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Chapter 1

Introduction

1.1 Background

Given an X-ray image, expert radiologists can diagnose Alzheimer’s from a single look,

while novices can barely guess what the image entails. This ability that expert radiologists

exhibit, the exceptional ability to make judgments with images, is called real-world visual

expertise. Beyond radiology, visual experts play important roles in many domains of our

society, such as airport baggage screening and forensic fingerprint identification. Under-

standing real-world visual expertise has profound theoretical and practical implications.

Theoretically, studying expertise as an exemplary performance of human perception can

provide insights about the general mechanisms of perception. Practically, understanding

expertise can inform us about potential techniques to enhance the development of expertise

in workplaces. Given the significance of this topic, how and why perceptual experts differ

from novices has always been a topic of great interest to cognitive scientists.

Expertise manifests itself in various behaviors. Experts can learn to identify and cate-

gorize new objects in their expertise domain more quickly than novices (Gauthier & Tarr,

1997, 2002; Tanaka, Curran, & Sheinberg, 2005). They can also identify caricatured ob-

jects faster and recognize them with a higher accuracy (Rhodes & McLean, 1990). A hall-

mark of expertise often studied is a phenomenon called the entry-level shift, that novices

are slower in categorizing things at a subordinate level (e.g., Robin or Beagle) than the

so-called basic level (e.g., Bird or Dog), while experts are equally fast in categorizing at

these two levels (K. E. Johnson & Mervis, 1997; Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976; Tanaka & Taylor, 1991). As shown in various expertise hallmarks, including

the entry-level shift phenomenon, visual expertise is mostly revealed at the subordinate

level, e.g., drastic differences were observed between bird experts and novices distinguish-
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ing Nashville Warbler vs. Tennessee Warbler rather than distinguishing bird vs. dog.

Visual expertise is a complex construct. Individuals can perform differently in a visual

task for a host of reasons, including domain-specific experience as well as domain-general

traits such as visual acuity and intelligence quotient (IQ). Given the complexity, visual

expertise has often been measured and studied from various angles. The choice of the

measurement tool often depends on the nature of the study.

One approach to understand expertise is to measure its components and to examine

the relationships among them to uncover the source of performance differences (Richler,

Wilmer, & Gauthier, 2017; Sunday, Donnelly, & Gauthier, 2017; Van Gulick, McGugin, &

Gauthier, 2016). For example, Van Gulick et al. (2016) used non-visual semantic knowl-

edge as a proxy for measure experience and to study how experience contributes to indi-

vidual differences in object recognition. In such studies, it is desirable to have measures

such as a semantic knowledge test that would tap into a specific component or source of

expertise.

Another approach is to understand expertise by modeling the behavior that defines ex-

pertise itself, rather than relating it to other measured constructs. The idea is to describe

and understand how people vary in cognitive mechanisms by instantiating their behav-

iors in cognitive models. One example is to use cognitive or computational models to

mimic the identification, categorization, or recognition behaviors of people with varying

levels of expertise. Although there are successful algorithms outside of Psychology, espe-

cially in Computer Science, to mimic or even to excel human perception (e.g., Krizhevsky,

Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton, 2015), the mechanisms of these

algorithms were often left unaddressed, leaving the mechanisms of perceptual expertise

untapped. In the field of psychology, although the computational approach has rarely

been applied to real-world expertise, it has been studied extensively using artificial stim-

uli with “experts” trained in the laboratory (e.g., Nosofsky, 1992a, 1992b; Nosofsky &

Palmeri, 1997; Palmeri, 1997). For example, Nosofsky and Palmeri (1997) showed that the
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exemplar-based random walk model (EBRW), a model that detailed the cognitive processes

behind speeded multidimensional perceptual classification, could accurately depict classi-

fication responses over the course of training for several tasks. To apply cognitive models

such as EBRW to expertise, a direct measure of the performance on the kind of behavior

that defines expertise is necessary.

Expertise has been measured indirectly using different methods. Some tasks focus on

the perceptual part of expertise by having participants judge consecutive images in a do-

main as the same or different (e.g., Gauthier & Tarr, 2002; Gauthier, Skudlarski, Gore, &

Anderson, 2000; Hagen, Vuong, Scott, Curran, & Tanaka, 2014; Maurer, Blau, Yoncheva,

& McCandliss, 2010). Some tasks focus on the memory part of expertise by having partic-

ipants recognize objects presented earlier (Duchaine & Nakayama, 2006; McGugin, Rich-

ler, Herzmann, Speegle, & Gauthier, 2012). To be able to model the behavior that defines

expertise, and to complement other developed measures, a direct expertise measure was

developed in this project.

The key questions in expertise modeling are how and why people with varying levels of

expertise differ from each other in behavioral performances such as identification and cat-

egorization. A natural approach to these fundamental questions is to use cognitive models

to understand a hallmark of visual expertise, especially the entry-level shift phenomenon.

Surprisingly, to my knowledge, no work has been done to directly model the cognitive

processes of this expertise hallmark in a real-world setting.

The lack of work on this direction is understandable for several reasons (Shen & Palmeri,

2015). Modeling performance differences seen in real-world expertise has always been

challenging, due to the complexity of cognitive models and the extra challenge when in-

corporating individual differences in the models (M. D. Lee & Wagenmakers, 2014). Such

modeling often requires a big sample of participants, which causes logistical difficulty

in lab settings, where participants are often recruited locally. Also, the behavioral task

that yields the entry-level shift phenomenon, the speeded category verification task (K.
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E. Johnson & Mervis, 1997; Rosch et al., 1976; J. W. Tanaka & Taylor, 1991), does not

immediately relate to any cognitive models.

In this project, participants with varying levels of expertise were recruited online across

the U.S. The experiments were also conducted through interactive online web pages. On-

line experiments can easily solve the logistical difficulty of arranging many participants.

The only caveat is that it is challenging to engage participants for longer than 10 to 20

minutes, while they are in potentially distracting real-world settings such as at home or

at work. In lab settings, participants often have a dedicated period of time, sometimes

even hours, in a minimally distracting environment. This inevitably changes the nature of

the experimental data set from rich data with few participants to sparse data with many

participants.

Sparse data with many participants are challenging to fit with complex cognitive mod-

els. A well-known dilemma in such situations is that modeling only group averages can

fail to detect meaningful individual differences, while individual data may be too noisy

to provide sufficient power for modeling. In this project, recently developed hierarchical

modeling techniques were employed within a Bayesian framework to resolve this issue, in

which both group and individual differences were modeled simultaneously (B. Carpenter

et al., 2016; Gelman & Hill, 2007; M. D. Lee & Webb, 2005; Okada & Lee, 2016; Rouder

& Lu, 2005; Wiecki, Sofer, & Frank, 2013). In the hierarchical modeling approach, indi-

viduals are assumed as samples from a certain population, with model parameters defined

at both group and individual level. Hierarchical modeling combines the strength of group

modeling and individual modeling. It could cancel meaningless noise while preserving

meaningful individual differences, resolving the power issue by sharing information across

multiple levels (I. G. Kreft, Kreft, & Leeuw, 1998; M. D. Lee, 2011; Shiffrin, Lee, Kim,

& Wagenmakers, 2008). The behavioral differences were thus modeled using Bayesian

hierarchical techniques.

Many models have been developed for categorization (Nosofsky, 1984, 1986; Nosofsky
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& Palmeri, 1997; J. D. Smith & Minda, 2000). However, no cognitive models have been

specifically developed for the cognitive process in the speeded category verification task.

The task is not to categorize an object, but to verify whether an image contains a given

object (K. E. Johnson & Mervis, 1997; Rosch et al., 1976; Tanaka & Taylor, 1991). How-

ever, the task is a speeded decision task in nature, the responses and response times (RT)

of which have been successfully depicted using the sequential sampling models, a class

of models that has been widely applied to understand speeded decision-making behaviors

(S. D. Brown & Heathcote, 2005; Nosofsky & Palmeri, 1997; Ratcliff, 1978; Ratcliff &

Smith, 2004; Ratcliff & Starns, 2013). The sequential sampling models were thus used

in this project to model the speeded category-verification behavior and to deconstruct the

underlying cognitive process into psychological components. In particular, the Drift Diffu-

sion model was used given its excellence in describing the decision processes in a host of

cognitive tasks (Ratcliff & Smith, 2004; Ratcliff & Starns, 2013). This fresh perspective

of treating speeded category verification as speeded decision-making brought the strength

of decision-making models to the field of expertise. In particular, performance differences

in the task can be deconstructed into differences in psychological processes such as bias,

evidence accumulation rate, and decision boundary.

The sequential sampling models can offer insights about the differences in psycholog-

ical processes that give rise to expertise behaviors. For example, experts could be faster

than novices because of faster evidence accumulation, shorter non-decision time, or a com-

bination of both. The question then is: what kinds of individual differences can give rise

to these psychological differences? Are participants with higher level of expertise faster

in evidence accumulation because of more differentiated representations, or because of

higher sensitivity to subtle differences between the representations of two similar objects?

To delve deeper into the question, it is necessary to describe the representations under-

lying these psychological differences by mapping out the representations of participants

along the continuum of real-world expertise. The representations can then be used to feed
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into cognitive models to examine whether differences in representations alone can explain

behavioral differences.

Representation is defined differently depending on traditions in the field (Shen & Palmeri,

2016). Models in the field of traditional object recognition often fully describe the hierar-

chy of visual processing, starting from the raw images on the retina, to representation trans-

formations along the visual pathway, to eventual categorization decisions (e.g., Cottrell &

Nguyen, 2005; Palmeri & Cottrell, 2009 for reviews; see Palmeri, Wong, & Gauthier, 2004;

Riesenhuber & Poggio, 2000; Serre, Oliva, & Poggio, 2007; Tong, Joyce, & Cottrell, 2005).

This contrasts with most categorization models that focus on category representations and

decision process, where objects are simply represented as points in a multidimensional

space, leaving out the details of deriving the space dimensions and object locations from

the retinal images (e.g., Hintzman, 1986; Nosofsky, 1988, 1992a; Shepard, 1980).

The representational space might be based on the dimensions that are explicitly manipu-

lated by the experimenter (e.g., Hintzman, 1986; Nosofsky, 1988), or they might be derived

using techniques like multidimensional scaling (MDS; e.g., Nosofsky, 1992a; Shepard,

1980). In MDS-based models, it is assumed that in our mind’s eye, we represent objects as

points located in a multidimensional space. For example, we might represent birds as points

in a bird space with some easy-to-define dimensions such as the color of the feather, the

size of the bird, the length of the beak, as well as some abstract, hard-to-define dimensions.

The mental representations, i.e., the locations of a set of objects in the multidimensional

space, would influence the similarities one observes among the objects (Shepard, 1987).

Using the logic, the mental representations of participants with varying levels of expertise

can be modeled by gathering their similarity ratings among a set of similar-looking objects

in their domain of expertise. The MDS approach has been widely used to uncover hidden

perceptual representations, and the derived mental representation has been successful in ex-

plaining various cognitive behaviors such as identification, categorization, and recognition

(e.g., Borg & Groenen, 2005; T. F. Cox & Cox, 2000; Kruskal, 1964; Nosofsky, 1992a;
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Shepard, 1962, 1987). But so far the success has been mostly limited to artificial stimuli.

There has been limited effort to understand the representations underlying real-world

expertise using the MDS approach, due to both logistical difficulty and technical challenges

(Bocci & Vichi, 2011; Carroll & Chang, 1970; Okada & Lee, 2016; Takane, Young, & De

Leeuw, 1977). Some work has used this approach to understand how superordinate-level

categories are structured and how those vary with different kinds of expertise (Boster &

Johnson, 1989; Medin, Lynch, Coley, & Atran, 1997). For example, Boster and Johnson

(1989) examined how fish experts and novices represented fish species differently in their

perceptual space and found that experts represented not only morphological, but also func-

tional information, while novices represented only morphological information of the fish

species. Some recent work used MDS to examine the representations of rocks. Although

real-world stimuli were used, these studies looked at novices learning those objects, not

experts (Meagher, Carvalho, Goldstone, & Nosofsky, 2017; Nosofsky, Sanders, Gerdom,

Douglas, & McDaniel, 2017a; Nosofsky, Sanders, Meagher, & Douglas, 2017b).

While it is interesting to understand representation differences across individuals at the

superordinate level, expertise takes action mostly at the subordinate level, as exemplified

in the entry-level shift phenomenon. This calls for a focus on the subordinate level to

understand representation differences along the continuum of real-world expertise, i.e., the

microstructure of expertise.

Unlike many models in cognitive science (Estes & Maddox, 2005; M. D. Lee & Webb,

2005; Shen & Palmeri, 2016), MDS-based models have long embraced the notion of in-

dividual differences (Carroll & Chang, 1970; Takane et al., 1977). In earlier work, MDS-

based models could allow individuals to weight dimensions differently in the representa-

tional space, but individuals were limited to share a single representational space (Carroll

& Chang, 1970; Takane et al., 1977). It was not until recently that MDS-based models

can account for not only quantitative , but also qualitative individual differences (Bocci

& Vichi, 2011; Okada & Lee, 2016). One technique newly-introduced to these models is
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the latent-mixture component, which can be used to identify latent groups of participants

who use qualitatively different cognitive processes, i.e., different representational spaces in

this case (Bocci & Vichi, 2011). Another important advancement is the introduction of the

Bayesian framework, which allows stable parameter estimation in complex models with

a latent-mixture component (Okada & Lee, 2016). These advancements laid the ground-

work for us to study how representations vary along the continuum of real-world visual

expertise, enabling us to test whether individuals differ from each other quantitatively in

attention weights, qualitatively in representational space, or both.

Representation mediates the decisions we make with regard to objects, such as identifi-

cation, categorization, and recognition. Cognitive models with the assumption that objects

are represented in a multidimensional space have been successful in explaining various

behavioral patterns. For example, identification, a commonly studied behavior in which

participants assign a unique response to each stimulus, has been successfully explained

using the MDS-choice model (Nosofsky, 1985; Shepard, 1957, 1958), a special case of

the classic similarity choice model (SCM) proposed by Shepard (1957) and Luce (1963).

However, representation differences alone may not be able to explain performance differ-

ences. Nosofsky and Palmeri (1997) trained participants to identify or categorize a set of

arbitrarily grouped color chips that varied in saturation and brightness. Based on the MDS

solutions derived from identification data, the generalized context model (GCM; Nosofsky,

1986), a popular similarity-based model of categorization, can nicely describe the catego-

rization data. It was found that other parameters in GCM were also necessary to explain

the behavior, such as increased discriminability as well as decreased guessing.

Some researchers in the field of face perception also investigated expertise using an

MDS framework. Valentine (Valentine, 1991) proposed the hypothesis that a unified MDS-

based framework can account for a variety of face perception phenomena, which was ver-

ified in several studies (e.g., K. Lee, Byatt, & Rhodes, 2000; Papesh & Goldinger, 2010).

One phenomenon in face perception that relates to expertise is the other-race effect, that
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is, we recognize own-race faces more easily than faces of a less familiar race. This better

performance with own-race faces can be viewed as a form of visual expertise (Tanaka &

Farah, 2003). Using MDS analysis, Byatt and Rhodes (2004) found that for Caucasian par-

ticipants, Chinese faces were more densely clustered in the multidimensional face space

than Caucasian faces. Importantly, using the GCM as the cognitive process model, they

predicted the behavioral other-race effect from the differential representations of the Chi-

nese and Caucasian faces.

These examples in face perception pointed out a promising direction but fell short of

depicting real-world expertise for several reasons. The biggest issue is that individual dif-

ferences were not considered in any of the studies. Only coarse group differences were

addressed, assuming that experts and novices were homogeneous within each group. How-

ever, many researchers have highlighted the dangers of omitting individual differences

(Ashby, Maddox, & Lee, 1994; Estes, 1956; Estes & Maddox, 2005; Shen & Palmeri,

2016). Often only one group of experts were contrasted with one group of novices, study-

ing only two or a few groups, without a discussion of the fine gradient along the expertise

continuum. In addition, the range of experience/expertise is often rather limited within

the expertise continuum. In the Byatt and Rhodes (2004) study, Caucasian participants

were assumed “experts” in identifying Caucasian faces and “novices” in identifying Chi-

nese faces. While many Caucasian participants might be “experts” in identifying Caucasian

faces given our remarkable ability in face recognition, they may not be real “novices” in

identifying Chinese faces given the high similarity between Caucasian and Chinese faces.

These issues were addressed by studying experts with a wide range of expertise and mod-

eling their expertise behaviors like identification and categorization within a Bayesian hi-

erarchical framework that takes into account both group and individual differences.
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1.2 Outline

This dissertation describes a series of experimental and modeling work designed to

investigate the mechanisms underlying real-world visual expertise. I approached these aims

by studying the behaviors of bird watchers with varying levels of birding expertise. Bird

watching was chosen as the domain to study for several reasons (Shen, Mack, & Palmeri,

2014). There are numerous bird watchers who have a keen interest in science and are

willing to participate in research. This makes it easy to recruit bird watchers with a wide

range of expertise. Second, birding is by its very nature an identification and categorization

task. Expert birders stand out from novices because of their ability to accurately and rapidly

categorize birds seen at a glance at the subordinate level. Thus birding is a domain in

which scientific significance and real world interest perfectly overlap. Last but not least,

birding domain has been widely used to inform research on expertise and object recognition

(Gauthier et al., 2000; K. E. Johnson & Mervis, 1997; Tanaka & Taylor, 1991). These

seminal studies laid groundwork for us to understand visual expertise theoretically.

Three key aims were addressed. First, individuals were lined up along a continuum

from novice to intermediate to expert by establishing a direct measure of expertise. Sec-

ond, the dynamics behind an expertise hallmark, the entry-level shift phenomenon, were

investigated using the sequential sampling models to uncover the underlying psychologi-

cal components. Third, the underlying representation of expertise was modeled using the

MDS technique in a Bayesian framework to map out representation differences along the

expertise continuum. The role of identification was examined by modeling the behavior

based on the MDS solutions.

All participants were recruited and tested online, which resolved the logistical difficulty

of recruiting real-world experts in lab settings. Once participants were recruited, their ex-

pertise levels were measured using a bird expertise test that was newly developed based

on the kind of task that defines bird expertise – bird identification. Participants were then

invited to complete the speeded category-verification task, in which they verified the cat-
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egories of objects at different levels of abstraction. The response time and choice data

were modeled using the sequential sampling models to deconstruct the performance differ-

ences into differences in constituent psychological processes. Participants then completed

a similarity judgment task, in which they were asked to judge the similarity of bird pairs.

The similarity ratings were used to derive participants’ mental representations of the bird

species. I analyzed how their representations varied along the continuum of expertise, ei-

ther quantitatively, qualitatively, or both. Next, participants were invited to participate in

further behavioral tasks, in this case an identification task. Representations derived from

the MDS framework were used to predict participants’ performances, to test whether their

representational differences could alone account for their behavioral differences, or other

psychological factors like overall sensitivity were also necessary in the prediction.

In summary, I modeled the dynamics and representations underlying perceptual ex-

pertise, focusing on where expertise takes action, the subordinate level. In modeling the

dynamics of expertise, I examined how individual performance differs along the expertise

continuum, and what psychological components give rise to the performance differences.

In modeling the representations of expertise, I investigated how individuals differ from each

other in representing objects at the subordinate level, and how their representations relate to

their performance. Together, these modeling work provided insights into the dynamics and

representations of expertise, proposing a coherent computational framework of real-world

visual expertise.
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Chapter 2

Measuring Perceptual Expertise

2.1 Introduction

A prerequisite for almost any expertise-relevant study is a valid and reliable measure of

the expertise under study. In perceptual expertise related research, participants’ identifica-

tion ability has been extensively used to predict changes in behavioral or neural markers,

such as response time, accuracy, and brain activation (e.g., Gauthier & Tarr, 2002; Gauthier

et al., 2000; Hagen et al., 2014). Various methods such as self-report and indirect quan-

tifications of expertise have been used in these studies to differentiate expert and novice

participants. However, there have been limited attempts to develop a valid and reliable

direct measure of the identification ability.

Some earlier studies used self-report or peer nomination (Tanaka & Taylor, 1991).

These measures are easy to carry out. But self-report is known to be unreliable (Ericsson,

2006, 2009), and no numeric quantification on an interval scale could be obtained from

such measures. In more recent studies, different tasks have been developed to quantify per-

ceptual expertise with higher precision, focusing on various aspects of skilled performance.

One class of tasks, matching tasks, focuses on the “perceptual” part of perceptual expertise.

Such tasks include the same-different task, the one-back task etc. (e.g., Gauthier & Tarr,

2002; Gauthier et al., 2000; Hagen et al., 2014; Maurer et al., 2010). In the same-different

task, participants judge whether two sequentially presented images are of the same category

or not. In the one-back task, images are presented one at a time and participants are asked

to judge whether consecutive images represent the same category or not. In these matching

tasks, experts perform better on images from their domain of expertise than novices. But

someone without domain knowledge can also perform well simply because of a keen eye

for details.
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Another genre of measures focuses on perceptual memory as an index of perceptual

expertise. For example, modeled after the Cambridge Face Memory task (Duchaine &

Nakayama, 2006), the Vanderbilt Expertise Task (VET; McGugin et al., 2012) uses eight

different object categories to measure visual expertise. On each block of trials, participants

are asked to study one exemplar from each of six different species/models. In the case of

bird expertise, they first study six different bird species. On each following test trial within

that block, the task is to select the target species from image triplets, including images of

two distractor species and one target species that is either the same or different exemplar of

one of the six studied species. For example, they might need to pick the Eastern Bluebird

because that was one of the six studied bird species from among distractors like a Stellar’s

Jay or a Blue Jay. Therefore, the relative memory for the domain is deemed as a measure

of expertise.

Perceptual expertise in a domain can lead to improved perceptual discriminability, as

measured by the perceptual matching tasks, and improved perceptual memory, as measured

by the VET. However, these two behavioral markers may or may not be a direct quantifi-

cation of the “expert” part of perceptual expertise. An expert radiologist quickly and ac-

curately identifies particular types of malignant or benign growths in a medical image, but

may not be able to score high on the matching tasks or the VET. Accurately judging images

as the same or similar as a previously studied image could be markers but not measures of

domain expertise per se. To study the consequences of increased domain expertise, experts

should also be quantitatively assessed based on the kind of tasks that distinguish them as

experts in a domain (e.g., Ericsson, 2006, 2009).

The choice of expertise measure for a study can be dictated by the type of problems

being addressed. Some studies seek to understand the source of expertise by relating it to

factors such as experience, IQ, demographic information, and other skill measures (e.g.

Gauthier et al., 2013; Van Gulick et al., 2016). Some studies focus on the impact of

expertise by using expertise to predict behavioral or neural changes such as the holistic
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processing and brain activity in the Fusiform face area (FFA, Gauthier & Tarr, 2002). In

such studies, expertise measures with a clear focus might be preferred over a conglomerate

measure so that the source of variance can be clearly delineated. A different line of stud-

ies, often in lab training settings, examines the identification or categorization performance

that defines expertise, e.g., bird identification for bird experts (Nosofsky, 1987; Nosofsky,

Clark, & Shin, 1989). In such studies, methods like cognitive modeling are often used

to understand expertise. The goal of these studies is not to parse out the variance in the

expertise construct by relating expertise to external factors (those factors other than the

skilled identification or categorization behavior that defines expertise). Rather, the goal is

to understand expertise internally by mapping out how individuals vary in their underlying

psychological processes when performing identification or categorization in their domain

of expertise. To expand such studies from lab training to real-world settings, the prerequi-

site is to develop a measure to directly quantify participants’ identification or categorization

performance in the domain.

This project complements the perceptual expertise research by providing a direct quan-

tification of the “expert” part of perceptual expertise. The measure was developed using

bird expertise as an example domain, because bird expertise is a commonly used and acces-

sible domain to study perceptual expertise, unlike fields like radiology and forensics. The

bird expertise construct was defined as the ability to quickly and accurately identify vari-

ous birds when presented with bird images, because it is the kind of task that distinguishes

people as experts in a domain, i.e., an expert birder quickly and accurately identifies and

categorizes birds perceptually while a novice oftentimes cannot.

The famous “Four Building Blocks” approach (Wilson, 2004) using the item response

theory (IRT; Lord & Novick, 1968), a fundamental paradigm in psychometrics for design-

ing, analyzing, and scoring measurement instruments, was used to develop and optimize

the test. The first building block, the construct map, requires a theoretical definition of the

construct to be mapped out along a range from one extreme to the other. The construct
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map provides motivation and structure for the test. In this case, bird expertise, defined as

the ability to quickly and accurately identify birds, was mapped out along the range from

novice to expert.

The second block, the item design, concerns the realizations of the construct. Given

that the construct was defined as bird identification ability, the measure was implemented

as a bird identification test, where participants identified birds based on the images pro-

vided. Bird identification questions with varying levels of difficulty were designed to tap

into different levels of expertise. The third block, the outcome space, defines how the re-

sponses are scored. In this case, the question response by participants were categorized into

“correct” or “wrong” based on the scoring rubric. Then the last block, the measurement

tool, in the form of psychometric or statistical model, evaluates the scores from the item

responses and determines the validity and reliability of the measurement.

The “Four Building Blocks” approach provides a systematic paradigm to design mea-

surement instruments through iterative processes. Following this guideline, a bird expertise

test was developed, evaluated, and revised through several iterations. Participants’ demo-

graphic information and self-report on their expertise were also collected using a question-

naire before the test. The responses were used to explain and validate the test scores.

Equipped with this direct measure and recruiting tool, one can now seek to understand

the consequences of increased domain performance on the underlying psychological pro-

cesses. In one way, the resulting expertise scores can be used as a predictor to explain

individual differences in behavioral or neural markers of expertise like response time (RT),

accuracy, and brain activation. For example, faster RT in many behavioral tasks is a hall-

mark of perceptual expertise (Palmeri & Cottrell, 2009; Palmeri et al., 2004), one can use

the expertise scores to study how much variance in RT differences can be explained by

birding skills. In addition, one can seek to understand the individual differences theoreti-

cally by using the expertise scores to predict variance in cognitive process parameters, like

the drift-rate parameter in the diffusion model (Smith & Ratcliff, 2004; Vandekerckhove,
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Tuerlinckx, & Lee, 2011; Wagenmakers, 2009) and the lognormal race model (Rouder,

Province, Morey, Gomez, & Heathcote, 2014). The drift-rate parameter in these models

denotes the evidence quality, which was shown to increase with practice (Dutilh, Vandek-

erckhove, Tuerlinckx, & Wagenmakers, 2009). This bird expertise test can also serve as

a recruiting tool for online participants, since many bird watchers are very interested in

testing their bird knowledge and taking part in bird identification challenges.

2.2 Methods

Participants. Bird watchers with all levels of expertise were recruited online. Our

lab contacted birding societies across North America and established a participant pool for

current and future research on expertise. So far, our lab has gathered contact information

for 489 birding societies in North America. For the current project, contact permission

was obtained from each society to be able to email their members for participant recruit-

ment. Bird watchers participated in the studies voluntarily or received a modest amount

of monetary compensation. Participants completed all experiment sessions online on our

website (http://expertise.psy.vanderbilt.edu/). Informed consents were obtained prior to

participation in accordance with the Institutional Review Board at Vanderbilt University.

The questionnaire and the bird expertise test were completed by 741 participants (407 fe-

male, 55 missing due to technical issues) aged between 18 and 85 (56 missing, mean =

47.93, SD = 17.23).

Test Design. The bird expertise construct, defined as the ability to accurately and speed-

ily identify birds, was mapped out along the range from novice to expert (Figure 2.1). In

each question, the task is to identify the bird species out of four numbered label choices

given the bird image presented. Participants responded by pressing the number key that

corresponded to the bird species in the image. The image was removed after five seconds

to ensure that participants did not refer to external sources like birding books or the Inter-

net for consultation. The four choices were presented on the screen until a response was
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made. Only visual presentation was used because the goal was to quantify birder watchers’

visual ability to identify birds rather than to measure their ability to identify birds using all

available information.

The initial set of test items was selected from published references including birding

guide books (Dunn & Alderfer, 2011; Floyd, 2008; Kaufman, 2011) and online resources

such as www.aba.org and www.allaboutbirds.com. Each test item consists of one target

bird and three distractor/foil birds that were chosen based on physical and taxonomical

similarity to the target bird. Lists of common backyard birds were used for the easy and

intermediate identifications; noted bird mis-identifications were used for the more difficult

items, as recommended by expert birders and published books (Dunn & Alderfer, 2011;

Floyd, 2008; Kaufman, 2011).

Certain structure was built into the test to achieve varying levels of difficulty for the

questions. Beginner through intermediate questions have one foil from the same taxonomic

family, one foil from a similar family, and one foil from a dissimilar family; while advanced

through expert questions have one similar foil from the same family, one less similar foil

from the same family, and one foil from a similar family. Beyond these rules, foils with

similar color names were picked to avoid color names being the only cue for correct identi-

fication. For instance, even novices without any knowledge of birds can correctly identify

a Yellow-Breasted Chat by observing the yellow breast of the bird when given foils like

Blue Jay, Red-Winged Blackbird, and White-Breasted Nuthatch. But if Yellow Warbler is

included in the foils, some knowledge about the bird would be required to correctly identify

the target bird. Birds that are geographically widespread across North America were picked

so that participants across the U.S. can perform equally on the test despite their residence

in different areas of the country. Detailed coverage map is listed in the Appendix.

The initial test contains 85 test questions. Easy questions appear relatively early in

the test, while difficult questions appear relatively late in the test, to engage participants

throughout the test. Test questions range from easy identifications, like Blue Jay or Rock Pi-
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Figure 2.1: The construct map of the bird expertise test
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geon, common birds throughout North America, to birds most beginners know, like Tufted

Titmouse or Carolina Wren, common to parks and many backyard bird feeders, to distinc-

tive yet far less common birds, like Pileated Woodpecker or Great Kiskadee, ranging up

to quite difficult identifications that even fairly expert bird watchers can find difficult, like

discriminating Bohemian Waxwing from Cedar Waxwing, Hairy Woodpecker from Downy

Woodpecker, or correctly identifying the many extremely similar Warblers, Sparrows, or

Flycatchers.

Measurement Tool. The IRT models were used to evaluate the test items. One central

question in IRT models concerns the dimensionality assumption. In this test, the underlying

construct is assumed to be one dimension, i.e., birders are seen as progressing from little or

none bird identification ability as a novice to having more such ability as an expert. Experts

can identify various birds more quickly and accurately than novices simply because of the

one-dimensional bird identification ability, rather than a high-dimensional composite of

abilities. However, in some tests, performance is indeed assessed on multiple dimensions.

For example, mathematical questions can be measuring both reading comprehension and

mathematical skills if the questions are not written in plain English. The dimensionality of

a test can be assessed using an exploratory factor analysis (EFA; e.g., Thompson, 2004), a

widely-used statistical technique for dimensionality reduction.

Once the dimensionality is determined, the IRT models can be used to assess the test

items by relating the scored responses to person latent ability and item attributes such as

difficulty, discriminability, and guessing rate. Among the item attributes, discriminability

and guessing rate are optional parameters. The best-fitting model can be selected based

on model selection criteria such as Akaike’s information criterion (AIC; Akaike, 1973),

Bayesian information criterion (BIC; Schwarz, 1978), and the likelihood ratio test (LRT).

The simplest IRT model is the Rasch model, or one-parameter logistic (1PL) item re-

sponse model. In this model, the log odds (logit) of the probability of one person scoring

in a given question is the linear function of that person’s ability minus the difficulty of the

19



question, as shown in the equation below:

log
(

πpi

1−πpi

)
= θp−βi. (2.1)

In this equation, πpi represents person p’s probability of answering question i correctly,

θp represents the ability of person p, and βi represents the difficulty of item i. Ideally,

the bird expertise test should have questions with a range of difficulty spanning the whole

expertise continuum, since the goal is to measure expertise equally well along the whole

continuum. The second model is the two-parameter logistic (2PL) item response model,

which includes an additional item discriminability parameter compared to the Rasch model,

as shown in the equation below:

log
(

πpi

1−πpi

)
= αi(θp−βi). (2.2)

The item discriminability parameter, αi, represents item i’s ability to distinguish high-

ability participants from low-ability participants, with higher α representing higher dis-

criminability of the question. Since the goal of a test is to tell people apart, i.e., to dis-

criminate, higher α is thus more desirable. Negative α would suggest confusing items

for which novices get correct while experts get wrong, which should be removed. The

three-parameter logistic (3PL) item response model includes an additional item guessing

parameter compared to the 2PL model, as shown below:

πpi = γi +(1− γi)
exp[αi(θp−βi)]

1+ exp[αi(θp−βi)]
. (2.3)

The item guessing parameter, γi, represents the probability of participants answer-

ing question i correctly by pure guessing. Since the bird expertise test consists of four-

alternative forced-choice questions, it is reasonable to consider the inclusion of an item

guessing parameter.

The parameter estimates for items were used to guide item selection. For example,
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item discriminability is expected to be positive, which means that experts should have a

higher chance of scoring the items than novices. Negative discriminability could suggest a

confusing question. The distribution of item difficulty was examined to determine whether

participants along the whole expertise continuum were measured equally well. The guess-

ing rate is expected to be around 0.25, while any estimates far off might indicate poor item

design.

Questionnaire. The questionnaire collected participants’ demographic information,

self-reported bird watching experience, and self-rated birding expertise. First, participants

answered questions about their age, gender, and whether they had any neurological con-

ditions that might affect their vision, hearing, memory, or thinking. Next, they answered

questions about their bird watching experience, including the length of their bird watching

experience, relevant training, bird watching frequency, and relevant travel frequency. They

were also asked to rate on a scale of 1 (novice) to 5 (expert) their overall expertise level

as well as specific expertise for nine birding regions covering North America, including:

Eastern US and Eastern Canada, Western US and Western Canada, Arctic, Pelagic (Atlantic

and Pacific), South Texas, Southeast Arizona, South Florida, Mexico and Central America,

and Caribbean. The complete questionnaire can be found in the Appendix.

2.3 Results

The questions were evaluated and revised using IRT through an iterative process. After

constructing the initial test, the test was implemented in JavaScript as a web page and

administered online to bird watchers across the U.S. For the first round, responses from 332

participants (186 female) for a test of 85 questions were analyzed. Eigenvalues estimated in

an EFA using the EQSIRT software (Bentler & Wu, 2012) suggested one general factor: the

eigenvalues for the first 10 factors were 41.50, 3.91, 3.05, 2.39, 2.12, 1.94, 1.82, 1.77, 1.68,

and 1.62, respectively. The ratio of the first to second eigenvalue was 10.618, indicating a

dominant general factor, i.e., one dimensionality in the test.
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Estimates for the difficulty and discriminability parameter were used to select items.

Item discriminability parameters for all items were greater than 0, which suggests that

the items discriminate in favor of the expert group as desired. One item had an extreme

difficulty parameter estimate at -45.91 (“item 2”), which means the item was too easy and

was thus removed. For the other items, difficulty parameter estimates had a mean of -

0.56. On the person side, the participants’ ability was assumed to have a mean of 0. This

suggests that the initial test was outperformed by the participants. In particular, very few

questions tapped into the upper end of the expertise continuum. To cover the entire range

of participants’ ability, more questions were then added. Data from the second version of

the test were collected and modeled using IRT again to select questions. Eventually, 93

questions were kept in the current version of the test (see Appendix). The results below

were based on analysis of responses to the current version of the test.

Model Selection. The dimensionality of the test was assessed using an EFA in the

EQSIRT software. The Eigenvalues suggested one general factor: the eigenvalues for the

first 10 factors were 37.66, 5.76, 2.88, 2.38, 2.10, 1.98, 1.88, 1.71, 1.60, and 1.54, respec-

tively Figure 2.2. The ratio of the first to second eigenvalue was 6.54, indicating a dominant

general factor (Reise, Moore, & Haviland, 2010). Thus it is safe to assume unidimension-

ality in the test, suggesting that the test was measuring one major construct along a single

dimension.

Second, given that one dominant dimension was sufficient to explain item variances,

the three variations of unidimensional item response models were considered to determine

the final model to be used to measure participants’ expertise scores and items’ difficulty

scores.

The three versions of IRT models were fitted to response data using the R package ltm

(Version 1.0-0, Rizopoulos, 2006). The likelihood ratio test (LRT) result indicated that

the two-parameter unidimensional item response model fit better than the Rasch unidimen-

sional model (Chi-square value = 1750.93, df = 93, p < 0.05), and the three-parameter
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Figure 2.2: The Eigenvalues of the first 10 factors using exploratory factor analysis. The
ratio of the first to second eigenvalue was 6.54, indicating a dominant general factor.
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Figure 2.3: The density plots for the parameter estimates including difficulty, discriminabil-
ity, and guessing parameter from the three-parameter model.

23



unidimensional item response model fit better than the two-parameter model (Chi-square

value = 779.24, df = 94, p < 0.05). Therefore, based on available LRT and item fit results, a

three-parameter unidimensional item response model fit the data the best. This model was

thus used to estimate the participants’ ability and the items’ difficulty. Information criteria

supported this result, as the Akaike’s information criterion (AIC) and Bayesian informa-

tion criterion (BIC) for the three-parameter unidimensional model (AIC = 55491.84; BIC

= 56791.30) were smaller than those of the Rasch unidimensional model (AIC = 57648.01;

BIC = 58085.77) and the two-parameter unidimensional model (AIC = 56083.08; BIC =

56949.39).

The Wright map from IRT analysis showcases the participants’ ability and the items’

difficulty distribution side by side, which provides a nice visualization to determine whether

the test is difficult enough for the sample population. As can be seen in Figure 2.4 (created

using the R package WrightMap, Irribarra & Freund, 2014), the estimated item difficulty

lined up with designed difficulty really well, with a Pearson rank order correlation of 0.77.

Also, the person ability distribution sat a little higher than the item difficulty distribution

along the y axis, suggesting that there were a few experts who were better than the test.

Since the person ability distribution was slightly negatively skewed but overall normal,

the test was not concerned as being too easy for the whole sample. Overall, the test could

discriminate individuals at different expertise levels and cover a wide range of the expertise

continuum.

Explanatory Modeling. To understand the testing scores on both item and person

sides, person and item covariates were added to the modeling process consecutively1. In-

stead of adding all covariates in the model at once, I started with a basic IRT model with

person random effects and item random effects. Then the item covariates were added, con-

1Here, the item difficulty was explained using several item covariates, without considering the item guess-
ing and discrimination parameters. This could be problematic if the item difficulty was distorted from the true
estimates without the constraint of the guessing and discrimination parameters. This was not an issue in this
sample, since the item difficulty parameter estimates from the 1PL and 3PL models were highly correlated (r
= 0.99, p < 0.05).
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Figure 2.4: The Wright map of IRT results from the three-parameter model. The histogram
on the left side shows the distribution of person ability along the standardized scale. On
the right side, each diamond represents one question. The color of the diamonds represents
designed difficulty level of questions. The locations of the diamonds along y axis represent
their estimated difficulty.

stituting the linear logistic test model (LLTM). Lastly, the person covariates were added,

constituting the latent regression LLTM. The model was run in R 3.3.3 using R package

lme4 (Version 1.1-12, Bates, Mchler, Bolker, & Walker, 2015) and optimx (Nash, 2014;

Version 2013.8.7, Nash & Varadhan, 2011).

Several factors were considered as item covariates, including the commonness of the

target bird in the question (commonness rating from the American Birding Association, the

values are 1-common or 2-less common among the birds used in the test), the gender of the

target bird in the testing picture (female dummy coded as 1, male as 0), and three covariates

on foil design. There were three foils/distractors in each question. Each of the three foils

could be bird species labels from different orders, different families, different genera, or the

same genus as the target bird. Thus, the foil design yielded four variables that could be used

as covariates: the number of foils from different orders, different families, different genera,

and the same genus as the target bird. Since these four covariates add up to three, the total

number of foils, the last covariate, number of foils from the same genus, was dropped to

avoid perfect collinearity in the covariates. With item covariates but not person covariates,

the model was called the LLTM. The likelihood ratio test indicated that this model fit better
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than the basic Rasch model (Chi-square value = 112.20, df = 6, p < 0.05).

Several hypotheses were made about the effect of the item covariates on item difficulty.

It was reasonable to assume that less common birds and female birds were harder to iden-

tify, thus positive coefficients were expected for target bird commonness and the gender

of the bird picture in predicting item difficulty. Given the taxonomic tree (order -> fam-

ily -> genus -> species), birds from different orders are more different from each other

in visual appearance than birds from different families but the same order, which are then

more different than birds from different genera but the same family. Birds from the same

genus are the most similar to each other, making the questions the most difficult. But those

from different orders, families, and genera should all make the question easier. Thus it

was hypothesized that the number of foils from different orders, families, and genera all

correlated negatively with item difficulty.

Finally, I added person covariates in the model as well, including person birding fre-

quency, birding-relevant training, birding experience, birders’ gender, and their medical

conditions (whether they had any neurological conditions that might affect their vision,

hearing, memory, or thinking or not). With both item and person side covariates, the model

was called the latent regression LLTM. The likelihood ratio test result indicated that the

latent regression LLTM fit better than the LLTM (Chi-square value = 470.86, df = 18, p <

0.05). The coefficient estimates from latent regression LLTM are shown in Table 2.1

For the five item factors analyzed, only the factors that were relevant to foil structures

were significant. Questions having one more foils from different orders tended to be 0.86

unit lower on the logit scale (z = -6.08, p < 0.05), suggesting decreased difficulty. Ques-

tions having one more foils from the same order, but different families were 0.78 unit lower

on the logit scale (z = -5.11, p < 0.05). Questions having one more foils from the same

order, the same family, but different genera were 0.39 unit lower on the logit scale (z =

-2.98, p < 0.05). Thus among these three variables, number of foils from different orders

had the biggest effect in making the items easy, while the number of foils from the same
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order, the same family, but different genera had the smallest effect in making the item easy.

These results were consistent with the predictions, suggesting that this foil design was very

effective. In contrast, the commonness of the target bird (z = 0.36, p = 0.13) and using

female bird image did not affect item difficulty significantly (z = 0.16, p = 0.88). This was

likely due to a sampling issue. In the test, there were only 4 items that were less common

and 8 items that used female bird images, among all 93 items. With such few items and a

wide range of difficulty for the other items, these few items were less likely to be detected

as significant in affecting item difficulty.
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Table 2.1: Coefficients estimates from the latent regression LLTM

Estimate Std. Error z value Pr(>|z|)

Rare Target Bird 0.05 0.12 -0.38 0.70

Female Bird Image 0.03 0.12 -0.22 0.83

Number of Foils - Different Orders -0.86 0.14 6.18 0.00

Number of Foils - Different Families -0.78 0.14 5.48 0.00

Number of Foils - Different Genera -0.39 0.13 2.87 0.00

Frequency - Rarely 1.70 0.36 4.74 0.00

Frequency - Occasionally 2.21 0.28 7.77 0.00

Frequency - Every Two Weeks 2.54 0.29 8.78 0.00

Frequency - Once per Week 2.70 0.28 9.62 0.00

Frequency - Twice per Week 3.08 0.28 11.01 0.00

Experience in Year 0.12 0.04 2.98 0.00

Female Birder -0.24 0.04 -6.43 0.00

Training - None -0.60 0.24 -2.52 0.01

Training - One Workshop -0.63 0.25 -2.53 0.01

Training - One Course -0.31 0.25 -1.22 0.22

Training - Two Courses -0.28 0.27 -1.02 0.31

Training - Masters -0.12 0.26 -0.45 0.65

Travel - Every Few Years -0.31 0.13 -2.39 0.02

Travel - More Than Once Yearly 0.11 0.11 1.00 0.32

Travel - Every Other Year 0.27 0.19 1.42 0.16

Travel - Regularly as A Professional 0.40 0.17 2.40 0.02

Travel - Rarely -0.56 0.11 -4.92 0.00

Medical Condition -0.03 0.04 -0.72 0.47
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Three of the person covariates, birding frequency, birding-relevant training, and birding-

relevant travel, were recorded as ordinal variables in the data set. Each level of these

covariates was dummy coded, so that the effect of each level of the covariates was es-

timated. It was found that all levels of birding frequency were significant, with higher

birding frequency associated with a stronger increase in the person ability. Among all lev-

els of training, only the levels no training and one workshop were significant, with these

two levels negatively associated with person ability. Among all travel levels, profession-

als who reported traveling regularly for birding purposes had significantly higher ability

estimates than the average, while people who reported traveling infrequently (once every

few years or rarely) had significantly lower ability estimates. These results were consistent

with the expectations, in that people with more experience and more training would have

higher birding expertise. Overall, more training was associated with higher person abili-

ties. For birding frequency, every level of this ordinal variable differed significantly from

the intercept, suggesting that birding frequency predicted the birding skill significantly.

All other person covariates had a significant effect, except for the medical condition

factor. Person ability estimates increased by 0.12 on the logit unit per year of experience

increases (z = 2.98, p < 0.05). Note that the age covariate was not added because age

correlated moderately with experience (t = 7.66, df = 678, p < 0.05) but not with ability

estimates (t = 0.30, df = 683, p = 0.76). Gender was another significant factor in that female

birders had a lower ability estimates than male birders by 0.38 unit on the logit scale (z =

-5.05, p < 0.05). The factor medical condition, on the other hand, did not have a significant

effect on person ability (z = 0.15, p = 0.88). This is likely due to a sampling issue. Since

there were only 25 participants reported as having had some medical conditions, they were

not likely to have a wide range of birding expertise (-1.96,1.61), whereas the other 662

healthy participants did have a wide range of birding expertise (-2.87,2.48). Thus it was

less likely that the self-reported patients would be detected as different from the healthy

participants in their birding ability estimates. I also analyzed how well birders’ self-rated
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expertise level correlate with their estimated expertise. Interestingly, the correlation is

decently high with a Pearson correlation of 0.59 (Figure 2.5).
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Figure 2.5: A scatter plot of estimated birding expertise over self-rated birding expertise

2.4 Discussion

In summary, the bird expertise test was shown to provide a valid and reliable measure

of the birding expertise of the participants. The ability estimates from the bird expertise

test using IRT correlated reasonably well with participants’ self-rated ability and their per-

formance on the specific bird expertise tests.

Using latent regression LLTM, I explored the effect of person covariates and item co-

variates on person ability and item difficulty estimates. On the person side, it was found that

birding frequency, gender, experience, and training all associated with person birding skill

significantly. The factor medical condition did not correlate with person ability estimates,

potentially due to the overly restricted sample size of the patient population. On the item
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side, it was found that the item design factors associated with the item difficulty estimates

in the expected direction. In particular, foil structure was very effective in determining

item difficulty. The other two factors, commonness of the target bird and female/male bird

image, did not affect item difficulty significantly. However, the direction of influence was

as expected.

As mentioned in the introduction, there exist different measures of perceptual expertise,

such as the matching tests and the VET. The expertise scores can be used to explore the

covariance with perceptual discriminability and perceptual memory, as measured by per-

ceptual matching tasks and the VET. There could be important structure in the patterns of

covariance across these three different measures of perceptual expertise. While it is pos-

sible that all three emerge from a single latent variable of perceptual expertise, it is also

possible that the results from these different measures are not well-correlated. For exam-

ple, some participants could score high on the perceptual matching tasks, but score low on

the bird identification test.

It would be interesting to test the same population on these different kinds of test to

measure the correlations among these tests and their convergent validity. Unfortunately

this task falls out of the scope of the current project due to the necessity to develop special

versions of the matching test and the VET. The previous matching tests was developed for

local participants, testing their knowledge with local bird species. To administer such a

test, one would first need to replace the bird species with birds that are local to the target

population. Then several iterations of test evaluation and revision would be necessary

to eventually establish a valid and reliable test. The situation was slightly different for

the VET – the performance of the birder population was at ceiling for the VET-bird (Van

Gulick et al., 2016), a subset of the VET that uses bird as the testing category. Using

the VET-bird again would require iterations of evaluation and revision, particularly adding

difficult items for this special birder population. The re-development of these two tests is

a good future direction to pursue to understand the measurement of perceptual expertise.
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Also, further research is necessary to parse out the variability in perceptual expertise using

various measures such as IQ and demographic information, as well as various exploratory

and confirmatory data analysis techniques such as clustering, structural equation modeling,

principal components analysis.
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Chapter 3

Modeling the Dynamics of Expertise

3.1 Introduction

Many people spend years to become experts in categorizing and identifying specialized

image sets, such as airport baggage screening, forensic fingerprint identification, imaging-

based diagnosis, bird identification etc. An important hallmark of such visual expertise is

the entry-level shift phenomenon: while it takes novices significantly longer to categorize at

the subordinate level (e.g., Blue Jay or Eastern Bluebird in the case of bird identification)

than at the basic level (e.g., Bird or Dog), experts are equally fast at the two abstraction

levels.

What gives rise to the entry-level shift phenomenon? Why do people with varying

levels of expertise differ from each other in visual category-verification? This question

was first tackled by addressing how novices make category decisions. In their seminal

1976 paper, Rosch and colleagues pioneered in investigating people’s visual categorization

of natural objects (Mervis & Rosch, 1981; Rosch et al., 1976). They defined the basic

category as “the most general and inclusive level at which categories can delineate real-

world correlational structures” (p. 384). Generally, basic categories are intermediate level

categories (e.g., bird vs. dog), as opposed to superordinate categories (e.g., animal vs.

vehicle) and subordinate categories (e.g., Blue Jay vs. Eastern Bluebird). The authors

identified multi-fold advantages of basic categories. The one of most interest to the current

project is the entry-level shift phenomenon, which was observed from a paradigm called

the speeded category verification task. This task is now widely used as a staple task to

study expertise, with entry-level shift phenomenon deemed a hallmark of visual expertise.

In this task, a trial begins with a category label, followed some time (500˜1000ms) later by

an image containing an object. Participants then verify whether the object is a member of
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the category presented. The category labels are from three levels of abstraction, including

the superordinate level, the intermediate level, and the subordinate levels. Among the three

levels, participants were fastest in the basic-level category verification.

What gives rise to this basic-level advantage? One theory viewed categorization as a

level dependent process (Grill-Spector & Kanwisher, 2005; Jolicoeur, Gluck, & Kosslyn,

1984; Rosch et al., 1976). That is, basic-level categorization is fastest because it is the

first stage of categorization, after which further conceptual/perceptual analysis is required

to make superordinate/subordinate-level categorizations. Basic level was later termed the

entry level to emphasize that many objects make contact with semantic representations first

at the basic level (Jolicoeur et al., 1984). In other words, the subordinate-level categoriza-

tion ends later because of later onset of the process, i.e., one categorizes an object as Blue

Jay only after determining that it is a bird (but see Mack & Palmeri, 2011; Mack, Wong,

Gauthier, Tanaka, & Palmeri, 2009). Contrary to this basic-first hypothesis, Murphy and

Brownell’s (1985) differentiation hypothesis does not assume basic-level categorization as

a prerequisite before further category decisions. Instead, categorizations at different levels

are independent and are influenced by category accessibility. They argued that basic cat-

egories are most accessible, which leads to the fastest category verification responses. In

other words, the subordinate-level categorization ends later because of slower accumula-

tion of evidence for the category decisions, not because of later onset of the categorization

process (see Figure 3.1 for illustration). This view was later extended as the parallel dis-

tributed processing theory to explain the basic-level advantage (see Rogers & Patterson,

2007).

The question then is: how do experts categorize differently from novices? Using the

same speeded category verification paradigm as used to identify the basic-level advantage,

researchers observed that for experts, subordinate-level categories are verified as fast as

basic-level categories (K. E. Johnson & Mervis, 1997; Tanaka & Taylor, 1991). The term

entry-level shift was thus coined to denote that for experts, the subordinate level functions
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Figure 3.1: An illustration of the basic-first hypothesis (A) and the differentiation hypoth-
esis (B). A: In the basic-first hypothesis, the decisions made at the subordinate level are
slower because of a delayed onset of the decision process. B: In the differentiation hypoth-
esis, the decisions at the subordinate level are slower because of slower accumulation of
evidence over time. Adapted from Mack & Palmeri (2011).

just like the basic level, i.e. an entry level.

What gives rise to this expertise-related response time (RT) change? In line with the

basic-first hypothesis for novices’ categorization behavior, it is possible that in addition

to having the basic level as an entry level, experts also have the subordinate level as an

extra entry level into conceptual knowledge. Thus categorizations at the basic and the sub-

ordinate levels are equally fast. In other words, the shorter RT for the subordinate-level

categorization are from earlier onset of the process. In contrast, the differentiation hypoth-

esis predicts that as expertise increases, the subordinate category becomes as accessible as

the basic category. Thus expertise is associated with accelerated accumulation of evidence

for decision-making, which makes categorizations at subordinate levels faster (Palmeri et

al., 2004).

Few attempts have been made to theoretically differentiate these two explanations. Us-

ing a signal-to-response technique, Mack et al. (2009) systematically varied the time par-

ticipant were given to process a task and mapped out the onset and evolvement of catego-

rization performance over time. They found that for novices, there is no difference in the
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onset of basic vs. subordinate-level categorizations. This finding suggests that novices cat-

egorize faster at basic level because of faster information processing speed than that of the

subordinate level, rather than an earlier onset of the process. Curby and Gauthier (2009)

used a backward masking paradigm and found that experience influences the availability

of information early in processing, supporting the differentiation hypothesis. Novices and

experts were often sampled as two or three points along the continuum of expertise de-

velopment (K. E. Johnson & Mervis, 1997; Tanaka & Taylor, 1991), essentially treating

expertise as binary or ternary rather than continuous. While it is interesting to contrast

two or three drastically different groups, information about the whole trajectory is largely

missing.

To formally differentiate the two competing hypotheses, this project seeks to describe

differences in individual categorization behavior along the continuum of expertise and to

explain the differences theoretically using process models. These are important yet difficult

questions, requiring a combination of psychometric and cognitive models to be fully ad-

dressed. Cognitive models can provide a detailed account of the underlying psychological

processes, but lack the strength of incorporating individual differences, mostly due to the

complexity of most cognitive models. Thus in cognitive modeling, oftentimes only group

averages are modeled to test specific mechanistic hypotheses (e.g., Nosofsky & Palmeri,

1997; Ratcliff, 1981; Viken, Treat, Nosofsky, McFall, & Palmeri, 2002). Psychometric

models could fill in the gap by incorporating individual differences. Yet these models of-

ten lack the power to test mechanistic hypotheses and to explain the underlying cognitive

processes (for a review, see Shen & Palmeri, 2016). In this project, cognitive and psycho-

metric models were combined to provide a detailed account of the psychological processes

underlying the RT differences along the continuum of expertise.

The sequential sampling models provide ideal tools to understand the RT differences

observed in various speeded two-choice tasks. This class of models includes three main

players (for a review of this class of models, see Ratcliff, Gomez, & McKoon, 2004):
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the diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008), the linear ballistic model

(S. D. Brown & Heathcote, 2005, S. D. Brown & Heathcote (2008)), and the random

walk model (Nosofsky & Palmeri, 1997; Nosofsky & Stanton, 2005). In such models,

it is assumed that evidence accumulates over time from a starting point toward two or

more response boundaries. A decision is made when one of the boundaries is crossed.

The choice and RT for each trial is mainly decided by four process parameters, including

the starting point (b, representing priori bias), the separation of the two boundaries (A,

representing response caution), the drift rate of evidence accumulation (v, representing rate

of information processing), and non-decision time (τ , representing time spent on processes

other than evidence accumulation). These parameters could vary across conditions, i.e.,

they are potential candidates of the psychological differences underlying the entry-level

shift phenomenon (Figure 3.2).

The sequential sampling models were chosen to model categorization decisions for

several reasons. The psychological interpretations of its parameters have been justified by

many studies (Ratcliff & Rouder, 1998; Voss, Rothermund, & Voss, 2004). For exam-

ple, higher drift rate was found for easier stimuli, while wider boundary separation was

found when accuracy was emphasized over speed (Voss et al., 2004). Also, these models

consider RT distribution and accuracy data simultaneously and thus naturally account for

speed-accuracy trade-off. In addition, among its broad applications to psychological tasks

in various fields, it has been successful in explaining the learning process (for a review,

see Ratcliff et al., 2004). For example, by fitting the diffusion model to RT data collected

in a 10,000-trial lexical decision task, Dutilh and colleagues (2009) found that the prac-

tice effect consists of several components, including increased evidence quality, decreased

non-decision time, and decreased response caution. Last but not least, in addition to sta-

tistically deconstructing the expertise effect (see also Petrov, Van Horn, & Ratcliff, 2011;

Ratcliff, Thapar, & McKoon, 2006), the model also shows the potential for incorporating

mechanistic components to fully explain individual differences in expertise. Notably, the
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Figure 3.2: An illustration of the diffusion decision process for a choice between word
and nonword. From a starting point, evidence accumulates over time toward the two re-
sponse boundaries: word or nonword. A decision is made when one of the boundaries
is crossed. The light gray trace is an example of a decision-making process when word is
chosen, while the darker gray trace shows a trace of nonword choice. Adapted from Dutilh,
Vandekerckhove, Tuerlinckx, & Wagenmakers (2009).
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exemplar-based random walk model (EBRW; Nosofsky & Palmeri, 1997) – a special ver-

sion of the diffusion model in which evidence accumulates discretely in small steps rather

than continuously – successfully explained the drift rate change as a result of an efficient

retrieval of exemplars in memory for expert perceptual classification. Given these consid-

erations, the diffusion model provides an ideal technique for us to deconstruct expertise

effect in speeded two-choice tasks into its constituent psychological processes.

For subordinate-level categorizations, expertise related faster RT could be due to ei-

ther a faster processing speed (differentiation hypothesis) or an earlier onset of the process

(basic-first hypothesis). The sequential sampling models could easily translate these two

possibilities into the changes in its process parameters. To be specific, faster processing

speed can be interpreted as higher drift rate v, as the drift rate naturally accounts for ac-

cumulation of evidence for the decision-making process; while earlier onset of the process

can be seen as shorter non-decision time τ , as the basic-level identification process is now

removed from non-decision processes. Therefore, v for the expertise condition can be used

to differentiate the two possible mechanisms of the expertise effect in categorization. If

the basic-first hypothesis is true, it is expected that v does not correlate with expertise. In

contrast, if the differentiation hypothesis is true, one would expect a positive correlation

between v and expertise.

The diffusion model was used to deconstruct the entry-level shift phenomenon into

its constituent psychological constructs. In order to map out the differences associated

with expertise, the diffusion model was applied to the behavioral data of participants with

varying levels of expertise. The expertise score was used to predict individual differences

in model parameters. This could be done in two ways. One is to fit the diffusion model to

individual data and then make inferences based on individual parameters. The other is to

view individuals’ parameters as randomly drawn from a population distribution, so all data

can be analyzed simultaneously to find the population mean and the variability for each

parameter (a population/hierarchical model, Figure 3.3). The second approach is better
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because it allows more reliable parameter estimates, while requiring fewer data points per

participant (Linden, 2007; Vandekerckhove et al., 2011). It can also be used to explain

individual differences in parameters from a predictor (e.g., expertise score in this case)

within the model specification.

Figure 3.3: A demonstration of the hierarchical diffusion model. Individuals parameters
are assumed to be randomly drawn from a population distribution. Expertise score is used
as a predictor for the parameters in certain conditions (see the modeling section in Results).

Yet the hierarchical approach is technically challenging, especially given the complex-

ity of the diffusion model. Thanks to the work of Vandekerckhove and others (Dutilh et

al., 2009; Vandekerckhove et al., 2011; Wabersich & Vandekerckhove, 2014; Wiecki et al.,

2013), the hierarchical diffusion model (HDM) was made possible to implement in free

software like JAGS (Plummer, 2003) and WinBUGS (Lunn, Thomas, Best, & Spiegelhal-

ter, 2000). Therefore, I chose the hierarchical diffusion model to fit choice RT data from a

population with varying levels of expertise.
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3.2 Method

Participants. Bird watchers with all levels of expertise were recruited online. To solicit

participation, members of 59 birding societies across the U.S. were contacted. During

the initial recruitment, 314 bird watchers (113 female) participated voluntarily in the bird

expertise test as described in Chapter 2. Next, invitations were sent through email to all 314

participants who finished the bird expertise test, 63 of which (26 female) participated in the

behavioral task and were entered into a poll to receive Amazon gift card. Informed consent

was obtained prior to participation in accordance with Vanderbilt University’s Institutional

Review Board.

Stimuli. Test stimuli were 256 pictures of common birds and dogs. Bird stimuli con-

sisted of pictures of eight geographically wide-spread and common bird species in the U.S.

according to the Cornell Lab of Ornithology (http://www.allaboutbirds.org), including Car-

dinal, Blue Jay, Crow, Hawk, Oriole, Pigeon, Robin, and Sparrow. Dog stimuli consisted

of pictures of eight most popular dog breeds in the U.S. according to the American Kennel

Club (http://www.akc.org/), including Labrador Retriever, German Shepherd, Yorkshire

Terrier, Beagle, Golden Retriever, Bulldog, Boxer, and Dachshund. Participants’ familiar-

ity with these dog breeds and bird species were confirmed before the experiment. I col-

lected 24 pictures for each bird or dog species from online resources and from friends (12

for basic-level categorizations and 12 for subordinate-level categorizations). The objects

in the images were of various orientations and various background contexts. The images

were cropped so that the objects were centered and prominent, limiting the influence of

background. No image was repeated during the entire experiment. Figure 3.4 shows some

example stimuli.

Procedure. After participants finished the bird expertise test, they were invited via

email to complete the speeded category-verification task online. I adapted the classic

paradigm used in previous research (K. E. Johnson & Mervis, 1997; Rosch et al., 1976)

in several ways to better fit the online testing setting and the modeling purpose. First, in
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Figure 3.4: Some example stimuli used in the speeded category-verification task
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online testing settings, participants can be easily distracted by their surroundings and other

applications on their computer, critically limiting their engagement time in experiment ses-

sions. To minimize the attrition rate due to a lengthy session, the task was made as short as

possible by including only relevant conditions. In the classic paradigm, participants were

tested at three different levels of abstraction, including the superordinate , the basic, and

the subordinate levels. Since it was known from previous studies and the pilot study that

performance at the superordinate level does not correlate with expertise (K. E. Johnson

& Mervis, 1997; Rosch et al., 1976), I only included basic and subordinate levels in this

experiment. Second, the sequential sampling models require some error responses in each

condition to be properly constrained (Donkin, Averell, Brown, & Heathcote, 2009; Ratcliff

& Childers, 2015). Several pilot studies were done to ensure that participants could make

enough errors. Eventually, I added noise to the images and reduced the image presentation

time from unlimited to 200 ms. In the pilot study, images with and without noises were

both tested. It was found that these adaptations made the task harder, causing more errors in

participants’ responses. This effect was seen uniformly across all conditions. The overall

result pattern was consistent with previous research, as can be seen in the result section.

Three factors were combined in the experimental design, including Levels of Abstrac-

tion (basic or subordinate), Object Category (expert: bird or novice: dog), and Trial Type

(match or mismatch), which created 8 within-subject conditions. In a match trial, the test

image contained the object specified in the preceding label, while the image in a mismatch

trial did not. Images for false trials were always from the same level of abstraction, for

example, a western bluebird image for a label BLUE JAY, or a golden retriever image for a

label BIRD. The test consisted of 256 trials, 32 for each condition. Each trial began with a

fixation cross of 500 ms. Then participants saw a category label of various levels of abstrac-

tion (e.g., DOG for the basic level, DACHSHUND for the subordinate level). The category

label was displayed for 2,000 ms, so that participants had enough time to understand the

label and got prepared for the upcoming image. The label was followed by a fixation cross
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with varied length of display (0˜1500ms). The fixation period was jittered to minimize ef-

fects of anticipation and habituation. Then the test image was presented on the screen for

200 ms. This presentation time was intentionally reduced compared to the classic paradigm

in order to collect more error responses. Participants were instructed to decide whether the

object in the image matched the label or not. They responded by pressing the “D” key for

a “no” response and the “K” key for a “yes” response .

Figure 3.5: An example trial in the speeded category-verification task

The trial sequence was randomized but was limited to one of two randomly-generated

sequences for all participants. Since participants’ performances in this task were expected

to be different due to their different birding expertise, it was undesirable to include the

randomness in trial sequences as a potential source for differences in their performance,
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thus the trial sequence was intentionally controlled to be the same. But to check that order

did not play a role in causing performance differences, participants were randomly assigned

to one of the two randomly-generated sequences to examine the effect of trial sequence.

After 8 practice trials, participants went through 2 sessions of 128 trials. Participants were

instructed to respond as fast and accurate as possible. If the participant did not respond

within 1,500 ms, a warning message appeared on the screen, prompting the participant to

respond quickly and accurately. The warning message would remain on the screen until a

response was made. The entire session lasted for about 15 minutes.

3.3 Behavioral Results

In previous studies, the entry-level shift phenomenon was defined as experts being

equally fast at the basic and the subordinate level when categorizing objects from their

domain of expertise, but much slower at the subordinate level when the objects are from

a novice domain. It was thus expected that experts would show this pattern of interaction

between the level of abstraction and the domain of expertise, but not the novices. A sim-

ilar pattern was observed in this study. Figure 3.6 shows the response time patterns after

a median split of the participants based on their expertise scores. Note that participants in

the ”expert” group were not truly experts but intermediate- to expert-level bird watchers.

For this reason, the interaction was not significant for this group, but one can still observe

a consistent general pattern with the classic entry-level shift phenomenon.

Since participants in this project scattered along the continuum of expertise rather than

being labeled experts/novices in a binary fashion, the interaction magnitude was expected

to be continuous rather than binary, with the expertise index as a potential predictor of

the interaction magnitude. Instead of using the customary analysis of variance (ANOVA)

or analysis of covariance (ANCOVA) approach, the behavioral results were analyzed us-

ing using a general linear model (GLM) approach because GLM was incorporated into

the Bayesian Hierarchical modeling to differentiate hypotheses. The definition of the in-
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Figure 3.6: The mean response times across levels of abstraction and domains of exper-
tise for the ”novice” and ”expert” group. Participants were assigned into the ”novice” or
”expert” group based on a median split of their expertise scores. The general pattern is
consistent with the classic entry-level shift phenomenon.

teraction index was thus derived from the traditional two-way ANOVA analysis, which is

equivalent to the GLM assumption as in the following equation:

RTig = ζ0 +ζLLi +ζDDi +ζIgLiDi + εi (3.1)

The response time of each trial was assumed to be the sum of an intercept (ζ0), the

effect of the first factor, level of expertise (ζLli), the effect of the second factor, domain of

expertise (ζDdi), the effect of the interaction term (ζIglidi), and an error term (εi). The level

of abstraction, Li, and the domain of expertise, Di, of each trial was dummy coded1 as in

Table 3.1. Given that Li is 0 for the basic level and 1 for the subordinate level, a positive

ζL would indicate longer mean RT for the subordinate level compared to the basic level.

Similarly, with Di defined as 0 for the novice domain and 1 for the expertise domain, a

positive ζD would indicate longer mean RT for the expertise domain (bird) compared to the

1Note that the effects that are estimated based on dummy coding are referred to as ”simple effects”, i.e.,
an effect of a factor while holding other factors at one level. These are different from the main effects and
interactions according to the classical definition (Hardy, 1993).
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novice domain (dog). The ζIg concerns the interaction magnitude for each group g. The

classic entry-level shift phenomenon entails a ζIg not different from 0 for the novice group

but one smaller than 0 for the expert group.

Table 3.1: The dummy variable coding of the design matrix in the model

Level of Abstraction L Domain of Expertise D

Basic 0 Novice 0

Subordinate 1 Novice 0

Basic 0 Expert 1

Subordinate 1 Expert 1

Note that in Equation 3.1, the interaction magnitude ζIg was assumed to be binary, 0

for the novice group and negative for the expert group. To expand the binary assumption to

a continuous one to take into account individual differences in the interaction magnitude,

a new definition is laid out as below, with individual subscript for ζI . This enables us to

estimate a separate interaction magnitude for every individual.

RTip = ζ0 +ζLLi +ζDDi +ζI pLiDi + εi (3.2)

The R package lme4 (version 1.1-12) was used to estimate the individual ζI p with both

the RT and the accuracy data. A linear mixed-effect model was fit with the RT data. The

right panel of Figure 3.7. shows the density and histogram of the parameter estimates for

ζI p. One-sample t-test for the ζI p showed that the interaction magnitude on average was

not significantly different from zero (ζI p, t(62) = -1.99, p = 0.05). Participants on average

had a greater-than-zero RT for the novice domain at the basic level (ζ0, t(64.70) = 37.76,

p < 0.05). The mean RT increased significantly for the subordinate level compared to the

basic level (ζL, t(798.00) = 15.63, p < 0.05), while significantly decreased for the expert

domain compared to the novice domain (ζD, t(816.50) = -9.41, p < 0.05). These results
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suggest that the sample population was slower at the species level than the animal level,

was faster in categorizing bird images than dog images, and did not show the entry-level

shift phenomenon on average. These are not surprising given that the sample population

is inherently interested in bird watching, but have varying levels of expertise. Only some

participants showing the interaction could result in no interaction on average.

ξIp : Interaction − Accuracy ζIp : Interaction − RT
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Figure 3.7: The density and histogram of the parameter estimates for ξI p and ζI p. ζI p rep-
resents individual interaction coefficient for participant p from the accuracy data, for which
experts are expected to have positive values. ξI p represents individual interaction coeffi-
cient for participant p from the RT data, for which experts are expected to have negative
values.

A necessary next step is to estimate the correlation between the expertise and the in-

dividual coefficient estimates (Figure 3.8). Expertise was defined as the expertise index

estimated using IRT modeling with responses from the bird expertise test (Chapter 2). T-

test on Pearson’s product-moment correlation showed that expertise correlated significantly

with ζI p (r = -0.50, p < 0.05). This result suggests that increased expertise is associated

with larger interaction magnitude observed in RT.
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Figure 3.8: The correlation between the expertise index and the parameter estimates for ξI p
and ζI p. ζI p represents individual interaction coefficient for participant p from the accuracy
data, for which experts are expected to have positive values. ξI p represents individual
interaction coefficient for participant p from the RT data, for which experts are expected to
have negative values.

Accuracy data was analyzed in a similar fashion, except that a logit link function was

added, assuming that the log odds (log P
1−P ) of a participant scoring a question correctly

comes from the same linear function that defined RT.

log
Ppi(Y = 1)

1−Ppi(Y = 1)
= ξ0 +ξLLi +ξDDi +ξI pLiDi + εi (3.3)

The left panel of Figure 3.7 shows the density and histogram of the parameter estimates

for all individual ξI ps. One-sample t-test for the ξI p showed that the interaction magnitude

on average was not significantly different from zero (ξI p, t(62) = -0.93, p = 0.36). Par-

ticipants on average had a greater-than-zero log odds for the novice domain at the basic

level (ξ0, z = 25.94, p < 0.05), suggesting better-than-chance performance in this condi-

tion. The mean log odds decreased significantly for the subordinate level compared to the

basic level (ξL, z = -13.97, p < 0.05), while significantly increased for the expert domain

compared to the novice domain (ξD, z = 7.51, p < 0.05). These results suggest that the
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sample population was less accurate at the species level than the animal level, was more

accurate in categorizing bird images than dog images, and did not show the entry-level shift

phenomenon on average. These results are consistent with the RT results, suggesting that

the sample population was not only more accurate but also faster in categorizing in their

expertise domain, although moving from the basic level to the subordinate level did cost

them both speed and accuracy.

3.4 Modeling Results

Model Assumptions. A hierarchical diffusion model with linear regression component

was run using the HDDM package (Wiecki et al., 2013) to understand the data. At the core

of the model, each pair of RT and response choice data, i.e.,
(
t(pi),χ(pi)

)
for person p and

trial i, collected from a button press is assumed to be generated by a diffusion process. W

represents the probability density function of the Wiener diffusion process (see Figure 3.2

for an illustration of the diffusion process). The four process parameters, including drift

rate v, non-decision time τ , bias b, and decision boundary A is allowed to vary across each

person-by-item combination.

(
t(pi),χ(pi)

)
∼W (A(pi),b(pi),τ(pi),v(pi)). (3.4)

The second layer of the model concerns the population distribution. Each of the four

process parameters is assumed as random samples from a population distribution. The

mean of the population distribution is assumed to differ depending on the person’s expertise

level and the condition of the trial. Formally,
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v(pi) ∼ N(µv(pi),σ
2
v ), (3.5a)

τ(pi) ∼ N(µτ(pi),σ
2
τ ), (3.5b)

b(pi) ∼ N(µb(pi),σ
2
b ), (3.5c)

A(pi) ∼ N(µA(pi),σ
2
A). (3.5d)

Thus far, the model is descriptive in nature in that the variations across person and

item is described as random samples from different population distributions. The last layer

of the model attempts to explain the variations by defining the population mean for each

person-by-item combination as the result of a linear component. For each parameter, the

mean is defined as an intercept term (e.g., β0v for drift rate v) plus the effect of the level

of abstraction (e.g., βLvL(i) for drift rate v, with the beta coefficient βLv times the dummy

variable L(i) that represents the level of abstraction for that trial), plus the effect of the

domain of expertise (e.g., βDvD(i) for drift rate v, with the beta coefficient βDv times the

dummy variable D(i) that represents the domain of expertise for that trial), plus the effect

of the interaction term βIvθ(p)L(i)D(i) and an error term εi.

The interaction term is less intuitive, defined as the beta coefficient βIv times the dummy

variable L(i) that represents the level of abstraction for that trial, times the dummy variable

D(i) that represents the domain of expertise for that trial (see Table 3.1 for the coding of

the two dummy variables), times the ability estimates for that person θ(p). The magni-

tude of the interaction is assumed to be influenced by person ability in a linear fashion.

An estimated βIv greater or smaller than 0 would suggest a significant positive/negative

linear relationship between expertise and the interaction magnitude. Formally, the linear

components are defined as:
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µv(pi) = β0v +βLvL(i)+βDvD(i)+βIvθ(p)L(i)D(i)+ εi, (3.6a)

µτ(pi) = β0τ +βLτL(i)+βDτD(i)+βIτθ(p)L(i)D(i)+ εi, (3.6b)

µb(pi) = β0b +βLbL(i)+βDbD(i)+βIbθ(p)L(i)D(i)+ εi, (3.6c)

µA(pi) = β0A +βLAL(i)+βDAD(i)+βIAθ(p)L(i)D(i)+ εi. (3.6d)

Based on the equations above and the dummy variable coding in Table 3.1, one can

observe that β0 always stands for the intercept term; βL stands for the effect of the level of

abstraction; βD stands for the effect of the domain of expertise; and βI stands for the effect

of the expertise index on the magnitude of the interaction.

Note that the interaction term here includes an extra expertise covariate, to test the

effect of expertise on the magnitude of the interaction within the model itself, essentially

doing hypothesis testing within the parameter space (a one-step approach). In contrast, in

the behavioral models, I defined the traditional interaction term without the extra expertise

covariate and then tested the correlation between expertise and interaction magnitude after

obtaining estimates for the interaction magnitude (a two-step approach). Both approaches

are acceptable practices. The one-step approach is more powerful and thus preferable when

the data are sparse or the models are complex, because uncertainty could propagate from

the entire data set to the parameter estimates at all levels of the model, allowing information

to be shared across participants and conditions during model estimation. These advantages

are inherent to hierarchical models (Gelman & Hill, 2007; M. D. Lee, 2011).

The model was fit using the HDDM package (Wiecki et al., 2013), specifically the

regressor component. Three chains were run, with 6000 iteration for each chain. The first

3000 iterations were discarded as burn-in period. The posterior predictions from the model

described the data fairly well, with strong correlations between the data and the posterior

predictions for both the mean RT (r = 0.95, p < 0.05, Figure 3.9) and the mean accuracy
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Figure 3.9: The correlations between the data and the posterior predictions from the HDDM
model. Left panel shows the mean RT for each person-by-condition combination. Right
panel shows the accuracy for each person-by-condition combination.

(r = 0.82, p < 0.05, Figure 3.9). The correlation for the mean accuracy is slightly less than

ideal, potentially because of the low error rate.

The convergence of the chains was assessed using the potential scale reduction factor,

R̂ (Gelman & Rubin, 1992). All R̂ is between 1.00 and 1.03, suggesting that convergence

has been achieved among the three chains (a rule of thumb is that R̂ less than 1.10 indicates

convergence). The key results of the model fitting concern the β parameters. Figure 3.10

illustrates the traces during the parameter estimation for these key parameters after the

burn-in period (iteration number 3001 through 6000). The trace plots suggest good con-

vergence for these parameters by showing the perfect overlap among the three chains. The

traces cover a fixed range along the y axis evenly across iterations, which suggests that the

fit is satisfactory.

The posterior probability density of the β parameters are displayed in Figure 3.11, with

the two vertical lines in each subplot indicating the 95% Bayesian credibility interval. A

credibility interval excluding 0 would suggest a significant β coefficient.

The βL parameter is significant for all four parameters, with βLv and βLA estimated to
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Figure 3.10: The traces of the parameter estimates for the key parameters from the HDDM
model – all of the β parameters – after the burn-in period (iteration number 3001 through
6000). The traces cover a fixed range along the y axis evenly across iterations, which
suggests that the fit is satisfactory.
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55



be smaller than 0 and βLτ and βLb to be greater than 0. Since the level of abstraction was

dummy coded with 1 for the subordinate level and 0 for the basic level, this suggests that

compared to the basic level, the subordinate level has decreased drift rate and decision

boundary, but increased non-decision time and bias.

The βD parameter is significant for the v and τ parameters, with βDv estimated to be

smaller than 0 and βDτ to be greater than 0. Since the domain of expertise was dummy

coded with 1 for the expert domain and 0 for the novice domain, this suggests that compared

to the novice domain, the expert domain has an increased drift rate and a reduced non-

decision time.

Table 3.2: A summary of the posterior estimates

. βv βτ βb βA

. Drift Rate Non-Decision Time Bias Decision Boundary

βL

Level of Abstraction - + + -

βD

Domain of Expertise + - . .

βI

Expertise on Interaction + - . .

The βI parameter is also significant for the v and τ parameters, with βIv estimated to be

greater than 0 and βIτ to be smaller than 0. Since βI represents the coefficient for the linear

association between expertise and the magnitude of interaction, a positive coefficient for v

suggests that increased expertise is associated with increased interaction magnitude in drift

rate, while a negative coefficient for τ suggests that increased expertise is associated with

decreased interaction magnitude in non-decision time. The entry-level shift phenomenon

boils down to different magnitude in the interaction, with experts showing interaction but
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not the novices. The modeling results shows that the difference in interaction magnitude

can be explained by both an increased evidence accumulation rate and a reduced non-

decision time.

3.5 Discussion

In this work, I mapped out real-world visual expertise along the expertise continuum by

modeling the category-verification behavior of participants with varying levels of expertise.

Participants’ expertise levels were measured using a psychometrically verified bird exper-

tise test. The entry-level shift phenomenon was replicated across the expertise spectrum

using an adapted version of the speeded category-verification task online. Using the hier-

archical diffusion model, the behavioral differences exhibited by participants, i.e., varying

magnitude of interaction, were explained by differences in their drift rate as well as a slight

change in their non-decision time. The results suggest that experts are faster than novices

not only because they have better evidence in the decision accumulation, but also because

they are slightly faster in processes other than the decision accumulation, including but not

limited to the processes for encoding the stimuli and for executing the responses.

The modeling results provide important insights about the underlying theory of visual

expertise. I observed a positive βIv from the modeling, which denotes the linear regres-

sion coefficient for the expertise index in predicting the interaction magnitude. Per the

differentiation hypothesis, one would expect a positive correlation between the interaction

magnitude of v and the expertise index. But no such correlation is expected per the basic-

first hypothesis. Thus the modeling results support the differentiation hypothesis. This

result provides another example of how formal models can be powerful in differentiating

verbal theories (Ross, Deroche, & Palmeri, 2014).

This work bridged the gap between cognitive and psychometric models by applying

process models to participants with varying levels of expertise in a hierarchical Bayesian

framework. Traditional psychometric models have been used to predict performance from
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expertise scores and thus to locate the source of individual differences, but usually cannot

account for detailed psychological processes, while cognitive models usually lack the com-

ponent to account for individual differences. This work illustrates that combining cognitive

models and psychometric models not only helps us to locate the source of individual dif-

ferences in behavior, but also to understand the underlying processes that give rise to the

behavioral differences (Cronbach, 1975; Vandekerckhove, 2014; Vandekerckhove et al.,

2011).

While visual expertise can be explained by faster evidence accumulation and faster non-

decision processes, further questions arise as to what gives rise to the better evidence and

shorter non-decision time. The exemplar-based random walk (EBRW) model (Nosofsky

& Palmeri, 1997) provides an excellent example in explaining categorization behavior at

the individual level. Individual categorization behavior was mathematically specified as

a decision making process in which evidence accumulates over time. The accumulation

speed is determined by the number and quality of domain examples that the participant has

in memory, with more high-quality exemplars leading to faster and more accurate decision-

making. The following chapter pursues this matter further by modeling the individual

mental representations along the expertise continuum.
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Chapter 4

Modeling the Representations of Expertise

4.1 Introduction

In the previous chapter, real-world visual expertise was deconstructed into individual

differences in underlying psychological processes such as evidence-accumulation speed

in the decision-making process and non-decision time. The question is: what kinds of

individual differences in the mental representations can give rise to such differences in these

psychological processes and further to their behavioral differences? This chapter delves

deeper into the mechanisms of visual expertise by modeling the individual differences in

mental representations that eventually yield the individual differences in behaviors.

As shown in various expertise hallmarks, especially the entry-level shift phenomenon,

visual expertise is mostly revealed at the subordinate level, e.g., drastic differences were

observed between bird experts and novices distinguishing Nashville Warbler vs. Tennessee

Warbler rather than distinguishing bird vs. dog. Thus I focused on the subordinate level to

examine individual differences in representations, which is here called the microstructure

of expertise.

To examine this microstructure, I estimated how people with different levels of exper-

tise represent a set of similar objects in their expertise domain at the subordinate level, by

using the multidimensional scaling (MDS) approach. In such techniques, it is assumed that

objects are represented as points in a multidimensional psychological space. For example,

we might represent birds as points in a bird space with some explicable dimensions such as

spottiness of the feather color, size of the bird, length of the tail, as well as some incompre-

hensible dimensions. The distance between two objects determines their similarity, with

shorter distance corresponding to object pairs more similar to each other. Understandably,

two birds locating close to each other in the bird space would appear similar to the eye.
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While the bird space might be abstract and unmeasurable, similarity can be approximated

by people’s similarity ratings of the objects pairs. Then the underlying representations can

be modeled using the observable similarity data.

The MDS approach is a widely-used technique to uncover hidden perceptual repre-

sentations (Borg & Groenen, 2005; T. F. Cox & Cox, 2000; Kruskal, 1964; Nosofsky,

1992a; Shepard, 1962, 1987). Importantly, the mental representation derived from MDS

has been successful in explaining a host of cognitive behaviors such as identification, cat-

egorization, and recognition. Such a computational approach to these cognitive behaviors

has been studied extensively using artificial stimuli with “experts” trained in the labora-

tory (e.g., Nosofsky, 1992a, 1992b; Nosofsky & Palmeri, 1997; Palmeri, 1997). In these

work, the mental representations in a multidimensional space have been used in conjunc-

tion with cognitive models such as the generalized context model (Nosofsky, 1986) model

to accurately describe the cognitive processes. Admittedly, lab-acquired experience with

artificial objects cannot fully describe the complexities in real-world expertise, but such

well-controlled studies provided important insights that a mutidimensional space frame-

work is viable to characterize various expertise behaviors.

Surprisingly, there has been no previous attempt to use MDS to understand the micro-

structure of real-world expertise. Some past work has used similarity scaling (via MDS or

clustering techniques) to understand how relatively superordinate-level categories are struc-

tured and how those vary with different kinds of expertise, but not how more subordinate-

level categories are structured and how they vary with expertise (Boster & Johnson, 1989;

Medin et al., 1997). There has been theoretical work and laboratory-based training studies

(Nosofsky, 1986, 1992a, 1992c; Palmeri, 1997) using MDS (both as a construct and as a

measurement tool) to explain changes in learning and expertise using MDS (the construct,

not the measurement tool), but those did not examine real-world perceptual expertise. Some

recent work used MDS to examine the similarity structure of rocks, but while using real-

world stimuli, these work looked at novices learning those objects, not experts (Meagher et
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al., 2017; Nosofsky et al., 2017a, 2017b).

The MDS technique has not been used to tackle the micro-structure of real-world ex-

pertise for several reasons. Logistically, it has been difficult to recruit a big sample of

real-world participants in traditional laboratory settings (Shen et al., 2014). In this project,

this problem is solved by recruiting bird watchers with varying levels of expertise across the

country for online participation. In addition to logistical difficulty, it has been challenging

to model individual differences in the representational space using the MDS technique.

One important extension of the MDS model, the individual differences scaling model

(INDSCAL, Carroll & Chang, 1970; Takane et al., 1977), include individual differences

in the weights on each dimension of the representational space, but still assumes a single

representational space, i.e., no group differences. To allow group differences in the repre-

sentations, latent-mixture modeling is required (M. D. Lee & Vanpaemel, 2008; Winsberg

& De Soete, 1993), in which each mixture/group has their own spatial representations.

However, it was not feasible until recent developments to model both group and individual

differences. The recent K-INDSCAL (Bocci & Vichi, 2011) model incorporates both the

individual weights and latent-mixture features to infer group differences. But the authors

relied on least-squares optimization, a limiting optimization method for such complex mod-

els with both group and individual differences. Okada and Lee (2016) further extended the

K-INDSCAL model to a Bayesian framework using Stan, a probabilistic programming lan-

guage for Bayesian inference and optimization (Gelman, Lee, & Guo, 2015), which allows

for more stability and tolerance for complexity in the models. In this project, the Bayesian

K-INDSCAL model was used to understand group as well as individual differences in the

representations.

Either quantitative or qualitative differences could be observed among the participants.

Quantitative difference means that participants with different levels of expertise share the

same psychological space but weight dimensions differently; qualitative difference means

that different groups (e.g., serious participants vs. contaminants, novices vs. experts) have
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different psychological spaces with different dimensions. Because the techniques to be

used are situated in a Bayesian framework, strong statistical tests, including BIC (Bayesian

Information Criterion), can be used to select the best model, among models with different

numbers of groups and different numbers of dimensions.

Individual differences in mental representations may or may not alone explain behav-

ioral differences. People’s mental representations estimated from MDS were used as input

to cognitive models to understand people’s performances in behavioral tasks, in this case

bird identification. In identification tasks, participants assign a unique response to each

stimulus. This behavior was chosen because it is a commonly studied behavior in percep-

tion. More importantly, identification patterns have been successfully explained by classic

cognitive models that relied on a multidimensional psychological representation, especially

the MDS-choice model (Nosofsky, 1985; Shepard, 1957, 1958), a special case of the classic

similarity choice model (SCM) proposed by Shepard (1957) and Luce (1963).

Different hypotheses on the mechanisms of expertise were tested in the modeling pro-

cess. Specifically, the MDS-choice model was used to explain people’s behavioral dif-

ferences. I investigated whether representational differences alone can explain behavioral

differences, or other factors like perceptual sensitivity also contribute to perceptual exper-

tise.

4.2 Methods

Participants. There were 130 participants who completed the similarity ratings task,

while 95 completed the identification task. 54 participants (28 female) aged between 21

and 73 (mean = 46.15, SD = 15.04) completed the similarity ratings task, the identification

task, and the bird expertise test (Chapter 2).

Stimuli. Given my focus on the microstructure of expertise and that expertise is mostly

revealed at the subordinate level, I chose birds at the subordinate (i.e., species) level, es-

pecially birds that look similar within a taxonomic family. To maximize the differences
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between participants with varying levels of expertise, I chose two bird families instead

of just one. Potentially, expertise could affect the visual similarities because participants

had varying levels of knowledge about the bird families. Wood-Warblers (Order: Passeri-

formes, Family: Parulidae, called Warblers thereafter) and New World Sparrows and Allies

(Order: Passeriformes, Family: Emberizidae, called Sparrows thereafter) were chosen as

the two families because among all bird families in North America, these two are the most

populous, common, and geographically widespread. These birds are also highly confus-

able with each other (Figure 4.1), e.g., Nashville Warbler vs. Tennessee Warbler, which

makes them ideal stimuli to investigate expertise. According to the Cornell Lab of Or-

nithology (http://www.allaboutbirds.org), while many bird families have a small number

of bird species in North America, the Warblers family has 47 species, while the Sparrows

family has 38 species, thus these two families provide abundant bird species and images to

be used as stimuli.

63

http://www.allaboutbirds.org


Figure 4.1: The 10 Warblers species and 10 Sparrows species used in the study. The top
two rows are Warblers, while the bottom two rows are Sparrows.

Test stimuli consisted of pictures of 10 Warblers species (Order: Passeriformes: Fam-

ily: Parulidae) and 10 Sparrows (Order: Passeriformes, Family: Emberizidae). The War-

blers were Black-and-White Warbler, Blackburnian Warbler, Magnolia Warbler, Nashville

Warbler, Northern Waterthrush, Orange-Crowned Warbler, Ovenbird, Tennessee Warbler,

Townsend’s Warbler, and Yellow Warbler. The Sparrows were American Tree Sparrow,

Chipping Sparrow, Fox Sparrow, Lark Sparrow, Lincoln’s Sparrow, Song Sparrow, Swamp

Sparrow, Vesper Sparrow, White-Crowned Sparrow, and White-Throated Sparrow (see Fig-

ure 4.1 for all these 20 bird species). Among all Warblers and Sparrows, these species were

chosen because they are geographically wide-spread and relatively common in the U.S.

according to the Cornell Lab of Ornithology (http://www.allaboutbirds.org).

The bird images are from the NABirds dataset, a collection of 48,000 annotated pho-
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tographs of the 400 species of common birds in North America (Van Horn et al., 2015).

The birds in the images were of various orientations and various background contexts. The

images were cropped so that the birds were centered and prominent, limiting the influence

of the background. The color images were converted to gray-scale to keep consistency

with the previous chapters. This ensured consistent stimuli in all experiment tasks in this

project. Since color perception plays important roles in perceptual expertise (Hagen et al.,

2014), it would be interesting to test with color images in the future. Image did not repeat

during each experiment task.

Procedure. After participants finished the bird expertise test, they were invited via

email to complete the similarity ratings task online. The experiment was programmed in

JavaScript and implemented as interactive web pages. Participants completed the tasks

within their web browsers. On their computer, they received the following on-screen in-

structions:

“In this experiment, you will be asked to judge the similarity of bird species. You will

be presented with two bird images at a time and a slider scale from ‘Most dissimilar’ to

‘Most similar’. Please make your judgment based on the visual similarity of the two bird

species. Ignore superficial characteristics like image sizes or bird orientations. Note that

we remove the pictures after 3 seconds, so you can focus on the species, rather than the

pictures themselves.”

Next, participants went through three demo trials, with additional instructions after each

trial, to ensure that they rated the similarities based on their own criteria, and focused on

the bird species rather than superficial characteristics of pictures such as backgrounds and

orientations of the birds. Next, participant were given a collage of the 20 bird pictures that

would appear during the experiment session, one picture for each species. They were given

enough time to study all bird species, so they could understand the range of dissimilarity to

appear in the following task. This was to encourage participants to give consistent ratings

across the session.
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Figure 4.2: An example trial in the similarity-ratings task
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Out of the 20 bird species, there were 190 different-species pairs. Pictures did not re-

peat within this task, thus 19 pictures were used for each species. Figure 4.2 shows an

example trial. The choice of pictures for each pair was randomized for each participant, to

ensure that participants judge the similarities of bird species, rather than idiosyncrasies of

specific bird pictures. E.g., on the same trial that contains a Nashville Warbler, one par-

ticipant might see a different image of the species from another due to the randomization.

Participants viewed each pair of pictures and rated them along an interval scale. Seven

ticks were shown along the slider scale, with four labels placed at tick 1, 3, 5, and 7, to

encourage participants to use the full scale during ratings. The four labels were “Most

dissimilar”, “Somewhat dissimilar”, “Somewhat similar”, and “Most similar” from left to

right. The pairs of bird species were presented in a random order. This random order

was set as the same for all participants, to keep the random order from being a source of

individual differences in the results.

After participants finished the similarity ratings task, they were invited via email to

complete the identification task online. In this task, they identified each bird species 10

times, resulting in 200 trials in total. In each trial, one bird image would appear, along with

all 20 species labels (Figure 4.3). Participants were asked to use their mouse to click on the

correct species label. The bird image was removed after 5 seconds, to avoid participants to

refer to external sources like bird books or the Internet. Images did not repeat during the

session. The order of the trials was randomized but kept the same for all participants, to

eliminate order as a potential source of individual differences.

4.3 Results

Multidimensional Scaling. The data from the similarity ratings task were analyzed

using an extended version of the Bayesian K-INDSCAL model (Okada & Lee, 2016). I

implemented the models using the open-source software Stan (B. Carpenter et al., 2016)

and its interface to R (Stan Development Team, 2016), as did Okada and Lee (2016). Stan
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Figure 4.3: An example trial in the bird identification task
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provides full Bayesian inference for continuous-variable models through Markov chain

Monte Carlo methods using the so-called No U-Turn Sampler (NUTS, Hoffman & Gel-

man, 2014). This fairly new software quickly gained popularity because it can flexibly fit

complex models efficiently using NUTS.

In the model, the observed dissimilarities are assumed to be the sum of the true distance

in the psychological space and the measurement error. Thus the dissimilarity between bird

species i and j, rated by participant p, denoted as yi jp, follows a normal distribution, with

the true distance di jp as the mean and the measurement error σ as the standard deviation of

the distribution:

yi jp ∼ N[0,∞)(di jp,σ
2) (4.1)

In the equation, N[0,∞) represents truncated normal, since the ratings cannot have neg-

ative values. There are K classes of participants assumed, which is always smaller than

the number of participants P. The true distance di jp is defined as the Euclidean distance

weighted by attention weights wpm, assuming that there are M dimensions in total:

di jp =

√√√√( M

∑
m=1

wpm(Ximk−X jmk)

)
(4.2)

The individual weight (w), class membership for each participant, and representation

coordinates (X) for each class were estimated. Participants can differ from each other

in two ways. Quantitatively, participants might have different weights (w) on different

dimensions. Qualitatively, participants might belong to different classes, i.e., they have

different configurations of the psychological space (X) and/or different weights (w).

I relied on three criteria to select the number of classes K and the number of dimen-

sions J. The first criterion is Kruskal’s stress (Kruskal, 1964), a common classical measure

of normalized squared errors in MDS. The second criterion is a form of posterior predictive

checking (Rubin & others, 1984), the correlation coefficient between the observed dissim-
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Figure 4.4: WAIC across MDS models with different number of dimensions and groups.
The models with 1 group are all better than models with 2 or 3 groups, with much smaller
WAIC. Across dimensions, the gain in WAIC becomes relatively marginal as the number
of dimensions approaches 9.

ilarity and its mean posterior predicted values. For each combination of the number of

groups (K = 1, 2, 3) and the number of dimensions (W = 2, 3, 4, 5, 6, 7, 8, 9), the Kruskal’s

Stress and the correlation coefficient were calculated for each individual and then averaged

across individuals. The third criterion is WAIC (the widely applicable or Watanabe-Akaike

information criterion, Vehtari, Gelman, & Gabry, 2016, 2017; Watanabe, 2010), which is

a predictive information criterion for Bayesian models. This criterion estimates point-wise

out-of-sample prediction accuracy from a fitted Bayesian model. It concerns not only the

current data set, but also the generalizability of the model. The WAIC was calculated for

each group-dimension combination .

The results are shown in Figure 4.4 and Figure 4.5. Clearly, with higher number of

dimensions, the Kruskal’s stress decreases while the correlation increases. This is intu-

itive because the space with higher number of dimensions can encompass more complex-

ity in the spacing of objects and can better approximate the similarity ratings. The gain

in the goodness-of-fit, in this case higher correlation and lower Stress, becomes relatively
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marginal as the number of dimensions approaches 9, across all number of groups. A similar

pattern was observed using the WAIC metric. These results suggest that J = 9 dimensions

provides an adequate representation of the space.
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Figure 4.5: Averaged Kruskal’s Stress and correlation coefficient between the observed
dissimilarity and its mean posterior predicted values across MDS models with different
number of dimensions and groups. The models with different number of groups are almost
indistinguishable from each based on both criteria. Across dimensions, the gain in both
criteria becomes relatively marginal as the number of dimensions approaches 9.

For the number of groups, Stress and correlation are almost indistinguishable across

the three models with 1, 2, and 3 groups respectively. Overall, the models with 3 groups

have higher correlation and lower Stress. Understandably, the most complex model can fit

the data better because of more parameters. However, WAIC results strongly support the

1-group models, with significantly lower WAIC values for 1-group models across all di-

mensions, compared to 2-group and 3-group models. Together, these three criteria suggest

that the best model is the one with K = 1 group and J = 9 dimensions.
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Figure 4.6: The ordering of the 20 bird species along each of the 9 dimensions in the
representational space. The 9 dimensions are mapped out along the x axis. The 20 birds
species are ordered based on their locations along each dimensions, with 1 along the y axis
indicating the smallest value and 20 indicating the largest value along the corresponding
dimension.
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The posterior spatial representations of the birds is shown in Figure 4.6. Given the

complexity of the 9-dimensional space, only the ordering of the 20 bird species along

each dimension is shown. The Sparrow images are flagged with four black corners, while

the Warblers are flagged with four white corners. As the 20 bird species belong to two

different families, it is likely that some of the 9 dimensions might be relevant to the bird

family information. The relationship between dimensional locations of the bird species

and their family information (0 for Sparrow and 1 for Warbler) was tested and shown in

Figure 4.7. Dimensional locations along 4 of the 9 dimensions, dimension 1, 4, 6, and 7,

have a significant relationship with their family information, which suggests that these 4

dimensions represents bird families.
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Figure 4.7: The correlation between the dimensional locations of the 20 birds species along
each of the 9 dimensions and their family information (Warbler or Sparrow). It is shown
that some of the dimensions, including dimension 1, 4, 6, and 7, are family-related.

Since all participants share one space, the individual difference in their representations

lie solely in the weightings of the dimensions. The relationship between the dimensional

weights and the expertise index was tested and shown in Figure 4.8. The expertise index

was defined as the expertise index estimated from IRT modeling with responses from the

bird expertise test (Chapter 2). The weights on 6 of the 9 dimensions correlate significantly
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with the expertise index, with 4 positive and 2 negative relationships. These results suggest

that experts weighted 4 of the 9 dimensions more and 2 of the 9 dimensions less in their

similarity ratings.
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Figure 4.8: The correlation between the dimensional weightings by the participants in the
similarity-ratings task and their expertise index. It is shown that some of the dimensions,
including dimension 2, 3, 5, 6, 7 and 9, are positively/negatively related to expertise, sug-
gesting that experts weighted some dimensions more and some dimensions less.

Similarity Choice Model. The data from the identification task were fit with the

similarity-choice model using JAGS (Plummer, 2003) and its interface to R, which has

been widely used for Bayesian modeling. The data were analyzed using an extended ver-

sion of the MDS-Choice Model (Nosofsky, 1985; Shepard, 1957). In its original form, the

MDS-choice model is a special case of the aforementioned GCM, in which each stimu-

lus defines its own category. In the MDS-choice model, the probability of participant p

identifying stimulus i as j is given by

P
(
R j|Si

)
=

b jηi j

∑
n
k=1 bkηik

(4.3)

where 0 6 b 6 1, ∑
n
k=1 bk = 1, ηi j = η ji and ηii = 1. bk represents the bias for making

response Rk. ηi j represents the similarity between stimuli Si and S j, which is converted
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from the distance defined using the following function:

ηi j = exp(−c ·dh
i j) (4.4)

in which c (0 6 c < ∞) is a sensitivity parameter that represents participants’ discrim-

inability in the psychological space. According to previous theoretical work (Ennis, 1988;

Nosofsky, 1985; Shepard, 1986, 1987), an exponential decay function (h = 1 in Equation

4.4) can well describe the relationship between similarity and distance for readily discrim-

inable stimuli. In contrast, a Gaussian function (h = 2) performs better for highly confusable

stimuli.
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Figure 4.9: The correlation between the dimensional weightings by the participants in the
bird identification task and their expertise index. It is shown that some of the dimensions,
including dimension 5, 7, 8 and 9, are positively/negatively related to expertise, suggesting
that experts weighted some dimensions more and some dimensions less.

In this experiment, since the birds are highly confusable within each family, but less

so between the two families, the data were fit with both the exponential and the Gaussian

decay function. The final model was chosen based on the Deviance Information Criterion

(DIC Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) and the correlation coefficient

between the identification data and their posterior predictions. The DIC was much smaller
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for the model with h = 1 than h = 2. The correlation coefficient was 0.95 for h = 1 and 0.89

for h = 2. Thus both criteria support the exponential decay function for the bird stimuli.
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Figure 4.10: The correlation between the biases toward each bird species by the participants
in the bird identification task and their expertise indices. It is shown that biases toward a
few of the bird species, including species 10, 12 and 13, are positively/negatively related
to expertise, suggesting that experts biased toward some species more and one species less.
But biases toward most of the species don’t correlation with expertise.

The individual distances d in Equation 4.4 can be determined using the same function

(Equation 4.2) as in the MDS model. The coordinate locations X are best-fit parameter

estimates from the MDS modeling. However, the individual weights w for the identification

task might differ from those for the similarity ratings task, as individuals could distribute

their attention in one way when rating the similarities between bird pairs, but in another

way when identifying birds each at a time. In addition to individual attention weights,

it is necessary to assign individual sensitivity parameter c and bias parameter b j. The

variance in attention weight parameters, sensitivity parameters, and bias parameters across

individuals reflect the individual-difference extension to the MDS-choice model.

The relationship between the expertise index and the dimensional weights was tested.

As shown in Figure 4.9, weights on 4 of the 9 dimensions correlate significantly with the

expertise index, with 2 positive and 2 negative correlations. This suggests that experts
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Figure 4.11: The correlation between the sensitivity parameter estimates and the expertise
index.
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have knowledge about diagnostic dimensions, while novices might be easily distracted by

superficial perceptual features. The sensitivity parameter estimates correlates positively

(Figure 4.11) with the expertise index (r = 0.74, t (52) = 7.85, p < 0.05). This was ex-

pected since the sensitivity parameter reflects the overall discriminability in the psycholog-

ical space. The correlation between biases toward each bird species and the expertise index

was also tested. As shown in Figure 4.10, biases toward the majority of the bird species,

17 out of 20, do not correlate with expertise, with 2 positive and 1 negative correlations for

the rest of the 3 bird species.

4.4 Discussion

The representational mechanism of real-world visual expertise has long remained elu-

sive. In this work, I modeled participants’ mental representations along the continuum of

expertise and related the representations to participants’ performances in the identification

task. I used bird identification ability as an example to study generic real-world visual

expertise, since bird identification is a commonly used and accessible example of visual

expertise, unlike radiology and forensics. Participants with varying levels of bird expertise

rated the similarities between all possible pairs among 20 similar-looking bird species, in-

cluding 10 Warblers and 10 Sparrows. Multidimensional scaling with the latent mixture

component was used within a Bayesian Hierarchical framework to model the representa-

tions based on the similarity-ratings data. The representations were also used to model

participants’ identification performance.

The three model selection criteria, including the Kruskal’s Stress, WAIC, and the cor-

relation coefficient between the observed dissimilarity and its mean posterior predicted

values, together suggested that participants along the expertise continuum shared one rep-

resentation space which has 9 dimensions. However, these 9 dimensions were weighted

differently across individuals. In particular, participants with higher level of expertise

weighted 4 of the 9 dimensions more and 2 of the 9 dimensions less in their similarity
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ratings. These results suggest that rather than having a different space, experts were pay-

ing attention to more diagnostic dimensions while novices were distracted by superficial

dimensions of the psychological space for these 20 bird species.

When identifying birds, participants weighted the dimensions in ways that were dif-

ferent from when they were rating the similarities between birds. Attention weights on 4

of the 9 dimensions correlate significantly with the expertise index, with 2 positive and 2

negative correlations. Similarly, this suggests that experts were able to capitalize on diag-

nostic information when identifying the bird species, while novices might be distracted by

superficial characteristics of the images. Also, the sensitivity parameter estimates correlate

positively with the expertise index, which suggests that experts were more sensitive to dif-

ferences in the psychological space, i.e., experts can better distinguish two objects that are

close to each other in space than novices. Thus participants with higher levels of expertise

are better than novices mainly because of their strategic weighting of the dimensions and

their sensitivity to subtle differences between similar-looking bird species.

A remaining question about the representation is the meanings of dimensions. This was

partly answered by correlating the locations of the 20 bird species along each dimension

with the birds’ family information (Warbler or Sparrow). It was found that 4 of the 9 dimen-

sion are family-relevant. However, as shown in Figure 4.6, with the high similarity among

the birds, the meaning of each dimension was hard to read from their mappings. Bird ex-

perts can potentially help to identify and characterize the visual features along which the

birds vary. However, it is expected that not all dimensions could be explicitly verbalized,

as has been the case in other previous MDS studies with real-world stimuli (Meagher et al.,

2017; Nosofsky et al., 2017a, 2017b). Also, the aim here is not to understand “what are the

dimensions” of the “bird space” – in a way that might of great importance in some object

domains, like asking “what are the dimensions” of the “face space”. Here the question

is whether the space varies qualitatively or quantitatively with expertise and whether the

space can be used to predict other aspects of performance known to vary with expertise,
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like identification and categorization.
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Chapter 5

Conclusion

5.1 Summary of Findings

The formal mechanisms of real-world expertise has always been challenging to study,

due to the logistical difficulties in recruitment and data collection, as well as the techni-

cal complexities in modeling their cognitive processes. The present research explored this

topic by recruiting participants online and modeling their behaviors using recently devel-

oped Bayesian Hierarchical modeling techniques.

Bird expertise was used as an example domain to study the dynamics and represen-

tations of real-world visual expertise, given that the bird expertise domain is commonly

used and easily accessible. A bird expertise test was established using the Item Response

Theory in this project. The expertise test was face-valid with the bird identification design.

The ability estimates from the test correlated reasonably well with participants’ self-rated

ability. Also, explanatory modelling showed that the participants’ birding frequency, ex-

perience, and training all associated significantly with their ability estimates, providing

validity support for the test.

Test results from the bird expertise test was used as benchmarks to line up participants

along the continuum from novice to intermediate to expert. Then behavioral differences

along the expertise continuum in category-verification, similarity ratings, and identification

were observed and modeled to understand the dynamics and representations of expertise.

The dynamics of expertise is best reflected in the entry-level shift phenomenon, in

which novices are faster and more accurate to verify category membership at an inter-

mediate level of abstraction, the so-called the basic or entry level (e.g., “bird”), than a

superordinate (e.g., “animal”) or a subordinate level (e.g., “Blue Jay”). In contrast, experts

are equally fast at the subordinate and the basic level. One explanation for the different re-
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sponse patterns by novices and experts is called the basic-first hypothesis, which suggests

that the categorization at the basic level is a prerequisite, i.e., the entry level, for more su-

perordinate and subordinate categorizations - you need to know that it is a bird before you

can tell whether it is an animal or a Blue Jay. Experts are faster because their subordinate

level becomes an entry level, namely the entry-level shift phenomenon. An alternative ex-

planation, the differentiation hypothesis, suggests that basic-level categorizations are faster

because the basic level is more differentiated and informative, not that it happens first. Thus

experts are faster at the subordinate level simply because the objects are well differentiated

for them at the subordinate level.

The speeded-category verification task was adapted to an online form and completed by

a group of remote participants with varying levels of birding expertise ranging from novice

to intermediate to expert. The two competing hypotheses were evaluated by fitting the well-

known drift-diffusion model of speeded perceptual decisions to the accuracy and response

time data collected online. I specifically identified these two hypotheses with differences in

process parameters within the diffusion model: variability in only non-decision processing

time across category levels would indicate the basic-first hypothesis, whereas variability in

drift rate across category levels would support the differentiation hypothesis. The diffusion

model was applied within a Bayesian hierarchical framework, which provides a powerful

account of individual differences in the model parameters across conditions. Behaviorally,

the entry-level shift phenomenon was replicated for participants in online settings. The-

oretically, it was found that the variability in category-verification speed patterns across

varying levels of expertise was well captured by variability in the drift rate as well as a

slight difference in the non-decision processing time. These results support the differen-

tiation hypothesis, providing insights about the psychological processes that give rise to

the behavioral pattern in speeded category-verification and informing the understanding of

individual differences seen in the entry-level shift phenomenon as a function of expertise.

The representational mechanism of real-world visual expertise was studied using the
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latent mixture multidimensional scaling technique, within a Hierarchical Bayesian frame-

work. I modeled participants’ mental representations along the continuum of expertise and

related the representations to participants’ performances. Participants with varying levels

of bird expertise rated the similarities between all possible pairs among 20 highly confus-

able bird species, including 10 Warblers and 10 Sparrows. The modeling results suggest

that instead of having different perceptual spaces, participants along the expertise contin-

uum shared one representational space with 9 dimensions but weighted the 9 dimensions

differently across individuals. Particularly, participants with more expertise weighted 4 of

the 9 dimensions more and 2 of the 9 dimensions less than participants with less expertise.

These results suggest that experts and novices were seeing the same amount of information,

but experts might be paying more attention to diagnostic dimensions while novices might

be distracted by superficial dimensions of the psychological space.

In an attempt to explain behavioral differences from representations, the representations

from MDS were used to model identification performance. Participants were recruited to

complete an identification task, in which they chose the bird species label out of all 20

possibilities, based on images of the bird. Similar to the multidimensional scaling results,

participants with different levels of expertise weighted the dimensions differently when

identifying the 20 birds. Weights on 4 of the 9 dimensions correlate significantly with the

expertise index, either positively or negatively. Similarly, this is likely due to different dis-

tribution of resources to the diagnostic or distracting information when identifying the bird

species. Also, experts were shown to be more sensitive to differences in the psychological

space. That is, experts can better distinguish two objects that are close to each other in

space than novices, likely due to extensive experience. Together, experts are better than

novices in bird identification mainly because of their strategic weighting of the dimensions

and their sensitivity to subtle differences between bird species.
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5.2 General Discussion

This work provides insights into the dynamics and representations of real-world visual

expertise, yet more work is necessary to gain a full understanding of expertise. Real-

world expertise manifests itself in a host of behaviors, such as better recognition as shown

in the Vanderbilt Expertise Task, better semantic identification as shown in the Semantic

Vanderbilt Expertise Test, holistic effect as shown in the composite task, the inverted task,

and the part-whole task etc.

In this project, the MDS-choice model specific to the identification behavior was used

to model identification data with representations derived from similarity ratings, while a

generic Drift Diffusion model was used to understand the category verification data, with-

out representational assumptions. An intriguing next step would be to understand more

expertise-related behaviors by building a generic model that describes a generic decision-

making process built on top of individualized representations. The EBRW model (Nosof-

sky & Palmeri, 1997) provides an excellent starting point, with a generic random walk

decision-making process built on top of multidimensional representations that can be easily

individualized. If the representation component can be individualized based on individual

expertise level or even more individual metrics such as IQ and visual acuity, then ideally

the full model can reproduce most of the behaviors at an individual level.

Another question not tapped in this project is the relationship between the parameters

of visual expertise and other external variables such as IQ, genotype, experience, and visual

acuity. For example, the sensitivity parameter might be a function of visual acuity and IQ,

while the weights on diagnostic dimensions can be predicted by experience. Scores from

tests such as the Vanderbilt Expertise Test (McGugin et al., 2012), the Semantic Vanderbilt

Bird Expertise Test (Van Gulick, 2014; Van Gulick et al., 2016), and the Raven Progressive

Matrices Test (P. A. Carpenter, Just, & Shell, 1990) can be used as covariates or predictors

in cognitive process models to predict critical parameters such as the sensitivity parameter.

Studies in this direction could provide insights into the training of visual expertise.
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In this project, cognitive processing was assumed to start from abstract representations

of bird species, without considering the processes from the retina to the abstract represen-

tations. This poses another interesting challenge, to model the entire cognitive processing

from retina to eventual decision-making. Theoretically, it is possible to use the representa-

tions derived from an object recognition model (e.g., Cottrell & Nguyen, 2005; Riesenhu-

ber & Poggio, 2000; Serre et al., 2007; Tong et al., 2005) as the input for further cognitive

processing in models such as MDS-choice model or EBRW (e.g., Mack & Palmeri, 2010;

Ross et al., 2014)1.

1In an effort to promote open science and reproducible research, this document in its entirety was writ-
ten using RMarkdown. The behavioral and modeling data were read in, analyzed, and visualized using R
functions within the document. The source code for this document can be requested from the author at
j.shen33@gmail.com
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Appendix A

The Questionnaire before the Bird Expertise Test

Demographic Information

1. Year of birth (e.g., 1975)

2. Gender: Female / Male / Other

3. Do you have any neurological condition that might affect your vision, hearing, mem-

ory, or thinking? Yes / No / Refuse to answer

Birding Experience

1. Do you consider yourself a birdwatcher? Are you interested in birds? Answer yes if

you’re someone who merely enjoys identifying birds at your bird feeder or on a hike,

someone who regularly does birding as a hobby, or are a professional with expertise

in bird identification or ornithology. If yes, answer the remaining questions: Yes /

No

2. At what age did you first develop an interest in birds?

3. At what age did you first start birding relatively seriously (e.g., spending time learn-

ing bird identifications, going on planned bird walks, joining local Audubon or or-

nithological societies, etc.)

4. How much formal training and coursework do you have in ornithology?

(a) PhD, with a concentration in ornithology or a related discipline

(b) Master or Bachelors degree, with a concentration in ornithology or a related

discipline
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(c) Two or more college-level courses in ornithology

(d) One college-level course in ornithology

(e) One or more formal workshops or community courses in ornithology

(f) No formal coursework in ornithology

5. How often do you try to go birding outside of your home during peak birding times

of the year, on average?

(a) Two or more times per week

(b) Once a week

(c) Every 2-3 weeks

(d) Occasionally

(e) Rarely or never

6. How often have you planned a vacation with a primary intent of birding, on average?

(a) I am a professional who regularly identifies birds (e.g., ornithological research,

photographer, tour leader, educator, wildlife resource manager)

(b) More than once a year

(c) Once a year

(d) Every other year

(e) Once every few years

(f) Rarely or never

7. How would rate your own bird expertise for birds where you live?

(a) I am a novice. Nearly all other birders I meet are more skilled than I am.

(b) I am a beginner. Most birders I meet are more skilled than I am, but I occasion-

ally meet other beginners like me when out birding.
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(c) I have intermediate birding skills. While there are many birders more skilled

than I am, I can identify many birds that beginners cannot.

(d) I have advanced birding skills. While I am not the most expert birder that I know

in my area, I often identify birds quicker and more accurately than others.

(e) I have expert birding skills. While not a professional, I often lead birding trips

for my local birding societies, organize local bird counts, etc.

(f) I have expert birding skills. While I have met some people who are more ex-

pert than I am, I have done things like lead birding tour groups professionally,

conduct ornithological research, educate about bird identification and bird con-

servation, or work in wildlife management.

(g) I have expert birding skills. I am recognized by my peers in my state, nation-

ally, or internationally as someone other experts would turn to because of my

expertise.

8. Rate your expertise on a scale of 1 (novice) to 5 (expert) for the following birding

regions:

(a) Eastern US and Eastern Canada: 1 / 2 / 3 / 4 / 5

(b) Western US and Western Canada: 1 / 2 / 3 / 4 / 5

(c) Arctic: 1 / 2 / 3 / 4 / 5

(d) Pelagic (Atlantic and Pacific): 1 / 2 / 3 / 4 / 5

(e) South Texas: 1 / 2 / 3 / 4 / 5

(f) Southeast Arizona: 1 / 2 / 3 / 4 / 5

(g) South Florida: 1 / 2 / 3 / 4 / 5

(h) Caribbean: 1 / 2 / 3 / 4 / 5

(i) Mexico and Central America: 1 / 2 / 3 / 4 / 5
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(j) If you have expertise with any other world regions, please specify:

9. (Optional) Name up to five people you know personally who you would turn to for

their expert birding knowledge (e.g., you would want them around to verify a tough

bird identification, teach you better birding skills, or help you find new birds to add

to your life list):

10. (Optional) eBird login ID. If you provide your eBird login ID, we may access your

eBird records.
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Appendix B

The Bird Expertise Test

Target Bird Distractor Birds

Turkey Vulture Northern Harrier

Ferruginous Hawk

Parasitic Jaeger

Osprey Golden Eagle

Crested Caracara

Ruffed Grouse

Canada Goose Brant

Common Loon

Sanderling

90



Target Bird Distractor Birds

Bald Eagle Golden Eagle

Broad-Winged Hawk

Great Egret

Greater Roadrunner Black-Billed Cuckoo

Northern Bobwhite

Ruddy Turnstone

Killdeer Piping Plover

Willet

Herring Gull
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Target Bird Distractor Birds

Barn Owl Barred Owl

Common Poorwill

American Bittern

Great Blue Heron Cattle Egret

American Avocet

Anhinga

Wood Duck Harlequin Duck

Pied-Billed Grebe

Bridled Tern
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Target Bird Distractor Birds

Western Tanager Hepatic Tanager

Painted Bunting

Varied Bunting

Northern Cardinal Painted Bunting

Scarlet Tanager

Mountain Chickadee

American Robin Swainson’s Thrush

Lazuli Bunting

Song Sparrow
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Target Bird Distractor Birds

American Tree Sparrow Spotted Towhee

Western Meadowlark

Western Scrub-Jay

European Starling Common Raven

Lark Bunting

Pine Grosbeak

American Goldfinch House Finch

Yellow Grosbeak

Summer Tanager
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Target Bird Distractor Birds

Blue Jay Clark’s Nutcracker

Mountain Bluebird

Carolina Wren

Northern Mockingbird Brown Thrasher

Gray Catbird

Barn Swallow

Rock Pigeon Mourning Dove

Least Flycatcher

Cape May Warbler
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Target Bird Distractor Birds

Black-Billed Magpie American Crow

Brewer’s Blackbird

Lark Bunting

Steller’s Jay Blue Jay

Blue Grosbeak

Hermit Warbler

Wood Thrush Varied Thrush

American Pipit

Spragues’s Pipit
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Target Bird Distractor Birds

Painted Bunting Lazuli Bunting

Hooded Oriole

Rose-Breasted Grosbeak

Western Scrub Jay Steller’s Jay

Indigo Bunting

Great Kiskadee

House Finch Common Redpoll

Flame-Colored Tanager

Crissal Thrasher
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Target Bird Distractor Birds

Baltimore Oriole Eastern Meadowlark

Blackburnian Warbler

Black-Capped Chickadee

Brown-Headed Cowbird Baltimore Oriole

Song Sparrow

Cape May Warbler

Cactus Wren Carolina Wren

Abert’s Towhee

Fox Sparrow
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Target Bird Distractor Birds

Clark’s Nutcracker Pinyon Jay

Bridled Titmouse

Scott’s Oriole

Bay-Breasted Warbler Blackburnian Warbler

Cape May Warbler

Pine Warbler

Summer Tanager Scarlet Tanager

Hepatic Tanager

Flame-Colored Tanager
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Target Bird Distractor Birds

Blackburnian Warbler Bay-Breasted Warbler

Magnolia Warbler

Palm Warbler

Northern Flicker Yellow-Bellied Sapsucker

Brown Thrasher

House Sparrow

Yellow-Breasted Chat Common Yellowthroat

Wilson’s Warbler

Mourning Warbler
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Target Bird Distractor Birds

Bushtit Verdin

Swamp Sparrow

Painted Bunting

American Redstart Altamira Oriole

Cape May Warbler

Ovenbird

Bridled Titmouse Tufted Titmouse

Mountain Chickadee

Black-Crested Titmouse
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Target Bird Distractor Birds

Scott’s Oriole Audubon’s Oriole

Orchard Oriole

Bullock’s Oriole

Pileated Woodpecker Downy Woodpecker

Black-Billed Magpie

Townsend’s Solitaire

Cerulean Warbler Tropical Parula

Black Throated Blue Warbler

Collared Whitestart
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Target Bird Distractor Birds

Red-Winged Blackbird Common Grackle

American Redstart

Scott’s Oriole

Mourning Dove Rock Pigeon

Loggerhead Shrike

Lark Sparrow

Bullock’s Oriole Baltimore Oriole

Audubon’s Oriole

Altamira Oriole
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Target Bird Distractor Birds

Red-Bellied Woodpecker Pileated Woodpecker

Vermillion Flycatcher

Northern Mockingbird

Veery Swainson’s Thrush

Wood Thrush

Hermit Thrush

American Dipper Gray Catbird

Black Phoebe

Gray Jay
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Target Bird Distractor Birds

Black-and-White Warbler White-Breasted Nuthatch

Red-Breasted Nuthatch

Brown-Headed Nuthatch

Acorn Woodpecker Red-Headed Woodpecker

Gila Woodpecker

Yellow-Bellied Sapsucker

Chipping Sparrow American Tree Sparrow

Clay-Colored Sparrow

Field Sparrow
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Target Bird Distractor Birds

Nashville Warbler Orange-Crowned Warbler

Tennessee Warbler

Palm Warbler

Belted Kingfisher Bridled Titmouse

Phainopepla

Great Crested Flycatcher

Great Kiskadee Say’s Phoebe

Yellow-Throated Vireo

Brewer’s Sparrow
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Target Bird Distractor Birds

Vermilion Flycatcher Say’s Phoebe

Great Kiskadee

Scarlet Tanager

Blue Grosbeak Indigo Bunting

Blue Jay

Cerulean Warbler

Indigo Bunting Blue Grosbeak

Eastern Bluebird

Lazuli Bunting
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Target Bird Distractor Birds

Mountain Bluebird Eastern Bluebird

Western Bluebird

Blue Grosbeak

Brown Creeper Canyon Wren

Bewick’s Wren

Cactus Wren

Common Redpoll Hoary Redpoll

Pine Siskin

Cassin’s Finch
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Target Bird Distractor Birds

Fox Sparrow Song Sparrow

Henslow’s Sparrow

Sage Sparrow

Bobolink Lark Bunting

Eastern Meadowlark

Yellow-Headed Blackbird

Eastern Towhee Spotted Towhee

Lark Sparrow

Black-Headed Grosbeak
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Target Bird Distractor Birds

Blue-Headed Vireo Warbling Vireo

Hutton’s Vireo

Cassin’s Vireo

Hermit Warbler Black-Throated Green Warbler

Golden-Cheeked Warbler

Townsend’s Warbler

White-Breasted Nuthatch Tufted Titmouse

Pygmy Nuthatch

Carolina Chickadee
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Target Bird Distractor Birds

Golden-Fronted Woodpecker Red-Bellied Woodpecker

Gila Woodpecker

Red-Headed Woodpecker

Warbling Vireo Hutton’s Vireo

Philadelphia Vireo

Bell’s Vireo

Townsend’s Warbler Black-Throated Green Warbler

Blackburnian Warbler

Magnolia Warbler
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Target Bird Distractor Birds

Yellow-Bellied Sapsucker Red-Naped Sapsucker

Golden-Fronted Woodpecker

Ladder-Backed Woodpecker

Pygmy Nuthatch White-Breasted Nuthatch

Brown-Headed Nuthatch

Bushtit

Hermit Thrush Swainson’s Thrush

Veery

Wood Thrush
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Target Bird Distractor Birds

Prothonotary Warbler Yellow Warbler

Prairie Warbler

Wilson’s Warbler

Wilson’s Warbler Yellow Warbler

Hooded Warbler

Common Yellowthroat

Vesper Sparrow Song Sparrow

Lincoln’s Sparrow

Swamp Sparrow
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Target Bird Distractor Birds

Say’s Phoebe Black Phoebe

Eastern Phoebe

Olive-Sided Flycatcher

Phainopepla Pyrrhuloxia

Cedar Waxwing

Northern Cardinal

White-Crowned Sparrow White-Throated Sparrow

Song Sparrow

Swamp Sparrow
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Target Bird Distractor Birds

Common Raven American Crow

Fish Crow

Gray Jay

Purple Martin Tree Swallow

Common Grackle

Barn Swallow

Pyrrhuloxia Northern Cardinal

Scarlet Tanager

Bobolink
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Target Bird Distractor Birds

Northern Rough-Winged Swallow Tree Swallow

Barn Swallow

Bank Swallow

Evening Grosbeak American Goldfinch

Pine Grosbeak

Purple Finch

Brown-Headed Nuthatch Pygmy Nuthatch

Red-Breasted Nuthatch

Brown Creeper

116



Target Bird Distractor Birds

White-Winged Dove Common Ground Dove

Inca Dove

White-Tipped Dove

Townsend’s Solitaire Mountain bluebird

Northern Shrike

Gray-Cheeked Thrush

Carolina Wren Cactus Wren

Ovenbird

Tufted Titmouse
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Target Bird Distractor Birds

Ovenbird Northern Waterthrush

Lark Sparrow

Louisiana Waterthrush

Verdin Lucy’s Warbler

Bushtit

Blue-Gray Gnatcatchers

Louisiana Waterthrush Northern Waterthrush

Ovenbird

Song Sparrow

118



Target Bird Distractor Birds

Lawrence’s Goldfinch Lesser Goldfinch

American Goldfinch

Evening Grosbeak

Canyon Wren Rock Wren

Winter Wren

Sedge Wren

Varied Thrush American Robin

Veery

Swainson’s Thrush
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Target Bird Distractor Birds

Ruby-Crowned Kinglet Golden-Crowned Kinglet

Hutton’s Vireo

Cassin’s Vireo

Western Wood-Pewee Eastern Phoebe

Greater Pewee

Olive-Sided Flycatcher

Winter Wren House Wren

Bewick’s Wren

Marsh Wren
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Appendix C

The Coverage Map for the Bird Expertise Test

Target Bird Expertise Level Level Number

Turkey Vulture Practice 1

Osprey Practice 1

Canada Goose Practice 1

Bald Eagle Practice 1

Greater Roadrunner Practice 1

Killdeer Practice 1

Barn Owl Practice 1

Great Blue Heron Practice 1

Wood Duck Practice 1

Western Tanager Intermediate 4

Northern Cardinal Novice 2

American Robin Novice 2

American Tree Sparrow Beginner 3

European Starling Novice 2

American Goldfinch Novice 2

Blue Jay Novice 2

Northern Mockingbird Novice 2

Rock Pigeon Novice 2

Black-Billed Magpie Intermediate 4

Steller’s Jay Beginner 3

Wood Thrush Intermediate 4
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Target Bird Expertise Level Level Number

Painted Bunting Intermediate 4

Western Scrub Jay Beginner 3

House Finch Beginner 3

Baltimore Oriole Novice 2

Brown-Headed Cowbird Beginner 3

Cactus Wren Intermediate 4

Clark’s Nutcracker Intermediate 4

Bay-Breasted Warbler Advanced 5

Summer Tanager Advanced 5

Blackburnian Warbler Advanced 5

Northern Flicker Beginner 3

Yellow-Breasted Chat Advanced 5

Bushtit Beginner 3

American Redstart Intermediate 4

Bridled Titmouse Advanced 5

Scott’s Oriole Advanced 5

Pileated Woodpecker Intermediate 4

Cerulean Warbler Intermediate 4

Red-Winged Blackbird Beginner 3

Mourning Dove Novice 2

Bullock’s Oriole Advanced 5

Red-Bellied Woodpecker Beginner 3

Veery Expert 6

American Dipper Expert 6

Black-and-White Warbler Expert 6
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Target Bird Expertise Level Level Number

Acorn Woodpecker Advanced 5

Chipping Sparrow Expert 6

Nashville Warbler Expert 6

Belted Kingfisher Intermediate 4

Great Kiskadee Intermediate 4

Vermilion Flycatcher Intermediate 4

Blue Grosbeak Intermediate 4

Indigo Bunting Advanced 5

Mountain Bluebird Expert 6

Brown Creeper Advanced 5

Common Redpoll Expert 6

Fox Sparrow Expert 6

Bobolink Advanced 5

Eastern Towhee Expert 6

Blue-Headed Vireo Expert 6

Hermit Warbler Expert 6

White-Breasted Nuthatch Expert 6

Golden-Fronted Woodpecker Expert 6

Warbling Vireo Expert 6

Townsend’s Warbler Expert 6

Yellow-Bellied Sapsucker Expert 6

Pygmy Nuthatch Expert 6

Hermit Thrush Expert 6

Prothonotary Warbler Advanced 5

Wilson’s Warbler Expert 6
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Target Bird Expertise Level Level Number

Vesper Sparrow Expert 6

Say’s Phoebe Advanced 5

Phainopepla Intermediate 4

White-Crowned Sparrow Expert 6

Common Raven Advanced 5

Purple Martin Expert 6

Pyrrhuloxia Intermediate 4

Northern Rough-Winged Swallow Expert 6

Evening Grosbeak Expert 6

Brown-Headed Nuthatch Expert 6

White-Winged Dove Expert 6

Townsend’s Solitaire Expert 6

Carolina Wren Beginner 3

Ovenbird Expert 6

Verdin Expert 6

Louisiana Waterthrush Expert 6

Lawrence’s Goldfinch Expert 6

Canyon Wren Expert 6

Varied Thrush Expert 6

Ruby-Crowned Kinglet Expert 6

Western Wood-Pewee Expert 6

Winter Wren Expert 6
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