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CHAPTER I 

 

INTRODUCTION AND RESEARCH GOALS 

 

Global amphibian declines 

 In recent years, the scientific community has observed an alarming number of 

severe amphibian population declines (Collins 2010), with some resulting in extinctions.  

These declines are especially striking because the current rate of amphibian species 

disappearances far exceeds that of birds or mammals (Stuart et al. 2004).  It is estimated 

that one third of all known amphibian species are threatened or extinct (IUCN Red List 

for Amphibians, http://www.iucnredlist.org/initiatives/amphibians) and the rate of 

amphibian extinctions since 1980 is over 100 times the background rate (McCallum 

2007), marking this the largest extinction event in 10,000 years (Wake and Vredenburg 

2008).  In this light, severe declines have been documented around the globe with 

massive die-offs reported on multiple continents (Laurance et al. 1996, Bosch et al. 2001, 

Ron et al. 2003, Burrowes et al. 2004).  Possible causes for declines include climate 

change, various anthropogenic factors, and emerging infectious diseases (Collins and 

Storfer 2003, Burrowes et al. 2004, Collins 2010). 

 

Climate change and its effect on amphibians 

 The largest factors in climate change are temperature and precipitation changes.  

Because amphibians are ectothermic and breathe through their skin, temperature changes 
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and dehydration can have serious effects on survival, immunity, and reproduction.  There 

are multiple reports of climate change events correlating with a direct decline or 

extinctions of local amphibian populations, including frost, severe drought, and rising 

temperatures linked to global warming (Pounds and Crump 1994, Donnelly and Crump 

1998, Pounds et al. 2006, McMenamin et al. 2008, Collins 2010).  Despite this, it has 

proven difficult to firmly establish a link between climate change and amphibian declines 

on a global scale, most likely because multiple factors may result in compounding 

stressors for amphibian population health (Carey and Alexander 2003, Lips et al. 2008).  

One such example is known as the “chytrid thermal optimum hypothesis.”  Proponents of 

this hypothesis suggest that rising temperatures due to global warming resulted in 

increased cloud cover and misting, causing higher nighttime temperatures and lower 

daytime temperatures, resulting in improved conditions for the fungal pathogen B. 

dendrobatidis (Pounds et al. 2006).  Though subsequent studies of other amphibian 

declines have cast doubt on this hypothesis (Lips et al. 2008, Vredenburg et al. 2010), it 

is clear that climate change is an important factor irrespective of infectious diseases, 

especially on local scales. 

 

Anthropogenic causes of amphibian decline 

 Various human activities have unfortunately resulted in amphibian declines 

around the globe.  These activities include commercial use of amphibians, introduction of 

non-native species, release of environmental contaminants, and habitat destruction.  

Amphibians are commonly used commercially both as sources of food and for the 

international pet trade, both legal and illegal (La Marca and Reinthaler 1991, Collins et 
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al. 2009).  Such stress on wild populations inevitably leads to declines, especially for 

already endangered species (La Marca et al. 2005).  Introduction of non-native (invasive) 

species into amphibian habitats may result in amphibian declines directly, such as 

through increased amphibian predation, or indirectly, via a reduction in available 

resources due to increased competition (Knapp et al. 2001, Collins 2010, Johnson et al. 

2011, Leivas et al. 2013).  An additional anthropogenic stressor on amphibian 

populations is environmental chemicals, like pesticides, fertilizers, and pollutants.  

Amphibians exposed to these chemicals experience a range of effects, like reduced 

growth, developmental and reproductive deformities, and death (Lefcort et al. 1998, 

Sparling et al. 2001, Hayes et al. 2002, 2003, Collins 2010).  Finally, habitat destruction 

may play a major role in the decline of many amphibian populations.  Reduced habitat 

area and disrupted breeding sites are both results of urban development, drainage of 

wetlands, and deforestation for commercial reasons (Blaustein and Wake 1995, Lehtinin 

et al. 1999, Collins and Storfer 2003, Becker et al. 2007, Johnson et al. 2011). 

As with climate change, it is possible that these anthropogenic factors work in 

conjunction with other factors to cause amphibian declines.  Movement of large numbers 

of amphibians on a global scale inevitably leads to spread of infectious fungal and viral 

diseases into previously naïve populations, an all too common occurrence (Mazzoni et al. 

2003, Picco and Collins 2008, Catenazzi et al. 2010, Schloegel et al. 2012), despite the 

fact that two amphibian diseases (the fungus B. dendrobatidis and members of the 

ranavirus family) are now internationally notifiable diseases designated by the World 

Organization for Animal Health (Schloegel et al. 2010).  One of the best known examples 

of this is global movement of Xenopus laevis.  These frogs have been used for decades in 
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research, as pets, and for pregnancy tests, and have more recently been discovered as a 

common carrier species of B. dendrobatidis (Weldon et al. 2004, Rachowicz et al. 2005).  

In another example of collaborating stressors, larval tiger salamanders experienced 

reduced survival when exposed to the pesticide carbaryl and the Ambystoma tigrinum 

virus, when compared to exposure to either stressor alone.  Likewise, carbaryl inhibits the 

antimicrobial peptide defense of frogs, which is thought to be protective against many 

pathogens (Davidson et al. 2007).  Interestingly, the pesticides thiophanate-methyl, 

chlorothalonil, and atrazine appeared to reduce the infection levels or completely cure 

amphibians infected by the lethal fungal pathogen Batrachochytrium dendrobatidis 

(Hanlon et al. 2012, McMahon et al. 2013), most likely due to the ability of the pesticides 

to inhibit B. dendrobatidis growth (Hanlon and Parris 2012). 

 

Emerging infectious diseases of amphibians 

 Amphibians are known to be hosts to a variety of bacterial, viral, and fungal 

pathogens.  Aeromonas hydrophila is an opportunistic bacterium present in healthy frogs 

(Hird et al. 1981) that is capable of causing “red leg” disease (Hubbard 1981, Carey et al. 

1999).  Other pathogenic bacteria that infect amphibians are Mycobacterium spp. and 

Flavobacterium indologenes (Olson et al. 1992, Carey et al. 1999, Hill et al. 2010).  

Amphibians are also hosts to iridoviruses in the genus Ranavirus, such as the Ambystoma 

tigrinum virus.  These are double-stranded DNA viruses that can infect reptiles and fish 

in addition to amphibians (Daszak et al. 2003) and can cause mortality (Bollinger et al. 

1999, Docherty et al. 2003).  Fungal pathogens can also infect amphibians, including B. 

dendrobatidis (Berger et al. 1998, Longcore et al. 1999, Pessier et al. 1999), 
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Batrachochytrium salamandrivorans (Martel et al. 2013), and Basidiobolus ranarum 

(Carey et al. 1999, Taylor et al. 1999).  While not common, it is possible for some 

amphibian species to experience simultaneous infections by bacterial pathogens, 

ranaviruses, and B. dendrobatidis (Miller et al. 2008, Hill et al. 2010).  The recently 

discovered Batrachochytrium salamandrivorans may prove to be linked to multiple 

declines in the future due to its extreme lethality (Martel et al. 2013), but little is known 

about this newly emerging pathogen.  Although bacteria, viruses, and B. ranarum can be 

lethal to amphibians, the only pathogen clearly linked to population declines is the fungus 

B. dendrobatidis (Carey et al. 1999, Daszak et al. 2003).  Because many of these 

pathogens infect the skin, studying skin immune defenses will provide information about 

protection against B. dendrobatidis and other pathogens of this vital organ. 

 

Batrachochytrium dendrobatidis 

 Batrachochytrium dendrobatidis causes the amphibian skin disease 

chytridiomycosis (Berger et al. 1998, Longcore et al. 1999, Pessier et al. 1999).  This 

pathogen is in the phylum Chytridiomycota, a basal fungal lineage (James et al. 2006).  It 

has been linked to multiple amphibian population declines around the globe (reviewed in 

Wake and Vredenburg 2008, Collins 2010, Fisher et al. 2012).  It may have played a role 

in as many as 90 amphibian extinctions since 1980 (Pennisi, 2009), including the 

disappearance of the Monteverde harlequin frog (La Marca et al. 2005; Pounds et al. 

2006), the Eungella gastric-brooding frog (Retallick et al. 2004), and the sharp-snouted 

day frog (Schloegel et al. 2006).  Batrachochytrium dendrobatidis-related declines have 

even been observed in protected habitats (Bosch et al. 2001, Rovito et al. 2009).   
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 This pathogen’s life cycle (Fig. 1-1) begins with a motile, flagellated zoospore 

(Longcore et al. 1999, Pessier et al. 1999, Berger et al. 2005a).  Upon reaching a host 

cell, zoospores encyst, resorb their flagellum, and form a cell wall, a germ tube, and 

rhizoids as they proceed through the germling and thalli stages (Berger et al. 2005a, 

Greenspan et al. 2012; Van Rooij et al. 2012).  This eventually results in mature, urn-

shaped zoosporangia which fill with newly differentiated zoospores.  Zoosporangia have 

discharge papillae through which zoospores are released and go on to infect other hosts 

(Berger et al. 1998, 2005, Longcore et al. 1999).  The duration of this life cycle in vitro is 

4-5 days at 22ºC (Berger et al. 2005a, Woodhams et al. 2008). 

Batrachochytrium dendrobatidis colonizes keratinized epithelial cells of adult 

amphibians and keratinized mouthparts of tadpoles and causes the skin disease 

chytridiomycosis (Berger et al. 1998, Longcore et al. 1999, Pessier et al. 1999, Fellers et 

al. 2001).  The pathogen infects cells in the outermost layers of the epidermis, 

specifically in the stratum granulosum and stratum corneum.  The keratinoyctes in these 

layers are gradually shed during the natural skin turnover process.  Interestingly, the life 

cycle of B. dendrobatidis seems almost synchronized with this process, suggesting that B. 

dendrobatidis has adapted specifically as an amphibian skin pathogen (Berger et al. 

2005a, Voyles et al. 2011).  Symptoms of chytridiomycosis include appetite loss, reduced 

weight, lethargy, excess skin sloughing, skin reddening, abnormal posture, and loss of 

righting reflex (Berger et al. 1998, 2005b, Parker et al. 2002).  The disease ultimately 

results in cardiac arrest due to disruption of sodium and potassium ion transport resulting 

in osmotic imbalance (Voyles et al. 2007, 2009, 2012, Marcum et al. 2010).   
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Figure 1-1.  Batrachochytrium dendrobatidis life cycle.  The life cycle of this pathogen 
begins with a (A) flagellated zoospore that (B) enters an amphibian host cell, (C) matures 
into a thallus and (D) becomes multinucleate by mitotic divisions.  (E) Zoospores are 
formed within the zoosporangium by a cleavage process and (F) released into the 
environment through one or more discharge papillae. (Images of B. dendrobatidis life 
stages were drawn by Dr. Robert Brucker, Vanderbilt University, Nashville, TN) 
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  In order to infect a host cell, zoospores must survive chemical defenses in the 

host mucus, including bacterial antifungal metabolites, antimicrobial peptides (AMPs), 

and mucosal antibodies (reviewed in Rollins-Smith et al. 2009; 2011).  Development of 

pathogen-specific IgM, IgX, and IgY antibodies of unknown effectiveness following skin 

exposure in Xenopus laevis indicates a role for adaptive immunity (Ramsey et al. 2010); 

however, the adaptive and lymphocyte-mediated immune responses to B. dendrobatidis 

are known to be impaired (Berger et al. 1998, 2005b, Rosenblum et al. 2009, Fites et al. 

2013).  While some amphibian species are more resistant to chytridiomycosis than others 

(Peterson et al. 2007, Woodhams et al. 2007, Murphy et al. 2009), the reasons for this are 

not well understood.  Thus, a thorough understanding of the antimicrobial peptide 

defenses and symbiotic skin bacteria in the mucus is critical to understanding effective 

anti-chytrid defenses. 

 

Symbiotic Bacteria 

 An often quoted assertion is that the human body contains ten times more 

bacterial cells than human somatic cells (Luckey 1972).  The microbial communities are 

a subject of much study regarding the physiological and ecological roles that symbionts 

play for numerous organisms, from insects to humans (reviewed in Fraune and Bosch 

2010, Feldhaar 2011, Rosenberg and Zilber‐Rosenberg 2011, Goodrich-Blair and Hussa 

2013).  Benefits for the host organism are diverse, with symbionts contributing to 

nutrition by synthesizing essential amino acids and vitamins or enabling host digestion of 

otherwise indigestible dietary components (Hill 1997, Moran 2007, Goodman et al. 2009, 

Gunduz and Douglas 2009, Chaucheyras-Durand and Durand 2010, Muegge et al. 2011).   
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Microbes are also important for successful immune system function.  Evidence 

supports a role for microbial symbionts in peripheral and germinal center lymphocyte 

activity, development of gut immunity, and protection of the skin from pathogens and 

from overgrowth of already present opportunistic pathogens (Weinstein and Cebra 1991, 

Dobber et al. 1992, Cebra 1999, Mazmanian et al. 2005, Gallo and Nakatsuji 2011, Royet 

et al. 2011, Hooper et al. 2012).  When the normal symbiotic state is altered by microbial 

imbalances, a state known as dysbiosis ensues, the result is often disease.  For example, 

inflammatory bowel disease, obesity, non-alcoholic fatty liver disease, and type 1 

diabetes all may be related to dysbiotic states (Tamboli et al. 2004, Ley 2006, Kang et al. 

2010, Henao-Mejia et al. 2012, Vaarala 2013). 

Symbiotic bacteria of amphibian skin may also play an important role in 

protection against disease for their hosts.  Recent studies suggest that antifungal 

metabolites produced by symbiotic skin bacteria may be a significant defense against B. 

dendrobatidis (Becker et al. 2009, 2010, Becker and Harris 2010, Woodhams et al. 

2012a).  The most well-known example is Janthinobacterium lividum, which produces 

violacein and indole-3-carboxaldehyde (Brucker et al. 2008a).  Another bacterium, 

Lysobacter gummosus, secretes 2,4-diacetylphloroglucinol (Brucker et al. 2008b).  These 

metabolites inhibit B. dendrobatidis growth in vitro at micromolar concentrations and it 

has also been demonstrated that B. dendrobatidis zoospores move away from these 

compounds (Lam et al. 2011).  Thus, the skin microbiome may constitute an important 

innate skin defense against chytridiomycosis (Fig. 1-2).     
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Figure 1-2.  Skin bacteria defend against Batrachochytrium dendrobatidis.  
Chytridiomycosis may be prevented or ameliorated when (A) B. dendrobatidis zoospores 
are killed or exhibit chemotaxis away from (B) antifungal metabolites secreted by diverse 
symbiotic skin bacteria present in the mucosal layer that covers the (C) host epithelium.  
(Note, diagram is not drawn to scale.) 
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Bioaugmentation as a conservation strategy 

One potential conservation strategy for endangered amphibians involves the 

addition of bacteria with known antifungal activity to the skin of new hosts in a 

prophylactic process called bioaugmentation (Becker et al. 2009, Harris et al. 2009a, 

2009b).  Such bioaugmentation techniques might be improved through the use of 

antifungal bacteria isolated from closely related species or through the use of antibiotics 

to reduce native bacteria and create a niche in which beneficial bacteria can establish 

colonization.  Furthermore, whether the skin microbiome offers a significant defense 

against B. dendrobatidis infection in vivo independent of the antimicrobial peptide 

defense has not been satisfactorily established.  Answering this question will be critical to 

a field endeavoring to improve this defense against a deadly pathogen. 

 

Antimicrobial peptides 

 Antimicrobial peptides (AMPs) have long been known to be an important part of 

innate immunity in many organisms, including insects, plants, and vertebrates like 

humans and amphibians (Nicolas and Mor, 1995; Zasloff 2002).  In humans, AMPs are 

primarily produced by skin keratinocytes as a mechanism to limit microbial overgrowth 

on the skin.  However, AMPs are also found in the antimicrobial arsenal of human mast 

cells, neutrophils, saliva, and sweat as part of the larger immune system (Wiesner and 

Vilcinskas 2010, Bernard and Gallo 2011). 
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In amphibians, AMPs are synthesized and stored in dermal granular glands (Fig. 

1-3A).  Natural secretion from these glands results from local α-adrenergic nerve 

stimulation (Sjoberg and Flock 1976), which can be induced by subcutaneous injection of 

norepinephrine into the dorsal lymph sac.  This causes contraction of myoepithelial cells, 

forcing peptide granules onto the surface of the skin where they co-exist in the mucus 

with symbiotic skin bacteria (Benson and Hadley 1969, Dockray and Hopkins 1975).  

This AMP secretion process occurs constitutively, but is upregulated upon frog alarm or 

stress.  While most active in the first 15 minutes after release onto the skin, peptides are 

detectable for up to two hours.  Degradation of the peptides over time in this way is likely 

important to protect the integrity of the skin as well as symbiotic skin bacteria also 

present in the mucus (Pask et al. 2012). 

 

Amphibian AMP activity against B. dendrobatidis 

These amphipathic cationic α-helical peptides are typically 10-50 amino acids and 

inhibit fungi, viruses, and bacteria via membrane disruption (reviewed in Nicolas and 

Mor 1995, Rinaldi 2002).  Specifically, cationic peptides are attracted to negatively-

charged membranes, which they easily disrupt by way of their amphipathic structure (Fig. 

1-3).  Antimicrobial peptides from multiple amphibian species are active against B. 

dendrobatidis at micromolar concentrations (Rollins-Smith et al. 2002a, 2002c, Ramsey 

et al. 2010, Conlon et al. 2013, reviewed in Rollins-Smith and Conlon 2005, Rollins-

Smith 2009).  Species that express skin peptides that inhibit B. dendrobatidis growth in 

vitro tend to be more resistant to B. dendrobatidis.  In contrast, declining species are 

more likely to express peptides with decreased in vitro activity (Woodhams et al. 2006).     
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Figure 1-3.  Stimulated amphibian granular glands secrete antimicrobial peptides 

that act via membrane disruption.  (A) Myoepithelial cells surrounding granular glands 
contract due to stimulation of α-adrenergic nerve terminals.  This causes secretion of 
antimicrobial peptides (AMP granules) through a duct onto the epidermal surface. (Figure 
from Gammill et al. 2012).  AMP inhibitory activity is a result of their ability to (B) 
interact with biological membranes due to their amphipathic, cationic nature.  Once 
associated with the membrane, (C) AMPs aggregate and insert themselves across the 
bilayer, forming pores that (D) lead to cell lysis and allow the cellular contents to exit the 
cell. 
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Antifungal drug treatments for chytridiomycosis 

Amphibians brought into captivity are often infected with B. dendrobatidis and 

require quarantine and treatment before introduction into captive colonies.  Because some 

species are now secure only in captivity (Weldon and du Preez 2004, Gagliardo et al. 

2008), this is especially important for zoos, wildlife refuges, and conservation centers.  

The only antifungal drug in widespread use is itraconazole (Nichols and Lamirande 

2000).  This drug causes membrane permeability by binding fungal cytochrome P-450, 

which prevents synthesis of ergosterol (Panda 1997, Leyden et al. 1998), an important 

component of the fungal cell membrane (Fig. 1-4A).  However, itraconazole can be toxic 

to tadpoles and adults (Garner et al. 2009, Woodhams et al. 2012b).  Identification and 

validation of new antifungal drugs to combat chytridiomycosis is needed (Fig. 1-4).   

One drug worthy of further study is amphotericin B.  It inhibits the growth of this 

pathogen in vitro (Berger et al. 2009, Martel et al. 2011) by binding to ergosterol (Fig. 1-

4A) and disrupting cell membrane stability (Gray et al. 2012), but it has yet to be 

examined in vivo.  The well-known antibacterial drug chloramphenicol has had some 

success in treating infected frogs (Bishop et al. 2009, Young et al. 2012), though sample 

sizes were low and its inhibitory properties have not been quantified in vitro, so it is 

unclear if ideal concentrations were used in these trials.  While chloramphenicol is known 

for inhibiting 70S ribosomes and disrupting bacterial protein synthesis (Gale and Folkes, 

1953), the mechanism through which it inhibits B. dendrobatidis is unknown.  Another 

potential drug of interest is the chitin synthase inhibitor, Nikkomycin Z (Fig. 1-4A).  It is 

known for its inhibition of Coccidioides immitis, which causes coccidioidomycosis 

(Hector et al. 1990), but it has yet to be tested against B. dendrobatidis.     
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Figure 1-4.  Alternative antifungal drugs for chytridiomycosis. (A)  Many components of the 
B. dendrobatidis cell wall and cell membrane make excellent antifungal drug targets, including 
ergosterol and enzymes that synthesize ergosterol and chitin.  Unlike other types of fungi, B. 

dendrobatidis lacks genes for synthesis of β-1,3-glucans and β-1,6-glucans, which appear to have 
entered the fungal lineage by horizontal gene transfer following chytrid divergence (Ruiz-Herrera 
& Ortiz-Castellanos 2010). (B) The triazole drug itraconazole is currently the only commonly 
used antifungal drug for B. dendrobatidis, though it is not without serious side effects.  
Alternative antifungal drugs to examine include (C) Amphotericin B, which binds to ergosterol 
and disrupts fungal cell membranes, (D) the antibacterial agent chloramphenicol, whose 
antifungal mechanism is not understood, and (E) the chitin synthase inhibitor Nikkomycin Z.  
Images of compounds in Panels B – E are from Sigma-Aldrich. 
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Significance 

 Amphibians have long been considered by the scientific community to be 

environmental sentinels due to their ectothermic character and the importance their skin 

plays in many biological processes (Roy 2002).  Thus, amphibians are indicators of 

ecological integrity in addition to being integral members of food chains.  Emerging 

diseases like chytridiomycosis that result in declines or extinctions constitute a serious 

threat to the health of entire ecosystems (Fisher et al. 2012).  Further, amphibian skin has 

many similarities with human skin and has been helpful as a research model, especially in 

studies focused on ion transport through tight epithelia.  Better understanding of the 

amphibian integument and how its various components function may improve 

understanding of similar facets of human skin (Haslam et al. 2013).   

Batrachochytrium dendrobatidis-related extinctions may result in lost medicinal 

potential of amphibian natural products.  Important human bacterial, fungal, and viral 

pathogens, including Staphylococcus aureus, Escherichia coli, Candida albicans, and 

HIV, are sensitive to amphibians AMPs (Goraya et al. 1998, 2000, VanCompernolle et al. 

2005).  There is also evidence that amphibian AMPs can target endotoxin (Schadich et al. 

2013), human tumors (Koszałka et al. 2011, Wang et al. 2012), and could be used as a 

spermicide/microbicide to prevent pregnancy while reducing transmission of HIV and 

other sexually-transmitted infections (Zairi et al. 2009).  Many AMPs have comparably 

low activity against human cells (Conlon et al. 2007, Mechkarska et al. 2010, Asoodeh et 

al. 2012, Wang et al. 2012) and those with undesirable activity against human cells can 

be selectively mutated to decrease human cell toxicity without reducing antimicrobial 

activity (Kamech et al. 2012).   
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Amphibian AMPs have the potential to contribute to human agricultural and 

biotechnical endeavors as well.  For example, temporin A, an AMP from Rana 

temporaria, has been transfected into potatoes and successfully defended against potato 

blight in laboratory studies, indicating that it may be a feasible option to protect one of 

the world’s most common food crops against a costly pathogen (Osusky et al. 2004).  

Thus, there is a significant risk of lost medicinal and biotechnical potential from species 

declining due to B. dendrobatidis.  Further study of these compounds and identification 

of new AMPs may contribute to significant advances in human medicine and important 

agricultural endeavors. 

Antifungal drugs work by targeting differences between host and fungal cells to 

kill the fungal pathogen while causing little to no harm to the host. Unlike bacteria, both 

fungi and amphibians are eukaryotes and thus have many molecular similarities, making 

drug development more challenging.  Antifungal drug development for human hosts is 

challenging for the same reason.  Many antibiotics originate as natural products from 

bacteria, including the antifungal drugs chloramphenicol (Gottlieb 1954), amphotericin B 

(Trejo and Bennett 1963), and nikkomycin Z (Möhrle et al. 1995).  The amphibian skin 

symbiont J. lividum has been studied mostly for its ability to secrete metabolites that 

inhibit B. dendrobatidis, but when cocultured with Trichophyton rubrum, the agent of 

athlete’s foot, T. rubrum colony growth was impaired (Ramsey et al. 2013).  Thus, 

amphibian skin symbionts may be a rich source of novel antifungal compounds.  By 

isolating and characterizing amphibian symbiotic skin bacteria that naturally produce 

potent antifungal metabolites, new drugs for both amphibian and human therapies may be 

identified. 
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Research Goals 

 

There is ample evidence from field studies that multiple amphibian species are 

highly susceptible to the pathogen B. dendrobatidis, while others are relatively resistant.  

The factors contributing to this spectrum are uncertain, but may be a result of differing 

potencies of amphibian innate skin defenses, specifically antimicrobial peptides and 

symbiotic skin bacteria.  The central objectives of this research are to understand which 

immune defenses in amphibian skin are active against this pathogen and develop novel 

antifungal drug treatments that cooperate with naturally-present innate skin defenses to 

treat amphibians with chytridiomycosis.   

Objective 1 (Chapter II) was to determine the contribution of the skin microbiome 

against B. dendrobatidis in the absence of AMPs in juvenile (metamorph) Rana 

sphenocephala and identify individual bacterial symbionts that inhibit B. dendrobatidis in 

vitro.  Using an antibiotic cocktail to reduce R. sphenocephala skin bacteria levels, I 

examined the effect of the skin microbiome to protect against B. dendrobatidis in an 

infection study.  Using MALDI-TOF mass spectrometry to confirm absence of AMPs in 

juveniles of this species, I conducted this experiment prior to the development of an AMP 

defense.  Finally, I identified culturable skin symbionts of R. sphenocephala by 16S 

sequencing and examined their ability to inhibit B. dendrobatidis growth in vitro.   

Objective 2 (Chapter III) was to quantify the efficacy of known AMPs in vitro, 

characterize new AMPs, and determine the ontogeny of AMP development in R. 

sphenocephala.  I determined the minimal inhibitory concentrations (MICs) of four R. 

sphenocephala peptides (Conlon et al. 1999), brevinin-1Sa, brevinin-1Sb, brevinin-1Sc, 

and Peptide C using highly pure, synthetic peptides.  I used norepinephrine to induce 
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peptide secretion at multiple developmental time points to assess the amounts of peptides 

produced and the individual peptides present in each frog’s secretions.  I also determined 

the impact norepinephrine-induced AMP secretion has on skin bacteria levels and 

developed a method using two injections of norepinephrine to fully deplete granular 

glands of AMPs, enabling use of amphibians without AMPs in in vivo studies (Appendix 

A). 

Objective 3 (Chapter IV) was to conduct in vitro studies with the drug 

Nikkomycin Z to determine if it is an effective inhibitor of B. dendrobatidis.  Using a 

series of in vitro assays, I determined this drug’s ability to inhibit B. dendrobatidis 

growth, examined its antifungal effects at the cellular level, confirmed its mechanism of 

action, and determined whether this drug is capable of cooperation with natural mixtures 

and synthetic purified antimicrobial peptides.  This is an important first step in the 

validation of this drug as a potential inhibitor of B. dendrobatidis. 

Objective 4 (Chapter V) was to conduct studies with the drugs amphotericin B 

and chloramphenicol to better quantify their ability to inhibit B. dendrobatidis in vitro 

and determine their effects on known skin innate immune defenses.  Amphotericin B and 

chloramphenicol have previously been reported for their ability to inhibit B. 

dendrobatidis (Berger et al. 2009, Bishop et al. 2009, Martel et al. 2011, Young et al. 

2012).  However, amphotericin B has not been tested in vivo while chloramphenicol trials 

have had low sample sizes or lacked proper controls.  I used in vitro growth inhibition 

assays to identify the MIC for chloramphenicol, to confirm the MIC of amphotericin B, 

and to assess the ability of these drugs to impact the growth of known R. sphenocephala 

bacterial symbionts.  I used my peptide depletion by norepinephrine method, a 
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microBCA assay, and MALDI-TOF mass spectrometry to assess the effects of these 

drugs on antimicrobial peptide synthesis.  Finally, I conducted in vivo treatment trials to 

determine if these drugs are feasible treatments for chytridiomycosis. 

Objective 5 was to develop a method to result in highly pure zoospore cultures or 

populations of B. dendrobatidis cells enriched for a given life stage (Appendix B).  Such 

a method will allow researchers to draw more specific conclusions about specific life 

stages and the effects of innate immune defenses against them. 
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CHAPTER II 

 

SKIN BACTERIA DEFEND RANA SPHENOCEPHALA JUVENILES AGAINST 

BATRACHOCHYTRIUM DENDROBATIDIS, THE FUNGUS IMPLICATED IN 

GLOBAL AMPHIBIAN DECLINES 

 

 

Abstract 

A great concern for scientists and naturalists alike is the continuing loss of global 

biodiversity.  This is especially true for amphibians, which are disappearing at an 

alarming rate.  Recent studies suggest that symbiotic bacteria present on amphibian skin 

may provide some protection against the fungal pathogen B. dendrobatidis.  Most studies 

of this “defensive skin microbiome” have focused on the ability of certain bacterial 

isolates to secrete antifungal metabolites that inhibit B. dendrobatidis growth in vitro.  

Few experiments have addressed the effects of reduction of the microbial skin 

assemblage in combination with assessment of antifungal activity of individual bacterial 

isolates.  Using the southern leopard frog, Rana sphenocephala, I demonstrated that the 

skin of these animals harbors multiple bacterial species capable of inhibiting B. 

dendrobatidis growth in vitro and that reduction of bacteria on post-metamorphic 

juvenile (metamorph) skin using a potent antibiotic cocktail resulted in increased B. 

dendrobatidis infection.  Further, I present evidence that this innate bacteria-mediated 

skin defense precedes the development of an antimicrobial peptide skin defense in 

juveniles of this species and thus protects at a critical period of development.   
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Introduction 

In order for B. dendrobatidis to infect amphibian keratinocytes, the fungal cells 

must overcome chemical defenses that are present in the host mucus.  These include 

antifungal metabolites from symbiotic skin bacteria, antimicrobial peptides secreted from 

dermal granular glands, and mucosal antibodies (reviewed in Rollins-Smith et al. 2009, 

2011).  Because the adaptive immune response to B. dendrobatidis is impaired (Berger et 

al. 1998, 2005b, Pessier et al. 1999, Rosenblum et al. 2009, Fites et al. 2013), 

understanding the symbiotic skin bacteria and AMP innate defenses is essential to 

gaining a better understanding of effective anti-B. dendrobatidis defenses.   

The best examples of beneficial amphibian symbionts are Janthinobacterium 

lividum and Lysobacter gummosus, which secrete metabolites that impair B. 

dendrobatidis growth in vitro (Brucker et al. 2008a, 2008b).  Addition of cutaneous 

bacteria like these to new hosts in a process called bioaugmentation is a possible 

conservation strategy (Becker et al. 2009, Harris et al. 2009a, 2009b), which will only be 

successful if the introduced bacteria persist long-term on the skin.  This has not occurred 

in some bioaugmentation trials (Becker et al. 2012).  Development of a short-term 

antibiotic reduction protocol that would reduce native cutaneous bacteria before the 

addition of probiotic bacteria may increase the feasibility of bioaugmentation as a 

conservation strategy.  Becker and Harris (2010) used an antibiotic reduction protocol 

and found that it was associated with increased chytridiomycosis symptoms in Plethodon 

cinereus.  However, the highest B. dendrobatidis infection levels measured by 

quantitative PCR were less than a single zoospore per salamander and infections did not 

differ between groups.  Using a more virulent B. dendrobatidis strain in a cohort of 
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amphibians that do not yet express AMPs would be both novel and possibly more 

effective in testing the role of the skin microbiome.    

Thus, my aims in this study were to (1) develop a robust protocol for reducing 

bacteria on the skin of Rana sphenocephala, (2) examine the ability of the skin 

microbiome of R. sphenocephala, as well as individual symbionts, to inhibit B. 

dendrobatidis in highly susceptible juvenile frogs, and (3) report any deleterious health 

effects of short-term reduction of skin bacteria by antibiotic treatment.     

 

Materials and Methods 

Organisms   

B. dendrobatidis strain JEL197 (Longcore et al. 1999) was used to test the 

antifungal activity of individual bacteria in vitro. This strain has been used in many 

previous studies (Rollins-Smith et al. 2006, Woodhams et al. 2006, 2010, Ramsey et al. 

2010, Pask et al. 2012, 2013, Conlon et al. 2013), but it has been in culture for a number 

of years, and its virulence had not been recently tested.  Thus, I used zoospores of the 

isolate “Section Line” for exposures in order to establish significant infections.  This 

isolate was collected by Dr. Jonah Piovia-Scott from Rana cascadae and isolated by Joy 

Worth in the laboratory of Dr. Janet Foley (University of California – Davis, School of 

Veterinary Medicine).  Further, it was highly virulent in recent studies (J. Piovia-Scott, 

unpublished).  Cultures of both strains were maintained in 1% tryptone broth and on 

tryptone agar at 19 – 21°C and passaged weekly.   

Rana sphenocephala juveniles were raised from eggs in outdoor mesocosms and 

were naïve to B. dendrobatidis.  Rana sphenocephala juveniles from the 2012 cohort 
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were used in the following experiments: (1) characterization of culturable R. 

sphenocephala skin bacteria, (2) pilot experiments optimizing the bacterial reduction by 

antibiotics protocol, and (3) when frogs reached one year old, as positive controls for 

AMP expression in mass spectrometry studies determining peptide presence in newly 

metamorphosed juveniles.  Rana sphenocephala juveniles from the 2013 cohort were 

raised under the same conditions and were used in the following experiments: (1) 

norepinephrine stimulation of granular glands to assess AMP production at early post-

metamorphic time points or (2) in a bacterial reduction and infection experiment to assess 

the contribution of skin bacteria to defense against chytridiomycosis.  The Institutional 

Animal Care and Use Committee at Vanderbilt University Medical Center or the 

University of Memphis approved all animal procedures.   

 

Rana sphenocephala care and husbandry 

In 2012 and 2013, metamorphs were reared by Dr. Shane Hanlon and Dr. 

Matthew Parris (University of Memphis) in polyethylene tank mesocosms (diameter = 

1.83 m) at the University of Memphis Edwards J. Meeman Biological Field Station 

(MBS), Shelby County, TN (35° 22’ N / 90° 01’ W).  Each tank was filled with ~613 L 

(30.5 cm) of well water and 300 g of dry deciduous (primarily Quercus spp.) leaf litter.  

One 500 ml aliquot of concentrated plankton suspension, originally collected from a 

nearby pond, was added to each tank.  Fiberglass mesh screens (1-mm mesh) were used 

as lids to prevent tank colonization by possible B. dendrobatidis-infected adults, 

predators, and other amphibian competitors and to provide shading for each tank.  A 

ramp (65.59 x 121.92 cm piece of fiberglass composite) was placed in each tank at a 30° 
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angle to simulate the margin of a pond.  Rana sphenocephala egg clutches (N = 8) were 

collected and evenly distributed between two prepared tanks.  After hatching and 

reaching the free-swimming stage (Gosner stage 25 [Gosner 1960]), ~270 tadpoles were 

randomly selected from both tanks and distributed across nine rearing tanks at densities 

of ~30/tank (densities comparable to natural R. sphenocephala densities [Morin 1983]). 

Rearing tanks were undisturbed until the first metamorphs were observed in June and 

were removed and placed into previously established terrestrial enclosures comprised of 

3 polyethylene tanks, each placed at a 25° slant.  The lower half of each tank was filled 

with water taken from the tadpole rearing tanks while the upper half was filled with sand 

and leaf litter, allowing metamorphs to assume their natural semi-terrestrial life.    

Metamorphs were removed from the tanks and transported to Vanderbilt University in 

two batches in mid-summer.   

Once in the laboratory, frogs were kept at 21–25°C and fed live vitamin-dusted 

crickets three times weekly, with water changed four times weekly.  Frogs were kept 

either in dechlorinated tap water or in mesocosm water.  Mesocosm water was water 

containing plant matter, zooplankton, environmental bacteria, etc. removed from 

mesocosms the same day the metamorphs were collected.  Mesocosm water was 

refrigerated at 4–7ºC until its use in the experiment described, beginning 7 days post-

metamorphosis and continuing for a period of five weeks after the metamorphs were 

collected.  Containers were placed at an incline to result in wet and dry areas in each 

tank.  During the B. dendrobatidis infection study, metamorphs were housed individually 

in sterile 280 ml plastic containers.  Metamorphs used to assess the antimicrobial peptides 
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of this species were housed in sterile polystyrene tanks measuring 44 × 24 × 20 cm at a 

density of 10 frogs per tank.   

 

Quantification and MALDI-TOF mass spectrometry analysis of amphibian AMPs   

To prevent unnecessary stress, I collected peptides from a group of metamorphs 

separate from those used in the infection experiment.  I collected peptides at one week 

(2013 cohort) and one year (2012 cohort) post-metamorphosis by injection of 40 nmol/g 

body weight norepinephrine-HCl (Sigma, St. Louis, MO) dissolved in amphibian 

phosphate-buffered saline (APBS, 6.6g NaCl, 0.2g KH2PO4, 1.15g anhydrous Na2HPO4 

in 1L distilled water, pH = 7.4) as previously described (Gammill et al. 2012).  This dose 

of norepinephrine is a pharmacological dose that exceeds concentrations that frogs would 

experience under natural physiological conditions (Pask et al. 2012, 2013).  I chose this 

dosage to induce a high level of peptide secretion resulting in a large quantity of peptides 

for use in in vitro studies.  Metamorphs at one week post-metamorphosis were submerged 

in 10 ml collection buffer (50 mM sodium chloride, 25 mM sodium acetate, pH = 7.0) 

(Nutkins and Williams 1989) for 15 min while larger year-old frogs were submerged in 

100 ml so the same portion of skin area was covered.  The collection buffer was acidified 

by addition of 1% trifluoroacetic acid following removal of the frog to disable 

endogenous proteases (Resnick et al. 1991).  I enriched collected secretions for 

antimicrobial peptides by passage over C18 Sep-Pak cartridges (Waters Corporation, 

Milford, MA) and quantified the resulting product with a microBCA assay (Pierce, 

Rockford, IL) using bradykinin standards (amino acid sequence: RPPGFSPFR) as 

previously described (Rollins-Smith et al. 2006).   Finally, I calculated peptide 
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concentrations as μg peptide/ml of mucus on the skin based on the surface area of each 

frog’s skin and the approximate volume of mucus on the skin as previously described 

(McClanahan and Baldwin 1969, Brucker et al. 2008a, Ramsey et al. 2010). 

I determined the presence or absence of individual peptides in skin secretions of 

each frog by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) 

mass spectrometry using a previously described protocol (Rollins-Smith et al. 2006, 

Gammill et al. 2012).  Briefly, I spotted 0.6 µl peptides resuspended at 1 mg/ml in 

HPLC-grade water onto a stainless steel MALDI plate with the same volume of matrix 

[α-cyano-4-hydroxycinnamic acid (CHCA, Fluka, Sigma, St. Louis, MO), 60% 

acetonitrile, 39.6% HPLC-grade water, and 0.4% trifluoroacetic acid (v/v/v)] and allowed 

the mixture to air dry.  I used the following peptide standards (Sigma, St. Louis, MO) to 

calibrate the mass spectrometer: bradykinin fragment 1-7 (m/z 757.3997), human 

angiotensin II (m/z 1046.5423), P14R synthetic peptide (m/z 1533.8582), 

adrenocorticotropic hormone fragment 18-39 (m/z 2464.1989), and bovine oxidized 

insulin chain B (m/z 3494.6513).  I used an Ultraflex III mass spectrometer (Bruker 

Daltonics, Billerica, MA) in delayed extraction, positive ion, reflector mode to collect 

250 laser shots and analyzed the resulting MS spectra with Data Explorer v4.4 software 

(Applied Biosystems, Foster City, CA).   

A previous study examining peptides in juvenile R. pipiens observed a 

phenomenon in which some unknown component within the peptide samples prevented 

desorption or ionization of known peptides within the samples and standard peptides 

added to the samples (M. Groner, personal communication).  To confirm that a similar 

effect was not preventing peptide desorption or ionization in one-week post-
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metamorphosis samples, I spiked synthetic brevinin-1Sb (>90% pure, MW =2535.22, 

obtained from Lifetein, South Plainfield, NJ), into the samples (N = 10) at a 1:1 ratio 

such that the final concentrations of brevinin-1Sb and partially purified one-week post-

metamorphosis peptides were each at a concentration of 500 µg/ml in the mixture.  A 

negative control of HPLC-grade water and positive controls (N = 5) containing 500 

µg/ml brevinin-1Sb in HPLC-grade water alone were also prepared.  I performed 

MALDI-TOF MS analysis to compare the amount of brevinin-1Sb signal in the positive 

controls to the amount of brevinin-1Sb signal in samples containing the one-week post-

metamorphosis peptides in addition to the brevinin-1Sb.  Data Explorer v4.4 software 

(Applied Biosystems, Foster City, CA) was used to calculate the area under the brevinin-

1Sb peaks, including the monoisotopic mass and the sodium adduct of that peptide.   

 

Antibiotic reduction and quantification of skin bacteria    

In order to reduce the levels of skin bacteria on Rana sphenocephala, I modified a 

previously reported method (Becker and Harris 2010) by adding penicillin, streptomycin 

and enrofloxacin to the cocktail.  The final solution to which frogs were exposed was 24 

mg/L cephalexin (Teva Pharmaceuticals, North Wales, PA), 14.5 mg/L sulfamethazine 

and 2.9 mg/L trimethoprim (Mardel Maracyn Plus, Sergeant’s Pet Care Products, Inc., 

Omaha, NE), 60 mg/L enrofloxacin (Fluka, Sigma, St. Louis, MO), 100 mg/L 

streptomycin, and 100,000 I.U./L penicillin (Mediatech, Inc., Manassas, VA).  At 7–10 

days post-metamorphosis, I placed metamorphs in 20 ml cocktail for 48 hours and 

refreshed the cocktail at 24 hr to ensure continued effectiveness.  Control metamorphs 

were in the same volume of mesocosm water that was changed at the same time.  Prior to 
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and immediately after this treatment, metamorphs (N = 80) were rinsed with 50 ml sterile 

water to remove transitory environmental bacteria and swabbed with sterile swabs 

(Medical Wire & Equipment Co., Advantage Bundling, Durham, NC), which were added 

to 1 ml sterile dechlorinated water and vortexed gently (t = 5s) to dislodge bacteria from 

the cotton swab.  Then, I conducted plate counts on Difco R2A agar (Becton, Dickinson 

and Co., Sparks, MD) with incubation at 19-21°C for 7 days prior to counting colony-

forming units (cfu) per swab.  Finally, I conducted an additional plate count to assess the 

number of cfu per ml mesocosm water by plating multiple dilutions on Difco R2A agar 

and incubating in the same conditions.  

 

Batrachochytrium dendrobatidis (Bd) exposure 

I harvested zoospores of the B. dendrobatidis “Section Line” isolate as previously 

described (Rollins-Smith et al. 2002a, 2002b, 2002c, Pask et al. 2012) by flooding agar 

culture plates with 1% tryptone broth containing 100 µg/ml streptomycin and 100 I.U./ml 

penicillin (Mediatech, Inc., Manassas, VA) for 10 min and filtering broth through 20 µm 

pore mesh filters (Spectrum Laboratories Inc., Rancho Dominguez, CA).  I counted 

zoospores in the filtrate on a hemocytometer (Hausser Scientific, Horsham, PA,) and 

resuspended them in 1% tryptone broth at 106 cells/ml.  I exposed metamorphs with or 

without skin bacteria to zoospores on days 4, 11, and 18.  Metamorphs (Bd+ groups) in 

individual sterile containers were exposed to 106 zoospores/ml by adding approximately 

250 µl of concentrated zoospores in tryptone broth to metamorphs in 20 ml of either 

dechlorinated tap water with 100 µg/ml streptomycin and 100 I.U./ml penicillin 

(Bacteria– =  Bacteria-reduced groups) or mesocosm water (Bacteria+ = Bacteria-intact 
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groups).  Control frogs (Bd– groups) were exposed to a vehicle control containing the 

same volume of tryptone broth without zoospores.  Each exposure lasted 24 hr, when I 

refreshed the water to remove zoospores.  I examined metamorphs for signs of 

chytridiomycosis and death each day after setting up the experiment.   

 

Quantification of B. dendrobatidis infection levels 

To quantify the level of B. dendrobatidis infection, I swabbed the skin of each 

metamorph (Kriger et al. 2006) on days 6, 13, 20, 27, and 34 with sterile cotton swabs 

(Medical Wire & Equipment Co., Advantage Bundling, Durham, NC).  I extracted DNA 

from each swab per manufacturer’s instructions (DNeasy Blood and Tissue DNA 

Extraction Kit, Qiagen, Valencia, CA).  A swab containing a known amount of B. 

dendrobatidis zoospores served as a positive control in each extraction.  A sterile swab 

without zoospores provided a negative control.  I used a real time quantitative PCR 

(qPCR) to quantify B. dendrobatidis DNA from each swab.  Briefly, 5 μL DNA was 

added to each well of a 96-well PCR plate (Fisher Scientific, Pittsburgh, PA) with 12.5 

μL 2X TaqMan Buffer (Applied Biosystems, Carlsbad, CA), 5.75 μL sterile water, 0.625 

μL of chyt3 and 5.8S primers (Boyle et al. 2004) (Eurofins MWG Operon, Huntsville, 

AL), and 0.5 μL TaqMan MBG probe (Applied Biosystems, Carlsbad, CA).  Reagents 

were assembled in a ‘master mix’ prior to their combination with the DNA in order to 

ensure identical amplification conditions for each DNA sample.  Finally, a no template 

control containing reagents without DNA was included in each qPCR.  Zoospore 

equivalents were quantified by comparing fluorescence intensity to a standard curve of 

known zoospore DNA dilutions equivalent to 1000, 100, 10, and 1 B. dendrobatidis 
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zoospores using an Mx3000P Real-Time PCR machine (Stratagene, La Jolla, CA) and 

default Stratagene conditions (10 min at 95°C; 40 cycles of 30 s at 95° C, 1 min at 55°C, 

and 1 min at 72° C).  All controls, standards, and experimental samples were run in 

triplicate and values were averaged to quantify a final infection level for each sample.  

DNA standard for quantification of B. dendrobatidis zoospore equivalents were kindly 

provided by Dr. Alex Hyatt, CSIRO, Geelong, Victoria, Australia. 

 

Isolation, identification, and characterization of bacterial isolates   

I rinsed newly metamorphosed R. sphenocephala with 50 ml sterile water to 

remove transient environmental bacteria, and swabbed each frog with sterile cotton swabs 

at approximately 18 hr after arrival in the laboratory.  During this time, metamorphs were 

housed in sterile polystyrene containers to assure that they did not acquire laboratory 

bacteria before swabbing.  After swabbing, the frogs were placed in tanks containing 

mesocosm water to simulate their natural environment and reduce the chance of acquiring 

non-native skin bacteria.  I struck swabs across R2A plates to isolate individual colonies 

of diverse morphologies in collaboration with Tim Chappell (Vanderbilt University), an 

undergraduate student whom I helped to mentor in the lab.  We recorded phenotypic 

characteristics of the individual colonies, including size and color, and froze stock 

cultures in Luria-Bertani broth and glycerol for storage at -80°C.   

Individual isolates of interest were identified by 16S rDNA sequencing by Dr. 

Douglas Woodhams with assistance from Franklin Roman and Holly Archer in the 

laboratory of Dr. Valerie McKenzie (University of Colorado, Boulder).   Isolates were 

grown in 96-well plates with R2A media.  DNA was extracted using an UltraClean 96-
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Well Microbial DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA) with the 

centrifugation protocol. The PCR reaction contained: 12 µL PCR water, 10 µL 5 Prime 

Master Mix, 1 µL of the forward and reverse primers at 10 µM concentration, 1 µL 

MgCl2, and 1 µL genomic DNA.  PCR universal primers consisted of 515F (5’-GTG 

CCA GCM GCC GCG GTA A-3’) and 1391R (5’-GAC GGG CRG TGW GTR CA-3’).  

The PCR profile included an initial denaturation step of 94°C for 2 min, followed by 29 

cycles of 94°C for 30 s, 55.5°C for 60 s, and 72°C for 90 s and final extension at 72°C for 

12 min.  Amplicons were sent to Beckman Coulter Genomics for Sanger sequencing.  

Geneious v.6.1 was used to create contigs by combining forward and reverse reads.  The 

Quantitative Insights into Microbial Ecology (QIIME) v.1.7 was used to identify isolates 

based on RDP (Ribosomal Database Project) classification (Caporaso et al. 2010).  To 

confirm each isolate’s identity with BLAST computational analysis, I searched for each 

FASTA sequence using a standard nucleotide BLAST within the nucleotide collection 

database (nr/nt) optimized for highly similar sequences (megablast).  Accession numbers 

of closest sequence matches are reported.  All BLAST matches reported here matched 

isolate sequences with identities of ≥99%.   

 

Growth inhibition of B. dendrobatidis by bacterial supernatants 

Following inoculation of sterile 1% tryptone broth with frozen stock cultures, 

pure cultures of bacterial isolates were grown to optical densities of 0.20 ± 0.02 at λ = 

630 nanometers (OD630) then pelleted by centrifugation for one minute at room 

temperature at 15,000×g in a Beckman Microfuge ETM centrifuge (Beckman Coulter, 

Inc., Brea, CA).  Supernatants were harvested following centrifugation and filtered 



33 

 

through 0.2 µm pore filters (VWR International, LLC, Radnor, PA).  Zoospores were 

harvested from agar plate cultures of JEL197 (Longcore et al. 1999), counted, and 

resuspended in 1% tryptone broth at 106 cells/ml as described above then cultured 1:1 

with bacterial supernatants in replicates of five for 7 days at 19-21°C in 96-well flat-

bottom microtiter plates (BD Falcon, Franklin Lakes, NJ) using a previously published 

protocol (Rollins-Smith et al. 2002a, 2002b, 2002c).  Five replicate wells each of positive 

and negative controls of either living or heat-killed (10 min at 60°C) zoospores in 

tryptone broth without bacterial supernatant were included on each plate along with five 

replicate wells of 100 µl tryptone broth to serve as a blank.  During the incubation, plates 

were wrapped in parafilm to prevent evaporation.  Optical densities (OD490) were 

measured by an MRX Microplate Reader (Dynex Technologies, Inc., Chantilly, Virginia) 

at day 0 and day 7 with a change in optical density indicating B. dendrobatidis growth.  

Each supernatant’s effect on B. dendrobatidis growth was expressed as percent inhibition 

or percent enhancement.  This measure was calculated as % inhibition/enhancement = 

[(growth of experimental group – positive control growth) ÷ (positive control growth)] × 

100.  These assays were primarily conducted by undergraduate students Heather Wells 

and Samantha Glisson (Vanderbilt University) using methods that I previously optimized. 

 

Statistical comparisons 

Statistical tests used are described in the figure legends.  Kaplan-Meier analysis 

was accomplished using GraphPad Prism software (GraphPad Prism Inc. San Diego, 

CA) with the Log-rank (Mantel-Cox) Test that weights all deaths equally and the Gehan-

Breslow-Wilcoxon Test that assigns higher weights to earlier deaths (Machin et al. 2006).  
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I was assisted by Dr. Thomas Kehl-Fie (Vanderbilt University) in all Kaplan-Meier 

analyses.  Whenever data were compared by Student’s t tests or ANOVA, I log-

transformed data to meet the hypothesis of normal distribution for parametric statistics 

(Bland and Altman 1996, Manikandan 2010).  Rarely, outliers detected by Dixon’s Q test 

were removed.  Whenever more than one Student’s t-test was performed on the same data 

set, I adjusted p-values to satisfy the Bonferroni correction (Bland and Altman, 1995). 

 

Results 

Assessment of AMP defenses in newly metamorphosed frogs 

 I consistently observed peaks of m/z values corresponding to known AMPs 

previously reported in R. sphenocephala (Conlon et al. 1999) in the mass spectra (2012 

cohort) in frogs examined at one year post-metamorphosis (Fig. 2-1A) and in multiple 

adult R. sphenocephala collected in Wilson County, TN (Charles Sullivan Co., Nashville, 

TN).  However, in pilot experiments conducted in 2012, I did not detect AMP signals in 

secretions from new metamorphs.  Therefore, I carefully examined AMP expression in 

skin secretions from the 2013 cohort for expression of known peptides at early time 

points.  Mass spectrometry indicated an absence of expected AMPs at one week post-

metamorphosis (Fig. 2-1B).  At this time point, the total amount of hydrophobic skin 

peptides (µg) recoverable per frog (110 ± 16) was <10% of the amount recovered from 

mature frogs in the same experiment (1760 ± 290).  Peptides recovered from metamorphs 

at one week post-metamorphosis were significantly reduced compared to older frogs, but 

still increased compared to APBS-injected metamorphs (two-tailed Student’s t tests, *p < 

0.05, **p < 1 × 10-5) (Fig. 2-1C).   
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Figure 2-1. AMPs were not detected by MALDI-TOF MS in newly metamorphosed 

R. sphenocephala, but were present in older frogs.  (A) MALDI-TOF profile of skin 
secretions from frogs at one year post-metamorphosis with known peptides including 
brevinin-1Sa (inset, a), brevinin-1Sb (inset, b), and brevinin-1Sc (inset, c) shown.  
Asterisks (e.g. a*) denote signals for sodium adducts of brevinins-1Sa, 1Sb, and 1Sc.  (B) 
MALDI-TOF profile from newly-metamorphosed juveniles showing complete absence of 
expected AMP mass signals.  (C) Peptides recovered from skin secretions following 
injection of norepinephrine (NE) or APBS at one week or one year post-metamorphosis  
(significant differences by two-tailed Student’s t tests, *p < 0.05, **p < 1 × 10-5).  (D) 
Peak area for brevinin-1Sb spiked into HPLC-grade water (“Brevinin-1Sb Only”, N = 10) 
or into the same volume of one-year post-metamorphosis samples in HPLC-grade water 
(“One-Week Samples + Brevinin-1Sb”, N = 10) (two-tailed Student’s t test, p > 0.05).  
Panels A and B show representative spectra from R. sphenocephala sampled at one week 
(N = 10) and one year (N = 7) post-metamorphosis.  In panel C, p-values were multiplied 
by two to correct for two t-tests in one experiment.  In panels A and B, the insets 
represent the right end of the spectra at m/z range 2510 to 2645.   
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In order to confirm that the one-week samples did not contain an unknown 

component preventing peptide desorption or subsequent ionization, I spiked synthetic 

brevinin-1Sb into each one-week sample and examined them by MALDI-TOF mass 

spectrometry.  Upon finding the signal for brevinin-1Sb, I quantified its peak area in each 

sample relative to the positive control samples of brevinin-1Sb alone and found that it did 

not differ significantly (Fig. 2-1D, p > 0.05), indicating that no components in the one-

week samples prevented peptide identification by MALDI-TOF mass spectrometry.  I 

concluded that newly metamorphosed R. sphenocephala do not express AMPs at the 

detection limit of the MS techniques employed, an important finding as it allows analysis 

of skin bacteria to proceed in a model without confounding antifungal activity by AMPs. 

 

Optimization of bacterial reduction protocol 

 In several pilot experiments, I observed a reduction in cfu of non-antibiotic-

treated (control) frogs compared to when first brought into captivity (Fig 2-2A).  For this 

reason, I used mesocosm water for the 2013 study to maintain the natural microbial 

environment during the month-long experiment.  Mesocosm water resulted in the 

retention of equal numbers of bacteria as detected prior to the treatments (Fig 2-2B).  The 

cfu detected on frogs following antibiotic exposure were 0.3 ± 0.1 with zero cfu detected 

on 85% of frogs.  The frog weights among groups did not differ before or after treatment 

or between control and bacterially-reduced groups (Fig 2-2C), demonstrating that groups 

were not significantly different in mass at the beginning of the experiment or following 

the antibiotic treatment regimen.  Culturable bacterial numbers in the mesocosm water by 

plate counts indicated that the number of cfu per milliliter was 12,180 ± 2,710.   
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Figure 2-2. An antibiotic drug cocktail significantly reduced bacteria on R. 

sphenocephala skin.  (A) In a pilot experiment, a reduction in skin bacteria was observed 
in control frogs (untreated) maintained in dechlorinated tap water in the laboratory (N = 
5) as well as those treated with antibiotics (antibiotic-treated) (one-way ANOVA with 
Tukey post hoc test, p < 0.01).  (B)  Bacterial counts after swabbing frogs treated with an 
antibiotic cocktail (N= 39) or mesocosm water (N= 39) (significantly different by one-
way ANOVA with Tukey post hoc test, p < 1 × 10-4).  In Panels A and B, different lower 
case letters (a, b, or c) represent significant differences among groups.  (C) Weights of 
frogs before and after bacterial reduction treatment (no significant differences by two-
way ANOVA with Tukey post hoc test, p > 0.05).   
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Effects of bacterial reduction on B. dendrobatidis infection and survival of frogs   

All R. sphenocephala metamorphs from the mesocosm-bred cohorts tested 

negative for B. dendrobatidis by qPCR.  Frogs not exposed to B. dendrobatidis, with or 

without bacteria (Bacteria+, Bd– and Bacteria–, Bd–), tested negative for B. 

dendrobatidis at the beginning and end of the experiment by qPCR, and all non-exposed 

metamorphs that died during the experiment tested negative as well.   

All metamorphs exposed to B. dendrobatidis in this experiment tested positive by 

qPCR at every time point examined.  On days 6 and 13, a significantly increased 

infection level was observed in the Bacteria–, Bd+ frogs in comparison with the 

Bacteria+, Bd+ frogs (Fig. 2-3A).  Approximately 105 additional zoospores were 

detected on metamorphs without their native skin bacteria when compared to those with 

intact skin bacteria at time of death (Fig. 2-3B).  Despite the significantly lower zoospore 

loads observed in bacteria-intact groups, survival of these post-metamorphic juveniles 

was not significantly improved (Fig. 2-4, Kaplan-Meier analysis, p = 0.578).  In addition 

to being swabbed for B. dendrobatidis, metamorphs were weighed on days 1, 3, 6, 13, 20, 

27, and 34 and each individual’s slope of weight change was calculated.  There were no 

significant differences in weight change between treatment groups (Kruskal-Wallis test, p 

= 0.491).  However, initial weight was found to predict metamorph survival.  That is, 

metamorphs surviving to the end of the experiment had significantly greater weight on 

day 1 (mean = 0.79 g) than metamorphs that died (0.64 g; T-test, t = 4.329, df = 76, p < 

0.001).  This factor may explain the lack of significance in survival between groups as 

each group included metamorphs from a range of weights, including small metamorphs 

less likely to survive. 



39 

 

 

Figure 2-3. Depletion of skin bacteria on R. sphenocephala resulted in increased B. 

dendrobatidis detectable on the skin.  The infection experiment described here involved 
four groups of metamorphs: (1) Bacteria-depleted, non-exposed (Bacteria–, Bd–; N = 
20); (2) Bacteria-intact, non-exposed (Bacteria+, Bd–, N = 19); (3) Bacteria-depleted, B. 

dendrobatidis-exposed (Bacteria–, Bd+; N = 19); and (4) Bacteria-intact, B. 

dendrobatidis-exposed (Bacteria+, Bd+; N = 20).    (A) B. dendrobatidis levels on skin of 
metamorphs with or without skin bacteria (significant differences at days 6 and 13 by 
two-way ANOVA with Tukey post hoc test, *p < 0.05, **p < 0.001).  (B) B. 

dendrobatidis infection load at time of death in bacteria-depleted or bacteria-intact 
juveniles (significantly different by two-tailed Student’s t test,*p < 0.001).   
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Figure 2-4. Percent survival of post-metamorphic juveniles depleted of bacteria or 

not and exposed or not to B. dendrobatidis. Treatment groups were (1) Bacteria-
depleted, non-exposed (Bacteria–, Bd–; N = 20); (2) Bacteria-intact, non-exposed 
(Bacteria+, Bd–; N = 19); (3) Bacteria-depleted, B. dendrobatidis-exposed (Bacteria–, 
Bd+; N = 19); and (4) Bacteria-intact, B. dendrobatidis-exposed (Bacteria+, Bd+; N = 
20).  Difference between groups was assessed by GraphPad Prism software using 
Kaplan-Meier analysis with the Log-rank (Mantel-Cox) test and Gehan-Breslow-
Wilcoxon tests.  Default conditions were used for each test and p < 0.05 was considered 
significant. 
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Characterization of the culturable microbiome of juvenile R. sphenocephala 

Multiple isolates of skin bacteria collected from 15 R. sphenocephala metamorphs 

were identified by sequencing of the 16S rDNA region, and classified into 39 operational 

taxonomic units (OTUs) (Table 2-1).  Each isolate’s supernatant was harvested and tested 

for its effects on B. dendrobatidis growth.  I designated isolates as belonging to one of 

three categories: inhibitors, enhancers, and isolates whose supernatants had no significant 

effect on B. dendrobatidis growth (Fig. 2-5A, summarized in Table 2-1).    In total, the 

most prominent phyla observed were Proteobacteria, Actinobacteria, and Bacteriodetes 

(Fig. 2-5B), with greater than 80% of isolates in these phyla.  Those isolates 

characterized as inhibitory to B. dendrobatidis also fell into these phyla (Fig. 2-5C).  Two 

OTU’s, including one inhibitory OTU, were also identified from Deinococcus-Thermus, 

an unexpected occurrence as this phylum is home to several extremophiles.  Analysis of 

the bacterial classes also points toward increasing taxonomic diversity, especially among 

Proteobacteria, with members identified from α-, β-, and γ-Proteobacteria (Fig. 2-5D).  

Interestingly, every γ-Proteobacteria isolate identified was a significant inhibitor of B. 

dendrobatidis growth, making this class the largest contributor to B. dendrobatidis 

inhibition identified in this study (Fig. 2-5E). 

 

Discussion 

Skin bacteria protect R. sphenocephala metamorphs in the absence of AMPs  

My analysis of the skin peptides showed convincingly that the AMPs previously 

identified for R. sphenocephala (Conlon et al. 1999) were not detectable by mass  
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Taxonomy (GenBank accession number of closest match in parentheses) Activity % Change p-value 

Actinobacteria    
Microbacteriaceae    

1. Curtobacterium flaccumfaciens (KF818635) Inhibitor -39.1% 6.1E-06 
2. Microbacterium lacus (KF057952) Enhancer 16.2% 4.5E-07 
3. Microbacterium sp. KBKU19 (KF751800) Inhibitor -26.7% 1.8E-13 

Micrococcaceae    
4. Arthrobacter sp. strain SD41 (KC415036) No Effect 0.9% 8.6E-01 
5. Arthrobacter globiformis strain B2S5 (EU221365) Enhancer 18.0% 9.6E-06 
6. Arthrobacter globiformis strain cp45 (JN082276) No Effect 4.1% 9.3E-01 
7. Arthrobacter aurescens (FM213390) Inhibitor -15.3% 1.0E-05 
8. Kocuria kristinae (HF548363) No Effect 0.1% 9.5E-01 

Nocardiaceae    
9. Rhodococcus fascians (HG796188) Enhancer 11.3% 9.1E-04 

Bacteroidetes    
Flavobacteriaceae    
10. Chryseobacterium defluvii (JX500178) Inhibitor -22.2% 1.9E-10 
11. Chryseobacterium hispalense (EU336941) No Effect 3.1% 6.4E-01 
12. Chryseobacterium chaponense (JX287903) Inhibitor -18.6% 5.4E-08 
13. Chryseobacterium sp. strain L7-15 (AB819816) No Effect -5.9% 5.7E-02 
14. Chryseobacterium indologenes (AB517708) No Effect -10.8% 9.5E-02 
15. Chryseobacterium sp. strain PanRB004 (AB581570) Inhibitor -19.0% 5.6E-09 

Firmicutes    
Bacillaceae    
16. Bacillus sp. strain SG2 (HM057848) No Effect 6.7% 7.5E-02 
Enterococcaceae    
17. Enterococcus sp. CD23 (AB673465) No Effect 0.1% 8.9E-01 
18. Uncultured Enterococcus sp. clone SL26 (HQ264086) N/A N/A N/A 

Proteobacteria    
Caulobacteraceae    
19. Brevundimonas nasdae (KF006808) Inhibitor -79.9% 9.3E-26 
20. Brevundimonas sp. strain 266XY5 (KF818659) No Effect -18.4% 5.9E-02 
21. Brevundimonas vesicularis (KF818658) Inhibitor -27.2% 4.4E-06 
Methylobacteriaceae    
22. Methylobacterium aquaticum (EU977594) N/A N/A N/A 
23. Methylobacterium extorquens (KF572999) N/A N/A N/A 
Rhizobiaceae    
24. Agrobacterium sp. strain CRRI-74_SB13A (KF840387) No Effect -21.5% 3.1E-02 
25. Rhizobium sp. strain M37C698A00 (JX292614) N/A N/A N/A 
Sphingomonadaceae    
26. Uncultured clone 300CC03, related to Novosphingobium spp. (AY662023) Inhibitor -21.0% 5.0E-06 
27. Uncultured clone 2.31, related to Novosphingobium spp. (JN256101) No Effect -13.7% 9.5E-03 
28. Uncultured clone ncd09h10c1, related to Sphingomonas spp. (HM251127) Inhibitor -32.9% 5.0E-11 
29. Uncultured clone 16slp96-1f07, related to Sphingomonas spp. (GQ158667) No Effect 10.2% 6.3E-03 
Comamonadaceae    
30. Comamonas sp. ZYM5 (AB847926) No Effect 13.8% 7.8E-02 
Enterobacteriaceae    
31. Citrobacter freundii (FN997616) Inhibitor -42.8% 7.2E-05 
32. Enterobacter aerogenes (AB844449) Inhibitor -90.4% 1.8E-25 
Moraxellaceae    
33. Acinetobacter calcoaceticus (KF843714) Inhibitor -22.6% 1.0E-19 
34. Acinetobacter rhizosphaerae (JX133182) Inhibitor -15.8% 8.1E-06 
Xanthomonadaceae    
35. Pseudomonas geniculata (KF254513) Inhibitor -93.6% 4.7E-24 
36. Pseudomonas hibiscicola (KC172017) Inhibitor -90.3% 5.3E-46 
37. Stenotrophomonas maltophilia (KC581677) Inhibitor -89.6% 8.5E-38 

Deinococcus-Thermus    
Deinococcaceae    
38. Deinococcus sp. SA1 (KF790633) Inhibitor -17.8% 1.8E-08 
39. Deinococcus aquaticus (NR_043472) No Effect -4.0% 9.3E-02 

Table 2-1. R. sphenocephala skin hosts a diverse bacterial community.  Each p-value was calculated by 
comparing fungal growth (% Change) in the presence and absence of supernatant by two-tailed Student’s t-
test and was classified as an enhancer, inhibitor, or having no effect.  In order to determine significance, the 
Bonferroni correction was used to establish a conservative p-value cut-off to reduce the chance of false 
positives: p < 1.4 × 10-3.  Isolates labeled “N/A” did not grow in tryptone broth, precluding analysis.   
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Figure 2-5. Skin bacteria isolates from R. sphenocephala have diverse impacts on B. 

dendrobatidis growth in vitro.  (A) Growth inhibition or enhancement by individual isolates in 
comparison with B. dendrobatidis only positive control.  The mean ± standard error (SEM) of 
five replicate optical densities at 490 nanometers were graphed.  If no SEM is shown, it was 
smaller than the data symbol.  Significant differences between each supernatant’s effect on B. 

dendrobatidis and the positive control were determined by two-tailed Student’s t-tests where p < 
1.28 × 10-3 (post-Bonferroni correction) was considered significant.  Isolates whose supernatants 
stimulated significant growth above that of the positive control were classified as enhancers.  
Isolates whose supernatants significantly inhibited growth compared to the positive control are 
classified as inhibitors.  Both inhibitors and enhancers are designated by asterisks (*) in Panel A.  
Those isolates without asterisks did not significantly impact growth of B. dendrobatidis.  Pie 
charts show the phylum diversity of bacteria isolated from R. sphenocephala skin for (B) all 
OTUs and (C) inhibitory OTUs and the class diversity among these isolates for (D) all OTUs and 
(E) inhibitory OTUs. 
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spectrometry at one week post-metamorphosis.  This observation demonstrates that the 

AMP defense at this early time point is immature, and thus, any significant defense 

against B. dendrobatidis at this point in development would be a result of other factors, 

including the skin microbiome.  Because the B. dendrobatidis exposure experiment was 

begun at one-week post-metamorphosis, I interpret the increase in infection intensity in 

the bacteria-depleted frogs as being due to the loss of their protective skin bacteria. 

Here, I present evidence for the importance of the skin bacterial defense in 

providing some protection of juvenile R. sphenocephala against chytridiomycosis.  My 

results support previous studies in other amphibian species (Woodhams et al. 2007, 

Becker and Harris 2010, Lam et al. 2010), with the added benefit of assessing the 

bacterial contribution to defense prior to the development of skin peptide or adaptive 

immune defenses and the use of a more robust bacterial depletion protocol.  Because this 

skin bacteria defense is present at metamorphosis prior to the development of other 

known immune defenses, it may represent an important defense again B. dendrobatidis in 

species who lack peptide defenses altogether or, like R. sphenocephala, do not produce 

AMPs until later in development. 

 

Rana sphenocephala do not secrete peptides immediately after metamorphosis 

Previous studies have observed metamorphosing frogs to be at a particularly 

susceptible life stage to B. dendrobatidis infection in multiple species and populations 

(Rachowicz and Vredenburg 2004; Walker et al. 2010), which may be explained by lack 

of AMPs at early time points.  This conclusion is further supported by a study reporting 

that B. dendrobatidis infection of Anaxyrus americanus was more severe for newly 
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metamorphosed juveniles than for those first exposed at 28 days post-metamorphosis 

(Ortiz-Santaliestra et al. 2013).  This disparity could be due to development of a more 

effective peptide defense in older individuals, leading me to conclude that the additional 

time necessary for the peptide defense to mature may apply to several amphibian species.  

It is also possible that this peptide defense would develop more rapidly under natural 

environmental conditions in which the post-metamorphic juveniles might encounter more 

diverse bacteria in the environment.  Finally, in one-week old metamorphs in this study, I 

observed a difference in the amount of total hydrophobic peptides recovered from 

metamorphs receiving a norepinephrine or APBS (vehicle) injection.  This is most likely 

due to the fact that norepinephrine stimulates additional mucus gland secretion (Gammill 

et al. 2012) as no known AMPs were present according to mass spectrometry analysis. 

 

Uses and potential modifications of the bacterial reduction protocol 

In these experiments, one limitation in maintaining bacteria-reduced metamorphs 

quickly became apparent.  I used penicillin and streptomycin in sterile water to maintain 

reduced skin bacteria levels and prevent colonization of the skin by environmental 

bacteria present in the lab, introduced food crickets, and metamorph excrement.  

However, long-term exposure to these drugs appeared to be detrimental to survival, 

possibly because of reduction of non-target microbiota such as those in the gut that are 

essential for proper digestion and nutrient absorption (Kupferberg 1997, Stevens and 

Hume 1998).  Another possible outcome of long-term maintenance of frogs in water 

containing these drugs is the potential overgrowth of rare resistant bacteria.  In frogs 

swabbed at the end of one month, I observed bacterial growth on R2A plates, suggesting 
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that re-colonization of the skin occurs despite the presence of penicillin and streptomycin.  

All frogs swabbed at this point appeared healthy and re-colonization of the skin by 

bacteria may explain the lack of difference in survival between groups and the lack of 

significant difference in infection intensity observed at later time points.  Further, smaller 

metamorphs were statistically less likely to survive, which could also explain reduced 

survival in all groups as each group contained a mixture of small, medium, and large 

metamorphs.  Finally, the difficulty of rearing newly metamorphosed juveniles cannot be 

overstated, as this is a period in which immune system development is still incomplete 

(reviewed in Rollins-Smith 1998).  As a result, close monitoring of amphibians is 

important during studies using long-term reduction of skin bacteria in metamorphs, 

including future bioaugmentation trials that require this protocol to open niches on the 

skin to increase the likelihood of persistence of introduced antifungal skin bacteria.   

 

Analysis of R. sphenocephala bacterial isolates  

The larger number of cfu observed in mesocosm water compared to cfu detected 

by skin swabs of control metamorphs was not surprising, as the swabbing technique 

collects a smaller volume of liquid than 1 milliliter.  It has also been reported that while 

co-habitation of two species within the same pond is not a significant predictor of skin 

symbionts, host species is (McKenzie et al. 2012, Kueneman et al. 2013).  Thus, many 

bacteria common in the mesocosm water and in the environment of this species are 

unlikely to be skin symbionts. 

I identified inhibitory isolates on 87% (13/15) of metamorphs sampled and found 

isolates with enhancing supernatant activity on 33% (5/15) of metamorphs.  Most R. 
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sphenocephala isolates characterized as inhibitory fell into the phyla Proteobacteria, 

Actinobacteria, and Bacteriodetes, suggesting that these are the most critical phyla on 

which future studies of amphibian skin microbiota should focus.  Diverse bacteria are 

known to produce a variety of chitinases and small antifungal compounds (reviewed in 

Verschuere et al. 2000, Garbeva et al. 2004) that would be of use in any anti-B. 

dendrobatidis arsenal.  Interestingly, OTUs from Deinococcus-Thermus were also 

identified among my isolates.  To my knowledge, this is the first such identification 

among amphibian skin isolates, representing a novel contribution to the known 

biogeography of bacteria typically considered to be extremophiles.   

These results confirm the existence of rare isolates capable of enhancing B. 

dendrobatidis growth in vitro, a finding suggested by one previous study (Bell et al. 

2013).  We identified three such enhancers among R. sphenocephala isolates, all 

Actinobacteria, although they are members of three different families: 

Microbacteriaceae, Micrococcaceae, and Nocardiaceae.  Interestingly, we identified 

other isolates in two of these families (Microbacteriaceae and Micrococcaceae) capable 

of significantly inhibiting B. dendrobatidis growth.  Further, the genera Microbacterium 

and Arthrobacter were each home to one inhibitor and one enhancer.  Such diversity 

within a genus suggests that identification of antifungal isolates at the species level will 

be important in future studies, especially those with the aim of bacterial identification for 

bioaugmentation.  Finally, one enhancing isolate, Rhodococcus fascians, is a well-known 

plant pathogen whose primary infection can result in additional opportunistic fungal 

infections (reviewed in Putnam and Miller 2007), although it is unclear whether the same 

mechanisms are responsible for its enhancement of B. dendrobatidis growth. 
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CHAPTER III 

 

ANTIMICROBIAL PEPTIDE DEFENSES OF SOUTHERN LEOPARD FROGS, 

RANA SPHENOCEPHALA, AGAINST THE PATHOGENIC CHYTRID FUNGUS, 

BATRACHOCHYTRIUM DENDROBATIDIS 

 

 

Abstract 

Antimicrobial peptides produced in dermal granular glands by many amphibian 

species may be an important defense against the pathogen B. dendrobatidis.  However, 

little is known about the ontogeny of this innate immune component or its impact on 

symbiotic skin bacteria, which may be another important antifungal defense in their own 

right.  Here, I conducted a series of studies to show that R. sphenocephala produces skin 

peptides active against B. dendrobatidis and I report the MIC of each peptide using 

synthetic pure peptides.  Using mass spectrometry and protein quantification assays, I 

observed that R. sphenocephala does not express a mature suite of peptides until 

approximately twelve weeks post-metamorphosis and examined expression between two 

different populations.  To evaluate the effects of an AMP-depletion protocol, I examined 

the impact that concentrations of induced AMPs from norepinephrine stimulation have on 

symbiotic skin bacteria and found that culturable bacteria levels on the skin are 

significantly reduced after this process.   

 

Introduction 

Despite the large number of population declines caused by B. dendrobatidis, there 

are species that appear to be more resistant than others to the effects of chytridiomycosis, 
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both in wild populations and in laboratory infection studies (Woodhams et al. 2006, 2007, 

Peterson et al. 2007, Murphy et al. 2009).  Evidence suggests that adaptive and 

lymphocyte-mediated immune responses to this pathogen are significantly impaired 

(Berger et al. 1998, Pessier et al. 1999, Berger et al. 2005b, Fites et al. 2013).  My own 

experiments (Chapter II) as well as others (Brucker et al. 2008a, 2008b, Becker et al. 

2009, 2010, Lam et al. 2011) have also identified symbiotic skin bacteria that may be 

protective.  However, secretion of AMPs from dermal granular glands into the mucus is 

another important potential defense against this pathogen that cannot be ignored.   

Each species has its own distinct suite of peptides (Conlon et al. 2004), suggesting 

that peptide repertoires evolve to combat specific pathogens a given species encounters.  

Different populations of the same species can also exhibit variability in the specific 

peptides expressed (Tennessen et al. 2009, Song et al. 2013). This evidence of positive 

selection (Tennessen and Blouin 2007; 2010) suggests that AMPs play an essential role 

in survival.  However, no one has undertaken a thorough study of peptide ontogeny, even 

though energy trade-offs during metamorphosis are known to be detrimental to other 

immune defenses (reviewed in Rollins-Smith 1998, Rollins-Smith and Woodhams 2012).  

As metamorphosing frogs are a particularly susceptible life stage to B. dendrobatidis 

infection in multiple species (Rachowicz and Vredenburg 2004, Walker et al. 2010), this 

could be due to a weakened peptide defense following metamorphosis, a possibility that 

requires further study.  Finally, it is essential that the scientific community more fully 

understand the interplay that exists between B. dendrobatidis and host antimicrobial 

peptides, especially in the context of a species like R. sphenocephala, which lives in 

regions where B. dendrobatidis is endemic without suffering massive declines.   
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The aims of this study were to: (1) quantify the effects of R. sphenocephala 

AMPs against B. dendrobatidis growth in vitro, (2) elucidate the dynamics of AMP 

ontogeny in R. sphenocephala from metamorphosis to maturity, and (3) determine the 

effect of norepinephrine-induced depletion of AMPs on R. sphenocephala skin bacteria. 

 

Materials and Methods 

Organisms 

Rana sphenocephala described here as adults were collected in middle Tennessee 

(Wilson County) in March 2011 or 2013 (Charles Sullivan Co., Nashville, TN) or in 

western Tennessee (Shelby County) in March 2013 and were infected with B. 

dendrobatidis (determined by qPCR, for method details, see Chapter II).  Rana 

sphenocephala described as post-metamorphic juveniles (metamorphs) were reared from 

eggs in western Tennessee (Shelby County) in outdoor mesocosms from February 

through June in 2012 or 2013.  All were B. dendrobatidis-negative (determined by qPCR) 

and were kept in B. dendrobatidis-free conditions in captivity.  For further details on care 

and husbandry of R. sphenocephala, refer to Chapter II.  In vitro culture experiments 

were conducted using B. dendrobatidis isolate JEL197 (Longcore et al. 1999).  For 

culture conditions, refer to Chapter II.     

 

Synthetic antimicrobial peptides  

Brevinin-1Sa (>81% pure, molecular weight (MW) = 2521.15), brevinin-1Sb 

(>90% pure, MW =2535.22), brevinin-1Sc (>95% pure, MW = 2612.26), and Peptide C 

(>93% pure, MW = 1443.80) were synthesized (Lifetein, South Plainfield, NJ) using 
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previously reported sequences (Conlon et al. 1999).  I weighed lyophilized peptides on an 

analytical balance and dissolved them at known concentrations in HPLC-grade water.   

 

Growth inhibition assays 

Batrachochytrium dendrobatidis zoospores were cultured with R. sphenocephala 

AMPs in growth inhibition assays.  These are similar to the assays with bacterial 

supernatants described in Chapter II, except for the following changes: AMPs dissolved 

in HPLC-grade water replaced bacterial supernatants and multiple dilutions of AMPs 

were tested (500 µg/ml to 3 µg/ml).  Optical density at λ = 490 nanometers (OD490) was 

calculated at Day 0 and Day 7 of each assay.  Similar assays were conducted with AMPs 

and bacterial isolates with the following changes: Pure cultures of each isolate were 

grown in Luria-Bertani broth (10g tryptone/L, 5g yeast extract/L, 5g NaCl/L) to an 

optical density at 630 nanometers (OD630) of 0.1 (~108 cells/ml).  Optical densities were 

assessed on days 0 and 2.  All growth inhibition assays were repeated a minimum of three 

times to confirm results.   

 

Computational analysis of putative antimicrobial peptides 

I analyzed previously reported amino acid sequences of Peptide A, Peptide B, and 

Peptide C (Conlon et al. 1999) for AMP characteristics using a variety of computational 

tools.  These included the Antimicrobial Peptide Database’s Calculator and Predictor 

(Dept. of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, 

NE, http://aps.unmc.edu/AP/prediction/prediction_main.php) and a helical wheel 

prediction program (Armstrong and Zidovetzki, University of California – Riverside, 
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Riverside, CA, http://rzlab.ucr.edu/scripts/wheel/wheel.cgi).  I used the AMP prediction 

database (Wang et al. 2009) to construct an alignment of Peptide C with other AMPs. 

 

Skin peptide collection and enrichment 

Mixtures of skin peptides were collected from R. sphenocephala by 

norepinephrine injection as previously described (Ramsey et al. 2010, Pask et al. 2012).  

The volume of collection buffer varied with frog size (adults = 100 ml, metamorphs = 10 

ml), and frogs received only one injection of either APBS or 40 nmol norepinephrine per 

gbw.  For additional details on this procedure, refer to Chapter II. 

 

Mass spectrometry 

MALDI-TOF mass spectrometry was used to identify individual peptides present 

in individuals in the R. sphenocephala ontogeny study, and to confirm the molecular 

weight of synthetic peptides used to determine MICs.  For details about the methodology 

for MALDI-TOF mass spectrometry, refer to Chapter II.  MALDI-TOF-TOF mass 

spectrometry was performed by Dr. David Friedman (Vanderbilt Proteomics Laboratory, 

Nashville, TN) to confirm amino acid sequences of peptide signals identified in MALDI-

TOF mass spectrometry analysis.   

 

Plate counts to assess levels of culturable skin bacteria  

Plate counts were conducted to assess levels of skin bacteria before and after 

injection with either 40 nmol norepinephrine per gram body weight (gbw) or APBS 

(vehicle).  For details on the methodology, refer to Chapter II. 
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Statistical comparisons 

Two-tailed Student’s t tests were used to compare optical densities and one-way 

ANOVA with Tukey post hoc tests was used to compare cfu/ml in plate counts following 

log-transformation of data (Bland and Altman 1996, Manikandan 2010).  In rare cases, 

outliers identified by Dixon’s Q test were removed.  To determine whether significant (p 

< 0.05) differences existed in peptide expression, Chi-square tests were performed to 

compare numbers of frogs expressing AMPs at specific ontogeny time points.  

 

Results 

Rana sphenocephala antimicrobial peptides are active against B. dendrobatidis 

Rana sphenocephala regularly express three known antimicrobial peptides: 

brevinin-1Sa, brevinin-1Sb, and brevinin-1Sc (Conlon et al. 1999).  Their activity against 

Escherichia coli has been reported, but no studies have focused on their ability to inhibit 

B. dendrobatidis, one of the most significant global threats to amphibian diversity.   

Following my use of norepinephrine injection to collect peptide mixtures from R. 

sphenocephala skin secretion, Dr. David Friedman (Vanderbilt Proteomics Laboratory) 

conducted tandem mass spectrometry analysis to confirm the published sequences of 

these peptides (Appendix C).  Next, I obtained purified synthetic versions of each 

brevinin peptide to examine their individual abilities to inhibit B. dendrobatidis.  Using in 

vitro growth inhibition assays, I observed dose-dependent inhibition by each peptide, 

with MICs ranging from 10 to 40 µM (Fig. 3-1), defined as the concentration of peptide 

that resulted in optical density changes not significantly different from the heat-killed B. 

dendrobatidis negative control. 
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Figure 3-1. R. sphenocephala produces three brevinin family antimicrobial peptides 

with activity against B. dendrobatidis. (A) Brevinin-1Sa, (B) brevinin-1Sb, and (C) 
brevinin-1Sc were cultured with B. dendrobatidis and their minimal inhibitory 
concentrations were 40, 10, and 20 µM, respectively (defined as no significant difference, 
p >0.05, between experimental sample and negative control by two-tailed, Student’s t 
test).  Optical densities from growth inhibition assays were averaged and are presented as 
the mean ± standard error (SEM), where SEM = standard deviation / √n, where n = 
number of replicates.  Some standard error values are not observable because they are 
within the limits of the data symbol.  Panels are representative of at least three assays 
conducted per peptide. 
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Peptide C is an antimicrobial peptide active against B. dendrobatidis 

Three other skin peptides have been identified in this species: Peptide A, Peptide 

B, and Peptide C (Conlon et al. 1999), although nothing beyond their amino acid 

sequences has been reported.  Using a variety of computational tools, I assessed the 

percent hydrophobicity, total charge, and predicted helical topology of these three 

peptides to identify which, if any, exhibit typical hallmarks of antimicrobial peptides 

(Table 3-1), which include cationic, amphipathic, and helical characteristics (Nicolas and 

Mor 1995, Rinaldi 2002, Zasloff 2002).  My results suggest that Peptide C is the only one 

of these three with sufficient antimicrobial peptide properties to warrant additional study.  

Similar to the three brevinin peptides, it is cationic (net charge = +2) with a percent 

hydrophobicity of 53% and predicted to be helical.   

To confirm the amphipathic nature of Peptide C, I used a helical wheel projection 

program (Don Armstrong and Raphael Zidovetzki, University of California – Riverside, 

Riverside, CA) (Fig. 3-2A).  Specifically, the only two potentially charged residues, 

lysine-5 and arginine-9, were positioned close to one another on the same side of the 

peptide as the hydrophilic residues serine-8 and asparagine-13.  On the other side of the 

peptide were the hydrophobic residues isoleucine-6 and -7, leucine-10 and -11, and 

phenylalanine-3.  This qualitatively indicated that Peptide C has amphipathic character 

expected of classical antimicrobial peptides.   
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Peptide1 Amino Acid Sequence1 Hydrophobicity2 Net Charge2 Helical Topology2 

Brevinin-1Sa FLPAIVGAAGQFLPKIFCAISKKC 62% +3 Yes 

Brevinin-1Sb FLPAIVGAAAKFLPKIFCAISKKC 66% +4 Yes 

Brevinin-1Sc FFPIVAGVAGQVLKKIYCTISKKC 54% +4 Yes 

Peptide A SLVSDIQDRQGPIA 35% -1 No 

Peptide B SLVSDISDRWGPIALN 43% -1 No 

Peptide C LLFGKIISRLLGN 53% +2 Yes 

1Reported by Conlon et al. (1999). 

2Antimicrobial Peptide Predictor (University of Nebraska Medical Center, Omaha, NE). 

 

Table 3-1.  Computational analysis of R. sphenocephala skin peptides.  Each peptide 
is listed along with its percent hydrophobicity, its net charge, and whether its topology is 
predicted to be helical by the Antimicrobial Peptide Predictor. 
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Figure 3-2.  Peptide C is an amphipathic peptide with antimicrobial activity against 

B. dendrobatidis. (A) A helical wheel projection of Peptide C: Hydrophilic residues are 
represented as circles, hydrophobic residues as diamonds, and positively charged residues 
as pentagons.  Peptide C does not have any negatively charged residues.  Hydrophobicity 
is color coded: hydrophobic residues are green, with the amount of green decreasing 
proportionally to the hydrophobicity.  Zero hydrophobicity is coded as yellow.  
Hydrophilic residues are red, with the amount of red decreasing proportionally to the 
hydrophilicity.  Charged residues are blue.  (B) Synthetic purified Peptide C was cultured 
with B. dendrobatidis and its minimal inhibitory concentrations was 250 µM (defined as 
no significant difference, p >0.05, between experimental sample and negative control by 
two-tailed, Student’s t test).  Optical densities from growth inhibition assays were 
averaged and are presented as the mean ± standard error (SEM), where SEM = standard 
deviation / √n, where n = number of replicates.  Some standard error values are not 
observable because they are within the data symbol.  This panel is representative of three 
assays. 
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A sequence alignment of Peptide C with a comprehensive database of other 

known antimicrobial peptides indicated that it aligns most closely with members of the 

temporin family of peptides, specifically those expressed by other species of Rana and 

Hylarana amphibians (Antimicrobial Peptide Database ID numbers: AP00586, AP00611, 

AP00874, and AP00658).  Due to its similarity to other temporins, I suggest Peptide C be 

designated “Temporin-1S.”  Finally, this peptide also aligns closely with a wasp venom 

that is active against fungi (Baek et al. 2011, Antimicrobial Peptide Database ID number: 

AP01680), further supporting the likelihood of Temporin-1S to be active against fungi 

like B. dendrobatidis.  Using purified synthetic Temporin-1S, I determined its activity 

against B. dendrobatidis to be dose-dependent with an MIC of 250 µM (Fig. 3-2B).  As 

with the three brevinins, I also collaborated with Dr. David Friedman (Vanderbilt 

Proteomics Laboratory) to confirm its sequence in R. sphenocephala skin peptide 

mixtures using tandem mass spectrometry (Appendix C).   

 

Rana sphenocephala skin peptide mixtures are active against B. dendrobatidis 

In MALDI-TOF MS analysis, I commonly observed all four peptides, brevinin-

1Sa, brevinin-1Sb, brevinin-1Sc, and Temporin-1S (Peptide C), in multiple individuals of 

this species (N = 92, Fig. 3-3A).  I examined these peptide mixtures for their in vitro 

inhibition of B. dendrobatidis and found that peptides mixtures from all frogs tested 

exhibited MIC’s from 250 to 500 µg/ml.  For natural peptide mixtures from adult R. 

sphenocephala (Fig. 3-3B, N = 10), the average MIC was 375 ± 42.  Similarly, peptide 

mixtures from post-metamorphic juveniles at 12 to 20 weeks post-metamorphosis (Fig. 3-

3C, N = 15) exhibited an average MIC of 383 ± 33.  There was no significant difference 
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in the MICs between these developmental stages (p > 0.05, unpaired, two-tailed Student’s 

t test).   

I did not find evidence that less potent peptide mixtures (i.e. MIC = 500 µg/ml) 

correlated with expression of fewer peptides.  That is, some crude peptide mixtures with 

only two or three of the four known antimicrobial peptides observed by MALDI-TOF 

mass spectrometry had MIC’s measured in the 250 to 500 µg/ml range.  Similarly, crude 

peptide mixtures expressing all four known antimicrobial peptides still had MIC’s 

measured in the 250 to 500 µg/ml range, rather than a more potent MIC.   

Signals for Peptide A and Peptide B were not observed during MALDI-TOF mass 

spectrometry analysis of peptide samples following enrichment for hydrophobic peptides 

(Fig. 3-3A).  This further supports the likelihood that any biological function of Peptide 

A and Peptide B in R. sphenocephala skin is not traditional antimicrobial membrane 

disruption.  Thus, I did not pursue further work with these two peptides. 

 

Rana sphenocephala peptide defenses mature by 12 weeks post-metamorphosis 

My previous work (see Chapter II) indicated that R. sphenocephala at one-week 

post-metamorphosis did not secrete known antimicrobial peptides upon norepinephrine 

injection (Fig. 2-1A), suggesting that the development of the skin peptide immune 

defense may be delayed in this and other species.  An immature peptide defense at early 

developmental life stages could explain why many studies have observed 

metamorphosing frogs to be a more susceptible life stage to B. dendrobatidis infection 

(Rachowicz and Vredenburg 2004, Walker et al. 2010).   
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Figure 3-3. Natural peptide mixtures from R. sphenocephala inhibit B. dendrobatidis 

growth in vitro. (A) Representative spectrum of R. sphenocephala skins secretions 
shows the presence of antimicrobial peptides brevinin-1Sa, brevinin-1Sb, brevinin-1Sc, 
and Temporin-1S (Peptide C).  Inset shows brevinin peptides in more detail.  Asterisks 
(‘a*’ for brevinin-1Sa) represent sodium adducts of each peptide. Natural skin peptide 
mixtures from (B) adults and (C) juveniles at 12-20 weeks post-metamorphosis indicate 
dose-dependent inhibitory activity against B. dendrobatidis.  Optical densities are 
presented as the mean ± SE.  Some standard error values are not observable because they 
are within the data symbol.  Panels B and C represent results from 10 to 15 individuals. 
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In order to pinpoint when the peptide defense matures in this species, I collected 

norepinephrine-induced secretions from individuals of a R. sphenocephala cohort at 4, 

12, 20, 30, 40, or ≥52 weeks post-metamorphosis.  At 4 weeks (N = 18), I observed that 

peptides were beginning to be expressed with 28% of individuals expressing brevinin-

1Sa and one individual expressing brevinin-1Sa, brevinin-1Sb, and brevinin-1Sc (Fig. 3-

4A).  By 12 weeks (N = 10), expression increased to 90% of individuals expressing 

brevinin-1Sa, 30% expressing brevinin-1Sb, 20% expressing brevinin-1Sc, and 20% 

expressing Temporin-1S (Peptide C).  This trend continued with brevinin-1Sa in at least 

90% of individuals at remaining time points (N = 9 to 10 per time point).  In comparison, 

I observed brevinin-1Sb in 10% to 78% of individuals and brevinin-1Sc in 20% to 40% 

of individuals at later time points.  Temporin-1S (Peptide C) had more variable 

expression, appearing in 20% of 12-week frogs and 22% of frogs at one year or older.  

A Chi-square test comparing peptide expression of each time point with that 

observed at ≥52 weeks post-metamorphosis indicated that only peptide levels at 4 weeks 

post-metamorphosis were significantly different from adult frogs (Χ2 = 21.99; df = 3; p < 

1 × 10-4).  In contrast, peptides expressed at 12, 20, 30, and 40 weeks were not 

significantly different from adults at ≥52 weeks (Χ2 values = 2.99, 7.71, 3.12, and 2.55, 

respectively; df = 3, p > 0.05 for each time point).  I also compared the amounts of 

peptides secreted at 12 weeks and beyond, and there was no significant difference 

between time points (one-way ANOVA, p > 0.05), confirming my observation that 

peptide defenses mature in this species by 12 weeks post-metamorphosis (Fig. 3-4B).  In 

contrast, at the previous time point (4 weeks), the amount of peptides was approximately 

50% of later levels, a significantly lower amount (one-way ANOVA, p < 0.01). 
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Figure 3-4. Rana sphenocephala antimicrobial peptide defenses mature by 12 weeks 

post-metamorphosis.  (A) The percentage of individuals expressing known 
antimicrobial peptides at multiple time points post-metamorphosis is shown.  Peptides 
expressed at earlier time points were compared to peptides expressed at 52 weeks post-
metamorphosis or older by Chi-square test.  (B) The amount of peptides secreted at 
multiple time points post-metamorphosis is shown.  Values were compared by one-way 
ANOVA.  In both panels, different letters indicate significant differences among groups, 
p < 0.05.  Skin secretions were examined from 9 to 18 individuals per time point.   
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A year later, I collected skin secretions of individuals from a second cohort of R. 

sphenocephala at either 1, 4, or 12 weeks post-metamorphosis to confirm the trend I 

observed with the first cohort.  As expected, in this second cohort, at 1 week, no AMPs 

were observed in any individual (N = 10, see Chapter II).  Specific peptides expressed at 

4 and 12 weeks post-metamorphosis were not significantly different from those expressed 

in the first cohort when frogs of similar weights were studied (Χ2 values = 3.61 and 7.45, 

respectively; df = 3, p > 0.05 for each time point), confirming that peptide expression 

matures in R. sphenocephala by 12 weeks post-metamorphosis. 

 

Frequency of peptide expression differs between R. sphenocephala populations 

 Over the course of many experiments here and in Chapters IV and V, I examined 

the peptides expressed by numerous R. sphenocephala at ≥12 weeks post-metamorphosis 

from two different Tennessee populations using MALDI-TOF MS.  One population 

included frogs either raised from eggs or collected as adults in Shelby County (western 

Tennessee) by my collaborator Shane Hanlon (University of Memphis, Memphis, TN).  

The second population was made up of frogs collected from the wild in Wilson County 

(middle Tennessee, Charles Sullivan Co., Nashville, TN).  Thus, these two populations 

were separated by a distance of approximately 250 miles.  In both populations, I observed 

brevinin-1Sa in 96 and 98% of frogs (Table 3-2).  However, a Chi-square test comparing 

the expression frequency of all four peptides between the two populations indicated 

significant difference (Χ2 = 37.20; df = 3; p < 1 × 10-7).  The biggest contributors to the 

difference between the Wilson and Shelby County frogs were brevinin-1Sc (in 27% and 

74%, respectively) and Temporin-1S (Peptide C, in 8% and 61%, respectively). 
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Population Brevinin-1Sa Brevinin-1Sb Brevinin-1Sc 
Temporin-1S 

(Peptide C) 

Shelby County 96% 45% 27% 8% 

Wilson County 98% 91% 74% 61% 

Total 97% 66% 49% 33% 

 

Table 3-2.  Percentage of R. sphenocephala expressing antimicrobial peptides from 

two populations.  All R. sphenocephala examined (N = 92) were at least 12 weeks-post 
metamorphosis and many (N = 52/92) were one year or older.  Frequencies are expressed 
as percentages of individuals from each population where I observed the given peptide by 
MALDI-TOF mass spectrometry.  The two populations examined were collected in 
Shelby County (N = 49) and Wilson County (N = 43).  When frequencies of all four 
peptides were considered, populations were significantly different by Chi-square test (p < 
1 × 10-7). 
 

 

 

 

 

 

 

 



65 

 

Norepinephrine induction of antimicrobial peptides reduces culturable skin bacteria 

It is well-established that both AMPs and symbiotic bacteria are present on the 

skin of many amphibian species and may contribute to defense against B. dendrobatidis.  

Because AMPs are relatively non-specific and are effective against fungi, bacteria, and 

viruses, it is attractive to hypothesize that R. sphenocephala skin symbionts would be 

sensitive to R. sphenocephala AMPs.  It has even been hypothesized that endogenous 

proteases on the skin are present to degrade peptides within minutes of their original 

secretion in order to protect natural symbionts while still deterring pathogens (Pask et al. 

2012).  If true, this may have repercussions for methods that cause high levels of peptides 

to be secreted onto the skin, including the norepinephrine-stimulated peptide induction 

necessary to deplete granular glands for experimental purposes (Appendix A). 

To determine whether norepinephrine injection affects skin bacteria, I first 

examined the ability of natural skin peptide mixtures to inhibit R. sphenocephala skin 

bacteria growth (N = 22) in vitro.  I observed no MIC or dose-dependent response with 

three isolates in replicated assays, indicating that some symbionts are resistant to peptide 

concentrations as high as 500 µg/ml.  However, for the remaining isolates, I observed the 

average MIC of peptide activity to be 414 ± 30 µg/ml.  Thus, I hypothesized that peptide 

secretion resulting from one norepinephrine injection (40 nmol/gbw) would significantly 

reduce skin bacteria levels.  In fact, this treatment reduced the level of culturable skin 

bacteria detected by swab by approximately 75% (Fig. 3-5).  The number of cfu/swab 

detected following norepinephrine was significantly different from the levels detected 

before norepinephrine injection and before and after APBS (vehicle) injection (one-way 

ANOVA, p < 0.05). 
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Figure 3-5.  Peptide induction by norepinephrine reduces culturable skin bacteria 

levels.  R. sphenocephala were swabbed for skin bacteria (“Before Injection”), then 
injected with either norepinephrine at 40 nmol/gbw (N = 20) or APBS (N = 10).  
Following 15 minutes of peptide secretion in collection buffer, frogs were swabbed again 
(“After Injection”).  A plate count was performed and cfu counts compared by one-way 
ANOVA.  Different letters represent a significant difference in cfu detected per swab (p < 
0.05). 
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Discussion 

Rana sphenocephala express skin peptides active against B. dendrobatidis. 

The MICs I observed for brevinin-1Sa, brevinin-1Sb, and brevinin-1Sb are similar 

to those reported for other brevinin peptides in different species of Rana (Rollins-Smith 

et al. 2002a, 2002c, Tennessen et al. 2009).  And while I observed individual variation in 

the potency of skin peptide mixtures, all completely inhibited B. dendrobatidis growth in 

vitro at 250 to 500 µg/ml.  In fact, I observed this range even when the peptide mixtures 

had only some of the known AMPs.  I interpret this to mean that the MIC of any given 

mixture is a function of the amounts of each peptide expressed, rather than the different 

types of peptides expressed.  Because I frequently observe additional unidentified signals 

in MALDI-TOF spectra that have the approximate mass and hydrophobicity values 

associated with known antimicrobial peptides, there may be additional unknown peptides 

contributing to fungal inhibition by natural peptide mixtures. 

Here, I report that Peptide C is an antimicrobial peptide with activity against B. 

dendrobatidis.  Based on its amino acid sequence, Peptide C is a temporin, a family of 

peptides characterized by higher MICs than brevinin peptides against the same targets 

(Rollins-Smith et al. 2002a, 2002b, 2002c, 2003, Conlon et al. 2013), and may be 

henceforth known as Temporin-1S.  The reduced potency of temporins may be best 

explained by their smaller size and lesser cationic character.  That is, Temporin-1S has a 

molecular weight of approximately half that of the brevinins.  Because the AMP 

mechanism of action is membrane disruption causing target cell osmotic lysis, smaller 

AMPs will have greater difficulty disrupting the target cell surface.  Further, the three 

brevinins expressed by R. sphenocephala have net charges of +3 and +4, while 
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Temporin-1S has a net charge of +2.  Because these peptides bind to negatively charged 

membranes, stronger cationic character is important for effective binding.   

 

Antimicrobial peptide expression in R. sphenocephala  

Though present in some individuals as early as 4 weeks post-metamorphosis, I 

observed maturation of the antimicrobial peptide defense in R. sphenocephala at about 12 

weeks post-metamorphosis.  I reached this conclusion by examining amounts of peptides 

secreted and presence of known antimicrobial peptides in skin secretions.  To my 

knowledge, this represents the first detailed study of peptide ontogeny in a ranid species. 

Greater susceptibility of juveniles to B. dendrobatidis compared to more mature 

life stages is a well-known phenomenon (Rachowicz and Vredenburg 2004; Walker et al. 

2010), and lack of a peptide defense at the early post-metamorphic time points may be an 

explanation for this increased vulnerability.  Potential reasons for this delay include the 

possibility that mRNA transcripts and the resulting precursor peptides are produced 

(reviewed in Amiche et al. 1999), but post-translational processing into mature peptides 

may not occur at early time points.  It is also possible that peptides may collect in skin 

granular glands early in development, but may not be secreted if the adrenergic nerve 

terminals controlling gland secretion are still undeveloped.  Finally, metamorphosis is 

characterized by a period of fasting as the body, the gastrointestinal tract, and the immune 

system all undergo massive rearrangements, which are all energetically costly during a 

period of restricted nutrient intake (reviewed in Fox 1981).  Further, adult frog skin 

peptide secretion is a constitutive process (Pask et al. 2012).  Thus, if tadpoles of this 

species do produce antimicrobial peptides and are capable of constitutive secretion, this 
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may deplete peptide stores at a point in development where the energy trade-offs 

described above favor organ and tissue remodeling over new peptide production.  It is 

also possible that under natural conditions in the wild, this peptide response might 

develop more quickly.  Additionally, I found that the frequency at which R. 

sphenocephala individuals express different AMPs differed significantly between two 

Tennessee populations.  This has been reported before in other species (Tennessen et al. 

2009, Song et al. 2013).  In the case of R. sphenocephala, genes for brevinin-1Sb, 

brevinin-1Sc, and Temporin-1S may not be fixed in either population, though brevinin-

1Sa was present in 96% to 98% of individuals in each population, suggesting that it may 

be the largest contributor to anti-B dendrobatidis defenses.   

 

Norepinephrine induction of antimicrobial peptides reduces culturable skin bacteria 

My studies and others have indicated that both AMPs and symbiotic bacteria may 

protect amphibians from B. dendrobatidis.  One key to understanding their relative 

contributions is to study them separately with proper experimental controls.  In 

collaboration with J. Scott Fites, I developed a method to experimentally deplete AMPs 

from granular glands (Gammill et al. 2012, Appendix A), which has proven to be a useful 

method to assess the protective effects of AMPs during an infection experiment (Pask et 

al. 2013).  However, my new findings that this treatment at least temporarily reduces skin 

bacteria levels indicates that any experiment using norepinephrine injections to deplete 

AMPs will result in frogs that have reduced skin bacteria as well.  Thus, AMP-intact, 

bacteria-reduced control frogs should also be part of these experiments.  This may be 

possible using the short term antibiotic cocktail treatment I have developed (Chapter II). 
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CHAPTER IV 

 

NIKKOMYCIN Z IS AN EFFECTIVE INHIBITOR OF THE CHYTRID FUNGUS 

LINKED TO GLOBAL AMPHIBIAN DECLINES1 

 

 

Abstract 

Recently, many amphibian populations have declined due to chytridiomycosis 

caused by the fungal pathogen Batrachochytrium dendrobatidis.  For some endangered 

species, captive colonies are the best solution towards eventual reintroduction, and 

effective antifungal treatments are needed to treat chytridiomycosis and limit the spread 

of this pathogen in such survival assurance colonies.  Here, I show that nikkomycin Z, a 

chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis 

cells and completely inhibits growth of B. dendrobatidis at 250 µM.  Low doses of 

nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures 

tested in vitro.  These studies suggest that nikkomycin Z would be an effective treatment 

to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.   

 

Introduction 

The most widely recommended antifungal treatment regimen for amphibians 

infected with B. dendrobatidis uses itraconazole (Nichols and Lamirande 2000).  While 

                                                           

1This chapter is adapted from: Holden WM, Fites JS, Reinert LK, Rollins-Smith LA (2014) Nikkomycin Z 
is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biology, 118:48-
60. 
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this treatment is well tolerated by some amphibians, there are also reports of itraconazole 

toxicity (Garner et al. 2009, Woodhams et al. 2012b).  Therefore, it is essential that new 

antifungal drugs be explored as potential treatments.  One such drug is the chitin synthase 

inhibitor nikkomycin Z.  Studies have confirmed chitin in B. dendrobatidis by 

histological inspection of infected skin (Briggs and Burgin 2004) and by microarray 

studies that indicate the expression of genes for chitin synthases and chitin binding 

proteins (Rosenblum et al. 2008).  Thus, chitin most likely plays a critical role in chytrid 

cell wall structure and stability, and drugs that target proteins essential for chitin 

synthesis may be successful in treating B. dendrobatidis-infected amphibians.  

Nikkomycin Z is a competitive inhibitor of chitin synthases (Hector 1993) that is cell 

permeable because of naturally-occurring mechanisms for dipeptide uptake (McCarthy et 

al. 1985).  Additionally, previous studies have demonstrated synergism between 

nikkomycin Z and several other classes of antifungal drugs, including echinocandins and 

triazoles (Hector and Schaller 1992, Li and Rinaldi 1999, Ganesan et al. 2004).  Such 

activity suggests that it may be useful in combination therapies against B. dendrobatidis.   

To be an effective treatment, any antifungal drug used on amphibian skin must 

inhibit B. dendrobatidis growth within the context of the skin microenvironment.  In 

many amphibian species, a major component of this microenvironment is the set of 

AMPs that are produced in dermal granular glands (Dockray and Hopkins 1975) and 

constitutively secreted onto the surface of the skin (Pask et al. 2012).  These peptides 

alone are effective against B. dendrobatidis (Rollins-Smith et al. 2002a, 2002b, 2002c, 

Ramsey et al. 2010, Pask et al. 2012).  Assessing the potential interactions of new drugs 

with AMPs is an important step in the journey towards amphibian clinical trials. 
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Here, I report the effects of nikkomycin Z on the cellular morphology and 

physiology of the chytrid fungus B. dendrobatidis, the range of effective concentrations 

at which it inhibits B. dendrobatidis growth, its fungicidal mechanism at 250 µM, and the 

inhibitory effects of nikkomycin Z in combination with naturally-produced AMPs from 

leopard frogs.  This is the first examination of nikkomycin Z activity against a fungus 

from the phylum Chytridiomycota and the first to recommend this drug as a disease 

control agent for the ecologically-important chytrid fungus B. dendrobatidis. 

 

Materials and Methods 

Materials and Organisms 

Nikkomycin Z-HCl (HPLC purity level = 94.6%) was a gift from Dr. John N. 

Galgiani (Valley Fever Center for Excellence, Tucson, AZ).  Chemically synthesized R. 

sphenocephala AMPs brevinin-1Sb (>90% pure) and brevinin-1Sc (>95% pure) were 

prepared (Lifetein, South Plainfield, NJ) from previously reported sequences (Conlon et 

al. 1999).  I dissolved dried peptides at a known concentration in HPLC water.  All 

experiments with B. dendrobatidis were conducted using isolate JEL197 (Longcore et al. 

1999).  All protocols involving frogs were approved by the Vanderbilt University 

Medical Center Institutional Animal Care and Use Committee.  For more details on 

fungal culture conditions or animal husbandry, refer to Chapter II. 

 

Collection of amphibian antimicrobial skin peptides 

I collected skin peptides from R. sphenocephala adults (Charles Sullivan Co., 

Nashville, TN) and used peptides collected from R. pipiens adults (Connecticut Valley 
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Biological, Southampton, MA) by Dr. James Pask (Vanderbilt University, Nashville, 

TN).  In both cases, peptides were collected as previously described (Chapter II) 

following one injection of 40 nmol/g norepinephrine (Sigma, St. Louis, MO).   

 

Growth inhibition of B. dendrobatidis 

I conducted in vitro growth inhibition assays to study the effect of nikkomycin Z 

alone and in combination with amphibian AMPs.  This is similar to the assays described 

in Chapter II, but with these modifications: 

Zoospore culture with nikkomycin Z: Enriched zoospores were cultured with 

serial dilutions of nikkomycin Z in HPLC-grade water (Fisher Scientific, Pittsburgh, PA) 

to achieve final concentrations of 0.02 to 2000 µM.   

Zoospore culture with nikkomycin Z and AMPs: Enriched zoospores were 

cultured with nikkomycin Z and skin AMPs in HPLC-grade water in parallel with 

cultures measuring the individual effects of either nikkomycin Z or peptides alone.  

Similar assays tested the ability of purified synthetic R. sphenocephala AMPs to 

cooperate with nikkomycin Z to inhibit B. dendrobatidis growth. 

 

Use of calcofluor white to stain B. dendrobatidis cells 

Calcofluor white is a non-specific fluorochrome that binds cellulose and chitin 

(Monheit et al. 1984).  I collaborated with J. Scott Fites (Vanderbilt University, 

Nashville, TN) to stain B. dendrobatidis cells with Calcofluor white stain (Sigma, St. 

Louis, MO) according to manufacturer’s instructions.  Photographs were obtained using 

an excitation wavelength of 365 nm with an Olympus BX41 microscope and an Olympus 
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DP71 camera with DP Controller software, v.3.1.1.267 (Olympus Corporation).  Cell 

diameters were measured to the nearest µm in images using a computer-calibrated scale 

bar (Gammill et al. 2012). 

 

Effects of nikkomycin Z on multiple life stages of B. dendrobatidis  

To examine the effect of nikkomycin Z on multiple life stages of B. dendrobatidis 

(zoospores, germlings, intermediate thalli, and mature zoosporangia) (Berger et al. 

2005a), whole cultures of B. dendrobatidis were resuspended at 106 mature cells/ml in 

either tryptone broth alone or tryptone broth containing 20 µM nikkomycin Z and 

incubated for 3 days at 19-21°C.  The number of mature cells was counted with a 

hemocytometer on Day 0 and Day 3.  In a separate experiment designed to examine the 

effect of nikkomycin Z on B. dendrobatidis zoospore maturation, zoospores were 

resuspended at 107 zoospores/ml in either tryptone broth alone or with 20 µM 

nikkomycin Z and incubated for 3 days at 19-21°C in cell culture flasks.  Cells were 

counted and zoospores were distinguished from more mature cells (germlings, thalli, or 

zoosporangia) by visual inspection under a microscope.  The total number of each cell 

type was divided by the original number of zoospores to assess the ability of zoospores to 

mature in the presence of nikkomycin Z.  The experiments in this section were conducted 

in collaboration with J. Scott Fites (Vanderbilt University, Nashville, TN). 

 

B. dendrobatidis recovery after nikkomycin Z exposure 

To determine whether the antifungal activity of nikkomycin Z is fungicidal or 

fungistatic, I exposed B. dendrobatidis zoospores to multiple concentrations of the drug 
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for 7 days in 96-well flat-bottom microtiter plates.  Then I combined the contents of each 

set of five replicate wells in one microcentrifuge tube and pelleted at 140 × g for 12 min 

at 4ºC in a Beckman J-6B centrifuge (Beckman Coulter Inc., Brea, CA).  I aspirated the 

supernatants (containing nikkomycin Z) and replaced them with an equal volume of 

sterile tryptone broth without nikkomycin Z to wash the cells.  Following another 12 min 

centrifugation at 140 × g, I aspirated the second supernatant to ensure removal of 

nikkomycin Z from each sample.  Finally, I resuspended the pelleted cells in 1 ml 

tryptone broth, plated on tryptone agar, and incubated for 8-12 days.  I photographed 

plates and counted colony forming units (cfu).  An agar plate with 1 ml sterile tryptone 

broth acted as a negative control.  Positive control cells (with no drug exposure) were 

centrifuged with experimental samples and plated as 1:100 dilutions to facilitate 

counting.  If no B. dendrobatidis growth was observed following plate incubation, I 

considered those concentrations of nikkomycin Z to be fungicidal.   

Following removal of the contents of each replicate well at day 7 for a plate 

count, I observed an adherent layer of B. dendrobatidis cells at the bottom of each well.  

Due to their ability to adhere to the bottom of the plate, these cells are most likely more 

mature life stages of the fungus (Berger et al. 2005a).  Rather than attempting to scrape 

these cells out of the 96-well plate for inclusion in the plate count, I added 100 µl sterile 

tryptone broth to each well.  Optical densities were measured on this day and after seven 

additional days of incubation.  My goal was to determine if these cells were capable of 

additional growth following removal of nikkomycin Z, thus confirming the measured 

MIC determined in the previously described plate count. 
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Analysis of B. dendrobatidis osmotic lysis following nikkomycin Z treatment 

In order to determine if nikkomycin Z treatment increases susceptibility to 

osmotic lysis, I enriched for zoospores as described in Chapter II and resuspended them 

in cell culture flasks at 5 × 105 zoospores/ml in a 1:1 mixture of tryptone broth and HPLC 

water (positive control) or tryptone broth and 50 µM nikkomycin Z in HPLC water.  

Each assay also included a negative control with heat-killed zoospores.  Zoospores were 

incubated for 5 days at 19-21°C as they matured into zoosporangia.  I divided cells into 

two equal volumes, pelleted them by centrifugation for 12 min at 140 × g at 4ºC, and 

resuspended them in an equal volume of either distilled water (dH2O) or APBS in dH2O.  

I transferred these cells to a 96-well flat-bottom microtiter plate (BD Falcon, Franklin 

Lakes, NJ) in five 200-µl replicates per sample and measured the OD490 of each well to 

compare the effects of isotonic (APBS) and hypotonic (dH2O) environments on B. 

dendrobatidis with and without previous nikkomycin Z exposure.  I confirmed these 

results by counting the number of cells on a hemocytometer immediately before and at 

multiple time points after resuspension in either APBS or dH2O. 

 

Statistical comparisons 

The statistical tests used are reported in figure legends.  When necessary, I 

multiplied p values to correct for multiple t tests in the same experiment (Bland and 

Altman 1995).  In some cases, the effect of nikkomycin Z is expressed in terms of percent 

inhibition.  This measure was calculated as % inhibition = [(positive control growth – 

growth of experimental group) / (positive control growth)] × 100.   
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Results 

Effects of nikkomycin Z on B. dendrobatidis growth in vitro 

Nikkomycin Z inhibited growth of B. dendrobatidis in a concentration-dependent 

manner (Fig. 4-1).  I observed significant inhibition at concentrations at or greater than 

0.3 µM.  The percent inhibition of B. dendrobatidis growth when cultured with 200 µM 

nikkomycin Z was 94.0% ± 0.46% in replicated trials, but was still significantly higher (p 

< 2 × 10-5) than the heat-killed B. dendrobatidis negative control (Fig. 4-1A).  However, 

by using a higher concentration of 2000 µM nikkomycin Z, I was able to completely 

inhibit B. dendrobatidis growth (Fig. 4-1B), determined as no change in optical density 

compared to the negative control (p > 0.2). 

 

Effects of nikkomycin Z on B. dendrobatidis cellular morphology 

To assess whether nikkomycin Z would alter cell wall development and the 

morphology of B. dendrobatidis cells, I exposed zoospores to 0 to 200 µM nikkomycin Z.  

Over 5 days, zoospores matured into mixed cultures containing zoospores, thalli, and 

zoosporangia, which were stained with calcofluor white to examine cellular morphology.   

A typical mature zoosporangium (Fig. 4-2A) has thread-like rhizoids and a 

discharge papilla through which zoospores are released, giving it an urn-shaped structure 

(Longcore et al. 1999, Pessier et al. 1999, Berger et al. 2005a).  Zoosporangia typically 

have a maximum diameter of approximately 15 µm, while thalli and germlings are 

smaller (Berger et al. 1998, 1999, Rachowicz and Vredenburg 2004).  B. dendrobatidis 

zoospores cultured with nikkomycin Z developed into mature life stages and exhibited 

changes in cellular diameter with increasing concentrations of nikkomycin Z (Fig. 4-2F).   
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Figure 4-1. Nikkomycin Z impaired B. dendrobatidis growth in vitro.  (A) B. 

dendrobatidis was cultured in equal parts tryptone broth and HPLC water (“Bd only”) or 
in equal parts tryptone broth with various concentrations of nikkomycin Z in HPLC water 
ranging from 0.02 to 200 µM (“Bd + Nikkomycin Z”).  Concentrations ≥ 0.3 µM 
nikkomycin Z showed significantly lower growth than the positive control (*p < 0.01).  
(B) At 2000 µM nikkomycin Z, B. dendrobatidis growth is not significantly different (p > 
0.2) from the heat-killed B. dendrobatidis negative control.  Data shown are 
representative of at least three similar experiments.  Optical densities are the mean values 
± standard errors for five replicates.  In some cases, standard errors are not observable 
because they are within the limits of the data symbol.   
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Fungicidal effects of nikkomycin Z on B. dendrobatidis growth 

µm.  (B – E) Increasing concentrations of nikkomycin Z resulted in increasing cell 
diameters in the zoosporangia at all concentrations tested.  (F) The largest cell diameters 
were observed with zoosporangia that developed in culture with 100 µM nikkomycin Z.  
Letters within the panel indicate groups that differ significantly by one-way ANOVA.  
(G) Increasing nikkomycin Z concentrations resulted in larger ranges of observed 
diameters and more heterogeneous cell populations. Scale bars (A – E) represent 20 µm.   
 

Figure 4-2. Suboptimal nikkomycin Z 

(NZ) concentrations altered B. 

dendrobatidis cellular diameter.  
Populations treated with or without 
nikkomycin Z were stained with calcofluor 
white to visualize cell walls.  (A) When B. 

dendrobatidis was cultured without 
nikkomycin Z, zoospore maturation into 
zoosporangia was unimpeded.  Typical 
mature zoosporangia are shown here with a 
maximum diameter of approximately 15  
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Nikkomycin Z exposure led to increased cell size, even at low concentrations 

(Fig. 4-2B,C).  The largest diameters were observed with 100 µM (Fig. 4-2D,F).  

Increased size suggests that nikkomycin Z’s inhibition of chitin synthesis weakens the 

cell wall and increases chance of osmotic lysis.  Exposure to the highest concentration, 

200 µM nikkomycin Z, also resulted in increased cell size (Fig. 4-2E), but not to the 

degree observed with 100 µM nikkomycin Z (Fig. 4-2F).  This may occur because larger 

cells are so destabilized that they are not viable and because at this concentration, cell 

viability was greatly reduced (Fig. 4-1A).  In addition to significantly increased cell 

diameter, the range of observed cell diameters broadened with increasing nikkomycin Z 

(Fig. 4-2G), resulting in a mature cell population more heterogeneous in cell diameter.   

 

Fungicidal effects of nikkomycin Z on B. dendrobatidis growth. 

To determine whether this drug’s mechanism of action is fungistatic or fungicidal, 

I pre-cultured B. dendrobatidis zoospores with or without various concentrations of 

nikkomycin Z for 7 days, washed out the drug, replaced it with sterile broth, and plated 

cells on agar plates for a plate count.  I observed 250 µM nikkomycin Z to be the lowest 

concentration necessary to completely inhibit B. dendrobatidis growth, as no colonies 

were observed (Fig. 4-3A).  Therefore, 250 µM is the MIC and the drug acts in a 

fungicidal mechanism at this concentration (Fig. 4-3).  I observed a dose-dependent 

response in which samples exposed to decreasing nikkomycin Z concentrations exhibited 

an increasing number of colonies following drug removal.  B. dendrobatidis cells 

exposed to the lowest concentration tested, 0.5 µM nikkomycin Z, showed cfu not 

significantly different from positive control cell cfu counts (p > 0.5). 
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Figure 4-3. Characterization of nikkomycin Z effects on B. dendrobatidis growth. (A) 
Following plating on agar, cells that had been exposed to ≥ 250 µM were not viable.  
Thus, 250 µM is the minimal inhibitory concentration (MIC).  (B) When cells adhering to 
microtiter plate wells following culture with nikkomycin Z were cultured an additional 7 
days without nikkomycin Z, no significant growth (p > 0.2) was observed for cells 
previously exposed to ≥ 250 µM nikkomycin Z, confirming the MIC.  (C) When cultured 
with 20 µM nikkomycin Z, cells exhibited significantly reduced cell replication (*p < 
0.001). (D) The percent of original zoospores cultured that matured past the zoospore 
stage was reduced after incubation for 3 days with 20 µM nikkomycin Z (*p < 0.02).  In 
panels A, C, and D, the mean of three experiments is graphed.  The data shown in panel 
B is a single experiment representative of at least three similar assays.  In some cases, 
standard errors are not observable because they are within the limits of the data symbol. 
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In each growth inhibition assay, I observed a layer of B. dendrobatidis cells 

adhering to the bottom of each well.  To determine whether these cells were viable 

following their exposure to nikkomycin Z, I washed the drug out and added fresh 

tryptone broth to the adherent layer.  In replicated trials, B. dendrobatidis cells previously 

exposed to 250 µM nikkomycin Z or greater were not viable following removal of the 

nikkomycin Z (p > 0.05 compared to negative control), whereas B. dendrobatidis cells 

exposed to lower concentrations exhibited an increase in optical density in a dose-

dependent manner (p < 0.01 compared to negative control) (Fig. 4-3B). 

Nikkomycin Z (20 µM) significantly reduced the replication capacity of the 

fungal cells, as shown by the reduced fold change of cells relative to the number of viable 

cells present at day 0 (Fig. 4-3C).  B. dendrobatidis cells also exhibited a significant 

reduction in the number of matured cells (germling, thallus, or zoosporangium) following 

zoospore culture with 20 µM nikkomycin Z for 3 days (Fig. 4-3D).  This is slightly less 

than the time it typically takes B. dendrobatidis to complete one life cycle (Berger et al. 

2005a), suggesting that this drug inhibits the maturation of zoospores, which involves 

building a cell wall (Berger at al. 1999, Berger et al. 2005a).  The number of each cell 

type following incubation with nikkomycin Z was divided by the original number of 

zoospores cultured to assess the ability of zoospores to mature in the presence of 20 µM 

nikkomycin Z.  We observed a lower number of mature cells and a decreased number of 

viable cells surviving the 3 day incubation period (Fig. 4-3D).    Experiments in this 

paragraph were conducted in collaboration with J. Scott Fites (Vanderbilt University, 

Nashville, TN). 
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Effects of nikkomycin Z on B. dendrobatidis susceptibility to osmotic lysis 

I compared effects on zoospores pre-exposed or not to 50 µM nikkomycin Z and 

exposed or not to hypotonic shock.  With cells resuspended in isosmotic APBS, I 

observed little change in optical density indicating cell stability.  When I resuspended 

cells in dH2O, I observed an increase in optical density followed by a decrease, indicating 

increased swelling and subsequent lysis in the hypotonic environment.  I observed this in 

both positive control and nikkomycin Z-treated samples (Fig. 4-4A, 4-4B), but the ratio 

of optical densities measured in dH2O and APBS was significantly lower in nikkomycin 

Z-treated cells, indicating reduced survival in hypotonic conditions due to greater osmotic 

lysis (Fig. 4-4C).  Cell number also significantly decreased in dH2O, but not in APBS, 

confirming the decreases observed in optical density were due to cell lysis (Fig. 4-4D).   

 

Combined nikkomycin Z and amphibian AMP effects on B. dendrobatidis growth 

I hypothesized that nikkomycin Z inhibition of cell wall synthesis might make the 

plasma membrane more susceptible to AMP activity.  To assess possible interactions of 

AMPs and nikkomycin Z on B. dendrobatidis growth, I compared growth inhibition by 

each agent alone and both agents together and I observed a cooperative effect (Fig. 4-5).  

The combination of nikkomycin Z and AMP mixtures inhibited significantly more B. 

dendrobatidis growth than either alone (Fig. 4-5A).  I observed the same effect when I 

replaced natural skin peptide mixtures with pure synthetic peptides: brevinin-1Sb (Fig. 4-

5B) or brevinin-1Sc (Fig. 4-5C).  In both cases, the combination of nikkomycin Z and 

peptide was significantly more inhibitory than either component alone.  This was true at 

all peptide concentrations tested. 
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Figure 4-4. Nikkomycin Z increases B. dendrobatidis sensitivity to osmotic lysis.   B. 

dendrobatidis alone (A) or with 50 µM NZ (B) are stable in isotonic conditions (APBS), 
but experienced cellular swelling followed by osmotic lysis in hypotonic conditions 
(dH2O).  Swelling and subsequent lysis are indicated by an initial increase followed by a 
decrease in optical density (OD490) over a 210 minute time course.  In Panels A and B, 
graphs are representative of three identical experiments for each condition.  (C) The ratio 
of optical densities in dH2O compared to APBS indicates that osmotic lysis is 
significantly higher in NZ-treated cells (*p < 0.05, **p < 0.001 by unpaired, two-tailed 
Student’s t tests).  (D) Cell counts immediately prior to resuspension and 120 minutes 
after resuspension in APBS or dH2O indicate that cell numbers significantly decreased in 
the dH2O hypotonic environment (*p < 0.05 by unpaired, two-tailed Student’s t test), but 
were not significantly changed upon resuspension in isotonic APBS (p > 0.05).  Panels C 
and D show the mean ± standard error of three identical experiments.  In some cases, 
standard errors are not observable because they are within the limits of the data symbol. 
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Figure 4-5. Nikkomycin Z and amphibian antimicrobial peptides inhibit B. 

dendrobatidis growth in a cooperative manner.  (A) B. dendrobatidis cells were 
cultured in equal parts tryptone broth and HPLC water either alone (“Bd only”), with 
serial dilutions of R. sphenocephala antimicrobial peptides in HPLC water (“Bd + 
Peptides”), with 2 µM nikkomycin Z in HPLC water (“Bd + NZ”), or with both serial 
dilutions of R. sphenocephala antimicrobial peptides and 2 µM nikkomycin Z (“Bd + 
Peptides + NZ”).  A negative control of dead B. dendrobatidis cells (“Heat-Killed Bd”) 
was also included in each assay. B. dendrobatidis growth in the presence of NZ and 
peptides was significantly reduced compared to the growth in the presence of either NZ 
or peptides alone (*p < 0.05).  In similar assays, I replaced a natural mixture of R. 

sphenocephala peptides with (B) purified brevinin-1Sb or (C) purified brevinin-1Sc.  
Each panel is representative of at least three experiments.  Optical densities are the mean 
values ± standard errors for five replicates.  In some cases, standard errors are not 
observable because they are within the limits of the data symbol. 
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Discussion 

Effects of nikkomycin Z on B. dendrobatidis growth and morphology 

Based on loss of cell viability and failure of additional growth following the 

removal of nikkomycin Z, the MIC of this drug against B. dendrobatidis is 250 µM.  To 

my knowledge, this is the first report of nikkomycin Z effectiveness against a chytrid 

fungus.  The minor increase in optical density of cells during initial culture with 

nikkomycin Z is best explained by increased cell size due to greater osmotic pressure.  

In the absence of a normally functioning cell wall, fungal cells are highly 

susceptible to osmotic lysis (Ganesan et al. 2004).  To examine this hypothesis, I 

conducted osmotic lysis assays and observed significantly greater lysis among cells 

treated with nikkomycin Z.  This explains the reduced growth that B. dendrobatidis cells 

exhibit when cultured with high nikkomycin Z concentrations.  While less substantial 

than in nikkomycin Z-treated B. dendrobatidis, I observed some lysis in dH2O conditions 

in positive control cells without drug exposure.  This is best explained by the fact that, at 

5 days of culture, many of the original zoospores have grown into zoosporangia, released 

their zoospore contents, and reached the end of their lifespan.  Both the newly released 

zoospores that lack a cell wall and the mature zoosporangia at the end of their lifespan 

may be susceptible to lysis in hypotonic environments, although not as susceptible as 

cells at the same stage treated with nikkomycin Z.   

It is attractive to hypothesize that zoospores are the most vulnerable B. 

dendrobatidis life stage to antimicrobial agents like antifungal drugs and antimicrobial 

peptides due to their lack of a cell wall.  The use of nikkomycin Z to prevent or delay the 

formation of a cell wall may increase the amount of time B. dendrobatidis cells are 
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sensitive to any antimicrobial agents that rely on the absence of a cell wall in order to 

disrupt the cell membrane or enter the intracellular space to exert their antimicrobial 

effects.  Thus, the addition of nikkomycin Z to existing antifungal protocols may improve 

the likelihood of survival for infected amphibians. 

 

Combined effects of nikkomycin Z and amphibian antimicrobial skin peptides 

My observation of such a cooperative effect between nikkomycin Z and R. 

sphenocephala AMPs is significant because nikkomycin Z may be used to reduce B. 

dendrobatidis infection loads of many amphibian species by working cooperatively with 

the peptides that are naturally present.  Further, this additive effect was observed using a 

concentration of nikkomycin Z far below its MIC.  Since 2 µM nikkomycin Z can 

significantly inhibit B. dendrobatidis growth when combined with amphibian peptides, 

the current price of nikkomycin Z may not prohibit its use in treatments for infected 

amphibians if it is used at sub-MIC levels in a cocktail with other antifungal drugs like 

itraconazole, which is both effective against B. dendrobatidis by itself (Nichols and 

Lamirande 2000) and capable of synergism with nikkomycin Z against other species of 

fungi (Hector and Schaller 1992, Li and Rinaldi 1999, Ganesan et al. 2004). 

 

The possible role of nikkomycin Z in the inhibition of host cell invasion  

Recent studies highlight the importance of B. dendrobatidis germ tubes in 

invading host cell tissues and suggest that these structures have a cell wall (Greenspan et 

al. 2012, Van Rooij et al. 2012).  The germ tube of an encysted zoospore stains with 

calcofluor white (Fig. 4-6), which demonstrates that chitin may be a major component of 
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this cell structure essential for invasion of amphibian keratinocytes.  Additionally, the 

formation of the cell wall appears to happen immediately prior to germ tube-mediated 

host cell invasion. Delaying or preventing this cell wall formation may prevent the ability 

of the pathogen to invade the skin.  Thus, nikkomycin Z activity may decrease the 

formation of these invading structures, thus inhibiting the mechanism by which the 

fungus enters host cells. 

 

The use of nikkomycin Z to promote immune responses against B. dendrobatidis 

Several studies indicate that the lymphocyte-mediated immune responses to this 

pathogen are impaired (Berger et al. 1998, Pessier et al. 1999, Berger et al. 2005b).  B. 

dendrobatidis cells and supernatants treated with nikkomycin Z have a significantly 

reduced ability to inhibit lymphocyte proliferation, indicating that the 

immunosuppressive factor is sensitive to nikkomycin Z (Fites et al. 2013).  Further, it is a 

common practice for fungal pathogens to mask pathogen-associated molecular patterns 

(PAMPs) in their cell walls to evade immune detection (Goodridge et al. 2009, Chai et al. 

2010).  Nikkomycin Z treatment may expose B. dendrobatidis PAMPs, increasing 

immune recognition in infected amphibians treated with nikkomycin Z.  This also 

suggests that nikkomycin Z-treated B. dendrobatidis cells may be useful as an 

immunization tool since these cells appear to lack the immunosuppressive factor and may 

have increased cell-surface PAMP exposure, increasing the probability of pathogen 

recognition and an effective adaptive immune response to this deadly pathogen.   
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Figure 4-6. An encysted zoospore stained by calcofluor white allows visualization of 

the cell wall and a structure that appears to be germ tube.  The proposed germ tube 
structure is labeled by an arrow.  This suggests that chitin is a prevalent component of the 
germ tubes that are required for fungal invasion of host keratinocytes.  Scale bar = 5 μm.   
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CHAPTER V 

 

EFFECTS OF THE ANTIFUNGAL DRUGS AMPHOTERICIN B AND 

CHLORAMPHENICOL ON BATRACHOCHYTRIUM DENDROBATIDIS AND 

THEIR IMPACTS ON AMPHIBIAN INNATE IMMUNITY2 

 

 

Abstract 

Clinical trials testing potential antifungal drugs are needed to identify novel drugs 

to treat amphibians infected with this B. dendrobatidis.  In this study, I quantified the 

minimal inhibitory concentrations (MIC) of chloramphenicol, amphotericin B, and 

itraconazole against B. dendrobatidis.  I also found that treatment with chloramphenicol 

or amphotericin B significantly reduced B. dendrobatidis infection in naturally-infected 

southern leopard frogs (Rana sphenocephala) without host mortality, although neither 

drug was capable of complete fungal clearance.  Long-term exposure of R. 

sphenocephala to these drugs did not inhibit antimicrobial peptide synthesis; however, I 

observed that chloramphenicol inhibited the growth of multiple R. sphenocephala skin 

bacterial isolates in vitro at concentrations below the MIC against B. dendrobatidis.  Such 

results indicate that treatment with chloramphenicol might dramatically alter the 

protective natural skin microbiome when used as an antifungal agent.  This study 

represents the first examination of alternative antifungal drug treatments on amphibian 

innate immune defenses. 

                                                           
2 This chapter has been adapted from a manuscript entitled “An exploration of amphotericin B and 
chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin 
defenses” that has been re-submitted to Applied & Environmental Microbiology following minor 
modifications. 
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Introduction 

The emerging fungal pathogen B. dendrobatidis causes chytridiomycosis, an 

amphibian skin disease characterized by disrupted skin functions.  Due to the worldwide 

emergence of this pathogen, amphibians brought into captivity from wild populations are 

frequently infected with B. dendrobatidis and require quarantine and antifungal treatment 

before introduction into captive colonies.  Currently, the most common treatment uses 

itraconazole, but this method is time-consuming, labor-intensive, and can be toxic 

(Garner et al. 2009, Woodhams et al. 2012b).  For these reasons, clinical trials identifying 

other possible antifungal regimens are essential.   

Amphotericin B has been identified recently as an antifungal drug active against 

B. dendrobatidis (Berger et al. 2009, Martel et al. 2011).  Its mechanism lies in its ability 

to bind to ergosterol in fungal cell membranes (Gray et al. 2013).  Another potential anti-

B. dendrobatidis drug is chloramphenicol, which is known for its inhibition of 

prokaryotic ribosomes, preventing bacterial protein synthesis (Gale and Folkes 1953).  Its 

antifungal mechanism is not well understood.  Nevertheless, there are reports of 

chloramphenicol treatments resulting in cures of infected frogs (Bishop et al. 2009, 

Young et al. 2012), although its anti-chytrid properties were not quantified in vitro. 

Whenever amphibian skin is treated with antifungal drugs, innate immune 

components present in the skin including ecologically important symbiotic skin bacteria 

and antimicrobial peptides, are also exposed to these compounds.  Symbiotic skin 

bacteria have been identified as a potential defense against B. dendrobatidis in several 

species via the production and constitutive secretion of metabolites that inhibit in vitro 

growth of the fungus (refer to Chapter II).  The interactions of these bacteria with their 
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host must be considered when antimicrobial agents are applied to the skin.  Further, many 

species produce AMPs in dermal granular glands that are an important part of their innate 

immune defenses, which act as a first line of defense against a variety of infectious 

microorganisms, including B. dendrobatidis (Rinaldi et al. 2002, Rollins-Smith et al. 

2002a, Rollins-Smith 2009).  Thus, it is worthwhile to investigate possible effects of 

antifungal drugs on these natural innate skin defenses. 

Here, I quantify the in vitro effects of amphotericin B and chloramphenicol 

against B. dendrobatidis. I also demonstrate that these drugs do not inhibit AMP 

production in R. sphenocephala, indicating that this innate immune defense is not 

impaired by antifungal drug treatment.  However, I found that chloramphenicol is toxic to 

multiple skin bacterial isolates of R. sphenocephala, indicating that it may severely affect 

the innate skin microbiome defense.  On the other hand, I did not find inhibitory effects 

on skin bacteria from amphotericin B or itraconazole.  This study represents the first 

examination of impacts of antifungal on known amphibian innate skin defenses against 

the same pathogen.  I also explored the effects of continuous exposure of naturally 

infected R. sphenocephala to either amphotericin B or chloramphenicol on infection level 

and mass throughout the drug treatments.   

 

Material and Methods 

Organisms 

Rana sphenocephala (N = 35, Charles D. Sullivan Co., Nashville, TN) were 

collected in spring 2011.  Using qPCR (methods in Chapter II), I determined that they 

were naturally infected with B. dendrobatidis ranging from 140 to over 200,000 zoospore 
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equivalents and they ranged in weight from 8.9 to 30.3 grams.  For additional animal 

husbandry details, refer to Chapters II and III.  Batrachochytrium dendrobatidis strain 

JEL197 (Longcore et al. 1999) was used in all in vitro experiments.  Fresh subcultures of 

this strain were maintained throughout the length of experimentation.  Both liquid and 

plate cultures were stored at 20-21°C with 1% tryptone as a nutrient source.     

 

In vitro B. dendrobatidis growth inhibition by antifungal drugs 

 I conducted these assays using the same methods described for growth inhibition 

assays with B. dendrobatidis and bacterial supernatants presented in Chapter II, with the 

following modifications: Zoospores were cultured with or without addition of 50 µl serial 

dilutions of antifungal solutions in sterile HPLC-grade water (Fisher Scientific, 

Pittsburgh, PA).  The antifungal drugs tested include amphotericin B (Fisher Scientific, 

Pittsburgh, PA), chloramphenicol (Sigma-Aldrich, St. Louis, MO), and itraconazole 

(Sporanox®, Centocor Ortho Biotech Products, Raritan, NJ).   

 

Bacterial growth inhibition by antifungal drugs 

I conducted these assays using the same methods described for growth inhibition 

assays with bacteria and antimicrobial peptides presented in Chapter III, with the 

following modifications: Instead of AMPs, the antifungal drugs itraconazole, 

amphotericin B, and chloramphenicol at various concentrations were diluted in HPLC 

water and cultured with bacterial isolates.  The isolates used in these studies were isolated 

from the skin of adult R. sphenocephala using the swabbing and isolation method 

described in Chapter II.   
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Effects of antifungal drug exposure on antimicrobial peptide synthesis 

I randomly divided R. sphenocephala (N = 14) into two groups (B. dendrobatidis 

infection levels were not significantly different between groups, unpaired two-tailed 

Student’s t test, p > 0.05) and injected each frog to induce peptide secretion using 20 

nmol norepinephrine per gbw as described in Chapter II.  One group was maintained in a 

combination antifungal drug treatment of 200 µg/ml chloramphenicol and 40 µg/ml 

amphotericin B for 56 days.  The second group was maintained in dechlorinated tap 

water for the same period.  On Day 56, frogs were injected again with 20 nmol/gbw 

norepinephrine to induce peptides.  Following the first and second injections, secreted 

peptides were collected, enriched, and quantified as described in Chapter II.   

 

MALDI-TOF mass spectrometry 

The presence or absence of previously described AMPs in individual skin 

secretions was determined by matrix-assisted laser-desorption ionization time-of-flight 

(MALDI-TOF) mass spectrometry as described in Chapter II. 

 

In vivo antifungal treatments and quantification of B. dendrobatidis infection levels 

 I randomly divided naturally infected R. sphenocephala (N = 34) into three 

groups and continually treated with 15 µg/ml amphotericin B (N = 12), 200 µg/ml 

chloramphenicol (N = 12), or dechlorinated tap water without antifungal drugs (N = 10).  

I swabbed frogs on days 0, 14, and 28 and used qPCR to assess infection intensity in 

terms of zoospore equivalents as described in Chapter II.  DNA was extracted, and qPCR 

assays were performed on using methods described in Chapter II. 
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Statistical comparisons 

I used unpaired, two-tailed Student’s t tests and one-way ANOVA with Tukey 

post hoc tests as described in figure legends.  In all statistical analyses, p < 0.05 was 

considered statistically significant.  When more than one Student’s t-test was performed 

within the same set of data, p values were adjusted with the Bonferroni correction (Bland 

and Altman 1995).  Zoospore numbers and peptide concentrations compared in this study 

were log-transformed to normalize data and meet assumptions of homogeneity of 

variances for parametric statistics (Bland and Altman 1996, Manikandan 2010).  

  

Results 

Effects of antifungal drugs on B. dendrobatidis growth in vitro 

I found that concentrations of itraconazole (Sporanox ®) as low as 20 ng/ml (Fig. 

5-1A) consistently inhibited ≥90% of B. dendrobatidis growth in replicated trials. This 

concentration is considerably lower than the currently reported MIC of <1.56 µg/ml 

(Berger et al. 2009).  Amphotericin B prevented B. dendrobatidis zoospore growth 

between 0.8 and 1.6 µg/ml in replicated trials (Fig. 5-1B).  This is similar to the MIC’s of 

0.8 µg/ml and 3.125 µg/ml reported by Martel et al. (2011) and Berger et al. (2009), 

respectively.  Chloramphenicol at 800 µg/ml completely inhibited growth of B. 

dendrobatidis zoospores (Fig. 5-1C) and concentrations as low as 12.5 µg/ml still 

inhibited up to 90% of growth.   
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Figure 5-1. Itraconazole, amphotericin B, and chloramphenicol inhibit B. 

dendrobatidis growth in vitro.  B. dendrobatidis in tryptone broth and HPLC water (“Bd 
only”) or in tryptone broth with various concentrations of (A) itraconazole, (B) 
amphotericin B, or (C) chloramphenicol in HPLC water.  Each data point represents the 
mean ± standard error (SEM) of five replicates.  I tested multiple concentrations of each 
drug and the lowest antifungal drug concentration at which no B. dendrobatidis growth 
(defined as not significantly different, p > 0.05, from the negative control by an unpaired 
two-tailed Student’s t test) is labeled as the minimum inhibitory concentration (MIC).  
Some error bars are not observable because they are within the limits of the data symbol.  
Data in each panel are representative of at least three similar experiments.   
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Bactericidal activity of chloramphenicol against amphibian skin symbionts 

Prior to my study, it was unclear whether use of antifungal drugs would 

unintentionally deprive amphibians of the symbiotic skin bacteria important for innate 

defense.  Therefore, examining the effects of chloramphenicol, amphotericin B, and 

itraconazole on natural R. sphenocephala skin symbionts is an important step to consider 

in developing new antifungal drug regimens to combat chytridiomycosis.  I conducted 

growth inhibition assays testing these drugs against multiple R. sphenocephala skin 

isolates of varying morphologies.  Chloramphenicol significantly inhibited the growth of 

every isolate tested (N = 10) at concentrations at and below the MIC of this drug against 

B. dendrobatidis, while neither amphotericin B or itraconazole inhibited the growth of 

any of the same isolates tested (Fig. 5-2A). 

 

Chloramphenicol and amphotericin B do not inhibit antimicrobial peptide synthesis 

Previous studies have showed that, following norepinephrine injection, peptide 

levels recover to pre-injection amounts in leopard frogs by 50 days post-injection (Pask et 

al. 2013). To assess whether continual exposure to chloramphenicol and amphotericin B 

impacts peptide synthesis, I induced peptides from R. sphenocephala on days 0 and 56.  

Between injections, frogs were kept in either dechlorinated tap water or in 

chloramphenicol and amphotericin B.  Peptide levels after the second injection were not 

significantly different between groups or time points (Fig. 5-2B).  All brevinin AMPs 

previously reported in this species (Conlon et al. 1999) were identified in secretions from 

individual frogs using MALDI-TOF mass spectrometry following drug treatment (Fig. 5-

2C). 
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Figure 5-2. Effects of antifungal drugs on bacterial growth and on antimicrobial 

peptide synthesis.  (A) Representative experiment of a growth inhibition assay testing 
each of the three antifungal drugs against multiple morphologically-distinct R. 

sphenocephala skin isolates.  Every isolate that I tested (N = 10) was significantly 
inhibited by chloramphenicol (unpaired two-tailed Student’s t test, *p < 0.05), while 
itraconazole and amphotericin B did not significantly impair growth of the same isolates 
at any concentration tested (unpaired two-tailed Student’s t test, p > 0.05).  (B) The 
peptide amounts measured before (“1st Injection) and after (“2nd Injection) continual 
exposure to both drugs (“Antifungal Treatment”) or dechlorinated tap water (“Control”) 
were not significantly different by one-way ANOVA with Tukey post hoc test (p > 0.05).  
(C) Representative spectrum of R. sphenocephala skin secretions (N = 5) following 
treatment with 200 µg/ml chloramphenicol and 40 µg/ml amphotericin B.  Known 
peptides are labeled in the inset: brevinin-1Sa (1Sa, m/z = 2521, brevinin-1Sb (1Sb, m/z = 
2535), and brevinin-1Sc (1Sc, m/z = 2612), while asterisks (*) mark sodium adducts of 
each peptide, respectively.  
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Antifungal activity against B. dendrobatidis in vivo 

To assess the efficacy of continuous amphotericin B or chloramphenicol 

treatment, I divided naturally infected R. sphenocephala into three groups that were not 

significantly different in infection level (one-way ANOVA, p > 0.05).  For 28 days, 

control frogs were in dechlorinated tap water without antifungal drugs.  Experimental 

frogs were treated by either amphotericin B (15 µg/ml) or chloramphenicol (200 µg/ml).  

This chloramphenicol dosage was chosen because it inhibited ≥ 95% of B. dendrobatidis 

growth in vitro and was less inhibitory than the MIC to most bacterial isolates tested.  

Both drugs significantly reduced infections, but neither resulted in complete clearance 

(Fig. 5-3A).  All groups experienced a net weight loss, but both antifungal-treated groups 

lost significantly less weight than controls (Fig. 5-3B).  No frogs died in the treatments.  

 

Discussion 

Effects of antifungal drugs on B. dendrobatidis growth in vitro  

This is the first report of an in vitro MIC against B. dendrobatidis for 

chloramphenicol, which has successfully cured amphibians in a small number of trials 

with low sample sizes (Bishop et al. 2009, Young et al. 2012).  I confirmed the MIC of 

amphotericin B and more specifically defined the MIC for itraconazole.  It is important to 

note that the itraconazole (Sporanox ®) uses hydroxypropyl-β-cyclodextrin to improve 

solubility.  Additional components in the mixture include hydrochloric acid, propylene 

glycol, purified water, sodium hydroxide, and sodium saccharin.  The possibility exists 

that this solvent may contribute to the lethal effects to hosts during in vivo studies and it 

may also add to the inhibitory effect upon B. dendrobatidis growth in vitro.   
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Figure 5-3. Amphotericin B and chloramphenicol reduce infection intensities on B. 

dendrobatidis-infected R. sphenocephala.  (A) Treatment with either 200 µg/ml 
chloramphenicol (N = 12) or 15 µg/ml amphotericin B (N = 12) significantly reduced 
zoospore loads compared to untreated control frogs (N = 10).  (B) Frogs in either 
antifungal drug-treated group lost significantly less weight compared to untreated frogs.  
For panels A and B, zoospore loads and frog weights between antifungal drug-treated 
groups and the control group were compared by one-way ANOVA with Tukey post hoc 
tests where different letters at each time point denote significance (p < 0.05). 
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Antifungal drug effects on R. sphenocephala innate immune skin defenses 

 Continual exposure to chloramphenicol and amphotericin B at concentrations 

which significantly reduced the burden of B. dendrobatidis infections for 56 days did not 

prevent antimicrobial peptide synthesis in R. sphenocephala.  Because chloramphenicol 

inhibits growth of bacteria including the ten isolates that I tested, it is likely that the skin 

microbiota were reduced in the treated frogs.  It has been suggested that antibiotic 

treatment inhibits peptide synthesis (Mangoni et al. 2001).  My results do not support this 

observation.  This will be an increasingly important point as this study and others (Bishop 

et al. 2009, Young et al. 2012) begin recommending continuous immersion antifungal 

treatments (i.e. two weeks or more) as a desirable alternative to the currently accepted 

daily itraconazole regimen.  Though peptide defenses appear unimpaired by drug 

treatment, I observed significant inhibitory activity by chloramphenicol against ten R. 

sphenocephala skin bacterial isolates tested.  Similarly, continual exposure to 

antibacterial agents like chloramphenicol may also impact microbiota in the gut that are 

essential for proper digestion and nutrient absorption, adversely affecting survival 

(Kupferberg 1997, Stevens and Hume 1998).  These will be important considerations for 

investigators who undertake antifungal drug treatments of amphibians with the goal of 

returning them to the wild, especially for any species that naturally harbors known anti-B. 

dendrobatidis skin symbionts.   

 

Effects of antifungal treatments in vivo  

Amphotericin B and chloramphenicol significantly reduced but did not 

completely eliminate B. dendrobatidis infection, despite treatment solutions being 
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refreshed twice weekly to ensure continued drug efficacy.  This phenomenon of 

significant inhibitory in vitro activity correlating with a decrease of B. dendrobatidis 

levels rather than a complete eradication has been reported before, and may be a result of 

fungistatic effects (Muijsers et al. 2012).  This suggests that combination therapies may 

be the best focus for future studies, as they may be more likely to result in fully cured 

amphibians while preventing the development of resistant fungal strains.  Despite the 

concerns itraconazole poses for some species and life stages, it has a history of clinical 

success and should continue to be used until successful alternative therapies can be 

found. 

Another consideration is that both amphotericin B and chloramphenicol have 

reports of toxicity (Page 1991, Laniado-Laborín and Cabrales-Vargas 2009, reviewed in 

Muijsers et al. 2012).  Specifically, chloramphenicol has been linked to bone marrow 

toxicity in humans (Rosenthal and Blackman 1965) and leukemia in toads (El-Mofty et 

al. 2000), while amphotericin B has caused observable toxic side effects in toad tadpoles 

at µg/ml concentrations (Martel et al. 2011).  However, these effects were observed when 

drugs were administered at concentrations above those used in this study.  I did not 

observe any lethal effects in the 28 day treatments, suggesting that toxicity may not result 

from the concentrations used or may not occur in adults of this species.  However, further 

study of histopathology following treatment with these drugs is needed to determine the 

existence of any non-lethal toxic side effects, including the potential for anemia and 

nephrotoxicity. 
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CHAPTER VI 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Discussion 

 My dissertation work focused on two main goals: understanding the roles that 

skin bacteria and antimicrobial peptides play in defense against the amphibian fungal 

pathogen B. dendrobatidis (Fig. 6-1) and exploring new antifungal drug treatment 

protocols, with a specific focus on interactions between drugs and innate immune 

components (Fig. 6-2).   

Using R. sphenocephala, I was the first to examine a protective role for the skin 

microbiome independent of any protection from antimicrobial peptides against the fungal 

pathogen B. dendrobatidis and identified new species of amphibian skin symbionts with 

the ability to inhibit or enhance the growth of this fungus.  I also characterized a new 

antimicrobial peptide, Temporin-1S, in R. sphenocephala, elucidated the ontogeny of 

peptide development in this species, and described the effects of norepinephrine-

stimulated peptide depletion on resident skin bacteria levels.  I completed studies of three 

alternative antifungal drugs to determine their usefulness in treatment regimens while 

also focusing on their interactions with skin bacteria and AMPs.  Finally, I developed 

three new methods that will be useful in future experiments in my field.  These are (1) an 

antibiotic cocktail regimen to reduce amphibian skin bacteria (Chapter II), (2) 

norepinephrine-induced granular gland depletion (Appendix A), and (3) differential 

filtration to enrich for individual B. dendrobatidis life stages (Appendix B). 



104 

 

 

 

 

 

 

Figure 6-1. Skin innate immune defenses protect R. sphenocephala against the 

fungal pathogen B. dendrobatidis.  Antimicrobial peptides in dermal granular glands are 
secreted onto the amphibian host’s skin within a layer of mucus, which also hosts diverse 
symbiotic bacteria.  Together, these defenses protect R. sphenocephala through various 
mechanisms, which may include triggering negative chemotaxis of the fungal zoospores 
away from host skin, inhibiting their growth, or causing their death.  Image proportions 
are not necessarily drawn to scale. 
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Figure 6-2. Nikkomycin Z, chloramphenicol, and amphotericin B are alternative 

drugs to treat amphibians infected with B. dendrobatidis.  Despite the presence of 
antimicrobial peptides and symbiotic bacteria, B. dendrobatidis can still establish 
infection in many amphibians.  This may be a result of one or more of the innate defenses 
being weakened or missing in a specific species or life stage.  As a result, treatment with 
antifungal drugs is often necessary to eliminate the infection in captive animals, a process 
particularly important when bringing infected amphibians from the wild into protected 
environments within zoos, wildlife refuges, and conservation centers.  My work has 
identified Nikkomycin Z to be a new antifungal drug effective against B. dendrobatidis.  
Further, I have extended the known understanding of chloramphenicol and amphotericin 
B as antifungal drugs against B. dendrobatidis by focusing on their effects on innate 
immune components present in the skin and conducting the first properly controlled 
clinical trials.  Image proportions are not necessarily drawn to scale. 
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Skin bacteria contribute to anti-B. dendrobatidis defense in R. sphenocephala 

 To examine the role of the skin microbiome in protection of R. sphenocephala 

against B. dendrobatidis independent of AMP defenses, I used juveniles at one week 

post-metamorphosis after confirming their lack of skin peptides at this early 

developmental time point.  I used an antibiotic cocktail to reduce skin bacteria from post-

metamorphic juveniles (‘metamorphs’).  Following this treatment, I conducted an 

infection experiment on metamorphs with or without skin bacteria.   

Reduction of skin bacteria resulted in increased B. dendrobatidis levels compared 

to control metamorphs with intact skin bacteria.  I also collected isolates from the skin of 

these metamorphs prior to infection with B. dendrobatidis to study their natural skin 

microbiome.  The 16S rDNA genes of these isolates were sequenced and 39 OTU’s were 

identified.  Supernatant analyses showed that several of these isolates constitutively 

secrete factors that inhibit growth of the fungus, although supernatants from three OTU’s 

enhanced B. dendrobatidis growth.  This study is the first observation of isolates from the 

phylum Deinococcus-Thermus on amphibian skin.  Additionally, there were examples of 

species within the same genus or family that either enhanced or inhibited B. 

dendrobatidis growth, offering a greater depth of understanding of the diversity of the 

amphibian skin microbiome.  Finally, every isolate tested from γ–Proteobacteria 

inhibited B. dendrobatidis growth, highlighting this lineage as one that invites further 

study. 

This work adds to the growing body of knowledge of amphibian skin bacteria.  It 

indicates additional diversity in the form of new taxonomic lineages present and in the 

various effects these bacteria have on B. dendrobatidis growth.  By conducting these 
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experiments in very young metamorphs at a fragile life stage, I faced additional 

challenges to animal survival in the experiment that would most likely not have occurred 

with older animals.  However, the benefits of using newly metamorphosed juveniles was 

the ability to study bacterial defenses in the absence of AMPs, a novel approach.  My 

results indicate that the skin microbiome may be quite significant at this early time point 

and may protect R. sphenocephala at a time when their other defenses against this 

pathogen are limited. 

 

AMPs contribute to anti-B. dendrobatidis defense in R. sphenocephala 

 Three antimicrobial peptides were previously described in this species, but their 

activity against B. dendrobatidis had not been determined.  My studies confirmed the 

presence of these AMPs in R. sphenocephala adults by MALDI-TOF and tandem mass 

spectrometry and I conducted computational analyses to confirm the existence of a fourth 

AMP, Temporin-1S.  I also showed that natural peptide mixtures effectively inhibited B. 

dendrobatidis growth and reported MICs for each of the individual purified synthetic 

peptides, which inhibited B. dendrobatidis at micromolar concentrations. 

 In the course of these experiments, I came upon a very interesting phenomenon.  

In two cohorts of R. sphenocephala, antimicrobial peptides were not expressed at 

significant levels early in post-metamorphosis development.  This was unexpected 

because of previous reports of AMPs in tadpoles of two other species (Clark et al. 1994, 

Wabnitz et al. 1998).  By investigating the presence of known peptides in skin secretions 

at various time points, I determined that R. sphenocephala skin peptide expression 

matures by 12 weeks post-metamorphosis.  A delayed peptide development may explain 
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the vulnerability of juveniles of many species to B. dendrobatidis.  My study of the 

peptide frequencies in R. sphenocephala from two populations indicated that while 

brevinin-1Sa was commonly expressed in both populations, additional peptides were 

expressed more frequently in one population than the other.  This may be a result of 

differences in the genes for AMPs in these populations or due to differences in the 

environment which induce differential expression of the AMP genes. 

 Because of my interest in the interaction between antimicrobial peptides and 

symbiotic skin bacteria, I conducted experiments to determine if skin bacteria are 

susceptible to skin peptide activity, especially due to laboratory manipulations that result 

in high concentrations of peptides being secreted onto the skin.  I found that while a few 

bacterial isolates were totally unaffected by peptide activity in in vitro assays, the growth 

of most isolates was impaired by antimicrobial peptides.  This suggests that peptides may 

play a role in preventing symbiotic bacterial overgrowth on amphibian skin in addition to 

their roles in defense against pathogens.  Additionally, I found that norepinephrine-

induced peptide secretion, a common laboratory practice, significantly reduces the level 

of culturable skin bacteria on R. sphenocephala.  This is an important finding as it shows 

that any future experiments using this technique to deplete peptides in animal 

experiments will also need to include proper controls to separate the effects of reduced 

bacteria vs. depleted peptides. 

 

Alternative drug therapies to treat chytridiomycosis 

In the search for novel anti-Bd therapies, I have determined that amphotericin B, 

chloramphenicol, and nikkomycin Z inhibit Bd growth in vitro with MICs of 0.8, 800, 
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and 500 µg/ml (250 µM), respectively.  Continuous exposure to amphotericin B or 

chloramphenicol significantly reduced fungal burden of severely infected R. 

sphenocephala and decreased their weight loss over time compared to control, untreated 

frogs.  I found that long-term treatment with amphotericin B and chloramphenicol did not 

inhibit antimicrobial peptide synthesis, although multiple R. sphenocephala skin bacterial 

isolates were sensitive to chloramphenicol in vitro, indicating that its use may 

significantly alter the skin microbiome.   

My studies with the chitin synthase inhibitor nikkomycin Z indicate that exposure 

of B. dendrobatidis cells to sub-MIC concentrations resulted in significantly increased 

cell diameter, reduced replication capacity of whole cell cultures, and inhibited zoospore 

maturation, most likely by impairing cell wall synthesis.  This drug also cooperates with 

R. sphenocephala natural peptide mixtures and synthetic purified antimicrobial peptides 

from this species to inhibit B. dendrobatidis growth in vitro. 

 These studies are significant due to a number of novel aspects.  First, they 

represent the first assessment of drug impacts on the important amphibian innate skin 

defenses of antimicrobial peptides and symbiotic skin bacteria.  I also conducted the first 

examination of cooperative activity between a drug and amphibian antimicrobial 

peptides.  This is also the first time nikkomycin Z has been examined for effectiveness 

against a fungus from the phylum Chytridiomycota, which also includes Synchytrium 

endobioticum, a potato pathogen that causes black scab disease (Dickson 1922), and 

Batrachochytrium salamandrivorans, a recently discovered pathogen whose species 

name literally means “salamander-devouring” due to the destructive pathological effects 
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it has on host skin (Martel et al. 2013).  These are all important additions to the literature 

surrounding the search for novel therapies for chytridiomycosis and other fungal diseases. 

 

Future Studies 

 One of the questions I set out to answer during the course of my dissertation work 

was this: What are the relative contributions of antimicrobial peptides and symbiotic skin 

bacteria to defense against B. dendrobatidis in a relatively resistant amphibian species?  

Unfortunately, I encountered several unexpected hurdles.  First, I observed a significant 

loss in the numbers of culturable skin bacteria from frogs moved from the wild into the 

laboratory.  I observed this phenomenon in several experiments with two different 

species.  Although I was able to prevent this reduction with the use of mesocosm water 

containing environmental bacteria, it appeared costly to the animals in terms of survival 

and weight loss, a phenomenon recently observed by another group (Küng et al. 2014).  

A second problem arose when I discovered that the antimicrobial peptide defense appears 

to be entirely absent immediately following metamorphosis and requires several weeks to 

mature.  Thus, my original experimental design for an infection study involving frogs 

with both, one, or neither innate skin defense proved impossible, in part because of the 

microbiome changes and delay in peptide development, but also because the only way to 

deplete amphibian skin of peptides (norepinephrine injection) also significantly reduces 

skin bacteria, making a bacteria-intact, peptide-depleted group impossible to obtain. 

 I have considered many ways in which some of these hurdles could be overcome.  

For example, use of mesocosms throughout the experiment rather than bringing animals 

into the laboratory would overcome the unnatural changes to the skin microbiome and 
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give the peptide defense time to mature.  However, the mesocosms would need to be 

provided with a source of insects to feed the developing frogs, and it is possible for frogs 

to escape the mesocosm or for predators to enter it, which may result in virulent strains of 

B. dendrobatidis used in such an infection experiment to be transported into the wild.  In 

order to overcome the reduction in skin bacteria observed upon norepinephrine-induced 

peptide depletion, I have considered the use of genetically-modified frogs that have had 

their antimicrobial peptide genes knocked out.  This is not currently possible in R. 

sphenocephala, as the gene for only one antimicrobial peptide has been reported 

(brevinin-1Sb, GenBank accession number: DQ923159).  However, an amphibian species 

with all known antimicrobial peptide genes reported could theoretically be used instead.  

Of course, a total lack of antimicrobial peptides could result in drastic changes to the 

amounts and types of bacteria comprising the skin microbiome.  Likewise, rendering 

amphibians without skin bacteria, either by antibiotic reduction or rearing in germ-free 

conditions, could impact antimicrobial peptide development.  These are caveats 

researchers must consider before using frogs modified in any of these ways.  In short, 

determining the relative contributions of antimicrobial peptides and symbiotic skin 

bacteria to defense against B. dendrobatidis is a surprisingly complex question that 

requires further research.  

 Nevertheless, my work has opened many avenues for additional future studies.  In 

terms of the symbiotic skin bacteria community, future analyses should focus on the 

dynamic interactions that make this defense effective.  For example, an exploration of 

whether bacterial signaling through innate pathways (Toll-like receptors, Nod-like 

receptors, etc.) can stimulate AMP expression and/or secretion and how these peptides 
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impact the diversity of skin bacteria present would be an important addition to the body 

of knowledge surrounding these defenses.  Likewise, a study of whether bacterial skin 

symbionts are capable of sensing B. dendrobatidis in their immediate vicinity and 

upregulating production of antifungal metabolites could shed light on the mechanisms at 

work in effective bacterial defenses.  In particular, recently emerging mass spectrometry 

techniques have been used to study how different interspecies interactions alter secreted 

metabolomes (Traxler et al. 2013).  This technique could be useful in identifying new 

metabolites secreted by different symbionts in co-culture with B. dendrobatidis cells or 

supernatant.  More in-depth sequencing of the diversity and numbers of inhibitory skin 

bacteria present on multiple individuals is an important step in determining whether a 

certain threshold of inhibitory bacteria must be met to result in an effective defense 

against B. dendrobatidis.  Similarly, an analysis of how the bacterial skin community 

changes with age or B. dendrobatidis infection status will improve understanding of the 

amphibian skin microbiome and its defensive properties.  

Our identification of multiple OTU’s with inhibitory activity against B. 

dendrobatidis, including four that inhibit ≥90% growth, provides candidate bacteria to 

screen for novel antifungal genes and their products, which may result in new human 

medicines.  Additionally, for amphibian species whose normal symbionts lack significant 

antifungal activity, newly identified antifungal genes could be inserted into these 

symbionts to improve the likelihood of protection.  Previous attempts to transfer bacteria 

species to a new host species have not been successful due to failure of the introduce 

species to become established and persist (Becker et al. 2012, Woodhams et al. 2012b, 

Küng et al. 2014).  Of course, this opens the door for questions about what other impacts 
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such genetically-modified bacteria might have, both on the host and in the larger 

ecosystem, which may reduce any benefits from such treatment. 

I observed brevinin-1Sa in 96% and 98% of R. sphenocephala from Wilson and 

Shelby Counties, respectively.  While it was the most prevalent peptide expressed, its 

MIC against B. dendrobatidis was less potent than the MICs for brevinin-1Sb and 

brevinin-1Sc, which were less frequently expressed in both populations.  Thus, it will be 

interesting for future studies to examine if peptides that are more potent against this 

pathogen appear more frequently in subsequent generations as host and pathogen 

continue to co-exist in the same geographic range.  Likewise, it would be interesting to 

determine whether B. dendrobatidis infection impacts the amounts of inhibitory peptides 

that are secreted onto the skin.  This might be accomplished if antimicrobial peptide 

concentration on the skin can be quantified through direct-sampling MALDI (Pask et al. 

2012), an increasing possibility as surface-desorption techniques continue to improve and 

become increasingly quantitative (Ifa et al. 2008, Da Costa et al. 2013).  

Known amphibian AMPs, including those from other ranid frogs, are active 

against several important human bacterial, fungal, and viral pathogens as well as 

endotoxins and human tumors (Goraya et al. 1998, 2000, VanCompernolle et al. 2005, 

Koszałka et al. 2011, Wang et al. 2012, Schadich et al. 2013).  The possible identification 

of further peptides with human medicinal potential is clearly an important goal, and there 

are undeniably new peptides to be discovered and characterized in the skin of R. 

sphenocephala.  Dr. David Friedman (Vanderbilt Proteomics Laboratory, Nashville, TN) 

used tandem mass spectrometry to obtain partial sequences for peptide peaks that I 

commonly observed in R. sphenocephala secretions.  For one peptide (m/z = 1557), we 
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obtained sequence information corresponding to >80% of the peptide’s mass: S-I/L-V-G-

W-R-D-K/Q-I/L-D-S.  In the second, eighth, and ninth positions, the identity of the 

amino acid was narrowed down to two possibilities.  The uncertainty of the leucine or 

isoleucine in the second and ninth positions matters little for antimicrobial activity, as 

both are similar amino acids and common in AMPs.  If the eighth amino acid is a lysine, 

the resulting peptide would be cationic, amphipathic, and align most closely with three 

temporin family peptides.  Unfortunately, more sequence information is needed for this 

peptide and others to assess antimicrobial character.   

In terms of antifungal drug studies, my work opens several new questions.  First, I 

showed that nikkomycin Z can cooperate with amphibian antimicrobial peptides to 

inhibit B. dendrobatidis growth.  Similar cooperative effects could also exist between 

drugs like nikkomycin Z and antifungal bacterial metabolites.  Also, it is known that the 

antifungal drugs itraconazole and terbinafine hydrochloride induce the production of 

antimicrobial peptides in human skin cells (Kanda et al. 2011).  Identifying antifungal 

drugs that have similar effects on amphibian epithelial cells may help in the search for 

novel therapeutic regimens.  In my work with R. sphenocephala skin bacteria, I 

developed an antibiotic protocol to significantly reduce skin bacteria levels.  In future, 

this protocol could be modified to include antifungal drugs like chloramphenicol, 

amphotericin B, and nikkomycin Z if the desired goal is reduction of skin bacteria on 

individuals already infected by B. dendrobatidis.  This modification could prevent B. 

dendrobatidis overgrowth on skin once natural bacterial competitors are removed and 

prior to bioaugmentation with beneficial species. 
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APPENDIX A 

 

NOREPINEPHRINE DEPLETION OF ANTIMICROBIAL PEPTIDES FROM 

THE SKIN GLANDS OF XENOPUS LAEVIS3 

 

 

Abstract 

Amphibian granular gland secretion can be stimulated in the laboratory by 

norepinephrine injection.  I found that two injections of 80 nmol/g norepinephrine were 

necessary to fully deplete the AMP stores.  One injection resulted in secretion of most 

stored peptides.  A second injection, 2 days later, released a small amount of AMPs that 

were not compositionally different from those released by the first injection.  A third 

injection, 4 days after the first, did not result in further AMP release.  Periodic acid-Schiff 

staining indicated that mucus gland secretion was also induced by norepinephrine.   

 

Introduction 

Natural AMP secretion from dermal granular glands is a result of α-adrenergic 

nerve stimulation, which causes contraction of myoepithelial cells, forcing AMP granules 

onto the skin surface (Benson and Hadley 1969, Dockray and Hopkins 1975).  To 

investigate the role of AMPs in protection from B. dendrobatidis, it is necessary to 

deplete the granular glands of AMPs in experimental subjects (Ramsey et al. 2010).  

However, the possible necessity of multiple norepinephrine injections for total peptide 

                                                           
3 This chapter is adapted from the publication: Gammill WM, Fites JS, Rollins-Smith LA. (2012) 
Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Developmental 
& Comparative Immunology 37(1):19-27. 
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depletion of granular glands has not been investigated.  It also remains unclear what other 

effects, such as mucus gland depletion, would result from repeated norepinephrine 

stimulation.   

 

Materials and Methods 

Organisms 

I used twelve healthy outbred adult Xenopus laevis (Xenopus I, Dexter, MI) 

ranging in weight from 60 to 135 g.  They were maintained in polystyrene containers in 

dechlorinated tap water at approximately 22 ºC.   Three times a week, they were fed 

ground beef heart and their water was changed.  Examination of skin histology following 

euthanasia did not show any signs of B. dendrobatidis infection.   

 

Skin peptide collection and enrichment 

Crude skin peptides were collected from X. laevis by norepinephrine injection as 

previously described (refer to Chapter II).  In collaboration with J. Scott Fites, I randomly 

divided twelve frogs into four groups.  For group 1 (N = 3), we administered a 

subcutaneous dorsal injection of APBS on Day 0 to serve as a control group.  For groups 

2 – 4 (N = 9), we administered subcutaneous injections of norepinephrine-HCL at 80 

nmol norepinephrine/gbw dissolved in APBS on Day 0.  On Day 2, we repeated this 

protocol with groups 3 and 4 (N = 6) by injecting a second time.  On Day 4, we gave 

group 4 frogs (N = 3) a third injection, this time at 20 nmol norepinephrine/gbw.  

Following each injection, peptides were collected in 50 ml collection buffer. 
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Histology 

Each frog was euthanized by IACUC-approved methods 24 hr after its final 

injection.  I fixed two sections each of dorsal and ventral skin in 10% buffered formalin 

for 48 hr.  These sections were stained by Hematoxylin and Eosin (H&E) to observe 

granular glands or Periodic acid-Schiff (PAS) to observe mucus glands.  Staining was 

completed by the Translational Pathology Shared Resource (Vanderbilt University, 

Nashville, TN).  I photographed slides under a microscope with an Olympus DP71 

camera and DP Controller software, version 3.1.1.267 (Olympus Corporation). 

To assess peptide contents remaining in X. laevis granular glands following each 

injection, I quantified the amount of granular gland material observable in H&E stained 

images.  Because amphibian granular glands are round or elliptical in shape (Barbeau and 

Lillywhite 2005), the area of the cross-section of the contents in each granular gland was 

calculated by measuring the height and width of each cross-section to the nearest 10 µm 

and calculating an area (Area = (πLW)/4 where L = length and W = width) assuming an 

elliptical shape for each gland (Moy 1970, Lepri and Randall 1983, Barbeau and 

Lillywhite 2005).  Once I determined the areas of the cross-sections, I divided the sum of 

the areas (µm2) in each skin sample by the length (mm) of the skin section to give an area 

of contents per mm of skin.  In all cases, 90-100 mm of skin were analyzed per treatment. 

 

Mass spectrometry 

MALDI-TOF mass spectrometry was used to identify and determine relative 

quantities of individual AMPs in the secretions collected following each norepinephrine 

or APBS injection in X. laevis. For details on the methodology, refer to Chapter II.   
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Results 

Development of a method to deplete amphibian AMPs from granular glands 

I carried out a series of APBS or norepinephrine injections in X. laevis in 

collaboration with J. Scott Fites (Vanderbilt University, Nashville, TN).  Following one 

APBS (vehicle) injection, we observed low amounts (4,522 ± 1,116 μg/ml of mucus) of 

secreted peptides in comparison with the amount of peptides secreted following the first 

norepinephrine injection at 80 nmol norepinephrine/gbw, which resulted in 406,215 ± 

20,843 μg/ml of mucus, a 90-fold increase (Fig. A-1).  A second injection resulted in an 

additional low level of peptide release (30,010 ± 6,232 μg/ml of mucus), while a third at a 

lower concentration led to peptide release (4,179 ± 442 μg/ml of mucus) not significantly 

different from those injected with APBS.  This demonstrates that in X. laevis, one 

injection of 80 nmol norepinephrine/gbw is sufficient for major peptide release, but a 

second appears necessary for maximal depletion, and a third is unnecessary.   

Following peptide collection, enrichment, and quantification, I analyzed 

secretions from norepinephrine- and APBS-injected frogs with MALDI-TOF MS to 

identify the individual peptides obtained with each injection (Fig. A-2).  The peptides 

secreted following one norepinephrine injection (Fig. A-2A) were comparable in 

composition to the peptides released by a second injection (Fig. A-2B).  In two cases, 

there were no identifiable peptides recovered after a second injection, indicating that even 

one injection was sufficient for depletion of some individuals.  I also confirmed that a 

third injection (Fig. A-2C) was unnecessary for maximal AMP depletion as it did not 

yield further identifiable peptides and resulted in spectra qualitatively similar to the 

spectra of secretions following APBS injection (Fig. A-2D).   
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Figure A-1. Significant peptide release occurs following a single norepinephrine 

injection, but two injections are necessary for more complete depletion.  Peptide 
release following injection of norepinephrine (NE) was greatest following one injection 
(N = 9 frogs, Day 0, 80 nmol NE/gbw).  Additional peptides were recoverable after two 
injections of NE (N = 6 frogs, Day 2, 80 nmol norepinephrine/gbw), although at a 
significantly lower concentration.  A third injection (N = 3 frogs, Day 4, 20 nmol 
NE/gbw) did not lead to a significant release of peptides (p = 0.9191) compared to the 
APBS-injected control (N = 3 frogs, Day 0).  **p < 0.0001, *p < 0.001 compared to 
APBS-injected control by a two-tailed Student’s t test after log transformation.  One-way 
analysis of variance (ANOVA) with Tukey post hoc test confirmed t test results.  Error 
bars represent standard errors.  Some standard errors were too small to be visualized. 
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Figure A-2. The peptides released following a second injection of norepinephrine are 

compositionally similar to those released following the first injection.  MALDI-TOF 
mass spectrometry analysis of AMPs collected following (A) one norepinephrine 
injection at 80 nmol norepinephrine/gbw, (B) two norepinephrine injections at 80 nmol 
norepinephrine/gbw, (C) two norepinephrine injections at 80 nmol norepinephrine/gbw 
followed by a final norepinephrine injection at 20 nmol norepinephrine/gbw, and (D) one 
APBS injection.  Spectra (A – C) represent peptide secretions collected from the same 
frog after its first, second, and third norepinephrine injection, respectively, while the 
spectrum for the APBS control (D) represents a different frog.  While variation was noted 
between different animals as described in the text, representative results are shown.  
Previously described antimicrobial peptides are labeled. PGLa = peptide with amino 
terminal glycine and carboxyl terminal leucinamide, CPF = caerulein precursor fragment, 
XPF = xenopsin precursor fragment, LPF = levitide precursor fragment, and Na+ 
indicates an adduct of the peptide with a sodium ion. 
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Histology confirmed the results of peptide quantification and mass spectrometry 

analysis (Fig. A-3).  Based on my quantification of granular gland contents, AMPs 

secreted following a second injection were mainly dorsal in origin, while there was no 

significant difference in the amount of material remaining in ventral glands following two 

or three injections (Fig. A-3I).   

 

Norepinephrine induction of granular gland secretion triggers mucus gland activity 

Dockray and Hopkins (1975) reported that X. laevis mucus glands do not secrete 

contents upon adrenaline injection, while Sjöberg and Flock (1976) showed mucus glands 

have adrenergic nerves as their sole source of stimulation.  I used a PAS stain of skin 

fixed 24 hr after APBS or norepinephrine injection.  I observed that dorsal and ventral 

glands generally contained a normal mucus level (Fig. A-4,A-D) after APBS injection.  

However, mucus glands responded to norepinephrine (Fig. A-4,E-P) by secretion, in 

agreement with Sjöberg and Flock’s (1976) identification of α-adrenergic nerve 

terminals.  After three norepinephrine injections, I observed a range of effects in which 

some glands were almost or completely empty (Fig. A-4,E-L, indicated by arrows), while 

others contained a normal level of mucus (Fig. A-4,K-P; indicated by “N”).  Some mucus 

glands also sustained structural damage (Fig. A-4F, J, and O; indicated by asterisks) due 

to the intensity of multiple norepinephrine injections.  This damage appeared to be in the 

form of ruptured gland walls, which suggested that the repeated norepinephrine stimulus 

caused significant physiological stress at a microscopic level.  This may explain why 

Dockray and Hopkins (1975) did not observe an effect on the mucus glands, as they only 

used one injection at a relatively low concentration of 0.3 nmol norepinephrine/gbw. 
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Figure A-3. Quantification of granular gland cross-sections indicate that a second 

norepinephrine injection is necessary for total granular gland depletion, but a third 

injection is unnecessary.  Dorsal (A – D) and ventral (E –H) skin sections were stained 
with H&E stain to observe the granular gland contents following one APBS injection (A, 
E) or one (B, F), two (C, G), or three (D, H) norepinephrine injections.  The scale bar is 
equivalent to 500 μm.  Representative images are shown. (I) By quantifying the amount 
of granular gland contents remaining after each injection, I determined that peptides 
released following a second norepinephrine injection are primarily dorsal in origin. 
Between 150 and 160 glands per injections were analyzed. **p < 0.01, *p < 0.05 by a 
one-tailed Student’s t test following log transformation.  One-way analysis of variance 
(ANOVA) with Tukey post hoc test confirmed t test results.  Error bars represent 
standard errors.   
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Figure A-4. Mucus glands are also stimulated by treatment with norepinephrine.  
PAS analysis of mucus glands indicated that mucus glands following APBS injection 
contained normal amounts of mucus in both dorsal (A-B) and ventral (C-D) glands.  
Following three norepinephrine injections, mucus gland secretion was evident, but at 
variable levels, from both dorsal (E-H,K,P) and ventral (I-J,L,M-O) glands.  “N” 
indicates glands that have normal levels of mucus, arrows (�) indicate glands that are 
mostly, if not entirely empty, and asterisks (*) indicate glands that show signs of 
structural damage.  The scale bar is equivalent to 200 μm.  Images shown are 
representative of larger sample sizes and dorsal and ventral glands are represented by an 
equal number of pictures. 
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Discussion 

My data showed that one norepinephrine injection was sufficient to induce the 

release of most skin peptides.  In fact, the amount collected after one injection was 20-

fold higher than the amount released by norepinephrine signaling during a simulated 

predator attack (Ramsey et al. 2010).   Thus, a second injection is necessary only when 

the desired result is near total peptide depletion.   Analysis of ventral gland histology 

indicated that a low level of material (~7% of the contents following APBS injection) 

was still present after three dorsal injections, which may be due to distance of these 

glands from the injection site.  Including a ventral injection in future protocols may result 

in elimination of any remaining peptides.  Differences in the response of granular and 

mucus glands to the same treatment may lie in the distribution of nerve terminals.  In 

granular glands, they are enmeshed within the myoepithelial cells with a direct 

connection to the secretory apparatus while in mucus glands, they are located outside the 

gland parenchyma, making indirect gland control via transmitter diffusion more likely.     

Ultimately, granular glands provide an important chemical defense system against 

microbial invaders in the form of diverse AMPs.  Continuing research on the function, 

regulation, and potential applications of these peptides is essential for devising 

conservation strategies for the many species that are currently facing the threat of 

chytridiomycosis.  The methods presented here also provide a way to temporarily remove 

AMP defenses for in vivo experiments.  Understanding how best to apply these methods 

to limit the stress to overall animal physiology is also important, as they are applied to a 

variety of species.   
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APPENDIX B 

 

DIFFERENTIAL FILTRATION: A METHOD TO ENRICH INDIVIDUAL 

BATRACHOCHYTRIUM DENDROBATIDIS LIFE STAGES FROM 

HETEROGENEOUS CULTURES. 

 

 

Abstract 

 As the scientific community continues to study the biological processes and 

pathogenic mechanisms of B. dendrobatidis, the ability to study different developmental 

stages of this fungus will become increasingly important.  In this study, I developed a 

method to separate and enrich individual developmental stages of B. dendrobatidis using 

a system of differential filtration under vacuum.  This method results in zoospore cultures 

of significantly higher purity than obtained with currently accepted protocols.  Further, it 

allows for the partial enrichment of more mature life stages, including intermediate cells 

and zoosporangia.  Recent studies in our laboratory (Fites et al 2013) showed that 

maturing B. dendrobatidis secrete factors that inhibit lymphocytes.  However, the specific 

developmental stage at which the factors are produces is not yet determined.  The 

development of this method for enrichment of intermediate stages meets a critical need to 

identify the specific stages of the B. dendrobatidis life cycle where host invasion 

machinery and secreted lymphotoxic factors are produced.     

 

Introduction 

Previous studies have focused on amphibian innate immune defenses against B. 

dendrobatidis as well as effective antifungal drugs to combat chytridiomycosis.  
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Antimicrobial peptides exert their effects by acting on the fungal cell membrane (Nicolas 

and Mor 1995, Zasloff 2002).  Many antifungal drugs active against B. dendrobatidis 

target zoospore membranes or inhibit enzymes necessary for cell wall formation (Berger 

et al. 2009, Martel et al. 2011, Holden et al. 2014).  Whether other known anti-B. 

dendrobatidis drugs or amphibian immune defenses like skin bacteria (Woodhams et al. 

2007, Becker and Harris 2010, Woodhams et al. 2012a) and antibodies (Ramsey et al. 

2010) primarily target zoospores or more mature life stages has yet to be determined.  

Further, B. dendrobatidis secretes one or more soluble factors, most likely components of 

the cell wall, which paralyze amphibian lymphocyte responses (Fites et al. 2013).  As 

work to characterize and identify these immunosuppressive factors continues, the ability 

to examine their presence and potency among different developmental stages will prove 

essential to fully understanding how B. dendrobatidis modulates host immunity. 

Here, we describe a sterile method to enrich for individual developmental stages 

of B. dendrobatidis.  This method uses filters of different pore sizes to separate cells 

based on size, resulting in significant enrichment of mature life stages separate from 

immature zoospores or highly pure zoospore cultures, depending on the filters used. 

 

Material and Methods 

Zoospore Enrichment 

These experiments were conducted with B. dendrobatidis strain JEL197 

(Longcore et al. 1999).  For information on fungal culture conditions, refer to Chapter II. 

Zoospores were harvested from agar plates as previously described (Chapter II) with 

modifications described here:  The volumes obtained directly from plates without use of a 
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filtration step were considered an unenriched zoospore population.  To obtain a more 

pure culture, liquid from agar plates was filtered under vacuum through sterile nylon 

spectra/mesh filters with pore sizes of 5 or 20 µm (Spectrum Laboratories, Rancho 

Dominguez, CA) or through sterile nitrocellulose-membrane filters with a pore size of 3 

µm (Millipore, Billerica, MA).  The different classes of cells distinguished with a light 

microscope were zoospores, encysted zoospores (appearance of a germ tube-like 

structure), germlings/thalli (rhizoid-bearing cells), or mature zoosporangia with internal 

zoospores (Berger et al. 2005a).  Purity of a given cell type was determined based on the 

number of those cells divided by the number of total cells. Cell yield was determined by 

comparing the cell counts of the filter-enriched fraction to a fraction obtained before 

enrichment.  Experiments described in this section were performed by J. Scott Fites 

(Vanderbilt University, Nashville, TN). 

 

Intermediate Cell Enrichment 

To enrich for intermediate stages (germlings and thalli), I harvested zoospores 

from agar plates following 5-8 days of growth, using 20 µm pore filters as described 

above.  I quantified cells in the filtrate by counts on a hemocytometer and resuspended 

them in 1% tryptone broth at 1 × 106 cells/ml.  These were incubated in cell culture flasks 

at 19-21°C for 3 days.  During this time, harvested zoospores developed into intermediate 

cells.  Following incubation, I scraped the sides of the cell culture flask with a sterile cell 

scraper (BD Falcon, Bedford, MA) to release adherent cells into the media.  I transferred 

the flask contents to wetted 20 µm pore filter paper and rinsed the flask with 5 ml 

additional tryptone broth which was also filtered.  Then, I filtered the filtrate a second 
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time using 8 µm pore filter paper to retain intermediate cells while allowing zoospores to 

pass through.  I recovered the intermediate cells by transferring the 8 µm pore filter paper 

to a conical with sterile forceps and resuspended the retained cells in sterile media.  Cell 

cultures prior to filtration, cells in the filtrate, and cells resuspended from the filter were 

counted on a hemocytometer and assessed for life stage by microscopy.   

 

Mature Cell Enrichment 

To enrich for more mature stages, including intermediate cells and mature 

zoosporangia, I harvested zoospores with 20 µm pore filters and resuspended them at 1 × 

106 cells/ml.  These were incubated in cell culture flasks at 19-21°C for 4 days as the 

zoospores developed into intermediate cells (germlings and thalli) and mature cells 

(zoosporangia).  To enrich for these cell types, I scraped the sides of a cell culture flask 

with a sterile cell scraper and transferred flask contents to a wetted 20 µm pore filter 

paper which I rinsed and transferred to a conical to resuspend retained cells in sterile 

media.  Cell cultures prior to filtration, cells in the filtrate, and cells resuspended from the 

filter were counted on a hemocytometer and assessed for life stage by microscopy.   

 

Results 

Improved enrichment of B. dendrobatidis zoospores 

 Zoospores and the number of total cells washed from agar plate cultures of B. 

dendrobatidis were quantified without filtration and following filtration with 3, 5, and 20 

µm pores.  Without filtration, zoospore purity was only 70.4% ± 2.0% (Fig B-1A).  In 

comparison, zoospore purity significantly increased when filter-enriching the population.  
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Figure B-1. A method to enrich for different B. dendrobatidis life stages by 

differential filtration.  (A) Zoospore purity with or without filtration using different pore 
sizes is shown as mean ± SEM (one-way ANOVA with Tukey post hoc test, different 
letters represent significant differences, p < 0.01).  (B) Use of a 20 µm pore filter and an 
8 µm pore filter enriched for intermediate cell types and reduced the number of zoospores 
in the resulting product (two-tailed Student’s t tests, *p < 0.05).  (C) Use of a 20 µm pore 
filter enriched for all non-zoospores cell types (germlings, thalli, and zoosporangia) and 
reduced the number of zoospores in the resulting product (one-way ANOVA with Tukey 
post hoc test, different letters represent significant differences, p < 0.05).  (D) 
Specifically, use of a 20 µm pore filter to enrich for all non-zoospores cell types resulted 
in a significant increase in zoosporangia and a significant decrease in zoospores, with the 
percentage of intermediate cells present before and after filtration largely unaffected.  All 
panels show the mean of at least three experiments. Where more than one Student’s t test 
was conducted within one data set, p values have been adjusted by the Bonferroni 
correction.  All panels indicated the average percentage a given cell type among total 
cells counted before and after filtration.  Error bars indicate standard error.   
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With 20 μm pores, zoospores were 83.3% ± 1.4% of the filtrate population.  Even greater 

purity (92.9% ± 0.5%) was obtained when enriched with 5 μm pores, and the highest 

purity levels were achieved with the 3 μm pores (98.7 ± 0.5%), though yield was reduced 

with only 12.4% ± 3.7% of the original cells reaching the filtrate.   

 

Separation and enrichment of intermediate B. dendrobatidis developmental stages 

Following 3 days of incubation, zoospore cultures matured and contained a 

significant portion of intermediate cells (52.9% ± 4.3%), defined as encysted zoospores, 

germlings, and thalli.  In order to enrich for these intermediate cell types, two filtration 

steps were necessary.  First, I used filtration with a 20 µm pore filter to separate 

zoospores and intermediate cells from zoosporangia, which were retained by the filter.  I 

filtered the filtrate from this procedure a second time using an 8 µm pore filter to separate 

intermediate cells retained by the filter from zoospores in the filtrate.  Cells resuspended 

from the 8 µm pore filter were 85.4% ± 3.7% intermediate cells (Fig B-1B).  This was 

approximately 5% ± 3% of the culture prior to filtration, with 1.8 × 107 cells ± 26% on 

average, indicating a useful cell yield despite significant cell loss from two filtrations. 

 

Separation and enrichment of mature B. dendrobatidis developmental stages 

Following 4 days of incubation, zoospore cultures matured and contained a 

significant proportion of cells beyond the zoospore stage (70.0% ± 2.7%), defined as 

encysted zoospores, germlings, thalli, and zoosporangia.  With filtration with 20 µm pore 

filters, many maturing cells were retained while zoospores and some intermediate cells 

passed through the filter.  Cells resuspended from the filter were 99.3% ± 0.3% maturing 
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cells (Fig. B-1C).  The average cell yield was 5.8 × 107 cells ± 10%, which was 

approximately 38% ± 11% of the culture prior to filtration.  In distinguishing among 

mature zoosporangia and intermediate cells at the encysted, germling, or thallus stages, I 

observed that the increased percentage of maturing cells retained by the 20 µm filter was 

specifically due to an enrichment in zoosporangia, as the percentage of intermediate cells 

was unaffected by filtration (Fig. B-1D).  A second filtration step did not improve the 

purity level of this population of cells and reduced the cell yield.   

 

Discussion 

Enrichment of individual B. dendrobatidis life stages 

 Here, we present a novel method for enriching individual B. dendrobatidis life 

stages in vitro in high yields for further experimentation.  The development of this 

method provides a way to obtain highly pure zoospore cultures.  Some studies of the 

properties of zoospores have been conducted using cells collected from an agar plate 

without a filtration step to enrich for zoospores (Brutyn et al. 2012, McMahon et al. 

2013).  Our findings show that such cultures are ~30% more mature cells.  Thus, results 

from these studies are inconclusive as to the role of zoospores or zoospore products.    

Using differential filtration allows for the enrichment of mature stages, but we 

emphasize that some cells in the resulting culture may not be viable.  Particularly, empty 

zoosporangia that have released their zoospore contents will be incapable of further 

growth.  Further, differences in strain and culture conditions, including temperature, cell 

concentration, and type of media used, may result in different percentages of viable cells.     

 



132 

 

Improved understanding of host-pathogen interactions 

This method will enable analysis and quantification of physiologic and pathogenic 

aspects specific to each fungal developmental stage.  It will also allow more in-depth 

analysis of the antifungal activity of several immune system components of interest.  For 

example, there is no information on which life stages are primarily targeted by bacterial 

metabolites and antibodies.  And while AMPs are thought to be most effective against the 

zoospore stage, which lacks a cell wall, little is known about how they may affect more 

mature life stages.  Further, B. dendrobatidis secretes a soluble inhibitory factor that 

impairs lymphocyte activity by causing apoptosis (Fites et al. 2013).  Characterization of 

this factor in individual developmental stages will result in improved knowledge of B. 

dendrobatidis pathogenicity in addition to a better understanding of the interplay between 

the host immune system and each of the pathogen’s developmental stages.   

 

Development of improved antifungal drug regimens 

The ability to study specific developmental stages individually may result in the 

development of improved antifungal drug regimens.  There are currently few treatments 

for amphibians infected with B. dendrobatidis and use of the most common drug of 

choice, itraconazole, involves a labor intensive, time consuming regimen with toxicity 

concerns (Garner et al. 2009, Woodhams et al. 2012b).  The ability to separate and 

individually study different life stages of B. dendrobatidis may allow for the development 

of a cocktail with components that are active against multiple developmental stages of B. 

dendrobatidis, resulting in improved treatment regimens for captive amphibians. 
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APPENDIX C 

 

TANDEM MASS SPECTROMETRY DATA 

 

 

 The following pages show fragmentation data collected during MALDI-TOF-

TOF with notation by Dr. David Friedman (Vanderbilt Proteomics Laboratory, Nashville, 

TN).  Fragmentation data was collected for brevinin-1Sa, brevinin-1Sb, brevinin-1Sc, and 

Temporin-1S.  Brevinin-1Sb is labeled as “Brevinin-1BLa” because the two peptides 

have the same peptide sequence, despite being from two different amphibian species. 
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