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OVERVIEW 

 

―What more powerful form of study of mankind could there be than to read our 

own instruction book?‖                                                         

   — Francis S. Collins 

 

Despite the impressive advances in our knowledge regarding the prevention and 

treatment of cardiovascular diseases, coronary heart disease (CHD) remains the leading killer of 

Americans.  Dissecting the genetic architecture of this common, complex human disease is 

extremely challenging.  However, the development of new technologies and analytical strategies 

for large-scale, high-throughput generation of biological data at progressively diminishing costs 

has greatly expanded our perspective of the genetic landscape.  

The blood lipid profile, among other factors, has long been recognized as a significant 

predictor of CHD.  Due to their central role in coronary heart disease, plasma lipids and 

lipoproteins have been intensively studied for many decades.  The high heritability of these traits 

has lead to much effort in understanding the genetic factors involved.  However, as with many 

complex traits, previous genetic studies have been only modestly successful in identifying new 

genes.  In this work, I endeavor to identify and characterize common genetic variants that explain 

a proportion of the inter-individual variability in lipids levels, including low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and 

lipoprotein(a) [Lp(a)] levels. 

The purpose of Chapter I is to provide an overview of the biology and epidemiology of 

lipids and lipoproteins.  I focus on their structure, metabolism, and relevance to coronary heart 

disease, along with how their mean concentrations differ across several racial/ethnic groups.  

Lastly, I summarize the strategies I have employed for studying their association with common 

genetic variants. 
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In Chapter II, I take a candidate gene approach to determine if variants in the gene that 

encodes for apolipoprotein(a), LPA, are correlated with Lp(a) levels.  LPA makes for an especially 

interesting candidate gene for study because it accounts for nearly all the variation observed in 

Lp(a) levels, which also vary considerably among different racial/ethnic groups.  Genotyped 

samples were drawn from participants of the Third National Health and Nutrition Examination 

Survey (NHANES III), a population-based, cross-sectional survey in the United States.  NHANES 

III, along with subsequent surveys NHANES 1999-2000 and NHANES 2001-2002, are utilized 

repeatedly throughout this work, as they provide a large number of DNA samples linked to a 

myriad of health and environmental variables, including lipid and lipoprotein measurements.  

Furthermore, the diversity of NHANES samples (which include non-Hispanic whites, non-

Hispanic blacks, and Mexican Americans) allows me to explore population-specific genetic 

associations with Lp(a) levels.    

In Chapter III, I use a different approach – a genome-wide association study (GWAS) – to 

identify novel variants associated with HDL-C, LDL-C, and TG in a diverse cohort of children 

undergoing treatment for acute-lymphoblastic leukemia, followed by replication in an 

independent cohort, NHANES III.  The majority of GWAS to date have been performed on 

adults, even though children and adolescents have different lipid distributions compared with 

adults.  In this chapter I ask if it may be advantageous to search for novel lipid-associated genetic 

variants in a cohort of children, who, presumably have not been exposed to environmental 

modifiers as long as adults.   Furthermore, I explore whether novel variants discovered in 

children generalize to adults and if these associations vary by age.  

 To date, approximately 100 lipid-associated variants have been identified through GWAS 

in samples of European descent.  However, data for other racial/ethnic populations is just 

emerging.  Therefore, as part of the Population Architecture using Genomics and Epidemiology 

(PAGE) consortium, I investigate in Chapter IV whether a select set of GWAS-identified, lipid-

associated variants selected from the literature replicate and generalize in an independent cohort 
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of European Americans, African Americans, Mexican Americans/Hispanics, American Indians, 

Japanese/East Asians, and Pacific Islanders/Native Hawaiians. 

Despite the ever-growing number of loci detected by GWAS, the proportion of trait 

variation explained is collectively small.  To investigate this missing heritability, it is important to 

explore gene-environment interactions, which may also contribute to trait variation.  In Chapter 

V, I test a subset of the variants explored in Chapter IV for interactions with three putative 

environmental modifiers (smoking status and levels of vitamin A and vitamin E) in NHANES. 

Lastly, in the Chapter VI, I will summarize the work presented in Chapters II through V, 

emphasizing the benefits and difficulties of the different approaches utilized here.  I will also 

discuss future directions for the field in light of rapidly advancing genotyping and sequencing 

technologies. 
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CHAPTER I 

 

INTRODUCTION 

 

 Coronary heart disease (CHD) is the leading killer of Americans. In 2007, CHD 

was responsible for 1 of every 6 deaths in the United States (Roger et al., 2011).  While 

the death rates from CHD have declined over the past decade, the disease remains a 

significant source of morbidity and economic burden.  In 2010, the compilation of health 

care services, medications, and lost productivity cost the United States $316.4 billion 

(Lloyd-Jones et al., 2010).  With such an astounding impact, new treatments and 

prevention strategies are desperately needed.  The identification of CHD risk factors is 

key to understanding disease etiology and will be instrumental in advancing clinical 

care.   

 The lipid profile has long been recognized as being important in the 

development of CHD, and within this profile, it is known that decreased high density 

lipoprotein cholesterol (HDL-C) and increased low density lipoprotein cholesterol (LDL-

C) and triglyceride (TG) levels are independent risk factors for CHD in the general 

population (Third Report of the National Cholesterol Education Program (NCEP) Expert 

Panel, 2002).  Other lipoproteins, such as lipoprotein(a) [Lp(a)], are also emerging as 

potential risk factors for CHD. This introductory chapter will review (1) the structure, 

function, and metabolism of these lipids and lipoproteins, (2) their clinical relevance to 

coronary heart disease, (3) epidemiological differences between racial/ethnic 

populations, and (4) some of the strategies undertaken to determine genetic variants 

important in their metabolism. 



2 

 

Structure and Function of Lipids and Lipoproteins 

 

Lipids 

 The two major lipids in the blood are cholesterol and triglycerides.  Cholesterol is 

the major animal sterol and serves many vital functions, including maintaining the 

integrity of cell membranes and acting as a precursor for vitamin D, steroid hormones, 

oxysterols, and bile acids (Moffatt and Stamford, 2006).  Cholesterol is found in two 

forms, free and esterified. The majority of circulating cholesterol is esterified and is 

synthesized endogenously, with the small remainder originating from our diet (Hegele, 

2009).   

 Triglyceride (also known as triacylglycerol) is the chemical form in which most 

fat exists in the body.  It is composed of three fatty acid chains (a key energy source) 

esterified to a glycerol backbone.   Triglycerides are synthesized both in the liver and in 

the intestines, are transported through the blood, and following lipolysis at the 

endothelial surface, deliver free fatty acids to peripheral cells where they are stored or 

used for energy. 

 

Lipoproteins 

 Due to their hydrophobic nature, cholesterol and triglycerides must be 

transported through the circulation via lipoproteins.  Lipoproteins consist of a core of 

hydrophobic triglycerides, fat-soluble vitamins, and cholesteryl esters which is then 

surrounded by a layer of hydrophilic phospholipids, free cholesterol, and 

apolipoproteins.   The two main triglyceride transporters are chylomicrons and very 
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low-density lipoprotein (VLDL).  The two main cholesterol transporters are high-density 

HDL and low-density LDL. 

Lipoproteins are classified by their density (Table 1.1).  Density is both a result of 

the lipid content (i.e. percent cholesterol and triglyceride) and the lipid/protein ratio.  

As their name implies, high density lipoproteins are the densest lipoproteins, containing 

about equal amounts of lipids and proteins.  As the lipid/protein ratio increases, 

lipoprotein size increases and density decreases, with chylomicrons being the least 

dense lipoprotein since they are composed almost entirely of lipids (98-99% by weight, 

Table 1.1).    

 While density determines lipoprotein classification, it is apolipoprotein content 

that determines lipoprotein function.  The major plasma apolipoproteins are described 

in Table 1.1 (Moffatt and Stamford, 2006; Hegele, 2009; Fless et al., 1994).     

Apolipoproteins act as cofactors for enzymes and as ligands for uptake by cellular 

receptors.   For example, apolipoprotein B-100, which is encoded by APOB and is the 

primary protein of LDL, facilitates lipid uptake through LDL receptors, which recognize 

and attach to certain segments of the apoB-100 molecule.  In mice, homozygous APOB 

knockouts are embryonic lethal and heterozygotes have decreased LDL-C and HDL-C 

levels (Huang et al., 1995).  Additionally, the characteristic protein component of 

lipoprotein(a) [Lp(a)] is apolipoprotein(a).  As discussed in Chapter II, apo(a) can vary 

greatly in size and plays a major role in the amount of circulating Lp(a).  Therefore, both 

lipid and apolipoprotein content play key roles in lipoprotein structure and function.  
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Table 1.1. Summary characteristics of lipoprotein classes. VLDL, very low density lipoprotein; LDL, low density lipoprotein; HDL, 

high density lipoprotein.  Table adapted from Hegele 2009, Moffat & Stamford 2006, and Fless et al 1994.  

 

Lipoprotein 
Class 

Density 
(g/ml) 

Triglyceride 
(% by weight) 

Phospholipid 
(% by weight) 

Free 
cholesterol 

(% by weight) 

Esterified 
cholesterol 

(% by weight) 

Protein 
(% by weight) 

Main 
apolipoproteins 

Chylomicrons <0.94 80-95 3-6 1-3 2-4 1-2 
A-I, A-IV, A-V, 

B-48, E, 
C-I, C-II, C-III 

VLDL 0.94-1.006 45-65 15-20 4-8 16-22 6-10 
B-100, E,  

C-I, C-II, C-III 

LDL 1.019-1.063 4-8 18-24 6-8 45-50 18-22 B-100 

Lp(a) 1.054-1.090 2-9 15-19 4-6 30-38 25-36 B-100, (a) 

HDL 1.063-1.210 2-7 26-32 3-5 15-20 45-55 A-I, A-II, E 
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Lipid and lipoprotein metabolism 

 As alluded to above, lipids are obtained either exogenously (through diet) or 

endogenously (hepatic synthesis).  Dietary fats are absorbed by the intestine through 

fatty acid transporters while sterols enter intestinal cells via the Niemann-Pick C1-like 1 

(NPC1L1) transporter.  The two lipids are then packaged together (via the microsomal 

TG-transfer protein, MTTP) into chylomicrons, along with apoliprotein B-48, and are 

secreted into the lymphatic system.  Once the chylomicrons have entered the  

circulatory system they are quickly hydrolyzed by lipoprotein lipase (LPL), thereby 

releasing free fatty acids to tissues such as adipose and muscle.  The remnants of this 

lipolysis are taken up by the liver, with the help of apo E and the LDL receptor-related 

protein (LRP), where they are available for catabolism (Lusis et al., 2004; Moffatt and 

Stamford, 2006).   

 The liver packages and secretes intestinally derived triglycerides and cholesterol, 

along with de novo synthesized cholesterol (produced via 3-hydoxy-3-methlyglutaryl 

coenzyme A reductase, HMGCR) as very low-density lipoprotein (VLDL).  VLDL is 

lipolyzed in the circulation by LPL, giving rise to intermediate-density lipoprotein (IDL), 

which is then hydrolyzed by hepatic lipase (HL) and yields LDL.   LDL is then removed 

from the circulation mainly by LDL receptor (LDLR) in conjunction with apo E.   

Because the kinetics of LDL uptake is slow, LDL remains in circulation for a longer 

period of time and is, therefore, the predominant cholesterol-carrying particle (Lusis et 

al., 2004; Moffatt and Stamford, 2006). 

 In the process known as reverse cholesterol transport, HDL is formed in 

circulation from chylomicrons and VLDL surface remnants, along with apo A-1 secreted 

by the liver and intestine.  While LDL delivers cholesterol to cells, HDL removes it.  
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HDL precursors take up cholesterol from tissues through interactions with ABC 

transporters, specifically ABCA1.  The cholesterol is then esterified by lecithin 

cholesterol acyl transferase (LCAT). Enzymes such as cholesteryl ester transfer protein 

(CETP) and phospholipid transfer protein (PLTP) facilitate the exchange of lipids 

between lipoprotein particles.  Finally, HDL is taken up by the liver, via scavenger 

receptor class B type 1 (SR-B1), where it metabolized (Lusis et al., 2004; Moffatt and 

Stamford, 2006).    

 

Risk factors for coronary heart disease 

 The most significant risk factors for CHD and atherosclerosis, the primary cause 

of CHD, are related to an imbalance of lipids and lipoprotein intake, metabolism, and 

catabolism.  When there are an insufficient number of LDL receptors synthesized or the 

receptors have low affinity for their apolipoprotein ligand (both of which may be caused 

by genetic abnormalities), or when there is excess dietary intake of fat, plasma LDL-C 

may be abnormally elevated and become oxidized.  This can lead to lesions and 

dysfunction of the vascular wall, which then can lead progressively to the attraction and 

migration of macrophages to the site of the lesion.  In a hypercholesterolaemic 

environment, macrophages engulf oxidized LDL and become foam cells.   Foam cells can 

become a problem when they accumulate along the vascular wall, form fatty streaks, 

and contribute to the creation of a necrotic core, which must be contained with a fibrous 

cap.  However, rupture of the cap can lead to hemorrhage, formation of a blood clot, 

occlusion of coronary vessels, heart disease, or stroke. 

 Along with elevated LDL-C levels, elevated triglycerides and decreased HDL-C 

levels are well-established risk factors for CHD (Third Report of the National 
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Cholesterol Education Program (NCEP) Expert Panel, 2002; Gordon et al., 1977; 

Manninen et al., 1992).  Whether or not increased levels of TG constitute an independent 

risk factor for CHD (due to correlation between TG and HDL-C) is debated among some 

investigators; however, studies have provided evidence of independence in risk 

prediction (Hokanson and Austin, 1996; Sarwar et al., 2007).   

 Lp(a) is an emerging risk factor for cardiovascular disease.  Numerous clinical 

studies have identified high Lp(a) levels (~>30 mg/dl) as a risk factor independent from 

LDL for a variety of cardiovascular pathologies (Kamstrup et al., 2009; Rhoads et al., 

1986; Danesh et al., 2000).  Much of the focus on Lp(a) has centered on apo(a)‘s strong 

resemblance to plasminogen, the zymogen for plasmin, which is the primary enzyme for 

blood clot degradation.  However, the exact atherogenic mechanism of Lp(a) remains 

unknown and in vivo investigation of Lp(a) function has been impeded by the lack of 

availability of small animal models since Lp(a) is expressed only in humans, nonhuman 

primates, and the European hedgehog.   

 The clinical relevance of the lipid profile cannot be overstated.  Studies have 

shown that, in men, a rise in total cholesterol (TC) from 200 to 240 mg/dl is associated 

with threefold increase in mortality from CHD (Stamler et al., 2000).  Given the 

overwhelming relevance of the lipid profile to CHD, the National Heart, Lung, and 

Blood Institute (NHLBI) of the National Institutes of Health (NIH) launched the 

National Cholesterol and Education Program (NCEP) Adult in 1985.  The goal of the 

NCEP is to reduce the number of CHD-related deaths in the United States by reducing 

the number of Americans with high cholesterol.  The NCEP also sponsors expert panels 

to develop guidelines for health professional.  Table 1.2 presents the Third NCEP Adult 

Treatment Panel‘s recommendation for lipid levels for adults.    
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Table 1.2. NCEP ATP III guidelines for lipid and lipoprotein levels 

Lipid (mg/dL) Normal Borderline High High Very High 

TC <200 200-239 ≥240  

LDL-C <129 130-159 160-189 ≥190 

HDL-C >60 40-59 (Borderline-low) ≤40 (Low)  

TG <150 150-199 200-499 ≥500 

 

 

Ethnic Differences in Cardiovascular Disease and Lipid Levels 

 

 The relationship between cholesterol levels and coronary heart disease (CHD) 

holds across all race/ethnicities.  However, median levels of lipids and lipoproteins do 

differ across geographical ancestries and this might contribute to differences in CHD 

risk observed across different racial/ethnic populations. Overall differences in CHD 

mortality, HDL-C, LDL-C, TG, and Lp(a) levels among America‘s major subpopulations, 

in comparison to those of European Americans, are presented in Table 1.3. 

Populations of African-descent (i.e. non-Hispanic blacks or African Americans) 

have the highest overall mortality rate from CHD of any ethnic group in the United 

States (Clark et al., 2001).  However, African Americans have a more favorable lipid 

profile (lower levels of total cholesterol and triglycerides and higher levels of HDL-C) 

compared to European Americans as well as a lower prevalence of hypercholesterolemia 

(Johnson et al., 1993; Clark et al., 2001; Metcalf et al., 1998).  Another consistent finding 

in African Americans is greater concentrations of lipoprotein(a) [Lp(a)] compared to 

European Americans (Howard et al., 1994; Metcalf et al., 1998; Clark et al., 2001).   
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Table 1.3.  Overview of the differences in lipid and lipoprotein concentrations of 
American racial/ethnic groups in comparison to European Americans.  ↑, Higher than 
European Americans; ↓, lower than European Americans; ↔, undetermined; CHD, 
coronary artery disease; LDL-C, low-density lipoprotein cholesterol; HDL-C, high 
density lipoprotein cholesterol; TG, triglycerides; Lp(a), lipoprotein(a).  Table adapted 
from Moffat and Stamford 2006.  
 
   

Racial/Ethnic 
Population 

CHD 
mortality 

LDL-C HDL-C TG Lp(a) 

African American ↑ ↓ ↑ ↓ ↑ 

Mexican American ↓ ↓ ↓ ↑ ↔ 

American Indian ↓ ↓ ↓ ↓ ↓ 

 

 

 Mexican Americans (or Hispanics), have approximately 20% lower rates of 

mortality due to CHD and cardiovascular disease compared to European Americans, 

despite their less favorable cardiovascular risk profile, including lower HDL-C and 

higher triglycerides (Sorlie et al., 1993; Liao et al., 1997).  Even though Mexican 

Americans appear to have lower than expected mortality from CHD, the proportion of 

total deaths due to CHD is similar to that of European Americans (Third Report of the 

National Cholesterol Education Program (NCEP) Expert Panel, 2002).  In regards to 

Lp(a), there are inconsistencies between studies.  Compared to European Americans, 

studies have shown Mexican Americans to have both higher (Kamboh et al., 1997) and 

lower (Haffner et al., 1992) mean Lp(a) levels.  

 Early reports of CHD mortality in American Indians suggested that this group 

had lower rates compared to European Americans (Nelson et al., 1990).  However, more 

recent reports suggest that this rate appears to be increasing, possibly related to the high 
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and increasing prevalence of diabetes in these communities (Howard et al., 1999; Welty 

et al., 2002).  On average, this population has lower total cholesterol, HDL-C, and LDL-C 

than European Americans (Howard et al., 1999; Welty et al., 2002; Robbins et al., 1996).  

Interestingly, American Indians have 1.5-3 times lower concentrations of Lp(a) than 

those of European Americans, and 5-10 times lower than those of African Americans 

and do not appear to associate with cardiovascular disease risk (Wang et al., 2002; 

Howard et al., 1994).  

 Observed differences in the distribution of risk factors, such as the lipid profile, 

and coronary heart disease between race and ethnic groups are likely a function of the 

frequency of specific genotypes and interactions with environmental factors.  Methods 

to determine which genotypes and which environmental interactions are important are 

discussed in the next section. 

 

Strategies for Studying the Genetics of Lipids 

 

A central goal of human genetics is to determine relationships between DNA 

sequence variants and any resulting phenotypic changes.  Lipid and lipoprotein 

distributions are attractive phenotypes for genetic study for several reasons.  First and 

foremost, lipids are highly heritable.  Twin and family studies suggest that up to 80% of 

lipid trait distributions can be attributed to genetics (O'Connell et al., 1988; Snieder et al., 

1999; Heller et al., 1993).   Furthermore, lipids, unlike most other complex traits, are not 

as prone to phenotypic heterogeneity.  The use of standardized methods allows for 

accuracy and precision in trait measurement.   
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Genetic studies of the lipid profile are also clinically relevant as the lipid profile 

may be considered an intermediate clinical phenotype for CHD.  Just as clinical outcome 

can be treated as a combination of intermediate phenotypes, so can intermediate 

phenotypes be treated as a combination of risk factors, both environmental and genetic 

(Carlson et al., 2004a).  Therefore, identifying genetic variants associated with lipid 

levels may provide insight into the etiology of CHD.  The advantage of using the lipid 

profile as an intermediate phenotype is the number of genetic and environmental factors 

influencing variation in lipid distribution is presumably smaller than the number of 

factors affecting CHD (Carlson et al., 2004a). 

 The search for specific genes involved in the regulation of lipid and lipoprotein 

levels in the general population has been going on for the past ~30 years.  While the goal 

remains the same (a better understanding of lipid metabolism and its relationship with 

CHD), the methods of study have evolved greatly over that time.  To identify common 

genetic variation associated with complex traits, such the lipid profile, two approaches 

stand out: the candidate gene approach and the genome-wide association approach.  

The benefits and drawbacks of both study designs are summarized below, along with a 

variant of the study designs: gene-environment interactions. 

 

Candidate gene approach 

 Candidate gene studies focus on genes with a known or inferred biological 

function, which may play a role in disease or an observed phenotype.  Much like 

traditional epidemiological approaches, these types of studies have an a priori 

hypothesis that a certain exposure (in this case, a given genotype) may be correlated 

with a certain disease.  In the genetic study of lipids and lipoproteins, candidate gene 
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studies have generally centered on genes encoding apolipoproteins, lipoprotein 

receptors, and enzymes involved in lipid metabolism, and transport proteins (Ordovas, 

2002).  Typically, investigators try to identify variants in or near candidate genes that 

may have functional consequences (such as a change in the protein or its expression).  

Some of the first key genes implicated in lipid metabolism were identified by 

candidate gene studies on a small subset of patients at the extremes of lipid distribution.  

For instance, familial hypercholesterolemia (FH), a monogenic disorder characterized by 

abnormally high concentrations of LDL-C in the blood, was one of the first genetic 

diseases of lipid metabolism to be characterized (Rader et al., 2003).  Brown and 

Goldstein determined that rare variants in LDLR, the gene that encodes the LDL 

receptor, disrupt the normal control of lipid metabolism, thereby resulting in 

hypercholesterolemia (Brown and Goldstein, 1986).   

There are many benefits of the candidate gene approach.  For one, candidate 

gene studies are well suited for detecting genes with small effect sizes underlying 

common and complex disease (Collins et al., 1997; Risch and Merikangas, 1996).  In 

contrast to linkage analyses and genome-wide association studies (see below), the whole 

genome is not scanned and, therefore, fewer markers are genotyped.  Testing fewer 

markers result in fewer statistical tests.  That is, in comparison to genome-wide 

association studies (discussed below), less stringent levels of significance are necessary 

and the need for correction for multiple testing is minimized.     

One of the major difficulties with this approach is that an understanding of the 

mechanisms underlying the disease/phenotype must already be in place.  Most 

candidate gene studies consider a small number of genes and variants; therefore, 

deciding which genes to focus on and which variants to genotype is limited by our 
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current biological knowledge.  Another major criticism of candidate gene studies is lack 

of replication (Ioannidis et al., 2001).  Lipid candidate gene studies have been 

disappointing as only a handful have been replicated consistently across studies and 

populations, such as the APOA1/C3/A4/A5 gene cluster (Talmud et al., 2002; Pennacchio 

et al., 2002), ABCA1 (Cohen et al., 2004), and PCSK9 (Cohen et al., 2005).  Lastly, variants 

discovered through candidate gene studies are often rare.  For example, over 700 

different variants in LDLR have been identified; yet, the estimated frequency of patients 

with familial hypercholesterolemia who are heterozygous for one of those variants in 

LDLR ranges from only 0.1 to 1.5%, depending on the population (Austin et al., 2004). 

 

Genome-wide association studies 

While the study of candidate genes and monogenetic disorders has been useful 

in detecting rare, causative variants that affect lipid levels, common variation likely also 

plays a major role in the distribution of lipid levels in the general population.  The idea 

that risk for common diseases/phenotypes is influenced primarily by common variants 

(with frequencies > 5% in the population) is known as the common disease/common 

variant (CD/CV) hypothesis (Reich and Lander, 2001).  This hypothesis is the 

underlying rationale for genome-wide association studies (GWAS) (Manolio et al., 2009).   

Completion of sequencing of the human genome, the International HapMap 

project, and cost-effective, high-throughput genotyping technologies in the mid-2000‘s 

resulted in a new study design – GWAS.  In this study paradigm, investigators, in an 

attempt to capture much of the common genetic variation across the genome, genotype 

individuals for 250,000 to over 1 million single nucleotide polymorphisms (SNPs).  

GWAS are indirect association studies that rely on linkage disequilibrium (LD), or the 



14 

 

non-random association of alleles at two or more loci.  Presumably, genomic regions that 

contain a disease-related variant are tagged by a SNP, and are detectable by a significant 

association between the tagging SNP and the disease/phenotype of interest. 

Genome-wide association studies allow for interrogation of the entire genome 

with few prior assumptions.  One of the major driving forces behind GWAS was the 

desire for discovery of novel genes and pathways important in lipid metabolism, as only 

~20 lipid-correlated loci were known.  GWAS have successfully identified novel 

common variants which associate with lipids and lipoprotein concentrations in the 

general population.  Beginning in 2008, a flurry of lipid-related GWAS were published 

(Kathiresan et al., 2008; Kooner et al., 2008; Sandhu et al., 2008; Wallace et al., 2008; 

Willer et al., 2008).  While the majority of indicated loci were previously known, these 

studies identified seven new loci associated with HDL-C, LDL-C, and triglycerides 

(Lusis and Pajukanta, 2008).  Then, one year later, three more lipid GWAS modestly 

expanded the number of associated loci (Aulchenko et al., 2009; Kathiresan et al., 2009; 

Sabatti et al., 2009).  More recently, in the most comprehensive meta-analysis of GWAS  

to date, a total of 95 lipid-associated loci, including 59 novel associations, were indicated 

in greater than 100,000 individuals (Teslovich et al., 2010).   

Genome-wide association studies have also been successfully applied to genetic 

studies of Lp(a).  In 2009, two GWAS identified variants associated with Lp(a) levels.  

One study identified a novel SNP in the LPA gene that associated with high Lp(a) levels 

in two cohorts, and with carotid artery disease in one (Ober et al., 2009).   A few months 

later, another study identified two additional variants, also in LPA, that resulted in a 2- 

3-fold increase in circulating Lp(a) levels (Clarke et al., 2009).   



15 

 

Despite the success of GWAS, it has its challenges beyond those of candidate 

gene studies (McCarthy et al., 2008; Shriner et al., 2007; Williams et al., 2007).  For one, 

due to the nature of GWAS, multiple testing becomes a significant problem.   Performing 

multiple tests can lead to an inflated type 1 error rate, thereby increasing the number of 

false positive associations.  However, there is no consensus on when and how to correct 

for multiple testing.  The Bonferroni corrected threshold of ~5x10-8 proposed by many 

(The International HapMap Consortium, 2005; Hoggart et al., 2008) is overly 

conservative because it assumes that all tests are independent, which is untrue for SNPs 

in strong linkage disequilibrium.  Permutation testing is another option but it is 

computationally demanding.   

A second major issue related to GWAS is that the effect sizes of common SNP 

associations are, with rare exception, small to modest.  For example, most common 

variants examined by GWAS explain only ~3-5% of the variance of HDL-C, LDL-C, or 

triglycerides in the population.  This observation has several implications.  In regards to 

study design, large meta-analyses and collaborative consortia with very large sample 

sizes are required to detect these small effects.  For example, the large meta-analysis by 

Teslovich et al examined greater than 100,000 individuals from the United States, 

Europe, and Australia (Teslovich et al., 2010).   Furthermore, some have argued that 

variants with such small effect sizes are not clinically relevant, only marginally 

improving the accuracy of disease predication models and may not even be as predictive 

of traditional risk factors (Lanktree et al., 2008).  However, determination of new 

pathways and targets important in lipid metabolism may inform new drug design and, 

possibly, lead to changes in clinical practice. 
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Gene-environment interactions 

 It has been argued that traditional single-SNP association studies may have 

reached their limit to detect common variants associated with lipids with small effect 

sizes (Hegele, 2010).  Therefore, to illuminate more of the genetic landscape, different 

analytical approaches of the traditional study designs are needed.  One such approach is 

accounting for gene-environment interactions.  It is well-known that environmental 

factors play significant roles in shaping complex diseases and phenotypes (Ritchie et al., 

2001; Moore and Williams, 2002; Hunter, 2005).  It is hypothesized that inclusion of 

gene-environment interactions may explain more common disease than either genetics 

or the environment alone, thereby contributing to some of the ―missing heritability‖ 

(Manolio et al., 2006; Manolio et al., 2009; Hunter, 2005).   

 In regard to lipid levels, many environmental modifiers have been identified, 

including diet, exercise, cigarette smoking, postmenopausal estrogen use, oral 

contraceptive use, and lipid-lowering medication (i.e. statins) use.  How these 

environmental variables interact with genetic variants to shape lipid distributions is still 

largely left to be determined.  For example, APOE is probably the most studied 

candidate gene; however, it is only in the last decade that it‘s interaction with 

environmental factors have been examined (Talmud and Humphries, 2002).  Studies 

have shown that certain APOE genotypes interact with various cholesterol-lowering 

interventions (medications, hormone replacement therapy, diet, and exercise) to 

differentially affect lipid and lipoprotein changes. 
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Summary 

 

In summary, lipids and lipoproteins are complex, clinically relevant phenotypes 

that are shaped by genes and the environment.  Numerous genes, which play a key role 

in their metabolism, have been characterized; however, accounting for more genetic 

determinants of such an important trait is necessary.  Futhermore, the modifying effect 

of the environment on these genetic determinants has not been fully realized.  Hopefully 

future genetic association studies, like the ones outlined in Chapters II-V, will identify 

factors that impact lipid traits and could be used to further our understanding of their 

biology and the development of CHD risk. 
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CHAPTER II 
 

 
 

THE ASSOCIATION OF COMMON VARIATION IN LPA AND 
LIPOPROTEIN(A) LEVELS DIFFERS BY RACE/ETHNICITY1 

 
 

 
Introduction 

 
 
 
 Lipoprotein (a) [Lp(a)] levels have long been recognized as an independent risk 

factor for coronary artery disease (CAD) (Bennet et al., 2008; Berglund and 

Ramakrishnan, 2004; Danesh et al., 2000).  However, Lp(a) concentrations and their 

relationship with cardiovascular disease vary across races/ethnicities. The most notable 

example of this discrepancy is observed between populations of European- and African-

decent.  While the mean Lp(a) level is two- to threefold higher in blacks relative to 

whites (The Emerging Risk Factors Collaboration, 2009; Guyton et al., 1985), elevated 

plasma Lp(a) levels have been reported to be associated with CAD in whites but have 

not been clearly demonstrated in blacks (Heiss et al., 1984; Moliterno et al., 1995; Sharrett 

et al., 2001; Sorrentino et al., 1992; Srinivasan et al., 1991).   

 The epidemiology of Lp(a) in other US racial/ethnic populations, such as 

Mexican Americans, is not as well documented and often inconsistent.  For example, 

compared to non-Hispanic whites, studies have shown Mexican Americans to have both 

higher (Kamboh et al., 1997) and lower (Haffner et al., 1992) mean Lp(a) levels.  The 

                                                      
1 Adapted from: Dumitrescu L, Glenn K, Brown-Gentry K, Shephard C, Wong M, Rieder 

MJ, Smith JD,  Nickerson DA, and Crawford DC. Variation in LPA is robustly associated 

with Lp(a) levels in the Third National Health and Nutrition Examination Survey. PLoS 

One (1) 6; e16604. 
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underlying cause(s) for these between-population differences has not been fully 

determined; however, there is evidence for the role of multiple, population-specific 

alleles in LPA (Chretien et al., 2006), the gene that encodes for apolipoprotein(a) [apo(a)], 

which when bound to apolipoprotein B-100 and a low density lipoprotein (LDL)-like 

particle forms Lp(a). 

 Lp(a) levels not only vary dramatically across populations, they also have a 

remarkable inter-individual variability that ranges from barely detectable to greater than 

250 nmol/l (Marcovina et al., 2003).  This inter-individual variability has a substantial 

genetic component.  It has been determined that the apolipoprotein(a) gene is the major 

contributor to Lp(a) levels, accounting for more than 90% of the variance for that trait in 

European Americans (Boerwinkle et al., 1992).   

 Two types of genetic variants in LPA have been associated with Lp(a) levels:  

variations in the number of copies of the kringle IV-2 repeat and single nucleotide 

polymorphisms (SNPs).  It has been estimated that the kringle IV-2 repeat alone explains 

61-69% of the variability observed in Lp(a) levels in populations of European ancestry 

(Boerwinkle et al., 1992; Boomsma et al., 2000).  In contrast, the kringle repeat appears to 

explain less of the variability (19-44%) in populations of African descent (Ali et al., 1998; 

Kraft et al., 1996; Schmidt et al., 2006) and Mexican Americans (22-48%) (Chiu et al., 

2000; Rainwater et al., 1997).  While the kringle IV-2 repeat polymorphism accounts for a 

large percentage of the variability of Lp(a) levels, the remaining variance has yet to be 

explained. 

 Recent studies have identified common SNPs in LPA as strongly associated with 

Lp(a) levels, explaining up to 36% of the trait variance in populations of European-

descent (Clarke et al., 2009; Lanktree et al., 2010; Ober et al., 2009).  While several studies 
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have indicated certain SNPs are in substantial linkage disequilibrium (LD) with the 

kringle IV-2 repeat polymorphism (Clarke et al., 2009; Lanktree et al., 2010), evidence 

also exists that some SNPs are in relatively little LD with copy number variation in LPA 

(Crawford et al., 2008) and may be independent contributors to Lp(a) levels.  A recent 

genome-wide association study performed in a Hutterite population with kringle IV-2 

repeat polymorphism data identified a SNP associated with Lp(a) levels independent of 

the kringle repeat, supporting the assumption that some common SNPs in LPA are 

independent of the kringle repeat polymorphisms (i.e., not in linkage disequilibrium) 

(Ober et al., 2009). 

 To date, relatively few studies have examined associations between LPA 

common SNPs and Lp(a) levels across multiple, diverse populations and no study has 

characterized the same panel of LPA common SNPs in populations of European-, 

African-, and Mexican-descent.  To better characterize this genotype-phenotype 

relationship in more diverse populations, we have genotyped 19 European American 

and African American LPA tagSNPs in 7,159 participants from the Third National 

Health and Nutrition Examination Survey (NHANES III).  NHANES III is a diverse, 

population-based cohort representing Americans of European-, African-, and Mexican-

descent (Center for Disease Control and Prevention, 1996).  We report the significant 

association of LPA SNPs and Lp(a) levels in this diverse cohort and estimate the  

proportion of Lp(a) variance explained by these genetic variants. 
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Methods 

 

Study population 

 Ascertainment of the Third National Health and Nutrition Examination Survey 

(NHANES III) and method of DNA collection have been previously described 

(Crawford et al., 2006; Chang et al., 2009; Steinberg et al., 1997) and so will only be 

briefly described here.  The National Health and Nutrition Examination Surveys are 

cross-sectional surveys conducted by the National Center for Health Statistics (NCHS) at 

the Centers for Disease Control and Prevention (CDC).  NHANES III was conducted 

between 1988-1990 (phase 1) and 1991-1994 (phase 2) (Centers for Disease Control and 

Prevention, 2004; Centers for Disease Control and Prevention, 1996).  Like all the 

NHANES, NHANES III is a complex survey design that over-sampled minorities (non-

Hispanic blacks and Mexican Americans), the young, and the elderly.  All NHANES 

have interviews that collect demographic, socioeconomic, dietary, and health-related 

data.  Also, all NHANES study participants undergo a detailed medical examination at a 

central location known as the Mobile Examination Center (MEC).  The medical 

examination includes the collection of physiological measurements by CDC medical 

personnel and blood and urine samples for laboratory tests.  Beginning with phase 2 of 

NHANES III, DNA samples were collected from study participants aged 12 years and 

older.   

 

Laboratory measures 

 Serum total cholesterol, triglycerides, and HDL cholesterol were measured using 

standard enzymatic methods.  LDL cholesterol was calculated using the Friedewald 
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equation, with missing values assigned for samples with triglyceride levels greater than 

400 mg/dl.  Serum Lp(a) levels were measured immunochemically by enzyme-linked 

immunosorbant assay (ELISA) (Strategic Diagnostics, Newark, DE), which does not 

have cross reactivity with plasminogen or LDL and is non-sensitive to apo(a) size 

heterogeneity (Center for Disease Control and Prevention, 1996).  Quality control 

measures of the Lp(a) assay have been described elsewhere and the reliability of this 

Lp(a) measurement has been adequately demonstrated (Center for Disease Control and 

Prevention, 1996).  

 

SNP selection and genotyping 

 Single nucleotide polymorphisms (SNPs) were selected from SeattleSNPs data on 

European Americans (n=23) and African Americans (n=24) re-sequenced for SNP 

discovery as previously described (Crawford et al., 2008).   Briefly, tagSNPs were chosen 

for genotyping in both populations separately using LDSelect (Carlson et al., 2004b) at 

minor allele frequency (MAF) >5% and r2>0.80.  At the time of tagSNPs selection (2006), 

LPA variation data was not available for Mexican Americans or other Hispanic reference 

samples.  Forty-nine SNPs were considered for genotyping, 35 SNPs were targeted for 

genotyping, and 20 were successfully genotyped.  Genotyping was performed using the 

Illumina GoldenGate assay (as part of a custom 384 OPA) by the Center for Inherited 

Disease Research (CIDR) through the National Heart Lung and Blood Institute‘s 

Resequencing and Genotyping Service.  A display of the chromosomal locations of all 20 

LPA SNPs, along with their relative locations to the 5′ untranslated region (represented 

by rs1800769) and the kringle repeat (represented by rs9457952 and rs9457986, which 

flank the kringle repeat), is presented in Figure 2.1. 
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Genotyping call rates and tests of Hardy Weinberg Equilibrium stratified by self-

reported race/ethnicity were calculated for all genotyped LPA SNPs (Table 2.1).  The 

average genotyping call rate for all 20 SNPs was 95.9%.  SNP rs4073498 was out of 

Hardy Weinberg Equilibrium (HWE; p<0.01) in all three racial/ethnic groups and was 

therefore excluded from all analyses as mandated by CDC.   Five additional SNPs 

(rs1321195, rs1652507, rs7755463, rs7450261, and rs41265936) were found to be out HWE 

in one subpopulation but were carried forward in the analysis.  In addition to these 

quality control metrics, we genotyped blinded duplicates as required by CDC, and all 

SNPs reported here passed quality control metrics required by CDC.  All genotype data 

reported here were deposited into the NHANES III Genetic database and are available 

for secondary analysis through CDC. 

 

Statistical methods 

 Analyses were performed for each self-reported race/ethnicity separately.  

Quality control measures were implemented in PLINK (Purcell et al., 2007).  Tests of 

association were performed using SAS version 9.1 and were limited to participants 

greater than 18 years of age who had non-missing Lp(a) levels regardless of fasting 

status.  Each genetic variant was tested for association with ln(Lp(a)+1) levels (a 

transformation that approximated normality) using linear regression assuming an 

additive genetic model.  Analyses were performed adjusted for age and sex, and results 

were plotted using Synthesis-View (Pendergrass et al., 2010).  Data were accessed 

remotely from the CDC‘s Research Data Center (RDC) in Hyattsville, Maryland using 

Analytic Data Research by Email (ANDRE).  Statistical significance was defined as 
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Figure 2.1.  Location of genotyped LPA SNPs relative to the kringle repeat region and a SNP in the 5′ untranslated region.  
Synthesis-View (Pendergrass et al., 2010) was used to plot the 20 LPA SNPs genotyped in this study.  Three other SNPs not 
genotyped in this study are also represented in this plot within the boxes:  rs1800769 (which represents a 5′ UTR SNP genotyped by 
Rainwater et al 1997 (Rainwater et al., 1997)) and rs9457986 and rs9457952, which flank the kringle repeat.  Chromosomal locations 
are based on genome build 36. 
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Table 2.1. SNP location and genotyping quality control metrics, stratified by race/ethnicity. Abbreviations:  Base pair (bp), 
genotyping efficiency (GE), Hardy Weinberg Equilibrium (HWE), minor allele (MA), minor allele frequency (MAF). ‡Referent allele 
listed first 
 
 

SNP 
Position 

(bp) 
(Build 36) 

Location Alleles‡ 

Non-Hispanic Whites 
n=2,631 

Non-Hispanic Blacks 
n=2,108 

Mexican Americans 
n=2,073 

G.E. 
% 

HWE MA MAF 
G.E. 

% 
HWE MA MAF G.E.% HWE MA MAF 

rs1321196 161001832 intron A/G 96.0 0.488 G 0.358 96.1 0.527 G 0.436 96.0 0.910 G 0.272 

rs1321195 161004146 intron A/G 95.8 0.793 A 0.131 96.3 0.695 A 0.030 95.8 4.3E-4 A 0.089 

rs1367211 161002685 intron A/G 95.8 0.249 A 0.274 95.8 1.000 A 0.480 95.8 0.463 A 0.214 

rs4073498 160928635 intron A/G 94.2 4.0E-22 A 0.368 92.3 0.009 G 0.452 94.2 0.005 A 0.272 

rs1652507 161002451 intron A/G 95.5 0.101 G 0.168 96.1 0.760 G 0.078 95.5 0.002 G 0.428 

rs6907156 160935999 intron A/G 96.2 1.000 G 0.003 96.1 0.141 G 0.162 96.2 1.000 G 0.019 

rs6919346 160880349 intron A/G 95.4 0.038 A 0.175 96.3 1.000 A 0.035 95.4 0.895 A 0.094 

rs6926458 160939856 intron A/G 96.0 0.352 G 0.219 96.3 0.557 G 0.106 96.0 0.395 G 0.156 

rs7755463 160932260 intron A/G 96.3 0.001 A 0.005 96.1 0.623 A 0.345 96.3 0.664 A 0.028 

rs7767084 160882493 intron A/G 96.0 0.715 G 0.163 96.4 0.510 G 0.034 96.0 0.789 G 0.147 

rs9364564 160919030 intron A/G 95.8 0.683 A 0.178 96.3 0.397 A 0.086 95.8 0.403 A 0.140 

rs12212507 160991972 intron A/G 96.1 0.246 A 0.055 96.4 1.000 A 0.007 96.1 1.000 A 0.012 

rs13192132 160942413 intron A/G 95.8 0.513 G 0.353 96.3 0.858 G 0.145 95.8 0.504 G 0.245 

rs10945682 160989931 intron A/G 95.6 0.279 A 0.359 96.2 0.223 G 0.438 95.6 1.000 A 0.279 

rs12194138 160879821 intron A/T 96.0 0.776 T 0.168 96.4 1.000 T 0.027 96.0 0.486 T 0.069 

rs7450261 160940495 intron A/G 96.2 1.000 A 0.001 96.0 0.006 A 0.053 96.2 1.000 A 0.002 

rs7450411 160930344 intron A/C 95.6 0.734 A 0.179 96.1 0.637 A 0.136 95.6 0.311 A 0.142 

rs7765803 160927528 L1358V C/G 95.7 0.589 C 0.331 95.9 0.823 G 0.457 95.7 0.729 C 0.264 

rs41265936 160883764 G1822A C/G 96.2 1.000 G 0.001 96.0 4.1E-4 G 0.062 96.2 1.000 G 0.006 

rs41271028 160935909 intron A/T 96.2 1.000 T 0.003 96.4 0.150 T 0.094 96.2 1.000 T 0.013 
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p<0.0001, which represents the Bonferroni corrected p-value [p=0.0008=0.05/(20 SNPs x 

3 populations)]. Using STATA 10.1, the frequency of risk alleles was compared between 

populations using Pearson‘s chi-squared test.  Pair-wise linkage disequilibrium (r2) was 

calculated using the Genome Variation Server provided by SeattleSNPs 

(http://gvs.gs.washington.edu/GVS/).  Haplotypes were inferred by SAS/Genetics 

using the expectation-maximization algorithm in each subpopulation separately.  

 To account for oversampling and non-response in the survey, the National 

Center for Health Statistics provides a weighting methodology, which has been 

described elsewhere (Lohr, 1999).  In general, weights are often applied in large-scale 

health surveys that have complicated sampling schemes (such as NHANES) so that one 

can estimate the level of a variable in the U.S. population at large, as opposed to just in 

one‘s sample population.  However, since weights were not designed to produce 

estimates from a sample created using our specific restrictions (i.e. adults 18 years or 

older with LPA genotypes and Lp(a) measurements) and use of sampling weights when 

unnessary may lead to an inefficient, underpowered analysis (Korn and Graubard, 

1991), unweighted results are presented in the main body of the paper, and thus point 

estimates are not representative of the U.S. population.  Nevertheless, we performed 

tests of association both unweighted (using SAS version 9.1) and weighted (using 

SUDAAN).  Unsurprisingly (Korn and Graubard, 1991), the results of the weighted 

analyses (Appendix A) were generally less significant than those in the unweighted 

analysis; however, the proportion of risk alleles when comparing the three populations 

remained equivalent. 
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Genetic risk score calculation 

 The Genetic Risk Score (GRS) was calculated for every participant, respective to 

each population separately, using SNPs that were associated with transformed Lp(a) 

levels at p<0.0001.  We used a count method and assumed each SNP to be 

independently associated with increased levels of Lp(a).  Assuming an additive genetic 

model for each SNP, a value of 2 was given to individuals who were homozygous for 

the ―risk‖ allele (i.e. the allele associated with increased levels of transformed Lp(a) 

levels).  Values of 1 and 0 were given to genotypes containing 1 or 0 copies of the risk 

allele, respectively.  The GRS was calculated summing the number of risk alleles at each 

locus.    Participants with incomplete genotype data at any SNP used in the GRS were 

excluded from analysis.  Linear regression, with continuous GRS as the independent 

variable, was used to evaluate the joint effects (R2) of associated genetic variants for 

Lp(a) trait variation. A weighted GRS (WGRS) was also calculated by multiplying each 

β-coefficient from adjusted tests of association by the number of risk alleles, and then 

summing the products.  Compared to the GRS, the results of the WGRS do not 

appreciably differ (Appendix B); therefore, GRS was used for the main analyses. 

 

Ethics statement 

All procedures were approved by the CDC Ethics Review Board and written 

informed consent was obtained from all participants. This candidate gene association 

study was approved by the CDC Ethics Review Board (protocols #2003-08 and #2006-

11) and the University of Washington‘s Institutional Review Board (IRB #23667; HSRC 

D committee).  Because no identifying information was accessed by the investigators, 
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this study was considered exempt from Human Subjects by Vanderbilt University‘s 

Institutional Review Board (IRB #061062; HS2 committee). 

 

Results 

 

Population characteristics 

 Characteristics of the NHANES III study participants are shown in Table 2.2.  

Genetic NHANES III included 2,631 non-Hispanic whites, 2,108 non-Hispanic blacks, 

and 2,073 Mexican Americans.  As expected (Marcovina et al., 1996), the mean Lp(a) 

level in non-Hispanic blacks was 43.4 mg/dL (SD, 32.8 mg/dL), a twofold increase 

compared to non-Hispanic whites and a three-fold increase compared to Mexican 

Americans.  Mexican Americans had significantly lower mean Lp(a) levels compared to 

whites (p<0.0001).  Body mass index (BMI) was similar across all three populations 

(p=0.093).  Demographic variables age and sex, along with other blood lipid traits LDL-

C, HDL-C, and triglycerides, differed significantly (p<0.0001) across populations.  

TagSNP allele frequencies are presented in Table 2.1, by population.  We 

calculated the Pearson correlation coefficient (r) between each of the three populations.   

Not surprisingly (Crawford et al., 2008; Bamshad, 2005), LPA allele frequencies observed 

in non-Hispanic whites were highly correlated with allele frequencies observed in 

Mexican Americans (r=0.80).  Also as expected (Bamshad, 2005; Crawford et al., 2008; 

Carlson et al., 2003), we observed weaker correlation between allele frequencies in non-

Hispanic blacks compared with non-Hispanic whites (r=0.60) and Mexican Americans 

(r=0.48).  Furthermore, compared with non-Hispanic whites, the proportion of SNPs that 
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differed in allele frequency by more than ±0.10 was smaller in Mexican Americans (2/19 

SNPs; 11%) than in blacks (11/19 SNPs; 58%).   

  

Table 2.2.  NHANES III study population characteristics.  Study characteristics are 
shown for participants greater than 18 years of age who had non-missing Lp(a) levels.  

Samples sizes shown are the DNA samples available in Genetic NHANES III for each 
subpopulation.  Values are shown as unweighted mean (SD).  P-values are based on 
one-way unweighted ANOVA. 
 

Variable 
Non-Hispanic 

Whites 
(n=2,631) 

Non-Hispanic 
Blacks 

(n=2,108) 

Mexican 
Americans 
(n=2,073) 

P-value 

Males, % 40.0% 42.6% 49.4% <0.0001 

Age (yr) 50.2 (22.3) 36.0 (18.3) 37.1 (18.7) <0.0001 

BMI (kg/m2) 26.3 (5.6) 27.3 (6.8) 27.0 (5.6) 0.093 

Lp(a) (mg/dL) 20.3 (24.1) 43.4 (32.8) 14.9 (8.5) <0.0001 

HDL-C (mg/dL) 50.2 (15.6) 53.8 (16.4) 48.0 (13.1) 0.112 

LDL-C (mg/dL) 127.0 (38.0) 118.8 (39.5) 116.3 (34.1) <0.0001 

TG (mg/dL) 147.63 (116.8) 108.8 (79.9) 154.1 (121.2) <0.0001 

 
 

 We also compared the allele frequencies of these LPA SNPs in NHANES III to 

those in HapMap (Frazer et al., 2007) (Table 2.3).  Among the 12 LPA SNPs that 

overlapped this dataset and HapMap, we observed extremely high correlations (r=0.99) 

in allele frequencies between non-Hispanic whites and HapMap CEU (US individuals of 

northern and western European ancestry) and between non-Hispanic blacks and both 

HapMap YRI (Yoruba from West Africa, r>0.99) and ASW (individuals with African 

ancestry from the Southwest USA, r=0.99).  Mexican American allele frequencies were 

also very similar (r=0.93) to those of HapMap MEX (individuals with Mexican ancestry 

in Los Angeles, California).  Because Mexican Americans are a historically admixed 
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population, a comparison with HapMap Asian populations was performed.  The 

correlation between NHANES Mexican Americans and HapMap Han Chinese (HCB) 

and Japanese (JPT) was 0.77 and 0.78, respectively.  

Haplotype frequencies were inferred for the 19 tagSNPs in LPA by NHANES III 

subpopulation.  We observed eight common haplotypes (frequency >5%) in at least one 

subpopulation (Table 2.4).   While two haplotypes (#1 and #2) were common across all 

three populations, the remaining haplotypes were either common only to non-Hispanic 

blacks (#7 and #8), only non-Hispanic whites (#6), or shared between whites and 

Mexican Americans (#3, #4, #5).  As expected (Crawford et al., 2004), the majority of 

chromosomes from non-Hispanic whites (71.5%) and Mexican Americans (72.6%) were 

represented by common haplotypes inferred from LPA tagSNPs.  Only approximately 

half of the chromosomes from non-Hispanics blacks (55.7%) were represented by 

common haplotypes, and the remaining half are scattered across rare haplotypes.   
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Table 2.3.  Frequency of LPA variants in HapMap samples.  Abbreviations:  Utah residents with Northern and Western European 
ancestry (CEU); Yoruba in Ibadan, Nigeria (YRI); Han Chinese in Beijing, China (HCB); Japanese in Tokyo, Japan (JPT); African 
ancestry in Southwest USA (ASW); Mexican ancestry in Los Angeles, California (MEX); minor allele (MA); minor allele frequency 
(MAF); monomorphic (mono); SNPs designated not applicable (N/A) were not genotyped in HapMap in that particular population.  
 

SNP 
Allel

es 

CEU 
n=60 

YRI 
n=60 

HCB 
n=45 

JPT 
n=45 

ASW 
n=47 

MEX 
n=47 

MA MAF MA MAF MA MAF MA MAF MA MAF MA MAF 

rs1321196 C/T C 0.38 C 0.43 T 0.49 C 0.49 C 0.47 C 0.26 

rs1321195 A/G A 0.17 mono 0.00 A 0.22 A 0.28 N/A N/A N/A N/A 

rs1367211 T/C T 0.30 C 0.46 T 0.19 T 0.29 T 0.50 T 0.17 

rs1652507 C/T C 0.13 C 0.06 C 0.38 C 0.38 C 0.06 C 0.41 

rs6907156 C/T C 0.01 N/A N/A mono 0.00 mono 0.00 N/A N/A N/A N/A 

rs6919346 T/C T 0.15 T 0.01 mono 0.00 mono 0.00 T 0.06 T 0.16 

rs6926458 G/A G 0.25 G 0.10 A 0.49 G 0.48 G 0.16 G 0.16 

rs7755463 T/C T 0.01 T 0.40 mono 0.00 mono 0.00 T 0.30 N/A N/A 

rs7767084 C/T C 0.14 mono 0.00 C 0.26 C 0.31 C 0.03 C 0.09 

rs10945682 A/G A 0.38 G 0.38 G 0.49 A 0.50 G 0.49 A 0.26 

rs7450261 C/T mono 0.00 T 0.08 mono 0.00 mono 0.00 T 0.05 N/A N/A 

rs7765803 C/G C 0.33 G 0.40 G 0.50 G 0.48 G 0.48 C 0.22 
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Table 2.4. LPA common haplotypes and haplotype frequencies. Only haplotypes with 
frequencies > 5% in at least one population are displayed.  Alleles are ordered based on 
chromosomal location (5' to 3').  Frequencies > 5% are in bold.  
 

Haplotype 
Number 

Haplotype Alleles 
Frequency in 
Non-Hispanic 

Whites 

Frequency in 
Non-Hispanic 

Blacks 

Frequency in 
Mexican 

Americans 

1 
A-C-T-C-G-G-C-C-A-T-

A-C-T-G-G-A-G-G-C 
0.076 0.062 0.391 

2 
A-C-T-C-G-G-C-C-A-T-

A-C-T-G-G-A-A-G-C 
0.207 0.253 0.142 

3 
A-T-T-C-G-G-C-C-A-T-

A-C-T-G-G-A-A-G-C 
0.151 0.030 0.078 

4 
A-C-C-C-A-C-A-C-A-T-

G-C-C-A-G-G-A-A-T 
0.088 0.016 0.058 

5 
A-C-T-C-G-C-C-C-A-T-
A-C-C-A-G-G-A-A-C 

0.107 0.018 0.057 

6 
T-C-T-C-G-G-C-C-A-T-
A-C-T-G-G-A-A-G-C 

0.086 0.012 0.040 

7 
A-C-T-C-G-C-C-T-T-C-
A-C-T-A-G-G-A-A-C 

0.002 0.091 0.013 

8 
A-C-T-C-G-C-C-T-A-T-
A-C-T-A-G-G-A-A-C 

0.001 0.151 0.007 

 

 

LPA SNP associations with Lp(a) levels 

 Each SNP was tested for an association with transformed Lp(a) levels.  Results 

from this analysis are presented in Figure 2.2 and Table 2.5.  After adjusting for age and 

sex, 15 of the 19 SNPs tested were significantly associated with Lp(a) levels in at least 

one subpopulation at p<0.0001, meeting the standard Bonferroni p-value threshold for 

multiple testing.  Among non-Hispanic whites, we confirmed previous evidence of a 

strong association with rs6919346 (p=1.2x10-30) (Clarke et al., 2009; Ober et al., 2009), 

which explained approximately 6% of the trait variance (R2=0.057) in our dataset.  We 

also identified two novel associations with rs6926458 and rs12194138 (p=5.3x10-6 and 

2.1x10-13, respectively).  To evaluate the combined effects of significantly associated 
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variants, we calculated a continuous Genetic Risk Score (GRS) for each participant based 

on his or her total number of risk (i.e. Lp(a) increasing) alleles at each associated SNP.  

Based on the GRS, the additive effect of rs6919646, rs6926458, and rs12194138 explained 

7% of the variation in transformed Lp(a) levels in non-Hispanic whites (Table 2.6). 

Mexican Americans had twice the number of significant associations compared 

with non-Hispanic whites, with six SNPs associated with transformed Lp(a) levels at 

p<0.0001. One SNP in particular, rs1652507, was strongly associated at p=5.44x10-34 and 

had the largest effect size of all the associations (R2=0.086).  Two of the six associated 

SNPs (rs1321195 and rs7765803) have previously been associated with Lp(a) in a cohort 

of Europeans (Clarke et al., 2009).  The joint effect of all six associated SNPs, as 

measured by the GRS, explained 11% of the variance in Lp(a) trait distribution observed 

in Mexican Americans. 

Of the three subpopulations, non-Hispanic blacks had the greatest number of 

significant associations at p<0.0001 with 12 SNPs.  Each associated SNP contributed 1% 

to 4.5% of the trait variance, with the additive effect of the SNPs contributing up to 9% of 

the total variance in Lp(a) levels.  Five of the 12 associated SNPs (rs1321195, rs1652507, 

rs6919346, rs6926458, and rs7755463) were also associated in one of the two other 

racial/ethnic groups, non-Hispanic whites or Mexican Americans, and the directions of 

the effect (beta) were consistent across the associated subpopulations.   
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Figure 2.2. Overview of association results between LPA SNPs and Lp(a) levels. Plot showing the significance of all single-SNP 
associations with transformed Lp(a) levels.  All results are unweighted adjusted for age and sex and are stratified by race/ethnicity. 
SNPs are plotted on top along the x axis in order from 5′ to 3′, and association with Lp(a) is indicated on the y axis (as -log10 p-value).  
Red line indicates p-value of 1x10-4.  Direction of the triangle indicates direction of effect (β-coefficient). 
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Table 2.5.  Associations between LPA SNPs and Lp(a) levels.  The association of LPA SNPs with log transformed Lp(a) levels is 
shown by a regression coefficient (beta, β) and 95% confidence interval (CI) for each SNP, adjusted for age and sex.  Measures of 
variance explained (R2) are provided for each SNP based on unadjusted regressions.  Significant associations (P-value < 0.0001) are in 
bold. 
 

SNPs 

Non-Hispanic Whites 
n=2,397 

Non-Hispanic Blacks 
n=1,711 

Mexican Americans 
n=1,749 

β  
(95% CI) 

R2 P-value 
β  

(95% CI) 
R2 P-value 

β  
(95% CI) 

R2 P-value 

rs1321196 
-0.13 

(-0.22, -0.05) 
0.0036 0.0026 

0.21 
(0.14, 0.28) 

0.0193 1.88x10-8 
0.12 

(0.02, 0.22) 
0.0031 0.0204 

rs1321195 
0.05 

(-0.07, 0.18) 
0.0003 0.3863 

0.53 
(0.31, 0.75) 

0.0123 3.03x10-6 
0.40 

(0.23, 0.56) 
0.0127 3.49x10-6 

rs1367211 
-0.004 

(-0.10, 0.09) 
0.0000 0.9330 

-0.27 
(-0.34, -0.20) 

0.0345 3.67x10-14 
-0.15 

(-0.26, 0.04) 
0.0039 0.0092 

rs1652507 
-0.05 

(-0.16, 0.05) 
0.0005 0.3295 

-0.45 
(-0.59, -0.32) 

0.0247 1.06x10-10 
-0.54 

(-0.63, -0.46) 
0.0858 5.44x10-34 

rs6907156 
0.21 

(-0.51, 0.92) 
0.0001 0.5722 

0.15 
(0.05, 0.25) 

0.0053 0.0031 
0.73 

(0.39, 1.06) 
0.0103 2.14x10-5 

rs6919346 
0.61 

(0.51, 0.71) 
0.0565 1.18x10-30 

0.75 
(0.56, 0.94) 

0.0344 2.16x10-14 
0.18 

(0.02, 0.33) 
0.0029 0.0248 

rs6926458 
-0.23 

(-0.32, -0.13) 
0.0087 5.29x10-6 

-0.45 
(-0.57, -0.34) 

0.0364 5.90x10-15 
-0.15 

(-0.28, 0.03) 
0.0032 0.0189 

rs7755463 
-0.47 

(-0.99, 0.06) 
0.0014 0.0823 

-0.33 
(-0.40, -0.25) 

0.0449 4.01x10-18 
-0.89 

(-1.16. -0.62) 
0.0230 2.14x10-10 

rs7767084 
0.07 

(-0.05, 0.18) 
0.0006 0.2467 

-0.41 
(-0.61, -0.21) 

0.0097 5.88x10-5 
0.10 

(-0.03, 0.23) 
0.0015 0.1187 

rs9364564 
0.19 

(0.08, 0.29) 
0.0049 0.0007 

0.33 
(0.21, 0.46) 

0.0156 2.29x10-7 
0.11 

(-0.02, 0.24) 
0.0016 0.1053 
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rs12212507 
0.03 

(-0.15, 0.21) 
0.0001 0.7633 

0.63 
(0.23, 1.03) 

0.0063 0.0019 
0.57 

(0.14, 1.00) 
0.0037 0.0093 

rs13192132 
-0.14 

(-0.23, -0.06) 
0.0043 0.0011 

-0.43 
(-0.53, -0.33) 

0.0425 3.85x10-17 
-0.003 

(-0.11, 0.10) 
0.0000 0.9508 

rs10945682 
0.12 

(0.04, 0.21) 
0.0033 0.0041 

-0.14 
(-0.21, -0.06) 

0.0079 0.0003 
-0.16 

(-0.26, -0.06) 
0.0055 0.0022 

rs12194138 
-0.41 

(-0.52, -0.30) 
0.0229 2.05x10-13 

0.34 
(0.12, 0.56) 

0.0020 0.0014 
-0.47 

(-0.66, -0.28) 
0.0149 7.97x10-7 

rs7450261 
0.10 

(-1.29, 1.48) 
0.0000 0.8907 

0.35 
(0.18, 0.51) 

0.0108 2.84x10-5 
-0.33 

(-1.34, 0.68) 
0.0003 0.5176 

rs7450411 
0.19 

(0.08, 0.30) 
0.0051 0.0005 

0.37 
(0.27, 0.47) 

0.0308 7.37x10-13 
0.12 

(-0.02, 0.25) 
0.0017 0.0910 

rs7765803 
-0.05 

(-0.14, 0.04) 
0.0005 0.2471 

0.13 
(0.06, 0.20) 

0.0071 0.0005 
0.21 

(0.10, 0.31) 
0.0089 8.54x10-5 

rs41265936 
-0.80 

(-2.04, 0.44) 
0.0007 0.2037 

-0.22 
(-0.37, -0.06) 

0.0047 0.0054 
-0.88 

(-1.48, -0.28) 
0.0046 0.0039 

rs41271028 
-0.45 

(-1.22, 0.32) 
0.0006 0.2556 

-0.06 
(-0.18, 0.07) 

0.0007 0.3608 
-0.66 

(-1.06, -0.27) 
0.0061 0.0011 

 

 



37 

 

 
 
 
 
Table 2.6.  Additive effects of LPA risk alleles on Lp(a) levels.  The amount of variance 
explained (R2) in transformed Lp(a) levels by the Genetic Risk Score (GRS) is displayed, 
along with the regression coefficient (beta, β) and 95% confidence interval (CI) for each 
association.   
 

 
Non-Hispanic 

Whites 
Non-Hispanic 

Blacks 
Mexican 

Americans 

Total n 2269 1605 1665 

No. SNPs used in GRS 3 12 6 

β (95% CI) 0.36 (0.31-0.42) 0.11 (0.09-0.13) 0.34 (0.29-0.39) 

P-value <10-35 <10-34 <10-41 

R2 0.07 0.09 0.11 

 

 



38 

 

LPA risk allele distribution 

 The proportion of risk alleles (i.e. the total number of risk alleles divided by the 

number of risk alleles possible) was examined across all NHANES subpopulations 

(Figure 2.3).  In general, the distributions differed greatly among non-Hispanic whites, 

non-Hispanic blacks, and Mexican Americans.  In non-Hispanic whites, the proportion 

of risk alleles followed a normal distribution and the average (mean) number of risk 

alleles was 3.5 out of the possible six risk alleles (58.3%).  In contrast, the distribution of 

risk alleles was skewed to the left in non-Hispanic blacks and to the right in Mexican 

Americans (Figure 2.3).  The average number of risk alleles in non-Hispanic black 

participants was 17 out of 24 possible risk alleles (70.8%) while the average number in 

Mexican American participants was 5.5 out of the 12 possible risk alleles (45.8%).  

Overall, non-Hispanic blacks had the largest genetic burden of all three subpopulations 

defined by these alleles, with 99.0% percent of participants possessing greater than 50% 

of the possible risk alleles.  This genetic burden is significantly greater than that carried 

by non-Hispanic whites (51.4%, p<0.001) or Mexican Americans (2.7%, p<0.001).  Figure 

2.3 also illustrates mean Lp(a) levels in participants with various proportions of risk 

alleles.  As expected, mean Lp(a) is higher in participants with a greater proportion of 

risk alleles, again reflecting the role that these variants may play in contributing to both 

between- and within-population Lp(a) trait variation. 
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Figure 2.3.  Distribution of LPA risk alleles in non-Hispanic whites, non-Hispanic 
blacks, and Mexican Americans.  Plots showing the frequency distributions of the 
proportion of risk alleles in the three NHANES III subpopulations.  Proportion of risk 
alleles was calculated by dividing the total number of LPA risk alleles (i.e. the GRS) by 
the total number of possible risk alleles in each population, multiplied by 100%.  Mean 
Lp(a) values are also plotted for each corresponding proportion. 
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Discussion 

 

 In this study, we identified several variants in the LPA gene that are strongly 

associated with Lp(a) levels in a diverse epidemiologic study.    More specifically, three 

SNPs in non-Hispanic whites, twelve SNPs in non-Hispanic blacks, and six SNPs in 

Mexican Americans were strongly associated at p<0.0001.  While no single LPA variant 

was significantly associated in all three racial/ethnic groups, six SNPs were significantly 

associated in two subpopulations and the directions of effects were consistent.   

 Most previously published studies characterizing the relationship between Lp(a) 

and LPA have focused on the effects of the kringle IV-2 copy number polymorphism. 

More recently, a genome-wide association study in Hutterites identified one SNP in LPA 

(rs6919346) that associated with Lp(a) levels, independent of kringle IV-2 copy number 

(Ober et al., 2009).  Subsequent studies have found this variant to be independently 

associated with increased Lp(a) levels in European Caucasians (Clarke et al., 2009; 

Lanktree et al., 2010) and South Asians and Chinese (Lanktree et al., 2010).  In our study, 

the same allele (G) was also strongly associated with increased trait levels not only in 

non-Hispanic whites (β=0.61, p=1.18x10-30) but also in non-Hispanic blacks (β=0.75, 

p=2.16x10-14).  In contrast, the association in Mexican Americans was much less robust 

(p=0.02), but the effect trended in the same direction (β=0.18). This intronic tagSNP is 

not in linkage disequilibrium (LD) with any genotyped SNP (Figure 2.4), nor with the 

kringle IV repeat (Crawford et al., 2008).  As others have suggested (Ober et al., 2009), 

rs6919346 may be tagging the causal variant or, due to the fact that it resides in a CRE-

binding site, may play a role in gene expression. 
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Figure 2.4. Pair-wise linkage disequilibrium (r2) calculated for 19 LPA SNPs in non-
Hispanic whites (A), non-Hispanic blacks (B), and Mexican Americans (C) in 

NHANES III.  
 



42 

 

It is interesting to note that while we did replicate the association between Lp(a) 

levels and rs6919346, we did not necessarily replicate the associations reported recently 

for rs10945682 and rs7765803 (Lanktree et al., 2010).  LPA rs10945682 was not associated 

with Lp(a) levels in NHANES III at the significant threshold of p<0.0001 (Table 2.5).  

Furthermore, while the direction of effect in non-Hispanic whites was consistent with 

that observed for Europeans and Asians studied by Lanktree et al (taking into account 

the coded allele), the direction of effect was opposite in the non-Hispanic black and 

Mexican American subpopulations in NHANES III.  LPA rs7765803 was not associated 

with Lp(a) levels in non-Hispanic whites (p=0.2471) while it was strongly associated in 

European and Asian populations in Lanktree et al.  Finally, the data reported here are 

not consistent with the linkage disequilibrium data reported by Lanktree et al.  LPA 

rs10945682 and rs6919346 are reported to be in the same linkage disequilibrium block 

(Lanktree et al., 2010) but the LD calculated in our non-Hispanic white samples and in 

HapMap CEU suggests there is little LD (r2=0.06 and 0.03 in non-Hispanic whites and 

CEU, respectively) between the two SNPs.  It is possible that this discrepancy can be 

explained by unidentified population substructure or by the use of different LD 

measures, but this is unclear from the literature and requires further investigation.  

 As alluded to above, the relationship between LPA tagSNPs and Lp(a) levels may 

represent a direct (i.e. causal) or indirect (i.e. proxy for true causal variant) relationship.  

The latter situation most likely applies to the majority of SNPs genotyped in this study.  

Of the 19 LPA SNPs, 17 are located in introns, and the two nonsynonymous SNPs 

(rs7765803 and rs41265936, Table 2.1) are not predicted to alter protein function using 

SIFT (Kumar et al., 2009).  Additional studies are needed to determine if these variants 

regulate LPA expression in vivo.  However, since apo(a) is present only in humans, Old 
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World primates, and the hedgehog, resources for these studies are limited to transgenic 

mice and rabbits as models (Boffa et al., 2004).   

 In an attempt to evaluate the joint effect of significantly associated variants, a 

genetic risk score (GRS) was calculated.  Based on this GRS, these variants together 

explained 7%, 9%, and 11% of the variance in Lp(a) levels in non-Hispanic whites, non-

Hispanic blacks, and Mexican Americans, respectively.  In comparison to the effect 

attributed to the kringle repeat region based on previous studies (Ali et al., 1998; 

Boerwinkle et al., 1992; Boomsma et al., 2000; Chiu et al., 2000; Crawford et al., 2008; 

Kraft et al., 1996; Rainwater et al., 1997; Schmidt et al., 2006), the effect of these SNPs is 

considerably small.   

 This study has several strengths and limitations. The greatest strength is the use 

of a large and diverse population.  While there have been several studies of LPA SNPs 

and its association with Lp(a) that have included both European and African descent 

populations, no single study, to our knowledge, has also included Mexican Americans 

genotyped for the same LPA SNPs.  This latter point cannot be under emphasized as the 

Hispanic or Latino population is the fastest growing minority population in the United 

States yet remains relatively underrepresented in genetic association studies (Choudhry 

et al., 2007).  

 A limitation is that the method of measuring serum Lp(a) levels in NHANES III 

does not account for apo(a) isoform size.  While accurate measurement of apo(a) isoform 

is ideal, the reliability of the Lp(a) measurement used here has been adequately 

demonstrated (Center for Disease Control and Prevention, 1996).  Furthermore, there is 

no generally accepted laboratory procedure or national standardization program for 
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Lp(a) measurement, which may help to explain the lack of generalizabilty across studies 

(Marcovina et al., 2003).   

A second major limitation is that NHANES III does not have data on kringle 

repeat size for each participant.  Several methods are used to measure kringle repeat size 

such as Southern blot (Crawford et al., 2008) and quantitative PCR (Lanktree et al., 

2009), neither of which can be used in NHANES III DNA samples given investigators 

are aliquoted limited amounts of DNA from crude cell lysates. Without these data, it is 

unclear if the associations between LPA SNPs and Lp(a) levels reported here are 

independent of the KIV-2 copy number variant, which has a well-established, large 

effect on Lp(a) levels.   

The amount of linkage disequilibrium, or lack thereof, between the KIV-2 region 

and other LPA variants is a controversial issue.  Previous studies have reported strong 

LD between the KIV-2 alleles and SNPs in or around LPA (Clarke et al., 2009; Kraft et al., 

1995; Luke et al., 2007; Ogorelkova et al., 2001).  In contrast, additional studies indicate 

the lack of strong LD (Crawford et al., 2008; Ober et al., 2009).   More specifically, the 

tagSNPs genotyped in this study had been selected from a previous study (Crawford et 

al., 2008) that provided data on kringle IV-2 repeat size, and no strong LD (r2>0.80) was 

found for any of the SNPs tested (Crawford et al., 2008).  However, there was moderate 

LD (r2=0.45 in European American and r2=0.57 in African American samples) between 

kringle repeat sizes 10 and 14 and LPA SNPs 74970 and rs41271028, respectively 

(Crawford et al., 2008). LPA 74970 was not genotyped here.  LPA rs41271028 was 

genotyped here but was not significantly associated with Lp(a) levels in any of the three 

subpopulations after correction for multiple testing (Table 2.5).  Thus, the tagSNPs 

genotyped here and significantly associated with Lp(a) levels after correction for 
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multiple testing are not in high or moderate LD with specific kringle repeat sizes 

examined in the original dataset reported by Crawford et al.  Further studies are needed 

in NHANES and other large datasets to characterize the full spectrum of LPA genetic 

variation and its impact on Lp(a) levels in diverse populations. 

 Another limitation of this study is that only approximately 30-35% of the 

LDSelect ―bins‖ for European Americans and African Americans are represented by 

tagSNPs as many LPA SNPs failed assay design or genotyping in NHANES III.  And, 

tagSNPs selection was limited to common variation, leaving rarer variation such as LPA 

rs10455872 (<5% MAF) untested.  Thus, much of the genetic variation in LPA and its 

association with Lp(a) levels in these populations remains to be explored.  Furthermore, 

tagSNPs were not selected specifically for the Mexican American subpopulation.  At the 

time of tagSNPs selection, HapMap 3 Mexican American samples were not available, 

and it was unclear which populations should be used for tagSNPs selection to 

adequately represent this admixed population.  It is important to note that, however, 

that while our tagSNPs selection process may have been biased for populations of 

European- and African-descent, the allele frequencies observed in NHANES III Mexican 

Americans were very similar to that of non-Hispanic whites.  Furthermore, our lack of 

Mexican American specific tagSNPs does not undermine the observation that there is an 

excess of significant variants associated only in non-Hispanic blacks compared to non-

Hispanic whites. 

  Because of these strengths, and despite these limitations, we have taken an 

important step in understanding how LPA genetic variants contribute to Lp(a) levels in a 

diverse population.  One of the major findings of our study was that there were notably 

more significant associations between Lp(a) and LPA SNPs in non-Hispanic blacks 
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compared to non-Hispanic whites and Mexican Americans.  Moreover, nearly half of 

these associations were exclusive to non-Hispanic blacks.  Our results suggest that 

between-population differences in Lp(a) levels can be explained, in part, by multiple 

population-specific cis-acting variants in LPA.  While the role of multiple trans-acting 

factors in Lp(a) trait distribution has been disputed (Barkley et al., 2003; Mooser et al., 

1997; Scholz et al., 1999) and cannot be ruled out, our results reaffirm the need for more 

comprehensive studies of the effects of LPA variants in large, diverse populations.  

 

Acknowledgements 

 

 We would like to thank Dr. Geraldine McQuillan and Jody McLean for their help 

in accessing the Genetic NHANES III data.  The findings and conclusions in this report 

are those of the authors and do not necessarily represent the official position of the 

Centers for Disease Control and Prevention.  The Vanderbilt University Center for 

Human Genetics Research, Computational Genomics Core provided computational 

and/or analytical support for this work. 



47 

 

CHAPTER III 

 

USE OF A GWAS OF CHILDREN TO IDENTIFY NOVEL LIPID-
ASSOCIATED VARIANTS2 

 
 
 

Introduction 

 

 Genome-wide association studies (GWAS) have identified many common 

genetic variants that contribute to normal variation in lipid traits.  The largest GWAS 

meta-analysis to date, containing greater than 100,000 individuals of European descent, 

identified 95 loci that were independently associated with total cholesterol (TC), low-

density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) 

and triglycerides (TG) (Teslovich et al., 2010).  Combined, these loci explained only ~25-

30% of the genetic variance, leaving a majority of the genetic variance unexplained. 

 Some have argued that the ―missing heritability‖ observed for most complex 

human traits is due, in part, to unidentified genetic and non-genetic modifiers 

(McCarthy and Hirschhorn, 2008).  Very few GWAS have tested for and identified 

genetic modifiers as the statistical methods and approaches have yet to be developed 

that will fully exploit these data (Cordell, 2009; Thomas, 2010).  Also, few GWAS have 

collected the data necessary to test for modifiers, particularly environmental exposures 

that modify genetic associations. 

                                                      
2 Adapted from: Dumitrescu L, Brown-Gentry K, Glenn K, Young W, Kornegay N, Cai J, 

Relling MV, Crawford DC.  Evidence for age as a modifier of genetic associations for 

lipid levels.  Annals of Human Genetics.  In Review. 
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 Age, a potential modifier of the lipid trait distribution due to genetics, has been 

relatively unexplored.  It is known that children and adolescents have different lipid 

distributions compared with adults (Hickman et al., 1998; Jolliffe and Janssen, 2006).  

Indeed, the National Cholesterol and Education Program (NCEP) provides a set of lipid 

and lipoprotein guidelines specific for children and adolescents (Expert Panel Blood 

Cholesterol Levels Child Adolesc, 1992).  Furthermore, the increase in the means and 

variances of most lipid parameters as humans age has been well established (Snieder et 

al., 1997; Boomsma et al., 1996; Ericsson et al., 1991; Heller et al., 1993; Reilly et al., 1990).  

How much of that age dependency is due to increases in environmental or genetic 

variance, or both, is still left to be determined.  Preliminary studies of complex traits 

such as body mass index (BMI) and systolic blood pressure suggest that over time, the 

contribution of genes to a phenotype remains relatively constant, but the relative 

contribution of genes decreases (Brown et al., 2003).  Thus, the accumulation effects of 

environmental exposures, such as diet, exercise, smoking, are thought to be the factors 

that increase the phenotypic variance of complex traits such as BMI and lipids over time.   

  All published GWAS studies of the lipid traits (HDL-C, LDL-C, and TG) have 

been performed in adults (>18 years of age) (Hindorff et al., 2010), a population exposed 

to environmental factors that influence lipid trait distributions for at least two decades.  

While these GWAS have been successful in identifying genetic variants associated with 

lipid traits, we propose that the study of younger participants such as children will 

identify additional variants masked by the age dependency for these traits.  To identify 

these novel variants associated with HDL-C, LDL-C, and TG levels, we first performed a 

GWAS in 411 children of European, African, or Mexican-descent ascertained at St. Jude 

Children‘s Research Hospital followed by replication in an additional dataset of youths 
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from the Third National Health and Nutrition Examination Survey (n=1,040; NHANES 

III).  Replicated genetic variants were formally tested for an interaction with age in the 

larger NHANES III dataset with adults (n=3,508).  Gene discovery in children followed 

by testing for interactions in adults has identified one lipid trait-associated locus 

potentially modified by age and represents a modest step towards identifying the full 

genetic architecture of the lipid trait distributions in human populations. 

 

Methods 

 

 Subjects in the discovery GWAS were drawn from the Total Therapy Study XV, a 

prospective study of children undergoing treatment for acute lymphoblastic leukemia 

(ALL), initiated in 2000 at St. Jude Children‘s Research Hospital (Pui et al., 2009).  From 

June 2000 to October 2007, a total of 501 newly diagnosed patients aged 1 to 18 years 

were enrolled (after informed consent and assent, as appropriate) in the study, 411 of 

whom were evaluable for both serum lipids and genome-wide genotyping.  

Race/ethnicity was inferred using germline genotypes as previously described (Yang et 

al., 2009) based on genotype-based hierarchical clustering of patients and using data 

from the HapMap cell lines (n=90 CEU (Caucasian), 90 YRI (African), 30 CHB and 30 JPT 

(Asians) as references. Patients exhibiting >90% European, African, or Asian ancestries 

were classified as white, black, or Asian respectively; ―Hispanic‖ status was inferred for 

those patients who were self-declared Hispanics and had less than 90% of European, 

African and Asian ancestries.  The remaining patients were labeled as ―other‖ and were 

not included in this analysis.  Serum levels of high-density lipoprotein (HDL), low-

density lipoprotein (LDL), and triglycerides (TG) were measured directly using standard 
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enzymatic techniques (Roche Diagnostics) as described in Kawedia et al (Kawedia et al., 

2010).  All lipid measurements were taken on consolidation day 15 of treatment (at least 

4 weeks from the last dose of glucocorticoid or asparaginase) and were non-fasting.   

 Participants in the St. Jude study were genotyped with either the Affymetrix 

GeneChip 500K and 100K or 6.0 array.  Only common SNPs genotyped across both 

platforms were considered for analysis. SNPs were excluded from the analysis based on 

genotyping call rates per SNP (≤ 98%) and minor allele frequency (≤ 0.01).  From a total 

of 532,546 SNPs genotyped, 420,005 (79%) passed quality control thresholds.  Tests of 

association between each genetic variant assuming an additive genetic model and 

natural-log transformed lipid trait were implemented in PLINK (Purcell et al., 2007) 

using linear regression, stratified by race/ethnicity. 

 Ascertainment of the Third National Health and Nutrition Examination Survey 

(NHANES III) and method of DNA collection have been previously described (Centers 

for Disease Control and Prevention, 1994).   Briefly, NHANES III is a cross-sectional 

survey that was conducted from 1988-1994 by the National Center for Health Statistics 

(NCHS) at the Centers for Disease Control and Prevention (CDC).  Like all the 

NHANES, NHANES III is a complex survey design that over-sampled minorities (non-

Hispanic blacks and Mexican Americans), the young, and the elderly.  Blood samples 

were obtained at a central location known as the Mobile Examination Center (MEC).  

Serum total cholesterol, triglycerides, and HDL cholesterol were measured using 

standard enzymatic methods and LDL cholesterol was calculated using the Friedewald 

equation, with missing values assigned for samples with triglyceride levels greater than 

400 mg/dl (Center for Disease Control and Prevention, 1996).  Beginning with phase 2 of 

NHANES III, DNA samples were collected from study participants aged 12 years and 
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older.  Race/ethnicity was self-identified as non-Hispanic white, non-Hispanic black, 

Mexican American, or other.  All NHANES III procedures were approved by the CDC 

Ethics Review Board and written informed consent was obtained from all participants.  

The present study was approved by the CDC Ethics Review Board.  Because the study 

investigators did not have access to personal identifiers, this study was considered non-

human subjects research by the Vanderbilt University Institutional Review Board.   

 65 SNPs were carried forward for replication in NHANES III and were targeted 

for genotyping using Sequenom‘s iPLEX Gold assay on the MassARRAY platform (San 

Diego, CA) according to manufacturer‘s instructions (www.sequenom.com).  One SNP, 

rs4811011, failed assay design and was subsequently genotyped using Applied 

Biosystem‘s TaqMan (Foster City, CA).  57 SNPs were genotyped successfully 

(genotyping call rate >95%); however, five SNPs failed blinded duplicates quality 

control measures as required by CDC and were excluded from further analyses.   The 

remaining SNPs were tested for deviations from Hardy Weinberg Equilibrium (HWE) 

within each racial/ethnic group and all had HWE p-values > 0.001 in at least two 

populations, as required by the CDC.  All genotype data reported here were deposited 

into the NHANES III Genetic database and are available for secondary analysis through 

CDC.   

Unweighted genotype-phenotype tests of associations for the 52 SNPs and the 

three natural-log transformed lipid traits were performed in SAS version 9.2 (SAS 

Institute, Cary, NC) using linear regression, assuming an additive genetic model.  

Single-SNP analyses were stratified by race/ethnicity, adjusted for age and sex and, for 

the adult cohort (>18 years), were limited to fasting individuals not on lipid-lowering 

medications.  Tests for interactions between age and genotype were also considered in 
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these regression models, adjusted for age, sex, and SNP genotype.  Replication and 

interaction associations were deemed statistically significant at p<0.05.  Data were 

accessed remotely from the CDC‘s Research Data Center (RDC) in Hyattsville, Maryland 

using Analytic Data Research by Email (ANDRE). 

 Differences in lipid levels between the St. Jude and NHANES III cohorts and 

between genotype groups were tested in STATA 10 using a standard two-sample t-test 

with unequal variances.  Manhattan plots were produced using code provided by 

http://gettinggeneticsdone.blogspot.com. 

 

Results 

 

Study population characteristics 

 Across all three racial/ethnic subpopulations, St. Jude children with ALL had 

consistently lower mean LDL-C, and higher mean HDL-C and mean triglycerides 

compared to NHANES III youths (Table 3.1; Appendix C).  The means of some lipid 

levels (HDL-C in Whites and Hispanics, LDL-C in Whites and Hispanics) were 

significantly different between the two studies of children, with differences in means of 

up to 18.8 mg/dL (Table 3.1; Appendix C).  These differences in lipid levels are most 

likely related to the older mean age and/or the larger percentage of females in NHANES 

III youths compared with St. Jude children rather than health status, as none of the 

medications used during the consolidation stage of therapy for ALL are known to affect 

lipid levels, per se. 
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Table 3.1. Participant Characteristics. 

 

Characteristic 
GWAS cohort 

St. Jude Children 
Replication cohort 1 
NHANES III Youths 

Replication cohort 2 
NHANES III Adults 

racial/ethnic 
group 

Whites Blacks  Hispanics Whites Blacks  Hispanics Whites Blacks  Hispanics 

 Total n  282 66 63 241 439 360 1,386 1,039 1,083 

Age (years)  7.0 ± 5 7.2 ± 4 6.4 ± 4 14.6 ± 2 14.8 ± 2 14.8 ± 2 52.2 ± 21 39.8 ± 16 40.0 ± 17 

% Female 41.1 43.9 47.6 54.4 54.0 52.2 60.6 58.7 48.9 

HDL-C 
(mg/dL) 

55.1 ± 30 59.0 ± 27 67.9 ± 50 47.2 ± 10 52.6 ± 12 49.1 ± 11 50.3 ± 15 53.6 ± 17 47.4 ± 13 

LDL-C 
(mg/dL) 

84.5 ± 27 81.3 ± 37 87.4 ± 35 92.9 ± 28 98.5 ± 27 94.4 ± 24 129.4 ± 38 123.0 ± 40 120.1 ± 34 

Triglycerides 
(mg/dL) 

108.2 ± 79 88.3 ± 47 121.7 ± 101 97.6 ± 56 80.0 ± 43 99.0 ± 57 145.3 ± 111 107.6 ± 82 151.8 ± 110 

 

Values are listed as mean ± sd unless otherwise indicated 
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When comparing the two NHANES III replication datasets, not surprisingly 

(Expert Panel Blood Cholesterol Levels Child Adolesc, 1992; Hickman et al., 1998; Jolliffe 

and Janssen, 2006; Snieder et al., 1999), adults had different lipid profiles compared to 

youths with statistically higher mean LDL-C and TG levels across all subpopulations 

(Table 3.1 and Appendix D).  Mean HDL-C levels were significantly higher in White 

adults and significantly lower in Hispanic adults compared to youths, although the 

differences were small (2.3 and 1.7 mg/dL, respectively). 

 

Discovery GWAS results 

 To identify novel common variants associated with HDL-C, LDL-C, and TG 

levels in children, we performed a genome-wide association screen in all three 

subpopulations of the St. Jude cohort.  No SNP surpassed genome-wide statistical 

significance (p<5x10-8) for any of the analyses; however, four SNPs approached that 

threshold and were significantly associated at p<1x10-6 (Figure 3.1 and Appendix E).  In 

Whites, two SNPs (intergenic rs4742455 and USH2A rs17026635) were associated with 

transformed HDL-C (p=5.18x10-7 and p=6.33x10-7, respectively). In Hispanics, intergenic 

rs7790255 and GBAS/MRPS17 rs15892 were associated with transformed TG (p=2.38x10-7 

and p=9.42x10-7, respectively). The latter two SNPs are in very high LD (r2=0.91) in the 

Hispanic subpopulation and therefore likely represent the same association.  Across all 

three lipid traits and all three racial/ethnic groups, 65 associations were significantly 

associated at p<1x10-5 and were carried forward for replication in NHANES III youths. 
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Figure 3.1. Discovery GWAS association results.  The figure summarizes genome-wide 

association results for three lipid traits, HDL-C, LDL-C, and triglycerides in the three St. Jude 
cohort populations, Whites, Blacks, and Hispanics.   Values are plotted as –log10P value on the y-
axis.  Chromosomal location is designated on the x-axis.  The red line corresponds to a p=1x10-5, 
the threshold used for determining which associations would be carried further for replication. 



56 

 

Replication in NHANES III youths and adults 

 Next we tested if the novel associations observed in the discovery GWAS would 

replicate in an independent study of children.  For the replication study, a total of 1,040 

youths (12-18 years of age) in NHANES III were genotyped for 65 SNPs, 52 of which 

passed assay design and quality control measures (see Methods).  Three of the 52 

associations replicated at p<0.05 in NHANES youths (Table 3.2).  Two SNPs, SGSM2 

rs2429917 and intergenic rs12190789, were associated with transformed LDL-C at 

p=0.009 and p=0.047, respectively, and CD96 rs16858329 was associated with 

transformed triglycerides at p=0.048.  All three of the significant associations were in 

Blacks and the directions of effects were concordant with those of the discovery cohort, 

although they were of smaller magnitude. 

 We also conducted a second replication study in a large cohort of fasting adults 

(>18 years of age) in NHANES III to determine if associations initially discovered in 

children would generalize to adults.  Despite the considerable increase in sample size, 

none of the three associations that replicated in NHANES youths were associated in 

NHANES adults (Table 3.2).  There were, however, three significant associations in 

NHANES adults that were not replicated in NHANES youths (TG and intergenic 

rs6477578 in Whites, LDL and FRMD3 rs10868008 in Hispanics, and LDL and FRMD3 

rs1140077 in Hispanics; Table 3.2).  The former association was the most significant at 

p=0.006, yet the direction of effect was in the opposing direction compared with the 

GWAS discovery study of St. Jude children.  The latter two associations most likely 

represent the same association as rs10868008 and rs114007 are in complete LD (r2=1.00) 

in our discovery GWAS among Hispanic samples. 
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Table 3.2.  Significant Replication Results in NHANES III 

 

Trait Population SNP 
Gene/ 

location 

Coded 
Allele 
(Freq) 

GWAS cohort 
St. Jude Children 

Replication cohort 1 
NHANES III Youths 

Replication cohort 2 
NHANES III Adults 

Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value 

LDL-C Blacks rs2429917 
SGSM2 
intron  

T (0.04) 
-1.45 
(0.30) 

7.01E-06 
-0.20 
(0.08) 

0.009 
0.02 

(0.05) 
0.662 

LDL-C Blacks rs12190789 intergenic T (0.03) 
-1.46 
(0.29) 

3.32E-06 
-0.17 
(0.08) 

0.047 
-0.04 
(0.05) 

0.413 

TG Blacks rs16858329 
CD96 
intron 

T (0.41) 
-0.36 
(0.07) 

4.29E-06 
-0.06 

 (0.03) 
0.048 

0.03 
(0.02) 

0.127 

TG Whites rs6477578 intergenic G (0.27) 
0.25 

(0.05) 
6.13E-06 

0.03 
(0.05) 

0.425 
-0.06 
(0.02) 

0.006 

LDL Hispanics rs10868008 
FRMD3 
intron 

C (0.04) 
-0.69 
(0.13) 

1.66E-06 
-0.06 
(0.06) 

0.368 
-0.08 
(0.05) 

0.049 

LDL Hispanics rs11140077 
FRMD3 
intron 

A (0.06) 
-0.69 
(0.13) 

1.66E-06 
-0.06 
(0.06) 

0.368 
-0.08 
(0.05) 

0.049 

 

Significant (p≤0.05) associations in the Replication cohorts are bolded and italicized.  Coded allele frequencies are based on the whole 
genetic NHANES III in the designated racial/ethnic population 
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Age as a potential modifier 

 As mentioned previously and shown in Table 3.1 and Appendix D, mean HDL-

C, LDL-C, and TG levels differed significantly between adults and children/youths.  

Given that three associations were discovered and replicated in children but failed to 

generalize to adults, we explored the hypothesis that genetic associations observed for 

the lipid traits are modified by age.  After testing for SNP-age interactions, we observed 

a significant interaction (p=0.024) between age and SGSM2 rs2429917 with transformed 

LDL-C in Blacks.   

 Up until about the fourth decade of life, participants homozygous for the major 

allele of rs2429917 (C, frequency=0.96) had consistently lower LDL-C levels compared to 

CT heterozygotes (Table 3.3) with the largest significant difference in the 12 to 21 age 

group (mean difference = 17.25 mg/dl, p=0.002).  Any trend in mean differences is 

harder to detect later in life due to smaller sample sizes for participants with the CT 

genotype (n ranges from 0 to 7; Table 3.3).  However, participants with the CC genotype 

had significantly lower mean LDL-C (mean difference = 24.14 mg/dl, p=0.016) in the 

older 72 to 81age group, which is opposite that observed in the 12 to 21 year olds.  These 

results suggest that early in life (and possibly much later in life) LDL-C concentration is 

dependent, in some small part, upon rs2429917 genotype. 



59 

 

Table 3.3. Mean LDL-C levels in Blacks, stratified by rs2429917 genotype and age 
group.  Age was categorized into age groups spanning 10 years, beginning at age 12 (the 
age at which NHANES III began collecting genetic data on participants).  For each age 
group, mean and standard deviations of LDL-C concentrations were calculated for 
participants with a CC genotype or a CT genotype at the rs2429917 locus, separately.  
Data for the TT genotype is not presented here due to small sample size (n=3).  T-tests 
with unequal variances were calculated to test for differences in mean LDL-C between 
genotypes, within the same age group. 

 

age group 
(years) 

rs2429917 Genotype 

p-value 
CC 

n=734 
CT 

n=52 

N 
LDL-C mg/dl 

(mean ± sd) 
N 

LDL-C mg/dl 
(mean ± sd) 

12 to <21 157 100.25 ± 26.8 16 82.75 ± 19.0 0.003 

≤21 to <30 126 113.79 ± 37.8 8 103.25 ± 32.1 0.398 

≤30 to <39 169 115.80 ± 35.3 12 111.41 ± 24.7 0.574 

≤39 to <48 125 124.80 ± 40.4 7 139.71 ± 52.5 0.486 

≤48 to <57 42 132.12 ± 42.7 2 152.50 ± 37.5 0.580 

≤57 to <63 40 151.00 ± 47.1 3 120.67 ± 63.5 0.497 

≤63 to <72 43 138.55 ± 44.1 2 153.50 ± 55.9 0.770 

≤72 to <81 22 145.86 ± 42.2 2 170.00 ±2.8 0.016 

≥81 10 126.20 ± 41.6 0 -- -- 
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Discussion 

 

 The aim of this study was to discover novel variants associated with lipid levels 

in children and to test if those associations were also significant in adults.   We 

performed a GWAS of children undergoing treatment for ALL at St. Jude Children‘s 

Research Hospital, and attempted replication in an independent population of youths 

and adults from NHANES III.  Three of the 52 lipid-genotype associations tested in 

NHANES III children replicated at p<0.05, including intronic SGSM2 rs2429917 at 

p=0.009.  However, these associations did not generalize to NHANES III adults.  We also 

identified a genotype x age interaction with SGSM2 rs2429917 for transformed LDL-C in 

Blacks, supporting a genetic basis for the differences observed in lipid levels in children 

compared to older individuals. 

 Age as a modifier of genetic association studies has only recently been 

highlighted in the literature.  In one study of the 100K data of the longitudinal 

Framingham Heart Study, Lasky-Su et al described an age-dependent association 

between ROBO1 and obesity where the association was stronger among the pediatric 

cohorts compared with adult cohorts (Lasky-Su et al., 2008).  Although Lasky-Su et al 

did not speculate on the mechanism behind the age-dependent interaction, it is 

interesting to note that heritability estimates for obesity in children tend to be higher 

(Haworth et al., 2008) compared with estimates in adults (Brown et al., 2003).  Somewhat 

consistent with these observations in obesity are the observations of heritability 

estimates for the lipid traits.  That is, some studies have found that heritability of select 

lipid levels tended to decrease with age (Beekman et al., 2002; Heller et al., 1993).  
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However, the review by Snieder et al (Snieder et al., 1999) concluded that heritability 

estimates for HDL-C, LDL-C, and triglycerides remained relatively stable with age.   

While the magnitude of the genetic influence on lipid metabolism may not 

change with age, the importance of different genes may.   Different genes may be 

expressed in childhood and adolescence compared to adulthood.  In regards to lipid 

metabolism, longitudinal twin studies support this possibility (Friedlander et al., 1997; 

Nance et al., 1998; Williams and Wijesiri, 1993), and an extended parent-twin study 

determined that different genes are expressed in adolescence compared to adulthood 

(Snieder et al., 1997).  It is also possible that the same genes function throughout life, but 

are expressed at different levels depending on the decade of life.  Supporting this latter 

hypothesis is the observation that younger patients heterozygous for ABCA1 mutations 

that cause Tangier disease have significantly higher HDL-C levels than older patients 

heterozygous for ABCA1 mutations (Clee et al., 2000).  There is evidence that normal 

ABCA1 function increases over time (Clee et al., 2000), which suggests pronounced 

HDL-C deficiency between age groups may be highlighting the heterozygous carriers‘ 

inability to do so.  

Given the proposed and observed differences between children and adults for 

these traits, we purposefully performed a discovery study in children as this subset may 

allow for discovery of novel genes associated with lipid levels compared with 

previously published GWAS from adults.  For our work presented here, the most 

promising novel candidate as a result of this study is rs2429917, located in the intron of 

SGSM2, or small G protein signaling modulator 2.  SGSM2 is ubiquitously expressed in 

various tissues, including the liver, and as the name implies, acts as a modulator of G-

protein signaling through its interaction with a subfamily of RAS proteins (Yang et al., 
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2007).  Proteins involved in G protein-mediated signal transduction are associated with a 

number of cellular mechanisms, including differentiation and proliferation.  It is also 

important to note that rs2429917 is located in a fairly gene-dense region of chromosome 

17, including SMG6, SRR, TSR1, MNT, and METT10D, all within ~100 kb flanking 

SGSM2.   Based on their biological functions, none of these neighboring genes are 

compelling candidates for association with lipid metabolism.  However, SMG6 is an 

intriguing candidate given its essential association with telomerase activity 

(Reichenbach et al., 2003; Snow et al., 2003) and, thereby, aging.  Deletion of Est1p (the S. 

cervisiae homolog to human SMG6) in yeast leads to ever-shorter telomeres over time 

despite functional telomerase activity (Lundblad and Szostak, 1989).  Telomere 

shortening occurs in all mitotic tissues (excluding germline tissue) as humans age and 

has been shown to contribute to mortality in many age-related diseases, including heart 

disease (Cawthon et al., 2003).  Although these findings require further study, it is 

interesting to speculate that these data may point to the involvement of previously 

unsuspected pathways contributing to lipid metabolism.   

 This study had several limitations, including the fact the children genotyped for 

the discovery GWAS were currently undergoing treatment for ALL.  Lipid levels were 

collected during a particular phase of therapy (consolidation) which lasts for 

approximately eight weeks and consists of doses of methotrexate, hydrocortisone, and 

cytarabine every other week, and daily doses of mercaptopurine.  To our knowledge, 

changes in lipid or lipoprotein concentrations have not been reported during this 

treatment period.  While changes in lipid profiles have been reported in children during 

combination therapy with L-asparaginase (Halton et al., 1998; Parsons et al., 1997) and 
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with glucorticoids (Boers et al., 2003), lipid measurements were taken at least four weeks 

from the last dose of these drugs and, therefore, should reflect baseline measurements. 

 A second limitiation is that the discovery GWAS was underpowered due to its 

small sample size.  Even with our largest population (n=282 in Whites), and an allele 

frequency of 5%, we had 80% power to detect only large effect sizes (R2>11%) at 

genome-wide significance.  The majority of published lipid GWAS-identified variants 

have small effect sizes and explain only a small percent of the variance of lipid traits in 

the population (Teslovich et al., 2010; Manolio, 2009).  However, to our knowledge, no 

GWAS has been performed on children with lipid levels; therefore, it is unknown 

whether the effect size and/or the significance of these well-known variants remain 

constant over a lifetime.   

 Despite the small discovery sample size, we were able to detect nominally 

significant associations, of which three replicated at p<0.05 in an independent dataset.  

Furthermore, examination of genetic variation known to influence lipids in European-

descent populations demonstrates that true associations can be detected in spite of the 

low power of the study.  That is, of the 26 established lipid-associated SNPs in 23 genes 

(including CETP, LPL, GCKR, APOB, etc; Appendix F), we detected seven associations 

with p-values ≤ 0.05.  As an example, rs328 is a non-synonymous SNP in LPL and has 

been shown to have a reproducible effect (~19 mg/dL in one study) (Kathiresan et al., 

2008) on lowering triglycerides.  In our GWAS of children, rs1741102, a proxy for rs328 

(r2=1 in HapMap CEU), was associated at p=0.02 with β=-0.17, corresponding to -21.3 

mg/dL, which is consistent in both the previously reported magnitude and direction of 

effect.   
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 A benefit of using NHANES III data is that it allows for genetic studies in a large, 

diverse population with a wide age-range.  However, it is a cross-sectional study.  Since 

our data suggest that there may be age-specific genetic influences, longitudinal data 

(with lipid concentrations measured at numerous ages for the same participant) are 

necessary to derive further conclusions and to replicate this interaction. 

 Post-mortem studies on young adults and children have shown that 

atherosclerosis starts early in life (Expert Panel Blood Cholesterol Levels Child Adolesc, 

1992), even though clinical symptoms usually do not manifest until decades later.  The 

potential temporal nature of factors, both genetic and non-genetic, that contribute to 

cardiovascular disease is important for better understanding of the etiology of the 

disease.  While it is often assumed in genotype-phenotype association studies that 

genetic effects are stable over a lifetime, the possibility of important age-effects should 

not be ignored when studying the genetics of lipid metabolism. 
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CHAPTER IV 

 

REPLICATION AND GENERALIZATION OF LIPID GWAS-IDENTIFIED 

VARIANTS FROM THE LITERATURE 3 

 

Introduction 

 

 Since its introduction in 2005, the genome-wide association study (GWAS) 

design has become a powerful tool in human genetics to identify single nucleotide 

polymorphisms (SNPs) associated with common diseases or traits using an experimental 

design that does not require a priori biological knowledge.  As of September 2010, 

greater than 1,000 SNPs across the genome have been reported as genome-wide 

significant (p≤5x10-8) for 165 traits (Hindorff et al., 2010).  An early analysis of the 

GWAS-reported SNPs demonstrated that most GWAS-identified variants were 

intergenic or intronic (Hindorff et al., 2009), suggesting either novel biology or that the 

functional variant has yet to be found. 

 While GWA studies have been successful in identifying novel associations, there 

are several limitations.  First, the majority of GWAS have been conducted in populations 

of European-descent.  While there are several GWAS in populations of Asian-descent, 

GWAS are just emerging for other populations such as African Americans (Genovese et 

                                                      
3Adapted from: Dumitrescu L, Carty CL, Taylor K, Schumacher FR, Hindorff LA, 
Ambite JL, Anderson G, Best LG, Brown-Gentry K, Bůžková P, Carlson CS, Cochran B, 
Cole SA, Devereux RB, Duggan D, Eaton CB, Fornage M, Franceschini N, Haessler J, 
Howard BV, Johnson KC, Laston S, Kolonel LN, Lee ET, MacCluer JW,  Manolio TA, 
Pendergrass SA, Quibrera M, Shohet RV, Wilkens LR, Haiman CA, Le Marchand L, 
Buyske S, Kooperberg C, North KE, and Crawford DC.  Genetic determinants of lipid 
traits in diverse populations from the Population Architecture using Genomics and 
Epidemiology (PAGE) Study.  PLoS Genetics. In Review. 
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al., 2010; Hallmayer et al., 2009; Himes et al., 2009; Smith et al., 2009; Shi et al., 2009; 

Adeyemo et al., 2009; Ge et al., 2009; Sebastiani et al., 2010; Mathias et al., 2010; Edenberg 

et al., 2010; Bierut et al., 2010; Adkins et al., 2010; Pelak et al., 2010; Kang et al., 2010; 

Sleiman et al., 2010; Nielsen et al., 2010; Bostrom et al., 2010; Kariuki et al., 2010), 

Mexican Americans/Hispanics (Kariuki et al., 2010; Hayes et al., 2007; Norris et al., 2009; 

Kanetsky et al., 2009; Ge et al., 2009; Hancock et al., 2009; Palmer et al., 2010; Bozaoglu et 

al., 2010), and American Indians (Hodgkinson et al., 2010).  It is possible that novel 

associations await discovery in these populations given the differing linkage 

disequilibrium (LD) patterns when compared with populations of European-descent 

(Rosenberg et al., 2010).  Second, much work is needed to test SNPs discovered in case-

control studies in more population-based, representative cohorts to determine if the 

associations generalize.  Data on generalization will inform future fine-mapping (Teo et 

al., 2010) and discovery studies as well as provide clues to whether GWAS-identified 

SNPs are simply tagSNPs or are more likely to be true functional SNP(s). 

  A major goal of the Population Architecture using Genomics and Epidemiology 

(PAGE) study is to determine whether GWAS-identified variants generalize to diverse 

groups drawn from population-based studies (Matise et al., 2010).  Generalization is 

defined here as a significant association (p<0.05, uncorrected for multiple testing) in a 

non-European population and a direction of genetic effect in the same direction as that 

of European Americans.  In PAGE, variants identified in GWAS and well replicated in 

multiple studies are chosen for targeted genotyping in hundreds to thousands of 

European Americans (~20,000), African Americans (~9.000), American Indians (~6,000), 

Mexican Americans/Hispanics (~2,500), Japanese/East Asians (~690), and Native 

Hawaiians/Pacific Islanders (~175).  All samples are linked to extensive demographic, 
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health, and exposure data, making the PAGE study a rich resource for post-discovery 

generalization and characterization for common human diseases and traits. 

We present here PAGE study data on the replication and generalization for 49 

SNPs associated with three common lipid traits:  low-density lipoprotein cholesterol 

(LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides.  Each of these 

three traits has numerous GWAS published in European ancestry individuals (Pollin et 

al., 2008; Teslovich et al., 2010; Aulchenko et al., 2009; Wallace et al., 2008; Sandhu et al., 

2008; Heid et al., 2008; Sabatti et al., 2009; Ridker et al., 2009; Saxena et al., 2007; Willer et 

al., 2008; Kooner et al., 2008; Kathiresan et al., 2008; Kathiresan et al., 2009) but only a 

handful published in other populations, such as Asians (Hiura et al., 2009) and 

Micronesians (Burkhardt et al., 2008).  Additional data are just now emerging from large 

samples sizes of diverse populations for generalization (Keebler et al., 2009; Gupta et al., 

2010; Waterworth et al., 2010; Chang et al., 2010; Nakayama et al., 2009; Deo et al., 2009; 

Teslovich et al., 2010) and fine-mapping (Keebler et al., 2010) of these lipid GWAS-

identified SNPs.  We demonstrate that the majority of the targeted GWAS-identified 

SNPs replicate in European Americans in PAGE and that many generalize to diverse 

populations.  Both power and LD are explored as explanations of non-generalization, 

highlighting the complexities involved in properly interpreting results of even robust 

genetic associations such as these. 
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Methods 

 

Study populations and phenotypes 

 All studies were approved by Institutional Review Boards at their respective 

sites (details are given in Appendix G).  PAGE study samples were drawn from four 

large population-based studies or consortia: EAGLE (Epidemiologic Architecture for 

Genes Linked to Environment), based on three National Health and Nutrition 

Examination Surveys (NHANES) (Centers for Disease Control and Prevention, 2010; 

Centers for Disease Control and Prevention, 2004; Centers for Disease Control and 

Prevention (CDC), 2002), the Multiethnic Cohort (MEC) (Kolonel et al., 2004), the 

Women‘s Health Initiative (WHI) (1998; Anderson et al., 2003), and Causal Variants 

Across the Life Course (CALiCo), a consortium of several cohort studies: Atherosclerosis 

Risk in Communities Study (ARIC) (The ARIC Investigators, 1989), Coronary Artery 

Risk in Young Adults (CARDIA) (Friedman et al., 1988), Cardiovascular Health Study 

(CHS) (Fried et al., 1991), Strong Heart Family Study (SHFS) (North et al., 2003), and 

Strong Heart Cohort Study (SHS) (Lee et al., 1990).  The PAGE study design is detailed 

in Matise et al (Matise et al., 2010).   

Serum HDL-C, triglycerides, and total cholesterol were measured using standard 

enzymatic methods.  LDL-C was calculated using the Friedewald equation (Friedewald 

et al., 1972), with missing values assigned for samples with triglyceride levels greater 

than 400 mg/dl.  For PAGE study sites with longitudinal data, the baseline 

measurement was used for analysis.  A full description of each study, along with 

population-specific study characteristics, is presented in Appendix G and Appendix H. 
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SNP selection and genotyping 

 All SNPs considered for genotyping were previously associated with HDL-C, 

LDL-C, and/or triglycerides in published (as of 2008) candidate gene and genome-wide 

association studies.  A total of 52 SNPs were targeted for genotyping by two or more 

PAGE study sites.  The 52 targeted variants are located in or nearby 32 different 

genes/gene regions, with 12 of the gene/gene regions represented by two or more 

SNPs.  Six SNPs are nonsynonymous, one SNP is a nonsense variant, two SNPs are 

synonymous, and three SNPs are in untranslated regions; the remainder are located in 

introns, flanking, or intergenic regions.  The full list of targeted SNPs, their locations, 

and their previously associated lipid trait can be found in Appendix I.   

Cohorts were genotyped using either commercially available genotyping arrays 

(Affymetrix 6.0, Illumina 370CNV BeadChip), custom mid- and low-throughput assays 

(TaqMan, Sequenom, Illumina GoldenGate or BeadXpress), or a combination thereof.  

Quality control was implemented at each study site independently.  In addition to site-

specific quality control, all PAGE study sites genotyped 360 DNA samples for all SNPs 

from the International HapMap Project and submitted these data to the PAGE 

Coordinating Center for concordance statistics (Matise et al., 2010).  Study specific 

genotyping details are described in Appendix G. Of the 52 targeted SNPs, three (CETP 

rs1800775, APOE rs429358, and APOE rs7412) failed at all PAGE study sites that 

attempted genotyping; therefore, a total of 49 SNPs were tested in this analysis.    

 

Statistical methods 

 All tests of association were performed by each PAGE study site using the same 

analysis protocol prior to meta-analysis.  The study protocol excluded participants <18 
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years of age as well as non-fasting samples (defined here as <8 hours).  When 

triglyceride level was the dependent variable, participants with >1,000 mg/dl were 

excluded from analyses.  Triglyceride (TG) levels were natural-log transformed (ln) prior 

to analysis. 

 Linear regression was performed for fasting adults regardless of lipid lowering 

medication use with HDL-C, LDL-C, or ln(TG) as the dependent variable and a SNP as 

the independent variable, assuming an additive genetic model, stratified by 

race/ethnicity.  The beta estimate is per additional copy of the coded allele.  For each 

SNP,  four models were considered:  1) unadjusted, 2) adjusted for age (continuous in 

years) and sex, 3) adjusted for age, body mass index (continuous in kg/m2), current 

smoking (yes/no; binary), type 2 diabetes (yes/no; binary), post-menopausal status 

(yes/no for females only; binary), and current hormone use (yes/no for females only; 

binary), and 4) adjusted for age, body mass index, current smoking, type 2 diabetes, 

post-menopausal status, current hormone use, and previous myocardial infarction (yes; 

no; binary).  All PAGE study sites (except for WHI, which is female only) stratified 

models 3 and 4 by sex given the sex-specific variables (post-menopausal status and 

hormone use) prior to meta-analysis. Select PAGE study sites also included study site or 

site of ascertainment as a covariate in all models.  Results from Model 2 (adjusted for age 

and sex) are reported in the main text while results from Models 1, 3, and 4 are 

presented in Appendices J-L.  Model 2 excluding participants on lipid-lowering 

medications are presented in Appendices M-O.  

  Meta-analyses, using a fixed-effects inverse-variance weighted approach and 

tests for effect size heterogeneity across studies, were performed using METAL (Willer 

et al., 2010).  P-values were not adjusted for multiple testing, and association results 
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were plotted using Synthesis-View (Pendergrass et al., 2010), where indicated.  Power 

calculations were performed using Quanto (Gauderman and Morrison, 2006; 

Gauderman, 2002) assuming unrelated participants, an additive genetic model, the 

published effect size from European-descent populations listed in Appendix H, and the 

population-specific allele frequencies.  Linkage disequilibrium was calculated using 

HapMap European (CEU) and West African (YRI) data accessed through the Genome 

Variation Server. 

 

Results 

 

Study population characteristics 

 The PAGE study sites are diverse across multiple variables (Table 4.1 and 

Appendix H).  Together, the PAGE study consists of several populations:  European 

Americans, African Americans, Mexican Americans/Hispanics, American Indians, 

Japanese/East Asians, and Native Hawaiians/Pacific Islanders.  All PAGE study sites 

except WHI ascertained both men and women.  Participant age varies widely across 

PAGE.  For example, CHS ascertained on average older adults (median age = 74 and 72 

years for European and African Americans, respectively), CARDIA ascertained younger 

adults (median age = 26 and 24.5 years for European and African Americans, 

respectively), and NHANES ascertained all ages of adults (18 years to 90 years; median 

age = 51, 39, and 40 years for European, African, and Mexican Americans, respectively).  

In addition to demographic differences, lifestyles and health differed across the PAGE 

study sites by population, including lipid lowering medication use and current smoking 
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Table 4.1.  Characteristics of PAGE study populations 
 

 
 

EAGLE MEC WHI 
CALiCo 

ARIC CARDIA CHS SHS 

Type of Study 
Cross-

sectional 
Nested Case 

Control 

Cohort and             
Clinical 
Trials 

Longitudinal Longitudinal Longitudinal Longitudinal 

Focus of Cohort N/A Cancer 
Women's 

Health 
Cardiovascular 

Disease 
Cardiovascular 

Disease 
Cardiovascular 

Disease 
Cardiovascular 

Disease 

Years Collected 
1991-1994,         
1999-2002 

1993-1996 1993-1998 1987-2007 1986-2006 1989-1999 1988-present 

Median Age 43 67 63 54 25 73 47 

Age Range 18-90 48-86 50-79 44-66 18-35 64-96 14-93 

% Women 54 36 100 57 56 62 59.3 

Race/Ethnicity(nmax) 

European 
Americans 

3,909 317 4,688 11,178 2,134 2,787 -- 

African 
Americans 

1,896 552 1,840 3,770 2,035 550 -- 

American 
Indians 

-- -- 113 -- -- -- 6,021 

Mexican 
Americans 

2,361 299 762 -- -- -- -- 

Japanese/ 
East Asian 

-- 
576 251 -- -- -- -- 

Native 
Hawaiian/ 

Pacific Islander 

-- 
87 113 -- -- -- -- 
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status.  More Japanese participants ascertained by MEC reported lipid lowering 

medication use compared with other populations ascertained by other PAGE study 

sites:  38.3% versus <5-10%.  American Indians from the Dakotas reported more 

smoking (42.2-47.8%) than other American Indians (25-33%) or other PAGE study site 

populations (6.3% to 35.3%).  The differences in demographics, lifestyle, and health 

characteristics observed across the PAGE study sites and populations are reflected in the 

three traits studied here (Appendix H).   Given the diversity observed across the PAGE 

study sites, we performed all tests of association for HDL-C, LDL-C, and triglycerides 

unadjusted, minimally adjusted (for age and sex), and adjusted for various 

demographic, lifestyle, and health variables.  

 

Allele frequencies 

 Coded allele frequencies are presented in Tables 4.2-4.4 and in Appendix P, by 

population.  We calculated the Pearson correlation coefficient (r) between European 

American coded allele frequencies and all other groups.   The highest correlation was 

observed in the comparison with Mexican Americans/Hispanics (0.97) followed by 

American Indians (0.92), Native Hawaiians/Pacific Islanders (0.90), Japanese/East 

Asians (0.87), and African Americans (0.84).  Compared with European Americans, the 

proportion of SNPs that differed in allele frequency by more than ±0.10 was smallest in 

Mexican Americans/Hispanics (seven SNPs; 14%) and largest in African Americans (25 

SNPs; 51%).  For the remaining populations, approximately half of the SNPs genotyped 

differed in allele frequency compared with European Americans by more than ±0.10.  A 

striking example of population differences in allele frequencies is FADS1 rs174547.  The 

T allele of FADS1 rs174547 is the major allele in three populations (allele frequency = 
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0.66, 0.91, and 0.59 in European Americans, African Americans, and Japanese/East 

Asians, respectively), but is the minor allele in the other three populations (allele 

frequency = 0.39, 0.21, and 0.42 in Mexican Americans/Hispanics, American Indians, 

and Native Hawaiians/Pacific Islanders, respectively). 

 

 Replication in European-descent populations 

 We meta-analyzed tests of association for 27, 19, and 14 SNPs previously 

associated with HDL-C, LDL-C, and/or triglycerides, respectively, across European 

American populations collected by individual PAGE study sites (Appendix I).  For 

HDL-C, 23 of the 27 (85%) SNPs tested were associated at p<0.05 assuming an additive 

genetic model and adjusting for age and sex (Figure 4.1 and Table 4.1).  The four SNPs 

that did not replicate at this liberal significance threshold were rs471364 (TTC39B), 

rs1883025 (ABCA1), rs4149268 (ABCA1), and rs1864163 (CETP), all of which are intronic 

(Appendix I).    For LDL-C, only one (intergenic MAFB rs6102059) of the 19 SNPs tested 

was not significantly associated at p<0.05 (Figure 4.1 and Table 4.2).  Finally, for ln(TG), 

all 14 SNPs tested were associated at p<0.05 (Figure 4.1 and Table 4.3). 

 Of the associations that did not replicate in the European-descent populations 

from PAGE, four out of five had sufficient power (>80%) to detect the previously 

reported effect size:  TTC39B rs471364 (>99% power; HDL-C), CETP rs1864163 (80% 

power; HDL-C); MAFB rs6102059 (>90% power; LDL-C), and ABCA1 rs4149268 (99% 

power; HDL-C).  ABCA1 rs1883025, which did not replicate the expected association 

with HDL-C, did not have sufficient power to detect the reported effect size (68% power; 

n=3,865).   
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Figure 4.1.  Meta-analysis results for GWAS-identified SNPs by population.  Each 
SNP was tested for an association with the indicated trait assuming an additive genetic 
model adjusted for age and sex. Meta-analysis was performed, and p-values (–log10 
transformed) of the meta-analysis are plotted along the y-axis.  SNP location is given on 
the x-axis. Each triangle represents a meta-analysis p-value for each population. 
Populations are color-coded as follows: European Americans (blue; EA), African 
Americans (red; AA), Mexican Americans/Hispanics (orange; MA/H), and American 
Indians (purple; AI).  Large triangles represent p-values at or smaller than genome-wide 
significance (p<10-8).  The direction of the arrows corresponds to the direction of the beta 
coefficient. The significance threshold is indicated by the red bar at p=0.05. 
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Table 4.2.  Meta-analysis of GWAS-identified HDL-C SNPs. Abbreviations: coded allele (CA); coded allele frequency (CAF); beta 
coefficient (β); standard error (SE); data not available (--).  
 

SNP Nearest Gene CA 

European Americans 
(nmax=25,167) 

African Americans 
(nmax=10,436) 

American Indians 
(nmax=6,134) 

Mexican Americans 
and Hispanics 

(nmax=3,371) 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

rs2144300 GALNT2 T 0.60 
0.59 

(0.14) 
3.33E-

05 
0.15 

0.48 
(0.31) 

0.12 0.55 
0.29 

(0.25) 
0.25 0.56 

0.39 
(0.34) 

0.25 

rs17145738 MLXIPL T 0.12 
0.91 

(0.21) 
1.64E-

05 
0.09 

-0.28 
(0.40) 

0.46 0.08 
0.46 

(0.48) 
0.34 0.07 

0.25 
(0.67) 

0.71 

rs328 LPL C 0.90 
-2.29 
(0.24) 

5.60E-
22 

0.93 
-1.79 
(0.52) 

5.84E-
04 

0.97 
-1.55 
(0.85) 

0.07 0.94 
-2.31 
(0.69) 

8.80E-
04 

rs2197089 LPL A 0.55 
0.90 

(0.13) 
9.49E-

11 
0.78 

0.95 
(0.27) 

4.79E-
04 

0.40 
1.10 

(0.26) 
2.19E-

05 
0.47 

1.22 
(0.33) 

2.56E-
04 

rs6586891 LPL A 0.66 
0.96 

(0.14) 
5.88E-

11 
0.84 

0.60 
(0.30) 

4.76E-
02 

0.44 
0.76 

(0.26) 
2.86E-

03 
0.53 

1.27 
(0.34) 

1.73E-
04 

rs471364 TTC39B T 0.89 
0.35 

(0.23) 
0.13 0.81 

0.24 
(0.31) 

0.45 0.97 
0.43 

(0.77) 
0.58 0.92 

-0.23 
(0.69) 

0.74 

rs4149268 ABCA1 T 0.37 
-0.30 
(0.18) 

0.12 0.67 
-0.03 
(0.35) 

0.92 -- -- -- 0.32 
-0.17 
(0.40) 

0.67 

rs3890182 ABCA1 A 0.12 
-1.06 
(0.20) 

4.53E-
07 

0.12 
-0.83 
(0.34) 

1.39E-
02 

0.05 
-0.92 
(0.72) 

0.20 0.09 
-0.24 
(0.63) 

0.70 

rs1883025 ABCA1 A 0.26 
-0.44 
(0.38) 

0.25 0.34 
0.02 

(0.56) 
0.97 -- -- -- 0.27 

-0.59 
(0.44) 

0.18 

rs174547 FADS1 T 0.66 
0.84 

(0.17) 
1.14E-

06 
0.91 

0.94 
(0.42) 

2.73E-
02 

0.21 
0.56 

(0.41) 
0.17 0.39 

1.17 
(0.38) 

1.98E-
03 

rs28927680 APOA1/C3/A4/A5 C 0.93 
1.51 

(0.26) 
8.61E-

09 
0.84 

-0.03 
(0.30) 

0.93 0.83 
1.19 

(0.37) 
1.13E-

03 
0.86 

1.00 
(0.48) 

3.98E-
02 
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rs964184 APOA1/C3/A4/A5 C 0.86 
1.57 

(0.25) 
6.08E-

10 
0.80 

0.48 
(0.39) 

0.22 0.78 
1.32 

(2.48) 
0.60 0.71 

1.98 
(0.38) 

1.55E-
07 

rs3135506 APOA1/C3/A4/A5 C 0.06 
-1.86 
(0.31) 

1.42E-
09 

0.06 
-1.94 
(0.60) 

1.17E-
03 

0.17 
-1.41 
(0.37) 

1.40E-
04 

0.14 
-1.22 
(0.54) 

2.45E-
02 

rs2338104 MMAB-MVK C 0.46 
-0.40 
(0.14) 

5.64E-
03 

0.27 
-0.35 
(0.27) 

0.19 0.58 
-0.03 
(0.26) 

0.91 0.52 
-0.92 
(0.38) 

1.46E-
02 

rs4775041 LIPC C 0.29 
1.31 

(0.16) 
1.03E-

16 
0.14 

0.79 
(0.35) 

2.55E-
02 

0.21 
1.34 

(0.47) 
2.05E-

05 
0.18 

1.34 
(0.47) 

4.66E-
03 

rs261332 LIPC A 0.20 
1.76 

(0.24) 
1.99E-

13 
0.24 

0.31 
(0.43) 

0.46 -- -- -- 0.15 
0.66 

(0.72) 
0.35 

rs1864163 CETP A 0.23 
-2.07 
(1.36) 

0.13 0.27 
-2.79 
(1.02) 

6.19E-
03 

-- -- -- 0.28 
-2.98 
(1.26) 

1.78E-
02 

rs12596776 CETP C 0.90 
-1.36 
(0.31) 

1.18E-
05 

0.94 
-0.48 
(0.70) 

0.50 -- -- -- 0.94 
-0.13 
(0.75) 

0.86 

rs9989419 CETP A 0.39 
-2.17 
(0.14) 

1.71E-
53 

0.59 
0.02 

(0.24) 
0.93 0.26 

-1.62 
(0.30) 

4.42E-
08 

0.32 
-2.29 
(0.39) 

5.29E-
09 

rs3764261 CETP A 0.32 
3.64 

(0.15) 
8.83E-

129 
0.32 

2.79 
(0.25) 

5.98E-
28 

0.31 
2.81 

(0.27) 
5.00E-

25 
0.33 

2.68 
(0.40) 

2.53E-
11 

rs1566439 CETP T 0.60 
-0.54 
(0.16) 

1.07E-
03 

0.78 
0.16 

(0.37) 
0.67 -- -- -- 0.53 

-0.42 
(0.37) 

0.25 

rs2271293 LCAT A 0.12 
1.45 

(0.22) 
8.40E-

11 
0.68 

1.11 
(0.43) 

1.05E-
02 

0.26 
1.26 

(0.29) 
1.65E-

05 
0.14 

0.99 
(0.52) 

5.65E-
02 

rs2156552 LIPG A 0.17 
-1.27 
(0.19) 

5.11E-
11 

0.04 
-0.59 
(0.62) 

0.34 0.05 
-0.96 
(0.69) 

0.17 0.08 
-0.49 
(0.68) 

0.47 

rs2967605 ANGPTL4 T 0.18 
-0.90 
(0.18) 

1.12E-
06 

0.21 
-0.89 
(0.29) 

2.24E-
03 

0.30 
-0.26 
(0.28) 

0.35 0.23 
-0.67 
(0.43) 

0.12 

rs4420638 APOE/C1/C4 A 0.82 
1.00 

(0.20) 
5.69E-

07 
0.80 

-1.01 
(0.35) 

4.29E-
03 

0.90 
1.38 

(0.48) 
3.95E-

03 
0.90 

1.45 
(0.59) 

1.47E-
02 
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rs1800961 HNF4A T 0.03 
-1.14 
(0.41) 

5.78E-
03 

0.01 
-1.01 
(1.46) 

0.49 0.03 
-1.43 
(0.73) 

0.05 0.04 
-2.33 
(0.95) 

1.42E-
02 

rs7679 PLTP T 0.82 
0.95 

(0.21) 
8.42E-

06 
0.96 

0.01 
(0.58) 

0.99 0.94 
0.31 

(0.58) 
0.60 0.89 

0.89 
(0.60) 

0.14 
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Table 4.3.  Meta-analysis of GWAS-identified LDL-C SNPs.   Abbreviations: coded allele (CA); coded allele frequency (CAF); beta 
coefficient (β); standard error (SE); data not available (--). 
  

SNP Nearest Gene CA 

European Americans 
(nmax=21,986) 

African Americans 
(nmax=9,328) 

American Indians 
(nmax=6,144) 

Mexican Americans 
and Hispanics 

(nmax=2,532) 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

rs11206510 PCSK9 T 
0.81 1.98 

(0.45) 

1.44E

-05 
0.86 0.09 

(0.84) 0.91 0.93 
-0.07 
(1.30) 0.96 0.88 

3.36 
(1.44) 

1.97E
-02 

rs11591147 PCSK9 T 
0.02 -16.92 

(1.42) 
1.00E

-32 

4.10E

-03 

-22.64 
(5.21) 

1.41E-
05 

0.01 
-15.66 
(4.92) 

1.44E-
03 

0.01 
-23.39 
(5.34) 

1.19E
-05 

rs646776 
CELSR2/PSCR1/

SORT 
T 

0.78 5.74 
(0.44) 

1.44E

-37 
0.65 4.46 

(0.63) 
1.48E-

12 
-- -- -- 0.81 

7.70 
(1.41) 

4.49E
-08 

rs599839 
CELSR2/PSRC1/

SORT 
A 

0.77 5.67 
(0.45) 

3.61E
-36 

0.28 1.60 
(0.72) 

2.67E-
02 

0.78 
6.17 

(0.67) 
3.94E-

20 
0.78 

8.68 
(1.75) 

6.99E
-07 

rs693 APOB A 
0.50 3.45 

(0.36) 
3.38E

-21 
0.24 1.60 

(0.69) 
2.04E-

02 
0.34 

4.02 
(0.59) 

7.08E-
12 

0.38 
1.38 

(1.02) 0.18 

rs562338 APOB A 
0.19 -5.52 

(0.45) 
1.05E

-33 
0.59 -2.54 

(0.59) 
1.57E-

5 
0.09 

-5.44 
(1.05) 

1.93E-
07 

0.16 
-3.90 
(1.33) 

3.42E
-03 

rs754523 APOB A 
0.68 -3.64 

(0.40) 
3.44E

-19 
0.78 -2.12 

(0.76) 
5.52E-

03 
0.66 

-4.26 
(0.61) 

2.17E-
12 

0.72 
-1.63 
(1.23) 0.19 

rs6544713 ABCG8 T 
0.31 2.98 

(0.42) 
1.17E

-12 
0.17 1.49 

(0.74) 
4.45E-

02 
0.11 

4.76 
(1.10) 

1.51E-
05 

0.18 
0.06 

(1.22) 0.96 

rs12654264 HMGCR A 
0.62 -2.66 

(0.37) 
6.56E

-13 
0.67 -2.02 

(0.61) 
9.39E-

04 
0.58 

-1.17 
(0.59) 

4.55E-
02 

0.62 
-2.06 
(1.04) 

4.68E
-02 

rs1501908 TIMD4 C 
0.64 1.23 

(0.44) 
4.961
E-03 

0.37 1.31 
(0.64) 

4.18E-
02 

0.85 
-2.18 
(0.89) 

1.46E-
02 

0.76 
2.40 

(1.28) 
6.19E

-02 

rs2650000 HNF1A A 
0.35 1.20 

(0.39) 
2.338
E-03 

0.12 0.15 
(0.97) 0.88 0.41 

0.73 
(0.57) 0.20 0.37 

2.58 
(1.17) 

2.84E
-02 
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rs6511720 LDLR T 
0.12 -7.32 

(0.52) 
2.99E

-44 
0.13 -8.10 

(0.80) 
7.05E-

24 
0.07 

-2.48 
(1.41) 0.08 0.09 

-6.43 
(1.62) 

7.34E
-05 

rs2228671 LDLR T 
0.12 -5.83 

(0.97) 
1.96E

-09 
0.04 -6.62 

(2.94) 
2.43E-

02 
-- -- -- 0.08 

-6.14 
(2.03) 

2.53E
-03 

rs16996148 
CILP2/PBX4/ 

NCAN1 
T 

0.08 -2.88 
(0.66) 

1.40E

-05 
0.15 0.77 

(0.80) 0.34 0.04 
-0.70 
(1.51) 

 

0.64 0.06 
-2.12 
(2.01) 0.29 

rs4803750 BCL3 A 
0.93 5.57 

(0.92) 
1.37E

-09 
0.92 1.52 

(1.77) 0.39 -- -- -- 0.86 
5.95 

(4.68) 0.20 

rs10402271 APOE/C1/C4 T 
0.67 -2.27 

(0.49) 
3.86E

-06 
0.84 -1.38 

(1.28) 0.28 -- -- -- 0.61 
2.39 

(3.38) 0.48 

rs4420638 APOE/C1/C4 A 
0.82 -5.34 

(0.51) 
2.16E

-25 
0.79 0.16 

(0.92) 0.87 0.90 
-3.57 
(1.07) 

8.00E-
04 

0.90 
-5.35 
(1.72) 

1.82E
-03 

rs2075650 TOMM40 A 
0.88 -4.77 

(1.23) 
1.14E

-04 
0.87 -2.26 

(2.40) 0.35 -- -- -- 0.90 
0.02 

(5.27) 1.00 

rs6102059 MAFB T 
0.30 -0.41 

(0.52) 
0.42 0.43 -0.77 

(0.88) 0.38 -- -- -- 0.29 
-0.30 
(1.22) 0.80 
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Table 4.4.  Meta-analysis of GWAS-identified Triglyceride SNPs.  Abbreviations: coded allele (CA); coded allele frequency (CAF); 
beta coefficient (β); standard error (SE); data not available (--).  
 

SNP Nearest Gene CA 

European Americans 
(nmax=21,986) 

African Americans 
(nmax=9,328) 

American Indians 
(nmax=6,144) 

Mexican Americans 
and Hispanics 

(nmax=2,532) 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

CAF β (SE) 
P-

value 
CAF β (SE) 

P-
value 

rs1748195 ANGPTL3 C 
0.66 0.03 

(0.01) 
1.93E

-07 
0.35 0.01 

(0.01) 0.19 
0.61 0.16 

(0.07) 
2.44E-

02 
0.60 0.04 

(0.01) 
1.17E

-02 

rs1260326 GCKR T 
0.42 0.05 

(0.01) 
6.44E

-13 
0.16 0.05 

(0.02) 
9.98E-

04 
0.28 0.15 

(0.09) 

8.52E-

02 
0.33 0.06 

(0.02) 

1.97E

-04 

rs780094 GCKR T 
0.40 0.06 

(0.01) 
1.69E

-32 
0.18 0.02 

(0.01) 
2.91E-

02 
0.25 0.04 

(0.01) 
3.23E-

03 
0.33 0.06 

(0.02) 
1.13E

-03 

rs17145738 MLXIPL T 
0.12 -0.07 

(0.01) 
5.71E

-24 
0.09 -0.03 

(0.01) 
2.53E-

02 
0.08 -0.07 

(0.02) 

2.30E-

04 
0.07 -0.09 

(0.03) 

7.40E

-04 

rs328 LPL C 
0.90 0.09 

(0.01) 
4.16E

-30 
0.93 0.08 

(0.02) 
2.62E-

08 
0.97 0.09 

(0.03) 
4.83E-

03 
0.93 0.09 

(0.03) 
6.31E

-04 

rs2197089 LPL A 
0.55 -0.03 

(0.01) 
4.97E

-15 
0.78 -0.01 

(0.01) 
7.45E-

02 
0.41 -0.05 

(0.01) 

2.57E-

06 
0.48 -0.05 

(0.01) 
4.01E

-04 

rs2954029 TRIB1 A 
0.54 0.05 

(0.01) 
1.13E

-04 
0.68 -0.01 

(0.02) 0.46 -- -- -- 
0.62 0.06 

(0.02) 
9.28E

-04 

rs174547 FADS1 T 
0.66 -0.03 

(0.01) 
3.82E

-10 
 

0.91 -0.05 
(0.01) 

3.73E-
04 

0.21 -0.06 
(0.02) 

1.10E-

04 
0.39 -0.05 

(0.02) 

1.51E

-03 

rs28927680 
APOA1/C3/A4/A5 

gene cluster C 
0.93 -0.12 

(0.01) 
2.88E

-38 
0.84 <0.001 

(0.01) 
0.95 

0.83 -0.13 
(0.01) 

6.33E-

19 
0.86 -0.08 

(0.02) 
2.15E

-05 

rs964184 
APOA1/C3/A4/A5 

gene cluster 
C 

0.86 -0.14 
(0.01) 

1.91E
-59 

0.80 -0.02 
(0.01) 

4.87E-
02 

0.78 -0.17 
(0.07) 

1.43E-

02 
0.72 -0.14 

(0.02) 
1.04E

-19 

rs3135506 
APOA1/C3/A4/A5 

gene cluster 
C 

0.06 0.13 
(0.01) 

2.59E
-33 

0.06 0.11 
(0.02) 

2.06E-
10 

0.17 0.13 
(0.01) 

4.28E-

20 
0.14 0.13 

(0.02) 
3.08E

-08 
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rs4775041 LIPC C 
0.29 0.01 

(0.01) 
3.15E

-02 
0.14 0.03 

(0.01) 
4.29E-

03 
0.21 0.02 

(0.01) 
5.15E-

02 
0.18 0.01 

(0.02) 
0.58 

rs16996148 
CILP2/PBX4/ 

NCAN 
T 

0.08 -0.04 
(0.01) 

3.91E
-05 

0.15 <0.001 
(0.01) 0.77 

0.04 -0.07 
(0.03) 

8.86E-

03 
0.06 -0.06 

(0.03) 
2.69E

-02 

rs7679 PLTP T 0.82 
-0.02 
(0.01) 

2.84E
-02 

0.96 -0.01 
(0.02) 0.61 

0.94 -2.0E-
03 

(0.02) 

0.93 0.89 -0.03 
(0.03) 

0.31 
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 We then compared the genetic effect sizes reported in the literature to the genetic 

effect sizes estimated from the meta-analysis of these population-based studies.  We 

observed that the majority of the point estimates of effect size (β) were smaller than 

previously reported estimates.  Using the HDL-C association results as an example, 15 

out of the 23 (65%) significant associations had effect estimates smaller than published 

effect estimates.  We caution, however, that we did not formally test for significant 

differences between estimates and that these smaller effect estimates may or may not be 

significantly different than the published reports.  However, it is interesting to note that 

11 of our effect estimates differed from previous reports by more than 25%, including 

two HDL-C associations whose effect sizes differed by 50% or more from those in the 

literature (ANGPTL4 rs2967605 and MLXIPL rs17145738; Table 4.2 and Appendix I). 

 

Associations in non-European-descent populations 

 We meta-analyzed tests of association performed in African Americans for the 

same 27, 19, and 14 SNPs previously associated with HDL-C, LDL-C, and/or 

triglycerides in populations of European-descent.  For all three traits studied, assuming 

an additive genetic model and adjusting for age and sex, approximately half of the 

tested GWAS-identified SNPs were associated at p<0.05:  12/27 (44%) for HDL-C, 11/19 

(58%) for LDL-C, and 8/14 (57%) for ln(TG) (Figure 4.1, Tables 4.2-4.4).  The majority of 

SNPs that failed to replicate in the meta-analysis for European Americans also failed to 

associate in the meta-analysis for African Americans.  Interestingly, one SNP (CETP 

rs1864163) was significantly associated with HDL-C in African Americans (n=451; 

CAF=0.27; β = -2.79; p=6.19x10-3) but not in European Americans (n=291; CAF=0.23; β = 

-2.07; p=0.13).   
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Other populations that were examined for select SNPs included American 

Indians, Mexican Americans/Hispanics, Japanese/East Asians, and Native 

Hawaiians/Pacific Islanders. Among American Indians, 9/21 (43%), 10/14 (71%), and 

10/13 (77%) of the SNPs tested for association with HDL-C, LDL-C, and ln(TG), 

respectively, were associated at the liberal significance threshold of p<0.05.  For Mexican 

Americans/Hispanics, 14/27 (52%), 10/19 (53%), and 12/14 (86%) SNPs were 

significantly associated at p<0.05 with HDL-C, LDL-C, and ln(TG), respectively.  Despite 

a small sample size, intronic CETP rs1864163 was significantly associated with HDL-C in 

Mexican Americans/Hispanics (n=265; CAF=0.28; β = -2.98; p=1.78x10-2) but not in 

European Americans (n=291; CAF=0.27; β = -2.07; p=0.13), although the size and the 

direction of effect were similar.  

 The sample sizes for Japanese/East Asians and Native Hawaiians/Pacific 

Islanders are considerably smaller compared with the other populations examined.  

Despite the lower power to detect associations, significant associations were observed 

for both groups at a liberal significance threshold of p<0.05.  Among the 26, 18, and 13 

SNPs tested for associations with HDL-C, LDL-C, and ln(TG), respectively, there were 

nine (35%), three (17%), and three (23%) SNPs significantly associated in the combined 

Japanese/East Asian group.   

For Native Hawaiians/Pacific Islanders, the group with the smallest sample size 

considered here, one SNP each was associated with HDL-C (APOA1/C3/A4/A5 gene 

cluster rs28927680) and LDL-C (APOB rs754523) out of the 24 and 18 SNPs tested for 

association, respectively.  Three out of 12 SNPs tested for an association with ln(TG) 

were associated at p<0.05 (PLTP  rs7679, MLXIPL rs17145738, and APOA1/C3/A4/A5 

gene cluster rs28927680), with the latter at a significance of p<10-19.  
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Generalization across non-European-descent populations 

For the 55 SNP-trait associations that replicated in European Americans, we 

determined which associations generalized across all four of our largest populations 

(European Americans, African Americans, American Indians, and Mexican 

Americans/Hispanics).  Generalization was based on two criteria: 1) level of significance 

(i.e. p-value) and 2) direction of effect (i.e. positive or negative beta) (Appendix Q).  

SNPs that were significantly associated at p<0.05 and had the same direction of effect as 

European Americans in all populations studied were considered to have generalized.  

For HDL-C, five SNPs (CETP rs3764261, LPL rs6586891, LIPC rs4775041, LPL rs2197089, 

and APOA1/C3/A4/A5 gene cluster rs3135506) met these criteria (Appendix Q), and two 

SNPs (LCAT rs2271293 and LPL rs328) were associated in three groups and trended 

towards significance in a fourth group (p=0.06 and p=0.07 in Mexican 

Americans/Hispanics and American Indians, respectively; Table 4.2).   

For LDL-C, six SNPs generalized across all four groups, if available:  

CELSR2/PSRC1/SORT rs599839 and rs646776, APOB rs562338, PCSK9 rs11591147, 

HMGCR rs12654264, and LDLR rs2228671 (Appendix Q).  Similarly for ln(TG), six SNPs 

were significantly associated across the four largest populations: APOA1/C3/A4/A5 gene 

cluster rs964184 and rs3135506, GCKR rs780094, LPL rs328, MLXIPL rs1714573, and 

FADS1 rs174547 (Appendix Q).  In addition, for ln(TG), two SNPs (LPL rs2197089 and 

GCKR rs1260326) were associated in three groups and trended towards significance in a 

fourth group (p=0.07 in African Americans and p=0.09 in American Indians, 

respectively).  Among the 16 SNPs that generalized across the largest groups among the 

three lipid traits, only four (25%) were either nonsense (rs328) or missense SNPs 

(rs3135506, rs11591147, and rs1260326; Appendix I).  
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Power 

Based on our definition of generalization, several SNPs discovered and 

replicated in European-descent populations failed to generalize to other populations.  

There are several possible explanations for non-generalization including power.  To 

further investigate potential lack of power, for SNPs that associated in European 

Americans but not in African Americans, Mexican Americans/Hispanics, and/or 

American Indians, we performed post hoc power calculations assuming the genetic 

effect size estimated in European Americans and the allele frequency and sample sizes 

observed in non-European Americans.  In African Americans, four HDL-C 

(APOA1/C3/A4/A5 gene cluster rs28927680 and rs964184, LIPC rs261332, and CETP 

rs9989419), three LDL-C (CILP2/PBX4 rs16996148, BCL3 rs4803750, and APOE/C1/C4 

rs4420638) and four ln(TG) (ANGPTL3 rs1748195,  LPL rs2197089, TRIB1 rs2954029, and 

APOA1/C3/A4/A5 rs28927680) tests of association were properly powered (>80%) but 

did not generalize (Appendix Q).  Interestingly, APOE/C1/C4 rs4420638 was also 

properly powered and significantly associated with HDL-C levels in African Americans 

(β = -1.01; p=4.29x10-3), but effect size was in the opposite direction compared with 

European Americans (β = 1.00; p=5.69x10-7).   

For American Indians, two HDL-C (LPL rs328 and ANGPTL4 rs2967605) and one 

LDL-C (LDLR rs6511720) tests of association did not generalize despite being properly 

powered.  In this population, we observed one properly powered significant association 

that failed to generalize due to inconsistent direction of effect:  TIMD4 rs1501908 for 

LDL-C.  In Mexican-Americans/Hispanics two LDL-C (APOB rs693 and rs754523) tests 

of association failed to generalize despite sufficient power.  All other tests of association 

that did not generalize to African Americans, American Indians, or Mexican 
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Americans/Hispanics were underpowered assuming that the expected genetic effect 

sizes were similar to those in European Americans. 

 

Linkage disequilibrium 

To examine whether LD can account for the lack of generalization of the properly 

powered tests of association in African Americans, we examined LD patterns in 

HapMap Europeans (CEU) and West Africans (YRI) as well as those published in the 

literature for the genotyped SNPs and surrounding variation. For APOA1/C3/A4/A5 

rs28927680, previous studies in European-descent populations have noted that this SNP 

is in strong LD (r2=0.98) with missense APOA5 rs3135506 (Kathiresan et al., 2008).  

APOA1/C3/A4/A5 rs964184 is also in moderate LD with missense rs3135506 (r2=0.510 in 

CEU).  However, neither rs28927680 nor rs964184 are in LD with missense rs3135506 

(r2=0.039 and r2=0.048) in YRI.  Furthermore, APOA5 rs3135506 is associated with HDL-

C in European Americans, African Americans, Mexican Americans/Hispanics, and 

American Indians (Tables 4.1 and 4.2).  Generalization of rs3135506 coupled with non-

generalization and differences in YRI LD patterns for rs28927680 and rs964184 suggest 

that APOA5 rs3135506 is either the putative functional SNP for the association with 

HDL-C or in LD with the functional SNP.  

 Other interpretations of LD patterns are more difficult.  For example, CETP 

rs9989419, which failed to generalize in African Americans for HDL-C despite sufficient 

power, is not in strong LD with obvious functional SNPs in CEU within 50kb flanking 

the genotyped SNP.  The strongest pair-wise LD (r2=0.251) consists of intergenic and 

intronic SNPs, and these same SNPs have weak LD (r2<0.03) or are not found in YRI.  

Similarly, LIPC rs261332 associated with HDL-C levels in European Americans but 
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failed to generalize in African Americans.  LIPC rs261332 is in strong LD (r2>0.80 in 

CEU) with SNPs in the 5′ flanking region of LIPC, but not in LD with these same SNPs in 

YRI (r2<0.15).      

 

Adjustments for exposures and co-morbidities 

 Genetic variations in isolation are not the sole determinants of lipid trait 

distributions.  Many environmental exposures and demographic variables are associated 

with lipid traits.  To account for these variables, we meta-analyzed all tests of association 

for HDL-C, LDL-C, and ln(TG) adjusted for age, sex, body mass index, current smoking, 

type 2 diabetes, post-menopausal status, current hormone use, and previous myocardial 

infarction (Models 3 and 4) did not appreciably alter the results compared with the 

models minimally adjusted for age and sex (Appendices J-L), except for some 

associations with LDL-C in Japanese/East Asians (Appendix K.e).  More specifically, 

four SNPs (rs562338, rs6544713, rs1501908, and rs10402271) were not associated in the 

minimally adjusted models (Models 1 and 2) but they were associated at p<0.05 in the 

more fully adjusted models (Models 3 and 4).  This discrepancy simply may be due to 

decreased sample sizes between the models (from n=690 in Models 1 and 2; n=653 in 

Models 3 and 4), or it may highlight the need to account for these coviariates in this 

particular racial/ethnic population. 

 

Effect of including versus excluding by medication use 

 All analyses presented thus far include fasting adult participants regardless of 

lipid lowering medication use.  Many GWA studies conducted for the lipid traits 

excluded participants on lipid lowering medication (Kathiresan et al., 2008; Kathiresan 
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et al., 2009; Willer et al., 2008) given that these medications substantially lower LDL-C 

levels.  We have included these participants for analysis as participants on lipid 

lowering medication could represent the upper extreme of the normal LDL-C 

distribution associated with a genetic profile found in a general population.  Exclusion 

of these participants would preclude these meta-analyses from fully describing the 

extent and strength of associations relevant to these traits in a population-based setting.  

However, if genetic variation is associated with lipid concentrations and medication use 

lowers lipid concentrations, inclusion of participants on lipid lowering medications 

could bias associations towards the null.  As a sensitivity analysis, WHI used detailed 

medication data available on a subset of participants, and performed the tests of 

association for HDL-C, LDL-C, and ln(TG) excluding and including participants on lipid 

lowering medication with the latter adjusted for medication usage using average effects 

estimated in Wu et al (Wu et al., 2007) for specific drug classes.  Appendix R suggests 

that both the point estimates and the confidence intervals of the genetic effects are 

similar for this female-only study whether participants are excluded or included and 

adjusted for medication use.   

We also performed a second sensitivity analysis:  tests of association excluding 

participants on lipid lowering medication for all models.  As detailed in Appendices M-

O, excluding participants on lipid lowering medication usage does not appreciably alter 

the results, with the possible exception of LDL-associations in Japanese/East Asians.  

More specifically, two SNPs (rs11206510 and rs1501908) became significantly associated 

with LDL-C after excluding individuals on medications while two other SNPs (rs562338 

amd rs6544713) were no longer significantly associated.  Much like in the different 

modeling schemes mentioned earlier, this discrepancy simply may be due to decreased 



92 

 

sample sizes after excluding individuals on lipid lowering medications (from n=690 to 

n=467).  Of note, use of lipid-lowering medications was low (<10%) in the ARIC, CHS, 

NHANES, and WHI studies since the majority of study recruitment occurred before the 

introduction or widespread use of the recent generation of lipid-lowering medications.   

However, medication use was higher in the MEC study (20-38% depending on the 

population), which contributed the majority of Japanese/East Asian samples. 

 

Discussion 

 

 We have performed an extensive replication and generalization effort for HDL-

C, LDL-C, and TG GWAS-identified SNPs.  The PAGE study consists of six racial/ethnic 

groups:  European American, African American, Mexican American/Hispanic, 

American Indian, Japanese/East Asian, and Native Hawaiian/Pacific Islander, with 

population-specific sample sizes ranging from ~100 to >20,000 for any one test of 

association.   Although power to detect associations varied across the lipid traits and 

populations, we observed general patterns worth noting for future genetic 

epidemiological studies. 

 

Replication in European-descent populations 

 Perhaps not unexpectedly, we were able to replicate most reported associations 

in European Americans.  Regardless of significance, all but one of the tested SNPs had 

effect estimates in the same direction as the previously reported association from the 

literature.  FADS1 rs174547, which was significantly associated with decreased ln(TG) in 

this meta-analysis for European Americans, was associated with increased TG in 
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European Americans from the Framingham Heart Study (n=7,423) (Kathiresan et al., 

2009).  HDL-C had proportionally (15%) the greatest number of SNPs that failed to 

replicate in European Americans compared with LDL-C (5%) and TG (0%) despite the 

fact that we had sufficient power to detect the reported genetic effect size for many of 

these tests.  TTC39B rs471364 was not associated with HDL-C levels despite a sample 

size of 18,089 and >99% power to detect the reported effect size.   Neither ABCA1 

rs4149268 nor rs1883025 was associated with HDL-C, although the latter test of 

association was underpowered (68%; n=3,865).  Finally, as previously discussed, CETP 

rs1864163 was not associated with HDL-C in this European American dataset although 

we had 80% power to detect the reported genetic effect size.  For LDL-C, only MAFB 

rs6102059 was not associated despite >90% power to detect the reported effect size. 

 The reasons for non-replication in this European American dataset for properly 

powered tests of association are unclear.  It is possible that we have overestimated our 

power to detect reported associations.  The ―winner‘s curse‖ and inflated genetic effect 

estimates from initial discovery are well known (Goring et al., 2001; Zollner and 

Pritchard, 2007).  Indeed, for the five SNPs that did not replicate in this meta-analysis for 

European Americans, the association was described in only one GWAS each despite the 

fact that numerous GWAS (Aulchenko et al., 2009; Heid et al., 2008; Kathiresan et al., 

2008; Kathiresan et al., 2009; Kooner et al., 2008; Pollin et al., 2008; Ridker et al., 2009; 

Sabatti et al., 2009; Sandhu et al., 2008; Saxena et al., 2007; Wallace et al., 2008; Willer et 

al., 2008) and a large meta-analysis (Teslovich et al., 2010) for these three traits have been 

conducted in populations of European-descent.  The meta-analysis recently reported by 

Teslovich et al (Teslovich et al., 2010) did report significant associations between TTC39B 

rs581080 for HDL-C and MAFB rs2902940 for LDL-C.  TTC39B rs581080 is in moderate 
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linkage disequilibrium (LD) with rs471364 (r2 = 0.49 in CEU HapMap), but MAFB 

rs2902940 is not in LD with rs6102059 (r2 = 0.03 in HapMap CEU). 

A second possibility for our observed non-replication is heterogeneity among the 

PAGE studies.  A test of heterogeneity suggested that the association results for TTC39B 

rs471364 had significant evidence for heterogeneity across studies (pheterogeneity=0.048; 

I2=58.25%).  Only two other association results had evidence for heterogeneity:  FADS1 

rs174547 for HDL-C (pheterogeneity=0.006; I2=75.73%) and PCSK9 rs11206510 for LDL-C 

(pheterogeneity=0.048; I2=55.34%).  However, for both of these loci, the tests of association 

were significant in European Americans. 

 

Generalization to non-European populations 

  When taking into account power, significance, and direction of effect, most SNPs 

discovered in European Americans generalized to African Americans, Mexican 

Americans, and American Indians.  Of note are the eleven tests of association significant 

in European Americans that did not generalize to African Americans despite having 

adequate power.  Given that GWAS products are a mixture of tagSNPs and functional 

SNPs, it is likely that discovery in European Americans represents tagSNPs rather than 

the true functional SNP.  Because linkage disequilibrium patterns differ across 

populations, tagSNPs genotyped directly in populations of non-European descent may 

not recapitulate the association observed in European-descent populations depending 

on the pattern of LD.  The association of HDL-C and nonsynonymous rs3135506 versus 

tagSNPs rs28927680 in the APOA1/C3/A4/A5gene cluster in this analysis is an example of 

the effects of LD and the ability to generalize across populations. 
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 Evoking LD as an explanation for lack of generalization is appealing, but it does 

have limitations given that the functional SNP is not often obvious.  All tests of 

association that did not generalize to African Americans had evidence of LD differences 

between CEU and YRI using the HapMap data.  However, most of these SNPs are 

located in the intergenic and intronic regions. Further fine-mapping in both the 

discovery population as well as other diverse populations will be needed along with a 

better understanding of genetic variation and its relationship to biological function to 

identify the true functional SNPs for these traits. 

Among the five putative functional SNPs genotyped (nonsynonymous 

rs11591147, rs1260326, rs3135506, and rs1800961 and nonsense rs328), all five replicated 

in populations of European-descent, and three of the five generalized to populations of 

non-European descent.  One putative functional SNP that did not replicate across 

ethnicities was HNF4A rs1800961, likely due to low power because of the very low 

minor allele frequency in all subpopulations (0.0065 to 0.0398).  Both the direction and 

magnitude of effect, however, were consistent across groups.  GCKR rs1260326 did not 

generalize to all populations of non-European descent but did generalize in three of the 

four populations tested and trended towards significance in American Indians (p=0.085; 

Table 4.4).   

 

Limitations and strengths 

The major strengths and limitations of the PAGE study for lipids are sample size 

and diversity.  The largest sample size is for samples of European-descent (~20,000), 

followed by African Americans and American Indians.  The sample sizes for Mexican 

Americans, Japanese/East Asians, and Pacific Islanders/Native Hawaiians are smaller 
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and consequently underpowered for tests of association as estimated from genetic effect 

sizes in the published European-descent discovery studies.  Also, not all SNPs were 

genotyped in all PAGE studies, further affecting the power of the meta-analyses. 

An additional limitation is the lack of data related to lipid lowering medication.  

Ideally, all analyses would be adjusted for use of lipid lowering medication based on the 

type and dose of medication.  In most PAGE studies, these data were not available and 

in many, use was low at baseline when blood samples were obtained.  As we 

demonstrate in Supplementary material, inclusion of participants using lipid-lowering 

medication did not appreciably alter the results of the meta-analysis for the majority of 

racial/ethnic populations when compared with excluding these participants. 

In general, the cohorts and surveys included in PAGE are diverse with regard to 

demographics, genetic ancestry, lifestyle, health, and environmental exposure.  Despite 

this diversity, very few tests of association from the meta-analysis exhibited evidence of 

heterogeneity.   

 

Conclusions 

Overall, the majority of GWAS-identified SNPs for HDL-C, LDL-C, and TG 

replicated in European Americans and generalized to non-European-descent 

populations.  These results suggest that the genotyped SNP either tags the functional 

SNP(s) common across these populations or that the genotyped SNP represents the risk 

SNP directly.  SNPs that replicated in European Americans but did not generalize in the 

largest non-European-descent populations, despite adequate power, could represent 

priority associations that require fine-mapping and re-sequencing to identify the 

functional variant(s). 
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CHAPTER V 
 
 
 

ENVIRONMENTAL MODIFIERS OF GWAS-IDENTIFIED LIPID-
ASSOCIATED VARIANTS 

 
 
 

Introduction 

 

 The importance of both genetics and environment in shaping an individual‘s 

lipid profile is intuitively obvious.  However, the search for gene-environment 

interactions that influence levels of HDL-C, LDL-C, and triglycerides has only been 

relatively recent.   One driving force for expanding beyond the standard single-SNP 

models is the observation that single-SNP main effects do not account for the majority of  

the heritability attributed to additive genetics for most complex human traits (Manolio et 

al., 2009).  For the lipid traits, heritability estimates are as high as 80% (O'Connell et al., 

1988; Heller et al., 1993; Snieder et al., 1999), yet the largest and most comprehensive 

lipid meta-analysis to date was only able to explain about 25-30% of the genetic variance 

(Teslovich et al., 2010).  The identification of gene-environment interactions may help 

find a proportion of this ―missing heritability‖. 

 Within a statistical framework, a gene-environment interaction describes the 

effect of a genotype and an environmental factor that deviates from their additive 

effects.  Within a biological framework, the environment (or its by-product) modifies the 

function or amount of a gene product (Hunter, 2005).  The latter approach to identify 

gene-environment interactions is difficult in outbred populations such as humans given 

that both genetic background and environmental exposures vary within and across 
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populations.  Model organisms are more suited to identify biological interactions, but it 

is difficult to automate these studies, and the findings of these experiments may not 

generalize to humans (Ober and Vercelli, 2011).  In contrast, methods to identify 

statistical interactions can be automated, making them an attractive option for detecting 

gene-environment interactions important for complex human traits (Hunter, 2005). 

 A number of candidate environmental factors affect lipoprotein phenotypes, 

including smoking and diet.  Cigarette smoking has been associated in many studies 

with decreased HDL-C and increased LDL-C and triglycerides (Craig et al., 1989; 

Chelland et al., 2008).  One proposed mechanism to explain the link between smoking 

and changes in lipid and lipoprotein concentrations is that nicotine stimulates the 

release of adrenaline, leading to increased concentrations of free fatty acids which can 

then stimulate hepatic secretion of very low density lipoprotein (VLDL) and hence 

triglycerides (Brischetto et al., 1983).  In addition to its unfavorable alterations of the 

lipid profile, smoking is a strong, independent predictor of coronary heart disease 

(CHD) (and is a major public health concern (Third Report of the National Cholesterol 

Education Program (NCEP) Expert Panel, 2002). 

 Vitamin E and vitamin A are fat-soluble micronutrients.  Antioxidant vitamin E 

may play a role in the prevention of atherosclerosis, through inhibition of oxidation of 

LDL.  While one randomized control trial demonstrated an inverse association between 

vitamin E intake and relative risk of coronary artery disease (Stephens et al., 1996), 

others were unable to replicate this protective effect, as reviewed in Nicolosi et al 

(Nicolosi et al., 2001).  Discrepancies between studies may be due to the fact that vitamin 

E can also function as a prooxidant (Stocker, 1999).   The antioxidant and anti-

atherogenic properties of vitamin A are less studied, although, it is known that  high 
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doses of vitamin A in the form of isotretinoin (better known as the acne drug Accutane) 

increase triglycerides and cholesterol levels and lower HDL-C levels (Bershad et al., 

1985; Marsden, 1986; Murray et al., 1983; Zech et al., 1983). 

 Despite evidence that genetic variants and environmental factors are 

independently associated with lipid traits, relatively few studies have been published 

investigating the interaction between the two (Hagberg et al., 2000; Weinberg, 2002; 

Bernstein et al., 2002; Lai et al., 2006; Corella et al., 2001b; Corella et al., 2001a).  And, to 

our knowledge, no studies have been published explicitly testing for interactions 

between lipid-associated SNPs and smoking, vitamin E, and vitamin A.  We present here 

an investigation of the effects of 23 lipid-associated SNPs in the context of smoking and 

dietary intake of vitamins A and E using data from the National Health and Nutrition 

Examination Surveys (NHANES).  Analysis of ~15,000 participants from this diverse 

population-based survey reveals nine significant interactions between lipid-associated 

SNPs and dietary intake of vitamins A and E, along with a SNP-smoking interaction that 

trended towards significance.  These significant interactions explain 0.35-0.39%, 0.67-

1.28%, and 0.36-0.80% of the variability in HDL-C, LDL-C, and triglyceride levels, 

respectively.  Overall, these data provide the first steps in finding the ―missing 

heritability‖ for lipid traits by accounting for the environment.  

 

Methods 

 

Study population 

 Study samples were drawn from three National Health and Nutrition 

Examination Surveys (NHANES III, NHANES 1999-200, and NHANES 2001-2002).  
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Participant ascertainment and data collection for NHANES has been outlined in 

previous chapters (Chapters III and IV) and, therefore, will not be discussed here.  Only 

fasting adults (age ≥ 18 years) were included in this analysis.  Race/ethnicity was self-

described. 

 

Laboratory measurements  

 Cotinine levels in the blood were measured using a highly sensitive method 

developed by the National Center for Environmental Health (Bernert, Jr. et al., 1997) 

using high-performance liquid chromatography and atmospheric-pressure chemical 

ionization tandem mass spectrometry.  Serum HDL-C, triglycerides, and total 

cholesterol were measured using standard enzymatic methods.  LDL-C was calculated 

using the Friedewald equation, with missing values assigned for samples with 

triglyceride levels greater than 400 mg/dl.  Serum levels of vitamin E and vitamin A 

were measured with isocratic high-performance liquid chromatography (Center for 

Disease Control and Prevention, 1996; Centers for Disease Control and Prevention 

(CDC), 2002). 

 

Determination of smoking status 

 Smoking status was determined using measured serum cotinine levels.  Current 

smoking was defined has having cotinine levels ≥15ng/ml, a cutoff used by previous 

studies and shown to give approximately the same overall estimates of self-reported 

smoking behavior (Caraballo et al., 2001; Jarvis et al., 1987; Patrick et al., 1994; Pirkle et 

al., 1996).  In a study NHANES III participants, 92.5% of self-reported smokers had 

cotinine levels greater than 15.0 ng/ml and 98.6% of self-reported non-smokers had 
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cotinine levels less than 15.0 ng/ml (Caraballo et al., 2001).  The value of using cotinine 

over self-reported smoking status is it can be used as a marker of both active and passive 

smoking.  While nicotine is the best marker of tobacco exposure, it has a short half-life 

(2-3 hours) in the body.  Cotinine is the major metabolite of nicotine and has a much 

longer half-life (18-20 hours) (Caraballo et al., 2001) and, therefore, is widely used as a 

marker for tobacco smoke exposure.   

 

SNP selection and genotyping 

 A total of 23 SNPs were considered in this analysis (Appendix S).  All SNPs were 

previously associated with HDL-C, LDL-C, and/or triglycerides in published (as of 

2008) candidate gene and genome-wide association studies and were subsequently 

analyzed for single-SNP associations with lipid levels in a large meta-analysis by the 

Population Architecture using Genomics and Epidemiology (PAGE) study (refer to 

Chapter IV for details).  The 23 SNPs tested for gene-environment interactions were 

either accessed from existing data in the Genetic NHANES database (Keebler et al., 2009) 

or were directly genotyped by the Epidemiological Architecture of Genes Linked to 

Environment (EAGLE), one of the four large population-based studies of the PAGE 

network, using Sequenom or Illumina BeadXpress.  Genotyping was performed in the 

Vanderbilt DNA Resources Core.  In addition to genotyping experimental NHANES 

samples, we genotyped blind duplicates provided by CDC and HapMap controls 

(n=360).  All EAGLE SNPs considered here were genotyped in all three NHANES 

(NHANES III, NHANES 1999-2000, and NHANES 2001-2002), had minor allele 

frequencies >5% in all three racial/ethnic populations, passed CDC quality control 

metrics, and are available for secondary analyses through NCHS/CDC.   
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Statistical analysis 

 Regression modeling was used to investigate the effect of any interaction 

between lipid-associated variants and smoking on levels of HDL-C, LDL-C, and 

transformed TG.  Gene-environment interactions were modeled using a multiplicative 

interaction term between the environmental variable and an additive-encoded SNP.  All 

models were adjusted for the main effect of the SNP and the environmental variable, 

along with the potential confounding effects of age and sex.  Smoking status was 

dichotomized into non-smokers (cotinine levels<15 ng/ml) and smokers (cotinine levels 

≥ 15 ng/ml).  Triglycerides and vitamin E levels were natural-log transformed due to a 

skewed, non-normal distribution.  HDL-C, LDL-C, and vitamin A levels were left as 

continuous and untransformed.  All statistical analyses were conducted unweighted and 

remotely in SAS v9.2 (SAS Institute, Cary, NC) using the Analytic Data Research by 

Email (ANDRE) portal of the CDC Research Data Center in Hyattsville, MD.  

 

Results 

 

Population characteristics 

 Table 5.1 displays descriptive statistics for the key variables in this study, 

stratified by smoking status.  Of the maximum total sample size (n=8,088), there were 

2,079 (26%) current smokers (cotinine levels greater or equal to 15 ng/ml).  Non-

Hispanic blacks had the highest proportion of smokers (35%) compared to the other two 

racial/ethnic populations (26% and 18% in non-Hispanic whites and Mexican 

Americans, respectively).  Mean age was similar between non-Hispanic blacks and 

Mexican Americans, regardless of smoking status (~42 yrs), while mean age was overall 
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higher in non-Hispanic whites, particularly among non-smokers (~54 yrs).  There was 

also a higher prevalence of smoking in men compared to women across all three 

racial/ethnic populations. 

Mean triglyceride levels were consistently and significantly (p<0.01) higher in 

smokers versus non-smokers across all racial/ethnic groups, after adjusting for the 

effects of age and sex.  Mean LDL-C levels were similar among both smoking categories 

and across all three populations.  Interestingly, only in non-Hispanic whites were mean 

HDL-C concentrations significantly higher in non-smokers compared to smokers.   

 Table 5.2 also presents descriptive statistics of dietary measures (serum vitamin 

levels) of NHANES participants, regardless of smoking status.  Both vitamin A and 

vitamin E levels were significantly different among the three racial/ethnic groups 

(p<0.001, one-way ANOVA).  Non-Hispanic whites have both higher mean vitamin A 

and vitamin E levels (60.6 ug/dl and 1,322 ug/dl, respectively) compared to non-

Hispanic blacks (53.1 ug/dl and 1,002 ug/dl) and Mexican Americans (52.8 ug/dl and 

1,135 ug/dl).  Non-Hispanic blacks and Mexican Americans have similar mean vitamin 

A levels, although vitamin E levels are higher in Mexican Americans.  
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Table 5.1. NHANES participant characteristics, stratified by smoking status. Values are represented as mean ± sd unless otherwise 
indicated.  Non-smokers were defined as having measured serum cotinine levels <15 ng/ml; smokers were defined as having serum 
cotinine levels ≥15 ng/ml.  *Represents a statistically significant difference (p<0.01) in the lipid trait between non-smokers and 
smokers in that specific racial/ethnic group, as determined using linear regression, adjusted for age and sex. 
 

Trait 

Non-Hispanic Whites Non-Hispanic Blacks Mexican Americans 

Non-
Smokers 

Smokers 
Non-

Smokers 
Smokers 

Non-
Smokers 

Smokers 

N 2,874 992 1,227 656 1,908 431 

Age 
(years) 

54.2 ± 20 45.2 ± 17 42.3 ± 18 42.4 ± 14 42.9 ± 18 42.2 ± 16 

Female (%) 57 43 60 46 53 35 

Cotinine (ng/ml) 0.36 ± 1 225.7 ± 147 0.73 ± 2 255.5 ± 171 0.51 ± 2 134.7 ± 105 

HDL-C (mg/dl) 52.3 ± 16* 48.2 ± 15* 53.9 ± 16 54.5 ± 18 48.5 ± 13 47.4 ± 15 

LDL-C (mg/dl) 126.6 ± 35 127.2 ± 37 122.7 ± 37 120.4 ± 40 120.9 ± 33 121.6 ± 33 

Triglycerides (mg/dl) 145.2 ± 90* 150.1 ± 96* 103.8 ± 70* 113.0 ± 77* 153.8 ± 100* 167.8 ± 120* 
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Table 5.2. NHANES participant characteristics, including serum vitamin levels. 
Values are represented as mean ± sd unless otherwise indicated. 
 

Trait 
Non-Hispanic 

Whites 
Non-Hispanic 

Blacks 
Mexican 

Americans 

N 2,435 1,407 1,734 

Age (years) 51.9 ± 20 42.5 ± 17 42.8 ± 18 

Female (%) 54 56 51 

Vitamin A 
(ug/dl) 

60.6 ± 16 53.1 ± 17 52.8 ± 15 

Vitamin 
E(ug/dl) 

1,322 ± 615 1,002 ± 379 1,135 ± 459 

 

 
 

It is important to note that vitamins A and E are highly correlated with the 

majority of lipid levels in all three NHANES populations.  More specifically, vitamin A 

is associated with all three lipid traits in the majority of participants.  For triglycerides, 

the amount of variance explained (R2) by vitamin A was as high as 14% in non-Hispanic 

whites.  R2 was smaller for the other two lipid traits (max R2<5% between LDL-C and 

vitamin A in Mexican Americans; Table 5.3) although it was still larger than the average 

amount of variance explained by single common genetic variants (~3%).  Vitamin E is 

also very strongly correlated with LDL-C and triglyceride levels (p<4.05x10-45) across all 

racial/ethnic groups.   Furthermore, vitamin E levels explain 17-24% of the variance in 

LDL-C levels and 25-40% of the variance in triglyceride levels (Table 5.3). 
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Table 5.3.  Associations between lipid traits and vitamins A and E.  The association of lipid traits and vitamin levels were 
performed using linear regression, adjusted for age and sex.  Both triglycerides and vitamin E levels were natural-log transformed. 
Measures of variance explained (R2) are also provided for each association based on unadjusted regressions.  Significant associations 
(p<0.01) are in bold. 
 

Vitamin A 

Lipid 
Trait 

Non-Hispanic Whites Non-Hispanic Blacks Mexican American 

Beta (SE) p-value R2 Beta (SE) p-value R2 Beta (SE) p-value R2 

HDL-C 0.05 (0.02) 2.40E-03 <0.01 0.08 (0.03) 4.37E-03 0.01 0.06 (0.02) 9.28E -03 <0.01 

LDL-C 0.24 (0.24) 2.88E-05 0.02 0.17 (0.08) 0.03 0.02 
0.38 

(0.07) 
1.58E-08 0.05 

TG 
0.01 

(0.001) 
5.50E-56 0.14 

0.01 
(0.001) 

2.14E-27 0.11 
0.01 

(0.001) 
1.26E-30 0.12 

Vitamin E 

Lipid 
Trait 

Non-Hispanic Whites Non-Hispanic Blacks Mexican American 

Beta (SE) p-value R2 Beta (SE) p-value R2 Beta (SE) p-value R2 

HDL-C 1.25 (0.82) 0.13 <0.01 0.65 (1.53) 0.67 <0.01 -2.18 (0.97) 0.02 <0.01 

LDL-C 
36.21 
(2.29) 

1.03E-52 0.17 
57.87 
(3.88) 

4.05E-45 0.24 
46.91 
(2.83) 

2.04E-55 0.23 

TG 0.68 (0.03) 4.95E-116 0.26 0.78 (0.04) 1.91E-68 0.25 
1.01 

(0.03) 
8.23E-151 0.40 
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SNPxSmoking interactions  

No gene-environment interaction was significantly associated with HDL-C, LDL-

C, or triglyceride levels at the bonferroni corrected p-value of 0.002 (0.05/23 = 2.1x10-3) 

(Appendices T, U, and V).  However, one interaction term (PLTP rs7679xsmoking) was 

associated with increased HDL-C levels (β=8.42) at p=0.003 (Appendix T) in non-

Hispanic blacks.  Interestingly, this interaction term was not associated in the other two 

populations (p=0.529 and p=0.532 in non-Hispanic whites and Mexican Americans, 

respectively).  Figure 5.1 displays the relationship between rs7679 genotype, smoking 

status, and mean HDL-C levels in non-Hispanic blacks.  Smoking and non-smoking 

participants homozygous for the major allele (T) had very similar mean HDL-C levels.  

However, heterozygous smokers had significantly higher mean HDL-C levels (p=0.045, 

t-test) compared to non-smokers.  While, the sample size for CC homozygous 

participants was very small (n=5), the trend continued with smokers having higher 

mean HDL-C levels.  

Neither the main effect of PLTP rs7679 nor the main effect of smoking status was 

significant, although their directions of effect were positive (β=0.53 for both; Appendix 

T), consistent with that of the interaction term (β=8.42).  The full model (including the 

interaction term rs7679xsmoking, along with age, sex, and the main effects of rs7679 and 

smoking) explained 3.84% of the variance in HDL-C levels in non-Hispanic blacks.  The 

variance explained by the SNP alone, after adjusting for age and sex, was 3.29%, 

suggesting the interaction term does not appreciably add to the variance of HDL-C 

levels observed in this population. 
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Figure 5.1.  PLTPxSmoking interaction effect on HDL-C levels in non-Hispanic 
blacks.  Mean HDL-C levels are displayed for each rs7679 genotype (TT, CT, or CC), 
stratified by smoking status.  Error bars represent standard deviations. 
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 Eight SNPxsmoking interactions associated with one of three lipid traits at 

p<0.05 (Appendices T-V).  The interactions between two SNPs, FADS1 rs174547 in non-

Hispanic blacks and MAFB rs6102059 in Mexican Americans, were associated with 

HDL-C levels at p=0.041 and p=0.014, respectively. SNPxsmoking interactions including 

MVK/MMAB rs2338104 and ABCA1 rs4149268 were associated with LDL-C levels at 

p=0.036 and p=0.028, respectively, in non-Hispanic whites.  Lastly, two interactions in 

non-Hispanic blacks (ANGPTL4 rs2967605xsmoking and APOB rs693xsmoking) and two 

in Mexican Americans (MAFB rs6102059xsmoking and PLTP rs7679xsmoking) were 

associated with transformed triglycerides at p<0.042.   
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SNPxVitamin A and E interactions 

 We tested for gene-environment interaction effects between our 23 lipid-

associated variants and vitamins A and E on HDL-C, LDL-C, and triglyceride levels.  A 

total of nine gene-environment interactions were statistically significant at p<2.16x10-3 

and are summarized in Table 5.4.  The association between LDL-C and APOB 

rs693xvitamin E in Mexican Americans was the most significant at p=8.94x10-7.  This 

same interaction was significant in non-Hispanic whites (p=2.67x10-4) but not in non-

Hispanic blacks (p=0.11, Appendix AA).  Additionally, other interactions with this 

APOB variant (rs693xvitamin A and rs693xvitamin E) were significantly associated with 

triglyceride levels among non-Hispanic whites at p=2.16x10-3 and 4.65x10-5, respectively. 

Interactions between ANGPTL3 rs1748195 and both vitamin A and E were 

associated with HDL-C levels in non-Hispanic whites (p=1.16x10-3 and p=2.06x10-3).  The 

ANGPTL3 rs1748195xvitamin A interaction trended towards significance in non-

Hispanic blacks (p=0.01) but was not associated with HDL-C in Mexican Americans 

(p=0.64, Appendix W).  Similarly, the rs1748195xvitamin E interaction was not 

associated with HDL-C in the other two populations. 

 Two interactions with a variant in PCSK9 are also listed in Table 5.4.  The PCSK9 

rs11206510xvitamin A interaction was associated with LDL-C in Mexican Americans at 

p=7.65x10-5.  In addition, the PCSK9 rs11206510xvitamin E interaction was associated 

with transformed triglycerides in non-Hispanic whites at p=1.27x10-3.  Lastly, the only 

significant gene-environment interaction observed in non-Hispanic blacks was between 

the APOA1/C3/A4/A5 cluster variant rs313550 and vitamin E, which was associated with 

triglyceride levels at p=2.45x10-4.   
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Table 5.4. Significant SNPxenvironment interactions in NHANES.  Associations with significant interaction terms (p<2.17E-03, 
bonferroni corrected p-value for 23 SNPs) are listed.  Betas, standard errors (SE), and p-values for main effects of the SNP and the 
environment are represented, along with the amount of trait variance explained (R2) by interaction term.  
 

Interaction 
Associated 
Lipid Trait 

Population 

SNP  
Main Effect 

Environment  
Main Effect 

SNPxEnvironment 
Interaction Effect 

Beta 
(SE) 

P-value 
Beta 
(SE) 

P-value 
Beta 
(SE) 

P-value R2 (%) 

rs693xVitA TG 
Non-Hispanic 

Whites 
-0.16 
(0.06) 

6.11E-03 
0.01 

(0.001) 
1.01E-22 

0.003 
(0.001) 

2.16E-03 0.39 

rs693xVitE LDL-C 
Non-Hispanic 

Whites 
-74.86 
(21.54) 

5.22E-04 
31.86 
(2.76) 

1.39E-29 
11.11 
(3.04) 

2.67E-04 0.67 

rs693xVitE LDL-C 
Mexican 

Americans 
-155.52 
(31.82) 

1.17E-06 
38.98 
(3.25) 

2.51E-31 
22.71 
(4.60) 

8.94E-07 1.28 

rs693xVitE TG 
Non-Hispanic 

Whites 
-0.99 
(0.25) 

8.59E-09 
0.60 

(0.03) 
3.48E-62 

0.14 
(0.04) 

4.65E-05 0.60 

rs1748195xVitA HDL-C 
Non-Hispanic 

Whites 
-5.15 
(1.67) 

2.07E-03 
-0.05 
(0.04) 

0.18 
0.09 

(0.03) 
1.16E-03 0.39 

rs1748195xVitE HDL-C 
Non-Hispanic 

Whites 
-23.13 
(7.55) 

2.22E-03 
-3.12 
(0.65) 

0.06 
3.28 

(1.06) 
2.06E-03 0.35 

rs11206510xVitA LDL-C 
Mexican 

Americans 
-30.58 
(8.08) 

1.63E-04 
0.25 

(0.07) 
9.22E-04 

0.58 
(0.15) 

7.65E-05 1.26 

rs11206510xVitE TG 
Non-Hispanic 

Whites 
1.03 

(0.33) 
1.63E-03 

0.74 
(0.03) 

1.89E-49 
-1.15 
(0.05) 

1.27E-03 0.36 

rs3135506xVitE TG 
Non-Hispanic 

Blacks 
-3.02 
(0.85) 

4.16E-04 
0.74 

(0.04) 
1.14E-56 

0.46 
(0.12) 

2.45E-04 0.80 
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 The nine significant interaction models individually explained 0.35-1.28% of the 

variation in one of the lipid traits.  Interactions  rs693xvitamin E and rs11206510xvitamin 

A had the greatest R2 values and contributed to 1.28% and 1.26%, respectively, of the 

variation in LDL-C among Mexican Americans.  The seven other interaction terms had 

R2 values <1%.   

 

Discussion 

 

 Considerable attention has been paid to the discovery of common variants 

important in lipid metabolism.  Despite many successes, lipid-associated variants 

discovered through GWAS do not account for the majority of heritability estimated for 

these traits.  Epidemiological studies have long indicated that certain environmental 

factors are capable of shaping lipid distributions in the population. However, 

environmental modifiers of known genotype-phenotype associations are just recently 

emerging in the literature.  In this study we tested for interactions between 23 GWAS-

identified lipid-associated variants and three environmental factors: smoking status, and 

vitamin E and A levels across three racial/ethnic populations in NHANES.   We 

discovered nine significant gene-environment interactions, along with several 

interesting interactions that trended towards significance.  Interpretation of our results is 

detailed below, divided by the two categories of environmental variables, smoking and 

dietary vitamins. 

 

 

 



115 

 

SNPxSmoking interactions  

 This study provided evidence for a potentially interesting lipid gene-smoking 

interaction on between PLTP rs7679xsmoking on HDL-C levels in non-Hispanic blacks.  

We observed that among nonsmokers, rs7679 had little influence on mean HDL-C, 

although participants homozygous for the minor allele (CC) had the lowest levels 

compared with participants homozygous for the major allele or heterozygous.  Smokers 

with at least one copy of the minor allele (C) had, on average, higher mean HDL-C 

compared to smokers homozygous for the major allele.  This finding suggests that the 

effects of rs7679 genotype on HDL-C metabolism are more important in smokers than 

non-smokers. 

 The variant rs7679  lies in the 3‘ untranslated region of PCIF1, approximately 50 

kb downstream of PLTP, and has been significantly associated with PLTP expression in 

human liver, along with increased HDL-C  (Kathiresan et al., 2009).  PLTP encodes 

plasma phospholipid transfer protein (PLTP), which plays a major role in the transfer of 

phospholipids between lipoproteins and in the modulation of HDL-C particle size and 

composition (Huuskonen et al., 2001).   PLTP knock-out mice show a 60-70% reduction 

in HDL-C (Jiang et al., 1999), and reduced PLTP activity has been reported in patients 

with Tangier disease, a genetic disorder characterized by significantly reduced levels of 

HDL-C (von Eckardstein et al., 1998).   

 PLTP transfer activity may also be affected by smoking.  In one study by Dullaart 

et al, normolipidemic cigarette-smoking men had increased PLTP activity compared to 

non-smoking controls (Dullaart et al., 1994).  However, in another study, PLTP activity 

levels were similar among fasting smokers and controls (Mero et al., 1998). 
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 In the lipids PAGE study (discussed in Chapter IV), the single-SNP association 

between rs7679 and HDL-C was not significant in African Americans (p=0.992).  In 

contrast, in the GWAS by Kathiresan et al (Kathiresan et al., 2009) and  the lipids PAGE 

study, the T allele of rs7679 was significantly associated with increased HDL-C in 

European-descent populations.  The gene-environment interaction described here for 

non-Hispanic blacks may be spurious or it may help to explain the lack of 

generalizability of rs7679 across racial/ethnic groups. 

 It is interesting to note that the most significant SNPxsmoking interactions were 

found in non-Hispanic blacks, despite their smaller sample (n=1,883) size compared to 

non-Hispanic whites (n=3,866) and Mexican Americans (n=2,339).  This racial/ethnic 

specificity could possibly be due to a difference in nicotine metabolism between blacks 

and whites.  Black smokers have higher levels of serum cotinine compared to whites, 

even after adjusting for number and yield of cigarettes (Perez-Stable et al., 1998; 

Wagenknecht et al., 1990).  This difference can be explained by both slower cotinine 

clearance and higher intake of nicotine per cigarette in blacks (Perez-Stable et al., 1998).  

Our results demonstrate the need for further gene-environment interaction studies in 

diverse populations to better understand how these differences may impact lipid levels.  

 

SNPxVitamin A and E interactions 

 In this study we have identified three novel SNPxvitamin A and six novel 

SNPxvitamin E interactions.  A majority of the significant interactions were associated 

with triglycerides (4/9) and were among non-Hispanic whites (6/9).  Our most 

significant finding (APOB rs693xvitamin E), however, explained less than 1.3% of the 

variance in LDL-C among Mexican Americans, a trait that is up to 80% heritable.  In 
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comparison, the effect of age and sex together accounted for 5.9% of the variance in 

LDL-C among Mexican Americans.   

 All of the genes implicated here play key roles in lipid metabolism.  The gene 

products of APOB, apoB-48 and apo-100, are the main apoliprotein of chylomicrons and 

LDL particles, respectively.   ANGPTL3 encodes a protein which can suppress 

lipoprotein lipase (LPL) activity, leading to increases in plasma triglycerides and HDL-

C.  PCSK9 encodes protein convertase subtilisin kexin 9, a protein that binds the LDL 

receptor and induces its degradation.  Lastly, the APOA1/C3/A4/A5 gene cluster lies 

within a 17kb region on chromosome 11.  Proteins made by this gene cluster are major 

constituents of very low density lipoprotein (VLDL) and/or HDL, act to inhibit LPL 

activity, and influence dietary fat absorption and chylomicron synthesis (Delgado-Lista 

et al., 2010).   

 Both vitamin E and A are incorporated into lipoproteins and are delivered to 

peripheral tissues.  Additionally, both are found exclusively in plasma lipoproteins 

(VLDL, LDL, and HDL) (Borel et al., 2007).  The interdependence of these vitamins and 

lipids (as demonstrated in Table 5.3) suggests that the interactions described in this 

study may be either just reflective of the strong correlation between vitamins and lipids 

or point to biological relevance.  In support of the latter interpretation, micronutrients 

such as vitamin A and E have previously been implicated in affecting the gene 

expression of import lipid-metabolizing genes (Mooradian et al., 2006b; Mooradian et 

al., 2006a; Hagberg et al., 2000; Oliveros et al., 2007; Gatica et al., 2006).  For example, 

Mooradian et al demonstrated that high concentrations of vitamin E were associated 

with significant decreases in apoA-I expression (which is sensitive to the oxidative state 
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of the cell) in hepatic HepG2 cells by reducing apoA-I promoter activity (Mooradian et 

al., 2006a).   

 It has been argued that gene-environment heterogeneity may be, in part, to 

blame for the lack of replication among GWAS studies and among different ancestral 

populations (Lasky-Su et al., 2008; Ober and Vercelli, 2011).  In the single-SNP PAGE 

meta-analysis detailed in Chapter IV, APOB rs693 was strongly associated in European 

Americans (p=3.38x10-21), marginally associated with LDL-C in African Americans 

(p=0.02), but not associated in Mexican Americans/Hispanics (p=0.18; Chapter IV, Table 

4.3).  However, in this analysis, which represents a subset of the PAGE study sample, the 

main effect of rs693 was significantly associated in Mexican Americans (p=1.17x10-6, 

Table 5.4) after adjusting for the interaction with vitamin E.  Accounting for 

environmental modifiers in genetic studies of lipid levels may not only uncover new 

biology, it may also improve the generalizabilty of findings from genome-wide 

association studies.  

 

Strengths and limitations 

 In interpreting our findings, we should consider several aspects.  First, NHANES 

is a cross-sectional study and, therefore, we are unable to determine the temporal 

sequence of our results.  Second, the issue of sample size and the ‗curse of dimesionality‘ 

(Bellman, 1961) is relevant to this study.  As the number of factors under study increases 

(as with the addition of interaction terms), so do the number of strata.  With a set sample 

size, increasing the number of terms in the model quickly increases the degrees of 

freedom and reduces the per-stratum sample size, thus decreasing statistical power.  For 

this reason, even with relatively large sample sizes in NHANES, we had to restrict our 
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analysis to SNPs with minor allele frequencies greater than 5%.  To better study less-

common variants, collaborative studies and/or other non-regression based approaches 

(such as multifactor dimensionality reduction) (Ritchie et al., 2001) may be appropriate, 

although they are not without their own limitations.   Lastly, other potential 

confounding environmental factors, such as physical activity and alcohol consumption, 

were not included in the analysis because they are difficult to measure quantitatively 

and without recall error.   

A major strength of the study is that NHANES systematically collects 

environmental exposures in a diverse population.  It is important to keep in mind that, 

beyond sample size, the power to detect gene-environment interactions is influenced by 

the accuracy of the measurement of the outcome and the environmental exposure 

(Wong et al., 2003).  In general, environmental variables are notoriously difficult to 

collect and quantify.  Most environmental factors are assessed by questionnaire, which 

can lead to certain biases, including under-reporting of risky behaviors. Therefore, 

biomarkers as quantitative measures of the environmental exposures are preferred. For 

example, blood cotinine levels can be used as biomarkers of current smoking status.  

While NHANES does contain data on self-reported tobacco use, serum cotinine is 

considered a better marker of smoking status because, in certain populations, self-

reports underestimate the actual smoking prevalence (Caraballo et al., 2001).  Measures 

of dietary intake may be assessed by collection of daily food diaries or 24-hour dietary 

recalls.  From these recall data, calculation of fat, vitamin, and mineral content is 

available in NHANES but these estimates are subject to poor recall.  However, serum 

vitamin A and E levels are easily measured from a blood draw and may be used as a 

measure of dietary compliance. 
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Conclusions 

 The results presented here highlight the fact that effect sizes of gene-environment 

interactions tend to be small and large sample sizes are needed to detect them. 

Nevertheless, understanding the mechanism of the interaction between these lipid-

associated variants and environmental factors, such as smoking and dietary vitamin E 

and A intake, is imperative to determining the etiology of a poor lipid profile and could, 

therefore, have implications in clinical care. 
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CHAPTER VI 

 

CONCLUSION 

 

Summary 

 

Lipid and lipoproteins are products of a complex molecular network that is 

modulated by a number of genetic loci and environmental factors.  While a substantial 

number of genes have been implicated in lipid metabolism, the proportion of trait 

variation they collectively explain is still lacking.  This ―missing heritability‖ problem is 

not unique to lipid traits.  Indeed, nearly every common, complex disease or phenotype 

studied to date share this quandary.  Both the source of this missing heritability and the 

appropriate strategy to uncover it has been hotly debated.  

One step towards explaining a proportion of the missing heritability of lipid 

traits may be the identification of novel variants.  In this work, I identify novel variants 

associated with lipid and lipoprotein levels using two different study design methods: 

candidate gene studies and GWAS.  For example, in Chapter II, 19 variants in the 

candidate gene LPA were tested for associations with Lp(a) levels across the three 

different NHANES subpopulations (non-Hispanic whites, non-Hispanic blacks, and 

Mexican Americans).  At a significance threshold of p<0.0001, 15 of the 19 SNPs tested 

were strongly associated with Lp(a) levels in at least one subpopulation.  While these 

findings replicated previously known associations, such as rs6919246 and Lp(a) levels, 

the majority of significant associations were novel.  Overall, the additive effects of these 
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associated alleles explained up to 11% of the variance observed for Lp(a) levels in the 

different racial/ethnic populations.   

GWAS are the most commonly used agnostic approach to identify novel 

susceptibility genes for common, complex traits, including lipid levels.  In Chapter III, I 

utilized this approach to discover new loci that affect HDL-C, LDL-C, and triglyceride 

concentrations in more than 400 children under 18 years of age.  A total of 52 promising 

associations (p<1x10-5) were subsequently examined in 1,040 additional youths and 

3,508 adults from NHANES III. Three genotype-phenotype associations replicated in 

NHANES III youths and three associated in NHANES III adults at p<0.05; however, no 

single association was significant in both youths and adults.  The most significant 

association (p=0.009) in NHANES III youths was between LDL-C and intronic SGSM2 

rs2429917 among participants of African-descent.  Given the known age-dependency of 

lipid levels, I also tested for gene-age interactions in NHANES III participants and 

identified a significant (p=0.024) age-dependent association between SGSM2 rs2429917 

and LDL-C.  This finding illustrates the utility of using children to discover novel 

variants associated with complex phenotypes and the importance of considering age-

dependent genetic effects in association studies of lipid levels. 

It has also been proposed that gene-environment interactions, which are usually 

not explicitly modeled in GWAS, could account for a significant proportion of the 

missing heritability (Ober and Vercelli, 2011).  Therefore, in Chapter V, I tested for 

environmental modifiers of associations between 23 GWAS-identified variants from the 

literature (a subset of those explored in Chapter IV) and HDL-C, LDL-C, and 

triglycerides.   The environmental factors I focused on were smoking status and serum 

levels of two nutritional antioxidants, vitamin E and vitamin A.  While no SNPxsmoking 
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interaction was significantly associated with any lipid levels, nine SNPxvitamin 

interactions were associated at p<2.17x10-3.  However, these interactions explained only 

0.35 - 1.28% of the variance of their respective lipid trait.   

Another important issue discussed throughout this work is the importance of 

sampling different population groups in genotype-phenotype association studies.    

Chapter I demonstrated how mean lipid levels may differ among different ancestral 

populations.  These differences are likely due to both differences in allele frequencies 

and environmental exposures among populations.  The studies presented here explore 

both of these factors.  In the LPA study presented in Chapter II, only six of the 19 SNPs 

tested were significant in at least two of the three populations studied and none were 

significant in all three populations. The lack of generalization across all subpopulations 

suggests that specific LPA variants may be contributing to the observed Lp(a) between-

population variance.  

Lipid-associated genetic variants are being discovered in GWAS in samples of 

European descent, but insufficient data exist for other populations. Therefore, there is a 

strong need to characterize the effect of these GWA-identified variants in more diverse 

cohorts.  In Chapter IV, I selected over forty genetic loci previously associated with lipid 

levels and tested for replication in a large European American cohort.  I also investigated 

if the effect of these variants generalizes to non-European descent populations, including 

African Americans, American Indians, and Mexican Americans/Hispanics.  A majority 

(92%) of these GWAS-identified associations replicated at p<0.05 in our European 

American cohort.  Based on significance and consistent direction of effect, 16 

associations generalized across all three non-European descent populations. The ability 

of only 16 of 42 associations to generalize across racial/ethnic populations indicates that 
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some of these GWAS-identified variants may not be functional and are more likely to be 

in linkage disequilibrium with the functional variant(s).   

Inconsistencies in disease associations in different populations, like those 

mentioned in Chapter IV, may be due to, in part, different environmental exposures that 

modify the effect of a genetic variant or different frequencies of genetic variants that 

modify the effect of an environmental exposure.  In other words, gene-environment 

interactions, when not accounted for, may mask detection of a genetic effect in some 

populations.  I observed evidence of this when comparing the results of Chapter IV and 

Chapter V.  For example, in the single-SNP PAGE meta-analysis detailed in Chapter IV, 

APOB rs693 was strongly associated in European Americans (p=3.38x10-21) but not 

associated in Mexican Americans/Hispanics (p=0.18).  However, in the gene-

environment interaction study detailed in Chapter V, the main effect of rs693 was 

significantly associated in Mexican Americans (p=1.17x10-6) after adjusting for the 

interaction with vitamin E levels. 

This work explored associations with common genectic variants to uncover some 

of the missing heritability attributed to lipid and lipoprotein concentrations.  

Unfortunately, most common genetic variants (individually and in total) implicated here 

explain only a small fraction of the genetic variation.  Futhermore, similiarly small effect 

sizes were observed in the investigation of gene-environment interactions, with the 

interaction explaining much less of the lipid trait distribution than the environment 

alone.  However, having a small effect size does not necessarily mean that a genetic 

variant is of no interest.   Genetic variants with small effects can still point invesitigators 

to important biological pathways and become targets for pharmacologic intervention, 

which may result in larger, clinically relevant effects. 
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Future Directions 

 

Besides those utilized in this work, there are several additional approaches 

future researchers must employ if we are to fully illuminate the genetic architecture of 

lipid levels and other complex traits.  While GWAS are the most commonly used 

agnostic approach to identify novel susceptibility genes for common disease, they have 

very limited potential to capture rare and low frequency variants (i.e. MAF<5%).  Such 

variants, which may also not be detectable through traditional linkage studies due to 

low penetrance, could individually and collectively impact familial risk.  While 

detection of rare and low frequency variants remains a challenge, recent technological 

advances in high-throughput sequencing should enable progress on this front.  In fact, 

the goal of the 1000 Genomes Project is to uncover most of the genetic variants with 

frequencies of at least 1% using a combination of low-coverage whole-genome and high-

coverage whole-exome sequencing (Durbin et al., 2010).  Completion will, presumably, 

result in a detailed map of our genetic landscape and fill in the gaps in our knowledge 

about how genetic variation is related to disease. 

Currently, our understanding of the mechanisms by which risk alleles contribute 

to disease lags behind the ferocious pace at which new loci are being discovered.  It is 

also in our best interest to refine association signals identified by GWAS so that we may 

uncover the true ―causal‖ variant.  Due to strong linkage disequilibrium throughout 

most of the genome, there will often be several candidate variants that have equivalent 

evidence of association.   One way to refine GWAS signals is to perform fine-mapping in 

populations of different ancestries.  Using this approach, the PAGE consortium is 

presently genotyping thousands of African Americans on the MetaboChip, a high-
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density custom array of about 200K SNPs that captures and fine maps a number of 

GWAS-identified variants (p values < 5.0 x 10-8 in European-descent samples) from 

phenotypes related to type 2 diabetes and cardiovascular diseases (such as BMI, lipids, 

blood pressure).   Presumably, these data will allow PAGE investigators to determine 

the actual variant responsible for the GWAS signal, or at least narrow down the list of 

possible functional variants.   Of course, to determine if a specific variant is truly causal, 

functional and animal studies are necessary and cannot be overlooked. 

Progress in understanding the genes important in determining lipid and 

lipoprotein levels has accelerated rapidly in the last decade following the completion of 

the Human Genome Project.  However, much of the potential impact of these advances 

has yet to be realized.  The challenges of moving from associated variant to mechanism 

of action to changes in clinical practice are substantial.  A coordinated effort among 

geneticists, statisticians, physicians, and basic biologists is necessary to improve our 

understanding of human disease and biology.  Only then will the promises of GWAS, 

whole-genome sequencing, and the general field of human genetics be realized.  
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Appendix A.  Associations between LPA SNPs and Lp(a) levels, weighted for selection and non-response biases. The association 
of LPA SNPs with log transformed Lp(a) levels is shown by a regression coefficient (beta, β) and 95% confidence interval (CI) for 
each SNP, adjusted for age and sex.  Measures of variance explained (R2) are provided for each SNP based on unadjusted 
regressions.  Significant associations (P-value < 0.0001) are in bold. 
 

SNPs 

Non-Hispanic Whites 
n=2,397 

Non-Hispanic Blacks 
n=1,711 

Mexican Americans 
n=1,749 

β 
(95% CI) 

R2 P-value 
β 

(95% CI) 
R2 P-value 

β 
(95% CI) 

R2 P-value 

rs1321196 
-0.17 

 (-0.28, -0.06) 
0.0061 0.0043 

0.19 
 (0.09, 0.29) 

0.0171 0.0005 
0.18 

 (0.07, 0.28) 
0.0069 0.0018 

rs1321195 
0.10 

 (-0.01, 0.21) 
0.0012 0.0651 

0.49 
 (0.16, 0.81) 

0.0108 0.0055 
0.38 

 (0.16, 0.60) 
0.0114 0.0015 

rs1367211 
0.02  

(-0.09, 0.12) 
0.0000 0.7427 

-0.24 
 (-0.36, -0.12) 

0.0271 0.0005 
-0.19 

 (-0.30, -0.08) 
0.0068 0.0016 

rs1652507 
-0.04 

 (-0.17, 0.10) 
0.0002 0.6083 

-0.44 
 (-0.62, -0.26) 

0.0225 3.44x10-5 
-0.58 

 (-0.69, -0.47) 
0.0977 < 2x10-10 

rs6907156 
0.03 

 (-0.82, 0.88) 
0.0000 0.9404 

0.14 
 (0.04, 0.24) 

0.0047 0.0111 
0.67 

 (0.34, 1.00) 
0.0088 0.0003 

rs6919346 
0.51 

 (0.36, 0.66) 
0.0418 2.23x10-7 

0.77 
 (0.62, 0.91) 

0.0381 < 2x10-10 
0.21 

 (-0.02, 0.44) 
0.0040 0.0762 

rs6926458 
-0.29 

 (-0.42, -0.15) 
0.0145 0.0002 

-0.44 
 (-0.60, -0.28) 

0.0325 1.01x10-5 
-0.11 

 (-0.24, 0.02) 
0.0016 0.0860 

rs7755463 
-0.40  

(-1.04, 0.24) 
0.0007 0.2088 

-0.33 
 (-0.41, -0.24) 

0.0457 4.59 x10-8 
-0.89 

 (-1.08, -0.71) 
0.0251 < 7x10-10 

rs7767084 
0.01 

 (-0.08, 0.11) 
0.0000 0.8006 

-0.39 
 (-0.67, -0.11) 

0.0086 0.0089 
0.08 

 (-0.05, 0.21) 
0.0010 0.2143 

rs9364564 
0.24 

 (0.08, 0.39) 
0.0084 0.0044 

0.33 
 (0.20, 0.46) 

0.0161 2.00x10-5 
0.05 

 (-0.09, 0.20) 
0.0003 0.4614 
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rs12212507 
0.03 

 (-0.15, 0.22) 
0.0001 0.6958 

0.71 
 (0.13, 1.28) 

0.0074 0.0179 
0.55 

 (0.18, 0.92) 
0.0030 0.0057 

rs13192132 
-0.18 

 (-0.28, -0.08) 
0.0067 0.0013 

-0.43 
 (-0.54, -0.32) 

0.0408 3.90x10-8 
0.06 

 (-0.06, 0.18) 
0.0007 0.3151 

rs10945682 
0.16 

 (0.05, 0.27) 
0.0055 0.0048 

-0.13 
 (-0.21, -0.05) 

0.0079 0.0019 
-0.22 

 (-0.33, -0.11) 
0.0106 0.0005 

rs12194138 
-0.43 

 (-0.54, -0.32) 
0.0255 3.52x10-8 

0.30 
 (-0.05, 0.64) 

0.0045 0.0871 
-0.49  

(-0.69, -0.29) 
0.0155 4.53x10-5 

rs7450261 
-0.49 

 (-2.52, 1.54) 
0.0002 0.6209 

0.31 
 (0.15, 0.48) 

0.0087 0.0007 
-0.03 

 (-1.92, 1.87) 
0.0000 0.97843 

rs7450411 
0.24 

 (0.09, 0.4) 
0.0088 0.0033 

0.37 
 (0.27, 0.47) 

0.0308 1.69x10-7 
0.06 

 (-0.07, 0.20) 
0.0005 0.3555 

rs7765803 
-0.08  

(-0.2, 0.03) 
0.0013 0.1436 

0.12 
 (0.01, 0.23) 

0.0064 0.0302 
0.26 

 (0.15, 0.38) 
0.0152 9.09x10-5 

rs41265936 
-1.11  

(-1.61, -0.62) 
0.0020 0.0001 

-0.18 
 (-0.33, -0.02) 

0.0032 0.0280 
-0.82 

(-1.22, -0.41) 
0.0043 0.0004 

rs41271028 
-0.39  

(-0.92, 0.14) 
0.0003 0.1421 

-0.05 
 (-0.15, 0.06) 

0.0005 0.3700 
-0.58 

(-0.95, -0.22) 
0.0049 0.0031 
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Appendix B.  Additive effects of LPA alleles associated with increased Lp(a) levels.  
The amount of variance explained (R2) in transformed Lp(a) levels by the Weighted 
Genetic Risk Score (WGRS) is displayed, along with the median WGRS score, WGRS 
interquartile range (IQR), regression coefficient (beta, β) and 95% confidence interval 
(CI) for each association. 
 

 Non-Hispanic 
Whites 

Non-Hispanic 
Blacks 

Mexican 
Americans 

Total n 2269 1605 1665 

No. SNPs used in WGRS 3 12 6 

Median WGRS (IQR) 1.50 (0.45) 8.24 (1.01) 1.56 (0.53) 

β (95% CI) 0.87 (0.75-0.99) 0.33 (0.28-0.38) 0.87 (0.75-0.99) 

P-value <10-40 <10-38 <10-47 

R2 0.08 0.10 0.12 
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Appendix C.  Differences in mean HDL-C, LDL-C, and triglycerides among St. Jude 
Children and NHANES III youths, stratified by race/ethnicity.  P-values were 
calculated using a standard two-sample t-test with unequal variances. 
 

 
 

 

Whites 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

282 55.063 30.128 
<0.001 

NHANES III 
Youth 

240 47.279 10.235 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

282 84.512 26.926 
0.024 

NHANES III 
Youth 

75 92.853 28.424 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

282 108.180 79.133 
0.075 

NHANES III 
Youth 

241 97.614 55.708 

Blacks 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

66 58.964 27.043 
0.065 

NHANES III 
Youth 

436 52.619 12.496 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

66 81.318 36.929 
0.001 

NHANES III 
Youth 

153 98.464 26.965 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

66 88.288 47.399 
0.181 

NHANES III 
Youth 

436 79.954 42.594 
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Hispanics 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

63 67.892 49.720 
0.004 

NHANES III 
Youth 

360 49.144 10.809 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

63 87.381 35.381 
0.225 

NHANES III 
Youth 

134 93.373 23.723 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

ST. JUDE 
Children 

63 121.687 101.468 
0.089 

NHANES III 
Youth 

360 99.006 57.335 
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Appendix D.  Differences in mean HDL-C, LDL-C, and triglycerides among NHANES 
III adults and NHANES III youths, stratified by race/ethnicity.  P-values were 
calculated using a standard two-sample t-test with unequal variances. 
 

 

Whites 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1372 50.281 15.154 
<0.001 

NHANES III 
Youth 

240 47.279 10.235 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

996 129.374 37.508 
<0.001 

NHANES III 
Youth 

75 92.853 28.424 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1378 145.324 111.390 
<0.001 

NHANES III 
Youth 

241 97.614 55.708 

Blacks 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1025 53.578 16.691 
0.227 

NHANES III 
Youth 

436 52.619 12.496 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

669 122.976 40.285 
<0.001 

NHANES III 
Youth 

153 98.464 26.965 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1029 107.622 82.014 
<0.001 

NHANES III 
Youth 

436 79.954 42.594 
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Hispanics 
HDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1078 47.393 13.119 
0.012 

NHANES III 
Youth 

360 49.144 10.809 

LDL-C (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

710 120.061 34.160 

<0.001 
NHANES III 

Youth 
134 93.373 23.723 

Triglycerides (mg/dL) 

Study N Mean Std. Dev P-value 

NHANES III 
Adults 

1080 151.816 109.668 
<0.001 

NHANES III 
Youth 

360 99.006 57.335 
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Appendix E. St. Jude discovery GWAS associations selected for replication 

SNP Chr. Nearby Gene(s) Location 
Associated 

Trait 
Associated 
Population 

Coded 
Allele 

Beta (SE) 
GWAS 
P-value 

rs4742455 9 -- intergenic HDL Whites A 0.18 (0.03) 5.18E-07 

rs17026635 1 USH2A intron HDL Whites A 0.72 (0.14) 6.33E-07 

rs11252020 10 -- intergenic HDL Whites A 0.32 (0.07) 2.24E-06 

rs8009160 14 -- intergenic HDL Whites C -0.17 (0.04) 2.82E-06 

rs8012357 14 -- intergenic HDL Whites A -0.17 (0.04) 2.82E-06 

rs1541164 14 -- intergenic HDL Whites G -0.17 (0.04) 3.31E-06 

rs1953743 14 -- intergenic HDL Whites C -0.16 (0.04) 5.77E-06 

rs16902507 8 PVT1 intron HDL Blacks A -0.36 (0.07) 1.4E-06 

rs2162987 5 -- intergenic HDL Blacks G 0.59 (0.12) 3.56E-06 

rs12815715 12 ACSM4 downstream HDL Blacks G 1.02 (0.20) 5.03E-06 

rs7958130 12 -- intergenic HDL Blacks A 0.31 (0.06) 5.94E-06 

rs1328810 13 -- intergenic HDL Blacks A 0.46 (0.09) 9.39E-06 

rs1561193 14 -- intergenic HDL Hispanics A 1.26 (0.24) 2.49E-06 

rs10516115 5 -- intergenic HDL Hispanics C 0.59 (0.12) 4.1E-06 

rs16998203 20 OTOR downstream HDL Hispanics G 0.63 (0.13) 4.42E-06 

rs1693669 10 ATE1 downstream HDL Hispanics G 1.11 (0.22) 5.52E-06 

rs10754306 1 -- intergenic HDL Hispanics C 1.03 (0.21) 5.62E-06 

rs7709495 5 -- intergenic LDL Whites C -0.14 (0.03) 2.2E-06 

rs1911937 5 -- intergenic LDL Whites G -0.14 (0.03) 3.25E-06 

rs7446139 5 -- intergenic LDL Whites T -0.13 (0.03) 4.79E-06 

rs7710638 5 -- intergenic LDL Whites G -0.13 (0.03) 9.43E-06 

rs8007972 14 SYNE2 intron LDL Blacks C -0.55 (0.11) 2.14E-06 

rs6069670 20 MC3R promoter LDL Blacks T -0.98 (0.19) 2.43E-06 

rs7258420 19 FLJ41856 intron LDL Blacks A -0.57 (0.11) 2.55E-06 

rs11542053 4 RASGEF1B downstream LDL Blacks A -1.49 (0.29) 3.29E-06 

rs17698672 4 -- intergenic LDL Blacks A -1.49 (0.29) 3.29E-06 

rs2043283 5 -- intergenic LDL Blacks C -1.49 (0.29) 3.29E-06 

rs11048606 12 ITPR2 intron LDL Blacks T -1.49 (0.29) 3.29E-06 

rs17558056 4 RASGEF1B intron LDL Blacks G -1.49 (0.29) 3.29E-06 

rs12190789 6 -- intergenic LDL Blacks T -1.46 (0.29) 3.32E-06 

rs4811011 20 -- intergenic LDL Blacks A -0.39 (0.08) 3.51E-06 

rs16971165 18 -- intergenic LDL Blacks T -1.22 (0.24) 3.69E-06 
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rs6580132 5 -- intergenic LDL Blacks T -0.62 (0.12) 3.88E-06 

rs17486127 2 -- intergenic LDL Blacks G -0.93 (0.19) 4.15E-06 

rs340406 7 -- intergenic LDL Blacks A -1.22 (0.24) 4.35E-06 

rs7786318 7 PTN intron LDL Blacks C -0.55 (0.11) 5.45E-06 

rs4586907 4 -- intergenic LDL Blacks A -0.87 (0.18) 5.68E-06 

rs2429917 17 SGSM2;MNT intron; downstream LDL Blacks A -1.45 (0.30) 7.01E-06 

rs16942835 18 -- intergenic LDL Blacks A -1.45 (0.3) 7.01E-06 

rs17429652 11 -- intergenic LDL Blacks A -1.45 (0.30) 7.01E-06 

rs11871926 17 SMG6 intron LDL Blacks T -1.45 (0.30) 7.01E-06 

rs6673413 1 DNM3 intron LDL Blacks T -1.45 (0.3) 7.01E-06 

rs1615079 23 -- intergenic LDL Blacks T -0.46 (0.09) 7.32E-06 

rs1634652 23 -- intergenic LDL Blacks A -0.46 (0.09) 7.32E-06 

rs2702237 23 -- intergenic LDL Blacks A -0.46 (0.09) 7.32E-06 

rs2702239 23 -- intergenic LDL Blacks G -0.46 (0.09) 7.32E-06 

rs11016132 10 -- intergenic LDL Blacks G -1.45 (0.30) 7.68E-06 

rs9346050 6 -- intergenic LDL Blacks G -1.45 (0.30) 7.68E-06 

rs2887172 2 -- intergenic LDL Blacks A -1.45 (0.30) 8.3E-06 

rs34166400 17 SMG6 intron LDL Blacks G -1.45 (0.3) 8.41E-06 

rs6125463 20 PREX1 intron LDL Blacks A -0.69 (0.14) 8.77E-06 

rs10868008 9 FRMD3 intron LDL Hispanics A -0.69 (0.13) 1.66E-06 

rs11140077 9 FRMD3 intron LDL Hispanics C -0.69 (0.13) 1.66E-06 

rs11140092 9 FRMD3 intron LDL Hispanics A -0.69 (0.13) 1.66E-06 

rs16931326 8 LOC401463;BHLHE22 promoter; 3'UTR LDL Hispanics T -0.76 (0.16) 8.64E-06 

rs11078231 17 -- intergenic TG Whites A 0.24 (0.05) 2.39E-06 

rs6477578 9 -- intergenic TG Whites G 0.25 (0.05) 6.13E-06 

rs1360414 9 -- intergenic TG Blacks C 0.53 (0.10) 1.6E-06 

rs16858329 3 CD96 intron TG Blacks T -0.36 (0.07) 4.29E-06 

rs177001 5 -- intergenic TG Blacks A -0.52 (0.11) 9.89E-06 

rs7790255 7 -- intergenic TG Hispanics C 0.81 (0.14) 2.38E-07 

rs15892 7 GBAS; MRPS17 promoter; 3'UTR TG Hispanics A 0.73 (0.13) 9.42E-07 

rs11722485 4 LOC644753 intron TG Hispanics T 0.49 (0.09) 2.67E-06 

rs2866056 4 LOC644753 intron TG Hispanics G 0.48 (0.10) 4.28E-06 

rs6593296 7 
CCT6A; PSPH; 

SNORA15 
promoter; intron; 

promoter 
TG Hispanics A 0.66 (0.14) 7.76E-06 
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Appendix F.  Association results of lipid candidate genes and HDL-C, LDL-C, and TG 
in the St. Jude discovery GWAS, Whites 
 

Trait 
Previously 

reported 
GWAS SNP 

Nearby Lipid 
Candidate Gene(s) 

Coded 
Allele 

Beta (SE) in 
Discovery 

St. Jude 
GWAS 

P-value 
in 

Discovery 
St. Jude 
GWAS 

HDL rs3890182 ABCA1 A -0.12 (0.06) 0.05 

HDL rs4149268 ABCA2 T -0.04 (0.04) 0.28 

HDL rs28927680 APOA1/C3/A4/A5 G -0.05 (0.07) 0.50 

HDL rs4420638 APOE/C1/C4 C -0.06 (0.05) 0.25 

HDL rs1566439 CETP A 0.08 (0.04) 0.04 

HDL rs9989419 CETP A -0.05 (0.04) 0.18 

HDL rs174547 FADS1 C -0.01 (0.04) 0.81 

HDL rs2271293 LCAT A 0.01 (0.06) 0.89 

HDL rs4775041 LIPC C 0.06 (0.04) 0.13 

HDL rs2156552 LIPG A -0.05 (0.04) 0.26 

HDL 
rs17411024  

(r2=1 with rs328) 
LPL A 0.06 (0.05) 0.24 

HDL rs2338104 MMAB-MVK C 0.06 (0.04) 0.11 

HDL rs7679 PLTP C 0.003 (0.04) 0.95 

HDL rs471364 TTC39B G -0.12 (0.05) 0.02 

LDL rs562338 APOB T -0.06 (0.04) 0.12 

LDL rs693 APOB C -0.05 (0.03) 0.07 

LDL rs754523 APOB G 0.06 (0.03) 0.05 

LDL rs10402271 APOE/C1/C4 C 0.02 (0.03) 0.46 

LDL rs4420638 APOE/C1/C4 C 0.07 (0.04) 0.07 

LDL rs599839 CELSR2/PSRC1/SORT G -0.08 (0.04) 0.03 

LDL rs16996148 CILP2/PBX4; NCAN T -0.10 (0.06) 0.07 

LDL rs12654264 HMGCR A 0.01 (0.03) 0.68 

LDL rs11206510 PCSK9 G -0.08 (0.04) 0.04 

LDL rs1501908 TIMD4 G 0.003 (0.03) 0.92 

TG rs1748195 ANGPTL3 C -0.06 (0.05) 0.26 

TG rs28927680 APOA1/C3/A4/A5 G 0.07 (0.11) 0.52 

TG rs16996148 CILP2/PBX4; NCAN T 0.04 (0.09) 0.66 

TG rs174547 FADS1 C -0.02 (0.05) 0.73 

TG rs780094 GCKR T 0.01 (0.05) 0.89 

TG rs4775041 LIPC C -0.04 (0.05) 0.45 

TG 
rs17411024  

(r2=1 with rs328) 
LPL A -0.17 (0.07) 0.02 

TG rs17145738 MLXIPL T -0.04 (0.09) 0.69 

TG rs7679 PLTP C 0.08 (0.06) 0.19 

Significant (p≤0.05) p-values are bolded and italicized. 
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Appendix G. Descriptions of Participants, Data Collection, and Genotyping by Study: 
 

I. Causal Variants Across the Life Course (CALiCo).  CALiCo is a consortium of six 

demographically diverse population based studies and a central laboratory.  This 

network contributes a maximum of approximately 58,000 men and women ranging 

in age from childhood to older adulthood.  Four CALiCo studies are involved in this 

analysis: 

A. Atherosclerosis Risk in Communities (ARIC) Study.  The ARIC study is a multi-

center prospective investigation of atherosclerotic disease in a predominantly bi-

racial population.  White and African American men and women aged 45-64 years at 

baseline were recruited from four communities:  Forsyth County, North Carolina; 

Jackson, Mississippi; suburban areas of Minneapolis, Minnesota; and Washington 

County, Maryland (The ARIC Investigators, 1989).  A total of 15,792 individuals 

participated in the baseline examination in 1987-1989, with follow-up examinations 

in approximate 3-year intervals, during 1990-1992, 1993-1995, and 1996-1998.  After 

the institutional review board at every participating university approved the ARIC 

Study protocol, written informed consent was obtained from each participant. 

Data Collection: Body mass index was calculated as the ratio of weight in kilograms 

to height in meters squared.  Current smoking was defined by ―Do you now smoke 

cigarettes?‖ Diabetes status  at baseline (yes/no) was based on either fasting plasma 

glucose levels ≥126 mg/dL, non-fasting plasma glucose ≥200 mg/dL, anti-diabetic 

medication use within two weeks of the baseline interview, or self-report of a 

physician diagnosis of diabetes.   Women reported their age at menopause, if 

applicable, and hormone therapy replacement use at baseline.   Women were either 

classified as pre-menopausal, peri-menopausal, natural post-menopausal, and 

surgical post-menopausal (Luoto et al., 2000).  Race and lipid-lowering medication 

use were self-reported.   Previous myocardial infarction (MI) was indicated by self-
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report of physician-diagnosed MI or silent MI identified by electrocardiography.  

Fasting blood was drawn while the participant was seated from an antecubital vein 

into tubes containing EDTA, and plasma was obtained by centrifugation at 4°C and 

stored at −70°C until analysis.  All samples were sent to the ARIC Central Lipid 

Laboratory for processing.  Triglycerides were determined by enzymatic methods 

(Nagele et al., 1984) using the Cobas Bioanalyzer (Roche).  Plasma HDL-C levels were 

measured using an enzymatic cholesterol assay using dextran-magnesium 

precipitation (Warnick et al., 1982).   The Friedewald equation was used to calculate 

LDL-C in those with triglyceride levels under 400 mg/dl (Friedewald et al., 1972).  

Blood chemistries were performed at the Central Chemistry Laboratory of the 

University of Minnesota, and blood lipid analyses were performed at the University 

of Texas, Houston.  

Genotyping: ARIC Study samples were genotyped using two approaches:  de novo 

genotyping with TaqMan 6.0 (Applied Biosystems) and accessing previous genome-

wide association study data from the Affymetrix Genome-Wide Human SNP Array 

6.0 (Santa Clara, California).   For the de novo genotyping data, the genotyping calls 

were made using the Applied Biosystem Autocaller 3.1 software.  Internal QC's were 

included on every plate and across the full genotyping sample sets.  QC genotypes 

were examined for consistency within the SNP genotyped. Other criteria include:  1) 

Internal genomic DNA, which is examined for replication across the study set; 2) 

Fingerprint blanks, which are used to identify the plate and verify cross-

contamination and or sample error; 3) Genomic DNA pools to examine consistency 

of genotypes and plate validation; 4) No template controls (NTC), which serve as a 

background detector and review of any reagent problems; and 5) Autocaller 

confidence score, which determines percent genotyping call reliability.  All SNPs are 

tested for departure from Hardy-Weinberg Equilibrium (HWE), and SNPs with 
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HWE χ2>3.84 in unrelated cohorts (excluding duplicates) were excluded.  SNP 

genotype data was also obtained from previous GWAS data.  Genotyping was 

conducted using the Affymetrix Genome-Wide Human SNP Array 6.0 (Santa Clara, 

California). Sample exclusion criteria included discordant with previous genotype 

data, genotypic and phenotypic sex mismatch, suspected first-degree relative of an 

included individual based on genotype data (n=297), genetic outlier as assessed by 

Identity by State (IBS) using PLINK (Purcell et al., 2007; Friedewald et al., 1972),  and 

>8 SD along any of the first 10 principal components in EIGENSTRAT (Price et al., 

2006) with 5 iterations.  Autosomal SNPs were used for imputation after exclusion of 

SNPs with HWE deviation p<5 x 10-5, call rate <95%, or MAF<1%.   

B. The Coronary Artery Risk in Young Adults (CARDIA) Study.  CARDIA is a 

multicenter longitudinal study of the development and determinants of 

cardiovascular disease in 5,115 young adults initially aged 18 to 30 years from 1985 to 

1986. Black and white adults were recruited from four U.S. cities (Birmingham, 

Alabama; Chicago, Illinois; Minneapolis, Minnesota; and Oakland, California) with 

population-based samples approximately balanced within center by sex, age (18 to 24 

or 25 to 30 years), race (white or black), and education (high school graduate or less 

or greater than high school graduate). Participants have been reexamined 2, 5, 7, 10, 

15, and 20 years after baseline; and retention rates across examinations were 91%, 

86%, 81%, 79%, 74%, and 72%, respectively. Further details of study recruitment and 

design are available (Friedman et al., 1988).  All participants provided written 

informed consent at each examination, and institutional review boards from each 

field center and the coordinating center approved the study annually. 

Data Collection: Each participant‘s age, race, and sex were self-reported during the 

recruitment phase and verified during the baseline clinic visit. Structured interviews 

or self-administered questionnaires were used to collect information on demographic 
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characteristics, lifestyle habits, physical activity, and medical history. The detailed 

methods, instruments and quality control procedures have been previously 

described (Friedman et al., 1988).  Body weight was measured to the nearest 0.1 kg, 

using a calibrated scale, with the participant in light clothing without shoes. Height 

was measured to the nearest 0.5 cm with a vertical ruler. Body mass index (BMI) was 

computed as body weight / height2 (kg/m2). Blood samples were drawn after an 

overnight fast. Total plasma cholesterol, triglycerides, HDL-, and LDL-cholesterol 

were measured according to standardized methods. Triglycerides were measured 

enzymatically within 6 weeks of collection (Warnick, 1986). HDL-C was determined 

after precipitation with dextran sulfate/magnesium chloride of lipoproteins 

containing low-density lipoprotein cholesterol (Warnick et al., 1982). 

Genotyping:  Genotypes were obtained from the Central Texas laboratory using 

TaqMan (as described above for ARIC). 

C. The Cardiovascular Heart Study (CHS).  The CHS is a population-based 

longitudinal study of risk factors for cardiovascular disease in adults 65 years of age 

or older, recruited at four field centers (Forsyth County, North Carolina; Sacramento 

County, California; Washington County, Maryland; Pittsburgh, Pennsylvania) (Fried 

et al., 1991). Overall, 5,201 predominantly white individuals were recruited in 1989-

1990 from random samples of Medicare eligibility lists, followed by an additional 687 

African Americans recruited in 1992-1993 (total n=5,888).   

Data Collection:  CHS participants completed standardized clinical examinations 

and questionnaires at study enrollment and at nine annual follow-up visits.  Height 

and weight were measured at the baseline examination. Current smoking status was 

self-reported at baseline.  LDL cholesterol, HDL cholesterol, and triglycerides were 

measured under fasting conditions by enzymatic methods at a central laboratory 

(Cushman et al., 1995). Diabetes was defined as history of diabetes, use of 
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hypoglycemic agent or insulin, or fasting glucose 126 mg/dL.  All women in CHS are 

postmenopausal. Race/ethnicity was based on self-report.  MI was defined as 

evolving Q-wave MI or cardiac pain plus abnormal enzymes and either an evolving 

ST-T pattern or new left bundle branch block. 

Genotyping: DNA was extracted from blood samples drawn on all participants at 

their baseline examination.  Like ARIC, the CHS SNP genotypes were also obtained 

from two sources. First, SNP genotyping data was conducted in the Houston central 

lab using TaqMan (please see details above provided for the ARIC study). The 

second source of genotyping data from CHS was performed at the General Clinical 

Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the 

Illumina 370CNV BeadChip system. Genotypes were called using the Illumina 

BeadStudio software as above. The following exclusions were applied to identify a 

final set of 306,655 autosomal SNPs: call rate < 97%, HWE p < 1x10-5, > 1 duplicate 

error or Mendelian inconsistency (for reference CEPH trios), heterozygote frequency 

= 0, SNP not found in dbSNP.  A total of 1,908 persons were excluded from the 

GWAS study sample due to the presence at study baseline of coronary heart disease, 

congestive heart failure, peripheral vascular disease, valvular heart disease, stroke, or 

transient ischemic attack (Psaty et al., 2009). 

D. The Strong Heart Study (SHS).  SHS is composed of both a community-based and 

family-based study (Lee et al., 1990). The Strong Heart Community Study (SHCS) is a 

community-based study of CVD and its risk factors. The family component of the 

study, the SHFS, began in 1998 (phase III) with a pilot study that recruited and 

examined at least 300 members (North et al., 2003).  In phase IV of the SHFS, an 

additional ~900 family members were recruited from each center yielding sample 

sizes of more than 1,200 participants at each site.  In all centers, some individuals are 
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descended from more than one tribe and/or from non-Indian ancestors.  Informed 

consent was obtained from all participants. 

Data Collection:  During the clinic visit for SHFS participants, a personal interview 

and physical exam of family members were performed. Tobacco exposure was 

quantified using standardized questionnaires.  Anthropometric measures of height 

and weight were recorded and used to estimate BMI. 

Genotyping: Genotypes were obtained from the Central Texas laboratory using 

TaqMan (as described above for ARIC). 

II. Epidemiologic Architecture of Genes Linked to Environment (EAGLE).  The EAGLE 

study accesses DNA samples and data collected for the National Health and 

Nutrition Examination Surveys (NHANES) by the National Center on Health 

Statistics (NCHS) at the Centers for Disease Control and Prevention (CDC).  

NHANES is a collection of diverse, population-based cross-sectional surveys of non-

institutionalized Americans regardless of health status at the time of ascertainment.  

NHANES is considered a complex survey given that specific age groups (such as the 

elderly) and racial/ethnic groups (non-Hispanic blacks and Mexican-Americans) are 

oversampled.  The NHANES data accessed for this work includes phase 2 of 

NHANES III (collected between 1991 and 1994), NHANES 1999-2000, and NHANES 

2000-2001.  Collectively, these surveys contain 14,998 DNA samples linked to 

demographic, health, and lifestyle data.  Participants were consented by the CDC at 

the time of the survey and sample collection, and consent included the storage of 

data and biological specimens such as blood for future research (Centers for Disease 

Control and Prevention, 2002). The present study was approved by the CDC Ethics 

Review Board.  Because the study investigators did not have access to personal 

identifiers, this study was considered non-human subjects research by the Vanderbilt 

University Internal Review Board.   
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Data Collection:  In EAGLE/NHANES, race/ethnicity is self-described and was 

categorized as non-Hispanic white, non-Hispanic black, Mexican-American, and 

others.  Serum HDL-C, triglycerides, and total cholesterol were measured using 

standard enzymatic methods.  LDL-C was calculated using the Friedewald equation, 

with missing values assigned for samples with triglyceride levels greater than 400 

mg/dl.  Body mass index was calculated from height and weight measured in the 

Mobile Examination Center by CDC medical personnel.  Current smoking was 

defined by ―do you smoke cigarettes now?‖ or cotinine levels > 15ng/ml.  Post-

menopausal status was defined as a woman >60 years of age answering ―no‖ to 

―have you had a period or regular periods in the past 12 months‖ or as a woman 

with bilateral oophorectomy.  Current hormone use in NHANES III was defined as 

―yes‖ to ―have you ever taken or used estrogen or female hormones in any form?  

Include pills, vaginal cream, suppositories, injections, or skin patches‖ and ―still 

taking‖ to ―how many months ago did you stop taking or using the estrogen or 

female hormones?‖.  In NHANES 1999-2002, hormone use is defined as ―yes‖ to 

―ever used female hormones?‖ and ―yes‖ to ―ever take estrogen/progestin?‖  

Participants were considered to have type 2 diabetes if they answered ―yes‖ to ―Ever 

been told you have sugar/diabetes?‖ and ―Are you now taking insulin?‖ or if they 

had fasting blood glucose levels >126 mg/dL.  Previous myocardial infarction was 

defined by ―Doctor ever told you had a heart attack?‖ (NHANES III) or ―Ever told 

you had heart attack‖ (NHANES 1999-2002).  Lipid lowering medication use was 

defined by ―take prescribed med to lower cholesterol?‖ (NHANES III) and ―now 

taking prescribed medicine to lower blood pressure‖ (NHANES 1999-2002). 

Genotyping: In EAGLE, rs693 (APOB), rs673548 (APOB), rs2228671 (LDLR), and 

rs6511720 (LDLR) genotyping in NHANES III was performed using the Illumina 

GoldenGate assay (as part of a custom 384 OPA) by the Center for Inherited Disease 
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Research (CIDR) through the National Heart Lung and Blood Institute‘s 

Resequencing and Genotyping Service.  For rs3890182 (ABCA1), rs3135506 (APOA5), 

rs1800775 (CETP), rs1260326 (GCKR), rs1323432 (GRIN3A), rs12654264 (HMGCR), 

rs1800588 (LIPC), rs1529729 (LDLR), rs328 (LPL), and rs11591147 (PCSK9) in 

NHANES III, we accessed existing data (Keebler et al., 2009) in the Genetic NHANES 

database.  Genotyping was performed for the remaining EAGLE SNPs in NHANES 

III (n=7,159) and NHANES 1999-2002 (n=7,839) using Sequenom or Illumina 

BeadXpress.  Genotyping was performed in the Vanderbilt DNA Resources Core.  In 

addition to genotyping experimental NHANES samples, we genotyped blind 

duplicates provided by CDC and HapMap controls (n=360).  All EAGLE SNPs 

reported here passed CDC quality control metrics and are available for secondary 

analyses through NCHS/CDC.  All statistical analyses were conducted remotely in 

SAS v9.2 (SAS Institute, Cary, NC) using the Analytic Data Research by Email 

(ANDRE) portal of the CDC Research Data Center in Hyattsville, MD. 

III.   Multiethnic Cohort (MEC). The MEC is a population-based prospective cohort study 

consisting of 215,251 men and women, and comprises mainly five self-reported 

racial/ethnic populations: African Americans, Japanese Americans, Latinos, Native 

Hawaiians and European Americans (Kolonel et al., 2004). The MEC was designed to 

provide prospective data on exposures and biomarkers potentially involved in 

cancer initiation and progression across groups with distinct cultural and dietary 

patterns. Between 1993 and 1996, adults between 45 and 75 years old were enrolled 

by completing a 26-page, self-administered questionnaire asking detailed 

information about dietary habits, demographic factors, level of education, personal 

behaviors, and history of prior medical conditions (e.g. diabetes). Between 1995 and 

2004, blood specimens were collected from ~67,000 MEC participants at which time a 

short questionnaire was administered to update certain exposures, and collect 
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current information about medication use. Study protocols and consent forms were 

approved by the institutional review boards at all participating institutions.  

Data Collection:  MEC baseline questionnaires queried ever smokers (defined as >20 

packs in lifetime) about the average number of cigarettes smoked per day, duration 

in years, and years since quitting if not currently smoking.  Self-reported height and 

weight were used to calculate baseline BMI.  Medication use and fasting information 

was collected at the time of blood collections. LDL, HDL, and triglycerides 

concentrations were measured using standard clinical assays. 

Genotyping: Genotyping of 43 SNPs was conducted by the OpenArray platform (Life 

Technologies, Carlsbad, CA) at the Cancer Research Center in Hawaii following the 

recommended protocol. For all SNPs genotype call rates were >90% and individual 

call rates were >90%. Concordance rates between duplicate samples were 100%. 

HWE was examined and p-values were >0.01 in at least 4 of the 5 ethnic groups.  

IV.  Women’s Health Initiative (WHI).  WHI is a long-term national health study that 

focuses on strategies for preventing heart disease, breast and colorectal cancer and 

fracture in postmenopausal women.  A total of 161, 838 women aged 50–79 yrs old 

were recruited from 40 clinical centers in the US between 1993 and 1998(Anderson et 

al., 2003).  WHI consists of an observational study, two clinical trials of 

postmenopausal hormone therapy (estrogen alone or estrogen plus progestin), a 

calcium and vitamin D supplement trial, and a dietary modification trial.  Trial 

exclusion criteria have been described previously(1998).  Study protocols and consent 

forms were approved by the institutional review boards at all participating 

institutions.  A subset of 21,000 WHI women were selected for genotyping and 

inclusion in these PAGE analyses, of those, approximately 8,000 have at least one 

baseline lipid measurement available.  Women were selected based on self-reported 
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history of disease, incident event outcomes, DNA availability and consent, and 

racial/ethnic diversity.  

Data Collection:  Self-reported demographic, lifestyle and general health 

characteristics (current smoking, history of myocardial infarction, type 2 diabetes) 

were collected at baseline as described previously (1998).  BMI was calculated from 

measured weight and height at time of enrollment.  Baseline medication use (lipid-

lowering and hormone replacement medications) was ascertained using a computer-

driven medication inventory system at the first screening visit.  Race/ethnicity was 

self reported as one of white, black, Hispanic, Asian/Pacific Islander, Native 

American, or other (this last category was not genotyped for PAGE).  Additional self-

reported race/ethnicity data were available for a subset of participants and were 

used to subset Asian/Pacific Islanders into East Asians and Pacific Islanders.  Fasting 

LDL, HDL, and triglycerides concentrations were measured using standard clinical 

assays in a variety of core and ancillary WHI studies; measurements were 

normalized to correct for laboratory and study effect. 

Genotyping:  In WHI, 20 lipids SNPs were genotyped at the Translational Genomics 

Research Institute (TGen) (Phoenix, AZ) on Illumina‘s BeadXpress Reader using 

Illumina‘s Veracode GoldenGate genotyping assay, following the manufacturer‘s 

recommended protocol (www.illumina.com).  Study protocol included calculation of 

concordance rates among duplicates, genotyping of HapMap samples, re-genotyping 

of failing samples, and other extensive QA procedures.  One HDL SNP, rs1883025, 

did not pass quality control and was excluded from analyses; all other genotyping 

data reported here passed QA with individual and SNP call rates exceeding 95% and 

97%, respectively.   
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Appendix H.  Study characteristics by PAGE study and population.  Descriptive 
statistics for fasting (≥8 hours) adults (≥18 years of age) are expressed as percentage, 
median, and standard deviation (SD) for each variable. 
 

a) CALiCo (ARIC) 

 European Americans African Americans 

N 11,178 3,770 

% Female 52.93 62.02 

Median Age (SD) 54 years (5.71) 53 years (5.84) 

Median BMI (SD) 26 kg/m2 (4.86) 29 kg/m2 (6.13) 

Median HDL-C (SD) 47 mg/dl (16.74) 52 mg/dl (17.56) 

Median LDL-C (SD) 135 mg/dl (37.74) 135 mg/dl (43.18) 

Median TG  (SD) 115 mg/dl (91.16) 95 mg/dl (76.60) 

% Lipid lowering medication use 3.41 1.41 

% Current smokers 24.40 29.54 

% Post menopausal  59.52 58.35 

% Hormone use 20.49 13.73 

% Previous MI 4.01 3.23 

 

b) CALiCo (CARDIA) 

 European Americans African Americans 

N 2,134 2,035 

% Female 53.30 58.40 

Median Age (SD) 26 years (3.4) 24.5 years (3.8) 

Median BMI (SD) 23 kg/m2 (4.1) 24 kg/m2 (5.75) 

Median HDL-C (SD) 51 mg/dl (12.97) 53 mg/dl (13.01) 

Median LDL-C (SD) 105 mg/dl (29.8) 109 mg/dl (31.85) 

Median TG (SD) 66 mg/dl (55.7) 57 mg/dl (36) 

% Lipid lowering medication use 0 0 

% Current smokers 25.4 32.3 

% Post menopausal 0 0 

% Hormone use 0 0 

% Previous MI 0 0 
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c) CALiCo (CHS) 

 European Americans African Americans 

N 2,787 550 

% Female 61 63 

Median Age (SD) 74 years (5.15) 72 years (5.63) 

Median BMI (SD) 26 kg/m2 (4.48) 28 kg/m2 (5.58) 

Median HDL-C (SD) 51 mg/dl (14.18) 55 mg/dl (15.11) 

Median LDL-C (SD) 126 mg/dl (33.44) 128 mg/dl (36.13) 

Median TG (SD) 128 mg/dl (88.18) 102 mg/dl (58.35) 

% Lipid lowering medication use 8 7 

% Current smokers 9 14 

% Post menopausal 100 100 

% Hormone use 9 5 

% Previous MI 11 8 

 

d) EAGLE 

 
European 
Americans 

African 
Americans 

Mexican 
Americans 

N 3,909 1,896 2,361 

% Female 53.83 55.89 50.76 

Median Age (SD) 51 years (19.69) 39 years (16.65) 40 years (17.52) 

Median BMI (SD) 27 kg/m2 (5.84) 28 kg/m2 (6.96) 28 kg/m2 (5.51) 

Median HDL-C (SD) 48 mg/dl (15.76) 51 mg/dl  (16.82) 46 mg/dl (13.35) 

Median LDL-C (SD) 125 mg/dl (36.08) 
118 mg/dl 

(38.75) 
119 mg/dl (33.54) 

Median TG (SD) 
123 mg/dl 

(124.53) 
85 mg/dl (75.85) 

128 mg/dl 
(123.47) 

% Lipid lowering 
medication use 

4.61 2.15 2.37 

% Current smokers 261.0 35.30 20.90 

% Post menopausal 18.77 9.36 10.01 

% Hormone use 4.99 3.56 2.07 

% Previous MI 5.17 3.29 2.28 
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e) MEC 

 
European 

Americans 
African 

Americans 
Mexican 

Americans 
Native 

Hawaiians 
Japanese 

N 317 552 299 87 576 

% Female 38.85 18.08 32.78 48.86 38.99 

Median 
Age (SD) 

67 years 
(8.01) 

69 years 
(7.13) 

68 years 
(6.92) 

62 years 
(7.02) 

70 years 
(8.28) 

Median 
BMI (SD) 

26 kg/m2 
(5.11) 

27 kg/m2 
(4.71) 

27 kg/m2 
(4.54) 

28 kg/m2 
(5.32) 

24 kg/m2 
(3.61) 

Median 
HDL-C 
(SD) 

53 mg/dl 
(15.57) 

50 mg/dl 
(14.69) 

48 mg/dl 
(12.97) 

48 mg/dl 
(13.66) 

54 mg/dl 
(14.92) 

Median 
LDL-C (SD) 

116 mg/dl 
(32.71) 

123 mg/dl 
(41.93) 

118 mg/dl 
(36.65) 

108 mg/dl 
(27.16) 

111 
mg/dl 
(34.71) 

Median TG 
(SD) 

109 mg/dl 
(61.27) 

103 mg/dl 
(54.47) 

136 mg/dl 
(70.37) 

130 mg/dl 
(69.85) 

126 
mg/dl 
(69.31) 

% Lipid 
lowering 
medication 
use 

28.39 20.8 24.08 27.27 38.3 

% Current 
smokers 

6.31 21.05 15.36 9.09 8.7 

% Post 
menopausal 

76.32 62.22 71.43 67.5 69.16 

% Hormone 
use 

67.8 50 51.04 57.14 61.26 

% Previous 
MI 

5.67 9.95 8.36 6.82 5.72 
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f) CALiCo (SHFS) 

 
American 

Indians (Arizona) 

American 
Indians 

(Oklahoma) 

American 
Indians 

(the Dakotas) 

N 1,191 1,196 1,178 

% Female 62 59 59 

Median Age (SD) 36 years (15.96) 42 years (17.29) 38 years (17.08) 

Median BMI (SD) 35 kg/m2 (8.80) 30 kg/m2 (6.89) 29 kg/m2 (6.83) 

Median HDL-C (SD) 45 mg/dl (14.11) 50 mg/dl (15.38) 49 mg/dl (13.74) 

Median LDL-C (SD) 93 mg/dl (25.91) 97 mg/dl (30.41) 98 mg/dl (30.92) 

Median TG (SD) 
139 mg/dl 

(134.80) 
144 mg/dl 

(170.62) 
126 mg/dl 

(201.74) 

% Lipid lowering 
medication use 

3.91 5.14 6.07 

% Current smokers 25.06 33.22 42.22 

% Post menopausal 15.82 21.96 15.94 

% Hormone use 2.41 9.44 4.97 

% Previous MI -- -- -- 

 

g) CALiCo (SHS-C) 

 
American 
Indians 

(Arizona) 

American 
Indians 

(Oklahoma) 

American Indians 
(the Dakotas) 

N 950 943 939 

% Female 68 60 59 

Median Age (SD) 54 years (7.88) 56 years (8.19) 55 years (7.91) 

Median BMI  (SD) 32 kg/m2 (7.07) 30 kg/m2 (6.04) 29 kg/m2 (5.46) 

Median HDL-C (SD) 43 mg/dl (12.31) 44 mg/dl (13.61) 44 mg/dl (14.41) 

Median LDL-C (SD) 97 mg/dl (29.43) 109 mg/dl (31.20) 113 mg/dl (32.29) 

Median TG (SD) 
121 mg/dl 

(138.42) 
122 mg/dl 

(120.59) 
113 mg/dl (198.42) 

% Lipid lowering 
medication use 

-- -- -- 

% Current smokers 18.34 32.63 47.79 

% Post menopausal -- -- -- 

% Hormone use 2.41 9.44 4.97 

% Previous MI 0.83 2.94 3.37 
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h) WHI 

 
European 
Americans 

African 
Americans 

Hispanics 
Asian/Pacific 

Islander 
American 
Indians 

N 4,688 1,840 762 359 113 

% Female 100 100 100 100 100 

Median Age 
(SD) 

67 years 
(6.86) 

60 years 
(7.13) 

60 years 
(6.67) 

66 years 
(7.19) 

59 years 
(6.72) 

Median BMI 
(SD) 

27 kg/m2 
(6.53) 

30 kg/m2 
(8.12) 

28 kg/m2 
(5.79) 

24 mg/k2 
(4.10) 

29 kg/m2 
(5.89) 

Median HDL-
C (SD) 

55 mg/dl 
(15.26) 

55 mg/dl 
(14.36) 

51 mg/dl 
(14.34) 

59 mg/dl 
(16.28) 

52 mg/dl 
(13.53) 

Median LDL-
C (SD) 

140 mg/dl 
(34.31) 

137 mg/dl 
(38.46) 

124 mg/dl 
(38.22) 

124 mg/dl 
(29.57) 

124 mg/dl 
(31.70) 

Median TG 
(mg/dl) 

140 mg/dl 
(114.12) 

110 mg/dl 
(55.73) 

151 mg/dl 
(90.38) 

140 mg/dl 
(87.98) 

140 mg/dl 
(64.34) 

% Lipid 
lowering 
medication 
use 

9.3 7.3 7.4 16.2 4.4 

% Current 
smokers 

8.1 10.3 6.4 2.3 8.9 

% Post 
menopausal 

100 100 100 100 100 

% Hormone 
use 

28.2 22.3 31.8 40.7 41.6 

% Previous 
MI 

1.6 1.5 0 1.1 0.9 
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Appendix I.  List of candidate gene and GWAS-identified SNPs targeted for genotyping in PAGE.   For each SNP (denoted by rs 
number), we list the chromosomal and genomic location, the putative function of the SNP (based on SNP location) and the nearest 
gene, the number of PAGE studies that genotyped the SNP, the trait associated with the SNP based on the literature, the effect allele 
and effect size based on the literature, and the reference for these data. Abbreviations:  Base-pair (bp), Untranslated region (UTR). 
*Number of PAGE studies that genotyped the SNP.  PAGE studies include CALiCo, EAGLE, MEC, and WHI.  §SNP failed 
genotyping on the BeadXpress at one PAGE site (WHI); therefore, only data from one PAGE site was available for analysis (EAGLE 
using Sequenom).  ‡Effect size (beta) is reported in s.d. (standard deviation) units.  †Effect size originally expressed in mmol/L. 
#Ariza et al 2010 collapsed heterozygotes and homozygotes for the minor allele into the same bin and compared them to the referent 
(homozygotes for the major allele) to estimate the genetic effect size. 
 

SNP Chr. 
Build 37 
location 

(bp) 
Function Nearest Gene 

# PAGE 
Studies* 

Previously 
Associated 

Trait 

Effect 
Allele 

Effect 
Size‡ 

(mg/dl) 
Reference 

rs11206510 1 55495789 Intergenic PCSK9 4 LDL-C T 3.04 Willer et al 2008 

rs11591147 1 55505397 
Non-

synonymous 
PCSK9 3 LDL-C T -17.1 Kathiresan et al 2009 

rs1748195 1 63049343 Intronic ANGPTL3 2 TG C 7.12 Willer et al 2008 

rs646776 1 109818280 Downstream CELSR2/PSRC/SORT 4 LDL-C T 6.18 Kathiresan et al 2008 

rs599839 1 109821916 Downstream CELSR2/PSRC/SORT 3 LDL-C A 5.48 Willer et al 2008 

rs2144300 1 230294666 Intronic GALNT2 4 HDL-C T 1.11 Willer et al 2008 

rs693 2 21231945 Synonymous APOB 4 LDL-C A 2.44 Willer et al 2008 

rs562338 2 21288071 Intergenic APOB 4 LDL-C A -4.89 Willer et al 2008 

rs754523 2 21311441 Intergenic APOB 4 LDL-C A -2.78 Willer et al 2008 

rs1260326 2 27730690 
Non-

synonymous 
splice site 

GCKR 2 TG T 8.76 Teslovich et al 2010 

rs780094 2 27740987 Intronic GCKR 3 TG T 8.59 Willer et al 2008 

rs6544713 2 44073631 Intronic ABCG8 4 LDL-C T 5.1 Kathiresan et al 2009 

rs12654264 5 74648353 Intronic HMGCR 4 LDL-C A -3.86 Kathiresan et al 2008 

rs1501908 5 156397919 Intergenic TIMD4 3 LDL-C C 2.38 Kathiresan et al 2009 

rs17145738 7 72982624 Downstream MLXIPL 4 
HDL-C T 0.57 Teslovich et al 2010 

TG T -9.32 Teslovich et al 2010 
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rs328 8 19819474 Nonsense LPL 4 
HDL-C C -2.62 Kathiresan et al 2008 

TG C 19.47 Kathiresan et al 2008 

rs2197089 8 19826123 Downstream LPL 4 
HDL-C A 1.38 Willer et al 2008 

TG A -3.38 Willer et al 2008 

rs6586891 8 19914348 Intergenic LPL 4 HDL-C A 1 Willer et al 2008 

rs2954029 8 126560154 Intergenic TRIB1 2 TG A 5.64 Teslovich et al 2010 

rs471364 9 15289328 Intronic TTC39B 3 HDL-C T 1.2 Kathiresan et al 2009 

rs4149268 9 107647220 Intronic ABCA1 4 HDL-C T -0.82 Willer et al 2008 

rs3890182 9 107647405 Intronic ABCA1 4 HDL-C A -1.54 Kathiresan et al 2008 

rs1883025 9 107664051 Intronic ABCA1 2§ HDL-C A -0.94 Teslovich et al 2010 

rs174547 11 61570533 Intronic FADS1 4 
HDL-C T 1.35 Kathiresan et al 2009 

TG T 5.46 Kathiresan et al 2009 

rs28927680 11 116618823 3' UTR 
APOA1/C3/A4/A5 

gene cluster 
4 

HDL-C C 2.01 Kathiresan et al 2008 

TG C -16.95 Teslovich et al 2010 

rs964184 11 116648667 3' UTR 
APOA1/C3/A4/A5 

gene cluster 
2 

HDL-C C 1.5 Teslovich et al 2010 

TG C -27.3 Kathiresan et al 2009 

rs3135506 11 116662157 
Non-

synonymous 

APOA1/C3/A4/A5 
gene cluster 

3 
HDL-C C -2.65 Lu et al 2008 

TG C 1.13# Ariza et al 2010 

rs2338104 12 109894918 Intronic MMAB-MVK 3 HDL-C C -0.48 Willer et al 2008 

rs2650000 12 121388712 Intergenic HNF1A 3 LDL-C A 2.38 Kathiresan et al 2009 

rs4775041 15 58674445 Intergenic LIPC 4 
HDL-C C 1.38 Willer et al 2008 

TG C 3.62 Willer et al 2008 

rs261332 15 58727325 Intronic LIPC 3 HDL-C A 1.41 Willer et al 2008 

rs1800775 16 555552737 Upstream CETP 3 HDL-C 
SNP failed genotyping at all PAGE sites 

that attempted genotyping 

rs1864163 16 55554734 Intronic CETP 2 HDL-C A -4.12 Willer et al 2008 

rs12596776 16 56919098 Intronic CETP 2 HDL-C C -1.26 Willer et al 2008 

rs9989419 16 56984889 Upstream CETP 4 HDL-C A -1.72 Willer et al 2008 

rs3764261 16 56993074 Upstream CETP 4 HDL-C A 3.47 Willer et al 2008 

rs1566439 16 57024412 Intronic CETP 2 HDL-C T -0.93 Willer et al 2008 

rs2271293 16 67901820 Intronic LCAT 4 HDL-C A 1.05 Kathiresan et al 2009 

rs2156552 18 47181418 Intergenic LIPG 4 HDL-C A -1.2 Willer et al 2008 

rs2967605 19 8469488 Downstream ANGPTL4 3 HDL-C T -1.8 Kathiresan et al 2009 
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rs6511720 19 11202056 Intronic LDLR 4 LDL-C T -6.99 Teslovich et al 2010 

rs2228671 19 11210662 Synonymous LDLR 2 LDL-C T -0.14‡ Aulchenko et al 2009 

rs16996148 19 19658222 Downstream CILP2/PBX4/NCAN 4 
LDL-C T -3.32 Willer et al 2008 

TG T -6.1 Willer et al 2008 

rs4803750 19 45247627 Upstream BCL3 2 LDL-C A 10.9† Sandhu et al 2008 

rs10402271 19 45329214 Downstream 
APOE/C1/C4 gene 

cluster 
2 LDL-C T -2.62 Willer et al 2008 

rs4420638 
 

19 
 

45422696 
 

Downstream 
 

APOE/C1/C4 gene 
cluster 

4 
HDL-C A 1.06 Teslovich et al 2010 

LDL-C A -7.14 Teslovich et al 2010 

rs2075650 19 50087459 Intronic TOMM40 2 LDL-C A -0.16‡ Aulchenko et al 2009 

rs429358 19 50103781 
Non-

synonymous 
APOE 2 LDL-C 

SNP failed genotyping at all PAGE sites 
that attempted genotyping 

rs7412 19 50103919 
Non-

synonymous 
APOE 2 LDL-C 

SNP failed genotyping at all PAGE sites 
that attempted genotyping 

rs6102059 20 39228784 Intergenic MAFB 3 LDL-C T -2.04 Kathiresan et al 2009 

rs1800961 20 43042114 
Non-

synonymous 
HNF4A 3 HDL-C T -1.88 Teslovich et al 2010 

rs7679 20 44576252 Downstream PLTP 3 
HDL-C T 1.05 Kathiresan et al 2009 

TG T -6.37 Kathiresan et al 2009 
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Appendix J.  Comparison of unadjusted, minimally adjusted, adjusted models for 
HDL-C, by population.  Results of tests of association for four regression models are 
plotted:  model 1 (unadjusted), model 2(adjusted for age and sex; and site of 
ascertainment for select PAGE studies), model 3 (adjusted for age, sex, body mass index, 
current smoking, type 2 diabetes, post-menopausal status, and current hormone use), 
and model 4 (model 3 with the addition of previous myocardial infarction).  Each SNP 
was tested for an association with HDL-C. Meta-analysis was performed, and p-values 
(–log10 transformed) of the meta-analysis are plotted along the y-axis.  SNP location is 
given on the x-axis. Each triangle represents a meta-analysis p-value for each 
population. Models are color coded.  Large triangles represent p-values at or smaller 
than genome-wide significance (p<10-8).  The direction of the arrows corresponds to the 
direction of the beta coefficient. The exact beta coefficients are reported on the bottom 
panel. The significance threshold is indicated by the red bar at p=0.05. 
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f)  Native Hawaiians/Pacific Islanders 
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Appendix K.  Comparison of unadjusted, minimally adjusted, adjusted models for 
LDL-C, by population.  Results of tests of association for four regression models are 
plotted:  model 1 (unadjusted), model 2(adjusted for age and sex; and site of 
ascertainment for select PAGE studies), model 3 (adjusted for age, sex, body mass index, 
current smoking, type 2 diabetes, post-menopausal status, and current hormone use), 
and model 4 (model 3 with the addition of previous myocardial infarction).  Each SNP 
was tested for an association with LDL-C.  Meta-analysis was performed, and p-values 
(–log10 transformed) of the meta-analysis are plotted along the y-axis.  SNP location is 
given on the x-axis. Each triangle represents a meta-analysis p-value for each 
population. Models are color coded.  Large triangles represent p-values at or smaller 
than genome-wide significance (p<10-8).  The direction of the arrows corresponds to the 
direction of the beta coefficient. The exact beta coefficients are reported on the bottom 
panel. The significance threshold is indicated by the red bar at p=0.05. 
 

a) European Americans 
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f) Native Hawaiians/Pacific Islanders 
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Appendix L.  Comparison of unadjusted, minimally adjusted, adjusted models for 
triglyceride concentrations, by population.  Results of tests of association for four 
regression models are plotted:  model 1 (unadjusted), model 2(adjusted for age and sex; 
and site of ascertainment for select PAGE studies), model 3 (adjusted for age, sex, body 
mass index, current smoking, type 2 diabetes, post-menopausal status, and current 
hormone use), and model 4 (model 3 with the addition of previous myocardial 
infarction).  Each SNP was tested for an association with triglycerides. Meta-analysis 
was performed, and p-values (–log10 transformed) of the meta-analysis are plotted along 
the y-axis.  SNP location is given on the x-axis. Each triangle represents a meta-analysis 
p-value for each population. Models are color coded.  Large triangles represent p-values 
at or smaller than genome-wide significance (p<10-8).  The direction of the arrows 
corresponds to the direction of the beta coefficient. The exact beta coefficients are 
reported on the bottom panel. The significance threshold is indicated by the red bar at 
p=0.05. 
 

a) European Americans 
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f) Native Hawaiians/Pacific Islanders 
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Appendix M.  HDL-C and the effects of lipid lowering medication use on genetic 
associations, by population.  Comparison of genetic effects and significance when tests 
of association are performed within fasting adults regardless of lipid lowering 
medication (Include) versus fasting adults not on lipid lowering medication (Exclude).  
All tests of association results shown here are minimally adjusted for age and sex.  
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f) Native Hawaiians/Pacific Islanders 
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Appendix N.  LDL-C and the effects of lipid lowering medication use on genetic 
associations, by population.  Comparison of genetic effects and significance when tests 
of association are performed within fasting adults regardless of lipid lowering 
medication versus fasting adults not on lipid lowering medication.  All tests of 
association results shown here are minimally adjusted for age and sex. 

 

a) European Americans 
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f) Native Hawaiians/Pacific Islanders 
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Appendix O.  Transformed triglycerides and the effects of lipid lowering medication 
use on genetic associations, by population.  Comparison of genetic effects and 
significance when tests of association are performed within fasting adults regardless of 
lipid lowering medication versus fasting adults not on lipid lowering medication.  All 
tests of association results shown here are minimally adjusted for age and sex. 
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b) African Americans 
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c) American Indians 
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d) Mexican Americans/Hispanics 
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e) Japanese/East Asians 
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f) Native Hawaiians/Pacific Islanders 
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Appendix P.  Coded allele frequency, by population.  The coded allele frequency (CAF) is plotted for each of the 49 SNPs by 
population using Synthesis-View (Pendergrass et al., 2010).  The populations include European Americans (EA), African Americans 
(AA), Mexican Americans/Hispanics (MA/H), American Indians (AI), Japanese/East Asians (J/EA), and Native Hawaiians/Pacific 
Islanders (NH/PI). 
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Appendix Q.  Generalization of associations across non-European populations for HDL-C, LDL-C and ln(TG).  In the significance 
column (S), ―+‖ denotes that the SNP was associated with the lipid trait at p<0.05 and ―-‖ denotes a p>0.05.  In the effect column (E), 
―+‖ denotes that the direction of effect (beta) was in the same direction compared with European Americans and ―-‖ denotes that the 
directions of effect were discordant.   In the power column (P), ―+‖ denotes that the association had at least 80% power to detect the 
effect size observed in European Americans, based on a p=0.05 and the allele frequency of the studied population.  A ―-‖ denotes 
power<80% and ―‡‖ denotes that the association was significant in the studied population.  In the generalize column (G), ―+‖ 
denotes that the SNP generalized in the studied population based on our criteria (significance AND direction of effect if powered), ―-
‖ denotes a lack of generalization, and ―?‖ denotes that we are unable to determine generalization based on power.  Generalization 
here is defined as a significant association (p<0.05) and a similar direction of effect (β) compared with European Americans for the 
same test of association.  Tests of association that generalize across all non-European populations tested are bolded. Abbreviations:  
Significant (S); Effect (E); Power (P); Generalize (G); Generalize across all populations (Gall); and Not applicable (NA). 
 
 
a) HDL-C 

SNP Gene 
African Americans American Indians Mexican Americans/Hispanics 

Gall 
S E P G S E P G S E P G 

rs2144300 GALNT2 - + - ? - + - ? - + - ? ? 

rs17145738 MLXIPL - - - ? - + - ? - + - ? ? 

rs328 LPL + + ‡ + - + + - + + ‡ + - 

rs2197089 LPL + + ‡ + + + ‡ + + + ‡ + + 

rs6586891 LPL + + ‡ + + + ‡ + + + ‡ + + 

rs3890182 ABCA1 + + ‡ + - + - ? - + - ? ? 

rs174547 FADS1 + + ‡ + - + - ? + + ‡ + ? 

rs28927680 APOA1/C3/A4/A5 - - + - + + ‡ + + + ‡ + - 

rs964184 APOA1/C3/A4/A5 - + + - - + - ? + + ‡ + - 

rs3135506 APOA1/C3/A4/A5 + + ‡ + + + ‡ + + + ‡ + + 

rs2338104 MMAB-MVK; - + - ? - + - ? + + ‡ + ? 

rs4775041 LIPC + + ‡ + + + ‡ + + + ‡ + + 

rs261332 LIPC - + + - NA NA NA NA - + - ? - 
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rs12596776 CETP - + - ? NA NA NA NA - + - ? ? 

rs9989419 CETP - - + - + + ‡ + + + ‡ + - 

rs3764261 CETP + + ‡ + + + ‡ + + + ‡ + + 

rs1566439 CETP - - - ? NA NA NA NA - + - ? ? 

rs2271293 LCAT + + ‡ + + + ‡ + - + - ? ? 

rs2156552 LIPG - + - ? - + - ? - + - ? ? 

rs2967605 ANGPTL4 + + ‡ + - + + - - + - ? - 

rs4420638 APOE/C1/C4 + - ‡ - + + ‡ + + + ‡ + - 

rs1800961 HNF4A - + - ? - + - ? + + ‡ + ? 

rs7679 PLTP - + - ? - + - ? - + ‡ ? ? 
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b) LDL-C 

SNP Gene 
African Americans American Indians Mexican Americans/Hispanics 

Gall 
S E P G S E P G S E P G 

rs11206510 PCSK9 - + - ? - - - ? + + ‡ + ? 

rs11591147 PCSK9 + + ‡ + + + ‡ + + + ‡ + + 

rs646776 CELSR2/PSRC1/SORT + + ‡ + + + ‡ + + + ‡ + + 

rs599839 CELSR2/PSRC1/SORT + + ‡ + + + ‡ + + + ‡ + + 

rs693 APOB + + ‡ + + + ‡ + - + + - - 

rs562338 APOB + + ‡ + + + ‡ + + + ‡ + + 

rs754523 APOB + + ‡ + + + ‡ + - + + - - 

rs6544713 ABCG8 + + ‡ + + + ‡ + - + - ? ? 

rs12654264 HMGCR + + ‡ + + + ‡ + + + ‡ + + 

rs1501908 TIMD4 + + ‡ + + - ‡ - - + - ? - 

rs2650000 HNF1A - + - ? - + - ? + + ‡ + ? 

rs6511720 LDLR + + ‡ + - + + - + + ‡ + - 

rs2228671 LDLR + + ‡ + NA NA NA NA + + ‡ + + 

rs16996148 CILP2/PBX4 - - + - - + - ? - + - ? - 

rs4803750 BCL3 - + + - NA NA NA NA - + - ? - 

rs10402271 APOE/C1/C4 - + - ? NA NA NA NA - - - ? ? 

rs4420638 APOE/C1/C4 - - + - + + ‡ + + + ‡ + - 

rs2075650 TOMM40 - + - ? NA NA NA NA - - - ? ? 
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c) ln(TG) 

SNP Gene 
African Americans American Indians Mexican Americans/Hispanics 

Gall 
S E P G S E P G S E P G 

rs1748195 ANGPTL3 - + + - + + ‡ + + + ‡ + - 

rs1260326 GCKR + + ‡ + - + - ? + + ‡ + ? 

rs780094 GCKR + + ‡ + + + ‡ + + + ‡ + + 

rs17145738 MLXIPL + + ‡ + + + ‡ + + + ‡ + + 

rs328 LPL + + ‡ + + + ‡ + + + ‡ + + 

rs2197089 LPL - + + - + + ‡ + + + ‡ + - 

rs2954029 TRIB1 - - + - NA NA NA NA + + ‡ + - 

rs174547 FADS1 + + ‡ + + + ‡ + + + ‡ + + 

rs28927680 APOA1/C3/A4/A5 - - + - + + ‡ + + + ‡ + - 

rs964184 APOA1/C3/A4/A5 + + ‡ + + + ‡ + + + ‡ + + 

rs3135506 APOA1/C3/A4/A5 + + ‡ + + + ‡ + + + ‡ + + 

rs4775041 LIPC + + ‡ + - + - ? - + - ? ? 

rs16996148 CILP2/PBX4 - - - ? + + ‡ + + + ‡ + ? 

rs7679 PLTP - + - ? - + - ? - + - ? ? 
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Appendix R.  Comparison of genetic effect estimates when participants are excluded 
or included based on medication use with adjustments in WHI.  Genetic effect 
estimates (β) and 95% confidence interval are plotted for each SNP tested for an 
association.  The tests of association were performed on fasting European Americans 
adjusted for age and sex and excluding participants on lipid lowering medication (blue),  
including all participants regardless of medication use (green), and all participants on 
lipid lowering medication,  adjusted for the average HDL-C, LDL-C, and ln(TG) effects 
estimated by Wu et al (Wu et al., 2007). 
 

a) HDL-C 

 

b) LDL-C 
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c) ln(TG) 
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Appendix Table S.   List of 23 candidate gene and GWAS-identified SNPs genotyped in EAGLE.   For each SNP (denoted by rs 
number), we list the chromosomal and genomic location, the putative function of the SNP (based on SNP location) and the nearest 
gene, the number of PAGE studies that genotyped the SNP, the trait associated with the SNP based on the literature, the effect allele 
and effect size based on the literature, and the reference for these data. Abbreviations:  Base-pair (bp), Untranslated region (UTR). 

SNP Chr. 
Build 37 
location 

(bp) 
Function Nearest Gene 

Previously 
Associated 

Trait 
Reference 

rs11206510 1 55495789 Intergenic PCSK9 LDL-C Willer et al 2008 

rs1748195 1 63049343 Intronic ANGPTL3 TG Willer et al 2008 

rs693 2 21231945 Synonymous APOB LDL-C Willer et al 2008 

rs754523 2 21311441 Intergenic APOB LDL-C Willer et al 2008 

rs780094 2 27740987 Intronic GCKR TG Willer et al 2008 

rs12654264 5 74648353 Intronic HMGCR LDL-C Kathiresan et al 2008 

rs1501908 5 156397919 Intergenic TIMD4 LDL-C Kathiresan et al 2009 

rs2197089 8 19826123 Downstream LPL 
HDL-C Willer et al 2008 

TG Willer et al 2008 

rs2954029 8 126560154 Intergenic TRIB1 TG Teslovich et al 2010 

rs4149268 9 107647220 Intronic ABCA1 HDL-C Willer et al 2008 

rs3890182 9 107647405 Intronic ABCA1 HDL-C Kathiresan et al 2008 

rs1883025 9 107664051 Intronic ABCA1 HDL-C Teslovich et al 2010 

rs174547 11 61570533 Intronic FADS1 
HDL-C Kathiresan et al 2009 

TG Kathiresan et al 2009 

rs3135506 11 116662157 
Non-

synonymous 
APOA1/C3/A4/A5 

gene cluster 
HDL-C Lu et al 2008 

TG Ariza et al 2010 

rs2338104 12 109894918 Intronic MMAB-MVK HDL-C Willer et al 2008 

rs4775041 15 58674445 Intergenic LIPC 
HDL-C Willer et al 2008 

TG Willer et al 2008 

rs9989419 16 56984889 Upstream CETP HDL-C Willer et al 2008 

rs3764261 16 56993074 Upstream CETP HDL-C Willer et al 2008 

rs2271293 16 67901820 Intronic LCAT HDL-C Kathiresan et al 2009 
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rs2156552 18 47181418 Intergenic LIPG HDL-C Willer et al 2008 

rs2967605 19 8469488 Downstream ANGPTL4 HDL-C Kathiresan et al 2009 

rs6102059 20 39228784 Intergenic MAFB LDL-C Kathiresan et al 2009 

rs7679 20 44576252 Downstream PLTP 
HDL-C Kathiresan et al 2009 

TG Kathiresan et al 2009 
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Appendix Table T.  Gene-smoking interaction results for HDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 

SNPxSmoking Interaction 
Non-Hispanic Blacks 

SNPxSmoking Interaction 
Mexican Americans 

SNPxSmoking Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -0.74 1.00 0.462 0.11 1.69 0.948 -1.40 1.55 0.364 

rs12654264 0.34 0.80 0.674 -0.17 1.21 0.889 0.47 1.05 0.653 

rs1501908 1.17 0.80 0.146 0.94 1.18 0.423 -0.19 1.18 0.875 

rs174547 -1.09 0.83 0.188 4.16 2.04 0.041 0.37 0.98 0.702 

rs1748195 -1.11 0.80 0.164 1.04 1.21 0.391 -0.97 1.00 0.334 

rs1883025 -0.09 0.89 0.921 -0.37 1.18 0.754 -0.55 1.08 0.613 

rs2156552 -0.91 1.04 0.383 3.02 2.80 0.280 0.80 1.79 0.656 

rs2197089 0.08 0.76 0.919 -0.62 1.42 0.663 0.95 0.98 0.329 

rs2271293 -1.66 1.14 0.145 -1.10 2.20 0.615 -1.12 1.49 0.454 

rs2338104 -0.40 0.77 0.609 0.21 1.30 0.872 0.71 0.99 0.473 

rs2954029 -0.07 0.77 0.932 0.82 1.19 0.491 -0.45 1.01 0.657 

rs2967605 0.28 0.99 0.778 2.32 1.41 0.098 -1.22 1.18 0.303 

rs3135506 2.04 1.63 0.211 1.29 2.28 0.573 1.49 1.43 0.298 

rs3764261 -0.12 0.83 0.886 -0.70 1.24 0.575 -0.27 1.07 0.798 

rs3890182 1.92 1.19 0.108 1.19 1.76 0.500 -1.11 1.99 0.578 

rs4149268 -0.63 0.79 0.426 1.38 1.21 0.255 -0.31 1.07 0.772 

rs4775041 0.34 0.84 0.683 1.96 1.66 0.240 0.62 1.23 0.617 

rs6102059 -1.13 0.85 0.184 -0.19 1.11 0.867 2.61 1.06 0.014 

rs693 -1.08 0.89 0.225 -0.76 1.57 0.627 -0.32 1.18 0.786 

rs754523 -0.30 0.82 0.719 0.44 1.38 0.749 0.88 1.13 0.433 

rs7679 -0.63 1.00 0.529 8.42 2.88 0.003 0.97 1.55 0.532 

rs780094 -1.03 0.77 0.182 -1.51 1.51 0.317 -0.62 1.07 0.562 

rs9989419 -1.47 0.78 0.061 -1.84 1.16 0.114 -0.98 1.03 0.339 
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Appendix Table U.  Gene-smoking interaction results for LDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 

SNPxSmoking Interaction 
Non-Hispanic Blacks 

SNPxSmoking Interaction 
Mexican Americans 

SNPxSmoking Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -4.62 2.90 0.111 -2.28 4.69 0.627 4.45 4.70 0.344 

rs12654264 3.53 2.30 0.125 -0.32 3.49 0.927 1.26 3.45 0.714 

rs1501908 2.28 2.30 0.322 -3.71 3.31 0.263 1.17 3.65 0.748 

rs174547 -2.13 2.43 0.381 7.38 5.67 0.194 -0.53 3.05 0.862 

rs1748195 -0.78 2.37 0.742 -2.69 3.44 0.433 -2.84 3.08 0.356 

rs1883025 -2.87 2.57 0.265 2.90 3.34 0.386 0.63 3.36 0.852 

rs2156552 4.22 2.94 0.151 -4.67 7.78 0.548 -1.07 5.46 0.844 

rs2197089 -0.23 2.17 0.914 0.36 4.02 0.929 3.53 3.08 0.252 

rs2271293 3.39 3.34 0.310 -10.53 5.87 0.073 0.76 4.50 0.867 

rs2338104 4.73 2.25 0.035 -5.60 3.58 0.118 -2.84 3.12 0.363 

rs2954029 -1.13 2.20 0.609 1.33 3.46 0.702 2.52 3.11 0.418 

rs2967605 4.87 2.86 0.089 -4.07 3.97 0.306 -2.33 3.74 0.533 

rs3135506 -0.64 4.72 0.892 -3.73 6.60 0.572 3.33 4.57 0.466 

rs3764261 2.54 2.41 0.291 2.67 3.49 0.444 5.95 3.37 0.078 

rs3890182 -6.33 3.53 0.073 -7.92 4.99 0.113 -0.03 6.22 0.997 

rs4149268 -5.09 2.32 0.028 -2.76 3.40 0.417 -2.29 3.29 0.488 

rs4775041 4.30 2.44 0.078 3.32 4.61 0.472 -0.55 3.80 0.884 

rs6102059 0.70 2.44 0.775 1.68 3.14 0.592 -0.08 3.37 0.981 

rs693 2.22 2.63 0.398 1.04 4.66 0.823 -0.76 3.70 0.838 

rs754523 0.35 2.41 0.885 -6.54 4.00 0.102 -1.62 3.53 0.646 

rs7679 1.49 2.89 0.606 9.89 8.45 0.242 3.46 4.96 0.486 

rs780094 1.19 2.23 0.594 -0.02 4.14 0.996 -1.55 3.37 0.646 

rs9989419 1.99 2.29 0.384 -3.06 3.29 0.354 4.19 3.20 0.191 
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Appendix Table V.  Gene-smoking interaction results for transformed triglyceride levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 

SNPxSmoking Interaction 
Non-Hispanic Blacks 

SNPxSmoking Interaction 
Mexican Americans 

SNPxSmoking Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -0.037 0.020 0.387 -0.032 0.033 0.457 -0.001 0.030 0.360 

rs12654264 0.017 0.016 0.926 -0.001 0.023 0.267 -0.002 0.020 0.346 

rs1501908 -0.018 0.016 0.728 -0.039 0.022 0.219 -0.014 0.023 0.953 

rs174547 0.060 0.016 0.318 0.067 0.037 0.700 0.068 0.020 0.058 

rs1748195 0.073 0.016 0.077 0.020 0.023 0.700 0.053 0.019 0.517 

rs1883025 -0.032 0.018 0.766 -0.001 0.023 0.527 -0.002 0.022 0.237 

rs2156552 0.016 0.020 0.789 -0.005 0.053 0.310 -0.035 0.036 0.189 

rs2197089 0.024 0.015 0.675 0.016 0.027 0.849 0.037 0.019 0.353 

rs2271293 0.000 0.024 0.868 0.077 0.042 0.294 0.002 0.030 0.558 

rs2338104 0.000 0.015 0.369 0.023 0.024 0.542 0.023 0.020 0.263 

rs2954029 0.048 0.015 0.584 -0.003 0.023 0.300 0.045 0.020 0.093 

rs2967605 0.049 0.020 0.273 0.011 0.026 0.042 0.020 0.022 0.409 

rs3135506 0.116 0.032 0.374 0.169 0.043 0.169 0.111 0.028 0.317 

rs3764261 0.002 0.016 0.483 -0.024 0.024 0.403 0.024 0.021 0.487 

rs3890182 -0.023 0.024 0.796 -0.021 0.033 0.441 -0.067 0.036 1.000 

rs4149268 -0.026 0.016 0.683 0.015 0.023 0.852 -0.017 0.021 0.467 

rs4775041 -0.009 0.017 0.317 0.062 0.031 0.774 0.009 0.025 0.861 

rs6102059 -0.006 0.017 0.469 -0.011 0.021 0.785 0.029 0.022 0.022 

rs693 -0.004 0.016 0.849 -0.073 0.029 0.036 -0.019 0.022 0.558 

rs754523 0.022 0.016 0.725 -0.048 0.027 0.104 0.030 0.021 0.372 

rs7679 0.031 0.020 0.845 0.004 0.052 0.700 0.004 0.031 0.026 

rs780094 0.049 0.016 0.975 -0.005 0.028 0.552 0.044 0.020 0.236 

rs9989419 -0.005 0.016 0.099 0.003 0.022 0.547 0.026 0.021 0.165 
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Appendix Table W.  Gene-vitamin A interaction results for HDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitA Interaction 

Non-Hispanic Blacks 
SNPxVitA Interaction 

Mexican Americans 
SNPxVitA Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -0.025 0.035 0.471 -0.023 0.056 0.684 0.007 0.046 0.873 

rs12654264 -0.036 0.026 0.174 0.014 0.039 0.717 -0.018 0.031 0.567 

rs1501908 0.046 0.026 0.075 0.019 0.037 0.610 -0.007 0.035 0.832 

rs174547 0.015 0.028 0.598 -0.029 0.050 0.563 0.003 0.031 0.924 

rs1748195 0.087 0.027 1.16E-03 0.096 0.039 0.014 0.014 0.030 0.642 

rs1883025 -0.052 0.029 0.074 -0.080 0.037 0.032 0.000 0.033 0.996 

rs2156552 -0.022 0.037 0.558 -0.081 0.099 0.414 -0.027 0.061 0.656 

rs2197089 0.009 0.026 0.739 -0.006 0.044 0.888 0.003 0.031 0.911 

rs2271293 -0.066 0.040 0.104 -0.146 0.070 0.037 -0.071 0.046 0.121 

rs2338104 0.009 0.026 0.719 -0.041 0.040 0.307 -0.015 0.031 0.620 

rs2954029 -0.003 0.025 0.893 0.008 0.036 0.826 0.017 0.030 0.585 

rs2967605 -0.043 0.032 0.183 -0.056 0.047 0.233 0.037 0.035 0.280 

rs3135506 -0.029 0.052 0.582 0.070 0.072 0.331 -0.093 0.040 0.019 

rs3764261 -0.043 0.027 0.114 -0.045 0.039 0.245 0.004 0.032 0.907 

rs3890182 -0.020 0.039 0.607 -0.019 0.060 0.749 0.047 0.057 0.408 

rs4149268 -0.038 0.027 0.163 0.006 0.037 0.871 -0.066 0.032 0.040 

rs4775041 0.008 0.028 0.776 0.047 0.052 0.361 0.013 0.041 0.745 

rs6102059 -0.028 0.028 0.312 -0.023 0.036 0.526 0.035 0.035 0.314 

rs693 -0.032 0.026 0.212 0.031 0.046 0.496 -0.026 0.032 0.418 

rs754523 -0.028 0.028 0.320 0.096 0.047 0.039 -0.016 0.033 0.618 

rs7679 0.027 0.034 0.423 -0.003 0.085 0.970 -0.057 0.041 0.164 

rs780094 0.026 0.026 0.307 0.022 0.047 0.646 0.005 0.031 0.877 

rs9989419 -0.036 0.027 0.177 -0.005 0.036 0.890 -0.021 0.032 0.503 
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Appendix Table X.  Gene-vitamin A interaction results for LDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitA Interaction 

Non-Hispanic Blacks 
SNPxVitA Interaction 

Mexican Americans 
SNPxVitA Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 0.002 0.102 0.982 0.342 0.155 0.027 0.583 0.147 7.65E-05 

rs12654264 0.056 0.078 0.471 0.048 0.108 0.659 -0.130 0.098 0.185 

rs1501908 0.071 0.078 0.365 -0.081 0.107 0.449 -0.211 0.106 0.047 

rs174547 -0.068 0.084 0.421 0.307 0.176 0.081 -0.102 0.093 0.269 

rs1748195 0.043 0.082 0.606 -0.267 0.112 0.018 0.000 0.091 1.000 

rs1883025 0.181 0.087 0.038 0.013 0.112 0.908 0.001 0.104 0.994 

rs2156552 -0.227 0.110 0.040 -0.052 0.278 0.853 -0.070 0.181 0.699 

rs2197089 -0.004 0.076 0.961 0.132 0.123 0.283 -0.136 0.095 0.155 

rs2271293 -0.075 0.125 0.546 0.024 0.184 0.894 -0.103 0.135 0.443 

rs2338104 -0.037 0.078 0.636 -0.005 0.109 0.962 -0.201 0.097 0.038 

rs2954029 -0.010 0.072 0.885 -0.031 0.107 0.770 0.099 0.090 0.275 

rs2967605 0.063 0.092 0.494 -0.005 0.135 0.973 -0.123 0.101 0.223 

rs3135506 0.255 0.151 0.093 -0.502 0.225 0.026 -0.132 0.119 0.268 

rs3764261 -0.033 0.081 0.679 0.141 0.110 0.203 0.031 0.099 0.755 

rs3890182 -0.008 0.122 0.947 -0.268 0.169 0.113 0.199 0.182 0.274 

rs4149268 0.146 0.080 0.068 -0.167 0.099 0.093 0.025 0.099 0.803 

rs4775041 -0.012 0.081 0.886 0.065 0.141 0.644 0.107 0.128 0.403 

rs6102059 -0.005 0.081 0.952 0.110 0.102 0.282 -0.029 0.107 0.785 

rs693 0.146 0.079 0.066 -0.133 0.135 0.327 0.255 0.101 0.012 

rs754523 0.011 0.083 0.892 -0.095 0.137 0.487 -0.150 0.104 0.150 

rs7679 0.055 0.103 0.594 -0.562 0.305 0.066 0.020 0.129 0.875 

rs780094 -0.044 0.079 0.577 -0.088 0.132 0.505 0.162 0.100 0.106 

rs9989419 0.060 0.079 0.449 -0.028 0.099 0.776 0.110 0.096 0.250 
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Appendix Table Y.  Gene-vitamin A interaction results for transformed triglyceride levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitA Interaction 

Non-Hispanic Blacks 
SNPxVitA Interaction 

Mexican Americans 
SNPxVitA Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -0.0003 0.0013 0.789 0.0001 0.0017 0.971 0.0037 0.0020 0.071 

rs12654264 0.0009 0.0009 0.330 0.0001 0.0012 0.943 -0.0011 0.0014 0.430 

rs1501908 0.0005 0.0009 0.634 -0.0017 0.0011 0.128 -0.0012 0.0015 0.401 

rs174547 0.0001 0.0010 0.905 -0.0005 0.0019 0.781 0.0013 0.0013 0.312 

rs1748195 0.0003 0.0010 0.797 -0.0006 0.0012 0.584 -0.0001 0.0013 0.919 

rs1883025 0.0015 0.0011 0.163 0.0010 0.0012 0.412 0.0003 0.0014 0.828 

rs2156552 -0.0022 0.0013 0.097 0.0033 0.0030 0.278 0.0001 0.0026 0.976 

rs2197089 0.0001 0.0009 0.950 -0.0008 0.0014 0.554 0.0006 0.0013 0.648 

rs2271293 0.0033 0.0015 0.027 -0.0024 0.0021 0.252 0.0000 0.0020 0.986 

rs2338104 0.0018 0.0009 0.056 0.0008 0.0012 0.527 0.0007 0.0013 0.618 

rs2954029 0.0002 0.0009 0.800 -0.0003 0.0012 0.796 -0.0003 0.0013 0.847 

rs2967605 0.0008 0.0012 0.487 0.0037 0.0014 0.009 -0.0029 0.0015 0.046 

rs3135506 -0.0048 0.0019 0.011 0.0007 0.0024 0.766 0.0027 0.0016 0.102 

rs3764261 0.0009 0.0010 0.363 -0.0009 0.0012 0.419 -0.0030 0.0014 0.036 

rs3890182 -0.0011 0.0014 0.450 0.0020 0.0018 0.275 0.0013 0.0026 0.616 

rs4149268 0.0000 0.0010 0.990 0.0008 0.0011 0.444 0.0019 0.0014 0.194 

rs4775041 -0.0001 0.0010 0.959 0.0009 0.0015 0.536 -0.0006 0.0018 0.716 

rs6102059 -0.0005 0.0010 0.606 0.0014 0.0011 0.194 0.0002 0.0016 0.877 

rs693 0.0028 0.0009 2.16E-03 0.0000 0.0014 0.975 0.0009 0.0013 0.506 

rs754523 -0.0005 0.0010 0.591 -0.0022 0.0014 0.114 -0.0022 0.0014 0.110 

rs7679 0.0000 0.0012 0.976 0.0015 0.0026 0.548 -0.0004 0.0018 0.841 

rs780094 0.0000 0.0009 0.990 0.0005 0.0015 0.751 0.0024 0.0014 0.078 

rs9989419 0.0022 0.0010 0.027 0.0001 0.0011 0.921 -0.0001 0.0014 0.935 

 



206 

 

Appendix Table Z.  Gene-vitamin E interaction results for HDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitE Interaction 

Non-Hispanic Blacks 
SNPxVitE Interaction 

Mexican Americans 
SNPxVitE Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 1.834 1.376 0.183 -5.272 3.026 0.082 -0.921 2.070 0.657 

rs12654264 -1.334 1.108 0.229 -0.414 2.166 0.848 1.020 1.383 0.461 

rs1501908 0.247 1.102 0.823 -1.320 2.061 0.522 -0.045 1.455 0.975 

rs174547 0.575 1.138 0.613 -0.037 3.297 0.991 -2.094 1.333 0.116 

rs1748195 3.279 1.063 2.06E-03 0.676 2.130 0.751 -1.498 1.329 0.260 

rs1883025 -0.531 1.243 0.669 2.644 2.134 0.216 1.762 1.383 0.203 

rs2156552 -1.519 1.430 0.288 2.041 4.586 0.656 -1.742 2.631 0.508 

rs2197089 -2.016 1.077 0.061 -1.881 2.494 0.451 2.712 1.243 0.029 

rs2271293 0.252 1.702 0.882 4.049 4.292 0.346 -2.066 2.038 0.311 

rs2338104 0.953 1.077 0.376 -2.549 2.112 0.228 0.105 1.313 0.936 

rs2954029 -0.663 1.057 0.530 2.050 2.107 0.331 -2.002 1.352 0.139 

rs2967605 -1.089 1.355 0.422 2.425 2.506 0.333 0.848 1.534 0.580 

rs3135506 -5.433 2.208 0.014 -2.779 4.517 0.539 -5.204 1.844 0.005 

rs3764261 -0.834 1.133 0.462 0.303 2.351 0.897 -0.345 1.441 0.811 

rs3890182 0.429 1.644 0.794 -5.264 3.215 0.102 6.950 2.409 0.004 

rs4149268 0.823 1.135 0.468 0.177 2.001 0.930 0.668 1.428 0.640 

rs4775041 -0.088 1.155 0.939 -1.690 2.976 0.570 -0.153 1.674 0.927 

rs6102059 1.169 1.161 0.314 1.435 1.872 0.444 0.924 1.443 0.522 

rs693 -1.092 1.093 0.318 1.502 2.640 0.569 0.396 1.441 0.784 

rs754523 -0.944 1.112 0.396 1.108 2.536 0.662 -0.230 1.422 0.872 

rs7679 1.210 1.364 0.375 13.123 5.165 0.011 -4.159 1.940 0.032 

rs780094 2.547 1.046 0.015 1.438 2.791 0.606 -0.054 1.376 0.969 

rs9989419 0.277 1.086 0.799 -2.350 1.998 0.240 0.052 1.420 0.971 
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Appendix Table AA.  Gene-vitamin E interaction results for LDL-C levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitE Interaction 

Non-Hispanic Blacks 
SNPxVitE Interaction 

Mexican Americans 
SNPxVitE Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -3.284 3.797 0.387 17.961 7.515 0.017 17.617 6.225 0.005 

rs12654264 -3.327 3.009 0.269 1.072 5.676 0.850 -5.377 4.087 0.189 

rs1501908 1.125 3.090 0.716 -10.704 5.068 0.035 -0.512 4.211 0.903 

rs174547 -1.971 3.193 0.537 -2.235 8.043 0.781 3.754 3.793 0.323 

rs1748195 -4.179 3.030 0.168 -1.313 5.458 0.810 2.922 3.824 0.445 

rs1883025 -1.795 3.538 0.612 -6.115 5.332 0.252 -11.222 3.842 0.004 

rs2156552 -6.600 3.897 0.091 -3.780 11.963 0.752 -1.331 7.376 0.857 

rs2197089 1.116 3.049 0.714 7.244 6.460 0.262 -3.602 3.743 0.336 

rs2271293 4.031 4.879 0.409 -2.141 10.145 0.833 -9.130 5.616 0.104 

rs2338104 -0.165 3.005 0.956 -5.746 5.468 0.294 -3.743 3.835 0.329 

rs2954029 3.404 2.853 0.233 -4.995 5.378 0.353 4.473 3.866 0.248 

rs2967605 4.613 3.778 0.222 1.328 6.429 0.836 1.950 4.215 0.644 

rs3135506 5.830 6.240 0.350 20.031 11.789 0.090 6.106 5.532 0.270 

rs3764261 0.507 3.192 0.874 2.744 5.723 0.632 -11.030 4.174 0.008 

rs3890182 2.795 4.706 0.553 5.048 7.974 0.527 -9.546 7.013 0.174 

rs4149268 -0.035 3.138 0.991 -7.470 5.167 0.149 -3.401 4.027 0.399 

rs4775041 -4.510 3.128 0.150 -2.991 7.275 0.681 -2.509 4.684 0.592 

rs6102059 -1.702 3.163 0.591 5.333 4.675 0.254 -2.413 4.312 0.576 

rs693 11.105 3.039 2.67E-04 10.875 6.878 0.114 22.708 4.595 8.94E-07 
rs754523 -1.758 3.123 0.574 7.625 6.429 0.236 1.332 4.306 0.757 

rs7679 -4.225 3.833 0.270 -6.495 12.818 0.612 -2.828 5.615 0.615 

rs780094 -2.484 2.923 0.396 -19.277 6.766 0.004 -1.304 4.068 0.749 

rs9989419 1.584 2.962 0.593 -2.435 5.069 0.631 -9.543 4.104 0.020 
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Appendix Table BB.  Gene-vitamin E interaction results for transformed triglyceride levels, adjusted for age and sex. 

SNP 
Non-Hispanic Whites 
SNPxVitE Interaction 

Non-Hispanic Blacks 
SNPxVitE Interaction 

Mexican Americans 
SNPxVitE Interaction 

Beta SE P-value Beta SE P-value Beta SE P-value 

rs11206510 -0.1483 0.0459 1.27E-03 0.0877 0.0829 0.290 0.1326 0.0735 0.071 

rs12654264 0.0096 0.0374 0.797 0.1272 0.0585 0.030 0.1081 0.0491 0.028 

rs1501908 0.0550 0.0376 0.144 0.0486 0.0565 0.390 -0.0160 0.0510 0.754 

rs174547 -0.0500 0.0387 0.196 0.1363 0.0885 0.124 0.0869 0.0472 0.066 

rs1748195 -0.0117 0.0367 0.751 0.0387 0.0577 0.502 0.0326 0.0476 0.494 

rs1883025 -0.0067 0.0425 0.875 -0.0396 0.0586 0.499 -0.0577 0.0487 0.236 

rs2156552 0.0140 0.0483 0.773 -0.0424 0.1228 0.730 0.1495 0.0935 0.110 

rs2197089 0.0222 0.0366 0.544 -0.0015 0.0702 0.984 -0.0738 0.0455 0.105 

rs2271293 0.0494 0.0573 0.388 0.0423 0.1154 0.714 0.0888 0.0727 0.222 

rs2338104 -0.0421 0.0368 0.253 0.0580 0.0581 0.319 0.0514 0.0464 0.267 

rs2954029 0.0327 0.0357 0.360 -0.0629 0.0593 0.289 0.0829 0.0477 0.082 

rs2967605 0.0218 0.0460 0.636 -0.0293 0.0690 0.671 0.0321 0.0536 0.550 

rs3135506 0.0456 0.0778 0.558 0.4555 0.1238 2.45E-04 0.1918 0.0641 0.003 

rs3764261 0.0099 0.0394 0.801 -0.0261 0.0640 0.684 -0.1325 0.0509 0.009 

rs3890182 -0.0353 0.0581 0.543 -0.0487 0.0899 0.588 -0.0856 0.0881 0.331 

rs4149268 -0.0470 0.0393 0.232 -0.0101 0.0535 0.850 0.0102 0.0514 0.842 

rs4775041 -0.0223 0.0388 0.566 -0.0552 0.0727 0.448 -0.0911 0.0587 0.121 

rs6102059 -0.0668 0.0394 0.090 -0.0360 0.0519 0.488 0.0611 0.0532 0.251 

rs693 0.1449 0.0355 4.65E-05 -0.0850 0.0703 0.227 0.1238 0.0492 0.012 

rs754523 0.0290 0.0377 0.442 -0.0921 0.0687 0.180 -0.0055 0.0505 0.913 

rs7679 -0.0234 0.0466 0.615 -0.0531 0.1417 0.708 -0.0169 0.0691 0.807 

rs780094 0.0084 0.0356 0.814 -0.0106 0.0753 0.888 0.0324 0.0491 0.510 

rs9989419 0.0202 0.0372 0.586 0.0861 0.0545 0.114 0.0183 0.0500 0.715 
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