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CHAPTER I 

 

INTRODUCTION 

 

 Human action segmentation is one of the many unsettled topics of perceptual studies.  One 

definition of an action is to do a task or deed.  Although this definition is simple, the description 

needed to include all possible forms of action would be significantly longer.  In fact, it is so elusive 

that there is no standard explanation applicable to all cases, especially in the fields of computer 

science, signal processing, and robotics.  This is why the area of action segmentation is a major field 

of study within these communities.  Of course, actions can be performed by living and non-living 

entities alike.  The study of action among living entities brings to light the concept of purpose. Many 

actions performed by living beings are done for a purpose whether that purpose is to relay information 

among living things, to perform some necessary task for self-preservation, to explore the surrounding 

environment, etc.  The types of action vary from very fine movements such as writing to entire body 

activities such as walking.    This purpose of the action is the “needle” to be extracted from the 

“haystack” of all the visual input available.  Extracting purpose from actions is one of the primary 

tools for learning among humans.  It is done everyday with seemingly minimal effort.  How is this 

done? 

 

Figure 1: Research Tree for Human Motion Analysis [1] 
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 In the review by Aggarwal and Cai [1], human motion analysis can be broken up into 3 areas, 

body structure analysis, tracking, and recognition as shown in Figure 1.  Body structure analysis is 

concerned with the characteristics of the “object” to be tracked. The body structure can be represented 

as a priori knowledge in the form of a model or it may be considered to be unknown, that is to say, a 

“blob” that contains identifying characteristics.  In tracking, there are 3 general types of systems that 

extract information: invasive systems that involve applying sensors directly to the person, non-

invasive systems that involve a single camera, and non-invasive systems using multiple cameras.  The 

final area, recognition, is typically addressed via template matching or state space methods.  Template 

matching takes the motions of the tracked item and compares them to a database of training actions 

recorded in the same manner.  State space methods identify certain static postures and actions as states 

and apply probability to analyze these states to provide estimations of tasks.  The state space methods 

take advantage of Kalman filters, Hidden Markov Models (HMM) and Bayesian Networks.  In the 

upcoming chapters, these areas with specific examples will be reviewed. 

 

Objective of Vision System 

 The goal of the vision system developed for this project is to be an easy-to-use tool for training 

and tracking to aid in analysis of video recordings of experiments.  Earlier versions of this visual 

system were used in papers studying the use of applying a Working Memory application to robotic 

motions [51].  The system is being used currently to assist analysis of intentional human motion in the 

Vanderbilt Psychology Department.   The system is a non-invasive tool consisting of a single 

stationary camera using a non-model-based blob detection algorithm.  The system segmentation uses 

an approximate nearest neighbor tree to search for though feature vectors composed of color 

histograms and texture measures.  The user interface is designed to be fairly simple to decrease 
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difficulties in training and tracking.  The system extracts information about the segmented frames to 

be further analyzed. 

 One of the contributions of this work are that this system will be the first system to implement 

our high dimensional sparse feature vector extraction method with applications to the intentional 

vision research done by the Vanderbilt Psychology Department.  The methodology for achieving 

autonomous segmentation by merging the minimum spanning tree, approximate nearest neighbor tree, 

and normalized high dimensional sparse feature vectors provides very nice results in natural and 

controlled environments.  Using both the supervised and autonomous systems, an extensive analysis 

showed that this approach is able to capture behavioral cues and is shown to correlate with the original 

human rated behavioral cues of the intentional vision research.  Another contribution is the detailed 

analysis of the autonomous system algorithms. 

 

Organization of Dissertation 

 The organization of this paper will provide a literature review for each of the discussed 

sections above.  Chapter II will cover the methods of body structure analysis.  Chapter III will cover 

the systems used for event tracking.  Chapter IV will cover single camera vision techniques with 

respect to human motion tracking.  Chapter VI will discuss the current system implemented for our 

research.  Finally, Chapter VII will present the experiments and results. 
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CHAPTER II 

 

BODY STRUCTURE ANALYSIS 

 

Full Body Analysis 

Examples of full body actions are actions such as walking, jumping, squatting, etc.  In some 

studies, these actions are studied strictly to track and identify the action itself [8,9,11,20].  Other 

studies incorporate these actions combined with multiple objects [6,22,41].  The full body structure 

typically uses an invasive procedure to gather the specific correlated points on the person to create a 

model by using sensors attached directly to the person.  Other non–invasive measures involve tracking 

visual characteristics.  Methods of tracking the full body motion range from monitoring key body parts 

such as head detection, recording the motion throughout a task, blob detection, etc.  Each of these 

methods carries a set of weaknesses.  Motion recordings are usually sensitive to differing trajectories 

and temporal spacing of people when performing the same task.  A large number of the visual systems 

implemented are sensitive to view angles and lighting conditions causing significant error in point 

calculations.  There are a few systems devoted to view-invariance.  Many of the studies involve a very 

controlled motion [6,25,87].  For problems involving gathering task information to mimic by robotic 

manipulators, the demonstrator’s actions are severely limited to a specific manner of manipulating 

objects [5,17]. 

Body structure analysis uses a variety of body parts to extract information.  There has been 

quite a bit of work done with tracking the entire body as well as tracking specific parts such as the 

hands or the head.  It makes sense that the main cues for action are often related to the manipulators 

(hands) and the visual sensors (eyes).  For example, gaze may be estimated by head direction when 

analyzing human actions.  By using features or models of these parts, the body can be tracked across 

successive images.  The necessary steps for extracting information are identification of temporal 
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boundaries of action, identification of relevant characteristics, extraction of temporal activities of 

objects, and extraction of purpose.  A significant amount of work has been focused on each of these 

areas.  The first area to focus on is the tracking of full body motions.  The full human body is modeled 

according to two main methods: the use of skeleton models (2D or 3D) and the use of motion 

templates/optical flow.   

Full body motions are gestures of the human body such as walking, sitting, etc.  These 

activities are studied by analyzing the entire body for the structural changes as a task is performed.  

The skeleton models consist of significant points on the human body and are connected by either lines 

or shapes depending on the 2D or 3D modeling method.  Some use invasive techniques to collect the 

points, usually involving the subject wearing sensors or indicators on their person that are used to 

provide precise tracking [86].  Some use natural visual cues of interest in the environment to detect the 

significant points [6,11].  The methods for visual detection vary from using, often complex, multi-

camera analysis to using simpler single camera view dependant analysis.  Some of the techniques for 

different camera setups will be discussed later in the paper.  Most of the visual 3D modeling requires 

multiple cameras filming the subject.  The cameras are usually stationary. The precise position, 

orientation, and pixel size of the cameras are known with respect each camera. By correlating the 

frame by frame position of the markers from the multiple cameras, 3D positions are extracted from the 

video sequence.  Using these sequences of positions, shape models can be applied to the spaces 

between points and various data can be extracted about the motion.  By placing sensors on subjects, 

significantly less noise is involved with the data than with data gathered from strictly visual means.  A 

large constraint in using markers is that the environment must be modified creating a more unnatural 

scenario. 

Applying 2D models to extracted silhouettes from images is another commonly used method 

[40,50].  Aggarwal et al. [87] used motion to initialize a model over the silhouette of a person, and 
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using forward kinematics, is able to continue tracking the silhouette by applying a cost function based 

on the amount of motion necessary to overlay the model (see Figure 2 ). 

 

Figure 2:  Overview of extracting silhouette and overlaying the model [87] 

 

Aggarwal et al. used this tracking to extract information about the position and velocity of a person’s 

appendages to determine if dangerous activity is occurring (such as fighting).  This work was 

continued [25] by applying the data to finite state automata to detect sequences of states for the human 

models to detect motions such as pushing (see Figure 3 ). 

 

Figure 3: A sequence of tracked model states indicating a push [25] 

 

The states to be detected as part of the action of pushing include the rising of the hands and a fast 

forward motion of the arms for the attacker, followed by the negative motion of the victim.  They 

applied automata to detect actions such as walking, kicking, pointing, pushing, handshake, etc.  In 

another study done by Peursum et al. [6], they use a 2D quick star skeleton method on the silhouette of 

a person at differing camera angles to extrapolate a 3D model over the person.  The star skeleton 

places points at the extremities of the person and connects those points to either the upper or lower 

points of the center spine (shown in Figure 4).   
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Figure 4: 2D star skeletons applied to different views of the same moment [6] 

 

Using the motions of the skeleton, the values are analyzed by a left-right Hidden Markov Model 

(HMM) to determine sequences of activities and actions.  An interesting result from their research is 

using a flat HMM instead of a hierarchical HMM to identify actions did not work well, but the flat 

HMM did detect activity segments well. A study using a similar method of skeleton overlay from only 

one camera viewpoint determined that it was possible to track the skeleton across multiple frames and 

required an estimation of angle velocity when joints became occluded by the rest of the body [89].   

 Another method of full body tracking is motion sequences and motion images [4, 54, 73].  

Bobick and Davis [4] use motion energy images (MEI) and motion history images (MHI) to extract 

information about full body motions.  A motion energy image is an image where the motion values as 

an action is performed are stored in a collective image over time.  It is assumed that the person can be 

separated from the background during the making of these images (Figure 5). 

 

Figure 5: (top row) A series of images of “sitting”, (bottom row) Corresponding MEI [4] 
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Though information reguarding the motion in that region of the image is retained, the pattern of the 

motion through time is lost.  Since the MEI answers the question of “where” the motion is, the MHI 

was used to answer the question of “how” the motion moves.  By simply adding a decay operator for 

the motion values over time, the MHI can represent when the motion occurred in the time sequence 

(see Figure 6). 

 

Figure 6:  Motions and the corresponding MEI and MHI [4] 

 

To compare the MEI and MHI images, the shapes portrayed by the captured motions are calculated. 

The Hu moments are calculated to give a shape feature vector for each of the images. Moments, when 

used with images, are weighted averages of the pixel intensities over a certain area of an image.  

Moments are defined in terms of Riemann Integrals. 

� �
∞

∞−

∞

∞−

= dxdyyxyxm qp
pq ),(ρ , where p,q = 0,1,2,…      (1) 

),( yxρ  is the pixel intensity at position (x,y).  From these moments, it is useful to derive central 

moments.  Central moments are moments that are translation invariant (not dependant on the location 

of the area in the image).  Central moments are defined as: 
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By subtracting the mean x  and y  values from each pixel comprising the shape of the object, the 

shape is normalized to a common location no matter what location it originated from in the image.  For 

the purposes of general object detection via shape analysis, moments must be invariant to translation, 

rotation, scaling and mirror shapes.  The equations used for the first 4 orders of Hu moments were 

calculated: 

To achieve translation invariance: 
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To identify test movements, the Mahalanobis distance is calculated between the test feature vector and 

the known training feature vectors. This distance measure takes into account the distance of a sample 

from a group as well as the group’s standard deviations.   Mahalanobis distance is the distance of a 

sample from the center mass of a group divided by the width of the ellipsoid in the direction of the 

sample (Note: the ellipsoid is the best estimate model of the group samples).  Since this method is 

sensitive to varying time spans over which the action is taking place, varying the values of the time 

coefficient can speed up or slow down any action to help synchronize the image with the training 

motions.   The time coefficient is the constant that controls the speed of intensity decay for the images 

as frames pass.  Using only a single camera, they test the recognition of the samples receiving a result 

of 12 correct classifications out of 18 trials.  They extend the experiment by using 2 cameras that view 

the task at varying angles between 0-90 degrees to test for accurate detection of the task.  The 

difference for the camera angles were known and the distance from the person had to be the same.  

This method improved the results to 15 correct classifications out of 18 trials.  One of the problems 

noted for the classification across other subjects was the speed of the action was significantly slower 

than the original aerobics instructor in which the system was trained on and the conjunction of the 

subject wearing low frequency clothing made the segmentation algorithm not detect the complete 

motion. 

 

Partial Body Analysis 

The partial body analysis is focused on the body parts that give the most information about the 

task observed.  When observing humans, the obvious parts to analyze would be the head/eyes and the 

hands for many upper-body tasks.  If the main actions are running, jumping, squatting, etc., the best 

body parts to focus on may be the legs.  Aloimonos et. al. used the MoCap System to monitor the 

angles of the knee, hip, and ankle joints for the right and left leg  [20].  They go on to use a set of 

symbols to represent the 6 possible combinations of joint velocity and joint acceleration (R for 
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negative velocity and acceleration; B for positive velocity and acceleration, Y for negative velocity, 

positive acceleration etc).  They also apply a positive integer value for the angular velocity with each 

symbol.  By sequencing these symbols, actions are represented by a set of symbols as can be seen in 

Figure 7 below.  

 

Figure 7: Knee angle derivatives during a jogging activity [20] 

 

Research shows trends toward using the head to detect and identify tasks.  Kojima et. al. [5] 

showed that tracking the head and estimation of the face direction could be used to identify directions 

and activities within the lab environment.  Using a single stationary camera trained on the empty room 

as the background, the person is detected by differences with background.  The head is determined by 

chromatically training on an average of the face and hair tones.  An edge mask is used to filter the 

head region.  The edge mapping of the head is Gaussian blurred and compared to a database of sample 

head directions.  On the assumption that the layout of the room is known before hand, actions are 

determined by the proximity and directions of the head as well as the trajectory throughout time.  
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Figure 8: Sample input sequence of action in the room [5] 

 

The sample image shows a person entering the room, moving and working on pc1 (personal computer 

1) , moving and working on ws2 (workstation 2) and leaving the room.  The video sequence is 

segmented by monitoring the head.  If the head is moving, the head is facing in primarily the same 

direction.  If the head is still, the head keeps approximately the same position.  By taking the change in 

distance across a segment for the only moving agent (the human), and using it in the following 

sigmoid function, 

BxAe
xf −+

=
1

1
)(            (21) 

, where A and B are empirically selected constants, x is the change in distance.  The f(x) values range 

from [0,1].  A number of features are extracted for each segment as shown in Table 1(a) below.  A list 

of verbs are shown in Table 1(b) below. 
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              Table 1(a) Conceptual Features    Table 1(b) Verbs 

 

 

The verbs are represented by a set of feature changes from the beginning to the end of the segment.  

Using the approach verb as an example, the existence of the agent needs to transition from 0 to 1, the 

existence of the object needs to transition from 0 to 1, and the person transitions from not facing the 

object to being next to the object. By connecting the agent, object, verbs and, time, a higher level 

language is created to describe the activity in the room.  

Madabhushi & Aggarwal showed that, by tracking the centroid of the head alone, actions such 

as standing, walking, sitting, etc. could be recognized [3].  A single person would be in the video 

performing these actions.  Of 41 sequences, 34 were identified correctly giving an 84% success rate.  

The main point to note in this study is the simplicity of the methods used.  The head was determined 

by the upper portion of the motion in the image and tracked by taking the nearest group in the 

sequence of images. Using the velocity of the head over successive frames as the feature vector, they 

were able to get the 84% success rate for action recognition.  All the studies agree that focusing strictly 

on the head limited the actions available to be detected.  Both studies used relatively simple methods 

for tracking the head and simple feature vectors to describe the actions of the videos. 
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Other research focused attention on the hands such as Kuniyoshi & Inoue using a multi-camera 

system to track the hand and objects for recognition of action sequences [16].  Their setup used stereo 

vision to observe a human performing a building task.  They make some key assumptions such as the 

blocks not being occluded, a single hand is used at all times, and the action is carried out in a smooth 

consistent manner with no mistakes in assembly process.  The viewing area contains only the 

necessary objects and is intruded upon only by the hand of the demonstrator.  The blocks must be 

picked up by the hand in a pincer configuration with the forefinger and thumb making connection on 

the sides of the block without occluding the block from the view of the cameras.  By tracking the hand 

and the objects, they created assembly classes of transfer, local motion, approach, depart, and fine 

motion.  To identify these classes a set of sequences were observed (i.e., transfer consisted of empty 

hand reaching object (near, hold-false), reaching with object (near, hold-true), withdraw hand from 

object (other)).  Using this information, they could recognize assembly tasks in real time.   They 

continued their work for task mimicking using a robotic manipulator [17].   

  

Figure 9: (left) Overview of system; (right) Hand position for picking up object w.r.t. camera [17] 

 

Rao et. al. used hand tracking to extract the two dimensional motion of the hand when doing a 

task to extract significant moments (or dynamic instances), such as pauses and direction changes, to 
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identify whole tasks such as opening a cabinet, picking up and putting down objects, etc [10].  They 

determine dynamic instances by recording the hand position and calculating the curvature and 

direction via equation 22: 

�(t) = ||r’(t) - r”(t)|| / ||r’(t)||3        (22) 

where r(t) = [x(t), y(t), t], x(t) is the horizontal coordinate of the hand centroid, y(t) is the vertical 

coordinate of the hand centroid, and t is time.  By assigning a value of “+” for clock-wise and “-“ for 

counter clock-wise, they correlate the number of peaks in the curvature data (dynamic instances) and 

the sign direction of the curves to create a feature vector for the movement (an example can be seen in 

Figure [10]. 

 

Figure 10: (left) Hand Movement of Erasing Board, (right) Curvature Plot of Movement [10] 

 

Data comparison occurs if to sets of actions have the same number of dynamic instances and the same 

sequence of signs for those instances.  The feature vectors for the dynamic instances are the 2D 

coordinates of the hand at those moments.  They use an affine projection model to project the 2D 

motion into a 3D space.  The affine model assumes that the depth of the 3D action is small compared 

to the distance to the camera.  This assumption allows for 2D points to be changed to 3D through 

linear transformation.    A 3D action observed by a camera will be projected onto a 2D image plane as 

can be exemplified by Figure 11. 
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Figure 11:  (a) Sample vector representation in 3D, (b) 2D projection of 3D vector [10] 

 

In Figure 11, there are 3 points P1, P2, and P3.  The camera faces orthogonal to the x-y plane in Figure 

11a.  Assuming the vector 21PP is vertical (parallel to the y-axis), no matter how the camera pans 

around the motion vectors with respect to the y-axis the vector 21PP  will remain unchanged in the 2D 

projection 21 pp  of Figure 10b.  The limitation lies with vector 32 PP .  In Figure 11b, as the camera 

pans around the action with respect to the y-axis, the 2D projection changes from the solid vector 

32 pp to the dashed vector 32 pp .  Notice the overall direction change from point p1(u1,v1) to p2(u2,v2) 

to p3(u3,v3) remains clockwise even as the angle of pan (�) about the y-axis changes as long as the 

angle of pan (�) remains within (-90o,90o) of the position where 32 pp lies on the x-y plane.  The 

following equation accounts for the change in the x coordinates for the 3D point as the camera pans. 

 )cos()cos(' Ω−Ω= ZXX , where X’ changed x-coordinate as the camera pans 

Given the affine camera model used is: 

 
D
X

fu
'

'=            (23) 

,where f is the focal length, D is the distance from the camera to P2.  The d’ value (i.e. the distance 

between the projections of P3 and P0) space shown in Figure 11b is calculated by the following: 
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D

XX
fd

)cos()(
' 03 Ω−
=         (24) 

The same logic follows for the tilt angle around the x-axis (�).  By determining the curvature and 

dynamic instants of multiple camera angles of the same task, the 2D coordinates (matrix M) can be 

converted to 3D coordinates (matrix S) if the projection matrix (P) is known.  The equation for the 3D 

to 2D conversion is a linear transformation: 

M = P * S           (25) 

,where M is a 2 x n matrix consisting of n 2D points of an action, S is the 3 x n shape matrix consisting 

of  n 3D points of an action, and P is the 2 x 3 projection matrix. 

Each action is viewed from k camera angles, thus each camera view has an M matrix creating k M 

matrices.  Using the distances between the 3D calculation instances calculated from the different 

camera angles, they identify the motions and new actions (if the distances are far from all trained 

motion).  The experiment used 47 different actions performed by 7 different people.  They determined 

effectiveness by judging the best 3 choices for each action.  Of all the actions, only 5 had 3 false 

matches and another 5 had partially incorrect matches.  The comparisons were based on a single 

instance of the action. 

Some of the best methods for segmentation and recognition of human tasks lie in observing the 

head movements/gaze in conjunction with hand motions such as in the research of Yu & Ballard [18] 

where by simply studying the head motion, eye motion and hand activity led to segmentation and 

recognition of the tasks.  A system layout showing the motions of the head, eye, and hand extracted 

from an image sequence to train a set of Hidden Markov Models for action recognition (see Figure 

12). 



 

18 

 

Figure 12: Overall system diagram [18] 

 

The motions were gathered using an invasive hand sensor and headset that tracks the head/eye motion.  

From the head motions throughout a task, they were able to extract when the head was fixated by low 

motion values as seen in Figure 13.  A similar threshold method was used to determine eye fixation 

from low eye motion values also seen in Figure 13.  After determining the moments where the head 

and eye were fixated at the same time, action segments were extracted during these time periods.  The 

data from the actions were the 3D hand position and rotation for both hands during the times of 

simultaneous fixation. 

 

Figure 13: Sample of action segmentation via head/eye and hand movements [18] 
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By training a Hidden Markov Model on the data gathered through the fixation periods, an overall 

segmentation accuracy of 83.9% was achieved with 91.6% recognition accuracy on actions such as 

picking, placing, lining up, stapling and folding.   The field of machine vision is continuing to examine 

more robust methods of detecting and recognizing actions.   
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CHAPTER III 

 

EVENT TRACKING 

 

Some of the most popular methods of studying human motion segmentation use finite state 

automata, Hidden Markov Models (HMM), Bayesian Networks and Kalman filters.  The main use of 

these techniques in human motion segmentation is to provide recognition for actions performed.  In 

general, these techniques receive the information from a system (in the form of vectors) and form 

states depending on how these vectors correlate with each other.  By following a sequence of states, an 

action can be described.  After training the system, a new sequence of vectors can be read in and 

interpreted by the system.  Depending on the resulting estimated sequence of states, the new sequence 

of vectors is identified as a particular action.  It is essential to understand more about these methods so 

that they can be applied in the most effective manner.  The definition of the Hidden Markov Model 

will be referenced from a compilation of sources [30, 94-100].  After defining the models, methods of 

use for human motion segmentation and recognition will be covered. 

 

Finite State Machines 

Finite State Machines (FSM) are models of systems that contain states and transitions that 

mathematically represent the activity [102, 103].  Though finite state machines are most commonly 

used to represent system operations, human motion analysis can use them to represent the series of 

actions and identify tasks.  The parts of a finite state machine are as follows: 

States:    Si  :where i = 1 to N (Number of States) 

Transitions:  Tij :where T is the connectivity from state i to state j 
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Figure 14: Example FSM 

 

In the example FSM shown in Figure14 , it can be seen that starting in state 0 if a 0 input is received, 

the system transitions to the other state.  If the system receives an input 1, then it remains in the 

current state.  Actions represent the behavior of the system throughout the model.  Exiting Actions are 

actions that occur when the system leaves a particular state.  Entering Actions are actions that occur 

when a system is entering a state.  Of course, finite state machines can be vastly more complicated 

than that shown in Figure 14 depending on the task to be modeled.  In the papers using finite state 

machines, the models are used to represent the state and activities of a person. 

In Ayers and Shah’s work [78], they use a finite state machine to represent the location and 

activity of a person in a particular room.  By simply detecting the skin tones of a person and the 

objects in a room, they are able to create a state machine to represent the actions in the room.  Using 

the state machine shown in Figure 14, the student’s activities are identified in the lab.  The system is 

trained on the original positions of the objects and skin tones. 
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Figure 15: (left) Action Finite State Machine, (right) Transition descriptions [78] 

 

The system is able to identify actions of different people.  Actions are determined by tracking the 

position of the person in correlation with the position of key objects (e.g., “Pick Up Object” is 

determined by the proximity of the person to the object and the change in the objects position).  All of 

the transitions are explained in Figure 15.  The activities of the person can be described from the states 

of the FSM.   A key limitation to the model is the amount of work necessary to change the finite the 

state machine to detect a wider range of actions. 

 

Hidden Markov Models 

To define HMMs, it is easier to first define Markov chains [95].   Markov chains are models 

that consist of states and transitions across those states.  Markov chains are very similar to weighted 

finite state machines but the difference being they have a set of observations and a transition matrix 

that are used to determine the probability of that set occurring given a specific model.  Let’s define the 

following: 

States:    Si  :where i = 1 – N (Number of States) 
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Observations:  O = {V1, V2, …,VT} :where T is the number of observations in a 

sequence 

Transition Matrix: A  :where each value aij is the probability of transitioning from Si to Sj 

Initial Probability: �i  :where each value is a probability of starting in state Si 

In Rabiner’s paper [30], he uses a sample 5 state Markov chain to aid in the description (Figure 16). 

For the transition matrix to be correct an assumption must be made called the Markov assumption. 

Markov Assumption:    P(si|s1...si −1) = P(si|si−1) (26) 

The Markov assumption says that the probability of transitioning from Si-1 to Si is only dependant on 

the previous state Si-1 and not any of the states before Si-1.  This is saying that the transition 

probabilities do not change due to transitioning from states prior to the current state. 

 

Figure 16: Sample 5 state Markov chain [30] 

 

In a Markov chain, all the information from the states, transition matrix, initial probabilities, and 

observations are provided.  The Markov chain can be given a sequence of observations and the 

probability of that sequence occurring may be calculated from the transition matrix and the initial 

probability. The observations V directly correspond to the state S.  Notice that observations for a 

Markov chain are now defined as states. This definition is accurate because all the information about 
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the model is available so an observation actually indicates the state that the system is currently in.  For 

the model above, if O = { V5, V4, V1, V3, V2, V2, V1 } corresponds to O = { S5, S4, S1, S3, S2, S2, S1 }, 

then  P(O|model) = �5 × a54 × a41 × a13 × a32 × a22 × a21.  The Markov chain is useful for finding 

probabilities of sequences but relies on the unlikely situation where all information about the model is 

available.  Addressing this shortcoming is where the strength of the Hidden Markov Model lies. 

 The Hidden Markov Model has the same variables as the Markov chain.  The only difference is 

the observations O = {O1, O2, … , OT} where T is the number of observations in a sequence.  Each Ot 

is drawn from a list of symbols V = {v1, v2, …, vW} where W is the number of different symbols that 

are available to the model.  The reason the observation definition change is because the model is now 

“hidden”.  Since the observations no longer give exactly which state the system resides in, one 

additional component is needed: 

 Emission Matrix: B  : where each value biw is the P(vw| Si) 

With the emission matrix, the symbols from observations have a probabalistic link to the states of the 

hidden model.  The assumption that the observation only relies on the current state and not previous 

states must be made for the Emission matrix to hold true.  Given appropriate values of N (number of 

states), W (number of symbols), A (transition matrix), and B (emission matrix), the Hidden Markov 

Model can produce a sequence of observations.  The HMM requires that N and W be set so the model 

can be represented as � (A, B, �).   Eisner [100] explained a sample problem of a HMM would be: 

“You are climatologists in the year 2799, studying the history of global warming. You can’t find any 

records of Baltimore weather, but you do find my diary, in which I assiduously recorded how much ice 

cream I ate each day. What can you tell about the weather from this information?”   

Given:  

V = {1, 2, 3} for the number of ice cream eaten that day  

S = {Cold, Hot} for the weather 
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B = �
�

�
�
�

�

7.02.01.0
1.02.07.0

 where the rows are the states and the columns are the symbols.  

(i.e., b23 = 0.7 which is the probability of 3 eaten ice creams on hot days) 
 

 A = �
�

�
�
�

�

8.02.0
2.08.0

 

The state estimation for the following plotted observation sequence would be: 

 

Figure 17: Results of the Sample Weather Problem [100] 

 

There are 3 main problems to be solved with HMMs: 

� Given an O and �, what is the probability of observing the given observation sequence? 

� Given an O and �, what is best estimate of the corresponding state sequence? 

� Given an O and S, how can we change � to maximize P(O|�)? 

The first problem is a likelihood problem.  By solving this problem, a method is developed that 

allows for comparisons among models.  This is useful for comparing unclassified observations with 

known model estimates to classify the observation sequence.  This problem is solved by taking the 

sum of the probabilities of all possible states sequences that can represent the given observation 
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sequence (a solution provided by the forward algorithm [30, 94, 96]).  The general steps of the 

algorithm are as follows: 

α t−1(i) the previous forward path probability from the previous time step 

bj(ot)  the state observation likelihood of the observation symbol ot given 
the current state j 

 

1. Initialization 

Njobaj jj ≤≤= 1)()( 101α        (27) 

2. Recursion: 

TtNjobaij
N

i
tjijtt ≤≤≤≤=�

=
− 1,1)()()(

1
1αα     (28) 

3. Termination: 

P(O|�) = )( FT sα = �
=

N

i
iFT ai

1

)(α       (29) 

The second problem is a decoding problem.  By solving this problem, a way of analyzing the 

structure of the model is available.  This may be used to learn about optimal state sequences for 

recognition.  This problem is solved by a very similar algorithm to the forward algorithm called the 

Viterbi algorithm [30, 94, 96].  The Viterbi algorithm takes the maximum probability for all the 

possible state sequences that represent the given observation sequence to determine the sequence of 

states.  The most probable state sequence can be determined by tracking the states that create the 

maximum probability.  The general steps of the Viterbi algorithm are: 

vt−1(i)  the previous Viterbi path probability from the previous time step 
 
bj(ot)  the state observation likelihood of the observation symbol ot given 

the current state j 
 

1. Initialization: 

v1( j) = a0jbj(o1) 1 � j � N       (30) 

bt1( j) = 0         (31) 
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2. Recursion: 

  vt( j) =  )()(
1

1 tjijt obaiv

i

MAX

N

−

=
  1 � j � N, 1< t � T    (32) 

btt( j) = )()(
1

1 tjijt obaiv

i

ARGMAX

N

−

=
  1 � j � N, 1< t � T   (33) 

 

3. Termination: 

The best score:  P* = vt(qF) = FiT aiv

i

MAX

N

,*)(
1=

  (34) 

 

The start of backtrace:  ST* = btT (qF) = FiT aiv

i

ARGMAX

N

,*)(
1=

 (35) 

 

The third problem is a training problem.  By solving this problem, a way of training a HMM to 

a set of observation sequences is available.  This problem is solved by an algorithm called the Baum-

Welch algorithm [30, 94, 96] which is a variation of the expectation maximization algorithm [29]. The 

algorithm starts with an initial estimate of the model.   The algorithm calculates � (the probability of 

being in a state Sj at time t) and � (the probability of making the transition from Si to Sj and observing 

O(t+1)), then uses these values to adjust the model.  The cycle continues until convergence (there is a 

chance that the algorithm will converge to a local minimum instead of a global minimum.  The 

algorithm is given below: 

4. Initialization 

Niai Fi ≤≤= 1,)( ,1β        (36) 

5. Recursion: 

TtNjjobj t

N

i
tjijt ≤≤≤≤= +

=
+� 1,1),()()( 1

1
1 βαβ     (37) 
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6. Termination: 

P(O|�) = )( FT sα = )0(1β = �
=

N

i
jj job

1
110 )()( βα     (38) 

The next topic of interest is observing how HMMs are used in human motion analysis.  Lee 

and Kim [93] tracked gestures of the hand and further refined the HMM’s recognition capabilities by 

adding a likelihood threshold for the actions.  They gathered information about the hand using a 

feature vector that consists of the horizontal and vertical movement between frames.  These feature 

vectors are given a directional code from 0-15 (Figure 18). 

 

Figure 18: (a) Feature extraction, (b) Directional code values [93] 

 

Using these directional codes as observation values, they set the number of states (N) of the HMM to 

be 5-10 depending on the complexity of the motion.  By training a HMM for each gesture and a HMM 

for the thresholds, the gesture end points can identified. The threshold HMM is a combination of all 

the states from each of the separate gesture HMMs.  The output observation probabilities and the self-

transition probabilities are the same as the gesture HMMs but the outgoing transition probabilities are 

weakened by the following equation: 

1

1

−
−

=
N

a
a ij

ij , for all j, i	j where N is the number of states   (39) 

All the states in the threshold HMM are interconnected giving the threshold model the ability to link 

subpatterns of different gestures.  Keeping the output observation and self-transition probabilities the 
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same will allow the threshold HMM to have a higher likelihood during subpatterns.  The reduced 

output transition probabilities force the threshold HMM to have a smaller likelihood after a complete 

sequence of a gesture than the specific gesture-trained HMM.  By examining where the gesture-trained 

HMM overtakes the threshold HMM, a candidate endpoint emerges (Figure 19). 

 

Figure 19: Likelihood plot of gestures and threshold vs time [93] 

 

In Figure 19, it can be seen that possible candidate endpoints emerge for the gesture “last” at time 13-

16.  Each candidate endpoint can be used as a reference point to run the Viterbi algorithm to backtrace 

and find the most likely starting point in the sequence.  By taking the sequences with the highest 

likelihood with the gesture-trained HMM, they are able to segment continuous human motion.  The 

system had an overall detection rate of 93.81% as shown in Table 2. 
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Table 2: Detection Results with Reduced Threshold Model [93] 

 

  

 
 Deng and Tsui [42] follow up Lee and Kim’s work with another way to identify gestures from 

continuous motion containing gesture and non-gesture motions.  They argue that the Viterbi algorithm 

only works if the observation sequence consists only of the start and stop of a specific gesture (pencil 

trajectory of writing a number).  In continuous motion, the non-gesture motion will cause the Viterbi 

algorithm to miss gestures because of the extra observations of the non-gestures.  A solution for this is 

to have a sliding window that takes each observation and sets it as the beginning of a sequence to 

determine the gestures. If given an input sequence, Ot = {o1, o2, …, ot} and the sequence is broken up 

into multiple sequences Ot

={o
,o
+1, …,ot} , the probability for an observation section given the 

gesture model is 

�
−

− =∪∪∪
1

121 )|()|...(
t

g
t

g
t
t

tt OPOOOP
τ

τ λλ        (40) 

where gλ is the predefined gesture HMM model and t is the time step at which the gesture ends.  The 

evaluation of this equation is the same as the sliding evaluation.  The forward algorithm calculates this 
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value (equation 40).  An alternative to equation 40 is to use the probability of an observation O and a 

starting state I (equation 41) 

�
−

==
1

)|,()(
t

g
t

t
g

t OjSPi
τ

τ λφ         (41) 

 which can be implemented with less computational cost than equation 40.  Since the likelihood values 

differ greatly across models, they take the likelihood from a training observation sequence of the 

model and normalize all the values with gk of the test observations by that likelihood.  Using equation 

42 to develop gk , 

)|(/1 ggg OPk λ=          (42) 

where )|( ggOP λ is the average observation probability given gλ of the known observations from 

model g.  On the assumption that all the models are well-trained, they assume that any observation g 

probability will be much higher in model g than for other models.  After determining the gesture 

model with the highest likelihood for the observation t, they backtrack from the end observation tO 1−τ , 

using some threshold, over the states that maximized the likelihood and observe the statistical data to 

estimate the beginning state/observation of the number trajectory.  They do not mention the exact 

method of determining the initial state, but they do mention that they calculate the maximized 

likelihoods from tO 1−τ to the first observation in the sequence and determine a cutoff to the action based 

on the likelihood. 

The data is gathered in the same manner as mentioned before by taking the motion difference 

of the hand between frames and assigning a directional code (see Figure 18).  Using this method of 

detection, HMMs are trained for the handwritten numbers 0-3 and 6-9 (Figure 20). 
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Figure 20: Example of hand written test data and Result of algorithm [42] 

 

The results of the algorithm significantly outperform the Viterbi algorithm in Table 3. 

 

Table 3:  Deng and Tsui Results [42] 

 

 Siskind and Morris use the standard HMM algorithms to detect hand – object interactions in 

video sequences [68].  Their experiment starts with labeling a set of 6 actions Pick-Up, Put-Down, 

Push, Pull, Drop, and Throw.  Using the Sun Video system which consists of a single uncalibrated 

camera of 320 x 240 resolution at 30 frames per second, they recorded 72 videos of the 

aforementioned actions.  First, the frames are segmented by color and motion. Then, elliptical models 

of the hand and object are extracted from the image sequence (Figure 21).   

 



 

33 

 

Figure 21: The processing stages of Siskind and Morris’s tracker. (a) shows an input image. (b) shows 
the coloured pixels. (c) shows the output of the region grower on (b). (d) shows the moving pixels. (e) 
shows the output of the region grower on (d). (f) shows the combination of (c) and (e). (g) shows the 
ellipses that are fit to regions from (f) [68] 
 
 
The elliptical models are created by taking the mean and covariance matrix of the (x,y) coordinates of 

the pixels in an area.  Some problems encountered from this method are the creation of non-essential 

pixels and differences in the number of ellipses from frame to frame.  To remedy the problems, they 

link ellipses in a ellipse chain that tracks the ellipses by analyzing the difference of their motion 

parameters across frames.  By finding ellipse chains that are tracking the same object, the number of 

spurious ellipses is reduced by merging with the chains creating a constant number of total ellipse 

chains.  For each ellipse, the following feature vector is extracted: 

Absolute features 

� The magnitude of the velocity vector of the centre of each ellipse 

� The orientation of the velocity vector of the centre of each ellipse 

� The angular velocity of each ellipse 

� The first derivative of the area of each ellipse 

� The first derivative of the eccentricity of each ellipse 

� The first derivative of each of the above 5 features 

Relative features 

� The distance between the centers of every pair of ellipses 

� The orientation of the vector between the centers of every pair of ellipses 

� The difference between the orientations of the major axes of every pair of ellipses 
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� For every pair of ellipses, the difference between the orientation of the major axis of the 

first ellipse and the orientation of a vector from the centre of that ellipse to the centre of the 

second ellipse 

� The first derivatives of each of the above four features 

Of the entire 72 hand labeled video set, the HMM models were trained on 36 videos and tested on the 

other 36 videos.  The models were able to recognize 35 of the 36 testing data.  The misclassification 

that occurred was a “drop” event being classified as a “throw” event. 

 

Kalman Filters 

 Kalman filters are one of the best solutions for tracking and data prediction [104,105].  

Research has been done using Kalman filters in the tracking of trajectories [80].  In all real world 

applications, there is noise associated with sensor data (e.g., odometry in robots) or moments at which 

segments data is unavailable (e.g., occlusions of motion).  One use of the Kalman filter is to estimate 

the necessary information from these moments.  The Kalman filter uses a recursive algorithm that 

takes inital estimates of the system, creates a measure of how to change the system coefficients 

(Kalman gain), uses the Kalman gain along with the observed data (z) to create a new update estimate 

( kx̂ ) and error covariance (Pk), and finally the state transition matrix ( Φ ) is used to calculate the next 

1ˆ +kx  and Pk+1 (see Figure 22) 
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Figure 22:  Kalman Filter Recursive Algorithm [104] 

 

Let’s look closely at the system that is being estimated. 

 State Equation: 

  kkk wxx +Φ=+1         (43) 

where Φ  is an n x n state transition matrix, kx  is an n x 1 state vector at time k, and kw  

is and n x 1 driving, input disturbance 

Measurement Equation: 

 kkk vxHz +=         (44) 

where kz  is a m x 1 measurement vector, H is a m x n connection between the state and 

the measurements, and kv  is m x 1 measurement noise 

It is assumed that noise measurements kv  and kw  are white noise with known covariance.  From 

observing the measurements z and using known information about the noise, H, and Φ , the state 

vector x and its covariance matrix ( P) are estimated by using the 5 update equations: 

Kalman Gain:    1'' )( −+= RHHPHPK T
k

T
kk    (45) 

Update Estimate:   )ˆ(ˆˆ ''
kkkkk xHzKxx −+=    (46) 
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Update Covariance:   ')( kkk PHKIP −=     (47) 

Project into k+1:   kk xx ˆˆ '
1 Φ=+      (48) 

     QPP T
kk +ΦΦ=+1     (49) 

The Kalman filter is a very good way to get optimal parameters or state estimation if the problem can 

be cast as linear state equations.  Extended Kalman filters take a similar application to non-linear state 

equations.  This is done by linearizing the state equation at small intervals of time k to model the non-

linearity. 

 Cuevas et. al. study the Kalman filter and the extended Kalman filter to show the tracking 

abilities during times of occlusion [106].  In their study, they track the motions of a soccer ball and 

create occlusions in the data to observe the results of the filters.   The state and measurement equations 

used to model the trajectory of the ball are: 

State Equation: 

kkkkk wxFx += ++ ,11         (50) 
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Measurement Equations: 

kkkk vxHy +=         (52) 
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The results from applying the Kalman filter over a trajectory are shown in Figure 23. In Figure 23, the 

left graph shows the trajectory of the ball and the estimated position from the Kalman Filter.  The right 



 

37 

picture shows another ball trajectory with a section of the coordinates removed to show the prediction 

capabilities of the Kalman filter. 

  

Figure 23: Position prediction with the Kalman filter and prediction of occluded path [106] 

 

For somewhat more complex trajectories, the path of the ball cannot be modeled by a linear system.  

The model must be converted to a non-linear one and the Kalman filter will be replaced with the 

Extended Kalman Filter.  The new state equation for the non-linear system is: 

State Equation: 

kkk wxkx +=+ ),(1 f         (54) 
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The results for analyzing the complex trajectory of the ball using the Kalman Filter and the Extended 

Kalman Filter are shown below (Figure 24). 
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Figure 24: Results of Complex Trajectory with KF and EKF[106] 

 

Bayesian Networks 

 Bayesian networks are graphical representations for probabilistic relationships among 

variables.  The Bayesian network information is gathered from multiple sources [108–110].  

Heckerman [108] describes 4 main advantages to using Bayesian networks over other data analysis 

tools. 

1. Bayesian networks are effective against incomplete data sets.  If a set of data has two 

variables that are strongly anti-correlated, Bayesian networks can make use of this property 

even if for some of the data set one of the variables is not measured. 

2. Bayesian networks can show causal relationships in data.  By uncovering the causal 

relationships in data, systems can be analyzed to determine states that are predictions to 

problems. 

3. Bayesian networks and Bayesian statistical techniques can be used to combine prior 

knowledge and data. 

4. Bayesian networks combined with other models can offer an efficient approach for 

avoiding over-fitting data. 
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The first subject within Bayesian networks is the structure of the system.  Since the joint 

probability distribution is to be calculated, it is necessary to have 2N values to specify the joint 

probability distribution for N variables.  This 2N value can be reduced by using known information 

about relationships between variables.  To represent this known information, some connection rules 

are set to govern the flow of probabilities for different variables as evidence arrives.  There are 4 types 

of connections for the nodes (Note: nodes highlighted gray denote evidence, nodes highlighted yellow 

denote where information is traveling, nodes highlighted pink denote instantiation (i.e., truth value is 

known)): 

1. Forward Serial Connection 

 

Transmits evidence from A to C (top) unless B is instantiated (bottom). 

2. Backward Serial Connection 

 

Transmits evidence from C to A (top) unless B is instantiated (bottom). 

3. Diverging Connection 

 

Transmits evidence from C to A or A to C unless B in instantiated. 

4. Converging Connection  
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 Transmits evidence from A to C or C to A only if B or a descendant of B is instantiated. 

After using the appropriate connections to construct the structure, joint probabilities are calculated by 

knowing the nodes that are D-separated and the chain rule. 

D-separation [109]: 

Two variables A and B are d-separated iff for every path between them, there is an 

intermediate variable V such that either: 

• The connection is serial or diverging and V is known 

• The connection is converging and neither V nor any descendant is instantiated 

• Two variables are d-connected iff they are not d-separated 

The Chain Rule: 

 The joint probability distribution is a product of all individual probability distributions that are 

stored in the nodes.   

P(V1=v1, V2=v2, …, Vn=vn) = �i P(Vi=vi | parents(Vi))   (56) 

where V are the variables, v are the values, and  parents are all nodes that have a direct connection to 

the current node. 

 In the Bayesian network, there are 3 main parts.  A set of variables having a finite set of values, 

a set of connections between the variables, and a specified set of joint probabilities for all nodes.  A 

benefit to D-separation between variables is the declaration that the variables are conditionally 

independent given the evidence.  This allows for probabilities to be reduced, making calculations 

efficient.  Now that the joint probabilities of a single variable can be calculated, this information leads 

to the probability of a vector x composed of a sequence of n variables. 
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where x  is a set of n variables, sθ  is the vector of parameters that correspond to the probability 

distribution of all the variables 
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 (Note: each iθ is a vector of parameters corresponding to 

the probability distribution of the ith variable),  hS is the network structure with some event or 

hypothesis, and ipa is the network parent nodes.  If given a random sample G, what is the likelihood 

of it fitting parameters sθ ?  The problem is expanded to include multinomial distributions for each 

parameter.  A multinomial distribution allows for multiple parameters for each variable.  Two 

assumptions are made to develop a solution.  It is assumed there is no missing data from the random 

sample G and the parameter probabilities are mutually independent.  These assumptions lead to the 

following equation which calculates the probability of a set of parameters sθ  producing sample G with 

structure Sh: 
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),|(),|( θθ         (58) 

where n is the number of variables and qi is the number of configurations in the structure.  The 

equation calculates the overall probability of the data (D) being generated by structure (Sh) by taking 

the product of the probability distributions with parameters ijθ  across each parent node configuration 

(1…qi).  Furthermore, incomplete data can be approximated by finding parameters with the maximum 

likelihood to give variables: 

 )},|(max{argˆ h
ss SDp θθ =         (59) 
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The general method to calculate the missing data value in the vector x is to calculate the structure with 

the maximum likelihood of generating the known values of the vector.  Using this structure, calculate 

the most likely value for the missing variable.  The methods to go about estimating the maximum 

likelihood can vary from Monte-Carlo, MAP and ML estimators, Gaussian approximations, etc. [108]. 

The structure can be estimated by: 

 
)(

)|()(
)|(

Dp
SDpSp

DSp
hh

h =         (60) 

The most difficult component to calculate is the marginal likelihood of the data ( )|( hSDp ) for all 

possible formations of the structure.  The marginal likelihood of the data is the product of all the 

marginal likelihoods for each pair of possible variable states across all variables. 

 Robertson, Reid, and Brady [83] use a Bayesian network to combine direction and head pose 

and estimate gaze direction.  The goal is to identify the gaze direction in medium scale images where 

the head size is roughly 20 pixels tall.  They track the head by hand-selecting a region from the frame 

of the video and creating a normalized RGB histogram of 10 bins to define the skin tone of the person.  

By applying the histogram, they use that database to determine the approximate head gaze (Figure 25).   

The database consists of 100 samples for each of the 8 orientations of a 20x20 pixel region that 

contains the head. Using an approximate nearest neighbor tree, they are able to get 80% accuracy in 

matching the head direction. 

 

Figure 25: Skin detection and head orientation samples [83] 
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 By detecting the motion of the head through sequences of frames, they extract the motion of 

the head.  They calculate the joint probabilities of direction and head-pose. P(hmatch|hinput) is the most 

likely head-pose match in the training data to the input head-pose.  P(dmatch|dinput) is calculated using a 

linear function 
45
d

 - 1  p(d)
θ=  where nearesttrued θθθ −= .  trueθ  is the heading from the trajectory of the 

tracked target.  nearestθ  is the projection to the nearest of the 8 discrete directions.  They calculate 

distributions for all 64 head-pose and direction combinations using the following equation for each 

gaze: 

),(
)()|,(

),|(
dhp

gpgdhp
dhgp =         (61) 

where p(h,d) is uniform and p(h,d|g) is a zero-mean Gaussian centered on the current best estimate of 

head-pose and direction of motion.  Assumptions are made corresponding to the unlikelihood of a 

person moving in a direction and looking in a direction greater than 90 degrees from the current 

moving direction.  They set prior probabilities of 0.8 for p(gexpected) and 0.2 for p(gunexpected).  Using the 

previous time steps body pose (B) and head direction (G), the current body pose and head direction are 

computed for each frame: 

P(Gt,Bt|Gt−1,Bt−1) = P(Gt|Bt,Bt−1,Gt−1)P(Bt|Bt-1 )    (62) 

The results are shown in Figure 26. 

 

Figure 26: Gaze estimation example results [83] 
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The pictures on the left shows the estimated gaze and the plot on the right is the error of the estimated 

gaze angle from the human provided angular gaze estimations. 

 The different event tracking methods contain various strengths and weaknesses.  The Bayesian 

Networks provide the most general analysis for event tracking and identification but are more complex 

to implement.  For the experiments discussed later, the Hidden Markov Model provides a general look 

at the capabilities of our feature vectors to determine the feasibility of their identification of the 

participants and tasks while being slightly less complex to implement.  The Kalman filters are very 

useful for tracking during occlusions, but are not really useful for tracking the hands and objects 

during occlusion tasks of our experiments since a majority of the motion performed will occur behind 

the occluder.  The tasks will not give the Kalman filter enough information to track reliably behind 

occlusions especially due to the non-linear motions of the hands. 
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CHAPTER IV 

 

SINGLE CAMERA TECHNIQUES 

 

Object features are characteristics that describe the structure of the object.  When dealing with 

camera sensors, these features are visual.  It is very desirable that these visual characteristics allow for 

object locations to be detected regardless of object motion or varying backgrounds.  Objects often 

range from tools in the task to actual body parts of the person.  Objects can also be visual queues that 

provide information about the environment, such as shadows, to provide clues about objects in relation 

to each other.  For multi-camera techniques, the systems are often complex. Though they offer an 

abundance of information, it is also more costly to acquire the system.  Since the main focus of our 

system is use of a single camera for interdisciplinary use, the techniques employed by multi-camera 

systems will not be discussed.  For single camera systems, the main visual characteristics extracted 

include color, shape, and texture.   For human motion analysis, the objects fall into 2 main groups:  

parts of the person and interaction objects.  Interaction objects have a lot of flexibility in controlled 

experiments because they can be chosen by the experiment designer.  This flexibility allows for 

objects to be chosen that best interact with an experimental detection system.  For tracking parts of 

people, one of the most prominent features of humans is the skin tone [71].  Often, the first step in 

detecting humans is developing a system that recognizes skin tones. When trying to differentiate 

between various colors, it is important to choose the proper color space to represent the desired colors.  

First, there will be a brief description on some mainstream color spaces. 
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Skin Tone Tracking 

The RGB color space is an additive matrix consisting of red, green, and blue dimensions [115].  

The additive space can be described as a cube where the origin is considered to be black (representing 

minimum contribution from all dimensions) and the furthest corner is white (representing maximum 

contribution from all dimensions).  As the value of a single dimension grows, it represents a stronger 

occurrence of that primary color (i.e. red, green, or blue).   

The HSV color space consists of the dimensions, hue, saturation, and value [115].  The hue 

space is used to represent the color and is described as a circle with red at the 0 degrees and shifting 

through all colors till converging at red at 360 degrees.  The saturation describes the fullness of a 

particular color (e.g. the “redness” of red).  The value describes the intensity of the color.   

CIELAB is designed to model human perceptions of color.  It strives to create a perceptually 

uniform representation of chroma a (A) and chroma b (B) that vary across different luminances (L).  

This color space is based on the CIEXYZ color space derived from a series of experiments that 

mapped human perceptions of color [114]. 

YCrCb is an encoding of the RGB format used to deal with the storage inefficiency caused by 

strictly encoding information in RGB format [115].  The Y holds the luma (i.e. brightness) component 

which contains a majority of the information and can be stored in high resolution while the chroma red 

(Cr) and chroma blue (Cb) are stored in lower resolution because of their lower information content. 

Zarit et al. [90] did a comparison of 5 color representations (CIELAB, Fleck HS, HSV, 

Normalized RGB, and YCrCb) to determine the most descriptive color space for skin detection.  Fleck 

HS is an altered version of the HSV color space that is biased towards the hues and saturations of 

natural skin tones.    By training on multiple images, a histogram of skin values was created for each 

of the color spaces.  They tested these histograms by applying varying thresholds from 0 to 1 and 

calculating the S (% of skin correct), SE (% of skin error), NSE (% of non-skin error), and C (overall 

% of correct pixels).  By setting the threshold that allowed for specific values of S (% of skin correct), 
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the overall % correct was measured to determine the better color spaces.  Then, a filter was added to 

correct pixel classifications by detecting the pixel classification of the surrounding pixels and adjusting 

the current pixel.  The process of filtering is continued until the change in the number of skin pixels is 

less than 1%. 

 

Figure 27: Results of comparison at 80%, (left) ½ original threshold, (right) ¼ original threshold [90] 

 

In all of the comparisons evaluated, HSV and Fleck HS made up the 1st and 2nd best color spaces for 

modeling skin tones. 

 

Shape Tracking 

For shape tracking, the main problem is tracking the same points and correlation of points as an object 

moves.  When dealing with a camera that returns 2D information and relating that data back to the 3D 

world, clues to determining and tracking these points usually are determined from their movement as 

the object moves [61,62].  If points can be determined on rigid objects, their movement can be 

described by a set of linear transformations.  Of course, modeling deformable shapes is much more 

difficult because of different underlying models for different areas (Figure 28).  For example, the 

corner of a person’s mouth can change independently of how the head turns.  Another method of shape 
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tracking is to overlay shapes across a region identified as being the object of interest.  Examples were 

shown earlier (Figure 3) under modeling the body structure. 

  

Figure 28: (left) Tracking of face movements, (right) Tracking of texture patterns [62] 

 

Optical Flow 

 In the temporal boundary area for visual systems, the methods involve using optical flow and 

object features to detect motion queues.  The temporal boundary area is the area dealing with time 

partitions of events.   Optical flow is the regional motion throughout subsequent frames in a stream of 

images.  The motion vectors in these regions show object boundaries by connecting similar vector 

regions.  After detecting these motion queues, the objects can be identified and tracked.  These 

motions can be used to give clues about many machine vision problems such as occlusions [35], 

distance estimations [107], key event moments, etc.  Optical flow techniques rely on local space and 

time displacements of image values [2].  A common method for calculating optic flow is using block 

based motion estimation.  The block based motion estimation takes a block from a frame of an image 

and finds the most similar block in the next frame with the closest distance spatially.  A vector field is 

calculated from this motion estimation.  One of the assumptions of optic flow for determining objects 

is that neighboring blocks have similar motion vectors.  By using these vectors, object shapes and 

motion can be determined. 

Optical flow fields can be used to provide vast amounts of information about the activities of a 

scene.  Aloimonos et. al. [35] used optical flows to determine the change of occluded areas of the 

background by other objects and determine the distances between the object in motion and the 
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background.  They described 3 types of classes for motion involving independently moving objects 

(Figure 29): 

 

Figure 29:  3 Motion Class Examples [35] 

 

Class 1:  The independent object (represented as the black object) is moving in a different 

direction independent to the other background objects (represented as the gray objects). Note: the 

darker grey objects signify an object in front of the independent object and the striped area represents 

the area occluded by the moving objects.  Independent objects using class 1 motions can be identified 

by performing motion-based clustering. 

Class 2:  The independent object is moving to the right along with the background objects.  It 

moves at a faster speed but is not enough to rely on just motion based clustering.  To detect this 

motion, they take advantage of ordinal depth conflicts.  Ordinal depth is the perceived order of the 

depth of objects in relation to each other (i.e., an object being in front or behind another object).  Using 

the occlusion of the black object by the dark gray object, this gives the perception of the black object 

being behind the gray object.  By constructing structure from motion, the black object appears to be in 

front of the gray object because it moves faster.  The two conflicts allow for the detection of the 

independent object. 

Class 3:  The last class is similar to the second class but does not have the occluding object 

(dark grey) to give clues about the independent object (black).  To detect this set of motions, they use 

two calibrated stereo cameras to calculate the motion/depth ratios and group them into 3 groups.  A 

group for the largest set of group ratios (background group), a group for pixels with greater group 
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ratios than the background, and a group for lesser group ratios than the background (also considered 

background) are extracted.  The groups not of the background group are considered an object in class 

3 motion. 

They develop a general algorithm to detect the 3 classes: 

1. Input video sequence 

2. For each frame in the video 

a. Find the forward and reverse flows using the occlusions 

b. Select a set of pixels using phase correlation (see below) between two frames. 

c. Find the background motion using the set of pixels. 

d. Detect Class 1 moving objects from background 

e. Find ordinal depth relations using the flows from (a) 

f. Detect class 2  moving objects 

g. If stereo  is available, detect class 3 moving objects 

Phase correlation involves calculating 4 parameters from the motion in an image to detect the 

background.  The 4 parameters are the x and y translations in Cartesian coordinates, the scale in 

logpolar representation, and the z rotation.  These 4 parameters are most dependent on the background 

(assuming the background is the largest object in the video) and are used to select optimal points at 

which to sample the true background motion.  Results can be seen in Figure 30. 
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Figure 30: Aggarwal et al. results: (a)-(c) show 3 frames in a video sequence. (d) shows the computed 
motion valley. (e,f) show the forward and reverse flows. (g) shows the inverse depth from motion. (h) 
shows 3D structure from motion. (p,q) show the pair of stereo images. (r) shows the inverse depth 
from stereo. (s) shows the 3D structure from stereo. (x) shows the cluster groups. (y) shows the 
clusters in the image. (z) shows the Class 3 moving object. 
 

 
Krootjohn [107] uses optical flow to determine robot location through visual odometry and 

detect precipice proximity.  MPEG encoders have optical flow information calculated and stored in 

their structure.  Krootjohn was able to extract that information to be used for visual odometry and 

precipice detection in real time.  By using a single stationary calibrated web-camera angled toward the 

floor, he was able to calculate the translation and rotation of the robot from the flow vectors in specific 

regions of the viewing area.  Using the vectors that project into the left and right sides of the virtual 

square, these values estimate the robot rotation to the left and right (see Figure 31a).  The vectors that 

project into the upper region are used for both the forwad and backward motions (Note: The backward 

motions are identified by inversing vectors that have a negative y component and determined if is 

projects to the top of the virtual square.) 
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  (a)       (b) 

Figure 31: Robot setup:  (a) Image plane, (b) System configuration [107] 

 

Using these motion vectors, the forward and reverse translations are calculated by the following 

equation: 

 )tan( ii hY βθ +=          (63) 

where 	



�
�



�= −

F
yi

i
1tanβ , F is the focal length, θ  is the tilt angle, h is the height of the camera, and yi is 

the projected motion vector on the 2D image plane.  Using the Yi values calculated between each 

frame and summing each distance, the total distance is calculated.  Likewise, the rotation can be 

calculated from the following equation: 

 
F

xx c )(
tan 01 −

= −φ          (64) 

where x0 is the point before rotation (x component of the motion vector), xc is the camera translation 

occurring during the robot rotation, and F is the focal length.  After calculating the translation and 

rotation of the robot, an interface showing the motion vectors and projected travel of the robot was 

created (Figure 32a).  A similar interface is used for precipice detection where the bottom half of the 

image plane is broken into a 3x5 blocked area.  The first row is the Watch level, the second row is the 
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Warning level, and the third Row is the Panic level.  Each level has a binary safety value of 0 or 1 (1 

being safe, 0 being not safe).  If the average magnitude of the motion vectors in the Watch level are 

less than half that of the Panic level, it returns a 0 value.  The Watch level has 3 frames for the average 

to rise above the threshold before the 0 value is returned.  When the Watch level returns 0, the 

Warning level is then active and follows the same logic as the Watch level.  The Panic level flags 

when the number of macroblocks (i.e., 5 blocks making up the section) that have an average vector 

above 0 is less than half and the robot stops.  The interface for the precipice detection can be seen in 

Figure 32(b). 

     

            (a)      (b) 

Figure 32: Krootjohn’s interface: (a) Interface for robot odometry, (b) Interface for precipice detection 

[107] 
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CHAPTER V 

 

STATE OF THE ART HUMAN MOTION ANALYSIS SYSTEMS 

 

 To develop an effective tool for human motion analysis, it is important to look at some of the 

latest systems and discuss their capabilities.  This chapter focuses on covering the tools being used 

currently in research labs as well as products available for purchase.  The systems discussed tend to 

focus on generalized tracking and human motion analysis.  They will be described in terms of 

hardware and software necessities, price, and capabilities.  The 5 systems that will be discussed are 

divided into 2 groups, research institution developed tools and commercial products.  The 2 

commercial products are Vicon Motus system and the Qualisys Mocap system.  The 3 institution 

developed tools are from the University of Texas at Austin under Aggarwal, the University of 

Maryland under Aloimonos, and Carnegie Mellon University in the Robotics Institute. 

 

Motus System 

 The first system is a tracking system known as the Motus system created by Vicon [120].  The 

Vicon Motus system is a software package based on Windows that connects to digital camcorders via 

Firewire.  The system is used for many mainstream applications such as video game development, 

movies, and various tracking applications.  The company’s various systems have been used over the 

past 20 years of its existence by well known clients such as Sony, Microsoft, Activision, etc.   

The Motus system provides a number of applications which include but are not limited to 

pattern tracking, gait analysis, skeleton model application, and multi-camera 

calibration/synchronization.  The system specializes in full body tracking, by tracking points 

throughout a video sequence; an example can be seen in Figure 33.  These points are either initialized 

by the user or are represented by visually unique representation usually specified colors to used for 
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tracking.  These points naturally lead to skeletal models which are used to extract motion of the points 

relative to other points in the model.  In most of the demos, the more complex skeletal models were 

formed by markings placed on the subjects.  Some of the common features that are extracted from the 

models are point velocities and joint angles.  These initial features lead to more complex model 

features such as center of mass and stress estimation. The system is robust in the number of 

environments that it may be used.  The system has also been used with a number of rehabilitation 

clinics to allow monitoring of patients during activities especially walking.  The system has the ability 

to perform some gait analysis such as determining the individual steps from the entire sequence of 

walking.  

   



 

56 

 
Figure 33: Sample displays of Motus capabilities 

 

The Motus system has a lot of user learning that is necessary to use the tool, but the tool itself can 

scale to meet the needs of the task to be observed.  The package allows for a single camera system and 

has the option of scaling up to 244 cameras using their hardware options.  Vicon offers a number of 

product that can be purchased with the system such the Vicon T and MX series cameras, Giganet 

device (for the monitoring and synchronization of cameras as well as Ethernet connection), and remote 

video synchronization unit (RVSU).  The basic software system was priced starting at $5,000.00 in 

2008.  As the system expands to a 3D setup, the price ranges from $40,000 – $50,000 for setups 

involving digital cameras with varying speeds and resolutions. 

 

Mocap System 

 Another tracking system available on the market is the Qualisys Mocap system [121].  Like 

Vicon’s Motus system, this system is also a Windows based system and specializes in point tracking.  

Their systems have been in development in Sweden since 1989.  Qualisys products have been used 

with various hospitals and universities such as Madonna Rehabilitation Hospital, University of 

Salford, University of Massachusetts Amherst and Stanford Biomotion Labs.  The complete Mocap 

system offers all the materials necessary to build a motion tracking work area.  Materials include 
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cameras, wall mounting brackets, markers and body suits, calibration and camera lenses, tripods, force 

plates, and Qualisys Track Manager (QTM) software as can be seen in Figure 34.   

 

Figure 34: Overview of complete Mocap system 

 

 The Mocap system employs the camera array approach to extract 3D information.  It offers 

software packages such as QTM 3D tracking, Visual 3D model builder, Qualisys Video Analysis 

(QVA), and Motion Monitor.  The QTM offers 3D tracking of markers from several synchronized 

camera inputs as can be seen in Figure 35.  It also offers point tracking and model analysis from both a 

2D and 3D perspective.  The Visual 3D model builder allows the user to specify different segments of 

the human body for analysis.  The QVA monitors and manages all video feed into the system, which is 

useful for management of experiment recording and documentation.  The Motion Monitor software 

uses high speed, high resolution, digital Qualisys cameras to track motion.  Some of the applications 

for this package include eye tracking and sports performance enhancement. 
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Figure 35: QTM Sample Display 

 

The Mocap system has a lot of user learning that is necessary to use the tool, but similar to the Motus 

system has the option of scaling upward.  The pricing of the Mocap software, upgrades, and tech 

support ranges from 1250 euros (~1800 dollars) for 1 year to 3000 euros (~4300 dollars) for 3 years. 

 

University of Texas System 

 Whereas the previous two systems are for purchase commercially, the following systems are 

developed at different universities.  The system developed at the University of Texas is based on 

analysis of human action for surveillance in public settings.  The system focuses on extracting high 

level descriptions of the actions occurring.  Due to the scope of the application, one of the goals for the 

system is real-time analysis.  The system operates from a single camera perspective and extracts 

information using 2 basic detection methods.  The first method is a human-blob segmentation that 

extracts the position of standing humans using differencing techniques to segment foreground and 

background as can be seen in Figure 36 [122]. 



 

59 

   

Figure 36: (a) Human tracking sample, (b) Motion foreground extraction 

 

The second method estimates the position and orientation of the head.  By assuming the upper portion 

of the bounding box created from the human segmentation is the head, the image is compared to a 

database of images resembling the head at different orientations.  The information is organized into a 

structure containing 2 normalized arrays.  The first array contains the mean pixel value of the person 

and the second array contains the probability of each pixel being a foreground pixel.  The system 

tracks the person by estimating the next position in the following frame and matches the appearance 

profile of the person by finding the image region with the minimum difference.  

 This system has been applied to a number of surveillance applications such as human tracking 

in occlusion environments [122](Figure 37), activity recognition in surveillance videos [123] (Figure 

38), and car tracking in traffic videos [124] (Figure 39). 

 

Figure 37: Subway Surveillance Tracking 
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Figure 38: Activity Recognition 

 

 

Figure 39: Vehicle Tracking 

 

University of Maryland System 

 The goal of the system developed at the University of Maryland under Aloimonos is to develop 

formal models of human action [8].  To create a formal model for human action, a set of 

representations must be established called visual verbs.  These visual verbs are motions performed by 

a single human usually by some translation of a limb.  Adverbs and adjectives are used to develop the 

descriptions for more complex actions such as walking.  Using optic flow methods combined with 

background subtraction, the silhouette of a person is analyzed for minima and maxima of flow values.  
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These minima and maxima indicate key moments in the action that are used to parse the overall human 

action.  The poses captured at these mimima and maxima are theorized to be all that is necessary to 

allow for recognition of the action.   

 

Figure 40: Example of flow minima and maxima with associated pose 

 

To generalize the poses, the information was gathered from an 8 unit camera array viewing each action 

from an equally distributed full 360 view.  To help generalize the data, each silhouette is averaged 

across multiple participants.  The combined views of each pose are collected into a set of training 

examples for an HMM.   

 

Figure 41: Pose Descriptions 
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The HMMs are used to describe the tasks in a sequence of poses.  The sequences of poses in 

conjunction with the trained HMMs are used to recognize actions in a general setting. 

 

 

Robotics Institute Systems at Carnegie Mellon 

 The final system was developed at the Robotics Institute at Carnegie Mellon University.  The 

People Image Analysis group focuses on tracking humans or body parts of humans using visual 

information provided from single cameras.  Some of the systems apply shape models and match them 

with body part characteristics to extract information.  The 3D Head Motion Recovery system applies a 

cylindrical model to the head of a person [125].  By matching the inner corners of the eyes, edge of the 

nostrils, and the corner of the mouth to points on the cylinder, the 3D rotation and translation of the 

head is estimated.   

 

Figure 42: Head estimation using cylindrical model 

 

They also apply models to the hand to detect shapes and motions to be used for sign language 

recognition [126,127].  The model for the hand consists of shape (contour of hand), position, and 

motion change.  A state space is created that shows “stable” nodes (moments when the hand state is 

fairly constant therefore having a shape) and “transition” nodes (moments when the hand is moving 

rapidly and no shape is estimated).  By traversing the state map of the hand for each gesture that is has 

been trained on, detection of various words are detected and recognized. 
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Figure 43: Hand state space and hand detection 

 

Other systems use tracking of people for surveillance.  In the case of tracking multiple humans in a 

scene, some of the standard tracking methods are used such as kalman filtering, particle filtering, and 

mean-shift tracking [128].  While these methods are accurate, they also contain some amount of 

weakness due to occlusions.  By combining the previous methods with a probabilistic graphical model, 

the inaccuracies caused by lost patches are reduced.   

 

Figure 44: People tracking with occlusions 

 

 Although each of these systems have their strengths for their chosen applications, each one also 

has its limitations.  The two commercial systems provide excellent tracking for motion analysis under 

controlled conditions.  They also are specialized in skeleton based modeling which limits their ability 

to visually recognize object contours.  The commercial systems are pricey investments for a 
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laboratory, but if the means are available, they provide very accurate data and professional tech 

support for research.   

The 3 university systems were developed for research toward increasing knowledge in the 

desired field.  The surveillance systems are specialized toward tracking even with occlusions, but are 

limited in the action recognition available outside full body motions.    Smaller motions are much 

more difficult for these systems to detect.  The part tracking systems use more sophisticated methods 

for estimating states of the body parts.  The models used are very accurate for estimating specific body 

parts in the desired range of actions.  The systems are fairly limited in use for general purposes, but do 

very well in their specifically designed workspace.   
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CHAPTER VI 

 

SINGLE CAMERA TASK OBSERVATION AND RECOGNITION SYSTEM 

 

One of the goals of our lab is to take our original visual navigation system and adapt it to be an 

easy to use general tracking and recognition system for use in fields outside of engineering.  This 

system has numerous uses and can be applied across many interdisciplinary research fields.  The 

system should be robust in its abilities, yet cost efficient as to be available to most any lab with 

minimal equipment purchase.  This goal was developed as we worked with the Vanderbilt University 

Psychology Department under an NSF grant to study human activities.  Their research had shown that 

subjects instructed to do a number of tasks had common key moments in their activities corresponding 

to grasping and releasing of objects, glances toward and away from the objects/workspace.  Using a 

student to indicate when the activities occurred, they were able to observe a high correlation with data 

picked up from the measurements of head and hand states.  The vision system our lab has developed 

has been tested in the area of robot navigation coupled with working memory [51] and has shown 

good results in its ability to learn from the visual data provided.  The navigation system was adapted to 

be useful in the psychology research data collection.   Before explaining the goals and experiments of 

our new system, the visual processing method of the system and action parsing method will be 

covered. 

 

System Hardware 

The input device used by our lab is a Sony DCR-VX2000 camcorder.  A consistent price at an 

online retail store for this particular camcorder could not be found, but the next generation camcorder, 

the Sony DCR-VX2100, could be found for as little as $1,000 from online retailers.  The Panasonic 

DVX100, a similar type of camera, was used by the Psychology Department in gathering data and can 
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be purchased from online retailers at around $1,000 as well.  The frames of the video from the 

camcorder are 480x720 pixels.  This information is transmitted via 4pin-6pin FireWire cable ($10 - 

$20 pending length) to a laptop FireWire card ($10 – $30) aboard a laptop.  The original program ran 

on a Linux operating system in C++.  This program was modified to also extract frames from an AVI 

video to allow training of the system and segmentation of the frame.  By allowing for the system to 

read from AVI videos, this gives our system the ability to do perform automated processing of a 

number of pre-recorded videos on a stationary desktop computer.   

Our system starts by training on the objects of interest that are currently provided by the user.  

To represent these objects, our system uses feature vectors composed of a high dimensional HSV color 

space histogram along with a Laplacian texture measure.  The initial visual system is also described in 

Tugcu’s dissertation [111].  

 

HSV Color Histogram 

The frames are captured in RGB format which means the information is encoded in intensity 

values of red, green and blue.  The image is converted to HSV format which means hue, saturation, 

and value.  The hue value, which defines the color family, ranges from 0 to 1 where all the colors are 

represented as the value increases starting color (red) at 0 and returning to the same starting color (red) 

at the value 1 . The saturation parameter S is the degree of purity from 0 to 1 (e.g. the “redness” of the 

red or how vibrant the red is). The value parameter V defines the brightness of a color and it is also 

from 0 to 1.  The color space conversion from RGB to HSV is computed as shown in the pseudocode 

below: 
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Once the HSV values are computed, the next step is to construct a probability density function (pdf) of 

the HSV distribution of colors. The pdf is essentially a histogram of HSV colors and computed using a 

color quantization method as follows: The hue space is evenly distributed into 100 bins, ranging from 

0 to 1. The saturations and values are each evenly distributed into 10 bins that are also ranging from 0 

to 1. This results in 10,000 different possible color representations. For a region selected by the user in 

the image (usually composed of a single object), an HSV color histogram is obtained by accumulating 

the HSV values of each pixel in the region.  The region is broken into 7x7 blocks of pixels.  Each 

block has its colors represented by the color histogram and is stored as a feature vector of that 

particular object. 

 

Texture Measure 

In order to understand the texture of a region, a spatial filtering technique, based on the 

Laplacian operator, is applied to the image. The Laplacian operator is often used for edge detection, 

where the regions that have rapid intensity changes are highlighted in the image. The Laplacian 

( )yxL ,  of an image having pixel intensity values ( )yxI , , is defined as: 
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Since an image is composed of a set of discrete pixels, the following kernel, which approximates the 

2nd derivatives in the definition of the Laplacian equation above, is applied. 

( ) 8/
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=yxK LAP        (66) 

This Laplacian measure is calculated across the 7x7 block and the mean value is stored as the final 

value in the visual feature vector completing our 10,001 feature vector. 

 After a database is created for all the desired objects, this database is compared to new image.  

The center of the window is then moved throughout the entire image and a feature vector is obtained 

for each displacement. Currently, the displacement is 4 pixels in the horizontal and vertical directions.  

The new vectors are compared to the training data and by using a nearest neighbor approach.  The new 

vectors are represented by the most likely group’s color representation in a new 118x178 pixel 

segmented image.  

 

Distance Metric 

It is expected that the patterns that are members of a specific perceptual cluster should be 

closely positioned in the pattern space, while those from different percepts should be positioned 

further apart from one another.  Our system uses the Euclidean distance for the color histogram and 

the L1 norm to compare the texture measure.  In a K-dimensional space, the metric distance is given 

by: 
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where K= 10001 in this system. As the dimension of the vectors increases, the number of training 

samples should also be increased considerably as much as possible in order to obtain meaningful 

percepts. The pure nearest neighbor search algorithm works at an order of N*d comparisons for each 
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new vector where N is the number of vectors in training set and d is the number of dimensions 

composing each vector.  To shorten the amount of processing necessary for each comparison an 

approximate nearest neighbor tree is constructed. 

 

Approximate Nearest Neighbor Tree Construction 

The tree structure is formed as follows: Initially, at the root or first level of the tree, three 

points, which represent the cluster centroids, are selected randomly and then the whole data set is 

clustered into three subsets by assigning each feature vector to its closest representative cluster center 

according to the proximity distance measure. At the second level, three subsets are obtained and the 

same procedure is applied, which in turn results in 9 subsets or in other words nodes for the tree. This 

procedure continues until either all the leaf nodes belong to the same object class (a pure node) or the 

number of leaf nodes is below some limit, e.g., a hundred. Every feature vector in the leaf nodes has a 

landmark associated with it [111]. 

Since all the centroids for each node in the tree structure are known, searching the tree is 

straightforward. Given a new feature vector, the three similarity measures, which are between the new 

vector and the centroids of the three sub-nodes at the second level of the tree that belong to the root 

node, are computed. The winning sub-node is the one that is closest to the given feature vector. At the 

third level of the tree the same procedure is applied and a winner sub-node is selected and the fourth 

level of the tree has been reached. This procedure is terminated when the search has descended to a 

leaf node. If the leaf node is pure, that is all the feature sets belong to the same class, then the vector is 

labeled as the leaf node's class label. If not, that is the data set in the leaf node is mixed and below 

some threshold limit, then a nearest neighbor search is applied using the vectors of the leaf node, and 

the vector is labeled with the training vector's label that is closest [111]. 
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 Once the system is trained on all person and the objects involved with the task, the trained tree 

is used to processes the entire set of frames for a video of a person performing the task.  Each tree is 

trained on the set of the same task since each task has a certain set of objects. 

After each section of a new image is classified via the approximate nearest neighbor tree, the 

resulting pixels are allotted a classification number (i.e., label) depending on the classification.  The 

pixels are represented for visual display via a predefined color for each classification number.  Using 

this new classification image, each classification group is extracted and a connected component 

labeling algorithm determines the groups’ pixels for all the objects. 

 

Database Training 

Our system uses an interface that allows the user to select regions out of sample images and 

provide classification.  The system proceeds to break the selected region into 7x7 blocks and create 

feature vectors for each of the patches.  This method allows for large amounts of training data to be 

gathered quickly.  The assumption is that applications this system is used for will produce copious 

amounts of data.  Each image has a 21004 vectors contained within at the block size of 7x7 with a hop 

of 4. For applications with controlled environments (i.e. visual characteristics of desired objects are 

chosen to be easily separable for the color space), the training of a tree can extend across multiple 

sessions of different subjects with the same objects needing little reinforcement learning necessary to 

extend the training across multiple sessions.  In fact, it is safe to say that in actuality the number of 

trees was equal to the number of tasks created and each tree was trained on all of the participants’ 

versions of that particular task. 

 

Segmentation 

Each classification image is broken into object images.  An object image is an image 

containing only the pixels whose patches are classified as a particular group.  Once an object image is 
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created, all the object classifications are set to a value of 1.  To reduce noise the image is filtered with 

a variable averaging filter in the following steps: 

1. An n x n filter size is chosen by the user because the size of the resulting image depends on the 

patch parameters appropriate filter sizes vary.  The general rule is to use a size equivalent to 

the patch size or smaller for the application. 

2. For there to be any groups stored after the group image is filtered, a group must fill at least 

percentage 1 (P1) of the filter. 

3. If the conditions for viable groups are met, the largest value (M) from the filtered object image 

is stored and all values in the filtered object image that are greater than percentage 2 (P2) of M 

are changed into a value of 1 while the others are stored as 0 creating a filtered binary object 

image. 

4. This new image is grouped using a connected component labeling algorithm. Statistics about 

each group are stored into the object descriptor class (i.e., class containing number of pixels, 

width, height, and (x,y) centroid of each group)   

The segmentation information for each frame is stored in a text file and accessed via Matlab to 

perform the second stage of the analysis.   
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CHAPTER VII 

 

EXPERIMENTS AND RESULTS 

 

Much research has assumed that human-generated action segmentations represent the 

combined influences of basic perceptual cues such as changes in the direction of moving body parts, 

and more complex cognitive constraints such as an understanding both of context-consistent sequences 

of actions, and of the actor's goals. For example, in one recent study [112], subjects were asked to 

segment the movements of a two simple shapes on a computer screen. One group of subjects was told 

that the movements were generated by two people playing a game, and the other group was told 

(correctly) that the movements were randomly generated.  Both groups then segmented the actions. 

Results indicated that the segmentations were predicted by a number of basic movement features such 

as direction changes and the mean proximity of the two objects. However, these basic movement 

features predicted segmentations most strongly when subjects believed that the movements were 

random. According to the researcher, this occurred because subjects in the person condition focused 

more on abstract conceptual goals and less on specific movement features than subjects in the random 

condition. 

To explore the features that might predict action segmentations in a more ecological context, 

we completed an analysis of segmentations for a wide range of realistic actions in which a set of 

human models was videotaped completing a series of ten different tasks with a range of objects [113]. 

Instead of using basic movement features to predict segments, we defined a set of more meaningful 

subactions that were hand coded. These included hand-to-object contacts, object-to-object contacts, 

occlusions, and eye movements. We found that multiple regressions based on these subactions 

predicted up to 82% of the variance in the number of breakpoints entered (by eight judges) in each 

one-second bin. 
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The tasks being performed involves a person sitting at a table with a set of objects and 

performing some type of assembly task.  The person is wearing a red glove on their right hand and a 

purple glove on their left hand.  They are also wearing a hat with a lime-green strip down the center.  

The camera is situated in front of the person facing them from across the table. 

The data collected is 100 videos (10 participants doing 10 tasks each).  The tasks are various 

assembly and sorting types: 

Task 1: The assembly of 3 flashlights.  The flashlights are fully dismantled with the batteries, 

bulb and handle in 3 separate groups.  The participant must construct all 3 flashlights and lay 

them on the table in front of the camera. 

Task 2: The assembly of 3 item baskets.  The basket, lid, tissue paper, and green Legos are in 

their own groups.   There is also a stamp block. The user must construct a basket by placing a 

Lego, tissue paper and the lid in that order.  The basket is finalized by stamping it with the 

stamp block.  This is to be repeated for the next two baskets. 

Task 3: The assembly of pipe structure.  Four cylinder shaped pipes and two junction pipes are 

connected in a particular manner.  The junction pipes have 3 openings that a cylinder pipe 

can fit.  All the pipes must be used to construct a structure. 

Task 4: The sorting and filling of containers.  Six containers are stacked on top of each other 

and must be rearranged in a particular order with Lego blocks placed inside each one in a 

particular order. 

Task 5: The filling of containers with Legos.  Three yellow containers are to be filled with one 

color of Legos.  The pile of Legos consist of 3 different colors and are all piled together to 

the right of the participant.  The three containers are placed in front of the participant. 

Task 6: The removal of Legos from containers and storing into another container.  Three 

containers are located side by side.  The center container is empty and the two periphery 

containers contain Legos to be moved to the center container. 
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Task 7: Occlusion Movement.  Two Legos and a occluding object are on the table.  The Legos 

are to be moved behind the occluding object, then moved to other sided of the occluding 

object. 

Task 8: Occlusion Assembly.  A T-shaped structure is created from Legos in plain sight of 

camera. Then, another T-shaped structure is created behind the occluding object.  Finally, the 

occluding object is moved away. 

Task 9: Assembly of 3 T-shaped structures.  The different-colored T-shaped Lego structures 

are constructed in plain view of camera. 

Task 10: Lego Stacking.  Legos are to be stacked until all of the Legos are used, or the 

structure collapses.  There are two attempts at this task. 

A new feature vector is created to analyze the movement of the person in the video.  The 

current system assumes that there are 2 actuators and 1 gaze estimator in the video.  With these groups 

being classified by the user, the features of the video are extracted.  The feature vector can vary 

depending on the number of frames (bin size) that it must represent.  The 12 features are: 

Magnitude velocity of Hand 1 -  This value is calculated by taking the centroid values of hand 

1 between successive frames and calculating the Euclidean distance between them.  These 

distances are averaged across varying binsizes.  

Velocity Stop of Hand 1 – This is a binary value that is decided by if the mean velocity of hand 

1 is less than 1.5 pixels between successive frames of that bin (1 if true, 0 if false). 

Object Contact of Hand 1 – This is a binary value that is decided by drawing a line between the 

centroid of an object and the centroid of hand 1.  If the number of pixels that are not 

classified as the hand or the object in question is less than 2 for all object groups in the 

image, then hand 1 is considered near an object. (1 if true, 0 if false). 

Hand 1/ Object Change – This is an average of the change in the number of pixels represented 

by objects when hand 1 is within 30 pixels of them. 
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Magnitude velocity of Hand 2 -  This value is calculated by taking the centroid values of hand 

2 between successive frames and calculating the Euclidean distance between them.  These 

distances are averaged across varying bin sizes.  

Velocity Stop of Hand 2 – This is a binary value that is decided by if the mean velocity of hand 

2 is less than 1.5 pixels between successive frames of that bin (1 if true, 0 if false). 

Object Contact of Hand 2 – This is a binary value that is decided by drawing a line between the 

centroid of an object and the centroid of hand 2.  If the number of pixels that are not 

classified as the hand or the object in question is less than 2 for all object groups in the 

image, then hand 1 is considered near an object. (1 if true, 0 if false). 

Hand 2/ Object Change – This is an average of the change in the number of pixels represented 

by objects when hand 2 is within 30 pixels of them. 

Gaze Velocity – This is the mean velocity of the estimated gaze angle change across a bin.  

(Note: Gaze is estimated by using a stripe on the participant’s hat.  The angle is calculated by 

estimating the angle between the best fit line for the points of the stripe and the vertical line 

between the centroid of the stripe) 

Gaze Object -  This is a binary value that is decided by if the gaze angle is within 10 degrees of 

an object for at least half the frames of a bin (1 if true, 0 if false). 

Gaze Hand – This is a discrete value with possible values of {0, 1, 2, 3}.  This value is 

determined if the gaze estimation is within 10 degrees of : 

  None of the Hands – yields a value 0 

  Hand 1 alone – yields a value 1 

  Hand 2 alone – yields a value 2 

  Both of the Hands – yields a value 3 

Gaze Stop -  This is a binary value calculated by if the gaze velocity of a bin is less than the 

mean gaze velocity of the entire video (1 if true, 0 if false). 
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All of the features are dependant on bin-size.  The videos are recorded with a frame rate of 

about 30 frames per second.  A group of feature vectors are calculated for bin-sizes of 1, 3, 6, 8, 10, 

and 20 frames.  The videos are hand segmented to determine significant moments during the task.  The 

moments are defined as hand grasps and releases of objects throughout the task.  A bin is considered a 

significant bin if an significant frame designated by the human rater falls within that bin.  The 

significant moments were based on the findings of the Psychology Department which were hand 

grasps and hand releases of the participant. The bins are created by sequential sets of bin-size frames 

with no overlap (e.g. for bin-size 3, the first vector will consist of frames 1-3, the second will consist 

of frames 4-6, and so on). 

 

Experiment 1: Task/Breakpoint Segmentation 
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Figure 45: Supervised Video Segmentation Flow Chart 
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Figure 45 shows the general flow to segmenting the videos.  Using the capabilities of our 

previous system, the user will provide labeled samples of every object in the video which involves 

sorting through multiple frames to provide ample sampling of each object throughout the time period.  

Due to the lighting differences during filming, caused by incandescent bulbs lighting the room and 

shadowing, as well as video format conversion information loss, the objects can have quite a varied 

look throughout the span of the video.  Once all of the training data is collected and labeled, an 

approximate nearest-neighbor tree is constructed to be used to efficiently label new data.  This tree is 

applied to each frame of the video and the resulting image is stored.  All the resulting images are used 

to create the segmented video. 
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Figure 46: Supervised Behavior Extraction Flow Chart 

 

The first important step toward task recognition and identification is to identify the crucial 

segments of a set of actions (a flowchart shown in Figure 46).  The first goal is to provide a set of 

boundary points to train the breakpoint segmentation system, analyze the success of the features to 

predicting breakpoints, and compare the segmentations of the raters.  The video frames were marked 

as the boundaries of key subevents occurred as defined by their importance in describing the steps 
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needed to complete the task.  These moments are chosen to be at the finest resolution of the motions in 

the task.  Selection of these subevents reflected the findings of the study mentioned earlier [113] where 

the segmentation boundaries corresponded to hand-to-object contact and object-to-object interactions 

with gaze confirmation (using participant gaze to disambiguate the model’s current focus of attention).  

A frame was selected as a significant frame if there was hand to object contact; hand induced object to 

object contact, or releasing of an object.  In many cases, key events extended over multiple frames.  

For example, the tasks often require combination of objects.  These combinations require the contact 

of two objects and applying force to squeeze them together.  During the moment of the hands holding 

the objects and applying the force, all frames depicting this event were marked for the subevent.  

Depending on the task, the participant, and the bin size, the number of marked bins ranged between 

one-third to one-half of the total bins in the video.  Once the breakpoint feature vectors are identified, 

these vectors are used to train linear, quadratic, and Mahalnobis regression models.  The explanation 

and results of this experiment are also available via our paper [116]. 

The measure used to determine performance is called d-prime (D').  This value is calculated by 

using the:  
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1−f returns the x value that corresponds to the moment  the equation f(x) meets a given value. 

 The hit rate is defined as the probability of the system correctly identifying the interesting bins 

which is calculated by taking the number of correctly identified interesting bins divided by the number 

of total interesting bins.   
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The false alarm is defined as the probability of the system misclassifying the non-interesting 

bins which is calculated by taking the number of misclassified non-interesting bins divided by the 

number of total non-interesting bins.  

The norminv calculates the x value given a probability, mean, and standard deviation on the 

cumulative sum of a normal curve.  This measure is basically a non-linear measure of the distance 

between hit rate and false alarm.  An interesting fact about this measure is how the norminv 

approaches infinity as the input value approaches 1 or negative infinity approaching 0.  In the case of a 

perfect hit rate, the d' value is infinity.  In the cases for this experiment, it has been shown that the d' of 

infinity identifies a classifier that has an excessively high false alarm rate as well.  In Table 5, there are 

2 d' measures, d1' and d2', that are calculated.  d1' takes the average hit rate and the average false alarm 

rate of all then calculates the d' from that value.  d2' is calculated by taking the individual d' for all the 

available hit rates and corresponding false alarm rates, and taking the average of all the d' values.  

Since d2' has the possibility of containing infinity values, those individual d' values are replaced with a 

value of 0.5 to represent maximum uncertainty.  This measure is the average of the d' values for each 

individual test set.  

The data being analyzed is in the format of 100 videos (10 participants doing 10 tasks each).  

Each video has its set of behavior feature vectors calculated for each of the bin-sizes for analysis.  

Various regression models are trained and tested on the data to determine the best methods using the d' 

measure.  The steps to perform this experiment are as follows (in Table 4):  
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Table 4: Experiment 1 Roadmap 

Procedure 

Gather the 10 task videos for each of the 10 participants. 

Identify each video with human rated significant frames. 

Train the visual database of the system on each of the videos of a particular task. 

Segment each video and store the object data for each frame. 

Extract behavior features for all videos with each bin-size allocation. 

Train the classification system with labeled behavior data. 

Analyze data using regression techniques. 

Refine significant moment detection to reduce the false alarm rate. 

 

Overall, predictions of subevents based on the movement and contact variables were moderate, 

and strongest for 6 frame bins using a linear classifier (as can be shown by Table 5, Table 6, and 

Figure 47).  In fact, the 6 frame bins performed the highest for each of the 3 classifiers in both the task 

analysis and subject analysis.  To estimate the maximum success of the system in this analysis, the 

data was analyzed with the k-nearest neighbor method since this method converges to the MLE 

results.  The k number of neighbors was incrementally increased by 50 to a group of 10001.  Since the 

total amount of vectors created for the top bin-size of 6 for the entire data set was 22,862 , this max k 

value would sufficiently capture the maximum d'.  Analysis shows d1' increases dramatically then 

saturates at a value of about 1.400 with the value k around 950 nearest neighbors. 
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Figure 47: d' vs Bin Size 

 

Table 5: Comparison of Bin Size and Regression Models using Subject Jack Knife 
 

 Linear Quadratic Mahalanobis 
Binsize 
(frames) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

1 (0.869, 
0.060) 

(0.513, 
0.088) 

1.088 (1.124, 
0.294) 

(0.195, 
0.163) 

(0.042, 
0.065) 

0.864 (0.886, 
0.460) 

(0.378, 
0.119) 

(0.113, 
0.048) 

0.903 (0.921, 
0.265) 

3 (0.839, 
0.077) 

(0.399, 
0.090) 

1.247 (1.309, 
0.357) 

(0.842, 
0.078) 

(0.396, 
0.088) 

1.267 (1.325, 
0.327) 

(0.478, 
0.131) 

(0.146, 
0.062) 

0.998 (1.038, 
0.321) 

6 (0.859,  
0.079) 

(0.385, 
0.011) 

1.368 (1.411, 
0.385) 

(0.819, 
0.083) 

(0.349, 
0.096) 

1.300 (1.362, 
0.338) 

(0.488, 
0.129) 

(0.132, 
0.067) 

1.085 (1.131, 
0.332) 

8 (0.843, 
0.092) 

(0.375, 
0.126) 

1.326 (1.396, 
0.358) 

(0.792, 
0.097) 

(0.328, 
0.107) 

1.259 (1.332, 
0.375) 

(0.516, 
0.132) 

(0.157, 
0.077) 

1.047 (1.109, 
0.385) 

10 (0.804, 
0.114) 

(0.360, 
0.134) 

1.215 (1.298, 
0.385) 

(0.738, 
0.108) 

(0.303, 
0.105) 

1.152 (1.210, 
0.361) 

(0.496, 
0.131) 

(0.161, 
0.086) 

0.982 (1.053, 
0.424) 

20 (0.626, 
0.127) 

(0.432, 
0.211) 

0.494 (0.472, 
0.546) 

(0.345, 
0.128) 

(0.185, 
0.148) 

0.500 (0.402, 
0.400) 

(0.395, 
0.131) 

(0.226, 
0.155) 

0.487 (0.435, 
0.418) 

 

 
Table 6: Comparison of Bin Size and Regression Models using Task Jack Knife 

 
 Linear Quadratic Mahalanobis 

Binsize 
(frames) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

1 (0.869, 
0.067) 

(0.516, 
0.094) 

1.081 (1.128, 
0.295) 

(0.355, 
0.290) 

(0.136, 
0.154) 

0.727 (0.890, 
0.461) 

(0.391, 
0.123) 

(0.122, 
0.051) 

0.887 (0.906, 
0.242) 

3 (0.836, 
0.085) 

(0.399, 
0.099) 

1.232 (1.305, 
0.368) 

(0.841, 
0.079) 

(0.398, 
0.094) 

1.257 (1.317, 
0.323) 

(0.475, 
0.125) 

(0.147, 
0.064) 

0.988 (1.028, 
0.335) 

6 (0.857, 
0.084) 

(0.387, 
0.119) 

1.356 (1.410, 
0.374) 

(0.820, 
0.085) 

(0.353, 
0.104) 

1.292 (1.356, 
0.341) 

(0.487, 
0.123) 

(0.136, 
0.071) 

1.063 (1.122, 
0.356) 

8 (0.842, 
0.095) 

(0.378, 
0.134) 

1.313 (1.391, 
0.343) 

(0.789, 
0.097) 

(0.330, 
0.112) 

1.244 (1.314, 
0.359) 

(0.508, 
0.129) 

(0.161, 
0.083) 

1.008 (1.071, 
0.391) 

10 (0.803, 
0.119) 

(0.364, 
0.142) 

1.199 (1.275, 
0.395) 

(0.738, 
0.112) 

(0.307, 
0.112) 

1.143 (1.206, 
0.358) 

(0.491, 
0.128) 

(0.163, 
0.088) 

0.960 (1.026, 
0.435) 

20 (0.629, 
0.134) 

(0.436, 
0.227) 

0.491 (0.480, 
0.524) 

(0.337, 
0.113) 

(0.192, 
0.149) 

0.450 (0.395, 
0.440) 

(0.379, 
0.117) 

(0.227, 
0.150) 

0.443 (0.405, 
0.448) 
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To assess the degree to which our 12 predictor variables can be represented by a smaller 

number of more basic factors, we performed a principle components analysis.  We wanted to 

determine if there was a possibility to achieve performance closer to the MLE performance using a 

subset of the features presented.  First, the entire database is thinned out.  The thinned data are the 

points that have the smaller distances from its nearest neighbor.  The thinned data vectors are about 

half in number compared to the full data set.  Fisher’s linear discriminant analysis is applied to the 

thinned data as well as a principal component analysis (PCA). By calculating the eigenvalues and 

eigenvectors of that cross correlation method, the top 3 eigenvalues that caused the most variance in 

the data were identified.  The eigenvectors corresponding to these eigenvalues were applied multiplied 

to the data and plotted.  Four distinct groups could be seen, each with interesting points tightly 

clustered and non-interesting points trailing outward as seen by Figure 48. 

 

Figure 48: Top 3 Eigenvalue Data Representation for PCA 
 

It was decided that further analysis of the feature combinations were to be examined.  

Exhaustive analyses of all combinations of features (up to 6 total features) were examined in 

predicting the key moments and the top 5 feature sets were calculated.  The purpose of doing this 

analysis was to determine if a subset of the features used would provide as good or better results from 

the use of all features.  Table 10 and 11 has the same format as Table 2 and 3 except showing the 
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statistics of each technique’s 1st – 5th best feature combination results for the subject jack knife and 

task jack knife.  Tables 7-12 show the top 5 feature combinations for each of the regression methods 

for the subject and task analysis. 

The most prominent features for the linear set are 1, 2, 5, and 8.  These 4 features are found in 

all instances of the top 5 feature sets.  Features 1 and 5 are the velocities of the two hands, feature 2 

correspond to the binary feature for stopped hand 1 motion, and feature 8 corresponds to the amount of 

pixel change around hand 2.  In the linear regression case, these features embody the information 

needed of the hand.  Notice that the best feature sets also involve gaze information (feature 10) or 

rather the gaze toward an object. 

Table 7: Top 5 Feature Sets for Linear Analysis using Subject Jack Knife 

 Top 5 Feature Sets for Linear Analysis 
1st 10 8 5 4 2 1 
2nd 8 7 5 4 2 1 
3rd 9 8 7 5 2 1 
4th 9 8 5 2 1 - 
5th 8 5 2 1 - - 

 

Table 8: Top 5 Feature Sets for Linear Analysis using Task Jack Knife 

 Top 5 Feature Sets for Linear Analysis 
1st 10 8 5 4 2 1 
2nd 8 6 5 4 3 1 
3rd 10 8 6 5 4 1 
4th 5 2 1    
5th 8 6 5 4 1 - 

 

The quadratic results are very similar except using even fewer features.  Features 1 and 5 are 

necessary in every instance for the top 5 sets and feature 12 adds the gaze information needed for the 

top set of features in the subject jack knife analysis.   

Table 9: Top 5 Feature Sets for Quadratic Analysis using Subject Jack Knife 

 Top 5 Feature Sets for Quadratic Analysis 
1st 12 7 5 1 - - 
2nd 12 11 7 5 1 - 
3rd 5 1 - - - - 
4th 7 5 1 - - - 
5th 5 3 2 1 - - 
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Table 10: Top 5 Feature Sets for Quadratic Analysis using Task Jack Knife 

 Top 5 Feature Sets for Quadratic Analysis 
1st 5 1 - - - - 
2nd 5 3 2 1 - - 
3rd 5 2 1 - - - 
4th 12 11 7 5 1 - 
5th 11 5 1 - - - 

 

The Mahalanobis results show a high tendency toward the binary or discrete values.  This 

measure focuses on the hand stop features (2 and 6) but also uses the gaze angular velocity (feature 9) 

and gaze toward objects (feature 10) to perform at its highest capacity. 

Table 11: Top 5 Feature Sets for Mahalnobis Analysis using Subject Jack Knife 

 Top 5 Feature Sets for Mahalanobis Analysis 
1st 10 9 8 6 3 2 
2nd 10 9 8 7 6 2 
3rd 10 9 8 6 2 - 
4th 9 7 6 4 2 - 
5th 9 6 4 2 - - 

 

Table 12: Top 5 Feature Sets for Mahalanobis Analysis using Task Jack Knife 

 Top 5 Feature Sets for Mahalanobis Analysis 
1st 2  3 4 6 9 - 
2nd 2 4 6 9 - - 
3rd 2 3 6 8 - - 
4th 2 3 6 4 - - 
5th 2 6 8 - - - 

 

The velocity features correlate with grasping since a majority of the grasps require a pause in 

the hand motion.   This same reasoning also explains the correlation between the binary hands stopped 

features as well.  Since grasps occur when the velocity of the hand is low and low gaze motions 

indicate focusing on an action, these findings support the findings of the Psychology Department 

analysis of a high correlation between significant moments in the task with hand grasps and gaze.  The 

top 5 Feature Sets for each of the cases show that all the regression cases have comparable 

performance measures to the MLE d' performance of 1.400 as seem in Tables 13 and 14 .  The 

quadratic provides a slightly better that the estimator for the data in this experiment. 
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Table 13: Top 5 Feature Set Results for Subject Jack Knife  

 Linear Quadratic Mahalanobis 

Top 5 
Results 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

1st (0.891, 
0.079) 

(0.435, 
0.134) 

1.397 (1.461, 
0.391) 

(0.908, 
0.069) 

(0.458, 
0.134) 

1.431 (1.486, 
0.424) 

(0.875, 
0.082) 

(0.407, 
0.128) 

1.388 (1.439, 
0.386) 

2nd (0.889, 
0.076) 

(0.432, 
0.132) 

1.391 (1.460, 
0.371) 

(0.903, 
0.070) 

(0.450, 
0.125) 

1.427 (1.458, 
0.426) 

(0.875, 
0.083) 

(0.406, 
0.128) 

1.388 (1.439, 
0.386) 

3rd (0.886, 
0.080) 

(0.426, 
0.136) 

1.391 (1.467, 
0.397) 

(0.917, 
0.066) 

(0.482, 
0.132) 

1.426 (1.466, 
0.437) 

(0.875, 
0.082) 

(0.406, 
0.128) 

1.388 (1.438, 
0.385) 

4th (0.886, 
0.080) 

(0.426,  
0.136) 

1.390 (1.465,  
0.395) 

(0.913, 
0.065) 

(0.474, 
0.132) 

1.426 (1.482, 
0.428) 

(0.875, 
0.083) 

(0.406, 
0.128) 

1.388 (1.438, 
0.386) 

5th (0.886, 
0.079) 

(0.427, 
0.136) 

1.390 (1.465, 
0.395) 

(0.904, 
0.074) 

(0.453, 
0.130) 

1.426 (1.457, 
0.450) 

(0.875, 
0.083) 

(0.406, 
0.128) 

1.388 (1.438, 
0.386) 

 

Table 14: Top 5 Feature Set Results for Task Jack Knife  

 Linear Quadratic Mahalanobis 

Top 5 
Results 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

1st (0.888, 
0.082) 

(0.435, 
0.139) 

1.382 (1.455, 
0.386) 

(0.914, 
0.071) 

(0.482, 
0.137) 

1.412 (1.453, 
0.439) 

(0.875, 
0.083) 

(0.406, 
0.128) 

1.388 (1.439, 
0.386) 

2nd (0.858, 
0.090) 

(0.380, 
0.128) 

1.378 (1.446, 
0.384) 

(0.901, 
0.080) 

(0.453, 
0.135) 

1.408 (1.450, 
0.450) 

(0.875, 
0.083) 

(0.406, 
0.128) 

1.388 (1.439, 
0.385) 

3rd (0.859, 
0.092) 

(0.382, 
0.128) 

1.377 (1.450, 
0.384) 

(0.900, 
0.077) 

(0.450, 
0.134) 

1.407 (1.463, 
0.423) 

(0.874, 
0.083) 

(0.405, 
0.129) 

1.387 (1.439, 
0.386) 

4th (0.882, 
0.093) 

(0.426, 
0.151) 

1.373 (1.452, 
0.411) 

(0.900, 
0.076) 

(0.450, 
0.130) 

1.407 (1.454, 
0.423) 

(0.874, 
0.083) 

(0.405, 
0.129) 

1.387 (1.439, 
0.386) 

5th (0.858, 
0.091) 

(0.383, 
0.129) 

1.372 (1.442, 
0.381) 

(0.909, 
0.071) 

(0.472, 
0.133) 

1.406 (1.447, 
0.422) 

(0.874, 
0.083) 

(0.405, 
0.129) 

1.387 (1.439, 
0.386) 

 
So far we have shown that the system provides good results in the d' measures, but the main 

shortcoming of getting even better scores is the high false alarm rates.  It was decided to look at where 

the false alarms were occurring to determine where the false alarms are occurring.  Another interesting 

point from our data is in the distribution of the false alarms and the misses across the number of bin 

offsets.  Of the entire database of 22862 vectors, 38.5% (4921 vectors) were labeled as false alarm in 

the 6 frame bin-size linear regression case as seen in Figure 49.  Of the false alarms, 61% were within 

one bin of a correct classification which suggests that by adding a tolerance of one bin to the bin 

classifications, the false alarms could be reduced to around 14% and two bins would reduce the false 

alarms to around 7%.  These additional tolerances would be logical since the human rated 

classifications carry some ambiguity in the segmentation boundaries.  Similarly, the hit rate could be 
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raised by applying a similar tolerance of one or two bins in the case of the misses (~14%, 1412 

vectors) as seen in Figure 50.  A tolerance of one bin would reduce the miss rate to around 4% which 

increases the hit rate to about 96%. 

0 2 4 6 8 10 12
0   

0.102

0.203

0.305

0.406

0.508

0.610

0.711
Linear FA hist

Number of Offset Bins  

Figure 49:  Percentage of False Alarms per Number of Offset Bins 

0 2 4 6 8 10 12 14 16 18
0   

0.071

0.142

0.212

0.283

0.354

0.425

0.496

0.567

0.637

0.708
Linear Miss hist

Number of Offset Bins  

Figure 50:  Percentage of Misses per Number of Offset Bins 

 

 One of the shortcomings of this experiment is the lack of data available from various raters for 

use of training the system.  The intentional vision research from the Psychology Department provided 
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breakpoint segment analysis from 2 sources, the original rater (psychology graduate student) and 

various interrater participants (undergraduate volunteers).  The original rater was required to segment 

each of the videos while the interraters were required to segment one video from each of the 

performing participants.  The two ratings were compared to each other to show that 82% of the 

variance was accounted for using one second bins.  The manner of the ratings that the original rater 

uses is fairly different from the ratings created to train the system (system rater – the author), but it is 

necessary that the ratings that train the system have a high correlation with ratings from the original 

and interrater ratings.  Once the system is trained on the system rater breakpoints, the breakpoints 

developed by the system will be the system estimates.  In Newtson’s work [117], he established a 

method of comparing two sets of data to determine the correlation between them.  The method 

basically calculated the probability of overlap when comparing a coarse and a fine set of data as the 

following: 

BinsfinePcoarsePoverlapP ××= )()()(       (70) 

The method itself will not work directly between the interrater ratings, original ratings, and system 

training ratings, but the overall concept still applies.  The correlation between the sets of data with 

different amounts of classified samples can be seen as the amount of separation between the 

probability of the number of overlaps (breakpoints in same position) and the probability of randomly 

choosing overlap positions.  One fact to note is the system breakpoints must be converted to the format 

of the original breakpoints as shown in Figure 51.  The original and interrater breakpoints are given as 

a set of times that correspond to moments in the video sequence.  The system rater breakpoints are a 

sequence of ones (breakpoints) and zeros (not breakpoints) that span the video sequence.  The video is 

broken into 6 frame bins (as determined by the optimal settings in Tables 2 and 3).  The system rater 

breakpoints were designed to extend across a range of bins for as long as the action occurred.  The 

original breakpoints only specified a single time allocation for an action.  Since the original and 
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interrater ratings are given in seconds, the times are converted to frames.  Then, the frames are 

represented with a 1 or 0 in the appropriate 6 frame bin.  

… …
… …

……

10 0 00 0 000 00000000 0 0 000 0 01111111111

1 0011
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Provides indices
for values of 1

6 frame bins are represented with a 1 if a 1 resides in
the original 6 frames and 0 otherwise

x30 388
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25.04
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the original 6 frames and 0 otherwise

x30 388
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12.96

14.83

25.04

 

Figure 51: Converting time breakpoints to 6 frame bin format 

 

Since the system rater breakpoints are ranges of ones meant to capture all representations of the 

action, these ranges must be converted to an appropriate representation resembling the format of the 

original and interrater ratings.  This single original breakpoint can be assumed to occur in the 

proximity of the middle of the corresponding sequence of breakpoints for the same action that the 

system rater breakpoints specify.  To convert the system breakpoints to the format of the original 

breakpoints, all consecutive sequence of breakpoints are converted to a single breakpoint located in the 

center of the span of time.  This conversion is done for both the system rater and the system estimate 

in the following analysis.   

Once all the data is in the same format, the method of comparison to determine correlation is as 

follows.  One rater’s vector is set as the base vector and another rater’s vector is set as the test vector.  

The base vector is treated as the ground truth for the comparison.  Since the objective for the 
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experiment is to develop a system that can replicate human breakpoints chosen by the psychology 

students and volunteers, the priority of base truth goes as follows: original rater > interraters> system 

rater> system estimate.  The probability of randomly choosing a bin that contains a breakpoint in the 

base vector (probability of base) is simply the # of breakpoint bins divided by the total number of bins.  

When determining the accuracy of overlap, each breakpoint bin in the test vector is compared to the 

base vector at the same position. If there exists a breakpoint in the base vector within a certain 

variability (variability ranges from 0 – 2, as seen in Figure 52), then the breakpoint is considered to 

overlap in both the test and base vectors.  These overlaps are counted and divided by the total number 

of possible breakpoints in the test vector to attain the accuracy of overlap.  If the data has some 

correlation, then the accuracy of overlap should be more than the probability of breakpoint.  As bin 

variability increases, the probability of breakpoint also increases.  If the data sets are truly correlated, 

then the accuracy of overlap should have a greater increase if not equal to the probability of breakpoint 

increase. 

Base vector

Test vector

…

…

…

…

…

…

…

…

…

…

00 00 001 00 00 001 00 00 001

Ranges of bins that can represent
an overlap if a breakpoint is there

0 bin variability 2 bin variability1 bin variability

Base vector

Test vector

…

…

…

…

…

…

…

…

…

…

00 00 001 00 00 001 00 00 001

Ranges of bins that can represent
an overlap if a breakpoint is there

0 bin variability 2 bin variability1 bin variability
 

Figure 52: Bin variability 

 

As can be seen in Tables 15 -17, the probabilities show that there is correlation between system 

and the original breakpoints.  The correlation is not apparent for any of the comparisons except the 

interraters and original with 0 bin variability.  With 1 bin variability, the difference between the 

probability of base and accuracy of overlap grows.  The accuracy grows even more when allowed the 
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full 1 second bin (30 frames) with 2 bin variability.  This confirms that the system rater and the system 

estimate, which are meant to represent the features that the intentional vision group found, are related 

to the human breakpoint selections. 

Table 15: Correlation with 0 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Interrater vs Original 0.271 0.562 

System Rater vs Original 0.288 0.266 

System Estimate vs Original 0.288 0.269 

System Rater vs Interrater 0.251 0.256 

System Estimate vs Interrater 0.250 0.266 

System Estimate vs System Rater 0.157 0.169 

 

Table 16: Correlation with 1 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Interrater vs Original 0.596 0.932 

System Rater vs Original 0.646 0.788 

System Estimate vs Original 0.646 0.792 

System Rater vs Interrater 0.582 0.751 

System Estimate vs Interrater 0.582 0.737 

System Estimate vs System Rater 0.463 0.753 
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Table 17: Correlation with 2 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Interrater vs Original 0.742 0.955 

System Rater vs Original 0.797 0.895 

System Estimate vs Original 0.797 0.898 

System Rater vs Interrater 0.741 0.861 

System Estimate vs Interrater 0.741 0.854 

System Estimate vs System Rater 0.670 0.937 

 

 To the increase of overlap as bin variability increases, this analysis is to determine if there is a 

consistent lag or lead to the breakpoints determined by the system rater when compared to the 

breakpoints of the interraters and the original raters.  In Table 118, the mean and standard deviation of 

the offsets are posted for the comparisons between the interraters, original rater and the system rater.  

The same dynamic of using the test vectors and base vectors are used with the hierarchy remaining the 

same as before.  The nearest breakpoint in the base vector is found for each breakpoint in the test 

vector.  The number of bins either leading (represented as negative) or lagging (represented as 

positive) are collected for each breakpoint.  If there is an equal number of bins leading and lagging a 

particular breakpoint, then the breakpoint is assumed to be leading and a counter is incremented to 

count the number of occurrences (# of equal lead/lag).  The mean and standard deviation are calculated 

from the list of bin offsets.  As can be seen from Table 15, there is no consistent lead or lag that can be 

applied to provide a significant increase in correlation. 
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Table 18: Overall Lead/Lag Breakpoint Analysis 

Test vs Base Offset (�, 
) # of Equal Lead/Lag # of Non-overlap b.pts.  

Interrater vs Original (-0.146, 2.493) 50 369 

System Rater vs Original (-2.098, 18.111) 342 1724 

System Rater vs Interrater (-0.319, 2.898) 28 192 

 

Experiment 2: Participant Identification 

 One interesting question is whether the action behaviors can be used to determine participant 

identities.  The next step after establishing reliable segmentations of actions is to determine the actual 

movements and identify the subject performing the task.  By studying these motions, it will be 

interesting to determine if there is enough data to specifically identify one subject from another.  

Another interesting question is linked to studies done in psychology and neuroscience fields 

concerning consistency detection in humans.  Zacks et al.[118-119] also determined that when people 

watch events and naturally break them into discrete sections.  Recognition and identification occur 

more quickly and accurately with the development of better predictions toward the next state of 

actions.  Observing patterns in the sequences of actions learns predictions.  This leads to the idea that 

once actions are learned, a person applies deviation detection to determine inconsistencies in a new 

example of the performed task.  Therefore, these inconsistencies should be available to detect outliers 

among the participant population.  The following steps will be used to accomplish these goals. 
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Table 19: Experiment 2 Parameter Optimization Roadmap 

Procedure for Parameter Optimization for Participants 

Extract information about movements between segmentation bounds to create 

action feature vector. 

Cluster action feature vectors with k-means. 

Form symbols for each action using the clusters. 

Train HMM for each participant by using all the tasks of a specific participant. 

Run against data to identify participant. 

Iterate number of groups (k) and number of states for the HMM to determine 

optimal settings. 

 

We iterate through a k from 2-10 and a number of HMM states of 1-10.  Once an optimal parameter 

set is found the same parameter set is used in the cross validation analysis. 
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Table 20: Experiment 2 Testing Roadmap 

Procedure for Testing 

� Train HMMs using jack knife and using random cross-validation 

methods 

o For the cross-validation, 7 random videos will be used to train per 

person in 2 ways 

� First, the same 7 random task will be used for the training of 

each person’s HMM 

� Second, a new random set of 7 from a person’s video set will 

be chosen for each person’s HMM 

Test HMMs against data not used in training. 

 

The entire testing procedure will be repeated 20 times to provide an accurate assessment of the 

system’s performance. 

Table 21: Subject Cross Validation Accuracies 

 Accuracy 

1st Validation Method 0.1100 

2nd Validation Method 0.1217 

 

We hypothesize that the feature vectors which are designed for generic action parsing will not have 

very much information pertaining to a particular person.  As can be seen from Table 21, the cross 

validation methods show that the behavior features used to segment actions do not contain enough 

information to dissociate amongst participants with the available data.  These results are reasonable 

since tasks performed by the participants are fairly linear, allowing for little variation in the ways they 
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are to be accomplished.  Since the steps performed amongst each participant for each task are virtually 

the same, it is logical that the system will not be able to detect specific participants without more data 

or a different set of features.  Though participant identification across all 10 subjects is shown to not to 

be applicable for these features, the features definitely contain some information about participants 

that can be used to determine subsets of the participants that can be identified reliably.  The first step 

to determining whether subsets of participants exist is to reduce the number of participants compared 

amongst each other.  The data is broken up into all possible combinations of 2 participants up to 5 

participants.  The data from the combination of participants are compared to the HMM models of each 

participant to determine accuracy. 

Table 22: Participant Combination Analysis using Cross Correlation Analysis 1 

Number of 
Participants 

Overall 
Accuracy 

Top 4 
Accuracies 

Top 4 
Participant 

Combinations 

Bottom 4 
Accuracies 

Bottom 4 
Participant 

Combinations 
2 0.5267 0.6917 

0.6750 
0.6417 
0.6417 

14,11 
19,11 
17,14    
16,11 

0.4250 
0.4167 
0.3833 
0.3250 

20,13 
17,15 
17,12 
19,18 

3 0.3750 0.5778 
0.5500 
0.5111 
0.5111 

15,14,11 
14,12,11 
17,16,11 
18,16,11 

0.2833 
0.2722 
0.2667 
0.2500 

17,15,12 
20,19,15 
20,17,15 
19,18,11 

4 0.2803 0.3917 
0.3917 
0.3875 
0.3750 

15,14,13,11 
14,13,12,11 
19,15,14,11 
18,15,14,11 

0.1958 
0.1958 
0.1750 
0.1667 

20,19,17,12 
20,19,18,15 
17,15,12,11 
19,17,13,12 

5 0.2283 0.3200 
0.3100 
0.3067 
0.3000 

18,17,14,12,11 
16,15,14,12,11 
18,15,14,12,11 
20,16,13,12,11 

0.1600 
0.1600 
0.1567 
0.1533 

20,18,15,13,11 
20,18,16,14,13 
20,18,15,13,12 
20,18,17,15,13 
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Table 23: Participant Combination Analysis using Cross Correlation Analysis 2 

Number of 
Participants 

Overall 
Accuracy 

Top 4 
Accuracies 

Top 4 
Participant 

Combinations 

Bottom 4 
Accuracies 

Bottom 4 
Participant 

Combinations 
2 0.5865 0.8583 

0.8000 
0.7917 
0.6833 

17,16 
19,17 
17,14 
17.13 

0.4750 
0.4583 
0.4083 
0.3750 

12,11 
20,11 
16,11 
15,11 

3 0.3956 0.5667 
0.5444 
0.5389 
0.5000 

17,14,12 
20,19,11 
20,17,14 
17,16,12 

0.2722 
0.2444 
0.2444 
0.2444 

14,12,11 
20,12,11 
18,16,11 
15,12,11 

4 0.2882 0.3750 
0.3750 
0.3708 
0.3708 

20,17,15,13 
19,17,14,12 
19,17,16,13 
20,17,15,13 

0.2042 
0.2000 
0.1958 
0.1958 

20,19,12,11 
18,16,12,11 
19,16,12,11 
20,15,12,11 

5 0.2067 0.2700 
0.2600 
0.2567 
0.2567 

20,19,17,14,13 
19,14,13,12,11 
19,18,17,15,14 
20,19,17,14,13 

0.1467 
0.1433 
0.1367 
0.1267 

20,19,16,12,11 
20,17,16,12,11 
20,17,16,14,11 
20,18,17,12,11 

 

For each of the smaller combinations of participants (Table 22-23), the models are able to give a 

slightly better than chance overall analysis of data.  The bottom 4 combinations are displayed to 

determine any patterns seen among participants that are outliers.  Participants 11, 12 and 16 seem to be 

fairly consistent in participating with the lowest accuracies of each set.  These results reinforce there is 

very little information among the behavior feature vector to determine the identity of the participant 

performing the task for this set of data. 

 

Experiment 3: Task Identification 

Likewise, it will be interesting to determine if there is enough data to specifically identify one 

task from another.  The behaviors identified provide information for task segmentation, but do they 

also contain information about the identity of the task itself.  This experiment mirrors the Subject 

Identification in the steps that are followed: 
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Table 24: Experiment 3 Parameter Optimization Roadmap 

Procedure for Parameter Optimization for Tasks 

Extract information about movements between segmentation bounds to create action 

feature vector. 

Cluster action feature vectors with k-means. 

Form symbols for each action using the clusters. 

Train HMM for a task by using all the videos of a particular task. 

Run against data to identify task. 

Iterate number of groups (k) and number of states for the HMM to determine optimal 

settings. 

 

We iterate through a k from 2-10 and a number of HMM states of 1-10.  Once an optimal parameter 

set is found the same parameter set is used in the cross validation analysis. 
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Table 25: Experiment 3 Testing Roadmap 

Procedure for Testing 

� Train HMMs using jack knife and using random cross-validation methods 

o For the cross-validation, 7 random videos will be used to train per task in 

2 ways 

� First, the same 7 random subjects’ task performance will be used 

for the training of each task HMM 

� Second, a new random set of 7 participants will be chosen for each 

task HMM 

Test HMMs against data not used in training. 

 

The entire testing procedure will be repeated 20 times to provide an accurate assessment of the 

system’s performance. 

Table 26: Task Cross Validation Accuracies 

 Accuracy 

1st Validation Method 0.3333 

2nd Validation Method 0.2650 

 

We hypothesize that the feature vectors which are designed for generic action parsing will have some 

information pertaining to a particular task, but not enough to be highly deterministic.  As can be seen 

from Table 26, the cross validation methods show that the behavior features used to segment actions 

contain some information to dissociate amongst tasks with the available data. The system performs 

better than chance, but still is not highly accurate.  This information implies that there is more 

information about the tasks held within the behavior features than there is pertaining to specific 
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participants.  The tasks are analyzed in combinations to see if there is significant information about 

subsets of the tasks using the behavior features.  The data is broken up into all possible combinations 

of 2 tasks up to 5 tasks.  The data from the combination of tasks are compared to the HMM models of 

each task to determine accuracy. 

 

Table 27: Task Combination Analysis using Cross Correlation Analysis 1 

Number of 
Tasks 

Overall 
Accuracy 

Top 4 
Accuracies 

Top 4 Task 
Combinations 

Bottom 4 
Accuracies 

Bottom 4 Task 
Combinations 

2 0.6430 0.9083 
0.8833 
0.8750 
0.8667 

7,1 
10,5 
10,1    
10,2 

0.4333 
0.4333 
0.4167 
0.4000 

6,3 
5,1 
9,7 
4,3 

3 0.4872 0.7111 
0.7111 
0.7111 
0.6944 

10,5,3 
10,4,2 
7,4,2 

10,3,2 

0.3000 
0.2889 
0.2833 
0.2500 

8,6,4 
10,9,7 
8,6,3 
5,2,1 

4 0.3875 0.5542 
0.5250 
0.5208 
0.5208 

10,7,4,2 
10,7,3,2 
10,7,5,3 
10,5,4,3 

0.2375 
0.2333 
0.2208 
0.2125 

9,8,6,4 
9,8,7,6 
8,6,4,3 
9,8,6,3 

5 0.3232 0.4400 
0.4333 
0.4333 
0.4267 

10,7,5,3,2 
10,9,5,4,3 
10,8,3,2,1 
7,6,3,2,1 

0.2200 
0.2100 
0.2033 
0.1933 

9,8,7,4,3 
10,9,8,4,3 
9,8,6,7,4 
8,7,6,4,3 
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Table 28: Task Combination Analysis using Cross Correlation Analysis 2 

Number of 
Tasks 

Overall 
Accuracy 

Top 4 
Accuracies 

Top 4 Task 
Combinations 

Bottom 4 
Accuracies 

Bottom 4 Task 
Combinations 

2 0.6331 0.9083 
0.8667 
0.8667 
0.8500 

10,5 
10,1 
8,2 
7,5 

0.4583 
0.4250 
0.4250 
0.4083 

5,2 
6,3 
5,1 
8,6 

3 0.4708 0.6833 
0.6722 
0.6722 
0.6667 

7,3,2 
10,6,2 
10,4,2 
10,5,3 

0.3000 
0.2889 
0.2833 
0.2833 

6,4,3 
8,4,3 
8,6,4 
6,4,3 

4 0.3751 0.5250 
0.5167 
0.5125 
0.5083 

10,6,3,2 
10,7,4,2 
10,5,3,2 
10,3,2,1 

0.2292 
0.2292 
0.2125 
0.1917 

9,6,5,4 
9,6,4,3 
9,8,6,3 
9,8,6,4 

5 0.3089 0.4367 
0.4300 
0.4067 
0.4067 

10,9,4,3,2 
10,7,3,2,1 
10,6,5,3,1 
10,8,5,2,1 

0.2133 
0.2133 
0.2000 
0.1967 

10,9,8,6,4 
8,6,5,2,1 
9,8,6,4,3 
8,6,4,3,1 

 

As can be seen from Table 27-28, the overall accuracies for the task combination analysis in each case 

are above chance.  The tasks the system seems to have the most difficulty dissociating from are tasks 

9, 8, 7, and 3.  Those tasks are in a majority of the task combinations for the bottom 4 of each 

combination analysis.  Tasks 7 and 8 are both occlusion tasks that have significant portions of the 

activities hidden behind a blinder so confusion can be expected in the case of these two tasks.  Task 3 

is an assembly task of a set of pipes.  Participants tended to neither assemble the pipes in any specific 

order nor keep the structure in any particularly consistent orientation.  The model of this activity 

probably ranged across various other participants.  The data shows that there is some information in 

task identification among these behavior features, but the information in its present form is not enough 

to be highly accurate. 

Experiment 4: Autonomous Action Segmentation  

The next experiment was to develop the system to autonomously train and segment action 

videos.  The goal of this experiment was to create a system that will segment the percepts in a video 

desired by the user and identify significant moments to segment the actions.  This feature will allow 
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use of the system in diverse disciplines with little to no training necessary.  The steps for Experiment 4 

can be seen in Table 26.   

Table 29: Experiment 4 Roadmap 

Autonomous Segmentation  Procedure 

Develop system to autonomously detect percepts that correspond with user desired 

objects. 

Segment videos and record object information for all frames. 

Extract behavior features for all videos at optimal bin-size. 

Train the classification system with labeled behavior data. 

Analyze data using regression techniques. 

Compare results of autonomous moment segmentation to supervised segmentation. 

 

Most of the procedure for experiment 4 mirrors the first experiment once the videos are 

segmented.  The main difference is the method in which the videos are segmented which are the first 2 

tasks from Table 29.  In Experiment 1, the system was provided the percepts of the video via user 

identification.  In Experiment 4, the system must collect its own visual data and segment the data into 

natural groups.  The system must take these natural groups and determine what these objects are (i.e. 

identification of the actor body parts, background, pertinent objects, etc.).  Once these steps are 

completed, the process falls into nearly the same process of Experiment 1 in terms of behavior 

analysis.  Another observation to be noted throughout the discussion is the amount of time each 

process takes.  Since the times were not measured explicitly, the estimated times are an approximation 
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of the maximum time it took for any of the databases.   First, let’s go through the methodology for 

providing the autonomously segmented images as shown in Figure 53.   
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Figure 53: Unsupervised Video Segmentation Flow Chart 

 

Originally, the method was tested with Dr. Wang’s algorithm, but the results did not show as 

accurate of segmentation as desired (as seen in Figure 54b).  By normalizing the vectors to unit norm 

which projected them to the unit hypersphere of their space, the resulting segmentation was shown to 

improve significantly (as seen in Figure 54c).  This is the first major change to the unsupervised 

segmentation process. 



 

103 

 

(a) 

                 

(b) (c) 

Figure 54:  (a) Original Image, (b) Segmentation without normalization (c) Segmentation with 
normalization 
 

The reason that the distance measure used strictly with the non-normalized vector did not work as well 

was because as the dimensionality grew, the vectors were forced toward the origin.  Since the vectors 

are primarily color histograms, they follow the L1 line/plane/hyperplane (depending on the dimension 

of the space).  As can be seen in Figure 55, if the distance from origin to the center of the L1 norm in 

the case of 2 dimensions would be 
2
2

 but this can be shown to extend to 
N
N

in an N dimensional 

case.  The plot in Figure 56 shows how quickly the distance between the L1 norm plane and the origin 

drops as the dimension space continues to grow.  By allowing our high dimensional feature vectors to 

remain on this L1 plane, a large amount of our vectors move near the origin.  Since we use the L2 

norm to measure between vectors, the effect of this move towards the origin is a loss of discriminating 
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ability of the L2 distance measure.  To counteract this it was decided to normalize the vector which 

projects it to the L2 unit hypersphere.  This allows the L2 norm to continue to be a functional distance 

measure for any dimensional space.   
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Figure 55: Two Dimension Projection Example 
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Figure 56: Distance to Center of L1 Norm Hyperplane as a Function of Dimensionality 

 

 Figure 53 shows the overall process for an unsupervised method of segmenting the video.  The 

method is similar to the method of Experiment 1 except a few extra steps are necessary to determine 

the natural groups of the video.  Since the user is removed, the training must involve collecting 

training images from the video.  For our process, 40 images are collected from the data stream.  All 

objects are generally visible at the beginning of the videos since the tasks are primarily assembly tasks.  

To ensure significant sampling of all the objects, 20 of the sample images are collected from the first 

fourth of the video and the remaining 20 are collected from the rest of the video.  From the 40 images, 

a total of 840,160 vectors (21,004 from each image) are extracted.  Due to the large number of vectors, 

the database is thinned.  The data base is thinned by finding all duplicate vectors (vectors within 

0.0000001 distance of another vector) and reducing them to a single representation.  The vectors are 

also thinned by using the mean distance between the vectors of the first 2 images as a threshold and 

removing any vectors whose nearest neighbor is further away than that threshold. Table 30 shows the 
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mean resultant database size is composed of 48,283 vectors.  This interestingly coincides with a report 

from Kalayeh and Landgrebe that the number of training vectors necessary to train a system using 

linear classifiers is on the order of 5 times the dimensionality of the feature space [130].  The amount 

of time for thinning each database was usually no more than 1 day.     

Table 30: Overall Thinning Reduction Percentages 

Mean Resultant 

Database Size 

Mean % of 

Database 

Mean Duplicate 

Size 

Mean Duplicate 

% 

Mean Outlier Size Mean Outlier % 

48283 5.75 % 702290 83.59 % 89583 10.66 % 

 

 The thinned data is used to create a Minimum Spanning Tree (MST). To aid the explanation of 

the unsupervised segmentation of images, it is useful to go through the process that Wang developed 

for her dissertation work [123]. On the assumption that a group of feature vectors can be differentiated 

from another group by using an L2 distance norm, a minimum spanning tree was created to determine 

naturally forming groups.   

 The autonomous segmentation methodology for Wang started the same as for the supervised 

segmentation for Tugcu; a database of vectors is collected to be used for the creation of clusters.  The 

difference between them is that the supervised database was collected and labeled by the user while 

the unsupervised method would extract the unlabeled visual feature vectors from 40 sample images 

from the environment.  With this multitude of unlabeled visual feature vectors, Wang would use the 

vectors to create a minimum spanning tree to determine the natural groups.  In Wang’s dissertation 

[129], she explains the minimum spanning tree as the following: 

“The minimum spanning tree method is a graph analysis of arbitrary point sets of data. In a 

graph, two points can be connected by either a direct edge or a sequence of edges called a path. A loop 

in a graph is a closed path. A connected graph has one or more paths between any pair of points. A 

tree is a connected graph without closed loops. A spanning tree is a tree that contains every point in 

the data set. If a value is assigned to each edge in the tree, the tree is called a weighted tree. For 
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example, the weights for each edge can be the distance between the two points. The weight of a tree is 

the total sum of edge weights in the tree. The minimum spanning tree (MST) is the spanning tree that 

has the minimal total weight among all possible spanning trees for the data set. The minimum 

spanning tree has the following property that can be used for clustering if the weight associated with 

each edge denotes the distance between the two points. That is, the weight associated with every edge 

in the minimum spanning tree will be the shortest distance between two sub-trees that are connected 

by that edge. Therefore, removal of the longest edge will theoretically result in a two-cluster grouping. 

Removal of the next longest edge will result in a three-cluster grouping, and so on. These correspond 

to choosing breaks where maximum weights occur in the sorted edges. When the tree is built, after 

sorting the edge in decreasing order, the edges can be cut to form clusters.” 

Apply 3 cuts

Connect the data with 
a single path from any one

point to another point

Original Data Set

Minimum Spanning Tree

Four separate groups 
are created

Apply 3 cuts

Connect the data with 
a single path from any one

point to another point

Original Data Set

Minimum Spanning Tree

Four separate groups 
are created

 

Figure 57: Minimum Spanning Tree Example 
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With these edges, Wang would designate the number of cuts to be applied to the edges.  The 

cuts would be applied to the longest remaining edges.  Depending on the number of cuts applied, a 

number of natural groups will fall out from the data.  By looking at Figure 57, an example of the MST 

process is shown.  A sample set of points are turned into a minimum spanning tree by connecting them 

to their neighbors but maintaining the rule of only one path existing between any 2 points.  Finally, a 

number of cuts (in the example, 3 cuts) are applied to the tree which involves removing that number of 

the longest connections between points.  As can be seen from the Figure 57, 4 natural groups fall out 

of the set of points.  Once the natural groups were formed, Wang would observe the segmentations to 

determine if groups were over-segmented and recombine them.  Over-segmenting occurs when too 

many cuts are applied to the tree and groups are broken into sub-groups that should remain as one 

group.  Wang’s method for analysis has been modified to create a fully automated approach for 

evaluating the natural segmentations of an image.  The creation of the MST usually took no more than 

4 hours for these databases. 
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Figure 58: Number of Cuts Algorithm 

 

The next step is to determine the correct number of cuts in the minimum spanning tree to 

provide optimal segmentation.  The plot in Figure 58 shows the distances of the minimum spanning 

tree from the largest to smallest.  The behavior of the plot seems to remain somewhat consistent for all 

the databases (one database for each video).  There is a sharp drop in distances and the plot eventually 

settles out toward a nearly linear decrease.  By experimenting with cuts across various databases, it 

was found that the best number of cuts for the MST resided near the beginning of when the tail of the 

plot becomes approximately linear.  The plots are always close to linear before half of the data is 

reached.  The way the number of cuts is determined is to calculate the threshold slope which consists 
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of using the last half of the distance values and calculating a slope.  The threshold slope is used to 

monitor the slopes calculated from the beginning of the distances plot at a sampling size of 200 

samples. The cutoff slope is determined by backtracking the threshold slope until the cutoff/threshold 

slope ratio is less than 2.  The number where this condition occurs is determined to the number of cuts 

to be applied to the MST. 

After a number of cuts are applied, a number of natural groups are determined.  For a group to 

be designated significant, it must contain at least 100 vectors in its grouping.  If a similar concept were 

to be applied to the example MST in Figure 56 with a minimum of 4 vectors, then the number of 

representative groups would fall to just 2 valid groups.  Each of these groups is given a number and a 

label corresponding to this group number.  In the supervised case, the labels were things such as 

Hand1 or Stripe.  In the unsupervised case, the labels are designated as Object1 or Object5.  Since a 

label is available, an approximate nearest neighbor tree can be created from the data.  Once again, the 

approximate nearest neighbor tree is used to create the segmented video. 

One addition to note about the creation of the approximate nearest neighbor tree is the addition 

of an accuracy check.  As discussed previously, the tree is formed by randomly selecting 3 vectors and 

grouping the rest of the data according to those vectors in the supervised case.  For the autonomous 

case, the number of node vectors per group was increased to 5 and the number acceptable vectors in a 

leaf node were under 1000 vectors.  Since the 5 node vectors are chosen at random for each case, this 

leaves the possibility of creating a tree that does not properly represent the data.  Previously, the 

segmentation created from the trees would be observed by the user to determine if the tree was 

accurate.  To automate that check, an image from the video is segmented using an exact nearest 

neighbor process.  A tree would be created and that tree would segment the same image.  If the tree’s 

segmented image agrees with 98% of the nearest neighbor image, the tree is saved.  Otherwise, the 

program recreates the tree.   To limit the amount of time the program can run, a maximum of 20 trees 

are created if none of those trees meet the 98% accuracy threshold.  Of the 20 trees, the most accurate 
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one is saved.  This process usually took no more than 1.5 days, but also contained a lot of variance if 

an optimal tree is found early in the 20 step iteration (time sometimes as low as 2-4 hours). 

Using this method for applying cuts to the minimum spanning tree yielded an acceptable 

segmentation for 84 of the 100 videos that were tested.  The requirements for an acceptable 

segmentation were correct separation of the crucial percepts (two hands and the strip on the hat).  

Object identification varied with the amount of example vectors available to the system.  Due to 

limitations such as the size of objects and amount of time in view of the camera, certain objects would 

either not have enough representation in the video to be modeled by the spanning tree with its current 

settings.  In some of the cases, the number of cuts applied would reduce a group to below the 100 

vector threshold discussed above.  In the case of a significant percept (i.e., hands or stripe) being 

affected, the number of cuts had to be manually adjusted to provide optimal segmentation.  In Table 

31, the adjustments of the 16 unacceptable segmentations are shown. 
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Table 31: Adjusted Cuts Statistics 

Participant #_Task # Algorithm Cuts Adjusted Cuts Database Size % Difference 

11_1 8527 4500 39483 10.20 

11-7 8857 1000 30411 25.84 

13-4 6488 30000 89121 26.38 

13-7 7600 4600 25557 11.74 

14-1 10179 No change* 34907 0.00 

14-4 8284 16000 74786 10.32 

14-7 9273 5500* 33029 11.42 

16-1 11001 8000* 42620 7.04 

16-3 9330 8500 34134 2.43 

16-6 6361 30000 90460 26.13 

16-7 8006 6500* 31191 4.83 

19-4 6406 22400 77722 20.58 

19-7 8257 4400* 27273 14.14 

19-8 8447 4000 30023 14.81 

20-7 6840 No change* 27854 0.00 

20-8 7747 No change* 31733 0.00 

* Insufficient database to represent crucial percepts 

 

Of the 16 videos that the algorithm failed to produce desired segmentation, 7 did not contain the 

information necessary to produce the desired segmentation with any number of cuts.  The remaining 9 

needed about an average of 16% adjustment with their respective database size.  It also should be 

noted that half of the failed videos were occlusion tasks (task 7 and task 8) which were specifically 

designed to have a significant portion of the action performed outside the direct view of the camera.  

Also, tasks 1 and 4 contain fairly large objects that occlude the view of the hands.  Task 1 had three 

flashlight handles standing up next to each other.  Depending on the participant’s position, a majority 

of their left hand (Hand2) was partially blocked from view.  The same observation could be noted 
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about the stack of containers available in task 4.  When noting possible difficulties of those 4 tasks, the 

14 out of 16 videos belonging to one of those 4 groups becomes a bit more understandable. 

 The approximate nearest neighbor trees are used to segment the entire video.  The tree with a 

branching of 5 nodes, a maximum leaf node capacity of 1000 vectors, and a maximum level of 60 was 

able to process a frame of video in less than 1 minute, usually closer to 30 to 45 seconds.  Due to the 

length of the videos (which were recorded at 30 frames per second) being no longer than 2 minutes 

(3600 frames), the time for processing took no more than 2.5 days.  A vast majority of the videos were 

closer to 1 min and 30 seconds or less in duration (resulting in a processing period of less than 1 day).   

 

 

 

Figure 59: Unsupervised Behavior Extraction Flow Chart 
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 Once the segmented video is created, the process of behavior extraction is nearly the same as in 

Experiment 1 as seen in Figure 59.  The one major difference is the renaming segment.  For the data of 

the segmented video to integrate with the previous process, the label names must correspond to the 

label names used in calculating the behavior feature vector (i.e. Object1 -> Hand1, Object2 -> 

Background, …).  The only labels that must be identified are Hand1, Hand2, Stripe and Background.  

Background allows the program to ignore the percept.  The rest of the objects such as the Legos or 

containers are only identified as pertinent objects so the “Object#” name is applicable.  The program 

goes through and determines that the large objects that take up a majority of the frame throughout the 

video are considered Background.  The Stripe is determined to be the highest object throughout the 

video that is not a Background object.  The 2 objects that move the most are determined to be the 

hands (the hand predominately on the left of the image being Hand1 and the other being Hand2).   

Due to fluctuations in the frame representation caused by video encoding when converted to 

Cinepak, the parameter of motion that was expected to determine the hands was not sufficient.  Since 

the automatic object labeling algorithm was becoming very specific for this particular study, the 

objects are determined by the user.  This is done by looking at individual percept representations and 

providing the correct name (example in Figure 60).  The label renaming of percepts took about 1-2 

minutes per video.  Once the labels are renamed, the exact same process for behavior vector extraction 

is used.  The behavior feature vector extraction for a single video took about 8 minutes. 
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   (g)       (h) 

Figure 60: Example Label Representations in a Frame; (a) Object 1 – Background, (b) Object 2 – 
Hand1, (c) Object 3 – Legos, (d) Object 4 – Containers, (e) Object 5 – Stripe, (f) Object 6 – Noise, (g) 
Object 7- Background, (h) Object 8 – Hand2 
 
 
 The same analyses done in the supervised version are done to the autonomous version to 

ensure that the results are basically equivalent. Once the behavior feature vectors are extracted, linear, 

quadratic, and mahalanobis regression techniques are used to analyze the vectors that are created from 

a bin-size of 6.  Table 32 compares both the autonomous results with the supervised results at bin-size 

of 6.  The average hit rate and false alarm rate are slightly higher for the autonomous but the results 

are nearly identical.  Table 33 reinforces the observation from Table 32 showing a very slight increase 

in both the hit rate and false alarm rate for the autonomous results. 

Table 32: Comparison of Supervised and Autonomous at Bin-Size of 6 using Subject Jack Knife 
 

 Linear Quadratic Mahalanobis 
 HR 

(�, 
) 
FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

Supervised (0.859,  
0.079) 

(0.385, 
0.011) 

1.368 (1.411, 
0.385) 

(0.819, 
0.083) 

(0.349, 
0.096) 

1.300 (1.362, 
0.338) 

(0.488, 
0.129) 

(0.132, 
0.067) 

1.085 (1.131, 
0.332) 

Autonomous (0.868, 
0.086) 

(0.402, 
0.132) 

1.132 (1.393, 
0.427) 

(0.843, 
0.088) 

(0.377, 
0.130) 

1.134 (1.334, 
0.399) 

(0.489, 
0.133) 

(0.132, 
0.091) 

1.400 (1.107, 
0.411) 

 

 
Table 33: Comparison of Supervised and Autonomous at Bin-Size of 6 using Task Jack Knife 

 
 Linear Quadratic Mahalanobis 
 HR 

(�, 
) 
FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

HR 
(�, 
) 

FAR 
(�, 
) 

d1' d2' 
(�, 
) 

Supervised (0.857, 
0.084) 

(0.387, 
0.119) 

1.356 (1.410, 
0.374) 

(0.820, 
0.085) 

(0.353, 
0.104) 

1.292 (1.356, 
0.341) 

(0.487, 
0.123) 

(0.136, 
0.071) 

1.063 (1.122, 
0.356) 

Autonomous (0.868, 
0.088) 

(0.403, 
0.135) 

1.131 (1.389, 
0.441) 

(0.844, 
0.090) 

(0.378, 
0.130) 

1.135 (1.340, 
0.400) 

(0.502, 
0.140) 

(0.140, 
0.098) 

1.355 (1.118, 
0.408) 
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 After ensuring that the regression analysis results are similar, we would guess that the 

correlation between the autonomous system and the other raters would not show much of a difference 

as well.  Using the test and base vector analysis, the autonomous system was placed at the lowest 

priority in terms of truth (i.e. original rater > interrater > system rater > supervised system estimate > 

autonomous system estimate).  As can be seen in Table 34 – 36, a similar amount of correlation as 

seen in the previous supervised analysis is also shown here.   

Table 34: Correlation with 0 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Auto_System Est. vs Original 0.293 0.267 

Auto_System Est. vs Interrater 0.251 0.247 

Auto_System Est. vs System Rater 0.159 0.172 

Auto_System Est. vs System Est. 0.152 0.158 

 

Table 35: Correlation with 1 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Auto_System Est. vs Original 0.653 0.791 

Auto_System Est. vs Interrater 0.582 0.733 

Auto_System Est. vs System Rater 0.470 0.766 

Auto_System Est. vs System Est. 0.449 0.701 
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Table 36: Correlation with 2 bin variability with bin-size of 6 

Test vs Base Probability of Base Accuracy of Overlap 

Auto_System Est. vs Original 0.802 0.893 

Auto_System Est. vs Interrater 0.741 0.846 

Auto_System Est. vs System Rater 0.695 0.935 

Auto_System Est. vs System Est. 0.681 0.902 

 

Experiment 5: Natural Scene Testing 

 To determine how robust the system is to moderately controlled environments and natural 

scenes, the autonomous system was applied to 3 naturally occurring scenes.  A sample video was 

created for 2 indoor scenes (3rd floor hallway overlooking the atrium in Featheringill Hall and the 3rd 

floor hallway connecting to Jacobs Hall) and 1 outdoor scene (the path between Featheringill Hall 

(FGH) and the Free Electron Laser (FEL) center).  Figure 61 shows the 3 scenes and sample 

segmentations and Table 37 shows the statistics for determining the cuts necessary to provide the 

sample segmentations.   

One main point to note is the system tends to under-segment the scene for the natural scenes.  

This is probably due to the higher amount of group overlap among the vectors.  The controlled 

environments are designed to have objects that look drastically different from one another to provide 

easier segmentation.  Natural scenes have reflections and less color differentiation between objects in 

the environment.  The vectors formed from these occurrences may form a bridge between different 

objects.  For example, the white floor and the wood panel are fairly different visually but the vectors 

formed from the wood panel reflection on the white floor would connect the two groups.  Hence, the 

algorithm will allow the two objects to be united as one large group.  The only way around this 

problem currently is to force the number of cuts applied to the MST to be enough that the groups are 

segmented, but that requires human intervention at this time. 
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Another point to note is the difference in database size of the controlled environments and the 

natural scenes.  The controlled environments database size averaged at about 50,000 vectors where the 

natural scene environments average at around 400,000 vectors.  The difference in the size of the 

training databases forces the system to take much longer (about 10-15 times) longer to progress 

through the autonomous segmentation steps. 

 

Table 37: Natural Scene Statistics 

Scene Algorithm Cuts Adjusted Cuts Database Size % Difference 

Indoor Atrium 44973 250000 382757 53.57 

Indoor Jacob Hall 71197 none 222898 n/a 

Outdoor FGH 22430 175000 548939 27.79 
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   (e)       (f) 

Figure 61: Natural Scene Segmentation Examples; (a) Indoor Atrium, (b) Indoor Atrium 
Segmentation, (c) Indoor Jacob Hall, (d) Indoor Jacob Hall Segmentation, (e) Outdoor FGH, (f) 
Outdoor FGH Segmentation
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CHAPTER VIII 

 

CONCLUSION AND FUTURE WORK 

  

Conclusion 

 The goal of this research was to create a vision system that uses high dimensional visual 

feature vectors and evaluate its performance in conjunction with supporting the intentional vision 

studies done by the Vanderbilt Psychology Department.  The vision system was to be tested using 

supervised methods and extended to be autonomous for flexibility in interdisciplinary use.  The 

intentional vision research found that there were a set of sub-actions that were highly correlated with 

the determination of significant moments parsing an activity.  These sub-actions included hand-to-

object contacts, object-to-object contacts, occlusions, and eye movements.  Using these sub-action 

descriptions, a set of behavior features were established to either singularly or conjunctively account 

for those sub-actions.  Subsequently, these behavior features were tested to determine their ability to 

predict the system rater’s breakpoints (significant moments) and tested to determine their correlation 

with the original rater and interraters.  The features were also analyzed to see if they could be used to 

also predict overall tasks and/or participants.  Furthermore, the autonomous system was tested on 

some mildly controlled and natural environments outside the data given by the intentional vision 

research. 

 It was determined that use of a high dimensional visual system had some interesting properties 

that are interesting for further study.  The projection of high dimensional sparse feature vectors seems 

to allow for a more intuitive segmentation of the scenery.  Both the supervised and the autonomous 

systems were shown to consistently provide segmentations that are expected in controlled 

environments.  One of the shortcomings of the systems is the amount of time necessary to train them.  

In the supervised case, the man hours necessary to train and segment 100 videos was on the order of 
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months as well as fairly in depth knowledge of the system to correct any training errors that occurred.  

Conversely, the autonomous system requires very little man hours to set the system up, but requires 

more time to train and segment the videos.  It does have the added bonus of being able to work 

continuously. 

 Both systems were able to extract behavior feature vectors and reliably identify them according 

to the training set.  A lot of the error is due to the fuzzy boundaries between sub-actions and the 

necessity of providing a definite segmentation to a indefinite moment.  The data was shown to be 

correlated with the intentional vision research findings and supports the idea of using the objective 

analysis of the system to define the subjective human ratings and observations.  The behavior features 

were found to have some information pertaining to the identification of a task when applied to a 

Hidden Markov Model, but almost no information to identify a participant from this set of examples. 

 The autonomous system is robust enough to segment natural and mildly controlled scenes 

pretty well.  The time issue becomes even more of a factor here when dealing with databases that do 

not reduce as much as the controlled environment databases do.  For all steps in the process except the 

segmentation of the video using the approximate nearest neighbor tree, the time increases anywhere 

from 10-15 times the original reported times.  The cuts algorithm did tend to under segment the 

scenery for the natural scenes.  The overall information in the database has the capability of 

performing desirable segmentations at any environment tested thus far.   

 

Future Work 

 

Improved Cuts Algorithm 

 One of the weaknesses of the system was the simple algorithm used to determine the number 

of cuts.  Though it had a 84% success rate in the controlled environments, it only worked for 1 of the 3 

natural scenes.  By applying an improved algorithm that takes into account stability of clusters as cuts 
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are applied, maybe this secondary measure can work in conjunction with the slope algorithm to 

determine a more appropriate number of cuts to apply to the MST. 

  

Integration to Parallel Computing 

 As stated before, one of the biggest shortcomings of the system is it being slow.  By using 

multi-core processors or multi-thread graphics card (i.e. GeForce 8800 GTS),  the speed of the system 

can be improved drastically.  Most of the processes can be ported over to a parallel computing 

platform to drastically reduce computation time. 

 

Improved Action Feature Vectors 

 The behavior feature vector used to find segmentation boundaries between actions as labeled 

by the user.  The same behavior feature vectors do not appear to be as strong in actually describing the 

actions themselves.  A new action feature vector should be used to describe the activity between the 

segments.  Once this action vector is completed, it could be used to provide more accurate task 

identification.  The task identification could be used to predict the next sub-actions to occur.  By using 

this prediction and the subsequent action, a prediction error signal can be formed.  This prediction 

error signal can be used to signal a new event or specify the need to change to a alternative motion 

model. 
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