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CHAPTER 1 

EPISTASIS IN HUMANS: EXPECTATIONS AND CHALLENGES 

 

 

Epistasis is a phenomenon wherein the effect of a genetic variant on the phenotype is dependent 

on another genetic variant. The importance of epistasis – in terms of both prevalence, and effect 

sizes – to human health is controversial.  Evidence from model organisms suggests that epistasis 

is widespread, and accounts for a notable proportion of phenotypic variance.1,2  Similarly, 

additive genetic effects fail to fully account for the estimated heritability underlying the majority 

of human traits;3,4 however, concrete evidence for epistasis influencing complex traits in humans 

remains elusive due to both experimental and computational limitations.  Studies of epistasis in 

human have largely relied on observational studies. While the computational burden of 

performing genome-wide association studies for epistasis is no longer prohibitive for common 

variants, major statistical experimental limitations still complicate the field. In this dissertation, I 

take two approaches to address major concerns still facing the statistical study of epistasis in 

humans: a development of best practices, to ensure statistical interactions are indicative of 

biological epistasis, and then an investigation of epistasis between cis-regulatory variants 

influencing both a low-level phenotype directly tied to the nucleotide sequence – gene 

expression – and an array of complex phenotypes derived from electronic health records (EHR). 

 

The different faces of epistasis – perspectives from statistics and molecular biology 

 

The study of epistasis has taken several forms over the course of the last century, resulting in 

related but distinct definitions for the term in the fields of molecular and statistical genetics. 

William Bateson first coined the term epistasis in 19095, referring to a phenomenon wherein an 

allele at one locus is able to mask the effect of an allele at another locus.  Bateson, who was 

expanding the work of Mendel, illustrated epistasis in sweet peas: he observed that peas with 

white flowers produced peas with purple flowers in non-Mendelian ratios (9:7) when crossed 

together.6 From this, he concluded that the alleles interacted with one another to determine 

flower pigmentation. Further work has confirmed his hypothesis: these strains harbor mutations 

in two distinct genes within the enzymatic pathway responsible for processing anthocyanin, the 

pigment responsible for flower color.7 Either mutation is therefore sufficient for the production 

of white flowers. Notably, the same principles underlie coat coloration in mammals: recessive, 

loss-of-function variants in genes responsible for synthesizing melanin, a pigment, result in 

albinos.8 Thus, the molecular genetics definition of epistasis – in which an allele masks the effect 

of an allele at another locus – has been well illustrated, especially in the context of biological 

pathways. 

The idea of epistasis was then adapted by R.A. Fisher in 1918 to describe a statistical 

phenomenon: interactions.9 Mathematically, an interaction is defined as a deviation from 

additivity, which occurs when the combined effect of alleles at different loci is not equivalent to 

the sum of their individual effects.10 This is conceptually analogous to the colloquial phrase “The 

whole is greater (or less) than the sum of the parts,” and an example is provided in Figure 1. This 

type of epistatic relationship can be represented by the inclusion of interaction terms in the 

mathematical models typically used in genetic association studies. However, this is a purely 

statistical construct, and as will be discussed in Chapter 2, the existence of a statistically 

significant interaction term does not necessarily indicate there is underlying biological epistasis. 
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For the remainder of this work, I will be referring to statistical epistasis as defined by R.A. 

Fisher. 

 

 

 
 

Figure 1. An example of a statistical interaction.  In this visualization, individuals are 

stratified based on the number of minor alleles they have at two single nucleotide polymorphisms 

(SNPs). A summary of the gene expression for the individuals in each of the possible nine 

genotype combinations is provided as a boxplot. In this example, there is an increase in mean 

gene expression per minor allele of the second variant, indicating this variant is associated with 

gene expression levels independently. The first SNP has little influence on gene expression, 

except when there are two minor alleles at both loci.  This group, highlighted in green, is a 

statistical interaction as the mean increase in gene expression anticipated for the second variant is 

far exceeded when it occurs on the background of two minor alleles at the first locus. Many other 

forms of statistical interactions are possible. 

 

Epistasis is pervasive in model organisms 

 

The genetic architecture underlying a variety of both fundamental biological processes and 

complex traits has been extensively studied in in an array of model organisms due to an inability 

to experimentally investigate the same questions, due to either ethical or methodological 

limitations, in humans. Below is a survey of the study of epistasis in three of the most commonly 

used model organisms: Saccharomyces cerevisiae, or yeast; Drosphila melanogaster, or fly; and 

Mus musculus, or mouse. 

S. cerevisiae has long-served as model for discovering the genetic underpinnings of 

fundamental cellar processes, the basic principles of which are frequently shared with higher 

organisms.  As a result, several strains of yeast have previously been genotyped,11 efficient 

protocols exist to collect a variety of phenotypic data, and powerful molecular approaches, such 

as the two-hybrid cross, have already been developed to dissect the genetic underpinnings of 

traits.12  Altogether, this makes yeast an ideal species to begin the exploration of epistasis.   
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Gene expression is an ideal phenotype to begin the study of epistasis, due to several 

methodological and biological considerations. Foremost, gene expression is a low-level 

phenotype in the sense that it is closely linked to the nucleotide composition; i.e., mutations in 

promoters or enhancers can directly disrupt the binding of transcriptional machinery, thereby 

influencing transcript levels. Moreover, two high-throughput methodologies exist to ascertain the 

expression of the majority of genes simultaneously: microarrays and RNA-sequencing. This 

enables the investigation of many phenotypes simultaneously, and thus results in a more 

comprehensive representation of the types of genetic architectures possible.  Finally, and as will 

be discussed in more detail in Chapter 2, disruption of gene expression is believed to play a 

fundamental role in the development of complex disease. Consequently, understanding the 

genetic regulation of gene expression may translate into an increased knowledge of the genetic 

etiology of complex diseases pertinent to human health.  

Brem and Kruglyak13 conducted one of the first large-scale studies of epistasis, and 

capitalized on both the suitability of S. cerevisiae and the utility of gene expression.  First, they 

crossed a common laboratory yeast strain and a wild isolate.  In the recombinant offspring, they 

determined that roughly half of all genes had highly heritable expression levels, and moreover, 

almost six hundred (16%) had statistical evidence for epistasis. They determined this using a 

modified Lynch and Walsh test, which examines whether the mean expression level for a given 

transcript is the same for both the offspring and parents (as would be anticipated with additive 

genetic effects).13 To identify the specific variants underlying the epistatic effects, they 

performed an expression quantitative trait loci analysis for epistasis.  In this, a linear regression 

model was constructed for each pair of variants, in which an interaction term was included to 

represent epistasis. They identified over two hundred high-confidence statistical interactions 

between genetic variants.14  As a proof of principle that the identified interactions were 

biological phenomenon, they further investigated an interaction between genetic variants that 

appeared to regulate the expression of multiple transcripts. They engineered isogenic yeast 

strains (i.e., strains genetically identical aside from the interacting variants) and found that the 

resulting changes in gene expression levels matched the previously observed patterns for 10 of 

the 15 transcripts. These studies illustrate that, in yeast, genetic variants interact with one another 

to have non-additive effects on the expression level of at least several hundred transcripts. 

Next, Bloom et al.1 addressed whether the genetic architecture of gene expression levels 

translated to that of more complex traits. Using the same yeast cross, Bloom et al.1 investigated 

whether there was evidence for epistasis underlying twenty distinct growth-traits. They 

partitioned phenotypic variance into additive and epistatic genetic effects and found interactions 

accounted for between 2.2% and 21.2% of phenotypic variance, depending on the trait.  They 

then performed a scan for pairwise interactions, and identified several hundred interactions 

between specific variants, which accounted for roughly half of the phenotypic variance attributed 

to interaction effects.  The effect sizes of these interactions, however, were markedly reduced 

compared to those observed for additive effects. This illustrates that additive genetic effects 

likely dominate the genetic architecture for most traits; however, epistasis accounts for a notable 

proportion of phenotypic variance, largely due to large numbers of small-effect pairwise 

interactions.  

While yeast serve a critical role in better understanding the genetic principles of higher 

organisms, it is always critical to illustrate that the principles discovered generalize between 

species.  There are notable differences in the quantity and type of regulatory elements observed 

between yeast, fly, and higher level eukaryotes; namely, gene expression in yeast15–17 is largely 
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regulated by regulatory elements in close proximity to the target gene, whereas gene regulation 

in higher level eukaryotes such as fly18,19,  mouse20–22 and human20,21,23–25 is more frequently 

controlled by a combination of both proximal and distal-acting regulatory elements. Such 

striking differences in the regulatory landscape between species may critically influence the 

prevalence of epistasis, as perturbations to gene expression levels play a critical role in the 

development of complex traits pertinent to human health.  Consequently, an exploration of 

epistasis in fly and mouse is a critical step in setting expectations for the phenomenon in human.    

Epistasis has been extensively investigated in fly. This endeavor has been greatly aided 

by the D. melanogaster Genetics Reference Panel (DGRP), a repository of over 200 inbred lines 

with available whole-genome sequences and a variety of quantitative traits, including gene 

expression quantified by RNA-sequencing.26  Huang et al. used linear regression to identify both 

expression quantitative trait loci (eQTL), or variants associated with the mean transcript level, 

and variance eQTL (veQTL), or variants associated with the variance in transcript levels in the 

DGRP.27 Ultimately, they found that the vast majority of veQTL significantly interacted with a 

variant within the target gene’s cis-regulatory region to regulate the variance in gene expression; 

however this could be accounted for by confounding factors addressed in the next Chapter.27 

Moreover, genetic variants associated with complex traits in the DGRP – specifically startle 

response, starvation resistance, and chill coma recovery time – demonstrated evidence for 

epistasis; the majority of variants associated with these traits engaged in at least one significant 

interaction.2  Significant variants associated with aggressive behaviors also frequently engaged in 

epistatic relationships with other variants.28  These variants were then used to create a gene-gene 

interaction network, wherein the nodes were the genes that variants mapped to (using proximity), 

and the edges were pairwise epistatic relationships.  To validate the epistatic network, Shorter et 

al.28 examined the phenotypic effects resulting from the knockout of either one, or both, gene 

partners in two pairs of directly interacting genes and two pairs of indirectly interacting genes. 

For three of the four gene pairs examined, the effect of the single-gene knockouts did not equal 

that of the double-gene knock out, indicating evidence of epistasis. 

Consequently, an exploration of epistasis in mouse is a critical step in setting 

expectations for the phenomenon in human.   Chromosome substitution strains (CSSs) have been 

an integral component of the study of epistasis in mouse; these strains of mouse have a single 

chromosome from a donor strain on the background of a host strain. This creates a homogeneous 

genetic background that reduces the ‘noise’ in phenotypic variation, which improves statistical 

power to detect effects.29  Shao et al.30 used a complete CSS panel between two strains, wherein 

a CSS had been constructed for each chromosome, to examine the genetic architecture of 41 

blood, bone, and metabolic traits in mouse. The CSS construct enabled them to quantify the 

individual effect of each chromosome on each phenotype.  Assuming additive genetic effects, the 

cumulative effect of each chromosome should equal the observed phenotypic difference between 

the two strains used to create the CSS panel. However, for 40 of 41 traits, the cumulative effect 

was significantly greater than the parental difference. Moreover, the median discrepancy was 

quite large, with the cumulative chromosome prediction anticipating a phenotypic difference 

eight times greater than that observed.30 Thus, this study indicates that in mouse, epistasis 

between genetic variants is pervasive, with cumulatively large effect sizes for the vast majority 

of studied complex traits.  

Altogether, evidence from model organisms suggests that epistasis is pervasive for both 

low-level molecular phenotypes such as gene expression, and high-level complex traits such as 

aggressive behavior.  Studies of interactions between specific variants across multiple species 
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have demonstrated that pairwise epistasis is not a rare phenomenon.13,27,31  And while these 

pairwise interactions may have smaller effects than those observed for single variants,1 in 

aggregate they account for a notable proportion of phenotypic variance depending on the trait of 

interest.2,30 However, the approaches used to study epistasis in model organisms frequently use 

selective breeding strategies that would not be either ethical or practical to use for the study of 

epistasis in humans. Thus, while evidence from a diverse range of model organisms supports the 

idea that epistatic relationships between genetic variants influence complex phenotypes, different 

approaches must be taken to determine whether epistasis underlies complex traits in humans.  

 

Insights from GWAS: The importance of the regulatory genome 

 

Within the last decade, the genetic etiology of complex disease in humans has been interrogated 

primarily through genome-wide association studies (GWAS).32–34 Previously, the interrogation 

of the genetic underpinnings of disease relied on two major approaches: linkage studies, and 

candidate studies.35–37  Linkage studies identified genomic regions that segregated through 

families with the phenotype of interest; however, pinpointing the casual variation within these 

regions was often difficult due to limited resolution.38–40 In contrast, candidate gene studies 

targeted a specific genomic region based on a priori knowledge of its function or on the basis of 

linkage studies, but were capable of identifying specific variants associated with the 

phenotype.41,42  Due to recent technological advances, GWAS are able to combine many of the 

advantages of both of these approaches. In GWAS, millions of genetic variants genome-wide are 

rapidly interrogated for association with the phenotype, enabling both comprehensive coverage 

and the identification of comparatively narrow genomic regions.35 Moreover, as this is a 

hypothesis-free approach, GWAS has the potential to identify novel genomic loci associated 

with disease.34,35,41  

 Close to three thousand GWAS have been performed for a multitude of complex traits, 

and a striking trend has emerged: the vast majority of genetic variants associated with complex 

disease are non-protein coding.32,43 It was hypothesized that these variants were regulatory in 

nature, and influenced the expression level of gene products, rather than disrupting function of 

the gene product (i.e., protein) directly.33,43–45  The development of both microarray and RNA-

sequencing technologies in conjunction with genome-wide genetic data enabled the identification 

of variants associated with changes in gene expression, termed expression quantitative trait loci 

(eQTL).46–54 Disease-associated variants identified in GWAS are enriched not only for eQTL 

status within relevant cell types,55,56 but are additionally enriched for other signatures of 

regulatory function: DNase I hypersensitivity sites,57 enhancers,58 and transcription factor 

binding sites.57 These results indicate that the majority of common variants associated with 

complex disease influence the phenotype via alterations in gene regulation.   

 For select examples, a causal link between perturbation of gene expression levels and 

complex diseases have been demonstrated.  For example, Musunuru et al.59 demonstrated that a 

variant in a non-coding region consistently associated with myocardial infarction and its causal 

risk factor LDL-cholesterol levels created a novel transcription factor binding site. This change 

resulted in a significant difference in the regulatory potential of this sequence in reporter assays, 

and was associated with the expression of the nearby gene SORT1 in eQTL analyses. They 

demonstrated the change in Sort1 levels causally influenced LDL-cholesterol levels by both 

knocking down and overexpressing Sort1 in mice; the resulting changes in LDL-cholesterol 

levels were consistent with the direction of effect observed in humans. Thus, the disruption of 
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gene expression levels by a single nucleotide polymorphism (SNP) can result in a complex 

phenotype.  There are similar examples linking disease-associated variants to changes in gene 

expression and ultimately complex disease, indicating the disruption of regulatory elements is a 

general mechanism through which non-coding variation may influence complex traits.60–64  

Given the preponderance of evidence highlighting the importance of gene regulation in 

the etiology of complex disease, I focus on regulatory epistasis in this work. However, epistasis 

between protein-coding variants influencing protein stability65–67, protein-protein interactions68, 

and protein-DNA interactions69,70 has been documented and is reviewed within the literature.71 

 

Evidence for regulatory epistasis in humans remains elusive 
 

Evidence for regulatory epistasis within humans comes from three major sources: heritability 

studies, reporter assays of regulatory elements, and genetic association studies. Each approach 

provides unique insights into regulatory epistasis, and are reviewed below. 

The first step in understanding the genetic architecture of a trait is often a heritability 

study. There are many different forms of heritability studies; however, they all provide a 

heritability estimate, which is a single score representing the proportion of phenotypic variance 

attributable to genetic variance across the entire genome. Thus, heritability estimates have 

traditionally been used to demonstrate the trait of interest has some genetic underpinning. Since 

the advent of GWAS, they have also frequently been used to estimate what proportion of the 

overall genetic effect is accounted for by individual genetic variants associated to the trait.4 

Strikingly, even when well-powered GWAS are performed, a notable proportion of the 

anticipated genetic effect is not accounted for by the individual variants.4,72  Several potential 

explanations exist for this ‘missing heritability’ phenomenon, including epistasis as the vast 

majority of GWAS assume additive effects.4,72–74  Ultimately, heritability studies demonstrate 

that additive genetic effects do not currenty account for all the genetic heritability of a trait; 

however, they provide only indirect evidence to support the existence of epistasis. 

The principles of transcription factor binding also provide indirect evidence that cis-

regulatory epistasis is plausible. Regulatory elements such as enhancers and promoters regulate 

gene expression levels via the binding of transcription factors.  Transcription factors recognize 

specific sequence patterns, called motifs. For a recognized motif, the likelihood of the 

transcription factor binding is influenced by the multitude and relative location of additional 

motifs, highlighting the combinatorial nature of transcription factor binding.75–77 Given the 

complex relationships between transcription factors and their critical role in regulatory activity, it 

is plausible that combinations of genetic variants influencing multiple transcription factor motifs 

could have epistatic relationships with one another.  

This potential for epistasis within the cis-regulatory region has been directly investigated 

through the combination of massively parallel reporter assays and synthesized regulatory 

sequences. Kwasnieski et al. investigated the effect of genetic variation within Rhodopsin 

promoter on its regulatory function.78  They engineered over a thousand single- and double-

mutant sequences, and tested their regulatory activity in mammalian cells with cis-regulatory 

element sequencing (CRE-Seq).  CRE-Seq is a reporter assay with methodological 

improvements, such that the regulatory function of thousands of sequences can be quantified 

simultaneously.  For any given pair of variants, they were able to investigate epistasis by 

comparing the total effect of the two single-mutant sequence to that of the double-mutant 

sequence. They found that the majority of double mutants had regulatory activity levels 
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significantly different than the anticipated combined effect of the single-mutants.  Their work 

illustrates that epistasis within the cis-regulatory region is possible; however, it does not address 

how frequent epistasis is within natural populations. 

 Genetic association studies of epistasis may provide insight into how frequently epistatic 

relationships between variants occur in natural populations. Using Fisher’s definition, such 

studies typically test pairs of variants for epistasis by including both variants’ main effects and 

an interaction term between them.79–82  Two studies have directly investigated regulatory 

epistasis influencing gene expression levels using naturally observed genetic variants. Hemani et 

al. performed a genome-wide association study of epistasis wherein all possible pairs of common 

genetic variants were tested for interactions associated with the expression of each gene 

expressed in whole blood.80 They identified several hundred interactions that passed a strict 

Bonferroni multiple testing correction, and 30 interactions replicated with consistent directions 

of effect in independent datasets. Similarly, Brown et al. identified and replicated 57 interactions 

between pairs of variants that influenced gene expression levels in lymphoblastoid cell lines.81 

However, in a reply, Wood et al. demonstrated that these apparent interactions were in fact 

attributable to haplotype effects.83 Essentially, the two putatively interacting variants were 

tagging a single, causal variant through linkage disequilibrium patterns. Ultimately, all example 

of epistasis identified by Hemani et al. were consistent with this phenomenon, calling into 

question whether epistasis occurs between regulatory variants. 

Rather than investigation gene regulation directly, many other studies have investigated 

interactions between variants for a variety of complex traits in humans, including: bipolar 

disorder,84 type 1 diabetes,85 and Alzheimer’s disease.86 However, several factors complicate the 

interpretation of these results, which are discussed extensively in Chapter 2. Briefly, replication 

of interactions is notoriously difficult; many studies of epistasis either do not attempt 

replication,85 or are unable to replicate the interactions.84,86 Additionally, there are often 

alternative explanations for observed interactions such as scale effects85 or haplotype effects.83 

While only a small subset of the studies of epistasis for complex traits are mentioned here, these 

issues are so pervasive within the field that a recent review concluded that “compelling statistical 

evidence is absent for the vast majority of reported epistatic interactions.” 79  Thus, it is unclear 

how pervasive regulatory epistasis is in humans. 

 Ultimately, these results suggest that there is a great potential for regulatory epistasis: the 

transcriptional machinery acts in a combinatorial fashion, and additive genetic effects are 

insufficient to account for all of the heritability observed for complex traits.  However, 

identifying the interacting elements via statistical association faces a major challenge: lack of 

clear best practices designed to ensure statistical interactions represent biological epistasis. In 

Chapter 2, I address this by performing a genome-wide investigation of epistasis between 

variants influencing gene expression using standard quality control procedures.  I then 

systematically investigate confounding processes – both statistical and biological – that result in 

statistical interactions, but are not a product of biological epistasis.  For each, I provide at least 

one example of an interaction identified in my analysis that was produced by the confounding 

process. I then provide guidelines and recommendations to correct for the confounding process 

as either a part of quality control or through post-hoc analyses. These are critical best practice 

guidelines for future studies of epistasis. 
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Regulatory epistasis within haplotypes: evidence, difficulties, and new approaches 
 

Due to confounding issues discussed in Chapter 2, genetic association studies of epistasis 

typically focus on unlinked variants; however, there is evidence that epistasis occurs within 

haplotypes as well. Haplotypes are combinations of genetic variants that do not segregate 

independently from one another due to limited recombination. When a de novo genetic variant 

occurs, it therefore does so on a limited local background that is largely maintained; this could 

create the ideal opportunity for epistatic relationships between variants to be maintained. For 

example, deleterious coding variation might be masked by linked regulatory variation that 

reduces gene expression, and therefore maintained.  

 Three lines of evidence support the existence of regulatory epistasis within haplotypes. 

First, reporter assays illustrating regulatory epistasis investigate very small genomic regions – 50 

base pairs in the case of Kwasnieski et al.78 Due to their close physical proximity, it is likely that 

variants in these regions would be in high linkage disequilibrium (LD) with one another in 

natural populations. Secondly, Corradin et al. illustrated that multiple variants within haplotypes 

observed in natural populations can each influence the expression levels of the same gene.87  

While they did not demonstrate epistasis specifically, their findings support the hypothesis that 

nearby functional variants may occur on the same haplotype. Finally, Lappalainen et al.88 

demonstrated that rare, derived coding variants often arose on the background of common 

regulatory variants that decreased gene expression levels. This suggests that the formation of 

haplotypes may be influenced by functional relationships between variants. Thus, there is 

suggestive evidence for the existence of regulatory epistasis within haplotypes. 

While limited recombination between variants creates a unique biological environment in 

which epistasis can arise, it also creates a missing data problem that complicates its study 

through statistical association methods. Without all combinations of genetic variants, regression-

based approaches cannot accurately partition phenotypic variance into genetic components.89  

This difficulty has thus far largely prevented association-based studies of epistasis within 

haplotypes in natural populations. In Chapter 3, I leverage unique properties of admixed 

populations to investigate epistasis within haplotypes. Admixed populations arise when 

populations that have been historically reproductively isolated interbreed; for example, an 

admixture event between Europeans and West Africans beginning approximately eight 

generations ago has resulted in a two-way admixed population – African Americans.90 Admixed 

populations represent a unique opportunity to investigate epistasis within haplotypes, as the 

recombination rate at a given genomic locus differs by continental ancestry.91  Consequently, 

European haplotypes may be broken apart by African-specific recombination sites, and vice 

versa, in admixed populations. As ancestral haplotype boundaries are broken, I hypothesize that 

potentially novel combinations of genetic variants are formed that would enable the investigation 

of epistasis within the context of haplotypes.  

This phenomenon may be detected by transitions in local ancestry, or the genetic ancestry 

at a specific genomic locus. There are many methods to estimate local ancestry, such as 

RFMix,92 LAMP-LD,93,94 and HAPMIX.95  While the precise methodological approach differs 

between these methods, they follow a similar conceptual approach. First, the genetic information 

is phased, meaning that variants are placed within haplotypes, by comparing the observed 

genotypes to observed haplotypes within reference populations.96 Next, the haplotype is assigned 

an ancestry, based on which of the continental populations it is more frequent in. Using these 
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approaches, local ancestry – and transitions between ancestries – can be inferred genome-wide in 

admixed populations. 

In Chapter 3, I use transitions in local ancestry to identify genomic regions in which 

ancestry haplotypes may frequently be broken apart by recombination events. To investigate 

epistasis in these contexts, I asked whether variants interact with these downstream ancestry 

transitions to influence an array of phenotypes derived from electronic medical records.  

 

The use of electronic medical records for genetic research: opportunities and challenges 

  

The vast majority of genetic studies are designed around a specific phenotype, or set of related 

phenotypes. However, the recent construction of biobanks linking electronic health record (EHR) 

data with genetic data has greatly expanded the depth of phenotypic information available on 

individuals.97 This information is often encoded in the form of ICD-9 codes, which are 

diagnostic codes used for medical billing purposes.  ICD-9 codes cover a wide array of 

phenotypes, which they are often used as proxies for. In addition to ICD-9 codes, the EHR also 

contains lab values for many tests, which can provide quantitative endophenotypes for many 

traits of interest.  Thus, biobanks contain a wealth of both low-level, quantitative traits and 

abstractions of complex phenotypes on the same individuals, all linked to genetic information. 

 The unique properties of biobanks linking genetic information with EHR result in several 

advantages relevant to the study of epistasis. The first advantage is practical: samples are 

essentially already ascertained for many traits. This saves both the time and costs associated with 

sample ascertainment, and may enable research that would otherwise be cost-prohibitive, 

especially for younger investigators. Second, role of epistasis within the genetic architecture can 

be investigated for a broad array of phenotypes; consequently, the full spectrum of its prevalence 

can be estimated, rather than generalizing its frequency and importance within the genetic 

architecture based on a specific phenotype.  Third, the phenotype of interest does not have to be 

predetermined; instead, variants of interest can be tested for association with any phenotype 

contained within the EHR. This has enabled a new type of genetic association test – phenome-

wide association studies (PheWAS) – in which a genetic variant is systematically tested for 

association with all phenotypes.98 As discussed in Chapter 3, this is a major benefit for 

investigating epistasis within haplotypes.  Essentially, the genomic regions of interest are 

typically non-coding, and it is difficult to link these regions to a specific gene, much less a 

complex phenotype. Consequently, biobanks linking EHR and genetic data offer a unique 

opportunity to investigate the effects of epistasis across an array of phenotypes. 

PheWAS has the potential to shed light on a variety of biological mechanisms and 

functions, in addition to epistasis. For example, both Verma et al. and Ye et al. performed a 

PheWAS for a subset of stop-gain variants, and identified and replicated both known and novel 

associations.99,100 Their work helps to validate PheWAS as an approach, as they detected known 

associations, and suggests that PheWAS of stop-gain variation could be used to clinically 

characterize genes of unknown function. Simonti et al. performed a PheWAS for genetic variants 

derived from ancient admixture events with Neanderthals, linking evolutionarily intriguing 

variants of previously unknown function to phenotypes such as hypercoagulable state and 

protein-calorie malnutrition.101 Others have used PheWAS to investigate pleiotropy, a 

phenomenon wherein a genetic variant influences multiple, sometimes seemingly distinct, 

phenotypes.102,103 These studies could shed light on the shared genetic etiology of complex 

disease, and prioritize targets for drug development. Overall, PheWAS hold substantial promise 
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for both better understanding genomic regions of unknown function, and better understanding 

cross-phenotype associations. 

However, there are several issues and challenges that confront PheWAS. First, there is 

the concern that phenotypes derived from ICD-9 codes do not truly capture the phenotypes they 

purportedly represent. For example, codes may be assigned that reflect potential, rather than 

confirmed, diagnoses. This is especially true for autoimmune disorders, which frequently require 

diagnosis by a specialist.104 To easily address this concern, some researches use the ‘rule of two,’ 

requiring at least two instances of the ICD-9 code to be considered a case; in the cases of type 2 

diabetes, this has been shown to improve the positive predictive value.105,106 Still, there is 

variability in the specificity and positive predictive values of each ICD-9 code’s ability to 

represent the underlying phenotype, and performing a manual chart review for every ICD-9 code 

is not currently feasible.106 To address this concern, Denny et al. performed a PheWAS for 

known disease-genotype associations derived from the GWAS Catalog, and were able to 

replicate approximately two thirds of associations they were well-powered to detect.107 Other 

PheWAS have also replicated known associates derived from the GWAS-Catalog, illustrating 

that ICD-9 code defined phenotypes can recapitulate known associations to their analogous, 

more traditionally defined phenotypes.99,108–110 

 Multiple testing correction is an additional challenge for PheWAS. There are over 17,000 

ICD-9 codes; if each is tested, a Bonferroni threshold of 2.9x10-6 would be required to adjust for 

a single variant.105 This issue will only be further exacerbated with the transition ICD-10 codes, 

of which there are over 150,000 to improve diagnostic resolution.105  However, many of these 

codes are not actually independent from one another; for example, there are several hundred 

codes for tuberculosis, each of which specifies a unique site of infection.104  To address this 

concern, ‘PheCodes’ have been developed, which both combine redundant ICD-9 codes and 

provide exclusion criteria for putative controls.98,111 There are 1,724 PheCodes, which 

substantially reduces the number of association tests performed.104 However, PheWAS are often 

restricted a small number of variants, or tested for association with specific subset of phenotypes, 

to maintain sufficient power to detect effects. 

 Overall, PheWAS offer many advantages to better understand both the clinical 

consequences of genomic regions of unknown function, and to elucidate the shared genetic 

architecture between phenotypes.  However, the underlying data was not designed for research 

purposes and likely contains more noise than traditionally ascertained cohorts. Consequently, 

replication and careful consideration of observed genotype-phenotype associations are essential 

for PheWAS.104 

 

Challenges facing the investigation of regulatory epistasis 

 

In this work, I address two major challenges within the field of regulatory epistasis: the 

development of statistical best practices, and the investigation of epistasis within haplotypes.  In 

Chapter 2, I identify and replicate statistical interactions between cis-regulatory variants. I then 

review known sources of statistical confounding for the study of epistasis, and introduce novel 

forms of confounding. Ultimately, I develop a set of best statistical practices for the study of 

epistasis that address these confounders via additional quality control procedures or post-hoc 

analyses.  In Chapter 3, I use unique properties of admixed populations to investigate epistasis 

within the context of haplotypes.  Due to ancestry-specific recombination hotspots, haplotypes 

can be broken apart in admixed populations thereby enabling the detection of epistasis; this can 



 11 

be detected via transitions in local ancestry. I performed a PheWAS to better understand how 

regions harboring many local ancestry transitions influenced an array of clinical phenotypes. I 

identified several interactions between variants and nearby local ancestry transitions influencing 

red blood cell traits, which serves as a proof of principle for the utility of this approach. 
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CHAPTER 2 

ARE STATISTICAL INTERACTIONS EVIDENCE FOR BIOLOGICAL EPISTASIS?1 

 

 

Introduction 

 

The importance of epistasis to the development of complex traits in humans has been highly 

contested. Despite evidence for wide-spread epistasis in model organisms,1,2,112 evidence for 

epistasis influencing complex traits in human remains elusive. This may be attributable either an 

actual lack of epistasis in humans, the inherent inability to tightly control a variety of factors 

when studying phenotypes in humans, or the fact that most phenotypes studied are several steps 

removed from the underlying biological processes that influence them. These last two 

explanations are methodological limitations that make it unclear whether the lack of observed 

epistasis in humans is a true feature of the genetic architecture, or if epistasis is simply much 

more difficult to observe outside experimental systems.  

Human-derived cell lines, while a proxy for primary tissue, provide a unique opportunity 

to investigate epistasis. Like model systems, the environment for cell lines can be tightly 

controlled, and moreover, comprehensive genetic and gene expression data can readily be 

collected by high-throughput methodologies. Gene expression is an ideal phenotype to study 

epistasis for a variety of reasons. First, the genetic architecture underlying thousands of genes’ 

expression can be investigated simultaneously with either microarray or RNA-sequencing, 

meaning that the full spectrum of epistasis is likely to be captured.   Secondly, the molecular 

mechanisms that drive gene expression are directly tied to the nucleotide sequence itself: 

transcription factors recognize and bind motif sequences to regulate gene expression, and 

disruption of these nucleotide sequences can alter expression levels.59 Also, the regulation of 

gene expression is known to involve complex molecular interactions among transcription factors 

and regulatory sequences, and experimental maps of chromatin looping and transcription factor 

binding enable biological interpretations for observed statistical interactions.25,113 Finally, the 

study of gene expression is directly relevant to complex disease: the vast majority of variants 

identified in genome-wide association studies are non-protein coding. Thus it is presumed that 

the disruption of gene regulation is causally involved in the development of many common 

diseases.43,114 In several instances, it has been shown that single nucleotide variants regulate gene 

expression by altering the function of regulatory elements, and that these altered gene expression 

profiles result in clinical phenotypes.59,61 By better understanding the genetic control of gene 

expression, I may therefore better understand the genetic architectures underlying complex 

disease. 

Genetic variants associated with gene expression levels – termed expression quantitative 

trait loci (eQTL) – have been studied extensively in primary human tissue and in cell lines. In 

many eQTL analyses, a gene-based approached is taken wherein variants within the cis-

regulatory region for a given gene are tested for association with its expression. Until recently, 

the number of association tests required to perform a similar genome-wide association test for 

interactions was not computationally feasible. However, advances in computational power are 

                                                        
1 Adapted from Fish et al., Are Interactions between cis-Regulatory Variants Evidence for 

Biological Epistasis or Statistical Artifacts?, The American Journal of Human Genetics (2016), 

http://dx.doi.org/10.1016/j.ajhg.2016.07.022 
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continually diminishing this barrier and two genome-wide studies of epistasis have identified 

replicating interactions.80,81 The validity of these interactions, however, was questioned when it 

was demonstrated that through complex linkage disequilibrium (LD) patterns, these putative 

interactions could tag single variant eQTL.83 In such cases, the genotypes at the two putatively 

interacting loci together were highly informative of the genotype at single variant eQTL; 

consequently, they were identified as statistically interacting, although this relationship 

disappears when the effect of the single variant eQTL is conditioned on.  Notably, all of the 

interactions identified in prior studies were either no longer significant or were strongly 

attenuated when the effects of additional cis-eQTL were considered. This illustrates that, 

compared to single-locus analyses, the statistical models used to detect epistasis are subject to 

novel confounding factors, which are rarely addressed in studies of epistasis.  

In this study, I investigate whether evidence for epistasis within the cis-regulatory region 

in humans persists after systematically accounting for technical, statistical, and biological 

confounding factors. I performed a targeted investigation of interactions regulating gene 

expression levels in human lymphoblastoid cell lines (LCLs): the analysis was restricted to 

nominal eQTL within the target gene’s cis-regulatory region (p<0.05) to drastically reduce the 

number of association tests performed1,115 while retaining the genomic regions most likely to 

harbor pertinent regulatory elements. Few genes showed evidence of epistasis (165 of 11,465 

genes tested), although multiple interactions were often detected for the same gene. A total of 

1,119 interactions were identified, many of which replicated in an independent dataset (90 of 803 

possible).  I then investigated confounding factors – technical (variants within probe binding 

sites, ceiling/floor effect), statistical (missing genotype combinations, population stratification), 

and biological (haplotype effects, tagging cis-eQTL) – that provide alternative, more 

parsimonious explanations than biological epistasis. Ultimately, each of the interactions 

identified could be accounted for by an alternative mechanism, suggesting that the majority of 

statistical interactions identified without accounting for confounding factors are spurious 

associations. Many of these confounding factors are inherent to the statistical models used, and 

will therefore generalize to other phenotypes; consequently, the analytic framework of this study 

will be of use to many future studies of statistical epistasis. 

 

Subjects and methods 

 

Genotyping and gene expression data 

 

The discovery dataset was comprised of individuals ascertained as part of the International 

HapMap Project, PhaseI+II,116 which consisted of 210 unrelated individuals with genome-wide 

genotyping data (Phase I+II, release 24). For each of these individuals, Stranger et al. collected 

and normalized gene expression levels from immortalized LCLs using the Sentrix Human-6 

Expression Bead Chip, v1.53 All probes with a HapMap SNP underlying the expression probe 

were removed from analysis.53 I applied a population normalization procedure, described by 

Veyrieras et al.,117 to the gene expression values that such that the expression of each gene within 

each population followed a normal distribution. This removed population-level differences in 

gene expression, which enabled us to combine all ethnicities in our analysis.  Our replication 

dataset consists of 232 unrelated individuals from the 1000 Genomes Project (1KG), for whom 

gene expression in LCLs was available. These individuals had been sequenced at low coverage 

as part of the 1KG Project;118 I used genetic data from phase I, version 3. Stranger et al. also 
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collected and normalized gene expression levels in LCLs for these individuals using Illumina 

Sentrix Human-6 Expression BeadChip, v2.54 I applied the same population normalization 

procedure 117 to these data. Both the discovery and replication dataset are multiethnic; the sample 

composition by ethnicity is shown in Table 1. 

Two additional replication datasets were used to investigate a promising interaction. The 

first consisted of 283 European-descent individuals from the Genotype-Tissue Expression 

(GTEx) Project, for whom gene expression in whole blood was assessed by RNA-sequencing.119 

Genotype data for these individuals was collected on both the HumanOmni5-Quad Array and the 

Infinium Exome Chip, and then imputed to 1KG.119 The second dataset consisted of brain 

samples from autopsied European-descent individuals in the Mayo Late Onset Alzhemier’s 

Disease Consortium.120 These individuals were genotyped on the Illumina HumanHap300-Duo 

Genotyping Beadchip and gene expression was collected using the Illumina Whole-Genome 

DASL HT BeadChip.120 370 individuals had expression data available from cerebellum, and 385 

had expression in the temporal cortex.  

 

 

Analysis Total  

Sample Size 

Ethnicity 

CHB CEU GIH JPT LWK MXL MKK YRI 

Discovery 210 45 60 - 45 - - - 60 

Replication  232 34 - - 35 80 38 - 45 

 

Table 1. Dataset Composition by Ethnicity. The number of individuals of each ethnicity (1KG 

abbreviations) in the discovery and replication analyses.  

 

Generating SNP pairs for interaction testing 

 

To generate SNP-pairs for each gene, I first identified all common SNPs within the gene’s cis-

regulatory region. To be considered common, variants had to have a MAF > 5% when all 

ethnicities were combined. Based on cis-eQTL analyses,117 the cis-regulatory region was defined 

as starting 500 kb upstream of the gene’s start and ending 500 kb downstream of the gene’s stop 

(including the gene itself); gene boundaries were taken from ENSEMBL. Previously, these 

variants were individually tested for association with the gene’s expression level in the discovery 

dataset by Veyrieras et al.117 Based on this analysis, I filtered out SNPs whose marginal effects 

were not nominally associated with gene expression (excluded p > 0.05), under the hypothesis 

that nominally associated variants may represent weak marginal effects from a true underlying 

interaction. I then considered all possible SNP-pairs amongst the remaining variants. Once this 

was done for each gene, over 21 million SNP-pairs were generated for interaction testing.  

 

Identifying significant interactions 

 

Each SNP pair was tested for interactions significantly associated with the expression of the gene 

for which it was generated.  The below interaction model (Equation 1)121 was used, which 

contains additive and dominant effects for each variant and all four possible interaction terms in 

order to ensure that variance is properly partitioned across the genetic terms.  

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑑1𝑧1 + 𝑎2𝑥2 + 𝑑2𝑧2 + 𝑖𝑎𝑎𝑥1𝑥2 + 𝑖𝑎𝑑𝑥1𝑧2 + 𝑖𝑑𝑎𝑧1𝑥2 + 𝑖𝑑𝑑𝑧1𝑧2 + 𝑃𝐶1−3 

(Equation 1) 
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where y represents gene expression, 𝑥1 and 𝑥2 use additive encoding to represent the genotype at 

SNP A and SNP B respectively, 𝑧1 and 𝑧2 use Cordell’s 121 dominant encoding to represent the 

genotype at SNP A and B respectively, 𝑎1 and 𝑑1 are estimated coefficients representing the 

additive and dominant effects of SNP A, 𝑎2 and 𝑑2 are estimated coefficients representing the 

additive and dominant effects of SNP B, and 𝑖𝑎𝑎, 𝑖𝑎𝑑, 𝑖𝑑𝑎 and 𝑖𝑑𝑑 are estimated coefficients 

representing both additive and dominant interaction effects.   The top three principal components 

were also included as covariates (𝑃𝐶1−3). To determine the significance of interactions, this 

model was compared to a reduced model lacking the four interaction terms using a likelihood 

ratio test (LRT) (Equation 2).  

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑑1𝑧1 + 𝑎2𝑥2 + 𝑑2𝑧2 + 𝑃𝐶1−3   (Equation 2) 

This test was implemented using the program INTERSNP.122 I calculated an FDR of 5% using 

the qvalue package in R.123 

 

Identification of representative interaction eQTL models for distinct pairs of interacting genomic 

loci 

 

Some interaction eQTL (ieQTL) models identified in the discovery analysis were redundant due 

to LD. For two ieQTL models to be considered redundant, each SNP within one significant 

ieQTL model had to be in high LD (r2 ≥ 0.9) with a SNP within the second ieQTL model, and 

vice versa.  By using this criterion, the pairs were effectively correlated at r2 ≥ 0.8, the threshold 

typically used for tag-SNP selection. Redundant ieQTL models were grouped together. The 

model with the most significant LRT p-value in the discovery analysis was used to represent the 

entire group in most analyses, so that each pair of interacting genomic loci was equally 

represented.  

 

Statistical power estimation 

 

We performed simulation analyses to determine the power to identify interactions.  I first 

randomly sampled a set of 20,000 SNP-pairs having all nine genotype combinations present, and 

then used the observed genetic data to simulate gene expression values. I simulated gene 

expression values based on the observed genotypes, the actual additive and dominant main 

effects for each of the two interacting variants, an error term drawn from a standard normal 

distribution, and embedded interaction terms of varying strength.  

To properly represent the main effects of the variants, I used βs for the additive and 

dominant terms for each variant reflecting the actual effects within our dataset.  I used the 

following model (Equation 3): 

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑑1𝑧1 + 𝑃𝐶1−3 (Equation 3) 

where y represents gene expression, uses 𝑥1 additive encoding to represent the genotype for the 

variant, 𝑧1 uses Cordell’s 121 dominant encoding to represent the genotype, and the top three 

principal components were included as covariates (PC1-3). 

I then determined the effect size for the interaction terms. There are four interaction terms 

in the model: additive by additive (𝑖𝑎𝑎); additive by dominant; dominant by additive; and 

dominant by dominant. The 𝑖𝑎𝑎 term is significant in all significant interaction models identified 

in the actual discovery analysis, whereas the other terms are not – these terms are included so 

that phenotypic variance is appropriately partitioned between genetic components. Consequently, 

these three interaction terms were treated as nuisance variables when simulating gene expression 
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values; their βs were drawn from a normal distribution (mean = 0, standard deviation = 0.03). I 

used the effect sizes of cis-eQTL (p < 5.0 x 10-8) in our analysis to establish a ‘moderate’ 

anticipated effect size (cis-eQTL median: β=0.771) and a ‘high’ anticipated effect size (cis-eQTL 

75th percentile: β=0.908). These βs are well within the range of observed effect sizes for 

significant interactions (𝑖𝑎𝑎 median: β = 0.65 and 𝑖𝑎𝑎 max: β = 2.57). I then simulated gene 

expression data for each of the two effect sizes for each pair of SNPs.  

Next, I performed the same LRT used in the discovery analysis to identify significant 

interactions. All interactions with p-values below the FDR=5% threshold (p ≤ 1.328x10-5) were 

considered significant. I then repeated this process 10 times using the same 20,000 pairs of 

variants. In each of these ten iterations, power was calculated as the total number of pairs found 

to have a significant interaction divided by the total number of simulated interactions tested.  

 

Variants within the probe binding site  

 

To determine if variants were within the probe binding locations, I first used BLAT to identify 

the probe binding location in hg19 coordinates. Some probes returned multiple hits; 

consequently, I filtered the binding sites (binding sites had to be on the same chromosome as the 

gene, have a length > 30 base pairs, and an identity score > 95%) to identify unique binding 

locations. I then exclusively looked within a subset of our discovery dataset with sequencing data 

in the 1KG Project (n=174) to determine if there were any variants within binding sites that 

might confound the interaction analysis. 

 

Ceiling/floor effect  

 

Microarrays have a limited dynamic range that is not able to capture the extremes of gene 

expression. If the combined additive effect of two variants exceeds the threshold of detection, 

their apparent combined effect will be less than the sum of their individual effects. Thus, they 

may be spuriously identified as interacting. If this occurs, there will be a characteristic pattern of 

βs: the main effects for variants will be in the same direction, and the interaction term β will be 

in the opposite direction. I looked for this characteristic pattern to determine an upper bound of 

the prevalence of the ceiling/floor effect within our results. First, I identified the significant 

variables (β±SE could not contain zero) in the model.  All interactions were then categorized as 

having 0, 1, or 2 SNPs with a significant main effect - either additive or dominant main effects 

counted; if both additive and dominant main effects were significant for the same variant, the one 

with the largest effect size was used to represent the main effect.  For interactions where both 

variants had at least one significant main effect, I determined whether or not they had a 

concordant direction of effect. For those pairs with concordant directions of effect, I compared 

the significant interaction term with the largest absolute effect size to determine if it was 

discordant with the main effects. If this was the case, the interaction had a pattern consistent with 

a ceiling/floor effect, and was not considered clear evidence for epistasis. 

 

Population specific cis-eQTL  

 

Population-specific cis-eQTL can confound the interaction analysis, even though gene 

expression values were population normalized and the top three PCs were included as covariates. 

To investigate this, I first stratified the discovery dataset by each of the three ethnicities (CEU, 
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YRI, CHB+JPT), and tested each interaction for significance, using the same methodology. For 

interactions that were not significant (p < 0.05) in any of the populations, I determined if the 

interacting variants were population-specific cis-eQTL using Equation 3. Variants with 

nominally significant (p < 0.05) main effects were considered cis-eQTL. If a variant was 

identified as a cis-eQTL in only a subset of populations, it was considered population-specific.  

 

Conditional cis-eQTL analysis 

 

To determine if ieQTL pairs were tagging a cis-eQTL as suggested by Wood et al.,83 I first 

identified all nominal cis-eQTL (p < 0.05) for genes with significant ieQTL. To identify all 

nominal cis-eQTL, I used a subset of the discovery analysis individuals (n=174) who were also 

sequenced as part of the 1KG Project.118 I used the called genotypes from Phase III, v5. The 

same gene expression data previously described for the discovery set was used. Within this 

subset, I performed a single-marker cis-eQTL analysis for each common variant (MAF > 5%) 

within the cis-regulatory region using Equation 4: 

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑃𝐶1−3 (Equation 4) 

where y represents gene expression, 𝑥1 uses additive encoding to represent the genotype for the 

variant, and the top three principal components were included as covariates (PC1-3). Variants 

with nominal significant (p < 0.05) main effects were considered cis-eQTL. 

 

To determine if any of these cis-eQTL could account for the interaction, I created all 

pairs of cis-eQTL and ieQTL for the same gene. I incorporated each cis-eQTL into each 

interaction model (Equation 5) as shown below.  

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑑1𝑧1 + 𝑎2𝑥2 + 𝑑2𝑧2 + 𝑎3𝑥3 + 𝑑3𝑧3 + 

𝑖𝑎𝑎𝑥1𝑥2 + 𝑖𝑎𝑑𝑥1𝑧2 + 𝑖𝑑𝑎𝑧1𝑥2 + 𝑖𝑑𝑑𝑧1𝑧2 + 𝑃𝐶1−3 
  (Equation 5) 

where y represents gene expression, 𝑥1 and 𝑥2 use additive encoding to represent the genotype at 

interacting SNPs A and B respectively, 𝑧1 and 𝑧2 use Cordell’s dominant encoding to represent 

the genotype at interacting SNPs A and B respectively, 𝑎1 and 𝑑1 are estimated coefficients 

representing the additive and dominant effects of SNP A, 𝑎2 and 𝑑2 are estimated coefficients 

representing the additive and dominant effects of SNP B, and 𝑖𝑎𝑎, 𝑖𝑎𝑑 , 𝑖𝑑𝑎 and 𝑖𝑑𝑑 are estimated 

coefficients representing both additive and dominant interaction effects.  The main effect of the 

cis-eQTL is represented with additive encoding by 𝑥3 and with dominant encoding by 𝑧3; the 

estimated coefficients corresponding to the main effects are 𝑎3 and 𝑑3 respectively. The top three 

principal components were also included as covariates (PC1-3). I then performed a LRT 

comparing this model to a reduced model lacking the interaction terms (Equation 6).  

 

𝑦 = 𝜇 + 𝑎1𝑥1 + 𝑑1𝑧1 + 𝑎2𝑥2 + 𝑑2𝑧2 + 𝑎3𝑥3 + 𝑑3𝑧3 + 𝑃𝐶1−3          (Equation 6) 

 

If the LRT p-value of an interaction was nominally significant (p < 0.05) for all conditional 

analyses, I considered this evidence that the interaction and cis-eQTL represented independent 

signals. 
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Results 

 

Discovery and replication of genetic interactions that impact gene expression levels 

   

We identified interactions between nominal cis-eQTL that were significantly associated with 

gene expression levels. Our analysis was conducted using 210 individuals from the HapMap 

Project, Phase I+II, on whom both genotyping116 and gene expression data within LCLs53 were 

available. A population normalization procedure was applied to the gene expression data, so that 

there were no systematic differences between populations.117 The overall workflow for the 

analysis is shown in Figure 2. For each gene with expression data (n=11,465), I identified 

common SNPs (global MAF > 5%) within its cis-regulatory region, defined as 500 kb upstream 

to 500 kb downstream of the gene.  To increase power, I only considered variants nominally 

associated with the gene’s expression (p < 0.05) in a single-marker analysis.117 I analyzed all 

pairwise combinations of these variants for each gene, resulting in over 21 million SNP pairs. I 

then performed a likelihood ratio test (LRT) comparing a full model, which contains the top 

three PCs, main effects, and interaction terms, to a reduced model, containing only the covariates 

and main effects, to determine which interactions significantly improved model fit.121 Given the 

large number of correlated tests, I controlled the false discovery rate (FDR) at 5% (p ≤ 1.328x10-

5) across p-values from all LRT performed.123   
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Figure 2. Workflow used to identify and group ieQTL. In the discovery analysis, nominally 

significant cis-eQTL (denoted by triangles) were paired together and tested for interactions 

significantly associated with gene expression levels (denoted by arcs). The within-pair LD was 

then calculated (Figure 3), and interactions composed of variants in modest LD (r2 > 0.6) with 

one another were removed from the remainder of the analysis. Some of the remaining 

interactions represented the same pair of interacting genomic loci (Figure 4), and were 

partitioned into distinct groups (denoted by the arc color). For two interactions to be grouped 

together, each SNP within one significant ieQTL model had to be in high LD (r2 ≥ 0.9) with a 

SNP within the second ieQTL model, and vice versa.  

 

 

An objective of this analysis is to characterize how frequently epistasis occurs; therefore, 

I next performed a power analysis to determine our ability to detect interactions in this dataset.  

First, I randomly sampled a set of 20,000 SNP-pairs tested in this analysis. Then, I simulated 

gene expression values using the observed genotypes and the observed main effect for each of 

the variants. I then imbedded an interaction effect into the simulated gene expression values, 
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using both a moderate and large effect size, which were derived from the observed cis-eQTL 

effect sizes in this dataset. Assuming moderate and large effect sizes respectively, I had 21.6% - 

55.3% and 44.3% – 78.9% power to detect interactions between high-frequency variants (MAF 

0.2 – 0.5) in low LD with one another (Table 2). Thus, many potential examples of epistasis 

within the cis-regulatory region may not have been detected by this analysis, especially for low-

frequency variants or those in high LD with one another. 

 

 

Low LD (r2 < 0.05) 

MAF Range Percentage Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.02 0.0 ± 0.0 3.3 ± 10.5 

0.1 <= MAF < 0.2 0.22 2.0 ± 2.1 5.5 ± 1.9 

0.2 <= MAF < 0.3 0.55 3.5 ± 1.1 9.5 ± 2.4 

0.3 <= MAF < 0.4 0.87 5.5 ± 1.5 12.4 ± 3.0 

0.4 <= MAF <= 0.5 1.11 4.3 ± 1.1 11.9 ± 1.6 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 1.04 5.7 ± 1.4 16.7 ± 3.2 

0.2 <= MAF < 0.3 5.30 10.8 ± 1.1 25.8 ± 0.6 

0.3 <= MAF < 0.4 6.79 14.9 ± 1.2 33.3 ± 1.1 

0.4 <= MAF <= 0.5 8.16 16.2 ± 1.0 36.2 ± 1.1 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 4.47 21.6 ± 1.4 44.3 ± 1.2 

0.3 <= MAF < 0.4 10.59 30.9 ± 0.6 57.6 ± 1.3 

0.4 <= MAF <= 0.5 11.01 35.8 ± 0.7 62.7 ± 1.0 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 5.23 44.3 ± 1.0 71.1 ± 0.9 

0.4 <= MAF <= 0.5 10.58 50.3 ± 0.6 75.5 ± 0.8 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 4.75 55.3 ± 1.9 78.9 ± 0.6 

 

 

Moderate LD (0.05 <= r2 < 0.3) 

MAF Range Percentage Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.04 0.0 ± 0.0 1.4 ± 4.5 

0.1 <= MAF < 0.2 0.32 2.4 ± 1.8 4.9 ± 2.7 

0.2 <= MAF < 0.3 0.21 2.7 ± 2.5 6.6 ± 2.8 

0.3 <= MAF < 0.4 0.04 1.4 ± 4.3 4.3 ± 9.6 

0.4 <= MAF <= 0.5 0.02 3.3 ± 10.0 0.0 ± 0.0 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 0.86 4.2 ± 1.8 10.4 ± 1.9 

0.2 <= MAF < 0.3 1.88 7.6 ± 1.5 19.8 ± 1.7 

0.3 <= MAF < 0.4 1.43 10.2 ± 1.2 24.6 ± 2.9 

0.4 <= MAF <= 0.5 0.86 11.9 ± 1.8 31.2 ± 2.9 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 1.62 14.6 ± 0.7 32.1 ± 2.0 

0.3 <= MAF < 0.4 3.40 20.4 ± 1.7 42.5 ± 1.7 
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0.4 <= MAF <= 0.5 3.34 22.5 ± 1.7 46.2 ± 1.5 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 2.18 25.9 ± 1.5 52.5 ± 2.4 

0.4 <= MAF <= 0.5 5.24 31.0 ± 0.8 56.0 ± 1.1 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 2.85 35.2 ± 1.7 61.6 ± 2.2 

 

High LD (0.3 <= r2 < 0.6) 

MAF Range 

Percentage 

Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.01 0.0 ± 0.0 0.0 ± 0.0 

0.1 <= MAF < 0.2 0.03 2.0 ± 6.0 2.0 ± 6.3 

0.2 <= MAF < 0.3 0.00   -   - 

0.3 <= MAF < 0.4 0.00   -   - 

0.4 <= MAF <= 0.5 0.00   -   - 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 0.20 1.0 ± 1.2 2.5 ± 2.4 

0.2 <= MAF < 0.3 0.29 2.1 ± 1.5 7.1 ± 3.6 

0.3 <= MAF < 0.4 0.02 0.0 ± 0.0 0.0 ± 0.0 

0.4 <= MAF <= 0.5 0.00   -   - 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 0.65 3.1 ± 0.9 12.2 ± 2.4 

0.3 <= MAF < 0.4 0.67 6.0 ± 2.1 17.1 ± 2.1 

0.4 <= MAF <= 0.5 0.11 7.3 ± 4.2 18.6 ± 10.2 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 0.82 7.8 ± 2.1 17.4 ± 3.9 

0.4 <= MAF <= 0.5 1.11 10.1 ± 2.1 22.9 ± 3.5 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 1.18 9.8 ± 1.7 24.9 ± 3.1 

 

Table 2. Power to Detect Interactions by MAF and LD. Power to detect interactions is 

contingent upon both the MAF of the two variants and the LD between the variants. To calculate 

power, I randomly selected 20,000 pairs of variants tested in this analysis and simulated gene 

expression values with interaction effects at a moderate (median β of cis-eQTLs; β = 0.771) and 

a large (75th percentile β of cis-eQTLs; β = 0.908) effect size (Methods). I then binned 

interactions according to their MAF and LD, and calculated power as the number of significant 

interactions divided by the total number of interactions within each bin.  I repeated this process 

ten times, and computed the mean power and its standard deviation across all 10 runs for each 

bin, which is reported here. For each bin, I also report the percentage it accounted for of the 

20,000 interactions. 

 

 

LD between variants complicates the interpretation of the interaction models. I addressed 

two types of LD in significant interaction models: within-pair LD, defined as the LD between the 

variants in the same interaction model, and between-pair LD, defined as the LD between variants 

in different interaction models. Modest within-pair LD indicates the variants may be identifying 

a haplotype, which could carry a single variant that is actually driving the association with gene 

expression. Wood et al. have demonstrated that even very stringent LD-pruning thresholds (r2 > 

0.1 or D’ > 0.1) are insufficient to protect against confounding by cis-eQTL,83 therefore I 

adopted a two-stage strategy to address this concern. First, I removed all pairs with variants in 
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modest LD with one another (r2 > 0.6) from the remainder of the analysis (median r2 between 

remaining pairs of interacting variants was 0.06, Figure 3).  I then directly tested for confounding 

by cis-eQTL in a later analysis. Ultimately, 5,439 interaction models were both significant and 

passed the within-pair LD filtering criteria; they were significantly associated with the 

expression of 165 unique genes, which are provided in Fish et al.’s124 Supplemental Table 2.  I 

then calculated between-pair LD, or the correlation of variants in different interaction models. 

Highly correlated interaction models were grouped together (Methods; Figure 2) because they 

likely represent the same pair of interacting genomic loci, as evidenced by their very similar 

statistical models (Figure 4). The 5,439 interaction models represented 1,119 pairs of interacting 

genomic loci (Fish et al.’s124 Supplemental Table 2). The interaction model with the most 

significant p-value in the discovery analysis was selected to represent the entire group in all 

subsequent analyses, unless specifically stated otherwise, to ensure that each pair of interacting 

genomic loci was equally represented. 

 

 
Figure 3. Linkage disequilibrium between interacting variants.  I calculated LD between 

interacting variants using both r2 and D’ to determine if they were on the same haplotype. 

Interactions between variants in modest LD (r2 > 0.6) had been removed from all stages of the 

analysis, and hence are not shown here.  
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Figure 4. Redundant SNP-pairs have very similar parameter estimates. I grouped together 

all pairs of interacting SNPs (n=5,439) identified as being redundant through LD measures. For 

each group, I identified all terms that were significant in at least one of the associated 

interactions (p < 0.05). I extracted the βs for these significant terms from all interactions within 

the group. I then calculated the standard deviation of the βs for each significant term within each 

group to determine how similar the parameter estimates were across all interactions in the same 

group. The distribution of these standard deviations, categorized by type of variable, is shown 

above. 

 

 

Next, I performed a replication analysis using an independent dataset of 232 unrelated 

individuals from the 1KG Project who had both whole-genome sequencing 118 data and gene 

expression levels in LCLs54 available. All ieQTL composed of variants that were common (MAF 

> 5%) and had available genotyping data were tested for significant interactions with the same 

procedure used in the discovery analysis. Of the 803 ieQTL tested, 363 had p-values < 0.05 and 

90 passed a Bonferroni multiple testing correction for all tests performed in the replication 

analysis.  

 

 Many factors confound interaction testing 

 

Statistical interactions can be produced by a variety of factors other than biological epistasis, 

including technical artifacts, statistical artifacts, and LD artifacts driven by other biological 
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processes. Technical artifacts are caused by the limitations of the data itself; for instance, 

limitations in the dynamic range of measureable gene expression can result in interactions being 

identified through the ceiling/floor effect.  Statistical artifacts can result in an incorrect inference 

from a statistical model; for example, when there are population-level differences in the 

phenotype, analyzing multiple ethnicities together can produce spurious associations due to 

population stratification. Technical and statistical artifacts are especially troubling since they are 

unlikely to represent a real biological association between the loci and phenotype. Other 

biological phenomena, namely haplotype effects and cis-eQTL effects, can be captured by 

interaction analyses due to LD patterns. I investigated whether the observed 1,119 significant 

ieQTL models from the discovery analysis could be explained by each of these phenomena.  

 

Some statistical interactions are consistent with confounding by technical limitations 

 

The gene expression data used in this analysis was collected using microarrays. Microarray 

technology has a limited dynamic range, meaning that the upper and lower bound on the level of 

gene expression that microarrays can detect does not cover the full range observed in nature.  

If the combined effect of two variants behaving additively exceeds the detectable limit, their 

individual effects will not be fully captured as they hit the maximum (i.e., ceiling) or minimum 

(i.e., floor) value detectable by microarrays. This phenomenon, known as the ceiling/floor effect, 

may result in such pairs of variants being spuriously identified as epistasis.125 Interactions caused 

by the ceiling/floor effect have a characteristic pattern of effects: the main effects of both 

variants have the same direction, and the interaction terms are in the opposite direction. For 

example, both main effects may increase gene expression, but the interactions will decrease gene 

expression. An example of an interaction putatively caused by the ceiling effect is shown in 

Figure 5. Of 1,119 locus pairs, 48 exhibited a pattern consistent with the ceiling/floor effect. It is 

possible that true genetic interactions could also produce this pattern; consequently, I consider 

this an upper bound of the influence of ceiling/floor artifacts within our analysis.  
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Figure 5. The interaction between rs1783165 and rs1673426 associated with the expression 

of PKHD1L1 may be a ceiling effect. The ceiling effect, caused by limitations in the detectable 

range of gene expression, has a hallmark pattern – both variants have main effects with 

concordant direction of effect, and the interaction term has a discordant direction. (A) The minor 
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allele of rs1673426 increases the expression of PKHD1L1. (B) The minor allele of rs1783165 

also increases the expression of PKHD1L1, meaning both variants have a concordant direction of 

effect. The interaction plot (C) depicts the mean gene expression for all individuals with the 

specified genotype combination, with each line representing the number of minor alleles at 

rs1673426.  When there is only one minor allele at rs1673426, the mean gene expression 

increases for each minor allele at rs1783165; however, when there are two minor alleles at 

rs1673426, the increase in gene expression due to minor alleles at rs1783165 reaches a 

‘maximum’ at one minor allele. There is no additional increase in expression for having two 

minor alleles at rs1783165. This is denoted by the flat line connecting the two genotype 

combinations. Given that each minor allele at rs1783165 increases gene expression on the 

background of one minor allele at rs1673426, and that the ‘maximum’ reached on the 

background of two minor alleles at rs1673426 is very close to the maximum gene expression 

levels possible to observe, I consider this an example of the ceiling effect. 

 

 

The interpretation of microarray data is also complicated by genetic variants in the probe 

binding site, as different alleles may have different affinities for the probe. Probes containing any 

HapMap variant had previously been removed from the analysis;53,117 however, HapMap does 

not provide comprehensive coverage of genetic variants. Consequently, I looked in a subset of 

individuals from the discovery analysis (n=174) with low-coverage sequencing data through the 

1KG Project to see if genetic variants within the probe binding site may result in apparent 

interactions.  The probes for 508 of 1,119 ieQTL contained a SNPs or indel in the 1KG Project. 

The probes for 255 ieQTL contained at least one common (MAF > 5%) variant. While the 

conditional analysis (Methods) performed later would likely account for the effect of these 

variants, I did not consider ieQTL with a common variant in the binding site evidence for 

biological epistasis.  The probes for the remaining 253 ieQTL contained at least one rare variant, 

but no common variation. To determine if these rare variants could result in the interaction, I 

performed the interaction analysis using only the 1KG individuals who did not have a rare 

variant in the probe binding site.  The interactions for 200 ieQTL remained nominally significant 

(p < 0.05) when all individuals with rare variants were removed.  Consequently, the interactions 

for 811 ieQTL are not attributable to variants within the probe binding sites. 

 

Missing genotype combinations may result in ieQTL 

 

Linear regression models for epistasis may be unable to accurately decompose variance between 

genetic terms if there is either LD between the interacting variants or if there are missing 

genotype combinations. The issue of LD has previously been explored, and the Cordell model is 

robust to LD between variants when all genotype combinations are present.89 Consequently, I 

examined all interactions within the discovery dataset to see if all of the nine possible two-locus 

genotype combinations were present. For 457 of the 1,119 ieQTL, at least one genotype 

combination was absent. While failure to see certain two-locus genotypes may be due to lethal 

combinations, and thus perhaps is evidence for epistasis, it may also simply be a result of certain 

combinations being uncommon due to allele frequencies and the proximity between variants. 

Either way, the statistical model used cannot provide robust estimates unless all genotype 

combinations are present, and therefore, I do not consider these interactions as evidence for 

biological epistasis. 
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Haplotype effects captured through complex LD patterns may produce ieQTL 

 

In some LD architectures, a combination of two variants can identify haplotypes. While there is 

evidence to suggest haplotypes form in response to biological interactions between variants,88,126 

haplotypes may simply carry a single variant that additively regulates gene expression. Thus, 

interactions between two variants in LD with one another may simply be tagging a cis-eQTL. 

Wood et al. demonstrated that this could occur even when strict LD-pruning thresholds (r2 > 0.1 

or D’ > 0.1) were used; therefore, I consider it unlikely that any LD-pruning threshold would be 

sufficient to eliminate confounding by cis-eQTL.83 Consequently, I adopted a two-stage strategy 

to address haplotype effects, wherein I first use a lenient LD-threshold to filter out interactions 

and then directly tested whether the interaction can be accounted for by cis-eQTL.  

 

In the first stage, I used LD-patterns to filter out variants in moderate LD with one 

another, as they likely represent a haplotype. I did this by first removing all interaction models 

composed of variants in modest LD with one another (r2 > 0.6) from all portions of the study, as 

previously mentioned. I then investigated whether or not variants within the same interaction 

model were in modest LD with one another as assessed by D’; of the 1,119 interacting loci, 806 

had D’ values < 0.6. I did not consider any of the variants with D’ thresholds exceeding this 

threshold as evidence for epistasis, as they likely carry a single variant driving the effect. An 

example of this phenomenon observed in our data is illustrated in Figure 6. The distribution of 

LD statistics, both r2 and D’, for interaction models is shown in Figure 3.  

 

 

 
Figure 6. Interactions impacting the expression of CPEB4 may represent haplotype 

effects.  (A) A significant interaction between rs6864691 and rs969518 regulating the expression 
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of CPEB4 was identified. The cis-eQTL rs72812817 mediated this interaction in the conditional 

analysis; however, none of these variants were within putative regulatory elements in GM12878 

assayed by the ENCODE Project. However, a D' heatmap (B) of the region (the numbers 

correspond to SNP labels in A) illustrated that an indel, rs144869372, always occurred on the 

background of the cis-eQTL (D' = 1). This occurs despite modest r2 values, as shown in the r2 

heatmap of the region (C). There is evidence from ENCODE (A) suggesting the indel may be 

functional, as it occurs within both a ChromHMM strong enhancer (yellow) and a CTCF binding 

peak in GM12878.  (D) Notably, the indel is predicted to alter the binding of CTCF by 

HaploReg, by altering the last three nucleotides in the binding motif.  Given the functional 

genomics evidence, the indel may be the causal variant and is detected by interactions that tag 

the haplotype carrying the indel. 

 

 

In the second stage of the analysis, I directly tested whether or not the interaction could 

be accounted for by cis-eQTL by conditioning the interaction on each of the target gene’s cis-

eQTL in turn. I first identified all nominal, common cis-eQTL (p < 0.05) for the interaction’s 

regulated gene using a subset of individuals from our discovery dataset (n=174) with sequencing 

data available through the 1KG Project so that I would have a comprehensive list of genetic 

variation. While the 1KG sequencing data is low coverage, it is extremely unlikely I would fail 

to detect the effect of a common cis-eQTL – 1KG estimates they had 99.3% power to detect 

variants of 1% frequency.118 Even if a common cis-eQTL was missed, all variants that could tag 

it through LD would additionally have to be absent for its effect to not be captured in the 

conditional analysis.  I then created all pairs of cis-eQTL and ieQTL for the same gene. For each 

of these combinations, I performed a conditional analysis in which the additive and dominant 

main effect for the cis-eQTL were incorporated into both the full and reduced model used in the 

LRT to determine the significance of the interaction.  The majority of interactions appeared to be 

mediated by cis-eQTL (Figure 7); however, 139 of the 965 testable ieQTL remained significant 

(p < 0.05) in all conditional analyses performed, indicating that these interactions are not 

explained by cis-eQTL.  
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Figure 7. The interacting SNPs regulating ACCS are likely tagging a single-variant cis-

eQTL through linkage disequilibrium. The interaction between rs178501 and rs7121151 is 

mediated by the cis-eQTL rs2074038 in the conditional analysis (interaction p-value > 0.05). (A) 

While the interacting variants are in low LD with the cis-eQTL based on r2, their high D’ 

indicates they often occur on the same haplotype. (B) The interacting variants are not located 

within DNase hypersensitivity sites, predicted chromatin states with a regulatory function 

(GM12878 Combined), or any of the uniform binding peaks identified for all transcription 

factors tested in GM12878 by ENCODE; however, the cis-eQTL is located within the canonical 

promoter for ACCS, a DNase hypersensitivity site, and numerous transcription factor binding 

peaks identified in GM12878 by ENCODE. (C) Notably, the cis-eQTL occurs within a binding 

peak for both ELF1 and SPI1 in GM12878, and also alters the binding motifs of these 
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transcription factors at the position highlighted in orange. Thus, the cis-eQTL rs2074038 is likely 

the causal variant, and the interaction is simply capturing its effect through LD. 

 

Population specific eQTLs may produce statistical interactions 

 

In our discovery and replication analyses I analyzed multiple ethnicities together. When there are 

population differences in both the distribution of genotypes and phenotypes, analyzing multiple 

populations together can lead to spurious results, due to a phenomenon known as population 

stratification. The population normalization procedure applied to the gene expression data 

removes systematic population differences in the phenotype, thereby enabling multiple 

ethnicities to be combined for analysis without risk of known complications from population 

stratification. While this approach has been used in other studies, I also controlled for the top 

three PCs in our analysis to adjust for residual ethnicity-dependent effects.117,127 Furthermore, I 

performed a stratified analysis, wherein I tested each of the 1,119 ieQTL in each of the three 

discovery ethnicities (CEU, YRI, and CHB+JPT) separately. While the Cordell model was not 

robust in the stratified analysis in many cases (due to the reduced sample size, all nine possible 

two-locus genotype combinations were often not observed in all populations), 859 of 1,119 

ieQTL were at least nominally significant (p < 0.05) in at least one population, suggesting that 

population stratification is unlikely to account for their significance.  

However, the interaction for 260 ieQTL was completely attenuated in the stratified 

analysis. In some cases, this may be attributed to reduced power to detect effects as the sample 

size is smaller; however, it could also suggest that interaction testing was subject to a novel form 

of population stratification. Upon further investigation, I found that 234 of 260 ieQTL attenuated 

in the stratified analysis involved at least one population-specific cis-eQTL, meaning that a 

variant was only a significant cis-eQTL in a subset of populations. Population-specific cis-eQTL 

may be a product of reduced power to detect effects when allele frequencies are different 

between populations; however, there were also instances in which variants with very similar 

allele frequencies had different marginal effects across populations (Figure 8).54 Such variants 

might be a product of population-dependent ability to tag causal cis-eQTL due to differential LD 

patterns. In relation to interaction testing, systematic differences in both the main effect of each 

variant and the frequency of two-locus genotype combinations between populations resulted in a 

spurious interaction signature; an example is provided in Figure 9. To investigate whether 

population-specific effects may impact the 859 ieQTL that were nominally significant in at least 

one population, I calculated the within-population LD between each pair of interacting variants. 

689 of 859 ieQTL were significant in at least one population where the variants were not in LD 

with one another (r2 and D’ < 0.6) (Supplemental Table 3, provided by Fish et al.124). I did not 

consider the 170 ieQTL that were exclusively significant in populations with population-specific 

haplotypes as clear evidence for biological epistasis. Ultimately, 689 of the 1,119 ieQTL were 

inconsistent with population-specific effects. 



 31 

 
Figure 8. Investigation of population-specific cis-eQTL.   To investigate whether or not 

population-specific cis-eQTL were caused by reduced power to detect significant marginal 

effects in the stratified analysis, or by different marginal effects for the same variant, I performed 

pairwise comparisons of MAF, additive β (marginal), and p-value (of the cis-eQTL) by ethnicity. 

 

 
 

Figure 9. Population specific eQTLs may underlie ieQTL regulating C12orf54. The 

interaction between rs2731091 and rs4760707 regulating C12orf54 replicated, but was not 
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nominally significant (p < 0.05) in any population in the stratified analysis. (A) Due to the 

population normalization procedure, there are not systematic differences in the expression of 

C12orf54 between populations; however, I found that each variant was a population-specific cis-

eQTL. (B) rs4760707 was a cis-eQTL in CHB+JPT (p=7.25x10-6), but not in YRI (p=0.17) or 

CEU (p=0.96). (C) rs2731091 significantly regulated gene expression as a cis-eQTL in YRI (p = 

7.28x10-6), but not CEU (p = 0.14) or CHB+JPT (p=0.84).  (D) There were clear population 

differences in the frequency of two-locus genotypes between populations; in combination, it 

appears the population differences in two-locus genotypes and population specific cis-eQTL 

produced a nuanced form of population stratification.  

 

IeQTL can be entirely accounted for by alternative mechanisms 

 

Ultimately, I investigated whether confounding factors could cumulatively account for all the 

interactions identified in this analysis (Supplemental Table 3124; Table 3). Of the 1,119 

interacting genomic loci identified, 90 significantly replicated using a Bonferroni multiple testing 

correction threshold. Of these, 26 ieQTL could be explained by technical artifacts (i.e., the 

ceiling/floor effect and/or variants within the probe binding sites). 50 of the remaining 64 ieQTL 

could be explained by statistical artifacts (i.e., population stratification and/or missing 

genotypes). Biological explanations other than epistasis – namely haplotype effects or the 

tagging of cis-eQTL – could account for all remaining ieQTL that replicated at the most stringent 

Bonferroni level.  

 

 

Confounder All Interactions (n=1,119) Bonferroni Replicating  

Interactions (n=90) 

Total (%) Total (%) 

Ceiling/Floor 

Effect 

48 (4.30) 11 (12.22) 

Variants in Probe 308 (27.52) 15 (16.68) 

Cis-eQTL 980 (87.58) 78 (86.68) 

D’ Haplotype 313 (27.97) 43 (47.78) 

Population-

Specific Effects 

430 (38.43) 58 (64.44) 

Missing 

Genotypes 

457 (40.84) 37 (41.11) 

 

Table 3. Proportion of Interactions Consistent with Confounding Factors. I counted the 

number of interactions consistent with each alternative explanation; interactions can be 

consistent with multiple confounders. I considered two categories of interactions: all interactions 

identified (n=1,119), and the subset of those that replicated with p-values exceeding the 

Bonferroni multiple testing correction threshold for the entire replication analysis (n=90).  

 

 

We additionally investigated the impact of filtering out interactions consistent with 

confounding prior to the replication analysis. Removing these interactions prior to replication 

testing had a considerable influence on the multiple testing correction threshold: only 86 of the 
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1,119 interactions identified in the discovery analysis were not consistent with the ceiling/floor 

effect, population stratification, variants within the probe binding site, missing genotype 

combinations, haplotype effects, or the tagging of cis-eQTL (Supplemental Table 4, provided in 

Fish et al.124). 37 of the 86 ieQTL had sufficient data to be tested in the replication analysis, and 

while none replicated at the adjusted Bonferroni multiple testing correction threshold, two 

interactions did replicate with nominal significance (p < 0.05). One of these, the interaction 

between rs1549791 and rs7115749 to regulate APIP, did not have a consistent direction of effect 

between the discovery and replication datasets (Figure 10), and thus was not considered evidence 

for epistasis. The remaining interaction, between rs1262808 and rs11615099 regulating the 

expression of MYRFL, had concordant effects in both the discovery and replication datasets 

(Figure 11). As it did not pass the multiple testing correction threshold in the initial replication 

analysis (p=2.03x10-3) though, I further examined it additional datasets.  
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Figure 10. The interaction between rs1549791 and rs7115749 associated with the expression 

of APIP is not consistent between the discovery and replication datasets.   In the interaction 

plot, each individual is categorized according to their two-locus genotype at rs1549791 and 

rs7115749. This results in nine possible genotype combinations, and the mean expression of 

APIP for each combination is shown here for the (A) discovery and (B) replication datasets. 
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There are markedly different patterns in gene expression by two-locus genotype between the two 

datasets, illustrating the putative interaction does not replicate with a consistent direction of 

effect. 

 

 
 

Figure 11. Despite consistent replication, the interaction regulating MYRFL is attributable 

to cis-eQTL.  In each interaction plot, all individuals are categorized according to their two-

locus genotype at rs1262808 and rs11615099.  The mean expression of MYRFL for all 

individuals with each of the nine possible two-locus genotypes is shown here for the (A) 

discovery; (B) replication; (C) Mayo, cerebellum; (D) Mayo, cortex; (E) GTEx, whole blood 

datasets.  The interaction plot illustrates a consistent trend across all datasets, this interaction is 

mediated by cis-eQTL. (F) Conditional cis-eQTL analyses were conducted in the discovery 

(CEU only, yellow); GTEx (purple); Mayo, cerebellum (teal); and Mayo, temporal cortex 

(orange). For each conditional analysis, the conditional LRT p-value is plotted by the genomic 

position of the cis-eQTL conditioned on. The p-value peak observed in this region illustrates that 

cis-eQTL completely attenuate the interaction when they are conditioned on. 

 

Discussion 

 

In this study, I analyzed more than 21 million pairs of cis-regulatory variants for epistatic 

interactions influencing gene expression, and found limited evidence for epistasis within the cis-

regulatory region of genes. Fewer than 2% of genes tested (165 of 11,465) had significant 
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interactions between regulatory genetic variants that appeared to influence their expression in the 

tightly controlled context of LCLs. Nonetheless, 90 of the 1,119 significant interactions 

replicated in independent datasets. I then performed a comprehensive investigation of known and 

novel potential confounding factors on the identified interactions (haplotype effects, ceiling/floor 

effect, single variant eQTL tagged through LD, missing genotype combinations, population 

stratification, and others), and found that all the interactions – even those that replicated – could 

be explained by at least one technical, statistical, or biological confounder. Thus, our findings do 

not support a major role for large effect interactions between common variants within the cis-

regulatory region influencing the regulation of gene expression in LCLs. 

Additionally, this study provides a trait-independent framework for protecting future 

interaction studies from confounding. Prior to performing any association testing, there are two 

levels of quality control required for statistical studies of epistasis: those adopted in GWAS best 

practices128–131, which are aimed at ensuring individual genetic variants are called with high 

accuracy, and then those that check whether a given pair of genetic variants is appropriate for 

interaction testing (i.e. missing genotype and the within-pair LD filters). Even when these quality 

control measures are applied prior to the discovery analysis, significant interactions need to be 

further examined for evidence of confounding by single variants tagged through LD and for 

population-specific effects. I advise removing interactions consistent with these confounders 

prior to replication, as this reduced the number of putative interactions carried forward 

substantially, and consequently, the multiple testing penalty. The ceiling/floor effect is a more 

complicated confounder, as it is difficult to statistically disambiguate whether consistent 

interactions are caused by technical limitations or by biological epistasis. Consequently, I 

recommend interactions consistent with the ceiling/floor effect be flagged, rather than filtered 

out, and validated with an alternative technology if possible. It is still critical to replicate 

interactions to ensure they have robust, consistent effects, despite replication being insufficient to 

protect against confounding. Given how pervasive confounding factors are, it is critical to 

explicitly account for them through additional quality control procedures and post-hoc analyses 

in future studies to reduce spurious results.  

To strike a balance between maximizing the power to detect effects and thoroughly 

investigating potentially interacting loci, I performed a focused analysis of common variants 

with significant marginal effects in the cis-regulatory region, which harbors the majority of 

known regulatory elements. I was moderately powered to detect interactions between common 

variants in low LD with one another with effects commensurate with the single-locus eQTL 

found in this dataset. While additional statistical interactions with either smaller effect sizes or 

between less frequent genotype combinations would likely be identified with increased power, 

every example of a significant interaction I did identify was consistent with at least one 

confounding factor. Thus, I did not find compelling evidence that cis-regulatory interactions 

contribute strongly to the genetic architecture of gene expression; however, there are several 

additional limitations to our study. First, cell lines are a model system, and thus are not perfectly 

representative of primary tissue. Second, I analyzed multiple ethnicities simultaneously in an 

effort to increase sample size; however, doing so also increased the heterogeneity of our sample, 

which may have obfuscated some interactions. Therefore, our findings do not preclude the 

existence of epistasis within the cis-regulatory region, and I recommend that future studies of 

regulatory epistasis consider potential interactions that: 1) occur within haplotypes (consistent 

with reports from Corradin et al.126 and Lappalainen et al.88), 2) have smaller effect sizes than 

those detected in similarly powered single-locus eQTL studies, 3) occur among less frequent 
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genotype combinations, including rare variants 4) involve variants without marginal eQTL 

effects (though evidence in model organisms suggests these are rare1), and/or 5) are context-

dependent (e.g. inducible eQTL effects). Observing statistical interactions in these contexts could 

reconcile our findings with molecular studies, many of which use mutagenesis to generate 

genetic variation that would not be observed in population-based studies, that illustrate that 

transcription factors (TF) interact with each other to influence promoter and enhancer 

activity.77,78,132  

Genetic interactions involving distant variants could also be a mechanism through which 

epistasis influences complex traits. However, I did not investigate interactions involving variants 

outside of the cis-regulatory region because evidence from eQTL studies in humans suggests that 

trans-eQTL effects are less robust, less common, and have smaller effect sizes.133,134  This, 

coupled with the substantial increases in the number of association tests required to investigate 

trans- interactions, would have resulted in reduced power to detect such effects. Nonetheless, 

interactions between distant variants (i.e., gene by gene interactions) may still be important to the 

biology of disease in humans. Increases in the sample size of eQTL datasets and the 

corresponding increases in statistical power will enable future in-depth studies of trans-

interactions that may help to illuminate the biological mechanisms through which genetic 

variants are associated with disease. However, trans- interactions are not protected from many of 

the confounders influencing the study of cis- interactions,83 and thus studies of trans- interactions 

will need to explicitly account for these issues as well.  

Our findings (along with prior reports)83 illustrate that significant interaction effects can 

be due to a variety of confounding factors. This demonstrates that significant statistical 

interactions do not necessarily imply either a biological relationship with the phenotype, or 

between the variants themselves.  To account for this, some confounders can be addressed as part 

of quality control procedures prior to performing any association tests (i.e., missing genotype 

check, removing variants in probe binding sites, and LD-filtering), while others – such as 

confounding by single variants with strong effects – will likely require specific post-hoc analyses 

after the initial association is identified. Furthermore, replication – long held as the gold standard 

for genetic association studies – does not safeguard against these confounders, as they can be due 

to artifacts that are consistent across multiple datasets. Given the pervasive nature of 

confounding, it must be considered in all future studies of epistasis. The analytic approach used 

in this study provides a trait-independent framework for explicitly examining confounding 

factors in interaction studies and avoiding reporting spurious results. 
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CHAPTER 3 

EPISTASIS IN ADMIXED POPULATIONS 

 

 

Introduction 

 

Regulatory epistasis may occur between variants on the same haplotype, which are combinations 

of physically linked genetic variants that co-occur more often than anticipated. As reviewed in 

detail in Chapter 1, evidence from reporter assays clearly demonstrating epistasis between 

variants typically investigate a narrow genomic region, unlikely to be broken apart by 

recombination in natural populations.78 Additionally, follow-up of GWAS-Catalog variants has 

demonstrated that multiple variants on the associated haplotype influence the expression of the 

same target gene in the rare instances when those variants are separated via recombination.87 

Finally, genetic variants that are associated with decreased gene expression levels are associated 

with an increased burden of recently-derived rare variants.88,135  However, the study of epistasis 

within haplotypes is complicated by the same properties that make it biologically intriguing; the 

tight linkage between genetic variants on the same haplotype inherently means that all 

combinations of variants are either rarely observed, or absent. Consequently, linear regression 

models are unable to accurately partition phenotypic variance to genetic components, thereby 

complicating the study of epistasis within haplotypes.89   

 The structure of haplotypes is in large part dictated by the location of recombination 

hotspots.  Indeed, the genome can be divided into blocks of variants in high LD with one 

another, separated by regions that frequently undergo recombination events.136–138  These 

boundaries are highly correlated between ethnicities; however, there are some 

discrepancies.136,139  First, LD-blocks are typically shorter in African-descent populations; this is 

consistent with the Out-of-Africa hypothesis, as both population bottlenecks increase the length 

of LD-blocks in European and Asian-descent populations, and older populations (i.e., African) 

have had more recombination events that reduce the length of LD-blocks.139,140 Second, 

recombination rates also vary considerably by population. The location of recombination 

hotspots is regulated by PRDM9, a  methyltransferase with a zinc finger domain that recognizes 

specific sequence motifs.141–143 In European descent populations, there are two common alleles 

of PRDM9, A and B, which occur with a frequency of 90% and 5% respectively.141 Individuals 

with rarer alleles that no longer recognize the canonical binding motif have drastically shifted 

landscapes of recombination hotspots.141  In African descent populations, there is third allele, C, 

which occurs with a frequency of ~35%.144,145 Individuals carrying the C allele of PRDM9 do not 

appear to share any of the recombination hotspots recognized by the A allele, and vice versa.144 

This has resulted in drastically different recombination landscapes between European and 

African descent populations; there are more than two thousand recombination hotspots that are 

observed in populations of West African descent, but are absent in European descent 

populations.91  Thus, there are population-level differences in haplotype structure that could 

potentially be exploited to investigate epistasis within haplotypes. 

 Due to population-level differences in recombination hotspots, admixed populations 

provide a unique opportunity to investigate epistasis within haplotypes.  I hypothesize that 

African-specific recombination hotspots may disrupt European haplotypes, and vice versa.  

When ancestral haplotypes are broken apart by these recombination events, there is an increased 

likelihood of observing all possible genotype combinations, such that epistasis within the 
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ancestral haplotype can be investigated using traditional linear regression approaches discussed 

in Chapter 2.  

In this Chapter, I investigate this hypothesis in African Americans.  African Americans 

are a population derived from a two-way admixture event between European-descent and 

African-descent individuals. Historical records indicate this admixture event began with the 

Trans-Atlantic slave trade, in which approximately 11 million individuals were forcibly brought 

form coastal regions of Africa to the Americas throughout the 15th to 19th centuries.146,147 Current 

estimates predict that, on average, six to seven generations have passed since the initial 

admixture event.148,149  On average, African Americans have approximately 20% ancestry from 

European descent populations with the remainder of African descent, although these proportions 

can vary substantially between individuals.148–150  Various methods exist that predict local 

ancestry at specific genomic loci by comparing the observed, inferred haplotypes to those seen in 

reference populations of African and European descent.92,93,95 

In this Chapter, I leverage transitions in local ancestry between European and African 

descent to identify genomic regions in which ancestral haplotypes might be disrupted.  I 

investigated this in 9,559 African American adults with EHR linked to genetic data collected on 

the Metabochip, a custom genotyping array.97,151,152 The Metabochip is designed to fine-map 

approximately two hundred genomic loci previously associated to with type 2 diabetes, obesity, 

and coronary artery disease, and corresponding endophenotypes. The wealth of phenotypic data 

within the EHR allowed me to explore whether these transitions in local ancestry interacted with 

nearby genetic variants to influence three categories of phenotypes: those the Metabochip was 

designed around; phenotypes with associations in the GWAS-Catalog in Metabochip regions; 

and finally, all possible phenotypes (i.e., a PheWAS).  Thus, I was able to investigate a wide 

array of possible phenotypic consequences resulting from the disruption of ancestral haplotypes 

within Metabochip regions. 

 

Subjects and methods 

 

Subjects and genotyping 

 

In this Chapter, I investigated whether local ancestry transitions interacted with genetic variants 

to influence a variety of EHR-derived phenotypes in 9,559 African-American adults.  All 

samples used in this analysis were part of the Epidemiologic Architecture for Genes Linked to 

Environment (EAGLE) study, which used Vanderbilt University’s de-identified biorepository to 

link patient EHR data with their genetic data.152  EAGLE selected individuals for inclusion based 

upon minority-status, rather than for specific health phenotypes. Consequently, this is a cross-

sectional study design that minimizes ascertainment bias.  This sample was comprised of 6,249 

females, and 3,310 males. The mean age was 46.9 years, with a standard deviation of 16.4 years. 

The mean BMI was 28.9, with a standard deviation of 6.56.  All individuals self-reported as 

African American. We inferred global ancestry from our local ancestry estimates, by determining 

the proportion of variants with European ancestry.  In this sample, we observed a mean European 

ancestry of 21.5%, with a standard deviation of 14.5%, consistent with the average proportion of 

European ancestry reported within the literature. 

The samples were genotyped on Illumina’s Metabochip, a custom array of almost 

200,000 SNPs that targets genomic regions previously associated with type 2 diabetes, obesity, 

and coronary artery disease for fine-mapping purposes.151  As part of quality control, variants 



 40 

were removed that did not have at least a 95% genotyping efficiency rate, or that did not vary in 

this dataset, leaving a total of 192,093 variants for analysis.   

 

Determining local ancestry 

 

Determining local ancestry is a two-step process: first, individual chromosomes are phased, and 

then the local ancestry is assigned. I phased the data using the program SHAPEITv296 and the 

1000 Genomes Phase 3 reference panel (available for download at 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference).  171,439 variants were 

successfully phased; when variants failed it was typically due to inconsistencies with the 

reference panel.  I then used RFMixv1.5.4 to determine the local ancestry of the phased genetic 

data, using a window size of 0.1 cM, and a minimum node size of 5.  For the phasing reference 

panel, I used all YRI and CEU individuals from 1000G, phase 3v5a.  I developed a custom 

pipeline to perform all necessary data processing and file-type conversions between these 

programs, which will be made publicly available.  

 

Phenotype processing and quality control 

 

Typically, individuals have multiple measures for body mass index (BMI), systolic blood 

pressure (SBP), diastolic blood pressure (DBP), and low-density lipoprotein (LDL) levels. To 

assign a single score to each individual, I took distinct approaches depending on the phenotype.  

For BMI, I computed the median measurement for each year with data available in the EHR, and 

then computed the median of these scores.  For SBP and DBP, I had three distinct scores: the 

first measurement, regardless of medication status; a pre-medication measurement, which was 

the median of yearly medians for measurements made prior to any references to blood pressure 

medications; and a post-medication measurement, which was the median of yearly medians for 

measurements made after a reference to blood pressure medications.  Similarly for LDL, three 

distinct measurements were used for analysis: the median of yearly medians, regardless of 

medication status; a pre-medication measurement, which was the median of yearly medians for 

measurements made prior to any references to lipid medications; and a post-medication 

measurement, which was the median of yearly medians for measurements made after a reference 

to lipid medications.  For all of the above phenotypes, I then performed the following quality 

controls: I removed clearly non-valid scores (i.e., scores of zero or one), and then removed 

outliers (those scores more than three standard deviations away from the mean).  The 

distributions of each phenotype are provided in Figure 12. 

 

Statistical modeling 

 

Given that local ancestry is specific to a given chromosome, I performed all analyses on the level 

of the chromosome, rather than the individual.  I used linear regression to determine whether 

local ancestry transitions interacted with the allele to influence the phenotypes of interest, using 

the model: 

𝑦 = 𝐴 + 𝐿𝐴 + 𝑇𝑅𝐴𝑁𝑆 + 𝐴 ∗ 𝑇𝑅𝐴𝑁𝑆 + 𝑃𝐶1−3 + 𝐴𝐺𝐸 + 𝐺𝐸𝑁𝐷𝐸𝑅 + 𝐵𝑀𝐼 
where y is the phenotype of interest; A corresponds to the allele status (binary variable: 0, 

absence of the allele; 1, presence of the allele); LA corresponds to the local ancestry at the 

variant (binary variable: 0, African ancestry; 1, European ancestry); TRANS indicates the 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference
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presence of a local ancestry transition within the Metabochip region (binary variable: 0, no 

transition; 1, no transition); A*TRANS represents the interaction term between the allele and 

local ancestry transition (binary variable: 1 indicates presence of both the allele and a local 

ancestry transition; 0 encompasses all other possibilities).  The covariates included varied by the 

analysis. AGE, GENDER, BMI, and the top three principal components (PC1-3) were included in 

the investigation of phenotypes the Metabochip was designed to fine-map (BMI was not a 

covariate when it was the phenotype being investigated). AGE, GENDER, and the top three 

principal components (PC1-3) were included in the investigation of phenotypes derived from the 

GWAS-catalog with associations in Metabochip regions.  No covariates were included in the 

PheWAS. In the case of binary phenotypes, logistic regression was used. 

 

Results 

 

In this Chapter, I investigate whether transitions in local ancestry interacted with genetic variants 

to influence three distinct categories of EHR-derived phenotypes in an admixed population. All 

of these analyses require local ancestry, and the identification of genomic regions harboring 

transitions in local ancestry. To derive local ancestry, I first phased the genetic data using 

SHAPEIT296, then assigned local ancestry using RFMix92.  I was able to pinpoint the location of 

local ancestry transitions, e.g. where changes in continental ancestry occurred along the 

chromosome, using the local ancestry calls.  For each phenotype, I then analyzed the significance 

of single variants, regardless of local ancestry, to determine if there was genetic association 

within a region.  Then, I performed an interaction analysis to determine if local ancestry 

transitions interacted with variants to influence the phenotype.  I examine three separate 

categories of phenotypes: those that the Metabochip was designed to fine-map; those with 

associations in Metabochip regions in the GWAS Catalog for African-descent populations; and 

finally, all phenotypes encoded by ICD-9 with sufficient numbers of cases and controls.  The 

first two categories are targeted analyses based on previous associations, whereas the final 

category – a PheWAS – is designed to discover novel associations. A table of the analyses 

performed is provided as a guide in Figure 12. 
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Figure 12. Outline of the analyses performed to investigate interactions between local 

ancestry and variants.  In this Chapter, I investigated three categories of phenotypes: previous 

associations to phenotypes Metabochip was designed to fine-map; previous associations in 

African-descent populations in the GWAS Catalog; and all ICD-9 phenotypes contained in the 

EHR. For the first two phenotype categories, I first conducted analyses to investigate whether 

prior associates generalized to our sample. In contrast, investigation of all the ICD-9 phenotypes, 

which were translated to phecodes, was designed to identify novel associations.  I then conducted 

a second set of analyses for each of these phenotypes to investigate whether variants interacted 

with local ancestry transitions to influence the specified phenotypes.  

 

 

European associations for phenotypes targeted by Metabochip do not generalize to African 

American populations  

 

The Metabochip genotyping array was designed to fine-map genetic associations for type 2 

diabetes, coronary artery disease, myocardial infarction, and their associated quantitative traits in 

genome-wide association studies.151 Based on prior associations, each of the over 200 densely-

genotyped genomic regions is assigned to specific phenotypes. I analyzed quantitative traits 

associated with these diseases that are frequently collected as part of routine clinical visits, 

including: body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure 

(DBP), and low-density lipoprotein (LDL) levels (Chapter 3; Subjects and methods: Phenotype 
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processing and quality control).  Given the prevalence of drugs designed to alter both blood 

pressure and lipid levels, I investigated both a baseline, pre-, and post-medication value for SBP, 

DBP, and LDL levels (Methods).  The distribution for these traits resembles non-clinical 

populations, and there is a median of 5446 individuals with data for these phenotypes (Figure 

13).  

 

 

 

 
 

 

Figure 13. Distributions of EHR-derived SBP, DBP, LDL, and BMI measurements.  For 

each of the 9,559 African American individuals genotyped on the Metabochip as part of the 

EAGLE Project, I derived their SBP, DBP, LDL, and BMI values from their medical record 

(Methods). For SBP, DBP, and LDL there are three values – the first measurement in the 

medical record, the median of yearly medians prior to mention of phenotype-altering 

medications, and the median of yearly medians after the mention of phenotype-altering 

medications.  

 

To determine whether European-associations generalized to African Americans, I first 

performed a Metabochip-wide association test (Metabochip-WAS) for each of these traits. For 

each variant (MAF > 1%), I performed a linear regression analysis in which I assumed an 

additive genetic effect and included age, gender, the top three principal components (PCs), and 

BMI (except for when BMI was the trait of interest) as covariates. To adjust for multiple testing, 
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a trait-specific Bonferroni significance threshold was set. No variants for any trait passed this 

significance threshold (Figures 14-16), suggesting that either European associations do not 

generalize to African Americans, or that there was insufficient power to detect them in this 

dataset. 

 

 

 
Figure 14.  No variants significantly associated with SBP, DBP, LDL, or BMI in a 

Metabochip-WAS.  Manhattan plots for a Metabochip-WAS of A) SBP, B) DBP, C) LDL, and 

D) BMI are provided. The Metabochip-WAS Bonferroni multiple testing correction for each trait 

separately is 3.2x10-7, which none of the variants passed. 
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Figure 15. No variants significantly associated with pre-medication measurements for SBP, 

DBP, or LDL in a Metabochip-WAS. Manhattan plots for a Metabochip-WAS of pre-

medication measurements for A) SBP, B) DBP, and C) LDL are provided. The Metabochip-

WAS Bonferroni multiple testing correction for each trait separately is 3.2x10-7, which none of 

the variants passed. 
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Figure 16. No variants significantly associated with post-medication measurements for 

SBP, DBP, or LDL in a Metabochip-WAS. Manhattan plots for a Metabochip-WAS of post-

medication measurements for A) SBP, B) DBP, and C) LDL are provided. The Metabochip-

WAS Bonferroni multiple testing correction for each trait separately is 3.2x10-7, which none of 

the variants passed. 

 

Relative to many GWAS, our study has reduced power to detect effects given the smaller 

sample size. To improve power, I next performed a targeted association analysis wherein I only 

tested variants for association with each for these traits if they occurred in a Metabochip region 
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that had previously been associated with that trait (Table 4). Exclusively examining these regions 

dropped the number of association tests performed for each trait from a median of 156,004 to 

8,477; however, no variants passed a trait-specific multiple testing correction threshold in the 

targeted analysis, despite its greater leniency (Figure 17-19).  There were several suggestive 

associations though, which I hypothesized might be influenced by local ancestry transitions. To 

investigate this, I further filtered the Metabochip regions included in the targeted analysis: only 

previously associated regions with at least a hundred local ancestry transitions observed were 

considered.  Two regions apiece met these criteria for DBP, LDL, and BMI – none did for SBP.  

Notably, these regions were those with the significant variants from the broader targeted analysis 

for both BMI and LDL (Figure 17).  For common variants (MAF > 5%; LD-pruned at r2 > 0.9) in 

these regions, I then performed a regression analysis to determine if the presence of a local 

ancestry transition within the region interacted with the variant to influence the previously 

associated phenotype (Methods).  The significance of these interaction terms is provided in Table 

5; however, no terms passed either a Bonferroni multiple-testing correction threshold, or a false-

discovery rate (FDR) of 5%. Thus, there is little evidence local ancestry transitions interact with 

genetic variants to influence these phenotypes; however, there is also little evidence that there 

were any genetic associations within these regions. 
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Trait Regions Trait Regions 

LDL chr1:25525907-25908241  

chr1:55498949-55513521  

chr1:109655637-110043693 

chr2:21226560-21451827 

chr2:44057030-44100849 

chr5:74568112-74956052 

chr5:156331094-156505233 

chr6:16104254-16134837 

chr6:160468278-160579527 

chr7:44374092-44676286 

chr8:126441650-126543928 

chr9:136042324-136482476 

chr11:126219429-126279347 

chr12:121304826-121488876 

chr16:71996291-72147683 

chr19:11183837-11211208 

chr19:19301232-19792250 

chr19:45396899-45444266 

chr20:39083142-39128578 

chr20:39613984-40010045 

BMI chr1:72513687-72958905 

chr1:74961817-75078975 

chr1:177753776-177936525 

chr2:471136-719889 

chr3:85651797-86050826 

chr3:185747042-185862593 

chr4:45099376-45187658 

chr5:74562373-75123052 

chr6:50534485-51100751 

chr9:28403443-28499099 

chr11:8394189-8707147 

chr11:27452706-27749725 

chr11:47243424-48094879 

chr12:50168189-50290056 

chr14:30436558-30543794 

chr15:67649978-68215300 

chr16:19704224-20019432 

chr16:28306987-29001460 

chr16:53539509-54185787 

chr18:57727147-58094636 

chr19:34295278-34333501 

 

SBP chr1:11794676-11968356  

chr3:169087965-169195349  

chr4:81155937-81207963  

chr5:32689850-32867260  

chr5:157713315-157952955  

chr10:95869815-95949432  

chr10:104217441-104999266  

chr11:9886230-10370634  

chr11:16844924-16988268  

chr11:100497893-100698228  

chr12:89788633-90118890  

chr12:111681897-112225304  

chr15:74864568-75374591  

chr15:91390400-91441094  

chr17:43147554-43273187  

chr20:57660009-57790618 

DBP chr1:11824260-11909736  

chr3:169087965-169195349  

chr4:81155937-81207963  

chr4:103121726-103218446  

chr5:157713315-157952955  

chr6:25235303-26141375  

chr10:63381832-63553849  

chr10:104217441-104999266  

chr12:89824040-90118890  

chr12:111505708-113105952  

chr12:115343492-115438209  

chr15:74864568-75449674  

chr20:10941849-10998754  

chr20:57660009-57790618 

 

Table 4. Metabochip regions associated with LDL, BMI, SBP, and DBP.  This chart indicates 

which Metabochip regions were previously associated with each trait, and therefore included in 

the targeted analysis. 
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Figure 17.  No variants significantly associated with SBP, DBP, LDL, or BMI in a targeted 

analysis of previously associated regions.  Manhattan plots for a Metabochip-WAS of A) 

baseline SBP, B) baseline DBP, C) baseline LDL, and D) BMI are provided.  The Bonferroni 

multiple-testing correction threshold for each trait in the targeted analysis (SBP: p = 6.57x10-6, 

DBP: p = 5.35x10-6, LDL: p = 7.23x10-6, BMI: p = 3.83x10-6), which none of the variants 

passed, is indicated by the red line. Regions with at least 100 local ancestry transitions are 

highlighted in orange. 
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Figure 18. No variants significantly associated with pre-medication measurements for SBP, 

DBP, or LDL in a targeted analysis of previously associated regions. Manhattan plots for a 

Metabochip-WAS of pre-medication measurements for A) SBP, B) DBP, and C) LDL are 

provided. The Bonferroni multiple-testing correction threshold for each trait in the targeted 

analysis (SBP: p = 6.58x10-6, DBP: p = 5.35x10-6, LDL: p = 7.25x10-6), which none of the 

variants passed, is indicated by the red line. 
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Figure 19. No variants significantly associated with post-medication measurements for 

SBP, DBP, or LDL in a targeted analysis of previously associated regions. Manhattan plots 

for a Metabochip-WAS of post-medication measurements for A) SBP, B) DBP, and C) LDL are 

provided. The Bonferroni multiple-testing correction threshold for each trait in the targeted 

analysis (SBP: p = 6.58x10-6, DBP: p = 5.35x10-6, LDL: p = 7.21x10-6), which none of the 

variants passed, is indicated by the red line. 
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Trait 

 

Metabochip Region 

 

SNPs (N) 

Nominal 

(p < 0.05) 

 

Bonferron

i 

 

FDR = 5% 

BMI chr16:53539509-54185787 499 14 0 0 

 chr18:57727147-58094636 277 1 0 0 

DBP chr6:25235303-26141375 674 25 0 0 

 chr12:111505708-113105952 577 1 0 0 

LDL chr1:109655637-110043693 224 2 0 0 

 chr9:136042324-136482476 301 25 0 0 

 

Table 5. Local ancestry transitions do not significantly interact with variants to influence 

DBP, LDL, or BMI.  I tested whether local ancestry transitions interact with variants in 

previously-associated regions with at least 100 local ancestry transitions to influence the 

indicated phenotype (Methods).  Here, I report the number of SNPs tested within that region, and 

the number of interaction terms that passed various significance threshold cut-offs. No 

interactions were significant with multiple-testing corrections.   

 

There are two potential explanations for the lack of genetic association within these 

regions: there is insufficient power to detect these effects, or that European-associations do not 

generalize to African American populations. To distinguish between these two possibilities, I 

performed power calculations across a range of allele frequencies and effect sizes.  For each trait, 

I determined the minimum effect size that I had a power of 80% to detect using the actual sample 

size, mean, standard deviation, and number of association tests performed using Quanto.153  I 

considered both a rare (MAF = 5%) and a common (MAF = 25%) allele frequency to capture the 

range in power across the allele frequency spectrum.  Table 6 contains the effect sizes that I was 

well-powered to detect for each trait. In the GWAS Catalog, there are common variants reported 

for all four traits that have effect sizes greater than those I am well-powered to detect; these are 

additionally reported in Table 6. Thus, I was well-powered to detect effects commensurate with 

those observed in European-populations across a broad range of allele-frequencies, which 

suggests that European-associations did not generalize to this dataset. Consequently, the lack of 

genetic association within the region likely accounts for why no significant interactions between 

variants and local ancestry transitions were observed. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

 

 

Trait 

Effect size 

detectable at 

MAF: 0.05 

Effect size 

detectable at 

MAF: 0.25 

GWAS Catalog 

Effect Size  

MAF ≥ 0.05 

SBP: First 3.75 mmHg 2.00 mmHg 5.43 mmHg 

SBP: Pre 3.75 mmHg 1.75 mmHg 5.43 mmHg 

SBP: Post 3.75 mmHg 2.00 mmHg 5.43 mmHg 

DBP: First 2.50 mmHg 1.25 mmHg 3.20 mmHg 

DBP: Pre 2.25 mmHg 1.25 mmHg 3.20 mmHg 

DBP: Post 2.50 mmHg 1.25 mmHg 3.20 mmHg 

LDL: First 8.25 mg/dL 4.25 mg/dL 12.30 mg/dL 

LDL: Pre 10 mg/dL 5.00 mg/dL 12.30 mg/dL 

LDL: Post 13 mg/dL 6.75 mg/dL 12.30 mg/dL 

BMI 1.25 units 0.75 units 1.54 units 

 

Table 6.  Targeted analysis is well-powered to detect anticipated effects for SBP, DBP, 

LDL, and BMI.  I calculated the effect size at which there was 80% power to detect effects for 

each trait, using the actual mean, standard deviation, sample size, and number of association tests 

performed. I considered both a rare allele frequency (MAF = 0.05) and a common allele 

frequency (MAF = 0.25). For each trait, I identified the strongest-effect variant associated in the 

GWAS Catalog for a common variant (MAF ≥ 0.05). 

 

Local ancestry transitions interact with variants to influence GWAS Catalog traits 

 

The GWAS Catalog32 contained additional phenotypes that had been associated to regions fine-

mapped by Metabochip.  I exclusively analyzed associations for variants that occurred in 

Metabochip regions with at least 100 observed local ancestry transitions, as I ultimately wished 

to investigate the interaction of these transitions with variants. I additionally limited the 

associations to those that made reference to African ancestry in the study sample, were for 

phenotypes that could be readily derived from the EHR, and had at least 200 cases in the EHR.  

This resulted in 28 phenotype-Metabochip region pairs (Table 7). I did not restrict the analysis to 

the specific variant referenced in the GWAS Catalog, due to both differential LD structure 

between populations and representation of different variants on different genotyping platforms. 

Instead, I tested all variants in the Metabochip region for association with the phenotype.  There 

was at least one nominal genetic association for each trait-Metabochip region pair, illustrating 

some level of genetic association within the region.  
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GWAS Catalog 

Trait 

Corresponding EHR Trait Metabochip Region 

Urate levels UricA* chr6:25235303-26141375 

Type 2 diabetes PAGE T2D Algorithm154 chr11:2444094-2943115 

Red blood cell 

traits 

RBC*; RDW* chr6:25235303-26141375 

Iron status 

biomarkers 

TIBC* chr6:25235303-26141375 

Weight Weight** chr16:53539509-54185787 

chr18:57727147-58094636 

Hematology traits Alb*; AlkP*; AN-GAP*; BUN*; Ca*; 

Cl*; CO2*; Creat*; GluBed*; Gluc*; 

Hgb*; K*; MCHC*; MCH*; MCV*; 

NA*; RBC*; RDW*; SGOT*; 

SGPT*; TBil*; WBC; MPV*; Plt-Ct*; 

TIBC* 

chr6:25235303-26141375 

Mean platelet 

volume 

MPV* chr12:111290599-113206306 

chr12:111505708-113105952 

chr12:111681897-112225304 

chr6:25235303-26141375 

Height Height** chr7:27784039-28282062 

Obesity-related 

traits 

BMI** chr16:53539509-54185787 

Platelet count Plt-Ct* chr12:111290599-113206306 

Coronary artery 

disease 

Cases at least one ICD-9 Codes (410 – 

414); all others were controls 

chr12:111290599-113206306 

chr12:111505708-113105952 

chr12:111681897-112225304 

chr13:110795080-111049623 

chr18:57727147-58094636 

LDL cholesterol First LDL-C measurement chr1:109655637-110043693 

chr1:109789347-109826136 

Body mass index BMI** chr12:111290599-113206306 

chr12:111505708-113105952 

chr12:111681897-112225304 

chr16:53539509-54185787 

chr18:57727147-58094636 

chr3:122976919-123206919 

chr3:123039584-123139034 

 

Table 7.  GWAS Catalog traits with genetic associations in Metabochip regions. I identified 

variants in the GWAS Catalog that were contained within Metabochip regions, and then filtered 

these down to a subset of associations with sufficient data to examine in this dataset.  Here, I 

provide the trait as described in the GWAS Catalog, the EHR-implementation of that trait, and 

the Metabochip region to which it corresponded.  In the case of lab values marked with an 
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asterisk, the median value was taken. In the case of values marked with a double asterisk, the 

median of yearly medians was taken. 

 

 I next investigated whether nearby transitions in local ancestry influenced the effects of 

these variants, as previously described. In Figure 20, the significance of all terms across 

Metabochip region chr6:25235303-26141375 with mean corpuscular hemoglobin (MCH) is 

provided as an example. I identified five significant interactions between local ancestry 

transitions and the allele across all traits, using a region-phenotype specific Bonferroni multiple 

testing correction.  I first visually characterized these interactions, grouping chromosomes 

together based on their local ancestry, allele, and local ancestry transition status. From this, it is 

apparent that two interactions (one between the variant rs9467458 and creatinine levels, the other 

between rs4712930 and white blood cell (WBC) counts) are driven by chromosome 

combinations that are rarely observed (i.e., have low cell counts) (Figure 21).  With so few 

observations, it is difficult to discern whether the chromosome category actually has an effect on 

the phenotype, or whether the individual with that chromosome category happens to fall on an 

extreme end of the normal phenotypic distribution for other reasons. This is evidenced by their 

lack of specific chromosome categories that are significant (Figure 21). The interaction between 

the variant rs1410438 and CO2 levels has a sufficient number of chromosomes in each category, 

and multiple chromosomes with a local ancestry transition seem to contribute to the significance 

of the interaction; however, it does not appear to be relevant whether the local ancestry transition 

is upstream or downstream of the variant (Figure 21).  This is suggestive of the transition itself, 

rather than any interaction with local ancestry, driving the effect. The two remaining interactions 

do have low numbers of chromosomes that meet the criteria for some categories; however, 

categories with low cell counts closely resemble the sample median and are not driving the trend. 

Consequently, two interactions remain promising and are further investigated. 

 



 56 

 
 

Figure 20. The association of genetic variants and local ancestry to MCH. The variant 

rs1800562 (location marked by gray line in A) has been associated with a variety of iron-related 

phenotypes, and is located on a region of chromosome six that was densely genotyped on the 

Metabochip platform. I tested all the variants within this region for association with MCH using 

a linear regression model, in which I included covariates (top three principal components, age at 

measurement, and gender) and terms for the allele, local ancestry, presence of a local ancestry 

A. 

B. 

C. 

D. 

E. 
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transition in the region, and an interaction between the allele and local ancestry transition 

(Methods). The Manhattan plots for these terms are provided in A-D (note the difference in 

scale), respectively.  The specific local ancestry transitions observed in this region are shown in 

E. Dark green indicates European ancestry along the chromosome; light green indicates African 

ancestry. 
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Figure 21. Interactions between local ancestry transitions and variants regulating 

creatinine, white blood cell counts, and CO2 levels.  For each significant interaction between 
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local ancestry transitions and a variant, I characterized the interaction by stratifying 

chromosomes based on: the local ancestry at the variant (EUR or AFR); whether they had the 

major or minor allele; whether there was a local ancestry transition on that chromosome within 

the broader Metabochip region, and if so, whether it occurred after (i.e., downstream) or before 

(i.e., upstream) of the variant.  The number of chromosomes in each category is additionally 

provided.  I conduced pairwise Mann Whitney U tests, comparing each category to the remainder 

of the sample, to determine significance.  Categories significantly different (p < 0.05) are shown 

in blue. The overall median is shown in red. The interaction between variant rs9467458 and local 

ancestry transitions to influence creatinine levels (A) is driven by a single chromosome of 

European ancestry, with the minor allele, and a downstream local ancestry transition. This 

chromosome category, while the most significant, does not significantly differ from the rest of 

the sample (p = 0.087). The interaction between variant rs4712930 and local ancestry transitions 

to regulate white blood cell (WBC) counts is attributable to three chromosomes with African 

ancestry, the minor allele, and an upstream ancestry transition. Again, while the most significant 

chromosome category, it is not significant (p = 0.051). Given the small cell counts, these are not 

further investigated.  The interactions between variant rs1410438 and local ancestry transitions 

associated with CO2 levels (C), while not due to low cell counts, does not have a clear biological 

interpretation.  Two chromosome categories, highlighted in blue, are significantly different (p < 

0.05) from the rest of the categories.  

rs16890640 interacts with local ancestry transitions to influence red blood cell traits 

 

We further investigated the two remaining interactions between local ancestry transitions and the 

allele to better understand the biological mechanisms underlying them. These two interactions 

identified the same variant, rs16890649, as interacting with a local ancestry transition to 

influence both MCH and mean corpuscular volume (MCV). These two phenotypes are highly 

correlated with one another, and consequently, the interactions strongly resemble one another. 

As shown in Figure 22, individuals with the variant on a European background and a 

downstream local ancestry transition have markedly lower MCH/MCV than any other 

combination. I further stratified these individuals on the basis of where their local ancestry 

transition occurred. There is a position-dependent effect wherein individuals with a local 

ancestry transition at the closest transition point (bp: 25481231) had lower MCH than did 

individuals with either of the two more distant transitions points (Figure 23). This suggests that 

the functional element that rs16890649 is putatively interacting with is located between 

rs16890649 and the second transition point. 
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Figure 22. Chromosomes with the minor allele for rs16890649 on a European background 

and a downstream local ancestry transition are associated with lower MCH and MCV.  To 

better understand the interactions for MCV (A) and MCH (B), I stratified chromosomes based 

on: the local ancestry at rs16890649 (EUR or AFR); whether they had the major or minor allele; 

whether there was a local ancestry transition on that chromosome within the broader Metabochip 

region, and if so, whether it occurred after (i.e., downstream) or before (i.e., upstream) of the 

variant.  The count row provides the number of chromosomes observed in each category.  

Individuals with a chromosome that: has the minor allele of rs16890649 on a European 

background with a downstream local ancestry transition have lower MCH and MCV levels than 

the sample median (indicated by the red line).  To determine which chromosome categories were 

driving the interaction, I performed a Mann Whitney U test comparing each chromosome 

category against the rest of the population; all significant interactions (p < 0.05) are in blue.  

Only one chromosome category was significant with multiple testing corrections for each 

pairwise test: the minor allele of rs16890649, on a European ancestry, with a downstream local 

ancestry transition for MCH (p = 0.0024).  



 61 

 
 

Figure 23. The effect of downstream local ancestry transitions on MCH is position-

dependent.  There were three possible points at which downstream local ancestry transitions 

occurred (Figure 20). Individuals with the transition point at chr6:25481231 had the lowest 

average MCH levels. Individuals with transitions at the two subsequent transition points began to 

approach the median MCH level, which is shown in red. The number of chromosomes with 

European ancestry, the variant, and a local ancestry transition at each of these locations is 

provided above each boxplot. The MCH levels were not significantly different (p > 0.05; Mann 

Whitney U test) from one another; however, this is likely due to the small number of 

chromosomes with transitions at the later points. 

 

To better understand the biological mechanism mediating this interaction, I annotated this 

variant.  First, it is roughly three times more common in European-descent populations (CEU = 

23%) than it is in African-descent populations (YRI = 7%). It occurs within an intron of 

LRRC16A, which encodes a cytoskeleton-associated protein involved in regulation of actin 

polymerization; it is also associated with platelet development and production. rs16890640 is an 

eQTL for LRRC16A in whole blood, although it is not predicted to be an enhancer based on 

histone-modification patterns. However, the variant does fall within an observed binding site for 

a relevant transcription factor MAFK (Figure 24); when knocked out in mice, this transcription 

factor results in reduced MCV and MCH levels155. Additionally, it is less than 500 base pairs 

upstream of a predicted insulator element (Figure 24); however, chromatin looping patterns 

indicate that contacts occur on either side of this putative insulator (Figure 25). Thus, 

rs16890640 occurs within a plausibly relevant genomic-region, and is more frequent in 

Europeans.  
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Figure 24. Ancestry-specific recombination hotspots may disrupt functional elements 

pertinent to MCH and MCV. rs16890640 (highlighted in orange) is located within binding 

sites for MAFF and MAFK in HEPG2. Additionally, it occurs approximately 500 base pairs 

upstream of a predicted insulator element. This variant interacts with a downstream local 

ancestry transition, which likely occurs at one of the two recombination hotspots shown here. 

The first is shared between populations, whereas the second is specific to YRI, an African 

population. This recombination peak is in close proximity to rs2274089 (highlighted in purple), a 

GWAS catalog variant for related traits, and overlaps the next insulator element in GM12878. 
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Figure 25. Local ancestry transitions may perturb chromatin looping patterns within the 

region. The genomic region containing the African-specific recombination peak physically 

interacts with the promoter of LRRC16A based on ChIA-PET data for RAD21 in GM12878. The 

GWAS variant rs2274089, associated with a relevant phenotype, is highlighted in orange. 

 

 

I next investigated why this variant might interact with a downstream local ancestry 

transition to influence MCH and MCV levels.  I identified a relatively close (within 20kb) 

GWAS-catalog variant associated with a related phenotype, serum transferrin levels (i.e., the 

amount of glycoproteins that bind free iron). This suggests that the genomic region may be 

functionally important for MCH and MCV as well. Notably, this variant, rs2274089, is flanked 

by the two recombination peaks that could result in a local ancestry transition in the area of 

interest (Figure 24). The first of these recombination peaks is observed in both European (CEU) 

and African (YRI) descent populations; however, the second recombination peak is African-

specific.  This African-specific recombination peak overlaps a predicted insulator element 

(Figure 24), although this ChromHMM prediction is based largely on the presence of CTCF 

binding. Chromatin looping data and gene expression data suggest this region may be an 

enhancer: the region contacts the LRRC16A promoter in GM12878 (Figure 25), and the variant 

rs2274089 is an eQTL for LRRC16A in whole blood. Regardless of whether the region is an 

enhancer or insulator, it is clearly engaged in regulatory chromatin looping and is pertinent to 

related phenotypes.  
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As elaborated on more fully in the Discussion, I hypothesize that the African-specific 

recombination site introduces novel genetic variants that disrupt the regulatory functions of this 

genomic region, that then permit the European variant rs16890640 to engage in ‘off-target’ 

effects. 

 

PheWAS approach does not identify significant interactions between local ancestry transitions 

and EHR-derived phenotypes 

 

The GWAS Catalog is an incomplete representation of phenotype-genotype associations: there 

are many health-relevant phenotypes for which GWAS have not been performed, but which are 

available in the EHR, and there are many phenotypes in the GWAS Catalog that have not been 

investigated in an African American population. I performed a phenome-wide association study, 

or PheWAS, to determine if Metabochip regions harbored any novel associations. Consequently, 

I initially performed a standard single-marker association analysis that did not incorporate local 

ancestry information. I did, however, restrict my analysis to Metabochip regions with at least 200 

local ancestry transitions as my ultimate goal was to investigate interactions between local 

ancestry transitions and alleles. Following quality control steps (MAF > 5%; LD-pruned at r2 > 0.9), 

this left 2,856 variants with local ancestry assignments for analysis. None of the associations 

identified in the PheWAS passed either a Bonferroni multiple testing correction or a false 

discovery rate threshold of 10%. However, 168 phenotype-genotype associations were nominally 

significant (p < 5x10-5). Using the previously described methodology, I investigated whether 

local ancestry transitions interacted with the allele to influence the phenotype for these nominal 

associations (Table 8) (Full details are available in the Appendix: Nominal PheWAS associations 

do not interact with local ancestry transitions to influence phenotypes). Only one interaction 

passed a Bonferroni-multiple testing correction; however, further investigation revealed that it 

was attributable to low cell counts. Thus, only nominal genetic associations were identified, and 

these variants did not interact with local ancestry transitions significantly.   
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Phecode Description Variant Variant 

p-value 

Variant*Local 

ancestry 

transition p-

value 

480.5 Bronchopneumonia and lung 

abscess 

rs17641977_G 2.16E-05 2.42E-06 

707.1 Decubitus ulcer chr16.52362593_G 2.34E-06 7.97E-04 

250.13 Type 1 diabetes with 

ophthalmic manifestations 

chr6.25733715_G 1.45E-05 1.51E-03 

204.4 Multiple myeloma chr1.109619786_G 8.62E-06 1.11E-02 

614.1 Pelvic peritoneal adhesions, 

female (postoperative) 

(postinfection) 

chr7.14901079_G 8.18E-06 1.61E-02 

440 Atherosclerosis rs2744238_G 3.86E-05 1.98E-02 

276.11 Hyperosmolality and/or 

hypernatremia 

chr1.160348446_A 2.95E-05 2.91E-02 

270.3 Disorders of plasma protein 

metabolism 

chr7.14760490_G 1.56E-05 3.20E-02 

647.1 Infections of genitourinary 

tract during pregnancy 

chr16.52588027_A 1.43E-06 3.87E-02 

331.9 Cerebral degeneration, 

unspecified 

chr13.109701508_G 3.24E-05 4.59E-02 

628 Ovarian cyst chr7.14566856_G 4.18E-05 5.13E-02 

 

 
Table 8. Top associations from PheWAS for interactions between local ancestry transitions and 

alleles. I examined whether variants nominally associated (p < 5x10-5) in the PheWAS interacted 

with local ancestry transitions to influence the associated phenotype.  The top ten results from 

this analysis are reported here, the rest are in Appendix A. While one interaction passed the 

Bonferroni multiple testing correction for the interaction analysis, it was driven by a single 

chromosome (i.e., low cell counts) and was not considered further. 

 

Discussion 

 

In this Chapter, I hypothesized that ancestry-variable recombination events would disrupt the 

haplotype boundaries typically observed, thereby enabling the detection of epistasis within 

haplotypes. I investigated this in almost ten thousand African American adults, with both EHR-

derived phenotypes and genetic data on the Metabochip.  I first sought to identify significant 

genetic associations to phenotypes around which the Metabochip was designed; however, these 

European-based associations did not generalize to African American populations, despite our 

study being well-powered to detect reported effect sizes.  To investigate epistasis within 

haplotypes, I then examined whether alleles interacted with nearby local ancestry transitions to 

influence these phenotypes, and found little support. However, when I performed the same 

analysis for associations that had been originally identified in African-descent population, I 

found an interaction between a variant and a nearby local ancestry transition. This suggests that 
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combinations of genomic regions from differential continental ancestries may interact with one 

another to influence health traits in humans. 

 A variety of potential biological mechanisms exist through which this might occur.  In 

the case of the interaction I identified, I hypothesize that events frequent in one continental 

population can each alter local regulatory events, and that when in combination with one another, 

influence a clinical phenotype.  Specifically, the variant rs16890640 was associated with reduced 

MCV and MCH levels when it occurred on a European background and there was an immediate 

downstream local ancestry transition. The variant was roughly three times more frequent in 

Europeans, and it may have a regulatory effect as it both occurs within observed binding sites for 

trait-relevant transcription factors and is an eQTL.  The transition could occur at either a hotspot 

shared between populations or at one specific to African-descent. These potential recombination 

sites flank a GWAS Catalog variant for a related trait, illustrating the phenotypic-relevance of 

the genomic region. The region also is densely annotated for regulatory function, and engages in 

chromatin looping to nearby promoters. I hypothesize that the African-specific recombination 

hotspot, which overlaps putative insulators, is introducing low-frequency genetic variants that 

alter its function.156 When this occurs, the regulatory variant rs16890640 is then able to engage 

in ‘off-target’ effects, which ultimately reduce MCH and MCV levels.  For example, the 

regulatory region could interact with HFE, a gene approximately 600 kb away that regulates iron 

uptake.157,158  Mutations in this gene cause hereditary haemochromatosis, wherein excess iron is 

deposited within organs, ultimately leading to their failure.159 To investigate this hypothesis, I am 

first examining whether there are such disruptive variants at the African-specific recombination 

peak.  There are also other possible explanations: regardless of recombination-induced 

mutagenesis, an African haplotype may simply be carrying a variant that interacts with 

rs16890640 to influence MCH and MCV. However, it is less clear whether downstream elements 

directly relate to MCH or MCV levels. Ultimately, functional validation of any hypotheses – 

such as examining whether chromatin looping is altered – will be required to discern between 

possibilities. 

The interaction I identified provides potential evidence for epistasis influencing health-

related phenotypes in humans. The variant rs16890640 is not significantly associated with the 

phenotype on its own – it is only in combination with the downstream transition to African 

ancestry that an association to the phenotype is observed.  While it is possible that this 

combination of events somehow is tagging a causal variant within this region, I consider this 

unlikely as nearby variants did not demonstrate a strong association. Instead, it highlights that 

admixed populations provide a unique opportunity to investigate epistasis, as novel combinations 

of variants are generated and unique population-specific recombination hotspots may disrupt 

functional haplotypes.  

 That I identified only a single interaction between a variant and local ancestry transitions 

should not be taken as evidence that these events are rare due to several limitations of our study.  

First, the Metabochip is a custom genotyping array specifically designed to capture variation 

within specific genomic regions; it is not a genome-wide platform. Thus, I only investigated a 

subset of the local ancestry transitions that occur within the whole genome. Additionally, it 

should be recognized that while EHRs provide a wealth of medical information, they are often 

incomplete representations – not all diagnoses may be contained within a patient’s EHR, 

especially when Vanderbilt Hospitals are not the patient’s source of primary care. In some cases, 

this may result in actual cases being considered controls. While this should not result in spurious 

associations, it would reduce our power to detect effects. Finally, all local ancestry transitions 
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were treated the same in this study, regardless of where they occurred, or whether it was from 

European to African, or vice-versa. I grouped the transitions together due to their general 

infrequency; however, this may have diluted signal originating from specific combinations. 

Consequently, interactions between variants and local ancestry transitions may be a more 

frequent mechanism influencing health-related phenotypes. 

 An additional limitation was the lack of robust genetic associations within this region, 

regardless of local ancestry transitions.  Given that these regions largely contained variants with 

significant associations in the GWAS Catalog, we were initially surprised by the lack of robust 

signal.  However, studies generalizing associations between European and African descent 

populations have had mixed success thus far.  Many find that while the direction of effect may be 

consistent between populations, the significance of this effect is influenced by differential LD 

structure with the causal variant, frequency differences between populations, and sample 

size.154,160–162 As a consequence, a notable proportion of variants fail to generalize between 

populations when significance of the association is the primary metric, which we used in this 

analysis.162,163 While this may account for the lack of generalization of signals between 

populations, the major issue for our study is the lack of robust associations, rather than the 

generalization of associations, as it obfuscates the interpretation of negative results. It is unclear 

in many cases whether local ancestry transitions do not interact with the variant to influence the 

phenotype, or whether the region is unrelated to the phenotype in African Americans.   

 There are several avenues I wish to explore in the future.  First, it is critical to replicate 

the interaction we identified in an additional dataset. I am currently examining the feasibility of 

doing so in either Geisinger or the eMERGE network.  Also, I wish to implement statistical 

approaches designed to pinpoint precisely what element the variant rs16890640 is interacting 

with to influence MCH and MCV, such as testing combinations of variants within the 

recombination region for epistasis with rs16890640.  Our hypothesis that genetic variants of 

different continental ancestries may also be investigated more broadly; for instance, instead of 

focusing on local ancestry transitions on a chromosome, complete genotyping or sequencing data 

would enable the investigation of differential local ancestry combinations in biological pathways.  

Similarly, differences in ancestry between the mitochondria or Y-chromosome and autosomal 

regions may be relevant. Finally, investigation of this hypothesis between three-way admixture 

populations, such as Hispanics, may improve power to detect effects, as local ancestry transitions 

are likely to be more frequent. 

 Here, I propose a mechanism in which genetic variants from different continental 

ancestries, when combined in admixed populations, result in phenotypic associations not 

otherwise observed. I identified a specific interaction in which this appears to occur, however 

this mechanism is general: it could apply to many phenotypes, all admixed populations, and may 

encompass other sorts of continental ancestry combinations, such as mitochondrial/Y-

chromosome with autosomal regions, or regions within biological pathways.  It highlights the 

need to perform genetic ancestry studies within admixed populations (as the variants may not 

have an effect in either continental population) in order to address health disparities, and the 

potential role of epistasis in human health. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

In this work, I developed a set of best practices for the study of statistical epistasis, and 

investigated whether there was evidence for regulatory epistasis in humans in two distinct 

biological contexts.  In Chapter 2, I first developed a set of quality control procedures to identify 

statistical interactions likely attributable to biological epistasis, rather than confounding 

processes. I then investigated whether cis-regulatory variants interact to regulate gene expression 

levels, a quantitative low-level phenotype, in cell lines, where environmental factors are kept 

constant.  Once confounding explanations were addressed, I found little evidence for epistasis 

between cis-regulatory variants influencing gene expression levels.  In Chapter 3, I investigated 

epistasis in admixed populations, under the hypothesis that ancestry-specific recombination 

hotspots may break apart haplotypes, thereby enabling the detection of epistasis. In contrast to 

molecular phenotypes examined in Chapter 2, the majority of phenotypes I investigated here 

were complex, EHR-derived phenotypes. I identified a promising interaction between a variant, 

and a downstream local ancestry transition, that influenced red blood cell traits.   

Overall, our results suggest that when rigorous statistical criteria are applied, interactions 

with a moderate effect size between common, unlinked variants are either uncommon at the 

population level across a broad range of phenotypes, or are not detectable by our approach.  On 

the surface, this appears to contradict both studies in model organisms, where epistasis is 

pervasive, and findings from massively parallel reporter assays. Here, I reconcile these findings, 

and make recommendations for the future study of epistasis based on the consensus of these 

bodies of literature. 

 

Reconciliation with findings from model organisms  

 

Evidence from model organisms indicates that epistasis accounts for a notable component of 

phenotypic variance in yeast1, Drosophila2,27, and mouse30 – yet I found little evidence for 

epistasis in humans.  There are several differences in both the genetic architecture of model 

organisms and in the experimental approach taken by these studies that may both account for this 

discrepancy and shed light on future approaches for the study of epistasis in humans. 

First, there is frequently a fundamental difference in the scientific question being 

addressed between studies of epistasis in model organisms versus those generally conducted in 

humans.  Studies in model organisms often quantify the overall effect of epistasis across the 

genome, whereas I sought to identify specific pairs of interacting elements.  This is analogous to 

comparing the amount of phenotypic variance attributable to additive effects in a heritability 

study to the amount of phenotypic variance explained by variants identified in a GWAS. To 

provide a more appropriate comparison to model organisms, future studies of epistasis might 

consider heritability analyses capable of partitioning phenotypic variance into non-additive 

genetic components. Studies of epistasis in model organisms that seek to identify specific 

interacting variants are more analogous to human-based studies; in yeast, they typically find that 

the interactions have smaller effect sizes than those observed for single variants.1 Bloom et al. 

found that the largest epistatic effect was approximately a fifth of the size of the largest additive 

effect for variants influencing gene expression levels.1 I was underpowered to detect smaller 

effect sizes in both Chapters 2 and 3 (Tables 2 and 6). Therefore, findings in both bodies of 
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literature would be consistent with large numbers of small-effect interactions that account for the 

majority of phenotypic variance attributable to epistatic effects. 

An alternative, and not necessarily exclusive, explanation is that I investigated epistasis 

on a different scale than that used in many model organism studies. I specifically investigated 

epistasis between variants proximal to one another, either within the same cis-regulatory region 

or in specific genomic regions densely genotyped by Metabochip. In contrast, studies of model 

organisms often quantify epistasis on the chromosomal level,30 or between genes on different 

chromosomes.7,8  Thus, epistasis may be occurring primarily between distant genomic elements, 

which are frequently referred to as gene by gene interactions.  Comprehensive studies of 

pairwise interactions between such distal variants incur a steep multiple testing correction, and 

thus have limited power to detect effects in sample sizes typically used in genetic association 

studies.80  Careful filtering of the pairs tested based on biological knowledge, such as pathways 

or protein-protein interactions, may preserve power by reducing the number of associations 

tested. 

Finally, model organisms generally have a more homogenous genetic background than 

natural populations. This reduces the phenotypic ‘noise’ attributable to other genetic variants in 

the genome, and thereby improves power to detect associations.  In contrast, the increased 

genetic diversity within natural populations such as humans results in greater phenotypic 

variance and reduced power to detect effects. There are population isolates – such as the Amish – 

that are more homogenous both genetically and culturally than are many other populations.  

Investigation of epistasis in population isolates may therefore improve power to detect effects.  

Ultimately, the conclusions drawn from animal studies and those presented in this work 

are consistent with one another.  And while minimal evidence for epistasis was found in 

Chapters 2 and 3, the approaches used in model organisms highlight potential ways to move the 

study of epistasis in humans forward – largely through statistical methods that are capable of 

capturing aggregate effects, investigation of gene by gene interactions, and/or the usage of 

population isolates with homogeneous genetic backgrounds.  

 

Reconciliation with findings from massively parallel reporter assays 

 

In addition to model organisms, massively-parallel reporter assays have been used to study 

epistasis for human regulatory sequences with engineered mutations. Kwasnieski et al. found that 

the majority of double mutants showed evidence of epistasis influencing the regulatory function 

of the Rhodopsin promoter.78 This is most closely analogous to the interrogation of epistasis 

between cis-regulatory variants in Chapter 2, and draws markedly different conclusions. Several 

methodological differences may account for these discrepancies. 

First, Kwanieski et al.78 engineered genetic variation, rather than relying on observed genetic 

variation within the natural population.  Additionally, they only investigated effects within a 

single cis-regulatory sequence. Thus, while their results neatly demonstrate the potential for 

epistasis within the cis-regulatory region, they cannot be taken as a measure of how common 

such interactions may be.  Secondly, they engineered genetic variants within a 52 base pair 

window, meaning that most variant combinations tested were in very close proximity to one 

another. In contrast, common genetic variants in human populations are found approximately 

every 300 base pairs. Even if common variants were in such close proximity to one another, it is 

unlikely that a recombination event would occur in the limited space between these variants such 

that they are broken apart.  Thus, scenarios described by Kwasnieski et al.78 would most likely 
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occur within haplotypes in natural populations. As discussed in Chapters 2 and 3, without all 

possible genotype combinations present regression-based techniques are unable to detect 

epistasis.  Finally, the ability to detect effects within a reporter assay is in no way dependent on 

the frequency of the alleles within the population. In contrast, the power to detect effects in 

Chapters 2 and 3 was intimately tied to the frequency of the allele-combinations within the 

population.  

 Ultimately, Kwasnieski et al. found that engineered variants within a cis-regulatory 

region interact with one another the majority of the time; however, their results do not shed light 

on how frequently such combinations of variants actually occur within the natural population. 

Additionally, their findings indicate that epistasis within this region is likely to occur within 

haplotypes, or between rare variants. In these situations, reporter assays may be ideal 

methodological approaches to detect regulatory epistasis. 

 

Where is epistasis? 

 

We conclude that epistasis is a component of the genetic architecture in humans – the debate is 

over where it occurs, and how much phenotypic variation it accounts for. I demonstrate in 

Chapters 2 and 3 that interactions with large effects between common, unlinked variants in 

proximal regions are likely uncommon. This is consistent with analogous studies in model 

organisms and is not contradicted by results from massively parallel reporter assays. Based on 

both our results and these bodies of literature, I propose that epistasis is primarily based on 

small-effect interactions, or occurs in the following contexts: within haplotypes, as suggested by 

Kwasnieski et al.78 and Corradin et al.126; between uncommon variant combinations; or between 

distant regions, as shown repeatedly in model organisms.7,8,30 These explanations are not 

inherently exclusive; for example, distal interactions may have small effect sizes.  I recommend 

that future studies of epistasis investigate it within these contexts.  

 

Association-based methods may be ill-suited for future studies of epistasis 

 

Standard association tests that use regression to detect relationships between genotypes and 

phenotypes rely on genetic diversity within natural populations to detect epistasis, and may be 

ill-suited to detect epistasis in the above situations. First, they require that all nine possible 

genotype combinations be represented within the sample in order to accurately partition 

phenotypic variance amongst genetic components.  In the case of both haplotype effects and rare 

variants, this is unlikely to occur.  Secondly, the power to detect effects in such studies is a 

function of five factors: allele frequencies, LD between variants, effect size, sample size, and the 

number of association tests performed.  Researchers cannot alter either allele frequencies, LD 

patterns, or the effect size; thus, the only way to improve power is either to increase sample size 

or to reduce the number of association tests.  To comprehensively investigate trans-interactions 

(i.e., gene by gene interactions), the number of association tests increases dramatically, as does 

the multiple testing correction; Hemani et al. conducted such a study, and faced a multiple 

testing correction threshold of 2.91x10-16.80  Thus, investigating either small-effect interactions 

or trans- interactions comprehensively will require an increase in sample size above and beyond 

that required by standard GWAS. While many factors influence the power to detect epistasis, 

even the best of circumstances (i.e., common, unlinked variants) will require sample sizes of 

approaching 75,000 to be well-powered to detect modest effect size interactions (Table 9). Thus, 
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the utility of association-based approaches to detect epistasis is limited by its reliance on 

naturally occurring genetic variation within a population, pervasive confounding influences, and 

a limited power to detect effects. 

 

MAF Variant 1 MAF Variant 2 Cases Controls Power 

0.05 0.05 300,000 350,000 0.76 

 0.25 70,000 100,000 0.80 

 0.5 40,000 110,000 0.81 

0.25 0.25 15,000 50,000 0.75 

 0.5 11,500 50,000 0.79 

0.5 0.5 10,000 50,000 0.80 

 

Table 9. Sample sizes required for adequate power to detect small effect interactions or 

trans-effects. Here, I estimate the sample sizes required to detect epistasis assuming simplified 

models (i.e., no linkage between variants) and a Bonferroni multiple testing correction of 1.0x10-

14, which is more lenient than the threshold used for a comprehensive analysis of epistasis 

genome-wide.80 I assumed only an effect of the interaction (odds ratio = 1.2), without marginal 

effects of the variants. Approximations were made using the QIMR’s Epistasis Power Calculator 

(https://gump.qimr.edu.au/general/manuelF/epistasis/epipower4i.html). 

 

  

Alternative approaches to the study of epistasis 

 

Alternative methods are required to identify epistasis in haplotypes, between rare variants, with 

small effect sizes, or between distant variants.  Below, I make recommendations on how to 

approach the study of epistasis in these contexts.  

 Detection of epistasis on a haplotype requires that it be broken, such that the effect of 

each variant individually can be quantified and compared to the joint effect. This can be 

accomplished by either synthesizing sequences, as was done by Kwasnieski et al.78, or through 

genome-editing approaches such as CRISPR. Once the required combinations of genetic 

variation have been generated, a functional assay is required to measure their effect.  In the case 

of regulatory sequences, this can be readily accomplished through reporter assays. For coding 

variants within the same gene, epistasis has been quantified through comparing changes in 

Gibbs’s free energy,65–67 other thermodynamic properties, or the predicted 3D structure. For 

coding variants in different genes, epistasis between variants within protein-protein interfaces 

has been biochemically assayed to determine if they disrupt binding.68  Ultimately, investigation 

of epistasis within haplotypes will be best accomplished through methods that can create all 

combinations of the observed variants, and then have a high-throughput assay to measure the 

phenotypic effect. 

 Detection of epistasis between rare variants can be best accomplished when power to 

detect effects is not contingent on the frequency within the population.  This can be 

accomplished through two major methodological approaches: family-based studies and 

functional assays such as those just described. Family studies would be best suited for the study 

of epistasis between variants distant from one another, as recombination unlikely to break apart 

variants in close proximity to one another (i.e., haplotypes).  Functional assays that rely on either 

synthesized or edited sequences, however, could be amenable to either cis- or trans-interactions.  

https://gump.qimr.edu.au/general/manuelF/epistasis/epipower4i.html


 72 

Thus, the investigation of epistasis involving rare variants is likely not best accomplished within 

the general population, but rather through the usage of families or high throughput functional 

assays.  

 Detection of epistatic interactions with small-effect sizes is mostly impeded by lack of 

power.  There are two possible ways to circumvent this issue – methods that look for the 

aggregate effect of epistasis genome-wide, rather than individual effects, and methods that 

improve power.  First, methods such as genome-wide complex trait analysis (GCTA) quantify 

the phenotypic variance attributable to additive genetic effects; however, this method can be 

expanded to partition phenotypic variance to non-additive effects such as epistasis. This 

approach would be especially useful, as it would indicate the extent of epistatic effects that could 

be anticipated under ideal circumstances. Secondly, there are ways in which power can be 

improved – namely, reducing the number of association tests or changing attributes of the 

sample.  Thus, small-effect epistasis could be investigated using current association-based 

approaches; however, this would be possible for only a limited number of pairs of variants.  By 

investigating epistasis in population isolates, which have reduced phenotypic noise, small-effect 

epistasis could be examined more comprehensively.  Ideally, I recommend a two-step approach 

to the investigation of small-effect epistasis: first, quantify the aggregate effect; secondly, 

perform a targeted analysis of specific pairs of variants. 

 Finally, detection of epistasis between variants on different chromosomes, i.e. gene by 

gene interactions, is limited by power to detect effects in the face of numerous association tests.  

Approaches that are able to use biological knowledge – such as pathways, or protein-protein 

interactions – to prune down the number of association tests may increase the likelihood of 

identifying epistasis; however, they are limited by a priori knowledge and cannot address the 

extent of epistasis.  Alternatively, the number of association tests performed could be reduced by 

collapsing genetic variants into a single variable.  For instance, a collapsing or burden score 

could indicate whether there were any variants within a gene predicted to have deleterious 

effects.164–169 Then, all pairwise combinations of genes could be investigated for epistatic effects. 

This could be applied to a specific phenotype or, pending the availability of EHR data, to a 

PheWAS. Alternatively, data from chromatin conformation capture (e.g., 3C) approaches could 

be used to identify genomic regions in physical contact with one another, and epistasis could be 

investigated between these regions specifically.  Overall, the interrogation of trans-effects is 

unlikely to be able to quantify the prevalence of epistasis genome-wide; however, careful 

selection of variants may enable the detection of epistasis in specific contexts. 

 Ultimately, the study of epistasis still has the potential to shed light on the biological 

mechanisms underlying complex disease in humans; however, it is critical that it be carefully 

investigated.  In Chapter 2, I demonstrate that the quality control procedures sufficient for single-

variant association analysis do not address rampant confounding influences.  In Chapters 2 and 3, 

I demonstrate that common, cis-regulatory variants do not interact with one another with effect 

sizes anticipated based on single-variant analyses. Thus, both the biological expectations and 

statistical methodologies sufficient for single-marker analyses are not suited for the study of 

epistasis. Instead, the approaches which I outlined above are more likely to identify epistasis 

where it likely resides – within haplotypes, between rare variants, in interactions with small 

effects, or between distant variants. 
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APPENDIX 

 

 

A. Nominal PheWAS associations do not interact with local ancestry transitions to 

influence phenotypes. 

I performed a PheWAS to identify potential genetic associations within Metabochip regions not 

represented in the GWAS Catalog.  While no associations passed a Bonferroni multiple-testing 

correction threshold, 168 variants were nominally significant (p < 5x10-5).  These associations 

are reported below. I then examined whether these variants interacted with local ancestry 

transitions (Methods) to influence the associated phenotype.  The results are sorted based on the 

significance of the interaction p-value.  While one interaction passed the Bonferroni multiple 

testing correction for the interaction analysis, it was driven by a single chromosome (i.e., low 

cell counts) and was not considered further. 

 

 

Phecod

e 

Description Variant Variant 

p-value 

Variant*Loca

l ancestry 

transition p-

value 

480.5 Bronchopneumonia and lung 

abscess 

rs17641977_G 2.16E-05 2.42E-06 

707.1 Decubitus ulcer chr16.52362593_G 2.34E-06 7.97E-04 

250.13 Type 1 diabetes with 

ophthalmic manifestations 

chr6.25733715_G 1.45E-05 1.51E-03 

204.4 Multiple myeloma chr1.109619786_G 8.62E-06 1.11E-02 

614.1 Pelvic peritoneal adhesions, 

female (postoperative) 

(postinfection) 

chr7.14901079_G 8.18E-06 1.61E-02 

440 Atherosclerosis rs2744238_G 3.86E-05 1.98E-02 

276.11 Hyperosmolality and/or 

hypernatremia 

chr1.160348446_A 2.95E-05 2.91E-02 

270.3 Disorders of plasma protein 

metabolism 

chr7.14760490_G 1.56E-05 3.20E-02 

647.1 Infections of genitourinary tract 

during pregnancy 

chr16.52588027_A 1.43E-06 3.87E-02 

331.9 Cerebral degeneration, 

unspecified 

chr13.109701508_

G 

3.24E-05 4.59E-02 

628 Ovarian cyst chr7.14566856_G 4.18E-05 5.13E-02 

578.2 Blood in stool chr13.109644522_

G 

3.62E-06 5.39E-02 

41.2 Streptococcus infection chr7.14250501_A 3.65E-05 5.57E-02 

669 Complications of labor and 

delivery NEC 

chr6.25453823_G 1.57E-05 6.36E-02 

781 Symptoms involving nervous 

and musculoskeletal systems 

chr7.14586312_C 1.17E-05 7.28E-02 

592.1 Cystitis rs10800394_G 1.21E-05 7.44E-02 
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710.12 Chronic osteomyelitis chr7.15045801_G 2.29E-05 7.55E-02 

427.9 Palpitations chr13.109782559_

G 

2.09E-05 8.43E-02 

348.8 Encephalopathy, not elsewhere 

classified 

chr11.2692602_A 2.37E-05 9.38E-02 

427.9 Palpitations chr13.109782978_

G 

5.51E-06 1.03E-01 

608 Other disorders of male genital 

organs 

chr7.14334642_G 4.39E-05 1.15E-01 

250.14 Type 1 diabetes with 

neurological manifestations 

chr16.52263655_A 4.53E-05 1.18E-01 

577 Diseases of pancreas chr1.160589579_A 4.81E-05 1.22E-01 

592 Cystitis and urethritis rs10800394_G 1.52E-05 1.26E-01 

994 Sepsis and SIRS chr6.25596244_A 2.63E-05 1.28E-01 

117.1 Histoplasmosis chr1.160477578_A 1.49E-05 1.38E-01 

539 Bariatric surgery chr7.14532220_C 7.97E-06 1.55E-01 

614.3 Pelvic inflammatory disease 

(PID) 

chr7.14585551_C 6.61E-06 1.55E-01 

627.22 Need for Hormone replacement 

therapy (postmenopausal) 

rs12340741_G 2.71E-05 1.57E-01 

285.21 Anemia in chronic kidney 

disease 

rs6456688_A 3.55E-05 1.58E-01 

704.2 Hirsutism chr13.109648374_

A 

3.95E-05 1.63E-01 

290.1 Dementias chr6.26230912_C 1.27E-05 1.66E-01 

769 Nonallopathic lesions NEC chr7.14163174_G 4.16E-05 1.67E-01 

601.3 Orchitis and epididymitis chr7.14548630_A 9.54E-06 1.70E-01 

245.2 Chronic thyroiditis chr13.109632419_

A 

6.93E-07 1.73E-01 

245.21 Chronic lymphocytic thyroiditis chr13.109632419_

A 

6.93E-07 1.73E-01 

707.1 Decubitus ulcer chr7.15035730_A 8.89E-06 1.73E-01 

740.1 Osteoarthritis; localized chr13.109679060_

G 

1.67E-05 1.75E-01 

614.54 Abscess or ulceration of vulva chr7.14337575_G 2.51E-06 1.75E-01 

242 Thyrotoxicosis with or without 

goiter 

chr16.52671149_A 1.46E-05 1.78E-01 

245 Thyroiditis chr13.109632419_

A 

4.70E-05 1.82E-01 

513.3 Hypoventilation chr7.14812267_A 3.79E-05 1.87E-01 

251 Other disorders of pancreatic 

internal secretion 

chr7.14820434_G 9.25E-06 1.89E-01 

473 Diseases of the larynx and vocal 

cords 

chr13.109805546_

A 

2.33E-05 2.02E-01 

274 Gout and other crystal chr13.109844573_ 2.72E-05 2.03E-01 
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arthropathies C 

769 Nonallopathic lesions NEC chr7.14162727_G 2.73E-05 2.04E-01 

204 Leukemia chr6.25517293_G 2.33E-05 2.10E-01 

149.4 Cancer of larynx chr13.109693401_

C 

2.67E-05 2.11E-01 

473 Diseases of the larynx and vocal 

cords 

chr13.109803476_

A 

2.68E-06 2.13E-01 

623 Hypertrophy of female genital 

organs 

chr11.2519713_A 3.23E-05 2.14E-01 

457 Encounter for long-term 

(current) use of anticoagulants, 

antithrombotics, aspirin 

chr16.52658019_G 3.69E-05 2.30E-01 

614.52 Vaginitis and vulvovaginitis chr16.52565323_C 1.40E-05 2.39E-01 

772.3 Muscle weakness chr13.109638381_

A 

1.18E-05 2.42E-01 

415.2 Chronic pulmonary heart 

disease 

chr16.52645735_A 8.46E-06 2.43E-01 

614.52 Vaginitis and vulvovaginitis chr11.2754881_G 2.85E-05 2.57E-01 

204 Leukemia chr16.52102494_G 2.54E-05 2.71E-01 

526 Diseases of the jaws chr16.52449474_A 2.39E-05 2.72E-01 

696.41 Psoriasis vulgaris chr13.109715932_

A 

2.22E-06 2.75E-01 

614.5 Inflammatory disease of cervix, 

vagina, and vulva 

chr16.52565323_C 4.73E-05 2.77E-01 

245.2 Chronic thyroiditis rs4721366_A 1.59E-05 2.82E-01 

245.21 Chronic lymphocytic thyroiditis rs4721366_A 1.59E-05 2.82E-01 

592 Cystitis and urethritis chr16.52109683_C 5.82E-06 2.83E-01 

245 Thyroiditis rs4721366_A 4.66E-06 2.89E-01 

473.4 Voice disturbance chr13.109803934_

C 

4.49E-05 2.92E-01 

433.8 Late effects of cerebrovascular 

disease 

chr13.109680753_

A 

3.94E-05 2.95E-01 

613.1 Inflammatory disease of breast chr7.15001772_A 3.02E-05 2.96E-01 

715.1 Sacroiliitis NEC chr13.109780358_

G 

1.92E-05 2.98E-01 

245.2 Chronic thyroiditis chr13.109621283_

G 

1.08E-05 3.00E-01 

245.21 Chronic lymphocytic thyroiditis chr13.109621283_

G 

1.08E-05 3.00E-01 

696.4 Psoriasis chr13.109715932_

A 

6.93E-06 3.03E-01 

696 Psoriasis and related disorders chr13.109715932_

A 

6.42E-06 3.12E-01 

592 Cystitis and urethritis chr1.160539069_A 4.09E-05 3.13E-01 

946 Anaphylactic shock NOS chr7.14390177_G 4.66E-05 3.16E-01 
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642.1 Preeclampsia and eclampsia chr16.52560791_G 3.34E-05 3.20E-01 

375.1 Dry eyes chr6.25764640_C 2.38E-05 3.25E-01 

334 Degenerative disease of the 

spinal cord 

chr13.109654095_

A 

3.91E-06 3.57E-01 

706.1 Acne chr6.25374688_A 2.34E-05 3.58E-01 

735.21 Hammer toe (acquired) chr6.25653929_G 2.26E-05 3.59E-01 

706.1 Acne chr6.25381901_T 4.07E-05 3.64E-01 

496.3 Bronchiectasis chr7.14420590_G 7.06E-06 3.65E-01 

225.1 Benign neoplasm of brain, 

cranial nerves, meninges 

chr16.52658905_A 6.47E-06 3.83E-01 

626.2 Dysmenorrhea chr7.15031313_A 2.44E-05 3.86E-01 

202.2 Non-Hodgkins lymphoma chr16.52743030_A 2.38E-05 3.89E-01 

585.33 Chronic Kidney Disease, Stage 

III 

chr9.135184633_A 1.29E-05 3.93E-01 

150 Cancer of esophagus chr6.25373969_A 6.54E-06 3.97E-01 

646 Other complications of 

pregnancy NEC 

chr1.160257615_G 2.72E-05 3.98E-01 

990 Effects radiation NOS chr11.2747784_A 2.94E-06 3.99E-01 

245 Thyroiditis chr7.14820824_A 4.66E-05 3.99E-01 

368 Visual disturbances chr16.52685380_A 4.05E-05 4.02E-01 

250.14 Type 1 diabetes with 

neurological manifestations 

chr7.14683390_A 2.27E-05 4.07E-01 

225.1 Benign neoplasm of brain, 

cranial nerves, meninges 

chr16.52658156_C 3.68E-05 4.14E-01 

614 Inflammatory diseases of 

female pelvic organs 

chr16.52565323_C 3.54E-05 4.18E-01 

225 Benign neoplasm of brain and 

other parts of nervous system 

chr16.52658905_A 2.68E-05 4.23E-01 

573.2 Liver replaced by transplant chr1.109762407_G 5.87E-06 4.40E-01 

642.1 Preeclampsia and eclampsia chr16.52566594_G 1.37E-06 4.46E-01 

635.2 Antepartum hemorrhage, 

abruptio placentae, and placenta 

previa 

chr1.160331877_G 4.98E-07 4.51E-01 

695.42 Systemic lupus erythematosus chr9.135125327_A 1.41E-05 4.67E-01 

578.2 Blood in stool chr13.109662438_

G 

5.27E-06 4.74E-01 

707.3 Chronic ulcer of unspecified site rs9295676_A 1.90E-05 4.86E-01 

377.3 Optic neuritis/neuropathy rs4784323_A 3.39E-05 4.87E-01 

745 Pain in joint chr1.160405816_A 4.82E-05 4.87E-01 

170.1 Bone cancer chr1.160435746_G 4.65E-05 4.88E-01 

281.9 Deficiency anemias rs16835127_G 9.91E-06 4.89E-01 

473.4 Voice disturbance chr13.109803476_

A 

6.23E-06 4.97E-01 

290 Delirium dementia and amnestic 

and other cognitive disorders 

chr6.26230912_C 3.24E-06 5.01E-01 
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512.7 Shortness of breath rs4395714_C 4.17E-06 5.04E-01 

635 Hemorrhage during pregnancy; 

childbirth and postpartum 

chr1.160331877_G 2.31E-05 5.19E-01 

285 Other anemias chr11.2891879_A 2.78E-05 5.22E-01 

202.22 Reticulosarcoma chr16.52743030_A 4.74E-06 5.23E-01 

592.1 Cystitis chr16.52109683_C 1.10E-05 5.32E-01 

513.3 Hypoventilation chr1.160272821_G 5.56E-07 5.40E-01 

681.2 Cellulitis and abscess of 

face/neck 

chr9.135280428_G 2.63E-05 5.45E-01 

368.4 Visual field defects chr6.25504869_A 8.24E-06 5.46E-01 

270.32 Paraproteinemia chr9.135300838_G 1.06E-05 5.48E-01 

296.1 Bipolar chr13.109604690_

A 

1.31E-05 5.50E-01 

593.1 Gross hematuria chr16.52331386_G 2.58E-05 5.50E-01 

772.1 Muscular wasting and disuse 

atrophy 

chr13.109638381_

A 

1.88E-05 5.52E-01 

536 Disorders of function of 

stomach 

chr7.14943393_A 1.70E-05 5.61E-01 

379.5 Disorders of iris and ciliary 

body 

chr1.160380841_A 2.88E-05 5.66E-01 

446 Polyarteritis nodosa and allied 

conditions 

chr11.2800624_G 1.17E-05 5.72E-01 

628 Ovarian cyst chr13.109650477_

A 

2.95E-05 5.77E-01 

506 Empyema and pneumothorax rs16835127_G 2.26E-07 5.82E-01 

635.2 Antepartum hemorrhage, 

abruptio placentae, and placenta 

previa 

chr1.160321867_C 2.55E-05 5.93E-01 

946 Anaphylactic shock NOS chr7.15032089_T 5.59E-06 5.93E-01 

496.3 Bronchiectasis chr6.25522825_A 6.37E-06 5.95E-01 

285.21 Anemia in chronic kidney 

disease 

chr7.14760490_G 2.36E-05 6.08E-01 

697 Sarcoidosis chr1.160272821_G 2.09E-05 6.12E-01 

288.3 Eosinophilia chr1.109538695_A 3.44E-05 6.32E-01 

560.1 Paralytic ileus chr1.160626500_A 4.25E-05 6.40E-01 

473.3 Paralysis/spasm of vocal cords 

or larynx 

chr7.14175664_G 9.28E-06 6.52E-01 

735.2 Acquired toe deformities chr6.25653929_G 4.82E-05 6.53E-01 

946 Anaphylactic shock NOS chr7.15022570_T 2.21E-05 6.73E-01 

280.2 Iron deficiency anemia 

secondary to blood loss 

(chronic) 

chr7.14294180_A 4.33E-05 6.80E-01 

540.11 Acute appendicitis chr16.52557265_G 2.29E-05 6.82E-01 

871.2 Open wound of finger(s) chr1.109509843_A 2.45E-05 7.07E-01 

530.1 Esophagitis, GERD and related chr7.14684017_A 4.20E-05 7.08E-01 
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diseases 

352 Disorders of other cranial 

nerves 

chr16.52611296_A 2.71E-05 7.08E-01 

357 Inflammatory and toxic 

neuropathy 

chr6.26206734_A 2.82E-05 7.15E-01 

348 Other conditions of brain chr13.109680753_

A 

4.01E-05 7.30E-01 

695.7 Prurigo and Lichen chr16.52713187_A 2.95E-05 7.34E-01 

446 Polyarteritis nodosa and allied 

conditions 

chr11.2797941_A 1.28E-05 7.52E-01 

389.2 Conductive hearing loss chr16.52713187_A 3.26E-06 7.55E-01 

721 Spondylosis and allied disorders chr11.2712577_A 3.19E-05 7.66E-01 

819 Skull and face fracture and 

other intercranial injury 

chr7.14351815_G 7.91E-06 7.73E-01 

963.1 Antineoplastic and 

immunosuppressive drugs 

causing adverse effects 

chr1.160491418_G 2.65E-05 7.77E-01 

530 Diseases of esophagus chr7.14684017_A 8.48E-06 7.79E-01 

446 Polyarteritis nodosa and allied 

conditions 

chr11.2803003_A 2.83E-05 7.80E-01 

579 Other symptoms involving 

abdomen and pelvis 

chr16.52681013_A 3.53E-05 7.83E-01 

457 Encounter for long-term 

(current) use of anticoagulants, 

antithrombotics, aspirin 

chr16.52657870_G 2.59E-05 7.90E-01 

727.4 Ganglion and cyst of synovium, 

tendon, and bursa 

chr7.14484502_A 4.15E-05 7.98E-01 

367.9 Blindness and low vision chr13.109829353_

A 

3.14E-05 8.00E-01 

596 Other disorders of bladder rs739677_A 4.38E-05 8.08E-01 

353 Nerve root and plexus disorders chr13.109783177_

G 

4.51E-06 8.18E-01 

686 Other local infections of skin 

and subcutaneous tissue 

chr9.135044095_G 3.69E-05 8.19E-01 

345.3 Convulsions chr11.2707861_A 2.12E-05 8.21E-01 

578.2 Blood in stool chr1.109570412_G 2.09E-05 8.36E-01 

227.3 Benign neoplasm of pituitary 

gland and craniopharyngeal 

duct (pouch) 

chr13.109840841_

A 

6.33E-06 8.48E-01 

272.11 Hypercholesterolemia chr6.25835361_A 3.42E-05 8.65E-01 

942 Infusion and transfusion 

reaction 

chr7.14266803_C 3.92E-05 8.85E-01 

275.6 Hypercalcemia chr11.2569137_A 3.17E-05 8.92E-01 

369 Infection of the eye chr6.26073531_G 1.16E-05 8.92E-01 

942 Infusion and transfusion 

reaction 

chr7.14271227_G 4.43E-05 8.94E-01 
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761 Cervicalgia chr1.160257615_G 2.82E-05 9.02E-01 

430.2 Intracerebral hemorrhage chr7.14702689_A 1.96E-05 9.19E-01 

743 Osteoporosis, osteopenia and 

pathological fracture 

chr6.25517293_G 3.36E-05 9.19E-01 

80 Postoperative infection chr6.26006590_G 3.55E-05 9.66E-01 

942 Infusion and transfusion 

reaction 

chr7.14271721_G 8.60E-06 9.76E-01 

362 Other retinal disorders chr6.25985598_A 4.82E-05 1.00E+00 
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