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INTRODUCTION 

 

Human Evolutionary Genetics in the Genomic Era 

 

 One of the goals of human evolutionary genetics has always been to understand the 

genetic basis of human-defining traits and origins. By 1975, growing evidence had established 

that anatomically modern humans (AMHs) and chimpanzees showed little divergence at the 

protein sequence level, leading King and Wilson to hypothesize that non-coding rather than 

coding variation drove differences in morphology between the two species1. However, until the 

completion of the sequencing of the human genome in 20032–4 and the subsequent advent of 

high-throughput sequencing technology, most studies of human origins and dispersal were 

restricted to molecular studies, archeological evidence, geographic distributions of mitochondrial 

and Y chromosome haplogroups, and comparison of limited genomic sequences. A combination 

of archeological evidence and sequencing of several non-repetitive regions of the autosomal 

genome revealed that AMHs diverged from chimpanzees, our closest living relative, an 

estimated 4-6 million years ago5,6, and mitochondrial coalescence estimates indicate that AMHs 

arose ~200,000 years ago in Africa7. 

 The sequencing of both the human and chimpanzee genomes—the latter sequenced in 

2005—confirmed the estimates of minimal coding variation between the two species made 30 

years before8. Surprisingly, non-coding variation only affects a small proportion of the genome: 

1.23% of the human genome differed from chimpanzee by single nucleotide substitutions and 

1.5% by lineage-specific small insertions and deletions (indels)8, with lineage-specific segmental 

duplications altering 2.7% of the genome9. Despite the relatively small proportion, 5% of the 
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3,200,000,000 base pairs (bp) that comprise the human genome is still 160,000,000 bp of 

sequence to investigate. Studies of these differences are further complicated by the fact that 

many of these lineage-specific changes are expected to differ due to genetic drift—stochastic 

processes that impact allele frequency and fixation—rather than selection. While there is interest 

in understanding “what makes us human,” isolating the critical changes over the roughly 6 

million years since the AMH divergence from chimpanzee is an incredibly difficult task. 

 One method to identify regions of the genome important to species divergence is to look 

for signatures of evolutionary acceleration. In general terms, this involves a statistical test 

comparing substitution rates with the rate expected given the phylogenetic tree. When applied to 

humans, this technique locates regions that have been conserved for an extended evolutionary 

time—typically, across mammals—but have accrued many mutations on the human lineage 

(reviewed in Hubisz and Pollard10). Thus, human accelerated regions (HARs) theoretically 

represent sequences whose conserved function has been lost or substantially altered solely on the 

human lineage. Several groups have identified HARs in genome-wide scans, the vast majority of 

which are non-coding and enriched near genes involved in development and the central nervous 

system11–14. Testing in mouse models has shown that many HARs act as developmental 

enhancers, with the tissue expression pattern of the human allele often differing from that of the 

conserved allele14. 

 While HARs provide many interesting candidate regions for studying human-specific 

evolution, timing of the acceleration event is difficult to gauge without considering species more 

closely related to AMHs than chimpanzee. This is difficult given that our closest known 

relatives, Neanderthals and Denisovans, are extinct. However, advances in endogenous sequence 

capture from ancient samples and the discovery of fossils with remarkably well-preserved DNA 
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have allowed for multiple individuals from these archaic hominin groups to be sequenced15–17, 

including limited autosomal DNA from several ~430,000 year old Neanderthal individuals18. 

When coupled with archeological evidence, this study revealed that the AMH lineage likely 

diverged from Neanderthals and Denisovans between 550,00-765,000 years ago. This dating, 

coupled with the high quality genome sequencing of several archaic individuals, has allowed 

researchers to determine that most of the periods of acceleration creating these HARs occurred 

before our divergence from Neanderthals and Denisovans10. This suggests that many identified 

HARs are involved in morphological traits shared between AMHs and Neanderthals, such as 

habitual bipedalism and increased brain-to-body size ratio. However, it also poses interesting 

questions about what processes are affected by human-specific accelerated regions. 

 The discovery of HARs is a recent advance in understanding differences between AMHs 

and chimpanzee, but evolutionary geneticists have been studying similar effects in the autosomal 

genome between human populations for years. These efforts began with the International 

HapMap Project, which set out to annotate common patterns of variation across individuals of 

European, African, and Asian ancestry19. This work was critical to the initial creation of 

genotyping platforms used in disease studies. The HapMap Project was followed by the 1000 

Genomes Project, which was enabled by high-throughput sequencing technology and whose 

original goal was to annotate rare variation20, and has now sequenced upwards of 2,500 

individuals from Africa, Europe, East Asia, South Asia, and the Americas21. Through these 

projects and the sequencing efforts of individual labs or other consortia, the genetic basis of 

lactase persistence22,23, resistance to malaria24–30, high altitude adaptation31–34, and many others 

have been uncovered (reviewed in Vitti et al35). These traits have proven somewhat easier to 

dissect genetically than others, due to their typically monogenic basis and that recent, strong 
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selection on a single variant or region—also known as a selective sweep—is relatively easy to 

detect between closely related populations. 

 Most current methods for identifying signatures of selection leverage the whole-genome 

sequences collected by these projects, and are optimized for detecting selection that has occurred 

in the last 100-1,000 generations. Because groups of AMHs began successfully migrating out of 

Africa into the Middle East and beyond between 50,000-60,000 years ago36, many of these 

methods are suitable for studying selection on this scale. Moreover, a great deal of recent 

progress has been made in methods for detecting different types of selection (i.e., polygenic 

selection—selection occurring on many regions in the genome with only moderate effects on 

each—rather than selective sweeps)37,38, as well as narrowing the window during which selection 

has occurred to either very recent (within the last 100 generations)39 or very distant (since our 

most recent common ancestor with Neanderthal)40 timescales. 

 Even with improvements in methodology, many tests for selection are susceptible to 

historical demography and events that would alter linkage disequilibrium (LD) or allele 

frequencies, as most methods rely on at least one of these features (reviewed in Vitti et al35). For 

example, rather than the most parsimonious scenarios of humans dispersing across Eurasia and 

into the Americas after leaving Africa, ancient DNA sequencing coupled with the sequencing of 

many individuals of varied continental ancestries has made it clear that modern populations are, 

perhaps unsurprisingly, the result of a complex series of migration events41–43, admixtures 

between human groups44,45, and interbreeding between humans and archaic hominins15,17 

(reviewed in Haber et al46). Beyond the complications of historical events, mutational processes 

with heterogeneous activity throughout the genome or between populations can also resemble 

positive or negative selection47–51. 
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 As we sequence more archaic hominin and ancient AMH samples, as well as improve 

methods for identifying variation with interesting evolutionary histories that take complex 

demography and mutational processes into account, we improve our ability to identify variation 

that has not been under strong selection. As selection strength should correlate with effects on 

fitness, connecting variation under increasingly weak selection to phenotypic expression 

becomes increasingly difficult. Understanding the functional mechanism through which variation 

acts on organismal fitness is critical to support results of studies of selection35. However, many 

evolutionary studies have been based on sequence alone, and have used tools such as gene 

ontology functional enrichment to support ties to phenotypes theorized to be important during 

the timescale considered52–56. Without an understanding of the functional mechanism through 

which variation in these regions act, it has been difficult to demonstrate precisely how regions 

under selection have influenced a phenotype or even what biological process is affected. This is 

complicated further by the fact that many tests detect regions under selection because of the 

presence of extended LD, obscuring identification of the causal variant (assuming the effect is 

due to a single causal variant and that there is not a haplotype effect). As we improve our 

understanding of how and when both stochastic processes and selection have shaped the genome, 

we must likewise improve our ability to connect variation to phenotypes. 

 

Adapting New Tools to Answer Evolutionary Questions 

 

 One avenue for improving our understanding of the phenotypic effects of evolution is to 

leverage the wealth of data produced and used by functional and statistical genetics. Functional 

genomics and gene expression data can aid in generating hypotheses about how identified 
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regions or variants influence basic biology, and have been used in this manner for many genome-

wide association studies (GWAS)57–60. One of the most extensive resources for gene expression 

data is the Genotype-Tissue Expression (GTEx) Project, which has sampled gene expression 

across many tissues in hundreds of individuals61. Two of the largest databases containing 

functional genomics data—including DNase hypersensitivity sites, histone marks, transcription 

factor binding sites, and others—across a wide range of cell lines and tissues are the 

Encyclopedia of DNA Elements (ENCODE)62 and Roadmap Epigenomics63 projects. These 

resources and many others can connect regions or variants of interest to potential effects on 

cellular-level phenotypes such as gene expression or alteration of enhancer activity. However, 

connections to an organismal-level phenotype may be more informative than functional data 

alone, especially in instances where the closest genes are active in many biological processes, or 

certain selective pressures (e.g., exposure to a pathogen) are hypothesized to have acted on a 

given study population. An early example of the power of this approach comes from a study that 

identified regions likely to be under selection in a Bangladeshi population (where cholera is 

endemic), and performed their own candidate association study on cholera susceptibility in 

independent individuals from the same population known to be exposed to cholera64. 

 Rather than perform new association studies, several groups have also incorporated the 

results of previously conducted GWAS to identify phenotypes impacted by very recent 

selection39 and archaic introgression65. The results of previous GWAS are manually entered by 

researchers into the National Human Genome Research Institute (NHGRI) GWAS catalog66. The 

catalog contains information about variants passing at least a nominal significance threshold (P < 

1E-06), and details the ancestry of the populations used, information about the degree of risk 

conferred through odds ratios (OR) or betas, allele frequencies, and much more. Many of the 
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studies are focused on diseases, but some have examined neutral traits such as hair color67–70 or 

tendency to freckle67,68,71. While the catalog is extensive, it is by no means a complete record of 

every variant-phenotype association. As the amalgam of results from thousands of studies, it can 

also be difficult to determine what might cause a variant to associate with a phenotype in one 

study, but not a related phenotype in another study. One way to overcome these challenges 

would be to survey a single population for a wide range of phenotypes; however, ascertaining, 

phenotyping, and genotyping (if not whole-genome sequencing) thousands of individuals is an 

expensive, time-consuming, and difficult undertaking. 

 Though clinical biobanks began as tools to improve patient care and conduct clinical 

research72, they provide a fertile resource for evolutionary analyses by alleviating the need to 

ascertain an entirely new population for many traits of interest. Many already exist across the 

United States and overseas, and more will be created or expanded through projects such as the 

Precision Medicine Initiative All of Us Research Program73, which aims to collect over one 

million individuals. Usually linked with electronic health records (EHR), these datasets contain a 

dense, often longitudinal record of a patient’s clinical history. Some clinical biobanks de-identify 

patient records when making them available to researchers. In the case of the Vanderbilt 

University Medical Center’s Synthetic Derivative (SD), record numbers go through a one-way 

hash so that they cannot be traced back to a patient’s identifying number, dates within a record 

are shifted by 1-365 days, and all Health Insurance Portability and Accountability Act (HIPAA) 

identifiers are removed, including names of patients and health care providers74. The SD has a 

non-human subjects designation due to the de-identification of its records, which eases the ability 

of researchers to access the data. However, de-identified records do not allow for contacting 

patients for research follow-up, hence why some biobanks used for research do not de-identify 
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patient records. Regardless of how the records are handled by an institution, when EHR 

information is paired with dense genotyping data or whole-genome DNA sequencing, 

researchers can perform analyses that take advantage of the wealth of phenotypic data available 

in EHRs75, such as phenome-wide association studies (PheWAS). 

 Sometimes termed a “reverse GWAS”76, the goal of PheWAS is to test for associations 

between one variant and many phenotypes. Clinical phenotypes tested in PheWAS can be 

derived from several sources in the EHR: International Classification of Disease version 9 (ICD-

9) codes (a hierarchical way to classify diseases and symptoms), Current Procedural 

Terminology (CPT) codes (indicating patient procedures), lab values, and other information 

extracted from free text through natural language processing (NLP). Most studies have used 

aggregation of highly related ICD-9 codes into similarly hierarchical “phecodes” to determine 

case, control, and exclusion status for over 1,500 clinical phenotypes76–79. One such study 

demonstrated that 66% of SNP-phenotype associations from the GWAS catalog could be 

replicated when the study had sufficient power to detect the association (P < 0.05, consistent 

direction of effect) in this setting80. The ability to test many phenotypes at once is useful in 

studies of pleiotropy—the phenomenon of a single variant or gene affecting more than one 

phenotype—as well as untangling shared environmental and genetic risk factors between 

phenotypes81–83. It can also serve as an agnostic way to survey phenotypes affecting practically 

every biological system when the effect of a variant is unknown. Phecodes are grouped by 

primary biological system affected (i.e., immunologic, neurologic, etc.)79,80. 

 Collapsing ICD-9 codes into phecodes facilitates statistical models other than PheWAS, 

such as genome-wide complex trait analysis (GCTA). The goal of GCTA is to use mixed linear 

modeling to test for the effects of many variants on a single phenotype to determine the percent 
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variance of a trait explained by the variants tested84,85. This genetic variance is often termed 

“chip heritability” as it only surveys variants genotyped on a “genotyping chip” rather than the 

whole genome. In addition to analyzing the genetic variance of a single phenotype, bivariate 

GCTA can also detect the genetic covariance between two phenotypes86. GCTA can serve as a 

complement to PheWAS when the effect of any individual variant may not be large enough to be 

detected, but all the variants tested are thought to affect the same biological system. This 

method’s “chip heritability” is often lower than heritability estimated from twin studies84, 

making it a useful tool for estimating a lower bound for heritability of a phenotype found in an 

EHR that has not been evaluated in twin or family studies. 

 Despite the many benefits of using EHR data, there are also several constraints. Because 

non-clinical phenotypes—such as hair or eye color—are typically of limited use in improving 

patient care, they are often inconsistently recorded and difficult to extract from EHRs. While not 

specific to EHRs, sparse genotyping coverage also poses challenges to testing all variation of 

interest, particularly if complex LD patterns from historic events (i.e., admixture) or mutational 

processes make imputation unreliable. Additionally, many clinical biobank populations are 

heavily biased in favor of individuals of European descent (a problem shared with most GWAS), 

which makes testing variation private to another population untenable. Nonetheless, as more 

sophisticated methods are developed for extracting phenotypes from the rich data stored in 

EHRs, and as EHRs are increasingly linked to dense genotyping and/or whole genome sequence 

data from individuals of diverse ancestry, we anticipate further insights into the phenotypic 

effects of many variants. Moreover, increased understanding of the functional effects of 

polymorphic sites coupled with their evolutionary histories may aid in understanding the effects 

of nearby variants that are fixed in AMHs but differ from Neanderthal or chimpanzee. 
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About this Dissertation 

 

 The goal of the work presented in this dissertation is to use recently developed statistical 

genetics methods—namely, PheWAS and GCTA—to associate evolutionarily distinct variation 

with modern clinical traits. While these methods cannot replace traditional molecular analyses, 

they provide a high-throughput approach to generate or test hypotheses about what biological 

systems are impacted by variants of interest. Each of the analyses performed in these chapters 

attempts to use PheWAS, GCTA, and other methods when appropriate to address previously 

generated hypotheses about how the examined events or processes affect AMH morphology or 

health. 

 In Chapter I, I examine the impact of variation that was introduced to AMHs through 

interbreeding between Neanderthals and the ancestors of modern Eurasians. As Neanderthals had 

lived outside of Africa for over 100,000 years, introgression is theorized to have been beneficial 

to AMHs just leaving Africa through the contribution of alleles affecting interactions with the 

environment, such as the immune and integumentary systems. Using GCTA and PheWAS, I 

show that Neanderthal introgressed variants associate with phenotypes related to these systems. 

Unexpectedly, these variants are enriched for associations with gene expression in the brain as 

well as neurologic and psychiatric phenotypes, suggesting that effects of interbreeding extended 

to the central nervous system. This chapter is adapted from my peer-reviewed article “The 

phenotypic legacy of admixture between modern humans and Neandertals” in Science87. 

 In Chapter II, I examine the impact of alleles that have decreased sharply in frequency in 

humans since our most recent common ancestor with chimpanzee. This is a group of variants 
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where humans are nearly fixed for a derived allele and are theorized to have contributed to 

hominin or human-specific evolution, depending on whether the derived allele is present in 

Neanderthals or Denisovans. Two of the human-specific variants associate with bone fracture, 

which is interesting given the skeletal differences between humans and Neanderthals. For some 

of these variants, the ancestral allele appears to have been lost in the out-of-Africa transition, but 

later reintroduced into Eurasians via introgression from Neanderthals. 

 Finally, in Chapter III, I examine variants impacted by a mutational process, GC-biased 

gene conversion (gBGC), in order to examine its contribution to modern human health. This 

process increases the likelihood of a G or C allele being transmitted over an A or T allele in 

heterozygous individuals, and has been theorized to increase the frequency of weakly deleterious 

alleles. I compared the likelihood of variants exposed to gBGC associating with a clinical 

phenotype to that of variants from several matched sets. There appears to be no increased risk for 

diseases of modern populations for gBGC variants compared with others or permuted variants. 

This is likely due to how this process affects other properties of these variants and how these 

properties affect power to detect statistical associations. 
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CHAPTER I: NEANDERTHAL INTROGRESSION INFLUENCES DIVERSE BIOLOGICAL 

SYSTEMS IN INDIVIDUALS OF EUROPEAN DESCENT1 

 

Introduction 

 

 Our understanding of human origins has improved drastically over the last several 

decades. As the earliest work in this field was dependent on skeletal or craniofacial morphology 

alone, it was unclear how the multitude of human-like fossils discovered throughout Europe and 

Asia fit within human history. The presence of archaic hominin fossils attributed to separate 

groups (Homo erectus, Homo heidelbergensis, etc.) based on morphology, geography, and age 

painted a complex picture of human history. Since their discovery, Neanderthals were the subject 

of speculation as to whether they were the ancestors of modern Europeans, or a sister species that 

had been stamped out by the superior Homo sapiens88. The rise of population genetics and the 

inception of ancient DNA sequencing began to resolve some of these complexities beginning in 

the 1990s. In 1997, mitochondrial DNA (mtDNA) from a Neanderthal individual discovered in 

Germany in 1856 was sequenced, revealing that Neanderthal mitochondrial lineages likely 

diverged from human lineages ~550,000-690,000 years ago89. These early findings were 

supported by later studies examining mtDNA from additional Neanderthals from the Caucasus 

mountains90,91, Croatia91,92, Belgium92,93, Germany91, France92, Spain91, Uzbekistan94, and the 

Altai region of Siberia94. As anatomically modern human (AMH) mitochondrial lineages 

coalesced ~200,000 years ago7, the totality of mtDNA evidence demonstrated that Neanderthals 

were a sister group to humans that had been separated for some time. This work also suggested 

																																																								
1 This chapter is adapted from my peer-reviewed article titled “The phenotypic legacy of admixture between modern 
humans and Neandertals,” published in Science87. 
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that Neanderthals and AMHs did not interbreed89–91,93,95, despite the two groups overlapping in 

space and time before Neanderthals became extinct ~28,000 years ago96. 

 With advances in whole genome sequencing, the draft sequence of the Neanderthal 

autosomal genome was completed in 2010 using three individuals from Croatia15. Contrary to the 

mtDNA findings, the autosomal genome indicated introgression from Neanderthals into non-

Africans occurred at very low levels (~1-4%). However, due to DNA degradation and human 

contamination, this study only managed to obtain ~1.3X sequencing depth, which limited the 

confidence of these claims and made identification of specific introgressed regions impossible. 

Improvements in ancient DNA sequencing and the discovery of archaic hominin remains with 

remarkably well-preserved genomic DNA in the Altai mountains allowed for the sequencing of a 

Neanderthal individual as well as a previously unknown hominin—designated Denisovans after 

the cave in which it was found—at 52X17 and 30X97 coverage, respectively. From these 

genomes, it is now clear that not only did interbreeding occur between AMHs and Neanderthals, 

it occurred multiple times between different combinations of these known groups, as well as 

other archaic hominins whose genomes have not yet been sequenced15,17,98. These genomes also 

indicated that at least one group of AMHs left Africa as early as ~100,000 years ago and 

interbred with Eastern but not European Neanderthals, nor did they contribute to AMH 

populations today99. Indeed, the first successful AMH migrations into Eurasia do not appear to 

have occurred earlier than ~60,000 years ago. These AMHs interbred with European 

Neanderthals roughly 50,000 years ago, which resulted in the genomes of modern Eurasians 

containing a small fraction (~1.5–3%) of Neanderthal DNA42,53,54,100. 

 Based on this work and the sequencing of several ~430,000 year old Neanderthals from 

Spain18, the divergence time of AMHs and the Neanderthal-Denisovan ancestor is currently 
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approximated to be between 550,000-765,000 years ago. Even with the repeated interbreeding 

between archaic hominin groups, such an ancient divergence time leads to questions about how 

compatible Neanderthal DNA would be with an AMH genome. Indeed, several genomic 

regions—e.g., on the X chromosome and the q-arm of chromosome 8—are strongly depleted of 

Neanderthal introgression, suggesting Neanderthal DNA was not well tolerated53,54. Two of these 

in particular have received a great deal of speculation: the depletion on the X chromosome, and 

the depletion near the forkhead box protein P2 (FOXP2) gene. Certain groups have suggested 

that the depletion of Neanderthal ancestry on the X chromosome is the result of moderate sexual 

incompatibility between AMHs and Neanderthal54, though others suggest this could be the result 

of selection acting more efficiently on the X chromosome101,102. The depletion near the FOXP2 

gene has garnered attention due to the role of this gene in human language development and 

birdsong103,104. Some of the additional depleted regions may contain important human-specific 

changes—like those in FOXP2—or structural variation, as many of them are depleted of both 

Neanderthal and Denisovan ancestry in Melanesians, who bear ~2–3.5% Denisovan DNA in 

addition to Neanderthal DNA at a similar proportion to other non-Africans105. 

 Despite these findings, not all introgressed Neanderthal or Denisovan DNA is necessarily 

expected to be detrimental to human fitness. Both of these groups moved out of Africa and into 

the Middle East and Europe long before AMHs, and therefore had the opportunity to adapt to the 

climatic and pathogenic landscapes found at these latitudes. If this were the case, introgression 

could have introduced variants that provided an advantage to these recently relocated AMH 

populations, and would be expected to occur at high frequencies. Indeed, several isolated 

introgressed loci have been identified with potential roles in human adaptation to pathogens and 

hypoxic conditions found at high altitudes31,65,106,107. While their phenotypic effects are currently 
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unknown, some Neanderthal haplotypes are found at higher than expected frequencies in non-

African AMH populations, though they are not always consistent between Europeans and 

Asians, possibly due to different selective pressures or stochastic events53,54,106. Analyses of 

genomic regions enriched for Neanderthal ancestry have suggested potential effects on skin and 

hair phenotypes, lipid catabolism, neuronal function and other traits53,54,108. However, due to the 

difficulty of identifying Neanderthal-derived DNA from genotype data alone and the expense of 

collecting individuals to test for trait association, the impact of introgressed Neanderthal alleles 

on these traits in human populations has not been established. 

 To address these challenges, we integrated the clinical phenotypes present in electronic 

health records (EHRs) with variation likely to be present in human populations solely due to 

introgression from Neanderthals. We performed association analyses between these Neanderthal-

introgressed variants and clinical phenotypes using individuals from the Electronic Medical 

Records and Genomics (eMERGE) Network, a consortium that unites EHRs linked to 

genotyping data from ten hospital sites across the United States109. We analyzed a set of nearly 

30,000 adults of European ancestry from seven of the eMERGE sites who were genotyped on 

genome-wide arrays and had sufficient EHR data to define phenotypes. Based on their inclusion 

in the eMERGE Network Phase 1 (E1; N=13,686) or Phase 2 (E2; N=14,730) data releases110, 

these individuals either fell into our discovery or replication cohorts. To understand how 

Neanderthal introgression influences health in modern individuals of European ancestry, we 

examined the association with clinical phenotypes of both: individual variants through phenome-

wide association studies (PheWAS)76,80, and these variants together through genome-wide 

complex trait analysis (GCTA)85,111 (Figure 1-A). The results of these analyses can give us 

insight into whether Neanderthal introgression as a whole has a negative impact on modern 
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human health, as has been theorized101,102, and whether certain biological systems were targeted 

by introgression. 

 

 
Figure 1-A*. (a) Thousands of Neanderthal alleles were identified in ~28,000 individuals of 
European ancestry across the eMERGE Network. We derived phecode case/control status for 
each individual from data in their EHRs. (b) To test Neanderthal alleles in aggregate for 
phenotype associations, we computed the genetic similarity of all pairs of individuals over 1,495 
genotyped Neanderthal loci and their phenotypic similarity over 46 EHR-derived traits. (c) We 
estimated the overall variance in risk explained by Neanderthal alleles using mixed linear models 
in GCTA85,111. (d) To test individual Neanderthal alleles for trait associations, we performed a 
discovery meta-analysis across E1 sites with sufficient data. We then ran a replication meta-
analysis over the independent E2 cohort. The example forest plot illustrates the association of 
Neanderthal SNP rs3917862 with hypercoagulable state in each site with >= 20 cases for the 
separate discovery and replication analyses. (e) rs3917862 is located in an intron of P-selectin 
(SELP), a gene that mediates leukocyte action at injuries in the early stages of inflammation. The 
Neanderthal allele is significantly associated (linear regression, P = 0.005) with increased 
expression of SELP in tibial artery data from GTEx61.  
*This figure is adapted from Figure 1 from my peer-reviewed article87. 
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Methods 

 

Variant Selection 

 To identify variants present in AMH populations solely due to introgression from 

Neanderthals, we first collected all variants falling in a set of high-confidence (FDR < 0.05) 

introgressed haplotypes53 identified using the S* algorithm98, the Altai Neanderthal sequence17, 

and 1000 Genomes (1KG) data20. We first calculated the statistic S*, which considers both 

divergence and LD, and then refined the resulting set of candidate introgressed regions by 

directly comparing significant S* haplotypes to the Altai Neanderthal genome sequence. A 

“Neanderthal match P value” was calculated to quantify whether the observed matching is higher 

than would be expected by chance53. Only haplotypes that are significant by S* and have a 

significant Neanderthal match P value are used in the analyses here. From these, we took all 

biallelic variants where the putatively introgressed allele matched the Altai Neanderthal 

sequence and was derived with respect to chimpanzee. For each haplotype, we calculated a 90% 

trimmed mean allele frequency. To remove variants that were segregating in both AMHs and 

Neanderthals before interbreeding or were unlikely to be present on the introgressed Neanderthal 

haplotype at the time of introgression, we restricted our variants of interest to those within 10% 

of the trimmed mean allele frequency of the haplotype. After these filtering steps, we required 

that at least four variants remained to include a haplotype and its variants. 

 

Study Population 

 The eMERGE Network is comprised of ten sites: seven with adult samples and three with 

pediatric samples. We used adult (18 years of age or older as of January 2015) individuals of 
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European ancestry from the seven adult sites: Geisinger Health System, Group Health 

Cooperative (Washington State), Mayo Clinic, Marshfield Clinic, Mt. Sinai, Northwestern 

University, and Vanderbilt University. The eMERGE Phase 1 (E1) data set comprises 13,686 

individuals from five of the seven sites with adult samples: Group Health Cooperative, Mayo 

Clinic, Marshfield Clinic, Northwestern University, and Vanderbilt University. Phase 2 (E2) 

comprises an independent set of 14,730 individuals from all seven sites. 

 

Genotyping, Quality Control, and Imputation 

 The eMERGE subjects were genotyped on a range of genome-wide arrays including the 

Affymetrix 6.0 and the Illumina 550, 610, 660, 1M, 5M, and Omni Express chips. The eMERGE 

Coordinating Center at Pennsylvania State University performed genotype imputations for all 

samples collected as part of E1 and E2. In the v3 (December 2014) data release used here, 

SHAPEIT2112 and IMPUTE2113 were used to impute all autosomes to the 1000 Genomes Project 

(release March 2012). Imputed data for all sites were then merged based on an intersection of 

successfully imputed SNPs between them. For different analyses, probabilities (dosages) or the 

most likely imputed genotypes (hard calls) were used as indicated in the text. For the hard call 

SNPs, the marker call rate threshold was set at 99% and info score threshold at 0.7. 

Population structure was evaluated using Eigensoft 6.0114 on filtered and LD pruned data. 

Related individuals (one from each pair of kinship >0.125) as estimated from identity-by-descent 

(IBD) were removed before principal components analysis (PCA). Two highly correlated regions 

as well as all palindromic SNPs were removed, in addition to a marker call rate filter of 99%, 

MAF > 10%, and LD pruning of r2 > 0.1. This left 101,000 SNPs, on which 30 principal 
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components were calculated. See the eMERGE Network methods publications and web site for 

more details115,116. 

 

Phenotyping 

 Clinical phenotypes were derived using a prior EHR-based PheWAS approach, which 

uses established algorithms that integrate the range of diseases, signs and symptoms, causes of 

injury, and procedures represented by International Classification of Diseases, ninth edition 

(ICD-9), codes into 1,645 coherent phenotypes, such as “inflammatory bowel disease,” and its 

child terms “Crohn’s disease” and “ulcerative colitis”79. Some of these phenotypes and the 

corresponding controls (defined by lack of related codes) have seen extensive manual and 

computational validation across eMERGE, and proven successful in previous studies76,78,80,117. 

The ICD-9 based phenotype definition algorithms used produce phenotypes that enable 

replication of 66% of known associations in sufficiently powered (80%) association tests80 and 

recent work has yielded even higher replication rates (communication from Joshua Denny). 

 ICD-9 code counts were extracted from the electronic health record (EHR) and converted 

to PheWAS code (phecode) counts. From the phecode count list, we used the PheWAS package 

(v0.9.5.1-1)79 function “createPhewasTable” to generate case/control status for our individuals 

using a minimum code count of two unique dates of a diagnosis. We did not analyze phecodes 

with a case count less than 20. 

 

PheWAS 

We performed both a meta-analysis of PheWASes performed on each eMERGE site’s 

data individually, and a joint PheWAS analysis over data pooled from all eMERGE sites. Both 
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analyses were performed separately on the independent E1 (discovery) and E2 (replication) 

cohorts. We analyzed 1,495 common (MAF > 1%) Neanderthal SNPs genotyped by the 

eMERGE Network and required that phecodes have at least 20 cases in each site analyzed in the 

meta-analysis or overall for the pooled analysis. For the meta-analyses, a PheWAS was 

performed on each eMERGE site’s data using the “phewas” function in the PheWAS package79 

to run logistic regression using an additive genetic model. A meta-analysis of the site-specific 

scans was performed with the “phewasMeta” function. We considered age, sex, and first three 

principal components (PCs) as covariates. For the joint analyses, the “phewas” function in the 

PheWAS package was used to analyze data pooled across eMERGE sites. For the pooled 

analysis, we again included age, sex, and the first three PCs as covariates, and additionally used 

eMERGE site (dummy coded as either 4 (E1) or 6 (E2) variables). For imputed SNPs in the E2 

analyses, we used dosages rather than the hard calls. We used gtool (v0.7.5) and qctool (v1.4) to 

select the appropriate SNPs from the IMPUTE2 files and convert to the input format for the 

PheWAS package. We report the P value and odds ratio from the fixed effect models unless 

otherwise stated. 

 

Enrichment Analysis 

 To test whether Neanderthal SNPs were more likely to be associated with disease 

phenotypes than non-Neanderthal SNPs, we identified phecode associations for 1,056 common 

(MAF > 1%) non-redundant (r2 < 0.5) Neanderthal SNPs at a relaxed significance threshold of P 

< 0.001 in the discovery set that replicated in E2 (P < 0.05 and same direction of effect). This 

yielded 60 associations after accounting for phecodes present in the same hierarchy (Appendix 

A). To generate a set of appropriate non-Neanderthal SNP-phecode associations for comparison, 
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we identified SNPs that were not within 100 kb of a Neanderthal SNP, and then we pruned these 

non-Neanderthal SNPs so that none were in strong LD with another variant (r2 > 0.5). We then 

identified five independent matched control sets (for a total of 5,280 non-Neanderthal SNPs) that 

matched genotyping status on the Human660W-Quadv1_A genotyping platform and the allele 

frequency distribution (frequency difference per matched SNP < 0.005%) of the Neanderthal set. 

We performed a PheWAS meta-analysis of the non-Neanderthal SNPs following the same 

protocol as above, but using the hard calls for E2. 

 

GCTA 

 GCTA uses a mixed linear model to estimate the proportion of phenotypic variance 

explained by SNPs of interest85,111. For individuals in the E1 discovery set, we used all directly 

genotyped Neanderthal variants (on the Human660W-Quadv1_A platform) with a MAF > 1% 

(1,532 variants) to compute a GRM using the “make-grm” option in the GCTA program 

(v1.24.4)85,111. For individuals in the E2 replication set, we computed a Neanderthal GRM using 

the same SNPs that were considered in the discovery set. Since the E2 individuals were not all 

genotyped on the same platform, we used imputed SNPs that passed quality control filters (info 

score > 0.7 and marker call rate > 99%). This resulted in 1,386 Neanderthal variants with hard 

call genotypes. For the non-Neanderthal GRM used in the additional two GRM replication 

analysis, we included all high quality non-Neanderthal variants with a MAF > 1% that were not 

within 100 kb of a Neanderthal variant (370,306 variants). 

 We tested a manually curated set of phecodes for ocular, brain, immune, lipid 

metabolism, digestive, or skin traits (Appendix B). These categories were selected to represent 

traits that Neanderthal introgression has been hypothesized to influence in previous 
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studies53,54,106,108,118,119. Phecodes tested in the discovery analyses either had a case prevalence > 

20% or had an association with a nominally significant P value in a preliminary PheWAS 

analysis; 46 phecodes met these criteria. The phecodes tested in replication analyses had a P 

value < 0.1 in the discovery analyses (12 phenotypes). 

In the discovery analyses, we used GCTA to estimate the variance in risk explained by 

Neanderthal SNPs for 46 phenotypes using a Neanderthal GRM generated as described above. In 

the replication analyses, we tested the 12 phecodes found to be nominally significant in the 

discovery analysis using the E2 Neanderthal SNP GRM. We additionally tested these 12 

replication phenotypes in a GCTA analysis with a Neanderthal and non-Neanderthal GRM fitted 

in the same model. We included age, sex, and eMERGE site (dummy coded as for PheWAS 

described above) as covariates in both replication and discovery analyses. In each analysis, we 

used disease prevalence estimates from European descent populations when available: 

Depression (15.0%)120, Actinic keratosis (38.0%)121, Obesity (30.2%)122, Hypercholesterolemia 

(26.9%)123, and Anxiety disorder (18.0%)124. All other phenotypes were tested without using the 

prevalence GCTA function. 

To ensure that the differences in percent risk estimated between E1 and E2 were not due 

to the variants that did not pass QC in E2, we also reran our discovery analyses without these 

variants. There was a negligible difference between those results and our original results 

(Appendix C), suggesting that these variants are not the reason for the differences in percent risk 

explained seen between E1 and E2. 

Individual Neanderthal SNP effects were estimated using the best linear unbiased 

prediction (BLUP) approach in the GCTA package85. We calculated BLUPs for the 12 

significant or nominally significant phenotypes in both E1 and E2. We analyzed the genomic 
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distribution of the 10% of SNPs with the highest and lowest BLUPs for actinic keratosis and 

depression using the Genomic Region Enrichment of Annotations Tool (GREAT) with the 

default basal plus extension settings125. These settings define the regulatory domain for each 

gene to be at least 5 kb upstream and 1 kb downstream of the gene boundaries. This is then 

extended to the nearest gene’s regulatory domain, or up to 1 Mb in either direction, whichever is 

closer. 

 

eQTL Data 

 We examined two studies that identified cis-eQTL in the brain. Zou et al.126 quantified 

expression levels of 24,526 transcripts in the cerebellum and temporal cortex of autopsied 

patients with Alzheimer’s disease (AD; 197 cerebellum, 202 temporal cortex) and patients with 

other brain pathologies (non-AD; 177 cerebellum, 197 temporal cortex) using Illumina’s Whole 

Genome DASL assay. The patients were genotyped on the Illumina HumanHap300-Duo 

Genotyping BeadChip. They then tested SNPs within 100 kb of the quantified transcripts for 

association with expression level. These analyses were performed for the AD, non-AD, and 

combined cohorts for each tissue. To maximize power, we analyzed the association P values 

from the combined set.  

 We also analyzed eQTL in the cerebellum and parietal cortex from the ScanDB database. 

These were computed from expression and genotyping data originally collected by the Bipolar 

Disorder Genome Study (BiGS) Consortium127. ScanDB provides only the subset of the SNP–

gene expression association P values for tests with an uncorrected P < 0.01. We analyzed all 

pairs they defined as significant by this threshold and identified whether each variant acted as an 
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eQTL for any tested gene. For enrichment analyses on data from both studies, we removed any 

variant that overlapped a gene expression probe. 

 

Imputed Variant PheWAS 

 To test Neanderthal variants not directly genotyped on the Illumina 660W platform, we 

examined 6,359 variants with a MAF > 1% that were imputable to our quality control filters 

above, and were not in strong LD with each other (r2 < 0.8). We used dosages for these variants 

for association testing in both E1 and E2 and ran a meta-PheWAS using the covariates and 

methods as described above. 

 

Results 

 

Neanderthal Variants Together Affect Risk for Depression and Actinic Keratosis 

 Neanderthal variants have been hypothesized to influence many phenotypes in AMHs, 

including lipid metabolism, immunity, depression, digestion, and hair/skin, on the basis of the 

enrichment of Neanderthal variants in regions of the genome relevant to these traits17,53,54,108. 

Accordingly, we first tested these hypotheses using GCTA85 to estimate the phenotypic risk 

explained by 1,495 genotyped common (MAF >1%) Neanderthal SNPs for a set of 46 high-

prevalence phenotypes from the hypothesized categories, using age, sex, and eMERGE site as 

covariates (Figure 1-A (b,c)). Neanderthal SNPs explained a significant (GCTA likelihood ratio 

test; FDR < 0.05 over all phenotype tests) percent of the risk in three traits in the E1 discovery 

cohort (Table 1-A): depression (2.03%, P = 0.0036), myocardial infarction (1.39%, P = 0.0026), 

and corns and callosities (1.26%, P = 0.01). Neanderthal SNPs also explained a nominally 
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significant (P < 0.1) percent of risk for nine additional traits, including actinic and seborrheic 

keratosis, coronary atherosclerosis, and obesity (Table 1-A). Of the 12 nominally significant 

associations, eight replicated in the independent E2 dataset, including actinic keratosis (P = 

0.0059), mood disorders (P = 0.018), depression (P = 0.020), obesity (P = 0.030), and seborrheic 

keratosis (P = 0.045) at P < 0.1 (Table 1-A; likelihood ratio test). We also tested whether the 

percent of phenotypic variance explained by Neanderthal SNPs remained significant in the 

context of non-Neanderthal SNPs by including an additional genetic relationship matrix (GRM) 

computed from non-Neanderthal SNPs across the rest of the human genome in the mixed linear 

model. Depression (P = 0.031), mood disorders (P = 0.029), and actinic keratosis (P = 0.036) 

replicated with these stricter criteria in the independent E2 cohort.  

 

Table 1-A. Neanderthal alleles explain risk for human clinical traits. The eight traits for which 
Neanderthal alleles explained a nominally significant proportion of variance in risk in both the 
E1 discovery and E2 replication analyses are listed (GCTA, P < 0.1). The depression association 
remained significant after controlling the false discovery rate at 5%. The Neanderthal 
associations with actinic keratosis, mood disorders, and depression were also maintained in a two 
GRM model that considered the risk explained by non-Neanderthal variants. Phenotypes are 
sorted by their E2 P-value. 

Phenotype  
Discovery (E1) Replication (E2) Replication  

(E2; two GRM) 
Risk 

Explained P 
Risk 

Explained P 
Risk 

Explained P 

Actinic keratosis  0.64% 0.066 3.37% 0.0059 2.49% 0.036 

Mood disorders  1.11% 0.0091 0.75% 0.018 0.68% 0.029 

Depression  2.03% 0.0023 1.15% 0.020 1.06% 0.031 

Obesity  0.59% 0.048 1.23% 0.030 0.39% 0.27 

Seborrheic keratosis  0.77% 0.038 0.61% 0.045 0.41% 0.13 

Overweight  0.60% 0.037 0.53% 0.052 0.23% 0.24 
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Acute upper respiratory 
infections  0.70% 0.043 0.56% 0.062 0.34% 0.18 

Coronary atherosclerosis  0.68% 0.04 0.42% 0.098 0.34% 0.15 

 
 

These analyses establish the influence of Neanderthal SNPs in concert on the variance in 

these traits. We estimated individual effects for each SNP by the best linear unbiased predictions 

(BLUPs); this indicated that a similar number of Neanderthal SNPs increase and decrease risk 

for each associated phenotype (Table 1-B). To gain insight into the loci driving these 

associations, we analyzed the genomic distribution of the 10% of SNPs with the highest and 

lowest BLUPs for actinic keratosis and depression. We found enrichment (FDR < 0.05; 

hypergeometric test) for many functional annotations: most notably, keratinocyte differentiation 

and several immune functions for actinic keratosis and regions involved in neurological diseases, 

cell migration, and circadian clock genes for depression87 (Figure 1-B).  

 

Table 1-B. Neanderthal SNP BLUP results from GCTA. Significantly replicating results in bold. 

Phenotype E1 
PRE* 

E1 
% Risk SNPs 

E2 
PRE 

E2 
% Risk SNPs 

Hypercholesterolemia 0.74% 49.4% 0.20% 50.1% 
Overweight 0.60% 46.6% 0.23% 48.6% 
Obesity 0.59% 48.1% 0.39% 48.0% 
Mood disorders 1.11% 48.2% 0.68% 52.0% 
Depression 2.03% 48.1% 1.06% 52.4% 
Anxiety disorder 1.70% 50.7% 0.00% 49.2% 
Myocardial Infarction 1.39% 50.6% 0.13% 50.1% 
Coronary 
atherosclerosis 0.68% 51.0% 0.34% 53.4% 
Acute upper 
respiratory infections 0.70% 47.5% 0.34% 49.8% 
Corns and callosities 1.26% 48.6% 0.21% 50.5% 
Actinic keratosis 0.64% 49.7% 2.49% 54.1% 
Seborrheic keratosis 0.77% 50.0% 0.41% 52.2% 
* PRE = Percent Risk Explained. 
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Figure 1-B. Schematic example of functional enrichment analysis on genes nearby Neanderthal 
SNPs with large BLUPs in the GCTA analyses. We estimated the effects of individual 
Neanderthal SNPs (BLUPs) and performed genomic enrichment analysis using GREAT125 on the 
top 10% most protective and risk increasing SNPs for actinic keratosis and depression. We found 
enrichment (FDR < 0.05; hypergeometric test) for many functional annotations: most notably, 
keratinocyte differentiation and several immune functions for actinic keratosis and regions 
involved in neurological diseases, cell migration, and circadian clock genes for depression87. 
 

 

Individual Neanderthal Variants Associate with Clotting and Neurological Disorders 

 GCTA quantifies the overall influence of Neanderthal SNPs together on traits in AMHs. 

To identify individual Neanderthal loci associated with AMH phenotypes and potentially 

discover additional biological systems affected by Neanderthal admixture, we performed a 

phenome-wide association study (PheWAS) of these 1,495 Neanderthal SNPs with 1,152 EHR-

derived phenotypes with at least 20 cases in at least one site (Figure 1-A (d)). PheWAS allows 

for large-scale characterization of the effects of variants of interest80. We carried out two meta-

analyses across the eMERGE Network sites—one over the discovery cohort and one over the 

replication cohort. We focus on the meta-analyses here (Table 1-C; Appendix D), but a pooled 

analysis using eMERGE site as a covariate produced largely consistent results (Appendix E). 
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Table 1-C. Individual Neanderthal SNPs with significant replicating phenotype associations. 
Four locus-wise Bonferroni significant Neanderthal SNP-phenotype associations replicated (with 
a fixed effect P < 0.05 and consistent direction of effect).  
     Discovery Replication 

Phecode Phenotype SNP MAF 
Flanking 
Gene(s) 

Odds 
Ratio P 

Odds 
Ratio P 

286.8 Hypercoagulable 
state 

rs3917862 6.20% SELP 3.32 9.9E−7 3.00 5.0E-10 

260 Protein-calorie 
malnutrition 

rs12049593 5.15% SLC35F3 1.77 2.0E−6 1.63 5.5E-05 

599.8 Symptoms 
involving urinary 
system 

rs11030043 10.5% RHOG, 
STIM1 

1.76 7.4E−6 1.65 4.3E-02 

318 Tobacco use 
disorder 

rs901033 1.06% SLC6A11 2.19 1.7E−5 1.75 7.9E-04 

 

 We found 105 SNP-phenotype associations passed a locus-wise Bonferroni corrected 

significance threshold (P = 3.3E-5) in the E1 meta-analysis (Appendix F). Four Neanderthal 

SNP–phenotype associations passed this discovery threshold and replicated (P < 0.05) with the 

same direction of effect in the independent E2 meta-analysis (Table 1-C). The strongest signal 

was a Neanderthal SNP (rs3917862, 6.5% EUR 1KG frequency) in an intron of P-selectin 

(SELP) that was significantly associated with hypercoagulable state in both E1 and E2 (Table 1-

C; Figure 1-A (d)). This haplotype contains several genes directly involved in blood coagulation 

and inflammation, most notably SELP, which encodes a cell adhesion protein expressed on the 

surface of endothelial cells and platelets that recruits leukocytes to injuries during inflammation. 

Factor V (F5), a coagulation cofactor associated with several coagulation defects, is located ~37 

kilobases (kb) downstream. The Neanderthal haplotype overlaps histone modifications 

suggestive of gene regulatory activity in blood cells and vein epithelial cells (Figure 1-C). Using 

data from the Genotype-Tissue Expression (GTEx) Project61, we found indications that the 

Neanderthal allele at rs3917862 significantly increased the expression of SELP (P = 0.005) and 

F5 (P = 0.05) in arteries (Figures 1-A (e); 1-C). 
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Figure 1-C. A Neanderthal allele located in SELP significantly associated with hypercoagulable 
state and has evidence of gene regulatory function. The Neanderthal SNP, rs3917862, is 
significantly associated with hypercoagulable state (Figure 1-A (d); Table 1-C). rs3917862 is 
located in an intron of P-selectin (SELP), a gene that mediates leukocyte action at injuries in the 
early stages of inflammation. This SNP is in LD with rs10489183. These SNPs have functional 
genomic signatures indicative of gene regulatory activity in blood cells and vein epithelial cells. 
The Neanderthal allele at rs3917862 is significantly associated (P = 0.005) with increased 
expression of SELP in tibial artery data from GTEx (Figure 1-A (e)). It also significantly 
associates with increased F5 expression (P = 0.05; Appendix G). 
 

 The second replicating association was a SNP (rs12049593, 5.0% EUR frequency) in an 

intron of SLC35F3, a putative thiamine transporter that associates with protein-calorie 

malnutrition. Thiamine is crucial to carbohydrate metabolism for all cells, particularly those with 

increased energy requirements128. Variants in high LD with this SNP (r2>0.8, D’=1) are found in 

regions bearing enhancer histone marks in the gastrointestinal (GI) tract, brain, and other tissues. 

Decreased expression of this transporter in the brain or GI could exacerbate malnutrition or its 

symptoms. It is possible that new dietary pressures may have caused changes in carbohydrate 

metabolism to be beneficial in early human migrants out of Africa; indeed, there is evidence 

suggesting that Neanderthal introgression likely influenced lipid catabolism in Europeans108. 

More recently, the reduction of thiamine present in foods from the grain refining process as well 

as increased intake of simple carbohydrates, make this a potentially harmful allele, as it could 

reduce thiamine availability while modern diets increase demand. 
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 Another Neanderthal SNP (rs11030043, 9.0% EUR frequency) is upstream of stromal 

interaction molecule 1 (STIM1) and is associated with a phenotype encompassing incontinence, 

bladder pain, and urinary tract disorders (Figure 1-D (a)). STIM1 is a ubiquitously expressed 

gene involved in intracellular calcium signaling. Variants in high LD with the Neanderthal SNP 

are found in regions bearing enhancer histone marks and DNase I hypersensitive sites in the 

brain. Because of this, we examined whether this SNP was associated with gene expression 

levels in brain tissues in GTEx. The Neanderthal allele is associated with significantly decreased 

expression of STIM1 in the caudate basal ganglia (P = 0.02; Figure 1-D (b)), a region of the brain 

connected to bladder dysfunction, particularly in those with neurological conditions such as 

Parkinson’s129. 

 

 
Figure 1-D. rs11030043 is significantly associated with symptoms of the urinary system, and is 
associated with expression levels of STIM1. (a) The forest plot shows odds ratios and P values 
for the association of Neanderthal SNP rs11030043 with symptoms of the urinary system in each 
site with >= 20 cases. This association was significant in E1 and replicated in E2. (b) rs11030043 
is located ~10 kb upstream of stromal interaction molecule 1 (STIM1), a transmembrane protein 
that regulates calcium ion flux, and is significantly associated (P = 0.02) with its expression in 
the caudate basal ganglia. 
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 The last replicated association was between rs901033 (0.5% EUR frequency) and tobacco 

use disorder. This SNP is in an intron of SLC6A11, a solute carrier family neurotransmitter 

transporter that is responsible for reuptake of the neurotransmitter GABA. Nicotine addiction 

disrupts GABAergic signaling in the brain and reduces expression of SLC6A11130. This is the 

second Neanderthal SNP to be associated with smoking risk54. 

 

rs3917862 and the Factor V Leiden Mutation 

The association between rs3917862 with hypercoagulable state may be influenced by the 

F5 Leiden (F5L) mutation; however, the Neanderthal allele appears to have an additional 

influence on risk. The Neanderthal SNP is in low linkage disequilibrium with F5L (LD, r2=0.07, 

D’=0.42), and increases risk for venous thromboembolism (VTE), beyond the risk associated 

with F5L131. Furthermore, manual review of the EHRs for 16 hypercoagulable state cases 

revealed a diverse set of causes, and only four out of the 11 individuals tested for F5L had the 

mutation. Due to the direct interaction of coagulation factors with pathogens, these genes have 

been common targets of positive selection across vertebrate evolution, and F5 has experienced 

positive selection in primates132. Thus, it is possible that this Neanderthal haplotype and the 

associated hypercoagulability provided an advantage in early AMHs outside of Africa. 

However, due to the large odds ratio (~3) for the association and the proximity (~74 kb 

downstream) of rs3917862 to the F5 Leiden thrombophilia mutation (F5L, rs6025), which 

increases risk for several conditions linked to hypercoagulability in individuals of European 

ancestry, we investigated whether this Neanderthal SNP could tag associations due to F5L. F5L 

is overlapped by a Neanderthal haplotype, but appears to postdate introgression. It was not 

genotyped on the arrays used by eMERGE, but we found modest linkage disequilibrium 
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(r2=0.07, D’=0.42) with the imputed F5L and rs3917862. This agrees with previous studies131 (r2 

= 0.12, D’ = 0.37) and our analysis of sequencing data from the 1000 Genomes Phase 3 EUR 

super-population individuals (r2 = 0.06, D’ = 0.56). Furthermore, manual review of the EHRs for 

hypercoagulable state cases revealed that only four had a positive F5L genetic test out of 11 

directly tested. Using the imputed F5L data, we tested whether we had power to detect an 

association with hypercoagulable state caused by F5L via rs3917862. We took the imputed 

frequency of the F5L mutation (2.9%). We used estimates for the genotype relative risk (Aa = 

10, AA = 20) from odds ratio estimates of the association with imputed F5L with 

hypercoagulable state. We took the frequency of rs3917862 (6.2%), hypercoagulable state 

prevalence (1.6%), case numbers (92), and control numbers (9,540) from the E1 data to compute 

the power of rs3917862 to tag the F5L association. At our Bonferroni-corrected alpha threshold, 

we were significantly underpowered to detect an association driven by F5L via rs3917862 

(dominant model: 36%; allelic model: 39%)133. We also tested a range of values that reflected the 

extremes of the estimates of these values from the literature. Nearly all remained significantly 

underpowered; however in a few situations, increasing the F5L mutation frequency to ~5% 

yielded power above 80%. It is worth noting that this situation is highly unlikely, even in a 

clinical population. 

It is possible that the F5L mutation contributes to the significant observed association 

between hypercoagulable state and rs3917862. However, the modest LD between these SNPs, 

the lack of positive F5L tests in the reviewed cases, and our evidence that rs3917862 alters the 

expression of F5 and SELP in a manner consistent with increased risk suggests an additional role 

for the Neanderthal allele in hypercoagulability. Furthermore, a recent well-powered study of 
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VTE demonstrated that rs3917862 increases the risk of VTE beyond the risk associated with 

F5L131. Thus, we conclude that this Neanderthal allele influences hypercoagulable state. 

 

Neanderthal Variants are Enriched for Neurological and Psychiatric Associations 

 We tested whether Neanderthal SNPs were more likely to be associated with disease 

phenotypes than non-Neanderthal SNPs. We compared the Neanderthal SNP PheWAS results for 

an LD-pruned (r2 < 0.5) set (1,056 variants) to those obtained in a PheWAS of 5,280 SNPs with 

low LD (r2 < 0.5) and an allele frequency distribution matched to the Neanderthal SNPs. These 

control SNPs correspond to five separate frequency-matched sets of SNPs. The Neanderthal 

SNPs were 1.22 times more likely to be associated with a phenotype than non-Neanderthal 

SNPs; however, due to the small number of associations these differences did not reach 

significance at P < 0.05. 

 To consider a larger number of associations, we analyzed all Neanderthal SNP–

phenotype associations at a relaxed significance threshold of P < 0.001 in the discovery set that 

replicated (P < 0.05 and same direction of effect). This yielded 60 associations after accounting 

for hierarchically related phenotypes (Appendix A). Of the 60 associations, 59 (98%) were risk 

increasing. We compared these results to the 260 associations obtained for the non-Neanderthal 

SNPs at the relaxed threshold. The Neanderthal SNPs were 1.12 times more likely to be 

associated with a phenotype than non-Neanderthal SNPs and were less likely to be protective 

(2% vs. 5%); however, these differences were not significant at P < 0.05 (binomial test, P = 0.2 

and 0.13, respectively).  

 Next, to test whether specific classes of phenotypes were more likely to be influenced by 

Neanderthal SNPs, we grouped PheWAS phenotypes into 14 distinct categories used in previous 
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PheWAS studies79,80 and compared the distribution of associations for Neanderthal and non-

Neanderthal SNPs. Overall, the Neanderthal SNPs associated with a significantly different 

distribution of phenotypes (chi squared test, P = 0.017; Figure 1-E). They were associated with 

more neurological (binomial test, P = 0.018) and psychiatric phenotypes (P = 0.023), and fewer 

digestive phenotypes (P = 0.004). These analyses suggest that Neanderthal alleles influence a 

different set of phenotypes than expected from non-Neanderthal alleles and may be more likely 

to contribute to disease. 

 

 
Figure 1-E*. Neanderthal SNPs associate with different phenotype categories than matched non-
Neanderthal SNPs. Each bar gives the difference between the number of replicated Neanderthal 
SNP associations with a phenotype group (at a relaxed discovery threshold of P < 0.001) and the 
number expected from a PheWAS over five sets of non-Neanderthal sites matched to the allele 
frequency of tested Neanderthal SNPs. The phenotype distributions were significantly different 
(chi squared test, P = 0.017), with more Neanderthal SNPs associated with neurological and 
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psychiatric phenotypes than expected and fewer digestive phenotypes. The enrichment and 
depletion were consistent across all five matched non-Neanderthal sets (* indicates P < 0.05 for 
all five comparisons; binomial test). 
*This figure is adapted from Figure 2 from my peer-reviewed article87. 
 

 To test if these enrichments and depletions were stable, we used the fact that the 5,280 

control (non-Neanderthal) alleles consisted of five independent, non-overlapping sets matched to 

the Neanderthal alleles tested. We compared the Neanderthal phenotype association distribution 

to each of these five smaller matched sets in turn, and the phenotype categories at the extremes 

(psychiatric, neurological, and digestive) were all consistently enriched/depleted across the five 

comparisons. In particular, there was enrichment for psychiatric phenotype associations in the 

Neanderthal set across comparisons with all five sets (binomial test, P < 0.05). The enrichment 

for neurological phenotypes was significant (P < 0.05) for three and consistent in direction but 

not significant (P < 0.2) for the remaining two. The depletion for digestive phenotypes was 

present in all five control set comparisons (P < 0.05). No other phenotypes were consistently 

enriched or depleted in more than two of the comparisons. Thus, our finding that Neanderthal 

alleles are associated with a significantly different set of traits than matched non-Neanderthal 

alleles is stable across different control sets, and the same phenotypes were consistently 

significantly enriched and depleted. 

 

Neanderthal Variants are Enriched for Brain eQTL 

Given the observed enrichment for psychiatric and neurological phenotype associations 

among Neanderthal SNPs, we tested whether Neanderthal SNPs were more likely to be 

expression quantitative trait loci (eQTL) in brain tissues than non-Neanderthal SNPs. We 
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analyzed previously generated brain eQTL datasets from cerebellum and temporal cortex from 

Zou et al.126, and cerebellum and parietal cortex from ScanDB134. 

We identified all Neanderthal and control non-Neanderthal SNPs from the enrichment 

analyses that were directly genotyped and tested in the Zou et al.126 study. We additionally 

filtered those variants that overlapped a probe on the array. This yielded 663 Neanderthal SNP–

gene pairs with association P values and 3,295 non-Neanderthal SNP–gene pairs with P values. 

To correct for multiple testing, we calculated q-values135 from the raw Neanderthal and non-

Neanderthal SNP-gene pair P values. At a q-value threshold of 0.05, 22 of the 663 Neanderthal 

SNP–gene pairs (3.3%) and 45 of 3,295 non–Neanderthal SNP-gene pairs (1.4%) were 

considered significant associations in the cerebellum. This enrichment of eQTL among the 

Neanderthal SNPs is significant (P = 1.68E-04, one-tailed binomial test). These results were 

robust to q-value thresholds of 0.01 (14 Neanderthal vs. 29 non-Neanderthal SNP-gene pairs; 

one-tailed binomial test P = 2.72E-03) and 0.1 (32 Neanderthal vs. 65 non-Neanderthal; one-

tailed binomial test P = 5.32E-06). We also found significant enrichment for temporal cortex 

eQTL among the Neanderthal SNPs: 23 of 683 Neanderthal SNP-gene pairs (3.4%) and 42 of 

3,298 non-Neanderthal SNP-gene pairs (1.3%) were eQTL (P = 3.49E-05, one-tailed binomial 

test). 

To ensure that our results were not biased by a few variants associating with the 

expression of multiple genes, we repeated the analysis using only unique SNPs from the 

significant SNP–gene pairs above. These comparisons also revealed significant enrichment for 

brain eQTL among Neanderthal SNPs: 21 of 297 Neanderthal variants (7.1%) and 44 of 1,462 

non-Neanderthal variants (3.0%) were found in the cerebellum (P = 3.2E-04, one-tailed binomial 

test). In the temporal cortex, 19 of 307 Neanderthal variants (6.2%) and 42 of 1,482 non-
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Neanderthal variants (2.8%) were eQTL for at least one gene (P = 1.4E-03). In all, 29 unique 

Neanderthal SNPs were brain eQTL for at least one transcript in the cerebellum or temporal 

cortex. 

We then tested whether our enrichments held in an independent data set from ScanDB, 

which examined the cerebellum and parietal cortex. In the cerebellum, 168 of 1,056 Neanderthal 

variants (15.9%) and 734 of 5,280 non-Neanderthal variants (13.9%) were nominal eQTL; this 

represents significant enrichment (P = 0.035, one-tailed binomial test). However, in the parietal 

cortex, 158 Neanderthal variants (15.0%) and 742 non-Neanderthal variants (14.1%) acted as 

eQTL for at least one gene. This difference was not significant at the 0.05 level (P = 0.209, one-

tailed binomial test).  

 

Imputed Variant PheWAS 

 We tested 6,359 variants likely to be introgressed from Neanderthal, but not directly 

genotyped on the Illumina 660W. We considered these variants separately from those directly 

genotyped due to the complicated LD patterns of introgressed haplotypes53 possibly affecting the 

imputation quality of the variants not directly assayed. Using a locus-wise Bonferroni corrected 

discovery significance threshold (7.86E-6), 16 SNP-phenotype associations passed this threshold 

and replicated in E2 (P < 0.05, OR in a consistent direction; Table 1-D). These represent 14 

independent SNP-phenotype associations after accounting for the same variant associating with 

multiple phecodes in the same hierarchy. One of these associations reaches traditional GWAS 

genome-wide significance levels (P < 5E-8): rs73735360 with testicular hypofunction. This 

variant falls near the gene ADAMTS16, which when deleted in rats has been shown to cause 

cryptorchidism and infertility136. This result is particularly intriguing in light of the speculation 
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on the level of genetic, and particularly sexual, incompatibility between AMHs and 

Neanderthals54,101,102. 

 

Table 1-D. Imputed Neanderthal variants significantly associate with 16 phecodes. 

Phecode Description SNP 
E1 
OR E1 P 

E2 
OR E2 P MAF 

228 
Hemangioma and 
lymphangioma, any 
site 

rs72668327 2.66 1.97E-06 2.23 2.26E-02 2.97% 

573.8 
Other specified 
disorders of liver 

rs114638335 2.67 4.24E-06 1.59 2.35E-02 3.20% 

284 Aplastic anemia rs1726521 4.23 1.12E-06 1.77 4.32E-02 2.19% 

198.3 
Secondary malignant 
neoplasm of digestive 
systems 

rs77893146 18.50 1.29E-07 2.99 4.11E-02 1.05% 

198.3 
Secondary malignant 
neoplasm of digestive 
systems 

rs11098886 12.50 3.10E-06 4.24 2.49E-02 1.48% 

80 
Postoperative 
infection 

rs80086934 2.67 1.35E-06 1.81 4.54E-03 1.85% 

530.9 Heartburn rs74615305 5.36 3.45E-06 2.39 4.30E-02 1.13% 
257 Testicular dysfunction rs73735360 4.29 3.96E-07 2.01 1.56E-02 3.46% 

257.1 
Testicular 
hypofunction 

rs73735360 5.16 4.00E-08 2.10 1.04E-02 3.46% 

574.12 
Cholelithiasis with 
other cholecystitis 

rs4869689 2.08 7.46E-06 1.68 1.89E-02 9.29% 

557.1 
Celiac or tropical 
sprue 

rs115744110 5.47 6.65E-07 2.93 2.32E-03 12.28% 

564 
Functional digestive 
disorders 

rs146372280 2.09 2.32E-06 1.44 4.98E-02 2.54% 

536 
Disorders of function 
of stomach 

rs11982678 2.07 6.28E-06 1.80 4.78E-03 1.82% 

536.8 
Dyspepsia and 
disorders of function 
of stomach 

rs11982678 2.20 2.68E-06 2.87 4.58E-05 1.82% 

253 
Disorders of the 
pituitary gland and its 
hypothalamic control 

rs5743916 3.42 4.22E-06 2.38 1.24E-02 3.33% 

394.7 
Disease of tricuspid 
valve 

rs62231172 4.46 7.85E-06 2.27 3.27E-02 1.03% 
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Discussion 

 

Our approach establishes a new paradigm for understanding the phenotypic legacy of 

admixture between AMHs and archaic hominins. Using a large clinical cohort, we discovered 

functional associations between Neanderthal alleles and AMH traits, influencing the skin, 

immune system, depression, addiction, infertility, metabolism, and others. 

The enrichment for nominal associations with psychiatric and neurological phenotypes, 

influence of Neanderthal SNPs on depression risk, and enrichment for brain eQTL suggest that 

Neanderthal introgression has influenced AMH brain phenotypes. The significant replicated 

association of Neanderthal SNPs with mood disorders, and depression in particular, is intriguing 

since Neanderthal alleles are enriched near genes associated with neuronal synaptic plasticity 

(specifically, long-term depression)54, and human–Neanderthal DNA and methylation 

differences have been hypothesized to affect neurological and psychiatric phenotypes137,138. 

Depression risk in modern human populations is influenced by sunlight exposure139, which 

differs between high and low latitudes, and we found enrichment of circadian clock genes near 

the Neanderthal alleles that contribute most to this association87. 

The replicated nominal association of Neanderthal SNPs with actinic keratosis 

(precancerous scaly skin lesions) further links introgressed alleles in AMHs to a phenotype 

directly related to sun exposure. It also suggests that the signatures of adaptive introgression and 

strong enrichment of Neanderthal alleles near genes associated with keratin filament formation54 

and keratinocytes53 reflect the influence of Neanderthal alleles on a modern human phenotype. 

These results, as well as the association with blood coagulation, establish the impact of 
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Neanderthal DNA on diseases in AMHs that involve traits potentially shaped by environmental 

differences experienced by non-African populations. 

It is possible that some Neanderthal alleles provided a benefit in early AMH populations 

as they moved out of Africa, but have become detrimental in modern Western environments. 

Available evidence suggests that Neanderthals had a smaller effective population size than 

AMHs, and this would have led to weakly deleterious alleles escaping selection until introduced 

into the larger effective population size of AMHs102. Our results suggest that Neanderthal 

variants are more likely to be deleterious in modern populations, considering the association with 

testicular dysfunction and the indications that introgressed SNPs may be more likely to associate 

with clinical phenotypes. However, it is worth noting that most of the 18 variants with 

replicating associations from the PheWAS are at relatively low frequency (Tables 1-C; 1-D), 

which does not offer much evidence for these variants being under positive selection. 

Indeed, only one “adaptive” variant—defined as variants present on an introgressed 

haplotype with an allele frequency in excess of 40%53—was directly genotyped on our platform, 

though several more could be imputed, and no significant phenotype associations replicated with 

any of them. “Adaptive” variants having no clear effect on a clinical trait could be due to many 

scenarios: the trait it influences does not have a good phecode proxy; heterogeneity between E1 

and E2 could obscure true signals; a variant that was once beneficial is now relatively neutral due 

to removal of the original selective pressure; this haplotype could have risen in frequency due to 

drift and in fact never been adaptive; or perhaps the genetic architecture of the trait it influences 

is highly polygenic. In studies such as these, it is important to remember that we are unlikely to 

discover associations that would have been responsible for any selective pressure thousands of 

years ago. However, they do provide insight into the biological systems potentially affected, 
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which may support hypotheses about the effects of introgression at the time of interbreeding or 

even suggest new ones. 

 More data are needed to resolve these questions. As more individuals are incorporated 

into EHR-linked genetic databases and additional whole-genome sequencing data become 

available for these individuals, it will be possible to more robustly test hypotheses regarding 

archaic introgression using our approach. As more sophisticated algorithms are developed for 

extracting phenotypes from EHRs, we anticipate further insights into the functional effects of 

archaic introgression. Ultimately, the result of these analyses will provide insight into the genetic 

architectures of the traits influenced by admixture and the strength of purifying selection 

experienced by introgressed Neanderthal alleles. 

 

Future Directions 

 

 Functional validation of the variants identified here will be important in understanding 

how they impact the traits with which they associate. Given appropriate cell lines to assay, the 

variants found to be eQTL could be altered using CRISPR or other directed mutagenesis 

techniques to determine which variant on the haplotype is important for the change in gene 

expression. As deletion of the ADAMTS16 gene has been previously shown to disrupt testis 

development in rats136, we will test the region encompassing rs73735360 for enhancer activity in 

the developing gonad in mouse models. If the results of these assays prove promising, we will 

move on to deeper characterization of this region. 

 Beyond following up on the results of these analyses, there are many avenues to increase 

our understanding of the effect of Neanderthal ancestry in modern humans. The first of these 
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would be to perform similar analyses to those here, but in a clinical population of primarily 

Asian ancestry, or even admixed groups such as Hispanics. As individuals of Asian descent are 

thought to have received an additional pulse of Neanderthal introgression53,54,100, replicating 

associations with the biological systems implicated in this study—if not the specific phenotypes 

themselves—would provide additional insight into the effects of Neanderthal introgression. This 

would also allow for testing of some Neanderthal variation present in Asian individuals but not 

European, as well as replication of the results here. There are more introgressed haplotypes at 

high frequency in East Asian populations, making a deeper survey of potentially “adaptive” 

introgression possible. 

 Another important area of research is into these “adaptive” haplotypes. Many of them 

encompass genes involved in skin functions53,54. Understanding their effect on human 

phenotypes may require study of populations who are phenotyped for non-clinical traits, such as 

skin pigmentation. However, the skin is also an important defense against pathogens, so a study 

of individuals with a predisposition to skin infections or in humanized mice may provide insight 

into whether the introgressed Neanderthal haplotypes at these loci were under sexual or natural 

selection. 
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CHAPTER II: HUMAN-SPECIFIC AND HOMININ-DERIVED VARIANTS IMPACT 

CLINICAL TRAITS RELATED TO BIPEDALISM AND IMMUNITY 

 

Introduction 

 

 Variation arising after our divergence from chimpanzee has garnered a great deal of 

attention for its potential to give us insight into the traits that define us: the shift to bipedalism, 

extensive loss of fur, and increased brain size, to name a few. While only ~5% of the human 

genome differs from that of the chimpanzee genome—either through lineage-specific single 

nucleotide substitutions8, indels8, or segmental duplications9—this represents ~160 megabase 

pairs (Mbp) of sequence differences, only some of which are expected to differ due to selection 

rather than stochastic processes. Though the genetic changes key to large shifts in any of these 

human-defining traits are expected to be fixed in modern AMH populations, variation subtly 

influencing these traits could still be polymorphic in AMHs today. For example, brain volume 

and architecture is consistent across AMHs when compared with chimpanzee, but more modest 

variation in volume of brain structures and overall volume exists across AMHs. Identifying these 

variants and their mechanism of action may give us insight into which fixed differences were 

important in hominin and human evolution. 

 While there are many sites in the genome where AMHs are polymorphic for a derived 

allele, we expect few of these to have been or to currently be under selection, or to affect human-

defining traits. The age of an allele, coupled with how quickly it has risen in frequency, can 

suggest that it has been under positive selection in recent history. However, an allele can take 

many paths to reach the same frequency. Sequence data from ancient AMH and archaic hominin 
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specimens allow us to date the appearance of a variant as well as the rate at which their 

frequencies have changed in human populations. In this analysis, we examine the effects of 

remaining ancestral alleles at sites in the genome where the human-derived allele is at high 

frequencies in modern populations. In particular, we examined polymorphic sites where the 

derived allele in question is not found in chimpanzee and is either completely absent—or present 

but not fixed—in archaic hominin individuals. 

 

Methods 

 

Variant Selection 

 We used the list of human-specific and hominin-derived variants generated by Prufer et 

al17. Briefly, these variants were identified as those: having the human-derived allele at >90% 

global allele frequency (1000 Genomes Phase 1)20, where the ancestral allele matches the 

chimpanzee reference, and where the derived allele was not homozygous in both Altai 

Neanderthal and Denisova. We removed variants that were polymorphic in chimpanzee 

individuals present in the Great Ape Genome Project140 as well as those where the chimpanzee 

reference allele did not match the ancestral allele determined in 1KG20. As in Chapter I, variants 

were restricted to those directly genotyped on the Illumina 660W platform with a minor allele 

frequency >1% and that had dosages available for E2 individuals after imputation. We calculated 

linkage disequilibrium with PLINK v1.9141, and pruned variants in strong LD (r2 > 0.8) with 

another variant that met these criteria. This resulted in 1,528 human-specific variants and 1,252 

hominin-derived variants. 
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 A human-specific variant is defined as a variant that fits the above criteria and the human 

(derived) allele is not present at that location in the Altai Neanderthal or Denisovan individuals, 

suggesting that the allele arose after the divergence of the Neanderthal-Denisovan ancestor and 

AMHs. Hominin-derived variants are those where at least one allele in either archaic hominin 

(but not all four) match the human allele, suggesting that the allele arose before the divergence of 

the Neanderthal-Denisovan ancestor and AMHs. It is worth noting that we do not have 

population samples of the Neanderthals or Denisovans, so variants we call human-specific may 

have in fact been shared between AMHs and these archaic hominins. 

 

Population, Genotypes, and PheWAS 

 We tested for SNP-phecode associations using the same individuals and methods to 

generate hard call genotypes for E1 and dosages for E2 as described in Chapter I. Phecode 

case/control status was generated in the same way (PheWAS package v0.10.2-2). Age, sex, and 

the first three PCs were used as covariates in the meta-PheWAS. We considered variants with a 

discovery P < 1.8E-05 (locus-wise Bonferroni correction), with a consistent OR direction in the 

replication set and P < 0.05 to be significantly replicated. 

 

Linkage Disequilibrium Calculations 

 Upon examination of the tested variants with significant associations, we noticed that 

several of them overlapped Neanderthal introgressed haplotypes53. Using European (EUR) and 

East Asian (EAS) individuals from 1KG Phase 321 and vcftools142, we calculated D’ and r2 

between Neanderthal introgressed variants and all human-specific and hominin-derived variants 

that met the criteria stated above. We calculated these values separately in each population. As 



	 46	

there is variability in the exact introgressed haplotype boundaries between 1KG individuals, for 

the given haplotype we report the Neanderthal introgressed variant with the strongest LD values 

with the human-specific or hominin-derived variant. 

 

Results 

 

Human-Specific Variant Associations 

 In a PheWAS of 1,528 human-specific variants, we found six significant associations. 

Two of the human-specific variants were significantly associated with skeletal phenotypes 

(Table 2-A). One variant falls downstream of runt-related transcription factor 2 (RUNX2) and 

chloride intracellular channel 5 (CLIC5), and is significantly associated with fracture of vertebral 

column. RUNX2 has a well-established role in osteoblast differentiation and skeletal 

development143. Protein-coding changes in this gene are hypothesized to be one of the main 

drivers in skeletal morphology differences between Neanderthal and human15, supported by 

indications of selection acting on this gene early in AMH history144. Mutations in this gene cause 

cleidocranial dysplasia, a disorder affecting skeletal morphology and growth145. Variants near 

this gene have never been associated with bone mineral density, though they have been 

associated with height146–150 and very recently facial variation151. The other significant skeletal 

association is between a variant near macrophage scavenge receptor 1 (MSR1) with fracture of 

ankle and foot. Osteoclasts are formed from macrophages152, and MSR1, also known as 

scavenger receptor A (SR-A), is involved in many macrophage functions, in particular osteoclast 

differentiation and function153,154. 
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Table 2-A. Six human-specific variants significantly associate and replicate with a clinical 
phenotype. 

Phecode Description SNP MAF 
Flanking 
Gene(s) 

E1 
OR E1 P 

E2 
OR E2 P 

112.3 Candidiasis of 
skin and nails rs10416005 1.80% UQCRFS1 6.69 1.61E-05 3.39 1.08E-02 

224.1 Benign neoplasm 
of eye, uveal rs1774053 2.17% RFPL4B 2.69 1.03E-05 3.68 3.84E-02 

289.8 Polycythemia 
vera, secondary rs13353661 1.81% IL21, 

BBS12 5.42 1.37E-05 3.33 1.78E-02 

300.8 Acute reaction to 
stress rs764229* 2.90% WDR72, 

UNC13C 2.61 1.41E-05 2.85 1.58E-02 

801 Fracture of ankle 
and foot rs7838403 1.09% MSR1 2.70 4.63E-06 2.05 2.62E-03 

805 

Fracture of 
vertebral column 
without mention 
of spinal cord 
injury 

rs2396558 5.58% RUNX2, 
CLIC5 1.84 4.68E-06 1.41 4.71E-02 

*Indications of ancestral allele being reintroduced on Neanderthal haplotype in 1KG EUR. 

 

 We find an association between a hominin-derived variant and a neurological phecode 

(vertiginous syndromes and other disorders of vestibular system; Table 2-C), and a human-

specific variant with a psychiatric phecode (acute reaction to stress; Table 2-A). The variant 

rs764229, associated with acute reaction to stress, is nominally associated with the expression of 

unc-13 homolog C (UNC13C), a gene involved in synaptic transmission, in the frontal cortex 

(Figure 2-A (a), P = 0.011), a region of the brain that is important in stress response155. In whole 

blood, rs17032822 significantly associates with decreased expression of breast carcinoma 

amplified sequence 2 (BCAS2), which is part of the spliceosome (effect size = -0.29, P = 

0.0041). While a direct link between BCAS2 and vertiginous syndromes is not currently known, 

several neurological disorders are caused by defects in RNA splicing156,157. In both instances, the 

ancestral allele is in strong LD (r2 > 0.6, D’ = 1) with variants that were introduced through 

introgression from Neanderthals in 1KG Phase 321 European (EUR) and/or East Asian (EAS) 

individuals (Table 2-B). This suggests that the human-derived allele was fixed or close to fixed 
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in the ancestors of modern Eurasians at the time of Neanderthal introgression, and that this 

introgression reintroduced the ancestral allele at these positions. 

 

Table 2-B. The ancestral alleles at two variants are in strong LD with Neanderthal introgressed 
variants. 

Pop. 
Tested 
SNP 

1KG 
MAF Introgressed Haplotype 

Neanderthal 
Lead SNP 

1KG 
MAF r2 D’ 

EUR rs764229* 3.68% chr1:114,911,588-115,109,434 rs138210616 3.68% 1.0 1.0 

EUR rs17032822 2.19% chr15:54,041,869-54,164,960 rs77032474 1.49% 0.68 1.0 

EAS rs17032822 7.34% chr15:54,041,869-54,164,960 rs78798946 7.14% 0.97 1.0 

*rs764229 is monomorphic in 1KG EAS individuals. 

 

 
Figure 2-A. Human-specific variants significantly associate with the expression of nearby genes. 
(a) rs764229 nominally associates with the expression of UNC13C in the frontal cortex (GTEx 
Release V6p61, effect size = -0.49, P = 0.011). (b) rs10416005 significantly associates with the 
expression of LINC00662 in Epstein Barr virus-transformed lymphocytes (GTEx V6p61, effect 
size = 1.1, P = 1.1E-05). 
 

 For the other human-specific variant associations, possible functional mechanisms are not 

as clear. For the association of rs10416005 with candidiasis of skin and nails, the variant is 

significantly associated with the expression of LINC00662 in Epstein Barr virus-transformed 

A B
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lymphocytes (Figure 2-A (b), P = 1.1E-05). However, the function of this long non-coding RNA 

is currently unknown. The variant rs1774053 (benign neoplasm of eye) is in the middle of a gene 

desert, but the closest cluster of genes involves laminin subunit alpha 4 (LAMA4) and WNT1 

inducible signaling pathway protein 3 (WISP3), which have both been implicated in cancer. 

Secondary polycythemia vera is a disorder of the body making too many red blood cells, 

typically in response to chronic low oxygen levels. The variant associated with this phenotype 

falls between interleukin 21 (IL21) and fibroblast growth factor-2 (FGF2), both of which have a 

role in wound healing and hypoxia158,159. 

 

Hominin-Derived Variant Associations 

 Of the 1,252 hominin-derived variants tested, we found four significant associations 

(Table 2-C). As for many of the human-specific variant associations, making connections 

between the variant and phenotype was difficult. LYN is important in mast cell degranulation, 

and mast cells may be involved in hyperbilirubinemia160. Hematemesis could have many causes, 

and rs10981835 falls in an intron of regulator of G-protein signaling 3 (RGS3), which is widely 

expressed and involved in Wnt and ephrin-B signaling. This variant significantly decreases the 

expression of this gene in whole blood (Figure 2-B (a), P = 3.6E-08) and a neighboring 

unannotated gene C9orf43 in multiple tissues, most significantly in testis (Figure 2-B (b), P = 

3.4E-13). Due to the demographics of our population, poisoning by water, mineral, and uric acid 

drugs is likely predominantly driven by intolerance of uric acid drugs for the treatment of gout. 

This variant falls near several long non-coding RNAs of unknown function and a cluster of 

serine proteinase (serpin) peptidase inhibitors, class B (SERPINB), which are active in many 

biological processes. 
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Table 2-C. Four hominin-derived variants significantly associate and replicate with a clinical 
phenotype. 

Code Description SNP MAF 
Flanking 
Gene(s) 

E1 
OR E1 P 

E2 
OR E2 P 

386 

Vertiginous 
syndromes and 
other disorders 
of vestibular 
system 

rs17032822* 3.23% DENND2C 1.86 1.67E-05 1.44 3.7E-02 

573.5 Jaundice (not of 
newborn) rs16922470 2.57% LYN 6.29 8.53E-10 1.92 4.8E-02 

578.1 Hematemesis rs10981835 14.68% RGS3 3.74 5.75E-07 1.81 7.9E-03 

974 

Poisoning by 
water, mineral, 
and uric acid 
metabolism 
drugs 

rs12605877 2.06% SERPINB8 7.94 4.02E-06 3.07 3.8E-02 

*Indications of ancestral allele being reintroduced on Neanderthal haplotype in 1KG EUR & EAS. 

 

 

 
Figure 2-B. Hominin-derived variants significantly associate with expression of nearby genes. 
(a) rs10981835 significantly associates with expression of RGS3 in whole blood (GTEx Release 
V6p61, effect size = -0.22, P = 3.6E-08). (b) rs10981835 significantly associates with the 
expression of C9orf43 in testis (GTEx V6p61, effect size = -0.78, P = 3.4E-13). 
 

 

A B
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Discussion 

 

 We found four significant associations with hominin-derived variants and six associations 

with human-specific variants. These associations are with clinical phenotypes impacting a range 

of biological systems, though four are of particular interest: the two associations with bone 

fracture, and the neurological and psychiatric associations. The two associations between human-

specific variants and bone fracture are unlikely to reflect selection during the transition to 

bipedalism, as this would have been shared between humans and Neanderthals. However, there 

are many skeletal differences in morphology between the two—such as the attachment of the 

shoulder and clavicle, rib cage shape, and craniofacial morphology—in addition to Neanderthal 

skeletons being generally much more robust. These morphological differences make it clear that 

these two groups diverged in the genetics underlying development and/or maintenance of their 

skeletons. Alternatively, the ancestral allele at these positions may have carried a similar 

increased risk for fracture in Neanderthals, but the derived alleles may have not appeared on their 

lineage before their extinction. 

 The neurological and psychiatric associations are interesting in that the ancestral alleles 

increasing risk for both of these phecodes appear to have originated in Neanderthal. Ancestral 

alleles being reintroduced through interbreeding with Neanderthal raises questions about whether 

the causal variant in these associations is a Neanderthal derived or reintroduced ancestral allele. 

Recent work has suggested that at least in one instance at the 2’-5’ oligoadenylate synthetase 

(OAS) locus, it is a reintroduced ancestral allele that has the functional effect on immune 

response rather than introduction of a Neanderthal derived allele107. It could be that the tested 

variants in this analysis are also the variants of effect; however, due to the structure of 
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introgressed Neanderthal haplotypes, another reintroduced ancestral allele or a derived 

Neanderthal allele in high LD could be the functional variants. Any of these situations is 

possible, though the relatively high frequency of the ancestral alleles in 1KG Phase 120 African 

super-population (AFR) individuals (rs764229: 12%, rs17032822: 13%) suggests that a variant 

other than the one directly tested here may be the most likely. However, it is worth noting that 

more complex scenarios, such as the combined effects of multiple variants on the Neanderthal 

haplotype, are also possible. Studies of this region in clinical populations of African descent 

could help shed light on which of these scenarios is most supported. Regardless of the causal 

variant(s), we have found two more associations that indicate that Neanderthal introgression 

influences clinical brain phenotypes in European descent populations. 

 

Future Directions 

 

 As a follow-up to these studies, we will attempt to functionally validate some of the 

PheWAS associations. Experiments examining the role of our variants associated with skeletal 

phecodes are underway. Using cell lines that are skeletal-related, we will begin with determining 

whether these regions show signs of enhancer activity using luciferase assays in cell culture. If 

they do, we will delete these regions in these cell lines to determine if they alter expression of the 

genes discussed here. 

 We did not perform any analyses looking for signatures of selection on these variants. 

Indeed, all we know about them is that the derived allele is at high frequency in modern humans, 

does not appear to be present in chimpanzee populations, and does not appear to be fixed in both 

Neanderthals and Denisovans. In some cases, the ancestral allele appears to have been lost in the 
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out-of-Africa migration—though not in African populations—and reintroduced by Neanderthal 

introgression. This leaves a 6-million-year window where these variants could have appeared, 

and there may be different expectations of what phenotypes are affected based on when a variant 

arose and whether it has undergone positive selection or been reintroduced by Neanderthal 

introgression. Looking for ancient signatures of selection or admixture or estimating allele age 

could aid in prioritization or classification of variants for testing, or help generate hypotheses to 

test or refine hypotheses generated from results of PheWAS or GCTA. 
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CHAPTER III: GC-BIASED GENE CONVERSION INFLUENCES FACTORS THAT 

DETERMINE STATISTICAL POWER 

 

Introduction 

 

 As it ensures proper segregation of chromosomes during meiosis and creates new allelic 

combinations, meiotic recombination is critical to the success of sexually reproducing organisms. 

When homologous chromosomes align during meiosis, a double-strand break (DSB) is induced 

in one strand and several hundred base pairs of each strand are resected in the 5’ to 3’ direction. 

One of these strands then invades the homologous DNA duplex and displaces one of the strands 

of the chromosome that did not experience the DSB. Where these strands from opposing parental 

chromosomes align is called the heteroduplex region. The invading strand is then extended by 

DNA synthesis so that it matches the reciprocal strand. This situation can then resolve in a 

crossover or non-crossover. A successful crossover event results in reciprocal exchange of 

genetic information, whereas non-crossover results in the invading strand being ligated back to 

its original strand. For a more detailed molecular discussion of the different models of meiotic 

recombination, see Chen et al161 or Hunter162. 

 Despite its importance, meiotic recombination is far from an error-free process. Major 

errors in this process can result in improper crossover between different chromosomes or even 

loss of entire chromosomes, resulting in aneuploidy. However, even successful crossovers can 

result in mutations. During recombination, the heteroduplex region where the DSB and DNA 

synthesis occurs is susceptible to a process called gene conversion in both crossover and non-

crossover events161. If the paternal and maternal chromosomes have a mismatch in this region, 
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resolution of the DSB can result in one of the chromosomes being “converted” to the state of the 

other. If this process were random, it would have little impact on the overall population allele 

frequency, as either allele would be equally likely to be converted. However, a great deal of 

evidence suggests that the process is biased towards the promotion of G or C alleles (referred to 

as S for “strong”) over A or T alleles (referred to as W for “weak”) in eukaryotes163–166, a 

phenomenon known as GC-biased gene conversion (gBGC). Here, I will refer to all biallelic 

variants where one allele is a W and the other an S as “WS variants.” Though the strength of this 

bias has been estimated to be relatively weak49,167, it can have broad ramifications for both the 

genome at large and evolutionary studies. Sustained gBGC near recombination hotspots 

increases local GC content, promotes fixation of S alleles at WS variants, and can be mistaken 

for signatures of positive selection47–50. 

 Because gBGC promotes increased transmission of S alleles at WS variants in a way that 

resembles weak positive selection, this process could theoretically counteract negative selection 

on weakly deleterious S alleles and increase their frequency49,50,168. Effective population size, 

recombination rate, and diversity of PR domain zinc finger protein 9 (PRDM9) alleles (a key 

protein in determining recombination hotspot location169) influence the intensity and overall 

genomic impact of gBGC. African groups have the largest effective population size, as well as 

higher recombination average rates than European or Asian groups. Due to a lack of PRDM9 

allelic diversity, Europeans have fewer recombination hotspots dispersed across the genome than 

Africans170. This results in African groups having the strongest gBGC genome-wide of the three 

super-populations, but both Asians and Europeans having more concentrated regions of intense 

gBGC (though this is stronger in Europeans)171. Should gBGC appreciably affect modern human 

health, these differences could suggest population-specific ramifications. 
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 Previous work has demonstrated that gBGC can shift allele frequency spectra49 and that 

regions that have undergone gBGC are enriched for particular groups of pathogenic variants50. In 

this study, we evaluated the impact of gBGC on health in modern humans. Using two primarily 

European descent populations, we explicitly tested whether variants influenced by gBGC are 

more likely to associate with clinical phenotypes than variants that either cannot undergo gBGC 

(palindromic, or WW or SS variants), or WS variants that have not undergone detectable gBGC 

since divergence from chimpanzee. 

 

Methods 

 

 We used individuals from both BioVU and eMERGE to test the effects of gBGC. As we 

do not have a replication set, we treated the analyses conducted in the BioVU population as 

exploratory analyses, and follow up on one of these comparisons in eMERGE. We additionally 

examine variants with associations in the GWAS catalog66, as these should be very similar to the 

associations tested here. 

 

BioVU Population, Genotypes, and PheWAS 

 For a description of BioVU, see Roden et al74. We used genotypes and phenotypes 

available for 5,357 BioVU individuals who were genotyped on the Illumina OMNI1-quad 

platform. Variants were removed if their marker call rate was below 95%. Individuals were 

removed if their sample call rate was below 98%. Phecode case/control status was generated 

using the PheWAS package (v0.10.2-2). Age, sex, and third party-assigned ancestry were used as 

covariates. We considered autosomal variants with a MAF > 1% in our tested individuals. We 
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calculated allele frequency and pruned variants in high LD (r2 > 0.8) using PLINK v1.9141. To 

ensure that minor allele calling was accurate for the palindromic variants, we only considered 

those with a MAF < 45% in 1KG Phase 321 EUR super-population individuals and a MAF < 

48% in the eMERGE individuals. We additionally removed variants whose frequency exceeded 

a 10% allele frequency difference from 1KG EUR individuals within at least one eMERGE site, 

and was not consistent with a strand flip. 

 

BioVU Variant Selection 

 The first comparison using the BioVU data was to test for the effect of variants that are in 

phastBias50 gBGC tracts—designed to detect gBGC occurring in AMHs since divergence from 

chimpanzee—and have high recombination rates (denoted “hotspot variants”) compared to those 

that are not in gBGC tracts and have very low recombination rates (denoted “long-time coldspot 

variants”). We calculated the number of LD partners (r2 > 0.5) for each variant in EUR super-

population individuals from 1KG Phase 321. The local recombination rate was calculated by 

taking the weighted average of the recombination rate from Kong et al172 50 kb upstream and 50 

kb downstream of each variant. The number of LD partners is correlated with recombination 

rate, but not minor allele frequency (Figure 3-A), so we accounted for all of these in our 

matching. Our hotspot variants were those that were in the top 2 deciles for recombination rate 

among all WS variants that fell into a gBGC tract. We binned all WS variants falling into a 

gBGC tract into deciles for S allele frequency, local recombination rate, and number of LD 

partners separately. We selected up to 10 WS variants matched on decile for S allele frequency 

and number of LD partners for each hotspot variant that also fell into the bottom 2 deciles for 

recombination rate. This resulted in 480 hotspot variants and 4,017 matched variants. 
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Figure 3-A. A variant’s number of LD partners and recombination rate are correlated, but not 
minor allele frequency. (a) For each gBGC variant (N=1,469) in the eMERGE gBGC vs. 
palindromic comparison, the minor allele frequency, local recombination rate, and number of LD 
partners (r2 > 0.5 in EUR individuals) are plotted. (b) For each imputable palindromic variant in 
the eMERGE population (N=275,537), the minor allele frequency, recombination rate, and 
number of LD partners are plotted. As expected, regardless of variant type, the number of LD 
partners is inversely correlated with the rate of recombination. Even gBGC variants with low 
recombination rates often have fewer LD partners than palindromic variants, possibly reflecting 
historic high recombination rates. 
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 The second comparison using the BioVU data was to test for differences in phenotype 

associations between all variants falling in a gBGC tract (denoted “gBGC variants”) when 

compared with palindromic variants, which cannot undergo gBGC. As above, we calculated the 

number of LD partners (r2 > 0.5) for each variant in EUR super-population individuals from 1KG 

Phase 321. The local recombination rate was calculated by taking the weighted average of the 

recombination rate172 50 kb upstream and 50 kb downstream of each variant. We binned all WS 

variants falling into a gBGC tract into deciles for minor allele frequency, local recombination 

rate, and number of LD partners separately. We generated one palindromic match variant per 

gBGC variant, matching on all three of these parameters. This resulted in the selection of 923 

variants of each class. 

 

eMERGE Population, Genotypes, and PheWAS 

 We tested for SNP-phecode associations using the same individuals and methods to 

generate dosages for both E1 and E2 as described for the E2 meta-PheWAS in Chapter I. 

Phecode case/control status was generated in the same way (PheWAS package v0.10.2-2). Age, 

sex, and the first three PCs were used as covariates in the meta-PheWAS. We used a range of 

discovery p-value thresholds to ensure that differences between sets were not dependent on 

significance threshold choice. Regardless of discovery significance threshold, we considered 

variant-phenotype associations with a consistent OR direction of effect between the discovery 

and the replication sets and E2 P < 0.05 to be replicated. We used the hard call genotypes to 

calculate allele frequency and prune variants in high LD (r2 > 0.8) using PLINK v1.9141. As we 

are using imputed variants, we have a larger pool of variants to choose from. Thus, we increased 

our MAF threshold to > 5% across all tested individuals, which should increase statistical power. 
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To ensure that minor allele calling was accurate for the palindromic variants, we only considered 

variants with a MAF < 45% in 1KG Phase 321 EUR super-population individuals and a MAF < 

48% in the eMERGE individuals. We additionally removed variants whose frequency exceeded 

a 10% allele frequency difference from 1KG EUR individuals within at least one eMERGE site, 

and was not consistent with a strand flip. 

 To determine how many associations should be expected by chance with variants of these 

allele frequencies, we performed a permutation analysis. We shuffled the individual-genotype 

relationships among the entire tested population and reran the meta-PheWAS using the same 

methods as discussed above. Permutation analyses enable estimations of “noise” in the data. This 

is useful in determining how much “signal” is detectable in the original analysis. For our 

purposes, this is also useful for determining how much difference between the two groups of 

variants is detectable. 

 

eMERGE Variant Selection 

 As there were only enough variants to generate one matched set in the BioVU gBGC-

palindromic comparison, this analysis serves as a tool to confirm and expand upon those results. 

As above, we calculated the number of LD partners (r2 > 0.5) for each variant in EUR super-

population individuals from 1KG Phase 321. The local recombination rate was calculated by 

taking the weighted average of the recombination rate from Kong et al172 50 kb upstream and 50 

kb downstream of each variant. We binned all WS variants falling into a phastBias50 gBGC tract 

(denoted “gBGC variants”) into deciles for minor allele frequency, local recombination rate, and 

number of LD partners separately. We selected up to 5 palindromic (WW or SS) variants 
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matched on decile of all three parameters for each gBGC variant. This resulted in 1,469 gBGC 

variants and 7,096 matched palindromic variants. 

 

GWAS Catalog Enrichment 

 We downloaded all variants in the National Human Genome Research Institute (NHGRI) 

GWAS catalog66 (downloaded August 10, 2016) nominally associating with any phenotype (P < 

1E-05), and removed any that were palindromic. We intersected previously identified GC-biased 

gene conversion tracts from phastBias50 with the non-palindromic GWAS catalog variants using 

the intersectBed function from the bedtools suite173 and calculated the overlap. We used the 

function “chi2_contingency” from the python scipy stats module with standard options to 

calculate the chi square test for independence of variables in a contingency table. Compared 

values are given in Table 3-A. 

 

Table 3-A. Contingency table used to calculate GWAS catalog enrichment. 
Category Total gBGC Tract Χ2 Χ2 P 

Genome Coverage (bp) 3,200,000,000* 7,389,204 - - 

WS GWAS (P < 1E-05) 17,794 93 63.99 1.25E-15 

Significant WS GWAS 
(P < 1E-07) 6,784 30 12.16 4.88E-4 

Palindromic GWAS 
(P < 1E-05) 1,890 9 3.90 0.048 

Significant Palindromic  
(P < 1E-07) 713 4 2.07 0.150 

*Approximation of the length of the haploid human genome used for contingency calculations. 

 

 Two comparison sets were generated. The first (not GC-matched) used shuffleBed173 to 

generate 1000 sets of length-matched regions. We constrained the generated regions to the 
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chromosome of the corresponding observed region and did not allow shuffled regions to overlap 

gaps in the genome assembly or ENCODE blacklist regions62. The second comparison generated 

100 sets of regions matched by chromosome, length, and GC content using a custom script. For 

both comparisons, we calculated the overlap between the generated regions and the non-

palindromic GWAS catalog variants for each set. We repeated our analyses after restricting to 

variants that were genome-wide significant (P < 1E-07). 

 We determined the number of LD partners for GWAS catalog variants in 1KG EUR 

individuals as above (r2 > 0.5). Additionally, we intersected these variants with the 10 kb 

averaged recombination rate map from Kong et al172. As averaging recombination rates over the 

surrounding 100 kb dramatically narrows the range of possible values, we considered only the 

immediate 10 kb recombination rate to better discern differences in recombination rate between 

variants. 

 

Results 

 

Few Tested Variants Have Genome-Wide Significant Associations 

 Between our three comparisons, we tested nearly 15,000 variants for clinical phenotype 

associations. In order to get a sense for the number of associations, we examined all sets for 

SNP-phenotype associations surpassing a genome-wide significance threshold (P < 5E-08). For 

both the hotspot-coldspot and gBGC-palindromic comparisons performed in our BioVU 

population, we have no replication set. If we use a genome-wide significance threshold, we find 

one hotspot variant and one coldspot variant each associate with a phenotype (Table 3-B). The 

hotspot variant rs7578066 associates with blindness and low vision. The coldspot variant 
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rs3129871, which falls near HLA-DRA and associates with Type 1 diabetes, has been previously 

found to associate with multiple sclerosis174. 

 

Table 3-B. Significant results of PheWAS. 

Code Description 
SNP (Tested 

Allele) Type 
E1 
OR E1 P 

E2 
OR E2 P 

367.9 Blindness and 
low vision 

rs7578066 
(C) Hotspot 3.53 4.9E-08 - - 

250.12 
Type 1 diabetes 
with renal 
manifestations 

rs3129871 
(A) Coldspot 0.44 6.7E-09 - - 

274 
Gout and other 
crystal 
arthropathies 

rs45499402 
(C) Palindromic 1.71 5.1E-13 1.98 4.0E-19 

274.1 Gout rs45499402 
(C) Palindromic 1.84 9.1E-15 2.06 2.9E-20 

 

 In contrast, no variant in the BioVU gBGC-palindromic comparison associates with a 

phenotype at this threshold. However, one of the palindromic variants tested in the eMERGE 

gBGC-palindromic analysis, rs45499402, has been previously found to associate with gout175, 

and significantly associates (P = 9.10E-15) and replicates (P = 2.93E-20) with gout in our 

analysis (Table 3-B). However, none of the gBGC variants significantly associate at this level 

and replicate.Reassuringly, no variant associates beyond a genome-wide significance threshold 

and replicates in the eMERGE permutation analysis. Given the lack of genome-wide significant 

associations, we considered a range of discovery thresholds moving forward when comparing 

within these sets. 

 

Hotspot Variants Do Not Associate with More Clinical Phenotypes than Coldspot 

 The phastBias50 gBGC tracts used in these analyses were designed to detect signatures of 

gBGC that has occurred since divergence with chimpanzee. Thus, some of these tracts will 
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represent regions that used to be recombination hotspots, but are no longer. This means that 

selection may be able to act effectively in some of these regions once again, and may alter our 

expectations depending on when recombination hotspot activity was lost. To reduce our set to 

variants likely to still be undergoing gBGC, which we will refer to as “hotspot” variants, we 

limited to gBGC variants in the top 2 deciles of local recombination rate. For this comparison, 

we selected control WS variants that did not fall in a gBGC tract (thus are unlikely to have 

undergone gBGC since divergence with chimpanzee) and fell into the 2 lowest local 

recombination rate deciles (thus are unlikely to be in recombination hotspots too young to be 

detectable by phastBias). However, we matched on S allele frequency and number of LD 

partners. We selected between 5 and 10 matched coldspot variants per each of the 456 hotspot 

variants and performed a PheWAS in our BioVU population (see Methods). To compare 

enrichment for associations between the sets, we down-sampled to 5 matched variants per 

hotspot variant and calculated the number that significantly associated with at least one 

phenotype. We down-sampled in this way 5 times to get an idea of the variability of the 

proportion of matched variants that associated with a phenotype.  

 When we did this, we found little difference between the likelihood of association 

between clinical phenotypes and hotspot and coldspot variants (Figure 3-B (a)). In fact, coldspot 

variants appear slightly more likely to associate with a phenotype than hotspot variants. Part of 

the theory of gBGC leading to increased disease risk is the increased frequency of deleterious 

alleles despite selection, suggesting that the S allele itself may be more likely to be deleterious 

than the S allele of a matched variant, so we also compared this likelihood. Of all the variants 

with a significant association, we considered the S allele to be the risk if the S allele increased 

risk (e.g., OR > 1 if S is the minor allele) for its most significant association. After focusing on 
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the proportion of variants with significant associations where the S allele is the risk allele, we 

find that at our strictest threshold, the S allele is more likely to be the risk allele at hotspot 

variants than matched coldspot variants, but the difference is small and not consistent across p-

value thresholds (Figure 3-B (b)). 

 

 
Figure 3-B. Hotspot variants are not more likely to associate with a clinical phenotype than 
coldspot variants matched by allele frequency and number of LD partners. (a) The percent of 
variants that have at least one significant association at the given discovery p-value threshold. (b) 
The percent of variants that have at least one significant association at the given discovery p-
value threshold where the S allele is the risk allele. Each iteration of matched variants is plotted. 
 

 

gBGC Variants Do Not Associate with More Clinical Phenotypes than Palindromic 

 To investigate whether gBGC variants overall are more likely to associate with a clinical 

phenotype, we directly tested this in two different populations. In our BioVU population, we 

identified one palindromic variant matched to a WS gBGC variant on decile for minor allele 

frequency, local recombination rate, and number of LD partners (see Methods). As above, we 

performed PheWAS in our BioVU dataset and have no replication set for this analysis. There 
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appears to be no difference in the likelihood of a gBGC variant associating with a clinical 

phenotype when compared to a palindromic variant (Figure 3-C (a)). As palindromic variants are 

either WW or SS by nature, we matched on minor/major allele status of the S allele for the 

gBGC variant to determine whether the S allele was more likely to be deleterious for gBGC 

variants. It appears that the gBGC S allele is slightly less likely to be the risk allele than the 

equivalent palindromic allele (Figure 3-C (b)), though the difference is small and may not hold if 

we had more comparison sets. 

 

 
Figure 3-C. BioVU gBGC variants are not more likely to associate with a clinical phenotype than 
matched palindromic variants. (a) The percent of variants that have at least one significant 
association at the given discovery p-value threshold. (b) The percent of variants that have at least 
one significant association at the given discovery p-value threshold where the S allele (or 
equivalent) is the risk allele. 
 

 

 In the eMERGE population, we identified up to five palindromic variants matched to a 

WS gBGC variant on decile for minor allele frequency, local recombination rate, and number of 

LD partners (see Methods). We performed a meta-PheWAS on these variants and considered a 

range of discovery p-value thresholds to ensure that our results were consistent. Regardless of 
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discovery threshold, all associations had to have a consistent OR between E1 and E2, and an E2 

P < 0.05 to be considered replicating. When we did this, we found that gBGC variants and their 

matched palindromic counterparts had the same likelihood of associating with a clinical 

phenotype, regardless of discovery p-value threshold (Figure 3-D (a)). Of all the variants with a 

significant, replicating association, we considered the S allele to be the risk if the S allele 

increased risk (e.g., OR > 1 if S is the minor allele) for any of its significant, replicating 

associations. Except for the two lowest p-value thresholds where there are very few associations 

(1 and 3, respectively), we see little to no difference between the gBGC and palindromic variants 

(Figure 3-D (b)). At these low thresholds, the variability in the percentage of associations where 

the S allele is the risk allele is extreme for the palindromic variants. 

 

 
Figure 3-D. eMERGE gBGC variants are not more likely to associate with a clinical phenotype 
than palindromic variants matched by allele frequency, local recombination rate, and number of 
LD partners. (a) The percent of variants that have at least one significant, replicating association 
at the given discovery p-value threshold. (b) The percent of variants that have at least one 
significant, replicating association at the given discovery p-value threshold where the S allele (or 
equivalent) is the risk allele. Each set of palindromic variants is plotted (green triangles). 
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 To investigate whether we see no difference between gBGC and palindromic variants due 

to an excess of noise in our data, we permuted the individual-genotype relationships and reran 

the meta-PheWAS. Indeed, we find that the permuted variants have roughly the same proportion 

of significant replicating results across discovery thresholds as the original gBGC and 

palindromic variants, as well as similar proportions of variants where the S allele is the risk allele 

when the proportion is stable enough to estimate (Figure 3-E). 

 

 
Figure 3-E. eMERGE gBGC and matched palindromic variants are not more likely to associate 
with a clinical phenotype than permuted variants. (a) The percent of variants that have at least 
one significant, replicating association at the given discovery p-value threshold. (b) The percent 
of variants that have at least one significant, replicating association at the given discovery p-
value threshold where the S allele (or equivalent) is the risk allele. Each set of palindromic 
variants (green triangles) and permuted palindromic variants (purple triangles) are plotted. 
 

 

gBGC Tracts are Enriched for Nominal GWAS Catalog Variants 

 Previous studies have found enrichment for Human Genome Mutation Database 

(HGMD) and dbSNP “pathogenic” variants, among others50, in gBGC tracts, but have not 

examined NHGRI GWAS catalog66 variant enrichment. As these variants are the most similar to 

the associations we find in PheWAS, we looked for enrichment for these variants in regions of 
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the genome where there has been strong, extended gBGC activity since divergence with 

chimpanzee (8,321 autosomal regions, covering 7,389,204 bp), as identified by phastBias50. As 

we were primarily interested in situations where gBGC has influenced disease risk, we restricted 

to non-palindromic (WS) variants, resulting in 17,794 variants. After intersecting these GWAS 

catalog variants with the gBGC tracts, 93 variants overlapped 91 gBGC tracts. When compared 

with the standard human genome size (3.2 Gb), this is significantly more than expected by 

chance (chi square contingency test, Χ2 = 63.99, P = 1.25E-15; Table 3-A). 

 The contingency table assumes that all 3.2 Gbp of the human genome are viable for both 

the gBGC tracts and the GWAS variants, which is known to be untrue. To calculate enrichment, 

we generated two different groups of comparison sets. First, we generated 1,000 sets of regions 

that were matched to the gBGC tracts by chromosome and length (see Methods). These regions 

overlapped 51.6% (median: 48 vs 93; randomization P < 0.001) of the GWAS catalog variants 

compared to the gBGC tracts (Figure 3-F (a); Table 3-C). As GC content is by necessity altered 

by gBGC and high GC content regions tend to be found closer to genes, we generated an 

additional 100 sets of regions that were additionally matched on GC content. While these regions 

overlapped more GWAS catalog variants on average than the regions that were not GC-matched, 

they failed to exceed or even match the number of variants overlapped by the gBGC tracts 

(median: 55 (59.1%); randomization P < 0.01; Table 3-C; Figure 3-F (a)). 

 

Table 3-C. GWAS catalog randomization enrichment results. 

Variant Type 
gBGC 

Overlap 

Chromosome and Length 
Matched Regions 

GC Matched 
Regions 

Median 
Overlap P 

Median 
Overlap P 

WS (P < 1E-05) 93 48 <0.001 55 <0.01 
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Significant WS 
(P < 1E-07) 30 17 0.007 22 0.12 

Palindromic (P < 1E-05) 9 5 0.072 6 0.12 

Significant Palindromic 
(P < 1E-07) 4 2 0.114 2 0.20 

 

 
Figure 3-F. gBGC tracts are enriched for nominal, but not genome-wide significant GWAS 
catalog WS variants. The overlap of each set of comparison regions is plotted (only chromosome 
and length-matched: blue; chromosome, length, and GC-matched: green) for all GWAS catalog 

A B

C D



	 71	

WS variants (a), significant (P < 1E-07) WS variants (b), all palindromic variants (c), and 
significant (P < 1E-07) palindromic variants (d). The black line denotes the original number of 
variants overlapped by gBGC tracts. The median overlap for each group of comparison sets is 
found in the legend. 
 

 However, when we restrict the GWAS catalog variants to those that are genome-wide 

significant (P < 1E-07), we see a reduction in the enrichment. In the contingency chi square test, 

we still find the enrichment to be significant, but to a lesser degree (Χ2 = 12.16, P = 4.88E-4; 

Table 3-A). The chromosome and length-matched regions overlapped 57% of the variants 

(median: 17 vs 30; randomization P = 0.007; Table 3-B) compared to the gBGC tracts. Matching 

on GC content had a larger effect for these variants, as the GC-matched regions overlapped 73% 

of variants (median: 22 vs 30; randomization P = 0.12; Figure 3-F (b); Table 3-B). 

 We considered the palindromic GWAS catalog variants as a natural control for the WS 

variants as they are susceptible to the reduction in LD as well as any gene proximity biases 

caused by falling in a recombination hotspot, but not the biased allele frequency altering of 

gBGC itself. While we see a reduction in enrichment between the nominal and genome-wide 

significant palindromic variants as we did for the WS variants, the enrichment for nominal 

palindromic variants is only trending towards significance (Table 3-A; Table 3-B; Figure 3-F 

(c,d)). This could be due to a reduction in power as there are only ~1,900 palindromic variants 

versus the ~17,800 WS variants. 

 

GWAS Catalog Variants with Significant Associations Have More LD Partners 

 As gBGC tracts were enriched for GWAS catalog variants with nominal associations, but 

not significant, we investigated differences between these sets of variants. We calculated the 

number of LD partners (r2 > 0.5) for each variant using 1KG EUR individuals. When we 
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compare number of LD partners, we find that variants with significant associations have more 

LD partners than nominal variants (P = 2.35E-133, Mann-Whitney U test). This is consistent 

regardless of variant type or whether the variant falls within a gBGC tract (Figure 3-G). 

 

 
Figure 3-G. GWAS catalog variants with significant associations have more LD partners than 
variants with nominal associations. The distribution of number of LD partners for GWAS catalog 
variants that have nominal (blue) and significant (green; P < 1E-07) associations that fall outside 
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of gBGC tracts (a) and within (b). For comparability with the variants in (b), only variants with 
less than 650 LD partners are shown in (a). The full distribution of values is plotted in Appendix 
H. As gBGC tracts overlap few GWAS catalog variants, each variant is plotted in (b) (white 
dots). 
 

 We then intersected the GWAS catalog variants with the recombination rate map from 

Kong et al172 and compared the overlapping 10 kb recombination rates. As expected from the LD 

results, nominal GWAS catalog variants have significantly higher recombination rates than 

significant variants, though this difference is smaller in magnitude (P = 8.72E-19, Mann-

Whitney U test; Appendix I). This could be due to the fact that variants with high recombination 

rates are strongly correlated with few LD partners, but variants with low recombination rates 

could have a large range of LD partners (Figure 3-A). If so, this suggests that number of LD 

partners is more correlated with the cause of this phenomenon than recombination rate. 

 

Discussion 

 

 In this study, we find very few genome-wide significant associations with any of our 

tested variants, including those affected by gBGC. Furthermore, we find that variants influenced 

by gBGC are not more likely to associate with a clinical phenotype than palindromic or long-

time coldspot WS variants once allele frequency, recombination rate, and number of LD partners 

are accounted for. For the BioVU hotspot-coldspot comparison, hotspot variants may even be 

less likely to associate with a phenotype, depending on the discovery significance threshold 

considered. When we permuted the eMERGE gBGC and palindromic variants, we found that 

neither of these groups show any signal for phenotypic associations beyond random at any 

nominal discovery threshold (Figure 3-E). This suggests that gBGC does not increase the 
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likelihood of a variant associating with a clinical phenotype to a degree that we can detect in 

these cohorts. 

 Additionally, we find that gBGC tracts are enriched for nominal GWAS catalog WS 

variants, but not genome-wide significant WS variants or palindromic variants. Part of this could 

be due to power, as gBGC tracts overlap roughly twice as many variants as the median 

expectation for the chromosome and length-matched regions for all comparisons (Figure 3-A), 

and the nominal WS variants are by far the largest set examined (Table 3-A). For the WS variant 

enrichment analyses, it appears that GC content matching increases the number of GWAS 

variants overlapped. As GC content is associated with gene content and other genomic features, 

this result is not wholly unexpected. However, GC content matching does not appear to increase 

the palindromic variant overlap to the same degree, though this could again be due to power as 

there are so few palindromic variants in the GWAS catalog (Table 3-A). It is worth noting that 

taking LD into account in these analyses may alter our results, but this is unlikely to have a large 

effect considering the reduction in LD between variants within gBGC tracts and those without. 

 One of the unexpected findings from the GWAS catalog analyses was the association of 

number of LD partners and significance. The P values assigned to associations detected through 

logistic and linear regression are contingent on a host of factors influencing statistical power, 

including: sample size, allele frequency, and effect size. Given that a variant is directly 

responsible for a phenotypic change, that variant’s number of LD partners should not affect its 

biological or statistical association with a phenotype. However, one of the foundational 

principles of GWAS and genotyping platform design is to leverage LD so that all variants do not 

have to be assayed individually, reducing multiple testing correction. Assuming that 1) LD 

structure itself does not confound a variant’s ability to associate with a phenotype, and 2) all 
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variants have some likelihood of associating with a given phenotype, every additional variant in 

LD with the tested variant increases its likelihood of association by proxy. This would leave all 

variants in recombination hotspots at a disadvantage compared to those outside of recombination 

hotspots, but particularly WS variants as gBGC would reduce LD beyond the effects of 

recombination alone. As many of these variants will also be shifted to higher allele frequencies 

by gBGC and genic regions are biased towards high GC content, they might be simultaneously 

more likely to be tested in GWAS and to be nearby functional variants, but at a disadvantage to 

tag those variants. A balance of these factors could enrich gBGC tracts for nominal associations. 

 Naturally, these assumptions do not reflect biological reality as historical demography 

and selection alter LD patterns; and demography and selection themselves are influenced by 

whether a variant affects fitness or fecundity. Considering these connections, it is worth noting 

that most of the phenotypes in the GWAS catalog and the wider array of clinical phenotypes 

assayed in PheWAS are unlikely to impact fitness or fecundity, and therefore variants increasing 

their risk would not be under negative selection. Thus, gBGC may be acting as little more than 

directional genetic drift at many of these loci. Lachance and Tishkoff theorized that gBGC could 

have a particular effect on health by increasing homozygosity of derived variants that increase 

disease risk in a recessive manner49. The models used to identify the associations in the GWAS 

catalog as well as here used additive rather than recessive models, which could result in some 

loss of power to detect associations176. While we find no support for the hypothesis that gBGC 

increases disease risk in our data, examining the transmission of Mendelian disease-causing 

alleles potentially affected by gBGC using trio data, or a cohort containing sufficient cases for 

diseases that decrease fitness or fecundity could prove more effective. 
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 It is important to note that while we find no support for gBGC having a large effect on 

the phenotypes studied here, gBGC has had a demonstrable impact on the genome. Between 5-

10% of identified HARs may have been created by gBGC. Even genes have been affected by 

gBGC, as the adenylate cyclase activating polypeptide 1 (ADCYAP1) gene, which is involved in 

neuroendocrine stress response, has accrued 17 WS non-synonymous coding mutations since 

AMH divergence from chimpanzee10,48,50. This process may have had an additional effect on 

immune response, as one of the GWAS catalog WS variants that overlaps a gBGC tract 

(rs9271366) falls near HLA-DRB1, increases risk for multiple sclerosis177,178 and ulcerative 

colitis179,180, increases immunoglobulin A levels181, and decreases risk for Crohn’s disease180,182. 

There are two gBGC tracts within 500 kbp of the one encompassing this variant, both of which 

fall near other HLA genes. The importance of recombination hotspots in shaping the LD 

structure of the HLA region has been noted in the past183, though this was not connected to 

disease or gBGC. Most immunological genes, but particularly HLA are some of the strongest 

examples of positive and balancing selection184, so gBGC near these genes could be useful in 

increasing immunological diversity. Our analyses show that understanding the full scope of 

ramifications of gBGC on modern humans will require careful phenotype and model selection in 

the future. 
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CONCLUSION 

 

 In my dissertation, I used EHRs and PheWAS to explore the phenotypic effects of 

variants with three different evolutionary origins or histories. In particular, I examined: variants 

introduced through introgression from Neanderthals, variants whose ancestral allele frequency 

has declined through selection or drift since divergence with chimpanzee, and variants affected 

by the mutational process gBGC. Each of these projects represents the first systematic analysis 

of the effects of these variants across many phenotypes in a modern human population. The 

results of these projects have supported previously proposed hypotheses about the consequences 

of these events or mutational processes for modern human health in some instances, as well as 

failed to do so in others. 

 My examination of variants introgressed from Neanderthal into individuals of European 

ancestry supported previous hypotheses about what biological systems were influenced by 

introgression. As Neanderthals were presumably better adapted to life outside of Africa, systems 

theorized to be positively impacted by introgression included dermatological, immunological, 

and others. However, as Neanderthals had smaller effective population sizes throughout their 

history than AMHs, many deleterious variants could have accrued in their genomes and been 

passed to AMHs through introgression. Between this and the long divergence time between 

Neanderthals and AMHs, many systems could have been negatively affected by introgression, 

the most important of which being reproduction. My work also revealed unexpected enrichments 

for introgressed variants altering gene expression in the brain, as well as associating with 

neurological and psychiatric phenotypes. It remains unclear whether these associations suggest 

true differences in cognition or brain function between AMHs and Neanderthals, or whether they 
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represent previously neutral variation that has become deleterious in modern environments. 

While we can only speculate on the non-skeletal morphological differences between AMHs and 

Neanderthals, this work suggests that Neanderthals fell within the range of human variation in 

many respects. 

 Further inquiries into the effects of Neanderthal introgression on clinical phenotypes in 

other modern non-African populations and could help give the full picture of how this 

interbreeding event has shaped modern human health. Examining other non-African populations, 

such as East Asians, could also give an idea of how selection acting after introgression may have 

shaped what biological systems were affected. Additionally, analysis of the impact of 

Neanderthal introgression on non-clinical phenotypes may both inform the genetic basis of 

phenotypic variation in modern humans, as well as lend insight into Neanderthal soft tissue 

biology. Melanesians may be uniquely instructive in the effects of archaic introgression on 

AMHs today as they experienced both Neanderthal and Denisovan introgression during their 

history105. Beyond further statistical genetics work in diverse AMH populations, more samples of 

archaic hominin genomes are necessary to get the full picture of Neanderthal and Denisovan 

variation. Given the multiple interbreeding events between archaic hominin groups, researchers 

may also gain knowledge about the genomes of more anciently diverged archaic hominins that 

contributed to Neanderthals and Denisovans. 

 My study of Neanderthal introgression into humans also provides an interesting window 

into the hybridization process in hominins. Hybridization has been studied extensively in plants 

and animals with respect to both adaptive introgression as well as conservation biology 

(reviewed in Hamilton & Miller185). While hybridization is generally considered favorable in 

plants due to the prevalence of hybrid vigor in the offspring of different plant species186,187, it is 
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often viewed negatively when used for rescue of animal populations experiencing strong 

inbreeding depression, though this may be anchored in historic viewpoints185. Indeed, adaptive 

introgression between species has been found to increase resistance to warfarin in mice188, 

resistance to insecticides in an African mosquito189, and diversification of MHC alleles in the 

alpine ibex190. Hybridization between humans and Neanderthals parallels a classic beneficial 

hybridization scenario, with one group experiencing a strong bottleneck (humans) and receiving 

genetic variation presumably adapted to the local environment from the introgressing group 

(Neanderthals). However, the historically small effective population size of Neanderthals raises 

questions about how beneficial this event may actually have been101. All told, my study as well 

as future analyses of the effects of Neanderthal introgression will speak not just to human 

evolutionary genetics, but also to issues faced in conservation biology and the ramifications of 

hybridization. 

 The human-specific and hominin-derived variant analysis revealed associations with 

phenotypes expected to be evolving continuously across all organisms, such as drug metabolism 

and immune phenotypes. Considering the many skeletal changes over hominin history and 

known anatomical differences between hominin groups and AMHs, the associations with bone 

fractures are not unexpected. Given the comparable gracility of AMH skeletons, these fracture 

associations could indicate that AMHs required genetic changes to protect against fracture that 

more robust archaic hominins did not. However, it is also possible that the human allele would 

have served a similarly protective role in Neanderthals and Denisovans, but simply arose after 

divergence. Indeed, it is difficult to determine what degree of selective pressure may have acted 

on variants affecting skeletal health, given the complexity of this system. The neurological and 

psychiatric associations with ancestral alleles reintroduced by Neanderthal further supported our 
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previously found enrichments for these phenotypes in the Neanderthal introgression analyses. 

However, it also stressed the importance of understanding the history of evolutionary variation 

chosen for further analysis through PheWAS or GCTA, as different histories may propose 

alternate hypotheses for affected biological systems. 

 Sequencing of additional Neanderthals and Denisovans would be useful in validating 

whether the variants classified as human-specific in this analysis are truly human-specific. As 

discussed in Chapter II, we currently lack the population samples to confidently discern whether 

the derived human allele was completely absent from archaic hominins. Future analyses of 

human-specific and hominin-derived variation would also benefit from determining when allele 

frequencies changed—perhaps through additional sequencing of ancient human samples—and 

whether these changes correlate with signatures of selection or admixture events. This would 

help in the delineation of variants whose alleles have changed frequency due to selection rather 

than genetic drift or demographic history. Analyzing variants with homogenous histories may 

ease interpretation of the biological systems affected and shaped by various evolutionary forces. 

It may also suggest phenotypes for testing through more low-throughput strategies, such as 

GCTA. While preliminary work in this area has been done191, functional analysis of additional 

human-specific variants that are fixed in AMHs is critical to understanding changes in humans 

over this period. Another area of interest would be to extend the variants examined to those that 

are polymorphic in both chimpanzee and humans, as these could be indicative of ancient 

balancing selection. While such signals have been identified in previous studies, typically near 

immune loci such as MHC192, no study has examined the phenotypic effects of these variants in 

human populations. 
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 My analyses of variants affected by gBGC had some unexpected results. While many 

examples of gBGC—a mutational process that has been called the “Achilles’ heel of our 

genome”47—having dramatic effects on the genome are known, I found no indication that this 

process led to an increased risk for common AMH morbidities compared to variants matched on 

variant characteristics known to be affected by gBGC, including: frequency of the S allele, 

recombination rate, and number of LD partners. While the noise in the data makes it impossible 

to claim that there is no difference between variants affected by gBGC and those that are not, it 

indicates that any true signal is not exceptionally strong. As discussed previously, this may not 

be unexpected given the phenotypes assayed, as gBGC is theorized to have the potential to 

counteract weak negative selection on deleterious S alleles at WS variants. Thus, if there is no 

negative selection to counteract, WS variants undergoing gBGC should not be expected to affect 

disease risk more than any other variant experiencing genetic drift. However, my analysis of 

variants in the GWAS catalog did demonstrate that the likelihood of detecting a significant 

statistical association is based on parameters affected by gBGC, such as recombination rate and 

number of LD partners. This suggests that any future studies of the effects of mutational 

processes on modern human health should consider both biological and statistical confounders of 

those processes when formulating their analysis plans, though this recommendation is by no 

means restricted to studies of mutational processes193. 

 There are several important technical considerations when using PheWAS and other 

statistical genetics tools in clinical populations to answer evolutionary questions. In several 

instances, I have used enrichment of phenotype associations to test if a group of variants 

inordinately affects certain biological systems or simply more phenotypes than we would 

anticipate by chance. Choosing appropriate matched variants is critical to these analyses, as 
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association tests for different phecodes in a clinical population will have heterogeneous levels of 

statistical power. It is important to match on allele frequencies and other parameters as 

appropriate given the study question, and to be cognizant of the potential for overmatching. 

Though it does not allow for the comparison of two groups of variants, permutation analyses 

may prove to be the most useful in some scenarios, as they allow for a comprehensive idea of the 

noise level in the data in light of the complex correlation structure of phecodes. 

 Another technical consideration is the accuracy of the phecodes themselves. Depending 

on the biobank used for such analyses—thus, the practice standards for the hospital to which the 

biobank is attached—the ICD-9 translation to phecodes may or may not be as useful in capturing 

certain phenotypes. For analyses focusing on particular clinical phenotypes rather than a wide 

survey such as was performed here, development of an algorithm to determine case or control 

status may be more appropriate. Many groups are currently working on improving phenotype 

extraction from the EHR194,195, and the strengthening of relationships between physicians and 

researchers moving forward will no doubt improve this process. 

 Interpretation of results can also pose challenges when using data such as these to answer 

evolutionary questions. For example, one important consideration is the history of the phenotype 

being analyzed. Many clinical phenotypes extractable from EHRs are unlikely to have been 

present in ancient humans, at least not as we understand them. For example, we found 

enrichment for associations between neurological and psychiatric phenotypes and introgressed 

Neanderthal variants. However, it is unlikely that AMHs or even Neanderthals suffered from any 

of these disorders 50,000 years ago, and certainly not in their current forms. One of the more 

striking examples of this phenomenon is the association of an introgressed variant with tobacco 

use disorder, when tobacco is absent from Eurasia and could not have had this effect before a 
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few hundred years ago in Europeans. Therefore, the only conclusions we can draw confidently 

are that many of these introgressed variants alter gene expression in the brain, and associate with 

neurological and psychiatric phenotypes in modern humans. These results suggest that 

Neanderthal neuronal function may have had some slight incompatibilities with that of AMHs in 

modern environments; however, speculation on the organism-level phenotypic effects of these 

variants in previous generations will often have to remain just that. 

 Psychiatric and neurologic disorders may be the most extreme examples of this, but 

careful consideration of the disrupted biological processes that lead to clinical phenotypes is 

recommended for the interpretation of all associations found in such an analysis. To give another 

example from the Neanderthal introgression analysis, a variant that increases pathogenic blood 

coagulation would seem unlikely to be maintained after introgression, given the negative 

implications for fertility through increased risk of miscarriage196. However, as coagulation 

factors are involved in defense from bacterial pathogens132 and the optimal level of clotting itself 

is critical for balancing risk for stroke versus hemophilia, variability in this system could be 

indicative of a possibly beneficial trade-off in AMH or archaic hominin history. This association 

is also an important example of the occasional disconnect between the obvious phenotypic 

grouping (hematopoietic) versus the total number of affected systems (immune, hematopoietic, 

reproductive), as well as representative of the power of examining the full range of phecodes, 

rather than a limited subset. 

 In conclusion, though there are currently some limitations, clinical biobanks provide a 

promising resource for future evolutionary studies. Analysis of many densely genotyped and 

phenotyped individuals with statistical genetics tools such PheWAS and GCTA can be used to 

test or refine hypotheses generated by evolutionary models applied solely to sequence data. This 
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may be particularly useful when scans for various evolutionary signatures produce thousands of 

regions of interest containing tens of thousands of candidate variants with potentially complex 

LD patterns, and exhaustive functional testing of the variants involved is not feasible.  
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APPENDIX 
 

Appendix A. Neanderthal SNP-phenotype associations used in the comparison with non-
Neanderthal SNP-phenotype associations. Redundant SNP-phenotype associations due to one 
SNP associating with multiple phecodes in the same hierarchy are highlighted in gray. 
	 	 	 Discovery	 Replication	
Phenotype	 SNP	 Category	 Odds 

Ratio	 P	
Odds 
Ratio	 P	

Chronic airway obstruction	 rs2300659	 Pulmonary	 1.24	 9.92E-04	 1.18	 2.09E-02	
Chronic pain syndrome	 rs2298146	 Neurologic	 4.02	 2.80E-04	 2.74	 1.88E-02	
Hemangioma and 
lymphangioma, any site	

rs17114127	 Neoplastic	 2.61	 4.47E-05	 3.41	 4.28E-04	

Functional disorders of 
bladder	

rs17115796	 Genitourinary	 2.39	 5.38E-05	 1.85	 2.20E-02	

Calculus of ureter	 rs12563768	 Genitourinary	 2.15	 8.62E-04	 2.08	 6.59E-03	
Coagulation defects	 rs3917862	 Hematopoietic	 1.27	 8.34E-04	 1.24	 1.05E-03	
Hypercoagulable state	 rs3917862	 Hematopoietic	 3.32	 9.87E-07	 3.00	 5.00E-10	
Skin neoplasm of uncertain 
behavior	

rs16848353	 Neoplastic	 1.50	 4.73E-04	 1.31	 8.52E-03	

Other disorders of soft 
tissues	

rs17675600	 Musculoskeletal	 2.99	 3.38E-04	 1.71	 2.13E-02	

Protein-calorie malnutrition	 rs12049593	 Endocrine & 
Metabolic	

1.77	 1.98E-06	 1.63	 5.46E-05	

Hepatic cancer	 rs17018123	 Neoplastic	 4.32	 5.31E-04	 2.73	 3.68E-03	
Sleep related movement 
disorders	

rs3771635	 Neurologic	 0.70	 9.78E-05	 0.75	 3.92E-03	

Personality disorders	 rs2288187	 Psychiatric	 2.21	 7.94E-04	 2.62	 7.44E-03	
Radiotherapy	 rs901033	 Neoplastic	 2.55	 5.67E-04	 3.53	 9.60E-03	
Tobacco use disorder	 rs901033	 Psychiatric	 2.19	 1.73E-05	 1.75	 7.93E-04	
First degree AV block	 rs901033	 Cardiovascular	 3.21	 2.58E-04	 1.92	 4.74E-02	
Functional disorders of 
bladder	

rs13087234	 Genitourinary	 1.61	 7.49E-04	 1.34	 3.88E-02	

Infections involving bone	 rs17029555	 Musculoskeletal	 1.62	 8.49E-04	 1.49	 4.24E-03	
Rheumatoid arthritis & 
related inflammatory 
polyarthropathies	

rs12639456	 Musculoskeletal	 1.68	 5.00E-04	 1.54	 1.07E-02	

Rheumatoid arthritis	 rs12639456	 Musculoskeletal	 1.76	 6.58E-04	 1.65	 5.83E-03	
Acquired foot deformities	 rs1242069	 Musculoskeletal	 1.42	 5.05E-04	 1.39	 1.48E-02	
Gram negative septicemia	 rs2050807	 Infectious	 4.28	 2.45E-04	 2.48	 3.82E-02	
Atherosclerosis of aorta	 rs13151936	 Cardiovascular	 1.45	 9.24E-04	 1.42	 4.00E-02	
Leukemia	 rs17527711	 Neoplastic	 1.78	 6.90E-04	 1.37	 3.45E-02	
Age-related osteoporosis	 rs10516526	 Musculoskeletal	 3.56	 1.08E-04	 1.63	 9.44E-03	
Acquired toe deformities	 rs10517630	 Musculoskeletal	 1.52	 9.97E-04	 1.56	 1.33E-02	
Psoriasis & related disorders	 rs12190231	 Dermatologic	 1.35	 9.58E-04	 1.29	 1.18E-02	
Psoriasis	 rs12190231	 Dermatologic	 1.40	 4.56E-04	 1.32	 8.39E-03	
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Psoriasis vulgaris	 rs12190231	 Dermatologic	 1.48	 9.14E-05	 1.31	 1.40E-02	
Dry eyes	 rs12189640	 Neurologic	 1.37	 5.62E-04	 1.31	 3.16E-02	
Disorders of other cranial 
nerves	

rs12662332	 Neurologic	 1.71	 6.59E-04	 2.02	 1.50E-04	

Subjective visual 
disturbances	

rs1513498	 Neurologic	 1.53	 1.37E-04	 1.67	 1.40E-02	

Other cerebral degenerations	 rs3822947	 Neurologic	 2.00	 3.24E-04	 1.47	 4.87E-02	
Microscopic hematuria	 rs35609966	 Genitourinary	 2.51	 6.49E-05	 2.81	 3.62E-02	
Cancer, suspected or other	 rs9366117	 Neoplastic	 2.38	 5.15E-04	 1.88	 2.94E-02	
Proteinuria	 rs17722435	 Endocrine & 

Metabolic	
2.83	 2.02E-04	 1.67	 4.10E-02	

Other conditions of the 
mother complicating 
pregnancy	

rs16868879	 Genitourinary	 5.89	 2.34E-04	 2.25	 9.65E-04	

Memory loss	 rs16914252	 Psychiatric	 1.77	 6.23E-04	 1.70	 1.52E-02	
Antisocial/borderline 
personality disorder	

rs11139709	 Psychiatric	 4.92	 5.28E-04	 4.65	 2.44E-03	

Chronic kidney disease, 
Stage IV (severe)	

rs1542479	 Genitourinary	 1.98	 7.19E-04	 1.63	 2.04E-02	

Polyp of female genital 
organs	

rs17742994	 Genitourinary	 1.63	 5.08E-04	 1.46	 2.51E-02	

Stiffness of joint	 rs11817964	 Musculoskeletal	 1.94	 8.71E-05	 1.62	 5.00E-02	
Allergies, other	 rs2394616	 Injuries	 2.13	 3.11E-04	 1.78	 2.51E-02	
Inflammatory diseases of 
female pelvic organs	

rs1931553	 Genitourinary	 1.57	 8.70E-04	 1.36	 3.67E-02	

Conduct disorders	 rs12768228	 Psychiatric	 2.53	 8.96E-04	 2.31	 4.26E-02	
Symptoms involving urinary 
system	

rs11030043	 Genitourinary	 1.76	 7.35E-06	 1.65	 4.32E-02	

Disorders of cornea	 rs16905974	 Neurologic	 2.69	 6.12E-04	 2.69	 1.07E-02	
Obstructive sleep apnea	 rs7133666	 Neurologic	 1.36	 7.18E-05	 1.22	 8.66E-03	
Erythematous conditions	 rs17191680	 Dermatologic	 1.31	 7.60E-04	 1.25	 8.98E-03	
Emphysema	 rs12579609	 Pulmonary	 1.88	 9.30E-04	 1.45	 4.77E-02	
Other conditions of brain	 rs11060784	 Neurologic	 2.21	 9.59E-04	 1.55	 3.77E-02	
Neoplasm of unspecified 
nature of digestive system	

rs9316483	 Neoplastic	 1.84	 2.58E-04	 1.97	 2.27E-02	

Malunion fracture	 rs17080490	 Musculoskeletal	 3.91	 4.52E-04	 2.22	 2.18E-02	
Disorders of other cranial 
nerves	

rs12896790	 Neurologic	
	

1.72	 1.55E-04	 1.58	 1.05E-02	

Malignant neoplasm of brain 
and nervous system	

rs3783796	 Neoplastic	
	

5.63	 8.19E-05	 4.04	 9.57E-03	

Bipolar	 rs11159544	 Psychiatric	 1.45	 5.14E-04	 1.31	 2.79E-02	
Fracture of humerus	 rs4617810	 Injuries	 2.77	 8.77E-04	 1.86	 1.27E-02	
Chronic obstructive asthma	 rs2240903	 Pulmonary	 2.75	 3.35E-04	 2.89	 3.77E-03	
Alopecia	 rs17765170	 Dermatologic	 2.21	 9.55E-04	 2.86	 1.43E-03	
Generalized anxiety disorder	 rs6122806	 Psychiatric	 3.23	 9.34E-04	 2.73	 1.39E-02	
Stress incontinence, female	 rs17766531	 Genitourinary	

	
2.95	 6.94E-04	 2.10	 1.02E-02	
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Atherosclerosis of renal 
artery	

rs5756326	 Cardiovascular	
	

1.53	 5.38E-05	 1.34	 3.50E-02	

Nontoxic multinodular 
goiter	

rs2886122	 Endocrine & 
Metabolic	

1.45	 5.14E-04	 1.31	 2.79E-02	

Disorders of the autonomic 
nervous system	

rs2281117	 Neurologic	
	

2.13	 7.69E-04	 2.05	 4.28E-03	

 
 
 
Appendix B. Phecodes tested in GCTA. 
Phecode	 Phenotype Description	 Type	
296	 Mood disorders	 Brain	
296.2	 Depression	 Brain	
300	 Anxiety, phobic and dissociative disorders	 Brain	
300.1	 Anxiety disorder	 Brain	
208	 Benign neoplasm of colon	 Digestive	
276	 Disorders of fluid, electrolyte, and acid-base balance	 Digestive	
276.1	 Electrolyte imbalance	 Digestive	
276.5	 Hypovolemia	 Digestive	
278	 Overweight	 Digestive	
278.1	 Obesity	 Digestive	
536	 Disorders of function of stomach	 Digestive	
562	 Diverticulosis and diverticulitis	 Digestive	
562.1	 Diverticulosis	 Digestive	
564.1	 Irritable Bowel Syndrome	 Digestive	
465	 Acute upper respiratory infections	 Immune	
555.1	 Crohn's disease	 Immune	
250.2	 Type 2 diabetes	 Lipid metabolism	
272	 Disorders of lipoid metabolism	 Lipid metabolism	
272.1	 Hyperlipidemia	 Lipid metabolism	
272.11	 Hypercholesterolemia	 Lipid metabolism	
401	 Hypertension	 Lipid metabolism	
411	 Ischemic Heart Disease	 Lipid metabolism	
411.2	 Myocardial Infarction	 Lipid metabolism	
411.4	 Coronary atherosclerosis	 Lipid metabolism	
443.9	 Peripheral Arterial Disease	 Lipid metabolism	
362	 Retinal disorders	 Ocular	
362.2	 Macular degeneration	 Ocular	
362.29	 Age-related macular degeneration	 Ocular	
365	 Glaucoma	 Ocular	
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366	 Cataract	 Ocular	
367	 Disorders of refraction and accommodation	 Ocular	
367.1	 Myopia	 Ocular	
367.2	 Astigmatism	 Ocular	
367.8	 Hypermetropia	 Ocular	
368	 Visual disturbances	 Ocular	
371	 Inflammation of the eye	 Ocular	
371.3	 Inflammation of eyelids	 Ocular	
379	 Other disorders of eye	 Ocular	
379.2	 Disorders of vitreous body	 Ocular	
681	 Superficial cellulitis and abscess	 Skin	
687	 Symptoms affecting skin	 Skin	
700	 Corns and callosities	 Skin	
702	 Other dermatoses	 Skin	
702.1	 Actinic keratosis	 Skin	
702.2	 Seborrheic keratosis	 Skin	
939	 Atopic or contact dermatitis	 Skin	
 
 
Appendix C. Removing E2 untested variants from E1 does not have an appreciable effect on risk 
explained or P value. 

Phenotype  
Discovery (E1; two GRM) Discovery (E1; two GRM; 

lacking missing E2) 

Risk Explained P Risk Explained P 

Actinic keratosis  0.85% 0.162 0.95% 0.124 

Depression  1.93% 0.0036 1.90% 0.0031 

 

Appendix D. Nominally significant (discovery P < 10-4) replicating results from meta-analyses. 
Significant results (from Table 1-C) are in bold. Results shaded in light grey were not found in 
pooled analysis (discovery P < 0.001, replication P < 0.05, consistent direction of effect). 
   Discovery Replication 
Phenotype SNP Flanking 

Gene(s) 
Odds 
Ratio P 

Odds 
Ratio P 

Hypercoagulable state rs3917862 SELP 3.32 9.9E-07 3.00 5.0E-10 
Protein-calorie malnutrition rs12049593 SLC35F3 1.77 2.0E-06 1.63 5.5E-05 
Symptoms involving urinary 
system 

rs11030043 RHOG, 
STIM1 

1.76 7.4E-06 1.65 4.3E-02 

Tobacco use disorder rs901033 SLC6A11 2.19 1.7E-05 1.75 7.9E-04 
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Hemangioma and 
lymphangioma, any site 

rs17114127 PPAP2B 2.61 4.5E-05 3.41 4.3E-04 

Functional disorders of bladder rs17115796 DAB1 2.40 5.4E-05 1.85 2.2E-02 
Stress incontinence, female rs17766531 PRDM15 1.53 5.4E-05 1.34 3.5E-02 
Microscopic hematuria rs35609966 CCR6, 

GPR31 
2.51 6.5E-05 2.81 3.6E-02 

Obstructive sleep apnea rs7133666 PIK3C2G 1.36 7.2E-05 1.22 8.7E-03 
Malignant neoplasm of brain and 
nervous system 

rs3783796 PRKCH 5.63 8.2E-05 4.04 9.6E-03 

Stiffness of joint rs11817964 ZNF365 1.94 8.7E-05 1.62 5.0E-02 
Psoriasis vulgaris rs12190231 EEF1E1, 

SLC35B3 
1.48 9.1E-05 1.31 1.4E-02 

Sleep related movement 
disorders 

rs3771635 PKP4 0.70 9.8E-05 0.75 3.9E-03 

 
 

Appendix E. Nominally significant (discovery P < 10-4) replicating results from pooled analyses. 
Results reaching locus-wise Bonferroni corrected threshold are in bold. Results shaded in light 
grey were not found in the meta-analysis (discovery P < 10-4, replication P < 0.05, consistent 
direction of effect). 
   Discovery Replication 
Phenotype SNP Flanking 

Gene(s) 
Odds 
Ratio P 

Odds 
Ratio P 

Protein-calorie 
malnutrition 

rs12049593 SLC35F3 1.72 3.14E-06 1.52 3.56E-04 

Hypercoagulable state rs3917862 SELP 2.66 1.46E-05 2.67 3.66E-10 
Gastroparesis rs4963700 SOX5 2.63 4.01E-05 1.48 2.25E-02 

Sleep related movement 
disorders 

rs3771635 PKP4 0.69 5.77E-05 0.73 1.28E-03 

Obstructive sleep apnea rs7133666 PIK3C2G 1.36 7.67E-05 1.20 1.68E-02 
Other conditions of the 
mother complicating 
pregnancy 

rs16868879 NCALD 5.39 7.81E-05 2.11 1.44E-03 

Other alveolar and 
parietoalveolar 
pneumonopathy 

rs10456309 KIAA0319 3.19 7.98E-05 1.81 3.57E-02 

 
 

Appendix F. All associations that pass the discovery threshold (P < 3.3E-05) in the Neanderthal 
E1 meta-PheWAS. Sorted by SNP rsID. K is number of sites with enough cases to perform 
PheWAS. 

Phenotype Phecode SNP OR P Total Cases MAF K 

Disorders of 
parathyroid gland 252 rs1021216 2.544 4.62E-06 12228 252 2.89% 5 
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Secondary malignant 
neoplasm of liver 198.4 rs10487763 2.303 1.56E-06 6869 113 10.77% 3 

Bariatric surgery 539 rs10492532 3.290 9.83E-07 7947 133 3.08% 3 

Other disorders of 
intestine 569 rs10492532 1.921 1.76E-05 10705 512 3.24% 5 

Intestinal infection 008 rs10498568 1.751 2.32E-05 10309 395 6.63% 4 

Disorders of the globe 360 rs10509190 4.822 3.34E-05 1944 80 1.98% 2 

Ill-defined descriptions 
and complications of 
heart disease 

429 rs10842879 1.276 2.89E-05 10438 1905 13.20% 5 

Nephritis and 
nephropathy without 
mention of 
glomerulonephritis 

580.3 rs10962788 1.727 1.32E-05 9412 315 9.94% 5 

Disorders resulting 
from impaired renal 
function 

588 rs10962788 1.841 1.91E-05 7095 233 10.13% 3 

Symptoms involving 
urinary system 599.8 rs11030043 1.757 7.35E-06 4713 352 10.49% 3 

Poisoning by water, 
mineral, and uric acid 
metabolism drugs 

974 rs11198978 5.928 4.88E-06 2031 39 3.84% 1 

Megaloblastic anemia 281.1 rs11704728 0.438 2.08E-05 7300 171 19.88% 4 

Protein-calorie 
malnutrition 260 rs12049593 1.766 1.98E-06 11205 648 5.15% 5 

Nodular lymphoma 202.21 rs12200765 3.204 2.45E-05 6451 41 12.47% 2 

Ill-defined descriptions 
and complications of 
heart disease 

429 rs12230122 1.277 2.85E-05 10438 1905 13.17% 5 

Other diseases of the 
teeth and supporting 
structures 

525 rs12401852 2.167 3.13E-05 5007 334 3.21% 2 

Complication of 
amputation stump 874 rs12401852 6.212 1.91E-05 2676 28 3.27% 1 

Inflammatory bowel 
disease 555 rs1242069 2.214 2.38E-05 6773 197 4.62% 5 

Cancer of other female 
genital organs 184 rs12431327 3.064 2.20E-05 7843 87 4.35% 3 

Blister 911 rs12431327 5.620 2.10E-05 3060 26 3.92% 1 

Lump or mass in breast 611.3 rs12497155 2.086 3.25E-05 10360 978 2.51% 5 

Kyphosis (acquired) 737.1 rs12566055 6.074 1.61E-05 6500 91 2.02% 3 

Poisoning by 
anticonvulsants and 
anti-Parkinsonism 
drugs 

966 rs12671457 3.894 2.48E-05 2017 25 15.17% 1 

Anemia in chronic 285.21 rs12770965 1.930 2.55E-05 7353 224 9.55% 4 
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kidney disease 

Hirsutism 704.2 rs12896790 3.899 2.02E-05 2511 40 9.84% 1 

Pericarditis 420.2 rs12964811 2.163 2.49E-05 7483 123 9.71% 3 

Macular degeneration, 
wet 362.22 rs1296793 1.755 5.27E-06 4376 267 19.65% 3 

Congenital anomalies of 
great vessels 747.13 rs13039978 4.331 2.95E-05 2601 24 6.15% 1 

Other disorders of the 
nervous system 349 rs13167382 4.539 8.87E-06 2840 41 2.82% 1 

Neurological disorders 
due to brain damage 292 rs1324774 1.554 3.06E-05 9979 1315 4.59% 5 

Altered mental status 292.4 rs1324774 2.339 1.16E-05 8927 263 4.44% 5 

Cancer within the 
respiratory system 165 rs13249746 1.997 1.02E-05 13442 368 3.72% 5 

Lung cancer 165.1 rs13249746 1.961 2.49E-05 13433 359 3.71% 5 

Corns and callosities 700 rs13357477 0.709 2.22E-05 6144 677 23.16% 3 

Hammer toe 735.21 rs1395342 1.709 2.83E-05 6763 354 8.69% 3 

Corneal degenerations 364.4 rs1566479 1.806 2.67E-05 2013 149 27.50% 2 

Pancreatic cancer 157 rs16918099 12.455 1.66E-05 4502 57 0.88% 2 

Other unspecified back 
disorders 724.9 rs17116637 5.913 1.32E-05 830 34 3.37% 1 

Other unspecified back 
disorders 724.9 rs17116658 6.227 8.72E-06 830 34 3.13% 1 

Cardiac arrhythmia 
NOS 427.5 rs17235910 1.561 3.29E-05 6706 1271 6.33% 5 

Cardiac and circulatory 
congenital anomalies 747 rs17235910 2.012 1.62E-05 8729 244 6.07% 4 

Other diseases of the 
teeth and supporting 
structures 

525 rs17244660 0.459 1.05E-05 5007 334 11.83% 2 

Pain, swelling or 
discharge of eye 379.9 rs17304921 2.824 2.28E-06 4464 156 5.63% 3 

Mild cognitive 
impairment 292.2 rs17324684 6.770 2.70E-06 4640 55 3.09% 2 

Open wound of eye or 
eyelid 870.1 rs17368659 5.604 9.10E-06 2013 22 13.64% 1 

Myoclonus 333.2 rs17434648 5.178 1.10E-05 2839 40 2.99% 1 

Aphasia 292.11 rs17481185 2.375 1.39E-05 6438 111 7.86% 2 

Other dyschromia 694.2 rs17614605 0.655 2.11E-05 6932 345 29.12% 4 

Primary open angle 
glaucoma 365.11 rs17626479 1.669 2.72E-05 6460 361 11.81% 4 

Hepatomegaly 573.3 rs17633592 5.604 1.55E-05 2620 23 5.50% 1 

Lipoma 214 rs17684048 1.873 2.17E-05 11551 458 4.00% 4 
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Retinal vascular 
changes and 
abnomalities 

362.4 rs17695527 2.113 1.44E-06 4610 501 4.72% 3 

Postoperative infection 80 rs17777982 2.069 3.78E-07 12707 399 4.52% 5 

Cramp of limb 771.2 rs17787978 1.951 1.29E-05 8036 229 8.05% 4 

Renal colic 594.8 rs17793551 6.248 3.35E-06 3570 32 3.63% 1 

Abnormal heart sounds 396 rs1914191 1.459 6.62E-06 10706 702 11.38% 5 

Cholelithiasis with 
other cholecystitis 574.12 rs1954003 2.188 1.76E-05 6175 173 6.19% 2 

Senile osteoporosis 743.12 rs2062020 4.012 2.05E-07 2220 50 11.15% 1 

Iron deficiency anemia 
secondary to blood loss 280.2 rs2076222 3.933 1.04E-05 5383 147 2.22% 3 

Viral Enteritis 8.6 rs2289837 7.492 1.19E-05 3714 49 1.17% 1 

Other specified diseases 
of nail 703.8 rs2298146 1.798 2.41E-05 7592 935 2.77% 3 

Brain cancer 191.11 rs2319366 3.885 2.77E-05 2642 26 9.92% 1 

Internal derangement 
of knee 835 rs2361394 1.620 3.29E-05 12115 874 4.49% 5 

Lipoma 214 rs2498638 1.679 2.88E-05 11551 458 6.75% 4 

Cervical radiculitis 765 rs2498638 1.667 1.95E-05 10310 507 6.48% 5 

Supraventricular 
premature beats 427.61 rs2807345 2.129 2.37E-05 3142 246 7.65% 3 

Senile osteoporosis 743.12 rs2820112 3.650 2.18E-06 2220 50 10.90% 1 

Anemia of chronic 
disease 285.2 rs3092999 2.175 1.89E-05 8479 518 2.42% 5 

Other congenital 
anomalies of skin 691 rs3092999 10.833 2.97E-06 1847 21 2.36% 1 

Celiac or tropical sprue 557.1 rs3132630 4.562 1.10E-05 1626 21 13.01% 1 

Anemia of chronic 
disease 285.2 rs35609966 1.883 3.02E-05 8479 518 2.68% 5 

Other congenital 
anomalies of skin 691 rs35609966 3.998 4.41E-06 1847 21 3.38% 1 

Candidiasis of skin and 
nails 112.3 rs3743162 2.748 1.55E-05 2398 54 23.06% 1 

Visual field defects 368.4 rs3793829 2.461 9.63E-07 6835 252 4.16% 3 

Abnormal sputum 516 rs3793829 2.608 1.27E-05 5332 184 4.25% 3 

Hemoptysis 516.1 rs3793829 2.595 2.63E-05 5317 169 4.24% 3 

Althete's foot 110.12 rs3798604 1.961 2.44E-05 7285 289 6.23% 4 

Disorders of the 
pituitary gland and its 
hypothalamic control 

253 rs3822947 2.003 2.71E-05 12124 148 10.35% 5 

Hypercoagulable state 286.8 rs3917862 3.318 9.87E-07 4566 73 6.20% 2 

Uterine/Uterovaginal 618.2 rs3917862 2.011 1.66E-05 9029 242 6.55% 3 
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prolapse 

Dysmetabolic syndrome 
X 277.7 rs41280400 3.265 2.19E-05 6293 82 4.10% 2 

Abnormal reflex 350.5 rs4323776 3.744 3.32E-05 2825 24 15.59% 1 

Disorders of liver 573 rs4492593 1.243 2.99E-05 11797 1702 16.67% 5 

Anal and rectal polyp 565.1 rs4617810 2.622 2.69E-05 5234 327 2.07% 2 

Symptoms involving 
nervous and 
musculoskeletal systems 

781 rs4692446 2.458 3.00E-05 6095 273 3.15% 2 

Iatrogenic 
hypothyroidism 244.1 rs4743645 2.927 1.06E-05 5781 155 2.71% 3 

Optic atrophy 377.1 rs547136 3.017 1.50E-05 2137 98 5.08% 2 

Upper gastrointestinal 
congenital anomalies 750.1 rs6122806 8.006 2.78E-06 2613 36 1.63% 1 

Hypercoagulable state 286.8 rs668696 3.503 1.24E-05 4566 73 4.58% 2 

Hirsutism 704.2 rs735225 4.875 1.90E-05 2511 40 4.80% 1 

Extrapyramidal disease 
and abnormal 
movement disorders 

333 rs7494783 1.497 1.95E-05 10380 576 10.80% 5 

Hemorrhoids 455 rs7602743 1.355 2.21E-05 9460 2774 8.50% 5 

Superficial keratitis 370.2 rs7929411 5.935 2.58E-05 2137 151 0.40% 2 

Fracture of pelvis 802 rs7950298 2.568 6.65E-06 5972 171 4.00% 3 

Other dyschromia 694.2 rs8007941 0.651 1.63E-05 6932 345 29.11% 4 

Tobacco use disorder 318 rs901033 2.188 1.73E-05 12181 1420 1.06% 5 

Renal colic 594.8 rs901033 12.497 2.90E-05 3570 32 0.95% 1 

Nodular lymphoma 202.21 rs9405316 3.727 1.26E-05 6451 41 8.01% 2 

Chronic liver disease 
and cirrhosis 571 rs9462492 1.527 3.16E-05 10479 384 12.99% 5 

Chronic nonalcoholic 
liver disease 571.5 rs9462492 1.610 1.13E-05 8478 325 13.00% 4 

Graves' disease 242.1 rs9524432 5.426 2.71E-06 5019 59 2.08% 2 

Abnormal Papanicolaou 
smear of cervix and 
cervical HPV 

792 rs9530050 1.858 4.05E-06 9336 437 7.75% 4 

Abnormal Papanicolaou 
smear of cervix and 
cervical HPV 

792 rs9530145 1.685 7.05E-07 9336 437 16.55% 4 

Abnormal Papanicolaou 
smear of cervix and 
cervical HPV 

792 rs9543041 1.853 4.50E-06 9336 437 7.77% 4 

Hydronephrosis 595 rs9986932 1.956 2.22E-05 11266 169 10.80% 4 
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Appendix G. rs3917862 is significantly associated with increased expression of F5 in tibial 
artery. 

 
 

Appendix H. The full distribution of LD partners for GWAS catalog variants falling outside of 
gBGC tracts. 

 
 



	 105	

Appendix I. Recombination rates differ significantly between GWAS catalog variants with 
significant associations and variants with nominal associations. (a) Recombination rates for 
GWAS catalog variants falling outside of gBGC tracts. (b) Recombination rates for GWAS 
catalog variants falling within gBGC tracts. 
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