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CHAPTER I

INTRODUCTION

Many industrial sectors, such as manufacturing, automotive, and material handling, are

increasingly moving towards adopting reconfigurable conveyor systems in their processes

since they offer significant flexibility in readily adapting to newer products and product

lines, while making efficient use of available space, and all of these at a fraction of cost that

otherwise would be incurred if an entirely new conveyor system is to be installed. To quote

from a recent article [5]: the key factor in a truly reconfigurable modular conveyor system

is the ability to connect and reconnect a wide variety of modules and accessory modules

that allow engineers the freedom to tweak production lines when necessary without the cost

of a brand new conveyor or the risk of losing the conveyor’s integrity.

When faced with the task of using reconfigurable systems in businesses, such as a ma-

terial handling system used in facilities like FedEx, UPS, and baggage handling in airport

terminals, engineers and layout planners for the conveyor systems must often grapple with

numerous questions including but not limited to: What is the maximum sustainable rate of

flow of goods in the system? Can handling of certain types of goods be prioritized over

others? Does a certain layout of the conveyor system lead to starvation of certain paths in

the system? What is the impact of failures of certain sections of the conveyor system on the

overall throughput and hence the monetary costs? How to plan the inter material spacing

on the conveyors such that the goods do not collide when they are switched through transfer

elements (called turnarounds)?

A naive solution based on trial-and-error does not scale when dealing with large deploy-

ments. A straightforward application of techniques such as combinatorial optimization
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or queuing theory in isolation do not suffice either for the following reason. The inter-

twined relationships between the cyber elements, i.e., the micro-controllers that regulate

each unit and the wireless transceivers that provide communication links between micro-

controllers in physically adjacent units, and the physical transfer of parts over the conveyor

units present formidable challenges in readily finding answers to the above questions.

Answering the questions faced by the engineers and layout planners obviously requires

a design-time solution in contrast to the need for physically deploying a system and iter-

ating over multiple possibilities. A critical requirement for such a design-time “what-if”

analysis capability is the need for it to account for in tandem both physical artifacts of a

conveyor system (e.g., speed of belts, inter-material spacing, size and type of the material

being handled, response time of commands to control belt motor speeds, rate of flow of

material into the input source of the system, and sensors that scan moving goods) and cy-

ber artifacts (i.e., message formats and signaling protocols between the individual units of

the reconfigurable system, timing of the messages, and synchronization policies among the

highly concurrent executing software artifacts).

Model-driven performance analysis [20] of the reconfigurable conveyor cyber physical

system (CPS) [22] provides a promising solution [10] to address these requirements. In

particular, our model-driven analysis tool comprises three primary artifacts:

1. A domain-specific modeling language [19] within our tool provides intuitive abstrac-

tions to engineers and layout planners to describe the proposed layouts of their sys-

tem without unduly tightly coupling their intentions to any specific analysis capabil-

ity.

2. An analysis engine we designed that implements the behavior of the conveyor units

in the MATLAB Simulink/Stateflow simulation engine by simultaneously integrating
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the cyber and physical aspects of the conveyor system along with the critical timing

properties [14, 15].

3. A generative capability [3] that synthesizes artifacts for the analysis engine and helps

to completely automate the design-time analysis process.

By augmenting the simulation with synthetic data that is derived from our experience

with real conveyor systems, we validate the design of the conveyor system layout using

our model-driven analysis tool. This approach allows us to evaluate several system-level

performance parameters, such as throughput and end-to-end latency at design-time thereby

providing insights into the efficiency of the proposed layout to meet the business objectives.

The remainder of this paper is organized as follows. Chapter II compares our work to

related research; Chapter III describes the system model of our reconfigurable conveyor

system alluding to the kinds of material that we consider flowing on the conveyors; Chap-

ter IV presents the design of the model-driven analysis framework for the reconfigurable

conveyor system; Chapter V presents results evaluating our tool on an example topology;

and finally Chapter VI offers concluding remarks and next steps.
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CHAPTER II

REALTED WORK

Although a large literature in model-driven engineering of large-scale systems exists,

in this section we present related research in the field of reconfigurable systems focusing

primarily on those works that deal with assessing performance of the system along different

metrics. Moreover, we present works that are closely related to the different aspects of our

work. We also noticed that most related research discusses reconfigurable manufacturing

systems, which is a more general class of systems that encompass reconfigurable conveyor

systems.

A related work closest in spirit to ours appears in [4]. The authors describe a discrete

event perspective of reconfigurable manufacturing systems. As in our case, they too use

model-driven engineering [21] principles to describe the layout of the system. Moreover,

they also distinguish between the cyber and physical aspects of the system. This related re-

search, however, focuses on developing mathematical models to conduct criticality analysis

of different configurations (i.e., layouts) to determine the best configuration for a given set

of product mix while also satisfying other constraints, such as cost. Overall, this research

has similar goals to ours; the analysis approach used and metrics evaluated are different.

Another work closely related to ours appears in [8]. The motivation of the work is to as-

sess the reconfiguration in layout of a manufacturing systems as the product mix changes.

The metrics used to evaluate the layout include material handling costs and operational

performance factors. The authors of this work use open queuing networks to develop a

mathematical model of the system. A related recent work that uses Petri Nets to develop

analytical models of reconfigurable systems appears in [17]. Despite the similarity in the
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goals of these related works, to the best of our understanding, these works do not explicitly

account for the tight integration between the cyber and physical issues. Instead, perfor-

mance estimates are collected based on expected arrival patterns of parts.

In [6], the authors present a framework to assess reconfigurability of manufacturing

systems. Although this work applies to a more broader range of reconfigurability than our

work, it is more focused on assessing the manufacturing degrees of freedom, i.e., iden-

tifying the different ways in which a product can be manufactured. Thus, although both

approaches pertain to design-time analysis and are model-based, the goals and outcomes

are quite diverse.

A tutorial on reconfigurable modular systems focusing primarily on pallet-based con-

veyor systems is presented in [7]. The relevance of this related work to ours stems from

the fact that the authors present a broad range of metrics to assess flexibility of the system.

Among the list provided by the authors, our work focuses on evaluating the performance

of layout modifications and assess scalability.

Verification of the logical controllers in reconfigurable systems is considered in [9].

The authors use the concept of timed transition models to model the behavior of the con-

trollers to verify its properties. The authors also use their technique to iteratively arrive at

a desirable controller for the reconfigurable system. Our work is orthogonal to the goals of

this related work in that we are concerned with measuring different performance factors of

a given layout and controllers while the related work focuses on the synthesis and verifying

the correctness of logical controllers for reconfigurable conveyor systems.
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Li et. al [16] describe an approach to model reconfigurable manufacturing system fo-

cusing primarily on how to update the models to capture reconfiguration decisions. In par-

ticular, they use Petri Nets to describe the behavior and introduce the notion of net rewriting

that is used within a model transformation process to update the models in accordance with

the changes in the reconfiguration. While not directly related to the evaluation goals of our

work, this work is related to model-driven engineering and generative aspects of our work.

It is conceivable that our future work may benefit from these transformations.

A software engineering perspective of reconfigurable manufacturing system is pre-

sented in [11]. The authors use the Microsoft COM model to build a software component-

based design of a reconfigurable manufacturing systems. The component-based approach

makes it easier to achieve the plug-and-play vision of reconfigurable systems.

Despite several existing efforts in evaluating different performance factors of reconfig-

urable manufacturing systems, we believe that related research does not provide a holistic

cyber-physical systems perspective of reconfigurable manufacturing systems. In our re-

search we develop an analysis engine that simultaneously integrates the cyber and physical

parts to provide accurate performance data in a design-time tool.

Our prior work in the area of reconfigurable conveyor systems has focused on analyz-

ing the reliability of the software controllers [12], providing efficient mechanisms for mon-

itoring and diagnostics [18], and preliminary work on evaluating worst case end-to-end

response time in composable conveyor systems [2]. The research presented in this paper

expands on our earlier work focusing on the design and implementation of an automated,

design-time analysis tool for performance analysis of reconfigurable conveyor systems.
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CHAPTER III

MODEL OF RECONFIGURABLE CONVEYORS

The reconfigurable conveyor systems we consider in this paper move parts from one or

more inputs, I , to the outputs, O . These systems are composed using two kinds of units

— Segments and Turnarounds which are illustrated in Figure III.1 — that have fixed behav-

iors [1]. Each unit is autonomously regulated by a local micro-controller that interacts with

micro-controllers in physically adjacent units over wireless links to coordinate the transfer

of parts from one unit to another.

A Segment moves a part over a fixed distance, in one of two assigned directions. Input

and Output units are halves of Segment units that can move parts in one direction only. Su

and Sd are, respectively, upstream and downstream sensors at each segment that are acti-

vated as a part moves into its scanning range.

Part

Su Sd Su Sd

Part

Su Sd Su SdSn

Ss

Sw Se

Figure III.1: Segment and Turnaround
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A Turnaround unit has four ports; each port can be configured either as an input port

or as an output port. For each port there exists a sensor. In the figure, the suffixes denote

the direction (east, west, north, south). To keep the presentation simple, we assume that a

Turnaround can handle only one part at a time while a Segment may contain multiple parts

spaced some distance apart as they flow from one end to the other. When two or more parts

simultaneously arrive at different input ports of a Turnaround, it can accept only one of the

parts.

A specific composition of instances of the above kinds of units is a conveyor system.

Figure III.2 shows an example of conveyor systems obtained by composition.

We view the conveyor systems, intuitively, as graph G = (U,E). The nodes of G,

i.e., ui ∈U , represent the units — Segments, Turnarounds, Inputs, and Outputs. An edge

(ui,u j) ∈ E represents the relation that a part can be transferred from ui to u j. Parts that

arrive via input Ik ∈I are delivered to a specific output O j ∈O along a path P(Ik,O j) =<

u1 = Ik,u2, · · · ,un = O j >, ui ∈U . These paths can be pre-determined via off-line analysis.

Specifically, routing functions to determine the paths are generated and deployed at each

Turnaround at design-time.

S9

S1 T1 S2 T2 S3

S4 S5

S6 T3 S7 T4 S8

S10

S11 S12 S13T5 T6

I1

I2

I3

O1

O2

O3

55m

70m

20m 5m

20m

5m

Figure III.2: Reconfigurable Conveyor System
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We view the path, P(Ik,O j), along which a part moves from an input Ik ∈I to an out-

put O j ∈ O as a channel. Parts arrive sporadically at Ik with a minimum inter-arrival time

of Tk and a relative deadline Dk before which the conveyor system must deliver the part to

O j. We use τ
j

k to refer the jth part that arrived via input Ik. Because multiple channels share

common units, congestion can occur at these units.

To improve the throughput of the system, it is desirable to increase the processing rates

and change accepting priorities of congested Turnarounds where parts are injected to the

channels. Because of confluence of multiple channels, the parts are likely to experience

congestion - and thereby reduction of the throughput achieved in the system. Thus, the

problems of setting appropriate accepting priorities and processing rates in Turnarounds

are interesting and involve competing objectives.

For the purposes of this paper, we focus on reconfigurable conveyors employed in ma-

terial handling facilities, such as those found in FedEx and UPS sorting facilities as well

as baggage handling facilities in airport terminals. Thus, we classify a good (i.e., a part) as

belonging to a small (e.g., envelopes), medium (e.g., small boxes) or large category (e.g.,

large boxes).
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CHAPTER IV

DESIGN AND IMPLEMENTATION OF ANALYSIS FRAMEWORK

In this section we present the details of our design-time performance analysis frame-

work. The design architecture of the analysis framework for conveyor systems is formed

of structural models and behavioral models that account for both the cyber and physical

parts of the system. Figure IV.1 shows the overall architecture of the analysis framework

we have developed.

The structural models are realized at two levels. At one level, the layout of the con-

veyor system is modeled using intuitive domain-specific modeling artifacts provided by a

modeling language we developed. At the second level, structural models of the conveyor

system are represented within a simulation framework. For our work, we rely on the Mat-

lab/Simulink suite. The layout of the conveyor system is automatically transformed into

Matlab/Simulink structural models using the generative capabilities of our model-driven

framework. The behavior models comprising both the cyber and the physical aspects of

the conveyor system are implemented in Matlab Simulink and Stateflow. The remainder of

this section provides details on the design and implementation of our analysis framework.

Generic Modeling Language (GME)

Conveyor Systems 
Meta-model

Instance of

Conveyor Systems
Domain-specific Model

Matlab Simulink Analysis Testbed

Conveyor Systems
Cyber Model

Code Generation

Transfer State Machine

Receiver State Machine

Conveyor Systems
Matlab Simulink Testbed

Code Generator

Interpreter of

Instrumentation 
Interface

Conveyor Systems
Physical Model

Belt Control Data

Physical Sensor Data

Figure IV.1: Overall Architecture of Analysis Testbed
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IV.1 Domain-specific Modeling and Generative Capabilities

We have used the Generic Modeling Environment (GME) [13] to develop the domain-

specific modeling language (DSML) and generative capabilities for the domain of recon-

figurable conveyor systems. Figure IV.2 illustrates the meta-model, which is at the heart of

the DSML for reconfigurable conveyor systems. The meta-model of the system comprises

primarily of the building blocks found commonly in a conveyor system, such as input bins,

output bins, and blocks which are classified into Segment and Turnaround that help move

the material along the conveyor system. The meta-model also contains connection compo-

nents used to link the building blocks.

Figure IV.2: Meta-model of Reconfigurable Conveyor System
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Each building block has attributes to configure the parameters used in subsequent anal-

ysis, such as length of belts, speed of belts, quantities of packages, and address of nodes.

Specifically, the address attribute is used to identify the building blocks. Addresses are

needed to generate routing tables at each Turnaround so that routes get set up for packages

to flow through the system.

The Length and Speed attributes are used for the physical model implemented within

the analysis engine. According to the physical attributes, throughput results of the systems

and bottleneck points would be different in the system and bottleneck points can be found

and fixed through comparing results of simulation analysis. NodeType in Block is used

to differentiate the type of block which can be a Segment or Turnaround. LocationX

and LocationY in Block are manipulated for proper graphical layouts. Sensor Zone

indicates coverage of sensors in block. COMM_WD, RX_WD, and TX_WD denote watchdog

timers used in logical controllers. The attributes explained above should be configured in

each component in the domain-specific model.

When an example model using the DSML is created, the attributes defined by the meta-

model are configured for performance analysis of the system. The domain-specific models

of the entire layout provide analysts with a higher level of abstraction of the system that is

easier to comprehend. The generative capabilities within the DSML transform these mod-

els into appropriate structural and behavioral models of the whole system in the format

recognized by the underlying analysis engine, such as a simulator. In our case we rely on

Matlab Simulink/Stateflow for the structural and behavioral models of the cyber physical

system.
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The goal of the GME-based DSML is to allow analysts to place necessary components

such as input bins, output bins, Segments, and Turnarounds at desired locations and con-

figure attributes for the building blocks. In turn the GME-based DSML transforms the

GME-based model into the underlying artifact. This decoupling helps the analyst to try

many different layouts and the entire process of transforming into the underlying represen-

tations is completely automated.

An example model of a conveyor system using the DSML is shown in Figure IV.3.

There are 13 Segments, 6 Turnarounds, 3 Input bins, and 3 Output bins. The building

blocks are connected to other blocks to help move material through the conveyor system.

Our model specifies attributes such that each input bin randomly generates parts (or units)

categorized into small, medium, and large categories. Input bins are annotated as I1, I2 and

I3. For instance, entities come into the system via I1, I2, or I3. Entities leave the system

via Output bins annotated as Small, Medium, and Large.

Figure IV.3: Domain-specific Model of Reconfigurable Conveyor Systems
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The generative capability of the DSML executes a shortest path routing algorithm and

produces routing tables at each Turnaround. A small package that arrived at input bin I1

would move along the path: I1, S1, T 1, S2, T 2, T 3, Small. A medium package would

move along the path: I1, S1, T 1, S4, T 3, S7, T 4, S8, Medium. A large package would

move along the path: I1, S1, T 1, S4, T 3, S9, T 5, S12, T 6, S13, Large. Entities coming

from I1 are deflected via T 1, and T 3, and T 5. There are other possibilities for moving

entities from other input bins that are not discussed in the paper.

The example layout model is then transformed into Matlab Simulink codes by the GME

interpreter associated with the DSML to analyze performance of the system. Figure IV.4

shows the Matlab Simulink analysis model for the example model converted by the GME

interpreter. The overall layout is basically similar to the example model because it uses

location attributes in the domain-specific model. Every block contains a cyber model im-

plemented by Matlab Stateflow and the physical model implemented in Simulink. Details

of the Matlab-based engine are discussed next.
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Figure IV.4: Transformed Model into Matlab-based Representation
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IV.2 Cyber and Physical Models in the Analysis Engine

Conveyor systems are composed of cyber parts, such as the controllers; physical parts,

such as the Segments; and the interfaces connecting the cyber and the physical world.

Therefore, our design of the structural and behavioral models of the conveyor system within

the analysis engine needs a clear separation of cyber model and physical model to simulate

conveyor systems.

Thus, the cyber controller logic was implemented as a state machine within the State-

flow toolset; this choice of environment allowed a direct translation of the controller logic

from the existing state-chart model to an executable software implementation. For pur-

poses of testing and validating the prototype controllers, a system simulator of the physical

environment was also implemented within Simulink in order to simulate the physical be-

havior of a conveyor under the control of block controllers. Though a real conveyor system

will eventually be needed to demonstrate the capabilities of a controller logic, a software

simulation is being relied upon in this paper in order to allow for maximum flexibility in

unit testing, compositional testing, and architectural modifications.

We developed a modularized Simulink unit called a Conveyor Skid, which is imple-

mented as a self-contained unit representing both the physical and cyber components of

a single segment for purposes of modeling a single conveyor block. Within a conveyor

block, the Conveyor Skid exists as a single self-contained controller system as well as a

single self-contained simulator block. As both the controller and simulator are intended

to be self-contained, connections between these units are restricted to those intended to

be present within the actual system; at this stage, these connections represent the motor

control signal from controller to simulator and the sensor data feeds from simulator to con-

troller. As such, the simulator block may eventually be removed and replaced with signal
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interfaces to a physical model without disrupting the implementation of the controller.

All remaining elements within the Conveyor Skid block consist solely of inputs/out-

puts to and from the outside of the block, as well as single-step signal delays necessary to

break algebraic loops within Simulink. These input and output connections exist in order

to provide for compositional simulation; that is, Conveyor Skid blocks may be connected

together to form a conveyor network which may be simulated as a whole. The external con-

nections represent external neighbor network connections between conveyor controllers, a

diagnostic signal bus from the simulator, and a signal line for simulating package hand-offs

between simulator blocks.

Next we describe the details of the cyber and physical models in the Conveyor Skid.

IV.2.1 Cyber Model

The cyber model was implemented as a finite state machine using the Stateflow toolset

in Simulink. Each Segment and Turnaround has a receiver controller logic and a transfer

controller logic. Figure IV.5 shows a receiver state machine embedded in a controller of a

Segment. Initially, a Segment waits until receiving a request message for transferring a part

from a upstream block. When the Segment receives the request message from the upstream

block, it checks if the upstream sensor is inactive which is for ensuring a space is available

for a transferred part, and the downstream sensor is inactive in order to avoid a conflict

between the receiver machine and the transfer machine in the same Segment.

If these conditions are all clear, it sends a response message back to the downstream

block to notify that a part can be accepted and it actuates the conveyor belt at the config-

ured speed. Then, it starts a watchdog timer to wait for the transferred part. If the watchdog

timer is expired, that means the part has not arrived at the Segment and a problem occurred
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in the middle of the process of transferring the part between the blocks. If the upstream

sensor is active, it indicates a part has safely arrived at the Segment. If a part has securely

arrived at the Segment, it increases the number of packages on the Segment belt and sends

a finishing message to inform transferring is done well.

Wait Can Receive?
Send

response
Start

Conveyor

Start
RX WD

Wait
Part

Receive

Increase
Part

Send
done

Stop
Conveyor

Receive
request

Su  and Sd
inactive

Su active

RX WD
expires

Su  and Sd
active

Su - Upstream sensor data
Sd -  Downstream sensor data
request -  Requesting message
response - Responding message
done -  Finishing message
RT WD -  Receiving watchdog timer

Figure IV.5: Segment Receiver State Machine

A transfer state machine in a Segment, which coordinates with a receiver state machine

in a next block, is depicted in Figure IV.6. At first, the transfer state machine also waits

until the downstream sensor is active and parts are on the belt. If both conditions are true,

the Segment is ready for transferring a part to the next block. Therefore, it needs to be

stopped until receiving a permission from the next one, so it sends a request message to

obtain the permission. Here, the receiver machine may not give the permission to the given

request. In that case, Comm WD, which is used for waiting for the approval from receiver

17



side, expires and the block sends a request again to the receiver machine. If the machine

receives the response message, it energizes the conveyor belt of the Segment and waits for

the part to successfully transfer to the next block. If the part is normally moved out, the

transfer machine can get a successful Done message from the receiver. If the message is

acquired, the number of parts is decreased and the machine goes back to the initial state.
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TX WD

Comm WD
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Receive
response

Sd  inactive

Sd active and num_parts > 0

TX WD  expires or 

Receive done

num_parts == 0

Figure IV.6: Segment Transfer State Machine

Controllers within Turnarounds also incorporate a receiver state machine and a tran-

fer state machine as Segments do. Figure IV.7 represents a receiver state machine in a

Turnaround. The processes of a receiver state machine of a Turnaround are similar to a

receiver state machine in a Segment. A distinguishable difference of controllers between

a Segment and a Turnaround is that a Turnaround has more incoming and outgoing ports
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than a Segment. Hence, state machines in a Turnaround should have logic to differentiate

signals from varying ports.
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Figure IV.7: Turnaround Receiver State Machine

According to the physical figure of Turnaround of Figure III.1, a Turnaround owns 4

ports and accordingly holds four sensors for each direction. Sr in the receiver state machine

stores a selected signal among a set of sensors called S = {Sw, Ss, Se, Sn} from an appro-

priate direction. Moreover, a Turnaround takes in functions to decide a direction for each

package by the Decide Route state using a routing function determined and deployed by

the GME interpreter. Accordingly it energizes a selected actuator among A = {Awe, Asn}

and the direction of the actuator. After a route for a package is determined, a Turnaround

should move the package to the center of the belt to avoid a physical collision which can

occur by actuating the chosen belt before the package is centered in the Turnaround.
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Lastly, a Turnaround accepts only one part to simplify its logic. After processing one

part, it accepts another part to be processed. The rest of the logic in a receiver state ma-

chine in a Turnaround is basically the same as a Segment. A transfer state machine in a

Turnaround (shown in Figure IV.8) is similar to a transfer state machine in a Segment ex-

cluding that it uses St as a sensor signal which is selected among S = {Sw, Ss, Se, Sn} .

Furthermore, it accepts only one part on a belt in the same way as the receiver machine.

All receiver machines and transfer machines introduced above can seamlessly communi-

cate with transfer machines and receiver machines of adjoining blocks (that are modeled in

the layout model).
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Figure IV.8: Turnaround Transfer State Machine
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IV.2.2 Physical Model

Next we describe how we architected the physics of the different blocks of the conveyor

system. Due to the complex nature of the simulation, we have given an abstract view of

the pertinent details in our explanation while leaving out unnecessary low-level details of

Simulink building blocks we used.

Belt Statistics Calculator

Package Data Store

Package Release Controller

Upstream and Downstream
Sensor Controllers

Receiver Counter

Transfer Counter

Belt Speed

Input Package Pulse

Upstream Sensor

Downstream Sensor

Figure IV.9: Simulation of the Physics of a Segment

Figure IV.9 depicts a high level perspective of the physics of simulated segment. It

comprises the following building blocks:

1. Belt Statistics Calculator: Calculates belt odometer by continuously integrating belt

speed input. It also maintains correct indices of head and tail cells in a rolling storage

queue explained next.

2. Package Data Store: Stores package sizes and arrival odometer values within a

queue. The queue is implemented as a rolling array. When a new package arrives, its

size and the current odometer reading of the belt is recorded in the tail cell.

3. Package Release Controller: Continuously calculates position of head package on
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belt. When the rear edge of the head package falls past the end of the belt, it is

removed from the queue and passed via a pulse to the downstream machine.

4. Upstream and Downstream Sensor Controllers: Continuously calculate positions of

the head and tail packages. Whenever any portion of a package is within an endzone,

the endzone controller generates a sensor value of 1; otherwise, controllers generate

sensor values of 0 when an endzone is empty.

5. Transfer and Receive Counters: Maintain counts of transferred and received pack-

ages

Package Position Calculator

Package Change Controller

Edge Sensor Controller

Input Package Pulse

Belt Speed

Output Package Pulse

Package Position

Edge Sensor

Figure IV.10: Simulation of the Physics of a Turnaround

Figure IV.10 depicts a high level perspective of the physics of simulated turnaround. It

comprises the following building blocks:

1. Package Position Calculator: Continuously integrates motor control signals for East-

West and North-South axes in order to calculate and maintain position of package on

belt.

2. Package Change Controller: Detects when packages enter or leave the turnaround

machine. Whenever a new package arrives (via pulse), this controller resets the Pack-

age Position Controller to the position and size of the newly arrived package. Note

that if a package already exists on the belt when a new one arrives, the old package

22



will be lost. When a package is determined to have moved completely off of the

machine, a package pulse is generated on the appropriate directional output and the

Package Position Controller is reset with a null package.

3. Edge Sensor Controller: Maintains sensor outputs for Edge Sensor Beams on all four

sides of machine. Whenever any portion of a package is determined to reside within

an edge beam, the appropriate edge sensor outputs the size of the package breaking

the beam. Outputs for unbroken edge beams are set at zero.

23



CHAPTER V

EXPERIMENTAL RESULTS

The experimental results we describe in this section are the results of analysis we col-

lected for an example reconfigurable conveyor system layout modeled in Figure IV.3. Note

that the maximum sustainable rates at input bins and observed throughput at output bins

can be affected by various cyber and physical parameters, such as length and velocity of

belts, coverage of sensors, and watchdog timer values used in software controllers.

Table V.1 shows the configured variables for the experiment; every Segment and Turnaround

is identically set up with the parameters in the table. Every type of package (small, medium,

and large) is produced evenly at input bins by random functions according to a uniform

distribution. The length of each package is fixed: small packages are 1m, medium pack-

ages are 1.5m, and large packages are 2m. The interval space between packages can vary

depending on traffic patterns of a system, but it is primarily affected by coverage of the

sensors. In case of a system configured by the table above, the coverage of sensors for a

Segment is 2m and for Turnaround is 1m, so spacing between packages is usually 4m when

a package is transferred between Segments and 3m when a package is transferred between

a Segment and a Turnaround.

Table V.1: Experiment Parameters

Block Belt Belt Sensor RX TX COMM
Type Velocity Length Zone WD WD WD

Segment 1 m/s 20 m 2 m 10 secs 10 secs 0.5 secs

Turnaround 1 m/s 5 m 1 m 10 secs 10 secs 0.5 secs
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Figure V.1 shows input rates of each bin and the rate of the total packages generated.

The graph shows that the rate of total numbers of packages generated rapidly increases

until the system saturates. Input bins periodically send a request to the next Segment every

0.5 sec. Over time, the next Segment reaches its maximum sustainable limit and the rates

of input bins are stabilized through back pressure (i.e., flow control).
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Figure V.1: Sustained Input Rates of Packages
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The throughput observed at each output bin and the rate of total numbers of packages

arrived are shown in Figure V.2. Comparing the numbers to the input rates, the output rate

of total numbers of packages arrived are already stabilized since the rate of arrivals are

balanced as the packages move through the different parts of the conveyor system.
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Figure V.2: Observed Output Rates of Package
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We conducted another experiment changing COMM_WD values in transfer state ma-

chines to investigate how throughput of a system is changed by altering a watchdog timer

value. If the numbers of packages arrived at output bins according to types of packages is

not even, it indicates there is starvation of some types of packages in routes. The outcomes

shown in Figure V.3 demonstrate that if the number of packages of each bin is balanced

and starvation in a system is infrequent, total throughput is higher.
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Figure V.3: Comparing the Total Numbers of Packages Arrived
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When Comm_WD is 0.5sec, large packages were starved. When Comm_WD is 0.1sec,

it shows that both medium and small packages were starved. Table V.2 illustrates the

outcomes. Therefore, the performance of a system when Comm_WD is 0.5sec is better

than the one of a system when Comm_WD is 0.1sec because it has less starvation in the

paths.

Table V.2: Number of Packages Arrived for Different COMM_WD Timer Values

COMM_WD Small Packages Arrived Medium Packages Arrived Large Packages Arrived
0.5sec 94 94 78
0.1sec 102 79 62

28



CHAPTER VI

CONCLUDING REMARKS

This paper presented a model-driven analysis framework for collecting different perfor-

mance metrics for reconfigurable conveyor systems. A model-driven analysis framework

makes it possible to decouple the activity of describing the topology of the proposed con-

veyor system from the analysis engine that collects different metrics to evaluate the prop-

erties of the topology. This separation enables the model-driven framework to change the

underlying analysis engine while also enabling the generative mechanisms to synthesize

code artifacts when the system is actually fielded. As a result complete automation can be

realized using a common framework.

Our research in developing such a capability, particularly, the underlying analysis en-

gine for a CPS system such as reconfigurable conveyors illustrates adverse consequences

of certain design decisions. For example, principles such as separation of concerns which

are highly effective in software designs (i.e., a cyber world issue) tend to produce incorrect

results due to the complex interaction of timing issues and concurrent behavior of phys-

ical systems. Moreover, we observed that concurrent behavior in the cyber world must

be correctly synchronized because these cyber artifacts often share common physical re-

sources. For example, the receiver and transfer finite state machines share a common belt

and hence their behaviors must be synchronized else the system may result in unforeseen

consequences.

In the same manner, trying to arbitrarily manipulate physical-level parameters, such

as reducing the inter package spacing to maximize throughput may also lead to adverse

consequences. In our case, we also observed that long periods of starvation resulted for
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certain paths in the topology resulting from such a physical-level manipulation and how it

impacted the behavior of the concurrent finite state machines and the timers.

Our future work in this area will explore analysis of failures in the system. We plan

to target both the physical failures, such as motor failing, and cyber failures, such as the

micro-controller logic failing. Our goal is to identify the impact on the system throughput

due to failures, and also to understand how runtime adaptation by rerouting goods will help

to maintain acceptable levels of performance in system operation. We also plan to prioritize

according to package types.
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