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CHAPTER I

The price impact under the risk-averse market maker

1 Introduction

A liquid asset market implies that traders can trade immediately with small trans-

action costs, and without moving the current market price. While the meaning of

liquidity is clear, it is not easy to measure or observe liquidity because it is related

to various trading characteristics. In the finance literature, the bid-ask spread and

the price impact cost are the most common measures of liquidity. The price impact

cost is derived from the relation between order flows and price changes, rather than

being an explicit observable measure, while the bid-ask spread is directly observed in

the financial markets. The important aspect of both measures is that they reflect the

activity of the market makers who provide liquidity to markets. The price impact

cost is the market makers’ ex post responses to manage incoming order flows, while

the bid-ask spread is the ex-ante expected costs of the market makers. Thus, these

two measures should reflect the various costs, such as informational costs and inven-

tory holding costs, that the market makers face as they provide liquidity to market

participants by managing incoming orders.

The existing market microstructure literature shows that the bid-ask spread is

composed of three components: order processing, adverse information, and inventory

holding costs. According to the adverse information theory, the bid-ask spread exists

to compensate market makers for potential losses from trading with informed traders

(Copeland and Galai (1983), Glosten and Milgrom (1985), and Easley and O’hara

(1987)). The inventory models suggest that market makers set the bid-ask spread

because they bear the risk of holding undesired inventory that deviates from their

preferred portfolio (Stoll (1978), Amihud and Mendelson (1980), Ho and Stoll (1981,

1



1983), Bollen et al. (2004)). Stoll (1978) shows that the bid-ask spread increases with

the dealer’s risk aversion and asset volatility. The inventory effect is obvious when

risk-averse market makers determine the market clearing price because risk-averse

market makers consider the inventory position, while risk-neutral market makers do

not. As a result, the risk-aversion effects of the market makers should be considered

when studying the inventory effect on liquidity.

Unlike bid-ask spread models, the existing price impact models assume that mar-

ket makers are risk-neutral. Kyle (1985) develops a model in which a single risk-

neutral informed trader and a number of noise traders submit orders to competitive

risk-neutral market makers who set the market clearing price with zero expected prof-

its. In equilibrium, the monopolistic informed trader strategically chooses his trade

size so that it is proportional to the true asset value, and risk-neutral market makers

have the linear pricing schedule in the total net order flows. Kyle’s model has been

extended in subsequent papers by considering different classes of noise traders (Ad-

manti and Pfleiderer (1991)) or multiple informed traders(Foster and Viswanathan

(1996), Holden and Subrahmanyam (1992), and Back et al. (2000)). There are very

few papers considering risk-averse market makers. One notable exception is Sub-

rahmanyam (1991), who studies multiple informed traders considering competitive

risk-averse market makers. However, he does not provide a dynamic model incorpo-

rating risk-averse market makers.

The object of this paper is to develop a unified price impact model that incor-

porates competitive risk-averse market makers and asymmetric information. The

price impact cost function, similarly to bid-ask spreads, should reflect both adverse

information and inventory holding costs because illiquidity may be caused by both

informational and non-informational events. For example, a large block trade by

institutional investors may cause large price changes because a risk-averse market

maker faces severe imbalances on his trading account. Thus, the risk-averse market
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maker will consider his inventory position as well as potential adverse information

when determining the market clearing price. The inventory and informational effects

can be easily observed and derived in the single-period model. However, the static

model does not provide answers about how these two effects evolve over time. Thus,

this paper presents the first dynamic model in which a single informed trader chooses

his trade size strategically by focusing on a linear equilibrium led by Bertrand com-

petition among risk-averse market makers who ultimately earn zero expected utility

gains.

The primary results in this paper considering both inventory and asymmetric in-

formation effects are consistent with the existing theoretical and empirical literature.

The price change consists of the permanent change associated with information and

the temporary change related to the inventory effect stemming from the dealer’s risk-

averse attitude(Hasbrouck (1988), Glosten and Harris (1988)). (2) The price change

is reversed because of the temporary price impact caused by the dealer’s inventory

costs(Grossman and Miller (1988), Campbell et al. (1993), Andrade et al. (2008)).

(3) The first-order serial covariance of price changes is negative and is associated with

the illiquidity measure(Roll (1984), Stoll (1989)).

First, the price impact is composed of a permanent and a transient impact. The

permanent price impact is associated with the fundamental value of a risky asset,

and this effect updates a current price to a new equilibrium market price. However,

the inventory effect is temporary. The model in this paper predicts that risk-averse

market makers want to be compensated for the potential loss due to informed traders

and the inventory holding costs. In other words, risk-averse market makers are paid

for providing liquidity to market participants even though there is no information

asymmetry. This inventory effect is proportional to the conditional variance of a

risky asset and the dealer’s risk attitude.

Second, the price impact due to the dealer’s risk aversion is temporary and causes
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a price reversal. Market participants rationally expect that order imbalances result

in an increase in the dealer’s inventory holding costs, and price changes, according

to this temporal inventory effect, should return to the original price level. In other

words, market makers would like to maintain their preferred inventory positions by

taking positions opposite to their unwanted inventory positions. For example, if risk-

averse market makers purchase unwanted shares, they will be willing to resell these

unwanted imbalances to the market at a discount. The decision will ultimately be

executed and a price reversal will be observed.

Finally, the first-order serial covariance of price changes based on the price sched-

ule developed in this paper is shown to be negative. This covariance measure is

associated with the market depth, the risky asset volatility, and the volatility of noise

traders. That is, this serial covariance will be zero when market makers are risk-

neutral while the measure is proportional to the dealer’s risk-aversion coefficient. In

addition, Roll (1984) and successive studies show that the first-order serial covariance

has a negative relation with the bid-ask spread, which is the common measure for

illiquidity. Stoll (1989) shows how the serial covariance depends on both inventories

and information. This dependence implies that the market depth, which is the in-

verse of the price impact coefficient, is closely related to the bid-ask spread. In the

numerical illustration, the Roll spread, measured by the square root of negative serial

covariance, decreases through time. This relation implies that the private information

of the informed trader is incorporated into the price; thus the asymmetric information

cost decreases over time.

In sum, the dynamic model in this paper theoretically shows that the price change

can be decomposed into permanent change due to the information regarding the fun-

damental asset value and temporal change caused by the inventory effects of risk-

averse market makers. This temporary price impact caused by the dealer’s risk aver-

sion is the evidence of price reversal. Moreover, the model suggests that the first-order
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serial covariance measure is closely related to the price impact. This suggestion is

consistent with the existing literature, which finds that there exists a significant pos-

itive relation between a bid-ask spread and the price impact measured by Kyle’s

lambda.(Hasbrouck (2009), Korajczyk and Sadka (2008)).

The rest of the paper is organized as follows. The next section presents a single

and a dynamic auction model in which a single risk-neutral informed trader and

a number of noise traders submit orders to competitive risk-averse market makers.

Section 3 discusses properties of the linear equilibrium and derives the first-order

serial covariance measure of price changes. Section 4 presents the empirical results to

provide evidence to support the theoretical arguments. In section 5, I conclude and

summarize the paper.

2 Model

2.1 Single period model

In this section, I extend Kyle (1985) model to incorporate the pricing strategy of

competitive risk-averse market makers with identical risk aversion. Consider a market

with a single informed trader, a number of noise traders, and competitive risk-averse

market makers. Each trader submits a market order to the market maker, who sets

a price, denoted by p̃, competitively to clear the market by absorbing all of the

remaining order imbalances. When determining the price, the market makers observe

the total net order imbalances, denoted by ỹ, which are the sum of the quantity

from the informed trader, denoted by x̃, and the quantity from noise traders, denoted

by ũ. All of the market participants observe the last traded price, denoted by p0.

Conditional on the last trading quantities, the ex-post liquidation value, denoted by

ṽ, of the risky asset is normally distributed with mean µ0 and variance Σ0
1.The

1Kyle (1985) assumes that the mean of the risky asset is equal to the most recent observed market
price p0. This should be true when market makers are risk-neutral. The mean of the risky asset,
however, is not necessary to be equal to the trade price when market makers are risk-averse. To
be account for these concerns, I relax this assumption where the mean of the risky asset is some
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quantity submitted by the noise traders, ũ, is normally distributed with mean zero

and variance σ2
u. The quantity traded by noise traders and the ex-post liquidation

value of the risky asset are independently distributed.

The informed trader knows the post-liquidation value of the risky asset and maxi-

mizes his expected profit by choosing a quantity x̃ where the profit function, denoted

by π̃, is simply x̃(ṽ − p̃). The optimization problem of the informed trader is

max
x

E[x̃(ṽ − p̃)|ṽ = v] (1)

Consider a risk-averse market maker who has a negative exponential utility func-

tion of the form U(W̃ ) = −e−γW̃ , where γ is an absolute risk aversion coefficient.

Assume that the market makers hold zero inventory at the initial time for conve-

nience and can borrow or lend with a zero interest rate. Because the market makers

cannot distinguish the quantity of the informed trader from that of the noise traders,

they need to make a conjecture about the trading quantity of the informed trader.

As in Kyle, the quantity of the informed trader is supposed to be a linear form in

the asset value so that x̃ = α + βṽ, where α and β are some constants. Based on

this structure, market makers have the prior distribution for the total net order flow

ỹ = ũ+ x̃. The positive (negative) value of the total order flows implies that the mar-

ket buys (sells) and the dealer sells (buys), and thus the dealer should give (receive)

the ỹ shares of stocks and receive (pay) the corresponding cash amount pỹ. Thus, his

terminal wealth, denoted by W̃ , can be written

W̃ = −ỹ(ṽ − p) (2)

The market clearing price, denoted by p̃,is assumed to be a linear function of the

constant parameter µ0.
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total net order flow such that

p̃ = µ+ λỹ (3)

where λ is the sensitivity of total net order flow ỹ and µ is some constant. The

linear pricing rule is proven to be true in Kyle (1985) under competitive risk-neutral

market makers. In addition, Huberman and Stanzl (2004) argue that the price-

impact function should be linear when there is no price manipulation. Moreover,

Subrahmanyam (1991) shows that the linear pricing rule holds under competitive

risk-averse market makers. So, this linear pricing rule can be applied to the world of

competitive risk-averse market makers.

Following Subrahmanyam (1991), I require that the single market maker absorbs

entire order imbalances and earns zero-expected utility gain. That is, the expected

utility of not market making is equal to −1. This approach is also introduced in Stoll

(1978), who argues that a risk-averse market maker should be compensated for market

making because his trading account deviates from his optimal portfolio to supply the

immediacy. Stoll solves the equilibrium cost function where the expected utility of

not making market is equal to the expected utility under making market. Assuming

that a dealer holds nothing initially, the dealer’s problem in this paper is identical to

that of Stoll (1978). Moreover, Ho and Stoll (1983) analyze the competition of risk-

averse market makers and show that prices are equal to the reservation price of the

second best dealer, who eventually determines the market bid-ask spread. As a result,

the Bertrand competition narrows the market spread, which eventually converges to

the reservation spread of any dealer who earns zero expected profits. Therefore, the

expected utility of the risk-averse market maker satisfies

E[U(W̃ )|ỹ = y] = −e−γE[W̃ |y]+ γ2

2
V ar(W̃ |y) = −1 (4)

where γ is an absolute risk aversion coefficient. Combining the zero-profit condition
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of the competitive risk-averse market makers in equation (4) with the profit maxi-

mization of the informed trader in equation (1), I obtain the following equilibrium.

Proposition 1. For competitive risk-averse market makers and a risk-neutral in-

formed trader, there is a unique equilibrium for the trading strategy of the informed

trader and the pricing rule of the competitive risk-averse market makers such that

x̃ = β(ṽ − µ0) (5)

p̃ = µ0 + λ(x̃+ ũ) (6)

where µ0 = E[ṽ|p0] and p0 is the recent trade price. Then, the equilibrium value of λ

and β is given by

λ =

√
Σ0

σ2
u

(
γ
√

Σ0σ2
u +

√
4 + γ2Σ0σ2

u

4

)
(7)

and

β =

√
σ2
u

Σ0

(
−γ
√

Σ0σ2
u +

√
4 + γ2Σ0σ2

u

2

)
(8)

where γ is the absolute risk aversion coefficient of the risk-averse market maker.

Proof. See Appendix A1.

From proposition 1, the linear price rule of the market makers and the linear

trading strategy of the informed trader still hold even if the market makers are risk-

averse. When the risk aversion coefficient γ is equal to zero, the term inside the

bracket of the equilibrium λ in (7) is equal to one half, and the equilibrium λ is

equal to the Kyle’s lambda. The proposition also shows that the price impact costs

λ should reflect both information and inventory effects. This additional term from

the original Kyle’s lambda is incurred due to the risk-aversion of market makers, and

can be interpreted as the dealer’s compensation for holding inventory or providing

liquidity.
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From equation (A.4) in the appendix, it is easy to show that the price impact costs

should still be positive even though there is no informed trader (β = 0). This result

means that the risk-averse market makers want to be compensated not only for the

potential losses due to the informed trader but also for providing liquidity to clear the

current order imbalance. In consequence, the magnitude of the price impact under

risk-averse market makers is larger than that under risk-neutral market makers.

However, the increase in the price impact cost due to inventory costs should vanish

in the long run because the inventory effect is not related to the fundamental asset

value. The single-period model does not appear to provide a reasonable explanation

for the evolution of information and inventory effects on the price change over time.

Addressing these issues, I derive the dynamic model in the following section.

2.2 Comparison with Kyle (1985)

It is of interest to compare some features of Kyle’s(1985) model to those of my model.

From equations in (7) and (8), the values of λ and β appear to increase and decrease

respectively when market makers are risk-averse. To compare the parameters of risk-

averse market makers with those of risk neutral market makers, let define θ as

θ =
γ

2

√
Σ0σ2

u (9)

The value of θ is proportional to the dealer’s attitude toward the risk(γ), the

volatility of the risky asset(Σ0), and the volatility of noise traders(σu). If market

makers are risk averse (γ > 0), then the value of θ is always positive. That is, the

value of θ increases when market makers are more risk-averse, the risky-asset is more

volatile, or quantity from noise traders is more volatile. Thus, the defined parameter

θ can be interpreted as the inventory cost of competitive market makers. With this

measure θ, I discuss how the market depth, the price informativeness, and the profit

of the informed trader are changed under risk-averse market makers.

9



First, the price impact coefficient λ increases when market makers are risk averse.

The price impact of risk-averse markets markers(λA) can be expressed as λA =

λN(
√

1 + θ2 + θ) where λN is the price impact of risk-neutral market makers. Kyle

defines the inverse of this price impact coefficient λ as the market depth which is

the necessary order flow to change prices by one dollar. The market depth under

risk-averse market makers is simply 1/λA = 1/λN(
√

1 + θ2 − θ). Because the term

in the bracket ((
√

1 + θ2 − θ)) ranges in (0, 1], the market depth will be close to zero

when market makers are extremely risk-averse.

Second, the price informativeness is measured as the conditional asset variance.

Kyle argues that half of the insider’s price information is reflected into asset prices

and the volatility of noise trading doesn’t affect the volatility of prices. The ratio

of the conditional variance, Σ2
1/Σ0 = 1/2(1 + θ/

√
1 + θ2), is greater than one-half

when market makers are risk-averse. This result implies that less than one-half of the

informed trader’s price information is incorporated into prices. When market makers

are risk-averse, the informed trader appears to be reluctant to reveal his information

because his marginal costs to exploit the private information with risk-averse market

makers. As a result, the informed trader needs more auctions to reveal his private

information through the market.

Finally, the informed trader’s profit decreases when market makers are risk averse.

The informed trader’s profit can be expressed as E[πA] = E[πN ](
√

1 + θ2 − θ). This

expression implies that the informed trader’s expected profit is affected by the mag-

nitude of the dealers’ risk aversion. The informed trader can still earn the positive

profit at the expense of noise traders. This expected profit, however, converges to

zero when market makers are extremely risk-averse. The decrease in the informed

trader’s profit is mainly because the informed trader pays some fees to market makers

who want to be compensated from the arrival of the informed trader.
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2.3 Dynamic model

In this section, I consider the sequential auction framework to derive the equilibrium

condition and the price movement when market makers are competitive and risk-

averse. Suppose there are N rounds of trade occurring in a given trading day, and tn

denotes the time at which the nth auction takes place. For simplicity, assume that

the time interval between the nth and the n− 1th auction is equally distributed, i.e.,

∆t1 = ∆t2 = · · · = ∆tN = ∆t. At the beginning stage, given the last trade price p0,

the mean and variance of the risky asset are µ0 and Σ0, respectively.

At each auction, there are noise traders and a single informed trader. The quantity

traded by the noise traders, denoted by ∆ũn, is normally distributed with mean zero

and variance σ2
u∆t. Moreover, ∆ũn is serially uncorrelated and independent of ṽ.

The informed trader chooses ∆x̃n at the nth auction to maximize his entire profits

given his guesses about the pricing rule set by a market maker. The informed trader’s

profits for each auction n is given by

π̃n =
N∑
k=n

(ṽ − pk)∆x̃k (10)

For risk-averse market makers, let W̃n denote the aggregate wealth of the market

makers after the nth auction, so that ∆W̃n denotes the wealth increment of the market

makers at the nth auction.

∆W̃n = −∆ỹn(ṽ − p̃n) (11)

For simplicity, the initial wealth and its increase at time 1 is 0, i.e., ∆W0 = W0 = 0.

This assumption means that each market maker initially has no inventory in his

account so that his initial expected utility is equal to −1 under the CARA utility

function. As in the single-period model, I also impose the restrictions that the single

risk-averse market maker absorbs the entire order imbalance by competition and earns
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zero expected profit. At each time, the market makers observe the total net order flow

∆ỹn = ∆x̃n + ∆ũn, and they cannot discriminate the order flow from the informed

trader from the quantity from noise traders. Similar to the single-period model, the

zero profit condition is imposed so that the market maker earns zero-expected utility

gain. As a result, the expected utility of the wealth change at each auction n should

be

En

[
−e−γ∆W̃n|∆ỹn = ∆yn

]
= −1 ∀n = 1, · · · , N (12)

where γ is an absolute risk aversion coefficient. This equation implies that the ex-

pected utility obtained by not making the market should be equal to that obtained

by making the market. Combining the problem of the informed trader and the condi-

tion of expected utility from the competitive risk-averse market makers leads to the

following proposition.

Proposition 2. For a risk-neutral informed trader and a risk-averse market maker,

there is a unique equilibrium in the model such that for

∆x̃n = βn(ṽ − µn−1)∆t (13)

p̃n = µn−1 + λn(∆x̃n + ∆ũn) (14)

Σn = V ar(ṽ|∆x̃1 + ∆ũ1, · · · ,∆x̃n + ∆ũn) (15)

µn = E(ṽ|∆x̃1 + ∆ũ1, · · · ,∆x̃n + ∆ũn) (16)

E[π̃n|p1, · · · , pn−1, v] = αn−1(v − µn−1)2 + δn−1 (17)

for all n = 1, · · · , N . The constants αn, βn, δn, and Σn are the unique solution to the
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difference equation system

αn−1 =
1 + 2γαnΣn

4
(
λn − αn

(
λn − γΣn

2

)2
) (18)

δn−1 = δn + αn

(
λn −

γ

2
Σn

)2

σ2
u∆t (19)

βn∆t =
1− 2αn

(
λn − γΣn

2

)
2
(
λn − αn

(
λn − γΣn

2

)2
) (20)

λn =
γΣn

2
+
βnΣn

σ2
u

(21)

Σn =

(
1−∆tβn

(
λn −

γΣn

2

))
Σn−1 (22)

for all n = 1, · · · , N subject to the boundary condition αN = δN = 0 and the second

order condition is.

λn − αn
(
λn −

γ

2
Σn

)2

> 0 (23)

Proof. See Appendix A2.

The value of βn represents the intensity with which the informed trader trades

based on his private information. Note that even if there is no informed trader

(βn = 0), the equilibrium liquidity parameter λn is still positive in (21) because the

market maker still needs compensation for the risk associated with the noise trades.

Thus, the price impact coefficient in my model reflects not only the informational

cost but also the inventory cost.

3 Properties of equilibrium in dynamic model

3.1 Numerical illustration

In this section, I present numerical examples based on the linear equilibrium derived

in the previous section. In all of the numerical examples, assume that ΣN = 1, σ2
u = 1,

and ∆t = 1/N . Figure 1 plots λn for the particular cases of γ = 0 and γ = 1 when

the number of auctions is fixed at N = 20. As seen from Figure 1, the λn of the
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Figure 1: Liquidity parameter over time for different values of risk aversion coefficient

This figure plots the liquidity parameter at each auction for different values of risk aversion coefficient
γ = 0, 1 when the number of auction is fixed atN = 20. This figure compares the liquidity parameter,
λn, when a market maker is risk-neutral (γ = 0) and is risk-averse(γ = 1). The variance of noise
trading per unit time, σ2

u, and the variance of the risky asset at the end of time, ΣN , are equal to
1. Each auction occurs at equally spaced interval, ∆t = 1/N , over [0, 1].
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risk-averse market makers is larger than that of the risk-neutral market makers. This

result implies that a risk-averse market maker bears the cost of managing his inventory

position and sets the price impact cost function to be moved up. In addition, the

difference between the price impact function of the risk-averse market makers and the

risk-neutral market makers is larger at the beginning of the auction than at the end

of the auction.

Figure 2 plots λn for the particular cases of N = 4, N = 20, and N = 100

when the risk aversion coefficient is at γ = 1. This figure is quite similar to the

risk-neutral market maker cases presented in Kyle’s original paper. The illiquidity

measure λn monotonically decreases through time. The figure shows that the price
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Figure 2: Liquidity parameter over time for different values of N

This figure plots the liquidity parameter at each auction for different values of number of auctions
N = 4, 20, and 100 when the risk aversion coefficient is fixed at γ = 1. The variance of noise trading
per unit time, σ2

u, and the variance of the risky asset at the end of time, ΣN , are equal to 1. Each
auction occurs at equally spaced interval, ∆t = 1/N , over [0, 1].
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impact function declines over time regardless of the magnitude of the market maker’s

risk-aversion.

3.2 Price behavior over time

Given the equilibrium in the previous section, it is easy to derive the closed form of the

price movement. The constant term of price movement in (14) can be replaced with

the known term using the conditional mean of the multivariate normal distribution.

The closed form of price movement is shown in the following Lemma.

Lemma 1. For a risk-neutral informed trader and a risk-averse market maker, the
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pricing rule set by competitive risk-averse market maker is

∆pn = λn∆yn −
γ

2
Σn−1∆yn−1 (24)

for all n = 1, · · · , N .

Proof. See Appendix A3.

This price formation in (24) is consistent with the previous empirical studies(Glosten

and Harris (1988), Madhavan et al. (1997),Huang and Stoll (1997), Sadka (2006)).

There are some implications from lemma 1. First, the price change is linear both

in the contemporary net order flow and in the lagged one. This result suggests that

the risk-averse market maker sets the market clearing price from the current order

flow to cover the losses from the informed trader and to adjust his trading account to

his optimal portfolio. Second, the coefficient of the contemporary order flow reflects

both informational and inventory effects while the coefficient of the lagged order im-

balance only reflects the inventory information. This result suggests that the price

impact occurring in the current day will reverse in the following day due to the in-

ventory cost effect. These results are consistent with the two-period model developed

in Chordia and Subrahmanyam (2004). It appears that the coefficient of the lagged

order flow can provide a more accurate measure of illiquidity because it contains the

risk attitude of the market makers and the asset risk, but not the informational con-

tent(Campbell et al. (1993), Pastor and Stambaugh (2003)). The intensity of the

informed trader, measured by the βn, should ultimately be impounded in the price.

But the non-informational part should disappear from the price if it is priced in the

previous period. If the market makers are highly risk-averse due to managing high

risk assets, then the immediate price change will be larger than the degree of the price

change, reflecting the information content, and the magnitude of the price reversal

could be large. Thus, the product of the asset risk and the market maker’s degree of
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Figure 3: Price dynamics from time 0 through time 2

This figure illustrates the price dynamics when a market maker is risk-averse. The order imbalance
at time n = 0, 1, and 2 is assumed to be ∆y0 = 0, ∆y1 = 1 and ∆y2 = 1.
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risk-averseness could be the appropriate illiquidity measure.

Figure 3 illustrates the price movement up to time 2 when the competitive market

makers are risk-averse. For convenience, suppose that there was no order imbalance

at time 0 (∆y0 = 0). The net order imbalances at times 1 and 2 are assumed to

be one unit(∆y1 = ∆y2 = 1). From the price rule in equation (24), the price at

time 1 is equal to p0 + λ1 and the price impact coefficient has two parts: (a) the

informational price impact, β1
σ2
u
Σ1, and (b)the non-informational price impact, γ

2
Σ1.

These two impacts imply that given orders, the risk-averse market maker sets the

price to reflect both informational and non-informational components. However, the

non-informational impact, (b) in the illustration, should vanish because it is unrelated

to the fundamental value of the risky asset. Thus, the price at time 2 first reverses

to a price level that reflects (a) the informational component and contemporaneous

price impact, which is the sum of (c) the informational price impact, β2
σ2
u
Σ2, and (d)
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Figure 4: Comparisons risk-averse market maker price setting with risk-neutral mar-
ket maker price setting from time 0 through time 2

This figure compares price settings between risk-averse and risk-neutral market maker. The order
imbalance at time n = 0, 1, and 2 is assumed to be ∆y0 = 0, ∆y1 = 1 and ∆y2 = 0. The price set by
risk-averse market maker is p1 while the price set by risk-neutral market maker is pN1 at time n = 2
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the non-informational price impact, γ
2
Σ2 at time 2. Thus, the price change from time

0 to time 2 is β1
σ2
u
Σ1 + β2

σ2
u
Σ2 + γ

2
Σ2.

These examples suggest that the informational component at each time is im-

pounded into the price. The inventory effect appears to be transient, but it may be

long-lived unless the order imbalances are equally distributed over time. That is, the

price movement up to time n can be expressed as

pn − p0 =
n∑
i=1

(
βiΣi

σ2
u

∆yi

)
+

1

2
γ (Σn∆yn − Σ0∆y0) (25)

The first term represents the sum of the informational impact over time, and the

second term indicates the inventory impact. This inventory effect shown in my model

is the primary difference from Kyle’s model. Equation (25) suggests that the price at

time n reflects all of the prior information up to time n, while only the current inven-

tory cost is impounded into the price. In other words, all of the historic information

should be related to the current price permanently, but the previous inventory costs
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are not related to the current asset price.

Figure 4 illustrates the difference in price setting between a risk neutral market

maker and a risk-averse market maker. Assume the initial conditional mean of the

risky asset is equal to the last trade price(µ0 = p0), and the order imbalances at time

0 and at time 2 are zero(∆y0 = ∆y2 = 0). At time 1, there is one unit of order

imbalance(∆y1 = 1). The price set by the risk neutral market maker, denoted by

pN1 , reflects only the informational component ((a)). However, the price set by the

risk-averse market maker, denoted by p1, reflects both the informational effect and

the inventory effect, so that the price of the risk-averse market maker is higher than

that of the risk neutral market maker. At time 2, the risk neutral market maker will

set the price at time 2 equal to the price at time 1 because there are no incoming

orders at time 2. But, the risk-averse market maker will set the price at time 2 equal

to a price that reflects only the informational component at time 1. If the risk-averse

market maker manages his inventory position toward zero, then the final price at the

end of day will converge to the price that is equal to the price of risk neutral market

maker.

3.3 Serial covariance and the Roll(1984) spread

Roll (1984) shows that the effective spread can be estimated from the first order serial

covariance of the transaction price changes. Based on the pricing rule, it is easy to

calculate the serial covariance of price differences at each auction n.

Lemma 2. At each auction n, the serial covariance of price change is

Cov(∆pn+1,∆pn) = −1

2
γ∆tσ2

uλnΣn−1 (26)

Proof. See Appendix A4.

The first order serial covariance measure of price change is simply the product
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of the coefficient of the contemporary order flow, the coefficient of the lagged order

flow, and the variance of noise traders. Thus, the first-order serial covariance of

price change is affected by both information and inventory effects. These results are

consistent with the recent study by Vayanos and Wang (2012), who argue that the

negative value of the first-order serial covariance measure of price change is related to

the price reversal, and is higher when the risk-aversion coefficient increases. However,

my result indicates that the covariance measure represents not only the price impact

(λn) but also the price reversal (γ/2Σn−1). This finding implies that the covariance

measure could provide a noise measure of price reversal The coefficient of the lagged

order flow is more appropriate to measure price reversal.

Based on the covariance measure calculation, the Roll’s spread measure can be

easily obtained. From equation (26), the Roll’s spread is simply

SRolln =
√
−Cov(∆pn+1,∆pn) = σu

√
Σn−1

√
γ

2
λn∆t (27)

The Roll’s spread will be zero if the market makers are risk-neutral(γ = 0). The

Roll’s spread is widely used for estimating the bid-ask spread when the bid-ask spread

cannot be observed in the market. Based on the calculation, the serial covariance of

the price difference can be thought as the expected costs of the risk-averse market

maker when he makes the market to provide liquidity. So, the potential price impact

costs will be considered in the risk-averse market maker’s cost function and will show

that the Roll’s spread is proportional to the price impact parameter λn.

If there is no informed trader at time n (βn = 0), then the equilibrium λn is

equal to γ
2
Σn−1 from (B.10). ). In this case, the market maker will consider only his

inventory when he makes the market. The Roll’s spread is simply

SNo−informn =
1

2
γσuΣn−1

√
∆t (28)
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Figure 5: The serial covariance of price difference over time for different values of risk
aversion coefficient

This figure plots the first serial covariance of price change, Cov(∆pn,∆pn−1) = −1/2γ∆tσ2
uλnΣn−1,

at each auction for different values of risk aversion coefficient γ = 1, 2 when the number of auction is
fixed at N = 20. The variance of noise trading per unit time, σ2

u, and the variance of the risky asset
at the end of time, ΣN , are equal to 1. Each auction occurs at equally spaced interval, ∆t = 1/N ,
over [0, 1].
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This equation is quite similar to the bid-ask spread derived in Stoll (1978). The equa-

tion implies that the bid-ask spread still exists even though there is no information

asymmetry among traders because the market maker will want to be compensated

for deviating from his preferred portfolio.

Figure 5 and 6 plot the first order serial covariance of the price difference and the

Roll’s spread, respectively, for different degrees of the risk aversion coefficient, γ = 1

and γ = 2 when the number of auctions is fixed at N = 20. As in the previous section,

all parameters are estimated by assuming ΣN = σ2
u = 1. Figure 5 shows that the

covariance measure increases over time, and moves toward zero. The covariance moves

faster toward zero when the market maker is more risk-averse. Figure 6illustrates the
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Figure 6: The Roll’s spread over time for different values of risk aversion coefficient

This figure plots the Roll’s spread, SRoll
n = σu

√
Σn−1γ/2λn∆t, at each auction for different values

of risk aversion coefficient γ = 1, 2 when the number of auction is fixed at N = 20. The variance
of noise trading per unit time, σ2

u, and the variance of the risky asset at the end of time, ΣN , are
equal to 1. Each auction occurs at equally spaced interval, ∆t = 1/N , over [0, 1].
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movement of Roll’s spread over time. Roll’s spread decreases over time because both

the asset variance Σn and the price impact coefficient λn decrease over time.

4 Empirical Tests

4.1 Data and methodologies

The data used in this paper are obtained from the New York Stock Exchange(NYSE)

Trade and Quotation(TAQ) and Center for Research in Security Prices(CRSP) data

set 2. I use only the decimal tick size period for data consistency. The sample

period spans from Jan 1, 2002 to Dec 31, 2010 and price and quote data in TAQ

must occur during regular trading hours (9:30 a.m.-4:00 p.m.). I first select stocks

2Each firm is identified by CRSP permno not by ticker because ticker is used duplicate. I match
CRSP permno with TAQ ticker symbol using cusip number.
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whose CRSP share codes are either 10 or 11 so that securities such as ADRs, REITS,

certificates, shares of beneficial interest, units, closed-end funds, and preferred stocks

are excluded in my sample. The trading venues of each stock should be unchanged

during the sample period. Each stock should not have stock splits, stock dividends,

repurchases, or secondary offerings during the sample period. The monthly average

prices must be between $3 and $1000. I also require a minimum number of 100 trades

in a particular stock over the sample period. The final sample consists of 2,645 US

common stocks.

Following Lee and Ready (1991), each trade is classified as buyer-initiated or seller-

initiated using the tick rule. That is, each trade is matched with the first quote at

least five seconds prior to the transaction. As in Chordia and Subrahmanyam (2004)

and Chordia et al. (2002), I construct daily time series for six different measures of

order imbalance for each stock:

• ∆yNumt : the daily number of buyer-initiated trades less the daily number of

seller-initiated trades on day t

• ∆y%Num
t : ∆yNumt divided by total number of trades on day t

• ∆yV olt : the daily buyer-initiated dollars less the daily seller-initiated dollars on

day t

• ∆y%V ol
t : ∆yV olt divided by total dollar volume on day t

• ∆ySht : the daily number of buyer-initiated shares purchased minus the daily

number of seller-initiated shares sold on day t

• ∆y%Sh
t : ∆ySht divided by total share volume on day t

For each security i, the following multiple regression model is used to estimate the
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price impact and the price reversal coefficients:

∆pi,t = αi + λi,1∆yi,t + λi,2∆yi,t−1 + εt (29)

where ∆pi,t is open-to-close log price change and ∆yi,t is daily order imbalance for

firm i at time t 3. From Lemma 1, the price impact coefficient λ1 is expected to

be positive, and the price reversal coefficient λ2 is expected to be negative. For

the comparison purposes, the simple time-series regressions are also estimated. The

comparison regression models are

∆pi,t = αi + λSi,1∆yi,t + ξt (30a)

∆pi,t = α′i + λSi,2∆yi,t−1 + ξ′t (30b)

If both order imbalances should be included but one of them is missed in the estima-

tion of the regression model, the residual ξt (ξ′t) can be correlated with ∆yi,t (∆yi,t−1)

4. As a result, the specifications in (30) could violate the fundamental assumption of

OLS estimates and lead to the biased estimates 5.

4.2 Summary statistics

Table 1 provides the summary statistics for the cross-sectional averages of the daily

time-series means of the bid-ask spreads, the order imbalances, and the trading ac-

tivities. In Panel A, the average effective spread is $0.058 while the average quoted

spread is $0.068, reflecting the within-quote trading. Both proportional spreads, RQS

and RES, have similar statistics with mean 0.4% and median 0.2%. As expected, the

3I also perform the time series regression using close-to-close price change. The results were quite
similar to results reported in this paper.

4If order imbalances are not autocorrelated, equations (30) have the unbiased estimates. However,
the data shows that daily order imbalances are exhibited to be positively autocorrelated.

5Previous empirical papers didn’t consider both order flows when estimating illiquidity measures
(See Pastor and Stambaugh (2003), Breen et al. (2002), Hasbrouck (2009)). Chordia and Subrah-
manyam (2004) regress excess returns on order imbalances including lagged order imbalances, find
that up to 5 days order imbalances are significant.
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Table 1: Descriptive Statistics

This table contains the cross-sectional averages of the time-series means of the variables for 2645
US stocks from January 2002 through December 2010. All the variables are computed from TAQ
data. In panel A, each daily spread is calculated by averaging the intraday observations. The quoted
half spread, QS, is half of the difference between the ask price and the bid price of the quote. The
relative half-spread, RQS, is the absolute value of the trade price and midpoint of quoted ask and
bid divided by the midpoint. The effective spread, ES, is the absolute value of the difference between
the trade price and the quote midpoint just prior to the trade. The relative effective spread, RES,
is calculated by dividing the effective spread by the trade price. In Panel B, for each firm daily
order imbalance is the buyer-initiated order minus the seller-initiated order. The unscaled order
imbalance ∆y = ∆yNum,∆yV ol and ∆ySh is the order imbalance in number of transaction, in dollar
volume, and in number of shares traded. The scaled order imbalance ∆y = ∆y%Num,∆y%V ol and
∆y%Sh is the order imbalance in number of transaction divided by total number of trades, in total
dollar volume divided by total dollar volume, and in number of shares traded divided by total share
volume on a given day. In panel C, Sh is the daily number of transaction, V ol is the daily dollar
volume, and Sh is the daily number of shares traded.

Variable Mean Std. Dev. Median Skewness Kurtosis

Panel A. Spreads

QS 0.068 0.112 0.030 5.649 53.897
RQS 0.004 0.006 0.002 3.058 13.343
ES 0.058 0.090 0.026 5.178 42.595
RES 0.004 0.005 0.002 3.118 14.164
Cov(∆pt,∆pt−1) −0.013 0.104 0.000 −15.489 289.102

Panel B. Order Imbalance

∆yNum (Thousands) −0.034 0.191 −0.003 −10.618 161.288
∆y%Num(%) −0.018 0.081 −0.010 −1.626 5.781
∆yV ol (Millions) 0.138 1.956 −0.018 −0.893 79.111
∆y%V ol(%) −0.025 0.086 −0.017 −1.351 4.571
∆ySh (Thousands) 0.068 75.675 −1.208 −5.401 125.484
∆y%Sh(%) −0.026 0.086 −0.018 −1.337 4.465

Panel C. Trading Activity

Number of trades (Thousands) 2.429 6.222 0.696 7.685 87.444
Number of shares (Thousands) 739.865 2598.977 179.698 13.267 241.273
Dollar volume (Millions) 22.841 89.147 3.355 12.917 248.504

average of serial covariance has a negative mean of -0.013 and is negatively skewed.

Panel B of Table 1 presents the cross-sectional averages of the daily time-series

means of the order imbalances. The daily mean value of the order imbalance in

terms of the number of transactions is -34 transactions per day during the sample

period, indicating that more selling transactions occurred during the sample period.

On the contrary, other unscaled average values for the order imbalance in total dollar
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volume or in the number of shares have positive means and medians. These results

suggest that small or medium investors with small quantities submit their orders more

frequently than institutional investors with large quantities (Chan and Fong (2000)6).

Finally, all other scaled order imbalances have negative means but positive medians,

indicating that days with large selling pressure are more frequently observed than

days with large buying pressure.

Panel C reports the cross-sectional averages of the daily trading activities for each

firm. The mean value of the total number of trades is 2,429 transactions, the mean

value of the number of shares traded is 0.7 million shares, and the mean value of the

total dollar volume is 22 million dollars per day. Different values for the mean and

median suggest that trading activities are not symmetric; rather, they demonstrate

a positive skew.

Table 2 presents the cross-sectional averages of the time-series correlation between

order imbalance measures, the price difference, and trading activities. Panel A shows

the cross-sectional averages of the daily time-series correlations among the scaled

and unscaled order imbalances, the price differences, the total number of trades,

the dollar trading volume and the trading volume. First, the correlation between

the dollar trading volume and the trading volume is very high for both the scaled

and the unscaled measures (0.959 and 1.00). In fact, the correlation between the

scaled measures is close to one. Second, the correlation measures between one order

imbalance and another order imbalance are generally positive and very high, ranging

from 0.378 to 1. Finally, the correlations between the price difference and the order

imbalance measures are positive for all different measures of order imbalance. The

correlation between the price difference and the order imbalance in terms of the

number of transactions is higher than between the price difference and other trading

6Chan and Fong (2000) classify the trades into five categories based on trading volume, and
report that the average daily number of trades decreases from small size category to the large size
category.
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Table 2: Correlations and Autocorrelations

This table presents the cross-sectional averages of the correlations and the autocorrelation up to lag
10 for each stock. The unscaled order imbalance ∆y = ∆yNum,∆yV ol and ∆ySh denotes the order
imbalance in number of transaction, in dollar volume, and in number of shares traded. The scaled
order imbalance ∆y = ∆y%Num,∆y%V ol and ∆y%Sh represents the order imbalance in number of
transaction divided by total number of trades, in total dollar volume divided by total dollar volume,
and in number of shares traded divided by total share volume on a given day. Sh is the daily number
of transaction, V ol is the daily dollar volume, and Sh is the daily number of shares traded.

Panel A. Correlations
∆yNum ∆y%Num ∆yV ol ∆y%V ol ∆ySh ∆y%Sh Num V ol Sh

∆p 0.315 0.284 0.188 0.226 0.185 0.226 0.015 0.014 0.010
∆yNum 0.659 0.579 0.517 0.583 0.516 −0.096 −0.075 −0.081
∆y%Num 0.378 0.792 0.397 0.792 −0.052 −0.023 −0.024
∆yV ol 0.544 0.959 0.544 −0.122 −0.154 −0.158
∆y%V ol 0.576 1.000 −0.051 −0.031 −0.034
∆ySh 0.576 −0.130 −0.154 −0.168
∆y%Sh −0.051 −0.030 −0.034
Num 0.755 0.782
V ol 0.938

Panel B. Daily Autocorrelation

Lag ∆yNum ∆y%Num ∆yV ol ∆y%V ol ∆ySh ∆y%Sh

1 0.222 0.232 0.162 0.200 0.159 0.200
2 0.139 0.165 0.106 0.142 0.104 0.142
3 0.109 0.140 0.086 0.118 0.085 0.118
4 0.094 0.120 0.078 0.103 0.077 0.103
5 0.082 0.111 0.069 0.096 0.068 0.096
6 0.072 0.101 0.062 0.087 0.061 0.087
7 0.065 0.093 0.058 0.084 0.058 0.084
8 0.063 0.093 0.056 0.081 0.055 0.081
9 0.059 0.087 0.054 0.077 0.054 0.077

10 0.056 0.085 0.052 0.076 0.052 0.076

volume based imbalance measures.

In Panel B of Table 2, the cross-sectional averages of the time series autocor-

relations for different measures of order imbalances are reported. All of the order

imbalances are positively autocorrelated. For example, the first-lag autocorrelation

ranges from 16% to 23%. The autocorrelations for the order imbalance in terms of

the number of transactions is slightly higher than for the order imbalance in terms

of the number of shares or in terms of the dollar trading volume. The autocorre-

lations for the scaled order imbalances are higher than for the unscaled ones. The

existence of autocorrelations suggests that both order imbalances should be included

27



when estimating either the price impact or the price reversal measure. Otherwise,

the exclusion of one of those variables cause biased regression estimates as a result of

a missing variable problem.

4.3 Empirical results

Table 3 reports the summary for the regression estimation results of equations (29)

and (30). In each line, reported are cross-sectional average coefficients of the regres-

sion estimates for each stock and the percentages of the significance at the 5% level for

each coefficient. Column 1 indicates the use of order imbalances for independent vari-

ables when estimating the regression lines. Columns 2 and 3 are the averages of price

impact and price reversal coefficients estimated from the equation (29). Columns 4

and 5 report results of (30a) and (30b) respectively. The last two columns present

the test results whether estimated coefficients from equation (29) are different from

the estimated one from equation (30a) or (30b). Odd lines report the results of from

using unscaled order imbalances, and even lines report the results from using scaled

versions.

Throughout the lines, column 2 shows that the average coefficients for the current

order imbalance are positive and significant for most firms. More than 95 of esti-

mated price impact coefficients are positive and significant. Furthermore, column 3

shows that the averages of price reversal coefficients for most firms are negative with

approximately 50% of coefficients being negative and significant. Although there are

some cases with positive price reversal coefficients, the significance level of these pos-

itive coefficients are negligible (approximately less than 1%). The empirical results

support the theoretical predictions such that the price coefficient is positive and the

price reversal coefficient is negative.

For the comparison, the average coefficients λS1 without the lagged order imbal-

ance are also reported in column 4. The magnitude of the coefficient without lagged
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Table 3: Daily regressions of open-to-close price differences on order imbalances

This table presents the cross-sectional averages of coefficients for individual daily time series
regressions. For each stock, I estimate the time series regression ∆pi,t = αi + λi,1∆yi,t +
λi,2∆yi,t−1 where ∆pi,t is the open-to-close log price difference of stock i on day t, and ∆y =
∆yNum,∆yV ol,∆ySh,∆y%Num,∆y%V ol, and ∆y%Sh. ∆yNum

i,t ,∆yV ol
i,t and ∆ySh

i,t is the unscaled or-
der imbalance in number of transaction, in dollar volume, and in number of shares traded for stock
i on day t. ∆y = ∆y%Num

i,t ,∆y%V ol
i,t and ∆y%Sh

i,t is the scaled order imbalance in number of trans-
action divided by total number of trades, in total dollar volume divided by total dollar volume,
and in number of shares traded divided by total share volume for stock i on day t. λSi denotes the
coefficient when the regression model is estimated with missing one of independent variables. λS1 is
estimated with excluding lagged variable and λS2 is estimated with excluding contemporary variable.
The significance of coefficients in each stock’s time series is tested at 5% level.

∆y

Multiple Single Difference

λ1 λ2 λS1 λS2 λ1 − λS1 λ2 − λS2
(%+, %+Sig) (%-, %-Sig) (%+, %+Sig) (%-, %-Sig) (t-stat) (t-stat)

∆yNum 0.2316 −0.0287 0.2257 0.0069 0.0059 −0.0356
(99.09, 95.73) (89.41, 59.47) (98.98, 95.58) (55.80, 9.60) (13.45) (−21.75)

∆y%Num 0.0426 −0.0109 0.0394 −0.0006 0.0032 −0.0103
(99.74, 96.90) (86.96, 54.48) (99.70, 96.86) (52.36, 7.49) (32.94) (−53.81)

∆yV ol 0.0194 −0.0021 0.0189 0.0001 0.0005 −0.0022
(97.13, 83.14) (77.96, 29.11) (97.20, 82.76) (55.84, 5.82) (3.61) (−6.24)

∆y%V ol 0.0277 −0.0067 0.0258 −0.0007 0.0019 −0.0060
(99.66, 95.58) (82.61, 41.55) (99.62, 95.58) (53.65, 6.28) (26.52) (−45.42)

∆ySh 0.2849 −0.0203 0.2806 0.0102 0.0043 −0.0305
(96.90, 85.52) (78.03, 32.78) (96.98, 85.41) (55.50, 7.37) (5.37) (−12.24)

∆y%Sh 0.0277 −0.0067 0.0258 −0.0007 0.0019 −0.0060
(99.66, 95.58) (82.57, 41.55) (99.62, 95.54) (53.61, 6.35) (26.52) (−45.42)

imbalance decreases, implying the existence of a correlation between the current order

imbalance and the error term. The estimated price impact coefficients are shown to be

underestimated when excluding the lagged order imbalances. Column 5 reports the

estimated reversal coefficient when excluding current order imbalances. The estima-

tion results are disappointed. The percentages of negative values are approximately

less than 55% and those of negative and significant values are less than 10%. Compar-

ing with the results in column 3, the percentages of negative values in column 5 are

significantly lower than those in column 3. Moreover, some average values in column

5 are positive suggesting that excluding the contemporaneous order flows could cause

the serious biased estimates when estimating the price reversal measures.

The last two columns present the test results whether there exist any differences
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between coefficients from multiple regression and from simple regression. The column

6 reports the test results of comparing λ1 from (29) with λS1 from (30a). The test

results show that λS1 without lagged variable is significantly different from λ1 from full

regression model. The column 7 also provides the test results of λ2 from (29) versus λS2

from (30b). Similarly, the test results show the estimated coefficients from the simple

regression are overestimated and are significantly different from the estimated price

reversal coefficients from the full regression. These results confirm that both order

imbalances variables should be included in the model specification when researchers

need to correctly estimate the price impact and the price reversal coefficients.

Note that the results are much stronger when scaled order imbalances are used

than when unscaled order imbalances are used. For example, the percentage of signif-

icant price impact coefficients in terms of the number of shares increases from 95.73%

for an unscaled order imbalance to 96.90% for a scaled order imbalance as shown in

lines 1 an 2. Among the different measures for the order imbalance, the order imbal-

ance in terms of the number of transactions has much stronger results than the order

imbalance in terms of the dollar trading volume or the order imbalance in terms of

the number of shares traded.

Table 4 summarizes the cross-sectional averages of the correlation matrix between

the estimated parameters and other observed illiquidity measures like the serial co-

variance of price changes and bid-ask spreads. First, the price impact coefficients

λ1 estimated from the unscaled order imbalances are positively correlated with the

bid-ask spread measures and are negatively correlated with the first-order serial co-

variance of price difference. However, the correlations between the price impact when

the scaled imbalances are used and the bid-ask spreads are not highly correlated and

are negative in most cases. Second, the price reversal coefficients λ2 estimated from

the unscaled order imbalances are negatively correlated with the bid-ask spread. This

result suggests that the absolute value of the price reversal coefficient, which is the
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Table 4: Correlation of open-to-close price difference regression

This table shows the cross-sectional averages of correlations among liquidity variables. λ1 and λ2 are
estimated from the daily time series regression of open-to-close log price difference on both contem-
porary and lagged order imbalances. Cov(∆pt+1,∆pt), QS, and ES are averages of daily measures
from TAQ data. QS is the half quoted spread and ES is the half effective spread. Cov(∆pt+1,∆pt)
is the daily serial covariance of price difference.

Variables QS RQS ES RES Cov(∆pt,∆pt−1)

Panel A. Order imbalance in number of shares

λ1 0.470 0.533 0.470 0.531 −0.016
λ2 0.068 −0.081 0.094 −0.077 0.063
λ1λ1 −0.037 −0.205 −0.031 −0.213 0.079

Panel B. Scaled order imbalance in number of shares

λ1 −0.330 −0.383 −0.329 −0.377 −0.051
λ2 0.302 0.360 0.303 0.355 0.169
λ1λ1 0.186 0.227 0.182 0.222 0.124

Panel C. Order imbalance in number of dollars

λ1 0.250 0.521 0.256 0.530 −0.047
λ2 −0.054 −0.259 −0.055 −0.268 0.078
λ1λ1 −0.081 −0.271 −0.087 −0.286 0.072

Panel D. Scaled order imbalance in number of dollars

λ1 −0.330 −0.383 −0.329 −0.377 −0.051
λ2 0.302 0.360 0.303 0.355 0.170
λ1λ1 0.186 0.227 0.182 0.222 0.124

Panel E. Order imbalance in number of transactions

λ1 0.471 0.666 0.495 0.686 0.013
λ2 −0.130 −0.328 −0.139 −0.345 0.104
λ1λ1 −0.096 −0.242 −0.104 −0.252 0.077

Panel F. Scaled order imbalance in number of transactions

λ1 −0.374 −0.444 −0.371 −0.433 −0.035
λ2 0.365 0.439 0.367 0.434 0.192
λ1λ1 0.241 0.298 0.236 0.291 0.136

inventory effect, is positively correlated with the bid-ask spread. However, the corre-

lation between the reversal coefficient in the scaled version and the first-order serial

covariance of price difference is negative although it should be expected to be positive.

The product of these two coefficients represents the covariance measure as in

(26) and is shown to be positively correlated with the serial covariance measure in

both the scaled and the unscaled versions. Although the estimated coefficients have

different signs when using the scaled or the unscaled order imbalance, the product

of the two coefficients is a meaningful parameter to estimate the liquidity. Overall,
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the correlation table confirms that the theoretical predictions are consistent with the

actual market data.

5 Conclusion

This paper has presented a theory regarding the price impact costs when competitive

market makers are risk-averse in markets with asymmetric information. I extend the

Kyle’s model to incorporate the inventory effect incurred by the dealer’s risk aversion.

First, the single-period model shows that both information and inventory effects

are reflected in the price impact function. The inclusion of these effects implies that

the non-informational price impact cost, compensation to risk-averse market makers

for providing liquidity, can exist although there are no informed traders in the market.

Second, the dynamic model shows that the information effect is permanent while the

inventory effect is temporary. The current market price reflects all of the available

information as well as temporal non-informational events due to the arrivals of large

orders. The inventory effect, however, is temporary and disappears in the subsequent

trade. The predictions of the dynamic model are more consistent with previous bid-

ask spread decomposition models. Based on the derived price in the dynamic model,

the first order serial covariance measure is proportional to both the price impact and

the price reversal.

In empirical tests, the estimated coefficients show that the average price impact

coefficients are positive and the price reversal coefficients are negative. Most coeffi-

cients are quite significant, and the signs of the coefficients are consistent with those

predicted in the model. The estimated coefficients are compared with those when one

of order imbalances are excluded from regression specification. Both price impact and

reversal coefficients from simple regressions tend to be biased and be underestimated.

This result suggests that both order imbalances should be included when estimating

the price impact and reversal coefficients correctly. Moreover, the estimated coeffi-
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cients are highly correlated with the existing illiquidity measures such as the bid-ask

spread or the first order serial covariance of the price difference. This finding confirms

that my theoretical results are well supported by the empirical findings.

This paper presents a unified model that incorporates both inventory and infor-

mation effects. Although the existing microstructure studies separately incorporate

either the inventory or the information effect, there are very few papers that theoreti-

cally combine these two effects. The important contribution of this paper is that both

the inventory and the information effects are shown in one unified model. Moreover,

the derived price behavior in this paper reflects empirical regularities.
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Appendix

A Proof of Proposition 1

From (1), the optimal quantity traded by the informed trader is x = 1
2λ

(v−µ) which
should be equal to the market maker’s conjecture x̃ = α + βṽ. Thus, we have

α = −µ/2λ and β = 1/2λ (A.1)

Substituting for the linear pricing rule in (3) into (4), the zero profit condition of
competitive risk-averse market makers implies

−yE[ṽ|y] + µy + λy2 − γ

2
y2V ar(ṽ|y) = 0 (A.2)

Then, the above equation can be written

µ+ λy = E[ṽ|y] +
γ

2
yV ar(ṽ|y) (A.3)

From the properties of conditional normal distribution, we have get the following
equations

µ =
σ2
uµ0 − αβΣ0

σ2
u + β2Σ0

and λ =

(
β + γ

2
σ2
u

)
Σ0

σ2
u + β2Σ0

(A.4)

Solving (A.1) and (A.4), we have µ = µ0 and

λ =

√
Σ0

σ2
u

(
γ
√

Σ0σ2
u +

√
4 + γ2Σ0σ2

u

4

)
(A.5)

because the second order condition in the problem of the informed trader in (1) implies
λ > 0 such that only the positive value of λ is valid.

B Proof of Proposition 2

At each auction n, given the price pn−1 the mean and variance of the risky asset are
µn−1 and Σn−1, that is ṽ|pn−1 ∼ (µn−1,Σn−1). As in Kyle (1985), the optimization
problem of the informed trader can be written

E[π̃n+1|p1, · · · , pn, v] = αn(v − µn)2 + δn (B.1)

for some constants αn and δn. Since π̃n = (ṽ − p̃n)∆x̃n + π̃n+1, we have

E[π̃n|p1, · · · , pn−1, v] = max
∆xn

E[(ṽ− p̃n)∆x̃n +αn(v−µn)2 + δn|p1, · · · , pn−1, v] (B.2)

The market pricing rule is given by

p̃n = µn−1 + λn(∆x̃n + ∆ũn) (B.3)
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Plugging (B.3) and the formula of µn into (B.2), the conditional expectation yields

max
∆xn

{
(v − µn−1 − λn∆xn)∆xn + αn

(
v − µn−1 −

βnΣn

σ2
u

∆xn

)2

+ αn

(
βnΣn

σ2
u

)2

σ2
u + δn

}
(B.4)

Solving the optimization problem, we have

∆xn =
1− 2αn

(
βnΣn
σ2
u

)
2

(
λn − αn

(
βnΣn
σ2
u

)2
)(v − µn−1) = βn(v − µn−1)∆t (B.5)

And the second order condition is

λn − αn
(
βnΣn

σ2
u

)2

> 0 (B.6)

Plugging (B.5) into (B.4), we have

1 + 4αn

(
λn − βnΣn

σ2
u

)
4

(
λn − αn

(
βnΣn
σ2
u

)2
)(v − µn−1)2 + αn

(
βnΣn

σ2
u

)2

σ2
u∆t+ δn (B.7)

Now for the risk-averse market maker, the conditional expected utility in a mean-
variance fashion with zero profit condition is

−∆ynE[ṽ|∆yn] + µn−1∆yn + λn∆y2
n −

γ

2
∆y2

nV ar(ṽ|∆yn) = 0 (B.8)

The above equation implies that

µn−1 + λn∆yn = E[ṽ|∆yn] +
γ

2
∆ynΣn (B.9)

where Σn = V ar(ṽ|∆yn). Using the properties of the conditional normal distribution,
the solutions are

λn =
βnΣn−1 + γ

2
σ2
uΣn−1

σ2
u + ∆tβ2

nΣn−1

(B.10)

Σn =
σ2
uΣn−1

σ2
u + ∆tβ2

nΣn−1

(B.11)
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These are equivalent to (21) and (22). Plugging (21) and (22) into (B.5) and (B.7),
we can have (18) , (19), and (20). Finally, combine (20) with (21) to obtain(

1−
(
λn −

γΣn

2

)2
σ2
u

Σn

∆t

)(
1− αn

(
λn −

γΣn

2

))
=

1

2
+
γ

2
∆tσ2

u

(
λn −

γΣn

2

)
(B.12)

This is a cubic equation in λn and has three real roots. The middle root of (B.12)
satisfies the second order condition.

C Proof of Lemma 1

Assume that the risky asset has the conditional normal distribution with mean µn−1

and variance Σn−1, that is ṽ|pn−1 ∼ N(µn−1,Σn−1). From the definition of (13), we
know that

v|pn ∼ N

(
µn−1 +

βn (pn − µn−1) Σn−1

λn (σ2
u + ∆tβ2

nΣn−1)
,

σ2
uΣn−1

σ2
u + ∆tβ2

nΣn−1

)
(C.1)

Thus, E[ṽ|pn] = µn can be written as

µn = µn−1 +
(pn − µn−1) βnΣn

λnσ2
u

(C.2)

Moreover, since µn−1 = pn − λn∆yn, we have

µn = pn −
(
λn −

βnΣn

σ2
u

)
∆yn (C.3)

Combining (21) with (C.3), we get the (24).

D Proof of Lemma 2

Given a recent traded price pn−1 at the end of n−1 and at the beginning of n, the risk
asset is normally distributed with mean µn−1 and variance Σn−1. To get the serial
covariance measure, we need to rearrange the price difference ∆pn and ∆pn+1. From
the (1) and (13), the price difference at time n and n+ 1 can be written

∆pn = (∆un + ∆t (v − µn−1) βn)λn −
1

2
γΣn−1∆yn−1 (D.1)

and

∆pn+1 = (∆un+1 + ∆t (v − µn) βn+1)λn+1 −
1

2
γ (∆un + ∆t (v − µn−1) βn) Σn (D.2)

where µn is

pn−1 + (∆un + ∆t (v − µn−1) βn)

(
λn −

1

2
γΣn

)
− 1

2
γΣn−1∆yn−1 (D.3)
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Then, the covariance measure Cov[∆pn+1,∆pn] is

−1

2
∆tλn

((
σ2
u + ∆tβ2

nΣn−1

)
(γΣn + ∆tβn+1λn+1 (2λn − γΣn))− 2∆tβnβn+1λn+1Σn−1

)
(D.4)

From (21) and (B.11)

2λn − γΣn =
2βnΣn

σ2
u

(D.5)

σ2
u + ∆tβ2

nΣn−1 =
σ2
uΣn−1

Σn

(D.6)

Plugging (D.5) and (D.6) into (D.4) and rearranging, we have

Cov(∆pn+1,∆pn) = −1

2
γ∆tσ2

uλnΣn−1 (D.7)

which is the serial covariance measure at time n.
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CHAPTER II

The behavior of merger arbitrage investors: the role of market making

and price discovery

1 Introduction

Merger arbitrage or risk arbitrage is a specialized investment strategy in which arbi-

trageurs purchase the target company’s stock and profit from the arbitrage spread,

the difference between the purchase price and the offer price. The merger arbitrage

spread can be caused by uncertainty regarding the merger, the investors’ limited

capital, or transaction costs. The relation between the merger arbitrage spread and

liquidity will be examined by investigating the trading behavior around the merger

announcement. In other words, the investigation will determine whether those two

spread variables affect each other through the market microstructure model. More-

over, it is important to understand how the incorporation of new information occurs

during a merger period because new information associated with the target stock

will result in a change in the value of the merged firm, which will be reflected in

the current bidder stock price, and the change in the bidder’s stock price may affect

the target stock price that the target shareholders receive when the deal completes

successfully. Thus, the time series behavior of both bidder and target stocks and the

price discovery after the merger announcement must be discovered by considering the

prices of the two stocks simultaneously.

The existing studies of the microstructure effect on mergers study the behavior

of the bid-ask spread of target stocks around a merger announcement by focusing

on changes in the bid-ask spread and its components. (Conrad and Niden (1992),

Jennings (1994), Foster and Viswanathan (1995)) 1. However, the bid-ask spread

1Foster and Viswanathan (1995) find that spreads increase before announcement, and decrease
after announcement using daily date. On an intraday analysis, Jennings (1994) finds that the

41



of target stocks may be affected by the activities of merger arbitrage; thus, only

focusing on the time series for the target stock may result in a biased estimate. For

example, when investors purchase a target stock and sell a bidder stock at the same

time, they may postpone buying or adjust the bidding price because they may be

exposed to greater deal failure risk if it is difficult to short-sell the target stock. This

postponement or adjustment can potentially affect the liquidity of the target stock.

Moreover, if a bidder stock lacks liquidity, the holders of the target shares face the

risk of holding an exchanged bidder stock because they may have trouble selling the

exchanged stock after the deal completes. Thus, a structural model is developed to

estimate the components of a bid-ask spread using multiple time series to account for

the interactions between the bidder and the target stock.

In this paper, I study how investors trading merger stocks are exposed to risks

and are compensated, using the Huang and Stoll (1994) spread decomposition model.

Thus, each price change can be expressed as the function of the bid-ask spread compo-

nents, and the arbitrage spread can also be expressed as the sum of the informational

component and the inventory component of the bid-ask spread. This analogy sug-

gests that the arbitrage opportunity can be associated with liquidity risk(Kumar and

Seppi (1994), Roll et al. (2007)). Roll et al. (2007) argue that deviations from the

no-arbitrage relations should be related to liquidity because liquidity facilitates ar-

bitrage. They investigate the relation between stock market liquidity and the index

futures basis and show that arbitrageurs affect liquidity with their trading and that

liquidity plays an important role in moving markets toward an efficient outcome. Sim-

ilarly, if the positive excess merger arbitrage returns are thought to be compensation

to merger arbitrageurs for providing immediacy to the target shareholders, merger

arbitrage returns and liquidity should be related.

quoted bid-ask spread of target company shares is abnormally high immediately after the takeover
announcements but falls quickly thereafter. In a recent study, Lipson and Mortal (2007) show that
spreads drop and that quoted depth increases for bidder firms, and these changes can be explained
by firm characteristics.
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The existing merger arbitrage literature shows that the merger arbitrage strategy

appears to generate excess risk-adjusted returns to arbitrageurs2. This positive ex-

cess return appears to be valid even after considering the market impact costs and

broker fees. In addition to general transaction costs, the existence of these positive

excess returns may be interpreted as compensation for various risks borne by the

merger arbitrage investors trading target stock. The most compelling reason for this

interpretation is that arbitrageurs could be compensated for bearing the deal failure

risks. Larcker and Lys (1987) assume that risk arbitrageurs are better informed than

the market about the likelihood of takeover success and argue that the excess return

could be compensation to arbitrageurs for acquiring costly information related to the

deal outcome. The second reason is that investors may be compensated due to limits

to arbitrage caused by limited capital. Shleifer and Vishny (1997) argue that arbi-

trageurs may not have enough resources to handle the selling pressure caused by the

existing target shareholders, and the consequence of this limited capital keeps the

target stock price below the offer price. Moreover, investors who invest in a merger

arbitrage strategy may be less likely to be diversified because merger arbitrage is a

very specialized strategy that only trades one or two stocks, and so they care about

both systemic and idiosyncratic volatility. As a result, the investors specializing in

merger arbitrage will require some compensation for holding an undiversified portfolio

with limited capital.

Thus, the compensations requested by merger arbitrage investors are similar to

those required by market makers who provide liquidity. A recent survey by Moore

2For example, using a sample of 94 SEC 13D filings from 1977 to 1983, Larcker and Lys (1987)
show that arbitrageurs generate excess returns of 5.3% on their portfolio positions from the trans-
action date to the resolution date. Jindra and Walkling (2004) examine 362 cash tender offers of
publicly traded US targets during the period from 1971 to 1985 and report annualized returns to
arbitrageurs of 46.5%. Using the calendar-time portfolio construction, Baker and Savasoglu (2002)
report an average annualized abnormal return of 7.2% to 10.8% for a sample of 1901 cash and stock
deals during the periods from 1981 to 1996 after controlling for the capital asset pricing model and
Fama-French three-factor.
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et al. (2006) reports some stylized facts about the behaviors of merger arbitrageurs3.

From the survey, merger arbitrageurs have their own private information related to

the announced deals, are limited in their capital, and act as if they are market makers

by providing liquidity during the merger period. So, the compensation for the deal

failure risk can be thought of as an asymmetric information cost, and holding the

undiversified portfolio with limited capital can be regarded as an inventory cost.

Therefore, the compensation requested by merger arbitrage investors can be inferred

from the analysis of the bid-ask spread components.

The estimation results from the state space models with a Kalman filter provide

evidence that each component of the merger stocks appears to have different move-

ment around the merger announcement. First, the estimated bid-ask spreads of both

stocks decrease after the announcement, and are similar to the average effective spread

of each stock. Second, the information components in the bid-ask spreads of both

stocks decrease after the announcement. This finding implies that merger arbitrage

investors may be afraid of the arrival of more informed traders before the announce-

ment. Moreover, the decrease in informational components can be interpreted as the

reduction of informational asymmetry after the announcement. Finally, the inventory

components for the target stocks significantly increase after the merger announcement

while those for the bidder stocks are unchanged. The increase in the inventory com-

3The authors sent surveys to 28 arbitrageurs who worked at brokerage and money management
firms who operate an arbitrage operation within large firms. They received responses from 21 of 28.
The sample covers not only the firms who are required to file 13F to SEC but also hedge funds that
are not required to file the 13F. Even though their sample size is quite small, their survey results
are quite consistent with academic literature. First, most arbitrageurs take their positions within
two weeks after the merger announcement while they do not unwind their positions immediately
when the deal is canceled. Second, arbitrageurs typically use leverage to take arbitrage positions.
This implies that they might face the limited capital problem. Third, only a small number of
arbitragers invest in unannounced deals such as rumored deals or anticipated deals. Moreover, they
use outside consultants such as antitrust attorneys and tax and accounting specialists implying that
many arbitrageurs are more informed traders than the general public investors. Fourth, they use
the position limit rule to control risks in their arbitrage portfolios. For example, they limit their
individual positions based on a percentage of the overall portfolio or the total amount of capital
that can be lost when the deal is canceled. Fifth, they use derivatives in their positions and use the
reverse positions to manage portfolio risks. Finally, they carefully use limit orders to execute their
trades.
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ponents of the target stocks suggests that merger arbitrage investors may play the

role of market makers by providing liquidity to the existing target shareholders who

do not want to hold the shares. The increase in inventory components also suggests

the limit to arbitrage because the limited capital of the arbitrage investors requires

more compensation for providing liquidity to the existing target shareholders.

Next, I investigate the dynamic relation between the bid-ask spread and the merger

arbitrage spread using vector autoregression. The Granger-causality tests show that

the bid-ask spread of each stock helps to predict the future movement of the merger

arbitrage spread. Moreover, the unexpected shock of the bid-ask spread causes the

increase in the merger arbitrage spread. Finally, the unexpected shock to the merger

arbitrage spread appears to affect each bid-ask spread permanently.

Finally, I estimate the informational share proposed by Hasbrouck (1995) to in-

vestigate how each stock reflects the arrival of new information in the merger market.

To do so, I use the vector error correction model because a cointegration relation

exists between the two merger stocks. The estimated results show that the infor-

mational share of each stock after the merger announcement is quite similar to the

proportion of the market value of each stock to the sum of the two firm’s values prior

to the announcement. This relation implies that merger arbitrage investors help to

form the efficient price. In other words, the merger arbitrage investors eliminate the

arbitrage opportunity so that the target stock price reaches the agreed price between

the merger parties. As a result, the positive excess return from merger arbitrage is

thought of as the compensation associated with forming the effective price.

The remainder of this paper is organized as follows. The next section provides the

market microstructure model for merger stocks during the merger period and shows

the relation between the merger arbitrage spread and the bid-ask spread. Section 3

describes the data and the variables used in this paper. Section 4 shows the estimation

results derived in section 2 by using the state space model with a Kalman filter.
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Section 5 investigates the relation between the merger arbitrage spread and the bid-

ask spread by using both cross sectional and time series data. Section 6 investigates

the price discovery and the informational share. Section 7 concludes the paper.

2 Market microstructure model for merger arbitrage

2.1 Model for bidder and target stocks

The analysis in this paper is based on the Huang and Stoll (1997) spread decomposi-

tion model. The model provides a three-way decomposition of the bid-ask spread into

adverse selection, inventory holding, and order processing cost components. Suppose

there is an unobservable stand-alone fundamental value for each firm i = 1, 2, V Alone
i,t ,

which is equivalent to the firm value when the merger deal does not exist or fails.

Assume that the stand-alone fundamental firm share value evolves as

V Alone
i,t = V Alone

i,t−1 + αi
si
2
vi,t−1 + ui,t i = 1, 2 (31)

where ui,t is the unexpected public information shock of firm i at time t and vi,t is the

unexpected quote shock or the private information shock incorporated in the quote

of firm i at time t. Suppose the ui,ts are uncorrelated white-noise processes with

mean zero, E[u1,tu2,t] = 0 and E[u2
i,t] = σ2

u. The quote innovation vi,ts are correlated

with each other and have mean zero and variance E[v2
i,t] = σ2

vi
. The quote innovation

vi,t can be written as the difference between the observed quote direction and the

information in qi,t−1 that is not a surprise, that is

vi,t = qi,t − E[qi,t|qi,t−1] (32)

If E[qi,t|qi,t−1] = 0, the system in equation (31) is equal to the original assumption

in Huang and Stoll (1997). Alternatively, if E[qi,t|qi,t−1] = ηiqi,t−1 where ηi is the
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transformation of the probability of trade reversal4, then equation (31) will be equiv-

alent to the extended model with induced serial correlation in trade flows, which is

ultimately the AR(1) process for quote direction. But I do not have any specific as-

sumption about the expected value of the quote direction so that the quote innovation

vi,t could have any functions of qi,t−1.

Now, suppose the bidder offers the cash C and the stock with the exchange ratio γ

for each share of target stock. Let V Success
i,t and ni be the firm i’s share value and the

total shares outstanding when the merger succeeds. Following Houston and Ryngaert

(1997), the value of the offer to the target and the bidder of the combined firm will

be

n1V
Success

1,t = (1− κ)[Vt(n1 + γn2)− Cn2] (33a)

n2V
Success

2,t = Cn2 + κ[Vt(n1 + γn2)− Cn2] (33b)

where Vt = (n1V
Alone

1,t + n2V
Alone

2,t + S)/(n1 + γn2) is the fundamental share value of

the combined firm , κ = γn2/(n1 + γn2) ∈ [0, 1] is the proportion of the combined

firm that the target shareholders will receive when the deal completes successfully,

and S is any synergies created by combining two firms. Then, the fundamental share

value of each firm i can be written as

V1,t = π(1− κ)

[
Vt

(
n1 + γn2

n1

)
− Cn2

n1

]
+ (1− π)V Alone

1,t (34a)

V2,t = π

[
(1− κ)C + κVt

(
n1 + γn2

n2

)]
+ (1− π)V Alone

2,t (34b)

where π ∈ [0, 1] is the probability of success of the merger. It is then easy to show that

4Assuming that qi,t = ±1 equally likely, then ηi is equivalent to 1− 2φi where φi is the reversal
probability of a trade flow i. Suppose that P (qi,t = +1|qi,t−1 = −1) = P (qi,t = −1|qi,t−1 = +1) = φi
and P (qi,t = +1|qi,t−1 = +1) = P (qi,t = −1|qi,t−1 = −1) = 1− φi. Since the reversal probability φi
is less than one and greater than zero, this condition satisfies the stationarity assumption of AR(1)
process: 0 < φi < 1 implies |ηi| < 1. If ηi = 1

2 , then ηi will be equal to zero.
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the change of the fundamental value of the bidder firm is ∆V1,t = (1− πκ)∆V Alone
1,t +

π(1 − κ)n2

n1
∆V Alone

2,t , and that of the target firm is ∆V2,t = πκn1

n2
∆V Alone

1,t + (1 − π +

πκ)∆V Alone
2,t .

The midpoints of both stocks should be related to the fundamental value of the

combined firm so that the quote midpoints reflect the information from both the

stand-alone bidder and the stand-alone target. That is, the change in the funda-

mental value of each stock should be embedded in the midpoint of each stock. But

arbitrageurs will believe that the deal will complete successfully and set the midpoint

of the target stock to reflect the midpoint of the offer price, which can be inferred

from the recent trading price of the bidder stock. Moreover, the midpoint of each

stock is set to reflect the inventory component of its stock. Moreover, assume that the

mid-quote point of the target stock is set to follow the offer price at best so that the

expected value of the offer is the same as the current mid-point of the target stock.

Let mi,t be the mid-quote price of firm i at time t where firm 1 is the bidder and firm

2 is the target company. Thus, the midpoint of each stock is assumed to evolve as

m1,t = m1,t−1 + ∆V1,t + β1
s1

2
q1,t−1 (35a)

m2,t = C + γm1,t−1 + ∆V2,t + β2
s2

2
q2,t−1 (35b)

where βi is the proportion of the half-spread attributable to inventory holding costs

5. The econometric specification of the midpoint in equation (35) implies that the

bidder stock and the target stock share a common component based on cointegration.

Because the target stock’s efficient price typically depends on the bidder’s efficient

price except for the cash merger, the cointegrated price system in equation (35)

appears to be appealing. Finally, the observed trade price for each firm can be

5Here, sizes of past trades are assumed to be of a normal one so that −qt = It−It−1 =
∑t

i=1 qi−∑t−1
i=1 qi where It is the cumulative inventory from the market open until time t. So, the inventory

at time t is It = It−1 − qt. If qt = −1 which transaction is seller initiated so that dealer buys, then
It = It−1 +1. If qt = +1 which transaction is a buyer initiated so that dealer sells, then It = It−1−1
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written as

p1,t = m1,t +
s1

2
q1,t + δq2,t−1 (36a)

p2,t = m2,t +
s2

2
q2,t (36b)

where δq2,t−1 reflects the hedging activity by arbitrage investors. The coefficient of q2

in equation (36a) measures the change in the bidder stock due to the quote behavior

of the target stock. Under these price systems, it is easy to show that the bid-ask

spread will be s1 and s2 for the bidder and the target, respectively.

2.2 Merger arbitrage spread

A direct calculation shows that the arbitrage position, At = p2,t − (C + γp1,t), is

At =
s2

2
q2,t + β2

s2

2
q2,t−1 + (1− π)α2

s2

2
v2,t−1 + (1− π)u2,t

−γ
[s1

2
q1,t + β1

s1

2
q1,t−1 + (1− π)α1

s1

2
v1,t−1 + (1− π)u1,t + δq2,t−1

]
(37)

That is, the arbitrage positions can be expressed as the compensation for the asym-

metric information costs, the inventory holding costs, and the transaction costs. If

an investor buys a target stock (q2 = −1) and sells a bidder stock(q1 = 1), then

he should pay At to the arbitrageurs. The first terms in each line reflect the com-

pensation for the simple transaction costs, which are the same as half of the bid-ask

spread. The second terms in each line reflect the inventory holding costs charged

by the arbitrageurs because they manage their portfolio until the deal consummates.

The third and the fourth components in each line are the compensation for the deal

completion risks. The last term in the second line bracket is the compensation that

arises due to the short-selling costs. All of the costs arising from the bidder stock are

proportional to the exchange ratio. So, if the merger structure is a pure cash merger

(γ = 0), there are no costs related to the bidder stock.
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2.2.1 Merger arbitrage spread and information asymmetry

If the deal completes successfully, i.e. π = 1, then the arbitrage position is

s2

2
q2,t + β2

s2

2
q2,t−1 − γ

[s1

2
q1,t + β1

s1

2
q1,t−1 + δq2,t−1

]
(38)

which implies that the arbitrageurs will be compensated for their physical transaction

costs and inventory holding costs even if the deal completes successfully. Moreover,

there is no asymmetric component in the arbitrage positions unless a deal failure risk

exists. If the deal fails, i.e., π = 0, then the arbitrage position is

s2

2
q2,t + β2

s2

2
q2,t−1 + α2

s2

2
v2,t−1 + u2,t

−γ
[s1

2
q1,t + β1

s1

2
q1,t−1 + α1

s1

2
v1,t−1 + u1,t + δq2,t−1

]
(39)

so that the arbitrageurs bear the additional informational risk, which is the difference

between the equations (38) and (39).

α2
s2

2
v2,t−1 + u2,t − γ

[
α1
s1

2
v1,t−1 + u1,t

]
(40)

which is the combination of the public and private information of the bidder and

target stocks, implying that the adverse selection components of the bid-ask spread

accurately reflect the deal failure risk.

2.2.2 Merger arbitrage spread and inventory costs

Baker and Savasoglu (2002) provide a simple stylized model assuming that the target

shareholders receive 1 + p with probability π and receive 1 with probability 1 − π.

Then, p can be thought of as the premium to the target shareholders offered by the

bidder. Moreover, a number of target shareholders exist who do not want to bear

the deal completion risk and sell a total of X shares. In the market, there is a
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limited number A of arbitrageurs who have the mean-variance utility with absolute

risk aversion zA. Under these assumptions, the mean and variance of the offer will

be µ = 1 + πp and σ2 = π(1− π)p2, respectively. The authors demonstrate that the

offering price by the target shareholders should be

pT = 1 + πp− X

A
zAπ(1− π)p2 = µ− X

A
zAσ2 (41)

where zA is the absolute risk aversion coefficient. The second term is then the ad-

ditional compensation to the arbitrageurs offered by the target shareholders. This

premium occurs because the target shareholders sell to a limited number of capital-

constrained arbitrageurs. These authors define the arbitrageurs’ capital as the total

institutional equity holdings, and show that the capital inversely relates to the subse-

quent equity returns. Within the inventory theory of market microstructure, a market

maker should be compensated for providing liquidity service because he bears a level

of risk that is inconsistent with his optimal preferences. The arbitrageurs’ positions

during the merger period are reflected in their portfolios, which are different from

their own preferences. They then want to be compensated for the arbitrage positions

that deviate from their optimal portfolios.

Analytically, the second term in equation (41) is equivalent to the bid-ask spread

derived under the inventory holding cost argument. Suppose only inventory holding

costs exist, i.e., β2 = 1, but no informational costs ui,t = vi,t = 0. Moreover, the mid-

quote price can correctly reflect the payoff of the target share so that µ = C+γm1,t−1.

The buying price of the target share becomes pT = µ− s2 under the situation when

trades occurs at the bid price(q2,t = q2,t−1 = −1). Then, the second term in equation

(41) and the bid-ask spread due to inventory holdings, s2 are equivalent6. Stoll (1978)

6For complete derivations, see the Appendix
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shows that the proportional bid-ask spread is

s2

pT
= zAσ

2
R|Q| =

X

A
zAσ

2 1

pT
(42)

because σ2
R = σ2

(pT )2
and Q = X

A
pT where σ2

R is the variance of the return and σ2 is the

variance of the stock price. So, the target price can be written

pT = µ− s2 = µ− X

A
zAσ

2 (43)

which is the same as the equation (41). Equation (43) shows that the bid-ask spread

due to the inventory is equivalent to the premium that is offered by the existing target

shareholders. Note that the price in Stoll (1978) is the buying price submitted by

the market makers, while the price in Baker and Savasoglu (2002) is the offer price

provided by the existing shareholders. Thus, the price in equation (43) should be the

market clearing price.

2.3 Estimation

The state-space representation of the dynamics of ∆pt is given by the following system

of equations:

ξt+1 =Fξt + et+1 (44a)

∆pt =A′xt + H′ξt (44b)

where F,A′, and H′ are matrices of parameters of dimension (r × r), (2 × k), and

(2×r), respectively, and xt is a (k×1) vector of exogenous variables. Equation (44a) is

known as the state equation, and equation eqrefobserve1 is known as the observation

equation. Here, I use the Kalman filter algorithm to estimate the system of equations

(44) by using the maximum likelihood estimation. See the Appendix for details.
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One advantage of the structure in equation (44) is that I can estimate the inventory

component and the information component without further assumptions about the

unobserved vectors of vt. Here, I assume that the quote direction is an exogenous

observable variable. Although the quote direction cannot be observed directly from

the market data, previous studies show that the algorithm of Lee and Ready (1991)

well approximates the actual quote direction.

Based on the assumptions in the previous section, the price difference ∆pt =

(∆p1,t,∆p2,t)
′ can be written as

∆pt = A(L)qt +B(L)ut + C(L)vt

=
[
A0 + A1L+ A2L

2
]
qt + [B0 +B1L] ut +

[
C1L+ C2L

2
]
vt (45)

where ut = (u1,t, u2,t)
′, qt = (q1,t, q2,t)

′ and L is the lag operator with Lkxt = xt−k.

Here, I assume that a trade direction vector qt is the exogenous variable; that is,

xt ≡ qt. The coefficients Ai, Bi and Cis are

A0 =

 s1
2

0

0 s2
2

 A1 =

 − (1− β1) s1
2

δ

0 − (1− β2) s2
2

 A2 =

 0 −δ

γβ1
s1
2
−β2

s2
2



B0 =

 1− πκ π(1− κ)n2

n1

πκn1

n2
1− π(1− κ)

 B1 =

 0 0

γ(1− π) −(1− π)



C1 =

 (1− πκ)α1
s1
2

π(1− κ)α2
s2
2
n2

n1

πκα1
s1
2
n1

n2
[1− π(1− κ)]α2

s2
2

 C2 =

 0 0

γ(1− π)α1
s1
2
−(1− π)α2

s2
2



53



ξt =



ut

ut−1

vt

vt−1

vt−2


F =



0 0 0 0 0

I 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0


et =



ut

0

vt

0

0


and

H′ =

(
B0 B1 C0 C1 C2

)
and A′ =

(
A0 A1 A2

)

3 Data and variables

3.1 Sample Construction

The initial sample of mergers and acquisitions is drawn from the Thomson Financial

SDC mergers and acquisitions database. A total of 2,518 US merger and acquisition

deals between January 1, 1994, and December, 31, 2008, meet the following screen

criteria. First, the deal status must be completed or withdrawn. That is, uncertain

or rumored deals are deleted from the sample. Second, the forms of the deals are all

mergers (SDC deal form code: M), acquisition of majority interest (AM), acquisition

of partial interest (AP), and acquisition of remaining interest (AR). Thus, I exclude

all deals classified as exchange offers, acquisition of assets, acquisition of particular

assets, privatization, buybacks, recapitalization, and acquisition (of stock). Third,

the method of payments should be combinations of cash, common stock, or cash

equivalents. Thus, if the deal price is determined based on earnings, sales, or cash

flow after the deal completion, then the corresponding deals is deleted. Moreover,

I keep only the firms whose CRSP share codes are either 10 or 11 (common stock).

Fourth, the bidder must hold less than 50% of shares and be seeking control at the

time of the announcement date. Fifth, both merger parties are U.S. firms publicly

traded on the NYSE, AMEX, or Nasdaq and have 60 days of price data prior to the

merger announcement. Finally, the deal duration should be more than 15 days after
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the announcement to obtain sufficient stock price data. Basic deal information such

as the announcement date, the deal completion/withdrawal date, and the method of

payment is collected from the SDC. Because the original SDC data have some errors,

I use Lexis-Nexis or EDGAR to correct wrong information by inspecting the original

8-F statement reported to the SEC. I found that there are some errors and missing

data in the SDC database 7.

The merger arbitrage spread can be related to the structure of the payment to

the target shareholders because the wealth of the target shareholders changes in the

case of floating value or fixed exchange ratio deals. The payment method used in

this paper is either cash or stock. When a bidder uses the stock financed mergers,

he could use the fixed exchange ratio or the floating exchange ratio for the merger

consideration. That is, the bidder could offer a fixed number of shares for each target

share or the fixed value of the bidder’s stock to be exchanged for each target share

at the announcement date. A mixed offer is the sum of the fixed cash and fixed

exchange ratio, the fixed cash and floating exchange ratio, or sometimes a fixed value

offer so that the proportion of cash and stock is determined later by the shareholders.

Another interesting merger technique is the collar offer, in which the number of bidder

shares depends on the bidder stock price range over some given period. The collar

offer can be thought of as a mixture of the fixed exchange ratio offer and the floating

exchange ratio offer.

To analyze the effect of the deal structure, I first group the merger deals into

three categories: pure cash deals, pure stock deals, or a mixture of cash and stock.

The pure stock deals are divided into three groups: fixed exchange ratio stock swap,

fixed pricing (or floating exchange) stock swap, and collar. Similarly, the mixed deals

7Overall, the SDC seems to record the final deal condition rather keep the initial contract. For
the time series analysis, however, I need contents both of initial contract and of amended contract.
The SDC also record the exchange ratio of the fixed value deals even though it is not determined
at the announcement date. This may mislead users to misclassify the fixed value deal as the fixed-
exchange ratio deal. Moreover, some deals classify as the fixed value deals even though they are
collar type deal.
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are divided into three groups: cash plus fixed exchange ratio stock, cash plus fixed

value pricing, and collar with a cash payment. Therefore, depending on the payment

structure, I have seven groups.

To analyze the merger arbitrage, I use the TAQ database to extract the trade

and quote data, and the CRSP database to identify the stock information and the

dividend. The entire stock price is adjusted for dividends and for stock splits using

the CRSP cumulative factor (CFACPR). I classify the trade direction by using the

Lee and Ready (1991) algorithm that compares the transaction price to the posted

bid and ask quotes. I first identify the quote, which must be at least five seconds old.

The algorithm is that if a trade is closer to the bid (ask) of the quote, it is classified

as seller (buyer) initiated. If the transaction occurs at the midpoint of the quote, a

tick test is performed. A tick test means that if the last price change prior to the

trade is negative (positive), the trade is classified as seller (buyer) initiated.

3.2 Sample statistics

In Table 5, I provide a summary of the mergers used in this study. Over the sample

period, approximately 28% of the deals was pure-cash deals, and approximately 54%

of the deals was pure stock deals. Among the pure stock exchange deals, the most

frequent deal type is the fixed exchange ratio deal, while the floating exchange deal

type is relatively small. Moreover, collar deals were approximately 16% of the sample.

Consistent with the merger wave literature, the aggregate takeover activities appear

to have been relatively high in the late 1990s. (See Harford (2005)).

Table 6 reports the deal characteristics of my takeover sample. First, the average

deal value is higher when stocks are considered than when a simple cash-like (pure

cash and fixed value stock) deal is considered. When the deal value increases, the

bidders are more likely to use a stock swap rather than a pure cash payment. Second,

the market average value of the bidder firms is always greater than that of the target
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Table 5: Yearly distribution of Mergers and Acquisitions announcements from 1994
to 2008

This table provides the yearly distribution of mergers and acquisitions samples in SDC database
from 1994 to 2008. The sample includes only deals where the deal status must be completed or
withdrawn, and exclude all deals classified as exchange offers, acquisition of assets, acquisition of
certain assets, privatization, buybacks, recapitalization, and acquisition of stock. Moreover, both
target and acquirer firms are listed in the CRSP database and are US public firms. We keep only firms
whose CRSP share codes are 10 or 11. That is, if there exists a stock swap offer, the exchanged stock
must be a common stock. ”Cash” means a pure cash deal, and ”Stock” represents a pure stock deal.
Of the ”Stock” deals, ”Stock(FL)” represents the pure stock deals with fixed value (floating exchange
ratio) while ”Stock(FX)” means the pure stock deals with a fixed exchange ratio. ”Mix” represents
a type of deals that a merger consideration consists of stock and cash. ”Mix(FL)” and ”Mix(FX)”
represent a mixed deal with floating exchange ratio and fixed exchange ratio respectively. ”Collar”
means that there exists a contingent claim in merger deal at announcement date. Of the collar
deals, ”Stock” means that a target shareholder will receive a bidder stock when a deal completes,
and ”Mix” means a target shareholder will receive an additional cash amount as well as a bidder
stock.

Year
No Collar Collar

Total
Cash Stk(FL) Mix(FL) Stk(FX) Mix(FX) Sum Stk Mix sum

1994 38 6 5 51 6 106 25 2 27 133
1995 47 9 1 93 3 153 25 5 30 183
1996 44 7 1 88 9 149 41 6 47 196
1997 54 9 6 140 11 220 55 6 61 281
1998 66 13 6 155 14 254 49 4 53 307
1999 83 5 6 133 16 243 44 18 62 305
2000 60 7 7 124 13 211 21 8 29 240
2001 43 0 1 50 23 117 17 9 26 143
2002 30 1 4 20 15 70 9 7 16 86
2003 30 2 5 29 22 88 11 9 20 108
2004 35 3 13 35 27 113 3 5 8 121
2005 44 1 2 21 31 99 6 3 9 108
2006 62 1 1 20 23 107 5 4 9 116
2007 56 0 3 19 31 109 3 7 10 119
2008 33 0 2 17 18 70 1 1 2 72

Total 725 64 63 995 262 2,109 315 94 409 2,518

firms. Third, the ratio of the target firm value to the deal value is less than one,

implying the existence of synergy effects. Fourth, the deal duration, the difference

between the deal consummation date and the announcement date, is 134 days on

average. The duration is typically longer when considering a stock swap than when

considering only cash. Finally, the average cumulative abnormal return for target

firms is typically high. The average CAR for bidder firms are close to zero or negative

as expected.
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Table 6: The summary of deal characteristics

This table provides the summary of deal characteristics of our samples. The number of observations,
deal value (VDeal), the market values of bidder(V1) and target firms(V2), the ratio of target firm
market value to deal value(V2/VDeal), a deal duration(Dur), and cumulative abnormal return over
a 5-day window of each firm are reported (CARi where i = 1 for bidder and i = 2 for target).
The deal value is extracted from SDC database. The market values of each firm are calculated by
averaging the three day market values prior to the merger announcement. The deal duration is the
difference between the announcement date and the deal completion date or withdrawn date. The
cumulative abnormal return(CAR) of each firm is measured over a 5-day window around the merger
announcement date using a market model. The parameters of market model are estimated over a
180-day window from 240 to 60 days prior to the announcement date.

No Collar Collar
Total

Cash Stock(FL) Mix(FL) Stock(FX) Mix(FX) Stock Mix

Obs. 725 64 63 995 262 315 94 2,518
VDeal( Mill. $) 799 299 1,259 2,250 1,976 700 1,154 1,494
Dur(Day) 99 143 139 147 160 142 167 134
V1 (Mill. $) 19,287 27,729 11,772 11,615 7,989 8,084 3,596 13,119
V2 (Mill. $) 506 206 829 1,583 1,426 428 649 1,023
V2/VDeal(%) 67.66 68.52 67.57 71.96 71.75 70.19 62.89 69.94
V1 (%) 0.58 -0.74 -0.28 -4.71 -3.62 -1.46 -1.28 -2.32
V2 (%) 32.42 24.47 27.05 16.31 19.53 19.99 22.46 22.45

The various average bid-ask spread measures before and after the announcement

are reported in Table 7. The quoted half spread usually measures the total transaction

costs. The effective spread is the absolute value of the difference between the trade

price and the quote midpoint just prior to the trade. The daily average values of these

spread measures are calculated by weighting each spread by the number of trades.

If the trades occur only at the ask or bid quote price, then the quoted spread and

the effective spread should be the same. From table 7, it is obvious that the effective

spread is less than the quoted half spread across all subsamples. The average spread

measures are lower for bidder stocks than for target stocks. This result implies that the

target stocks are usually more illiquid than the bidder stocks. Moreover, both spread

measures decrease after the announcement, consistent with the previous literature.

Before the announcement, it is typical for the spread measures of the target shares

to be greater than those of the bidder firms. After the announcement, however,

the magnitude of the bid-ask spread difference between the bidder and the target is
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Table 7: The summary of bid-ask spread around the merger announcement

This table provides the comparison of the bid-ask spread of bidder and target before and after
the merger announcement. The spread measures presented in this table is daily average of spread
measures using TAQ database. The daily spread is calculated by weighting each observed spread
by the number of trades. The pre-announcement period for calculating the average spread is 100
days prior to the announcement, and the post-announcement period is from the announcement date
to the deal completion date or the withdrawn date. The quoted bid-ask spread is the difference
between the ask price and the bid price. The effective spread is the absolute value of the difference
between the trade price and the quote midpoint just prior to the trade. ”*”, ”**”, ”***” indicate
significance at the 10%, 5%, and 1% levels respectively.

Method Of Bidder Target

Payment Before After Diff T-Value Before After Diff T-Value

Panel A. Quoted Half Spread

Cash 0.063 0.063 −0.001 −0.78 0.116 0.057 −0.059 −16.63∗∗∗
Stock(FxVal) 0.085 0.080 −0.005 −3.47∗∗∗ 0.202 0.133 −0.069 −4.21∗∗∗
Mix(FxVal) 0.108 0.072 −0.035 −1.14 0.122 0.080 −0.041 −6.89∗∗∗

Stock(FxRatio) 0.099 0.082 −0.017 −13.03∗∗∗ 0.150 0.140 −0.010 −3.41∗∗∗
Mix(FxRatio) 0.086 0.076 −0.010 −2.53∗∗ 0.099 0.093 −0.006 −1.82∗

Collar 0.102 0.091 −0.011 −5.71∗∗∗ 0.162 0.137 −0.025 −6.19∗∗∗
Mixed Collar 0.075 0.066 −0.009 −3.74∗∗∗ 0.127 0.089 −0.038 −6.54∗∗∗

Panel B. Effective Spread

Cash 0.048 0.048 0.000 −0.24 0.092 0.045 −0.047 −16.15∗∗∗
Stock(FxVal) 0.062 0.057 −0.005 −3.37∗∗∗ 0.157 0.101 −0.055 −4.10∗∗∗
Mix(FxVal) 0.078 0.054 −0.024 −1.16 0.100 0.061 −0.039 −6.75∗∗∗

Stock(FxRatio) 0.081 0.067 −0.013 −11.09∗∗∗ 0.120 0.111 −0.009 −3.88∗∗∗
Mix(FxRatio) 0.068 0.061 −0.007 −2.86∗∗∗ 0.083 0.072 −0.011 −4.75∗∗∗

Collar 0.079 0.071 −0.008 −5.28∗∗∗ 0.128 0.105 −0.023 −7.12∗∗∗
Mixed Collar 0.059 0.051 −0.008 −3.28∗∗∗ 0.102 0.068 −0.034 −6.35∗∗∗

reduced.

Table 8 shows that the trading volume and the dollar trading volume increase

significantly for both stocks after the announcement. The number of trades for the

bidder stocks increases significantly across the deal payment methods. However, the

number of trades for the target shares is similar before and after the announcement.

This result implies that the trading volume per trade of a target share increases

significantly after the merger announcement. Easley and O’hara (1987) argue that

informed traders prefer to trade large amounts, which cause an adverse selection

problem. The increase in the trading volume in the target stock may be related to
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Table 8: The summary of trading activities around the merger announcement

This table provides the summary statistics of trading activities around the merger announcement.
The trading activity variables presented in this table is average value of daily measures from the
TAQ database. The pre-announcement period for calculating each variable is 100 days prior to the
merger announcement, and the post-announcement period is from the announcement date to the
deal completion date or the withdrawn date. ”*”, ”**”, ”***” indicate significance at the 10%, 5%,
and 1% levels respectively.

Method Of Bidder Target

Payment Before After Diff T-Value Before After Diff T-Value

Panel A. Trading Volume (Million Shares)

Cash 2.507 2.622 0.115 2.50∗∗ 0.233 0.486 0.253 9.33∗∗∗
Stock(FxVal) 1.206 1.295 0.089 2.10∗∗ 0.087 0.135 0.048 2.46∗∗
Mix(FxVal) 2.240 2.513 0.273 1.51 0.754 0.914 0.160 1.70∗

Stock(FxRatio) 1.304 1.746 0.442 8.64∗∗∗ 0.449 0.549 0.100 4.19∗∗∗
Mix(FxRatio) 1.064 1.463 0.399 6.05∗∗∗ 0.403 0.498 0.095 3.22∗∗∗

Collar 0.915 1.222 0.307 4.11∗∗∗ 0.137 0.196 0.058 6.26∗∗∗
Mixed Collar 0.513 0.691 0.178 3.70∗∗∗ 0.130 0.259 0.130 5.34∗∗∗

Panel B. Dollar Trading Volume (Million Dollars)

Cash 94.363 95.631 1.268 0.62 4.572 12.311 7.740 9.18∗∗∗
Stock(FxVal) 67.218 69.122 1.904 0.54 1.802 3.569 1.767 3.08∗∗∗
Mix(FxVal) 69.609 68.113 −1.496 −0.20 16.100 21.802 5.701 1.38

Stock(FxRatio) 70.029 86.049 16.020 4.71∗∗∗ 12.851 16.997 4.146 3.71∗∗∗
Mix(FxRatio) 45.361 59.212 13.851 5.96∗∗∗ 14.437 20.653 6.216 5.35∗∗∗

Collar 43.214 54.850 11.636 2.74∗∗∗ 3.461 6.135 2.674 7.46∗∗∗
Mixed Collar 19.220 25.167 5.947 3.73∗∗∗ 3.307 7.824 4.517 4.95∗∗∗

Panel C. The number of Trades (Thousand)

Cash 4.441 4.883 0.442 3.25∗∗∗ 0.622 0.640 0.018 0.71
Stock(FxVal) 1.233 1.315 0.083 1.93∗ 0.088 0.097 0.009 0.56
Mix(FxVal) 3.976 4.491 0.515 2.02∗∗ 2.005 2.007 0.002 0.01

Stock(FxRatio) 2.125 2.920 0.796 4.23∗∗∗ 0.870 0.895 0.025 0.40
Mix(FxRatio) 2.191 3.191 1.001 6.53∗∗∗ 1.022 1.158 0.136 2.14∗∗

Collar 0.953 1.236 0.284 2.97∗∗∗ 0.147 0.144 −0.003 −0.31
Mixed Collar 0.880 1.241 0.361 2.25∗∗ 0.250 0.304 0.054 2.37∗∗

Panel D. Order Imbalance (Thousand Shares)

Cash 61.777 43.135 −18.642 −2.24∗∗ 0.116 −89.329 −89.445 −17.23∗∗∗
Stock(FxVal) 68.593 77.969 9.376 0.79 1.393 −26.416 −27.809 −5.26∗∗∗
Mix(FxVal) −26.257 −22.681 3.576 0.17 −22.640 −63.293 −40.653 −2.09∗∗

Stock(FxRatio) 50.982 105.750 54.768 8.76∗∗∗ 4.767 −1.649 −6.415 −2.97∗∗∗
Mix(FxRatio) 48.551 89.841 41.290 3.92∗∗∗ 13.239 0.987 −12.253 −3.04∗∗∗

Collar 46.224 71.288 25.064 3.67∗∗∗ 2.072 −16.425 −18.497 −10.13∗∗∗
Mixed Collar 34.658 69.416 34.757 3.70∗∗∗ 4.758 −17.608 −22.365 −4.98∗∗∗
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the increase in the asymmetric component in the bid-ask spread. The order imbalance

before and after the announcement of each firm is reported in panel (D). The order

imbalance measure in this study is the trading volume at the ask price (buying shares)

less the trading volume at the bid price (selling shares). A positive order imbalance

implies a net buying pressure, and a negative value implies a net selling pressure.

Before the announcement, the order imbalances of both stocks are positive, indicating

that buying pressure exists. The average order imbalance of the bidder firms increases

after the announcement, implying that there are more buyers for the bidder stock after

the announcement. An interesting feature is that the average order imbalance of the

target shares becomes negative after the announcement. This result implies that a

selling pressure from the existing target shareholders exists, and the arbitrageurs use

limit orders during the merger period.

4 Estimation results

Table 9 reports the bid-ask spread estimates and their components when the trade

direction is assumed to be observable. I estimate parameters in each deal and report

the average of the estimated component by the methods of payment. All of the

parameter estimates satisfy the convergence criteria. The focus here is on the change

in the bid-ask spread components before and after the merger announcement.

First, the bid-ask spread measures of both stocks drop significantly after the

merger announcement, and the difference is significant. Although the estimated bid-

ask spreads in panel (A) are slightly larger than the actual quoted half spread mea-

sures, the estimated spread measures have quite similar patterns to the actual data.

The decrease in the bid-ask spread measures is consistent with the previous literature

8. The decrease in the estimated bid-ask spreads is more pronounced in the target

shares than in the bidder shares. Moreover, the decrease in the bid-ask spread implies

an increase in liquidity, which can be related to an increase in trading volumes.

8See Conrad and Niden (1992), Foster and Viswanathan (1995)
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Table 9: Estimation of parameters of state space model by using Kalman filter algo-
rithm

This table provides the estimation results of price system in the state space model of (45). The
estimated bid-ask spreads for bidder and target stock are s1 and s2 respectively. The informational
component of bid-ask spread for bidder and target stock are α1 and α2 respectively. The inventory
component of bid-ask spread for bidder and target stock are β1 and β2 respectively. ”*”, ”**”, ”***”
indicate significance at the 10%, 5%, and 1% levels respectively.

Method # of Bidder Target

Of Payment Obs Before After Diff T-Value Before After Diff T-Value

Panel A. Estimated Bid-Ask spread (si)

Cash 725 0.079 0.080 0.002 0.97 0.119 0.048 −0.070 −15.43∗∗∗
Stock(FxVal) 64 0.110 0.106 −0.004 −0.77 0.221 0.111 −0.110 −5.09∗∗∗
Mix(FxVal) 63 0.091 0.078 −0.013 −1.22 0.126 0.073 −0.053 −4.48∗∗∗

Stock(FxRatio) 995 0.149 0.121 −0.028 −9.59∗∗∗ 0.185 0.121 −0.065 −12.14∗∗∗
Mix(FxRatio) 262 0.086 0.071 −0.015 −3.51∗∗∗ 0.087 0.061 −0.027 −4.66∗∗∗

Collar 315 0.147 0.128 −0.019 −4.23∗∗∗ 0.181 0.095 −0.086 −10.78∗∗∗
Mixed Collar 94 0.090 0.073 −0.017 −3.34∗∗∗ 0.116 0.055 −0.062 −5.18∗∗∗

Panel B. Information Component (αi)

Cash 725 0.540 0.496 −0.044 −2.29∗∗ 0.525 0.524 −0.002 −0.08
Stock(FxVal) 64 0.560 0.553 −0.007 −0.13 0.550 0.598 0.048 0.66
Mix(FxVal) 63 0.619 0.500 −0.119 −2.38∗∗ 0.534 0.488 −0.047 −0.81

Stock(FxRatio) 995 0.557 0.517 −0.040 −2.52∗∗ 0.564 0.535 −0.028 −1.80∗
Mix(FxRatio) 262 0.554 0.564 0.010 0.33 0.548 0.574 0.026 0.88

Collar 315 0.550 0.540 −0.010 −0.34 0.553 0.513 −0.041 −1.44
Mixed Collar 94 0.535 0.473 −0.062 −1.23 0.492 0.541 0.048 0.96

Panel C. Inventory Compoenet (βi)

Cash 725 0.426 0.442 0.016 0.98 0.297 0.320 0.023 1.61
Stock(FxVal) 64 0.414 0.436 0.023 0.52 0.214 0.299 0.085 1.77∗
Mix(FxVal) 63 0.375 0.445 0.071 1.50 0.278 0.392 0.115 2.39∗∗

Stock(FxRatio) 995 0.396 0.383 −0.013 −1.32 0.307 0.324 0.017 1.49
Mix(FxRatio) 262 0.487 0.452 −0.034 −1.41 0.405 0.402 −0.004 −0.14

Collar 315 0.393 0.391 −0.002 −0.13 0.251 0.314 0.063 3.19∗∗∗
Mixed Collar 94 0.417 0.373 −0.044 −1.08 0.302 0.413 0.110 2.45∗∗

Second, the information components in the bid-ask spreads of both stocks decrease

after the announcement, although some are insignificant. However, the adverse in-

formation components are still the largest portion of the bid-ask spread, suggesting

that merger arbitrage investors have concerns about the deal failure risks. Copeland

and Galai (1983) and Glosten and Harris (1988) predict that market makers may

adversely increase the bid-ask spread when they expect informed trades. The large

62



proportion of adverse information components prior to the merger announcement sug-

gests that market makers recognize the likelihood of informed trading from the market

order flows and widen the bid-ask spread prior to the announcement. However, these

adverse information problems can be resolved by the public announcement, which

results in a decrease in the bid-ask spread.

Third, the inventory components of the bid-ask spreads appear to increase after

the announcement even though the difference in the proportion of inventory compo-

nents for the bidder stocks is unchanged. However, the inventory components for the

target stocks increase significantly after the merger announcement. As reported in

Table 8, a substantial selling pressure exists as a result of selling demands from the

existing target shareholders. This finding supports the limits of arbitrage theory.

Moreover, a significant portion of the inventory costs reflects the carrying costs

of the merger arbitrage portfolios until the deal consummation date. The increase

in the inventory components of the target shares suggests that arbitrageurs can play

the role of a market maker. If arbitrageurs are buyers of target shares in takeover

markets, they will handle these negative imbalances and increase their inventory

holding, which is shown in the increase in the inventory component. This result

implies that arbitrageurs can provide liquidity to sellers, and require compensation

by quoting their best buying price.

The estimated components of the bid-ask spread reported in Table 9 are the pro-

portional elements of the bid-ask spread. The proportion of the bid-ask spread may

not be adequate to explain the change in each component of the bid-ask spread. If the

total bid-ask spread decreases due to pure order processing costs after the announce-

ment and other components still remain, each proportion for the information and

inventory components in the bid-ask spread could increase. To address these issues,

I calculate the dollar spread components. Table 10 reports the dollar information

spread and the dollar inventory spread of each stock around the announcement. The
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Table 10: Estimated dollar spread of state space model by using Kalman filter algo-
rithm

This table provides the estimation results of price system in the state space model of (45). The
dollar bid-ask spread related with asymmetric information for bidder and target stock are α1s1 and
α2s2 respectively. The dollar bid-ask spread related with inventory component for bidder and target
stock are β1s1 and β2s2 respectively. ”*”, ”**”, ”***” indicate significance at the 10%, 5%, and 1%
levels respectively.

Method # of Bidder Target

Of Payment Obs Before After Diff T-Value Before After Diff T-Value

Panel A. Dollar Spread (Information portion)

Cash 725 0.043 0.040 −0.003 −1.27 0.061 0.024 −0.036 −12.09∗∗∗
Stock(FxVal) 64 0.061 0.060 −0.001 −0.17 0.124 0.067 −0.057 −3.11∗∗∗
Mix(FxVal) 63 0.047 0.039 −0.008 −0.96 0.065 0.028 −0.037 −3.82∗∗∗

Stock(FxRatio) 995 0.080 0.063 −0.017 −5.29∗∗∗ 0.105 0.063 −0.042 −9.20∗∗∗
Mix(FxRatio) 262 0.045 0.039 −0.005 −1.40 0.044 0.037 −0.007 −1.59

Collar 315 0.081 0.069 −0.012 −2.17∗∗ 0.096 0.051 −0.045 −6.56∗∗∗
Mixed Collar 94 0.049 0.030 −0.019 −3.47∗∗∗ 0.054 0.031 −0.023 −2.93∗∗∗

Panel B. Dollar Spread (Inventory spread)

Cash 725 0.032 0.034 0.003 1.94∗ 0.025 0.018 −0.006 −3.55∗∗∗
Stock(FxVal) 64 0.036 0.042 0.005 0.96 0.035 0.045 0.011 0.95
Mix(FxVal) 63 0.028 0.028 0.001 0.25 0.027 0.036 0.010 1.15

Stock(FxRatio) 995 0.058 0.046 −0.012 −5.70∗∗∗ 0.050 0.047 −0.002 −0.63
Mix(FxRatio) 262 0.037 0.029 −0.008 −2.00∗∗ 0.026 0.028 0.002 0.59

Collar 315 0.057 0.047 −0.010 −3.54∗∗∗ 0.037 0.036 −0.001 −0.12
Mixed Collar 94 0.034 0.027 −0.007 −2.00∗∗ 0.026 0.028 0.002 0.33

dollar components in the bid-ask spreads appear to display similar patterns to the pro-

portions of the components. The decrease in the bid-ask spreads is more pronounced

in the target stocks. The bid-ask spread due to an adverse information decrease after

the announcement implies that most of the decrease in the bid-ask spread after the

announcement is due to the decrease in information asymmetry. For target stocks,

the inventory bid-ask spread after the announcement appears to be unchanged or to

slightly increase after the announcement, although the inventory bid-ask spread of

cash deals decreases significantly. These results are similar in terms of the results of

the change in the percentage inventory component around the event. However, the

dollar inventory component of the bidder stocks decreases after the announcement,
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especially in fixed exchange stock deals. This decrease may be due to the hedging

demand of arbitrageurs who buy target shares and sell bidder shares simultaneously.

5 Merger arbitrage spread and bid-ask spread

5.1 Cross-sectional relation between merger arbitrage and bid-ask spread

As seen in the previous section, the arbitrage spread can be expressed as a function

of the bid-ask spread components. In this section, I investigate the relation between

the merger arbitrage spread and the bid-ask spread cross-sectionally. The dependent

variable is the daily merger arbitrage spread, which is calculated based on the infor-

mation from the financial statement reported by the merger parties. If there are other

events such as stock splits, dividend payments, or a change in deal conditions, then

I adjust the price for each day. The primary independent variables are the quoted

half spread of each firm. I include the Fama-French 3 factors to control the mar-

ket wide premium for each date. Moreover, I include the interaction term, which is

the product of the market excess return and the indicator variable, which is 1 if the

market excess return is positive, and zero otherwise. This interaction variable can

control the non-linear characteristics of the merger arbitrage returns (Mitchell and

Pulvino (2001)). If the market is volatile, the merger arbitrage spread is likely to

widen due to market uncertainty. I include the volatility index (VIX) to control mar-

ket uncertainty. Moreover, I include other market microstructure variables related to

trading activities. Finally, because the merger arbitrage spread is affected by time

and firm size, I include the time from the announcement date and each firm’s market

value. Table 11 reports the cross-sectional regression for subsamples of deals where

the dependent variable is the merger arbitrage spread.

First, the quoted bid-ask spread of the target firm is positively related to the

merger arbitrage spread across all subsamples. But, the quoted spread of bidder firms

is negative for the fixed value deals while it is positive when the merger deal is varying.
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Table 11: Regressions of merger arbitrage spread for subsamples of deals

This table shows pooled OLS estimates of merger arbitrage spread, defined as at = p2,t − γp1,t −C
where p1,t and p2,t are bitter stock price and target stock price at time t, and γ is the fixed exchange
ratio. Each column is the regression result of subsample: pure cash deal(I), pure stock deal with
fixed value(II), mixed deal with fixed value(III), pure stock deal with fixed exchange ratio(IV), mixed
deal with fixed exchange ratio(V), pure stock deal with collar(VI), and mixed deal with collar(VII).
QSi,t is the daily quoted half-spread of firm i at time t. RM

t and RF
t are daily market return and

risk-free rate at time t. I is an indicator variable with one if RM
t − RF

t > 0, and zero otherwise.
SMBt and SMLt denote the Fama-French factors at time t. V IXt denotes the CBOE volatility
index. Compt is an indicator variable taking one if a deal completes successfully, and zero otherwise.
$V oli,t denotes the daily dollar volume for stock i at time t. MVi,t is the daily market value of stock i
at time t. Tradesi,t denotes the daily number of transaction for stock i at time t. ∆t is the duration
from announcement date to day t. The subscript i is a bidder firm for i = 1 and a target firm for
i = 2. The numbers in parentheses are standard errors. ”*”, ”**”, ”***” represents significance at
10%, 5%, and 1% level respectively.

(I) (II) (III) (IV) (V) (VI) (VII)

QS1,t −0.439∗∗ −0.624 −0.222∗∗∗ 3.106∗∗∗ 0.022 1.132∗∗∗ 1.549∗∗∗
(0.203) (0.628) (0.079) (0.149) (0.044) (0.165) (0.523)

QS2,t 3.727∗∗∗ 2.123∗∗∗ 1.873∗∗∗ 1.892∗∗∗ 1.467∗∗∗ 2.053∗∗∗ 2.845∗∗∗
(0.242) (0.172) (0.195) (0.064) (0.089) (0.092) (0.236)

RM
t −RF

t −5.407∗∗ −10.980∗∗∗ −7.590∗∗ 1.319 −3.310∗ −6.194∗∗∗ 0.376
(2.112) (4.073) (3.281) (1.363) (1.820) (2.303) (3.791)

(RM
t −RF

t ) · I 7.061∗∗ 13.717∗∗ 11.570∗∗ −0.929 11.305∗∗∗ 23.036∗∗∗ −7.044
(3.496) (5.837) (5.130) (2.135) (3.046) (3.404) (5.756)

SMBt 1.236 −2.260 −6.177∗∗ −0.347 3.906∗∗ 3.232 −0.351
(2.179) (3.665) (3.135) (1.301) (1.896) (2.150) (3.283)

HMLt −3.133 −9.254∗ −1.257 −3.318∗∗ 2.137 6.963∗∗ −18.648∗∗∗
(2.188) (4.884) (3.488) (1.503) (1.926) (2.731) (4.026)

V IXt 0.047∗∗∗ 0.043∗∗∗ 0.027∗∗∗ 0.014∗∗∗ 0.046∗∗∗ 0.049∗∗∗ 0.075∗∗∗
(0.002) (0.004) (0.003) (0.001) (0.002) (0.002) (0.004)

Compt −1.548∗∗∗ −0.253∗ 0.135∗ −2.012∗∗∗ −1.313∗∗∗ −0.698∗∗∗ −1.736∗∗∗
(0.044) (0.134) (0.079) (0.029) (0.043) (0.064) (0.053)

log($V ol1,t) 0.224∗∗∗ −0.092∗∗ −0.085∗∗∗ 0.065∗∗∗ 0.030∗ −0.210∗∗∗ −0.164∗∗∗
(0.019) (0.038) (0.025) (0.013) (0.017) (0.018) (0.028)

log($V ol2,t) −0.078∗∗∗ 0.036 −0.183∗∗∗ 0.302∗∗∗ 0.165∗∗∗ 0.182∗∗∗ −0.123∗∗∗
(0.014) (0.025) (0.021) (0.011) (0.016) (0.015) (0.026)

log(MV1,t) −0.254∗∗∗ −0.114∗∗∗ 0.319∗∗∗ 0.239∗∗∗ 0.032∗∗ 0.034∗∗ −0.321∗∗∗
(0.016) (0.028) (0.028) (0.010) (0.016) (0.015) (0.030)

log(MV2,t) 0.445∗∗∗ 0.418∗∗∗ 0.141∗∗∗ −0.090∗∗∗ 0.188∗∗∗ 0.204∗∗∗ 0.959∗∗∗
(0.015) (0.030) (0.028) (0.010) (0.017) (0.015) (0.030)

log(Trade1,t) −0.182∗∗∗ −0.190∗∗∗ −0.215∗∗∗ −0.127∗∗∗ −0.062∗∗∗ 0.168∗∗∗ 0.069∗∗
(0.019) (0.039) (0.023) (0.014) (0.017) (0.020) (0.031)

log(Trades2,t) 0.165∗∗∗ 0.003 0.285∗∗∗ −0.127∗∗∗ −0.104∗∗∗ −0.007 0.068∗∗
(0.018) (0.033) (0.025) (0.014) (0.018) (0.020) (0.033)

∆t 0.003∗∗∗ 0.001∗∗∗ 0.000 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.003∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R2 14.56 19.23 10.80 14.13 13.47 11.87 25.42
Obs. 40,384 4,370 5,316 89,720 26,474 25,938 9,597
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Second, the non-linear relation appears to exist between the merger arbitrage spread

and the market excess return, supporting Mitchell and Pulvino (2001). The positive

coefficient for the interaction term implies that the merger arbitrage spread has call

option-like features. Other asset pricing factors are not likely to relate to the merger

arbitrage spread. Third, market volatility is positively related to the merger arbitrage

spread. This result suggests that arbitrageurs may require more compensation when

the market is more volatile. Fourth, when the merger deal is successfully completed,

the merger arbitrage spread should be narrower than when the merger fails. The

negative coefficient of Compt in the regression reflects these predictions. Fifth, heavy

trading volume in a particular stock may narrow the arbitrage spread. Finally, as time

moves far away from the announcement date, the merger arbitrage spread appears

to increase for the fixed value deals, but to decrease for the floating value deals.

The merger arbitrage spread converges to zero when the deal is close to the deal

consummation date. But, for the fixed deals, the merger arbitrage spread appears

to widen as time moves far away from the announcement date, implying that merger

arbitrageurs expect that the deal duration for the fixed value deals ended sooner than

the floating value deals. Finally, it is clear that the merger success and the merger

arbitrage spread are negatively and significantly related across all subsamples.

Overall, this cross-sectional regression confirms that there are clear relations be-

tween the merger arbitrage spread and the bid-ask spread of a target stock. In next

section, I examine the relation between the merger arbitrage spread and the bid-ask

spread using dynamic time series analysis.

5.2 Time-Series analysis

5.2.1 Vector autoregressive regression analysis

This section examines the dynamic behavior of merger arbitrage spreads and bid-

ask spreads. As noted in the previous section, the merger arbitrage spread can be
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expressed as the bid-ask spread components. Each component of the bid-ask spread

can be matched to the different types of compensation to the arbitrageurs. This ability

suggests that the total bid-ask spread should be related with the merger arbitrage

spreads during the merger period. I use the vector autoregression analysis (VAR) to

more precisely analyze the predictability of a bid-ask spread to a merger arbitrage

spread. Let yt = [At, s1,t, s2,t]
′ be the vector of the time series where At is the

arbitrage spread at time t, s1,t is the bid-ask spread of a bidder firm at time t, and

s2,t is the bid-ask spread of a target firm at time t. Then, the reduced-form vector

autoregressive regression(VAR) of order p has the following standard representation:

yt = B0 +

p∑
i=1

Biyt−i + εt (46)

where Bi is the (3× 3) coefficient matrix and εt is an (3× 1) unobservable zero mean

white noise vector process. The covariance of the vector of reduced-form residuals εt

is denoted as Σ. I choose p = 3 to estimate the model in equation (46) based on AIC

criteria.

5.2.2 Granger-causality

Table 12: Granger Causality between merger arbitrage spread and bid-ask spread

This table reports the results of the linear Granger-causality test. At is arbitrage spread at time t
calculated as p2,t − γp1,t −C where p1,t is the price of bidder stock , p2,t is the price of target stock
at time t, γ is the stock exchange ratio per share, and C is the per share cash amount paid to target
shareholders. s1,t and s2,t is the daily quoted half spread of bidder and target at time t respectively.
Each test is conducted by deal by deal. The reported results are percentage of the significance on
overall subsamples. The significance of test in each deal is tested at 5% level.

Method Total Percent Sig Percent Sig Percent Sig Percent Sig
Of Payment Observations At → s1,t At → s2,t s1,t → At s2,t → At

Cash 725 33.24 50.34 13.52 28.14
Stock(FxVal) 64 31.25 43.75 6.25 21.88
Mix(FxVal) 63 55.56 50.79 9.52 23.81

Stock(FxRatio) 995 50.35 57.19 19.50 37.99
Mix(FxRatio) 262 54.58 59.16 22.52 34.73

Collar 315 45.08 50.48 11.75 28.89
Mixed Collar 94 47.87 57.45 12.77 19.15
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In this section, I investigate whether each spread for the merger firms is useful

in forecasting merger arbitrage or vice versa by using the Granger-causality tests.

The Granger-causality tests examine whether the lagged value of one variable helps

to predict another variable. If an independent variable does not help to predict the

dependent variable, then all of the coefficients of the lagged independent variables

are jointly zero. Table 12 summarizes the Granger-causality test results for the VAR

model in equation (46). For each deal, I examine whether one variable Granger-causes

another variable by testing whether the relevant sets of coefficients are zero. I then

count the number of significant samples and calculate the significant percentage in

each set of subsamples based on the payment method.

The results indicate that the merger arbitrage spreads appear to help predict a

bid-ask spread for each stock in approximately half of the samples as shown in the

third and fourth column of Table 12. The results are stronger in the target stocks than

in the bidder stocks. Moreover, the results are much stronger in stock swap mergers

than in cash mergers. These results imply that both the bidder’s and the target’s

bid-ask spread are necessary to predict the merger arbitrage spreads in approximately

half of the sample. The third and fourth column presents the statistics regarding

whether each spread helps to predict the merger arbitrage spreads. The results are

also stronger in the target stocks, and stock-swap deals have more significant results.

5.2.3 Impulse response function analysis

A simple way of capturing the net effects for all the coefficients in the VAR analysis

is to form identified impulse response functions. The VAR model in equation (46)

can be written in the following VMA(∞) manner:

yt = µ+
∞∑
i=1

Θiεt−i (47)
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Figure 7: The impulse response functions of merger arbitrage to bid-ask spread of
bidder
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where Θi is the unidentified impulse response function which has the interpretation

Θs = ∂yt+s/∂ε
′
t. That is, the row i and column j element of Θs identifies the conse-

quences of a one-unit increase in the jth variable’s innovation at time t for the value

of the ith variable at time t + s, holding all other innovations at all dates constant.

Because the bid-ask spread shock is correlated with the arbitrage spread shock, it is

uncertain whether the response is the response of the arbitrage spread to the bid-ask

spread, or to a technology shock that happens to occur at the same time as the bid-

ask spread shock. Therefore, the identified impulse response function Ci satisfying

Ciνt−i = Θiεt−i where E[εtε
′
t] = PP ′ = Σ and νt−i = P−1εt−i with E[νtν

′
t] = I3 for

each i must be calculated.

Figures 7 and 8 depict the responses of a merger arbitrage spread to a unit inno-

vation in the bid-ask spread for each stock up to horizon 30 by method of payments.

First, the immediate shock in the bid-ask spread follows the increase in the merger

arbitrage spread. Second, the unexpected rise in the bid-ask spread of bidder stocks
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Figure 8: The impulse response functions of merger arbitrage to bid-ask spread of
target
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decays over time for the fixed value deals (first rows), and is associated with a persis-

tent increase in the arbitrage spread for the floating value deals. The positive effect

of the target bid-ask spread on the merger arbitrage spread appears to be stronger

than that of the bidder bid-ask spread.

Figures 9 and 10 depict the responses of the bid-ask spread of each stock to a unit

shock in a merger arbitrage spread up to horizon 30 by method of payments. The

impulse response function of the bid-ask spreads to the merger arbitrage spreads has

patterns consistent with the results of the Granger-causality test. The increases in

the merger arbitrage spread have a persistent and positive effect on both the bidder

and the target bid-ask spread. Roll et al. (2007) argue that the increase in the

arbitrage spread induces an increase in incoming orders and eventually widens the

bid-ask spread. The effect of the impulse responses of the bid-ask spreads on the

merger arbitrage spread is stronger in target stocks than in bidder stocks.
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Figure 9: The impulse response functions of bid-ask spread of bidder to merger arbi-
trage
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6 Price discovery and information share

6.1 Cointegration and vector error correction model(VECM)

In this section, I examine the price discovery between two stocks during the merger

period. After the merger, it is typical for the bidder stock company to exist as a

combination of the target and the original bidder companies. As a result, the current

bidder stock price should reflect not only the new information related to the original

bidder company but also the new information related to the target company. When a

merger deal completes successfully, the target shareholders receive the bidder stock in

the case of a stock swap merger. In this case, the target stock price will be affected by

the new information of the target stock itself as well as the information of the bidder

stock. The question is how the new information of the target stock is transmitted to

the bidder stock or vice versa. During the merger period, the target stock price is

likely to be cointegrated with the bidder stock because the current target stock price

is linked to the bidder stock price based on the exchange ratio.
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Figure 10: The impulse response functions of bid-ask spread of target to merger
arbitrage
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I use the vector error correction model to accommodate this cointegrating system

and can identify the price discovery process between the bidder and the target stock.

Suppose a trade direction follows an autoregressive process, that is qt = Υ(L)vt

where Υ(L) is some autoregressive function. One possible specification for a trade

direction is assumed to follow the AR(1) process of qi,t = ηiqi,t−1 + vi,t to admit the

serial correlation in trade flows as in Huang and Stoll (1997) and Madhavan et al.

(1997). Then, the autoregressive coefficient ηi is related to the reversal probability 9.

Assuming that a trade direction follows some autoregressive process, the price

9Assuming that qi,t = ±1 equally likely, then ηi is equivalent to 1 − 2φi. Suppose that
P (qi,t = +1|qi,t−1 = −1) = P (qi,t = −1|qi,t−1 = +1) = φi and P (qi,t = +1|qi,t−1 = +1) =
P (qi,t = −1|qi,t−1 = −1) = 1 − φi where φi is the reversal probability of a trade flow i. Since the
reversal probability φi is less than one and greater than zero, this condition satisfies the stationarity
assumption of AR(1) process: 0 < φi < 1 implies |ηi| < 1. If ηi = 1

2 , then ηi will be equal to zero.
Moreover, there is a correlation between two order flows, i.e., E[q1,tq2,t] = ρ. The innovation vi,t
has mean zero with variance E[v2i,t] = 1− η2i , and E[v1,tv2,t] = (1− η1η2)ρ.
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system in equation (45) can be written in the following VMA(∞) manner:

∆pt = B(L)ut + [A(L)Υ(L) + C(L)]vt

≡ Ψ(L)εt where Ψ(L) =
∞∑
j=0

ΨjL
j and Ψ0 = I2 (48)

and new innovation vector εt is uncorrelated white-noise with E[εt] = 0 and E[εtε
′
t] =

Ωε. In general, equation (48) can be estimated from some appropriate V AR(p) model

. But the polynomial Ψ(L) may not be invertible when L = 1, and no finite order

vector autoregressive model could describe ∆pt. These problems can be resolved by

employing the vector error correction model proposed by Engle and Granger (1987)

and used in the microstructure application by Hasbrouck (1995).

Under the price structure defined in the previous section, the price vector pt and

the difference in the price vector ∆pt can be written as

pt = Ψ(1)
t∑

s=0

εs + Ψ∗(L)εt (49)

∆pt = Ψ(1)εt + (1− L)Ψ∗(L)εt, (50)

where Ψ∗(L)εt is covariance stationary and (1 − L)Ψ∗(L)εt is a stationary, nonin-

vertible moving average. Now, consider the merger arbitrage strategy At = p2,t −

γp1,t −C = α′pt −C where α = [−γ 1]′ is the cointegrating vector. Premultiplying

equation (49) by α′ and rearranging the equations result in

zt = α′Ψ(1)
t∑

s=0

εs + α′Ψ∗(L)εt (51)

where zt = α′pt ≡ At + C which implies that it must α′Ψ(1) = 0 where Ψ(1) =

I2 + Ψ1 + Ψ2 + · · · for the requirement of α′pt to be stationary. Thus, one possible

long-run impact matrix can be written as Ψ(1) = α⊥ψ where ψ = (ψ1, ψ2) denote

the common row vector in Ψ(1) and α⊥ satisfies α′α⊥ = 0. Then, the price system in
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equation (49) becomes

pt = α⊥ψ
t∑

s=0

εs + Ψ∗(L)εt (52)

Hasbrouck (1995) argues that the term ψεt represents the random-walk component

impounded permanently in the price due to new information. To derive the vector

error correction form, suppose that the price level pt can be represented as a non-

stationary pth-order autoregression:

Φ(L)pt = εt (53)

where Φ(L) = I2 − Φ1L− Φ2L
2 − · · · − ΦpL

p. It is easy to show that Φ(1)Ψ(1) = 0,

thus it follows that there exists a (2 × 1) vector β such that Φ(1) = βα′. Then, by

the Granger representation theorem(Engle and Granger (1987)) there exist (2 × 2)

matrices Γ1,Γ2, · · · ,Γp−1 such that

∆pt = Γ1∆pt−1 + Γ2∆pt−2 + · · ·+ Γp−1∆pt−p+1 − β(α′pt−1 −E
[
α′pt−1

]
) + εt (54)

where Γs = −[Φs+1 + Φs+2 + · · ·+ Φp] for s = 1, 2, · · · , p− 1 and β is error correction

vector.

I need to examine whether there exists a cointegration relation between a bidder

stock and a target stock to justify the vector error correction model specification in

equation (54). I employ the methodologies in Johansen (1991) and Stock and Watson

(1988) to test the null hypothesis that two time series are not cointegrated.

Table 13 shows the results of the cointegration tests between two stocks. After

performing the cointegration tests for each deal, I count the number of significant

cases at the 5% level. Both test results reveal similar patterns across the method of

payments. First, the successful deals appear to be more cointegrated than the failed

deals, suggesting that both stock prices efficiently reflect the relevant information.
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Table 13: Cointegration Test results

This table shows the cointegration test results. Two tests are performed: Stock-Watson common
trend test and Johansen cointegration test. Each test is conducted by deal by deal. The reported
results are percentage of the significance on overall subsamples.

Method Total Observations Stock-Watson Test(% ) Johansen Test(% )

Of Payment Fail Success Fail Success Fail Success

Cash 61 664 26.23 52.11 27.87 58.58
Stock(FxVal) 8 56 25.00 44.64 62.50 50.00
Mix(FxVal) 9 54 22.22 46.30 55.56 51.85

Stock(FxRatio) 86 909 59.30 90.21 63.95 93.62
Mix(FxRatio) 17 245 64.71 81.22 70.59 85.71

Collar 10 305 40.00 65.25 60.00 74.10
Mixed Collar 10 84 20.00 54.76 40.00 61.90

Total 201 2317 36.78 62.07 54.35 67.97

Second, both test statistics show that there is a substantial cointegration relation

between two stocks when the merger parties consider the fixed exchange ratio stock

deals. Among the successful deals, approximately 90% of fixed exchanged stock deals

show that there exists a strong cointegration relation between two stocks. There is

lower cointegration relation in the case of fixed value deals, but approximately half

of the sample appears to be cointegrated. Although the fixed valued deal with stock

payment (Stock(FxVal)) is the same structure as the pure cash payment, there is a

stronger cointegration relation in stock deals than in pure cash deals.

Overall, over half of the successful deals are shown to be cointegrated, while

there are few cointegrated relations in failed deals. Thus, the vector error correction

specification may be inappropriate for the failed deals. However, this model is well

suited for the successful deals. In the next section, I analyze price discovery and the

information share using the vector error correction model discussed in this section.

6.2 Price discovery and information share

Hasbrouck (1995) introduces the information share measure to explain where the

price discovery occurs. The information share of one security can be defined as the
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proportional contribution of the security’s innovations to the common innovations. If

the price innovations are correlated across securities, Hasbrouck (1995) suggests using

the Cholesky factorization of Ωε = FF ′ to remove the contemporaneous correlation.

Then, the information shares are provided by

Sj =
([ψF ]j)

2

ψΩεψ′
(55)

where [ψF ]j is the jth element of the matrix ψF and F is the lower triangular matrix.

According to Hasbrouck (1995), this information share is a relative measure allocating

information to the different securities and simply measures the informational trans-

mission speeds in the process of price adjustment.

It is natural that the target stock price should reflect the information of its own

shares as well as the information of the bidder stocks when there are stock exchange

mergers. Regardless of the payment method, the bidder stock price should reflect the

new information for the target shares because all of the information related target

firms could affect the acquirer firm values and the shareholder values of the bidder

firms. For example, the target stock price does not depend on the bidder stock price

when the method of payment is pure cash. However, paying cash to the target firm

shareholders forces the bidder firms to use internal funds or to finance additional

capital to meet the deal conditions. Moreover, unexpected changes in the target

shares may affect the future cash flows of the target firms, and ultimately affect the

future cash flows of the bidder firms. In this sense, the information share of the

efficient stock price is similar to the ratio of each firm’s value to the total firm value,

which is the sum of the bidder stock and the target stock.

Suppose each party derives the deal condition to reflect each firm value at its

best; then, the stock price of the bidder after the merger announcement should reflect

each firm’s value proportionally well through the trading activities. I calculate the

77



Table 14: Information share of efficient price and the ratio of firm value

This table provides the estimation results of information shares and the ratio of firm value. The
information share is calculated from the fitted residuals of vector error correction model. The ratios
of each firm are calculate to divide each firm value by the sum of target and bidder firm values. Each
firm equity value is the average of the product of the market closing price and the shares outstanding
30days prior to the merger announcement.

Method Total Ratio Std Dev (Ratio)

Of Payment Observations Bidder Target Bidder Target

Panel A. Information Share of the efficient price

Cash 725 87.20 12.80 0.196 0.196
Stock(FxVal) 64 80.46 19.54 0.259 0.259
Mix(FxVal) 63 76.97 23.03 0.270 0.270

Stock(FxRatio) 995 89.28 10.72 0.158 0.158
Mix(FxRatio) 262 71.30 28.70 0.317 0.317

Collar 315 89.81 10.19 0.168 0.168
Mixed Collar 94 78.12 21.88 0.267 0.267

Panel B. The ratio of firm value to total firm values

Cash 725 89.10 10.90 0.133 0.133
Stock(FxVal) 64 93.82 6.18 0.109 0.109
Mix(FxVal) 63 84.44 15.56 0.167 0.167

Stock(FxRatio) 995 80.65 19.35 0.160 0.160
Mix(FxRatio) 262 78.47 21.53 0.166 0.166

Collar 315 87.72 12.28 0.126 0.126
Mixed Collar 94 80.27 19.73 0.149 0.149

proportion of firm value by dividing each firm’s total stock value by the sum of the

stock values of the bidder and target firms. I use the -45 days to -30 days prior to the

merger announcement to avoid the effect of the target price run-up before the merger

announcement.

Table 14 provides the estimated information share of the efficient price by using

the vector error correction model and the ratio of firm value. Panel A reports the

information share of the efficient price after the announcement and Panel B calculates

the ratio of firm value before the announcement. Most estimated numbers for the

information share of the efficient price are quite similar to the ratio of firm value

except for the fixed value deals using stocks as a method of payment. Although
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the information share is estimated from the post-merger stock price data, it reflects

the information content of the bidder stock. The difference between the information

share and the ratio of firm value is the smallest in the pure cash deal. This result

may be due to the minimal asymmetric information between the bidder and target

shareholders. While the difference between the two measures in the bidder share is

7.71% in the fixed exchange deals, the difference is reduced to 0.22% when merger

parties use the collar deals.

7 Conclusion

In this paper, I analyze the activities of arbitrageurs playing the role of market maker

in the takeover markets. The cost function for the market makers is reflected in the

quoted bid-ask spread. Merger arbitrageurs typically use limit orders to exploit the

arbitrage opportunity. The merger arbitrage strategy is promising, as reported in the

previous literature.

I show that the merger arbitrage spread is closely related to the bid-ask spread.

The existence of merger arbitrage is due to transaction costs, deal failure risk, and

the limits of arbitrage. These three arguments are similar to the bid-ask components

in market microstructure theory: order handling costs, adverse information costs,

and inventory holding costs. Using the spread decomposition model in Huang and

Stoll (1997), I provide evidence that arbitrageurs play the market maker role during

the mergers and acquisition period because their inventory costs for target shares

increase after the merger announcement. Moreover, the information components of

both stocks decrease after the announcement.

Next, I investigate the relation between the merger arbitrage spread and the bid-

ask spread by both cross sectional regression and time series analysis. I find that

there is a positive and significant relation between the merger arbitrage spread and

the bid-ask spread. This result is also confirmed in a time series vector autoregressive
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analysis. The impulse response function analysis shows that the effect of one variable

on another appears to be persistent.

Finally, the cointegration analysis suggests that there exists a cointegration re-

lation between the bidder stock and the target stock. The cointegration relation is

much stronger in fixed exchange ratio deals than in fixed value deals. In addition,

I calculate the information share to test whether the information of each stock is

appropriately reflected in the efficient price series using the vector error correction

model. If the information of each stock transmits to the efficient price effectively,

the information share should be similar to the ratio of each stock to the sum of each

stock’s market value. The results are consistent with the hypothesis that the market

is efficient even though some arbitrage opportunity exists. Therefore, the arbitrage

opportunity is the reasonable compensation to the arbitrageurs who provide liquidity

to the existing target shareholders.
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Appendix

A Inventory holding costs and the limits of arbitrage

Suppose there exist only inventory costs, i.e. β2 = 1, but no information contents:
ui,t = vi,t = 0. Then, the price of target stock becomes

p2,t = C + γm1,t−1 +
s2

2
(q2,t + q2,t−1) (A.1)

Now, suppose the offer price, C + γm1,t−1, can correctly reflect the expected payoff
of the target price so that µ = E[p2,t] = C + γm1,t−1 because E[q2,t] = 0. The buying
price from the arbitrageurs or the selling price from the existing target shareholders
(q2,t = q2,t−1 = −1) becomes

pT = µ− s2 (A.2)

under the assumption that trades occurs at bid price. Further, assume that arbi-
trageurs have the mean-variance utility function

U(W̃ ) = E[W̃ ]− zA
2
V ar(W̃ )

Stoll (1978) argues that the dealer must be compensated to offset the expected utility
loss by deviating from his initial portfolio. Let Q denote the dollar value of a trans-
action in target stock having return R with E[R] = µR and V ar[R] = σ2

R. Let Re be
the efficient portfolio return with E[Re] = µe and V ar[Re] = σ2

e . Let W1 and W2 be
the terminal wealth of the initial portfolio and the new portfolio after the transaction.
Suppose that the dealer has initially the optimal portfolio, i.e., the dollar value of
stocks in trading account is zero. Then,

W1 = W0 [1 + kRe + (1− k)Rf ] = W0(1 +R∗) (A.3)

W2 = W0(1 +R∗) + (1 +R)Q− (1 +Rf )(Q− C) (A.4)

where k is the optimal fraction of the dealer’s wealth in optimal portfolio Re and Rf

is the risk-free rate. First, the optimal fraction k can be obtained by solving

∂EU [W1]

∂k
= W0(µe −Rf )− kW 2

0 zAσ
2
e ≡ 0⇒ k∗ =

µe −Rf

W0zAσ2
e

Next, the dollar cost to the dealer must EU [W1] ≡ EU [W2], that is

C =

1
2
zAσ

2
RQ

2 −Q
[
(R−Rf )− (Re −Rf )

σie
σ2
e

]
1 +Rf

(A.5)

The capital asset pricing model states R − Rf = (Re − Rf )
σie
σ2
e

and assume the zero

risk free rate(Rf = 0), we have

C =
1

2
zAσ

2
RQ

2 (A.6)
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and the the unit cost c = C/Q will be 1
2
zAσ

2
RQ. Then, the proportional bid-ask

spread can be expressed as

2c =
pT,a − pT

pT
+
pT − pT,b

pT
=
s2

pT
= zAσ

2
R|Q| (A.7)

where pT,b and pT,b are the bid and ask price of the target share. Here, since σ2
R = σ2

(pT )2

and Q = X
A
pT , the proportional spread can be written as

s2

pT
= zA

σ2

(pT )2

X

A
pT =

X

A
zAσ

2 1

pT

So, equation (A.2) can be written

pT = µ− s2 = µ− X

A
zAσ

2

which is equivalent to the equation (41)

B State space representation and Kalman filter

The state-space representation of the dynamics of ∆p is given by the following system
of equations:

ξt+1 =Fξt + et+1 (B.1a)

∆pt =A′xt + H′ξt (B.1b)

where F,A′, and H′ are matrices of parameters of dimension (r × r), (2 × k), and
(2×r), respectively, and xt is a (k×1) vector of exogenous variables. Equation (B.1a)
is known as the state equation, and (B.1b) is known as the observation equation. The
(r × 1) vector et is vector white noise:

E[ete
′
s] =

{
Q for t = s
0 otherwise.

(B.2)

where Q is (r × r) matrix. Assume that ξ1 is uncorrelated with any realizations of
et: E[etξ

′
1] = 0.

Consider the linear projection of ξt+1 on Pt and a constant:

ξ̂t+1|t = Ê[ξt+1|Pt]

where Pt = (∆p′t,∆p′t−1, · · · ,∆p′1)′. The Kalman filter calculates these forecasts

recursively, generating, ξ̂1|0, ξ̂2|1, · · · , ξ̂T |T−1 in succession. Associated with each of
these forecasts is a mean squared error matrix, represented by the following (r × r)
matrix

Pt+1|t = E

[(
ξt+1 − ξ̂t+1|t

)(
ξt+1 − ξ̂t+1|t

)′]
(B.3)
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Given starting values ξ̂1|0 and P1|0, the state vector can be written

ξ̂t+1|t = Fξ̂t|t−1 + Kt

(
∆pt −A′xt −H′ξ̂t|t−1

)
(B.4)

where Kt = FPt|t−1H(H′Pt|t−1H)−1 is known as the gain matrix and the mean
squared error matrix is

Pt+1|t = F[Pt|t−1 −Pt|t−1H(H′Pt|t−1H)−1H′Pt|t−1]F′ + Q (B.5)

Finally, all the parameters can be estimated using the maximum likelihood esti-
mation where the density function for ∆pt is

f(∆pt|Pt−1) = (2π)−1
∣∣H′Pt|t−1H

∣∣−1/2

× exp

{
−1

2

(
∆pt −A′xt −H′ξ̂t|t−1

)′ (
H′Pt|t−1H

)−1
(

∆pt −A′xt −H′ξ̂t|t−1

)}
(B.6)
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CHAPTER III

Liquidity risk and Exchange-traded-fund returns, variances, and tracking

errors

1 Introduction

Since its introduction in 1993, the US exchange-traded fund (ETF) market has grown

explosively. ETFs are designed to provide an alternative investment opportunity

for particular markets, countries, or sectors by following a specific representative

index. With index-based ETFs, investors can benefit from access to foreign markets

or different asset categories with low costs. The fundamental risk of ETFs is the

market risk associated with the underlying index. In addition, each ETF also has

its own idiosyncratic risk, i.e. tracking error risk, after removing the market risk.

ETFs trade on the stock exchange but their shares are created and redeemed on the

primary market. This structure results in the existence of two prices for a single

asset; one is market ETF prices determined on stock exchanges and the other is the

fund’s net-asset value (NAV) calculated based on the value of underlying securities.

Intuitively, no arbitrage condition implies that the daily market closing price and the

daily closing net asset value of an ETF must be same. However, various factors can

widen the gaps between the NAV prices and the ETF prices. Among various factors,

this paper particularly focuses on the role of illiquidity in the ETF market.

ETFs are fundamentally same as the open-ended mutual funds1. They are struc-

tured, managed, and regulated just like traditional mutual funds 2. One difference

1SEC defines ETFs as ”Exchange-traded funds, or ETFs, are investment companies that are
legally classified as open-end companies or Unit Investment Trusts (UITs), ...”. For more details,
see http://www.sec.gov/answers/etf.htm

2There are similar products with ETFs. These products include exchanged-traded-notes (ETN)
and exchanged-traded-commodity (ETC). The exchanged-traded-note is a senior unsecured debt
obligation designed to track the total return of an underlying index or benchmark. The ETNs are
exposed both to the market risk of the linked indexes and the credit risk of the issuer. The exchange-
traded-commodity (ETC) is similar to ETFs, but it holds physical commodities or currencies. Both
ETNs and ETCs are not registered under the Investment company act of 1940 but are regulated
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from conventional mutual funds is that ETFs are traded continuously in the stock

markets like closed-end funds. That is, ETFs are designed to combine the creation

and redemption process of open-end funds with the continuous exchange trading of

the closed-end funds. The creation/redemption process in ETFs is the crucial mecha-

nism that enables ETF prices to stay close to their NAVs 3. The ETF price deviation

from its NAV can be eliminated by the arbitrage activity of authorized participants

who have the responsibility of creating/redeeming ETF shares or constructing the un-

derlying ETF portfolios. However, this arbitrage mechanism can be limited if either

ETFs or the underlying securities are illiquid. The lack of liquidity in the underlying

securities may result in a tracking error of the NAV on the index. Illiquid ETFs may

also have a mispricing problem with respect to their NAVs. Thus, illiquidity and

ETF tracking errors are quite related. Moreover, illiquidity risk is another risk factor

to determine the asset returns.

There are numerous studies investigating the effect of liquidity on asset returns

and suggesting that systemic liquidity risk is priced in the asset return4 . Acharya and

Pedersen (2005) develop a liquidity adjusted capital asset pricing model(LCAPM) and

find that the individual asset return is affected by the liquidity risk. They argue that

their LCAPM explains the asset return better than the standard CAPM. Similarly,

Pastor and Stambaugh (2003) empirically find that the individual stock return is

affected by the aggregate market liquidity, which is a cross-sectional average of the

individual return reversal estimates. In addition to studying the relation between

asset returns and liquidity in the US equity market, there are also numerous studies

investigating the effect of liquidity on asset returns in different markets or assets, for

under Securities Act of 1933. In this paper, I exclude both ETNs and ETCs for the consistent
analysis.

3The closed-end funds are also listed in the major stock exchanges and are traded like common
stocks. Unlike ETFs, however, the closed-end funds typically trade at a discount to the portfolio
value. This is called ”closed-end fund discount puzzle”. See Pontiff (1996) for more details.

4For example, see Amihud and Mendelson (1986), Huang and Stoll (1994), Brennan and Subrah-
manyam (1996), Chordia et al. (2001), Amihud (2002)

87



example, emerging markets (Bekaert et al. (2007)) and global markets(Lee (2011)),

hedge funds (Getmansky et al. (2004), Sadka (2010)), IPO markets (Eckbo and Norli

(2005)), and closed-end-funds(Cherkes et al. (2009)).

However, there are only few papers that study the effect of liquidity on the ETF

return and variance. The related existing studies include the ETF pricing for the

Flash Crash of May 6, 2010 (Borkovec et al. (2010), Madhavan (2011)), the interaction

between the ETF market and the underlying securities market (Cespa and Foucault

(2012), Ben-David et al. (2011)), and whether ETFs are priced efficiently with respect

to the NAV or the underlying index (Engle and Sarkar (2006), Elton et al. (2002)).

Regarding the lack of liquidity in the market, Borkovec et al. (2010) report that a

sharp increase in the bid-ask the spread leads to a failure in ETF price discovery

during the Flash Crash. Studies have also investigated the interaction between the

ETF and its underlying securities. For example, Cespa and Foucault (2012) argue

that the lack of liquidity in ETFs may lead to an increase in the uncertainty of the

underlying securities, which results in a decrease in the liquidity of the corresponding

ETFs. However, there are no existing studies that cover the effects of liquidity on

ETF returns and tracking errors comprehensively.

In the first part of this paper, I begin by analyzing the relations between ETF

tracking errors and market illiquidity. I present evidence that tracking errors and ETF

illiquidity are positively related 5. That is, the cross-sectional analysis shows that the

level of illiquidity is positively related to the ETF-NAV or ETF-index tracking errors.

Moreover, equity-type or domestic ETFs tend to have the smaller tracking errors. US

equity markets are the most liquid markets in the world. Thus, the negative relation

between tracking errors and such funds can be consistent with the fact that illiquidity

and tracking errors are positively related.

5ETF tracking errors are similar to the relation between futures and underlying asset prices. Roll
et al. (2007) study the interactions between illiquidity and the futures basis in the S&P 500 futures
markets. They conclude that the contemporaneous shocks to the futures basis and bid-ask spreads
are positively correlated.
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Next, I investigate whether liquidity shocks in ETFs are priced based on the

LCAPM of Acharya and Pedersen (2005). Using every ETF ever listed in the US

markets, I first construct 10 portfolios sorted on liquidity and 10 portfolios sorted on

tracking errrors. The sorted portfolios provide evidence that illiquidity is positively

related to ETF returns and to ETF tracking errors. In addition, the portfolios show

that the illiquidity and the tracking errors of ETFs are shown to be persistent over

time, suggesting that there exist positive common shocks affecting both ETF illiquid-

ity and tracking errors. I also estimate the portfolio betas in Acharya and Pedersen

(2005) to investigate whether there exist any systemic risk factors associated with

illiquidity. The results of estimated betas show that illiquid ETFs tend to have large

absolute liquidity betas and positive liquidity risk premium. That is, illiquid ETFs

tend to be more sensitive to either market liquidity or the market return. Using

pre-estimated betas, I also estimate the liquidity premium using GMM method. The

annualized return due to the liquidity risk is approximately 0.36%, suggesting that

there exists a positive liquidity premium in the US ETF market.

Finally, I investigate whether infrequent trading affects ETF variances with re-

spect to NAV variances. Lo and MacKinlay (1990) develop an econometric model to

show that the asset variance increases when the asset is not traded frequently. Extend-

ing the Lo and MacKinlay (1990) econometric model to consider the autocorrelation

of the index return, I provide evidence that the nontrading probability is positively

related to an increase in the ETF variance with respect to the NAV variance. The

derived equation shows that the ETF return variance can be expressed as the sum

of NAV return variance and positive terms associated with nontrading probability.

Moreover, the existence of autocorrelation in the index return could increase the gap

between the ETF variance and the NAV variance when the ETFs are illiquid. The

panel regression also confirms that nontrading probability and the difference between

ETF and NAV return variances is positively related, suggesting that illiquid ETFs
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have more risk when the ETFs are traded actively in the market.

The bottom line of this paper is that a lack of liquidity is related to the expected

return and the variance of ETFs. Illiquid ETFs tend to have large tracking errors

with respect to their underlying index or their NAV returns. These findings imply

that illiquid ETFs may be vulnerable to a sudden change in the liquidity level such

as the Flash Crash on May 6, 2010.

The remainder of the paper is organized as follows. Section 2 provides the data

sources, sample construction procedure, and variable constructions. In section 3, I

investigate whether the level of illiquidity is related to the ETF tracking errors. In

section 4, I provide the estimation results of the LCAPM and the cross-sectional

evidence for the liquidity risk in the ETF market. Section 5 derives the closed form

of the ETF variance when ETFs are not traded frequently and compares the variance

of ETFs with the variance of the NAV. The cross-sectional regression analysis is also

provided for whether the nontrading probability is related to the difference between

the ETF variance and the NAV variance. Section 6 concludes the paper.

2 ETF data and variables

2.1 Exchange traded fund data

The ETF sample used in this paper includes all of the ETFs that have ever been

listed and traded in the major US stock exchanges from 1993 through 2012. The

country of domicile for each ETF must be the US at the inception date. The initial

data also include all of the delisted ETFs that were traded in the US market during

the sample period. All ETF data are extracted from the Bloomberg database. The

Bloomberg provides all daily historical prices for ETFs, NAVs, and the underlying

indexes as well as detailed information about the ETFs6. When the necessary data

from Bloomberg are not available, the data are collected from the ETF product web-

page when available.

6Petajisto (2011) reports that the Bloomberg data cover up to 90% of all ETFs
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Table 15: ETF sample construction

This table presents the process of constructing the sample used in this paper. Initial Exchange-
traded-fund(ETF) data are extracted from the Bloomberg database for all of the ETFs that have
ever been listed and traded in the US from 1993 through 2012.

Description Number of ETFs

Initial Sample (1) 1495
ETFs on the BATs (2) 17
Actively Managed Funds (3) 57
Underlying Index data is missing
- Barclays Capital Bond Index (4) 68
- The combination of commondity prices (5) 11
- Index level data is not available (6) 20
NAV data is missing (7) 6
Price data is missing (8) 9
Total number of samples deleted ( (2) (8)) (9) 188

Final Sample (1) - (9) 1307

To effectively investigate the effect of liquidity on the ETF returns and variances,

actively managed funds are excluded from the sample. Actively managed funds first

appeared in 2008 and are managed to achieve excess return on the typical benchmark

index by frequently buying or selling assets in the portfolio rather than passively

following the index. As a result, actively managed funds are more likely to deviate

from a particular underlying index return because their portfolio composition weights

change frequently. Because the tracking error in actively managed funds could be

caused by the management style, it is not easy to separate the effect of liquidity

from the effect of the management style on the return and the variance. Therefore,

excluding actively managed funds from the sample is reasonable for an analysis of

liquidity’s effect on the return and variance. That is, the final sample in this paper

only includes index-based ETFs.

In addition, if an ETF has no available information about the traded price, the

NAV, or the underlying index during the sample period, then it is excluded from the

sample. Table 15 shows the sample construction procedure for this paper. The final

sample consists of 1307 US listed exchange traded funds.
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Table 16: ETF trends

This table reports the annual breakdown of the sample by number of funds incepted, number of
funds delisted, number of funds available at the end of year, average market value, average trading
volume and average dollar trading volume. The sample includes all the US ETFs which were listed
on the US exchange during 1993-2012.

Year Incept Delist N MV Volume Dollar Volume
(Bill. $) (Mill. Shares) (Bill. $)

1993 1 0 1 0.26 0.2 0.01
1994 0 0 1 0.47 0.4 0.02
1995 1 0 2 0.67 0.3 0.02
1996 17 0 19 1.67 1.2 0.07
1997 0 0 19 4.01 3.7 0.30
1998 10 0 29 10.01 9.9 0.90
1999 1 0 30 20.63 25.4 2.05
2000 50 0 80 46.42 45.9 4.19
2001 21 0 101 72.07 98.0 5.41
2002 15 3 113 91.31 151.7 7.27
2003 12 6 119 116.41 155.3 8.02
2004 35 0 154 176.38 206.3 11.56
2005 52 0 206 250.49 272.8 16.59
2006 157 1 362 355.95 390.1 24.41
2007 268 0 630 502.33 701.6 54.70
2008 162 50 742 556.80 1449.0 93.68
2009 127 51 818 608.84 1409.9 69.92
2010 180 48 950 839.38 1162.8 68.23
2011 231 15 1166 1043.69 1259.2 77.48
2012 155 82 1239 1203.74 923.2 56.19

Constructing 10 liquidity and tracking error portfolios, I restrict the data to after

2002 for the following two reasons. First, a sufficient number of ETFs is needed to

construct 10 portfolios. At the end of 2001, 101 ETFs are listed in the US market,

which enables each portfolio to contain more than 10 ETFs each year. Table 16

reports the annual breakdown of the sample by number of funds initiated, number of

funds delisted, number of funds available at the end of year, average market value,

average trading volume and average dollar trading volume. As seen in Table 16

and Figure 11, the number of funds and trading volume increases sharply after the

early 2000s, thus the number of ETFs traded in the US increases to 1440 by the

end of 2012. Consequently, each portfolio in 2012 should have more than 100 ETFs.

Second, the minimum tick size of the bid-ask spread reduces from 1/16 to 1/100 in

92



Figure 11: The number of funds and the market value of ETFs

This figure illustrates the number of ETFs and market value of US ETFs at the end of year from
1993 to 2012.
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2001. The change in the minimum tick size is related to the exogenous shock to the

liquidity. Moreover, figure 11 shows that there appears to be a significant increase in

the trading volume of the ETF market after 2002 7. The increase in trading volume

and the decrease in the bid-ask spread imply an important change in the liquidity

measure, so I use the data from 2002.

2.2 Liquidity measure

The daily liquidity of each ETF is measured by using the daily relative effective spread

calculated from the trading and quote data of the NYSE TAQ database. The daily

relative effective half spread is defined as the ratio of the effective half spread to the

trade price. The effective half spread is defined as the difference between the quote

7In the middle of 2001, the NYSE began trading three unlisted ETFs(DIA, SPY, and QQQ)
which are listed on the American Stock Exchange. Another 27 ETFs are allowed to trade on the
NYSE on April 15, 2002. Boehmer and Boehmer (2003) report that these events lead to a large
improvement in liquidity due to the competition for order flow among market centers.
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midpoint and the corresponding trade price. That is,

cit =
1

nit

nit∑
k=1

|pik,t −mi
k,t|

pik,t
(56)

where pk,t is the traded price, mk,t is the quote midpoint, and nt is the number of

trades at time k on day t for security i. The relative effective spread is close to the

liquidity measure of ’dollar cost per dollar invested’ used in Acharya and Pedersen

(2005). Their empirical studies use the normalized illiquidity measure by transforming

the Amihud Illiquidity measure where the cross-sectional mean and variance are equal

to the effective half spread reported in Chalmers and Kadlec (1998). As a result, their

liquidity measure is ultimately similar to the relative effective half spread, which can

be obtained from the TAQ data directly. One advantage of the use of the illiquidity

measure from the TAQ data is that the relative effective spread can be observed

on a daily basis. Daily illiquidity measures will provide considerably large data set

containing more stock information. Moreover, the daily liquidity measure is suitable

for the levered or inversed ETFs because the use of the monthly measure may cause

the difference between the monthly realized return and the monthly holding return

of levered funds.

2.3 Tracking errors

I use two measures of tracking errors. The first definition is calculated from the

regression analysis. This tracking error is the absolute difference between one and

the coefficient of the regression of two return series; ETF return vs NAV return,

NAV return vs index return, or ETF return vs index return. The second defini-

tion is measured by calculating the standard deviation of return difference between

two return series. Table 17 provides the summary statistics and cross-sectional cor-

relations of estimated tracking errors for ETFs from the inception date to the end

of 2012 or the delisting date. This table exhibits some interesting features. First,
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Table 17: Summary statistics and correlations of ETF tracking errors

This table provides the summary statistics and correlations of estimated tracking errors for ETFs
from the inception date to the end of 2012 or the delisting date. Two tracking errors are defined.
θ(Y −X) is the tracking error by taking the absolute value of the difference between one and the
coefficient of X from regression of Y on X. σ(Y − X) is the standard deviation of the return
difference between Y and X. The six tracking errors are estimated for each ETF using all daily
return. rt, vt, and ft denote the daily ETF, NAV, and index returns, respectively.

Variables σ(rt − ft) σ(vt − ft) σ(rt − vt) θ(rt − ft) θ(vt − ft) θ(rt − vt)
Panel A. Summary Statistics for estimated tracking errors

Mean 1.200% 0.427% 1.153% 15.884% 4.169% 16.526%
Std. Dev. 1.221% 0.952% 1.002% 17.675% 9.305% 17.548%

Panel B. Tracking error correlations for individual ETFs

σ(rt − ft) 1.000
σ(vt − ft) 0.712 1.000
σ(rt − vt) 0.810 0.317 1.000
θ(rt − ft) 0.436 0.133 0.399 1.000
θ(vt − ft) 0.301 0.524 0.083 0.326 1.000
θ(rt − vt) 0.307 −0.010 0.444 0.805 0.094 1.000

panel A shows that NAV-index tracking errors are smaller than ETF-NAV tracking

errors. In addition, ETF-index return tracking errors are similar to the ETF-NAV

tracking errors suggesting that ETF-index tracking errors seem to be explained by

the ETF-NAV tracking errors. Second, panel B shows that tracking errors from re-

gression are highly correlated with those calculated from standard deviations. Third,

the correlations between ETF-NAV and NAV-index tracking errors are lower than

other correlation numbers (0.317 for standard deviation tracking errors and 0.094 for

regression tracking errors). This result suggests that there are some factors, for e.g.,

ETF market conditions, that could be related to the ETF-NAV tracking errors but

not be associated with NAV-index tracking errors.

3 The effect of illiquidity on ETF tracking errors

3.1 Arbitrage activity of authorized participants

Three observed return series (ETF, NAV, and index returns) must be same on the

daily basis due to the ETF structures. However, the market data shows that there
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exist gaps among these return series. Those return differences can be caused by

various factors such as trading activity, product structures, illiquidity of underlying

securities, or ETF market conditions. This section investigates whether illiquidity is

related to ETF tracking errors by using the panel regression analysis.

Authorized participants in the ETF market play the important role to keep the

return series close to each other. The return differences are typically removed away by

the arbitrage activity of authorized participants. Authorized participants or market

makers keep ETF prices in line with the value of their underlying portfolios by trading

both ETFs and underlying securities simultaneously, so called creation-redemption

process. For instance, if an ETF price is lower(higher) than its NAV, APs buy(sell)

ETF shares and sell(buy) the basket of securities. More precisely, if the current market

prices of an ETF become higher than its NAVs, APs buy underlying securities to form

a creation unit and deliver it to the ETF provider. After receiving the ETF shares

from the ETF issuer, APs sell these ETF shares to the market 8.

The arbitrage activity in the ETF market would be possible when authorized par-

ticipants are able to trade ETFs or underlying securities immediately and limitlessly.

However, APs may get into trouble with constructing the basket of securities or with

trading ETFs if underlying securities or ETF markets suffer from the lack of liquidity.

Because each ETF has its own way of portfolio construction, the ETF provider could

choose the appropriate method to replicate the underlying index return precisely 9.

Depending on the ETF prospectuses, authorized participants or market makers can

borrow the underlying securities or use derivatives to construct the basket of portfolios

so that ETF portfolios (i.e. NAVs) can achieve the promised returns. So, there are

many alternatives to tie the NAV returns to the underlying index returns. Depending

8It is obvious that there exist other types of arbitrage opportunities. For example, investors can
use both S&P 500 futures contracts and S&P 500 index based ETFs to achieve the arbitrage profits

9There are broadly two ways of creation and redemption process. The ”in-kind” method is that
authorized participants create a basket of securities which is exchange for ETF shares. Another
technique is ”Cash” method. The ”Cash” creation/redemption process is allowed for some ETFs so
that authorized participants deliver cash to the issuer and receive the ETF shares.
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on the market conditions, however, observed ETF prices are frequently different from

their announced NAVs. That is, the lack of liquidity or low trading volume in the

ETF market could lead to the large price impact or the presence of stale prices thus

can cause the price gap between the ETF and its NAV. As a result, APs may bear

unwanted costs related to borrowing underlying securities or holding inventories to

make the ETF market if ETFs or underlying securities markets are not fully liquid.

This situation implies that the lack of liquidity in the ETF market causes the increase

of trading costs as well as ETF tracking errors.

3.2 ETF tracking errors and illiquidity

Figure 12 shows the relations between ETF and NAV returns (left) and between NAV

and index returns (right) for all the US ETFs in the sample. Each point in the figure

represents the average daily return of each ETF from the inception date to the end of

2012 or the delisting date. The solid lines indicate the fitted regression lines between

two return series, and the dotted lines are the 45 degree lines. From the right side

of Figure 12, most US ETFs appear to be managed correctly to track the underlying

indexes although some ETFs are shown to have some tracking errors. The coefficient

of NAV-index cross-sectional regression is 0.95 which is close to one, suggesting that

US ETF portfolios are managed to track the underling indexes precisely. On the

contrary, the left panel shows that there exist relatively large tracking errors between

ETFs and their NAVs. The fitted coefficient of ETF-NAV regression is 1.34, implying

that ETF returns appear to more frequently deviate from NAV returns than NAV

returns do from index returns. Thus, figure 12 suggests that ETF returns can deviate

from their NAV returns although ETF portfolios are managed precisely to mimic

underlying indexes.

Figure 13 and 14 also provide the same illustrations for the individual ETFs.

Figure 13 depicts the return relations for SPDR S&P 500 ETF Trust (SPY) and
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Figure 12: Return distributions among ETF, NAV, and index returns

This figure illustrates relations between ETF returns and NAV returns(left figure), and between
NAV returns and underlying index returns(right figure). Each point represents the daily average
returns for the entire sample period.
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figure 14 is for iShares MSCI Emerging Markets Index (EEM). Both ETFs are very

liquid assets in the US markets. Incepted in 1993, the SPY, the oldest and the largest

ETF in the US, tracks the price and yield performance of the S&P 500 index. From

figure 13, the fitted coefficient of ETF-NAV regression is 0.96 with R2= 92% and that

of NAV-index regression is 0.99 with R2 = 96%. These results suggest that the SPY

ETF tracks the S&P 500 index correctly and its market prices are formed close to its

NAVs.

On the contrary, the EEM in figure 14 appears to have relatively larger tracking

errors than the SPY does10. The EEM, one of the most popular international ETFs in

the US, is designed to track the price and yield performance of MSCI emerging market

10In 2012, the average trading volume for the SPY is 136 million shares and that for the EEM
is 53 million shares. The average relative bid-ask spread for SPY is 0.01% and that for the EEM
is 0.017%. The average turnover for the SPY is 18.96% and that for the EEM is 5.45%. For the
comparison, the average trading volume is 0.70 million shares, the average relative bid-ask spread is
0.24%, the average turnover is 3.6% for entire ETFs in 2012.
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Figure 13: Return distributions among ETF, NAV, and index returns (SPY)

This figure illustrates ETF, NAV, and index returns of SPY. SPY is SPDR S&P 500 ETF issued
by State Street Global Advisors. The left panel depicts the relation between daily ETF and NAV
returns, the right panel depicts the relation between daily NAV and index returns from Jan 22,1993
to Dec 31, 2012.
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index. Because the EEM holds the emerging market stocks directly, the EEM market

prices may not reflect the movements of underlying securities immediately, thus they

have some tracking errors although the EEM is a quite liquid asset. Although the

EEM is managed correctly to track the underlying index (R2 = 84% and coefficient

is 1.01), its market prices are shown to more frequently deviate from its NAVs (R2 =

70% and coefficient is 1.18). In sum, both figures suggest that tracking errors in the

ETF-NAV returns appear to be more severe than those in NAV-index returns.

The time series relation between return differences and illiquidity are illustrated in

figure 15. The first line depicts the average of the daily relative bid-ask spread. The

bottom two lines are the average absolute daily return differences between ETFs and

NAVs, and NAVs and indexes. First, both return differences and illiquidity co-moved

over time. That is, there appears to be common factors affecting both illiquidity

and return differences. Second, the ETF-NAV return differences are generally higher
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Figure 14: Return distributions among ETF, NAV, and index returns (EEM)

This figure illustrates ETF, NAV, and index returns of EEM. EEM is iShares MSCI Emerging
Markets Index ETF issued by iShares. The left panel depicts the relation between daily ETF and
NAV returns, the right panel depicts the relation between daily NAV and index returns from Apr
11,2003 to Dec 31, 2012.
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than NAV-index return differences over the sample period. This result confirms that

ETF-NAV tracking errors are larger than NAV-index tracking errors. Finally, both

ETF market illiquidity and tracking errors increase during the financial crisis period

after 2008, suggesting the illiquidity measure reflects the recent liquidity crisis well.

3.3 Panel regression

Three dimensions of tracking errors are used to investigate the effect of liquidity on

tracking errors: ETFs vs NAVs, ETFs vs Indexes, or NAVs vs Indexes. As defined

in the above, I use two types of tracking errors to investigate the effect of liquidity

on tracking errors. The main variable of interest is illiquidity which is defined as

the average of the relative effective half spread during the year. Thus, high values of

relative spread imply the high illiquidity.

It is obvious that ETF prices are affected by both product structures and ETF
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Figure 15: Daily time series for illiquidity and return differences

This figure illustrate historical time series of illiquidity and absolute values of return differences from
2002 to 2012. The average illiquidity is the equal-weighted daily average of daily relative effective
spreads of all the US ETFs. The absolute return differences are absolute values of daily return
differences between NAV and index returns or ETF and NAV returns.
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market conditions. That is, the ETF-NAV tracking errors could exist when ETF

market is illiquid although the underlying portfolios are constructed to track the un-

derlying index correctly and perfectly. On the other hand, the NAV-index return

tracking error could be affected by ETF structures as well as by the ETF trading

activity. For instance, ETFs replicating the US market indexes are less likely to devi-

ate from the underlying indexes than ETF investing in other countries. Furthermore,

the NAV-index return tracking error could be caused by the way of replicating the

index such as holding underlying securities directly or creating the return using either

futures or swaps. Thus, I include different types of variables to capture both market

conditions and fund characteristics.

Controlling the ETF market conditions, I include dollar trading volume, underly-

ing index return volatility, shares outstanding, and volatility of shares growth. If the
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underlying index return is very volatile, the ETF price may not reflect the underlying

index movement promptly because the market makers or ETF investors need to trade

the ETFs more frequently. The annual underlying index return volatility is added

to control this effect. Moreover, the log of the average dollar trading volume during

the year is included. The ETFs with a large dollar trading volume may cause track-

ing error because a heavy trading volume is related to unnecessary price pressure.

Finally, ETF shares are easily created based on the market demand. The number

of shares represents the size of the ETF or the cash flows into funds. Further, the

volatility of the shares growth rate indicates how active the ETF is in the market. A

frequent change in outstanding shares implies the active management by authorized

participants to reduce tracking error or the volatile fund cash flows. To control these

effects, I include the log of the average number of shares and the standard deviation

of the shares growth rate during the year.

Aside from the variables associated with market conditions, the ETF character-

istics variables are also included to capture any additional effects caused by fund

structures. Those are (1) US Based: whether the underlying securities in the ETF

baskets invest in US assets, (2) Derivatives Based: whether an ETF uses derivatives

to replicate the underlying index return, (2) Swap Based: whether an ETF uses swaps

to replicate the underlying index return, (3) Futures Available : whether an ETF has

a futures product based on it, (4) Options available: whether an ETF has options

based on it, (5) Levered Fund: whether an ETF is levered or inversed, (6) Expense

Ratio: the annual expense ratio of the ETF.

3.4 Empirical results

Tables 18 reports results from the pooled panel regression of yearly tracking errors

on illiquidity as well as other control variables. Because the dependent variables are

tracking errors, positive coefficient signs imply larger tracking errors. The tracking
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errors are calculated by taking the absolute value of difference between one and the

regression coefficient, which is estimated from regressing one return series on another

return series for each ETF every year. From left to right, the dependent variable in

each column represents the tracking error between the ETF return and the underlying

index return, between the ETF return and the NAV return, and the NAV return and

the underlying index return respectively. All regression specifications include year

fixed effects and standard errors are clustered at the fund level.

Columns 1 and 2 show that the coefficients on average illiquidity are positive

and significant at the 1% level. These results suggest that illiquid ETFs tend to be

more likely to deviate from their NAVs or underlying index returns. The coefficient

of 13.98 indicates that if an ETF’s average relative spread increases by 1%, then

the tracking error in ETF-index return increases by 14% when holding the other

characteristics constant. This illiquidity measure also affects similarly in the ETF-

NAV return tracking error in column 2. Interesting thing is that both magnitudes of

coefficients on illiquidity are similar (13.98 and 13.80). However, the results in the

third column (NAV-index tracking error) show that ETF illiquidity is not associated

with the tracking error between NAV and underlying index returns. In other words,

the ETF market conditions don’t account for the tracking error between NAV and

index returns.

Large trading volume doesn’t seem to widen the ETF tracking errors. Heavy

trading volume can increase the efficiency of the asset price because large trading

volume indicates the presence of informed traders. The test results show that the

coefficients on dollar trading volume are shown be positive for ETF-NAV and be

negative for ETF-index and NAV-index tracking errors, albeit insignificantly. The

coefficients on the number of shares, which could measure the size of the fund, are

shown to be negative for all tracking errors but only significant for ETF-NAV tracking

errors. These results imply that large ETFs tend to have smaller tracking errors.
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Table 18: Illiquidity and tracking errors from regrssion

Dependent variables are tracking errors, calculated by taking the absolute difference between one
and regression coefficients of ETF returns on underlying index returns(I), of ETF returns on NAV
returns(II), or of NAV returns on underlying index returns(III). Independent variables are the follow-
ing: the average of daily relative bid-ask spread(Average liquidity), the average of daily dollar trad-
ing volume(Dollar Trading Volume), the standard deviation of the underlying index return(Index
Volatility), the log of the average shares outstanding (Shares Outstanding), the standard devia-
tion of shares’ growth rate(Shares Volatility), a dummy being equal to 1 if an ETF uses deriva-
tives(Derivatives Based), a dummy being equal to 1 if an ETF uses swaps(Swap Based), a dummy
being equal to 1 if underlying securities in the ETF baskets invest in US assets (Invested in US
assets),a dummy being equal to 1 if an ETF has a futures or options based on it (Futures Available
, Options Available), a dummy being equal to 1 if an ETF is levered(Levered Fund), the annual
expense ratio(Expense Ratio).The numbers in parentheses are t-statistics. Year fixed effects are in-
cluded, and standard errors are clustered at the fund level. ”*”, ”**”, ”***” represents significance
at 10%, 5%, and 1% level respectively.

θ(ETF-IND) θ(ETF-NAV) θ(NAV-IND)

Intercept 37.15∗∗∗ 49.44∗∗∗ 14.73∗∗∗
(3.42) (7.41) (3.55)

Average illiquidity 13.98∗∗∗ 13.80∗∗∗ −0.43
(2.65) (2.64) (−0.45)

Dollar Trading Volume −0.02 0.51 −0.07
(−0.04) (1.63) (−0.33)

Index Volatility 0.10 −0.95∗ 0.77
(0.17) (−1.88) (1.20)

Shares Outstanding −0.79 −1.48∗∗∗ −0.38
(−1.39) (−3.54) (−1.44)

Shares Volatility −17.29∗∗ −17.36∗∗∗ 3.19
(−2.14) (−3.30) (1.03)

Derivatives Based −7.93∗∗∗ −10.59∗∗∗ −1.46
(−2.79) (−3.04) (−0.94)

Swap-Based 9.78∗ 2.52 8.89∗
(1.84) (0.79) (1.87)

Equity-type ETF −12.95∗∗∗ −14.49∗∗∗ −5.99∗∗∗
(−4.74) (−7.62) (−5.02)

Invested in US assets −4.83∗∗∗ −3.73∗∗∗ −3.96∗∗∗
(−4.35) (−3.93) (−6.07)

Futures Available −0.91 −0.14 −1.35∗
(−0.74) (−0.12) (−1.79)

Options Available 0.10 −0.67 1.38
(0.09) (−0.69) (1.65)

Levered Fund −3.89 3.46∗ −6.97
(−0.64) (1.74) (−1.18)

Expense Ratio −1.32 −0.55 −0.11
(−0.81) (−0.42) (−0.08)

Year Fixed Effects Yes Yes Yes
Observations 5,459 5,472 5,595
Adjusted R2 8.99 19.84 10.76
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The coefficients on the shares growth volatility are negative and significant for

ETF-NAV or ETF-index tracking errors. The share growth volatility is measured as

the standard deviation of the shares growth rate. The large value of shares volatility

implies that the cash flows through ETFs are volatile. Thus, the high volatility in the

shares growth rate implies the attractiveness of ETFs in the market. Alternatively, the

frequent adjustment share of the ETF can be interpreted as the active management

of market makers to reduce the tracking error between the ETF and the NAV or the

underlying index.

Regarding the fund characteristics, the tracking error decreases when the ETF uses

derivatives to replicate the underlying index return, when the underlying securities

in the ETF baskets invest in US assets, and when futures are available for the ETF.

Market makers are able to manage the ETF shares more easily when they use futures

to replicate the index return because they need to manage only one or two assets.

In addition, because the index futures are created based on the index, managing the

ETF using futures can reduce the gap between the ETF and the index. Consistent

with previous studies, ETFs replicating the US based indexes tend to have small

tracking errors 11. This finding is not surprising because the US market is one of the

most liquid markets in the world, and traders can trade both ETF and underlying

securities without a time lag. In addition, the equity-type ETFs tend to have smaller

tracking errors than non-equity ETFs. This result implies that the arbitrage activity

of authorized participants for equity type-ETFs can easily manage their portfolios

because equity or equity-based derivatives markets are more liquid than other asset

markets.

Table 19 confirms the results in Table 18. The dependent variables used in Table

19 is the yearly standard deviation of daily return differences to measure tracking

11Engle and Sarkar (2006) investigate the premiums (discounts), which is the same as the ETF-
NAV tracking errors, for 21 domestic and 16 international ETFs. They find that the tracking errors
for domestic ETFs are generally small and temporary but those for international ETFs are large
and persistent.
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Table 19: Illiquidity and tracking errors from standard deviation of return difference

Dependent variables are tracking errors, calculated by taking the standard deviation of return series
between ETF returns and underlying index returns(I), between ETF returns and NAV returns(II),
or between NAV returns and underlying index returns(III). Independent variables are the following:
the average of daily relative bid-ask spread(Average liquidity), the average of daily dollar trad-
ing volume(Dollar Trading Volume), the standard deviation of the underlying index return(Index
Volatility), the log of the average shares outstanding (Shares Outstanding), the standard devia-
tion of shares’ growth rate(Shares Volatility), a dummy being equal to 1 if an ETF uses deriva-
tives(Derivatives Based), a dummy being equal to 1 if an ETF uses swaps(Swap Based), a dummy
being equal to 1 if underlying securities in the ETF baskets invest in US assets (Invested in US
assets),a dummy being equal to 1 if an ETF has a futures or options based on it (Futures Available
, Options Available), a dummy being equal to 1 if an ETF is levered(Levered Fund), the annual
expense ratio(Expense Ratio).The numbers in parentheses are t-statistics. Year fixed effects are in-
cluded, and standard errors are clustered at the fund level. ”*”, ”**”, ”***” represents significance
at 10%, 5%, and 1% level respectively.

σ(ETF-IND) σ(ETF-NAV) σ(NAV-IND)

Intercept 1.07∗∗∗ 1.23∗∗∗ 0.31
(3.92) (5.13) (0.89)

Average illiquidity 1.37∗∗∗ 1.52∗∗∗ 0.10
(13.91) (16.66) (1.62)

Dollar Trading Volume −0.01 0.00 −0.01
(−0.91) (−0.17) (−0.54)

Index Volatility 0.28∗∗∗ 0.24∗∗∗ 0.34∗∗∗
(6.33) (4.96) (2.66)

Shares Outstanding −0.04∗∗ −0.06∗∗∗ 0.00
(−2.08) (−3.42) (−0.07)

Shares Volatility −0.18 −0.42∗ −0.05
(−0.78) (−1.85) (−0.22)

Derivatives Based −0.09 −0.21 −0.13
(−0.44) (−1.15) (−0.95)

Swap-Based 0.02 −0.46∗ 0.55∗
(0.05) (−1.92) (1.86)

Equity-type ETF −0.16∗ −0.16∗ −0.26∗∗
(−1.86) (−1.93) (−2.22)

Invested in US assets −0.54∗∗∗ −0.34∗∗∗ −0.38∗∗∗
(−12.90) (−10.57) (−9.39)

Futures Available −0.01 0.05 −0.07
(−0.17) (0.96) (−1.35)

Options Available 0.01 −0.04 0.00
(0.22) (−1.10) (0.02)

Levered Fund 0.06 0.37 −0.36
(0.16) (1.51) (−0.94)

Expense Ratio 0.07 0.15∗∗ −0.10
(1.02) (2.41) (−1.00)

Year Fixed Effects Yes Yes Yes
Observations 5,459 5,472 5,595
Adjusted R2 52.58 48.87 30.89
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errors. Results are very similar with this alternative tracking error measure. The

coefficients on illiquidity are still positive and significant for ETF-index and ETF-

NAV tracking errors. ETFs with investing in the US assets or with equity-based tend

to have small tracking errors. One different feature is that coefficients on index return

volatility is positive and significant, suggesting that authorized participants can have

trouble in tracking underlying indexes or constructing portfolios when underlying

indexes are volatile.

Overall, ETF tracking errors are severe when ETFs are not actively traded in

the market. Given the negative relation between the number of shares and tracking

errors, increase in the number of shares can lead to the liquidity increase of the

ETFs because large ETFs could attract more investors and be easily traded in the

markets. Investors can also avoid high transaction costs when investing in index-

based ETFs that trace inaccessible markets. Illiquid ETFs, however, may be riskier

than investing directly in underlying assets due to the high tracking errors. In these

situations, investors face systemic liquidity risk, which results in different outcomes.

4 The effect of liquidity on ETF returns

4.1 Liquidity adjusted asset pricing model

This section investigates the effect of liquidity on the expected ETF return and on the

ETF tracking error with respect to the index using the liquidity adjusted capital asset

pricing model. Acharya and Pedersen (2005) developed this model, which leads to

three different types of risk premium associated with liquidity risk as well as market

risk, and they argue that the asset price reflects these risk premiums. That is, the cost

adjusted net asset return has a linear relation with the market return considering the

market transaction cost. They show that the individual net return can be expressed

as
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E(rit − r
f
t ) = E(cit) + (β1i + β2i − β3i − β4i)E(rMt − cMt − rf ) (57)

where four betas are defined as

β1i =
cov(rit, r

M
t )

var(rMt − cMt )
β2i =

cov(cit, c
M
t )

var(rMt − cMt )

β3i =
cov(rit, c

M
t )

var(rMt − cMt )
β4i =

cov(cit, r
M
t )

var(rMt − cMt )
(58)

From equation (57), the net beta consists of four different betas. In addition to

the conventional market beta (β1i), there additionally appear three liquidity betas

that represent the relation between market liquidity and individual asset liquidity

(β2i), between market liquidity and the individual asset return (β3i), and between

individual asset liquidity and the market return (β4i).

β2i,representing the relation between individual liquidity and market liquidity, is

expected to be positive. Illiquid stocks tend to have large values for β2i, implying that

they are significantly affected by the lack of liquidity when the market is illiquid. β3i,

which shows the relation between the individual asset return and market liquidity, is

expected to be negative. The expected return on the illiquid stock decreases further

because the illiquid assets should be sold at a lower price than expected when the

market is illiquid. Finally, β4i also has a negative value and measures the relation

between the market return and the individual stock liquidity. This negative value

implies that the expected return on the illiquid asset decreases when the market

declines.

Like general common stocks, the liquidity of the ETF market also affects the

expected return of individual ETFs, which replicate the specific index return. An

ETF with lower liquidity than the market liquidity may not be able to correctly

reflect the level of the underlying index. In other words, the price of an ETF with

high liquidity immediately reflects the movement of the underlying index when the
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underlying index changes. However, insufficient trading may cause the illiquid ETF

to fail to trace the underlying index accurately. As a result, a tracking error occurs

if an ETF suffers from a lack of liquidity due to insufficient trading activity.

Another issue related to the tracking error is that the tracking error could be

caused by the illiquidity of the underlying securities in the ETF baskets. That is,

the NAV may not fully reflect the current value of the underlying index due to the

illiquidity of the underlying securities in the case of in-kind ETFs. If the underlying

securities in the ETF are not traded actively in the market, the market makers fail

to properly create or redeem the ETF unit. In this case, the liquidity problem in

the underlying securities may cause the difference between the NAV return and the

underlying index return. Thus, this type of liquidity problem is not related to ETF

market liquidity. Even though the effect of the liquidity of the underlying securities is

also an important issue, in this paper, I focus on ETF market liquidity and investigate

the effect of ETF liquidity on the return and the variance.

To investigate the liquidity effect, I first estimate the portfolio betas of LCAPM

by using 10 liquidity portfolios and 10 tracking error portfolios. However, calculating

portfolio betas may lose important information regarding the ETF characteristics

because each ETF has its own benchmark index and traces that index rather than

the entire ETF market. To mitigate these concerns, I calculate the betas for each

individual ETF and report the average of the betas within each portfolio by assuming

that the corresponding underlying index return for each ETF is treated as the market

return.

4.2 Portfolio construction

I construct 10 liquidity portfolios and 10 tracking error portfolios to investigate the

effect of liquidity on the ETF return. All of the ETFs are equally weighted within

each portfolio. The 10 liquidity portfolios are constructed for each month t by ranking
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all ETFs with their liquidity measures at the end of month t − 1. The liquidity for

each month is the average of the daily relative effective half spread of each ETF

having at least 15 observations in each month. Similarly, 10 tracking error portfolios

are formed for each year y by sorting the ETFs having at least 60 observations in

the previous year with tracking error. The tracking error is defined as the absolute

difference between one and the estimated coefficient from the regression of the ETF

return on the underlying index return. The daily return of each portfolio is simply

the average daily return of the ETFs included in each portfolio.

rMt =
Nt∑
i=1

witf
i
t (59)

The daily market return is computed as the average of the underlying index return

for each ETF used in constructing portfolios. The underlying index return traced by

each ETF is not actually traded in the market. The use of the underlying index

return to calculate the market return avoids potential measurement error due to

trading effects such as the bid-ask bounce or price reversal.

The daily portfolio liquidity is the average of the relative effective bid-ask spreads

of the securities included in each portfolio. That is,

cpt =
∑
i∈p

wpt c
i
t (60)

where p is either portfolio or market.

Similarly, the daily market liquidity is calculated by taking the average of the

relative effective bid-ask spreads of all ETFs included in the portfolio’s construction.

Given the persistence of liquidity, it is desirable to use liquidity innovation rather

than the observed relative effective bid-ask spread. The liquidity innovation of each
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security is obtained from the fitted residual of the following AR(2) specification.

cit = a0 + a1c
i
t−1 + a2c

i
t−2 + uit (61)

The portfolio liquidity innovation and the market liquidity innovation are calculated

in the same way.

4.3 Liquidity risk

Table 20 shows the characteristics of the liquidity portfolios (Panel A) and the tracking

error sorted portfolios (Panels B and C). As seen in each panel, the liquidity and

tracking error portfolios show similar patterns. That is, the transaction cost and the

tracking error increase as liquidity decreases even if the portfolios are constructed

based on the past illiquidity and the past tracking error of the ETF. This result

implies that both illiquidity and the tracking error of the ETF are persistent.

Panel A shows that the expected transaction cost(E[c]) is shown to monotonically

increase from portfolio 1 through portfolio 10. For instance, the expected transaction

cost for portfolio 1, which is the most liquid portfolio, is only 0.032% while that of

portfolio 10 is 0.438%. Although the liquidity cost differences are reduced for the

tracking error portfolios in panels B or C, the increasing pattern in the liquidity cost

through the portfolios is similar to the liquidity portfolios. Moreover, the turnover

rate, which measures how an ETF is actively traded in the market, is shown to be

lower in the low liquidity portfolio than in the high liquidity portfolio. Next, the

portfolio volatility in column 9 shows that that there is no big difference between

the portfolios. However, the volatility of the difference between the ETF and the

underlying index returns, which is another definition of the tracking errors, increases

as liquidity decreases. This result implies that an ETF with low liquidity cannot

perfectly follow the underlying index return and that liquidity and the tracking errors

are positively related.
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Table 20: Properties of sorted portfolios

This table presents the characteristics of 10 equal-weighted liquidity and tracking error portfolios.
The 10 liquidity portfolios are constructed for each month t by ranking all ETFs with their liquidity
measures at the end of month t−1. The liquidity(c) for each month is the average of the daily relative
effective half spread of each ETF having at least 15 observations in each month. The 10-tracking
error portfolios are formed for each month t by sorting the ETFs having at least 15 observations
in the previous year with tracking error. The tracking error (|1 − θ|) is defined as the absolute
difference between one and the estimated coefficient (θ) from the regression of the ETF return on
the underlying index return. Prem is the ETF premium or discount defined as the difference between
the ETF price and the NAV divided by the NAV. trn denotes the daily ETF turnover defined as
the trading volume divided by the ETF shares outstanding. σ(rp) is the standard deviation of the
daily portfolio return. σ(re,p) is the standard deviation of the daily portfolio excess return on the
underlying index return. The numbers in parentheses are t-statistics.

β1p β2p β3p β4p E(cp) |1− θ| Prem trn σ(rp) σ(re,p)
(.10) (.10) (.10) (.10) (%) (%) (%) (%) (%) (%)

Panel A. Illiquidity portfolios

1 11.043 0.002 −0.051 −0.010 0.032 8.202 0.032 7.989 1.200 0.207
(185.32) (54.94) (−7.22) (−5.51)

2 11.259 0.005 −0.054 −0.018 0.054 9.327 0.046 6.493 1.224 0.184
(183.43) (49.72) (−7.48) (−4.20)

3 9.943 0.005 −0.048 −0.028 0.067 9.716 0.043 6.485 1.087 0.178
(170.27) (76.43) (−7.32) (−7.39)

4 10.001 0.007 −0.049 −0.024 0.082 9.851 0.039 6.826 1.088 0.170
(181.60) (66.00) (−7.52) (−4.25)

5 10.027 0.008 −0.053 −0.034 0.098 11.365 0.034 4.766 1.100 0.215
(163.78) (77.98) (−8.11) (−5.65)

6 10.448 0.009 −0.054 −0.052 0.117 14.723 0.026 3.765 1.142 0.222
(171.58) (75.63) (−7.96) (−8.19)

7 11.101 0.010 −0.054 −0.064 0.142 14.917 0.030 3.078 1.212 0.257
(174.50) (70.03) (−7.59) (−8.58)

8 11.595 0.014 −0.064 −0.074 0.182 18.791 0.030 2.516 1.259 0.343
(186.78) (76.33) (−8.54) (−7.45)

9 11.012 0.015 −0.069 −0.097 0.252 20.994 0.048 2.123 1.223 0.492
(144.91) (61.98) (−9.54) (−8.44)

10 11.352 0.026 −0.081 −0.147 0.438 24.890 0.055 1.944 1.282 0.489
(126.61) (58.56) (−10.68) (−7.19)

Panel B. Tracking Error Portfolios (Regression)

1 10.910 0.006 −0.050 −0.052 0.099 6.164 0.044 6.188 1.218 0.171
(140.93) (47.52) (−7.04) (−8.96)

2 11.198 0.009 −0.058 −0.034 0.103 6.570 0.047 6.251 1.227 0.179
(171.12) (55.77) (−7.94) (−4.75)

3 10.822 0.008 −0.050 −0.055 0.106 6.868 0.046 6.407 1.180 0.166
(183.30) (60.63) (−7.17) (−8.45)

4 11.081 0.010 −0.058 −0.043 0.114 7.714 0.047 5.865 1.215 0.183
(169.97) (61.88) (−8.14) (−5.35)

5 10.336 0.009 −0.055 −0.060 0.123 8.716 0.049 5.586 1.136 0.188
(164.20) (60.95) (−8.19) (−8.41)

6 10.644 0.012 −0.056 −0.053 0.137 10.632 0.058 4.712 1.161 0.195
(179.22) (64.63) (−8.33) (−5.91)
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Table 20: Properties of sorted portfolios - Continued

β1p β2p β3p β4p E(cp) |1− θ| Prem trn σ(rp) σ(re,p)
(.10) (.10) (.10) (.10) (%) (%) (%) (%) (%) (%)

7 11.003 0.010 −0.058 −0.061 0.157 12.982 0.086 3.971 1.197 0.262
(188.54) (57.12) (−8.23) (−7.39)

8 11.336 0.010 −0.060 −0.056 0.179 16.626 0.101 3.571 1.234 0.348
(186.05) (48.21) (−8.20) (−6.35)

9 10.624 0.014 −0.067 −0.066 0.198 22.466 0.158 2.794 1.177 0.470
(151.01) (53.63) (−9.87) (−5.50)

10 8.897 0.011 −0.056 −0.063 0.219 39.775 0.141 2.445 1.015 0.609
(120.10) (33.39) (−9.40) (−5.28)

Panel C. Tracking Error Portfolios (Excess Return Volatility)

1 10.699 0.005 −0.048 −0.023 0.057 4.262 0.029 3.931 1.171 0.085
(173.24) (57.73) (−7.07) (−5.56)

2 10.828 0.006 −0.051 −0.027 0.068 5.398 0.031 4.859 1.184 0.098
(175.24) (75.03) (−7.32) (−5.92)

3 10.175 0.007 −0.048 −0.030 0.083 7.530 0.039 5.673 1.123 0.157
(156.91) (72.92) (−7.21) (−5.89)

4 9.647 0.008 −0.042 −0.042 0.096 9.409 0.043 6.167 1.068 0.161
(152.84) (87.67) (−6.70) (−7.08)

5 10.084 0.010 −0.051 −0.050 0.115 10.556 0.045 6.810 1.102 0.165
(175.52) (78.50) (−7.82) (−7.02)

6 10.631 0.015 −0.058 −0.050 0.145 12.250 0.060 5.727 1.163 0.198
(173.86) (57.50) (−8.43) (−4.18)

7 10.975 0.014 −0.058 −0.078 0.186 15.745 0.085 4.436 1.213 0.301
(155.66) (71.07) (−8.17) (−7.50)

8 11.913 0.011 −0.082 −0.059 0.209 19.011 0.141 3.057 1.315 0.495
(157.98) (44.26) (−10.78) (−5.89)

9 12.135 0.011 −0.078 −0.112 0.228 23.690 0.140 2.654 1.352 0.715
(143.91) (45.54) (−9.78) (−10.99)

10 9.841 0.012 −0.052 −0.085 0.255 30.500 0.165 4.573 1.202 0.714
(85.98) (31.95) (−7.35) (−6.29)

The relation between illiquidity and the tracking error is well illustrated from

the distribution of the tracking error in column 6. The tracking error for the low

liquidity portfolio appears to be larger than that for the high liquidity portfolio.

That is, the price of the ETF with low liquidity tends to deviate more frequently

from its underlying index. Moreover, the average premium of the ETF relative to

the NAV is positive and increases as the liquidity decreases. The ETF-NAV return

differences are affected by both the illiquidity of the underlying securities and the ETF

liquidity. Arbitrageurs in the ETF market try to trade the ETF close to the publicly

announced NAV price and the underlying index. However, if an ETF does not have
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enough liquidity so that traders cannot immediately trade the ETF to respond to the

movement of the underlying index, the ETF market illiquidity causes the disparity

between the ETF price and the underlying index.

The estimated betas are also reported by multiplying by 10 for convenience. It is

not surprising that β1p, measuring the market risk, is close to one, which implies that

the ETFs in the US stock exchange trace the underlying index well on average. More-

over, three liquidity betas reflect the characteristics of the liquidity well even though

the magnitude is small. The portfolio β2ps, indicating the relation between market

liquidity and individual liquidity, are positive, implying that individual liquidity de-

creases when market liquidity decreases. Illiquid ETFs have large values for β2p and

are more sensitive to market liquidity shocks. As expected, both the β3ps and the β4ps

have negative values. Moreover, the ETFs in the low-liquidity or high-tracking error

portfolios tend to have large absolute values for β3p and β4p. This result suggests

that illiquid ETFs are more likely to deviate from the underlying index return and

are more sensitive to a change in the market return or the market liquidity.

The discussion above relies on the portfolio betas rather than the individual ETF

betas. However, it is desirable to calculate the individual ETF betas because each

ETF is designed to follow the specific underlying index. Considering the underlying

index return as the ETF’s market return, the calculated market and liquidity betas

provide more reliable variables for measuring the market and liquidity risk. To ac-

count for these concerns, I provide the average betas in each portfolio after estimating

the individual ETF betas. The yearly portfolios are formed using the same method

as the previous portfolio beta calculation. Table 21 reports the average betas of the

liquidity and tracking error portfolios. Overall, the results are quite similar to the

patterns in the portfolio betas. The illiquid ETFs tend to be more sensitive to market

liquidity or the market return. Moreover, the illiquid ETFs are more likely to deviate

from their underlying index return.
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Table 21: Properties of sorted portfolios based on individual ETFs

This table presents the characteristics of 10 equal-weighted liquidity and tracking error portfolios.
The method for constructing portfolios and variable definitions are the same as in Table 20. After
estimating yearly betas for each ETF, equal weighted averages within portfolios are reported. Other
statistics follow the same procedure. The numbers in parentheses are t-statistics.

β1p β2p β3p β4p E(cp) |1− θ| Prem trn σ(rp) σ(re,p)
(.10) (.10) (.10) (.10) (%) (%) (%) (%) (%) (%)

Panel A. Illiquidity portfolios

1 9.407 0.001 −0.030 −0.008 0.033 5.606 0.024 7.774 1.325 0.369
(142.74) (1.64) (−5.08) (−4.56)

2 9.398 0.002 −0.029 −0.009 0.057 6.386 0.049 7.562 1.467 0.412
(87.11) (1.84) (−4.73) (−2.72)

3 9.304 0.015 −0.048 −0.012 0.071 7.328 0.037 7.424 1.545 0.475
(136.70) (1.11) (−2.33) (−4.96)

4 9.379 0.002 −0.021 −0.017 0.085 6.662 0.019 5.339 1.625 0.507
(77.14) (1.97) (−2.11) (−3.85)

5 9.332 0.003 −0.030 −0.021 0.098 7.458 0.030 4.497 1.654 0.561
(66.55) (1.96) (−4.37) (−3.73)

6 9.226 0.004 −0.029 −0.025 0.116 8.195 0.016 3.152 1.622 0.579
(80.61) (1.82) (−3.85) (−2.66)

7 9.103 0.005 −0.043 −0.029 0.139 11.187 0.071 3.251 1.659 0.687
(96.20) (2.01) (−3.48) (−3.29)

8 8.866 0.010 −0.042 −0.053 0.187 14.038 0.085 2.321 1.797 0.914
(77.28) (2.02) (−2.92) (−4.02)

9 8.636 0.007 −0.054 −0.063 0.240 15.848 0.113 2.234 1.847 1.067
(80.05) (1.33) (−3.11) (−4.69)

10 8.740 0.015 −0.044 −0.156 0.377 14.865 0.107 1.846 1.803 1.186
(59.85) (2.67) (−3.87) (−6.14)

Panel B. Tracking Error Portfolios (Regression)

1 9.783 0.003 −0.034 −0.019 0.087 2.941 0.021 5.337 1.649 0.354
(213.05) (1.52) (−2.87) (−2.43)

2 9.755 0.002 −0.027 −0.019 0.086 2.845 0.045 7.546 1.592 0.355
(188.40) (1.70) (−4.30) (−3.03)

3 9.685 0.003 −0.028 −0.023 0.100 3.776 0.061 5.230 1.589 0.385
(174.55) (1.85) (−4.31) (−3.43)

4 9.594 0.002 −0.025 −0.025 0.107 4.711 0.023 5.988 1.656 0.438
(119.58) (2.25) (−5.03) (−4.98)

5 9.510 0.004 −0.028 −0.031 0.124 5.426 0.062 6.285 1.714 0.547
(144.59) (2.63) (−4.14) (−3.40)

6 9.487 0.003 −0.029 −0.038 0.140 6.651 0.054 5.377 1.671 0.637
(137.21) (1.97) (−3.75) (−6.98)

7 9.339 0.008 −0.036 −0.039 0.173 8.696 0.061 3.404 1.669 0.768
(100.93) (2.33) (−5.10) (−3.21)

8 8.993 0.006 −0.033 −0.045 0.168 12.363 0.096 2.039 1.552 0.848
(63.43) (2.68) (−3.74) (−4.06)

9 8.283 0.010 −0.042 −0.084 0.208 17.700 0.094 1.836 1.626 1.084
(88.80) (2.37) (−3.10) (−5.37)

10 6.916 0.025 −0.090 −0.073 0.203 32.958 0.043 2.490 1.630 1.329
(27.25) (1.64) (−3.44) (−3.76)
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Table 21: Properties of sorted portfolios based on individual ETFs - Continued

β1p β2p β3p β4p E(cp) |1− θ| Prem trn σ(rp) σ(re,p)
(.10) (.10) (.10) (.10) (%) (%) (%) (%) (%) (%)

Panel C. Tracking Error Portfolios (Excess Return Volatility)

1 9.737 0.002 −0.028 −0.013 0.050 2.294 0.017 4.664 1.260 0.182
(211.39) (1.58) (−5.91) (−2.83)

2 9.658 0.004 −0.032 −0.015 0.062 3.203 0.027 4.590 1.334 0.232
(172.06) (2.04) (−2.43) (−2.39)

3 9.592 0.029 −0.058 −0.020 0.081 5.437 0.017 5.579 1.438 0.301
(126.97) (1.91) (−3.04) (−2.73)

4 9.485 0.008 −0.033 −0.026 0.093 5.621 0.056 5.028 1.504 0.374
(98.42) (2.42) (−4.79) (−2.58)

5 9.489 −0.001 −0.041 −0.025 0.108 6.298 0.023 5.262 1.614 0.448
(112.62) (−0.25) (−3.49) (−3.49)

6 9.415 0.005 −0.033 −0.040 0.151 8.561 0.050 6.799 1.681 0.619
(94.27) (1.85) (−3.84) (−3.46)

7 9.133 0.006 −0.038 −0.059 0.183 10.903 0.062 4.163 1.745 0.780
(71.81) (2.32) (−3.16) (−3.54)

8 8.885 0.004 −0.047 −0.060 0.194 13.518 0.142 2.830 1.693 0.974
(56.16) (2.47) (−2.81) (−5.93)

9 8.223 0.005 −0.034 −0.058 0.227 18.492 0.118 2.864 1.822 1.194
(63.66) (2.69) (−3.94) (−4.78)

10 7.751 0.003 −0.028 −0.080 0.251 23.455 0.051 3.849 2.271 1.650
(33.94) (3.51) (−4.01) (−4.80)

In sum, the above results support that liquidity is the important factor in deter-

mining the ETF return, and it causes the tracking error of the ETF with respect

to the underlying index or the NAV returns. The estimated portfolio betas suggest

that the liquidity risk is the undiversified systemic risk even if constructing the port-

folio. Moreover, the liquidity risk is closely related to the ETF tracking errors. In

general, the return difference between the ETF and the underlying index or the NAV

can be removed through arbitrage activity. However, a lack of liquidity in the ETF

can cause an unexpected loss to the arbitrageurs when they fail to trade the ETF on

their target price. Thus, liquidity plays an important role in eliminating the arbitrage

opportunity in the ETF market. ETF investments provide a valuable opportunity to

indirectly invest in inaccessible markets. However, if there is a tracking error due to

a lack of liquidity, investing in ETFs brings a different result from the direct invest-

ment in the particular markets. Moreover, if the liquidity risk is the systemic risk
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that exists even after constructing the portfolio from ETFs, the merit of investing in

the ETF is less attractive. If liquidity risk from investing in the ETF exists, the ETF

investors must be compensated for bearing this liquidity risk. Thus, the next section

investigates how the liquidity risk affects the expected ETF return.

4.4 Liquidity premium

This section investigates the effect of liquidity on the expected return of the ETF from

a cross-sectional regression by using pre-estimated betas. The regression is estimated

by using the GMM method. As did in Acharya and Pedersen (2005), the standard

error is calculated by using Newey and West (1987) with lag 2. The following three

equations are used to estimate parameters:

E(rpt ) = α + κE(cpt ) + λβnet,p (62)

E(rpt ) = α + κE(cpt ) + λ1β
1p + λβnet,p (63)

E(rpt ) = α + κE(cpt ) + λ1β
1p + λ2β

2p + λ3β
3p + λ4β

4p (64)

The above models are estimated either when the coefficient on the expected trad-

ing cost, κ, is fixed as the average turnover rate or when it is considered to be the free

parameter. The equations are estimated by either using pre-estimated portfolio betas

or pre-estimated individual ETF betas. The estimated parameters using portfolio

betas are reported in Table 22 and those using individual betas are reported in Table

23. Panel A of each table reports the estimated results from the liquidity portfolios

and panels B and C do the same for the tracking error portfolios. The odd and even

lines of each panel report the estimation results when κ is fixed as the average daily

turnover rate and treated as the free parameter, respectively.
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Table 22: Illiquidity and tracking error portfolios: portfolio betas

This table presents the estimated coefficients from cross-sectional regressions of the liquidity-adjusted
CAPM for 10 equal-weighted portfolios using daily data during 2002-2012. The odd and even lines
of each panel report the estimation results when κ is fixed as the average daily turnover rate and
treated as the free parameter, respectively. The numbers in parentheses are t-statistics

Constant E(cp) β1p β2p β3p β4p βnet,p

(.10) (.10) (.10) (.10) (.10) (.10) (.10)

Panel A. Illiquidity portfolios

1 −0.01∗∗∗ 4.60 0.05∗∗∗
(−8.44) (8.90)

2 −0.02∗∗∗ −119.99∗∗∗ 0.05∗∗∗
(−10.32) (−10.81) (8.97)

3 −0.07∗∗∗ 4.60 −0.81 0.89
(−10.75) (−1.02) (1.14)

4 −0.07∗∗∗ 18.92∗∗∗ −0.89 0.97
(−10.77) (3.66) (−1.12) (1.24)

5 −0.01∗∗∗ 4.60 0.02 2.63 −5.85 1.32
(−8.30) (0.15) (0.04) (−0.19) (0.16)

6 −0.02∗∗∗ −112.21∗∗∗ −0.03 −0.10 −16.88 2.93
(−9.96) (−10.63) (−0.23) (0.00) (−0.56) (0.34)

Panel B. Tracking Error Portfolios(Regression)

1 −0.01∗∗∗ 4.78 0.04∗∗∗
(−8.17) (7.14)

2 −0.02∗∗∗ −94.23∗∗∗ 0.04∗∗∗
(−10.04) (−9.93) (7.37)

3 −0.07∗∗∗ 4.78 −6.93∗∗∗ 6.95∗∗∗
(−10.90) (−3.03) (3.07)

4 −0.07∗∗∗ 32.78∗∗∗ −6.90∗∗∗ 6.92∗∗∗
(−10.82) (5.92) (−3.00) (3.04)

5 −0.01∗∗∗ 4.78 0.00 −21.69 −5.75 −5.56
(−7.66) (0.02) (−0.25) (−0.17) (−0.71)

6 −0.02∗∗∗ −97.64∗∗∗ 0.01 −6.11 −2.69 −5.23
(−9.55) (−10.16) (0.06) (−0.07) (−0.08) (−0.67)

Panel C. Tracking Error Portfolios(Standard Deviation)

1 −0.01∗∗∗ 4.79 0.04∗∗∗
(−7.08) (6.05)

2 −0.02∗∗∗ −157.90∗∗∗ 0.04∗∗∗
(−9.17) (−9.92) (5.99)

3 −0.06∗∗∗ 4.79 1.57 −1.46
(−10.26) (1.23) (−1.16)

4 −0.07∗∗∗ 10.20 1.64 −1.53
(−10.32) (1.46) (1.29) (−1.22)

5 −0.01∗∗∗ 4.79 0.05 4.22 3.13 −0.18
(−7.03) (0.90) (0.14) (0.31) (−0.04)

6 −0.02∗∗∗ −148.14∗∗∗ 0.05 −4.74 2.80 −0.27
(−9.24) (−10.10) (1.05) (−0.15) (0.28) (−0.06)
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The first line of each panel is the GMM estimation result of equation (62). The

risk premium is positively significant at the 1% level and quite similar in either the

liquidity or the tracking error portfolios (0.05%, 0.04%, and 0.04%) when using the

fixed κ. The results are unchanged even when κ is estimated as the free estimator

(line 2). The negative coefficient for the expected cost κ can be interpreted as a result

of the managerial fees for the ETFs. Finally, the alpha is negatively significant, which

is due to the fixed costs including the managerial fees from the ETF.

In lines 3 and 4, the risk premium is estimated to separate the liquidity risk from

the market risk by using equation (63). As pointed out in Acharya and Pedersen

(2005), a substantial multicollinearity problem exists even when using the ETF data.

The βnet,p is shown to be positive and significant in panel B and insignificant in

panel A as well as C. The coefficient for β1p is negative and significant in panel B,

which is not necessarily true because the market premium cannot be negative and

the net beta also contains the value of β1p. For example, the estimated market

premium using the liquidity portfolio is still positive, i.e., −0.093β1p + 0.095βnet,p =

0.002β1p + 0.095(β2p − β3p − β4p) 12. This result implies that both the market risk

and the liquidity risk are positively related to the expected ETF return.

Finally, lines 5 and 6 report the estimation results of equation (63) when each

beta is considered as a separate variable. All of the estimated coefficients are not

significant, suggesting the existence of the severe multicollinearity problem.

The economic significance can be found in the investment performance by calcu-

lating the return difference between portfolios 1 and 10. The effect of β2p, β3p, and

β4pon the annualized return difference between liquidity portfolio 1 and 10 is 0.04%,

0.06%, and 0.26%, respectively. Thus, the annualized return due to the liquidity risk

is approximately 0.36%. Consistent with Acharya and Pedersen (2005), the effect of

12The market premium is also positive in panel A because −0.081β1p + 0.089βnet,p = 0.008β1p +
0.089(β2p − β3p − β4p). In panel C, the market premium is 0.011. But, both market premiums in
panels A and C are insignificant.
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Table 23: Illiquidity and tracking error portfolios: individual ETF betas

This table presents the estimated coefficients from cross-sectional regressions of the liquidity-adjusted
CAPM for individual securities using daily data during 2002-2012. The odd and even lines of each
panel report the estimation results when κ is fixed as the average daily turnover rate and treated as
the free parameter, respectively. The numbers in parentheses are t-statistics

Constant E(ci) β1i β2i β3i β4i βnet,i

(.10) (.10) (.10) (.10) (.10) (.10) (.10)

1 −0.01∗∗∗ 5.72 0.03∗∗∗
(−11.71) (14.08)

2 −0.01∗∗∗ −1.28 0.03∗∗∗
(−11.71) (−0.60) (14.08)

3 −0.04∗∗∗ 5.72 0.01 0.06∗∗∗
(−23.24) (0.39) (2.74)

4 −0.04∗∗∗ 16.06∗∗∗ 0.00 0.07∗∗∗
(−22.86) (6.74) (−0.18) (3.23)

5 −0.01∗∗∗ 5.72 0.02∗∗∗ −0.04∗∗∗ −0.11∗∗∗ −0.03
(−9.48) (12.80) (−3.04) (−6.65) (−0.79)

6 −0.01∗∗∗ −4.96∗∗ 0.02∗∗∗ −0.04∗∗∗ −0.11∗∗∗ −0.03
(−11.18) (−2.35) (12.90) (−3.00) (−6.62) (−0.92)

the covariance of an ETF’s illiquidity to market returns seems to have the largest

impact on the expected returns. Furthermore, this liquidity risk is still an important

factor even when investing in the tracking error portfolio. The portfolio with a large

tracking error gains more excess return than that with a small tracking error. For

instance, the total annualized return difference between regression (standard devia-

tion) tracking portfolios 1 and 10 is 0.03% (0.11%), consisting of 0.01%(0.01%) for

β2p, 0.01% (0.01%)for β3p, and 0.03% (0.09%) for β4p. These results imply that the

tracking error is related to the liquidity risk, which is a non-negligible risk in ETF

investment.

In sum, the liquidity of the ETF market is also an important factor for determining

the expected return of the ETF because the ETF is traded like a common stock in the

market even if the ETF is designed to strongly replicate the particular index return.

Moreover, the liquid ETF tends to track its underlying index better than the illiquid

one.
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5 The liquidity effect on volatility

5.1 Nontrading probability and variance difference

In this section, the effect of liquidity on the ETF variance is investigated using Lo

and MacKinlay (1990)’s econometric model. In particular, I investigate whether a

lack of liquidity could cause the difference between the NAV return variance and

the ETF return variance. Lo and MacKinlay (1990) develop an econometric model

to explain the effect of infrequent trading and shows that nontrading increases the

return variance and causes negative serial correlation. If an individual security trades

very frequently without any time delays, then the variance of the observed return

must be same as the variance of the true asset return. However, the increase in the

expected nontrading days can cause a gap between the observed return and the true

return.

It is not easy to evaluate whether infrequent trading can increase the asset return

variance with respect to the true return variance because the true asset return cannot

be observed in general. However, the NAV return can be regarded as the ETF’s

true return, which is publicly announced in the market. Given the NAV return,

it is attractive to test whether nontrading causes the increase in the ETF return

variance or in the gap between the ETF return variance and the NAV return variance.

Moreover, the NAV return can be easily modeled using a single linear factor model

because each ETF is designed to trace its particular index. For the NAV return series,

assume the following linear relation between the NAV return and the underlying index

return.

vt = α + βft + εt (65)

where vt is the NAV return and ft is the underlying index return on day t. If an

ETF replicates the underlying index perfectly, then the β should be close to one and

the α should be close to the fund’s expense ratio. While Lo and MacKinlay (1990)
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assume that the factor return is serially uncorrelated, it is more realistic to assume

that a serial correlation exists in the factor return series. The following autoregressive

process is suitable to account for the serial correlation of the factor return series:

ft = φ0 + φft−1 + ξt (66)

where ξt is zero mean noise with variance σ2. The coefficient of the lagged return

is the well-known autocorrelation function of the AR(1) process and is equal to the

autocorrelation of lag 1.

As introduced in Lo and MacKinlay (1990), the following two random variables

are defined to explain the ETF return process with the nontrading effect. First, the

indicator variable δt is defined as having the value one if ETF does not trade at the

particular date t with probability p. Second, the indicator variable Xt(k) is defined

as being one if ETF trades at time t but has not traded in the k previous periods.

The indicator variable Xt(k) can be expressed as

Xt(k) = (1− δt)δt−1δt−2 · · · δt−k, k > 0

=

 1, with probability(1− p)pk

0, with probability1− (1− p)pk
(67)

Given the definition of the indicator variable Xt(k), the ETF return can be written

as

rt =
∞∑
k=0

Xt(k)vt−k (68)

From equation (68), the daily ETF return and the daily NAV return should be

same if the ETF is traded every day. So, equation (68) means that the ETF return

at time t can be expressed as the sum of the NAV returns from time t− k to time t

if the ETF has not been traded during the previous k period. Given the definition of
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the ETF return in equation (68),the variance of the ETF return can be expressed as

V ar(rt) = V ar(vt) +
2p

1− p
(α + βµ)2 +

2φp

1− φp
β2V ar(ft) (69)

Equation (69) shows that the ETF return variance is composed of the NAV return

variance and the terms associated with the nontrading and the autocorrelation effects.

If the ETF trades every day, which means that the nontrading probability is close

to zero, the ETF return variance should be the same as the NAV return variance.

The third term, which is related to the product of the nontrading probability and the

serial correlation in the underlying index return, is not shown in Lo and MacKinlay

(1990). The important aspect in equation (69) is that the nontrading probability

plays a critical role in increasing the ETF return variance. The no trading effect does

still exist even though there is no serial correlation in the underlying index return.

Moreover, the expected return for the ETF is always same as the NAV return; the

nontrading probability does not cause any difference between the ETF return and

the NAV return. An increase in the nontrading probability could cause the increase

in the ETF return variance but not cause any change in the expected return for the

ETF. Thus, if an ETF has a high probability of nontrading due to the lack of trading

volume, the risk of investing in the ETF could also increase.

Table 24 reports the variance of each return series and the difference between

return series. The reported variance is the annualized cross-sectional average of each

ETF’s variance calculated from the daily return series during the sample period.

Panel A shows the average of variances by asset category. First, there exist significant

differences between the ETF return variance and the NAV return variance except for

the domestic/sector and the real estate ETFs. In particular, the commodity type

ETFs tend to have the largest variance difference. Although the differences in the

currency ETFs or debt ETFs are small, they are still significant. For the equity-type
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Table 24: Variance comparison

This table reports the variance differences among ETF return, NAV return, and underlying index
return. The variance is calculated for individual ETF from the inception date to the end of year
2012 or the delisted date. σ2

r , σ2
v , and σ2

f denote the annual variance of ETF returns, NAV returns,
and underlying index returns. The underlying index returns are adjusted for the leverage factor.
”*”, ”**”, ”***” represents significance at 10%, 5%, and 1% level respectively.

Category N σ2
r σ2

v σ2
f σ2

r − σ2
v σ2

r − σ2
f σ2

v − σ2
f

(%) (%) (%) (%) (%) (%)

Panel A. Asset Category

Asset Allocation 40 13.27 9.23 8.13 4.04∗∗∗ 5.15∗∗∗ 1.11
Commodity 42 21.02 16.99 17.41 4.03 3.61 −0.43
Currency 20 2.58 2.14 2.14 0.44∗∗ 0.44∗∗ 0.00
Debt 109 2.53 1.23 1.08 1.29∗∗ 1.44∗∗ 0.15∗∗∗
Domestic/Equity 318 12.21 11.07 10.83 1.14∗∗∗ 1.38∗∗∗ 0.24∗∗∗
Domestic/Sector 259 18.82 18.67 17.14 0.15 1.68∗ 1.53
Global/Equity 329 18.32 11.39 14.63 6.92∗∗∗ 3.69 −3.23
Global/Sector 147 15.28 10.91 10.51 4.37∗∗∗ 4.77∗∗∗ 0.40
Real Estate 43 20.52 18.82 18.31 1.70 2.21∗ 0.51

Panel B. Levered or Inversed

Non-levered 1115 10.43 6.78 7.89 3.65∗∗∗ 2.54∗ −1.11
Levered 192 41.78 42.81 38.79 −1.02∗ 2.99∗∗ 4.01∗∗∗

ETFs, the variance difference for the ETFs based on US equity is smaller than that

based on international equity. Next, the difference between the NAV return variance

and the index return variance is also significant, although it is smaller than that

between the ETF return and the NAV return. This result implies that the price

movement of the ETF is more volatile than that of the Index, suggesting that there

could be a substantial tracking error in the ETF with respect to the Index.

Panel B reports the averages of the variance difference based on whether the ETF

is levered or non-levered. On average, the levered ETFs have higher variances than

the non-levered ETFs. Moreover, the ETF variances are higher than the NAV return

variance whether the ETFs are levered or not. The return difference between the

ETF return and the NAV return is bigger in the non-levered products than in the

levered products. Moreover, there is no significant difference between the NAV return

variance and the index return variance for the non-levered ETFs, but a significant
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Figure 16: Variances of ETF return, NAV return, and Index return by leverage

This figure illustrates the averages of ETF, NAV, and index return variances by leverage factors.
The return variances are calculated from ETF daily returns.

−3 −2 −1 1 2 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−3

Leverage factor

V
ar

ia
nc

e

 

 

ETF NAV Index

difference exists for the levered products. This result suggests that leverage may

cause an increase in the true variance, but it does not necessarily cause an increase

in the variance relative to the true variance. Figure 16 illustrates the variances of the

different return series by the degree of leverage. The variance of the index return is

calculated after considering the leverage factor. Figure 16 shows that the variance

also increases when the degree of leverage increases. The plot also suggests that the

leverage does not necessarily and directly cause the increase in the variance of the

trading asset ETFs. In any case, there exists a difference between the ETF return

variance and the NAV return variance regardless of whether the ETFs are levered or

not. In sum, the return variance or volatility increases when the ETF is not actively

traded in the market.

The return variance of the illiquid ETF increases because the price of the illiquid

ETF cannot immediately reflect the price of the index; thus, it should reflect all of

the past fluctuations of the index, which are not involved in the price due to the
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nontrading of the asset. As a result, the lack of liquidity could cause an increase in

the risk of investing in the ETF because it increases the return variance and decreases

the ETF performance even if the expected return is independent of the illiquidity.

5.2 Nontrading probability and the variance

In the previous section, the Lo and MacKinlay (1990) model shows how infrequent

trading could affect the ETF return variance compared to the NAV return variance.

This section provides empirical evidence to support the previous econometric model.

The variance of each ETF is calculated based on the daily data from 2002 to 2012. In

the case of an ETF incepted after 2002, the variance is calculated from the inception

date. The probability of nontrading is simply defined as the proportion of nontrading

days to the actual trading days during the sample period.

Table 25 provides average values for ETF and NAV return variances classified by

the nontrading probability. An average of each variance is calculated for each stock

from the sample period. Category 1 includes only the ETFs that have been traded

every day during the sample period. That is, the nontrading probability of category

1 is zero. The remaining categories are constructed by sorting ETFs that have at

least one nontrading day during the sample period with the nontrading probability.

The reported variances are annualized for convenience. Equation (69) shows that the

difference between the ETF variance and the NAV variance is related to not only the

nontrading probability but also to the autocorrelation of the underlying index return.

The average autocorrelations for the underlying index return are also reported in the

table.

Table 25 shows that the nontrading probability is related to the difference be-

tween the ETF variance and the NAV variance. First, as the nontrading probability

increases, the difference between the ETF variance and the NAV variance also in-

creases. For instance, ETFs included in category 10 were not traded for 70% of
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Table 25: Nontrading probability and variances

This table presents the summary statistics of variances, no trading probability, the expected no
trading day of ETFs. In addition, the first-order autocorrelation, the AR(1) coefficient, and the
sum of the autocorrelations from lag 1 to lag 10 for the underlying index returns are reported. All
of the statistics are calculated from the daily return series for the entire sample period. σ2

r and
σ2
v denote the variance of ETF returns and the variance of NAV returns, respectively. No trading

probability,p, is the ratio of observations to total trading days. E(k) is calculated by p/(1 − p). ρi
denotes the lag i autocorrelation. φ denotes the coefficient of the AR(1) for the underlying index
return.

σ2
r σ2

v σ2
r − σ2

v p E(k) ρ1 φ
∑

i ρi
(%) (%) (%) (%) day (%) (%) (%)

1 10.86 10.51 0.35 0.00 0.00 1.82 1.83 −1.38
2 20.87 21.66 −0.79 0.12 0.00 −1.57 −1.57 −5.35
3 19.18 19.60 −0.42 0.28 0.00 1.61 1.60 0.27
4 14.18 14.28 −0.1 0.76 0.01 1.46 1.52 0.46
5 13.72 13.17 0.55 1.92 0.02 1.33 1.34 −0.59
6 11.17 10.73 0.44 4.48 0.05 −0.36 −0.37 −1.58
7 11.75 10.35 1.4 9.12 0.10 1.46 1.44 3.08
8 14.71 9.42 5.29 19.89 0.25 1.99 2.08 −6.55
9 15.63 7.77 7.86 40.01 0.69 −0.27 −0.95 −8.02
10 25.70 6.00 19.7 66.91 2.40 0.19 0.09 −9.16

the trading days and the annual variance difference for those ETFs is 28%. Second,

the number of expected nontrading days also increases when the nontrading prob-

ability increases. The ETFs included in category 10, which show the least trading

activity, have not been traded during three consecutive days on average. Third, the

autocorrelation with lag 1 and the AR(1) coefficient for the underlying index return

are reported in column 6 and column 7. Moreover, the sum of the autocorrelations

from lag 1 to lag 10 for the underlying index return is reported in the last column.

Columns 6 and 7 show that there is no clear relation between the autocorrelation of

the underlying index return and the nontrading probability of the ETF.

5.3 Cross-sectional regression of variance difference

Equation (69) shows that the variance difference appears to be closely related to the

nontrading probability and the autocorrelation. In particular, the nontrading prob-

ability plays the role of increasing the ETF volatility relative to the NAV volatility.
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The regression analysis is performed to investigate whether the nontrading probabil-

ity, the autocorrelation of the index return, and the interaction between the two are

related to the difference between the ETF return variance and the NAV return vari-

ance. In this regression analysis, I use annual variables to control the seasonal effect

and to obtain more observations. In each year, the variables are calculated from the

daily data for each ETF that has more than 60 observations. The annual nontrading

probability is calculated from the proportion of the observed data to the actual mar-

ket trading days. The primary dependent variable in this regression analysis is the

difference between the ETF return variance and the NAV return variance.

Table 26 reports the panel regression results. As seen in column 1 of the table, the

coefficient for the nontrading probability is positive and significant. This evidence

suggests that the ETF risk can increase when the ETF is not traded actively in

the market. This coefficient value is quite stable even if other control variables are

included in column 4.

Columns 2 and 3 investigate the effect of the autocorrelation of the underlying

index return on the ETF variance. First, both estimated coefficients in columns 2

and 3 are quite stable (0.017 and 0.016). Second, the existence of autocorrelation in

the underlying index return also is positively related to the difference between ETF

and NAV variances.

Column 4 considers all three variables: the nontrading probability, the autocor-

relation, and the interaction term between the nontrading probability of the ETFs

and the index autocorrelation. Consistent with the previous results, the nontrading

probability and the autocorrelation are positively related to the difference between

the ETF variance and the NAV variance.

Finally, column 5 reports the regression result when the related variables are trans-

formed to follow the form in equation (69). After including the transformed variables

in the regression, the nontrading probability term is still positive and significant but
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Table 26: Nontrading probability and difference between ETF and NAV return vari-
ances

The dependent variable of this regression is the annual variance difference between ETF and NAV
returns. p is the ratio of total observations to trading days. φ is the coefficient of the AR(1) for the
index. Other variables are the following: average dollar trading volume(Dollar Trading Volume), std.
dev. of the index return(Index Volatility), log of average shares(Shares Outstanding), the std. dev.
of shares’ growth(Shares Volatility), a dummy of 1 if an ETF uses derivatives or swaps(Derivatives
Based, Swap Based), a dummy of 1 if ETF underlying assets invest in the US(Invested in US assets),a
dummy of 1 if an ETF has futures or options based on it (Futures Available , Options Available), a
dummy of 1 if an ETF is levered(Levered Fund). The numbers in parentheses are t-statistics. ”*”,
”**”, ”***” represents significance at 10%, 5%, and 1% level respectively.

(I) (II) (III) (IV) (V)

Intercept −0.057∗∗∗ 0.019 0.019 −0.061∗∗∗ −0.028∗∗
(−4.280) (1.460) (1.450) (−4.560) (−2.090)

Notrading Prob(p) 0.103∗∗∗ 0.104∗∗∗
(10.320) (10.470)

AR(1) coefficient(φ) 0.017∗∗∗ 0.016∗∗∗ 0.023∗∗∗
(3.210) (3.020) (5.420)

p ∗ φ 0.020 0.008
(0.290) (0.130)

p/(1− p) 0.023∗∗∗
(6.830)

pφ/(1− pφ) 0.061
(1.170)

Dollar Trading Volume −0.003∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.003∗∗∗ −0.004∗∗∗
(−4.690) (−4.940) (−4.930) (−4.570) (−5.060)

Shares Outstanding 0.004∗∗∗ −0.001 −0.001 0.004∗∗∗ 0.002∗∗
(4.430) (−0.840) (−0.830) (4.400) (2.460)

Shares Volatility −0.007 −0.034∗∗∗ −0.034∗∗∗ −0.008 −0.013
(−0.530) (−2.640) (−2.640) (−0.670) (−1.030)

Derivatives Based 0.000 0.001 0.001 0.001 0.001
(−0.040) (0.180) (0.170) (0.170) (0.090)

Swap-Based 0.008 0.002 0.002 0.007 0.006
(0.900) (0.210) (0.220) (0.780) (0.630)

Equity-type ETF 0.004∗ 0.005∗∗ 0.005∗∗ 0.005∗∗ 0.004∗
(1.750) (2.120) (2.110) (2.430) (1.810)

Invested in US assets −0.013∗∗∗ −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗ −0.012∗∗∗
(−12.290) (−8.150) (−8.180) (−9.170) (−11.710)

Futures Available −0.001 0.007∗∗∗ 0.007∗∗∗ 0.000 0.002
(−0.520) (4.340) (4.340) (−0.290) (1.560)

Options Available 0.002∗ 0.002∗ 0.002∗ 0.002 0.002
(1.670) (1.710) (1.720) (1.490) (1.470)

Levered Fund −0.011 −0.015∗ −0.015∗ −0.011 −0.013
(−1.480) (−1.810) (−1.810) (−1.400) (−1.570)

Year Fixed Effects Y es Y es Y es Y es Y es
Observations 6061 6061 6061 6061 6061
Adjusted R2 20.99 10.36 10.36 21.42 19.23
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the interaction term is not significant.

In sum, these empirical findings support the relation shown in equation (69). The

ETF variance can increase relative to the NAV variance when the ETF is not actively

traded in the market. These results suggest that the lack of liquidity due to infrequent

trading could increase the risk of ETF investment.

6 Conclusion

The ETF market has grown tremendously over the last two decades. ETFs are

considered as being more transparent, less expensive, and more tax-efficient than

traditional mutual funds. Moreover, ETFs provide investment opportunity to access

other inaccessible markets or asset categories.

This paper investigates the effect of liquidity on the ETF return and variance.

Similar to general common stocks, liquidity is an important risk factor affecting the

ETF return and variance. Illiquid ETFs are more sensitive to the market return and

market liquidity. The liquidity risk explains approximately 0.31% of the ETF returns

annually. The level of liquidity is also related to the tracking error of the ETF with

respect to the underlying index or the NAV.

Moreover, the lack of liquidity increases the ETF variance with respect to the NAV

variance. Extending the Lo and MacKinlay (1990) econometric model to consider the

autocorrelation of the underlying index return, the ETF variance can be decomposed

into the NAV variance and the terms related to the nontrading probability. This

finding implies that the variance of the ETF can increase when the ETF is traded

infrequently. The calculated ETF variances are shown to be larger than the NAV

variance. Moreover, the cross-sectional regression shows that the ETF variance is

positively related to the nontrading probability.

ETFs are recognized as effective investment vehicles that provide the opportunity

to access new markets. ETFs are designed to trace a particular index representing
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a particular market or sector. Therefore, an ETF must provide the same expected

return as the return of the particular index. However, if ETFs have liquidity risks

and thus substantial tracking error, investors may bear another risk in addition to the

market risk. Therefore, investors must be cautious when investing in illiquid ETFs.
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Appendix

A Proof of the variance

Under the AR(1) process, the autocovariance of ft is

Cov(ft, ft−k) = φkV ar(ft) (A.1)

For l > k,

E[vt−kvt−l] = E[(α + βft−k + ξt−k)(α + βft−l + ξt−l)]

= α2 + 2αβE[ft] + β2E[ft−kft−l]

= α2 + 2αβE[ft] + β2(E[ft]
2 + φl−kV ar(ft))

= (α + βE[ft])
2 + β2φl−kV ar(ft)

= E[vt]
2 + β2φl−kV ar(ft)

The second moment of the rt is

E[r2
t ] = E

[
∞∑
k=0

Xt(k)vt−k

∞∑
l=0

Xt(l)vt−l

]

=
∞∑
k=0

E
[
X2
t (k)v2

t−k
]

+ 2
∞∑
k=0

∞∑
l=k+1

E [Xt(k)Xt(l)]E [vt−kvt−l]

=
(
V ar(vt) + E[vt]

2
) ∞∑
k=0

(1− p)pk + 2
∞∑
k=0

∞∑
l=k+1

(1− p)pl
(
E[vt]

2 + φl−kβ2V ar(ft)
)

= V ar(vt) + E[vt]
2 + 2E[vt]

2

∞∑
k=0

pk+1 + 2β2V ar(ft)(1− p)
φ

1− φp

∞∑
k=0

pk+1

= V ar(vt) + E[vt]
2 +

2p

1− p
E[vt]

2 +
2φp

1− φp
β2V ar(ft)

The expected return of the ETF return is simply

E[rt] = E

[
∞∑
k=0

Xt(k)vt−k

]

=
∞∑
k=0

E[Xt(k)]E[vt−k]

= E[vt]
∞∑
k=0

(1− p)pk = E[vt]
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So, the variance of the ETF return is

V ar(rt) = E[r2
t ]− E[rt]

2

= V ar(vt) +
2p

1− p
E[vt]

2 +
2φp

1− φp
β2V ar(ft)
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