

Human Action Segmentation and Recognition with a High Dimensional Single Camera

System

By

Jonathan Edward Hunter

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May 2009

Nashville, Tennessee

Approved:

Professor Don Mitchell Wilkes

Professor Kazuhiko Kawamura

Professor Richard Alan Peters II

Professor Daniel Levin

Professor Megan Saylor

i

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS.. iii

LIST OF TABLES... v

LIST OF FIGURES ...vii

Chapter

I. INTRODUCTION.. 1
Objective of Vision System.. 2
Organization ... 3

II. BODY STRUCTURE ANALYSIS.. 4

Full Body Analysis... 4
Partial Body Analysis... 10

III. EVENT TRACKING ... 20

Finite State Machines ... 20
Hidden Markov Models ... 22
Kalman Filters .. 34
Bayesian Networks... 38

IV. SINGLE CAMERA TECHNIQUES.. 45

Skin Tone Tracking.. 46
Shape Tracking... 47
Optical Flow... 48

V. STATE OF THE ART HUMAN MOTION ANALYSIS SYSTEMS..................................... 54
Motus System... 54
Mocap System .. 56
University of Texas System ... 58
University of Maryland System ... 60
Robotics Institute Systems at Carnegie Mellon ... 62

VI. SINGLE CAMERA TASK RECOGNITION SYSTEM ... 65
System Hardware ... 65
HSV Color Histogram.. 66
Texture Measure... 67
Distance Metric .. 68
Approximate Nearest Neighbor Tree Construction ... 69
Database Training .. 70
Segmentation .. 70

VII. EXPERIMENT AND RESULTS... 72

ii

Experiment 1: Task Segmentation ... 76
Experiment 2: Participant Identification .. 92
Experiment 3: Task Identification.. 96
Experiment 4: Autonomous Task Segmentation.. 100
Experiment 5: Natural Scene Testing... 118

VIII. CONCLUSION AND FUTURE WORK... 121

Conclusion.. 121
Future Work ... 122

BIBLIOGRAPHY... 124

iii

ACKNOWLEDGEMENTS

 First and foremost, I thank God for guiding and protecting me every step of the way in my life,

for keeping me in my right mind and at peace.

I would like to state my sincere appreciation to my advisor, Dr. Wilkes. His guidance made

this dissertation would not have been possible, and his wonderful personality taught me the necessary

qualities to be an outstanding teacher and mentor. I would also like to thank my committee, Dr.

Kawamura, Dr. Peters, Dr. Levin, and Dr. Saylor, for providing insightful and firm guidance towards

my dissertation and research. I would also like to thank those that supported me and guided me

through my graduate career. Thank you to Dr. Cordelia Brown, Assistant Dean Burgess Mitchell,

Dean Veilette, Missetha, Dr. Ed Brown, and Dr. Tamera Rogers.

Thank you to my parents, James and Carol, for engraving in me the importance of education,

the necessity to strive to be the best I can be, and the passion to help as many as I can to achieve

greater accomplishments in their education. I thank my brothers, Jaime and Jason, for all the laughter

and love they gave me. I thank all my family for the love, support, guidance, and free food that made

this possible.

Thank you, Flo Wahidi, for always looking out for me and providing great advice to get me

through school and for life after graduate school.

Thanks to the gamer crew who supplied a large part of the great memories that I will take from

Nashville. Thanks Beely Bounedara, Ian Davis, and Charlie Dycus.

Thanks to Dr. Oluwole Amusan for keeping me on task and listening to all my “imaginative”

scenarios. You definitely have my deepest thanks for being a great friend as we went through this

graduate school thing.

Thanks to all my friends that I met at Vandy during the years. Thanks Alice Davenport,

Jessilyn Chatman, Candice Muhammad, Alette Davis, Heather Holmes, Sharlene Lewis, and Steve

Cotton.

iv

Thank you to my friends who are a pillar of support for me. Thank you and congratulations to

all the other doctors who I graduated with Dr. Stephen Gordon, Dr. Paul Fleming, Dr. Katherine

Fleming, Dr. James Hill, Dr. Hande Keskinpala, Dr. Turker Keskinpala, Dr. Juan Rojas, Dr. Karthik

Subramanian, and Dr. Anupama Subramanian. Thank you to Jon Ahlbin, Jia Bai, Anitha

Balasubramanian, Chris Costello, Joe Hall, Natalie Han, Fred Hillard, Atakan Varol, and Birhan

Woldegiorgis.

Thank you Brenda, Steve, Anthony, and Benita.

v

LIST OF TABLES

Table Page

1. Conceptual Features, Verbs. .. 13

2. Detection Results with Reduced Threshold Model ... 30

3. Deng and Tsui Results ... 32

4. Experiment 1 Roadmap.. 80

5. Comparison of Bin Size and Regression Models using Subject Jack Knife................................ 81

6. Comparison of Bin Size and Regression Models using Task Jack Knife.................................... 81

7. Top 5 Feature Sets for Linear Analysis using Subject Jack Knife .. 83

8. Top 5 Feature Sets for Linear Analysis using Task Jack Knife... 83

9. Top 5 Feature Sets for Quadratic Analysis using Subject Jack Knife ... 83

10. Top 5 Feature Sets for Quadratic Analysis using Task Jack Knife ... 84

11. Top 5 Feature Sets for Mahalnobis Analysis using Subject Jack Knife 84

12. Top 5 Feature Sets for Mahalnobis Analysis using Task Jack Knife .. 84

13. Top 5 Feature Set Results for Subject Jack Knife ... 85

14. Top 5 Feature Set Results for Task Jack Knife.. 85

15. Correlation with 0 bin variability with bin-size of 6.. 90

16. Correlation with 1 bin variability with bin-size of 6.. 90

17. Correlation with 2 bin variability with bin-size of 6.. 91

18. Overall Lead/Lag Breakpoint Analysis ... 92

19. Experiment 2 Parameter Optimization Roadmap .. 93

20. Experiment 2 Testing Roadmap... 94

21. Subject Cross Validation Accuracies... 94

22. Participant Combination Analysis using Cross Correlation Analysis 1 95

vi

23. Participant Combination Analysis using Cross Correlation Analysis 2 96

24. Experiment 3 Parameter Optimization Roadmap .. 97

25. Experiment 3 Testing Roadmap... 98

26. Task Cross Validation Accuracies ... 98

27. Task Combination Analysis using Cross Correlation Analysis 1.. 99

28. Task Combination Analysis using Cross Correlation Analysis 2.. 100

29. Experiment 4 Roadmap.. 101

30. Overall Thinning Reduction Percentages .. 106

31. Adjusted Cuts Statistics ... 112

32. Comparison of Supervised and Autonomous at Bin-Size of 6 using Subject Jack Knife 116

33. Comparison of Supervised and Autonomous at Bin-Size of 6 using Task Jack Knife.............. 116

34. Correlation with 0 bin variability with bin-size of 6.. 117

35. Correlation with 1 bin variability with bin-size of 6.. 117

36. Correlation with 2 bin variability with bin-size of 6.. 118

37. Natural Scene Statistics.. 119

vii

LIST OF FIGURES

Figure Page

1. Research Tree for Human Motion Analysis ...1

2. Overview of extracting silhouette and overlaying the model ...6

3. A sequence of tracked model states indicating a push..6

4. 2D star skeletons applied to different views of the same moment ...7

5. A series of images of “sitting”, Corresponding MEI..7

6. Motions and the corresponding MEI and MHI...8

7. Knee angle derivatives during a jogging activity. ..11

8. Sample input sequence of action in the room ...12

9. Overview of system, Hand position for picking up object w.r.t. camera14

10. Hand Movement of Erasing Board, Curvature Plot of Movement ...15

11. Sample vector representation in 3D, 2D projection of 3D vector...16

12. Overall system diagram ..18

13. Sample of action segmentation via head/eye and hand movements ...18

14. Example FSM ...21

15. Action Finite State Machine, Transition descriptions...22

16. Sample 5 state Markov chain. ...23

17. Results of the Sample Weather Problem ..25

18. Feature extraction, Directional code values..28

19. Likelihood plot of gestures and threshold vs time. ...29

20. Example of hand written test data and Result of algorithm..32

21. The processing stages of Siskind and Morris’s tracker. (a) shows an input image. (b)
shows the coloured pixels. (c) shows the output of the region grower on (b). (d) shows
the moving pixels. (e) shows the output of the region grower on (d). (f) shows the
combination of (c) and (e). (g) shows the ellipses that are fit to regions from (f)33

viii

22. Kalman Filter Recursive Algorithm... 35

23. Position prediction with the Kalman filter and prediction of occluded path 37

24. Results of Complex Trajectory with KF and EKF... 38

25. Skin detection and head orientation samples ... 42

26. Gaze estimation example results.. 43

27. Results of comparison at 80%, ½ original threshold, ¼ original threshold................................. 47

28. Tracking of face movements, Tracking of texture patterns ... 48

29. 3 Motion Class Examples .. 49

30. Aggarwal et al. results: (a)-(c) show 3 frames in a video sequence. (d) shows the
computed motion valley. (e,f) show the forward and reverse flows. (g) shows the
inverse depth from motion. (h) shows 3D structure from motion. (p,q) show the pair of
stereo images. (r) shows the inverse depth from stereo. (s) shows the 3D structure from
stereo. (x) shows the cluster groups. (y) shows the clusters in the image. (z) shows the
Class 3 moving object .. 51

31. Robot setup: (a) Image plane, (b) System configuration .. 52

32. Krootjohn’s interface: (a) Interface for robot odometry, (b) Interface for precipice detection ... 53

33. Sample displays of Motus capabilities... 56

34. Overview of complete Mocap system.. 57

35. QTM Sample Display .. 58

36. (a) Human tracking sample, (b) Motion foreground extraction... 59

37. Subway Surveillance Tracking .. 59

38. Activity Recognition.. 60

39. Vehicle Tracking.. 60

40. Example of flow minima and maxima with associated pose... 61

41. Pose Descriptions... 61

42. Head estimation using cylindrical model... 62

43. Hand state space and hand detection ... 63

44. People tracking with occlusions... 63

45. Supervised Video Segmentation Flow Chart ... 76

ix

46. Supervised Behavior Extraction Flow Chart ... 77

47. d' vs Bin Size.. 81

48. Top 3 Eigenvalue Data Representation for PCA ... 82

49. Percentage of False Alarms per Number of Offset Bins.. 86

50. Percentage of Misses per Number of Offset Bins.. 86

51. Converting time breakpoints to 6 frame bin format... 88

52. Bin variability .. 89

53. Unsupervised Video Segmentation Flow Chart... 102

54. (a) Original Image, (b) Segmentation without normalization (c) Segmentation with
normalization ... 103

55. Two Dimension Projection Example ... 104

56. Distance to Center of L1 Norm Hyperplane as a Function of Dimensionality.......................... 105

57. Minimum Spanning Tree Example.. 107

58. Number of Cuts Algorithm .. 109

59. Unsupervised Behavior Extraction Flow Chart ... 113

60. Example Label Representations in a Frame; (a) Object 1 – Background, (b) Object 2 –
Hand1, (c) Object 3 – Legos, (d) Object 4 – Containers, (e) Object 5 – Stripe, (f)
Object 6 – Noise, (g) Object 7- Background, (h) Object 8 – Hand2 ... 116

61. Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium
Segmentation, (c) Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation, (e) Outdoor
FGH, (f) Outdoor FGH Segmentation ... 120

1

CHAPTER I

INTRODUCTION

 Human action segmentation is one of the many unsettled topics of perceptual studies. One

definition of an action is to do a task or deed. Although this definition is simple, the description

needed to include all possible forms of action would be significantly longer. In fact, it is so elusive

that there is no standard explanation applicable to all cases, especially in the fields of computer

science, signal processing, and robotics. This is why the area of action segmentation is a major field

of study within these communities. Of course, actions can be performed by living and non-living

entities alike. The study of action among living entities brings to light the concept of purpose. Many

actions performed by living beings are done for a purpose whether that purpose is to relay information

among living things, to perform some necessary task for self-preservation, to explore the surrounding

environment, etc. The types of action vary from very fine movements such as writing to entire body

activities such as walking. This purpose of the action is the “needle” to be extracted from the

“haystack” of all the visual input available. Extracting purpose from actions is one of the primary

tools for learning among humans. It is done everyday with seemingly minimal effort. How is this

done?

Figure 1: Research Tree for Human Motion Analysis [1]

2

 In the review by Aggarwal and Cai [1], human motion analysis can be broken up into 3 areas,

body structure analysis, tracking, and recognition as shown in Figure 1. Body structure analysis is

concerned with the characteristics of the “object” to be tracked. The body structure can be represented

as a priori knowledge in the form of a model or it may be considered to be unknown, that is to say, a

“blob” that contains identifying characteristics. In tracking, there are 3 general types of systems that

extract information: invasive systems that involve applying sensors directly to the person, non-

invasive systems that involve a single camera, and non-invasive systems using multiple cameras. The

final area, recognition, is typically addressed via template matching or state space methods. Template

matching takes the motions of the tracked item and compares them to a database of training actions

recorded in the same manner. State space methods identify certain static postures and actions as states

and apply probability to analyze these states to provide estimations of tasks. The state space methods

take advantage of Kalman filters, Hidden Markov Models (HMM) and Bayesian Networks. In the

upcoming chapters, these areas with specific examples will be reviewed.

Objective of Vision System

 The goal of the vision system developed for this project is to be an easy-to-use tool for training

and tracking to aid in analysis of video recordings of experiments. Earlier versions of this visual

system were used in papers studying the use of applying a Working Memory application to robotic

motions [51]. The system is being used currently to assist analysis of intentional human motion in the

Vanderbilt Psychology Department. The system is a non-invasive tool consisting of a single

stationary camera using a non-model-based blob detection algorithm. The system segmentation uses

an approximate nearest neighbor tree to search for though feature vectors composed of color

histograms and texture measures. The user interface is designed to be fairly simple to decrease

3

difficulties in training and tracking. The system extracts information about the segmented frames to

be further analyzed.

 One of the contributions of this work are that this system will be the first system to implement

our high dimensional sparse feature vector extraction method with applications to the intentional

vision research done by the Vanderbilt Psychology Department. The methodology for achieving

autonomous segmentation by merging the minimum spanning tree, approximate nearest neighbor tree,

and normalized high dimensional sparse feature vectors provides very nice results in natural and

controlled environments. Using both the supervised and autonomous systems, an extensive analysis

showed that this approach is able to capture behavioral cues and is shown to correlate with the original

human rated behavioral cues of the intentional vision research. Another contribution is the detailed

analysis of the autonomous system algorithms.

Organization of Dissertation

 The organization of this paper will provide a literature review for each of the discussed

sections above. Chapter II will cover the methods of body structure analysis. Chapter III will cover

the systems used for event tracking. Chapter IV will cover single camera vision techniques with

respect to human motion tracking. Chapter VI will discuss the current system implemented for our

research. Finally, Chapter VII will present the experiments and results.

4

CHAPTER II

BODY STRUCTURE ANALYSIS

Full Body Analysis

Examples of full body actions are actions such as walking, jumping, squatting, etc. In some

studies, these actions are studied strictly to track and identify the action itself [8,9,11,20]. Other

studies incorporate these actions combined with multiple objects [6,22,41]. The full body structure

typically uses an invasive procedure to gather the specific correlated points on the person to create a

model by using sensors attached directly to the person. Other non–invasive measures involve tracking

visual characteristics. Methods of tracking the full body motion range from monitoring key body parts

such as head detection, recording the motion throughout a task, blob detection, etc. Each of these

methods carries a set of weaknesses. Motion recordings are usually sensitive to differing trajectories

and temporal spacing of people when performing the same task. A large number of the visual systems

implemented are sensitive to view angles and lighting conditions causing significant error in point

calculations. There are a few systems devoted to view-invariance. Many of the studies involve a very

controlled motion [6,25,87]. For problems involving gathering task information to mimic by robotic

manipulators, the demonstrator’s actions are severely limited to a specific manner of manipulating

objects [5,17].

Body structure analysis uses a variety of body parts to extract information. There has been

quite a bit of work done with tracking the entire body as well as tracking specific parts such as the

hands or the head. It makes sense that the main cues for action are often related to the manipulators

(hands) and the visual sensors (eyes). For example, gaze may be estimated by head direction when

analyzing human actions. By using features or models of these parts, the body can be tracked across

successive images. The necessary steps for extracting information are identification of temporal

5

boundaries of action, identification of relevant characteristics, extraction of temporal activities of

objects, and extraction of purpose. A significant amount of work has been focused on each of these

areas. The first area to focus on is the tracking of full body motions. The full human body is modeled

according to two main methods: the use of skeleton models (2D or 3D) and the use of motion

templates/optical flow.

Full body motions are gestures of the human body such as walking, sitting, etc. These

activities are studied by analyzing the entire body for the structural changes as a task is performed.

The skeleton models consist of significant points on the human body and are connected by either lines

or shapes depending on the 2D or 3D modeling method. Some use invasive techniques to collect the

points, usually involving the subject wearing sensors or indicators on their person that are used to

provide precise tracking [86]. Some use natural visual cues of interest in the environment to detect the

significant points [6,11]. The methods for visual detection vary from using, often complex, multi-

camera analysis to using simpler single camera view dependant analysis. Some of the techniques for

different camera setups will be discussed later in the paper. Most of the visual 3D modeling requires

multiple cameras filming the subject. The cameras are usually stationary. The precise position,

orientation, and pixel size of the cameras are known with respect each camera. By correlating the

frame by frame position of the markers from the multiple cameras, 3D positions are extracted from the

video sequence. Using these sequences of positions, shape models can be applied to the spaces

between points and various data can be extracted about the motion. By placing sensors on subjects,

significantly less noise is involved with the data than with data gathered from strictly visual means. A

large constraint in using markers is that the environment must be modified creating a more unnatural

scenario.

Applying 2D models to extracted silhouettes from images is another commonly used method

[40,50]. Aggarwal et al. [87] used motion to initialize a model over the silhouette of a person, and

6

using forward kinematics, is able to continue tracking the silhouette by applying a cost function based

on the amount of motion necessary to overlay the model (see Figure 2).

Figure 2: Overview of extracting silhouette and overlaying the model [87]

Aggarwal et al. used this tracking to extract information about the position and velocity of a person’s

appendages to determine if dangerous activity is occurring (such as fighting). This work was

continued [25] by applying the data to finite state automata to detect sequences of states for the human

models to detect motions such as pushing (see Figure 3).

Figure 3: A sequence of tracked model states indicating a push [25]

The states to be detected as part of the action of pushing include the rising of the hands and a fast

forward motion of the arms for the attacker, followed by the negative motion of the victim. They

applied automata to detect actions such as walking, kicking, pointing, pushing, handshake, etc. In

another study done by Peursum et al. [6], they use a 2D quick star skeleton method on the silhouette of

a person at differing camera angles to extrapolate a 3D model over the person. The star skeleton

places points at the extremities of the person and connects those points to either the upper or lower

points of the center spine (shown in Figure 4).

7

Figure 4: 2D star skeletons applied to different views of the same moment [6]

Using the motions of the skeleton, the values are analyzed by a left-right Hidden Markov Model

(HMM) to determine sequences of activities and actions. An interesting result from their research is

using a flat HMM instead of a hierarchical HMM to identify actions did not work well, but the flat

HMM did detect activity segments well. A study using a similar method of skeleton overlay from only

one camera viewpoint determined that it was possible to track the skeleton across multiple frames and

required an estimation of angle velocity when joints became occluded by the rest of the body [89].

 Another method of full body tracking is motion sequences and motion images [4, 54, 73].

Bobick and Davis [4] use motion energy images (MEI) and motion history images (MHI) to extract

information about full body motions. A motion energy image is an image where the motion values as

an action is performed are stored in a collective image over time. It is assumed that the person can be

separated from the background during the making of these images (Figure 5).

Figure 5: (top row) A series of images of “sitting”, (bottom row) Corresponding MEI [4]

8

Though information reguarding the motion in that region of the image is retained, the pattern of the

motion through time is lost. Since the MEI answers the question of “where” the motion is, the MHI

was used to answer the question of “how” the motion moves. By simply adding a decay operator for

the motion values over time, the MHI can represent when the motion occurred in the time sequence

(see Figure 6).

Figure 6: Motions and the corresponding MEI and MHI [4]

To compare the MEI and MHI images, the shapes portrayed by the captured motions are calculated.

The Hu moments are calculated to give a shape feature vector for each of the images. Moments, when

used with images, are weighted averages of the pixel intensities over a certain area of an image.

Moments are defined in terms of Riemann Integrals.

� �
∞

∞−

∞

∞−

= dxdyyxyxm qp
pq),(ρ , where p,q = 0,1,2,… (1)

),(yxρ is the pixel intensity at position (x,y). From these moments, it is useful to derive central

moments. Central moments are moments that are translation invariant (not dependant on the location

of the area in the image). Central moments are defined as:

9

� �
∞

∞−

∞

∞−

−−−−=)()(),()()(yydxxdyxyyxxu qp
pq ρ , where p,q = 0,1,2,… (2)

By subtracting the mean x and y values from each pixel comprising the shape of the object, the

shape is normalized to a common location no matter what location it originated from in the image. For

the purposes of general object detection via shape analysis, moments must be invariant to translation,

rotation, scaling and mirror shapes. The equations used for the first 4 orders of Hu moments were

calculated:

To achieve translation invariance:

3
020303

2
11021212

2
11202121

3
203030

2
0202

1111

2
2020

01

10

0000

23

22

22

23

0

0

yymm

yxymxmm

yxxmymm

xxmm

ym

yxm

xm

m

µµ
µµ
µµ

µµ
µµ
µµ
µµ

µ
µ

µµ

+−=

+−−=

+−−=

+−=

−=

−=
−=

=
=

≡=

)12(

)11(
)10(
)9(

)8(
)7(
)6(
)5(

)4(
)3(

To achieve scaling invariance:

 γµ
µ

η
)(00

pq
pq = where � = (p+q)/2+1 and p+q>2 (13)

To achieve orientation invariance the 7 Hu moments [76]:

])()(3)[)(3(])(3))[()((3

))((4])())[((

])()(3)[)((3)](3))[()(3(

)()(

)3()3(

4)(

2
0321

2
123003211230

2
0321

2
1230123003217

0321123011
2

0321
2

123002206

2
0321

2
1230032103210321

2
1230123012305

2
0321

2
12304

0321
2

12303

2
11

2
02202

02201

ηηηηηηηηηηηηηηηη
ηηηηηηηηηηη

ηηηηηηηηηηηηηηηη
ηηηη

ηηηη
ηηη

ηη

+−+++−+−+++=

++++−++=

+−+++++−+++=

+++=

+++=

++=

+=

v

v

v

v

v

v

v

)20(
)19(
)18(
)17(
)16(
)15(
)14(

10

To identify test movements, the Mahalanobis distance is calculated between the test feature vector and

the known training feature vectors. This distance measure takes into account the distance of a sample

from a group as well as the group’s standard deviations. Mahalanobis distance is the distance of a

sample from the center mass of a group divided by the width of the ellipsoid in the direction of the

sample (Note: the ellipsoid is the best estimate model of the group samples). Since this method is

sensitive to varying time spans over which the action is taking place, varying the values of the time

coefficient can speed up or slow down any action to help synchronize the image with the training

motions. The time coefficient is the constant that controls the speed of intensity decay for the images

as frames pass. Using only a single camera, they test the recognition of the samples receiving a result

of 12 correct classifications out of 18 trials. They extend the experiment by using 2 cameras that view

the task at varying angles between 0-90 degrees to test for accurate detection of the task. The

difference for the camera angles were known and the distance from the person had to be the same.

This method improved the results to 15 correct classifications out of 18 trials. One of the problems

noted for the classification across other subjects was the speed of the action was significantly slower

than the original aerobics instructor in which the system was trained on and the conjunction of the

subject wearing low frequency clothing made the segmentation algorithm not detect the complete

motion.

Partial Body Analysis

The partial body analysis is focused on the body parts that give the most information about the

task observed. When observing humans, the obvious parts to analyze would be the head/eyes and the

hands for many upper-body tasks. If the main actions are running, jumping, squatting, etc., the best

body parts to focus on may be the legs. Aloimonos et. al. used the MoCap System to monitor the

angles of the knee, hip, and ankle joints for the right and left leg [20]. They go on to use a set of

symbols to represent the 6 possible combinations of joint velocity and joint acceleration (R for

11

negative velocity and acceleration; B for positive velocity and acceleration, Y for negative velocity,

positive acceleration etc). They also apply a positive integer value for the angular velocity with each

symbol. By sequencing these symbols, actions are represented by a set of symbols as can be seen in

Figure 7 below.

Figure 7: Knee angle derivatives during a jogging activity [20]

Research shows trends toward using the head to detect and identify tasks. Kojima et. al. [5]

showed that tracking the head and estimation of the face direction could be used to identify directions

and activities within the lab environment. Using a single stationary camera trained on the empty room

as the background, the person is detected by differences with background. The head is determined by

chromatically training on an average of the face and hair tones. An edge mask is used to filter the

head region. The edge mapping of the head is Gaussian blurred and compared to a database of sample

head directions. On the assumption that the layout of the room is known before hand, actions are

determined by the proximity and directions of the head as well as the trajectory throughout time.

12

Figure 8: Sample input sequence of action in the room [5]

The sample image shows a person entering the room, moving and working on pc1 (personal computer

1) , moving and working on ws2 (workstation 2) and leaving the room. The video sequence is

segmented by monitoring the head. If the head is moving, the head is facing in primarily the same

direction. If the head is still, the head keeps approximately the same position. By taking the change in

distance across a segment for the only moving agent (the human), and using it in the following

sigmoid function,

BxAe
xf −+

=
1

1
)((21)

, where A and B are empirically selected constants, x is the change in distance. The f(x) values range

from [0,1]. A number of features are extracted for each segment as shown in Table 1(a) below. A list

of verbs are shown in Table 1(b) below.

13

 Table 1(a) Conceptual Features Table 1(b) Verbs

The verbs are represented by a set of feature changes from the beginning to the end of the segment.

Using the approach verb as an example, the existence of the agent needs to transition from 0 to 1, the

existence of the object needs to transition from 0 to 1, and the person transitions from not facing the

object to being next to the object. By connecting the agent, object, verbs and, time, a higher level

language is created to describe the activity in the room.

Madabhushi & Aggarwal showed that, by tracking the centroid of the head alone, actions such

as standing, walking, sitting, etc. could be recognized [3]. A single person would be in the video

performing these actions. Of 41 sequences, 34 were identified correctly giving an 84% success rate.

The main point to note in this study is the simplicity of the methods used. The head was determined

by the upper portion of the motion in the image and tracked by taking the nearest group in the

sequence of images. Using the velocity of the head over successive frames as the feature vector, they

were able to get the 84% success rate for action recognition. All the studies agree that focusing strictly

on the head limited the actions available to be detected. Both studies used relatively simple methods

for tracking the head and simple feature vectors to describe the actions of the videos.

14

Other research focused attention on the hands such as Kuniyoshi & Inoue using a multi-camera

system to track the hand and objects for recognition of action sequences [16]. Their setup used stereo

vision to observe a human performing a building task. They make some key assumptions such as the

blocks not being occluded, a single hand is used at all times, and the action is carried out in a smooth

consistent manner with no mistakes in assembly process. The viewing area contains only the

necessary objects and is intruded upon only by the hand of the demonstrator. The blocks must be

picked up by the hand in a pincer configuration with the forefinger and thumb making connection on

the sides of the block without occluding the block from the view of the cameras. By tracking the hand

and the objects, they created assembly classes of transfer, local motion, approach, depart, and fine

motion. To identify these classes a set of sequences were observed (i.e., transfer consisted of empty

hand reaching object (near, hold-false), reaching with object (near, hold-true), withdraw hand from

object (other)). Using this information, they could recognize assembly tasks in real time. They

continued their work for task mimicking using a robotic manipulator [17].

Figure 9: (left) Overview of system; (right) Hand position for picking up object w.r.t. camera [17]

Rao et. al. used hand tracking to extract the two dimensional motion of the hand when doing a

task to extract significant moments (or dynamic instances), such as pauses and direction changes, to

15

identify whole tasks such as opening a cabinet, picking up and putting down objects, etc [10]. They

determine dynamic instances by recording the hand position and calculating the curvature and

direction via equation 22:

�(t) = ||r’(t) - r”(t)|| / ||r’(t)||3 (22)

where r(t) = [x(t), y(t), t], x(t) is the horizontal coordinate of the hand centroid, y(t) is the vertical

coordinate of the hand centroid, and t is time. By assigning a value of “+” for clock-wise and “-“ for

counter clock-wise, they correlate the number of peaks in the curvature data (dynamic instances) and

the sign direction of the curves to create a feature vector for the movement (an example can be seen in

Figure [10].

Figure 10: (left) Hand Movement of Erasing Board, (right) Curvature Plot of Movement [10]

Data comparison occurs if to sets of actions have the same number of dynamic instances and the same

sequence of signs for those instances. The feature vectors for the dynamic instances are the 2D

coordinates of the hand at those moments. They use an affine projection model to project the 2D

motion into a 3D space. The affine model assumes that the depth of the 3D action is small compared

to the distance to the camera. This assumption allows for 2D points to be changed to 3D through

linear transformation. A 3D action observed by a camera will be projected onto a 2D image plane as

can be exemplified by Figure 11.

16

Figure 11: (a) Sample vector representation in 3D, (b) 2D projection of 3D vector [10]

In Figure 11, there are 3 points P1, P2, and P3. The camera faces orthogonal to the x-y plane in Figure

11a. Assuming the vector 21PP is vertical (parallel to the y-axis), no matter how the camera pans

around the motion vectors with respect to the y-axis the vector 21PP will remain unchanged in the 2D

projection 21 pp of Figure 10b. The limitation lies with vector 32 PP . In Figure 11b, as the camera

pans around the action with respect to the y-axis, the 2D projection changes from the solid vector

32 pp to the dashed vector 32 pp . Notice the overall direction change from point p1(u1,v1) to p2(u2,v2)

to p3(u3,v3) remains clockwise even as the angle of pan (�) about the y-axis changes as long as the

angle of pan (�) remains within (-90o,90o) of the position where 32 pp lies on the x-y plane. The

following equation accounts for the change in the x coordinates for the 3D point as the camera pans.

)cos()cos(' Ω−Ω= ZXX , where X’ changed x-coordinate as the camera pans

Given the affine camera model used is:

D
X

fu
'

'= (23)

,where f is the focal length, D is the distance from the camera to P2. The d’ value (i.e. the distance

between the projections of P3 and P0) space shown in Figure 11b is calculated by the following:

17

D

XX
fd

)cos()(
' 03 Ω−
= (24)

The same logic follows for the tilt angle around the x-axis (�). By determining the curvature and

dynamic instants of multiple camera angles of the same task, the 2D coordinates (matrix M) can be

converted to 3D coordinates (matrix S) if the projection matrix (P) is known. The equation for the 3D

to 2D conversion is a linear transformation:

M = P * S (25)

,where M is a 2 x n matrix consisting of n 2D points of an action, S is the 3 x n shape matrix consisting

of n 3D points of an action, and P is the 2 x 3 projection matrix.

Each action is viewed from k camera angles, thus each camera view has an M matrix creating k M

matrices. Using the distances between the 3D calculation instances calculated from the different

camera angles, they identify the motions and new actions (if the distances are far from all trained

motion). The experiment used 47 different actions performed by 7 different people. They determined

effectiveness by judging the best 3 choices for each action. Of all the actions, only 5 had 3 false

matches and another 5 had partially incorrect matches. The comparisons were based on a single

instance of the action.

Some of the best methods for segmentation and recognition of human tasks lie in observing the

head movements/gaze in conjunction with hand motions such as in the research of Yu & Ballard [18]

where by simply studying the head motion, eye motion and hand activity led to segmentation and

recognition of the tasks. A system layout showing the motions of the head, eye, and hand extracted

from an image sequence to train a set of Hidden Markov Models for action recognition (see Figure

12).

18

Figure 12: Overall system diagram [18]

The motions were gathered using an invasive hand sensor and headset that tracks the head/eye motion.

From the head motions throughout a task, they were able to extract when the head was fixated by low

motion values as seen in Figure 13. A similar threshold method was used to determine eye fixation

from low eye motion values also seen in Figure 13. After determining the moments where the head

and eye were fixated at the same time, action segments were extracted during these time periods. The

data from the actions were the 3D hand position and rotation for both hands during the times of

simultaneous fixation.

Figure 13: Sample of action segmentation via head/eye and hand movements [18]

19

By training a Hidden Markov Model on the data gathered through the fixation periods, an overall

segmentation accuracy of 83.9% was achieved with 91.6% recognition accuracy on actions such as

picking, placing, lining up, stapling and folding. The field of machine vision is continuing to examine

more robust methods of detecting and recognizing actions.

20

CHAPTER III

EVENT TRACKING

Some of the most popular methods of studying human motion segmentation use finite state

automata, Hidden Markov Models (HMM), Bayesian Networks and Kalman filters. The main use of

these techniques in human motion segmentation is to provide recognition for actions performed. In

general, these techniques receive the information from a system (in the form of vectors) and form

states depending on how these vectors correlate with each other. By following a sequence of states, an

action can be described. After training the system, a new sequence of vectors can be read in and

interpreted by the system. Depending on the resulting estimated sequence of states, the new sequence

of vectors is identified as a particular action. It is essential to understand more about these methods so

that they can be applied in the most effective manner. The definition of the Hidden Markov Model

will be referenced from a compilation of sources [30, 94-100]. After defining the models, methods of

use for human motion segmentation and recognition will be covered.

Finite State Machines

Finite State Machines (FSM) are models of systems that contain states and transitions that

mathematically represent the activity [102, 103]. Though finite state machines are most commonly

used to represent system operations, human motion analysis can use them to represent the series of

actions and identify tasks. The parts of a finite state machine are as follows:

States: Si :where i = 1 to N (Number of States)

Transitions: Tij :where T is the connectivity from state i to state j

21

S0 S1

0

0

1 1S0 S1

0

0

1 1

Figure 14: Example FSM

In the example FSM shown in Figure14 , it can be seen that starting in state 0 if a 0 input is received,

the system transitions to the other state. If the system receives an input 1, then it remains in the

current state. Actions represent the behavior of the system throughout the model. Exiting Actions are

actions that occur when the system leaves a particular state. Entering Actions are actions that occur

when a system is entering a state. Of course, finite state machines can be vastly more complicated

than that shown in Figure 14 depending on the task to be modeled. In the papers using finite state

machines, the models are used to represent the state and activities of a person.

In Ayers and Shah’s work [78], they use a finite state machine to represent the location and

activity of a person in a particular room. By simply detecting the skin tones of a person and the

objects in a room, they are able to create a state machine to represent the actions in the room. Using

the state machine shown in Figure 14, the student’s activities are identified in the lab. The system is

trained on the original positions of the objects and skin tones.

22

Figure 15: (left) Action Finite State Machine, (right) Transition descriptions [78]

The system is able to identify actions of different people. Actions are determined by tracking the

position of the person in correlation with the position of key objects (e.g., “Pick Up Object” is

determined by the proximity of the person to the object and the change in the objects position). All of

the transitions are explained in Figure 15. The activities of the person can be described from the states

of the FSM. A key limitation to the model is the amount of work necessary to change the finite the

state machine to detect a wider range of actions.

Hidden Markov Models

To define HMMs, it is easier to first define Markov chains [95]. Markov chains are models

that consist of states and transitions across those states. Markov chains are very similar to weighted

finite state machines but the difference being they have a set of observations and a transition matrix

that are used to determine the probability of that set occurring given a specific model. Let’s define the

following:

States: Si :where i = 1 – N (Number of States)

23

Observations: O = {V1, V2, …,VT} :where T is the number of observations in a

sequence

Transition Matrix: A :where each value aij is the probability of transitioning from Si to Sj

Initial Probability: �i :where each value is a probability of starting in state Si

In Rabiner’s paper [30], he uses a sample 5 state Markov chain to aid in the description (Figure 16).

For the transition matrix to be correct an assumption must be made called the Markov assumption.

Markov Assumption: P(si|s1...si −1) = P(si|si−1) (26)

The Markov assumption says that the probability of transitioning from Si-1 to Si is only dependant on

the previous state Si-1 and not any of the states before Si-1. This is saying that the transition

probabilities do not change due to transitioning from states prior to the current state.

Figure 16: Sample 5 state Markov chain [30]

In a Markov chain, all the information from the states, transition matrix, initial probabilities, and

observations are provided. The Markov chain can be given a sequence of observations and the

probability of that sequence occurring may be calculated from the transition matrix and the initial

probability. The observations V directly correspond to the state S. Notice that observations for a

Markov chain are now defined as states. This definition is accurate because all the information about

24

the model is available so an observation actually indicates the state that the system is currently in. For

the model above, if O = { V5, V4, V1, V3, V2, V2, V1 } corresponds to O = { S5, S4, S1, S3, S2, S2, S1 },

then P(O|model) = �5 × a54 × a41 × a13 × a32 × a22 × a21. The Markov chain is useful for finding

probabilities of sequences but relies on the unlikely situation where all information about the model is

available. Addressing this shortcoming is where the strength of the Hidden Markov Model lies.

 The Hidden Markov Model has the same variables as the Markov chain. The only difference is

the observations O = {O1, O2, … , OT} where T is the number of observations in a sequence. Each Ot

is drawn from a list of symbols V = {v1, v2, …, vW} where W is the number of different symbols that

are available to the model. The reason the observation definition change is because the model is now

“hidden”. Since the observations no longer give exactly which state the system resides in, one

additional component is needed:

 Emission Matrix: B : where each value biw is the P(vw| Si)

With the emission matrix, the symbols from observations have a probabalistic link to the states of the

hidden model. The assumption that the observation only relies on the current state and not previous

states must be made for the Emission matrix to hold true. Given appropriate values of N (number of

states), W (number of symbols), A (transition matrix), and B (emission matrix), the Hidden Markov

Model can produce a sequence of observations. The HMM requires that N and W be set so the model

can be represented as � (A, B, �). Eisner [100] explained a sample problem of a HMM would be:

“You are climatologists in the year 2799, studying the history of global warming. You can’t find any

records of Baltimore weather, but you do find my diary, in which I assiduously recorded how much ice

cream I ate each day. What can you tell about the weather from this information?”

Given:

V = {1, 2, 3} for the number of ice cream eaten that day

S = {Cold, Hot} for the weather

25

B = �
�

�
�
�

�

7.02.01.0
1.02.07.0

 where the rows are the states and the columns are the symbols.

(i.e., b23 = 0.7 which is the probability of 3 eaten ice creams on hot days)

 A = �
�

�
�
�

�

8.02.0
2.08.0

The state estimation for the following plotted observation sequence would be:

Figure 17: Results of the Sample Weather Problem [100]

There are 3 main problems to be solved with HMMs:

� Given an O and �, what is the probability of observing the given observation sequence?

� Given an O and �, what is best estimate of the corresponding state sequence?

� Given an O and S, how can we change � to maximize P(O|�)?

The first problem is a likelihood problem. By solving this problem, a method is developed that

allows for comparisons among models. This is useful for comparing unclassified observations with

known model estimates to classify the observation sequence. This problem is solved by taking the

sum of the probabilities of all possible states sequences that can represent the given observation

26

sequence (a solution provided by the forward algorithm [30, 94, 96]). The general steps of the

algorithm are as follows:

α t−1(i) the previous forward path probability from the previous time step

bj(ot) the state observation likelihood of the observation symbol ot given
the current state j

1. Initialization

Njobaj jj ≤≤= 1)()(101α (27)

2. Recursion:

TtNjobaij
N

i
tjijtt ≤≤≤≤=�

=
− 1,1)()()(

1
1αα (28)

3. Termination:

P(O|�) =)(FT sα = �
=

N

i
iFT ai

1

)(α (29)

The second problem is a decoding problem. By solving this problem, a way of analyzing the

structure of the model is available. This may be used to learn about optimal state sequences for

recognition. This problem is solved by a very similar algorithm to the forward algorithm called the

Viterbi algorithm [30, 94, 96]. The Viterbi algorithm takes the maximum probability for all the

possible state sequences that represent the given observation sequence to determine the sequence of

states. The most probable state sequence can be determined by tracking the states that create the

maximum probability. The general steps of the Viterbi algorithm are:

vt−1(i) the previous Viterbi path probability from the previous time step

bj(ot) the state observation likelihood of the observation symbol ot given

the current state j

1. Initialization:

v1(j) = a0jbj(o1) 1 � j � N (30)

bt1(j) = 0 (31)

27

2. Recursion:

 vt(j) =)()(
1

1 tjijt obaiv

i

MAX

N

−

=
 1 � j � N, 1< t � T (32)

btt(j) =)()(
1

1 tjijt obaiv

i

ARGMAX

N

−

=
 1 � j � N, 1< t � T (33)

3. Termination:

The best score: P* = vt(qF) = FiT aiv

i

MAX

N

,*)(
1=

 (34)

The start of backtrace: ST* = btT (qF) = FiT aiv

i

ARGMAX

N

,*)(
1=

 (35)

The third problem is a training problem. By solving this problem, a way of training a HMM to

a set of observation sequences is available. This problem is solved by an algorithm called the Baum-

Welch algorithm [30, 94, 96] which is a variation of the expectation maximization algorithm [29]. The

algorithm starts with an initial estimate of the model. The algorithm calculates � (the probability of

being in a state Sj at time t) and � (the probability of making the transition from Si to Sj and observing

O(t+1)), then uses these values to adjust the model. The cycle continues until convergence (there is a

chance that the algorithm will converge to a local minimum instead of a global minimum. The

algorithm is given below:

4. Initialization

Niai Fi ≤≤= 1,)(,1β (36)

5. Recursion:

TtNjjobj t

N

i
tjijt ≤≤≤≤= +

=
+� 1,1),()()(1

1
1 βαβ (37)

28

6. Termination:

P(O|�) =)(FT sα =)0(1β = �
=

N

i
jj job

1
110)()(βα (38)

The next topic of interest is observing how HMMs are used in human motion analysis. Lee

and Kim [93] tracked gestures of the hand and further refined the HMM’s recognition capabilities by

adding a likelihood threshold for the actions. They gathered information about the hand using a

feature vector that consists of the horizontal and vertical movement between frames. These feature

vectors are given a directional code from 0-15 (Figure 18).

Figure 18: (a) Feature extraction, (b) Directional code values [93]

Using these directional codes as observation values, they set the number of states (N) of the HMM to

be 5-10 depending on the complexity of the motion. By training a HMM for each gesture and a HMM

for the thresholds, the gesture end points can identified. The threshold HMM is a combination of all

the states from each of the separate gesture HMMs. The output observation probabilities and the self-

transition probabilities are the same as the gesture HMMs but the outgoing transition probabilities are

weakened by the following equation:

1

1

−
−

=
N

a
a ij

ij , for all j, i	j where N is the number of states (39)

All the states in the threshold HMM are interconnected giving the threshold model the ability to link

subpatterns of different gestures. Keeping the output observation and self-transition probabilities the

29

same will allow the threshold HMM to have a higher likelihood during subpatterns. The reduced

output transition probabilities force the threshold HMM to have a smaller likelihood after a complete

sequence of a gesture than the specific gesture-trained HMM. By examining where the gesture-trained

HMM overtakes the threshold HMM, a candidate endpoint emerges (Figure 19).

Figure 19: Likelihood plot of gestures and threshold vs time [93]

In Figure 19, it can be seen that possible candidate endpoints emerge for the gesture “last” at time 13-

16. Each candidate endpoint can be used as a reference point to run the Viterbi algorithm to backtrace

and find the most likely starting point in the sequence. By taking the sequences with the highest

likelihood with the gesture-trained HMM, they are able to segment continuous human motion. The

system had an overall detection rate of 93.81% as shown in Table 2.

30

Table 2: Detection Results with Reduced Threshold Model [93]

 Deng and Tsui [42] follow up Lee and Kim’s work with another way to identify gestures from

continuous motion containing gesture and non-gesture motions. They argue that the Viterbi algorithm

only works if the observation sequence consists only of the start and stop of a specific gesture (pencil

trajectory of writing a number). In continuous motion, the non-gesture motion will cause the Viterbi

algorithm to miss gestures because of the extra observations of the non-gestures. A solution for this is

to have a sliding window that takes each observation and sets it as the beginning of a sequence to

determine the gestures. If given an input sequence, Ot = {o1, o2, …, ot} and the sequence is broken up

into multiple sequences Ot

={o
,o
+1, …,ot} , the probability for an observation section given the

gesture model is

�
−

− =∪∪∪
1

121)|()|...(
t

g
t

g
t
t

tt OPOOOP
τ

τ λλ (40)

where gλ is the predefined gesture HMM model and t is the time step at which the gesture ends. The

evaluation of this equation is the same as the sliding evaluation. The forward algorithm calculates this

31

value (equation 40). An alternative to equation 40 is to use the probability of an observation O and a

starting state I (equation 41)

�
−

==
1

)|,()(
t

g
t

t
g

t OjSPi
τ

τ λφ (41)

 which can be implemented with less computational cost than equation 40. Since the likelihood values

differ greatly across models, they take the likelihood from a training observation sequence of the

model and normalize all the values with gk of the test observations by that likelihood. Using equation

42 to develop gk ,

)|(/1 ggg OPk λ= (42)

where)|(ggOP λ is the average observation probability given gλ of the known observations from

model g. On the assumption that all the models are well-trained, they assume that any observation g

probability will be much higher in model g than for other models. After determining the gesture

model with the highest likelihood for the observation t, they backtrack from the end observation tO 1−τ ,

using some threshold, over the states that maximized the likelihood and observe the statistical data to

estimate the beginning state/observation of the number trajectory. They do not mention the exact

method of determining the initial state, but they do mention that they calculate the maximized

likelihoods from tO 1−τ to the first observation in the sequence and determine a cutoff to the action based

on the likelihood.

The data is gathered in the same manner as mentioned before by taking the motion difference

of the hand between frames and assigning a directional code (see Figure 18). Using this method of

detection, HMMs are trained for the handwritten numbers 0-3 and 6-9 (Figure 20).

32

Figure 20: Example of hand written test data and Result of algorithm [42]

The results of the algorithm significantly outperform the Viterbi algorithm in Table 3.

Table 3: Deng and Tsui Results [42]

 Siskind and Morris use the standard HMM algorithms to detect hand – object interactions in

video sequences [68]. Their experiment starts with labeling a set of 6 actions Pick-Up, Put-Down,

Push, Pull, Drop, and Throw. Using the Sun Video system which consists of a single uncalibrated

camera of 320 x 240 resolution at 30 frames per second, they recorded 72 videos of the

aforementioned actions. First, the frames are segmented by color and motion. Then, elliptical models

of the hand and object are extracted from the image sequence (Figure 21).

33

Figure 21: The processing stages of Siskind and Morris’s tracker. (a) shows an input image. (b) shows
the coloured pixels. (c) shows the output of the region grower on (b). (d) shows the moving pixels. (e)
shows the output of the region grower on (d). (f) shows the combination of (c) and (e). (g) shows the
ellipses that are fit to regions from (f) [68]

The elliptical models are created by taking the mean and covariance matrix of the (x,y) coordinates of

the pixels in an area. Some problems encountered from this method are the creation of non-essential

pixels and differences in the number of ellipses from frame to frame. To remedy the problems, they

link ellipses in a ellipse chain that tracks the ellipses by analyzing the difference of their motion

parameters across frames. By finding ellipse chains that are tracking the same object, the number of

spurious ellipses is reduced by merging with the chains creating a constant number of total ellipse

chains. For each ellipse, the following feature vector is extracted:

Absolute features

� The magnitude of the velocity vector of the centre of each ellipse

� The orientation of the velocity vector of the centre of each ellipse

� The angular velocity of each ellipse

� The first derivative of the area of each ellipse

� The first derivative of the eccentricity of each ellipse

� The first derivative of each of the above 5 features

Relative features

� The distance between the centers of every pair of ellipses

� The orientation of the vector between the centers of every pair of ellipses

� The difference between the orientations of the major axes of every pair of ellipses

34

� For every pair of ellipses, the difference between the orientation of the major axis of the

first ellipse and the orientation of a vector from the centre of that ellipse to the centre of the

second ellipse

� The first derivatives of each of the above four features

Of the entire 72 hand labeled video set, the HMM models were trained on 36 videos and tested on the

other 36 videos. The models were able to recognize 35 of the 36 testing data. The misclassification

that occurred was a “drop” event being classified as a “throw” event.

Kalman Filters

 Kalman filters are one of the best solutions for tracking and data prediction [104,105].

Research has been done using Kalman filters in the tracking of trajectories [80]. In all real world

applications, there is noise associated with sensor data (e.g., odometry in robots) or moments at which

segments data is unavailable (e.g., occlusions of motion). One use of the Kalman filter is to estimate

the necessary information from these moments. The Kalman filter uses a recursive algorithm that

takes inital estimates of the system, creates a measure of how to change the system coefficients

(Kalman gain), uses the Kalman gain along with the observed data (z) to create a new update estimate

(kx̂) and error covariance (Pk), and finally the state transition matrix (Φ) is used to calculate the next

1ˆ +kx and Pk+1 (see Figure 22)

35

Figure 22: Kalman Filter Recursive Algorithm [104]

Let’s look closely at the system that is being estimated.

 State Equation:

 kkk wxx +Φ=+1 (43)

where Φ is an n x n state transition matrix, kx is an n x 1 state vector at time k, and kw

is and n x 1 driving, input disturbance

Measurement Equation:

 kkk vxHz += (44)

where kz is a m x 1 measurement vector, H is a m x n connection between the state and

the measurements, and kv is m x 1 measurement noise

It is assumed that noise measurements kv and kw are white noise with known covariance. From

observing the measurements z and using known information about the noise, H, and Φ , the state

vector x and its covariance matrix (P) are estimated by using the 5 update equations:

Kalman Gain: 1'')(−+= RHHPHPK T
k

T
kk (45)

Update Estimate:)ˆ(ˆˆ ''
kkkkk xHzKxx −+= (46)

36

Update Covariance: ')(kkk PHKIP −= (47)

Project into k+1: kk xx ˆˆ '
1 Φ=+ (48)

 QPP T
kk +ΦΦ=+1 (49)

The Kalman filter is a very good way to get optimal parameters or state estimation if the problem can

be cast as linear state equations. Extended Kalman filters take a similar application to non-linear state

equations. This is done by linearizing the state equation at small intervals of time k to model the non-

linearity.

 Cuevas et. al. study the Kalman filter and the extended Kalman filter to show the tracking

abilities during times of occlusion [106]. In their study, they track the motions of a soccer ball and

create occlusions in the data to observe the results of the filters. The state and measurement equations

used to model the trajectory of the ball are:

State Equation:

kkkkk wxFx += ++ ,11 (50)

k

k

k

k

k

k

k

k

k

w

y

x

y

x

y

x

y

x

+

�
�
�
�

�

�

�
�
�
�

�

�

∆
∆

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

∆
∆

+

+

+

+

1000
0100
1010
0101

1

1

1

1

 (51)

Measurement Equations:

kkkk vxHy += (52)

k

k

k

k

k

k

k v

y

x

y

x

ym

xm
+

�
�
�
�

�

�

�
�
�
�

�

�

∆
∆�

�

�
�
�

�
=�

�

�
�
�

�

0010
0001

 (53)

The results from applying the Kalman filter over a trajectory are shown in Figure 23. In Figure 23, the

left graph shows the trajectory of the ball and the estimated position from the Kalman Filter. The right

37

picture shows another ball trajectory with a section of the coordinates removed to show the prediction

capabilities of the Kalman filter.

Figure 23: Position prediction with the Kalman filter and prediction of occluded path [106]

For somewhat more complex trajectories, the path of the ball cannot be modeled by a linear system.

The model must be converted to a non-linear one and the Kalman filter will be replaced with the

Extended Kalman Filter. The new state equation for the non-linear system is:

State Equation:

kkk wxkx +=+),(1 f (54)

k

k

k

kk

kk

w

y

x

yy

xx

yk

xk

yk

xk

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

∆−

∆−

∆+−

∆+−

=

�
�
�
�

�

�

�
�
�
�

�

�

+∆
+∆

+
+

)
4
1

exp(

)
4
1

exp(

))5.1(
4
1

exp(

))5.1(
4
1

exp(

1
1

1
1

 (55)

The results for analyzing the complex trajectory of the ball using the Kalman Filter and the Extended

Kalman Filter are shown below (Figure 24).

38

Figure 24: Results of Complex Trajectory with KF and EKF[106]

Bayesian Networks

 Bayesian networks are graphical representations for probabilistic relationships among

variables. The Bayesian network information is gathered from multiple sources [108–110].

Heckerman [108] describes 4 main advantages to using Bayesian networks over other data analysis

tools.

1. Bayesian networks are effective against incomplete data sets. If a set of data has two

variables that are strongly anti-correlated, Bayesian networks can make use of this property

even if for some of the data set one of the variables is not measured.

2. Bayesian networks can show causal relationships in data. By uncovering the causal

relationships in data, systems can be analyzed to determine states that are predictions to

problems.

3. Bayesian networks and Bayesian statistical techniques can be used to combine prior

knowledge and data.

4. Bayesian networks combined with other models can offer an efficient approach for

avoiding over-fitting data.

39

The first subject within Bayesian networks is the structure of the system. Since the joint

probability distribution is to be calculated, it is necessary to have 2N values to specify the joint

probability distribution for N variables. This 2N value can be reduced by using known information

about relationships between variables. To represent this known information, some connection rules

are set to govern the flow of probabilities for different variables as evidence arrives. There are 4 types

of connections for the nodes (Note: nodes highlighted gray denote evidence, nodes highlighted yellow

denote where information is traveling, nodes highlighted pink denote instantiation (i.e., truth value is

known)):

1. Forward Serial Connection

Transmits evidence from A to C (top) unless B is instantiated (bottom).

2. Backward Serial Connection

Transmits evidence from C to A (top) unless B is instantiated (bottom).

3. Diverging Connection

Transmits evidence from C to A or A to C unless B in instantiated.

4. Converging Connection

40

 Transmits evidence from A to C or C to A only if B or a descendant of B is instantiated.

After using the appropriate connections to construct the structure, joint probabilities are calculated by

knowing the nodes that are D-separated and the chain rule.

D-separation [109]:

Two variables A and B are d-separated iff for every path between them, there is an

intermediate variable V such that either:

• The connection is serial or diverging and V is known

• The connection is converging and neither V nor any descendant is instantiated

• Two variables are d-connected iff they are not d-separated

The Chain Rule:

 The joint probability distribution is a product of all individual probability distributions that are

stored in the nodes.

P(V1=v1, V2=v2, …, Vn=vn) = �i P(Vi=vi | parents(Vi)) (56)

where V are the variables, v are the values, and parents are all nodes that have a direct connection to

the current node.

 In the Bayesian network, there are 3 main parts. A set of variables having a finite set of values,

a set of connections between the variables, and a specified set of joint probabilities for all nodes. A

benefit to D-separation between variables is the declaration that the variables are conditionally

independent given the evidence. This allows for probabilities to be reduced, making calculations

efficient. Now that the joint probabilities of a single variable can be calculated, this information leads

to the probability of a vector x composed of a sequence of n variables.

41

∏
=

=
n

i

h
iii

h
s SpaxpSxp

1

),,|(),|(θθ (57)

where x is a set of n variables, sθ is the vector of parameters that correspond to the probability

distribution of all the variables

	
	
	
	
	

�

�
�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

n

s

θ

θ
θ

θ
�

2

1

 (Note: each iθ is a vector of parameters corresponding to

the probability distribution of the ith variable), hS is the network structure with some event or

hypothesis, and ipa is the network parent nodes. If given a random sample G, what is the likelihood

of it fitting parameters sθ ? The problem is expanded to include multinomial distributions for each

parameter. A multinomial distribution allows for multiple parameters for each variable. Two

assumptions are made to develop a solution. It is assumed there is no missing data from the random

sample G and the parameter probabilities are mutually independent. These assumptions lead to the

following equation which calculates the probability of a set of parameters sθ producing sample G with

structure Sh:

∏∏
= =

=
n

i

q

j

h
ij

h
s

i

SGpSGp
1 1

),|(),|(θθ (58)

where n is the number of variables and qi is the number of configurations in the structure. The

equation calculates the overall probability of the data (D) being generated by structure (Sh) by taking

the product of the probability distributions with parameters ijθ across each parent node configuration

(1…qi). Furthermore, incomplete data can be approximated by finding parameters with the maximum

likelihood to give variables:

)},|(max{argˆ h
ss SDp θθ = (59)

42

The general method to calculate the missing data value in the vector x is to calculate the structure with

the maximum likelihood of generating the known values of the vector. Using this structure, calculate

the most likely value for the missing variable. The methods to go about estimating the maximum

likelihood can vary from Monte-Carlo, MAP and ML estimators, Gaussian approximations, etc. [108].

The structure can be estimated by:

)(

)|()(
)|(

Dp
SDpSp

DSp
hh

h = (60)

The most difficult component to calculate is the marginal likelihood of the data ()|(hSDp) for all

possible formations of the structure. The marginal likelihood of the data is the product of all the

marginal likelihoods for each pair of possible variable states across all variables.

 Robertson, Reid, and Brady [83] use a Bayesian network to combine direction and head pose

and estimate gaze direction. The goal is to identify the gaze direction in medium scale images where

the head size is roughly 20 pixels tall. They track the head by hand-selecting a region from the frame

of the video and creating a normalized RGB histogram of 10 bins to define the skin tone of the person.

By applying the histogram, they use that database to determine the approximate head gaze (Figure 25).

The database consists of 100 samples for each of the 8 orientations of a 20x20 pixel region that

contains the head. Using an approximate nearest neighbor tree, they are able to get 80% accuracy in

matching the head direction.

Figure 25: Skin detection and head orientation samples [83]

43

 By detecting the motion of the head through sequences of frames, they extract the motion of

the head. They calculate the joint probabilities of direction and head-pose. P(hmatch|hinput) is the most

likely head-pose match in the training data to the input head-pose. P(dmatch|dinput) is calculated using a

linear function
45
d

 - 1 p(d)
θ= where nearesttrued θθθ −= . trueθ is the heading from the trajectory of the

tracked target. nearestθ is the projection to the nearest of the 8 discrete directions. They calculate

distributions for all 64 head-pose and direction combinations using the following equation for each

gaze:

),(
)()|,(

),|(
dhp

gpgdhp
dhgp = (61)

where p(h,d) is uniform and p(h,d|g) is a zero-mean Gaussian centered on the current best estimate of

head-pose and direction of motion. Assumptions are made corresponding to the unlikelihood of a

person moving in a direction and looking in a direction greater than 90 degrees from the current

moving direction. They set prior probabilities of 0.8 for p(gexpected) and 0.2 for p(gunexpected). Using the

previous time steps body pose (B) and head direction (G), the current body pose and head direction are

computed for each frame:

P(Gt,Bt|Gt−1,Bt−1) = P(Gt|Bt,Bt−1,Gt−1)P(Bt|Bt-1) (62)

The results are shown in Figure 26.

Figure 26: Gaze estimation example results [83]

44

The pictures on the left shows the estimated gaze and the plot on the right is the error of the estimated

gaze angle from the human provided angular gaze estimations.

 The different event tracking methods contain various strengths and weaknesses. The Bayesian

Networks provide the most general analysis for event tracking and identification but are more complex

to implement. For the experiments discussed later, the Hidden Markov Model provides a general look

at the capabilities of our feature vectors to determine the feasibility of their identification of the

participants and tasks while being slightly less complex to implement. The Kalman filters are very

useful for tracking during occlusions, but are not really useful for tracking the hands and objects

during occlusion tasks of our experiments since a majority of the motion performed will occur behind

the occluder. The tasks will not give the Kalman filter enough information to track reliably behind

occlusions especially due to the non-linear motions of the hands.

45

CHAPTER IV

SINGLE CAMERA TECHNIQUES

Object features are characteristics that describe the structure of the object. When dealing with

camera sensors, these features are visual. It is very desirable that these visual characteristics allow for

object locations to be detected regardless of object motion or varying backgrounds. Objects often

range from tools in the task to actual body parts of the person. Objects can also be visual queues that

provide information about the environment, such as shadows, to provide clues about objects in relation

to each other. For multi-camera techniques, the systems are often complex. Though they offer an

abundance of information, it is also more costly to acquire the system. Since the main focus of our

system is use of a single camera for interdisciplinary use, the techniques employed by multi-camera

systems will not be discussed. For single camera systems, the main visual characteristics extracted

include color, shape, and texture. For human motion analysis, the objects fall into 2 main groups:

parts of the person and interaction objects. Interaction objects have a lot of flexibility in controlled

experiments because they can be chosen by the experiment designer. This flexibility allows for

objects to be chosen that best interact with an experimental detection system. For tracking parts of

people, one of the most prominent features of humans is the skin tone [71]. Often, the first step in

detecting humans is developing a system that recognizes skin tones. When trying to differentiate

between various colors, it is important to choose the proper color space to represent the desired colors.

First, there will be a brief description on some mainstream color spaces.

46

Skin Tone Tracking

The RGB color space is an additive matrix consisting of red, green, and blue dimensions [115].

The additive space can be described as a cube where the origin is considered to be black (representing

minimum contribution from all dimensions) and the furthest corner is white (representing maximum

contribution from all dimensions). As the value of a single dimension grows, it represents a stronger

occurrence of that primary color (i.e. red, green, or blue).

The HSV color space consists of the dimensions, hue, saturation, and value [115]. The hue

space is used to represent the color and is described as a circle with red at the 0 degrees and shifting

through all colors till converging at red at 360 degrees. The saturation describes the fullness of a

particular color (e.g. the “redness” of red). The value describes the intensity of the color.

CIELAB is designed to model human perceptions of color. It strives to create a perceptually

uniform representation of chroma a (A) and chroma b (B) that vary across different luminances (L).

This color space is based on the CIEXYZ color space derived from a series of experiments that

mapped human perceptions of color [114].

YCrCb is an encoding of the RGB format used to deal with the storage inefficiency caused by

strictly encoding information in RGB format [115]. The Y holds the luma (i.e. brightness) component

which contains a majority of the information and can be stored in high resolution while the chroma red

(Cr) and chroma blue (Cb) are stored in lower resolution because of their lower information content.

Zarit et al. [90] did a comparison of 5 color representations (CIELAB, Fleck HS, HSV,

Normalized RGB, and YCrCb) to determine the most descriptive color space for skin detection. Fleck

HS is an altered version of the HSV color space that is biased towards the hues and saturations of

natural skin tones. By training on multiple images, a histogram of skin values was created for each

of the color spaces. They tested these histograms by applying varying thresholds from 0 to 1 and

calculating the S (% of skin correct), SE (% of skin error), NSE (% of non-skin error), and C (overall

% of correct pixels). By setting the threshold that allowed for specific values of S (% of skin correct),

47

the overall % correct was measured to determine the better color spaces. Then, a filter was added to

correct pixel classifications by detecting the pixel classification of the surrounding pixels and adjusting

the current pixel. The process of filtering is continued until the change in the number of skin pixels is

less than 1%.

Figure 27: Results of comparison at 80%, (left) ½ original threshold, (right) ¼ original threshold [90]

In all of the comparisons evaluated, HSV and Fleck HS made up the 1st and 2nd best color spaces for

modeling skin tones.

Shape Tracking

For shape tracking, the main problem is tracking the same points and correlation of points as an object

moves. When dealing with a camera that returns 2D information and relating that data back to the 3D

world, clues to determining and tracking these points usually are determined from their movement as

the object moves [61,62]. If points can be determined on rigid objects, their movement can be

described by a set of linear transformations. Of course, modeling deformable shapes is much more

difficult because of different underlying models for different areas (Figure 28). For example, the

corner of a person’s mouth can change independently of how the head turns. Another method of shape

48

tracking is to overlay shapes across a region identified as being the object of interest. Examples were

shown earlier (Figure 3) under modeling the body structure.

Figure 28: (left) Tracking of face movements, (right) Tracking of texture patterns [62]

Optical Flow

 In the temporal boundary area for visual systems, the methods involve using optical flow and

object features to detect motion queues. The temporal boundary area is the area dealing with time

partitions of events. Optical flow is the regional motion throughout subsequent frames in a stream of

images. The motion vectors in these regions show object boundaries by connecting similar vector

regions. After detecting these motion queues, the objects can be identified and tracked. These

motions can be used to give clues about many machine vision problems such as occlusions [35],

distance estimations [107], key event moments, etc. Optical flow techniques rely on local space and

time displacements of image values [2]. A common method for calculating optic flow is using block

based motion estimation. The block based motion estimation takes a block from a frame of an image

and finds the most similar block in the next frame with the closest distance spatially. A vector field is

calculated from this motion estimation. One of the assumptions of optic flow for determining objects

is that neighboring blocks have similar motion vectors. By using these vectors, object shapes and

motion can be determined.

Optical flow fields can be used to provide vast amounts of information about the activities of a

scene. Aloimonos et. al. [35] used optical flows to determine the change of occluded areas of the

background by other objects and determine the distances between the object in motion and the

49

background. They described 3 types of classes for motion involving independently moving objects

(Figure 29):

Figure 29: 3 Motion Class Examples [35]

Class 1: The independent object (represented as the black object) is moving in a different

direction independent to the other background objects (represented as the gray objects). Note: the

darker grey objects signify an object in front of the independent object and the striped area represents

the area occluded by the moving objects. Independent objects using class 1 motions can be identified

by performing motion-based clustering.

Class 2: The independent object is moving to the right along with the background objects. It

moves at a faster speed but is not enough to rely on just motion based clustering. To detect this

motion, they take advantage of ordinal depth conflicts. Ordinal depth is the perceived order of the

depth of objects in relation to each other (i.e., an object being in front or behind another object). Using

the occlusion of the black object by the dark gray object, this gives the perception of the black object

being behind the gray object. By constructing structure from motion, the black object appears to be in

front of the gray object because it moves faster. The two conflicts allow for the detection of the

independent object.

Class 3: The last class is similar to the second class but does not have the occluding object

(dark grey) to give clues about the independent object (black). To detect this set of motions, they use

two calibrated stereo cameras to calculate the motion/depth ratios and group them into 3 groups. A

group for the largest set of group ratios (background group), a group for pixels with greater group

50

ratios than the background, and a group for lesser group ratios than the background (also considered

background) are extracted. The groups not of the background group are considered an object in class

3 motion.

They develop a general algorithm to detect the 3 classes:

1. Input video sequence

2. For each frame in the video

a. Find the forward and reverse flows using the occlusions

b. Select a set of pixels using phase correlation (see below) between two frames.

c. Find the background motion using the set of pixels.

d. Detect Class 1 moving objects from background

e. Find ordinal depth relations using the flows from (a)

f. Detect class 2 moving objects

g. If stereo is available, detect class 3 moving objects

Phase correlation involves calculating 4 parameters from the motion in an image to detect the

background. The 4 parameters are the x and y translations in Cartesian coordinates, the scale in

logpolar representation, and the z rotation. These 4 parameters are most dependent on the background

(assuming the background is the largest object in the video) and are used to select optimal points at

which to sample the true background motion. Results can be seen in Figure 30.

51

Figure 30: Aggarwal et al. results: (a)-(c) show 3 frames in a video sequence. (d) shows the computed
motion valley. (e,f) show the forward and reverse flows. (g) shows the inverse depth from motion. (h)
shows 3D structure from motion. (p,q) show the pair of stereo images. (r) shows the inverse depth
from stereo. (s) shows the 3D structure from stereo. (x) shows the cluster groups. (y) shows the
clusters in the image. (z) shows the Class 3 moving object.

Krootjohn [107] uses optical flow to determine robot location through visual odometry and

detect precipice proximity. MPEG encoders have optical flow information calculated and stored in

their structure. Krootjohn was able to extract that information to be used for visual odometry and

precipice detection in real time. By using a single stationary calibrated web-camera angled toward the

floor, he was able to calculate the translation and rotation of the robot from the flow vectors in specific

regions of the viewing area. Using the vectors that project into the left and right sides of the virtual

square, these values estimate the robot rotation to the left and right (see Figure 31a). The vectors that

project into the upper region are used for both the forwad and backward motions (Note: The backward

motions are identified by inversing vectors that have a negative y component and determined if is

projects to the top of the virtual square.)

52

 (a) (b)

Figure 31: Robot setup: (a) Image plane, (b) System configuration [107]

Using these motion vectors, the forward and reverse translations are calculated by the following

equation:

)tan(ii hY βθ += (63)

where 	

�
�

�= −

F
yi

i
1tanβ , F is the focal length, θ is the tilt angle, h is the height of the camera, and yi is

the projected motion vector on the 2D image plane. Using the Yi values calculated between each

frame and summing each distance, the total distance is calculated. Likewise, the rotation can be

calculated from the following equation:

F

xx c)(
tan 01 −

= −φ (64)

where x0 is the point before rotation (x component of the motion vector), xc is the camera translation

occurring during the robot rotation, and F is the focal length. After calculating the translation and

rotation of the robot, an interface showing the motion vectors and projected travel of the robot was

created (Figure 32a). A similar interface is used for precipice detection where the bottom half of the

image plane is broken into a 3x5 blocked area. The first row is the Watch level, the second row is the

53

Warning level, and the third Row is the Panic level. Each level has a binary safety value of 0 or 1 (1

being safe, 0 being not safe). If the average magnitude of the motion vectors in the Watch level are

less than half that of the Panic level, it returns a 0 value. The Watch level has 3 frames for the average

to rise above the threshold before the 0 value is returned. When the Watch level returns 0, the

Warning level is then active and follows the same logic as the Watch level. The Panic level flags

when the number of macroblocks (i.e., 5 blocks making up the section) that have an average vector

above 0 is less than half and the robot stops. The interface for the precipice detection can be seen in

Figure 32(b).

 (a) (b)

Figure 32: Krootjohn’s interface: (a) Interface for robot odometry, (b) Interface for precipice detection

[107]

54

CHAPTER V

STATE OF THE ART HUMAN MOTION ANALYSIS SYSTEMS

 To develop an effective tool for human motion analysis, it is important to look at some of the

latest systems and discuss their capabilities. This chapter focuses on covering the tools being used

currently in research labs as well as products available for purchase. The systems discussed tend to

focus on generalized tracking and human motion analysis. They will be described in terms of

hardware and software necessities, price, and capabilities. The 5 systems that will be discussed are

divided into 2 groups, research institution developed tools and commercial products. The 2

commercial products are Vicon Motus system and the Qualisys Mocap system. The 3 institution

developed tools are from the University of Texas at Austin under Aggarwal, the University of

Maryland under Aloimonos, and Carnegie Mellon University in the Robotics Institute.

Motus System

 The first system is a tracking system known as the Motus system created by Vicon [120]. The

Vicon Motus system is a software package based on Windows that connects to digital camcorders via

Firewire. The system is used for many mainstream applications such as video game development,

movies, and various tracking applications. The company’s various systems have been used over the

past 20 years of its existence by well known clients such as Sony, Microsoft, Activision, etc.

The Motus system provides a number of applications which include but are not limited to

pattern tracking, gait analysis, skeleton model application, and multi-camera

calibration/synchronization. The system specializes in full body tracking, by tracking points

throughout a video sequence; an example can be seen in Figure 33. These points are either initialized

by the user or are represented by visually unique representation usually specified colors to used for

55

tracking. These points naturally lead to skeletal models which are used to extract motion of the points

relative to other points in the model. In most of the demos, the more complex skeletal models were

formed by markings placed on the subjects. Some of the common features that are extracted from the

models are point velocities and joint angles. These initial features lead to more complex model

features such as center of mass and stress estimation. The system is robust in the number of

environments that it may be used. The system has also been used with a number of rehabilitation

clinics to allow monitoring of patients during activities especially walking. The system has the ability

to perform some gait analysis such as determining the individual steps from the entire sequence of

walking.

56

Figure 33: Sample displays of Motus capabilities

The Motus system has a lot of user learning that is necessary to use the tool, but the tool itself can

scale to meet the needs of the task to be observed. The package allows for a single camera system and

has the option of scaling up to 244 cameras using their hardware options. Vicon offers a number of

product that can be purchased with the system such the Vicon T and MX series cameras, Giganet

device (for the monitoring and synchronization of cameras as well as Ethernet connection), and remote

video synchronization unit (RVSU). The basic software system was priced starting at $5,000.00 in

2008. As the system expands to a 3D setup, the price ranges from $40,000 – $50,000 for setups

involving digital cameras with varying speeds and resolutions.

Mocap System

 Another tracking system available on the market is the Qualisys Mocap system [121]. Like

Vicon’s Motus system, this system is also a Windows based system and specializes in point tracking.

Their systems have been in development in Sweden since 1989. Qualisys products have been used

with various hospitals and universities such as Madonna Rehabilitation Hospital, University of

Salford, University of Massachusetts Amherst and Stanford Biomotion Labs. The complete Mocap

system offers all the materials necessary to build a motion tracking work area. Materials include

57

cameras, wall mounting brackets, markers and body suits, calibration and camera lenses, tripods, force

plates, and Qualisys Track Manager (QTM) software as can be seen in Figure 34.

Figure 34: Overview of complete Mocap system

 The Mocap system employs the camera array approach to extract 3D information. It offers

software packages such as QTM 3D tracking, Visual 3D model builder, Qualisys Video Analysis

(QVA), and Motion Monitor. The QTM offers 3D tracking of markers from several synchronized

camera inputs as can be seen in Figure 35. It also offers point tracking and model analysis from both a

2D and 3D perspective. The Visual 3D model builder allows the user to specify different segments of

the human body for analysis. The QVA monitors and manages all video feed into the system, which is

useful for management of experiment recording and documentation. The Motion Monitor software

uses high speed, high resolution, digital Qualisys cameras to track motion. Some of the applications

for this package include eye tracking and sports performance enhancement.

58

Figure 35: QTM Sample Display

The Mocap system has a lot of user learning that is necessary to use the tool, but similar to the Motus

system has the option of scaling upward. The pricing of the Mocap software, upgrades, and tech

support ranges from 1250 euros (~1800 dollars) for 1 year to 3000 euros (~4300 dollars) for 3 years.

University of Texas System

 Whereas the previous two systems are for purchase commercially, the following systems are

developed at different universities. The system developed at the University of Texas is based on

analysis of human action for surveillance in public settings. The system focuses on extracting high

level descriptions of the actions occurring. Due to the scope of the application, one of the goals for the

system is real-time analysis. The system operates from a single camera perspective and extracts

information using 2 basic detection methods. The first method is a human-blob segmentation that

extracts the position of standing humans using differencing techniques to segment foreground and

background as can be seen in Figure 36 [122].

59

Figure 36: (a) Human tracking sample, (b) Motion foreground extraction

The second method estimates the position and orientation of the head. By assuming the upper portion

of the bounding box created from the human segmentation is the head, the image is compared to a

database of images resembling the head at different orientations. The information is organized into a

structure containing 2 normalized arrays. The first array contains the mean pixel value of the person

and the second array contains the probability of each pixel being a foreground pixel. The system

tracks the person by estimating the next position in the following frame and matches the appearance

profile of the person by finding the image region with the minimum difference.

 This system has been applied to a number of surveillance applications such as human tracking

in occlusion environments [122](Figure 37), activity recognition in surveillance videos [123] (Figure

38), and car tracking in traffic videos [124] (Figure 39).

Figure 37: Subway Surveillance Tracking

60

Figure 38: Activity Recognition

Figure 39: Vehicle Tracking

University of Maryland System

 The goal of the system developed at the University of Maryland under Aloimonos is to develop

formal models of human action [8]. To create a formal model for human action, a set of

representations must be established called visual verbs. These visual verbs are motions performed by

a single human usually by some translation of a limb. Adverbs and adjectives are used to develop the

descriptions for more complex actions such as walking. Using optic flow methods combined with

background subtraction, the silhouette of a person is analyzed for minima and maxima of flow values.

61

These minima and maxima indicate key moments in the action that are used to parse the overall human

action. The poses captured at these mimima and maxima are theorized to be all that is necessary to

allow for recognition of the action.

Figure 40: Example of flow minima and maxima with associated pose

To generalize the poses, the information was gathered from an 8 unit camera array viewing each action

from an equally distributed full 360 view. To help generalize the data, each silhouette is averaged

across multiple participants. The combined views of each pose are collected into a set of training

examples for an HMM.

Figure 41: Pose Descriptions

62

The HMMs are used to describe the tasks in a sequence of poses. The sequences of poses in

conjunction with the trained HMMs are used to recognize actions in a general setting.

Robotics Institute Systems at Carnegie Mellon

 The final system was developed at the Robotics Institute at Carnegie Mellon University. The

People Image Analysis group focuses on tracking humans or body parts of humans using visual

information provided from single cameras. Some of the systems apply shape models and match them

with body part characteristics to extract information. The 3D Head Motion Recovery system applies a

cylindrical model to the head of a person [125]. By matching the inner corners of the eyes, edge of the

nostrils, and the corner of the mouth to points on the cylinder, the 3D rotation and translation of the

head is estimated.

Figure 42: Head estimation using cylindrical model

They also apply models to the hand to detect shapes and motions to be used for sign language

recognition [126,127]. The model for the hand consists of shape (contour of hand), position, and

motion change. A state space is created that shows “stable” nodes (moments when the hand state is

fairly constant therefore having a shape) and “transition” nodes (moments when the hand is moving

rapidly and no shape is estimated). By traversing the state map of the hand for each gesture that is has

been trained on, detection of various words are detected and recognized.

63

Figure 43: Hand state space and hand detection

Other systems use tracking of people for surveillance. In the case of tracking multiple humans in a

scene, some of the standard tracking methods are used such as kalman filtering, particle filtering, and

mean-shift tracking [128]. While these methods are accurate, they also contain some amount of

weakness due to occlusions. By combining the previous methods with a probabilistic graphical model,

the inaccuracies caused by lost patches are reduced.

Figure 44: People tracking with occlusions

 Although each of these systems have their strengths for their chosen applications, each one also

has its limitations. The two commercial systems provide excellent tracking for motion analysis under

controlled conditions. They also are specialized in skeleton based modeling which limits their ability

to visually recognize object contours. The commercial systems are pricey investments for a

64

laboratory, but if the means are available, they provide very accurate data and professional tech

support for research.

The 3 university systems were developed for research toward increasing knowledge in the

desired field. The surveillance systems are specialized toward tracking even with occlusions, but are

limited in the action recognition available outside full body motions. Smaller motions are much

more difficult for these systems to detect. The part tracking systems use more sophisticated methods

for estimating states of the body parts. The models used are very accurate for estimating specific body

parts in the desired range of actions. The systems are fairly limited in use for general purposes, but do

very well in their specifically designed workspace.

65

CHAPTER VI

SINGLE CAMERA TASK OBSERVATION AND RECOGNITION SYSTEM

One of the goals of our lab is to take our original visual navigation system and adapt it to be an

easy to use general tracking and recognition system for use in fields outside of engineering. This

system has numerous uses and can be applied across many interdisciplinary research fields. The

system should be robust in its abilities, yet cost efficient as to be available to most any lab with

minimal equipment purchase. This goal was developed as we worked with the Vanderbilt University

Psychology Department under an NSF grant to study human activities. Their research had shown that

subjects instructed to do a number of tasks had common key moments in their activities corresponding

to grasping and releasing of objects, glances toward and away from the objects/workspace. Using a

student to indicate when the activities occurred, they were able to observe a high correlation with data

picked up from the measurements of head and hand states. The vision system our lab has developed

has been tested in the area of robot navigation coupled with working memory [51] and has shown

good results in its ability to learn from the visual data provided. The navigation system was adapted to

be useful in the psychology research data collection. Before explaining the goals and experiments of

our new system, the visual processing method of the system and action parsing method will be

covered.

System Hardware

The input device used by our lab is a Sony DCR-VX2000 camcorder. A consistent price at an

online retail store for this particular camcorder could not be found, but the next generation camcorder,

the Sony DCR-VX2100, could be found for as little as $1,000 from online retailers. The Panasonic

DVX100, a similar type of camera, was used by the Psychology Department in gathering data and can

66

be purchased from online retailers at around $1,000 as well. The frames of the video from the

camcorder are 480x720 pixels. This information is transmitted via 4pin-6pin FireWire cable ($10 -

$20 pending length) to a laptop FireWire card ($10 – $30) aboard a laptop. The original program ran

on a Linux operating system in C++. This program was modified to also extract frames from an AVI

video to allow training of the system and segmentation of the frame. By allowing for the system to

read from AVI videos, this gives our system the ability to do perform automated processing of a

number of pre-recorded videos on a stationary desktop computer.

Our system starts by training on the objects of interest that are currently provided by the user.

To represent these objects, our system uses feature vectors composed of a high dimensional HSV color

space histogram along with a Laplacian texture measure. The initial visual system is also described in

Tugcu’s dissertation [111].

HSV Color Histogram

The frames are captured in RGB format which means the information is encoded in intensity

values of red, green and blue. The image is converted to HSV format which means hue, saturation,

and value. The hue value, which defines the color family, ranges from 0 to 1 where all the colors are

represented as the value increases starting color (red) at 0 and returning to the same starting color (red)

at the value 1 . The saturation parameter S is the degree of purity from 0 to 1 (e.g. the “redness” of the

red or how vibrant the red is). The value parameter V defines the brightness of a color and it is also

from 0 to 1. The color space conversion from RGB to HSV is computed as shown in the pseudocode

below:

()
()

MAXV

BGRMIN

BGRMAX

=
=
=

,,min
,,max

67

()

()

()

()

() 360,0

604,

602,

600,

0,0

+=<

×	

�
�

�

−
−+==

×	

�
�

�

−
−+==

×	

�
�

�

−
−+==

−=

===

HHthenHif
MINMAX
GR

HthenMAXBif

MINMAX
RB

HthenMAXGif

MINMAX
BG

HthenMAXRif

MAX
MINMAX

S

undefinedisHandSVthenMAXif

Once the HSV values are computed, the next step is to construct a probability density function (pdf) of

the HSV distribution of colors. The pdf is essentially a histogram of HSV colors and computed using a

color quantization method as follows: The hue space is evenly distributed into 100 bins, ranging from

0 to 1. The saturations and values are each evenly distributed into 10 bins that are also ranging from 0

to 1. This results in 10,000 different possible color representations. For a region selected by the user in

the image (usually composed of a single object), an HSV color histogram is obtained by accumulating

the HSV values of each pixel in the region. The region is broken into 7x7 blocks of pixels. Each

block has its colors represented by the color histogram and is stored as a feature vector of that

particular object.

Texture Measure

In order to understand the texture of a region, a spatial filtering technique, based on the

Laplacian operator, is applied to the image. The Laplacian operator is often used for edge detection,

where the regions that have rapid intensity changes are highlighted in the image. The Laplacian

()yxL , of an image having pixel intensity values ()yxI , , is defined as:

() 2

2

2

2

,
y

I
x

I
yxL

∂
∂+

∂
∂= (65)

68

Since an image is composed of a set of discrete pixels, the following kernel, which approximates the

2nd derivatives in the definition of the Laplacian equation above, is applied.

() 8/
111
181
111

,
−−−
−+−
−−−

=yxK LAP (66)

This Laplacian measure is calculated across the 7x7 block and the mean value is stored as the final

value in the visual feature vector completing our 10,001 feature vector.

 After a database is created for all the desired objects, this database is compared to new image.

The center of the window is then moved throughout the entire image and a feature vector is obtained

for each displacement. Currently, the displacement is 4 pixels in the horizontal and vertical directions.

The new vectors are compared to the training data and by using a nearest neighbor approach. The new

vectors are represented by the most likely group’s color representation in a new 118x178 pixel

segmented image.

Distance Metric

It is expected that the patterns that are members of a specific perceptual cluster should be

closely positioned in the pattern space, while those from different percepts should be positioned

further apart from one another. Our system uses the Euclidean distance for the color histogram and

the L1 norm to compare the texture measure. In a K-dimensional space, the metric distance is given

by:

jKiK

K

k
jkikij xxxxd −+	

�
�

� −= �
−

=

2
1

1

1

2
 (67)

where K= 10001 in this system. As the dimension of the vectors increases, the number of training

samples should also be increased considerably as much as possible in order to obtain meaningful

percepts. The pure nearest neighbor search algorithm works at an order of N*d comparisons for each

69

new vector where N is the number of vectors in training set and d is the number of dimensions

composing each vector. To shorten the amount of processing necessary for each comparison an

approximate nearest neighbor tree is constructed.

Approximate Nearest Neighbor Tree Construction

The tree structure is formed as follows: Initially, at the root or first level of the tree, three

points, which represent the cluster centroids, are selected randomly and then the whole data set is

clustered into three subsets by assigning each feature vector to its closest representative cluster center

according to the proximity distance measure. At the second level, three subsets are obtained and the

same procedure is applied, which in turn results in 9 subsets or in other words nodes for the tree. This

procedure continues until either all the leaf nodes belong to the same object class (a pure node) or the

number of leaf nodes is below some limit, e.g., a hundred. Every feature vector in the leaf nodes has a

landmark associated with it [111].

Since all the centroids for each node in the tree structure are known, searching the tree is

straightforward. Given a new feature vector, the three similarity measures, which are between the new

vector and the centroids of the three sub-nodes at the second level of the tree that belong to the root

node, are computed. The winning sub-node is the one that is closest to the given feature vector. At the

third level of the tree the same procedure is applied and a winner sub-node is selected and the fourth

level of the tree has been reached. This procedure is terminated when the search has descended to a

leaf node. If the leaf node is pure, that is all the feature sets belong to the same class, then the vector is

labeled as the leaf node's class label. If not, that is the data set in the leaf node is mixed and below

some threshold limit, then a nearest neighbor search is applied using the vectors of the leaf node, and

the vector is labeled with the training vector's label that is closest [111].

70

 Once the system is trained on all person and the objects involved with the task, the trained tree

is used to processes the entire set of frames for a video of a person performing the task. Each tree is

trained on the set of the same task since each task has a certain set of objects.

After each section of a new image is classified via the approximate nearest neighbor tree, the

resulting pixels are allotted a classification number (i.e., label) depending on the classification. The

pixels are represented for visual display via a predefined color for each classification number. Using

this new classification image, each classification group is extracted and a connected component

labeling algorithm determines the groups’ pixels for all the objects.

Database Training

Our system uses an interface that allows the user to select regions out of sample images and

provide classification. The system proceeds to break the selected region into 7x7 blocks and create

feature vectors for each of the patches. This method allows for large amounts of training data to be

gathered quickly. The assumption is that applications this system is used for will produce copious

amounts of data. Each image has a 21004 vectors contained within at the block size of 7x7 with a hop

of 4. For applications with controlled environments (i.e. visual characteristics of desired objects are

chosen to be easily separable for the color space), the training of a tree can extend across multiple

sessions of different subjects with the same objects needing little reinforcement learning necessary to

extend the training across multiple sessions. In fact, it is safe to say that in actuality the number of

trees was equal to the number of tasks created and each tree was trained on all of the participants’

versions of that particular task.

Segmentation

Each classification image is broken into object images. An object image is an image

containing only the pixels whose patches are classified as a particular group. Once an object image is

71

created, all the object classifications are set to a value of 1. To reduce noise the image is filtered with

a variable averaging filter in the following steps:

1. An n x n filter size is chosen by the user because the size of the resulting image depends on the

patch parameters appropriate filter sizes vary. The general rule is to use a size equivalent to

the patch size or smaller for the application.

2. For there to be any groups stored after the group image is filtered, a group must fill at least

percentage 1 (P1) of the filter.

3. If the conditions for viable groups are met, the largest value (M) from the filtered object image

is stored and all values in the filtered object image that are greater than percentage 2 (P2) of M

are changed into a value of 1 while the others are stored as 0 creating a filtered binary object

image.

4. This new image is grouped using a connected component labeling algorithm. Statistics about

each group are stored into the object descriptor class (i.e., class containing number of pixels,

width, height, and (x,y) centroid of each group)

The segmentation information for each frame is stored in a text file and accessed via Matlab to

perform the second stage of the analysis.

72

CHAPTER VII

EXPERIMENTS AND RESULTS

Much research has assumed that human-generated action segmentations represent the

combined influences of basic perceptual cues such as changes in the direction of moving body parts,

and more complex cognitive constraints such as an understanding both of context-consistent sequences

of actions, and of the actor's goals. For example, in one recent study [112], subjects were asked to

segment the movements of a two simple shapes on a computer screen. One group of subjects was told

that the movements were generated by two people playing a game, and the other group was told

(correctly) that the movements were randomly generated. Both groups then segmented the actions.

Results indicated that the segmentations were predicted by a number of basic movement features such

as direction changes and the mean proximity of the two objects. However, these basic movement

features predicted segmentations most strongly when subjects believed that the movements were

random. According to the researcher, this occurred because subjects in the person condition focused

more on abstract conceptual goals and less on specific movement features than subjects in the random

condition.

To explore the features that might predict action segmentations in a more ecological context,

we completed an analysis of segmentations for a wide range of realistic actions in which a set of

human models was videotaped completing a series of ten different tasks with a range of objects [113].

Instead of using basic movement features to predict segments, we defined a set of more meaningful

subactions that were hand coded. These included hand-to-object contacts, object-to-object contacts,

occlusions, and eye movements. We found that multiple regressions based on these subactions

predicted up to 82% of the variance in the number of breakpoints entered (by eight judges) in each

one-second bin.

73

The tasks being performed involves a person sitting at a table with a set of objects and

performing some type of assembly task. The person is wearing a red glove on their right hand and a

purple glove on their left hand. They are also wearing a hat with a lime-green strip down the center.

The camera is situated in front of the person facing them from across the table.

The data collected is 100 videos (10 participants doing 10 tasks each). The tasks are various

assembly and sorting types:

Task 1: The assembly of 3 flashlights. The flashlights are fully dismantled with the batteries,

bulb and handle in 3 separate groups. The participant must construct all 3 flashlights and lay

them on the table in front of the camera.

Task 2: The assembly of 3 item baskets. The basket, lid, tissue paper, and green Legos are in

their own groups. There is also a stamp block. The user must construct a basket by placing a

Lego, tissue paper and the lid in that order. The basket is finalized by stamping it with the

stamp block. This is to be repeated for the next two baskets.

Task 3: The assembly of pipe structure. Four cylinder shaped pipes and two junction pipes are

connected in a particular manner. The junction pipes have 3 openings that a cylinder pipe

can fit. All the pipes must be used to construct a structure.

Task 4: The sorting and filling of containers. Six containers are stacked on top of each other

and must be rearranged in a particular order with Lego blocks placed inside each one in a

particular order.

Task 5: The filling of containers with Legos. Three yellow containers are to be filled with one

color of Legos. The pile of Legos consist of 3 different colors and are all piled together to

the right of the participant. The three containers are placed in front of the participant.

Task 6: The removal of Legos from containers and storing into another container. Three

containers are located side by side. The center container is empty and the two periphery

containers contain Legos to be moved to the center container.

74

Task 7: Occlusion Movement. Two Legos and a occluding object are on the table. The Legos

are to be moved behind the occluding object, then moved to other sided of the occluding

object.

Task 8: Occlusion Assembly. A T-shaped structure is created from Legos in plain sight of

camera. Then, another T-shaped structure is created behind the occluding object. Finally, the

occluding object is moved away.

Task 9: Assembly of 3 T-shaped structures. The different-colored T-shaped Lego structures

are constructed in plain view of camera.

Task 10: Lego Stacking. Legos are to be stacked until all of the Legos are used, or the

structure collapses. There are two attempts at this task.

A new feature vector is created to analyze the movement of the person in the video. The

current system assumes that there are 2 actuators and 1 gaze estimator in the video. With these groups

being classified by the user, the features of the video are extracted. The feature vector can vary

depending on the number of frames (bin size) that it must represent. The 12 features are:

Magnitude velocity of Hand 1 - This value is calculated by taking the centroid values of hand

1 between successive frames and calculating the Euclidean distance between them. These

distances are averaged across varying binsizes.

Velocity Stop of Hand 1 – This is a binary value that is decided by if the mean velocity of hand

1 is less than 1.5 pixels between successive frames of that bin (1 if true, 0 if false).

Object Contact of Hand 1 – This is a binary value that is decided by drawing a line between the

centroid of an object and the centroid of hand 1. If the number of pixels that are not

classified as the hand or the object in question is less than 2 for all object groups in the

image, then hand 1 is considered near an object. (1 if true, 0 if false).

Hand 1/ Object Change – This is an average of the change in the number of pixels represented

by objects when hand 1 is within 30 pixels of them.

75

Magnitude velocity of Hand 2 - This value is calculated by taking the centroid values of hand

2 between successive frames and calculating the Euclidean distance between them. These

distances are averaged across varying bin sizes.

Velocity Stop of Hand 2 – This is a binary value that is decided by if the mean velocity of hand

2 is less than 1.5 pixels between successive frames of that bin (1 if true, 0 if false).

Object Contact of Hand 2 – This is a binary value that is decided by drawing a line between the

centroid of an object and the centroid of hand 2. If the number of pixels that are not

classified as the hand or the object in question is less than 2 for all object groups in the

image, then hand 1 is considered near an object. (1 if true, 0 if false).

Hand 2/ Object Change – This is an average of the change in the number of pixels represented

by objects when hand 2 is within 30 pixels of them.

Gaze Velocity – This is the mean velocity of the estimated gaze angle change across a bin.

(Note: Gaze is estimated by using a stripe on the participant’s hat. The angle is calculated by

estimating the angle between the best fit line for the points of the stripe and the vertical line

between the centroid of the stripe)

Gaze Object - This is a binary value that is decided by if the gaze angle is within 10 degrees of

an object for at least half the frames of a bin (1 if true, 0 if false).

Gaze Hand – This is a discrete value with possible values of {0, 1, 2, 3}. This value is

determined if the gaze estimation is within 10 degrees of :

 None of the Hands – yields a value 0

 Hand 1 alone – yields a value 1

 Hand 2 alone – yields a value 2

 Both of the Hands – yields a value 3

Gaze Stop - This is a binary value calculated by if the gaze velocity of a bin is less than the

mean gaze velocity of the entire video (1 if true, 0 if false).

76

All of the features are dependant on bin-size. The videos are recorded with a frame rate of

about 30 frames per second. A group of feature vectors are calculated for bin-sizes of 1, 3, 6, 8, 10,

and 20 frames. The videos are hand segmented to determine significant moments during the task. The

moments are defined as hand grasps and releases of objects throughout the task. A bin is considered a

significant bin if an significant frame designated by the human rater falls within that bin. The

significant moments were based on the findings of the Psychology Department which were hand

grasps and hand releases of the participant. The bins are created by sequential sets of bin-size frames

with no overlap (e.g. for bin-size 3, the first vector will consist of frames 1-3, the second will consist

of frames 4-6, and so on).

Experiment 1: Task/Breakpoint Segmentation

… … …

1 2 3 4 9999
10000

10001

Color
Histogram Laplacian Texture

Measure

Approximate Nearest Neighbor Tree

Sample Images
User-provided labels

Visual Feature Vector
Extraction

Segmented Result
Images

… … …… … …

1 2 3 4 9999
10000

10001

Color
Histogram Laplacian Texture

Measure

1 2 3 4 9999
10000

10001

Color
Histogram

1 2 3 4 9999
10000

10001

Color
Histogram Laplacian Texture

Measure

Approximate Nearest Neighbor Tree

Sample Images
User-provided labels

Visual Feature Vector
Extraction

Segmented Result
Images

Figure 45: Supervised Video Segmentation Flow Chart

77

Figure 45 shows the general flow to segmenting the videos. Using the capabilities of our

previous system, the user will provide labeled samples of every object in the video which involves

sorting through multiple frames to provide ample sampling of each object throughout the time period.

Due to the lighting differences during filming, caused by incandescent bulbs lighting the room and

shadowing, as well as video format conversion information loss, the objects can have quite a varied

look throughout the span of the video. Once all of the training data is collected and labeled, an

approximate nearest-neighbor tree is constructed to be used to efficiently label new data. This tree is

applied to each frame of the video and the resulting image is stored. All the resulting images are used

to create the segmented video.

Connected Component
Labeling

Segmented Result
Video

Object statistics extraction
(size, height, width, centroid)

Calculate the behavior feature
vector for specified bin size

Apply regression classifier to
model breakframes from feature

vector

User-provided
breakframes

Connected Component
Labeling

Segmented Result
Video

Object statistics extraction
(size, height, width, centroid)

Calculate the behavior feature
vector for specified bin size

Apply regression classifier to
model breakframes from feature

vector

User-provided
breakframes

Figure 46: Supervised Behavior Extraction Flow Chart

The first important step toward task recognition and identification is to identify the crucial

segments of a set of actions (a flowchart shown in Figure 46). The first goal is to provide a set of

boundary points to train the breakpoint segmentation system, analyze the success of the features to

predicting breakpoints, and compare the segmentations of the raters. The video frames were marked

as the boundaries of key subevents occurred as defined by their importance in describing the steps

78

needed to complete the task. These moments are chosen to be at the finest resolution of the motions in

the task. Selection of these subevents reflected the findings of the study mentioned earlier [113] where

the segmentation boundaries corresponded to hand-to-object contact and object-to-object interactions

with gaze confirmation (using participant gaze to disambiguate the model’s current focus of attention).

A frame was selected as a significant frame if there was hand to object contact; hand induced object to

object contact, or releasing of an object. In many cases, key events extended over multiple frames.

For example, the tasks often require combination of objects. These combinations require the contact

of two objects and applying force to squeeze them together. During the moment of the hands holding

the objects and applying the force, all frames depicting this event were marked for the subevent.

Depending on the task, the participant, and the bin size, the number of marked bins ranged between

one-third to one-half of the total bins in the video. Once the breakpoint feature vectors are identified,

these vectors are used to train linear, quadratic, and Mahalnobis regression models. The explanation

and results of this experiment are also available via our paper [116].

The measure used to determine performance is called d-prime (D'). This value is calculated by

using the:

)_()_(' 11 alarmfalsefratehitfD −− −= (68)

where f(x) is the cumulative sum of a normal distribution of � = 0 and
 = 1

�
∞

∞−
		

�
��

� −−= dx
x

xf
2

2

2
)(

exp
2

1
)(

σ
µ

πσ
 (69)

1−f returns the x value that corresponds to the moment the equation f(x) meets a given value.

 The hit rate is defined as the probability of the system correctly identifying the interesting bins

which is calculated by taking the number of correctly identified interesting bins divided by the number

of total interesting bins.

79

The false alarm is defined as the probability of the system misclassifying the non-interesting

bins which is calculated by taking the number of misclassified non-interesting bins divided by the

number of total non-interesting bins.

The norminv calculates the x value given a probability, mean, and standard deviation on the

cumulative sum of a normal curve. This measure is basically a non-linear measure of the distance

between hit rate and false alarm. An interesting fact about this measure is how the norminv

approaches infinity as the input value approaches 1 or negative infinity approaching 0. In the case of a

perfect hit rate, the d' value is infinity. In the cases for this experiment, it has been shown that the d' of

infinity identifies a classifier that has an excessively high false alarm rate as well. In Table 5, there are

2 d' measures, d1' and d2', that are calculated. d1' takes the average hit rate and the average false alarm

rate of all then calculates the d' from that value. d2' is calculated by taking the individual d' for all the

available hit rates and corresponding false alarm rates, and taking the average of all the d' values.

Since d2' has the possibility of containing infinity values, those individual d' values are replaced with a

value of 0.5 to represent maximum uncertainty. This measure is the average of the d' values for each

individual test set.

The data being analyzed is in the format of 100 videos (10 participants doing 10 tasks each).

Each video has its set of behavior feature vectors calculated for each of the bin-sizes for analysis.

Various regression models are trained and tested on the data to determine the best methods using the d'

measure. The steps to perform this experiment are as follows (in Table 4):

80

Table 4: Experiment 1 Roadmap

Procedure

Gather the 10 task videos for each of the 10 participants.

Identify each video with human rated significant frames.

Train the visual database of the system on each of the videos of a particular task.

Segment each video and store the object data for each frame.

Extract behavior features for all videos with each bin-size allocation.

Train the classification system with labeled behavior data.

Analyze data using regression techniques.

Refine significant moment detection to reduce the false alarm rate.

Overall, predictions of subevents based on the movement and contact variables were moderate,

and strongest for 6 frame bins using a linear classifier (as can be shown by Table 5, Table 6, and

Figure 47). In fact, the 6 frame bins performed the highest for each of the 3 classifiers in both the task

analysis and subject analysis. To estimate the maximum success of the system in this analysis, the

data was analyzed with the k-nearest neighbor method since this method converges to the MLE

results. The k number of neighbors was incrementally increased by 50 to a group of 10001. Since the

total amount of vectors created for the top bin-size of 6 for the entire data set was 22,862 , this max k

value would sufficiently capture the maximum d'. Analysis shows d1' increases dramatically then

saturates at a value of about 1.400 with the value k around 950 nearest neighbors.

81

Figure 47: d' vs Bin Size

Table 5: Comparison of Bin Size and Regression Models using Subject Jack Knife

 Linear Quadratic Mahalanobis
Binsize
(frames)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

1 (0.869,
0.060)

(0.513,
0.088)

1.088 (1.124,
0.294)

(0.195,
0.163)

(0.042,
0.065)

0.864 (0.886,
0.460)

(0.378,
0.119)

(0.113,
0.048)

0.903 (0.921,
0.265)

3 (0.839,
0.077)

(0.399,
0.090)

1.247 (1.309,
0.357)

(0.842,
0.078)

(0.396,
0.088)

1.267 (1.325,
0.327)

(0.478,
0.131)

(0.146,
0.062)

0.998 (1.038,
0.321)

6 (0.859,
0.079)

(0.385,
0.011)

1.368 (1.411,
0.385)

(0.819,
0.083)

(0.349,
0.096)

1.300 (1.362,
0.338)

(0.488,
0.129)

(0.132,
0.067)

1.085 (1.131,
0.332)

8 (0.843,
0.092)

(0.375,
0.126)

1.326 (1.396,
0.358)

(0.792,
0.097)

(0.328,
0.107)

1.259 (1.332,
0.375)

(0.516,
0.132)

(0.157,
0.077)

1.047 (1.109,
0.385)

10 (0.804,
0.114)

(0.360,
0.134)

1.215 (1.298,
0.385)

(0.738,
0.108)

(0.303,
0.105)

1.152 (1.210,
0.361)

(0.496,
0.131)

(0.161,
0.086)

0.982 (1.053,
0.424)

20 (0.626,
0.127)

(0.432,
0.211)

0.494 (0.472,
0.546)

(0.345,
0.128)

(0.185,
0.148)

0.500 (0.402,
0.400)

(0.395,
0.131)

(0.226,
0.155)

0.487 (0.435,
0.418)

Table 6: Comparison of Bin Size and Regression Models using Task Jack Knife

 Linear Quadratic Mahalanobis

Binsize
(frames)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

1 (0.869,
0.067)

(0.516,
0.094)

1.081 (1.128,
0.295)

(0.355,
0.290)

(0.136,
0.154)

0.727 (0.890,
0.461)

(0.391,
0.123)

(0.122,
0.051)

0.887 (0.906,
0.242)

3 (0.836,
0.085)

(0.399,
0.099)

1.232 (1.305,
0.368)

(0.841,
0.079)

(0.398,
0.094)

1.257 (1.317,
0.323)

(0.475,
0.125)

(0.147,
0.064)

0.988 (1.028,
0.335)

6 (0.857,
0.084)

(0.387,
0.119)

1.356 (1.410,
0.374)

(0.820,
0.085)

(0.353,
0.104)

1.292 (1.356,
0.341)

(0.487,
0.123)

(0.136,
0.071)

1.063 (1.122,
0.356)

8 (0.842,
0.095)

(0.378,
0.134)

1.313 (1.391,
0.343)

(0.789,
0.097)

(0.330,
0.112)

1.244 (1.314,
0.359)

(0.508,
0.129)

(0.161,
0.083)

1.008 (1.071,
0.391)

10 (0.803,
0.119)

(0.364,
0.142)

1.199 (1.275,
0.395)

(0.738,
0.112)

(0.307,
0.112)

1.143 (1.206,
0.358)

(0.491,
0.128)

(0.163,
0.088)

0.960 (1.026,
0.435)

20 (0.629,
0.134)

(0.436,
0.227)

0.491 (0.480,
0.524)

(0.337,
0.113)

(0.192,
0.149)

0.450 (0.395,
0.440)

(0.379,
0.117)

(0.227,
0.150)

0.443 (0.405,
0.448)

82

To assess the degree to which our 12 predictor variables can be represented by a smaller

number of more basic factors, we performed a principle components analysis. We wanted to

determine if there was a possibility to achieve performance closer to the MLE performance using a

subset of the features presented. First, the entire database is thinned out. The thinned data are the

points that have the smaller distances from its nearest neighbor. The thinned data vectors are about

half in number compared to the full data set. Fisher’s linear discriminant analysis is applied to the

thinned data as well as a principal component analysis (PCA). By calculating the eigenvalues and

eigenvectors of that cross correlation method, the top 3 eigenvalues that caused the most variance in

the data were identified. The eigenvectors corresponding to these eigenvalues were applied multiplied

to the data and plotted. Four distinct groups could be seen, each with interesting points tightly

clustered and non-interesting points trailing outward as seen by Figure 48.

Figure 48: Top 3 Eigenvalue Data Representation for PCA

It was decided that further analysis of the feature combinations were to be examined.

Exhaustive analyses of all combinations of features (up to 6 total features) were examined in

predicting the key moments and the top 5 feature sets were calculated. The purpose of doing this

analysis was to determine if a subset of the features used would provide as good or better results from

the use of all features. Table 10 and 11 has the same format as Table 2 and 3 except showing the

83

statistics of each technique’s 1st – 5th best feature combination results for the subject jack knife and

task jack knife. Tables 7-12 show the top 5 feature combinations for each of the regression methods

for the subject and task analysis.

The most prominent features for the linear set are 1, 2, 5, and 8. These 4 features are found in

all instances of the top 5 feature sets. Features 1 and 5 are the velocities of the two hands, feature 2

correspond to the binary feature for stopped hand 1 motion, and feature 8 corresponds to the amount of

pixel change around hand 2. In the linear regression case, these features embody the information

needed of the hand. Notice that the best feature sets also involve gaze information (feature 10) or

rather the gaze toward an object.

Table 7: Top 5 Feature Sets for Linear Analysis using Subject Jack Knife

 Top 5 Feature Sets for Linear Analysis
1st 10 8 5 4 2 1
2nd 8 7 5 4 2 1
3rd 9 8 7 5 2 1
4th 9 8 5 2 1 -
5th 8 5 2 1 - -

Table 8: Top 5 Feature Sets for Linear Analysis using Task Jack Knife

 Top 5 Feature Sets for Linear Analysis
1st 10 8 5 4 2 1
2nd 8 6 5 4 3 1
3rd 10 8 6 5 4 1
4th 5 2 1
5th 8 6 5 4 1 -

The quadratic results are very similar except using even fewer features. Features 1 and 5 are

necessary in every instance for the top 5 sets and feature 12 adds the gaze information needed for the

top set of features in the subject jack knife analysis.

Table 9: Top 5 Feature Sets for Quadratic Analysis using Subject Jack Knife

 Top 5 Feature Sets for Quadratic Analysis
1st 12 7 5 1 - -
2nd 12 11 7 5 1 -
3rd 5 1 - - - -
4th 7 5 1 - - -
5th 5 3 2 1 - -

84

Table 10: Top 5 Feature Sets for Quadratic Analysis using Task Jack Knife

 Top 5 Feature Sets for Quadratic Analysis
1st 5 1 - - - -
2nd 5 3 2 1 - -
3rd 5 2 1 - - -
4th 12 11 7 5 1 -
5th 11 5 1 - - -

The Mahalanobis results show a high tendency toward the binary or discrete values. This

measure focuses on the hand stop features (2 and 6) but also uses the gaze angular velocity (feature 9)

and gaze toward objects (feature 10) to perform at its highest capacity.

Table 11: Top 5 Feature Sets for Mahalnobis Analysis using Subject Jack Knife

 Top 5 Feature Sets for Mahalanobis Analysis
1st 10 9 8 6 3 2
2nd 10 9 8 7 6 2
3rd 10 9 8 6 2 -
4th 9 7 6 4 2 -
5th 9 6 4 2 - -

Table 12: Top 5 Feature Sets for Mahalanobis Analysis using Task Jack Knife

 Top 5 Feature Sets for Mahalanobis Analysis
1st 2 3 4 6 9 -
2nd 2 4 6 9 - -
3rd 2 3 6 8 - -
4th 2 3 6 4 - -
5th 2 6 8 - - -

The velocity features correlate with grasping since a majority of the grasps require a pause in

the hand motion. This same reasoning also explains the correlation between the binary hands stopped

features as well. Since grasps occur when the velocity of the hand is low and low gaze motions

indicate focusing on an action, these findings support the findings of the Psychology Department

analysis of a high correlation between significant moments in the task with hand grasps and gaze. The

top 5 Feature Sets for each of the cases show that all the regression cases have comparable

performance measures to the MLE d' performance of 1.400 as seem in Tables 13 and 14 . The

quadratic provides a slightly better that the estimator for the data in this experiment.

85

Table 13: Top 5 Feature Set Results for Subject Jack Knife

 Linear Quadratic Mahalanobis

Top 5
Results

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

1st (0.891,
0.079)

(0.435,
0.134)

1.397 (1.461,
0.391)

(0.908,
0.069)

(0.458,
0.134)

1.431 (1.486,
0.424)

(0.875,
0.082)

(0.407,
0.128)

1.388 (1.439,
0.386)

2nd (0.889,
0.076)

(0.432,
0.132)

1.391 (1.460,
0.371)

(0.903,
0.070)

(0.450,
0.125)

1.427 (1.458,
0.426)

(0.875,
0.083)

(0.406,
0.128)

1.388 (1.439,
0.386)

3rd (0.886,
0.080)

(0.426,
0.136)

1.391 (1.467,
0.397)

(0.917,
0.066)

(0.482,
0.132)

1.426 (1.466,
0.437)

(0.875,
0.082)

(0.406,
0.128)

1.388 (1.438,
0.385)

4th (0.886,
0.080)

(0.426,
0.136)

1.390 (1.465,
0.395)

(0.913,
0.065)

(0.474,
0.132)

1.426 (1.482,
0.428)

(0.875,
0.083)

(0.406,
0.128)

1.388 (1.438,
0.386)

5th (0.886,
0.079)

(0.427,
0.136)

1.390 (1.465,
0.395)

(0.904,
0.074)

(0.453,
0.130)

1.426 (1.457,
0.450)

(0.875,
0.083)

(0.406,
0.128)

1.388 (1.438,
0.386)

Table 14: Top 5 Feature Set Results for Task Jack Knife

 Linear Quadratic Mahalanobis

Top 5
Results

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

1st (0.888,
0.082)

(0.435,
0.139)

1.382 (1.455,
0.386)

(0.914,
0.071)

(0.482,
0.137)

1.412 (1.453,
0.439)

(0.875,
0.083)

(0.406,
0.128)

1.388 (1.439,
0.386)

2nd (0.858,
0.090)

(0.380,
0.128)

1.378 (1.446,
0.384)

(0.901,
0.080)

(0.453,
0.135)

1.408 (1.450,
0.450)

(0.875,
0.083)

(0.406,
0.128)

1.388 (1.439,
0.385)

3rd (0.859,
0.092)

(0.382,
0.128)

1.377 (1.450,
0.384)

(0.900,
0.077)

(0.450,
0.134)

1.407 (1.463,
0.423)

(0.874,
0.083)

(0.405,
0.129)

1.387 (1.439,
0.386)

4th (0.882,
0.093)

(0.426,
0.151)

1.373 (1.452,
0.411)

(0.900,
0.076)

(0.450,
0.130)

1.407 (1.454,
0.423)

(0.874,
0.083)

(0.405,
0.129)

1.387 (1.439,
0.386)

5th (0.858,
0.091)

(0.383,
0.129)

1.372 (1.442,
0.381)

(0.909,
0.071)

(0.472,
0.133)

1.406 (1.447,
0.422)

(0.874,
0.083)

(0.405,
0.129)

1.387 (1.439,
0.386)

So far we have shown that the system provides good results in the d' measures, but the main

shortcoming of getting even better scores is the high false alarm rates. It was decided to look at where

the false alarms were occurring to determine where the false alarms are occurring. Another interesting

point from our data is in the distribution of the false alarms and the misses across the number of bin

offsets. Of the entire database of 22862 vectors, 38.5% (4921 vectors) were labeled as false alarm in

the 6 frame bin-size linear regression case as seen in Figure 49. Of the false alarms, 61% were within

one bin of a correct classification which suggests that by adding a tolerance of one bin to the bin

classifications, the false alarms could be reduced to around 14% and two bins would reduce the false

alarms to around 7%. These additional tolerances would be logical since the human rated

classifications carry some ambiguity in the segmentation boundaries. Similarly, the hit rate could be

86

raised by applying a similar tolerance of one or two bins in the case of the misses (~14%, 1412

vectors) as seen in Figure 50. A tolerance of one bin would reduce the miss rate to around 4% which

increases the hit rate to about 96%.

0 2 4 6 8 10 12
0

0.102

0.203

0.305

0.406

0.508

0.610

0.711
Linear FA hist

Number of Offset Bins

Figure 49: Percentage of False Alarms per Number of Offset Bins

0 2 4 6 8 10 12 14 16 18
0

0.071

0.142

0.212

0.283

0.354

0.425

0.496

0.567

0.637

0.708
Linear Miss hist

Number of Offset Bins

Figure 50: Percentage of Misses per Number of Offset Bins

 One of the shortcomings of this experiment is the lack of data available from various raters for

use of training the system. The intentional vision research from the Psychology Department provided

87

breakpoint segment analysis from 2 sources, the original rater (psychology graduate student) and

various interrater participants (undergraduate volunteers). The original rater was required to segment

each of the videos while the interraters were required to segment one video from each of the

performing participants. The two ratings were compared to each other to show that 82% of the

variance was accounted for using one second bins. The manner of the ratings that the original rater

uses is fairly different from the ratings created to train the system (system rater – the author), but it is

necessary that the ratings that train the system have a high correlation with ratings from the original

and interrater ratings. Once the system is trained on the system rater breakpoints, the breakpoints

developed by the system will be the system estimates. In Newtson’s work [117], he established a

method of comparing two sets of data to determine the correlation between them. The method

basically calculated the probability of overlap when comparing a coarse and a fine set of data as the

following:

BinsfinePcoarsePoverlapP ××=)()()((70)

The method itself will not work directly between the interrater ratings, original ratings, and system

training ratings, but the overall concept still applies. The correlation between the sets of data with

different amounts of classified samples can be seen as the amount of separation between the

probability of the number of overlaps (breakpoints in same position) and the probability of randomly

choosing overlap positions. One fact to note is the system breakpoints must be converted to the format

of the original breakpoints as shown in Figure 51. The original and interrater breakpoints are given as

a set of times that correspond to moments in the video sequence. The system rater breakpoints are a

sequence of ones (breakpoints) and zeros (not breakpoints) that span the video sequence. The video is

broken into 6 frame bins (as determined by the optimal settings in Tables 2 and 3). The system rater

breakpoints were designed to extend across a range of bins for as long as the action occurred. The

original breakpoints only specified a single time allocation for an action. Since the original and

88

interrater ratings are given in seconds, the times are converted to frames. Then, the frames are

represented with a 1 or 0 in the appropriate 6 frame bin.

… …
… …

……

10 0 00 0 000 00000000 0 0 000 0 01111111111

1 0011

Time allocation (seconds) Frame allocation

Provides indices
for values of 1

6 frame bins are represented with a 1 if a 1 resides in
the original 6 frames and 0 otherwise

x30 388

750

444

12.96

14.83

25.04

… ……
… …… …

…… ……

10 0 00 0 000 00000000 0 0 000 0 01111111111

1 0011

Time allocation (seconds) Frame allocation

Provides indices
for values of 1

6 frame bins are represented with a 1 if a 1 resides in
the original 6 frames and 0 otherwise

x30 388

750

444

12.96

14.83

25.04

Figure 51: Converting time breakpoints to 6 frame bin format

Since the system rater breakpoints are ranges of ones meant to capture all representations of the

action, these ranges must be converted to an appropriate representation resembling the format of the

original and interrater ratings. This single original breakpoint can be assumed to occur in the

proximity of the middle of the corresponding sequence of breakpoints for the same action that the

system rater breakpoints specify. To convert the system breakpoints to the format of the original

breakpoints, all consecutive sequence of breakpoints are converted to a single breakpoint located in the

center of the span of time. This conversion is done for both the system rater and the system estimate

in the following analysis.

Once all the data is in the same format, the method of comparison to determine correlation is as

follows. One rater’s vector is set as the base vector and another rater’s vector is set as the test vector.

The base vector is treated as the ground truth for the comparison. Since the objective for the

89

experiment is to develop a system that can replicate human breakpoints chosen by the psychology

students and volunteers, the priority of base truth goes as follows: original rater > interraters> system

rater> system estimate. The probability of randomly choosing a bin that contains a breakpoint in the

base vector (probability of base) is simply the # of breakpoint bins divided by the total number of bins.

When determining the accuracy of overlap, each breakpoint bin in the test vector is compared to the

base vector at the same position. If there exists a breakpoint in the base vector within a certain

variability (variability ranges from 0 – 2, as seen in Figure 52), then the breakpoint is considered to

overlap in both the test and base vectors. These overlaps are counted and divided by the total number

of possible breakpoints in the test vector to attain the accuracy of overlap. If the data has some

correlation, then the accuracy of overlap should be more than the probability of breakpoint. As bin

variability increases, the probability of breakpoint also increases. If the data sets are truly correlated,

then the accuracy of overlap should have a greater increase if not equal to the probability of breakpoint

increase.

Base vector

Test vector

…

…

…

…

…

…

…

…

…

…

00 00 001 00 00 001 00 00 001

Ranges of bins that can represent
an overlap if a breakpoint is there

0 bin variability 2 bin variability1 bin variability

Base vector

Test vector

…

…

…

…

…

…

…

…

…

…

00 00 001 00 00 001 00 00 001

Ranges of bins that can represent
an overlap if a breakpoint is there

0 bin variability 2 bin variability1 bin variability

Figure 52: Bin variability

As can be seen in Tables 15 -17, the probabilities show that there is correlation between system

and the original breakpoints. The correlation is not apparent for any of the comparisons except the

interraters and original with 0 bin variability. With 1 bin variability, the difference between the

probability of base and accuracy of overlap grows. The accuracy grows even more when allowed the

90

full 1 second bin (30 frames) with 2 bin variability. This confirms that the system rater and the system

estimate, which are meant to represent the features that the intentional vision group found, are related

to the human breakpoint selections.

Table 15: Correlation with 0 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Interrater vs Original 0.271 0.562

System Rater vs Original 0.288 0.266

System Estimate vs Original 0.288 0.269

System Rater vs Interrater 0.251 0.256

System Estimate vs Interrater 0.250 0.266

System Estimate vs System Rater 0.157 0.169

Table 16: Correlation with 1 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Interrater vs Original 0.596 0.932

System Rater vs Original 0.646 0.788

System Estimate vs Original 0.646 0.792

System Rater vs Interrater 0.582 0.751

System Estimate vs Interrater 0.582 0.737

System Estimate vs System Rater 0.463 0.753

91

Table 17: Correlation with 2 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Interrater vs Original 0.742 0.955

System Rater vs Original 0.797 0.895

System Estimate vs Original 0.797 0.898

System Rater vs Interrater 0.741 0.861

System Estimate vs Interrater 0.741 0.854

System Estimate vs System Rater 0.670 0.937

 To the increase of overlap as bin variability increases, this analysis is to determine if there is a

consistent lag or lead to the breakpoints determined by the system rater when compared to the

breakpoints of the interraters and the original raters. In Table 118, the mean and standard deviation of

the offsets are posted for the comparisons between the interraters, original rater and the system rater.

The same dynamic of using the test vectors and base vectors are used with the hierarchy remaining the

same as before. The nearest breakpoint in the base vector is found for each breakpoint in the test

vector. The number of bins either leading (represented as negative) or lagging (represented as

positive) are collected for each breakpoint. If there is an equal number of bins leading and lagging a

particular breakpoint, then the breakpoint is assumed to be leading and a counter is incremented to

count the number of occurrences (# of equal lead/lag). The mean and standard deviation are calculated

from the list of bin offsets. As can be seen from Table 15, there is no consistent lead or lag that can be

applied to provide a significant increase in correlation.

92

Table 18: Overall Lead/Lag Breakpoint Analysis

Test vs Base Offset (�,
) # of Equal Lead/Lag # of Non-overlap b.pts.

Interrater vs Original (-0.146, 2.493) 50 369

System Rater vs Original (-2.098, 18.111) 342 1724

System Rater vs Interrater (-0.319, 2.898) 28 192

Experiment 2: Participant Identification

 One interesting question is whether the action behaviors can be used to determine participant

identities. The next step after establishing reliable segmentations of actions is to determine the actual

movements and identify the subject performing the task. By studying these motions, it will be

interesting to determine if there is enough data to specifically identify one subject from another.

Another interesting question is linked to studies done in psychology and neuroscience fields

concerning consistency detection in humans. Zacks et al.[118-119] also determined that when people

watch events and naturally break them into discrete sections. Recognition and identification occur

more quickly and accurately with the development of better predictions toward the next state of

actions. Observing patterns in the sequences of actions learns predictions. This leads to the idea that

once actions are learned, a person applies deviation detection to determine inconsistencies in a new

example of the performed task. Therefore, these inconsistencies should be available to detect outliers

among the participant population. The following steps will be used to accomplish these goals.

93

Table 19: Experiment 2 Parameter Optimization Roadmap

Procedure for Parameter Optimization for Participants

Extract information about movements between segmentation bounds to create

action feature vector.

Cluster action feature vectors with k-means.

Form symbols for each action using the clusters.

Train HMM for each participant by using all the tasks of a specific participant.

Run against data to identify participant.

Iterate number of groups (k) and number of states for the HMM to determine

optimal settings.

We iterate through a k from 2-10 and a number of HMM states of 1-10. Once an optimal parameter

set is found the same parameter set is used in the cross validation analysis.

94

Table 20: Experiment 2 Testing Roadmap

Procedure for Testing

� Train HMMs using jack knife and using random cross-validation

methods

o For the cross-validation, 7 random videos will be used to train per

person in 2 ways

� First, the same 7 random task will be used for the training of

each person’s HMM

� Second, a new random set of 7 from a person’s video set will

be chosen for each person’s HMM

Test HMMs against data not used in training.

The entire testing procedure will be repeated 20 times to provide an accurate assessment of the

system’s performance.

Table 21: Subject Cross Validation Accuracies

 Accuracy

1st Validation Method 0.1100

2nd Validation Method 0.1217

We hypothesize that the feature vectors which are designed for generic action parsing will not have

very much information pertaining to a particular person. As can be seen from Table 21, the cross

validation methods show that the behavior features used to segment actions do not contain enough

information to dissociate amongst participants with the available data. These results are reasonable

since tasks performed by the participants are fairly linear, allowing for little variation in the ways they

95

are to be accomplished. Since the steps performed amongst each participant for each task are virtually

the same, it is logical that the system will not be able to detect specific participants without more data

or a different set of features. Though participant identification across all 10 subjects is shown to not to

be applicable for these features, the features definitely contain some information about participants

that can be used to determine subsets of the participants that can be identified reliably. The first step

to determining whether subsets of participants exist is to reduce the number of participants compared

amongst each other. The data is broken up into all possible combinations of 2 participants up to 5

participants. The data from the combination of participants are compared to the HMM models of each

participant to determine accuracy.

Table 22: Participant Combination Analysis using Cross Correlation Analysis 1

Number of
Participants

Overall
Accuracy

Top 4
Accuracies

Top 4
Participant

Combinations

Bottom 4
Accuracies

Bottom 4
Participant

Combinations
2 0.5267 0.6917

0.6750
0.6417
0.6417

14,11
19,11
17,14
16,11

0.4250
0.4167
0.3833
0.3250

20,13
17,15
17,12
19,18

3 0.3750 0.5778
0.5500
0.5111
0.5111

15,14,11
14,12,11
17,16,11
18,16,11

0.2833
0.2722
0.2667
0.2500

17,15,12
20,19,15
20,17,15
19,18,11

4 0.2803 0.3917
0.3917
0.3875
0.3750

15,14,13,11
14,13,12,11
19,15,14,11
18,15,14,11

0.1958
0.1958
0.1750
0.1667

20,19,17,12
20,19,18,15
17,15,12,11
19,17,13,12

5 0.2283 0.3200
0.3100
0.3067
0.3000

18,17,14,12,11
16,15,14,12,11
18,15,14,12,11
20,16,13,12,11

0.1600
0.1600
0.1567
0.1533

20,18,15,13,11
20,18,16,14,13
20,18,15,13,12
20,18,17,15,13

96

Table 23: Participant Combination Analysis using Cross Correlation Analysis 2

Number of
Participants

Overall
Accuracy

Top 4
Accuracies

Top 4
Participant

Combinations

Bottom 4
Accuracies

Bottom 4
Participant

Combinations
2 0.5865 0.8583

0.8000
0.7917
0.6833

17,16
19,17
17,14
17.13

0.4750
0.4583
0.4083
0.3750

12,11
20,11
16,11
15,11

3 0.3956 0.5667
0.5444
0.5389
0.5000

17,14,12
20,19,11
20,17,14
17,16,12

0.2722
0.2444
0.2444
0.2444

14,12,11
20,12,11
18,16,11
15,12,11

4 0.2882 0.3750
0.3750
0.3708
0.3708

20,17,15,13
19,17,14,12
19,17,16,13
20,17,15,13

0.2042
0.2000
0.1958
0.1958

20,19,12,11
18,16,12,11
19,16,12,11
20,15,12,11

5 0.2067 0.2700
0.2600
0.2567
0.2567

20,19,17,14,13
19,14,13,12,11
19,18,17,15,14
20,19,17,14,13

0.1467
0.1433
0.1367
0.1267

20,19,16,12,11
20,17,16,12,11
20,17,16,14,11
20,18,17,12,11

For each of the smaller combinations of participants (Table 22-23), the models are able to give a

slightly better than chance overall analysis of data. The bottom 4 combinations are displayed to

determine any patterns seen among participants that are outliers. Participants 11, 12 and 16 seem to be

fairly consistent in participating with the lowest accuracies of each set. These results reinforce there is

very little information among the behavior feature vector to determine the identity of the participant

performing the task for this set of data.

Experiment 3: Task Identification

Likewise, it will be interesting to determine if there is enough data to specifically identify one

task from another. The behaviors identified provide information for task segmentation, but do they

also contain information about the identity of the task itself. This experiment mirrors the Subject

Identification in the steps that are followed:

97

Table 24: Experiment 3 Parameter Optimization Roadmap

Procedure for Parameter Optimization for Tasks

Extract information about movements between segmentation bounds to create action

feature vector.

Cluster action feature vectors with k-means.

Form symbols for each action using the clusters.

Train HMM for a task by using all the videos of a particular task.

Run against data to identify task.

Iterate number of groups (k) and number of states for the HMM to determine optimal

settings.

We iterate through a k from 2-10 and a number of HMM states of 1-10. Once an optimal parameter

set is found the same parameter set is used in the cross validation analysis.

98

Table 25: Experiment 3 Testing Roadmap

Procedure for Testing

� Train HMMs using jack knife and using random cross-validation methods

o For the cross-validation, 7 random videos will be used to train per task in

2 ways

� First, the same 7 random subjects’ task performance will be used

for the training of each task HMM

� Second, a new random set of 7 participants will be chosen for each

task HMM

Test HMMs against data not used in training.

The entire testing procedure will be repeated 20 times to provide an accurate assessment of the

system’s performance.

Table 26: Task Cross Validation Accuracies

 Accuracy

1st Validation Method 0.3333

2nd Validation Method 0.2650

We hypothesize that the feature vectors which are designed for generic action parsing will have some

information pertaining to a particular task, but not enough to be highly deterministic. As can be seen

from Table 26, the cross validation methods show that the behavior features used to segment actions

contain some information to dissociate amongst tasks with the available data. The system performs

better than chance, but still is not highly accurate. This information implies that there is more

information about the tasks held within the behavior features than there is pertaining to specific

99

participants. The tasks are analyzed in combinations to see if there is significant information about

subsets of the tasks using the behavior features. The data is broken up into all possible combinations

of 2 tasks up to 5 tasks. The data from the combination of tasks are compared to the HMM models of

each task to determine accuracy.

Table 27: Task Combination Analysis using Cross Correlation Analysis 1

Number of
Tasks

Overall
Accuracy

Top 4
Accuracies

Top 4 Task
Combinations

Bottom 4
Accuracies

Bottom 4 Task
Combinations

2 0.6430 0.9083
0.8833
0.8750
0.8667

7,1
10,5
10,1
10,2

0.4333
0.4333
0.4167
0.4000

6,3
5,1
9,7
4,3

3 0.4872 0.7111
0.7111
0.7111
0.6944

10,5,3
10,4,2
7,4,2

10,3,2

0.3000
0.2889
0.2833
0.2500

8,6,4
10,9,7
8,6,3
5,2,1

4 0.3875 0.5542
0.5250
0.5208
0.5208

10,7,4,2
10,7,3,2
10,7,5,3
10,5,4,3

0.2375
0.2333
0.2208
0.2125

9,8,6,4
9,8,7,6
8,6,4,3
9,8,6,3

5 0.3232 0.4400
0.4333
0.4333
0.4267

10,7,5,3,2
10,9,5,4,3
10,8,3,2,1
7,6,3,2,1

0.2200
0.2100
0.2033
0.1933

9,8,7,4,3
10,9,8,4,3
9,8,6,7,4
8,7,6,4,3

100

Table 28: Task Combination Analysis using Cross Correlation Analysis 2

Number of
Tasks

Overall
Accuracy

Top 4
Accuracies

Top 4 Task
Combinations

Bottom 4
Accuracies

Bottom 4 Task
Combinations

2 0.6331 0.9083
0.8667
0.8667
0.8500

10,5
10,1
8,2
7,5

0.4583
0.4250
0.4250
0.4083

5,2
6,3
5,1
8,6

3 0.4708 0.6833
0.6722
0.6722
0.6667

7,3,2
10,6,2
10,4,2
10,5,3

0.3000
0.2889
0.2833
0.2833

6,4,3
8,4,3
8,6,4
6,4,3

4 0.3751 0.5250
0.5167
0.5125
0.5083

10,6,3,2
10,7,4,2
10,5,3,2
10,3,2,1

0.2292
0.2292
0.2125
0.1917

9,6,5,4
9,6,4,3
9,8,6,3
9,8,6,4

5 0.3089 0.4367
0.4300
0.4067
0.4067

10,9,4,3,2
10,7,3,2,1
10,6,5,3,1
10,8,5,2,1

0.2133
0.2133
0.2000
0.1967

10,9,8,6,4
8,6,5,2,1
9,8,6,4,3
8,6,4,3,1

As can be seen from Table 27-28, the overall accuracies for the task combination analysis in each case

are above chance. The tasks the system seems to have the most difficulty dissociating from are tasks

9, 8, 7, and 3. Those tasks are in a majority of the task combinations for the bottom 4 of each

combination analysis. Tasks 7 and 8 are both occlusion tasks that have significant portions of the

activities hidden behind a blinder so confusion can be expected in the case of these two tasks. Task 3

is an assembly task of a set of pipes. Participants tended to neither assemble the pipes in any specific

order nor keep the structure in any particularly consistent orientation. The model of this activity

probably ranged across various other participants. The data shows that there is some information in

task identification among these behavior features, but the information in its present form is not enough

to be highly accurate.

Experiment 4: Autonomous Action Segmentation

The next experiment was to develop the system to autonomously train and segment action

videos. The goal of this experiment was to create a system that will segment the percepts in a video

desired by the user and identify significant moments to segment the actions. This feature will allow

101

use of the system in diverse disciplines with little to no training necessary. The steps for Experiment 4

can be seen in Table 26.

Table 29: Experiment 4 Roadmap

Autonomous Segmentation Procedure

Develop system to autonomously detect percepts that correspond with user desired

objects.

Segment videos and record object information for all frames.

Extract behavior features for all videos at optimal bin-size.

Train the classification system with labeled behavior data.

Analyze data using regression techniques.

Compare results of autonomous moment segmentation to supervised segmentation.

Most of the procedure for experiment 4 mirrors the first experiment once the videos are

segmented. The main difference is the method in which the videos are segmented which are the first 2

tasks from Table 29. In Experiment 1, the system was provided the percepts of the video via user

identification. In Experiment 4, the system must collect its own visual data and segment the data into

natural groups. The system must take these natural groups and determine what these objects are (i.e.

identification of the actor body parts, background, pertinent objects, etc.). Once these steps are

completed, the process falls into nearly the same process of Experiment 1 in terms of behavior

analysis. Another observation to be noted throughout the discussion is the amount of time each

process takes. Since the times were not measured explicitly, the estimated times are an approximation

102

of the maximum time it took for any of the databases. First, let’s go through the methodology for

providing the autonomously segmented images as shown in Figure 53.

… … …
1 2 3 4 9999

10000
10001

Color
Histogram Laplacian Texture

Measure

Thinning Data
(Removal of Duplicates and Outliers)40 Sample Images

Determine/Apply Number of
Cuts for MST

Normalized Visual Feature
Vector Extraction

Segmented Result
Images

Minimum
Spanning

Tree

Minimum
Spanning

Tree

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

So
rte

d
D

is
ta

nc
e

of
 V

ec
to

rs
 to

 N
ei

gh
bo

r i
n

M
ST

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

So
rte

d
D

is
ta

nc
e

of
 V

ec
to

rs
 to

 N
ei

gh
bo

r i
n

M
ST

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

Apply Group Labels to
Database

Approximate
Nearest-Neighbor Tree

… … …… … …
1 2 3 4 9999

10000
10001

Color
Histogram Laplacian Texture

Measure

1 2 3 4 9999
10000

10001

Color
Histogram Laplacian Texture

Measure

Thinning Data
(Removal of Duplicates and Outliers)40 Sample Images

Determine/Apply Number of
Cuts for MST

Normalized Visual Feature
Vector Extraction

Segmented Result
Images

Minimum
Spanning

Tree

Minimum
Spanning

Tree

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

So
rte

d
D

is
ta

nc
e

of
 V

ec
to

rs
 to

 N
ei

gh
bo

r i
n

M
ST

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

So
rte

d
D

is
ta

nc
e

of
 V

ec
to

rs
 to

 N
ei

gh
bo

r i
n

M
ST

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

Apply Group Labels to
Database

Approximate
Nearest-Neighbor Tree

Figure 53: Unsupervised Video Segmentation Flow Chart

Originally, the method was tested with Dr. Wang’s algorithm, but the results did not show as

accurate of segmentation as desired (as seen in Figure 54b). By normalizing the vectors to unit norm

which projected them to the unit hypersphere of their space, the resulting segmentation was shown to

improve significantly (as seen in Figure 54c). This is the first major change to the unsupervised

segmentation process.

103

(a)

(b) (c)

Figure 54: (a) Original Image, (b) Segmentation without normalization (c) Segmentation with
normalization

The reason that the distance measure used strictly with the non-normalized vector did not work as well

was because as the dimensionality grew, the vectors were forced toward the origin. Since the vectors

are primarily color histograms, they follow the L1 line/plane/hyperplane (depending on the dimension

of the space). As can be seen in Figure 55, if the distance from origin to the center of the L1 norm in

the case of 2 dimensions would be
2
2

 but this can be shown to extend to
N
N

in an N dimensional

case. The plot in Figure 56 shows how quickly the distance between the L1 norm plane and the origin

drops as the dimension space continues to grow. By allowing our high dimensional feature vectors to

remain on this L1 plane, a large amount of our vectors move near the origin. Since we use the L2

norm to measure between vectors, the effect of this move towards the origin is a loss of discriminating

104

ability of the L2 distance measure. To counteract this it was decided to normalize the vector which

projects it to the L2 unit hypersphere. This allows the L2 norm to continue to be a functional distance

measure for any dimensional space.

N

N
N

1

1

1

°= 45θ

N

N
N

1

1

1

°= 45θ

Figure 55: Two Dimension Projection Example

105

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of Dimensions

D
is

ta
nc

e
to

 c
en

te
r

of
 L

1
no

rm
 h

yp
er

pl
an

e

Figure 56: Distance to Center of L1 Norm Hyperplane as a Function of Dimensionality

 Figure 53 shows the overall process for an unsupervised method of segmenting the video. The

method is similar to the method of Experiment 1 except a few extra steps are necessary to determine

the natural groups of the video. Since the user is removed, the training must involve collecting

training images from the video. For our process, 40 images are collected from the data stream. All

objects are generally visible at the beginning of the videos since the tasks are primarily assembly tasks.

To ensure significant sampling of all the objects, 20 of the sample images are collected from the first

fourth of the video and the remaining 20 are collected from the rest of the video. From the 40 images,

a total of 840,160 vectors (21,004 from each image) are extracted. Due to the large number of vectors,

the database is thinned. The data base is thinned by finding all duplicate vectors (vectors within

0.0000001 distance of another vector) and reducing them to a single representation. The vectors are

also thinned by using the mean distance between the vectors of the first 2 images as a threshold and

removing any vectors whose nearest neighbor is further away than that threshold. Table 30 shows the

106

mean resultant database size is composed of 48,283 vectors. This interestingly coincides with a report

from Kalayeh and Landgrebe that the number of training vectors necessary to train a system using

linear classifiers is on the order of 5 times the dimensionality of the feature space [130]. The amount

of time for thinning each database was usually no more than 1 day.

Table 30: Overall Thinning Reduction Percentages

Mean Resultant

Database Size

Mean % of

Database

Mean Duplicate

Size

Mean Duplicate

%

Mean Outlier Size Mean Outlier %

48283 5.75 % 702290 83.59 % 89583 10.66 %

 The thinned data is used to create a Minimum Spanning Tree (MST). To aid the explanation of

the unsupervised segmentation of images, it is useful to go through the process that Wang developed

for her dissertation work [123]. On the assumption that a group of feature vectors can be differentiated

from another group by using an L2 distance norm, a minimum spanning tree was created to determine

naturally forming groups.

 The autonomous segmentation methodology for Wang started the same as for the supervised

segmentation for Tugcu; a database of vectors is collected to be used for the creation of clusters. The

difference between them is that the supervised database was collected and labeled by the user while

the unsupervised method would extract the unlabeled visual feature vectors from 40 sample images

from the environment. With this multitude of unlabeled visual feature vectors, Wang would use the

vectors to create a minimum spanning tree to determine the natural groups. In Wang’s dissertation

[129], she explains the minimum spanning tree as the following:

“The minimum spanning tree method is a graph analysis of arbitrary point sets of data. In a

graph, two points can be connected by either a direct edge or a sequence of edges called a path. A loop

in a graph is a closed path. A connected graph has one or more paths between any pair of points. A

tree is a connected graph without closed loops. A spanning tree is a tree that contains every point in

the data set. If a value is assigned to each edge in the tree, the tree is called a weighted tree. For

107

example, the weights for each edge can be the distance between the two points. The weight of a tree is

the total sum of edge weights in the tree. The minimum spanning tree (MST) is the spanning tree that

has the minimal total weight among all possible spanning trees for the data set. The minimum

spanning tree has the following property that can be used for clustering if the weight associated with

each edge denotes the distance between the two points. That is, the weight associated with every edge

in the minimum spanning tree will be the shortest distance between two sub-trees that are connected

by that edge. Therefore, removal of the longest edge will theoretically result in a two-cluster grouping.

Removal of the next longest edge will result in a three-cluster grouping, and so on. These correspond

to choosing breaks where maximum weights occur in the sorted edges. When the tree is built, after

sorting the edge in decreasing order, the edges can be cut to form clusters.”

Apply 3 cuts

Connect the data with
a single path from any one

point to another point

Original Data Set

Minimum Spanning Tree

Four separate groups
are created

Apply 3 cuts

Connect the data with
a single path from any one

point to another point

Original Data Set

Minimum Spanning Tree

Four separate groups
are created

Figure 57: Minimum Spanning Tree Example

108

With these edges, Wang would designate the number of cuts to be applied to the edges. The

cuts would be applied to the longest remaining edges. Depending on the number of cuts applied, a

number of natural groups will fall out from the data. By looking at Figure 57, an example of the MST

process is shown. A sample set of points are turned into a minimum spanning tree by connecting them

to their neighbors but maintaining the rule of only one path existing between any 2 points. Finally, a

number of cuts (in the example, 3 cuts) are applied to the tree which involves removing that number of

the longest connections between points. As can be seen from the Figure 57, 4 natural groups fall out

of the set of points. Once the natural groups were formed, Wang would observe the segmentations to

determine if groups were over-segmented and recombine them. Over-segmenting occurs when too

many cuts are applied to the tree and groups are broken into sub-groups that should remain as one

group. Wang’s method for analysis has been modified to create a fully automated approach for

evaluating the natural segmentations of an image. The creation of the MST usually took no more than

4 hours for these databases.

109

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

S
or

te
d

D
is

ta
nc

e
of

 V
ec

to
rs

 to
 N

ei
gh

bo
r

in
 M

S
T

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

S
or

te
d

D
is

ta
nc

e
of

 V
ec

to
rs

 to
 N

ei
gh

bo
r

in
 M

S
T

Threshold Slope
Next to Last Distance

Half of DistancesNumber of Cuts

Number of Representative Vectors

Cutoff Slope
{ < 2 x Thresh Slope}

Figure 58: Number of Cuts Algorithm

The next step is to determine the correct number of cuts in the minimum spanning tree to

provide optimal segmentation. The plot in Figure 58 shows the distances of the minimum spanning

tree from the largest to smallest. The behavior of the plot seems to remain somewhat consistent for all

the databases (one database for each video). There is a sharp drop in distances and the plot eventually

settles out toward a nearly linear decrease. By experimenting with cuts across various databases, it

was found that the best number of cuts for the MST resided near the beginning of when the tail of the

plot becomes approximately linear. The plots are always close to linear before half of the data is

reached. The way the number of cuts is determined is to calculate the threshold slope which consists

110

of using the last half of the distance values and calculating a slope. The threshold slope is used to

monitor the slopes calculated from the beginning of the distances plot at a sampling size of 200

samples. The cutoff slope is determined by backtracking the threshold slope until the cutoff/threshold

slope ratio is less than 2. The number where this condition occurs is determined to the number of cuts

to be applied to the MST.

After a number of cuts are applied, a number of natural groups are determined. For a group to

be designated significant, it must contain at least 100 vectors in its grouping. If a similar concept were

to be applied to the example MST in Figure 56 with a minimum of 4 vectors, then the number of

representative groups would fall to just 2 valid groups. Each of these groups is given a number and a

label corresponding to this group number. In the supervised case, the labels were things such as

Hand1 or Stripe. In the unsupervised case, the labels are designated as Object1 or Object5. Since a

label is available, an approximate nearest neighbor tree can be created from the data. Once again, the

approximate nearest neighbor tree is used to create the segmented video.

One addition to note about the creation of the approximate nearest neighbor tree is the addition

of an accuracy check. As discussed previously, the tree is formed by randomly selecting 3 vectors and

grouping the rest of the data according to those vectors in the supervised case. For the autonomous

case, the number of node vectors per group was increased to 5 and the number acceptable vectors in a

leaf node were under 1000 vectors. Since the 5 node vectors are chosen at random for each case, this

leaves the possibility of creating a tree that does not properly represent the data. Previously, the

segmentation created from the trees would be observed by the user to determine if the tree was

accurate. To automate that check, an image from the video is segmented using an exact nearest

neighbor process. A tree would be created and that tree would segment the same image. If the tree’s

segmented image agrees with 98% of the nearest neighbor image, the tree is saved. Otherwise, the

program recreates the tree. To limit the amount of time the program can run, a maximum of 20 trees

are created if none of those trees meet the 98% accuracy threshold. Of the 20 trees, the most accurate

111

one is saved. This process usually took no more than 1.5 days, but also contained a lot of variance if

an optimal tree is found early in the 20 step iteration (time sometimes as low as 2-4 hours).

Using this method for applying cuts to the minimum spanning tree yielded an acceptable

segmentation for 84 of the 100 videos that were tested. The requirements for an acceptable

segmentation were correct separation of the crucial percepts (two hands and the strip on the hat).

Object identification varied with the amount of example vectors available to the system. Due to

limitations such as the size of objects and amount of time in view of the camera, certain objects would

either not have enough representation in the video to be modeled by the spanning tree with its current

settings. In some of the cases, the number of cuts applied would reduce a group to below the 100

vector threshold discussed above. In the case of a significant percept (i.e., hands or stripe) being

affected, the number of cuts had to be manually adjusted to provide optimal segmentation. In Table

31, the adjustments of the 16 unacceptable segmentations are shown.

112

Table 31: Adjusted Cuts Statistics

Participant #_Task # Algorithm Cuts Adjusted Cuts Database Size % Difference

11_1 8527 4500 39483 10.20

11-7 8857 1000 30411 25.84

13-4 6488 30000 89121 26.38

13-7 7600 4600 25557 11.74

14-1 10179 No change* 34907 0.00

14-4 8284 16000 74786 10.32

14-7 9273 5500* 33029 11.42

16-1 11001 8000* 42620 7.04

16-3 9330 8500 34134 2.43

16-6 6361 30000 90460 26.13

16-7 8006 6500* 31191 4.83

19-4 6406 22400 77722 20.58

19-7 8257 4400* 27273 14.14

19-8 8447 4000 30023 14.81

20-7 6840 No change* 27854 0.00

20-8 7747 No change* 31733 0.00

* Insufficient database to represent crucial percepts

Of the 16 videos that the algorithm failed to produce desired segmentation, 7 did not contain the

information necessary to produce the desired segmentation with any number of cuts. The remaining 9

needed about an average of 16% adjustment with their respective database size. It also should be

noted that half of the failed videos were occlusion tasks (task 7 and task 8) which were specifically

designed to have a significant portion of the action performed outside the direct view of the camera.

Also, tasks 1 and 4 contain fairly large objects that occlude the view of the hands. Task 1 had three

flashlight handles standing up next to each other. Depending on the participant’s position, a majority

of their left hand (Hand2) was partially blocked from view. The same observation could be noted

113

about the stack of containers available in task 4. When noting possible difficulties of those 4 tasks, the

14 out of 16 videos belonging to one of those 4 groups becomes a bit more understandable.

 The approximate nearest neighbor trees are used to segment the entire video. The tree with a

branching of 5 nodes, a maximum leaf node capacity of 1000 vectors, and a maximum level of 60 was

able to process a frame of video in less than 1 minute, usually closer to 30 to 45 seconds. Due to the

length of the videos (which were recorded at 30 frames per second) being no longer than 2 minutes

(3600 frames), the time for processing took no more than 2.5 days. A vast majority of the videos were

closer to 1 min and 30 seconds or less in duration (resulting in a processing period of less than 1 day).

Figure 59: Unsupervised Behavior Extraction Flow Chart

Connected
Component

Segmented
Object statistics

extraction

Calculate the
behavior feature

vector for specified

Apply regression
classifier to

model breakpoints

Rename Object Label
to

Necessary Percepts

User-provided
breakframes

114

 Once the segmented video is created, the process of behavior extraction is nearly the same as in

Experiment 1 as seen in Figure 59. The one major difference is the renaming segment. For the data of

the segmented video to integrate with the previous process, the label names must correspond to the

label names used in calculating the behavior feature vector (i.e. Object1 -> Hand1, Object2 ->

Background, …). The only labels that must be identified are Hand1, Hand2, Stripe and Background.

Background allows the program to ignore the percept. The rest of the objects such as the Legos or

containers are only identified as pertinent objects so the “Object#” name is applicable. The program

goes through and determines that the large objects that take up a majority of the frame throughout the

video are considered Background. The Stripe is determined to be the highest object throughout the

video that is not a Background object. The 2 objects that move the most are determined to be the

hands (the hand predominately on the left of the image being Hand1 and the other being Hand2).

Due to fluctuations in the frame representation caused by video encoding when converted to

Cinepak, the parameter of motion that was expected to determine the hands was not sufficient. Since

the automatic object labeling algorithm was becoming very specific for this particular study, the

objects are determined by the user. This is done by looking at individual percept representations and

providing the correct name (example in Figure 60). The label renaming of percepts took about 1-2

minutes per video. Once the labels are renamed, the exact same process for behavior vector extraction

is used. The behavior feature vector extraction for a single video took about 8 minutes.

115

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (a) (b)

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (c) (d)

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (e) (f)

116

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (g) (h)

Figure 60: Example Label Representations in a Frame; (a) Object 1 – Background, (b) Object 2 –
Hand1, (c) Object 3 – Legos, (d) Object 4 – Containers, (e) Object 5 – Stripe, (f) Object 6 – Noise, (g)
Object 7- Background, (h) Object 8 – Hand2

 The same analyses done in the supervised version are done to the autonomous version to

ensure that the results are basically equivalent. Once the behavior feature vectors are extracted, linear,

quadratic, and mahalanobis regression techniques are used to analyze the vectors that are created from

a bin-size of 6. Table 32 compares both the autonomous results with the supervised results at bin-size

of 6. The average hit rate and false alarm rate are slightly higher for the autonomous but the results

are nearly identical. Table 33 reinforces the observation from Table 32 showing a very slight increase

in both the hit rate and false alarm rate for the autonomous results.

Table 32: Comparison of Supervised and Autonomous at Bin-Size of 6 using Subject Jack Knife

 Linear Quadratic Mahalanobis
 HR

(�,
)
FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

Supervised (0.859,
0.079)

(0.385,
0.011)

1.368 (1.411,
0.385)

(0.819,
0.083)

(0.349,
0.096)

1.300 (1.362,
0.338)

(0.488,
0.129)

(0.132,
0.067)

1.085 (1.131,
0.332)

Autonomous (0.868,
0.086)

(0.402,
0.132)

1.132 (1.393,
0.427)

(0.843,
0.088)

(0.377,
0.130)

1.134 (1.334,
0.399)

(0.489,
0.133)

(0.132,
0.091)

1.400 (1.107,
0.411)

Table 33: Comparison of Supervised and Autonomous at Bin-Size of 6 using Task Jack Knife

 Linear Quadratic Mahalanobis
 HR

(�,
)
FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

HR
(�,
)

FAR
(�,
)

d1' d2'
(�,
)

Supervised (0.857,
0.084)

(0.387,
0.119)

1.356 (1.410,
0.374)

(0.820,
0.085)

(0.353,
0.104)

1.292 (1.356,
0.341)

(0.487,
0.123)

(0.136,
0.071)

1.063 (1.122,
0.356)

Autonomous (0.868,
0.088)

(0.403,
0.135)

1.131 (1.389,
0.441)

(0.844,
0.090)

(0.378,
0.130)

1.135 (1.340,
0.400)

(0.502,
0.140)

(0.140,
0.098)

1.355 (1.118,
0.408)

117

 After ensuring that the regression analysis results are similar, we would guess that the

correlation between the autonomous system and the other raters would not show much of a difference

as well. Using the test and base vector analysis, the autonomous system was placed at the lowest

priority in terms of truth (i.e. original rater > interrater > system rater > supervised system estimate >

autonomous system estimate). As can be seen in Table 34 – 36, a similar amount of correlation as

seen in the previous supervised analysis is also shown here.

Table 34: Correlation with 0 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Auto_System Est. vs Original 0.293 0.267

Auto_System Est. vs Interrater 0.251 0.247

Auto_System Est. vs System Rater 0.159 0.172

Auto_System Est. vs System Est. 0.152 0.158

Table 35: Correlation with 1 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Auto_System Est. vs Original 0.653 0.791

Auto_System Est. vs Interrater 0.582 0.733

Auto_System Est. vs System Rater 0.470 0.766

Auto_System Est. vs System Est. 0.449 0.701

118

Table 36: Correlation with 2 bin variability with bin-size of 6

Test vs Base Probability of Base Accuracy of Overlap

Auto_System Est. vs Original 0.802 0.893

Auto_System Est. vs Interrater 0.741 0.846

Auto_System Est. vs System Rater 0.695 0.935

Auto_System Est. vs System Est. 0.681 0.902

Experiment 5: Natural Scene Testing

 To determine how robust the system is to moderately controlled environments and natural

scenes, the autonomous system was applied to 3 naturally occurring scenes. A sample video was

created for 2 indoor scenes (3rd floor hallway overlooking the atrium in Featheringill Hall and the 3rd

floor hallway connecting to Jacobs Hall) and 1 outdoor scene (the path between Featheringill Hall

(FGH) and the Free Electron Laser (FEL) center). Figure 61 shows the 3 scenes and sample

segmentations and Table 37 shows the statistics for determining the cuts necessary to provide the

sample segmentations.

One main point to note is the system tends to under-segment the scene for the natural scenes.

This is probably due to the higher amount of group overlap among the vectors. The controlled

environments are designed to have objects that look drastically different from one another to provide

easier segmentation. Natural scenes have reflections and less color differentiation between objects in

the environment. The vectors formed from these occurrences may form a bridge between different

objects. For example, the white floor and the wood panel are fairly different visually but the vectors

formed from the wood panel reflection on the white floor would connect the two groups. Hence, the

algorithm will allow the two objects to be united as one large group. The only way around this

problem currently is to force the number of cuts applied to the MST to be enough that the groups are

segmented, but that requires human intervention at this time.

119

Another point to note is the difference in database size of the controlled environments and the

natural scenes. The controlled environments database size averaged at about 50,000 vectors where the

natural scene environments average at around 400,000 vectors. The difference in the size of the

training databases forces the system to take much longer (about 10-15 times) longer to progress

through the autonomous segmentation steps.

Table 37: Natural Scene Statistics

Scene Algorithm Cuts Adjusted Cuts Database Size % Difference

Indoor Atrium 44973 250000 382757 53.57

Indoor Jacob Hall 71197 none 222898 n/a

Outdoor FGH 22430 175000 548939 27.79

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (a) (b)

120

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (c) (d)

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110

 (e) (f)

Figure 61: Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium
Segmentation, (c) Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation, (e) Outdoor FGH, (f)
Outdoor FGH Segmentation

121

CHAPTER VIII

CONCLUSION AND FUTURE WORK

Conclusion

 The goal of this research was to create a vision system that uses high dimensional visual

feature vectors and evaluate its performance in conjunction with supporting the intentional vision

studies done by the Vanderbilt Psychology Department. The vision system was to be tested using

supervised methods and extended to be autonomous for flexibility in interdisciplinary use. The

intentional vision research found that there were a set of sub-actions that were highly correlated with

the determination of significant moments parsing an activity. These sub-actions included hand-to-

object contacts, object-to-object contacts, occlusions, and eye movements. Using these sub-action

descriptions, a set of behavior features were established to either singularly or conjunctively account

for those sub-actions. Subsequently, these behavior features were tested to determine their ability to

predict the system rater’s breakpoints (significant moments) and tested to determine their correlation

with the original rater and interraters. The features were also analyzed to see if they could be used to

also predict overall tasks and/or participants. Furthermore, the autonomous system was tested on

some mildly controlled and natural environments outside the data given by the intentional vision

research.

 It was determined that use of a high dimensional visual system had some interesting properties

that are interesting for further study. The projection of high dimensional sparse feature vectors seems

to allow for a more intuitive segmentation of the scenery. Both the supervised and the autonomous

systems were shown to consistently provide segmentations that are expected in controlled

environments. One of the shortcomings of the systems is the amount of time necessary to train them.

In the supervised case, the man hours necessary to train and segment 100 videos was on the order of

122

months as well as fairly in depth knowledge of the system to correct any training errors that occurred.

Conversely, the autonomous system requires very little man hours to set the system up, but requires

more time to train and segment the videos. It does have the added bonus of being able to work

continuously.

 Both systems were able to extract behavior feature vectors and reliably identify them according

to the training set. A lot of the error is due to the fuzzy boundaries between sub-actions and the

necessity of providing a definite segmentation to a indefinite moment. The data was shown to be

correlated with the intentional vision research findings and supports the idea of using the objective

analysis of the system to define the subjective human ratings and observations. The behavior features

were found to have some information pertaining to the identification of a task when applied to a

Hidden Markov Model, but almost no information to identify a participant from this set of examples.

 The autonomous system is robust enough to segment natural and mildly controlled scenes

pretty well. The time issue becomes even more of a factor here when dealing with databases that do

not reduce as much as the controlled environment databases do. For all steps in the process except the

segmentation of the video using the approximate nearest neighbor tree, the time increases anywhere

from 10-15 times the original reported times. The cuts algorithm did tend to under segment the

scenery for the natural scenes. The overall information in the database has the capability of

performing desirable segmentations at any environment tested thus far.

Future Work

Improved Cuts Algorithm

 One of the weaknesses of the system was the simple algorithm used to determine the number

of cuts. Though it had a 84% success rate in the controlled environments, it only worked for 1 of the 3

natural scenes. By applying an improved algorithm that takes into account stability of clusters as cuts

123

are applied, maybe this secondary measure can work in conjunction with the slope algorithm to

determine a more appropriate number of cuts to apply to the MST.

Integration to Parallel Computing

 As stated before, one of the biggest shortcomings of the system is it being slow. By using

multi-core processors or multi-thread graphics card (i.e. GeForce 8800 GTS), the speed of the system

can be improved drastically. Most of the processes can be ported over to a parallel computing

platform to drastically reduce computation time.

Improved Action Feature Vectors

 The behavior feature vector used to find segmentation boundaries between actions as labeled

by the user. The same behavior feature vectors do not appear to be as strong in actually describing the

actions themselves. A new action feature vector should be used to describe the activity between the

segments. Once this action vector is completed, it could be used to provide more accurate task

identification. The task identification could be used to predict the next sub-actions to occur. By using

this prediction and the subsequent action, a prediction error signal can be formed. This prediction

error signal can be used to signal a new event or specify the need to change to a alternative motion

model.

124

BIBLIOGRAPHY

[1] Aggarwal, J.K., Cai, Q., Human motion analysis: A review. Computer Vision and Image
Understanding, 73(3):428–440, 1999.

[2] Aggarwal, J.K., Nandhakumar, N., On the Computation of Motion from Sequences of Images:
A Review, Proceedings of IEEE(76), 1988, pp. 917-935.

[3] Madabhushi, A., Aggarwal, J.K., Using Head Movement to Recognize Activity, International
Conference on Pattern Recognition,Vol IV, 698-701, 2000

[4] Bobick, A.F., Davis, J.W., The Recognition of Human Movement Using Temporal Templates,
Pattern Analysis and Machine Intelligence(23), No. 3, March 2001, pp. 257-267.

[5] Kojima, A., Izumi, M., Tamura, T., Fukunaga, K., Generating Natural Language Description of
Human Behavior from Video Images, International Conference on Pattern Recognition , Vol IV,
728-731, 2000.

[6] Peursum, P., Bui, H.H., Venkatesh, S., West, G.A.W., Human action segmentation via
controlled use of missing data in HMMs, International Conference on Pattern Recognition, Vol IV,
440-445, 2004.

[7] Wallhqff, F., Zobl, M., Rigoll, G., Action Segmentation and Recognition in Meeting Room
Scenarios, ICIP04(IV: 2223-2226).

[8] Ogale, A.S., Karapurkar, A., Aloimonos, Y., View-Invariant Modeling and Recognition of
Human Actions Using Grammars, Workshop on Dynamical Vision, 2006, (115-126).

[9] Barbic, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins, J. K., Pollard, N. S., Segmenting
Motion Capture Data into Distinct Behaviors,. Proceedings of Graphics Interface, May 2004, .

[10] Rao, C., Yilmaz, A., Shah, M., View-Invariant Representation and Recognition of Actions,
IJCV(50), No. 2, November 2002, pp. 203-226.

[11] Ali, A., Aggarwal, J.K., Segmentation and Recognition of Continuous Human Activity,
EventVideo01, 2001.

[12] Kang, S.B., Ikeuchi, K., Determination of Motion Breakpoints in a Task Sequence from
Human Hand Motion, CRA94(551-556).

[13] Wang, L., Hu, W.M., Tan, T.N., Recent developments in human motion analysis, PR(36), No.
3, March 2003, pp. 585-601.

[14] Rui, Y. , Anandan, P., Segmenting Visual Actions based on Spatio-Temporal Motion
Patterns, CVPR00(I: 111-118).

[15] Jiar, Y., Wheeler, M.D., Ikeuchi, K., Hand Action Perception and Robot Programming, CMU-
CS-TR-96-116, March 1996.

125

[16] Kuniyoshi, Y., Inoue, H., Qualitative Recognition of Ongoing Human Action Sequences,
IJCAI93(1600-1609).

[17] Kuniyoshi, Y., Inaba, M., Inoue, H., Learning by Watching: Extracting Reusable Task
Knowledge from Visual Observation of Human Performance, RA(10), 1994, pp. 799-822.

[18] Yu, C., Ballard, D., Learning to Recognize Human Action Sequences, IEEE International
Conference on Development and Learning (ICDL'02), Cambridge, MA, June 12 - 15, 2002, pp. 28-34

[19] Valera, M., Velastin, S.A., Intelligent distributed surveillance systems: a review,
VISP(152), No. 2, April 2005, pp. 192-204.

[20] Guerra-Filho, G., Fermüller, C., Aloimonos, Y. Discovering a Language for Human Activity.
In Proc. of the AAAI 2005 Fall Symposium on Anticipatory Cognitive Embodied Systems (FS05),
Washington, D.C., pages 70-77, 2005.

[21] Buxton, H., Learning and Understanding Dynamic Scene Activity: A Review. IVC(21), No. 1,
January 2003, pp. 125-136.

[22] Robertson, N., Reid, I.D., A general method for human activity recognition in video,
CVIU(103), No. 2-3, November-December 2006, pp. 232-248.

[23] Kojima, A., Tamura, T., Fukunaga, K., Natural Language Description of Human Activities
from Video Images Based on Concept Hierarchy of Actions, IJCV(50), No. 2, November 2002, pp.
171-184.

[24] Mori, T., Segawa, Y., Shimosaka, M., Sato, T., Hierarchical recognition of daily human
actions based on Continuous Hidden Markov Models, AFGR04(779-784).

[25] Park, J., Park, S., Aggarwal, J.K., Model-Based Human Motion Tracking and Behavior
Recognition Using Hierarchical Finite State Automata, Lecture Notes in Computer Science,
Springer Berlin , Vol. 3046, 311-320, April 2004.

[26] Sullivan, J., Carlsson, S., Recognizing and Tracking Human Action, ECCV02(I: 629 ff.).

[27] Howe, N.R., Leventon, M.E., Freeman, W.T., Bayesian Reconstruction of 3D Human Motion from
Single-Camera Video, Advances in Neural Information Processing Systems 12, 1999, edited by S. A.
Solla, T. K. Leen, and K-R. Muller,2000.

[28] Tao, Y., Hu, H., Colour-based human motion tracking for home-based rehabilitation.
Proceedings of IEEE International Conference on Systems, Man and Cybernetics, The Hague, The
Netherlands, 773-781, 2004.

[29] Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society B(Methodological), Vol. 39, No. 1, pp. 1-38,
1977.

[30] Rabiner, L., A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proc. of the IEEE, Vol. 77, No. 2, pp.257-285, 1989.

126

[31] Hunter, J., Human Motion Segmentation and Object Recognition using Fuzzy Rules,
Proceedings of 14th Annual IEEE International Workshop on Robot and Human Interactive
Communication (RO-MAN 2005), Nashville, TN, August 13-15, 2005,pp 210-216, 2005.

[32] Park, J., Park, S., Aggarwal, J.K., Human Motion Tracking by Combining View-Based and
Model-Based Methods for Monocular Video Sequences. ICCSA (3) 2003: 650-659.

[33] Aggarwal, J.K., Problems, ongoing research and future directions in motion research,
MVA(14), No. 4, September 2003, pp. 199-201.

[34] Sato, K., Aggarwal, J.K., Temporal spatio-velocity transform and its application to tracking
and interaction,CVIU(96), No. 2, November 2004, pp. 100-128.

[35] Ogale, A., Fermuller, C., Aloimonos, Y., Motion Segmentation Using Occlusions, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, 6, June 2005, pp. 988-992

[36] Munoz-Salinas, R., Aguirre, E., Garcia-Silvente, M., People detection and tracking using
stereo vision and color, IVC(25), No. 6, 1 June 2007, pp. 995-1007.

[37] Denman, S., Chandran, V., Sridharan, S., An adaptive optical flow technique for person
tracking systems, PRL(28), No. 10, 15 July 2007, pp. 1232-1239.

[38] Yu, Y., Harwood, D., Yoon, K., Davis, L.S., Human appearance modeling for matching
across video sequences, MVA(18), No. 3-4, August 2007, pp. 139-149.

[39] Lanz, O.[Oswald], Approximate Bayesian Multibody Tracking, PAMI(28), No. 9, September
2006, pp. 1436-1449.

[40] Lee, M.W. , Nevatia, R., Body Part Detection for Human Pose Estimation and Tracking,
Motion07(23-23).

[41] Lu, S.J., Zhang, J., Feng, D.D., Detecting unattended packages through human activity
recognition and object association, PR(40), No. 8, August 2007, pp. 2173-2184.

[42] Deng, J.W., Tsui, H.T., An HMM-based Approach for Gesture Segmentation and
Recognition,
ICPR00(Vol III: 679-682).

[43] Kim, D.[Daehwan], Kim, D.[Daijin], An Intelligent Smart Home Control Using Body
Gestures, 2006 International Conference on Hybrid Information Technology (ICHIT’06), 447 – 452.

[44] Beauchemin, S.S., Barron, J.L., The Computation of Optical-Flow, Surveys(27), No. 3,
September 1995, pp. 433-467.

[45] Moons, T., Pauwels, E.J., Van Gool, L.J., Oosterlinck, A., Towards a General Framework for
Feature Extraction, CVPR92(865-868).

[46] Murase, H., Nayar, S.K., Learning Object Models from Appearance,AAAI-93(836-843) Model
Acquisition.

127

[47]�Novak, C.L., Shafer, S.A., Anatomy of a Color Histogram, CVPR92(599-605).

[48] Shah, M., Understanding human behavior from motion imagery, MVA(14), No. 4, September
2003, pp. 210-214.

[49] Sharma, V., Davis, J.W., Simultaneous Detection and Segmentation of Pedestrians using
Top-down and Bottom-up Processing, VS07(1-8).

[50] Sharma, V., Davis, J.W., Extraction of Person Silhouettes from Surveillance Imagery using
MRFs, WACV07(33-33).

[51] Tugcu, M., Wang, X., Hunter, J.E., Phillips, J., Noelle, D., and Wilkes, D. M., A computational
Neuroscience model of working memory with application to robot perceptual learning, Third
IASTED International Conference on Computational Intelligence (CI), Banff, Alberta, Canada, July 2-
4 2007.

 [52] Ogawara, K., Iba, S., Tanuki, T., Kimura, H., Ikeuchi, K., Acquiring hand-action models by
attention point analysis, Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation, May, 2001, pp. 465-470.

[53] Ogawara, K., Iba, S., Tanuki, T., Kimura, H., Ikeuchi, K., Recognition of human task by
attention point analysis, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots
and Systems, October, 2000, pp. 2121-2126.

[54] Ke, Y., Sukthankar, R., and Hebert, M., Event Detection in Crowded Videos, IEEE
International Conference on Computer Vision, October, 2007.

[55] Cabero, M.J., De la Torre Frade, F., Arizaga I., Sanchez, A., Indoor People Tracking based on
Dynamic Weighted Multidimensional Scaling, IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, October, 2007.

[56] Stein, A., Hoiem, D., Hebert, M., Learning to Find Object Boundaries Using Motion Cues,
IEEE International Conference on Computer Vision (ICCV), October, 2007.

[57] Stein, A., Hebert, M., Combining Local Appearance and Motion Cues for Occlusion
Boundary Detection, British Machine Vision Conference (BMVC), September, 2007.

[58] Unnikrishnan R., Pantofaru, C., Hebert, M., Toward Objective Evaluation of Image
Segmentation Algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
29, No. 6, June, 2007, pp. 929-944.

[59] Koppal, S.J., Narasimhan, S.G., Clustering Appearance for Scene Analysis, IEEE Conference
on Computer Vision and Pattern Recognition, Vol. 2, June, 2006, pp. 1323 - 1330.

[60] De la Torre Frade, F., Kanade, T., Discriminative Cluster Analysis, International Conference on
Machine Learning, ACM Press, New York, NY, USA, Vol. 148, June, 2006, pp. 241 - 248.

[61] Lin, W., Liu, Y., Tracking Dynamic Near-regular Textures under Occlusion and Rapid
Movements, 9th European Conference on Computer Vision, May, 2006.

128

[62] Xiao, J.,Georgescu, B.,Zhou, X., Comaniciu, D., Kanade, T., Simultaneous Registration and
Modeling of Deformable Shapes, 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Vol. 2, 2006, pp. 2429 - 2436.

[63] Sivic, J.,Russell, B., Efros, A.A.,Zisserman, A., Freeman, B., Discovering Objects and Their
Location in Images, International Conference on Computer Vision (ICCV 2005), October, 2005.

[64] Unnikrishnan, R., Pantofaru, C., Hebert, M., A Measure for Objective Evaluation of Image
Segmentation Algorithms, Proceedings of the 2005 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR '05), Workshop on Empirical Evaluation Methods in Computer Vision,
Vol. 3, June, 2005, pp. 34 - 41.

[65] Yacoob, Y., Black, M.J., Parameterized modeling and recognition of activities, Sixth
International Conference on Computer Vision, Jan 1998, pp. 120-127

[66] Davis, J., Bobick, A., Richards, W., Categorical representation and recognition of oscillatory
motion patterns. IEEE Conference on ComputerVision and Pattern Recognition, pp. 628–
635, 2000.

[67] Seitz, S., Dyer, C., View-Invariant Analysis of Cyclic Motion, International Journal of
Computer Vision, Vol. 25, No. 3, 1997, pp. 231-251.

[68] Siskind, J.M., Morris, Q., A maximum likelihood approach to visual event classification. In
ECCV-96, pp. 347–360, 1996.

[69] Zacks, J., Tversky, B., Event structure in perception and cognition. Psychological Bulletin,
127(1):3–21, 2001.

[70] Eickeler, S., Knsmala, A., Rigoll, G., Hidden Markov Model Based Continuous
Online Gesture Recognition, in Int. Conference onPattern Recognition (ICPR), Brisbane. Aug. 1998,
pp.1206- 1208.

[71] Soriano, M.,Huovinen, S.,Martinkauppi, B., Laaksonen, M., Skin detection in video under
changing illumination conditions, in Proc. 15th InternationalConference on Pattem Recognition,
2000, pp. 839-842.

[72] Bobick, A.F., Ivanov, Y. A., Action recognition using probabilistic parsing. In IEEE
Conference on Computer Visionand Pattern Recognition, 1998.

[73] Bobick, A.F., Davis, J.W., An appearance-based representation of action. In IEEE
International Conference onPattern Recognition, 1996.

[74] Hongeng, S., Bremond F., Nevatia, R., Representation and optimal recognition of human
activities. In IEEE Conference on Computer Vision and Pattern Recognition, volume1, pages I–818–
I–824, 2000.

[75] S. Park, S., Aggarwal, J.K., Recognition of two-person interactions using a hierarchical
Bayesian network. In Proceedings of the IEEE International Workshop on Visual Surveillance,
November 2003.

129

[76] Hu, M., Visual Pattern Recognition by Moment Invariants, IRE Trans. Information Theory,
vol. 8, no. 2, pp. 179-187, 1962.

[77] Yamato, J., Ohya, J., Ishii, K., Recognizing Human Action in Time Sequential Images Using
Hidden Markov Models, Proc. Computer Vision and Pattern Recognition, pp. 379-385, 1992.

[78] Ayers, D.,Shah, M., Recognizing human action in a static room, In Proceedings
ComputerVision and Pattern Recognition, pages 42-46, 1998

[79] Barron, J.L., Fleet, D.J., Beauchemin, S.S., Performance of Optical Flow Techniques, International
Journal of Computer Vision, 12:1, pp. 43-77, 1994

[80] Black, J.,Makris, D.,Ellis, T.J., Validation of Blind Region Learning and Tracking, Joint IEEE
International Workshop on Visual Surveillance and Performance Evaluation, Beijing, China, October,
2005

[81] Boiman, O., Irani, M., Detecting Irregularities in Images and in Video, IEEE International
Conference on Computer Vision (ICCV), Beijing, October 2005

[82] Brand, M., Kettnaker, V., Discovery and Segmentation of Activities in Video, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, August 2000

[83] Robertson, N.M., Reid, I.D., Brady, J.M., What are you looking at? Gaze estimation in
medium-scale images, Proc. Human Activity Recognition and Modelling , British Machine Vision
Conference (BMVC), Oxford, UK, September 2005

[84] Robertson, N.M., Reid, I.D., Estimating Gaze Direction from Low-Resolution Faces in Video,
Proc. 9th European Conference on Computer Vision (ECCV), Graz, Austria, May 2006

[85] Zhong, H.,Shi, J., Visontai, M., Detecting Unusual Activity in Video, Computer Vision and
Pattern Recognition, Washington D.C., USA, June 2004

[86] Mori, T., Tsujioka, K., Shimosaka, M., Sato, T., Humanlike Action Recognition System Using
Features Extracted by Human. In Proc. of the 2002 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1214–1220, 2002.

[87] Park, J., Park, S., Aggarwal, J.K., Model-based human motion capture from monocular video
sequences. International Symposium on Computer and Information Sciences, 2869, 2003.

[88] Comaniciu, D., Ramesh, V., Meer, P., Real-time tracking of non-rigid objects using mean
shift. In Proc. Conf. Computer Vision and Pattern Recognition, volume 2, pages 142–149,
Hilton Head Island, South Carolina, 2000.

[89] Wachter, S., Nagel, H.H., Tracking of persons in monocular image sequences.In Nonrigid and
Articulated Motion Workshop, 1997.

[90] Zarit, B.D., Super, B.J., Quek, F.K.H., Comparison of Five Colour Models in Skin Pixel
Classification. International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures
in Real-Time Systems, 58-63, 1999.

130

[91] Park, S., Aggarwal, J.K., Segmentation and tracking of interacting human body parts under
occlusion and shadowing. In IEEE Workshop on Motion and Video Computing, pages 105–111,
Orlando, FL, 2002.

[92] Kim, J.D., Kim, S.D., Kim, J.K., Fast convergent method for optical flow estimation in noisy
image sequences, Electron. Lett. 25 (1) (1989) 74–75.

[93] Lee, H.K., Kim, J.H., An HMM-Based Threshold Model Approach for Gesture Recognition,
IEEE Tran. On PAMI, Vol.21, No.10, Oct. 1999

[94] Jurafsky, D., Martin, J.H., Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics and Speech Recognition (2ed.), Prentice Hall,
2008.

[95] Jackson, P., Introduction to Markov Models and HMMs, Hidden Markov Model Tutorial
Sessions, Center for Vision Speech and Signal Processing, University of Surrey, 2004

[96] Jackson, P., Likelihood calculation and Viterbi decoding, Hidden Markov Model Tutorial
Sessions, Center for Vision Speech and Signal Processing, University of Surrey, 2004

[97] Jackson, P., Maximum likelihood re-estimation, Hidden Markov Model Tutorial Sessions,
Center for Vision Speech and Signal Processing, University of Surrey, 2004

[98] Jackson, P., Output probability distribution functions, Hidden Markov Model Tutorial
Sessions, Center for Vision Speech and Signal Processing, University of Surrey, 2004

[99] Jackson, P., Extensions and applications, Hidden Markov Model Tutorial Sessions, Center for
Vision Speech and Signal Processing, University of Surrey, 2004

[100] Eisner, J., An interactive spreadsheet for teaching the forward-backward algorithm, In
Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL,
pp. 10-18, 2002

[101] Ogawara, K., Takamatsu, J., Iba, S., Tanuki, T., Kimura, H., Ikeuchi, K., Acquiring hand-
action models in task and behavior levels by a learning robot through observing human
demonstrations, Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
September, 2000.

[102] Douglas, B., State Machines and Statecharts, Embedded Systems Conference, 1999.

[103] Koutsoukos, X., Finite State Machines, Foundations of Hybrid and Embedded Systems
Lecture, 2005

[104] Thacker, N.A., Lacey, A.J., Tutorial: The Likelihood Interpretation of the Kalman Filter,
TINA Memos: Advanced Applied Statistics, 002,1996

[105] Kalman, R.E., A new approach to linear filtering and prediction problems,Transactions of
the ASME, Ser. D., Journal of Basic Engineering, 82, 34-45,1960.

131

[106] Cuevas, E., Zaldivar, D., Rojas, R., Kalman filter for vision tracking, Technical Report B-05-
12, Freie Universität Berlin, Fachbereich Mathematik und Informatik, 2005

[107] Krootjohn, S., Video image processing using MPEG technology for a mobile robot, Ph.D.
Dissertation, Vanderbilt University, August 2007.

[108] Heckerman, D., A Tutorial on Learning with Bayesian Networks. In Learning in Graphical
Models, M. Jordan, ed.. MIT Press, Cambridge, MA, 1999. Also appears as Technical Report MSR-
TR-95-06, Microsoft Research, March, 1995.

[109] ____, Bayesian Networks, Techniques in Artificial Intelligence, MIT Open Courseware, 2007

[110] ____, Learning With Hidden Variables, Techniques in Artificial Intelligence, MIT Open
Courseware, 2007

[111] Tugcu, M., A Computational Neuroscience Model with Application to Robot Perceptual
Learning, Ph.D. Dissertation, Vanderbilt University, August 2007

[112] Zacks, J. M., Using movement and intentions to understand simple events. Cognitive
Science, 28, 979-1008, 2004.

[113] Levin, D. T., Hunter, J. E., Wilkes D. M., Heaton, C., and Saylor, M. M., Specifying the
looking and reaching actions that predict breakpoint judgments, Manuscript in Preparation,
2008.

[114] CIE (1932). Commission internationale de l'Eclairage proceedings, 1931. Cambridge University
Press, Cambridge

[115] Gonzalez, R. and Woods, R. E. (2002) Digital Image Processing, 2nd ed. Prentice Hall Press

[116] Hunter, J. E., Wilkes, D. M., Levin, D. T., Heaton, C., and Saylor, M. M., Autonomous
Segmentation of Human Action for Behaviour Analysis, International Conference on Development
and Learning, Monterey, CA, August 9-12, 2008

[117] Newtson, D. (1973). Attribution and the Unit of Perception of Ongoing Behavior, Journal
of Personality and Social Psychology, 28, 28-38.

[118] Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event
perception: A mind/brain perspective. Psychological Bulletin, 133, 273-293.

[119] Reynolds, J. R., Zacks, J. M., & Braver, T. S. (2007). A computational model of event
segmentation from perceptual prediction. Cognitive Science, 31, 613-643.

[120] Vicon Information Website, http://www.vicon.com/, http://www.vicon.lt/

[121] Qualysis Information Website, http://www.qualisys.com/

[122] Ryoo, M. S. and Aggarwal, J. K., Observe and Explain: A New Approach for Multiple
Hypotheses Tracking of Humans and Objects, IEEE Confernce on Computer Vision and Pattern
Recognition in Anchorage, AK, June 2008.

132

[123] Ryoo, M. S. and Aggarwal, J. K., Recognition of High-level Group Activities Based on
Activities of Individual Members, Proceedings of IEEE Workshop on Motion and Video Computing
(WMVC) in Copper Mountian, Co, 2008.

[124] Jun, G., Aggarwal, J.K., and Gokmen, M., Tracking and Segmentation of Highway Vehicles
in Cluttered and Crowded Scenes, Proceedings of IEEE Workshop on Application of Computer
Vision (WACV) in Copper Mountian, Co, 2008.

[125]Cohn, J., Kanade, T., Moriyama, T., Ambadar, Z., Xiao, J., Gao, J., and Imamura, H., tech. report
CMU-RI-TR-02-06, Robotics Institute, Carnegie Mellon University, November, 2001

[126]Imai, A., Shimada, N., and Shirai, Y., Hand Posture Estimation in Complex Backgrounds by
Considering, Proc. of Asian Conf. on Computer Vision (ACCV) 2007, November, 2007, pp. 596 -
607.

[127]Imai, A., Shimada, N., and Shirai, Y., 3-D Hand Posture Recognition by Training Contour
Variation, Proc. of 6th Int. Conf. on Automatic Face and Gesture Recognition, 2004, pp. 895 - 900.

[128] Multi-People Tracking, The Robotic Institute, Carnegie Mellon website,
http://www.ri.cmu.edu/research_project_detail.html?type=description&project_id=622&menu_id=261

[129] Wang, X., A Vision-Based Perceptual Learning System for Autonomous Mobile Robot,
Ph.D. Dissertation, Vanderbilt University, August 2007.

[130] H. M. Kalayeh and D. A. Landgrebe, Predicting the Required Number of Training Samples,
IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 6, pp. 664-666, November
1983.

