants at P1. n=3 animals of each 
genotype. (D-E) Islet morphogenesis was also unaltered in conditional 
mutants. Sections from P1 pancreata were immunolabeled with insulin and 
glucagon (Endo, green) and DBA (red). The distance between the endocrine 
tissue and ducts was measured in control (D) and mutant (E) pancreata and 
found not to be significantly different. Although only Pdx-1-Cre mutants are 
shown, mutants from other Cre lines were analyzed and found not to be 
significantly different from controls. 
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Discussion 

 

In this study, we investigated the tissue interactions by which CTGF promotes 

normal pancreatic islet development. We used a conditional gene inactivation strategy to 

inactivate CTGF from endothelial cells and the entire pancreatic epithelium and found 

that β cell proliferation was significantly impaired when CTGF is lost from either source. 

Furthermore, we showed that the β cells themselves are a required source of CTGF 

within the epithelium, making CTGF the first secreted β cell-derived factor that has been 

demonstrated to be required for embryonic β cell proliferation. Although we were unable 

to directly assess the role of CTGF produced by pancreatic ducts in this study, it is 

possible that CTGF produced by the ductal epithelium also contributes to β cell 

proliferation.  

It is noteworthy that although CTGF is a secreted factor, the remaining sources 

of CTGF were unable to completely compensate for the defect in β cell proliferation that 

results when CTGF was lost from a single source. We therefore conclude that the 

process of β cell proliferation in the embryo is particularly sensitive to the total level of 

CTGF to which the β cells are exposed, and that the overall level of CTGF in the 

pancreas is more important for promoting β cell proliferation than a specific cellular 

source. These data are consistent with our previous finding that β cell proliferation is 

significantly impaired in CTGF heterozygous mutant embryos, which have a 50 percent 

reduction in overall CTGF expression in the pancreas [188]. In contrast, the processes of 

endocrine cell lineage allocation and islet morphology may be less sensitive to the 

overall levels of CTGF than β cell proliferation, as they were unaffected when CTGF was 

removed from only one pancreatic source.  

105



To address the hypothesis that the overall levels of CTGF are more important 

than one particular cellular source, we planned to examine the amount of CTGF protein 

remaining in each of tissue-specific mutant lines using western blotting and determine 

whether the reduction in CTGF in each of the Cre lines correlates with the reduction in β 

cell proliferation. Pancreata from e18.5 control and mutant embryos from each Cre line 

were dissected and sent to our collaborator for analysis. Unfortunately, our collaborators 

were unable to detect any CTGF in our control samples, so we were unable to compare 

control and mutant levels of CTGF. This is likely due to the fact that the assay used was 

not sensitive enough to detect the amount of CTGF in pancreas tissue at that time. As 

an alternative, we are currently generating embryos to perform real-time PCR on control 

and mutant RNA samples to examine CTGF message levels. Although we do not yet 

have data regarding the percentage of reduction in CTGF levels in each of the tissue-

specific mutant lines, we hypothesize that the reduction in CTGF is less than 50 percent 

of controls. CTGFLacZ/+ embryos have approximately a 50 percent reduction in CTGF 

protein and display defects in β cell proliferation, lineage allocation, and islet 

morphogenesis. The fact that the tissue-specific mutants have normal lineage allocation 

and islet morphogenesis suggest that the remaining level of CTGF in the pancreas is 

sufficient to promote these processes.  

Alternatively, we may not detect a difference in the overall level of CTGF in 

pancreata from each of the conditional mutants compared to control embryos. CTGF is 

proteolytically cleaved into N and C-terminal fragments; the N-terminal fragment can 

diffuse away from the cellular source while the C-terminal fragment is tethered to the cell 

membrane due to interactions with integrins and heparan sulfate proteoglycans. 

Therefore, it is possible that the local concentration of CTGF seen by the β cells is 
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decreased in the tissue-specific mutants and impairs β cell proliferation, but that this 

change cannot be detected by gene expression profiling of whole pancreata.  

There has been a longstanding appreciation of the intricately connected 

relationship between the pancreatic vasculature and the endocrine tissue; however the 

relevant molecules which mediate the interaction between the endothelium and the 

pancreatic epithelium have not yet been identified. Elegant studies have demonstrated 

that endothelial cells have the ability to induce pancreas outgrowth and endocrine 

differentiation during development [26,27,196]. Furthermore, in adult islets, the vascular 

basement membrane has been shown to produce laminins which promote insulin 

expression and β cell proliferation [213]. Our studies indicate that CTGF mediates the 

interaction between the vasculature and the pancreatic epithelium.  Furthermore, CTGF 

is the first factor identified to be secreted by the endothelium that is required for β cell 

proliferation in the embryo, indicating that the importance of the vasculature-endocrine 

interaction can be extended to include a role for endothelial cells in embryonic β cell 

proliferation. CTGF produced by the vasculature may also promote proper endocrine 

lineage allocation; however, we were unable to determine the role of endothelial-derived 

CTGF in endocrine differentiation because the other sources of CTGF appear to be able 

to compensate for the loss of CTGF from one source.  

During pregnancy in mice and humans, β cell mass expands to meet the 

increased metabolic demand for insulin and in rodents this expansion is due to a three-

fold enhancement of β cell proliferation [214].  An increase in vascular growth has been 

shown to precede β cell proliferation in pregnant rats, suggesting a role for endothelial 

cells in stimulating β cell proliferation in response to pregnancy [215]. The fact that 

CTGF is also highly expressed in adult islet vasculature suggests that CTGF may also 

promote the proliferation of adult β cells in response to metabolic stress or pregnancy. 
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Interestingly, we previously found that although CTGF is not normally expressed in adult 

β cells, it is re-expressed in β cells during pregnancy; therefore CTGF may act as both 

an autocrine and paracrine signal in regulating β cell proliferation in the adult as well as 

the embryo [188]. Studies are underway to determine the role of CTGF in normal adult β 

cell proliferation and under conditions of metabolic stress such as pregnancy.   

One question remaining from our studies is whether the decrease in β cell 

proliferation observed when CTGF is removed from endothelial cells is due to a direct 

role of endothelial cell-derived CTGF on β cell proliferation, or whether loss of CTGF 

affects blood vessel density and thus β cell proliferation indirectly. Although the role of 

CTGF in neovascularization and angiogenesis has not been examined in the pancreas, 

CTGF promotes endothelial cell migration and angiogenesis in vitro and in vivo in other 

systems [216]. Therefore, it is possible that in CTGFe2COIN/e2COIN;Tie-1-Cre mutant 

embryos, blood vessel density may be decreased and result in the decrease of an 

unidentified blood vessel-derived signal which is required for proper β cell proliferation. 

Studies to address this question are currently underway.  

We are also currently investigating whether the decrease in β proliferation 

observed during embryogenesis in each of the conditional mutants will translate to a 

decrease in β cell mass in the adult. In some mouse models, a decrease in embryonic or 

neonatal beta cell proliferation leads to a permanent reduction in β cell mass [194]. 

However, CTGFLacZ/+ animals have decreased β cell proliferation and β cell area at e18.5 

but normal β cell area in adulthood. This is due, in part, to individual β cell hypertrophy 

which compensates for the defect in proliferation. Therefore, if adult CTGF conditional 

mutants do not display decreased β cell mass, it may be that the defect in proliferation 

during embryogenesis is not severe enough to significantly impact adult β cell mass, or 

due to an increase in individual β cell size.  
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CHAPTER VI 

 

INDUCIBLE OVER-EXPRESSION OF CTGF DURING EMBRYOGENESIS 
INCREASES ISLET MASS BY ENHANCING ENDOCRINE CELL PROLIFERATION 

 
 
 

Introduction 
 
 

CTGF is required for proper lineage allocation, β cell proliferation, and islet 

morphogenesis during pancreas organogenesis. Since inactivation of CTGF leads to a 

decrease in β cell proliferation and β cell mass, we hypothesized that increased levels of 

CTGF may increase β cell mass. Increased levels of CTGF have been shown to 

promote proliferation and differentiation in vitro; however, few studies have examined the 

effects of over-expressing CTGF in vivo. In the postnatal lung, conditional over-

expression of CTGF in respiratory epithelial cells from P1 to P14 using an inducible 

system led to increased myofibroblast differentiation, fibrosis and proliferation [167]. A 

recent study demonstrated that 10-fold global over-expression of CTGF throughout 

development led to embryonic lethality [173]. Although the cause of lethality was not 

clear, these embryos displayed defects in craniofacial, brain, and vascular development. 

In contrast, global over-expression of CTGF in adult mice did not affect viability [173]. 

To study the effects of enhanced CTGF signaling on pancreas development, 

CTGF was over-expressed specifically in β cells during development using a transgenic 

inducible system and islet mass, endocrine cell proliferation, and differentiation were 

examined. We found that an increased level of CTGF in β cells was sufficient to increase 

islet mass and endocrine cell proliferation, while endocrine differentiation was not 

significantly altered. These data suggest that CTGF may be an attractive candidate for 
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inclusion in directed differentiation protocols where CTGF may be able to enhance the 

proliferation of newly differentiated β cells.  

 

Results 

 

In order to determine whether increased levels of CTGF can enhance β cell 

mass, CTGF was specifically over-expressed in β cells during development using a 

tetracycline-inducible system (Figure 6-1). Mice expressing the reverse tetracycline 

transactivator from the rat insulin promoter (RIP-rtTA) [192] were inter-bred to a CTGF 

responder line (TetO-CTGF) and doxycycline (dox) was administered continuously in the 

drinking water of pregnant dams beginning at day 9.5 of gestation in order to expose the 

embryos to dox before the activation of RIP which normally occurs at e11.5. Over-

expression of CTGF was confirmed by real-time PCR of pancreata at e16.5 (Figure 6-

2A) and indicated that Ctgf expression in bigenic (rtTA;TetO-CTGF) embryos was 

increased by approximately 10-fold compared to control embryos (rtTA). Primers which 

did not detect Ctgf expressed from the TetO-CTGF transgene were also used to quantify 

endogenous Ctgf levels in control and bigenic embryos. In contrast to total Ctgf levels, 

endogenous Ctgf levels were not significantly changed in bigenic embryos indicating that 

the transgenic over-expression of Ctgf does not affect Ctgf expression in general (Figure 

6-2B).  Although it would also be useful to know the fold over-expression and localization 

of the CTGF protein, these analyses were not performed in this study due to the lack of 

available antibodies that can be successfully used for immunohistochemistry or western 

blotting. Alternatively, we could have over-expressed a tagged version of the CTGF 

cDNA and used antibodies designed against the tag to detect the CTGF protein. When 

tagging proteins it is critical to place the tag such that it does not disrupt the function of 

110



Figure 6-1. A schematic of the transgenic system used to conditionally over-
express CTGF specifically in β cells. (A) Expression of rtTA is driven by the 
Ins2 promoter (RIP-rtTA). (B) In the presence of doxycycline (DOX), the rtTA
activates expression of a CTGF cDNA placed dowstream of the Tet Operator 
(TetO-CTGF). (C) rtTA does not activate TetO-CTGF in the absence of DOX. 
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Figure 6-2. CTGF is over-expressed in pancreata from RIP-rtTA;TetO-CTGF 
embryos. (A) The level of Ctgf in bigenic pancreata was increased 
approximately 10-fold compared to control embryos at e16.5. Doxycycline was 
initiated at e9.5 in pregnant mothers’ drinking water. (B) Primers specifically 
amplifying endogenous Ctgf demonstrated that endogenous Ctgf levels are 
not significantly different between control (gray bars) and CTGF over-
expressing embryos (black bars). *p<0.0001. n=3 animals of each genotype.
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the protein. Because functional studies using a tagged version of CTGF have not been 

performed, we did not know where to place the tag on CTGF so that it did not alter 

CTGF function. Furthermore, the fact that CTGF is cleaved would make interpreting the 

results of immunohistochemistry or western blotting against the tagged CTGF difficult. 

For these reasons, we chose not to express a tagged version of CTGF in this study. 

Pancreata from bigenic pups and littermate controls were analyzed for endocrine 

mass at P1. There was no significant difference in the total pancreatic area between 

control and bigenic pancreata (Figure 6-3); however, the proportion of the pancreatic 

area composed of endocrine tissue was significantly increased by approximately 25 

percent in bigenic neonates (Figure 6-4). These studies indicate that increased levels of  

CTGF are sufficient to increase islet mass. Relative to the total pancreatic area, the 

number of both α and β cells were significantly increased in bigenic pancreata (Figure 6-

4D).  

To determine whether the increase in endocrine cells was due to changes in 

neogenesis or proliferation, the number of Ngn3-expressing cells was quantified. There 

was no significant difference in the number of Ngn3-positive cells in the CTGF over-

expressing pancreata compared to control pancreata (Figure 6-5A), indicating that the 

increased number of endocrine cells is not due to an overall increase in the endocrine 

progenitor population. The ratio of insulin to glucagon positive cells was also similar to 

control pups (Figure 6-5B). Thus, over-expression of CTGF in β cells does not affect 

allocation to the different endocrine lineages. However, the proportion of proliferating β 

and α cells was significantly increased in bigenic neonates compared to control embryos 

at P1 (Figure 6-5C and D). CTGF over-expression in the pancreas appears to increase 

the number of endocrine cells by enhancing both β and α cell proliferation, rather than 

promoting neogenesis. 
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Figure 6-3. Total pancreatic area in CTGF over-expressing pancreata. Total 
pancreatic area was not significantly changed between control (rtTA) and bigenic
(rtTA;TetO-CTGF) neonates at P1. n=3 animals of each genotype.
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Figure 6-4. CTGF over-expression during development led to increased 
endocrine mass. Immunohistochemical analysis of insulin (green) and 
glucagon (red) in control (A) and bigenic (B) pups at P1. (C) Quantification of 
the proportion of pancreas that is composed of endocrine area at P1 in control 
(rtTA) and bigenic (rtTA;TetO-CTGF) pups. (D) The number of insulin and 
glucagon positive cells in control and bigenic pups normalized to total 
pancreatic area. n=3 of each genotype. *p<0.05 compared to rtTA.
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Figure 6-5. CTGF over-expression led to an increase in insulin and glucagon-
positive cell proliferation but not neogenesis. (A) Quantification of the number of 
Ngn3-positive cells in control and CTGF over-expressing pancreata at e14.5. 
(B) The ratio of insulin-positive to glucagon-positive cells was not altered in 
CTGF over-expressing neonates. (C) The percent of proliferating β cells was 
increased in CTGF over-expressing pups at P1 using pH3 
immunofluorescence. (D) α cell proliferation also was significantly increased in 
CTGF over-expressing pups. n=3 of each genotype. *p<0.05 compared to rtTA. 
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Discussion 

 

In this study, we found that embryos in which CTGF is over-expressed 

specifically in β cells display increased endocrine cell proliferation and endocrine mass. 

Thus, an increase in CTGF levels was sufficient to stimulate β and α cell proliferation in 

vivo. CTGF is not expressed in α cells, and α cell proliferation is not altered in the CTGF 

global inactivation model [188]. Therefore, although CTGF is not required for α cell 

proliferation, it is possible that increased paracrine CTGF signaling enhances α cell 

proliferation. Alternatively, the increased α cell proliferation may be an indirect result of 

communication between the different endocrine cell types, whereby an increase in the 

number of β cells concomitantly stimulates α cell proliferation.  Our results indicate that 

CTGF over-expression in insulin-expressing cells did not affect endocrine cell 

neogenesis or the allocation of endocrine progenitors into the α and β lineages. The 

temporal or spatial pattern of CTGF over-expression in this study may have limited the 

effects of CTGF to cell proliferation; earlier or broader expression of CTGF in endocrine 

or pancreatic progenitors may reveal the ability of CTGF to promote neogenesis.  Mice 

with the tetracycline-regulated transactivator (tTA) gene replacing part of the Pdx-1 

coding sequence have been previously generated and could be used in future 

experiments to express CTGF throughout the entire pancreatic epithelium as early as 

e9.5 [217].  

The 10-fold increase in Ctgf expression in bigenic pups in this system is most 

likely due to the activity of the rat insulin 2 promoter as the insulin gene is highly 

expressed in β cells. This data is consistent with reports from other groups indicating a 

high level of transgene expression using the RIP-rtTA driver line (personal 

communication, Qing Cai, graduate student in the laboratory of Dr. Alvin Powers). 

117



Furthermore, co-transfecting the RIP-rtTA transgene construct and a TetO-luciferase 

reporter plasmid into βTC3 cells, a clonal pancreatic β cell line, led to a 15-fold induction 

of luciferase expression upon doxycycline treatment [218]. It is likely that the over-

expression of CTGF in this system is beyond physiological levels and in future studies, 

the Pdx-1-tTA driver line could be used to examine the effect of more physiological 

levels of CTGF expression on pancreas development. Nevertheless, we did not observe 

any obvious off target effects of CTGF expression—bigenic pups developed normally 

and there did not appear to be excess stroma or excess ECM around the epithelium 

suggesting that CTGF over-expression did not lead to overt fibrosis in the pancreas. 

However, future studies will need to be performed to directly examine whether fibrosis 

occurs in these animals. The 10-fold increase in Ctgf expression led to approximately a 

1.6-fold increase in β cell proliferation. This data suggests that at this level of Ctgf over-

expression, there is not a linear correlation between Ctgf message levels and β cell 

proliferation. β cell proliferation is a tightly controlled process which is regulated at many 

levels [219]. Although CTGF is sufficient to increase β cell proliferation, there are likely 

cellular “breaks” in place to prevent uncontrollable β cell replication during 

embryogenesis which could lead to tissue overgrowth or cancer. Therefore, there may 

be a physiological limit to the amount β cell proliferation can increase in vivo. 

Additionally, CTGF acts to modulate the interactions between cells and their extracellular 

environment by regulating signaling pathways such as TGF-β, BMP, and Wnt. The 

indirect correlation between the level of Ctgf and the fold-increase in proliferation could 

also be due to the fact that the concentration of the ligands with which CTGF interacts 

are limiting during embryogenesis. Finally, Ctgf message levels may not necessarily 

correlate with protein levels. It will be interesting to quantify the fold increase in CTGF 
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protein in bigenic embryos in order to understand more about how CTGF levels affect β 

cell proliferation.  

One question remaining from our studies is whether the increase in β cell 

proliferation observed when CTGF is over-expressed in β cells is due to a direct role of β 

cell-derived CTGF on β cell proliferation, or whether an increase in CTGF affects blood 

vessel formation and thus β cell proliferation indirectly. Although the role of CTGF in 

neovascularization and angiogenesis has not been examined in the pancreas, CTGF 

promotes endothelial cell migration and angiogenesis in vitro and in vivo in other 

systems [216]. Therefore, it is possible that in CTGF over-expressing embryos, blood 

vessel density may be increased and result in an increase in blood vessel-derived 

signals which promote β cell proliferation. Studies are currently underway to quantify 

pancreatic endothelial cell density in control and CTGF over-expressing pups.  

Another question currently under investigation is whether over-expression of 

CTGF during embryogenesis is sufficient to promote increased β cell mass or improve 

glucose homeostasis in the adult. We are currently aging mice in which CTGF was over-

expressed during development and will perform glucose tolerance tests as well as 

analyze β cell mass in these animals. In addition to promoting embryonic β cell 

proliferation, CTGF may also enhance adult β cell proliferation. Future studies will 

address whether over-expression of CTGF in adult β cells is sufficient to increase β 

proliferation and mass.  
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CHAPTER VII 

 

SUMMARY AND FUTURE DIRECTIONS 

 

CTGF is a secreted molecule which modulates diverse biological processes such 

as proliferation, migration, adhesion and differentiation in a number of cell types. In the 

pancreas, CTGF has previously been shown to promote pancreatic tumor migration and 

survival and mediate fibrosis during pancreatitis. Our lab initially became interested in 

studying CTGF in the context of normal pancreas development because it is 

downregulated in the HNF6 over-expressing transgenic mouse model of islet 

dysmorphogenesis and diabetes. CTGF is also expressed in the pancreas during 

development; it is expressed as early as e12.5 and can be localized to β cells, ducts, 

and endothelial cells, but is downregulated in β cells soon after birth [188]. The 

expression pattern of CTGF suggested that it may play a role in pancreas development. 

Indeed, global CTGF inactivation leads to alterations in the endocrine cell ratio beginning 

at the secondary transition, decreased β cell proliferation at e18.5, and impaired 

separation of endocrine tissue from the ductal epithelium [188]. Thus, these data 

suggest that as in other tissues, CTGF is also required for proper differentiation, 

proliferation, and tissue remodeling during pancreas development.  

Because CTGF is produced by β cells, ducts, and endothelial cells during 

pancreas development, we sought to examine the tissue interactions by which CTGF 

promotes normal lineage allocation, β cell proliferation, and islet morphogenesis. We 

generated mice carrying a conditional allele of CTGF and used tissue-specific Cre lines 

to inactivate CTGF from the pancreatic epithelium, β cells, or endothelial cells and 

examined lineage allocation, β cell proliferation, and islet morphogenesis. We found that 

120



removal of CTGF from each one of these tissue types led to a reduction in embryonic β 

cell proliferation. In contrast, tissue-specific inactivation from any one cell type did not 

significantly impair lineage allocation or islet morphogenesis. Overall, conditional 

inactivation of CTGF revealed that the processes of β cell proliferation, lineage 

allocation, and islet morphogenesis during development may require different levels of 

CTGF to occur properly (Figure 7-1). We hypothesize that when CTGF is removed from 

one pancreatic source, the CTGF produced by the remaining sources is sufficient to 

allow proper endocrine lineage allocation and islet morphogenesis. However, embryonic 

β cell proliferation appears to be exquisitely sensitive to the level of CTGF, such that 

inactivating CTGF from just one source leads to a decrease in proliferation. Studies are 

currently underway to determine the percent reduction in CTGF levels in each of the 

tissue-specific mutants. Interestingly, previous studies have indicated that a 50 percent 

reduction in CTGF levels leads to a defect in β cell proliferation as well as defects in 

lineage allocation and islet morphogenesis [188]. These studies suggest that even a 

more modest reduction in CTGF levels is insufficient to support proper β cell 

proliferation.  

CTGF is proteolytically cleaved between its second and third domains by MMPs, 

chymotrypsin, and plasmin [148,149]. After being cleaved, the C-terminal fragment may 

be tethered to the cell surface due to interactions with integrins and heparan sulfate 

proteoglycans while the N-terminus, which lacks these interaction domains, may be able 

to diffuse away from the cellular source [144,151]. Thus, it is possible that CTGF 

secreted by specific cell types could participate in either local or long range signaling 

depending on the proteolytic enzymes expressed by the cell. Therefore, the role of 

CTGF in regulating the different aspects of pancreas development may be governed by 

not only the level of full length CTGF, but also by the levels of the individual cleavage 
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Figure 7-1. Model of the requirement of CTGF in regulating the different 
processes of pancreas development. We hypothesize that β cell proliferation, 
lineage allocation, and islet morphogenesis require different thresholds of 
CTGF levels (dotted lines). When the level of CTGF expression is below the 
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tissue-specific mutants is not currently known (denoted by question marks). 
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fragments. Antibodies have been generated which specifically recognize the N-terminal 

or C-terminal fragments of CTGF. Western blotting with these antibodies could be 

performed on pancreata isolated from CTGF tissue-specific mutants to determine 

whether the different sources of CTGF produce different CTGF cleavage products. The 

functional role of each of the domains of CTGF in pancreas development could be 

assessed by generating mice that lack a specific module of CTGF and analyzing the 

pancreatic phenotype of each mutant. 

Tissue-specific inactivation of CTGF also revealed, for the first time, that a 

secreted factor produced by either β cells or endothelial cells is required for embryonic β 

cell proliferation. Few genes have been identified which regulate embryonic β cell 

proliferation and this study indicates that β cells themselves produce signals which are 

necessary for proper β cell proliferation. Previous to this study, it was known that 

endothelial cells produce signals which promote endocrine cell neogenesis, however the 

relevant molecules had not been identified [26]. We hypothesized that CTGF may act as 

an endothelial-derived molecule which promotes the differentiation of β cells. Due to the 

fact that lineage allocation was not significantly altered in any of the tissue-specific 

mutants, we were unable to assess the function of CTGF produced by endothelial cells 

in β cell differentiation; it is still possible that endothelial cell-produced CTGF normally 

plays a role in β cell differentiation. This study did, however, reveal a previously 

unappreciated role for endothelial cell-derived factors in the proliferation of embryonic β 

cells. Thus, one function of CTGF is to mediate the interactions regulating the reciprocal 

development of blood vessels and endocrine cells by promoting β cell proliferation. 

Studies are currently underway to determine whether the decrease in β cell proliferation 

observed when CTGF is inactivated from endothelial cells is an indirect consequence of 
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decreased blood vessel formation or directly due to a requirement of endothelial-

produced CTGF on β cells.   

The fact that embryonic β cell proliferation is particularly sensitive to the levels of 

CTGF raises the question of whether CTGF is also required for adult β cell proliferation 

under normal or stimulatory conditions.  Future studies in the lab will examine whether 

inactivation of CTGF in adult β cells using the CTGFe2COIN allele and an islet-specific 

tamoxifen-inducible Cre (Pdx-1PB-CreER) impairs β cell proliferation and glucose 

homeostasis. CTGF expression is not normally detected in adult β cells, and CTGF 

heterozygous adults do not have defects in β cell proliferation [188]. Therefore, we may 

find that CTGF is not required for normal adult β cell proliferation. Interestingly, however, 

CTGF is upregulated in β cells during pregnancy at all stages that have been examined 

[188], suggesting that CTGF may be required for the increase in β cell proliferation and 

expansion that occurs during pregnancy. We will therefore explore whether inducible 

islet-specific inactivation of CTGF impairs β cell proliferation or glucose homeostasis 

during pregnancy. It may also be interesting to use this inducible model of CTGF 

inactivation in adult β cells to examine whether CTGF is required for the compensatory β 

cell proliferation which occurs in response to the insulin resistance caused by high-fat 

diet feeding.  If CTGF is required for expansion of β cell mass under stimulatory 

conditions, would also be worthwhile to determine if CTGF expression is altered in 

humans with diabetes.  

In this study, we also asked whether increased levels of CTGF could increase β 

cell mass. Our results indicate that over-expression of CTGF specifically in β cells during 

development using an inducible transgenic system is sufficient to increase endocrine cell 

mass at birth. This increase in endocrine cell mass was due to an increase in both α and 

β cell proliferation, with no apparent change in endocrine cell differentiation. These 
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results indicate that in addition to being required for β cell proliferation, CTGF is also 

able to promote β cell proliferation. The fact that loss of CTGF does not impair α cell 

proliferation but over-expression increases α cell proliferation suggests that while CTGF 

is not required for α cell replication, it may be sufficient to promote it. Alternatively, 

communication between the endocrine cell types is thought to regulate α and β cell 

numbers within the islet.  For example, removal of Pdx-1 from embryonic β cells leads to 

a decrease in β cell proliferation and a concomitant increase in α cell proliferation [195].  

In the CTGF over-expression model, a signal may be produced by the increased number 

of β cells which concomitantly increases α cell proliferation. Studies are also underway 

to examine the endothelial density in CTGF over-expressing pancreata because it is 

possible that over-expression of CTGF could also indirectly increase endocrine cell 

number by enhancing blood vessel formation in the pancreas. Thus, the mechanism by 

which CTGF enhances endocrine mass may involve complex interactions between the 

different pancreatic cell types.  

Current studies are underway in the lab to examine whether over-expression of 

CTGF in β cells can enhance β cell proliferation in the adult pancreas. Future studies will 

also address whether increased CTGF levels can promote pancreas regeneration in 

injury models by enhancing β cell proliferation or differentiation. Additionally, the ability of 

CTGF to improve the outcomes of islet transplantation is being investigated. The 

process of islet transplantation involves the severing of endogenous vasculature; 

however, some endothelial cells do survive and contribute to the post-transplantation 

revascularization of the islet [197]. Studies have shown that increased expression of 

angiogenic factors enhances the revascularization and survival of the islet grafts [197]. 

Thus, expression of CTGF in islets during the post-transplantation period may enhance 

islet survival, not only by promoting β cell proliferation, but by enhancing angiogenesis 
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as well.  For these studies, islets from RIP-rtTA;TetO-CTGF adult mice will be 

transplanted into donor mice, and doxycycline will be administered to the recipient 

mouse in order to induce CTGF expression in the islet grafts. The survival and 

revascularization of CTGF over-expressing grafts will then be compared to control 

transplants. Alternatively, to avoid the use of genetic modifications, mouse or human 

islets could be cultured with soluble CTGF protein prior to transplantation. 

Another question which still remains after these studies is how CTGF fits into the 

pancreas development regulatory network; that is, how CTGF is dynamically regulated 

and with which signaling pathways and factors CTGF interacts to promote proper 

pancreas development. CTGF has been shown to be regulated in other tissue types by 

several factors which play a role in pancreas development. The most well characterized 

of these signaling pathways is TGF-β. We sought to determine whether CTGF acts 

downstream of TGF-β to promote pancreas development using an ex vivo bud culture 

system. Although we were unable to use this method to determine whether CTGF 

functionally acts downstream of TGF-β signaling, in the future, we could determine 

whether treatment of pancreatic buds with TGF-β increases CTGF expression.   

Alternatively, the Lyons lab has recently demonstrated that CTGF expression in 

chondrocytes is dynamically regulated by β catenin and Sox9, a gene which is also 

required for the maintenance of pancreatic progenitors [220,221,222]. Binding of Sox9 

and β catenin to the CTGF proximal promoter is mutually exclusive [220]. During 

development, Sox9 represses CTGF in early immature chondrocytes, but is later 

replaced by β catenin to activate CTGF and the chondrocyte differentiation program 

[220]. CTGF is also upregulated by VEGF-A in vascular cells, suggesting that CTGF 

expression in pancreatic endothelial cells may be mediated by VEGF-A [223].  In a 

recent study, Ngn3 was inducibly expressed in mouse ES cells which had been 

126



differentiated into pancreatic endoderm in order to promote differentiation to the 

endocrine lineage [198]. Interestingly, expression of Ngn3 was found to correlate with 

the repression of CTGF, suggesting that Ngn3 may inhibit CTGF expression. Together, 

these studies suggest that Sox9, Wnt, VEGF-A, and Ngn3 may lie upstream of CTGF; 

however understanding whether any or all of these factors regulate CTGF expression in 

the pancreas requires further investigation. It would be particularly interesting to examine 

CTGF expression in pancreata from Sox9, Wnt, VEGF-A, and Ngn3 loss or gain-of-

function mutants to determine if CTGF lies downstream of any of these genes.   

The similarity between the pancreatic phenotypes of CTGF global inactivation 

and some models of inhibition of integrin and TGF-β signaling suggests that the activity 

of these pathways may be altered in the absence of CTGF [108,109,110,129,188]. We 

therefore hypothesize that CTGF may normally modulate integrin or TGF-β signaling in 

the pancreas; however CTGF has also been shown to exert downstream effects by 

inhibiting BMP and Wnt signaling in other tissue types. Future studies will be directed 

towards understanding which signaling pathways CTGF interacts with to promote proper 

pancreas development. We plan to interbreed RIP-rtTA;TetO-CTGF mice to mice 

carrying TGF-β, BMP and Wnt reporter alleles to assess whether increased CTGF 

expression in β cells affects activation of these pathways in vivo [208,209,210,211]. 

Doxycycline will be administered in the drinking water of pregnant dams and antibodies 

will be used to detect expression of the appropriate reporter in embryonic pancreata. 

This analysis will reveal which pathways are normally active in the pancreas, and 

whether over-expression of CTGF leads to further activation of TGF-β or inhibition of 

BMP and Wnt signaling. Furthermore, co-labeling with cell type-specific markers of β 

cells, endothelial cells, or ducts will reveal whether increased levels of CTGF in β cells 

has cell autonomous and non-cell autonomous effects on TGF-β, BMP, and Wnt 
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signaling. Although there is unfortunately not a specific read-out of integrin activity 

available, it would also be interesting to examine the level of phosphorylated focal 

adhesion kinase in mice that have increased CTGF expression.  

The fact that CTGF is both necessary and sufficient for embryonic β cell 

proliferation raises the question of whether CTGF can promote the generation of β cells 

in vitro. The current approaches to generating transplantation-quality β cells for the 

treatment of diabetes include the directed differentiation of ES cells or induced 

pluripotent stem cells (iPS) cells down the normal differentiation path from endoderm to 

insulin-producing cells by adding exogenous factors to the culture medium. These 

protocols have been successful in generating insulin-producing cells which can restore 

glucose homeostasis in diabetic models; however, in general, the percentage of β cells 

in these cultures is relatively low [224,225]. Recent studies have sought to identify small 

molecules or growth factors that are able to increase the yield of β cells, for example, by 

enriching early stage cultures for Pdx-1 expressing pancreatic progenitors [226]. 

However, another viable approach could be to enhance the proliferation of the newly 

differentiated β cells. Our studies suggest that CTGF is an attractive candidate for 

inclusion in these directed differentiation protocols. Furthermore, because CTGF is a 

secreted factor, it could be directly added to the culture medium. We hypothesize that 

CTGF has the potential to increase the efficiency of the differentiation of stem cells at 

multiple steps of the protocol—either by increasing the number of endocrine cells that 

differentiate from endocrine progenitors by mimicking a blood vessel-derived signal or by 

stimulating the proliferation of immature β cells at later stages of the differentiation 

protocol (Figure 7-2).  

Overall, this work has demonstrated an essential role for CTGF in promoting 

proper embryonic β cell proliferation. The importance of CTGF is highlighted by the fact 
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CTGF?
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Figure 7-2. Directed differentiation of human ES cells into insulin-producing 
cells by mimicking embryonic development. Upper panel, key stages of 
pancreatic endocrine development. Below are the corresponding stages of 
the ES cell cultures. As the cells are cultured in five successive conditions 
(steps A to E), individual cells within the culture are differentiated toward 
pancreatic islet cells. Step A converts 80% of the hES cells to definitive 
endoderm. Step B converts all definitive endoderm cells to primitive gut tube 
(plate 3 is identical in color and pattern to plate 2). Step C converts 50% of 
cells to posterior foregut (green). Step D converts 35% to pancreatic 
precursors, and step E generates an average of  7% and up to 12% insulin-
producing-cells (of a total of  20% endocrine cells). The fixed pattern of the 
cells in the successive dishes illustrates that red cells arise from yellow cells, 
which arise from green cells, which arise from blue cells. The two large 
arrows indicate both the directional flow and the contrast of the time scales: 
human fetal pancreatic development occurs over weeks, whereas directed 
differentiation in vitro is measured in days. We hypothesize that CTGF could 
enhance the differentiation of endocrine cells from progenitors or stimulate 
proliferation of newly differentiated β cells. Adapted by permission from 
Macmillan Publishers: Nature Biotechnology, Madsen, OD, Serup, P, 
Towards Cell Therapy for Diabetes, copyright 2006. 
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that inactivation of CTGF from any cellular source in the pancreas leads to defects in 

embryonic β cell proliferation. We believe that CTGF may have the potential to enhance 

β cell proliferation in vitro and in vivo. Here we have shown that CTGF is not only 

required for β cell proliferation, but that increased CTGF expression is sufficient to 

enhance β cell proliferation and β cell mass during development. CTGF is also a highly 

unique molecule in that it can modulate several signaling pathways and therefore could  

potentially have pleiotropic beneficial effects on β cell mass expansion, regeneration, 

and islet vascularization.  

Our results also underscore the importance of autocrine and paracrine 

communication in regulating pancreas development. We have demonstrated that both 

endothelial-endocrine interactions and β cell-derived signals are required for proper 

embryonic β cell proliferation. Researchers attempting to derive β cells in vitro often 

discuss manipulating the differentiation protocol to produce greater proportions of 

definitive endoderm or pancreatic endoderm with improved efficiency.  Yet during normal 

development, mesodermally-derived cell types, including endothelial cells, influence β  

cell differentiation. In the absence of other cell types in the culture, strategies to generate 

sufficient amounts of functional insulin-producing cells for transplantation should perhaps 

incorporate additional factors that mediate the heterotypic and homotypic interactions 

that normally occur between pancreatic cell types during development. To our 

knowledge, CTGF is the first reported secreted β cell or endothelial cell-derived factor 

that promotes normal embryonic β cell proliferation; however, our studies raise the 

possibility that other such factors may be produced by these cell types.  
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