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CHAPTER I 
 
 

BACKGROUND AND RESEARCH OBJECTIVES 
 
 

H.I.V. 
 As a virus, the Human Immunodeficiency Virus (H.I.V) is an 

obligate intracellular parasite. Machinery and resources provided by a host cell 

are required to complete its life cycle. As viruses and cells have co-evolved, 

viruses have changed to better utilize host machinery.  Cells have also evolved 

innate defenses, separate from the immune system, to combat invading viral 

pathogens. This point is particularly evident in the replication of HIV-1 and the 

effects of host proteins in the APOBEC3 family, including primate APOBEC3G 

and APOBEC3F, on that replication. 

HIV infects human cells known as CD4+ T lymphocytes and 

macrophages. These cells are important cell types in the robust immune defense 

against invading pathogens. The human immune system is comprised of innate 

and adaptive immunity. Innate immunity consists of responses to pathogens 

based on general pattern recognition mechanisms, but the magnitude or 

promptness of these responses does not increase with repeated exposure to a 

pathogen. Adaptive immunity refers to the recognition of pathogens by specific 

cells of the immune system, lymphocytes, and subsequent expansion of those 

pathogen specific cells. This does allow ‘immunologic memory” that improves 

and speeds recall responses. There are two main classes of lymphocytes, B- 
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cells and T- Cells. Each lymphocyte expresses a receptor that is specific for 

some antigen. B-cells, when activated by their antigen, secrete antibodies to bind 

and help neutralize the invading pathogen. There are two major types of T-cells, 

CD4+ and CD8+, so designated due to the major distinguishing receptor 

expressed on their surface. CD8+ cells, also known as cytotoxic T-lymphocytes, 

recognize and kill infected cells in order to clear the pathogen within. CD4+ T 

cells are known as helper T cells since they are responsible for providing 

stimulatory signals for the proper pathogen-specific set of B-cells and CD8+ T 

cells to be activated to optimal function. Macrophages are involved in both the 

innate and adaptive responses. [1] 

 Without CD4+ T cells, the cells of the adaptive immune system would lack 

the proper help and signals they need to mount the appropriate initial or recall 

response to a particular pathogen. The infection of CD4+ T cells by HIV-1 leads 

to an eventual decline in the CD4+ T cell number that leaves the infected 

individual vulnerable to pathogens that are normally easily recognized and 

cleared by the immune system of uninfected individuals. This vulnerability, known 

as an immune deficiency, is what leads to Acquired Immune Deficiency 

Syndrome, AIDS, and the death of HIV infected individuals by succumbing to 

opportunistic infections.  

 

Early Steps of HIV Replication 

HIV begins its replication process by entry into the target cell (Fig. 1-1).  
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To achieve entry the HIV envelope surface glycoprotein, gp120, first binds to the 

CD4 molecule on its host’s target cell.  
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Figure 1-1. Overview of HIV Replication Cycle. HIV begins its replication by 
binding to CD4 and co-receptor either CXCR4 or CCR5 (1). After binding, fusion 
of the virion’s lipid membrane and the cellular membrane occurs which allows the 
core of the virion containing the RNA genome to be released and uncoat (2). 
Reverse transcription occurs and the reverse transcribed DNA products (red) are 
translocated to the cellular nucleus as a pre-intergration complex (3). Once in the 
nucleus, the HIV integrase integrates the HIV DNA into the cellular chromosome 
in conjunction with cellular proteins (4). Viral RNAs are transcribed from the 
integrated DNA, translated in the cellular cytoplasm and these proteins 
translocate to the membrane of the cell (5). The congregated viral proteins bud 
out of the cell, eventually pinching off to form an immature virion (6). The viral 
protease cleaves proteins within the virion to form the viral core making the virion 
mature and infectious (7).   
 
Adapted from library.med.utah.edu/WebPath/TUTORIAL/AIDS/AIDS005.html 
accessed on1/20/2009  
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It then undergoes a conformational change to engage either the CXCR4 or 

CCR5 co-receptor, and finally the gp41 transmembrane protein mediates fusion 

of virus and cell membranes [2] (Figure 1-2). HIV viruses can either bind the 

CXCR4 co-receptor or the CCR5 co-receptor or both and are referred to as X4 

tropic, R5 tropic or dual tropic, respectively. After fusion, the viral core containing 

the diploid RNA genome is then released, and uncoats to release the viral 

ribonuceloprotein complex into the target cell cytoplasm. The uncoating process 

is not yet well characterized.  It is known that it is a process that must be 

regulated to achieve full infectivity and can be affected by host cellular proteins 

[3,4] 

 

The process of translating the diploid, single-stranded RNA genome into 

double-stranded DNA, known as reverse transcription, begins after/during 

uncoating. The process of reverse transcribing the HIV RNA genome begins with 

the reverse transcriptase (RT) recognizing a virion-packaged host transfer RNA 

(tRNAlys3) bound to a site in the RNA genome known as the primer binding site 

(PBS) (Figure 1-3). The viral RT recognizes this duplex and begins transcribing 

3’ to 5’ to form a complementary DNA strand (red in Figure 1-3) until it reaches 

the 5’ end of the RNA genome (black in Figure 1-3). This stretch of DNA, known 

as strong stop DNA, is translocated to the 3’ end of the RNA genome in what is 

known as the first strand transfer. The minus-strand, strong-stop DNA produced 

during the first steps of reverse transcription is known as an early RT product 

(Teal “ERT” in Figure 1-3).  
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Figure 1-2 HIV Fusion. HIV gp120 recognizes and binds to the host target cell 
CD4 molecule (1). After a conformational change, gp120 then interacts with 
either the co-receptor CXCR4 or CCR5 (2). Subsequently, the HIV gp41 
facilitates fusion of the viral and target cell membrane (3). 
 
Adapted from http://www.trofileassay.com/Viral_Entry accessed on 02/04/09 
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Figure 1-3 HIV Reverse Transcription. The packaged cellular transfer RNA 
(tRNA) binds to the primer binding site (PBS). This duplex is recognized by HIV 
reverse transcriptase (RT) and RT begins to polymerize a negative sense DNA 
strand (1). The –DNA strand is transferred to the 3’ end of the HIV RNA genome 
and polymerization continues. The RNAse H activity of RT degrades the RNA 
genome as it polymerizes a DNA copy (2) The polypurine tract (PPT) is resistant 
to this degradation (3). RT recognizes the duplex of the PPT and the –DNA 
strand and begins to polymerize the +DNA strand (4). Following a second strand 
transfer from the 3’ end to the 5’end, RT completes the +DNA strand resulting in 
two complementary long terminal repeats (LTR). qPCR based assays to quantify 
the amount of reverese transcription completed use primers that amplify early RT 
products (ERT) and late RT products (LRT) 
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RT continues to form a complementary (minus-strand) DNA (red, in Fig 1-3) by 

copying the genome RNA. The formation of the minus-strand DNA strand results 

in a RNA-DNA hybrid. The reverse transcriptase enzyme has a second 

enzymatic activity, RNAse H, which recognizes a hybrid RNA-DNA duplex as the 

polymerases slides down the RNA. It digests the RNA strand, transiently leaving 

a single-stranded, negative-sense DNA. Once this negative-sense, single-strand 

DNA is completed, the RT enzyme uses the negative-sense DNA strand as a 

template to construct a complementary positive strand. The positive strand 

synthesis begins to be primed from RNA left undigested at the central poly-purine 

tract (PPT) (black in step 4, Fig 1-3). The positive strand of DNA (blue in Figure 

1-3) undergoes a second strand transfer to hybridize to the 3’ end of the minus 

strand DNA before plus-strand DNA is completely copied, yielding a double 

stranded RT product. The late RT product reflects near completion of synthesis 

following second strand transfer (Teal “LRT” in Figure 1-3). 

Once reverse transcription is complete, the DNA copy of the viral genome, 

a completed reverse transcription product, translocates to the nucleus of the cell 

in a structured protein/nucleic acid complex known as the pre-integration 

complex or PIC. The PIC is translocated to the nucleus most likely by interactions 

with host cell motor proteins and the cytoskeleton. Once at the nuclear envelope, 

the PIC, which is much larger than any nuclear pore, is moved across the 

nucleus in a manner that is poorly understood. Some studies have described 

interactions of virally encoded proteins interacting with importins and 

nucleoporins [5],  but others argue the transportin family of proteins is involved 
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[6]. The integration of the completed RT product involves processing of the 3’ 

ends of the viral DNA genome by integrase  

as well as cutting the host chromosomal DNA. Subsequently the integrase 

protein joins the ends of the chromosomal DNA and the viral DNA and this break 

is repaired by host DNA repair machinery [7]  

Not all HIV reverse transcription products, however, are able to fully 

complete the integration process to become a provirus. Some RT products that 

have entered the nucleus fail to integrate and become substrates for host DNA 

end-joining enzymes in the nucleus [8]. This process can result in homologous 

recombination of the long terminal repeats at the 5’ and 3’ end of the HIV 

genome (Figure 1-3) giving rise to a 1-LTR circle or joining of the 2 long terminal 

repeats resulting in a 2-LTR circle. The formation of these circular products is 

commonly used as a measure of nuclear entry and failed integration events [9] 

[10].  

 

Late Steps of HIV Replication 

Once integrated, the HIV-1 genome encodes six accessory genes, Nef, Vpu, Vpr, 

Tat, Rev and Vif in addition to the three structural genes, Gag, Pol and Env 

(Fig1-4). Transcription of the viral genes is driven by the proviral LTR and 

regulated by the accessory protein tat, one of the first genes to be translated [11]. 

Early transcripts of the viral genome remain in the nucleus and are processed by 

the host cellular splicing machinery.  
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Figure 1-4 Genome of HIV. The HIV-1 genome consists of 3 structural genes 
gag,pol and env. Gag encodes for the matrix, capsid and nucleocapsid proteins. 
Pol encodes for the reverse transcriptase and integrase enzymes. Env encodes 
for the envelope protein. The genome also contains 6 accessory genes vif, 
vpr,vpu,tat,rev and nef.  
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As concentrations of the protein Rev (encoded by a multiply-spliced early 

transcript) increase, longer transcripts that encode for polyproteins like Gag-Pol, 

Pol and Env and the full genome are translocated out of the nucleus in a Rev-

dependent manner without splicing. Once these longer RNAs are translated, the 

structural proteins they encode self-assemble into virions at the surface of the 

infected cell and bud off. These particles are not yet infectious. After budding, the 

viral protease processes the Pol polyprotein into protease, reverse transcriptase 

and integrase, as well as cleaving the Gag-Pol polyprotein into matrix (MA) 

capsid (CA) and nucleocapsid (NC). This leads to formation of the internal 

conical core and a mature, infectious virion.   Though the structural genes serve 

specific, fairly well-defined roles in the viral life cycle, each of the accessory gene 

products has been described to have numerous activities within the life cycle of 

the virus and their functional characterization is not yet complete. Only recently 

has the specific functional role of the viral infectivity factor, vif, been elucidated. 

 

APOBEC3 

 It has been recognized for several years that certain immortalized CD4+T 

cell lines, and all primary CD4+ T cells, produced virions that were not infectious 

when infected with laboratory strains of HIV that had a deletion of the vif gene. 

[12,24]. As they produced virions that were not infectious, these cells were 

termed “non-permissive” for vif-deleted HIV-1.  Cell types that produced equally 

infectious virions from wild type and vif-deleted HIV were termed “permissive” 

cells. More recent studies have revealed that the difference between the two cell 
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types responsible for this phenotype was that non-permissive cells expressed an 

enzyme first known as CEM15 and now called APOBEC3G [13]. 

APOBEC3G (A3G), which stands for apolipoporotein B mRNA editing 

enzyme, catalytic-like 3G, belongs to a larger family of proteins which all share a 

common active site motif important for their enzymatic activity of cytidine 

deamination [14]. This name was chosen because of homology to a previously 

described gene, APOBEC1, which is involved in editing the mRNA of 

apolipoporotein B in gut epithelial cells to regulate production of lipoproteins 

APOB100 or APOB48 [15]. APOBEC1 is the only family member described to act 

on RNA. Activation induced deaminase (AID) is another well described APOBEC 

family member involved in antibody maturation via cytidine deamination of 

nuclear DNA. The somatic hypermutation introduced into antibody genes by AID 

allows selection for antibodies with higher binding affinity to an antigen. 

APOBEC2 and APOBEC4 are also members of the larger APOBEC family 

though their functions are less well understood[16,17]. A3G’s more closely 

related family members, APOBEC3A, B, C, DE, F, and H are variable gene 

duplications all residing consecutively on human chromosome 22. Each gene 

contains at least one cytidine deaminase active site. Although APOBEC3B, DE,  

G, and F contain two cytidine deaminase domains, only one domain shows 

enzymatic activity  (the carboxy terminal domain in 3F and 3G, Fig1-5) [14,18].  
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Figure 1-5 APOBEC3 Family: APOBEC3 proteins A-H are the result of gene 
duplications on human chromosome 22. Some the members contain two 
consensus deaminase domains, but others have only a single domain. The 
enzymatic activity has been determined to be in the C terminal of the two 
domains for A3G and A3F, with the N terminal domain having no cytidine 
deaminase enzymatic activity. 
 
Adapted from Schumann, G.G. Biochem. Soc. Trans. APOBEC3 proteins: 
major players in intracellular defence against LINE-1-mediated 
retrotransposition (2007) 35, (637–642) 
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During formation of a nascent HIV virion in a non-permissive cell, A3G is 

packaged into the virion via interaction between its enzymatically inactive amino-

terminal deaminase domain and the HIV nucleocapsid (encoded in the gag gene) 

[19-21]. Either the HIV genomic RNA or specific cellular RNAs may also be 

involved in packaging [22]. During or soon after reverse transcription in the 

subsequent target cell, A3G exerts its antiviral activity through several proposed 

mechanisms (Fig 1-6).  The transiently single-stranded, negative-sense DNA is 

the substrate for A3G’s cytidine deaminase enzymatic activity [23]. A3G binds to 

the single stranded DNA and deaminates cytosine residues, converting them to 

uracil. Adenine can hydrogen bond to uracil. Therefore, when the positive-sense, 

second strand of DNA is polymerized, adenine is base paired with the uracil. This 

base replacement is commonly referred to as G to A hypermutation because so 

many of the positive strand Gs in the HIV provirus are mutated to As by this 

process. This had been well documented in HIV-1 provirus sequences before the 

discovery of A3G [24,25]  

Hypermutation of the viral genome during reverse transcription can reduce 

the infectivity of HIV-1 in several proposed ways [26]. First, DNA repair enzymes 

known as uracil glycosylayses may digest the uracil-containing DNA, degrading 

incomplete reverse transcripts.  There is however no convincing evidence to date 

that uracil-containing incomplete reverse transcripts are degraded in the infected 

cell [27,28]. In addition, a second well-documented mechanism for a deaminase-

mediated antiviral effect involves mutations in hypermutated, integrated genomes 

that result in malformed proteins or code for premature stop codons [23,29,30].  
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A. Permissive 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
B. Non-Permissive 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1-6 APOBEC3 Virion Packaged Effect: Permissive cells (A) do not 
express APOBEC3 proteins. A vif+ and vif- virus produced from permissive 
cells is therefore fully infectious when infecting a subsequent target cell. Non-
permissive cells (B) do express APOBEC3 proteins. Vif- virions produced 
from non-permissive cells contain APOBEC3 proteins. These enzymes act in 
the target cell to interfere with the reverse transcription and integration. If vif is 
expressed in a non-permissive cell, it binds to the APOBEC3 proteins and 
targets them for degradation by the cellular proteosome. This reduces virion 
packaging of the enzymes and allows for normal reverse transcription and 
integration in the target cell.  
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There are conflicting reports about whether the in vivo level of A3G RNA in 

PBMCs correlates with HIV proviral genome hypermutation; one report shows a 

correlation supporting the theory that deaminase activity is involved in the 

reduction of HIV-1 infectivity [31] while another does not  [32]. 

 Besides these deaminase-dependent mechanisms, deaminase-

independent mechanisms for A3G reduction of HIV infectivity have also been 

proposed. Studies have demonstrated that enzymatically inactive A3G packaged 

into the virion is still capable of reducing the infectivity of HIV-1 [33-35]. 

Additionally, cell-free reverse transcription assays have shown that A3G can 

reduce viral DNA synthesis with no apparent editing [36]. This finding is 

corroborated by results showing A3G’s ability to block reverse transcription 

elongation and tRNA priming [37,38]. A3G has also been shown to affect 

integration independent of its deamination activity. Multiple reports have 

demonstrated that A3G packaged in a virion reduces the amount of HIV DNA 

that is integrated into the host genomes by binding to integrase or modifying the 

completed RT product [39,40]. These findings suggest that though A3G is a 

cytidine deaminase, that enzymatic activity may not be the only or the dominant 

mechanism it utilizes to reduce HIV infectivity. 

 HIV-1 has developed a mechanism to counteract the affects of 

APOBEC3G in the virion through the use of its accessory gene vif. When 

expressed, the viral infectivity factor (vif) binds to A3G [41,42] in the cytoplasm of 

producer cells and recruits Cullin5, elongin B and C in addition to other proteins 

involved in ubiquitin ligation [43]. This allows the A3G –vif complex to be 
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ubiquitinated and subsequently degraded, reducing the amount of A3G in the 

cell. The same mechanism has been described for reduction of A3F [44].  Vif’s 

activity thereby limits the amount of A3G and A3F that can be packaged in the 

virion. Though vif genes with reduced activity can be indentified in patient 

samples, they generally represent only a minority of the circulating virus in an 

infected patient [45,46] except for rare cases of long-term non-progressors [47] 

 A second, vif insensitive, anti-HIV-1 activity of A3G has also been 

described. Resting CD4+ T cells are known to be refractory to HIV-1 infection  

[48,49]. However, removal of A3G by siRNA renders resting cells susceptible to 

infection [50]. Further studies by Chiu et. al. suggest that A3G can exist in two 

forms in the cytoplasm of a T-cell; a “low molecular mass”, enzymatically active 

form and a higher order, “high molecular mass” enzymatically inactive  

ribonucleoprotein complex (Fig 1-7) [50]. Their results show that the cytoplasmic 

A3G in resting cells is of the enzymatically active form and restricts incoming HIV 

infection even if there is no APOBEC3 in the incoming virion. They conclude that 

activation of a T- cell moves the A3G to the high molecular mass form relieving 

the restriction on infection.  

 These studies show A3G to be a dynamic protein. However, there is little 

currently in the literature about the regulation of APOBEC3G, particularly in 

regards to its expression. Activation of a CD4+ T-cell alters the physical 

characteristics of the protein, but studies have also shown that some T cell 

activation signals also increase expression of A3G [51]. 

17 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HMM LMM 

 
 

 
Figure 1-7 APOBEC3G Target Cell Effect: Resting CD4+ T cells are 
restrictive to HIV infection in part due to the enzymatically active low 
molecular mass (LMM) APOBEC3G. APOBEC3G restricts reverse 
transcription and integration. After activation of the cell HIV is able to replicate 
since the APOBEC3G has shifted to a enzymatically inactive high molecular 
mass form (HMM) 
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 MAP kinase dependent pathways have been implicated in increases associated 

with some mitogens [52]. Promoter analysis has suggested that transcription 

factors Sp1 and Sp3 are also involved in regulating the basal transcription levels 

of A3G [53].  

In addition, several studies have described that treatment with interferons 

can regulate expression of A3G in liver cells, and cells of the myeloid lineage 

[54,55] and resting primary CD4+ T cells [56]. Promoter analysis studies 

concluded that the induction of APOBEC3s by interferons was likely cell type and 

cell-status specific [53]. Additional studies have supported that conclusion.  Peng 

et.al. showed that differentiation of myeloid cells to macrophages altered 

expression of APOBEC3G and renders the expression of A3G sensitive to 

interferon-alpha [54]. Similar findings were reported by Stopak et.al.  in regards 

to myeloid differentiation; it was shown that specific cytokines can regulate the 

expression of APOBEC3G differently in different cell types [57]. These findings 

suggest that the differentiation state of a cell may affect how A3Gs expression is 

regulated in that cell.  

 

CD4+ T Helper Subtypes 

 A  T cell that has never come into contact with its cognate antigen is 

known as a naïve T cell. Interaction of a naïve T cell with its specific antigen 

initiates a differentiation pathway in the cell. Differentiation from a precursor to an 

eventual effector cell plays a key role in the human immune system and in HIV 

infection. CD4+ T lymphocytes can be further divided into subtypes based on the 
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differentiation pathway they take after activation. These subtypes include 

regulatory T cells (Treg), T helper 17 cells (Th17), T helper type 1 (Th1) and T 

helper type 2 (Th2). Tregs serve to regulate/down-modulate the immune 

response [58] Th17 cells produce IL-17 to combat extracellular bacteria and fungi 

and have been implicated in pathogenesis of autoimmune diseases [59]. 

However, the best described of the subsets to date are Th1 and Th2 cells (Fig 1-

8).  

  Th1 cells differentiate from naïve CD4+ T cells when they come into 

contact with their cognate antigen and an abundance of cytokines IL-12 and IFN-

γ. Th2 cells arise when a naïve cell contacts its antigen and IL-4 predominates 

[60-62]. The signals received from these cytokines during differentiation activate 

or inhibit, depending on the signal, specific transcription factors that are pivotal to 

the differentiation pathway choice. T box expressed in T cells (Tbet) is an 

important transcription factor in directing a naïve cell to a Th1 phenotype [63]. 

GATA3 is responsible for controlling differentiation to a Th2 phenotype [64]. 

The differentiation to subtypes has arisen to provide protection from 

diverse pathogens. Th1 cells produce predominantly IFN-γ  when activated. This 

helps initiate a cell mediated response to intracellular pathogens by activating 

macrophages and other similar immune cell types, as well as acting in an 

autocrine loop to further stimulate Th1 cells. Th2 cells, however, produce many 

cytokines, predominantly IL-4, to activate B-cells as part of the adaptive humoral 

response to extracellular pathogens. [65]. 
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Figure 1-8 CD4+T Helper Subtypes: A naïve undifferentiated T Helper cell 
can differentiate to one of several phenotypes dependent upon the cytokines 
available in the milieu when the naïve cell encounters its cognate antigen. IL-
4 drives cells to a Th2 phenotype. IL-12 initiates Th1 differentiation. TGF-β1 
can drive cells towards a Treg phenotype and IL-23 can push a naïve cell 
towards a Th17. These differentiation pathways are controlled by the 
expression of specific master transcriptional regulators like GATA3, Tbet, 
STAT-3 and Foxp3. 
 
Adapted from Tato, CM and O’Shea, JJ Nature 441, 166 - 168 (11 May 
2006);  
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As CD4+ cells, both Th1 and Th2 cells are susceptible to HIV infection. 

However, their different phenotypes contribute to a different capacity for infection 

by HIV. Infection by HIV requires binding to the CD4 receptor and a co-receptor 

CCR5 or CXCR4. Th1 cells express greater amounts of cell surface CCR5 than 

do Th2 cells. Therefore, a virus that is R5 tropic would preferentially bind a Th1 

cell, relative to a Th2 cell [66]. Though the frequency of attachment of HIV to the 

two cell types may differ depending on the tropism of the virion, there are studies 

that demonstrate that the two cell types also differ in their ability to support post-

entry steps in the HIV life cycle. Reports have shown that HIV-1 spreads better 

through cultures of Th2 cells than through cultures of Th1 cells and that this is 

not due to a difference in cell entry [66] Others have found that Th2 cells 

replicate CCR5 tropic virus to a greater level than do Th1 cells, despite the 

increased expression of CCR5 on Th1 cells [67]. Still, others have found equal 

replication in both cell types [68]. 

 

Research Objectives 

  Previous studies have demonstrated that A3G has the capability to 

restrict vif-deleted HIV replication through experiments in which the protein is 

over-expressed in transformed cell lines [13,35,41,42]. These, however, are not 

the conditions HIV encounters in human CD4+ T cells in infected individuals as 

transient transfection produces much more A3G than is present in transformed T 

cells and much more than seen in primary T cells [69,70]. These differences and 

the current lack of knowledge regarding A3G and A3F regulation prompted this 
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study to determine what factors regulate the expression of A3G in primary cells 

and if sufficient A3G could be produced in primary cells to restrict vif-competent 

HIV-1 replication.   

The objectives of this study were to investigate: (1) what cellular factors control 

expression of A3G; (2) if sufficient A3G was expressed in some primary CD4+ T 

cells to overcome the activity of HIV vif and contribute to differences in infectious 

virus production from different cell types; and (3) whether sufficient cytoplasmic 

A3G remained in a restrictive form after cellular activation to restrict incoming 

infection with APOBEC3-negative virions.  We have found that the transcription 

factors Tbet and GATA3 are involved in regulating expression of A3G along with, 

or in addition to, IFN-γ. This is corroborated by our finding that Th1 cells express 

more A3G than Th2 cells. We also find that the expression of A3G in Th1 cells is 

sufficient to overcome the effects of HIV-1 vif and reduce the infectivity of virions 

produced from Th1 cells relative to Th2 cells. This reduction in virion infectivity 

was not due to hypermutation of the virus. This study also demonstrates that Th1 

cells are more capable of restricting incoming infection with APOBEC3-negative 

virions than are Th2 cells; this is seen even after cell activation and is due to their 

relatively greater expression of A3G. Interestingly, the restriction of HIV 

replication in Th1 cells also involves a relative increase in 2-LTR circle formation, 

which contrasts with the effect of virion-packaged A3G to reduce 2-LTR circle 

formation. 

 These findings provide novel insights into the regulation of an innate 

defense against this important pathogen and further demonstrate APOBEC3’s 
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capability of restricting HIV despite the action of vif. Our results clearly show that 

the A3G content and antiviral activity depends on the differentiation state of the 

cell that is producing virions or being infected. These findings aid in gaining an 

understanding of A3G biology that adds a new dimension to our understanding of 

HIV-1 pathogenesis and may assist in future therapeutic development. 
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CHAPTER II 

 

 

DIFFERENCES IN APOBEC3G EXPRESSION IN CD4+ T HELPER 
LYMPHOCYTE SUBTYPES MODULATE HIV-1 INFECTIVITY 

 
 

Abstract  

The cytidine deaminases APOBEC3G and APOBEC3F exert anti-HIV-1 activity 

that is countered by the HIV-1 vif protein. Based on potential transcription factor 

binding sites in their putative promoters, we hypothesized that expression of 

APOBEC3G and APOBEC3F would vary with T helper lymphocyte 

differentiation. Naïve CD4+ T lymphocytes were differentiated to T helper type 1 

(Th1) and 2 (Th2) effector cells by expression of transcription factors, Tbet and 

GATA3, respectively, as well as by cytokine polarization. APOBEC3G and 

APOBEC3F RNA levels, and APOBEC3G protein levels, were higher in Th1 than 

Th2 cells. T cell receptor stimulation further increased APOBEC3G and 

APOBEC3F expression in Tbet- and control-transduced, but not in GATA3-

transduced, cells. Neutralizing anti-interferon-γ antibodies reduced both basal 

and T cell receptor-stimulated APOBEC3G and APOBEC3F expression in Tbet- 

and control-transduced cells. HIV-1 produced from Th1 cells had more virion 

APOBEC3G, and decreased infectivity, compared to virions produced from Th2 

cells. These differences between Th1- and Th2-produced virions were greater for 

viruses lacking functional vif, but also seen with vif-positive viruses. Over-

expression of APOBEC3G in Th2 cells decreased the infectivity of virions 
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produced from Th2 cells and reduction of APOBEC3G in Th1 cells increased 

infectivity of virions produced from Th1 cells, consistent with a causal role for 

APOBEC3G in the infectivity difference. These results indicate that APOBEC3G 

and APOBEC3F levels vary physiologically during CD4+ T lymphocyte 

differentiation, that interferon-γ contributes to this modulation, and that this 

physiological regulation can cause changes in infectivity of progeny virions, even 

in the presence of HIV-1 vif.  

 

 

Introduction 

APOBEC3G (A3G) and APOBEC3F (A3F), two of several related cytidine 

deaminases, evolved to limit retrotransposition[71-73]. Although the HIV-1 

accessory protein vif depletes A3G and A3F from the producer cell, A3G and 

A3F are packaged into vif-deleted HIV-1 and significantly impair virion infectivity 

[13,44,74]. IFN-α, and certain cytokines and mitogens, have been implicated in 

increasing A3G and A3F expression in certain cell types [52,54-57,75]. However, 

little more is known regarding the transcriptional regulation of APOBEC3s in 

CD4+ T lymphocytes [53]. We noted several potential binding sites for GATA 

family transcription factors[76], in addition to previously observed interferon-

responsive elements[52,56,77], in the putative promoter regions of A3G and A3F. 

Since GATA3 is integral to the differentiation of naïve CD4+ T helper cells into 

Type 2 (Th2) effectors, we hypothesized that Type 1 (Th1) and Th2 effector 

lymphocytes differed in their expression of A3G and A3F.   
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After naive CD4+ T lymphocytes interact with their cognate antigen, IL-12 and 

interferon-γ IFN-γ signaling drive their differentiation to a Th1 effector phenotype. 

In contrast, IL-4 signaling after antigen recognition drives differentiation of naïve 

cells to a Th2 phenotype[60-62]. These subtypes of T helper cells produce 

distinct cytokine profiles after subsequent activation. Th1 cells, when activated, 

produce IFN-γ to activate cell-mediated immunity. Th2 cells, however, secrete IL-

4 and other cytokines which augment humoral immune responses. The 

differentiation to a Th1 or Th2 phenotype is dependent on the regulated 

expression of two master transcriptional regulators, respectively: T Box 

expressed in T cells (Tbet) and GATA3 [63,64,78]. Relative differences in the 

ability of Th1 versus Th2 subtypes to produce infectious wild-type HIV-1 progeny 

have been reported previously in several studies and were not explained by 

differences in expression of chemokine co-receptors for HIV entry[66,79-81].   

Although high level over-expression of A3G has been reported to decrease 

infectivity of vif-positive virions produced from cell lines in vitro [13,35,41,42], it is 

not known whether physiological increases in A3G or A3F can overcome the 

effect of vif in primary T cells. Reports conflict about whether differences in levels 

of A3G and A3F in lymphocytes in vivo are inversely associated with the level of 

wild-type HIV-1 RNA in plasma of untreated patients [82-84]. One of two reports 

has correlated provirus hypermutation attributable to A3G and A3F with plasma 

viral load, consistent with effects in vivo against at least some vif-positive 

viruses[31,32]. Since an effect of variation of levels of A3G and A3F in a 

physiologically relevant range on wild-type, vif-positive HIV-1 replication has not 
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yet been directly demonstrated, the present study aimed to define if such cellular 

differences occur during Th1 versus Th2 differentiation and may cause changes 

in HIV-1 infectivity that affect pathogenesis. 

 

Materials and Methods 

 

Cells  

Blood was obtained from healthy volunteers under a protocol approved by the 

Vanderbilt Institutional Review Board. PBMCs were isolated using Ficoll 

Hypaque (Amersham Biosciences). CD4+ cells were isolated by negative 

selection through magnetic separation using autoMacs (Miltenyi Biotec, Auburn, 

CA) or Robosep (StemCell Technologies, Vancouver, BC. Canada).  Naïve cells 

were subsequently purified by staining with CD45RO-FITC and CD25-PE (BD 

Pharmingen, San Jose, CA) followed by sorting on a FACSAria (Becton 

Dickinson, San Jose, CA). For activation and expansion, naïve cells were plated 

in wells coated with an anti-CD3 antibody (OKT3; American Type Culture 

Collection, Manassas, Virginia, United States)  in RPMI with 10% FBS 

supplemented with 1µg/ml soluble anti-CD28 antibodies (BD Biosciences 

Pharmingen) and 50U/mL human rIL-2 (obtained from Dr. Maurice Gately, 

Hoffmann - La Roche Inc. through the AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH) [85].  DMEM with 10% FBS was used to 

culture TZM-bl cells (obtained from Dr. John C. Kappes, Dr. Xiaoyun Wu and 
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Tranzyme Inc. through the NIH AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH)[86]. 

 

Transduction and T Helper cell differentiation 

Naïve CD4+ T cells were differentiated by transduction with HIV derived lentiviral 

vectors expressing Tbet, GATA3, or a control vector at the time of activation 

[87,88]. The vectors express GFP alone (control), or the transcription factor and 

GFP, from an IRES. After infection and activation, cells were expanded for 10 

days. Following expansion, cells were sorted on a FACSAria for GFP expression.  

 

To achieve Th1 cell differentiation using cytokine polarization, naïve CD4+ T cells 

were plated on anti-CD3 (OKT3) coated plates in RPMI supplemented with anti-

CD28 antibodies, 0.5µg/mL neutralizing anti-IL-4 antibody and 30ng/mL 

recombinant IL-12. For Th2 cell differentiation by cytokines, naïve cells were 

cultured in media supplemented with 2.5 µg/mL neutralizing anti-IFN-γ antibody 

and 50ng/mL recombinant IL-4. Cytokines and neutralizing antibodies were 

obtained from R&D Systems, Minneapolis, MN. The cells were expanded for 10 

days and differentiation was confirmed by intracellular cytokine staining for IL-4-

PE and IFN-γ-APC (BD Pharmingen, San Jose CA.) as previously described [87], 

as well as surface staining for CXCR3-PE and CRTh2-APC (BD Pharmingen, 

San Jose CA) [89-91]. To increase APOBEC3G expression in cytokine polarized 

Th2 cells, differentiating cultures were transduced with an APOBEC3G-

expressing HIV derived lentiviral vector at the time of activation. The vector was 
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constructed as other HIV derived lentiviral expression vectors previously 

described to express A3G and HSA as a marker of transduction [88]. To reduce 

APOBEC3G expression in cytokine polarized Th1 cells, fully differentiated Th1 

cells were activated for 48hrs with CD3/CD28 coated beads (Invitrogen) in the 

presence of 5µg and 10µg anti-IFN-γ antibody (R&D Systems) 

 

 

Real time PCR 

Cytoplasmic RNA was isolated from cell pellets (Qiagen RNeasy, Valencia, CA). 

RNA was quantified by spectrophotometry on a GeneQuant Pro (Amersham 

Biosciences, Piscataway, NJ). RNA concentrations were normalized and 

TaqMan quantitative real-time RT-PCR was performed (Applied Biosystems 

Prism 7000 Sequence Detection System, Foster City, CA). Reverse transcription 

used A3G and A3F specific primers with the sequences 5’- 

GCGGCCTTCAAGGAAACC-3’and 5’-

TTTTAAAGTGGAAGTAGAATATGTGTGGAT-3’, respectively. The primer-probe 

set used for APOBEC3G real-time PCR was: forward: 5’-

CTGCTGAACCAGCGCAGG-3’ reverse: 5’-GCGGCCTTCAAGGAAACC-3’ and 

probe: 5’-CTTTCTATGCAACCAGGCTCCACATAAAC-3’. The set for 

APOBEC3F was: forward: 5’-GCACCGCACGCTAAAGGA-3’, reverse 5’- 

TTTTAAAGTGGAAGTAGAATATGTGTGGAT -3’ and probe: 

5’TTCTCAGAAACCCGATGGAGGCAATG-3’. Values are expressed as copies of 
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target per million copies of GAPDH or calculated as fold change using the delta-

Ct method [92].   

 

Western Blotting 

Transduced or cytokine-derived T helper subtype cells were lysed in 50 mM 

HEPES, pH 7.4, 125 mM NaCl, 0.2% NP-40, 0.1 mM PMSF and EDTA-free 

protease inhibitor cocktail (CalBiochem, San Diego, CA). Protein concentrations 

were normalized based on results of a Bradford Assay (Bradford Assay reagent, 

Bio-Rad, Hercules, CA). Lysates were separated on a SDS-PAGE gel and 

proteins were subsequently transferred to a Trans-Blot nitrocellulose membrane 

(Bio-Rad, Hercules, CA). The membrane was then incubated with a polyclonal 

anti-APOBEC3G antibody [51], washed and probed with a goat anti-rabbit 

secondary antibody conjugated with Alexa Fluor 680 (Invitrogen Molecular 

Probes, Carlsbad, CA). Fluorescent signal was then measured using the Licor 

Odyssey system (LI-COR Biosciences, Lincoln, Nebraska). Membranes were 

subsequently probed with a monoclonal β-actin antibody (Sigma, St. Louis, MO) 

followed by a sheep anti-mouse secondary antibody conjugated with IR-Dye800 

(Rockland Immunochemicals, Philadelphia, PA). APOBEC3G expression is 

expressed as fluorescent intensity (Relative Light Units, RLU) of APOBEC3G 

bands divided by the fluorescent intensity (RLU) of the �-actin band[93]. For 

quantification of virion packaged APOBEC3G, virions were concentrated by 

centrifugation of culture supernatants through a 20% sucrose cushion at 125,000 

x g for 45 minutes and normalized for their p24 content with viral lysis buffer [50 
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mM Tris (pH 8.0), 40 mM KCl, 50 mM NaCl, 5 mM Na2EDTA, 10 mM DTT and 

0.1% (v/v) Triton X-100]. Lysates were blotted as described above with anit-

APOBEC3G and an anti-HIV-1 capsid p24 antibody derived from the 183-H12-

5C hybridomas (obtained from Dr. Bruce Chesebro and Dr. Hardy Chen through 

the NIH AIDS Research and Reference Reagent Program, Division of AIDS, 

NIAID, NIH[94]) . Data are expressed as fluorescent intensity (RLU) of 

APOBEC3G bands divided by the fluorescent intensity (RLU) of the HIV-1 CA 

p24.  

 

Viruses and infectivity  

HIV-1 was produced by calcium phosphate transfection of 293T cells using NL4-

3 (obtained from Dr. Malcom Martin through the NIH AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH) [95] and vif-deleted 

NL4-3 (a gift from the Chris Aiken Laboratory, constructed by Hevey and 

Donehower)[96]  After determination of the concentration of viral particles by 

HIV-1 CA p24 ELISA, 300ng of p24-equivalents of HIV-1 were spinoculated 

(300Xg, 30min) on 1X106 Th1, Th2, or TH2-A3G cells that had been activated by 

anti-CD3/CD28 coated beads (Invitrogen Dynal, Carlsbad, CA) for 60 hours [97]. 

Twelve hours after infection, cultures were washed twice with PBS. The cells 

were then resuspended in RPMI media containing 10uM didanosine (Sigma, St. 

Louis, MO) and 25uM zidovudine (Sigma, St. Louis, MO) to limit virus spread. 

After another 12 hrs in culture, supernatant fluids were collected for p24 antigen 

ELISA. Equal p24 concentrations of viral supernatant were then used to infect 
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the TZM-bl indicator cells[86] and luciferase activity was determined in cell 

lysates 60 hours after infection (Bright-Glo Luciferase assay substrate, Promega, 

Madison, WI; TopCount scintillation counter, Packard/Perkin Elmer, Waltham, 

MA). Data are shown as RLU per nanogram p24 CA added. 

 

Results 

Master Transcriptional Regulators Modulate APOBEC3G and APOBEC3F 
Expression 
 

Naïve CD4+ T cells from five individual HIV-1 negative donors were 

transduced with HIV-derived lentiviral vectors that expressed either GFP alone 

(control), or together with Tbet or GATA3.  Expression of GATA3 and Tbet were 

found to have opposing effects on the expression of A3G and A3F mRNA by 

qRT-PCR (Figure 2-1A and 2-1B). Whereas expression of GATA3 reduced the 

level of A3G and A3F, Tbet significantly increased the levels of both enzymes. 

Based on these results, confirmation that this was a statistically and biologically 

significant effect was sought by studying Th1 versus Th2 differentiation using 

more physiological cytokine polarization.  

 

CD4+ T Helper Type 2 Lymphocytes Express Lower Levels of APOBEC3G and 
APOBEC3F than T Helper Type 1 Lymphocytes  
 

 Th1 and Th2 cells were differentiated in vitro by culturing naïve cells from 

nine individual donors in polarizing cytokines. Staining for Th1- and Th2-

associated intracellular cytokines (IFN-γ and IL-4, respectively) and surface 

markers (CXCR3 and CRTh2, respectively) (Figure 2-2A), verified the 
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phenotypes of the cytokine-differentiated cells. Cytoplasmic RNA was isolated 

and the levels of A3G and A3F mRNA were determined relative to GAPDH 

expression by qRT-PCR. Th2 cells expressed significantly less A3G and A3F 

mRNA than Th1 cells (Figures 2-2B and 2-2C). Western blot analysis of the two 

helper cell subtypes revealed that Th2 cells also expressed lower levels of A3G  
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Figure 2-1. Tbet and GATA3 regulate A3G and A3F expression. Naïve CD4+ 
T cells were transduced with a Tbet or GATA3 expressing lentiviral vector. After 
sorting based on GFP marker gene expression, cytoplasmic RNA was isolated 
and used to determine mRNA levels of A3G (A) and A3F (B) by qRT-PCR. Data 
are expressed as copy number of A3G or A3F per 106 copies of GAPDH. Error 
bars represent median and interquartile range.  
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Figure 2-2A-C Th2 Cells Express Lower Levels of A3G and A3F than Th1. 
Naïve CD4+ T cells were derived to either a Th1 or Th2 phenotype using 
cytokines as described in Materials and Methods. The cells were then stained for 
intracellular cytokine production or surface markers (A) to confirm differentiation. 
Cytoplasmic RNA was isolated from the cells and used for qRT-PCR to 
determine the level of A3G (B) or A3F (C) mRNA. Error bars represent media 
and interquartile range(*p=0.0039).  
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Figure 2-2D and E  Th2 Cells Express Lower Levels of A3G and A3F than 
Th1. In vitro cytokine-derived Th1 or Th2 cells were also lysed and subjected to 
Western Blotting with a A3G specific antibody and levels of expression were 
quantified using a LICOR Odyssey system. A representative blot is shown (D) as 
well as the compilation of 8 individual donors (E) with quantities expressed as 
quantified intensity of A3G bands per quantified intensity of Beta-Actin bands of 
the same lane. Error bars represent median and interquartile range(*p=0.0078). 
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protein than Th1 cells (Figure 2-2D and 2-2E).  The statistically significant 

difference in median A3G mRNA levels, and in protein levels, between Th1 and 

Th2 cells was approximately 3-fold. 

 

Interferon-γ Regulates Basal and TCR-stimulated Expression of APOBEC3s in 
Tbet-transduced cells  
 

Since previous studies have observed that mitogen treatment increases 

A3G expression[52], we tested whether T Cell Receptor (TCR) stimulation would 

increase A3G and A3F expression in Tbet and GATA3 expressing T-cells. Levels 

of A3G and A3F RNAs increased after TCR stimulation of control vector- and 

Tbet-transduced cells, while this did not occur with TCR activation of GATA3-

transduced cells (Fig. 2-3A). A defining characteristic of Th1 cells is their ability to 

produce IFN-γ upon activation, which then exerts autocrine effects[98]. It is also 

known that GATA3 diminishes IFN-γ expression Therefore, the hypothesis that 

IFN-γ contributes to the observed increase in A3G and A3F expression after TCR 

stimulation was tested by performing TCR stimulation of control- and Tbet-

transduced cells in the absence or presence of a neutralizing anti- IFN-γ 

antibody. The presence of neutralizing anti- IFN-γ antibody blocked the TCR-

stimulated increased transcription of A3G and A3F, and reduced basal levels, in 

both control- and Tbet-transduced cells (Figure 2-3B and 2-3C). This suggests 

that IFN-γ contributes to maintaining the steady state level of A3G and A3F in 

Th1 cells, as well as in increasing expression after TCR activation.  

38 



 

 

 
Figure 2-3.Interferon Gamma regulates expression of A3G and A3F in Tbet 
but not GATA3 Transduced Cells. Control, Tbet and GATA3 transduced cells 
were TCR stimulated with CD3/CD28 beads. Cytoplasmic RNA was then isolated 
to determine the fold change in mRNA expression by qRT-PCR (A). Control (B) 
and Tbet (C) transduced cells were TCR stimulated or left unstimulated in the 
presence of a neutralizing anti-interferon gamma antibody. The fold change in 
mRNA expression was again determined by qRT-PCR. Incubation of TCR 
stimulated cells with isotype control does not differ significantly from stimulation 
alone (data not shown). Error bars represent standard deviation from the mean. 
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Increased Infectivity of HIV-1 Produced from CD4+ T Helper Type 2 Compared to 
Type 1 Lymphocytes 
 

We next tested whether the differential expression of APOBEC3s between 

Th1 and Th2 cells led to a difference in infectivity of HIV-1 virions produced from 

these cells. We infected TCR-activated, cytokine-derived T helper cells with vif-

deleted or vif-competent HIV-1(NL4-3) produced from 293T cells (which do not 

express A3G or A3F). Infected cells were washed 12 hours after infection and 

new media containing reverse transcriptase inhibitors (didanosine and 

zidovudine) was added to prevent spread past the first-round infected cells. 

Twelve hours after the new media was added, the culture supernatant fluids were 

collected, normalized by Gag p24 capsid antigen concentrations, and used to 

infect the TZM-bl indicator cell line. Infectivity was determined by luciferase 

activity. Figure 2-4A quantitates infectivity of wild-type and vif-deleted viruses 

produced from Th1 and Th2 cells from one of nine donors studied. Vif-negative 

viruses produced from Th2 cells from this individual were five-fold more 

infectious than those produced from Th1 cells, whereas vif-competent virions 

from Th2 cells were three-fold more infectious than those produced from Th1 

cells (Fig. 2-4A). The median infectivity of virions produced from Th1 cells of all 

nine donors studied was significantly less than that of viruses produced from all 

the different Th2 cells, whether vif was present or not (Fig. 2-4B and 2-4C). The 

magnitude of this difference varied across different individual donors’ paired Th1 

and Th2 cells, whether vif was present or not (Figs. 2-4B and 2-4C; each donor’s 

Th1 and Th2 cells are linked by a line).  A3G protein levels also varied, with Th1  
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Figure 2-4A-C. Increased Infectivity of HIV-1 produced from Th2 cells 
compared to Th1 cells. vif-competent (+) or vif-deleted (-) HIV-1(NL4-3) was 
used to infect cultures of Th1 and Th2 cells as described in Materials and 
Methods. Infectivity of the virions produced was determined by infection of the 
TZM-bl indicator cell line and determination of luciferase activity. An example 
from an individual donor is shown (A). The experiment was repeated on a total of 
seven donors with both the vif-competent (B) and vif-deleted virus(C).  Error bars 
represent median and interquartile range of difference in infectivity of virions 
produced from Th1 cells versus Th2 cells for vif-positive virus (B; *p=.031) and 
vif-negative virus (C; **p=.016).  
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Figure 2-4D and E. Increased Infectivity of HIV-1 produced from Th2 cells 
compared to Th1 cells.To test for correlation individual donor cells’ levels of 
A3G protein expression were plotted against infectivity of the vif-competent and 
vif-deleted virions produced from that individual’s Th1 cells (D) and Th2 cells (E).  
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cells having higher levels and a broader range of A3G protein than Th2 cells 

(comparing X-axis in Figures 4 2-4D and 2-4E). Despite the small number of 

subjects and variability of the assays, there was a suggestion of an inverse 

correlation between A3G protein expression and infectivity of virions produced 

from Th1 (+vif r =-.16, -vif r=-.18; all p >0.05) or Th2 (+vif r = -.28, -vif r= -.01; all 

p>0.05). We amplified a pol gene fragment from the TZM-bl cells infected for 60 

hours with Th1- or Th2-produced vif-negative virions to quantify if effects of 

cytidine deamination differed by cell type. Hypermutation was not seen in HIV pol 

DNA amplified from cells infected with virus produced from either cell type (data 

not shown), using either population sequencing subsequent to standard PCR or 

3D PCR[99]. Although these data are consistent with direct effects of A3G and 

A3F on infectivity of vif-competent HIV as well as vif-defective HIV-1, it is 

possible that other variables may affect infectivity of virions produced from these 

cytokine-polarized cells. 

 

Changes in APOBEC3G cause differences in infectivity of Th1- versus Th2-
produced HIV-1 
 

To confirm a causal role for A3G in the observed virion infectivity 

differences we modulated expression of A3G in Th1 and Th2 cells by increasing 

expression in Th2 cells and decreasing expression in Th1 cells. We increased 

expression of A3G in cytokine-derived Th2 cells by transduction with a A3G-

expressing lentiviral vector or an “empty” control vector for comparison. 

Transduction of Th2 cells with the A3G-expressing vector increased A3G levels 4 

fold over Th1 cells and 7 fold over Th2 cells (data not shown). After expansion, 
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the unsorted population of A3G vector-transduced Th2 cells (Th2-A3G), as well 

as Th1 and Th2 cells, were infected. The vif-deleted virions produced from Th1, 

Th2 and Th2-A3G cells were concentrated and the relative levels of virion 

packaged A3G were determined by Western blotting. Figure 2-5A demonstrates 

that vif-deleted virions produced from Th1 cells contain more A3G than virions 

produced from Th2 cells. Th2-A3G cells produced virions with more packaged 

A3G than Th2 cells (Fig. 2-5A). Transduction with the empty vector (Th2-Empty) 

caused no increase in cellular or virion A3G levels, relative to untransduced Th2 

cells (data not shown). Virions produced from the Th2-A3G cells were 

significantly less infectious than those produced from the Th2 cells transduced 

with the “empty” control vector (“Th2-Empty”) (Fig 2-5B). There was an inverse 

correlation between virion (and cellular) A3G levels by western blot and virion 

infectivity.  

Neutralizing anti-IFN-γ antibody was used to decrease expression of A3G 

in Th1 cells (as seen in Fig 2-3). Incubation with neutralizing anti-IFN-γ antibody, 

concurrent with activation, reduced the expression of A3G in Th1 cells nearly 2 

fold (relative to Th1 cells incubated with an isotype control antibody) (Fig 2-5C, 

open bars). Virions produced from Th1 cells with reduced A3G had increased 

infectivity (Figure 2-5C, closed bars). Taken together, these data indicate that 

variation in infectivity of virions produced from cells is related to differences in 

A3G expression. 
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Figure 2-5. Evidence supporting a direct effect of A3G on relative infectivity 
of HIV-1 virions produced from Th1 and Th2 cells. In vitro cytokine-derived 
Th2 cells were transduced with a control lentiviral vector (Th2-Empty) or a vector 
expressing A3G (Th2-A3G). Protein levels of A3G packaged into virions 
produced from Th1, Th2 and A3G-transduced Th2 cells were determined by 
Western Blotting on the LICOR Odyssey system (Relative Light Units (RLU) of 
A3G as normalized by HIV-1 p24 antigen) Shown is a representative blot of three 
experiments with similar trends. (A). The infectivity of vif-deleted HIV-1(NL4-3) 
virions produced from those cells from 6 donors was determined using the TZM-
bl indicator cell line. Error bars represent median and interquartile range (*p=.03). 
(B) In vitro cytokine-derived Th1 cells were activated and incubated with either an 
isotype control or neutralizing IFN-γ antibodies for 48 hours. Protein 
concentrations were determined by Western blot (C,open bars). The infectivity of 
vif-deleted HIV-1(NL4-3) virions produced from those cells was determined using 
the TZM-bl indicator cell line.(C, closed bars) 
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Discussion  

 In this study, we have shown that the expression and anti-HIV function of 

A3G and A3F vary with naïve CD4+ T helper cell differentiation to Th1 and Th2 

effector cells. Cytokine polarization of naïve cells into Th1 and Th2 effectors had 

similar effects to transduction of naïve cells with Tbet or GATA3. In both cases, 

decreased expression of A3G and A3F was seen in Th2 cells relative to Th1 

cells. These complementary methods demonstrate that the differences observed 

in the Tbet and GATA3 transduced cells were due to transcription regulated by 

those factors and not an artifact of over-expression. Such an opposing effect of 

differentiation on expression of A3G and A3F is consistent with earlier findings of 

opposing effects on the expression of several other genes in these two T helper 

subtypes [63,100]. This A3G and A3F expression difference between Th1 and 

Th2 cells affected wild type, as well as vif-deleted, HIV-1 infectivity.  

Expression of Tbet in naïve helper cells has been shown to lead to 

production of IFN-γ [63] In turn, that IFN-γ can act in an autocrine manner on Th1 

cells[98].  Extracellular neutralization of IFN-γ secreted by Tbet-transduced and 

control-transduced cells blocked basal and TCR-stimulated A3G and A3F 

expression. This is consistent with an autocrine effect of IFN-γ regulating A3G 

and A3F expression.  GATA3 is known to inhibit the production of IFN-γ [101] and 

no effect was observed with  neutralizing anti-IFN-γ antibody or TCR stimulation 

of GATA3-transduced cells. This may be due to a GATA3-mediated block to 

production of IFN-γor a direct effect of GATA3 binding to the A3G and A3F 

promoters. These possibilities remain to be directly tested. 
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 We verified that the difference in expression in cytokine-derived T helper 

cells led to a biological difference: infectivity of HIV-1 virions produced from Th1 

and Th2 effectors varied inversely with their relative levels of cellular and virion 

A3G and A3F.  Removal of vif resulted in reduced infectivity of virions produced 

from both cell types. The greater reduction of infectivity of virions produced from 

the Th1 cells is consistent with the relative greater APOBEC3 levels in those 

cells. Over-expression of A3G in Th2 cells reversed the relative decrease in 

virion A3G and the consequent relative increase in infectivity of virions produced 

from Th2 cells. The magnitude of the effect of the ectopically-expressed A3G is 

likely underestimated here, as not every cell in this population is expressing the 

transduced A3G. In addition, reduction of A3G in Th1 cells also correlated with 

an increase in infectivity. We used neutralizing anti-IFN-γ antibody to decrease 

A3G expression in Th1 cells because shRNA against A3G or nucleofection (for 

introduction of siRNA against A3G) proved toxic to in vitro-derived Th1 cells, 

which are more prone to cell death than other cultured T cells [102-104].These 

results are consistent with the variation in virion infectivity being caused, at least 

in part, by the differences in cellular and therefore virion A3G, rather than other 

effects of the cytokine derivation.  

 In this study, we observed reduction of infectivity associated with 

increased amounts of readily detectable virion A3G without identification of any 

G-to-A hypermutation. Although A3G and A3F are cytidine deaminases, there is 

extensive evidence that A3G also reduces HIV infectivity through other 

mechanisms that may be the major contributor to A3G’s inhibition of reverse 
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transcription[32-35]. Previous studies that have observed A3G-related 

hypermutation in vitro differed from the short term virus replication allowed here, 

and instead used prolonged serial passage of HIV in transformed cell lines over-

expressing A3G[30,105]. Therefore, it is likely that the difference in infectivity 

based on cell source of virus observed here is due to the other antiviral activities 

of A3G that are not measured by hypermutation. 

 A major issue concerning the role of A3G and A3F in HIV-1 pathogenesis 

is the question of whether in vivo variation in these cellular restriction factors 

affects replication of wild type (eg, vif-competent) HIV-1. Although high level 

over-expression of A3G does impair replication of wild type HIV-1 in cell lines 

[13], more recent studies have not conclusively determined if there is a 

correlation between the variation in cellular A3G expression observed across 

HIV-infected individuals’ peripheral blood mononuclear cells and the plasma viral 

load in these subjects [31,82,83]. The present results clearly indicate that 

physiological variations in A3G levels in primary cells are inversely correlated 

with A3G content and infectivity of wild type virions. This more direct measure of 

biological relevance observed here supports the conclusions of earlier reports 

showing that greater A3G activity was associated with lower viral load set-

point[31], and suggests that continued investigation of the effect of APOBEC3 

restriction factors on vif-competent HIV-1 pathogenesis in vivo is warranted. 

The present results are also consistent with earlier reports that HIV-1 

spreads better through cultures of Th2 cells than Th1 cells [80]. This effect was 

most apparent in the prior studies using CXCR4 (X4) tropic viruses[81], such as 
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the viruses used here, and not explained by differences in expression of that co-

receptor between Th1 and Th2 cells. The present results suggest, however, that 

virions produced from Th2 cells may be relatively more infectious than those 

produced from Th1 cells because of their relatively lower A3G content. In an 

earlier study [81], CCR5-tropic HIV replicated equally well in Th1 and Th2 cells. 

Th1 cells express higher levels of CCR5 coreceptor than Th2 cells[63,66]. 

Indeed, X4-tropic viruses were chosen for study here to minimize possible 

difficulty in interpretation of opposing effects of both increased CCR5 co-receptor 

expression and increased A3G expression in Th1 cell cultures, though further 

investigation into how co-receptor tropism affects infectivity is certainly 

warranted. Moreover, the wide inter-individual variation in A3G and A3F 

expression in our results (a 14 fold range in A3G protein expression in Th1 cells 

and a four fold range in Th2 cells) suggests that there may be polymorphisms in 

the regulatory regions of the APOBEC3 promoters [106], or in factors that can 

modulate A3G and A3F expression or function. We hypothesize that this 

variation in A3G and A3F may contribute to the wide variation of progression time 

to AIDS among different patients. The Th1/Th2 cell balance may also vary across 

individuals based on several factors. Autoimmunity may lead to a Th1 cell 

skewing and parasitic infections may cause aTh2 cell predominance. Our 

findings suggest that a shift in this balance prior to, or during, HIV-1 infection may 

lead to compounded pathogenic effects. Decreased relative expression of A3G 

and A3F in Th2 cells may lead to a greater rate of decrease in that cellular pool, 

decreasing CD4+ help to B cells for antibody production. Also, an individual’s 
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variation in Th1/Th2 balance may lead to differences in HIV-1 genetic variation 

due to A3G- and A3F-mediated sub-lethal cytidine deamination of viral genomes 

over repeated cycles of infection [107]. 

The present study indicates that the regulation of expression of A3G and 

A3F, and their functional effect on HIV-1 infectivity, depends on the cytokine-

regulated differentiation state of CD4+ T helper cells. Further molecular 

characterization of signals that modulate A3G and A3F expression will be 

needed. The current results provide compelling evidence that increasing A3G in 

primary T cells impairs HIV-1 replication despite the presence of Vif. This 

validates inducing higher A3G expression as a novel strategy for prevention of 

infection and/or treatment of the vif-positive viruses present in infected humans. 

50 



 

CHAPTER III 

 

 

CYTOPLASMIC APOBEC3G RESTRICTS INCOMING VIF POSITIVE HIV-1 
AND INCREASES 2-LTR CIRCLE FORMATION IN ACTIVATED T HELPER 

SUBTYPE CELLS 
 
 

Abstract 

 Cytoplasmic APOBEC3G (A3G) blocks wild type HIV-1 infection in resting 

blood CD4+ T lymphocytes. It is not known if cytoplasmic APOBEC3G has 

residual activity in activated T cells, even though virion-packaged APOBEC3G 

does restrict HIV-1 in activated T cells. Because APOBEC3G expression is 

greater in activated CD4+ T helper type 1 (Th1) than T helper type 2 (Th2) 

lymphocytes, we hypothesized that residual target cell restriction of incoming Vif-

positive virions that lack APOBEC3G would be greater in Th1 than Th2 

lymphocytes. Infection of activated Th1 cells with APOBEC3-negative virions did 

result in decreased amounts of early and late reverse transcription products, and 

integrated virus, relative to activated Th2 cells. Two-LTR circles, which are 

formed in the nucleus when reverse transcripts do not integrate, were increased 

after APOBEC3-negative virus infection of activated Th1 cells, relative to 

infection of activated Th2 cells. In contrast, 2-LTR circle forms were decreased 

after infection of APOBEC3G negative cells with APOBEC3G-containing virions 

relative to APOBEC3G-negative virions, and with Th1 cell-produced virions 

relative to Th2 cell-produced virions. Increasing APOBEC3G in Th2 cells and 
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decreasing APOBEC3G in Th1 cells modulated the target cell phenotypes, 

indicating causation by APOBEC3G. The comparison between activated Th1 and 

Th2 cells indicates that cytoplasmic APOBEC3G in activated Th1 cells partially 

restricts reverse transcription and integration of incoming Vif-positive, 

APOBEC3G-negative HIV-1. The differing effects of cytoplasmic and virion-

packaged APOBEC3G on 2-LTR circle formation indicate a difference in their 

antiviral mechanisms. 

 

Introduction 

Two separate A3G activities that restrict HIV-1 have been described. A3G 

packaged into virions released from a producer cell exerts antiviral effects during 

both reverse transcription and integration in the subsequent target cell [13,23]. 

This A3G activity is antagonized by HIV-1 vif limiting packaging in the producer 

cell [43]. Endogenous cytoplasmic A3G in resting CD4+ T cells can also restrict 

the replication of an incoming APOBEC3G-free HIV-1 virion; this occurs even if 

the virus encodes a functional vif gene [50]. Chiu, et al. showed that siRNA 

knock-down of this endogenous A3G, which is in a “low molecular mass” form in 

resting T cells, removed this restriction. Cellular activation or specific cytokine 

signaling moved A3G from the “low molecular mass” form to a “high molecular 

mass” complex and abrogated this antiviral effect [50,57]. The phenomenon of 

cytoplasmic A3G transitioning to a higher order complex and losing the ability to 

restrict incoming HIV-1 replication was also demonstrated when monocytes 

differentiated to macrophages and immature dendritic cells matured 
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[57,108,109].  

The CD4+ T cell is a major target of HIV-1. There are several subtypes of 

CD4+ T-cells including T Helper Type 1 (Th1), T Helper Type 2 (Th2) [110]. In 

the previous chapter, we demonstrated that these two CD4+ T cell subtypes 

differ in the level of expression of A3G and in the infectivity/A3G content of HIV-1 

virions produced from them [111]. Given this difference in cellular A3G 

expression, we tested whether Th1 target cells would better restrict replication of 

incoming HIV-1 than would Th2 cells. The comparison indicates that endogenous 

A3G can also play a role in partially restricting HIV-1 infection in activated CD4+ 

T cells. 

 

Materials and Methods 

Human Subjects 

 Peripheral blood was obtained with informed consent from healthy 

volunteers, under a protocol approved by the Vanderbilt Institutional Review 

Board. 

Cells 

Peripheral blood mononuclear cells were isolated from blood using Ficoll-

Hypaque (Amersham Biosciences) gradients. CD4+ cells were isolated by 

negative selection through magnetic separation using autoMacs (Miltenyi Biotec, 

Auburn, CA) or Robosep (StemCell Technologies, Vancouver, BC. Canada).  

Naïve cells were subsequently purified by staining with CD45RO-FITC and 

CD25-PE (BD Pharmingen, San Jose, CA) followed by sorting on a FACSAria 
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(Becton Dickinson, San Jose, CA). Naïve CD4+ T cells were differentiated to Th1 

cells using anti-CD3 (OKT3; ATCC)-coated plates in RPMI supplemented with 

anti-CD28 antibodies (BD Biosciences Pharmingen), 0.5µg/mL neutralizing anti-

IL-4 antibody and 30ng/mL recombinant IL-12. For Th2 cell differentiation, naïve 

cells were cultured on the same coated plates in media supplemented with 

2.5µg/mL neutralizing anti-IFN-γ antibody and 50ng/mL recombinant IL-4. 

Cytokines and neutralizing antibodies were obtained from R&D Systems, 

Minneapolis, MN. The cells were expanded for 10 days and differentiation was 

confirmed by intracellular cytokine staining for IL-4-PE and IFN-γ-APC (BD 

Pharmingen), as well as surface staining for CXCR3-PE and CRTh2-APC (BD 

Pharmingen) [87,89,91]. To increase APOBEC3G expression in cytokine-

polarized Th2 cells, differentiating cultures were transduced with an APOBEC3G-

expressing, HIV-derived lentiviral vector at the time of activation. The vector 

expressed APOBEC3G, and human serum albumin (HSA) as a marker of 

transduction [88,111]. To reduce APOBEC3G expression in cytokine-polarized 

Th1 cells, fully differentiated Th1 cells were activated for 48hrs with anti-

CD3/CD28 coated beads (Invitrogen) in the presence of 10µg anti-IFN-γ antibody 

[111] (R&D Systems). 

 

Viruses and Infection  

VSV-G-pseudotyped, GFP-expressing HIV-1 was produced by 

polyethylenimine (PEI) transfection [112] of 293T cells with a NL4-3 recombinant 

with GFP replacing nef as well as phCMV-VSV-G.  Prior to infection, viral 
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supernatants were treated with 100u DNaseI (Bio-Rad) for one hour. Cells were 

activated for 48 hours with anti-CD3/CD28 antibody coated beads (Invitrogen), 

then treated with virus (400ng of p24) for 4hrs, washed and resuspended in fresh 

RPMI media with 10%FBS, 1%Penicillin/Streptomycin and 50U/ml IL-2.  Cells 

were fixed in 2% paraformaldehyde 48 hours post infection and analyzed for the 

percentage of cells expressing GFP on a FACSAria cell sorter/cytometer (Becton 

Dickinson). 

 

Virions with or without packaged A3G were produced by PEI transfection 

of 293T cells with a vif-deleted NL4-3 provirus construct (15 ng of DNA) either 

with or without an A3G expression plasmid (3 ng). Th1 and Th2 produced virions 

were generated as previously described [111].  

 

Polymerase chain reactions 

Infected T helper cells were collected at 2 4, 18, 24, and 48 hours after 

infection, and washed in PBS. Cellular DNA was isolated using the DNeasy kit 

(Qiagen). DNA was quantified by spectrophotometry on a GeneQuant Pro 

(Amersham Biosciences) and normalized prior to use in qPCR assays on an ABI 

Prism 7000 (Applied Biosystems). To detect early RT products the primers used 

were 5'-GTGCCCGTCTGTTGTGTGAC-3' and 5'-

GGCGCCACTGCTAGAGATTT-3', in conjunction with a probe 5'-(FAM)-

CTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGG-(TAMRA)-3'. Late RT 

products were detected using primers 5'-TGTGTGCCCGTCTGTTGTGT-3' and 
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5'-GAGTCCTGCGTCGAGAGAGC-3' with probe 5'-(FAM)-

CAGTGGCGCCCGAACAGGGA-(TAMRA)-3' [113,114]. For 2-LTR 

quantification, DNA isolated at 48 hours after infection was normalized and used 

in qPCR . The forward primer was (MH535) 5’-

AACTAGGGAACCCACTGCTTAAG-3’, the reverse primer was (MH536) 5’-

TCCACAGATCAAGGATATCTTGTC-3’, and the probe was (MH603) 5’-(FAM) 

ACACTACTTGAAGCACTCAAGGCAAGCTTT-(TAMRA)-3’[114].  For 

quantification of GFP DNA following reverse transcription, the forward primer 

used was 5’AAGCTGACCCTGAAGTTCATCTG-3’, the reverse primer was 5’-

TTGAAGAAGTCGTGCTGCTTCAT-3’ and the probe was 5’ (FAM)-

ACCGGCAAGCTGC-(MGB NFQ) 3’ [115]. 

 

Cellular Fractionation 

Resting cells, or cells that were activated by anti-CD3/CD28 antibody for 

48 hours, were lysed (50 mM HEPES, pH 7.4, 125 mM NaCl, 0.2% NP-40, 

0.1 mM PMSF and EDTA-free protease inhibitor cocktail (CalBiochem, San 

Diego, CA) and subjected to ultracentrifugation as previously described (125,000 

X g, TLA 55 rotor, Beckman Coulter) [109]. Equal volumes of supernatant and 

pellet were subjected to Western blotting using polyclonal anti-APOBEC3G 

antibody [51], with a goat anti-rabbit secondary antibody conjugated with Alexa 

Fluor 680 (Invitrogen Molecular Probes, Carlsbad, CA). Band intensity was 

quantified using the Odyssey (LI-COR Biosciences, Lincoln, Nebraska). Values 
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are expressed as the percent relative light units (RLUs) of supernatant band, 

relative to total RLUs for both supernatant and pellet.  

Cellular lysates of activated Th1 and Th2 cells were subjected to 

centrifugation through a 4%-40% sucrose gradient as previously described [116]. 

Gradients were centrifuged overnight at 32,000 RPM in a SW-41 rotor 

(Beckman), and then 12 one milliliter fractions were collected, precipitated by 

trichloroacetic acid, resuspended in SDS sample buffer, and subjected to 

Western blotting. Values are presented as the percent RLUs in each fraction 

relative to the total RLUs for each sample. 

 

Results 

 

HIV-1 infection of, and integration into, CD4+ T helper type 1 cells relative to T 
helper type 2 cells. 
 

Following 48 hours of T cell receptor activation by anti- CD3/CD28 antibody, 

cytokine-polarized Th1 and Th2 cell cultures were infected with VSV-G 

pseudotyped, vif-competent HIV-1 expressing GFP [117-119].  Forty-eight hours 

after infection, the percentage of cells with integrated HIV genomes was 

determined by GFP expression using FACS analysis. In cells from each of three 

donors, infection of Th2 cells yielded greater GFP signal than did infection of Th1 

cells (Figure 3-1A).  

Since the block to reverse transcription in resting CD4+ T cells has been 

attributed to the “low molecular mass” form of A3G [50], we separated A3G forms 
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in resting and activated Th subtype cells by two methods. Sucrose gradient 

density centrifugation was validated previously to separate A3G forms [116]. 

Density gradients of activated Th1 cell lysates confirmed that 39% of the total 

A3G in activated Th1 cells was in the two lower density fractions, and 23% was 

in the two highest density fractions (Figure 3-1B). There was 1.5-fold more lower-

density A3G in activated Th1 cells than activated Th2 cells (data not shown).  A 

second method of characterizing A3G forms was also used. “Low molecular 

mass” A3G has previously been shown to remain in the supernatant after 

ultracentrifugation [109]. After ultracentrifugation, activated Th1 cell lysates had 

less supernatant A3G than did resting Th1 cells. However, a substantial 

proportion of A3G remained in the supernatant of activated Th1 cell lysates after 

ultracentrifugation. A similar difference was seen after ultracentrifugation of 

resting versus activated Th2 cell lysates, although the amount of total and 

supernatant A3G was lower in the Th2 than Th1 lysates (data not shown).  

 

58 



 

 
Figure 3-1. HIV-1 infection / integration is decreased in CD4+ T helper type 
1, relative to T helper type 2, lymphocytes. (A) Cytokine polarized Th1 and 
Th2 cells derived from three individual donors’ naïve cells were activated with 
anti- CD3/CD28 antibody for 48 hours, then infected with VSV-G, vif-positive 
HIV-GFP. Virus was washed off after 4 hours and GFP positive cells, reflecting 
cells with integrated provirus, were counted 48 hours post infection. A smaller 
percentage of the Th1 cell population is GFP+ than the Th2 cell population.  
(B) Th1 cells were activated with anti- CD3/CD28 antibody for 48 hours then 
lysed and subjected to sucrose gradient separation as described in Materials and 
Methods. Subsequent to activation some A3G still remains in lower density 
fractions (fractions 4, 5, and 6). 
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Reverse transcription in CD4+ T helper type 1, relative to T helper type 2, 
lymphocytes. 
 

Given the reduced amount of GFP from integrated virus in Th1 cells, we 

next determined at which step of infection this restriction was occurring relative to 

Th2 cells. A qPCR assay for early and late reverse transcription products showed 

that the two cell types differed in their ability to support reverse transcription 

(Figure 3-2). Figures 3-2A and 3-2B indicate that Th1 cells lag behind Th2 cells 

from one donor in the amount of both early and late RT products formed. There 

was a significant difference at a single time point (18 hours after infection) across 

multiple donors in both early and late RT products (Figures 3-2C and 3-2D), as 

well as a significant difference between Th1 and Th2 early and late RT products 

from 3 replicate infections of a single donor’s cells (Figure 3-2E).  

 

2-LTR circle formation in CD4+ T helper type 1, relative to T helper type 2, 
lymphocytes. 
 

The measurement of 2-LTR circles formed following HIV-1 infection 

serves as a marker for nuclear entry of reverse transcripts and abortive 

integration events [9]. We studied whether 2-LTR circle formation differed after 

A3G-free virion infection of activated Th1 versus Th2 cells. Infection of activated 

Th1 cells with A3G-free virions led to significantly more 2-LTR circles than did 

infection of activated Th2 cells (Figure 3-3A). This is consistent with relatively 

more reverse transcripts not integrating and forming abortive 2-LTR circle forms 

in activated Th1 than Th2 cells. Previous studies reported, however, that A3G 

packaged in the virion reduced 2-LTR circle formation as well as decreasing 
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integration, consistent with impaired host cell-mediated 2-LTR circle formation 

and integration [39,120]. Therefore, we also evaluated effects of virion-packaged 

A3G on 2-LTR circle formation.  

To study virion packaged A3G, TZM-bl cells, which do not contain A3G, 

were infected with vif-deleted virions that did, or did not, contain A3G. These 

were produced by transfection of 293T cells, with or without a co-transfected 

A3G expression plasmid. Infection with vif-deleted viruses containing A3G led to 

fewer 2-LTR circles, relative to TZM-bl cells infected with A3G-free virions. 

(Figure 3-3B). Fewer 2-LTR circles were also seen in TZM-bl cells infected with 

Th1 cell-produced virions than in those infected with Th2 cell-produced virions 

(Figure 3-3C), consistent with the previously documented greater packaging of 

A3G in Th1 cell-produced virions [111]. Thus, virion-packaged A3G and 

cytoplasmic A3G have different effects on 2-LTR circle formation.   
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Figure 3-2A-D. Reverse transcription is decreased in CD4+ T helper type 1, 
relative to T helper type 2, lymphocytes.  
(A and B) Following infection with VSV-G, vif-positive HIV-GFP, DNA from Th1 
and Th2 cells was isolated and assayed by qPCR for early (A) and late (B) RT 
products. DNA was collected at 2, 4, 18, 24 and 48 hours post infection from a 
single donor’s cells. Th1 cells produced fewer reverse transcription products over 
time than did the Th2 cells. (C and D) Reverse transcription products were also 
measured after VSV-G, vif-positive HIV-GFP infection of Th1 and Th2 cells 
derived from multiple donors’ naïve cells at a single time point,18 hours post 
infection (C, early RT products, and D, late RT products; medians and 
interquartile range are indicated; *p≤ .02, Mann Whitney U Test). Th1 cell RT 
products were decreased relative to Th2 cell RT products. 
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Figure 3-2E. Reverse transcription is decreased in CD4+ T helper type 1, 
relative to T helper type 2, lymphocytes. (E)Early and late RT products were 
also assayed after triplicate VSV-G, vif-positive HIV-GFP infections of Th1 and 
Th2 cells derived from a single donor’s naïve cells at 18 hours post infection (E, 
mean and standard error are indicated). Th1 cells had fewer early and late 
reverse transcription products at 18 hours following infection.(*p≤ .02, Mann 
Whitney U Test).  
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Figure 3-3. 2-LTR circle formation is increased in CD4+ T helper type 1, 
relative to T helper type 2, lymphocytes after vif-positive HIV-1 infection.   
Increased cytoplasmic A3G led to increased 2-LTR circle formation (A), while 
increased virion-packaged A3G caused increased 2-LTR circle formation (B and 
C).(A) Th1 and Th2 cells derived four individual donors were infected with VSV-
G, vif-positive HIV-GFP. Forty-eight hours after infection, DNA from infected Th1 
and Th2 cells was assayed by qPCR for 2-LTR circles, which were found to be 
increased in Th1, relative to Th2, cells. Means and standard errors of the four 
donors are shown (*p< .03, Mann Whitney U Test). (B) TZM-bl cells, which lack 
APOBEC3G, were infected with vif-deleted virus with or without packaged A3G. 
Forty-eight hours after infection, DNA was isolated and assayed for 2-LTR circle 
formation by qPCR. Virions containing A3G produced fewer 2-LTR circles. 
Means and standard errors of duplicate experiments are shown. (C) TZM-bl cells 
were infected with vif-deleted HIV-1 produced from Th1 or Th2 cells. Th1-
produced virions led to fewer 2-LTR circles.  

64 



 

APOBEC3G expression modulates reverse transcription, 2-LTR circle formation, 
and integration 
 

To determine whether the difference in cytoplasmic A3G between Th1 and 

Th2 lymphocytes causes the observed difference in reverse transcription, 2-LTR 

circle formation and integration between these cells when infected, the 

expression level of A3G was altered in each cell type. Retroviral transduction of 

A3G was used to increase A3G expression in Th2 cells, as previously reported 

[111]. Since the A3G-transducing vector was derived from HIV and the virus 

used for subsequent infection expresses GFP in place of nef, GFP DNA was 

quantified rather than using the early and late HIV-1 reverse transcription product 

primers. The amount of reverse transcribed GFP DNA was reduced in Th2 cells 

over-expressing A3G relative to control vector-transduced Th2 cells (Figure 3-4A 

and 3-4B). The formation of 2-LTR circles was also increased after infection in 

Th2 cells over-expressing A3G relative to control vector-transduced cells (Figure 

3-4C). A3G over-expression in Th2 cells also reduced the amount of integrated 

genomes as measured by GFP production (Figure 3-4D). 

As further confirmation of the role of endogenous cytoplasmic A3G in 

modulating reverse transcription, 2-LTR circle formation and integration, Th1 

cells were incubated with a neutralizing anti-IFN-γ antibody previously 

documented to reduce A3G expression in Th1 cells [111], or an isotype control 

antibody. Infection of Th1 cells treated with the neutralizing anti-IFN-γ antibody 

with GFP-expressing HIV-1 led to increased early and late RT products (Figure 

3-5A), reduced 2-LTR circle formation (Figure 3-5B), and an increase in 
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integrated genomes based on increased GFP expression (Figure 3-5C), relative 

to the isotype antibody control. 
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Figure 3-4. Over-expression of cytoplasmic A3G in Th2 cells reduces 
reverse transcription products and increases 2-LTR circle formation.  
Th2 cells were transduced with an A3G-expressing or control retrovirus vector, 
activated for 48 hours, and then infected with VSV-G, vif-positive HIV-GFP. The 
increased expression of A3G decreases the formation of reverse transcription 
products, increases the formation of 2-LTR circles and reduces amount of 
integrated proviruses as measured by GFP expression. (A) DNA was isolated at 
18 hours after infection and used in qPCR assays to analyze GFP reverse 
transcription product formation in triplicate from one donor’s cells. Over-
expression of A3G in Th2 cells decreased reverse transcription products 
measured by amplifying the GFP sequences that replaced the nef open reading 
frame (means and standard errors are shown; *p≤ .02, Mann Whitney U Test). 
(B) GFP reverse transcription products measured as in (A) from matched A3G- 
and control (Th2-empty) vector-transduced Th2 cells derived from 4 different 
donors’ naïve cells. (C) DNA was isolated at 48 hours after infection to analyze 2-
LTR circle formation. Over-expression of A3G in Th2 cells increased 2-LTR 
circles (means and interquartile ranges are shown; *p≤ .02, Mann Whitney U 
Test).   (D) Cells were also analyzed 48 hours post infection for GFP expression. 
A3G over-expression in Th2 cells decreased GFP expression from integrated 
provirus (mean and standard error are shown; *p≤ .02, Mann Whitney U Test) 

67 



 

 

 
Figure 3-5. Reduction of cytoplasmic A3G in Th1 cells increases reverse 
transcription products and decreases 2-LTR circle formation.  
Th1 cells were activated for 48 hours in conjunction with neutralizing anti-IFN-γ 
antibody, which decreases A3G expression, or an isotype antibody control. The 
cells were infected with VSV-G, vif-positive HIV-GFP and DNA was isolated at 18 
or 48 hours post infection. Decreased expression of A3G in Th1 cells leads to 
increased reverse transcription products, decreased 2-LTR circles and increased 
integration, relative to the isotype antibody control.(A) Early and late RT products 
were determined 18hours post infection. Both early and late RT products were 
increased in the presence of the A3G-reducing anti-IFN-γ antibody (means and 
standard errors are shown; *p≤ .02, Mann Whitney U Test). (B) 2-LTR circles 
were quantified 48 hours post infection. Two-LTR circles were decreased in the 
presence of the A3G-reducing anti-IFN-γ antibody (means and standard errors 
are shown; *p≤ .05, Mann Whitney U Test). (C) GFP expression from integrated 
proviruses in live cells was analyzed 48 hours post infection. Integrated copies of 
HIV were increased in the presence of the A3G-reducing anti-IFN-γ antibody 
(means and standard errors are shown; *p≤ .02, Mann Whitney U Test).  
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Discussion  

Comparison of HIV-1 infection of activated Th1 and Th2 lymphocytes in 

the present study provides some of the first documentation that cytoplasmic A3G 

partially restricts incoming A3G-negative HIV-1 virions at the level of reverse 

transcription and integration in activated T lymphocytes. The effects of 

cytoplasmic A3G on incoming A3G-negative virions, the “target cell effects” of 

A3G, have previously been characterized in resting T cells, monocytes, and 

immature dendritic cells [50,108,109] . T cell activation has been hypothesized to 

completely abrogate this target cell block. However, the present comparison of 

different types of activated T helper cells has now revealed relatively less reverse 

transcription, less integration, and more 2-LTR circle formation in activated Th1 

than activated Th2 cells. Modulating the levels of expression of A3G in these two 

cell types alters each of these phenotypes and strongly supports the causal role 

for A3G in the relative restriction in Th1 cells observed here. When Th2 cells that 

express relatively lower levels of A3G were transduced with a vector that over-

expresses A3G, they become more restrictive to reverse transcription and 

integration. When A3G expression was reduced in Th1 cells, they were rendered 

less restrictive to reverse transcription and integration. In addition to supporting 

that A3G is responsible for the observed reduction in replication of vif-positive, 

A3G-negative virus in activated Th1 cells noted here, these results add to prior 

data indicating that A3G activity in CD4+ T lymphocytes is regulated by IFN-γ 

[111] as well as other cytokines [57].  
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Variation in cytoplasmic A3G and virion-packaged A3G unexpectedly 

differed in effects on 2-LTR circle formation. Earlier studies have observed that 

increasing virion-packaged A3G decreased 2-LTR circle formation [39,120]. We 

confirmed this in a comparison of A3G-positive and A3G-negative virion 

infections of A3G-negative cells, as well as in a comparison of infections of A3G-

negative cells with virions produced from activated Th1 cells (e.g.; with greater 

virion A3G content) and virions produced from activated Th2 cells (e.g.; 

containing relatively less virion A3G). In sharp contrast, A3G-negative virion 

infection of activated Th1 cells led to increased 2-LTR circle formation compared 

to infection of activated Th2 cells. This opposite effect on 2-LTR circle formation 

indicates that cytoplasmic A3G has a different effect than A3G packaged in the 

virion. Based on our data, and earlier studies analyzing virion-packaged A3G, we 

hypothesize that virion-packaged A3G may have a different association with one 

or more components of the pre-integration complex than does cytoplasmic A3G, 

thereby having a different effect on the ability of cellular enzymes to process 

ends of the reverse transcribed DNA and/or on the activities of the pre-integration 

complex [39,40,120]. It is also possible that virion-packaged APOBEC3G 

interferes with nuclear entry of the pre-integration complex, while cytoplasmic 

APOBEC3G does not.  

Prior studies have implicated a “low molecular mass” form of A3G in 

mediating the resting T cell block to incoming A3G-negative virions. The results 

of the present study indicate that some A3G persists in activated Th1 and Th2 

cell lysate supernatants after ultracentrifugation and in lower density fractions of 
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sucrose density gradients. We hypothesize that the remnant “low molecular 

mass” forms mediate this relatively greater restriction we have identified in 

activated Th1 cells compared to Th2 cells. Further work will be needed to confirm 

or refute this hypothesis by further characterizing and selectively affecting the 

remnant “low molecular mass” A3G in activated Th1 cells.  If this hypothesis is 

supported, it will also be of interest for future studies to determine the minimum 

concentration of “low molecular mass” A3G required for restriction. 

 The results reported here indicate that wild-type HIV-1 virions that infect 

Th2 cells are more likely to successfully replicate than those infecting Th1 cells. 

Our earlier observations also indicated that Th2 cells that become infected will 

subsequently produce virions that are more infectious due to reduced virion 

packaging of A3G. These data may explain earlier studies demonstrating better 

replication of HIV in Th2 cells [67,79,81,121] and suggest new work to 

characterize the role of Th2 cells during HIV pathogenesis.  This study also adds 

further support to the important role of A3G in HIV pathogenesis through multiple 

different restricting mechanisms. Further characterization of these mechanisms 

may lead to novel approaches to improving A3G effects as a potential 

therapeutic or preventive strategy. 

 

 

71 



 

CHAPTER IV 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

APOBEC3G is a cellular protein that is a potent innate defense against 

endogenous retrotransposition and exogenous pathogens that require reverse 

transcription, including HIV-1 and HBV. A deeper understanding of the biology of 

this defense mechanism in human T cells will provide a greater insight into the 

pathogenesis of HIV-1. Given poor progress in HIV vaccine development and a 

continuing need for new therapeutics due to antiretroviral drug resistance, these 

insights may also suggest potential avenues for novel therapeutic or preventive 

approaches. There are several strategies that could utilize APOBEC3G as a 

therapeutic. For instance, targeted therapies may block the vif-mediated 

degradation of APOBEC3G, overcome vif’s effect by increasing cellular levels of 

APOBEC3G, increase specific packaging of A3G in virions, or maximize antiviral 

activity by blocking the formation of large inactive complexes of APOBEC3G. 

Development of these strategies depends on greater understanding of 

APOBEC3 biology. The goals of this project were to identify if T helper cell 

differentiation modulated this defense mechanism. Specifically, I aimed to 

determine if increases in expression of APOBEC3s within a physiological range 

could augment anti-HIV effects in the presence of vif. The implications of this 

work for understanding evolutionary mechanisms for APOBEC3 expression 

differences with T cell differentiation, further characterizing early steps in HIV 
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replication, expanding knowledge of HIV pathogenesis, and exploring basic 

mechanisms of transcriptional regulation during T cell differentiation in greater 

depth will be described. 

   

APOBEC3 expression and T Helper Cell Differentiation 

Differentiation of CD4+ T cells from a naïve to an effector or memory 

phenotype involves vast differences in gene expression profiles[65]. These 

differentiation pathways are regulated by broadly-acting transcription factors 

including Tbet and GATA3. Tbet is a master transcription factor important for the 

differentiation of a naïve T cell to a Th1 phenotype, whereas GATA3 plays a 

primary role in differentiation to a Th2 phenotype [60-62]. Based on observations 

that the putative promoter regions of APOBEC3G and APOBEC3F harbored 

binding sites for GATA family members, we hypothesized that expression of 

APOBEC3G would vary with T cell differentiation. Indeed, we found that 

expression of GATA3 reduced expression of APOBEC3G relative to control 

transduced cells. Interestingly, expression of Tbet increased the amount of 

APOBEC3G message in primary T-cells.  

Our findings that Tbet and GATA3 affect regulation of APOBEC3s 

expression led us to hypothesize that the difference in APOBEC3s expression 

occurred with physiological T helper cell differentiation. Following in vitro cytokine 

derivation of T helper cells, we found that Th1 cells expressed greater levels of 

APOBEC3G and APOBEC3F than Th2 cells. This is the first evidence of A3 

variation in differentiated primary T cells.  
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Given our findings about APOBEC3 expression in the Th1 and Th2 helper 

subtypes, it is of interest to extend this study in the future to characterize the 

relative APOBEC3 expression levels in other T helper subtypes. Th17 cells 

provide immune protection at mucosal sites, particularly against bacterial and 

fungal pathogens. [59] This defense is decimated by HIV-1 infection, allowing 

ongoing translocation of gut flora to the blood stream that results in massive, 

persistent immune activation [122].  This immune activation is the likely cause of 

most of the CD4+ T cell loss during HIV-1 infection, and is not completely 

stopped by antiretroviral therapy [123]. The regulatory T cell (Treg) subset 

provides a way to down-modulate and stop immune responses following 

clearance of the offending agent. The loss of those cells following HIV infection 

[124,125] could also result in unregulated immune activation that contributes to T 

cell loss. Given that HIV-1 can replicate robustly in both Treg  and Th17 cells, we 

hypothesize that expression/function of APOBEC3s may be at a relatively low 

level. If so, the potential ability to therapeutically increase protection from 

APOBEC3s in these cells may offer an opportunity to increase mucosal integrity, 

maintain immune regulation, dampen abnormal T cell activation, and 

subsequently decrease T cell loss in HIV infection. Understanding the expression 

and regulation of APOBEC3s in these additional subtypes would further aid our 

understanding of APOBEC3 biology and HIV pathogenesis. The analysis of 

APOBEC3 expression in these cell types can be done using an approach similar 

to the one used here:  in vitro deriving or directly sorting these other subtypes, 

and then analyzing them for their APOBEC3 protein content, infectivity of HIV 
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virions produced from them as well as susceptibility to HIV infection.  

Future work that will also be worthy of consideration includes 

characterizing the biological selective pressure underlying why different T cell 

differentiation states differ in their expression of APOBEC3G. Several studies 

have shown that APOBEC3s have evolved to limit retrotransposition. This 

suggests the hypothesis that greater APOBEC3G in Th1 cells may be associated 

with greater retrotransposition activity in those cells. Evaluating both relative 

expression levels and mobility of transposable elements in the two cell types 

could test the hypothesis that expression of APOBEC3s is increased as a 

physiological response to relatively greater retrotransposition. To perform this 

evaluation, the amount of retrotransposon RNA (LINE, alu, hY [126] in activated 

Th1 and Th2 cells will be determined by qRT-PCR from whole cell lystates, as 

well as from A3G immunoprecipitates. This will gauge the relative total amounts 

of retrotransposon expression as well as what relative quantity is sequestered in 

A3G complexes in each of the two cell types. Retrotransposition will also be 

experimentally decreased using siRNA specific to the LINE-1 RT [127]. The 

hypothesized result is that A3G levels in the Th1 and Th2 cells will be reduced if 

not needed for retrotransposon defense. Interestingly, treatment of cells with HIV 

reverse transcriptase inhibitors also demonstrated a reduction in LINE-1 activity 

[128]. Therefore, it would also be interesting to test if RT inhibitor treatment 

reduces retrotransposition in these T cell subsets and if that treatment decreases 

APOBEC3 expression. If this hypothesis is supported, it may lead to a better 

understanding of how to prevent retrotranposition mediated malignancy[129-
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131]. This would have broader implications in understanding effects of 

antiretroviral therapy on T cells, and may bear on the difficult problem of HIV 

persistence despite currently optimal antiretroviral therapy.  

 

Mechanisms of Virion Packaged APOBEC3G HIV Replication Restriction  

The higher levels of APOBEC3G and APOBEC3F in Th1 than Th2 cells 

were shown here to have important functional antiviral effects. We found that this 

expression difference led to a difference in infectivity of virions produced by these 

cells following infection with a CXCR4 tropic lab strain of HIV-1 [Fig 2-4]. This 

decreased virion infectivity occurred even if vif was present in the HIV-producing 

cell. This demonstrates that physiological levels of APOBEC3G can overcome 

the countermeasure of HIV-1 vif and partially decrease virion infectivity. This is 

the first demonstration of restriction of vif-positive HIV-1 by APOBEC3s in 

primary cells.  

The concept of increasing expression of APOBEC3G to reduce infectivity 

of HIV-1 is inviting as a therapeutic approach, but has a potentially significant 

limitation. As these proteins are cytidine deaminases, there exists the concern 

that their over-expression may lead to deamination. Such an increase in 

expression may lead to chromosomal mutation and oncogenesis. Though some 

APOBEC family members do translocate to the nucleus where they may affect 

host chromosomes, A3G and A3F maintain cytoplasmic localization, even when 

over-expresssed [132] Nevertheless, the possibility of mutagenic effects on either 

nuclear or mitochondrial DNA will need to be thoroughly evaluated as part of 
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future studies intended to further explore increasing APOBEC3s by cytokines or 

other interventions.  

The originally described mechanism of restriction by virion packaged 

APOBEC3G was by its enzymatic activity of cytidine deamination. In our study, 

we were unable to identify evidence of cytidine deamination, even though we 

were observing an APOBEC3G-mediated reduction in infectivity. This finding 

argues that there are other mechanisms of restriction beyond the deaminase 

enzymatic activity of APOBEC3G. The results of other recent studies directly 

addressing this question support this conclusion [32,36,39,120]. These studies 

suggest that infectivity can be reduced by APOBEC3G’s ability to interfere with 

the process of reverse transcription and subsequent integration, and that cytidine 

deaminase activity is not essential for antiviral activity. Indeed, further 

understanding of non-deaminase mediated mechanisms is the preferred focus 

for future work, as if those mechanisms can be exploited further therapeutically 

this would help to avoid potential cellular mutagenesis as a potential toxicity. 

Though theses studies provide strong evidence for the mechanism of non-

deaminase mediated APOBEC3G restriction of replication, there remains a need 

to further characterize these non-deaminase mediated mechanisms. APOBEC3G 

was shown to reduce infection by diminishing the synthesis of viral DNA 

[39,40,120]. Some data suggest a mechanism for this effect on reverse 

transcription involves reduction in processing of the tRNA primer  [39], or  

reduction in tRNA primer binding [38]. However, no specific interactions of 

APOBEC3G with reverse transcriptase have been demonstrated. As A3G has 
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been shown to bind integrase in the virion [40], it may also bind directly to RT. 

A3G is an RNA binding protein, so there is also a possibility that it may directly 

bind the tRNA primer. This can be tested by immunoprecipitation of viral lysates 

to detect an interaction between A3G and RT and/or the tRNA primer as well as 

immunoprecipitation of permissive cells infected with A3G-containing virus as the 

association may not occur until the process of reverse transcription begins in the 

target cell. This interaction may certainly be bridged by the HIV nucleocapsid, as 

A3G has been demonstrated to bind nucleocapsid or an RNA bridge, a possibility 

which would be tested by treating the lysates to be immunoprecipitated with 

RNase prior to precipitation. 

In addition to demonstrating reduction of viral DNA synthesis as a non-

deaminase mechanism of HIV infectivity reduction, these studies have also 

demonstrated that virion packaged A3G results in a reduction in viral DNA 

integration [39,40,120] Interestingly, the reduction in integration is independent of 

the reduction in reverse transcription products. It is surprising that both a 

reduction in integration and 2-LTR circles is observed. Two-LTR circles, a 

measure of aborted integration, would normally be expected to increase as 

integration decreases. However, one of these studies provides some evidence 

that this reduction in integration occurs due to APOBEC3G modifying the 

terminal ends of the completed reverse transcription product, thereby lowering 

the efficiency of 2-LTR circle formation [39]. We demonstrate that infection of 

A3G-negative (permissive) cells with Th1 cell-produced virions forms fewer 2-

LTR circles than does infection with Th2 cell-produced. This reduction in 2-LTR 
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circles has also been shown by others to result from HIV replication in the face of 

exosome-packaged A3G[133]. Though modification of the viral DNA ends may 

reduce 2-LTR circle formation, a reduction in nuclear translocation and import of 

unmodified, completed reverse transcripts can also lead to this result. 

  To investigate the possibility of APOBEC3G-dependent reduction in 

nuclear translocation or import, we would begin by infecting permissive cells with 

virions that contain a GFP-tagged integrase protein (using vpr trans-incorporation 

as described by Christ et. al.[6]) and either do, or do not, contain APOBEC3G. 

The GFP level in the nuclei of infected cells will be quantified. In addition, 

integration events (eg, as measured by alu-PCR), 1-LTR circles and 2-LTR 

circles would be measured from each infection to evaluate the total amount of 

viral DNA that was translocated to the nucleus. If these studies demonstrate 

equal nuclear entry of reverse transcripts from the A3G-containing and A3G-

negative virions, then the conclusion that modification of the ends of the reverse 

transcription product is the only mechanism by which integration and 2-LTR circle 

formation are reduced would be supported.. If lower amounts of GFP are 

observed in the nucleus from the A3G-containing virions relative to the A3G-

deficient virions, this would support a role for decreased nuclear import in the 

reduction of 2-LTR circles and integration events.  Nuclear import machinery 

components that have been implicated as interacting with integrase or other PIC 

components will also be examined to determine if APOBEC3G interferes with the 

interaction between an import protein and integrase/PIC. These experiments may 
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lead to further investigation into APOBEC3G’s interaction with the PIC and/or 

proteins involved in PIC nuclear transport.  

 

Cytoplasmic APOBEC3 Restriction of HIV Replication 

It has long been accepted that resting CD4+ T cells are refractory to 

infection by HIV-1 [49]. Previous studies of APOBEC3G have shown that a low 

molecular mass form of APOBEC3G in the cytoplasm of resting CD4+ T cells is 

responsible for this essentially complete block to the early phase of HIV-1 

replication [50]. We hypothesized that there is residual APOBEC3G left in a low 

molecular mass form after T cell activation, and that this residua may lead to 

some partial restriction of HIV even in activated cells. Using the CD4+ T helper 

subtypes shown here to have differing expression of APOBEC3G as a model, we 

tested whether differences in APOBEC3G in primary CD4+ T cells would lead to 

differences in degree of partial restriction of early replication events even in 

activated cells. Such a partially restricting effect had not previously been 

hypothesized, and could not be identified by comparison of activated cells (which 

do support replication) to resting cells (which do not support replication).  

We found that, even after activation, Th1 cells were more restrictive to 

incoming HIV-1 replication than Th2 cells, in an APOBEC3G dependent manner. 

This restriction was demonstrated by a reduction in early and late reverse 

transcription products and integrated proviruses. We also showed that residual 

APOBEC3G remained in lower density fractions in activated Th1 cells using 

sucrose density gradient centrifugation [Fig 3-1]. Therefore, the proposed 
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transition from restricting low molecular mass APOBEC3G to a non-restricting 

high molecular mass complex of A3G is not an all-or-nothing event. If sufficient 

APOBEC3G is expressed in the cytoplasm of a target cell, a portion will remain 

actively restrictive of incoming HIV-1 even after activation.  

These results also raise the question of how cytoplasmic APOBEC3G is 

affecting this restriction mechanistically. The initial study describing the 

APOBEC3G-mediated block in resting T cells found no hypermutation of reverse 

transcription products  [50]. This suggests, as discussed earlier for virion-

packaged APOBEC3G, that the mechanism of restriction is cytidine deaminase-

independent. There are multiple effects of virion packaged APOBEC3G on early 

steps of HIV replication that have been described previously. We found many of 

those same restrictions in early and late RT product formation and integration in 

our study of the target cell-expressed APOBEC3G. This suggests that virion 

packaged A3G and target cell expressed A3G likely act in very similar manners. 

However, an additional result in our work suggests that yet another mechanism 

of restriction may remain to be characterized. 

Interestingly, we observed an increase in 2-LTR circles after APOBEC3G-

negative virion infection of activated T cells with more APOBEC3G, relative to 

target cells with less APOBEC3G. This contrasts with the reduction in 2-LTR 

circles seen with virion-packaged APOBEC3G and has not been reported before. 

Virion-packaged APOBEC3G is hypothesized to reduce 2-LTR circles by altering 

the ends of completed reverse transcript product and/or interacting with the PIC 

or nuclear import machinery to reduce nuclear import [39,40]. However, our 

81 



 

result suggests that cytoplasmic target cell APOBEC3G will not do either of these 

activities that will interfere with 2-LTR circle formation, while still having antiviral 

mechanism(s) in common with virion-packaged APOBEC3G. 

To begin to explore the differences and similarities between the 

mechanism of action of cytoplasmic and virion-packaged A3G, experiments are 

suggested similar to those already described in this section investigating the role 

of virion-packaged A3G restriction. As virion A3G has been shown to bind 

integrase, we would immunoprecipitate integrase from a non-permissive target 

cell infected with A3G-free HIV to determine if the cytoplasmic APOBEC3G can 

bind to integrase. If virion A3G is found to prevent binding of nuclear import 

components to the PIC/integrase, we would hypothesize that cytoplasmic A3G 

may not have that effect. Similar studies to those proposed above to evaluate 

nuclear import would be performed by infecting A3G-expressing cells with A3G-

free virus. Comparing those results to the results of an infection of permissive 

cells with an A3G containing virion, will test the hypothesis that virion A3G has an 

effect on 2-LTR circles that is not seen with cytoplasmic A3G.  

In vivo, a spreading HIV infection will encounter both the virion packaged 

and target cytoplasmic mechanisms of A3G restriction. This study has evaluated 

these two restriction mechanisms independently. It is of interest then to ask if the 

two mechanisms can act synergistically or even in opposition. This question 

could be initially investigated by performing infections under three conditions. 

One condition would be infecting permissive cells with an A3G containing virus. 

The second condition would involve infecting the same permissive cell line that is 
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transiently transfected with A3G with an A3G-free virus. The third condition would 

be infecting the A3G expressing line with an A3G containing virus. Evaluation of 

the formation of RT products, 2-LTR circles, integration events and subsequent 

virion release would determine under which condition the A3G was having the 

greatest effect on replication. We hypothesize that the third condition would result 

in the greatest reduction in replicative capacity. There is a precedent for this, as 

such synergistic effects of virion and cytoplasmic APOBEC3G were recently 

reported in studies of mouse mammary tumor virus [134]. 

 

Implications of APOBEC3 Expression in HIV-1 Pathogenesis 

One of the major unanswered questions in pathogenesis is what factors 

favor a particular dominant virus co-receptor tropism. Initial infection by HIV is 

generally caused by a CCR5 tropic virus [135]. However, recent data from clinical 

trials of a CCR5 antagonist indicate that a substantial proportion of patients 

previously thought to have only CCR5 virus also have a small proportion of 

dual/mixed-tropic virus detectable in plasma [136].  In addition, the tropism 

dominating in the circulating virus population shifts in about 50% of subjects to 

sole CXCR4 use during the course of infection and progression to AIDS. This 

‘tropism shift’ to sole CXCR4 use is associated with a change to a more rapid 

decline in CD4+ T cells in peripheral blood; it is hypothesized and not proven that 

the ‘tropism shift’ causes the increased pace of immunodeficiency progression 

[135] The factors that favor selection of subpopulations of dual/mixed virus or 

emergence of a ‘tropism shift’ are not defined. Our results suggest novel 
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hypotheses that may contribute to better understanding of these aspects of 

pathogenesis. 

 Vicenzi, et al 2002 found that dual tropic viruses (and X4 tropic 

viruses)replicated much better in Th2 than Th1 cells, and that X4 tropic viruses 

replicated less well than the dual tropic viruses in both these cells [137]. These 

findings were not explained by differences in virus entry and were established in 

that earlier work to be due to an effect on an early post-entry step of replication. 

Given that we identified differences in virion infectivity and early steps of HIV 

replication in Th1 versus Th2 cells using CXCR4-tropic virus, we hypothesize 

that such differences may be greater with dual-tropic viruses and less with 

CCR5-tropic viruses. If this is found, it would suggest differences in early steps of 

replication based on which co-receptor is used for virus entry. This has the 

potential for adding new insights into virus entry and/or the role of signaling in 

post-entry steps of HIV replication. 

The current work may also suggest that differences in A3G, or changes in 

the balance of cells expressing high levels of A3G, may be involved in shifts in 

virus tropism that have major impact on pathogenesis. The evidence in this study 

leads to the hypothesis that sub-populations of dual tropic virus (or a shift to sole 

CXCR4 tropic virus) may occur in individuals with a relatively lower Th1/Th2 cell 

ratio. Those who shift tropism may be individuals who have relatively more Th2 

host cell persistence that favors replication of the viruses that replicate better in 

those cells. It is also possible that there are differences across individuals in the 

level of APOBEC3G in Th2 cells and that the more immuno-depleting dual- or 
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CXCR-4 viruses are favored in virus populations of those who have relatively 

higher APOBEC3G levels in Th2 cells that allow longer persistence of those 

cells. 

Th2 cells are important activators of the humoral immune response by 

providing IL-4 and stimulatory signals to B-cells. A rapid decline in Th2 cell 

number could lead to reduction in help to B- cells and thereby reduce an infected 

individual’s ability to produce effective and mature antibodies against 

opportunistic infections and HIV. This role for APOBEC3G in supporting 

neutralizing antibody production has been suggested by APOBEC3 knockout 

studies in mice [138]. The importance of A3G in Th2 protection, and providing 

help to B cells, could be tested in an in vitro model of B-cell help. After HIV 

infection of Th2 cells that differ in their A3G levels, their ability to activate 

autologous B-cells could be tested to gauge the ability of APOBEC3G to protect 

the T-cell help provided by Th2 cells. This A3G-mediated assistance to broader 

immune function may also be analyzed by determining if a correlation exists 

between expression levels of A3G in Th2 cells and an individual’s ability to 

produce broadly neutralizing antibodies to HIV or opportunistic infections.  There 

are relatively few patients who produce broadly neutralizing anti-HIV antibodies 

and it is of interest to understand the factors that contribute to that phenotype. 

One hypothesis is that the Th2 cells in those subjects may be relatively better 

protected from HIV by relatively higher A3G levels than are seen in the Th2 cells 

of most subjects. If a positive correlation exists it would give credence to the idea 

that increased expression of A3G provides support to the immune system as a 
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whole as well as the cell it is expressed in by allowing that cell to better withstand 

the assault from HIV infection and continue to perform its helper functions. If so, 

research into the genomics and proteomics of increasing A3G expression in Th2 

cells may become very promising to develop an adjunct to vaccination for both 

prevention and treatment of HIV infection. 

 

Transcriptional Regulation of APOBEC3 During T cell Differentiation 

The results of this study demonstrate that GATA3 and Tbet master 

transcription factors are inherently involved in regulating the expression of 

APOBEC3G and APOBEC3F. The specific role the two transcription factors play 

in regulating APOBEC3G and APOBEC3F expression however is open for 

further investigation. Though a database binding site search suggests binding 

sites for GATA3, it is unclear from our data whether direct binding to the 

APOBEC3G or APOBEC3F promoters by either transcription factor is 

responsible for their effect on expression. Given the observed lack of increase in 

APOBEC3G and APOBEC3F RNA following TCR stimulation of GATA3 

transduced cells, it is possible that GATA3 is directly binding to the promoter 

regions and blocking their transcription. This hypothesis could be tested by TCR 

stimulating Th2 cells and performing chromatin immunoprecipitation using a 

GATA3 specific antibody and amplifying DNA regions with PCR primers specific 

for the A3G or A3F promoter. If GATA3 is found to be associated with the 

promoter region, TCR stimulation of Th2 cells that are reduced in GATA3 activity 

either by siRNA knockdown or expression of a GATA3 dominant negative  [139] 
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and subsequent evaluation of A3G levels would further suggest that GATA3 is 

reducing expression of A3G by direct binding to the promoter region. 

There is no suggested binding site for Tbet in the potential promoter 

regions; this neither suggests nor denies direct binding by Tbet. Our finding that 

neutralization of IFN-γ reduces basal and TCR stimulated levels of APOBEC3G 

in Tbet transduced and Th1 cells elucidates one role of Tbet in APOBEC3G 

regulation, as a major target of transcription regulated by Tbet is IFN-γ. 

Therefore, our data suggests that Tbet driven transcription of IFN-γ regulates the 

expression of APOBEC3G in Th1 cells. This conclusion is supported by our 

observation of potential interferon stimulated response elements in the putative 

promoter regions as well as others results demonstrating APOBEC3G can be 

regulated by interferons [53,54,56]. Investigations into finer detail of actual 

binding sites of GATA3, Tbet or interferon stimulated transcription factors in the 

APOBEC3G or APOBEC3F promoter regions by promoter driven reporter assays 

or chromatin immunoprecipitation are required to address these issues. Based 

on the current data, we would expect these experiments to find that GATA3 

directly binds to the promoter to block transcription from interferon regulated 

elements that are stimulated by Tbet-driven IFN-γ.   

In our analysis of the expression level of APOBEC3G and APOBEC3F in 

Th1 and Th2 cells, we observed wide donor-to-donor variation in expression of 

APOBEC3G and APOBEC3F. There are several possible explanations for this, 

including variation in expression or activity of upstream regulatory factors such as 

Tbet or GATA3. Another explanation, that would be an important area of future 
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research, is whether there are polymorphisms in the promoters of APOBEC3G 

and APOBEC3F. Polymorphisms associated with rapid or slowed CD4+ loss in 

non-coding regions of APOBEC3G have already been described [106,140]. 

Polymorphisms in the regulatory regions of these genes may alter expression 

and subsequently disease progression. Polymorphisms in the regulatory regions 

may be those already suggested by An et. al. Screening for identification of 

additional polymorphisms is also of interest [106,141] If experimentation has 

identified specific binding sites for GATA3, Tbet or IFN regulated transcription 

factors, then a search for polymorphisms in those regions would be simpler and 

more directed. Given the amount of polymorphisms identified in A3G in previous 

studies and the variation in expression, it is likely that polymorphisms exist in the 

promoter regions of APOEBC3G and APOBEC3F. Though these polymorphisms 

may be identified, they may not fully explain donor to donor variation as it is likely 

that the regulation of A3G transcription and translation is controlled by many 

different factors 

 

Conclusion 

This study indicates novel regulation of expression of the innate defenses 

APOBEC3G and APOBEC3F with T cell differentiation. This study also adds to 

the understanding of T helper cell biology and, most importantly, demonstrates 

that physiological levels of A3G in both virions and target cell cytoplasm are 

capable of restricting vif+ HIV. This last finding leads then to the conclusion that 

boosting APOBEC3G levels above the threshold of vif activity, or even partially 
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interfering with the activity of vif, will have an overall antiviral effect. This is an 

important step in understanding APOBEC3’s restriction of reverse-transcribing 

pathogens as well as knowledge that may lead to therapeutics targeted at this 

system. This work has implications that suggest new antiviral mechanisms of 

APOBEC3s, new insights into HIV nuclear import, and promising new 

approaches to studying HIV pathogenesis and T helper cell differentiation. 
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