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CHAPTER I

INTRODUCTION

Rationale for Dissertation

 Anion exchanger 1 (AEI), also known as band 3, is the most abundant inte-

gral membrane protein in the human erythrocyte (Fairbanks et al. 1971). Band 3 is 

composed of two structurally and functionally distinct domains (Steck et al. 1976). 

The transmembrane domain of band 3 (tdb3) is responsible for the exchange of 

chlorine and bicarbonate ions across the erythrocyte membrane (Cabantchik and 

Rothstein 1974), a process essential to CO2 excretion and acid-base balance regu-

lation in the blood (Crandall et al. 1981). The cytoplasmic domain of band 3 acts 

as an organizing center for numerous protein-protein interactions at the red blood 

cell membrane. Proteins that interact with cdb3 include membrane cytoskeleton 

components, glycolytic enzymes, hemoglobin, and hemichromes (Low 1986). Mu-

tations  in AE1 are associated with hereditary spherocytosis  (HS) (Delaunay 2002) 

and Southeast Asian ovalocytosis  (SAO) (Jarolim et al. 1991). The crystal struc-

ture of cdb3 (55-356) has been determined at the nonphysiological pH 4.8 (Zhang 

et al. 2000) and its  solution structure at pH 6.8 confirmed the packed dimer struc-

ture observed in the crystal structure (Zhou et al. 2005).

 Of the three mutations in the cytoplasmic domain that are associated with 

HS, only the Tuscaloosa variant (P327R) has been studied from the angle of struc-

tural biology (Zhou et al. 2007). The band 3 Fukuoka variant (G130R), like the 

P327R mutation, results in decreased protein 4.2 while having little effect on the 
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total band 3 content of the red blood cell. The G130R mutation is  located on the 

surface of helix 2, a region thought to be part of the ankyrin-binding interface. 

This dissertation study utilizes site-directed spin labeling (SDSL) paired with elec-

tron paramagnetic resonance (EPR) techniques in order to study the structural 

changes caused by the G130R mutation. This work has shown that EPR methods 

can be advantageous when studying small structural changes by providing infor-

mation on secondary structure and residue environment.

Erythrocyte Membrane Skeleton

Organization of the Erythrocyte Cytoskeleton

 The erythrocyte membrane skeleton is  well-studied and provides a model 

system for the study of protein-membrane interaction. The membrane skeleton is 

typically organized as a hexagonal lattice (Figure 1A) composed primarily of spec-

trin tetramers, formed by head-to-tail association of spectrin !" heterodimers 

(Morrow and Marchesi 1981). The ends of the spectrin tetramers form junctional 

complexes  with a number of proteins such as actin, protein 4.1, protein 4.9, tro-

pomyosin, and adducin (Figure 1B) (Bennett 1989).

 In addition to these associations, the erythrocyte cytoskeleton interacts with 

the red blood cell membrane through two multiprotein complexes. One of the 

complexes  occurs at the aforementioned junctional complex involving spectrin, 

actin, and protein 4.1. At this site, protein 4.1 creates another ternary complex with 

protein p55 and the transmembrane protein glycophorin C, binding the spectrin 

network to the erythrocyte membrane (Figure 1B). Protein 4.1 can also interact 
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with the dimeric form of the integral membrane protein band 3 and has binding 

sites for the transmembrane proteins Rh, Kell, and XK (Salomao et al. 2008). The 

other linkage to the erythrocyte membrane by attaching to two self-associating 

band 3 dimers through the scaffolding protein ankyrin (Bennett and Stenbuck 

1979). The band 3-ankyrin complex will be discussed in further detail later.

 A
B

(+) end

(-) end

Figure 1. Organization of the erythrocyte membrane cytoskeleton

A: Transmission electron micrograph of the erythrocyte cytoskeleton. Approximately six 
spectrin tetramers are cross-linked at  junctional nodes, forming a hexagonal lattice. (Liu 
et al. 1987)

B: The spectrin-actin junction. Short F-actin filaments join spectrin at the junctional 
nodes in A. The negative end of the actin filaments are blocked by tropomodulin whereas 
the positive end interacts with adducin. Nonmuscle tropomyosin lies along the length of 
the actin filaments. Protein 4.1 induces the spectrin-actin interaction and forms a complex 
with p55 and the transmembrane protein glycophorin C.
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Mechanical Properties of the Erythrocyte Cytoskeleton

 The main purpose of the red blood cell cytoskeleton is  to maintain the cell’s 

characteristic biconcave shape, a shape that allows the cell to undergo major shape 

deformations  in order to pass through capillaries without fragmenting. Due to 

these requirements, the erythrocyte membrane must be both highly deformable 

and extremely stable. Studies of pathologically and biochemically perturbed eryth-

rocyte membranes has shown that deformability and stability of the membrane are 

regulated independently by separate cytoskeletal components  (Chasis and Mohan-

das 1986). Spectrin’s structure plays an important role in maintaining this flexibil-

ity. Spectrin is  comprised of 106 amino acid triple helical segments that are con-

nected to adjacent segments via short nonhelical regions (Speicher and Marchesi 

1984). The folded stability of these repeats varies along the length of the protein 

and, together with the hinge region created by the linker, provides spectrin with 

flexibility along its length (MacDonald and Cummings 2004). Atomic force 

microscopy-related techniques have also shown the unfolding forces of the !-

helical repeats to be much lower than domains  containing "-folds, with the unfold-

ing process being cooperative in consecutive repeats (Rief et al. 1999; Law et al. 

2003).

 Aside from the intrinsic properties of the proteins, a number of outside fac-

tors effect the mechanical properties  of the red cell membrane. The rigidity of the 

cell during its deformation is influenced by intracellular calcium concentrations 

(Brody et al. 1995). Calcium is known to interact with the spectrin-protein 

4.1-actin complex as well as  the spectrin-ankyrin-band 3 complex, inducing de-

creased deformability (Takakuwa and Mohandas 1988, Liu et al. 2005). The study 

4



of membrane abnormalities has shown that the bridging of the cytoskeleton to the 

lipid bilayer through ankyrin also plays a role in membrane stability. While not as 

pronounced as with spectrin disorders, abnormalities  in ankyrin reduce the mem-

brane shear elasticity of red blood cells (Waugh 1987).

Erythrocyte Cytoskeleton Disorders

 Hemolytic anemia is a state of increased red blood cell destruction. The 

disorders  of the red blood cell membrane that result in hemolytic anemia are pre-

dominantly hereditary in nature, though a few acquired defects  exist. A number of 

genetic mutations are associated with hereditary spherocytosis (HS) and will be 

discussed later. Hereditary elliptocytosis (HE) and hereditary poikilocytosis (HP) 

are two forms of the same disorder that only differ in their severity with HP being 

the more symptomatic of the two. A majority of the mutations leading to HE/HP 

are found in spectrin, with all spectrin mutations lying at or near the self-

association site of the !- and "-spectrin chains (Maillet et al. 1996). Southeast Asia 

Ovalocytosis (SAO) is a symptomless disorder that occurs in people from Papau 

New Guinea, the Philippines, and other neighboring countries. The mutation re-

sponsible results  in a gap of nine amino acids at the juncture between the trans-

membrane and cytoplasmic domains of band 3 (Jarolim et al. 1991).
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Structure and Function of Anion Exchanger 1

Topology and Function of AE1 Transmembrane Domain

 AE1, also known as band 3, is  the prototypical member of the SLC4 gene 

family, a family of three Cl-/HCO3
- anion exchangers. The mechanism of anion 

exchange has  been studied using disulfonic stilbene derivatives since they inhibit 

anion permeability while having no effect on cations. One of the more potent di-

sulfonic stilbenes, DIDS, was  used to identify band 3 as the mediator of anion ex-

change (Cabantchik and Rothstein 1974). An analogue of DIDS, H2DIDS, was 

later used to support the ping-pong model for one-to-one exchange of anions 

across the plasma membrane by confirming the existence of two conformations 

dependent on the chloride concentration across  the membrane. In this model, there 

is  only one transport site that can face either the intracellular or extracellular 

space. When intracellular chloride is  increased in the presence of a constant extra-

cellular chloride concentration, more of the anion binding sites face outward, de-

tectable by an increase in H2DIDS inhibition (Furuya et al. 1984).

 The transmembrane domain of band 3 (tdb3) is  the domain responsible for 

this  physiological function. Located at the C-terminal end of band 3, tdb3 is  be-

lieved to contain 12-14 transmembrane regions (Figure 2) (Zhu et al. 2003). Fur-

ther studies have been performed to develop a model of how the transmembrane 

segments are organized relative to the dimer interface (Groves and Tanner 1999).
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Figure 2. Proposed topology of AE1 transmembrane domain

Putative topology of the AE1 transmembrane domain determined using cysteine-scanning 
mutagenesis and sulphhydryl specific chemistry. Arrows indicate proteolytic sites, the 
shading indicates the degree of biotin maleimide labeling, and an asterisk indicates a cys-
teine mutant was accessible to qBBR, showing that site to be exposed to the extracellular 
medium. This model displays thirteen transmembrane segments with another possible 
transmembrane segment between the ninth and tenth segments. (Zhu et al. 2003)

Structure and Function of AE1 Cytoplasmic Domain

 The cytoplasmic domain of band 3 (cdb3) serves as a major organization 

center for the red blood cell membrane. As an anchoring point, cdb3 interacts with 

a number of proteins including ankyrin (Bennett and Stenbuck 1980), protein 4.1 

(Pasternack et al. 1985), protein 4.2 (Korsgren and Cohen 1988), glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) (Beth et al. 1981, Rogalski et al. 1989), 

phosphofructokinase (PFK) (Jenkins et al. 1985), aldolase (Murthy et al. 1981), 

hemoglobin (Walder et al. 1984), and hemichromes (Waugh and Low 1985) (Fig-

ure 3). Band 3 is  also a substrate of the protein tyrosine kinase p72syk (Harrison et 

al. 1994).
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 Through these interactions band 3 is involved in many processes within the 

red blood cell, most notable of which is  its role in the mechanical properties of the 

erythrocyte membrane. Band 3 is  connected to the spectrin cytoskeleton in two 

separate macromolecular complexes (Salomao et al. 2008). The complex involving 

protein 4.1 has been described previously. The second complex involving ankyrin 

and protein 4.2 (Su et al. 2006) is the principle bridge between the erythrocyte cy-

toskeleton and the lipid bilayer. The interaction between ankyrin and cdb3 is es-

sential for the morphology and stability of the red blood cell membrane (Low et al. 

1991; Peters et al. 1996; Anong et al. 2006) and protein 4.2 may help stabilize this 

interaction (Rybicki et al. 1988). The cytoplasmic domain of band 3 also has 

shown a role in membrane deformability both through its interaction with the cy-

toskeleton and its own inherent flexibility (Mohandas et al. 1992; Uyesaka et al. 

1992; Blackman et al. 2001). Cdb3 plays an inhibitory role in glycolysis through 

its interaction GAPDH, PFK, aldolase, and hemoglobin. (Low et al. 1993; Weber 

et al. 2004; Campanella et al. 2005). In addition to these interactions, the anion ex-

changer activity of band 3 is modulated by the binding of factors  such as hemo-

globin and magnesium to cdb3 (Galtieri et al. 2002; Teti et al. 2002).
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Figure 3. Erythrocyte membrane-cytoskeleton connection

Ankyrin interacts with "-spectrin at the spectrin self-association site. Each ankyrin is ca-
pable of cross-linking two band 3 dimers. The association of ankyrin with band 3 is stabi-
lized by   protein 4.2. The cytoplasmic domain of band 3 also complexes with phos-
phofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase, 
hemichrome, and hemoglobin at this junction.
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 Structural studies of cdb3 have revealed a compact symmetric dimer with 

N- and C-terminal tails  lacking secondary structure (Figure 4A). Each monomer 

contains 11 "-strands and 10 !-helices. Eight of the "-strands form into a "-sheet 

consisting of both parallel and antiparallel strands. Along with the first six helices, 

this  central "-sheet makes up the central globular domain of the cdb3 monomer. 

Two of the remaining "-strands spanning residues 175-185 form a "-hairpin loop 

while the last "-strand is  part of the dimerization arm. The dimerization arm is a 

largely helical segment at the C-terminal end of cdb3 and is connected to the 

globular domain by a short helix and loop segment (Figure 4B) (Zhang et al. 2000; 

Zhou et al. 2005). Loss of the "-hairpin loop makes a mutant that is has no affinity 

to ankyrin, identifying this  loop as necessary for the interaction with ankyrin 

(Chang and Low 2003). This  segment alone, however, is not sufficient for the 

binding of ankyrin. Antibodies  developed against residues 118-162 of cdb3 also 

inhibited the binding of ankyrin (Davis et al. 1989). A computational model of the 

cdb3-ankyrin complex has identified further areas possibly involved in the binding 

site with total of over 1,500Å2 of buried surface area (Michaely et al. 2002).
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 A

 B

Figure 4. Structure of the cytoplasmic domain of human band 3

A: Crystal structure of cdb3 at pH 4.8. The cdb3 dimer is displayed in ribbon diagram 
colored based on secondary structure. The dimerization arms (304-357) are highlighted in 
cyan and purple.

B: Diagram of cdb3 monomer secondary structure. The cdb3 monomer includes 11 "-
strands and 10 !-helices. "-strands 1-4, 5, and 8-10 form a central "-sheet containing both 
parallel and antiparallel strands while "-strands 6 and 7 form a b-hairpin loop. These 
elements form a globular domain together with the first six helices. The remaining helices 
and "-strand 11 form the dimerization arm indicated in A. (Zhang et al. 2000)
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Hereditary Human Spherocytosis

Normal Physiology of the Red Blood Cell

 Erythrocytes develop from pluripotent hematopoietic stem cells  found in 

the bone marrow through a process  known as erythropoiesis. The first definite 

erythrocyte precursor is known as a pronormoblast that further develops into the 

nucleated normoblast. As  the normoblast develops it progressively shrinks and the 

cytoplasm becomes less basophilic and increasingly acidophilic due to the build 

up of hemoglobin. By the final form of the normoblast, the nucleus is pyknotic and 

the cell is  only about 5 microns in diameter. At this point, the normoblast loses its 

nucleus and leaves  the bone marrow as a reticulocyte. An alteration in the cell 

shape occurs outside the bone marrow and after one to two days the reticulocyte 

becomes a mature erythrocyte (Dacie and White 1949). Mature erythrocytes are 

about 7.5 microns in diameter and 2 microns thick. An erythrocyte will survive 

around 120 days in circulation before being removed and most of its  iron is recy-

cled. Each cell contains  high amounts of hemoglobin, making erythrocytes  well-

suited for the transport of oxygen to tissue throughout the body (Silbernagl and 

Despopoulos 88).

 Due to the lack of organelles  and its membrane skeleton, the erythrocyte is 

very deformable. The nature of blood is such that its  viscosity when passing 

through small arteries is  about 4 relative units, twice as  high as that of plasma. 

This viscosity increases in smaller vessels since the velocity of flow decreases, but 

red blood cells compensate by traversing capillaries in single file. The deformable 

nature of their membranes  allows them to pass  through safely despite the smaller 
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diameter of the capillaries (92) In capillaries closer to the diameter of the erythro-

cyte, the cell takes on a parachute-like shape (Figure 5A). In narrow capillaries 

around 4 microns in diameter, the most common shape is a torpedo shape (Figure 

5B) (Skalak and Branemark 1969).

 A

 B

Figure 5. Deformation of red blood cells

A: The parachute shape of In vivo erythrocytes traversing a 7 µm capillary with the cell 
on the left displaying the tail-flap appearance.

B: Red blood cells passing through 4 µm capillary adopt a U-shape or hollow torpedo 
shape.
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Pathophysiology of Hereditary Spherocytosis

 Hereditary Spherocytosis (HS) refers to a group of inherited hemolytic 

anemias  associated with defects in the erythrocyte membrane skeleton. The preva-

lence of HS is highest in northern Europe and North America, affecting about one 

in every 2000 people. Three fourths  of HS cases display an autosomal dominant 

inheritance pattern while the remaining cases have a more severe autosomal reces-

sive form. HS results from mutations affecting the proteins  involved in the 

spectrin-ankyrin-band 3 complex. Mutations in the ANK1 gene for ankyrin make 

up 50% of the autosomal dominant cases of HS while another 15-20% of cases  are 

due to a mutations in SLCA1, the gene for band 3. Other mutations that result in 

HS can be found in SPTA1, SPTB, and EPB42, the genes that encode for !-

spectrin, "-spectrin, and protein 4.2, respectively (Delaunay 2002). All of these 

mutations cause a disruption in the link between the erythrocyte cytoskeleton and 

the membrane, resulting in reduced membrane surface area, a decreased mem-

brane to surface ratio, and the formation of spherocytes  to compensate for these 

changes (Figure 6). These spherocytes end up trapped in the spleen where low pH, 

low glucose and adenosine triphosphate concentrations, contact with macrophages, 

and high local concentrations of oxidants deliver additional damage. The destruc-

tion of abnormal erythrocytes by the spleen is the main cause of hemolysis in HS 

(Perrotta et al. 2008)
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Figure 6. Scanning electron micrograph of red blood cells

(a): The normal biconcave shape of erythrocytes.
(b): Erythrocytes from a HS patient have spherical shape and smaller cell size. (Agre et 
al. 1982)

Complications and Therapies of HS

 Patients with HS can present with various symptoms such as anemia, sple-

nomegaly, and jaundice. HS is diagnosed based on the presence of spherocytes in 

peripheral blood smears, increased osmotic fragility, and a positive family history. 

The severity of the disease varies  from individual to individual with 20-30% of 

patients remaining asymptomatic due to compensation by increased erythropoie-

sis.  In most cases, the compensatory measures  taken by the body to match red cell 

destruction are outpaced, leading to chronic hemolysis (Kumar, Abbas, and Fausto 
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644). This state leads  to the formation of bilirubinate gallstones, which are the 

most common complication of HS. Gallstones  are found in 40-50% of patients in 

their second to fifth decade with a majority of cases in those between 10 to 30 

years of age. Co-inheritance of Gilbert’s Syndrome, the most common hereditary 

cause of increased bilirubin, increases the risk of developing cholelithiasis up to 

five-fold. Timely diagnosis, best done by ultrasonography, allows for quick treat-

ment to stem the possibility of biliary tract diseases like cholecystitis and cho-

lagnitis.

 Most patients also experience a few anemic crises in their lifetime. Hemo-

lytic crises are produced by events that lead to increased splenic destruction of red 

blood cells, as in the case of Epstein-Barr virus  infection. Cases are typically mild 

and punctuated by transient jaundice, splenomegaly, reticulocytosis, and anemia. 

Aplastic crises  are less common and are triggered by acute parvovirus infection. 

Parvovirus infects the bone marrow, killing red cell progenitors  and stopping red 

cell production for 1-2 weeks  until an immune response is mounted. Aplastic cri-

ses lead to severe anemia that requires in-hospital treatment and transfusion, and 

patients may face complications as serious  as  congestive heart failure or death. 

Megaloblastic crises  are rare and typically only found in underdeveloped countries 

where nutrition is  an issue. Since these cases are caused by folate deficiency, they 

can occur in patients with increased folate demand (e.g. pregnant women, chil-

dren, and patients recovering from an aplastic crisis) and can be treated with folate 

supplements. Rarely in cases of severe HS, patients can develop other manifesta-

tions such as leg ulcers, gout, chronic dermatitis, extramedullary hematopoietic 
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tumors, hematological malignant diseases  (e.g. multiple myeloma and leukemia, 

and angioid streaks).

 Splenectomy is often beneficial to most patients with the treatment elimi-

nating the anemia and hyperbilirubinemia and reducing reticulocyte counts to 

near-normal levels. Splenectomy does involve risk and a serious long-term com-

plication is overwhelming infection with encapsulated bacteria, usually Strepto-

coccus pneumoniae. In some regions  of the world, fulminant parasitic infections 

can occur. Immunization, prophylactic use of penicillin, or early antibiotic treat-

ment can help reduce, but not eliminate, the incidence of postsplenectomy infec-

tion. Splenectomy is recommended between ages 6-9, as the risk of infection is 

higher in young children and the risk of cholelithiasis is higher in children over 10 

years old. An alternative to total splenectomy is partial splenectomy. Partial sple-

nectomy removes enough spleen to reverse anemia and relieve symptomatic sple-

nomegaly while still preserving the immune function of the organ (Perotta et al. 

2008). A laparoscopic approach to the procedure has been developed and a clinical 

study has been done to compare the outcome of a group of patients who underwent 

that procedure to patients  who underwent laparoscopic total splenectomy. Laparo-

scopic partial splenectomy is  associated with more pain, longer oral intake time, 

and a longer hospital stay than laparoscopic total splenectomy, but retained splenic 

function may outweigh these short-term disadvantages. Long-term results  of pa-

tient outcome have yet to be reported for this  more recent therapy (Morinis et al. 

2008). Other alternatives include near-total splenectomy and partial splenic em-

bolization, both of which prove safe and effective for the treatment of HS (Stoehr 

et al. 2005; Kimura et al. 2003).
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CHAPTER II

ELECTRON PARAMAGNETIC RESONANCE

Basic Principles of EPR

Origin of the EPR Signal

 Every electron possesses a magnetic moment, u, and an intrinsic spin angu-

lar momentum with a primary quantum spin number S (S = !) and a secondary 

magnetic component MS (MS = -!. !). Due its  magnetic moment, an electron will 

align itself either parallel (MS = -!) or antiparallel (MS = !) in the presence of an 

external magnetic field with strength B. These two states each have specific ener-

gies, known as the Zeeman effect, with the parallel alignment corresponding to the 

lower energy state and the antiparallel alignment corresponding to the higher en-

ergy state. If the direction is chosen to be along B, the two allowed energy states 

are:

E = −µzB = geβeMsB = ±1
2
geβeB

where ge is the Zeeman (correction) factor for the free electron ge = 2.00232 and !e 

is  the Bohr magneton, which is a physical constant of the electronic magnetic 

moment

βe =
|e|!
2me

= 9.2740154(31)× 10−24JT−1
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Unpaired electrons  can move between the two electronic Zeeman levels by ab-

sorption or emission of electromagnetic radiation of energy h" if that energy 

matches the separation of "E, giving the fundamental resonance equation:

∆E = hν = geβeB

In addition to the external magnetic field, an unpaired electron is affected by the 

nearby nuclei of atoms, which have magnetic dipole moments that generate a local 

magnetic field . In EPR, the interaction between these species is called nuclear hy-

perfine interaction. For a spin label, the unpaired electron (S = !) interacts with 

the nitrogen nucleus  14N, which has  a primary quantum number I (I=1) and a sec-

ondary quantum number MI (MI = -1, 0, +1). In this case, the selection rules for 

EPR absorption ("MS = ±1 and "MI = 0) allow for three transition (Figure 7).
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Figure 7. Energy levels of system with S = ! and I =1

Energy levels and allowed EPR transitions at constant field for a system with S = ! and I 
= 1. Energy levels are represented with horizontal lines marked with MS and MI values. 
The allowed EPR transitions are indicated by the vertical arrows labeled k, l, and m. A 
simulated EPR field sweep spectrum depicting these transitions is shown on the right.
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 Two unpaired electrons in close proximity to each other interact either by 

orbital overlap, known as electron exchange interactions, or through space, known 

as electron-electron dipole interactions. For example, if the electron orbitals of two 

unpaired electrons overlap in a paramagnetic center of moderate size, the system 

will separate into a triplet (S = 1) and a singlet (S = 0) state. The electron-electron 

dipole interaction behaves  like anisotropic hyperfine interaction between elec-

tronic and nuclear magnetic dipoles.

 As with NMR, two relaxation processes exist in EPR. T1, the spin-lattice 

relaxation time, describes the time required for the redistribution of spin-

orientation states back to thermal equilibrium. Other relaxation processes such as 

spin diffusion are characterized by T2, the spin-spin relaxation time. These proc-

esses  have the effect of varying the relative energies of the spin levels rather than 

their lifetimes. For nitroxides, T2 is in the 100-nanosecond range while T1 is nor-

mally in the microsecond range at ambient temperature.

Spin Dynamics

 EPR lineshapes can be affected by any dynamic process in or around the 

paramagnetic center, such as hindered rotation, molecular tumbling, and chemical 

reaction. Lineshape broadening can classified as homogeneous or inhomogeneous 

broadening. Homogeneous broadening arises from a set of equivalent spins with 

identical spin parameters and local fields. Spin lifetime (T1), spin diffusion (T2), 

and dynamic processes contribute to homogeneous linewidth. Inhomogeneous 

broadening from nonequivalent spins is due to the variation of the external mag-

netic field and unresolved hyperfine structure.
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 Conventional EPR operates in the 1 to 100 GHz frequency range, making it 

sensitive dynamics  on the nanosecond time scale. Fast motions of less than 1 ns, 

such as side chain motions of surface residues, give rise to sharp spectra. Interme-

diate motions  of 1 to 10 ns, such as  the backbone motions  of surface exposed 

loops, lead to homogeneously broadened spectral features. Slow motions of 10 ns 

to 1 µs, such as the global tumbling of large globular proteins in solution, leads to 

the spectral features of the anisotropic magnetic interactions. Rigid motions that 

correspond to certain conformational changes and global uniaxial rotations of 

transmembrane proteins within the lipid bilayer result in powder specter in con-

tinuous wave EPR (CW-EPR) (Hustedt and Beth 1999). In biological systems, 

molecular motions can range from 10-14 s (bond vibration) to 10 s (local denatu-

ration). Saturation transfer EPR (ST-EPR) spectroscopy can be used for the slower 

motions to the ms time scale. In ST-EPR, one narrow region of the inhomogene-

ously broadened EPR signal is saturated. The recovery and spreading of the satura-

tion via spin diffusion is studied by monitoring secondary harmonic signals.

Pulsed EPR

 To help understand the complicated motions of a sample, it is advantageous 

to use a rotating coordinate system referred to as the rotating frame (Figure 8). In 

the presence of an external field, B, each electron spin magnetic moment under-

goes precession around the z direction at its Larmor frequency, #B. In the EPR ex-

periment, circularly polarized B1 with a microwave frequency of # is applied per-

pendicular to B, with #B = # at resonance. In a rotating coordinate system with 

angular frequency #, B1 appears stationary along the x-axis and the Larmor pre-
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cession around the z-axis  is  no longer visualized. The bulk magnetization, M, ro-

tates about the x-axis  and is tilted into the xy-plane at the tip angle $ =  |%eB1|tp, 

where %e is  the gyromagnetic ratio of an electron and tp is the length of time B1 is 

applied. In CW-EPR, where B1 maintains a constant amplitude with time, the spins 

are driven back and forth between states MS = ±!. Given an adequate T1 relaxa-

tion process, a population difference is  maintained and a net absorption signal is 

observed. In pulsed EPR, where tp is on the order of several nanoseconds, the exci-

tation amplitude is time dependent. Pulses are often labeled by their tip angles, for 

example a &/2 pulse corresponds to a rotation of M0 by &/2. Combining different 

pulses at different times can generate a plenitude of information regarding a spin 

system. Well developed pulsed techniques  include electron spin echo envelope 

modulation (ESEEM) and double electron electron resonance (DEER) also known 

as pulsed ELDOR (electron electron resonance).

z

B

B1

y

x

y'

'

x'
Figure 8. Rotating frame in relation to lab frame

The Cartesian coordinates (xyz) represent the lab frame. The static magnetic field B lies 
along the z-axis. The oscillating magnetic field B1, perpendicular to B, rotates around the 
z-axis (azimuthal angle ') in the xy-plane at the angular frequency #. The rotating frame 

(x'y'z) also rotates at frequency #. The x'-axis aligns with B1.
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Applications of SDSL in EPR

Site-Directed Spin Labeling

 Spin labels, unlike free radicals, are chemically stable and thus useful in 

EPR experiments. One such agent, methanethiosulfonate spin label (MTSSL), is a 

pyrroline derivative with four methyl groups to protect the unpaired electron in the 

pn orbital of the nitroxide (Figure 9). Without these methyl groups, the nitroxides 

can be easily reduced to hydroxylamine in the presence of a reducing agent such 

as ascorbic acid. Nitroxides can be covalently bound to a number of agents rang-

ing from small molecules to certain components of macromolecules. In the case of 

site-directed spin labeling with MTSSL, the nitroxide binds to free cysteine resi-

dues.

MTSSL }

Side Chain 

Figure 9. The reaction of MTSSL with cysteine

The unsaturated spin label reacts with a free cysteine residue on a protein to generate the 
nitroxide side chain R1. Bond rotation angles (3, (4, and (5 that relate the spin label to 
the cysteine residue are defined. (Klug and Feix 2008)
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 The basic strategy of SDSL benefitted greatly from the development of mo-

lecular cloning and site-directed mutagenesis. The technique requires the substitu-

tion of all the native nondisulfide bonded cysteine residues  with either alanines or 

serines and then reintroducing a single cysteine mutation at the site of interest. The 

reactive SH group can then be modified by the introduction of a nitroxide spin la-

bel. The commercially available ethanethiosulfonate derivatives, such as MTSSL, 

are widely use to generate disulfide linked nitroxide side chains. There is much 

evidence to support that the introduction of these single cysteine mutations and 

spin labeling have minimal effect on the structure and function of the protein. The 

pairing of SDSL with EPR can provide previously unavailable information since it 

is  not limited by protein size nor by the optical properties of the sample. This 

technique is a versatile approach to providing local and global structural informa-

tion.

Side Chain Mobility

 The simplest information that can be obtained from an EPR spectrum con-

cerns spin label motion since the lineshape itself reflects rotational mobility. X-

band CW-EPR is sensitive to motions  in the nanosecond time scale. The dynamics 

of free spin label is described by the rotational correlation time ). With nitroxides, 

) measures the average lifetime of a particular spatial orientation of the nitrogen p 

orbital and its reciprocal is the rate of motion of the spin label (Columbus and 

Hubbell 2002). EPR lineshapes thus  reflect the rotational motions of different cor-

relation times (Figure 10). Free spin label in solution experiences a fast correlation 

time (~0.1 ns) and the resulting EPR spectra contains three sharp lines of ap-
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proximately equal height. As the motion of the side chain is  slowed and the corre-

lation time lengthens, the peaks on the EPR spectra broaden. Since the signal in-

tensity is proportional to the amplitude and the square of the linewidth, the ampli-

tude decreases as the lines broaden.

Figure 10. The relation of correlation time and CW-EPR lineshapes

Simulated X-band CW-EPR lineshapes of a nitroxide spin label at different correlation 
times. The changes in EPR lineshape reflect changes in the rotational motion of the sam-
ple. The first derivative spectrum of the fast rotational motion () * 0) displays three 
sharp lines. As the rate of motion decreases and the correlation time increases, the spec-
trum broadens and becomes more complex. At the rigid limit () = +) the powder spec-
trum can be observed in a system of random oriented single crystals, where each experi-
ences highly anisotropic motion. (Klug and Feix 2008)
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 When the spin label is attached to a protein backbone, the side chain will be 

affected by the rotational diffusion of the protein, internal dynamic modes of the 

side chain, tertiary interactions with nearby moieties, and local backbone structure. 

For larger proteins and macromolecular assemblies, the overall rotation is too slow 

to affect the EPR spectra. The tumbling of small proteins (> ~15kDa), however, 

can affect the spectra. This contribution can be reduced by increasing solution vis-

cosity, for example, by adding 30% (w/w) sucrose to the sample (Mchaourab et al. 

1996). The side chain motion is the primary interest since it is  the motion that is 

affected by tertiary contacts and the local environment. A number of studies have 

shown that the flexibility of MTSSL is generally governed by the two bonds clos-

est to the nitroxide ring, (4 and (5 (Figure 9) (Langen et al. 2000; Columbus et al. 

2001). Even on a solvent exposed helix with no adjacent contacts, the hydrogen 

bond formed between the S, sulfur and the backbone C$ atom restricts the mobility 

about the first two bonds, limiting the internal motion of the R1 side chain to 

isomerizations around the (4/(5 dihedral angles (Langen et al. 2000). Therefore the 

motion of the spin label and the backbone fluctuations are linked.

 Tertiary contacts with nearby side chains have more significant effects  on 

EPR spectra. Spin labels with these interactions exhibit complex lineshapes and 

site buried in the core of a protein often display spectra approaching the rigid 

limit. Parameters regarding mobility can be attained from components of the spec-

tra, such as the peak-to-peak linewidth and the center linewidth. More detailed 

quantitative analysis  can be performed by simulating the EPR spectrum in order to 

obtain rotational correlation times and other order parameters.
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Solvent Accessibility

 The accessibility of the R1 side chain to the solvent provides a good deal of 

structural information about the protein. Since the power saturation technique util-

izes the fact that certain paramagnetic reagents  affect the relaxation rate of the spin 

label, it is a useful tool for studying solvent accessibility. When under nonsaturat-

ing conditions, the height of the spectral line increases linearly with the square 

root of the incident power, P!. As the microwave power increases, the sample can-

not relax fast enough and the relationship is no longer linear. At even higher 

power, the height of the spectral line decreases. When certain paramagnetic rea-

gents react with the spin label, the relaxation rate is increased and more power is 

able to be absorbed before saturation. The two main paramagnetic reagents typi-

cally used are O2, which is mainly found in the hydrophobic portion of the lipid 

bilayer, and nickel compounds such as nickel(II) ethylenediamine diacetate 

(NiEDDA), which are water soluble. Nitrogen is used to purge molecular oxygen 

from the sample as a control.

 R1 solvent accessibility is sensitive to the local environment since it has a 

large influence on the collision frequency between the nitroxide and the paramag-

netic reagent. The direct measure of the bimolecular collision rate between the 

spin label and the paramagnetic reagent is  the value "P!. P! is the power at which 

the height of the central linewidth is  half of its  unsaturated intensity. In the case of 

NiEDDA, the P! of the N2 control is subtracted from the P! in the presence of 

NiEDDA to give "P!. For a solvent-exposed residue, a high "P! value would be 

observed. In addition, secondary structure can be observed for a-helices  and b-

strands that experience amphipathic environments. An $- helix, for example, 
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would experience a "P! with a periodicity of 3.6 (Figure 11A) while a --strand 

would have an periodicity of 2 (Figure 11B). Since oxygen is  lipid-soluble, it can 

be used together with NiEDDA to study the depth of a residue within the lipid bi-

layer. The "P! for the two reagents would be the inverse of one another, with 

higher "P!(O2) and lower "P!(NiEDDA) indicating a residue found in the hydro-

phobic region of the membrane. Changes in O2 and NiEDDA accessibility can also 

be reflective of conformational changes. This  method has been useful for studying 

dynamic processes such as light activation of rhodopsin (Farrens et al. 1996) and 

gating of the mechanosensitive channel MscL (Perozo et al. 2002).
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Figure 11. Solvent accessibility of secondary structures

(a): A surface $-helix on a water soluble protein displays a pattern of NiEDDA accessibil-
ity  that repeats approximately  every 4th residue, following the 3.6 residue turn of a typi-
cal helix. 

(b): The solvent accessibility  of a surface --strand alternates between a high and low "P!, 
indicating solvent-exposed and buried residues, respectively. (Klug and Feix 2008)

Spin-Spin Distance

 The ability to make distance measurements between two spin labels is a 

rapidly developing field of EPR. CW-EPR can make measurements between 8 Å 

to 25 Å where the spin-spin interactions are larger than the inhomogeneous line 

broadening. Pulsed EPR techniques can cover distances from 17 Å to 80 Å. These 

distance measurements  can be used for many purposes, such as  monitoring con-
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formational changes and developing structural models. Distance measurements 

depend on the dipolar coupling interaction between the unpaired electrons of the 

two spin labels. In CW-EPR, magnetic dipole interactions  result in line broadening 

and an accompanying decrease in signal amplitude. Quantitative analysis can be 

performed through a few different approaches (Altenbach et al. 2001; Steinhoff et 

al. 1997; Hustedt et al. 1997). The resolution of such methods depends on the 

flexibility of the R1 side chain, with highly immobilized spin labels giving a reso-

lution on the order of 0.1-0.2 Å (Hustedt et al. 1997).

 Pulse EPR techniques, like DEER, have a larger distance range that allow 

for greater applications. Since the dipole interactions at these distances are smaller 

than the inhomogeneous broadening, three strategies have been implemented to 

separate the dipole interactions. The first method involves refocusing all interac-

tions of an observer spin with a second unpaired electron in an echo experiment. 

The dipolar coupling is then reintroduced by an inversion pulse applied to the sec-

ond spin. The second method is to observe the double quantum coherence caused 

by the coupling of the two spins. The third method is to refocus  all interactions ex-

cept the coupling using a solid echo. These methods  provide the modulations be-

tween the electron spins  that can be analyzed to determine the distance between 

two labels.
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CHAPTER III

GENERAL EXPERIMENTAL METHODS

CW-EPR Measurements

 X-band (9.8 GHz) CW-EPR spectra were collected using a Bruker EMX 

spectrometer equipped with a TM110 cavity (BrukerBiospin, Billerica, MA) at 

room temperature. Samples were drawn into 50 µL glass capillaries (VWR, West 

Chester, PA) and sealed with Critoseal sealant (Fisher, Pittsburgh, PA).

Solvent Accessibility

 Solvent accessibility of individual spin-labeled residues was measured on 

samples diluted to 100 µM spin concentration in 20 nM NaH2PO4, 100 mM NaCl, 

pH 6.8. NiEDDA was added to a final concentration of 5 mM. Samples were 

purged of molecular oxygen by flowing nitrogen gas over the sample contained in 

a TPX capillary for 20 minutes prior to and during measurements. An ER4123D 

dielectric resonator was utilized for collection. A 20 Gauss scan of the central 

resonance line for each mutant was carried out using a 1 Gauss  modulation ampli-

tude of 100 kHz frequency. A total of 24 scans were separately recorded at micro-

wave powers ranging from 1 mW to 200 mW using a 1dB attenuation per step. 

Data were analyzed using Origin 6.1 software (OriginLab Corporation, Northamp-

ton, MA) by a non-linear least squares curve fitting of the spectral amplitude (A0) 

versus the square root of microwave power (P0) using the equation:
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A0 =
cΛ
√

P0

[1 + (21/ε − 1)P0/P1/2]ε

where A0 is the peak-to-peak amplitude of the first derivative spectrum, c is the 

instrumental proportionality constant, LAMBDA is the instrumental factor, P0 is 

the input power, ! is the lineshape adjustment parameter, and P! is  the half satura-

tion power. The NiEDDA accessibility was calculated by the following equation:

Ac(NiEDDA) =
P1/2(NiEDDA)− P1/2(N2)

∆H0

where Ac is the accessibility, P!(NiEDDA) is the half saturation power in the 

presence of 5 mM NiEDDA, P!(N2) is the half saturation power in the absence of 

NiEDDA, and "H0 is the central line width (Subczynski and Hyde 1981; Alten-

bach et al. 1989).
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CHAPTER IV

STRUCTURE OF CDB3 HEREDITARY SPHEROCYTOSIS VARIANT 

G130R: BAND 3 FUKUOKA

Introduction

 Hereditary spherocytosis (HS) is  familial hemolytic disorder clinically 

characterized by anemia, jaundice, and splenomegaly (See HS section for details). 

HS occurs in about 1 in every 2000 people. In HS, weakened “vertical” interac-

tions of the cytoskeleton result in membrane blebbing, leading to a decreased sur-

face area-to-volume and the cell becomes spherical. Spherocytes are less deform-

able and have increased osmotic fragility. These cells are unable to pass through 

the narrow cords of the spleen where they are removed from circulation and de-

stroyed, resulting in hemolytic anemia. Mutations causing to HS have been identi-

fied in the genes ANK1, SLCA1, SPTA1, SPTB, and EPB42 that encode for the 

proteins ankyrin, band 3, !-spectrin, "-spectrin, and protein 4.2, respectively. Mu-

tations in band 3 make up 15-20% of cases of HS.

 Band 3, also known as anion exchanger 1 (AE1), is  one of three members 

of CL-/H3CO- anion exchangers. Band 3 has two functionally distinct domains, a 

transmembrane and cytoplasmic domain. The transmembrane domain of band 3 

(tdb3) makes up the C-terminal end of the protein is  responsible for the transport 

of anions across the erythrocyte membrane. The N-terminal cytoplasmic domain 

of band 3 (cdb3) serves as an organization center for a number of cytoplasmic and 

membrane-associated proteins at the lipid bilayer (Lux et al. 1989).
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 Numerous band 3 mutations have been identified in patients  with HS. A 

study of patients with HS showed that patients with frameshift and nonsense muta-

tions lacked band 3 mRNA in their reticulocytes, leading to an overall decrease in 

band 3 expression. Point mutations, on the other hand, displayed comparable lev-

els of normal and mutant band 3 (Jarolim et al. 1996). Many point mutations in the 

transmembrane domain of band 3 have been shown to lead to defective trafficking 

of the protein to the erythrocyte membrane (Dhermy et al. 1999; Quilty and Re-

ithmeier 2000; Toye et al. 2008). In the cytoplasmic domain of band 3, three muta-

tions have been identified in association with HS. These mutants (E40K, G130R, 

and P327R) still form dimers at the erythrocyte membrane and have no significant 

changes in stability, suggesting the mutations interfere with the binding of cdb3 to 

ankyrin or protein 4.2 (Bustos and Reithmeier 2006). Indeed, past studies have 

linked the P327R mutation to decreased protein 4.2 binding at the erythrocyte 

membrane (Jarolim et al. 1992). To better understand the mode of this disruption, 

site-directed spin labeling was used in conjunction with electron paramagnetic 

resonance and double electron-electron resonance in order to study the structural 

changes in the P327R mutant. While the P327R mutation does not disrupt the di-

mer, it does alter the packing of the C-terminal end of helix 10 in the dimerization 

arm and elicit spectral changes in the N-terminal portion of helix 10 and some 

residues  in "-strand 11. These results, taken together with previous studies, indi-

cate a potential site for interaction between protein 4.2 and cdb3 (Zhou et al. 

2007).

 Of the remaining two mutants, E40K is located at the unresolved N-

terminus of cdb3 while G130R is  located on the surface at the start of helix 2. The 
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G130R mutant provides  an interesting target for the study of structural changes 

and protein-protein interactions. Clinically, G130R results in a mild form of HS 

with only a 9.3% reduction in band 3 content in the red blood cell. The protein 4.2 

deficiency was more substantial with the protein 4.2 levels at 45% that of normal 

cells  (Inoue et al. 1998). To examine the structural changes caused by this muta-

tion, site-directed spin labeling (SDSL) studies using a combination of CW-EPR 

and power saturation experiments  were conducted on a cysteineless cdb3 back-

ground with or without the G130R mutation. In this chapter, data shows that sub-

stitution of arginine in place of glycine at position 130 results  in local structural 

changes. The mutation does not affect the dimerization region, but does alter the 

packing of surface !-helix 2 comprised of residues 128-141.

Experimental Methods

Cloning and Site-directed Mutagenesis

 The wildtype construct of residues 1-379 of AE1, designated pZZ3_WT, 

was readily available from previous work. The G130R mutation was introduced 

into this construct using a pair of primers:

 Forward 5' GAC CTC CCT GGC TAG AGT GGC CAA CCA 3'

 Reverse 5' TGG TTG GCC ACT CTA GCC AGG GAG GTC 3'

and designated as pZZ13_WT. The cysteineless mutants (pZZ3 and pZZ13) and 

single cysteine mutants  were constructed by using the QuikChange Site-Directed 

Mutagenesis  Kit (Stratagene, La Jolla, CA). The sequences of all mutants were 

checked by DNA sequencing.
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Protein Preparation and On-Column Labeling

 Plasmids were transformed into BL21 Gold (DE3) E. coli competent cells 

(Stratagene, La Jolla, CA). The auto-induction protocol developed by Dr. F. Wil-

liam Studier (Brookhaven National Laboratory) was used for the expression of 

cdb3 (Studier 2005). Overnight starter cultures  were grown in PAG at 37°C and 

200 µL of the starter cultures were used to inoculate 200 mL ZYP-5052 for over-

night auto-induction (14 hours). Saturation (A600 = 4.8~7.0) was usually reached 

by 10 hours at 37°C. Additional incubation for 4 hours ensured maximum lactose 

auto-induction. His-tagged cdb3 purification was  carried out using Ni-NTA resin 

as described by the manufacturer (Qiagen, Valencia, CA). Protein concentration 

was determined by UV absorption at 280 nm using an extinction coefficient of 

33,000 M-1cm-1. Purity of the expressed proteins was checked by SDS-PAGE. 

Single cysteine mutants were spin-labeled with a 10-fold molar excess  of 1-oxyl-

2,2,5,5-tetramethyl-#3-pyrroline-3-methyl methanethiosulfonate spin label 

(MTSSL; Toronto Research Chemicals, North York, ON Canada) in the dark at 

room temperature for 2 hours and then overnight at 4°C in a buffer containing 50 

mM NaH2PO4, 300 mM NaCl, and 200 mM imidazole, pH 8.0. Unbound label 

was removed from all samples by diluting and reconcentrating four times (~ 1:50 

v/v) in an Amicon Ultra-4 Centrifugal Filter Device (30 kDa nominal molecular 

weight limit, Millipore, Bedford, MA) using a buffer containing 20 mM NaH2PO4, 

100 mM NaCl, 1 mM EDTA, pH 6.8.  All EPR measurements were collected with 

the spin-labeled samples in this  buffer at pH 6.8. Spin-labeled protein concentra-

tions were determined using double integration of CW-EPR measurements with a 
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1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol) standard. 3D 

structures were visualized using MacPyMOL (DeLano Scientific LLC, San Carlos, 

CA).

Experimental Results

G130R Mutant Dimer Remains Unperturbed

 The crystal structure of cdb3 depicted a dimeric conformation at pH 4.8 

(Zhang et al. 2000) that was confirmed by SDSL studies of the solution structure 

at neutral pH (Zhou et al. 2005). The dimerization arms span from residue 304 to 

357 and consist of "-strand 11 situated between !-helixes 9 and 10. These ele-

ments interlock the two monomers through extensive backbone and side chain in-

teractions (Zhang et al. 2000). To analyze the global structure and oligermerization 

of the G130R mutant, site directed spin labeling coupled with electron paramag-

netic resonance (SDSL-EPR) was employed with and without the G130R muta-

tion. Single cysteine mutants  of residues both near the dimer interface and distrib-

uted around the peripheral globular domain were generated and spin labeled with 

MTSSL, designated as side chain R1 (Figure 12) (Berliner et al. 1982; Langen et 

al. 2000).

 The spectra of most sites  were showed little difference between the G130 

and R130 backgrounds  for all sites  save two. The spectra of 105R1 showed only a 

small difference in lineshape while the fast motion of residue 277, found on the 

surface of the globular domain, is slightly dampened in the G130R mutant. Similar 

side chain mobility, lineshape components, and splitting was found for the remain-
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ing sites studied- the highly mobile lineshape of 142R1, which is found at the start 

of the loop connecting helix 2 and helix 3; the immobilized lineshape of 290R1, 

which is situated on the interior surface of helix 7; the slightly mobile 312R1, 

which is  located on the !-helix of the dimerization arm in the space between the 

two monomers; and the marked broadening and three-peak splitting of 108R1 due 

to dipolar coupling of the spin labels between the two monomers (Figure 12).

39



Figure 12. CW-EPR characterization of residues around the dimer interface

Top panel: Ribbon structure of cdb3 dimer with dimerization arms shown in light green 

and R130 in yellow stick. C! atoms of spin-labeled residues are shown as spheres: 105 

(dark purple), 108 (wheat), 142 (light blue), 277 (green), 290 (magenta), 312 (orange).

Bottom panel: EPR lineshapes of G130 cdb3 (black line) and R130 cdb3 (red line) with 

black arrows indicating spectra with observable differences. The 120 Gauss sweep spec-

tra are normalized to the same amplitude for ease of comparison.
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 Further SDSL-EPR studies were performed on residues  339-345, found 

along the length of helix 10. These sites  form part of the dimerization arm and fol-

low an i to i + 3 pattern. Lineshapes are remarkably similar between the G130 and 

R130 backgrounds with each residue maintaining its original side chain mobility 

following the introduction of the G130R mutation (Figure 13). Two of these sites, 

340R1 and 342R1 (Figure 14), were selected for double electron-electron reso-

nance experiments, carried out by Dr. Eric Hustedt (Vanderbilt University, Nash-

ville, TN). Results of these experiments showed no change in the intramolecular 

distances  between either pair of residues (Figure 14). Together, these findings 

show the dimer interface remains unchanged in the G130R mutant.
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Figure 13. EPR characterization of residues  339-345 on the dimerization arms

Top panel: The structure and location of residues 339-345 (pink) on the ribbon diagram 

of the cdb3 dimer (blue and red).

Bottom panel: The CW-EPR spectrum at each position is normalized to the same ampli-

tude and with a total scan width of 100 Gauss.
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Figure 14. DEER characterization of residues 340 and 342 on the dimerization arms

Top panel: Set up for DEER experiments with residue 340 (cyan stick) and residue 342 

(purple stick) spin labeled. Residue 340 is located on the surface while residue 342 is bur-

ied within the dimer interface. The dotted black line represents the intramolecular dis-

tances measured for each experiment.

Bottom panel: Analysis of DEER results for G130 cdb3 (blue) and R130 cdb3 (red) 

shows no significant change in either the magnitude or distribution of distances for site 

340 (left) and 342 (right).
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Structural Rearrangement in the !2 Surface Helix

 While residue 130 faces out from the surface, making it less likely to be in-

volved in the internal packing of the protein and the $, % dihedral angles common 

to arginine are also agreeable to the helical secondary structure, the G130R muta-

tion inserts a residue with very different steric and electrostatic properties. As 

such, the substituted arginine residue might disrupt or alter the normal folding of 

the surface helix. The local effects  of the G130R mutation were studied by placing 

10 R1 side chains along the N-terminal half of helix 2 (Figure 15). The purity of 

samples was checked with SDS-Page and concentrations determined by double 

integration of EPR signals.

 Helix 2 of cdb3 is  comprised of residues 128 to 141. CW-EPR spectra of 

single cysteine mutants from residue 127 to residue 137 showed differences  in the 

lineshapes for residues 131-136 when comparing the normal cdb3 to the G130R 

mutant (Figure 15). The altered lineshapes indicate a change in the side chain mo-

bilities of these residues for a portion of the G130R population. Residues 131, 132, 

135, and 136 are found on the internal surface of helix 2 and residue 133 faces the 

solvent. Each of these residues show only slight changes  in species populations 

with the G130R mutation, while residue 134 shows a more notable change. Fol-

lowing the introduction of the G130R mutation, a significant population of slower-

moving species  appears in addition to the typically fast-moving, solvent exposed 

species. Accessibility of residues 127 to 137 with the water soluble paramagnetic 

agent NiEDDA was measured using a dielectric resonator (Farahbakhsh et al. 

1992; Hubbell et al. 1996). Solvent accessibility of the G130 and R130 back-

grounds are plotted as a function of residue number (Figure 16). The accessibility 
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plot displays  that the approximate periodicity of 4 characteristic of an a-helix is 

maintained in the G130R mutant. The frequency of collision between the spin la-

bel and paramagnetic agent is  similar for these residues, suggesting that the overall 

tertiary environment of these residues  remains the same with one side of the helix 

on the surface and the other facing the hydrophobic core. These results show that 

the backbone of helix 2 retains both its secondary structure and orientation.
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Figure 15. EPR characterization of residues 127-137 on helix 2

Top panel: Residues 127-129 and 137 (pink) and residues 131-136 (green) are displayed 

on a ribbon diagram of the cdb3 dimer. R130 is shown in yellow stick. The green spheres 

coincide with the residues that showed a shift in the EPR spectra from the wild type.

Bottom panel: 100 Gauss scans of residues 127-137 with normalized amplitudes. Arrows 

indicate spectrum that show changes between the G130 (black) and R130 (red) samples.
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Figure 16. NiEDDA accessibility of the R1 side chain from residues 127-137

Black squares represent the NiEDDA accessibility of residues 127-137 of the wt-cdb3. 

Red circles represent the NiEDDA accessibility of residues 127-137 of the G130R mu-

tant.

Discussion

 As with many mutations linked to human disease, pathogenic mutations in 

AE1 can alter protein function in a number of different ways including abnormal 

biosynthesis levels, incorrect trafficking, misfolding, and functional defects. AE1 

mutations are responsible for HS, SAO, and distal renal tubular acidosis (dRTA). 

The importance of cdb3’s  role as an organization center for various  protein-protein 

interactions  related to membrane stability and deformability is  evidenced by the 

mutations in this  domain that lead to diseases  (HS, SAO) associated with mem-

brane defects. The crystal structure of cdb3 (Zhang et al. 2000) and solution struc-

ture of cdb3 (Zhou et al. 2005) provide a means to deduce the structural signifi-

cance of mutation sites that result in abnormal red blood cell shape but do not alter 
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band 3 expression. Substitution of the glycine at position 130 with arginine (desig-

nated as Band 3 Fukuoka) occurs at the solvent-exposed surface of helix 2, a part 

of the peripheral globular domain (Inoue et al. 1998). Sedimentation equilibrium, 

circular dichromism, and thermal denaturation experiments showed the G130R 

mutant maintained the same oligomerization state, secondary structure, and stabil-

ity as the wild-type protein, indicating smaller scale structural changes (Bustos and 

Reithmeier 2006).

 SDSL-EPR experiments, capable of analyzing of such changes  to the envi-

ronment and positioning of individual residues  (Klug and Feix 2008), were util-

ized for the comparison of side chain mobility and solvent accessibility at various 

sites on both the wild type and G130R mutant. These locations  were distributed 

through the globular domain, the dimer interface, or adjacent to the site of the mu-

tation. The latter group of sites are immediately in the vicinity of the mutation site 

on helix 2. 

 As shown in the crystal structure, G130 is  found on the solvent-accessible 

surface near the start of helix 2. Our data is in agreement with previous studies 

showing the global structure and dimer interface remain unchanged by the G130R 

mutation. With regards  to the local backbone structure, arginine is unlikely to dis-

rupt the structure of helix 2 by its  substitution due to its !, & angles giving it a 

high propensity for involvement in right-handed helices. The electrostatic and 

steric qualities, on the other hand, are very different from glycine. Arginine is a 

long, flexible side chain with a positive charge, making it hydrophilic, whereas 

glycine is small and hydrophobic. As a solvent-exposed residue, such a substitu-

tion should not be unfavorable.
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 Replacing the glycine with an arginine would alter the local electrostatic 

field and that could cause the slight shift in the side chain interactions of nearby 

residues  along helix 2. Simple inspection of the spectra reveals that while the spec-

tral shape of both 131R1 and 132R1, the decrease in peak heights indicate slowed 

side chain motion. More notable are the changes  in the spectra for 133R1 and 

134R1. These two residues are both on the solvent-exposed side of the helix and 

the overall shape of their spectra reflect as  such. The differences in the spectra, 

more specifically the appearance of a peak more representative of slow motion in 

the spectrum for 134R1 and an opposite shift in 133R1, are indicative of changes 

in the tertiary contacts for these residues. While the R1 side chain of 133 becomes 

more mobile, the R1 side chain for 134 increases the number of tertiary contacts. 

Residue 136 is buried on the hydrophobic side of the helix and its spectral appear-

ance, while different between the wild type and mutant species, still approaches 

the rigid limit. 137R1 is the last side chain to exhibit a change in its  spectrum, dis-

playing an increased population with slower movement as well as a slight change 

in the central line. While the side chain mobility of these sites alters in some man-

ner, the solvent accessibility does not. These data suggest that the helix does not 

undergo any manner of rotation though the side chain interactions change. This 

work highlights the use of SDSL-EPR in evaluating small structural changes and 

provides further information towards understanding the molecular pathophysiol-

ogy of hereditary spherocytosis.
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Further Work

 Though these changes seen in the EPR data for the G130R mutation are 

subtle, the structural differences still result in altered protein-protein interactions, 

most notably is  the loss of protein 4.2. Since protein 4.2 is believed to bind in the 

region of the dimerization arm, it is  more likely that helix 2 influences the cdb3-

ankyrin interaction, which stabilizes  the binding of protein 4.2 with cdb3 (Rybicki 

et al. 1995). Ankyrin has been shown to interact with cdb3 on the surface opposite 

the dimer interface and modeling using the protein docking program 3D-Dock 

proposes the contact surface to include the !-helix 3, the loops  connecting the first 

and second "-strands, the fifth "-strand and !-helix 2 that follows, along with "-

strands six to ten and !-helix six (Figure 17) (Chang and Low 2003; Michaely et 

al. 2002). Further evidence for this surface as the ankyrin binding interface comes 

from site-directed fluorescence labeling (SDFL) that showed residues near helix 2 

experienced a change in exposure upon binding of ankyrin to normal cdb3 (Figure 

18 and Table 1) (Zhou thesis).
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Figure 17. Model of the interaction between cdb3 and ankyrin

Ribbon diagram of the computer generated docking of ankyrin to cdb3. Ankyrin (green) 

interacts with the peripheral of cdb3’s globular domain. The proposed binding site on 

cdb3 is displayed in dark purple while the rest  of the dimer is displayed in gray. (Mi-

chaely et al. 2002)
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Figure 18. Ankyrin-binding interface mapped on the cdb3 dimer

Surface rendering of the cdb3 dimer structured. The colored legend bar displays the 

linear-gradient scale of blue or red shift  of the maximum emission wavelength ('max) 

upon ankyrin binding. Residue 130 is displayed in green. Residues tested on the same 

face of the globular domain are colored according to the values of #'max (Table 1).

Table 1. 'max shift upon ANK_D34 of cdb3

Residue # 127 133 137 148 151 152 155 156

'cdb3 (nm) 536 531 526 531 521 524 527 503

'cdb3+ANK_D34 (nm) 516 527 514 531 512 499 525 499

#'max = 'cdb3 - 'cdb3+ANK_D34 

(nm)

20 4 12 0 9 25 2 4
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 Since the G130R mutation is  located on the surface-exposed side of helix 2, 

it provides  an opportunity to better understand the interaction between cdb3 and 

ankyrin. For this purpose, we plan to use SDSL-EPR experiments in order to study 

the role of helix 2 in the binding of ankyrin. CW-EPR experiments with cdb3 in 

the presence of ankyrin can provide a glimpse at the tertiary contacts to residues 

along helix 2 and how these contacts may change in the G130R mutant. Quantita-

tive analysis of spin label mobility could also be useful in gauging the interaction 

between specific residue side chains  on cdb3 with ankyrin. Perhaps more informa-

tive, however, would be the use of NiEDDA accessibility studies to examine the 

solvent exposure of cdb3 upon binding ankyrin. For wild type cdb3, one would 

expect that the surface residues of helix 2 would become less  exposed if they are 

involved in the interface with ankyrin. Structural rearrangements upon binding, for 

example if the helix rotates, can also be observed based on the pattern of solvent 

accessibility. Comparing the changes with the wild type cdb3 and the G130R mu-

tant in both the presence of ankyrin can provide information on how the small 

structural changes seen in this work affect helix 2 as part of the binding surface.

53



REFERENCES

Agre, P., Orringer, E.P., and Bennett, V. (1982) Deficient red-cell spectrin in se-

vere, recessively inherited spherocytosis. N Engl J Med, 306(19):1155-61.

Altenbach, C., Froncisz, W., Hyde, J.S., and Hubbell, W.L. (1989) Conformation 

of spin-labeled melittin at membrane surfaces investigated by pulse saturation 

recovery and continuous wave power saturation electron paramagnetic reso-

nance. Biophys J, 56(6):1183-91.

Altenbach, C., Oh, K.J., Trabanino, R.J., Hideg, K., and Hubbell, W.L. (2001) Es-

timation of inter-residue distances in spin labeled proteins at physiological 

temperatures; experimental strategies and practical limitations. Biochemistry, 

40(51):15483-92.

Anong, W.A., Weis, T.L., and Low, P.S. (2006) Rate of rupture and reattachment 

of the band 3-ankyrin bridge on the human erythrocyte membrane. J Biol 

Chem, 281(31):22360-6.

Bennett, V. (1989) The spectrin-actin junction of erythrocyte membrane skeletons. 

Biochim Biophys Acta, 988(1):107-21.

Bennett, V. and Stenbuck, P.J. (1979) The membrane attachment protein for spec-

trin is associated with band 3 in human erythrocyte membranes. Nature, 

280(5722):468-73.

Bennett, V. and Stenbuck, P.J. (1980) Association between ankyrin and the cyto-

plasmic domain of band 3 isolated from the human erythrocyte membrane. J 

Biol Chem, 255(13)6424-32.

Berlinger, L.J., Grunwald, J., Hankovsky, H.O., and Hideg, K. (1982) A novel re-

versible thiol-specific spin label: papain active site labeling and inhibition. 

Anal Biochem, 119(2):450-5.

Beth, A.H., Balasubramanian, K., Wilder, R.T., Venkataramu, S.D., Robinson, 

B.H., Dalton, L.R., Pearson, D.E., and Park, J.H. (1981) Structural and mo-

tional changes in glyceraldehyde-3-phosphate dehydrogenase upon binding to 

the band 3 protein of the erythrocyte membrane examined with [15N,2H]male-

imide spin label and electron paramagnetic resonance. Proc Natl Acad Sci U S 

A, 78(8):4955-9.

54



Blackman, S.M., Hustedt, E.J., Cobb, C.E., and Beth, A.H. (2001) Flexibility of 

the cytoplasmic domain of the anion exchange protein, band 3, in human eryth-

rocytes. Biophys J, 81(6):3363-76.

Brody, J.P., Han, Y., Austin, R.H., and Bitensky, M. (1995) Deformation and flow 

of red blood cells in a synthetic lattice: evidence for an active cytoskeleton. 

Biophys J, 68(6):2224-32.

 

Bustos, S.P. and Reithmeier, R.A. (2006) Structure and stability of hereditary 

spherocytosis mutants of the cystolic domain of the erythrocyte anion ex-

changer 1 protein. Biochemistry,  45(3):1026-34.

 

Cabantchik, Z.I. and Rothstein, A. (1974) Membrane proteins related to anion 

permeability of human red blood cells. I. Localization of disulfonic stilbene 

binding sites in proteins involved in permeation. J Membr Biol, 15(3):207-26.

Campanella, M.E., Chu, H., and Low, P.S. (2005) Assembly and regulation of a 

glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl 

Acad Sci U S A, 102(7):2402-7.

Chang, S.H. and Low, P.S. (2003) Identification of a critical ankyrin-binding loop 

on the cytoplasmic domain of erythrocyte membrane band 3 by crystal struc-

ture analysis and site-directed mutagenesis. J Biol Chem, 278(9):6879-84.

Chasis, J.A. and Mohandas, N. (1986) Erythrocyte membrane deformability and 

stability: two distinct membrane properties that are independently regulated by 

skeletal protein associations. J Cell Biol, 103(2):343-50.

Columbus, L. and Hubbell, W.L. (2002) A new spin on protein dynamics. Trends 

Biochem Sci, 27(6):288-95.

Columbus, L., Kálai, T., Jekö, J., Hideg, K., and Hubbell, W.L. (2001) Molecular 

motion of spin labeled side chains in alpha-helices: analysis by variation of 

side chain structure. Biochemistry, 40(13):3828-46.

Crandall, E.D., Mathew, S.J., Fleischer, R.S., Winter, H.I., and Bidani, A. (1981) 

Effects of inhibition of RBC HCO3
-/Cl- exchange on CO2 excretion and down-

stream pH disequilibrium in isolated rat lungs. J Clin Invest, 68(4):853-62.

55



Davis, L., Lux, S.E., and Bennett, V. (1989) Mapping the ankyrin-binding site of 

the human erythrocyte anion exchanger. J Biol Chem, 264(16):9665-72.

Dacie, J.V. and White, J.C. (1949) Erythropoiesis with particular reference to its 

study by biopsy of human bone marrow: a review. J Clin Pathol, 2(1):1-32.

Delaunay, J. (2002) Molecular basis of red cell membrane disorders. Acta Haema-

tol, 108(4):210-8.

Dhermy, D., Burnier, O., Bourgeois, M., and Grandchamp, B. (1999) The red 

blood cell band 3 variant (band 3 Biceêtrel:R490C) associated with dominant 

hereditary spherocytosis causes defective membrane targeting of the molecule 

and a dominant negative effect. Mol Membr Biol, 16(4):305-12.

Fairbanks, G., Steck, T.L., and Wallach, D.F. (1971) Electrophoretic analysis of 

the major polypeptides of the human erythrocyte membrane. Biochemistry, 

10(13):2606-17.

Farahbakhsh, Z.T., Altenbach, C., and Hubbell, W.L. (1992) Spin labeled cysteines 

as sensors for protein-lipid interaction and conformation in rhodopsin. Photo-

chem Photobiol, 56(6):1019-33.

Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L., and Khorana, H.G. (1996) 

Requirement of rigid-body motion of transmembrane helices for light activa-

tion of rhodopsin. Science, 274(5288):768-70.

Furuya, W., Tarshis, T., Law, F.Y., and Knauf, P.A. (1984) Transmembrane effects 

of intracellular chloride on the inhibitory potency of extracellular H2DIDS. 

Evidence for two conformations of the transport site of the human erythrocyte 

anion exchanger protein. J Gen Physiol, 83(5):657-81.

Galtieri, A., Tellone, E., Romano, L., Misiti, F., Bellocco, E., Ficarra, S., Russo, 

A., Di Rosa, D., Castagnola, M., Giardina, B., and Messana, I. (2002) Band-3 

protein function in human erythrocytes: effect of oxygenation-deoxygenation. 

Biochim Biophys Acta, 1564(1):214-8.

Groves, J.D. and Tanner, M.J. (1999) Structural model for the organization of the 

transmembrane spans of the human red-cell anion exchanger (band 3;AE1). 

Biochem J, 344 Pt 3:699-711.

56



Harrison, M.L., Isaacson, C.C., Burg, D.L., Geahlen, R.L., and Low, P.S. (1994) 

Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J Biol 

Chem, 269(2):955-9.

Hubbell, W.L., Mchaourab, H.S., Altenbach, C., and Lietzow, M.A. (1996) Watch-

ing proteins move using site-directed spin labeling. Structure, 4(7):779-83.

Hustedt, E.J., Smirnov, A.I., Laub, C.F., Cobb, C.E., and Beth, A.H. (1997) Mo-

lecular distances from dipolar coupled spin-labels: the global analysis of multi-

frequency continuous wave electron paramagnetic resonance data. Biophys J, 

72(4):1861-77.

Hustedt, E.J. and Beth, A.H. (1999) Nitroxide spin-spin interactions: application to  

protein structure and dynamics. Annu Rev Biophys Biomol Struct, 28:129-53.

Inoue, T., Kanzaki, A., Kaku, M., Yawata, A., Takezono, M., Okamoto, N., Wada, 

H., Sugihara, T., Yamada, O., Katayama, Y., Nagata, N., and Yawata, Y. (1998) 

Homozygous missense mutation (band 3 Fukuoka: G130R): a mild form of he-

reditary spherocytosis with near-normal band 3 content and minimal changes 

of membrane ultrastructure despite moderate protein 4.2 deficiency. Br J Hae-

matol, 102(4):932-9.

Jarolim, P., Palenk, J., Amato, D., Hassan, K., Sapak, P., Nurse, G.T., Rubin, H.L., 

Zhai, S., Sahr, K.E., and Liu, S.C. (1991) Deletion in erythrocyte band 3 gene 

in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A, 

88(24):11022-6.

Jarolim, P., Palek, J., Rubin, H.L., Prchal, J.T., Korsgren, C., and Cohen, C.M. 

(1992) Band 3 Tuscaloosa: Pro327----Arg327 substitution in the cytoplasmic 

domain of erythrocyte band 3 protein associated with spherocytic hemolytic 

anemia and partial deficiency of protein 4.2. Blood, 80(2):523-9.

Jarolim, P., Murray, J.L., Rubin, H.L., Taylor, W.M., Prchal, J.T., Ballas, S.K., 

Snyder, L.M., Chrobak, L., Melrose, W.D., Brabec, V., and Palek, J. (1996) 

Characterization of 13 novel band 3 gene defects in hereditary spherocytosis 

with band 3 deficiency. Blood, 88(11):4366-74.

 

Jenkins, J.D, Kezdy, F.J., and Steck, T.L. (1985) Mode of interaction of phos-

phofructokinase with the erythrocyte membrane. J Biol Chem, 

260(19):20426-33.

57



Kimura, F., Ito, H., Shimizu, H., Togawa, A., Otsuka, M., Yoshidome, H., Shima-

mura, F., Kato, A., Nukui, Y., Ambiru, S., and Miyazaki, M. (2003) Partial 

splenic embolization for the treatment of hereditary spherocytosis. AJR Am J 

Roentgenol, 181(4):1021-4.

Klug, C.S. and Feix, J.B. (2008) Methods and applications of site-directed spin 

labeling EPR spectroscopy. Methods Cell Biol, 84:617-58.

Korsgren, C. and Cohen, C.M. (1988) Associations of human erythrocyte band 

4.2. Binding to ankyrin and to the cytoplasmic domain of band 3. J Biol Chem, 

263(21):10212-8.

Kumar, V., Abbas, A., and Fausto, N. Robbins and Cotran Pathological Basis of 

Disease, 8th Ed. Saunders: 2009.

Langen, R., Oh, K.J., Cascio, D., and Hubbell, W.L. (2000) Crystal structures of 

spin labeled T4 lysozyme mutants: implications for the interpretation of EPR 

spectra in terms of structure. Biochemistry, 39(29):8396-405.

Law, R., Carl, P., Harper, S., Dalhaimer, P., Speicher, D.W., and Discher, D.E. 

(2003) Cooperativity in forced unfolding of tandem spectrin repeats. Biophys J, 

84(1):533-44.

Liu, S.C., Derick, L.H., and Palek, J. (1987) Visualization of the hexagonal lattice 

in the erythrocyte membrane skeleton. J Cell Biol, 104(3):527-36.

Liu, F., Mizukami, H., Sarnaik, S., and Ostafin, A. (2005) Calcium-dependent hu-

man erythrocyte cytoskeleton stability analysis through atomic force micros-

copy. J Struct Biol, 150(2):200-10.

Low, P.S. (1986) Structure and function of the cytoplasmic domain of band 3: cen-

ter of erythrocyte membrane-peripheral protein interactions. Biochim Biophys 

Acta, 864(2):145-67.

Low, P.S., Willardson, B.M., Mohandas, N., Rossi, M., and Shohet, S. (1991) Con-

tribution of the band 3-ankyrin interaction to erythrocyte membrane mechani-

cal stability. Blood, 77(7):1581-6.

58



Low, P.S., Rathinavelu, P., and Harrison, M.L. (1993) Regulation of glycolysis via 

reversible enzyme binding to the membrane protein, band 3. J Biol Chem, 

268(20):14627-31.

Lux, S.E., John, K.M., Kopito, R.R, and Lodish, H.F. (1989) Cloning and charac-

terization of band 3, the human erythrocyte anion-exchanger protein (AE1). 

Proc Natl Acad Sci U S A. 86(23):9089-93.

Mchaourab, H.S., Leitzow, M.A., Hideg, K., and Hubbell, W.L. (1996) Motion of 

spin-labeled side chains in T4 lysozyme. Correlation with protein structure and 

dynamics. Biochemistry, 35(24):7692-704.

MacDonald, R.I. and Cummings, J.A. (2004) Stabilities of folding clustered, two-

repeat fragments of spectrin reveal a potential hinge in the human erythroid 

spectrin tetramer. Proc Natl Acad Sci U S A, 101(6):1502-7.

Maillet, P., Alliosio, N., Morlé, L., and Delaunay, J. (1996) Spectrin mutations in 

hereditary elliptocytosis and hereditary spherocytosis. Hum Mutat, 

8(2):97-107.

Michaely, P., Tomchick, D.R., Machius, M., and Anderson, R.G. (2002) Crystal 

structure of a 12 ANK repeat stack from human ankyrinR. EMBO J, 

21(23):6387-96.

Mohandas, N., Winardi, R., Knowles, D., Leung, A., Parra, M., George, E., Con-

boy, J., and Chasis, J. (1992) Molecular basis for membrane rigidity of heredi-

tary ovalocytosis. A novel mechanism involving the cytoplasmic domain of 

band 3. J Clin Invest, 89(2):686-92.

Morinis, J., Dutta, S., Blanchette, V., Butchart, S., and Langer, J.C. (2008) Laparo-

scopic partial vs total splenectomy in children with hereditary spherocytosis. J 

Pediatr Surg, 43(9):1649-52.

Morrow, J.S. and Marchesi, V.T. (1981) Self-assembly of spectrin oligomers in vi-

tro: a basis for a dynamic cytoskeleton. J Cell Biol, 88(2):463-8.

Murthy, S.N., Liu, T., Kaul, R.K., Köhler, H., and Steck, T.L. (1981) The aldolase-

binding site of the human erythrocyte membrane is at the NH2 terminus of 

band 3. J Biol Chem, 256(21):11203-8.

59



Pasternack, G.R., Anderson, R.A., Leto, T.L., and Marchesi, V.T. (1985) Interac-

tions between protein 4.1 and band 3. An alternative binding site for an ele-

ment of the membrane skeleton. J Biol Chem, 260(6):3676-83.

Perrotta, S., Gallagher, P.G., and Mohandas, N. (2008) Hereditary spherocytosis. 

Lancet, 372(9647):1411-26.

Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002) 

Open channel structure of MscL and the gating mechanism of mechanosensi-

tive channels. Nature, 418(6901):942-8.

Peters, L.L., Shivdasani, R.A., Liu, S.C., Hanspal, M., John, K.M., Gonzalez, 

J.M., Brugnara, C., Gwynn, B., Mohandas, N., Alper, S.L., Orkin, S.H., and 

Lux, S.E. (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte 

membrane surface loss but not to for the membrane skeleton. Cell, 

86(6):917-27.

Quilty, J.A. and Reithmeier, R.A. (2000) Trafficking and folding defects in heredi-

tary spherocytosis mutants of the human red cell anion exchanger. Traffic, 

1(12):987-98.

Rief, M., Pascual, J., Saraste, M., and Gaub, H.E. (1999) Single molecule force 

spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol 

Biol, 286(2):553-61.

Rogalski, A.A., Steck, T.L., and Waseem, A. (1989) Association of 

glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the 

intact human red blood cell. J Biol Chem, 264(11):6438-46.

Rybicki, A.C., Heath, R., Wolf, J.L., Lubin, B., and Schwartz, R.S. (1988) Defi-

ciency of protein 4.2 in erythrocytes from a patient with Combs negative 

hemolytic anemia. Evidence for a role of protein 4.2 in stablizing ankyrin on 

the membrane. J Clin Invest, 81(3):893-901.

Rybicki, A.C., Musto, S., and Schwartz, R.S. (1995) Decreased content of protein 

4.2 in ankyrin-deficient normoblasts (nb/nb) mouse red blood cells: evidence 

for ankyrin enhancement of protein 4.2 membrane binding. Blood, 

86(9):3583-9.

60



Salomao, M., Zhang, X., Yang, Y., Lee, S., Hartwig, J.H., Chasis, J.A., Mohandas, 

N., and An, X. (2008) Protein 4.1R-dependent multiprotein complex: new in-

sights into the structural organization of the red blood cell membrane. Proc 

Natl Acad Sci U S A, 105(23):8026-31.

Silbernagl, S. and Despopoulos, A. Color Atlas of Physiology, 6th Ed. Thieme: 

2009.

Skalak, R. and Branemark, P.I. (1969) Deformation of red blood cells in capillar-

ies. Science, 164(880):717-9.

Speicher, D.W. and Marchesi, V.T (1984) Erythrocyte spectrin is compromised of 

many homologous triple helical segments. Nature, 311(5982):177-80.

Steck, T.L., Ramos, B., and Strapazon, E. (1976) Proteolytic dissection of band 3, 

the predominant transmembrane polypeptide of the human erythrocyte mem-

brane. Biochemistry, 15(5):1153-61.

Steinhoff, H.J., Radzwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., 

Dodson, G., and Wollmer, A. (1997) Determination of interspin distances be-

tween spin labels attached to insulin: comparison of electron paramagnetic 

resonance data with the X-ray structure. Biophys J, 73(6):3287-98.

Stoehr, G.A., Stauffer, U.G., and Eber, S.W. (2005) Near-total splenectomy: a new 

technique for the management of hereditary spherocytosis. Ann Surg, 

241(1):40-7.

Studier, F.W. (2005) Protein production by auto-induction in high density shaking 

cultures. Protein Expr Purif, 41(1):207-34.

Su, Y., Ding, Y., Jiang, M., Jiang, W., Hu, X., and Zhang, Z. (2006) Associations of 

protein 4.2 with band 3 and ankyrin. Mol Cell Biochem, 289(1-2):159-66.

Subczynski, W.K. and Hyde, J.S. (1981) The diffusion-concentration product of 

oxygen in lipid bilayers using the spin-label T1 method. Biochim Biophys Acta, 

643(2):283-91.

Takakuwa, Y. and Mohandas, N. (1988) Modulation of erythrocyte membrane ma-

terial properties by Ca2+ and calmodulin. Implication for their role in the regu-

lation of skeletal protein interactions. J Clin Invest, 82(2):394-400.

61



Teti, D., Venza, I., Crupi, M., Busà, M., Loddo, S., and Romano, L. (2002) Anion 

transport in normal erythrocytes, sickle red cells, and ghosts in relation to he-

moglobins and magnesium. Arch Biochem Biophys, 403(2):149-54.

Toye, A.M., Williamson, R.C., Khanfar, M., Bader-Meunier, B., Cynober, T., Thi-

bault, M., Tchernia, G., Déchaux, M., Delaunay, J., and Bruce, L.J. (2008) 

Band 3 Courcouronnes (Ser667Phe): a trafficking mutant differentially rescued 

by wild-type band 3 and glycophorin A. Blood, 111(11):5380-9.

Uyesaka, N., Hasegawa, S., Ishioka, N., Ishioka, R., Shio, H., and Schechter, A.N. 

(1992) Effects of superoxide anions on red cell deformability and membrane 

proteins. Biorheology, 29(2-3):217-29.

Walder, J.A., Chatterjee, R., Steck, T.L., Low, P.S., Musso, G.F., Kaiser, E.T., 

Rogers, P.H., and Arnone, A. (1984) The interaction of hemoglobin with the 

cytoplasmic domain of band 3 of the human erythrocyte membrane. J Biol 

Chem, 259(16):10238-46.

Waugh, R.E. (1987) Effects of inherited membrane abnormalities on the viscoelas-

tic properties of erythrocyte membrane. Biophys J, 51(3):363-9.

Waugh, S.M. and Low, P.S. (1985) Hemichrome binding to band 3: nucleation of 

Heinz bodies on the erythrocyte membrane. Biochemistry, 24(1):34-9.

Weber, R.E., Voelter, W., Fago, A., Echner, H., Campanella, E., and Low, P.S. 

(2004) Modulation of red cell glycolysis: interactions between vertebrate he-

moglobins and cytoplasmic domains of band 3 red cell membrane proteins. Am 

J Physiol Regul Integr Comp Physiol, 287(2):R454-64.

Zhang, D., Kiyatkin, A., Bolin, J.T, and Low, P.S. (2000) Crystallographic struc-

ture and functional interpretation of the cytoplasmic domain of erythrocyte 

membrane band 3. Blood, 96(9):2925-33.

Zhou, Z., DeSensi, S.C., Stein, R.A., Brandon, S., Dixit, M., McArdle, E.J., War-

ren, E.M., Kroh, H.K., Song, L., Cobb, C.E., Hustedt, E.J., and Beth, A.H. 

(2005) Solution structure of the cytoplasmic domain of erythrocyte membrane 

band 3 determined by site-directed spin labeling. Biochemistry, 

44(46):15115-28.

62



Zhou, Z., DeSensi, S.C., Stein, R.A., Brandon, S., Song, L., Cobb, C.E., Hustedt, 

E.J., and Beth, A.H. (2007) Structure of the cytoplasmic domain of erythrocyte 

band 3 hereditary spherocytosis variant P327R: band 3 Tuscaloosa. Biochemis-

try, 46(36):10248-57.

Zhu, Q., Lee, D.W., and Casey, J.R. (2003) Novel topology in C-terminal region of 

human plasma membrane protein, AE1. J Biol Chem, 278(5):3112-20.

63


