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CHAPTER I 

 

LITERATURE REVIEW AND BACKGROUND 

 

Digital Signal Processing (DSP) is the science of using computers to process many data 

types such as images, seismic vibration, and radar/sonar echoes.  It is not only one of the most 

important research areas in electrical engineering but also one of the most powerful technologies 

and has many useful applications in various disciplines.  It is employed such applications as 

signal filtering, speech recognition, neural networks, image compression and much more.  

Among these applications, image compression is one of the most active areas in electrical 

engineering research.  Nowadays, the sending and reviewing of data between computer users are 

very important.  The World Wide Web has also received widespread interest and has a major 

influence on computer users.  Images transmitted over the Internet require large bandwidth and 

provide a practical basis for the importance of image compression.  In addition, data storage may 

be costly to organizations, for example, collecting fingerprint information of the Federal Bureau 

of Investigation (FBI).  The FBI has been collecting fingerprint cards since 1924 [1].  As a result, 

this collection over the past decades increased to around 200 million cards in 1996 with this 

collection occupying an acre of filing cabinets in the FBI building.  Furthermore, the fingerprint 

data continuously accumulate at a rate of 30,000-50,000 new cards per day, which causes the 

more critical problem of collecting and searching data.  Although these cards are digitized at 500 

dots per inch with 8 bits of grayscale resolution, each digitized image requires about 10 

megabytes of data storage.  One can imagine how large the memory storage space is to maintain 

the entire digitized fingerprint data in computer storage.  Therefore, the FBI required a data 

storage method that considerably reduces this database.  The given examples imply the 

importance of data/image compression and motivate researchers in this field to develop 

algorithms and theories for this research area. 

 Image compression algorithms can be classified as either lossless or lossy.  A lossless 

technique has no loss of information in that the restored and original data are identical.  This is 

important for many types of data (i.e. executable code, satellite or medical images) in which it is 

critical not to discard any information that may be useful later.  On the other hand, discarding 

information is possible for some types of data.  However, one has to compromise between the 

 

1



 

degradation of data quality and the high compression ratio which is the ratio between the number 

of bits required to represent the original image divided by the number of bits required to 

represent the compressed image [2].  In other words, generally, the higher the compression ratio 

of an image, the more degradation of signal quality then is.  A technique that causes this type of 

degradation is referred to as a lossy method.  Nevertheless, at the acceptable quality of the 

restored image, the lossy techniques are still more effective than lossless methods due to its 

superior performance of compression ratio.  Several processes are generally involved in image 

compression.  The first process is to reduce information redundancy, which is called data 

decorrelation.  Secondly, the decorrelated information is then transformed into integers by a 

quantization process.  It is interesting to note that if the decorrelated coefficients are non-integer 

(floating point) then this process causes some degree of distortion to the reconstructed image 

coefficients.  These integer coefficients are finally encoded; hence, the original data has been 

transformed into a compact representation. 

Over the years, many researchers have endeavored to accomplish better performance in 

image compression.  Their research can be classified into three research areas: the decorrelation 

technique, the quantized algorithm and the encoding method.  This dissertation concentrates 

mainly on the decorrelation phase; the literature review will focus only on this area.  Generally, 

the decorrelation process in image compression is based on prediction, which can be made by a 

sequential model (i.e. the CALIC [3]) or a multiresolution model (i.e. the S-transform [4][5], the 

S+P-transform [6][7]).  In lossless application, the state-of-the-art techniques use an adaptive 

predictor to predict the grey level of the image pixel and employ a context-based entropy coder 

to encode the prediction error.  Among the proposed lossless techniques in the past decade, the 

LOCO [8] and the CALIC [3][9] have achieved good performance of compression ratio and 

computational complexity.  However, the adaptive predictors used in the LOCO and the CALIC 

are simple, resulting in the limitation of their performances [10].  The results found in [11] and 

[12] have shown that the combinations of subpredictors provide similar or better results 

compared to those of the CALIC.  Recently, Deng, Ye, and Cahill [10] have presented an 

adaptive predictor combination (APC) technique for lossless image compression.  Their scheme 

is based on the estimation of localized variance of prediction errors, which is closely related to 

the Bayesian model averaging.  Even though the compression performance of using this method 

was comparable to, or better than, that of other published algorithms, it was not as good as that 

 

2



 

of the APC scheme using a group of LS (least squares) -based subpredictors.  However, the APC 

scheme using a group of LS-based subpredictors has the problem of demanding computation: the 

better the compression performance, the more complex the computation. 

The multiresolution model is another decorrelation technique which has been received 

wide-spread interest among researchers.  Multiresolution or subband decomposition was first 

applied to images by Woods, and O’Neil [13].  In the multiresolution model, a multiresolution 

representation of the image is generated.  The characteristic of the multiresolution representation 

is suitable for progressive transmission, which is a technique of transmitting a low resolution of 

the image to a user, afterward; more information is then transmitted to construct a finer 

resolution of the image.  The relative performances and effects of subband decomposition based 

on different prediction schemes (fixed or adaptive) have been compared in [14].  The results 

have indicated that the performance of the tested predictors degrades as the resolution of the 

image is reduced due to the decrease of pixel correlation.  Furthermore, a number of researchers 

[15][16][17][18][19][20] have applied the concept of adaptive filtering to subband 

decomposition, and recently subband decompostion for lossless image compression based on an 

adaptive filter bank has been studied by [21][22].  The linear multiresolution decomposition has 

been extensively investigated in [20].  Additionally, some studies in nonlinear decomposition 

have been found in [23][24][25][26].  Due to the increased flexibility of both non-separable and 

non-linear decompositions, there has been growing interested in these topics.  Cardoso Jr. and 

Silva [27] have studied a heuristic to design nonseparable nonlinear multiresolution 

decompositions.  However, this proposed method provided many degrees of freedom of both 

number of decomposition stages and weighting parameters.  The results implied that some 

criteria were required for finding the best solutions.  Nevertheless, this topic is still an open 

problem and more studies may be needed to find more effective design methods. 

 Transform based decomposition is another technique for the decorrelation process and 

has received widespread interest in the past decades.  The main concept of transformation is to 

decorrelate the image pixel producing a sparse transformed image in which energy is compacted 

in a small number of its large magnitude elements.  Furthermore, the orthogonal transform plays 

a major role in image decorrelation due to the fact that this type of transform decomposes the 

image into the uncorrelated components projected on the orthogonal basis of the transform.  As a 

result, setting to zero the small orthogonal components of the transformed image will have little 
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effect on the others.  In the literature, many researchers have studied image compression based 

on the Karhunen-Loeve transform (KLT) [28][29][30][31], the discrete cosine transform (DCT)  

[32][33][34][35], and the discrete wavelet transform (DWT) [1][36][37][38][39][40][41][42][43] 

[44][45].  However, many studies based on wavelet transform in the literature over the past few 

decades have implied the superior performance of the wavelet transform over the others.  

Wavelet transform has been successfully applied for lossy image compression [1][6][36][37][38] 

[39][40][41][43][44][45][46].  Contrarily, the S+P-transform, which is an integer transformation, 

is one of among the best lossless compression algorithms in the literature. 

In this dissertation, two new decorrelation techniques are proposed.  The first method 

simply bi-directional subsamples by two the image into four subband images.  One of the 

subband images is retained while each of other subband is approximated by a scalar multiple of 

the retained subband.  The approximation errors are then substituted for these subbands.  Another 

proposed decorrelation technique is motivated by a method called Linear Decomposition 

Transform (LDT) [47].  However, to have better prediction performance, this proposed technique 

employs a two-dimensional interpolative filter rather than a one-dimensional row-wise and 

column-wise processing as in the LDT.  Reviews of the wavelet, the S+P-transform, and the 

LDT method are given as follows. 

 

Wavelet Transform 

 The basic concept of the wavelet transform is to represent any arbitrary function f as a 

superposition of wavelets [36].  Wavelets have been introduced by Grossman and Morlet [48] 

generated by scaling and translation of a single wavelet )(tψ as given by [49] 

 

  (1.1) Zkjktt jj
kj ∈−= ,)2(2)( 2/

, ψψ

 

where Z designates the set of all integers.  However, the concept of resolution seems to be the 

best manner to provide interpretation of the wavelets from mathematical and practical viewpoints 

[50][51][52][53].  As a result, the wavelet analysis is started by defining the scaling function 
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)()( 2 RLt ∈ϕ ∗ and the wavelet will be derived in terms of this function.  Let us consider the set of 

all integer translations of the basic scaling function as designated by 

 

 . (1.2) Zkkttk ∈−= )()(0 ϕϕ

 

It is required that this set is an orthonormal set of functions and the closed subspace of  

spanned by these functions, that is 

)(2 RL

 

 { })(00 tSpanV k

k
ϕ= . (1.3) 

 

By changing the time scale of the scaling function, a two-dimensional set of functions can be 

generated by scaling and translating the basic scaling function as 

 

 . (1.4) )2(2)( 2/ ktt jjk
j −= ϕϕ

 

Furthermore, for a fixed integer k, the  functions, for k)(tk
jϕ Z∈ , are required to be orthonormal 

span at index k is  

 

 { })(tSpanV k
j

k
j ϕ= . (1.5) 

 

To satisfy the basic requirements of multiresolution analysis, it is further assumed that the closed 

subspaces generated in this fashion are nested, that is V  for 1+⊂ jj V Zj ∈  with { }0=∞−V  and 

.     According to the nesting property, the elements in space V  are simply scaled ver )(2 RLV =∞ j

 

 

                                                 

∗ The  is the space of all functions f(t) with a well defined integral of the square of the modulus of the 

function [49]. 

)(2 RL
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-sions of the elements in space V , 1+j

 

 1)2()( +∈⇔∈ jj VtfVtf . (1.6) 

 

Therefore, the basic scaling function 0)( Vt ∈ϕ  must also be contained in the subspace V  and 

can be represented as a linear combination of the basis functions  by 

1

)(1 tkϕ

 

 Zkktkht
k

∈−= ∑
∞

−∞=

)2(2)()( ϕϕ  (1.7) 

 

where h(k) are scaling coefficients.  This equation is called the refinement equation, the 

multiresolution analysis equation, or the dilation equation [49].  However, the important features 

of  can be deeply discovered not only by using the scaling functions  but also 

by a set of functions  generating the subspace W  that is the orthogonal complement of V  

contained in V .  In other words, 

)()( 2 RLtf ∈

+j

)(tk
jϕ

)(tk
jψ j j

1

 

 Zlkjdttttt l
j

k
j

l
j

k
j ∈== ∫ ,,,0)()()(),( ψϕψϕ  (1.8) 

 

leading to the direct sum decomposition of the subspace V  as designated by 1+j

 

 jjj WVV ⊕=+1  . (1.9) 

 

Hence, upon iterating on the direction sum expression for the decreasing set of integers 

 of the subspace V , it follows that 00 ,1,...,2,1 jjJJj +−−= J

 

 JjWWWWVV JJjjjJ <⊕⊕⊕⊕⊕= −−+ 0121 ,...
000

. (1.10) 

 

 

6



 

Due to the fact that the wavelets W  is contained in V , the wavelet functions j 1+j 0)( Wt ∈ψ  can be 

represented by a weighted sum of the shifted scaling function 1)2( Vt ∈ϕ  as designated by 

 

 ∑
∞

−∞=

∈−=
k

Zkktkgt ),2(2)()( ϕψ . (1.11) 

 

Up to this point, a set of functions  and  are constructed to span all of ; hence, 

any function  as given by 

)(1 tkϕ )(tk
jψ )(2 RL

JVtf ∈)(

 

  (1.12) ∑
∞

−∞=

−=
k

JJ
J ktkctf )2(2)()( 2/ ϕ

 

can be written as a linear combination of the scaling functions and wavelets by using the fact that 

 as  11 −− ⊕= JJJ WVV

 

 . (1.13) ∑∑
∞

−∞=

−−
−

∞

−∞=

−−
− −+−=

k

JJ
J

k

JJ
J ktkdktkctf )2(2)()2(2)()( 12/)1(

1
12/)1(

1 ψϕ

 

Iterating the direction sum expression over the deceasing set of integers 

, the function f(t) can be finally written as 00 ,1,...,2,1 jjJJj +−−=

 

 ∑ ∑∑
−

=

∞

−∞=

∞

−∞=

−+−=
1

2/2/

0

0

0
)2(2)()2()()(

J

jj k

jj
j

k

j
j ktkdktkctf ψϕ ∗. (1.14) 

 

The first term of expression (1.14) illustrates the low resolution (coarse approximation) of f(t) 

whereas the second term gives the finer resolution for each increasing index j.  Since the scaling 

                                                 

∗ The starting scale j = j0 can be any level in general. 
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functions  and the wavelets  are orthonormal, the coefficients  can be 

calculated by 

)(tk
jϕ )(tk

jψ )(
0

kc j

 

dtmkttfmh

VVdtmktmhtf

dtttfttfkc

jj

m

jj

kt

m

jj

k
j

k
jj

j

))2(2(2)()(

,))2(2(2)(2)(

)()()(),()(

)1(2/)1(

1

)2(

2/

00

00

0

00

000

+−=

⊂







−−=

==

++
∞

−∞=

+

−

∞

−∞=

∫∑

∑∫

∫

ϕ

ϕ

ϕϕ

ϕ
444444 3444444 21

 

            )2()( 10
kmcmh j

m
+= +

∞

−∞=
∑ .  (1.15) 

 

The similar derivation is repeated for the wavelet coefficients as given by 

 

 

dtmkttfmg

VWdtmktmgtf

dtttfttfkd

jj

m

jj

kt

m

jj

k
j

k
jj

j

))2(2(2)()(

,))2(2(2)(2)(

)()()(),()(

)1(2/)1(

1

)2(

2/

+−=

⊂







−−=

==

++
∞

−∞=

+

−

∞

−∞=

∫∑

∑∫

∫

ϕ

ϕ

ψψ

ψ
44444 344444 21

 

            ∑
∞

−∞=
+ +=

m
j kmcmg )2()( 1 .  (1.16) 

 

This process is repeated over the set of decreasing integers 00 ,1,...,2,1 jjJJj +−−=  producing 

the required set of coefficients  for expression (1.14).  It is 

interesting to note that the highest resolution J is chosen large enough so that the scaling 

coefficients  are equal to the uniformly sampled values of the function f(t) whose DWT is 

being generated. 

)(1 kd J −),...,(),(),( 1000
kdkdkc jjj +

)(kcJ
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 Conversely, the highest resolution coefficients  can be recovered for the given set 

of lower resolution coefficients  and the detail coefficients .  To 

obtain an insight into this explanation, let expression (1.12) be taken the inner product of each 

side by the scaling function  for 

)(kcJ

)(
0

kc j

)(t

)(),...,(),( 1100
kdkdkd Jjj −+

l
Jϕ Zl ∈ .  By the orthonormality of the scaling functions, it 

then follows that  

 

 )()(,)()()(),( kcttkcttf J
l
J

k

k
JJ

l
J == ∑

∞

−∞=

ϕϕϕ . (1.17) 

 

Additionally, the same procedure is repeated for expression (1.13) in which expressions (1.7) and 

(1.11) are respectively substituted for  and  yielding )(1 tk
J −ϕ )(1 tk

J −ψ

 

)(,)()()()()()()(),( 2
1

2
1 ttmgkdtmhkcttf l

J
k m

mk
JJ

k m

mk
JJ

l
J ϕϕϕϕ ∑ ∑∑ ∑

∞

−∞=

∞

−∞=

+
−

∞

−∞=

∞

−∞=

+
− +=  

                      = . (1.18) ∑∑
∞

−∞=
−

∞

−∞=
− −+−

m
J

m
J mkgmdmkhmc )2()()2()( 11

 

This implies that . (1.19) ∑∑
∞

−∞=
−

∞

−∞=
− −+−=

m
J

m
JJ mkgmdmkhmckc )2()()2()()( 11

 

Particularly, the process of determining the coefficients  and d  respectively 

shown in expressions (1.15) and (1.16) is referred to as the analysis phase of the DWT whereas 

the process of reconstructing the highest resolution coefficients shown in expression (1.19) is 

called the synthesis process of the DWT.  Generally, the DWT analysis and synthesis processes 

can be summarized as follows, 

)(kcJ )(kj

 

DWT analysis   :     )2()()( 1 kmcmhk j
m

j += +

∞

−∞=
∑c   and  ∑

∞

−∞=
+ +=

m
jj kmcmgkd )2()()( 1  

DWT synthesis :     . ∑∑
∞

−∞=

∞

−∞=
+ −+−=

m
j

m
jj mkgmdmkhmckc )2()()2()()(1
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To implement the DWT analysis, the scaling coefficients  and  are obtained by first 

filtering the scaling coefficients  by the linear shift-invariant filters whose impulse 

responses are 

)(kc j )(kd j

)(1 kc j+

)( kh −  and )( kg −

)(kj

, respectively, then down sampling by two∗ the filter output 

responses.  Contrarily, the synthesis process is accomplished by first up sampling by two** the 

coefficients  and  then filtering these up-sampled sequences by the linear shift-

invariant filters whose impulse responses are  and , respectively.  Finally, the filter 

responses are added to construct the higher resolution coefficients .  The following black 

diagram shown in Figure 1.1 depicts the DWT analysis and synthesis implementation. 

)(kc j d

)(kh )(kg

)(1 kj+c

 

 

)(1 kc j+

)( kg −

)( kh −

)(kd j

)(kcj

)(kg

)(kh

   2

   2

   2

   2

)(1 kc j +

 
Figure 1.1 One-level of the one-dimensional DWT analysis and synthesis implementation. 

 

 

For a two-dimensional DWT, there exist various extensions of the one-dimensional DWT to 

higher dimensions [36]; however, based on Mallat [52], the horizontal and vertical orientations 

are considered preferential for the two-dimensional DWT implementation.  Similarly, in the two-

dimensional wavelet analysis, a separable function ),( yxϕ  is introduced such that 

 

 )()(),( yxyx ϕϕϕ =  (1.20) 

 

where )(xϕ  is a one-dimensional scaling function. 

                                                 

∗ i.e. retaining only the even or odd indexed elements. 
** i.e. inserting zero between each element. 
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If )(xψ  is the one-dimensional wavelet associated with the scaling function )(xϕ , then the three 

two-dimensional wavelets are defined as 

 

  )

)

()(),( yxyxH ψϕψ =

  ()(),( yxyxV ϕψψ =

 ) . (1.21) ()(),( yxyxD ψψψ =

 

The one-level of the two-dimensional DWT analysis and synthesis implementation is depicted in 

Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11



 

 

 

 

columnsrows
Initial image

corresponding to
the resolution level j

2    1 keep one column out of two

1    2 keep one row out of two

Detail image
corresponding to
the information

visible at the
resolution level j

2    1

2    1

1    2

1    2

1    2

1    2

Initial image
corresponding to

the resolution level j+1

x convolve with filter x

(a)   2D-DWT analysis

h

g

h

g

g

h

 
 

Reconstructed
image

resolution level j+1

columns rows

insert one column of zero between each column

x convolve with filter x
(b)   2D-DWT synthesis

Image corresponding
to the low resolution
level j

Detail images
at the resolution
level j

h

g

g

g

h

h

1    2

1    2

1    2

1    2

2    1

2    1

1    2

2    1

insert one row of zero between each row

 
 

Figure 1.2 One-level of the two-dimensional DWT implementation. 

(a) 2D-DWT analysis 

(b) 2D-DWT synthesis 
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S+P-Transform  

 The S+P-transform was introduced by Said and Pearlman [6] in which is a modification 

of the S-transform.  For a given even sequence , it can be represented by  12,...,1,0),( −= Nnnx

 

  (1.22) 12,...,1,0,)12()2()( −=+−= Nnnxnxnh

 

 12,...,1,0,
2

)12()2()( −=



 ++

= Nnnxnxnl  (1.23) 

 

where the symbol  designates downward truncation which  ⋅  x  is the largest integer less than 

or equal to x. 

 

The l(n) and h(n) sequences generate the S-transform of x(n) and the inverse transformation is 

given by 

 

 



 +

+=
2

1)()()2( nhnlnx  (1.24) 

and 

 )()2()12( nhnxnx −=+ . (1.25) 

 

The S-transform is very simple and can be very efficiently calculated. Furthermore, it 

significantly decreases the first-order entropy.  However, due to aliasing from the low frequency 

components of the original sequence, there is a residual correlation in the highpass components 

[6].  The S+P-transform was introduced to solve this problem. Based on the fact that the 

predictive coding need not be linear for perfect reconstruction, the S-transform can then be 

improved by predictive coding.  In the S+P-transform, the S-transform sequences l(n) and h(n) 

are employed to estimate a new sequence which is given by )(ˆ nh

 

  (1.26) ∑∑
−=−=

+−+∆=
H

j
j

L

Li
i jnhinlnh

1
)()()(ˆ

1

0

βα
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where .  This  sequence is further needed to calculate the different 

sequence h  in which 

)()1()( nlnlnl −−=∆

)(nd

)(ˆ nh

 

 12,...1,0,
2
1)(ˆ)()( −=



 +−= N

d nnhnhnh . (1.27) 

 

The sequence h(n) is replaced by the different sequence  forming a new transformed image 

with smaller first-order entropy.  For the inverse transformation, the prediction can be 

accomplished in a reverse order as follows 

)(nhd

 

 0,...,22,12,
2
1)(ˆ)()( −−=



 ++= NN

d nnhnhnh . (1.28) 

 

The two-dimension S+P-transform can be readily accomplished by applying the 

described one-dimension S+P-transform sequentially to the columns and rows of the image.  

However, truncation is a nonlinear operation; this fact makes the order of transformation 

important.  In other words, the inverse transformation must be a backward operation of the 

forward process.  Additionally, the authors have studied three different methods to determine the 

predictor coefficients iα  and jβ  based on minimum entropy, minimum variance, and frequency 

domain design.  Based on the extensive tests with different types of images, the universal 

predictors, which are effective for a broad class of images, are designed.  In this dissertation, the 

predictor B shown in [6] is employed for this scheme. 
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Linear Decomposition Transform 

 The basic concept of the linear decomposition transform (LDT) is to employ the even 

indexed sequence and the associated  norm optimal interpolation even-length filter to 

approximate the odd indexed sequence.  For a given data sequence x(n) for 0 , the 

LDT-analysis equations are defined by 

pl

12 −≤≤ Nn

 

    and   d  (1.29) ) )22()()12()(
1

qnxqhnxn
Q

Qq
−−+= ∑

−

−=

2()( nxnc =

 

for  and Q is a positive number.  The optimum filter coefficients h(q) appearing 

in expression (1.29) are designed, based on  norm error minimization, to cause many of detail 

coefficients d(n) small in magnitude.  Inversely, the original data sequence x(n) is reconstructed 

by using the following synthesis equations 

120 1 −≤≤ −Nn

pl

 

    and   . (1.30) ) 120),()()()12( 1
1

−≤≤−+=+ −
−

−=
∑ N
Q

Qq
nqncqhndnx()2( ncnx =

 

This one-dimensional signal decomposition can be generalized to higher dimensions in a 

straightforward manner.  In this dissertation, one of the decorrelation techniques for two-

dimensional data proposed in [47], which is called horizontal-vertical-diagonal decomposition 

(LDT-HVDD), is selected to be a representative of the LDT method.  An image X is decomposed 

into four sub-images defined by , and OEEOEE XXX ,, OOX .  The even-even indexed 

image, EEX , is employed to generate the interpolation errors in even-odd, odd-even, and odd-odd 

subbands as respectively designated by the following analysis equations 

 

 )  (1.31) 2,2(),( nmXnmX EE =

  (1.32) 

4444 84444 76
4484476

),(ˆ

1
),(

)22,2()()12,2(),(

nmX

Q

Qq
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nmX

EO

EO

EO

qnmXqhnmXnmD ∑
−

−=

−−+=
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  (1.33) 
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4484476

),(ˆ

1
),(

)2,22()()2,12(),(
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Q

Qq
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−
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−−+=

  (1.34) 
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),(ˆ

1
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)22,22()()12,12(),(
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qnqmXqhnmXnmD ∑
−

−=

−−−++=

 

for .  In addition, the following synthesis relationships, are 

employed to reconstruct the even-even, even-odd, odd-even and odd-odd indexed elements of the 

original image X, respectively 

120,120 11 −≤≤−≤≤ −− NM nm

 

 )  (1.35) ,()2,2( nmXnmX EE=

  (1.36) 

4444 84444 76 ),(ˆ

1

)22,2()(),()12,2(

nmX

Q

Qq

EOEO

EO

qnmXqhnmDnmX ∑
−

−=

−+=+

  (1.37) 

4444 84444 76 ),(ˆ
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)2,22()(),()2,12(

nmX
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Qq

OEOE
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nqmXqhnmDnmX ∑
−

−=

−+=+

  (1.38) 

44444 844444 76 ),(ˆ

1

)22,22()(),()12,12(

nmX
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Qq

OOOO
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qnqmXqhnmDnmX ∑
−

−=

−−+=++

 

for .  Based on this one-level image decompositon and 

reconstruction, a multilevel image decomposition and reconstruction of the LDT transform is 

simply constructed.  Further detail of the LDT can be found in [47]. 

120,120 11 −≤≤−≤≤ −− NM nm

Recently, Deng [7] has proposed interpolation based subband decomposition where the 

median FIR filter is used for the interpolation filter. The illustration of the interpolative filter 

based subband decomposition is shown in Figure 1.3. In this decomposition technique, the down-

sampled image is used to interpolate the missing part of the image in which the down-sampled 

image is considered as the lowpass subband, whereas the interpolation error is the highpass 

subband. The interpolation technique does not only provide successful results but it is also an 

active research area. 
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Figure 1.3 Interpolative subband decomposition. 

 

 

A basic concept of the interpolative subband decomposition is to employ the down-sampled 

image (treated as the low-pass subband) to interpolate other subbands of image.  The proposed 

image decomposition in this dissertation is also based on this technique.  To reduce statistical 

dependence between pixels of the prediction error, the interpolation filter is optimally designed 

to minimize error based on l  norm criterion.  The application of the proposed methods is 

mainly for lossless and lossy image compression.  For lossless compression, it is necessary that 

the prediction error must be integers.  This requirement can be directly solved by truncating the 

output of the interpolation filter to its nearest integer.  Contrarily, this procedure is not required 

for lossy compression.  In addition, the proposed methods generate a multiresolution 

representation of the transform image in which a spatial self-similarity exists between subbands 

[54].  This observation has been taken advantage of in the set partitioning in hierarchical trees 

(SPIHT) coding proposed by Said and Pearlman [54].  This coding algorithm is selected to 

encode the transform coefficients and to measure the compression ratio performance of tested 

decomposition methods.  The organization of this dissertation is given as following. 

p

 

Dissertation Organization 

The analysis of data correlation is first discussed in Chapter II.  The decorrelation of the 

one-dimensional data based on the proposed one-dimensional decomposition technique is then 

introduced.  Later, this technique is applied to the two-dimensional data where three different 

techniques: 1) Horizontal Vertical Decomposition (HVD) 2) Horizontal Vertical Vertical 

Decomposition (HVVD) 3) Horizontal Vertical Diagonal Decomposition (HVDD) are proposed.  

To improve the decorrelation performance for the two-dimensional data, an alternative two-
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dimensional decorrelation technique is therefore introduced in Chapter III.  Generally, the 

optimum scalars and interpolation filter coefficients of the proposed techniques discussed in 

Chapter II and Chapter III, respectively, are designed base on finding of the minimum l  norm 

solution, where the indices p = 1 and p = 2 are primarily examined.  Theorems associated with 

such algorithms are therefore addressed in Chapter IV.  The proposed techniques, the S+P-

transform, and the wavelet transform are implemented on the MATLABR12 program [55] with a 

set of example grayscale images in which the experimental results and discussion are provided in 

Chapter V.  Finally, Chapter VI is devoted to the conclusion of this research. 

p
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CHAPTER II 

 

OPTIMUM SCALARS DECOMPOSITION 

 

One-Dimensional Data Decorrelation 

Pixel correlation of the image plays an important role in image decomposition. As a 

result, several techniques have been proposed over the years [3][6][56][57][58][59].  The main 

concept of these methods is generally based on taking advantage of correlation among 

neighboring pixels of the image.  To gain insight into the importance of pixel correlation, let 

consider a one-dimensional real data sequence { })(nx  defined on the interval 1  where N 

a positive integer, that is 

Nn 2≤≤

 

 { })2(),12(),22(),...,3(),2(),1( NNN xxxxxx −− . (2.1) 

 

The data sequence {  depicted in Figure 2.1 can be generated either by an inherently discrete 

time process or by sampling a continuous time function. 

})(nx

 

 

    x(1)     x(4)    x(2)     x(3)     x(5) )32( −Nx )22( −Nx )12( −Nx )2( Nx

 
Figure 2.1 The illustration of a one-dimensional data sequence { })(nx  where the shading and 
non-shading circles represent odd and even indexed components, respectively. 
 

 

It is assumed that neighboring sequence elements of { })(nx  are highly correlated.  In many 

applications, it is desired to represent the information contained in { })(nx  with fewer samples 

than its prototype.  As can be seen in Figure 2.1,  is somehow associated with its adjacent 

elements  and ,  is associated with its adjacent elements  and , and 

similarly for other odd indexed elements.  Based on this concept, the following decorrelation 

technique is introduced.  The original data sequence 

)2(x

)1(x )3(x )4(x )3(x )5(x

{ })n(x  is preliminarily decomposed into two 
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disjoint half-length sequences {  and })(nxo { })(nxe  whose their components are odd and even 

indexed elements of the original sequence, respectively, as designated by 

( )xTxxo ,

12( −nx

)2(= nx

1 ≤ nfor

1 ≤≤ n

 

 { }  (2.2) e =

 

where the odd indexed elements are specified by 

 

  (2.3) 12))( −≤= N
o nx

 

and the even indexed sequence elements are given by 

 

 . (2.4) 12)( −N
e fornx

 

The decomposition operator T is linear since it is readily verified that ( )21 xbxaT +  

( ) ( 21 xbTxaT += )  holds for all real scalars a, b and all real vectors 1x , 2x . This transformation 

is clearly linear and also invertible.  The invertibility is due to the fact that, for given information 

of the odd and even indexed half-length sequences, the original full-length data sequence can be 

recovered. The inverse procedure can be written as 

 

 { }eo xxTx ,1−= . (2.5) 

 

Additionally, the described decomposition and reconstruction procedure can be simply operated 

by using an invertible structure called a Lazy Wavelet transform [49] as shown in Figure 2.2.  

 

 

    2

)(nxo

)(nxe     2

    2     2

)(nx)(nx

z 1−z

 
Figure 2.2 The Lazy wavelet transform. 
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Figure 2.2 illustrates an overview of splitting and merging data processes.  The odd indexed 

sequence is obtained by down-sampling by two the input sequence depicted as a circle enclosing 

a downward pointing arrow and the number two adjacent to the arrow.  Likewise, the even 

indexed sequence is obtained by employing a similar procedure, except a standard unit left-shift 

operator symbolized as a letter z enclosed with a square is used before the down-sampling 

process.  As a result up to this point, the Lazy wavelet transform maps the input data sequence 

into two half-rate sequences  and { )(nxo } { })(nxe .  Furthermore, Figure 2.2 implies that the Lazy 

wavelet transform is always invertible in which the original full-length data sequence can be 

perfectly recovered given knowledge of the two half-length sequences { })(nxo  and .  As 

depicted in Figure 2.2, the up-sampling by two operation represented by a circle enclosing an 

upward pointing arrow with the number two adjacent to it maps two half-length data sequences 

into the full-length data sequence.  The reconstructed odd and even indexed elements are 

respectively given by 

{ )(nxe }

 

 
( )



 +

=
evenisnfor
oddisnfornx

ny o
o 0

2)1(
)(  (2.6) 

and 

 ( )



=
.2

0
)(

evenisnfornx
oddisnfor

ny
e

e  (2.7) 

 

In the process of reconstruction, a unit right-shift operator symbolized by a letter  enclosed 

with a square is employed after up-sampling process for the even indexed sequence.  By 

substituting equations (2.3) and (2.4) into equations (2.6) and (2.7), respectively, this then yields 

1−z

 

  (2.8) 




=
evenisnfor
oddisnfornx

nyo 0
)(

)(

and 

  (2.9) 




=
evenisnfornx
oddisnfor

nye )(
0

)(
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where the summation of  and { )(nyo } { })(nye  sequences reconstructs the original full-length data 

sequence .  With no loss in generality, let { )(nx } ox  and ex

(nxo

 be row vectors∗ of odd and even 

indexed sequences, respectively, whose components are  and or 1 .  

By setting 

) Rnxe ∈)(  f 12 −≤≤ Nn

ox  to be a reference vector and using relationship between odd and even indexed 

sequences, it then follows that ex  can be approximated by a scalar multiple of ox  as designated 

by 

 

 oe xx α=ˆ  (2.10) 

 

where ex̂  is an approximated version of ex .  The scalar α  is unrestricted and is selected so as to 

minimize the l  norm of the function p poe xx α−  for ∞≤≤ p1 .**  This generates an error 

vector of approximation given by  

 

 oe xxd α−= . (2.11) 

 

Moreover, the even indexed vector can be recovered by given the knowledge of ox  and d  as 

designated by 

 

 oe xdx α+= . (2.12) 

 

As can be seen in expressions (2.10) – (2.12), there exists an equivalency between the following 

vector pairs 

 

 { } { }dxxx oeo ,,, α⇔  (2.13) 

                                                 

∗ The column vector form is also a possible choice. 
** The role between ox  and ex  is interchangeable without loss of generality, namely eo xx α=ˆ . 
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which implies that given one set, the other set can be obtained irrespectively of how a scalar α  

is chosen.  The decomposition and reconstruction of this transform can be defined as follows. 

 

Definition 2.1 : Optimum Scalar Transform 

 Let T  be an operator of the l -norm optimum scalar transform decomposing an even-

length input data sequence {  into two half-length sequences 

os p

})(nx { })(nc  and { .  The 

optimum scalar transform based decomposition is designated by  

})(nd

 

 { } { }( ) { }( ))()(,)( nxTndnc os= . (2.14) 

 

The consequent transformed data sequences, { })(nc  and { })(nd , then form the analysis equations 

as given by 

 

  (2.15) 121)12()( −≤≤−= Nnfornxnc

and 

 . (2.16) 121)12()2()( −≤≤−−= No nfornxnxnd α

 

The one-level optimum scalar transform based decomposition is illustrated in Figure 2.3. 

 

 

)(nxo

)(nxe )(nd

)(nx Optimum
scalar, oα

∑

)(nc

)()(ˆ nxnx o
o

e α=

    2

    2z

 
Figure 2.3 One-level optimum scalar transform based decomposition. 
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The optimum scalar transform is a linear operation, which complies with a principle of 

superposition.  It is readily proved that the optimum scalar transform of a linear combination of 

any two arbitrary input data sequences is equal to a linear combination of the optimum scalar 

transform associated with two data sequences.  Mathematically, let { })(1 nx  and {  be any 

two arbitrary input data sequences.  A linear combination of two sequences is therefore given by 

})(2 nx

 

 )()()( 21 nbxnaxnx +=  (2.17) 

 

where a and b are arbitrary constants.  The responses of the optimum scalar transform associated 

with the input data sequences {  and })(1 nx { })(2 nx  are { } { }( ))(,)( 11 ndnc  and { } { }( ))(,)( 22 ndnc , 

respectively.  Hence, expressions (2.15) and (2.16) can be respectively rewritten as 

 

                                             )12()( −= nxnc  

           )12()12( 21 −+−= nbxnax  

                                                     )()( 21 nbcnac +=  (2.18) 

and 

  )12()2()( −−= nxnxnd oα

                                             ( ) ( ))12()12()2()2( 2121 −+−−+= nbxnaxnbxnax oα  

                                            ( ) ( ))12()2()12()2( 2211 −−+−−= nxnxbnxnxa oo αα  

     )()( 21 nbdnad += . (2.19)∗ 

 

As shown in expressions (2.18) and (2.19), the linearity of the optimum scalar transform is thus 

established.  However, this process is not shift invariant due to the existence of the down-

sampling by two operator. 

 

 

                                                 

∗ where T
oooo

T
ooee

T
o

T
o

T
oeo

xbxaxbxa
xbxaxbxa

xx
xx

))((
))((

2121

2121

++
++

==α . 
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Definition 2.2 : The Inverse of Optimum Scalar Transform 

 Let −T  be the operator of the inverse optimum scalar transform mapping two half-length 

data sequences  and {  into a double-length data sequence { .  The optimum 

scalar transform based reconstruction is designated by 

1
os

{ )(nc } } })(nd )(nx

 

 { }( ) { } { }( ))(,)()( 1 ndncTnx os
−=  (2.20) 

 

which is readily shown to be linear.  The original odd and even indexed data sequences are given 

by the following synthesis equations 

 

  (2.21) 121)()12( −≤≤=− Nnforncnx

and 

 . (2.22) 121)()()2( −≤≤+= No nforncndnx α

 

The diagram of one-level optimum scalar transform based reconstruction is shown in Figure 2.4.  

This procedure can be generalized to multilevel decomposition and reconstruction in a 

straightforward manner; however, such detail is excluded in this research.  The following section 

discusses the application of this technique to decorrelate two-dimensional data. 

 

 

    2

)(nxo

)(nxe

    2

)(nd

)(nx

)(nc

)()(ˆ nxnx o
o

e α=

Optimum
scalar, oα

∑ 1−z

 
Figure 2.4 One-level optimum scalar transform based reconstruction. 
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Two-Dimensional Data Decorrelation 

With the given notion of one-dimensional data correlation in mind, the similar concept 

can be generalized in a straightforward manner to two-dimensional data such as an image.  Let 

there be given a digital image X derived from the sampling process (digitization) of a two-

dimensional continuous space.  The image takes a form of a 2 NM 2×  matrix whose elements or 

pixels X(m,n) are defined on a two-dimensional discrete space, in which 1  

and M,N are even integers.  The value assigned on each pixel is the image intensity (gray level), 

which is the average brightness in the pixel rounded to the nearest integer value.  An example of 

the digitization effect is illustrated in Figure 2.5.  The image is therefore decorrelated by the 

following techniques. 

NM nm 21,2 ≤≤≤≤

 

 

columns

Ro
w

s

X(6 ,8) = 218

 
Figure 2.5 An example of digitization of a continuous image where the pixel at coordinates (m = 
6, n = 8) has the integer brightness value 218. 
 

 

Optimum Scalar-Horizontal Vertical Decomposition (OS-HVD) Method 

An image is first decomposed by taken advantage of column pixels correlation 

(horizontal correlation) and then row pixels correlation (vertical correlation).∗  In other words, 

the image X is decomposed into two sub-images AOX  and AEX  whose their  column 12 −N

                                                 

∗ The role between horizontal and vertical correlation is interchangeable without loss of generality. 
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vectors are specified by 12 −neX  and neX 2 , respectively, for .121 −≤≤ Nn ∗  The decomposition 

procedure is designated by 

}X AE =

AEX
AO

AEX −

1

1×∈ PQRx

 

 { )(, XTX c
AO . (2.23) 

 

This relationship implies that the even column indexed image  can be approximated by a 

scalar multiple of its adjacent odd column indexed image X  and the associated error matrix is 

given by 

 . (2.24) AOAE XD α=

 

The choice for scalar α  in this analysis is unrestricted; however, it is subsequently chosen so 

that the matrix norm AOAE XX α−=AED  is minimized.  Any norm matrix can be used in the 

above matrix approximation problem; nevertheless, the norm employed is here restricted to the 

 induced norm matrix as specified by pl

 

 
pM

m

N

n

pAE

p

AE nmDD
/1

1 1
),( 








= ∑∑

= =

 (2.25) 

 

in which the norm index p can be any number satisfying .  Among these norms, the choices 

for p = 1 and p = 2 have received widespread interested [60][61][62][63][64][65][66] and will be 

mainly employed in this research.  To solve the optimized problem in expression (2.25), it is 

useful to represent a matrix by its equivalent column vector concatenated form.  Let X be any 

 matrix.  Its equivalent column vector concatenated form 

≥p

QP ×  is then designated by 

 

 ( ) [ ]T
QQP xxxXCx L21, ==  (2.26) 

 

                                                 

∗ ne  is the standard basis vector whose components are all zero except for its n  element which is one. th
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where qq eXx =  for 1  are the qQq ≤≤

, :QPC

th column vector of the matrix X.  The concatenated 

column transformation  is linear as well as invertible.  The inverse 

transformation, which produces the original matrix 

1×× → PQQP RR

QPRX ×∈ , is given by 

 

 ( ) XxC QP =−1
, . (2.27)∗ 

 

Upon employing this concatenated column transformation, the original optimized problem can 

be likewise expressed as  

 

 
p

AOoAE
p

AE XXD α−=  

  
p

AE AOo xx α−=  

         
p

AOAE

R
xx α

α
−=

∈
min  (2.28) 

 

in which ( AOAO XCx NM 12,2 −= ) and ( )AEAE XCx NM 12,2 −=  are column vector concatenated 

transforms of the matrices AOX  and AEX , respectively.  Using this relationship, the matrix AEX  

can be recovered by 

 

 . (2.29) AOAEAE XDX α+=

 

Thus, regardless to the choice of the scalar α , the equivalency between expressions (2.24) and 

(2.29) is expressed as the following matrix pairs  

 

 { } { }AEAOAEAO DXXX ,,, α⇔  (2.30) 

                                                 

∗ It is necessary to explicitly employ the subscript order information since the vector 1×∈ PQRx  can also produce 

the 2P×Q/2 matrix as )(1
2/,2 xQP

−C . 
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which implies that given one set, the other set can be generated.  Additionally, the inverse 

transformation is thus given by 

 

 { }AEAO
c XXTX ,1−= . (2.31) 

 

In the same manner, the existing 122 −× NM  matrix AOX  is subsequently decomposed into two 

matrices OOX  and EOX  where  row vectors are specified by 12 −M AOT
m Xe 12 −  and AOT

m X2e , 

respectively, for .  The vertical decomposition procedure is defined by 11 −≤ M2≤m

 

 { } )(, AO
r

EOOO XTXX = . (2.32) 

 

The vertical decomposition based on correlation between adjacent rows of the image can be 

accomplished by approximating row even indexed image EOX  as a scalar multiple of adjacent 

row odd indexed image OOX  which is expressed by 

 

 . (2.33) OOEOEO XDX β+=

 

Without regard to the choice of the scalar β , it is unrestricted, but subsequently selected to 

minimize the norm induced function 
p

OOEO xx β− where EOx  and OOx  are the equivalent 

column vector concatenated form of EOX  and OOX  matrices, respectively∗.  As a result, it 

provides the equivalency between the following matrix pairs 

 

 { } { }EOOOEOOO DXXX ,, β⇔ . (2.34) 

 

By considering expressions (2.32) and (2.33), the reconstruction of the image AOX  is given by 

 

                                                 

∗ where ( ) [ ]TT
P

TT
QP xxxXCx L21, == for Xex T

pp =  for Pp ≤≤1  are the pth row vector of the matrix X. 
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                                   ( )OOEOOO
r

AO XDXTX β+= − ,1   

 ( ) ( )EO
r

OOOO
r DOTXXT ,, 11 −− += β  (2.35) 

 

where the matrix O is assigned to be zero matrix.  In addition, the even column 

indexed image 

11 22 −− × NM

AEX  of the original image X can be reconstructed by 

 

                          AOAEAE XDX α+=

             ( ) ( ) ( )( )EO
r

OOOO
r

EEOE
r DOTXXTDDT ,,, 111 −−− ++= βα  

 ( )( ) ( )EEEOOE
r

OOOO
r DDDTXXT ++= −− αβα ,, 11  (2.36) 

 

where { } ( )AE
r

EEOE DTDD =, .  In accordance with expressions (2.35) and (2.36), the original 

image X  is perfectly recovered from the given information of the entities 

 as symbolically expressed by EOEEOEOO DDD ,,,X,, βα

 

 { }EOEEOEOO DDDXX ,,,,, βα⇔  (2.37) 

 

where  are EOEEOEOO DDDX ,,, 11 22 −− × NM  matrices.   This relationship is clearly independent 

on the choice of scalars α  and β . 

 

The one-level OS-HVD method can be generalized to the multilevel process.  At end 

stage of the one-level HVD method, an NM 22 ×  image X is decomposed into four 2 11 2 −− × NM

OOX1

22 2 −× N

 

sub-images  and  where the subscript is used to explicitly recognize the level 

of image decomposition.  For the second level of decomposition, the sub-image  is 

decomposed into four  sub-images  and .  The sub-

image  is further decomposed into four 

EEOEOO DDX 111 ,,

22 −M

EOD1

2−N2× EEOEOO DD 222 ,,
32 −

X
32 −

EOD2 2 −M

OOX 2 × NM  sub-matrices  and  

at the third level of the process.  The three-level OS-HVD method is demonstrated in Figure 2.6.  

The decomposition procedure can be continued in a similar fashion to the L

EE EOD3
OE D3,OO D3,X 3

th level, for which 

{ }NM 2,L2 ≤ 2max , generating a set of 3L+1 sub-images as follows 
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 { }EOEEOEEO
L

EE
L

OE
L

EO
L

EE
L

OE
L

OO
L DDDDDDDDDXX 111111 ,,,...,,,,,,, −−−⇔ . (2.38) 

 

 

),(3 nmX OO

),(1 nmD EE),(1 nmD EO

),(1 nmDOE

),(2 nmDOE

),(2 nmD EE),(2 nmD EO

),(3 nmD EE

),(3 nmDOE

),(3 nmD EO

 
Figure 2.6 Three-level of OS-HVD method. 

 

 

Optimum Scalar-Horizontal Vertical Vertical Decomposition (OS-HVVD) Method 

This method is an extended version of the OS-HVD method.  Upon examination at each 

level of HVD method, one can apply the row-based decomposition to the detail matrix .  

Consequently, it follows that the matrix  can be approximated by a scalar multiple of  

as  where the scalar 

AED
EEDEED

OEDγ γ  is made to minimize the norm induced function 

OEEE DD γ−EE D=~ .  There also exists the equivalency of the following two sets 

 

 { } { }EEOEEEOE DDDD ~,,, γ⇔  (2.39) 

 

where the matrix  can be perfectly recovered by AED

 

 ( ) ( )OEEEOE
r

EEOE
r

AE DDDTDDTD γ+== −− ~,, 11  (2.40) 

 

for given knowledge of the scalar γ , the detail matrix  and OED EED~ . 
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With this additional decomposition performed on the detail matrix , the even column 

indexed image 

AED
AEX  of the original image X can thus be reconstructed by 

 

                              AOAEAE XDX α+=

                    ( ) ( )( )EOOOOO
r

OEEEOE
r DXXTDDDT +++= −− βαγ ,~, 11  

                      ( )( ) ( )EEOEEOOE
r

OOOO
r DDDDTXXT ~,, 11 +++= −− γαβα . (2.41) 

 

Expression (2.41) indicates that the matrix AEX  has been decomposed into the sum of two 

matrices.  One depends only on the matrix OOX  whereas another one depends only on the detail 

matrices , and EOOE DD , EED~ .  By employing equations (2.40) and (2.41) and giving the 

knowledge of the entities  and ,,,, OO DXγβ , EOD,α OE EED~ , the original image X  can be 

perfectly recovered as symbolically expressed by 

 

 { }EEEOOEOO DDDXX ~,,,,,, γβα⇔  (2.42) 

 

where EEEOOEOO DDDX ~,,,  are 11 22 −− × NM  matrices.  This relationship implies the 

independency of the choice of real scalars βα ,  and γ . 

 

 A multilevel OS-HVVD method can be achieved by repeating the similar decomposition 

on the  sub-image  (for any current level j) which produces four 11 22 −− × NM OO
jX 22 22 −− × NM  

sub-images , and EO
j

OE
j D 11 , ++

OO
j DX 1 ,+

EE
1jD~ + .  This procedure may continue to the Lth level, for which 

{ }NM 2,2maxL2 ≤ , generating a set of 3L+1 sub-images as given by 

 

 { }EEEOOEEE
L

EO
L

OE
L

EE
L

EO
L

OE
L

OO
L DDDDDDDDDXX 111111

~,,,...,~,,,~,,, −−−⇔ . (2.43) 

 

With no loss in generality, let the level of decomposition L be 3, then three-level OS-HVVD 

method can be depicted in Figure 2.7. 
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Figure 2.7 Three-level OS-HVVD method. 

 

 

Optimum Scalar-Horizontal Vertical Diagonal Decomposition (OS-HVDD) Method 

This method is slightly different from two previous methods in that the image is not only 

decorrelated in the horizontal and vertical directions, but also in the diagonal direction.  Let X  

be any  image and be decomposed as NM 22 ×

 

 { } ( )XTXX r
EAOA =,  (2.44) 

 

where OAX  and EAX  have their  row vectors specified by 12 −M XeT
m 12 −  and XeT

m2 , respectively, 

for .  Thereafter, the matrices 121 −M≤≤ m OAX  and EAX  are decomposed in the horizontal 

direction as follows 

 

 { } ( )OA
c

OEOO XTXX =,  (2.45) 

 

where the  matrices 11 22 −− × NM OOX  and  have their  column vectors specified by OEX 12 −N

12 −n
OA eX  and n

OA eX 2  , respectively, for  11 −N2≤≤ n

 

and { } ( )EA
c

EEEO XTXX =,  (2.46) 
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where the  matrices 11 22 −− × NM EOX  and EEX  have their  column vectors specified by 12 −N

12 −n
EA eX  and n

EA eX 2  , respectively, for .  Since 12 −≤ N1 ≤ n OAX  and EAX  have their row 

elements adjacent to each other, it implies that they are highly correlated to one another as well 

as their associated matrices, OOX , OEX , EOX , and EEX .  By taking the matrix OOX  as a 

reference matrix, this matrix is correlated with the matrices OEX , EOX , and EEX  in horizontal, 

vertical, and diagonal directions, respectively.  Let us employ this advantage to approximate the 

matrices OEX , EOX , and EEX  by scalar multiple of OOX .  Hence, the error of the approximated 

matrices and the inverse operations associated with the matrices OEX , EOX , and EEX  can be 

respectively expressed by 

 

    and    (2.47) 

 

OOOEOE XXD α−= OOOEOE XDX α+=

    and    (2.48) OOEOEO XXD β−= OOEOEO XDX β+=

 

and    and    (2.49) OOEEEE XXD γ−= OOEEEE XDX γ+=

 

where  are 2  matrices and all real scalars EEEOOE DDD ,, 11 2 −− × NM γβα ,,  are selected so that 

the associated norm induced functions 
p

OOOEOE XXD α−= , EOD = , and 

p

OOEE XX γ−=EED  are minimized, respectively. 

p

OOEO XX β−

 

Likewise, there exists the equivalent relationship between the following matrix pairs as 

designated by 

 

 { } { }OEOOOEOO DXXX ,,, α⇔ , (2.50) 

 

 { } { }EOOOEOOO DXXX ,,, β⇔ , (2.51) 

 

and { } { }EEOOEEOO DXXX ,,, γ⇔ . (2.52) 
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Additionally, the matrices OAX  and EAX  are recoverable by the following relationships 

 

                                         ( )OEOO
c

OA XXTX ,1−=  

 ( )OEOOOO
c DXXT += − α,1  

              ( ) ( )OE
c

OOOO
c DOTXXT ,, 11 −− += α  (2.53) 

 

where the 2 matrix O is defined to be a zero matrix, and 11 2 −− × NM

 

                                         ( )EEEO
c

EA XXTX ,1−=  

             ( )EEOOEOOO
c DXDXT ++= − γβ ,1  

                   ( ) ( )EEEO
c

OOOO
c DDTXXT ,, 11 −− += γβ . (2.54) 

 

Equation (2.53) indicates that the matrix OAX  can be decomposed into the sum of a matrix that 

depends only on the matrix OOX  and a matrix that depends only on the detail (error) matrix 

.  In the same fashion, as shown in expression (2.54), the matrix OED EAX  can be decomposed 

into the sum of a matrix that depends only on the matrix OOX  and a matrix that depends only on 

the detail (error) matrices  and .  Hence, with the knowledge of the following entities 

, the original image 

EOD
EE

EED
EOOEOO DDDX ,,,,γ,, βα X  can be reconstructed independently to the 

choice of the real scalars γβα ,,  as symbolically expressed by 

 

 { }EEEOOEOO DDDXX ,,,,,, γβα⇔  (2.55) 

 

where  are 2EEEOOEOO DDDX ,,, 11 2 −− × NM matrices. 

 

A multilevel based OS-HVDD method is a simple generalization of the one level process 

in which at the final of the first level of OS-HVDD method.  Let L be the total level of 

decomposition, for which { }NML 2,2max2 ≤ , it then follows that a set of 3L+1 sub-images is 

generated as given by 
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 { }EEEOOEEE
L

EO
L

OE
L

EE
L

EO
L

OE
L

OO
L DDDDDDDDDXX 111111 ,,,...,,,,,,, −−−⇔ . (2.56) 

 

 The optimum scalar decomposition has been discussed in this chapter.  The proposed 

methods based on this decomposition technique for two-dimensional data case will be processed 

to the images.  Another proposed technique motivated by the LDT-HVD method is described in 

the following chapter. 
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CHAPTER III 

 

TWO-DIMENSIONAL-HORIZONTAL VERTICAL DIAGONAL DECOMPOSITION 

 

The optimum scalar decomposition described in the previous chapter and the linear 

decomposition transform employ one-dimensional decorrelation technique to decorrelate two-

dimensional data.  This technique decomposes an image by simply applying the one-dimensional 

decorrelation procedure in a separable manner to the image.  In other words, each column of the 

image is decorrelated then the image is decorrelated row-wise and/or diagonally.  Such technique 

can be referred to as a separable two-dimensional decorrelation.  However, by using this scheme, 

correlation in all directions of the image has not been simultaneously taken advantage of.  

Consequently, the one-dimension decorrelation technique may not be an efficient method to 

decorrelate two-dimensional data.  Alternatively, a better decorrelation performance can be 

achieved by using a non-separable two-dimensional decorrelation rather than consecutive one-

dimensional column-wise, row-wise and/or diagonally processing.  In the literature, many 

techniques based on two-dimensional decorrelation have been proposed which can be 

categorized either as separable/non-separable, linear/non-linear, adaptive/non-adaptive, or hybrid 

of these types [6][7][10][21][27][67].  However, in this dissertation, a linear, non-separable, two-

dimensional decomposition technique is proposed in this chapter and the underlying concept is 

described as follows. 

 

Two-Dimensional-Horizontal Vertical Diagonal Decomposition (2D-HVDD) Method 

 Let a 2 × 2  image X, where M, N are integers, be decomposed into four poly-phases, 

odd-odd, odd-even, even-odd and odd-odd components, as respectively specified by 

M N

 

 . (3.1) 11 21,21)12,12(),( −− ≤≤≤≤−−= NMOO nmfornmXnmX

 

 . (3.2) 11 21,21)2,12(),( −− ≤≤≤≤−= NMOE nmfornmXnmX

 

 . (3.3) 11 21,21)12,2(),( −− ≤≤≤≤−= NMEO nmfornmXnmX
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 . (3.4) 11 21,21)2,2(),( −− ≤≤≤≤= NMEE nmfornmXnmX

 

These sub-images contain the essential features of the original image at a coarser scale with 

different orientations (horizontal, vertical, and diagonal directions).  The example of poly-phase 

components of the image is given in Figure 3.1.  Based on the concept described in the previous 

chapter that the adjacent pixels tend to be highly correlated, the pixels in horizontal, vertical and 

diagonal directions can be formulated their correlation in a two-dimensional structure. 

Given the poly-phase image configuration shown in Figure 3.1 and neighborhood pixels 

correlation, an odd-even pixel component  can be approximated by using four pixels 

located above, below, left and right of the current pixel .  In other words, those pixel 

elements are , ,  and respectively, and the 

associated relationship is given by 

),( nmX OE

,1(mX EE −

),( nmX OE

), X EE),( nmX OO )1,( +nmX OO n ),,( nm

 

      (3.5) ),(),1()1,(),(),(ˆ nmXnmXnmXnmXnmX EEOEEEOEOOOEOOOEOE γλβα +−+++=

 

for .  Additionally, the associated detail elements are designated by  11 21,21 −− ≤≤≤≤ NM nm

 

 . (3.6) 11 21,21),(ˆ),(),( −− ≤≤≤≤−= NMOEOEOE nmfornmXnmXnmD

 

The real valued scalars  and  are selected so that the error of approximation is 

in some sense minimized.  The two-dimensional decorrelation structure for the sub-image 

OEOEOE λβα ,, OEγ
OEX  

is depicted as a diamond shape in Figure 3.2. 

 In an analogous manner, an even-odd pixel  can be approximated by 

employing a similar structure where the four neighborhood pixels used in the approximation are 

and .  According to the following 

relationship 

),( nmX EO

)),1,( −nmX EE ),,( nmX EE ),,( nmX OO ,1( nmX OO +

 

      (3.7) ),1(),(),()1,(),(ˆ nmXnmXnmXnmXnmX OOEOOOEOEEEOEEEOEO ++++−= γλβα
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Figure 3.1 The example of poly-phase components of an image where , ,  and  
respectively represent  and  for 

. 
),(),,(),,( nmXnmXnmX EOOEOO ),( nmX EE

11 21,21 −− ≤≤≤≤ NM nm
 

 

 

OEγ

OEλ
OEα

OEβ

 

Figure 3.2 Two-dimensional decorrelation structure for the sub-image OEX . 
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for 1  and all real valued scalars  and  are selected so as 

to in some sense minimize the error of approximation defined by 

11 21,2 −− ≤≤≤≤ NM nm EOEOEO λβα ,, EOγ

 

 . (3.8) 11 21,21),(ˆ),(),( −− ≤≤≤≤−= NMEOEOEO nmfornmXnmXnmD

 

The two-dimensional decorrelation structure for the sub-image EOX  is shown in Figure 3.3.  

Finally, an even-even pixel component  can be approximated by using the two-

dimensional decorrelation structure as a square shape illustrated in Figure 3.4. 

),( nmX EE

 

 

EOγ

EOλ
EOα

EOβ

 

Figure 3.3 Two-dimensional decorrelation structure for the sub-image EOX . 

 

 

As shown in Figure 3.4, an even-even pixel is approximated by the four pixels 

 and  in which their relationship is 

given by 

),( nmX EE

,1( + nmX OO),1,(),,1(),,( ++ nmXnmXnmX OOOOOO )1+
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EEγ

EEλEEα

EEβ

 

Figure 3.4 Two-dimensional decorrelation structure for the sub-image EEX . 

 

 

 (3.9))1,1()1,(),1(),(),(ˆ +++++++= nmXnmXnmXnmXnmX OOEEOOEEOOEEOOEEEE γλβα ∗ 

 

for 1 .  Furthermore, the associated error (detail) elements are designated 

by 

11 21,2 −− ≤≤≤≤ NM nm

 

 . (3.10) 11 21,21),(ˆ),(),( −− ≤≤≤≤−= NMEEEEEE nmfornmXnmXnmD

 

Based on the two-dimensional decorrelation procedure previously described, the boundary 

problem is inevitable for this case.  On one hand, it can be assumed that the elements that lie 

outside the interval 1 are taken to be zero.  On the other hand, the 

symmetric extension is an alternative method to alleviate the boundary problem.  In many 

applications, the scalars shown in expressions (3.5), (3.7), and (3.9) are selected so as to 

minimize the magnitude of their associated error matrices.  The details of searching for such 

11 21,2 −− ≤≤≤≤ NM nm

                                                 

∗ The real scalars  and  are unrestricted but selected so that the detail matrices are as small as 

possible in magnitude in  norm sense. 

EEEEEE λβα ,,

pl

EEγ
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scalars will be addressed in the next chapter.  The procedure described at this stage is a one-level 

decomposition, which is illustrated in Figure 3.5. 

 

 

),( nmX

),( nmX OO ),( nmX OE

),( nmX EO ),( nmX EE

),( nmX OO ),( nmDOE

),( nmD EO ),( nmD EE

 
Figure 3.5 One-level two-dimensional HVD method. 

 

 

Based on the described one-level decomposition, the original image can be achieved by 

arranging expressions (3.6), (3.8), and (3.10) to generate the original sub-images 

and EOOEOO XXX ,, EEX .  In fact, the original odd-odd indexed pixels are directly obtained by 

equation (3.1), that is 
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 . (3.11) 11 21,21),()12,12( −− ≤≤≤≤=−− NMOO nmfornmXnmX

 

By rearranging expression (3.6) and employing expression (3.5), the odd-even indexed elements 

are specified as 

 

 . (3.12) 11 21,21),(),(ˆ)2,12( −− ≤≤≤≤+=− NMOEOE nmfornmDnmXnmX

 

In a similar manner, the even-odd indexed elements are obtained by using equation (3.7) and 

rearranging equation (3.8), which yields 

 

 . (3.13) 11 21,21),(),(ˆ)12,2( −− ≤≤≤≤+=− NMEOEO nmfornmDnmXnmX

 

Additionally, the even-even indexed pixels are regenerated from the rearrangement of expression 

(3.10), in which expression (3.9) is also used, that is 

 

 . (3.14) 11 21,21),(),(ˆ)2,2( −− ≤≤≤≤+= NMEEEE nmfornmDnmXnmX

 

 It is possible to generalize of the one-level decomposition procedure to a multilevel case.  

At end stage of the one-level decomposition, the ×  image X is decomposed into four 

×  sub-images,  and .

M2

OO D2 ,

N2
M

OE
2 ,

X 2

12 −M

32 −M

12 −N

32 −N

EOOEOO DDX 111 ,,

2−M 2−N

2−M 22 −N

EOOEOO DDX 333 ,,

EED1

X

D3

∗  The 2 ×  coarser sub-image  is 

decomposed into four × 2  sub-images,  and , at the second level.  

At the third level, the ×  even-even sub-image  is further decomposed into four 

×  sub-images,  and .  The three-level two-dimensional HVDD 

method is depicted in Figure 2.6.  A similar decomposition procedure can be repeated with any L 

levels for which 

1−

EOD2

OO

12 −N OOX 1

2

2

EED2

EE

{ }NM 2,2L2 ≤ max  and the following set of 3L+1 sub-images are generated 

 

                                                 

∗ The subscript is used to explicitly indicate the level of decomposition. 
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 { }EEEOOEEE
L

EO
L

OE
L

EE
L

EO
L

OE
L

OO
L DDDDDDDDDX 111111 ,,,...,,,,,,, −−− . (3.15) 

 

At each level j, the decomposition process is obtained by the following relationships, 

 

  (3.16) )12,12(),( 1 −−= − nmXnmX OO
j

OO
j

 

  (3.17) )2,12(),( 1 nmXnmX OO
j

OE
j −= −

 

  (3.18) )12,2(),( 1 −= − nmXnmX OO
j

EO
j

 

  (3. 19) )2,2(),( 1 nmXnmX OO
j

EE
j −=

 

and the poly-phase detail elements are therefore given by 

 

),(),( nmXnmD OE
j

OE
j =  

( )
44444444444444 844444444444444 76

),(ˆ

),(),1()1,(),(

nmX

EE
j

OE
j

EE
j

OE
j

OO
j

OE
j

OO
j

OE
j

OE
j

nmXnmXnmXnmX γλβα +−+++−  (3.20) 

 

),(),( nmXnmD EO
j

EO
j =  

( )
44444444444444 844444444444444 76

),(ˆ

),1(),(),()1,(

nmX

OO
j

EO
j

OO
j

EO
j

EE
j

EO
j

EE
j

EO
j

EO
j

nmXnmXnmXnmX ++++−− γλβα  (3.21) 

 

),(),( nmXnmD EE
j

EE
j =  

( )
444444444444444 8444444444444444 76

),(ˆ

)1,1()1,(),1(),(

nmX

OO
j

EE
j

OO
j

EE
j

OO
j

EE
j

OO
j

EE
j

EE
j

nmXnmXnmXnmX +++++++− γλβα  (3.22) 

 

where the index intervals for expressions (3.16)-(3.22) are 1  and 1 , 

 

jMm −≤≤ 2 jNn −≤≤ 2

Lj ≤≤1 .
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In an obvious manner, the inverse procedures for each level j of the multilevel 

reconstruction are readily achieved by rearranging equations (3.16)-(3.22), which respectively 

yields  

 

  (3.23) ),()12,12(1 nmXnmX OO
j

OO
j =−−−

 

),()2,2(1 nmDnmX EE
j

OO
j =−  

( )
444444444444444 8444444444444444 76

),(ˆ

)1,1()1,(),1(),(

nmX

OO
j

EE
j

OO
j

EE
j

OO
j

EE
j

OO
j

EE
j

EE
j

nmXnmXnmXnmX ++++++++ γλβα  (3.24) 

 

),()2,12(1 nmDnmX OE
j

OO
j =−−   

( )
44444444444444 844444444444444 76

),(ˆ

),(),1()1,(),(

nmX

EE
j

OE
j

EE
j

OE
j

OO
j

OE
j

OO
j

OE
j

OE
j

nmXnmXnmXnmX γλβα +−++++  (3.25) 

 

),()12,2(1 nmDnmX EO
j

OO
j =−−  

( )
44444444444444 844444444444444 76

),(ˆ

),1(),(),()1,(

nmX

OO
j

EO
j

OO
j

EO
j

EE
j

EO
j

EE
j

EO
j

EO
j

nmXnmXnmXnmX ++++−+ γλβα  (3.26) 

 

for  and 1 ,11,2,3,...,1, −= LLj jMm −≤≤ 2 jNn −≤≤ 2 ∗. 

 

 The decomposition procedure described in this chapter employs the two-dimensional 

structure.  At each level of decomposition, once the optimum weighting coefficients associated 

with three sub-images are established, the related two-dimensional decorrelation structures are 

constructed, and the two-dimension convolution is therefore performed to generate the associated 

error matrices.  This approach not only provides an efficient alternative method for image 

decomposition but also gives an adaptive performance in which the optimum scalars used in 

                                                 

∗ It is noted that the even-even subband at level j must be first reconstructed, since the pixels of this subband are 

employed to reconstruct the odd-even and even-odd subbands. 
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approximation can be updated at each level of the decomposition process.  To achieve a good 

performance of compression, many proposed methods have endeavored to give the detailed 

matrices as small in magnitude as possible.  In addition to the proposed method in this chapter, 

all optimum scalars used in approximation are selected to achieve the same purpose.  The 

algorithms of finding such scalars are described in the next chapter. 
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CHAPTER IV 

 

OPTIMUM PARAMETERS SELECTION 

 

According to the one-dimensional and two-dimensional decorrelational techniques 

discussed in Chapter II and Chapter III, respectively, it is seen that the optimum parameters play 

an important role in the decomposition process.  To achieve a good compression performance, 

these real valued scalars must be selected so that the error vector or matrix of approximation has 

as many of its components small in magnitude as possible.  In other words, these scalars must be 

chosen to minimize error of approximation in some sense.  Generally, the topic in this chapter is 

related to a linear fit modeling problem, which has long a history of its development [68][69].  

This chapter mainly focuses developing an algorithm for determining the minimum  norm 

approximate solution to a linear system of M equations in one unknown and N unknowns.  Cases 

in which p = 1 and p = 2 are particular interest in this dissertation. 

pl

 

Overview of Modeling Problem 

 Let there be given an empirical data set { })(),...,3(),2(),1( Myyyy  such that 1×∈ MRy  and 

a parameter vector 1×∈ NRx

)

 whose components are unknown real value as given by 

.  The modeling relationship of a system of M equations in N unknowns 

is governed by 

{ (),...,3(),2(),1( Nxxxx }

 

 exAy +=  (4.1) 

 

where 1×∈ MRe

R∈)(  f

 is the error vector and  is the M×N system matrix whose components 

or 1  and 

A

nmA , Mm ≤≤ Nn ≤≤1 .  The error vector appearing in equation (4.1) can be 

represented either as additive measurement noise or as an error incurred when this linear model 

is invoked and the process is nonlinear.  Upon rearranging expression (4.1), we have  

 

 xAye −= . (4.2) 
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The goodness of approximation is measured by the l  norm sense as specified by p

 

 
pM

m

p

p
mee

1

1
)( 








= ∑

=

 (4.3) 

 

where the parameter p takes on any value greater than or equal to one.  For p = 1 and p = 2, it 

corresponds to sum of error magnitudes and sum of squared error criterion, respectively.  For 

general 1 , this  norm of the error vector can also be expressed as ∞<≤ p pl

 

 ( )
pp xAyxf −= . (4.4) 

 

This norm-induced function possesses some very important and well-known properties useful for 

characterizing its minimum value.  The key properties are therefore now briefly summarized. 

 

Definition (4.1) : Norm [70] A norm defined on a vector space X over the field F, which maps 

every vector x  in X into a non-negative real number in R, is denoted by x  (which is called the 

norm of x ). The norm functional must satisfy the following axioms. 

 

 

)(,)(

)(

000)(

212121 inequalitytriangularXxxallforxxxxiii

FandXxallforxxii

xifonlyandifxandXxallforxi

∈+≤+

∈∈=

==∈≥

ααα  

 

A norm is actually a special case of a more general function called a metric, which is a function 

that measures the distance between two points in a set.  The definitions of a norm and a metric 

are quite similar and closely related.  Additionally, a vector space X taken together with an 

appropriately defined norm is called a normed vector space.  For further detail of this topic, the 

content can be found in [70] or other textbooks.  
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Definition (4.2) : Convex Functional [71]  A real-valued functional f defined on a convex subset 

C of a linear vector space is said to be convex if  

 

              ( ) ( ) ( )2121 )1()1( xfxfxxf αααα −+≤−+  for all Cxx ∈21,  and 10 ≤≤ α . (4.5) 

 

In the theory of optimization, convex functional plays a very special role due to the fact that a 

local minimum of f is also a global minimum of f, when the convex functional is applied. 

 

Proposition(4.1) [71] Let ( )xf  be a convex functional defined on a convex subset C of a normed 

space X.  Let ( )xf
Cx∈

= infµ , then 

1. The subset Ω  of C where ( ) µ=xf  is convex. 

2. If ox  is a local minimum of ( )xf  for Cx ∈ , hence ox  is also a global minimum. 

3. Let Ψ  be a neighborhood about ox  in which ox  minimizes ( )xf .  For any Cx ∈1 , 

there is Ψ∈x  such that 1)1( xxx o αα −+=  for some α , 0 1<< α . 

Therefore ( ) ( ) ( ) ( ) ( ) ( 11)1( xfxforxfxfxfxf ooo )≤−+≤≤ αα .  

 

Proof : 1.  Let Ω∈21, xx  and for 21 )1( xxx αα −+= , 0 1<< α , it then follows that 

 

 ( ) ( ) ( ) ( ) µαααα =−+≤−+= 2121 )1()1( xfxfxxfxf . (4.6) 

 

But it is necessary for any Cx ∈  that ( ) µ≥xf , therefore ( ) µ=xf . 

 

Definition (4.3) : Continuity [70]  Let X and Y be normed vector spaces and let .  

Then for each 

YXf →:

Xx ∈ , the functional f is continuous at x ⇔  for each 0>ε  there exists a 0>δ  

such that 

 

 ( ) ( ) εδ <−⇒<−
YX

xfxfxx 2121 . (4.7) 
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Theorem (4.1) [72] The  norm-induced function pl ( )
pp xAyxf −= , for which 1×∈ MRy  and 

NMRA ×∈  are given, is a convex and continuous function of vector x . 

 

Proof : The functional ( )xf p  is a norm-induced function which satisfies the properties of a 

normed vector space.  For any arbitrary vectors NRxx ∈21,  and a scalar R∈α , 10 ≤≤ α , 

follows from the norm triangle inequality that 

 

          ( ) ( )
pp xxAyxxf 2121 )1()1( αααα −+−=−+  

        ( ) ( )
p

xAyxAy 21 )1( −−+−= αα  

             ( ) ( )
pp

xAyxAy 21 )1( −−+− αα≤  

                    ( ) ( )
pp

xAyxAy 21 1 −−+− αα=   

 ( ) ( )21 )1( xfxf pp αα −+= . (4.8) 

 

The convexity of a functional ( )xf p  is then established.  For a proof of the continuity, use of the 

triangular inequality yields 

 

                  ( ) ( )
pxxp xAyxf ∆+−=∆+  

                                   
pxp

AxAy ∆+−≤   

 ( )
pxpppxpp

AxfAxAy ∆⋅+=∆⋅+−≤ . (4.9) 

 

It can be shown in a similar fashion that ( ) ( )
pxpxpp Axfxf ∆⋅+∆+≤ .  It then follows that 

for any positive scalar ε , a positive scalar δ  can be selected such that  

 

 ( ) ( ) εεδ ≤−∆+⇒=≤∆ xfxf
A pxp

p
px . (4.10) 
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Thus, the requirement for continuity of a functional ( )xf p  is satisfied. 

 

Theorem (4.2) [72] Let the M×N real matrix A characterizing the convex functional 

( )
pp xAyxf −=  have full rank (linearly independent columns) N.  Then there exists a unique 

optimum model parameter vector x  for the least squares error solution corresponding to p = 2 

as given by 

 

 [ ] yAAAx TTo 1
2

−
= . (4.11) 

 

Furthermore, the associated least squares error vector is orthogonal to the column vector of 

matrix A so that 0][ 22 =−= oToT xAyAeA . 

 If the M×N matrix A satisfies the additional Haar property which requires that any 

selection of N rows of A are linearly independent, it then follows that 

(i) For p = 1, a minimum l  norm (least absolute deviation (LAD) solution) exists for 

which at least N components of its associated error vector 

1

oo xAye 11 −=  are 

equal to zero. 

(ii) For p = ∞ , a Chebyshev solution exists for which at least N+1 components of an 

error vector oo xAye ∞∞ −=  have equal maximum magnitudes. 

 

The proof of this theorem for p = 1 and p = 2 will be given in a subsequent section.  For p = ∞  

case, its proof can be found in [72].  It was established in Proposition (4.1) that for a convex 

functional, any local minimum point is also global minimum point.  This implies that the 

minimum  norm method certainly provides a minimum solution to a functional pl ( )xf p .  By the 

convexity property of a functional ( )xf p  for ∞<< p1 , there is guarantee for a unique solution.  

Unfortunately, this is not always be the case for p = 1, which a minimum l  norm problem may 

have many solutions.  The sum of error magnitude function 

1

( )xf1  is of use in many applications 

when the data vector y  contains a small number of data outliers (i.e. unrepresentative or bad 
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data points).  On the other hand, the sum of squared error criterion ( )xf2  is unduly influenced by 

the data outliers often leading to a poor selection of the coefficient vector [73].  Algorithms for 

obtaining minimum  norm and l  norm solutions are discussed in the following sections. 1l 2

l

MR R∈

1

− x

∑
=0) ≠0)

y

∑
=0)

≥
≠

x

a
)

0)

 

A Linear System of M Equations in One Unknown 

Minimum l  Norm Solution to a Linear System of M Equations in One Unknown 1

 To determine a minimum  norm solution for a linear system of M equations in one 

unknown, the special case N = 1 shall be employed in finding a solution to a general linear 

system of M equations in N unknowns case.  The error vector can be expressed as 

1

 

 axye −=  (4.12) 

 

where ay,  and 1×∈e  and x .  It is now desired to select a real scalar x so as to minimize 

the error of approximation in the l  norm sense, as given by 

 

 ∑
=

−==
M

m
mxamyayxf

1
11 )()()( . (4.13) 

 

An efficient algorithm to solve the least absolute deviation problem was introduced by 

Bloomfield and Steiger [69].  Their solution procedure is used extensively for solving the 

minimum  approximate solution of the general linear system of M equations in N unknowns 

[72].  To obtain some insight into an interpretation of , the summation of expression (4.13) 

is separated into a summand term for which 

1l

)(1 xf

0)( =ma  and another term for which a(m) 0≠ , 

which yields 

 

               ∑ −+=
((

1 )()()()(
mama

mxammyxf   

 [ ] [ ]∑∑
<
≠

−+−+=

xmx
ma

mx
mama

mxxmaxmxmmy
)(

0)(
(
((

)()()()()( . (4.14) 
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Examination of expression (4.14) indicates that  is a piecewise linear function of a variable 

x whose slope changes at the points where 

)(1 xf

) 0( =− xmx .  When deriving of expression (4.14) 

from the first line to the second line, the value of y(m) is substituted by  where the 

entities x(m) identify the value of x for which the m

)()( mamx
th component of error vector is equal to zero, 

that is  

 

 0)(
)(
)()( ≠= mafor

ma
mymx . (4.15) 

 

Let us rearrange the scalars x(m) as described in expression (4.15) in the monotonically non-

decreasing order 

 

 )()(...)()()( 1321 QQ mxmxmxmxmx ≤≤≤≤≤ −   

 

where  represents the number of nonzero component of MQ ≤ a .  With this in mind, the 

derivative of  with respective to x exists for all )(1 xf Qqmxx q ≤≤≠ 1),( .  This function can 

then be expressed as 

 

                      ∑∑
<>

+−=
∂

∂

xmx
q

xmx
q

qq

mama
x
xf

)()(

1 )()(
)(

  

 )()(2)(
)(1

q
xmx

q

M

m
mxxformama

q

≠+−= ∑∑
<=

. (4.16) 

 

This derivative result is a piecewise constant function of x that changes by the amount )( qma  to 

the immediate right of the  zero points.  Moreover, this derivative monotonically increases 

from the value 

)( qmx

∑
=

−
M

m
ma

1
( )  assumed at −∞=x  to the value ∑

=

M

m
ma

1
)(  assumed at ∞=x .  A 

minimum solution for a functional  is therefore indicated whenever the derivative has been 

changed from a negative value to either a zero or positive value to the immediate right of a 

)(1 xf
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)( qmx

)( q
o mx

)( q
o mx

 zero point.  If the derivative sign is changed from negative to positive then the zero point 

 is the unique optimum choice for the scalar x.  On the other hand, the non-unique 

minimum solution exists whenever the derivative sign is changed from negative to zero at the 

transition point .  In this case, any selection of the scalar x in the closed interval 

 corresponds to the optimum  selection.  This analysis indicates that an 

efficient algorithm entails sequentially evaluating the right hand derivatives at the  zero 

points as specified by 

)( q
o mx

)( 1+qm
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≤≤ oxx 1l

)( qmx

x
mq =

∂
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xf∂ 1
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mxf o∂ (1 (≤ oxx
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 Qqformama
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M

m q
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1)(2)(
)(1

. (4.17) 

 

The smallest value of q for which the derivative first transforms from a negative to non-negative 

value indicates that  point is a minimum  selection.  If )q 1l ( ) xmxf q
o ∂∂ +)(1  is greater than 

zero then  is the unique choice for a minimum l  selection while a zero value of 1

 indicates that any selection for a scalar x in the interval  

is an optimum  selection. 

))( 1+≤ qq
o mmx

From this algorithm, the computer requirement is seen to entail at most M division 

operations using for determination of the zero points )(/)()( mamymx = , a reordering of these 

zero points into a monotonically non-decreasing set and at most 2M summation operations 

giving a total computational complexity on the order of M. 

 

Minimum l  Norm Solution to a Linear System of M Equations in One Unknown 

 The minimum sum of squared error is the most commonly used measurement in finding 

an approximate solution to a linear system of equations.  In an analogous manner, the special 

case for N = 1 is useful in solving the general linear system of M equations in N unknowns.  As 

previously shown in expression (4.11), the problem of finding a scalar x, which minimizes the l  

norm of the error vector, has a closed form solution.  With this in mind, let the analysis begin 

with the squared l  norm of the error vector as specified by 

2

2
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                                      ( )
22 axyxf −=  

                                               [ ] [ ]axyaxy T −−=  

 aaxyaxyy TTT 22 +−= . (4.18) 

 

A necessary condition for an optimum selection of real variable x is obtained by setting the 

derivative of this function with respect to x as given by 
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2
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aaxya
dx

xdf
TT
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+−
=  (4.19) 

 

equal to zero. The unique minimum sum of squared error solution is therefore given by 

 

 
aa

ya
x T

T
o = . (4.20) 

 

A Linear System of M Equations in N Unknowns 

According to the decorrelation approach described in Chapter III, the property of a two-

dimensional decorrelation is completely governed by the weighting coefficients (see 

expressions (3.5), (3.7) and (3.9)).  It is obvious that without regard to how the scalars are 

selected, this decomposition transform is always invertible.  However, these coefficients are 

normally chosen so that the detail matrices have as many small magnitude elements as possible.  

Consequently, only the steady-state components are employed in the procedure of finding the 

optimum weighting coefficients to achieve this objective.  Upon observation the poly-phase 

components of the image shown in Figure 3.1, it is found that the steady-state intervals at level j 

for both the odd-even indexed elements are 2  and 1 .  For the even-

odd indexed elements, the steady-state intervals at level j are 1  and 2 . 

Finally, the steady-state interval at level j for the even-even indexed elements are 

 and 1 .  With this in mind, let start with the set of steady-state 

odd-even detail elements which are governed by 

jMm −≤≤ 2 12 −≤≤ − jNn

12 −≤ − jMm≤ jNn −≤≤ 2

121 −≤≤ − jMm 12 −≤≤ − jNn
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for .  This set of steady-state odd-even detail elements can be 

column concatenated and expressed in a convenient vector form as 
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As has been mentioned that the main contribution of this section is to select the weighting 

coefficient vector so as to cause the steady-state detail elements to have as many small 

magnitudes as possible.  To accomplish this objective, the optimum selection of the weighting 

coefficients vector at level j, 
OE

j

o
h , must be the one which minimizes the following norm-induced 

functional 
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p
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j ≤≤−= 1 . (4.27) 

 

On the other hand, it is also possible to use the same weighting coefficients at each level of 

decomposition.  In this case, one can seek for the optimum weighting coefficients vector 
o
h  

which satisfies the criterion 
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in which cy  and  are column concatenations of cA OE

j
y  and  for OE

jA Lj ≤≤1  as respectively 

specified by y
1

 , ( ) ( ) ( )[ ]TTOE
L

OETOEc AAAA 21=
T
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Similarly, it is obvious that one can construct such systems of linear equations shown in 

expressions (4.27)-(4.28) for the steady-state even-odd and even-even elements.  The set of 

steady-state even-odd detail elements is given by 
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for .  Additionally, a compact vector form for the steady-state 

even-odd elements is expressed as 

jNjM nm −− ≤≤−≤≤ 22,121
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For the even-even detail elements, the steady-state set is given by 
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for  and a compact vector form for the steady-state even-odd 

elements can be written as 

121,121 −≤≤−≤≤ −− jNjM nm
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It is noted that the primary interest of  norm is confined to the case for p = 1 and p = 2 in 

which the iterative algorithm for p = 1 case developed by Cadzow [72] will be reviewed in the 

following section. 

pl
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Minimum l  Norm Solution to a Linear System of M Equations in N Unknowns 1

 The general system of M equations in N unknowns can be expressed as  

 

 xAyxr −=)( . (4.41) 

 

The vector 1×∈ MRy  and matrix NMRA ×∈  are given whereas the parameter vector 1×∈ NRx  is 

selected so as to minimize the following norm-induced function 
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In this expression, me  is the M ×1 standard basis vector.  It then follows that the term xAT
me  

represents the mth component of the M ×1 vector xA .  The residue error components for 

 can be decomposed as three disjoint sets in which the residue error components Mm ≤≤1

xAeT
m−)myxrm = ()(  are positive, negative and zero.  Based on this decomposition, expression 

(4.42) can be rewritten as 
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It is now shown that there exists a real N × 1 parameter vector ox  which minimizes the sum of 

the residue error magnitude function )(1 xf  such that the associated residual error vector  

 

 oo xAyxr −=)(  (4.44) 

 

has at least N zero components.  Suppose that ox  is the optimum solution for which only 

 components of the residue error vector 10 0 −≤≤ NN )( oxr  are zero.  Now let us perturb ox  to 
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∆+ εox  in which ε  is a real valued scalar and ∆  is a perturbation direction vector.  The 

perturbation direction vector is chosen so that the original N-1 zero components in the 

unperturbed residual error vector oo xAyxr −=)(  are maintained in the perturbed residual error 

vector y .  This restriction is always possible since the perturbation 

direction vector  can always be selected to be orthogonal to each of the 0∆ 10 −≤≤ NN  row 

vectors of the matrix A associated with the zero components of oxAo yxr −=)( .  Furthermore, 

the scalar ε  is chosen to be small enough in magnitude so that the signs of all the nonzero 

components in the perturbed residue error vector ∆−−=∆+ AxAyxr oo εε )(  are maintained.  

With this constraint, the corresponding sum of the residue error magnitude criterion at the 

perturbed vector ∆+ εox  is given by 

1f

∆−−=∆+ AxAxr oo εε )(
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The vector term shown in the bracket of equation (4.45) is seen to have components exclusively 

plus one, minus one and zero. It is also observed that if this bracketed vector is not orthogonal to 

∆A  then a scalar ε  can be chosen so that )()( 11
oo xfxf <∆+ ε  which contradicts to the fact 

that ox  is the optimum solution.  On the other hand, if this bracketed vector is orthogonal to ∆A  

then a scalar ε  may be gradually increased or decreased from zero until a formally nonzero 

element of the unperturbed residual error vector oo xAyx −=)(r  is first driven to zero while 

maintaining the condition )()( 11
oo xfxf =∆+ ε .  This procedure is continued until eventually N 

components of the perturbed error vector ∆−−=∆+ AxAyxr oo εε )(  are zero and therefore 

results in the following theorem. 
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Theorem (4.3) [72] For any given vector 1×∈ MRy  and matrix NMRA ×∈  of rank N, there 

exists a real valued vector 1×∈ No Rx  which minimizes the  norm-induced function 1l )(1
oxf  

appearing in expression (4.42) such that the associated residue error vector oo xAyx −=)r(  has 

at least N zero components∗. 

 Since a convenient closed form for a real valued vector 1×∈ No Rx , which minimizes the 

 norm-induced function 1l )(1
oxf , does not exist it is therefore necessary to develop an iterative 

algorithmic procedure to numerically accomplish such solutions.  Many algorithms to determine 

a minimum  norm solution employ the previously developed property stated in Theorem (4.3).  

Additionally, some are based on the exchange principal [68] [74] [75] in which one of the 

equations in the present set of N equations having zero residual is exchanged for another 

equation in the remaining set of M-N equations in such a manner that the new set of N equations 

results in a better l  residual error vector norm.  In this dissertation, the perturbation algorithm 

developed by Cadzow [72] is employed.  This technique provides an effective algorithm, which 

converges to a solution at a faster rate than the class of exchange algorithms.  The procedure of 

this technique begins with a perturbation analysis of the functional 

1l

1

)(1 xf as given by 
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in which Aea T
m

T
m =  is 1 × N vector corresponding to the mth row vector of the M × N system 

matrix A whereas xAemyxr T
mm −= )()(  is the mth component of the residue error vector )(xr . 

                                                 

∗ The vector x  is said to be an extreme, degenerate or non-degenerate point of the system of linear equations if the 

associated error vector xAyxr −=)(  has at least, more than or exactly N zero components, respectively [72].  

Furthermore, by this Theorem, there always exist a minimum l  norm solution which is an extreme point.  

Contrarily, an extreme point need not be a minimum l  norm solution. 

1

1
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Let  for  be the number of zero residue error vector components (i.e., xN MN x ≤≤0 0)( =xrm ) 

and let the unperturbed N × 1 vector x  now be the perturbed vector ∆+ εx  in which ∆  is a 

perturbation direction vector whose length is controlled by a real valued step size scalar ε .  The 

magnitude of ε  is restricted to be sufficiently small so that the signs of the nonzero components 

of the residue error vector )(xr  are the same as those of the residue error vector )( ∆+ εxr .  

Under the sign preservation, it follows that the perturbed  functional can be expressed as  1l
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The  shown in the third line of expression (4.47) is the xA NN x ×  sub-matrix of the M × N 

system matrix A whose row vectors correspond to the row vectors of A associated with the zero 

components of the unperturbed residue error vector.  The N × 1 vector xb  shown in the last line 

of expression is specified by 
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This perturbation analysis leads to the following perturbation theorem. 

 

Theorem (4.4) [72] Let the M × N system matrix NMRA ×∈  have a full column rank N. 

Furthermore, for a given N × 1 vector 1×∈ NRx , let the associated residue error vector 

xAyxr −=)(  have  zeros with xN NN x <≤0 .  It is always possible to perturb the parameter 

vector x  to ∆+ εx  in a manner such that )(1 xf)(1 xf ≤∆+ ε  while simultaneously maintaining 
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the original  zero elements in the perturbed residue error vector xN )( ∆+ εxr  and causing at 

least one previously nonzero element of )(xr  to be zero. 

N

∆ε

)∆ε

 

Proof : Let the perturbation direction vector ∆ be selected to be any nonzero vector contained in 
1×NR  for which 0=∆xA .  This possibility is always valid since the dimension of the null space 

of the  submatrix  is greater than or equal to N x × xA xNN − .  By using the constraint 

0=∆xA , it follows that the perturbation  norm functional indicated in expression (4.47) is 

simplified to be 

1l

 

 ∆−=∆+ T
xbxfxf εε )()( 11 . (4.49) 

 

Upon observation expression (4.49), three possibilities arise depending on whether the term 

∆T
xb  is positive, negative or zero.  If ∆T

xb  is greater than zero, the scalar ε  gradually increases 

from zero, thereby causing )()( 11 xfxf <∆+ ε , until a value is eventually reached whereby one 

of the previously nonzero residue error elements is first driven to zero.  Such a positive scalar 

selection is assured because otherwise the nonnegative functional )(1 ∆+ εxf  could be driven 

negative.  Similarly, if ∆T
xb  is negative, then the scalar ε  gradually decreases from zero to 

cause )()( 11 xfxf <+  until a value eventually arrives in which one of the previously nonzero 

residue error elements is first driven to zero.  Such a negative scalar selection is also guaranteed 

because otherwise the nonnegative functional )(1 ∆+ εxf  could be driven negative.  Finally, if 

∆T
xb  is zero, the scalar ε  gradually increases or decreases from zero until at least one of the 

previously nonzero residue error elements is driven to zero while maintaining the functional 

value )(( 11 xfxf =+ . 

 Theorem (4.4) basically provides a mechanism for perturbing a non-optimum vector x  

into an extreme point whose the associated residual error vector xAyx −r =)(  has at least N 

zero components while simultaneously decreasing or maintaining the value of the functional 

)(1 xf .  It is also noted that if the vector x  is not the minimum l  norm solution with 1 NN x < , it 
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has been empirically found that this hypothesized procedure for selecting perturbation direction 

vector ∆  has always led to an improvement such that )()( 11 xfxf <∆+ ε .  By continuing this 

procedure, an extreme point x  is eventually reached in which the associated residual error vector 

xAyxr −=)(  has at least N zero components while the l  norm of the residue error vector is 

either decreased or at worst maintained.  Once this extreme point has been obtained, it is 

necessary to verify whether it is a required minimum l  norm solution.  The following theorem 

provides a mechanism for making the decision. 

1

M

1

R∈

1l

[ ]−
x
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Theorem (4.5) [69] Let the M × N system matrix NA ×  have full column rank N and let 

the N × 1 vector 1×∈ NRx  be a non-degenerate extreme point so that its associated residue error 

vector xAyxr −=)(  has exactly N zero elements.  Furthermore, let  be the  whose 

row vectors correspond to the row vectors of the matrix A associated with the N zero elements of 

the residue error vector and let 

xA NN x ×

xb  be specified by equation (4.48).  If the matrix A is invertible 

then the non-degenerate extreme point x  is a minimum norm solution if and only if all the 

components of the vector 

 

 [ ] x
T
xx bAc 1−

=  (4.50) 

 

have magnitudes less than or equal to one.  Moreover, this solution is a unique minimum  

norm solution if and only if all the components of 

1l

xc  have magnitudes strictly less than one. 

 

Proof ∗ : Let use the fact that the column vectors of 1A  form a basis of 1×NR  so that any 

perturbation vector can be uniquely represented as [ ] δ1−∆ xA  for 1×NR∈δ .  Upon this 

expression has been substituted into expression (4.47) for the perturbation vector and x
T
xx cA=b  

has been used, it then follows that 

                                                 

∗ A proof of this theorem can be found in [69], however, an alternative proof given by Cadzow [72] is herein 

presented. 
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For a given set of c  coefficients, the signs of the )(nx )(nδ  coefficients should be selected so that 

( ) sgn)(sgn cn = ( )(nx )δ  in order to cause the summand terms ( ) )()(sgn)( ncnn xδδ−  appearing 

in expression (4.51) maximally negative which leads to 
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It is obvious that if each element c  has its magnitude less than or equal to one then this 

summation is always non-positive and the improvement of the  norm functional cannot be 

made, that is 

)(nx

1l

)()( 11 xfxf ≥∆+ ε .  On the other hand, if c  is designated to be any element 

of 

)( 1nx

xc  whose magnitude is greater than one then the choice 0)( =nδ  for all n except for 

βδ =( )1n  therefore yields 

 

 [ ]1)()()( 111 −−=∆+ ncxfxf xβε  (4.53) 

 

which results in the desired improvement )()( 11 xfxf <∆+ ε .  However, the scalar β  must be 

chosen to be small enough to achieve the aforementioned sign preservation of the residue error 
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vector.  It is further noted that if more than one component of xc  have a magnitude greater than 

one, a variety of different improving perturbation directions can be developed.  Upon arriving at 

an extreme vector x  whose associated residue error vector has N zero elements, Theorem (4.5) 

is then employed to examine whether or not this vector is a minimum  norm solution.  If this 

extreme vector is not an optimum, the following theorem is used as a mechanism to determine an 

improving perturbation so that 

1l

)()( 11 xfxf <∆+ ε . 

N

] 1
x

−

] 1e−

 

Theorem (4.6) [72] Let the M × N system matrix NMRA ×∈  have full column rank N and let 

the N × 1 vector 1×∈ NRx  be a non-degenerate extreme point so that its associated residue error 

vector xAyx −=)(r  has exactly N zero elements.  Furthermore, let the  matrix  whose 

row vectors correspond to the row vectors of the matrix A associated with the N zero elements of 

the residue error vector be invertible and let 

N× xA

xc  be specified by expression (4.50).  If c  

denotes any component whose magnitude is larger than one, it then follows that a perturbation 

direction vector 

)( 1nx

∆  which renders the improvement )(1 xff )(1 x <∆+ ε  is given by 

 

 [ ]
1

1
nx

o eA −=∆ α  (4.54) 

 

where  is a unique value of the scalar oα α  for which the vector [
1neAα  best approximates 

the residue error vector )(xr  in the l  norm sense.  This new improving perturbed vector causes 

the associated perturbed residue error vector to have at least one zero element. 

1

 

 This theorem is readily proven by equation (4.53) which indicates that the improving 

vector perturbation lies in the one-dimensional space spanned by [
1nxA

oα

.  The algorithm for 

obtaining a minimum l  norm solution to a linear system of M equations in one unknown 

discussed in the previous section is used to find an optimum scalar  which causes 

1

[ ]
1

1
nx

o eA −α  

to best approximate the residue error vector )(xr  in  norm sense.  It is recalled that the 

optimum scalar  shown in expression (4.54) of Theorem (4.6) has been predicated on the 

assumption that an extreme point is non-degenerate where its associated residue error vector 

1l
oα
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)(xr  has exactly N zero elements.  However, when a degenerate extreme point is encountered, 

the following theorem gives a method to determine whether this point is an optimum. 

∈ Rx

 

Theorem (4.7) [72] Let the full column rank matrix A satisfy the Haar condition∗ and let 
1×N  be a degenerate point so that its associated residue error vector xAyxr −=)(  has Q > 

N zero elements.  Furthermore, let the Q N×  matrix  whose row vectors correspond to the 

row vectors of matrix A associated with these Q zero error elements and let 

xA

xc  be specified by 

expression (4.50). This degenerate extreme point is a minimum  norm solution if and only of 

none of the vectors 

1l

 

 [ ][ ]
)!(!

!1
1

)()(

NQN
QkforbAc x

Tk
x

k
x −

≤≤=
−

 (4.55) 

 

has 1)( >
∞

k
xc  in  which the { })(k

xA  designates a set of all N × N sub-matrices of matrix A. 

 

A summary of perturbation algorithm for finding a minimum  approximate solution is now 

given. 

1l

 

Algorithmic Solution for Finding a Minimum 1l  Norm Problem 

 The algorithmic approach now described is predicated on systemically proceeding from a 

present N×1 vector x  (i.e. ix ) to an updated N×1 vector x  (i.e. jx ) in such a manner so that the 

 norm functional 1l )(1 xf  is decreased at each transition (i.e. )()( 11 ij xfxf ≤ ).  This algorithmic 

provides more efficient procedure, in which the number of iterations needed until the optimum 

solution is reached, is significantly smaller than the brute force and row-exchange algorithms.  

The algorithm is composed of sequential steps as following. 

                                                 

∗ The set of vectors {  contained in vector space }Nxxx ,...,, 21
1×MR  is said to satisfy the Haar condition [73] if 

every selection of  of its elements forms a linearly independent set. N≤M
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Step 1. For an arbitrary initial selection of x  (e.g., the zero vector or the minimum l  

approximate solution), generate the associated residue error vector 

2

xAyxr −=)( . 

 

Step 2. If the residue error vector )(xr  has fewer than N zero elements then go to Step 3. 

Otherwise go to Step 5. 

 

Step 3. Using the procedure as described in Theorem (4.4), perturb the vector x  to ∆+ εx  in 

such a manner that )()( 11 xfxf ≤∆+ ε  while causing the associated perturbed error vector to 

have at least one additional zero element. 

 

Step 4. If the residue error vector associated with the new vector x  has fewer than N zero 

elements then repeat Step 3. Otherwise go to Step 5. 

 

Step 5. Determine whether the vector [ ] x
T
xx bA 1−

=c  has at least one component whose 

magnitude is greater than one.  If such a component exists then make the improvement in the l  

norm functional 

1

)(1 xf  in accordance with Theorem (4.6) and then go to Step 2.  If such a 

component does not exist, the algorithm has converged to the optimal solution. 

 At the end of Step 5., the vector x  has its associated residue error vector with N zero 

elements.  It is now a candidate for the optimum solution in accordance with Theorem (4.3).  

Furthermore, if the improvement condition of l  norm function cannot be made, it implies that 

the vector 

1

x  must be the optimum solution due to the property of convexity of functional )(1 xf . 

 

Minimum l  Norm Solution to a Linear System of M Equations in N Unknowns 2

 It is now desired to select a parameter vector 1×∈ NRx  which minimizes the l  norm of 

the residue error vector 

2

)(xr  shown in expression (4.41).  This corresponds to find the optimum 

solution [73] which minimizes the  norm-induced function as designated by 2l

 

                                       
222 )()( xAyxrxf −==  
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                                                 [ ] [ ]xAyxAy T −−=  

               xAAxxAyyy TTTT +−= 2 . (4.56) 

 

It is recalled that a necessary condition for a vector ox  to minimize function )(2 xf  is that the 

gradient of this function when evaluated at ox  is equal to the zero vector. Using standard 

differentiation rules it is found that this gradient vector is designated by 

 

 ( )yAxAA
xAy

xf TT
x −

−
=∇

2

2
1)( . (4.57) 

 

Upon setting this gradient equal to zero vector, it is seen that a necessary condition for a 

minimum  norm solution is one which satisfies the so-called normal system equation [71] as 

specified by 

2l

yAxAA ToT = . Thus the following fundamental theorem has been proven. 

 

Theorem (4.8) [73] For any vector 1×∈ MRy  and matrix NMRA ×∈ , the set of vectors ox 2  

which minimizes the sum of squared residue error function 2 )( yxf =  is equal to all 

solutions of the consistent linear system of normal equation as designated by 

2
xA−

 

 yAxAA ToT = . (4.58) 

 

Furthermore, all solutions to the normal equation result in the same associated residue error 

vector oo xAyx −=)(r  which is orthogonal to the row vectors of matrix A, that is 

 

 0)( =oT xrA . (4.59) 

 

If the matrix A has full column rank N (the matrix A is invertible) then there exists a unique 

solution to the normal equation as given by  
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 ( ) yAAAx TTo 1−
= . (4.60) 

Otherwise,  

 yAxo †=  (4.61) 

 

in which designates the pseudo inverse of the M × N matrix A. †A

 

Proof : The fact that all solutions which minimize the function 
22 )( xAyxf −=  and satisfy the 

normal equation has already been established. To verify the orthogonal condition 0)( =oT xrA , 

one simply left multiplies the residue error vector oo xAyxr −=)(  by the matrix  to obtain TA

oTToT xAAyAxrA −=)(  which is equal to the zero vector since ox  satisfies the normal 

equation.  Finally, if matrix A has rank N then the N × N matrix product  is invertible 

leading to the unique solution shown in expression (4.60). 

AAT

 

 According to the given optimum scalars selection algorithms in this chapter, the proposed 

decompositions based on one-dimensional and two-dimensional decorrelation given in Chapter II 

and III, respectively, are therefore processed in an efficient manner.  It is noted that the 

applications of the proposed method will focus on the lossless and lossy image compression.  

The coding method employed in this research is the SPIHT developed from the underlying 

principles of the embedded zerotree wavelet (EZW) technique [76] into an alternative exposition 

providing improved results [77].  The detail of this coding algorithm can be found in [54] and 

[78].  The lossless and lossy image compression results are represent in the next chapter. 
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CHAPTER V 

 

RESULTS AND DISCUSSIONS 

 

In this chapter, the experiments based on the proposed image decomposition algorithms 

are conducted for decorrelation performance evaluation, lossless and lossy image compressions.  

The experimental results obtained from the proposed schemes using the l1 and l2 norm optimum 

interpolation filters are compared with those obtained by the LDT-HVDD method employing the 

l1 and l2 norm optimum interpolation length-4 filters, the S+P-transform∗ and the wavelet 

transform using the Daubechies length-4 filters.  These image decompositions are applied to a set 

of gray scale images shown in Appendix A. 

 

Decorrelaion Derformance Evaluation 

To measure the decorrelation performance of the tested methods, the first-order entropy 

(bits/pixel) results of the interpolation errors are examined.  In this study, such results obtained 

with one-level lossless image decomposition of the S+P-transform, the l1 and l2 norm based 

modified S+P-transform∗∗, the l1 and l2 norm based 2D-HVDD method, the l1 and l2 norm based 

optimum scalar method and the l1 and l2 norm based LDT-HVDD scheme are compared and 

shown in Table 5.1.  Furthermore, the results of two-level lossless image decomposition 

tabulated in Table 5.2 illustrate the tendency of decorrelation performance of the tested schemes. 

As shown in Table 5.1 for the decorrelation performance of 1-level image decomposition 

based on different methods, the l1 norm based 2D-HVDD method (2D-HVDD(l1)) gives the 

smallest average bits per pixel of the first-order entropy of the interpolation errors.  However, 

this numerical result is not significantly smaller than the result of the S+P-transform.  For the 2-

level decomposition case shown in Table 5.2, the S+P-transform is superior to the other methods.  

                                                 

∗ Since the S+P-transform is an integer image transformation, it is only compared with the proposed techniques for 

lossless image compression. 
∗∗ It is noted that the modified S+P-transform has the same basic concept as the conventional S+P method; however, 

the lp norm minimization method is employed to determine the parameters used in the calculation of the h  

sequence. 

)(ˆ n
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It is noted that the decorrelation performance of tested methods in 1-level decomposition is a 

litter bit better than that of the 2-level case.  This is because image pixels tend to be less 

correlated at the second level of image decomposition.  Therefore, the decorrelation performance 

in the second level decomposition is not as good as in the first level. 

 

 

Table 5.1 Comparative evaluation of the first-order entropy (bits/pixel) of detail coefficients 
obtained with different tested methods for 1-level image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 4.9198 4.8289 5.1098 4.2188 4.6807 4.5674 4.2122 4.7101 4.2675 3.0228 3.3135 5.7015 4.4628

Modified S+P (l 1) 5.0663 4.9363 5.1292 4.3159 4.7608 4.7584 4.3936 4.7848 4.5055 3.1307 3.7663 5.8984 4.6205
Modified S+P (l 2 ) 5.0968 4.9491 5.3071 4.3187 4.8050 4.8099 4.3782 4.8243 4.5446 3.1420 3.8796 5.9027 4.6632

2D-HVDD (l 1) 4.9357 4.8018 4.9916 4.1319 4.6244 4.6518 4.2973 4.5950 4.2986 3.0000 3.4992 5.7190 4.4622
2D-HVDD (l 2 ) 4.9394 4.8027 4.9971 4.1368 4.6361 4.6606 4.2994 4.6025 4.2989 3.1410 3.5077 6.0061 4.5024
OS-HVD (l 1) 5.3013 5.0232 6.1316 4.7387 5.3993 5.2387 4.6752 5.1291 5.0817 3.2555 4.2926 5.8427 5.0091
OS-HVD (l 2 ) 5.2996 5.0645 6.1550 4.7697 5.4042 5.2472 4.6860 5.1291 5.0807 3.4470 4.3418 6.1272 5.0627

OS-HVVD (l 1) 5.2314 4.9979 5.8954 4.6659 5.2316 5.0797 4.5435 5.0622 4.9066 3.1897 4.1229 5.8485 4.8979
OS-HVVD (l 2 ) 5.2422 5.0307 5.9117 4.6874 5.2547 5.0909 4.5637 5.0626 4.9063 3.3888 4.1445 6.3589 4.9702
OS-HVDD (l 1) 5.4657 5.1491 6.2132 4.8597 5.4754 5.3750 4.8272 5.1911 5.1871 3.3172 4.4347 5.9098 5.1171
OS-HVDD (l 2 ) 5.4635 5.2073 6.2408 4.8999 5.4804 5.3824 4.8354 5.1911 5.1862 3.5282 4.4961 6.4272 5.1949
LDT-HVDD (l 1) 5.1422 4.9306 5.7411 4.3291 4.9783 4.8425 4.4578 4.8448 4.5714 3.0913 3.7342 6.0776 4.7284
LDT-HVDD (l 2 ) 5.1459 4.9463 5.8041 4.3459 4.9766 4.8502 4.5156 4.8857 4.5688 3.1854 3.7398 6.3211 4.7738

Comparative evaluation of the first-order entropy (bits/pixel) of detail coefficients obtained with different image transformations
(1-level image decomposotion)

 
 
 
 
Table 5.2 Comparative evaluation of the first-order entropy (bits/pixel) of detail coefficients 
obtained with different tested methods for 2-level image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 4.9893 4.8584 5.1998 4.2564 4.7443 4.6474 4.2702 4.6964 4.3291 3.1914 3.4724 5.8034 4.5382

Modified S+P (l 1) 5.2133 4.9671 5.2489 4.3813 4.8277 4.8328 4.4589 4.7972 4.5621 3.2844 3.8796 5.9681 4.7018
Modified S+P (l 2 ) 5.2655 4.9996 5.4149 4.4035 4.8799 4.8930 4.4548 4.8518 4.6136 3.3136 3.9687 5.9668 4.7521

2D-HVDD (l 1) 5.0927 4.9286 5.2239 4.2971 4.7880 4.8367 4.4651 4.7068 4.4627 3.1475 3.7062 5.8417 4.6248
2D-HVDD (l 2 ) 5.0955 4.9289 5.2394 4.2995 4.8018 4.8472 4.4625 4.7161 4.4639 3.2882 3.7102 6.0998 4.6628
OS-HVD (l 1) 5.4218 5.1083 6.2472 4.8638 5.5296 5.3945 4.8379 5.2368 5.2320 3.3477 4.4355 5.9491 5.1337
OS-HVD (l 2 ) 5.4233 5.2033 6.2712 4.9121 5.5417 5.4100 4.8554 5.2368 5.2317 3.5568 4.5046 6.4889 5.2197

OS-HVVD (l 1) 5.3724 5.0928 6.0501 4.7967 5.3815 5.2531 4.7207 5.1764 5.0671 3.3035 4.2857 5.9645 5.0387
OS-HVVD (l 2 ) 5.3883 5.1668 6.0700 4.8286 5.4051 5.2664 4.7475 5.1767 5.0695 3.5086 4.3259 6.7073 5.1384
OS-HVDD (l 1) 5.5869 5.2340 6.3090 4.9829 5.6035 5.5276 4.9876 5.2978 5.3387 3.4041 4.5717 5.9949 5.2366
OS-HVDD (l 2 ) 5.5908 5.3491 6.3334 5.0388 5.6143 5.5414 5.0009 5.2983 5.3381 3.6301 4.6492 6.7013 5.3405
LDT-HVDD (l 1) 5.3000 5.0489 5.8799 4.4933 5.1497 5.0308 4.6134 4.9655 4.7289 3.2344 3.9371 6.2168 4.8832
LDT-HVDD (l 2 ) 5.2962 5.0669 5.9575 4.5070 5.1498 5.0385 4.6643 5.0027 4.7252 3.3005 3.9485 6.5337 4.9326

(2-level image decomposotion)
Comparative evaluation of the first-order entropy (bits/pixel) of detail coefficients obtained with different image transformations
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Lossless Image Compression Results 

For lossless image compression, the Huffman coding is first employed to encode the 

transformed images obtained from different tested methods.  The average Huffman coded bits 

per pixel obtained by testing methods for 3-level and 5-level lossless image decomposition are 

shown in Table 5.3 and 5.4, respectively. 

 
 

Table 5.3 Comparative Huffman coding (bits/pixel) of 3-level lossless image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 5.0724 5.0163 5.3678 4.4605 4.9468 4.8651 4.4728 4.8728 4.5524 3.3441 3.7677 5.9429 4.7235

Modified S+P (l 1) 5.3076 5.1208 5.4285 4.5858 5.0253 5.0498 4.6511 4.9829 4.7859 3.4399 4.1222 6.1135 4.8844
Modified S+P (l 2 ) 5.3638 5.1573 5.5801 4.6165 5.0832 5.1134 4.6391 5.0384 4.8412 3.4731 4.1885 6.1016 4.9330

2D-HVDD (l 1) 5.3148 5.1186 5.4667 4.5308 5.0234 5.0884 4.6963 4.9296 4.7121 3.3016 3.9989 6.0065 4.8490
2D-HVDD (l 2 ) 5.3232 5.1203 5.4849 4.5309 5.0399 5.1021 4.7030 4.9408 4.7188 3.4306 4.0013 6.2231 4.8849
OS-HVD (l 1) 5.5358 5.2751 6.4061 5.0621 5.7456 5.6074 5.0510 5.4535 5.4524 3.4668 4.6662 6.0777 5.3166
OS-HVD (l 2 ) 5.5480 5.3950 6.4291 5.1046 5.7555 5.6249 5.0793 5.4534 5.4535 3.6696 4.7441 6.6548 5.4093
OS-HVVD (l 1) 5.4935 5.2648 6.2215 4.9914 5.6056 5.4803 4.9355 5.3974 5.3034 3.4269 4.5328 6.0993 5.2294
OS-HVVD (l 2 ) 5.5148 5.3613 6.2444 5.0281 5.6311 5.4979 4.9754 5.3978 5.3047 3.6257 4.5798 6.8593 5.3350
OS-HVDD (l 1) 5.7035 5.3984 6.4682 5.1776 5.8140 5.7302 5.1961 5.5133 5.5577 3.5211 4.5798 6.1287 5.3991
OS-HVDD (l 2 ) 5.7218 5.5340 6.4917 5.2285 5.8201 5.7466 5.2160 5.5146 5.5572 3.7372 4.7930 6.8690 5.5191
LDT-HVDD (l 1) 5.5192 5.2324 6.0558 4.7098 5.3859 5.2758 4.8389 5.1879 4.9698 3.3826 4.2121 6.3705 5.0951
LDT-HVDD (l 2 ) 5.5079 5.2554 6.1445 4.7199 5.3803 5.2855 4.8705 5.2333 4.9658 3.4587 4.2173 6.6804 5.1433

Comparative Huffman coding (bits/pixel) of 3-level image decomposition obtained with different image transformations

 
 

Table 5.4 Comparative Huffman coding (bits/pixel) of 5-level lossless image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 5.0724 4.9198 5.2677 4.3839 4.8431 4.7713 4.3569 4.7582 4.4502 3.3352 3.6676 5.8675 4.6412

Modified S+P (l 1) 5.3076 5.0293 5.3348 4.5225 4.9245 4.9666 4.5471 4.8784 4.6961 3.4321 4.0195 6.0462 4.8087
Modified S+P (l 2 ) 5.3638 5.0671 5.4842 4.5606 4.9853 5.0283 4.5363 4.9312 4.7536 3.4690 4.0589 6.0360 4.8562

2D-HVDD (l 1) 5.2310 5.0367 5.3884 4.4730 4.9353 5.0147 4.6111 4.8289 4.6284 3.2942 3.9157 5.9487 4.7755
2D-HVDD (l 2 ) 5.2361 5.0364 5.4102 4.4728 4.9535 5.0296 4.6155 4.8418 4.6344 3.4282 3.9157 6.1713 4.8121
OS-HVD (l 1) 5.5358 5.1985 6.3383 5.0090 5.6681 5.5452 4.9699 5.3577 5.3758 3.4492 4.5865 6.0205 5.2545
OS-HVD (l 2 ) 5.5480 5.3353 6.3631 5.0627 5.6820 5.5652 5.0030 5.3590 5.3761 3.6574 4.6735 6.6234 5.3541
OS-HVVD (l 1) 5.4935 5.1864 6.1513 4.9374 5.5273 5.4155 4.8497 5.3007 5.2246 3.4125 4.4536 6.0414 5.1662
OS-HVVD (l 2 ) 5.5148 5.2984 6.1753 4.9832 5.5550 5.4345 4.8956 5.3025 5.2261 3.6157 4.5090 6.8279 5.2782
OS-HVDD (l 1) 5.7035 5.3252 6.4019 5.1313 5.7397 5.6715 5.1202 5.4192 5.4858 3.5057 4.7152 6.0715 5.3576
OS-HVDD (l 2 ) 5.7218 5.4782 6.4264 5.1905 5.7502 5.6896 5.1445 5.4205 5.4857 3.7263 4.8112 6.8408 5.4738
LDT-HVDD (l 1) 5.4408 5.1584 5.9849 4.6617 5.3120 5.2109 4.7579 5.0996 4.8969 3.3699 4.1298 6.3392 5.0302
LDT-HVDD (l 2 ) 5.4316 5.1911 6.0757 4.6658 5.3083 5.2080 4.7786 5.1505 4.8918 3.4513 4.1295 6.6609 5.0786

Comparative Huffman coding (bits/pixel) of 5-level image decomposition obtained with different image transformations

 

 

 A spatial self-similarity is observed, however, to exist between multiresolution subbands.  

This self-similarity has been exploited and taken advantage of in the set partitioning in 

hierarchical trees (SPIHT) coding [54].  This coding reduces some correlation in the 

interpolation error and leads to better comparison results [7].  Based on this coding technique, 

the comparative SPIHT coding of 3-level and 5-level lossless image compression are therefore 

given in Table 5.5 and 5.6 for 3-level and 5-level decomposition, respectively. 
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Table 5.5 Comparative SPIHT coding (bits/pixel) of 3-level lossless image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 4.9506 4.9772 5.1926 4.4993 4.7862 4.8226 4.4913 4.8249 4.6050 2.8226 3.3891 5.3673 4.5607

Modified S+P (l 1) 5.1369 5.0890 5.2540 4.5941 4.8501 4.9617 4.6405 4.9247 4.8229 2.8755 3.6585 5.6545 4.7052
Modified S+P (l 2 ) 5.1709 5.0982 5.4047 4.6116 4.9082 5.0049 4.6079 4.9756 4.8737 2.8854 3.7088 5.6424 4.7410

2D-HVDD (l 1) 5.0170 4.9455 5.2038 4.4798 4.8164 4.9989 4.7079 4.8323 4.6617 2.8122 3.5187 5.4176 4.6177
2D-HVDD (l 2 ) 5.0576 4.9581 5.2138 4.4974 4.8330 5.0541 4.7347 4.8351 4.6668 2.9094 3.5342 5.7208 4.6679
OS-HVD (l 1) 5.3552 5.2121 6.0433 4.9349 5.4939 5.4984 5.1090 5.3098 5.3614 2.9248 4.0699 5.5508 5.0720
OS-HVD (l 2 ) 5.4788 5.3483 6.1299 5.0103 5.5809 5.5613 5.0852 5.3098 5.3632 3.0910 4.1483 7.2813 5.2824

OS-HVVD (l 1) 5.3260 5.2490 5.9453 4.9601 5.3775 5.3882 4.9179 5.2667 5.2675 2.9272 4.0139 5.6620 5.0251
OS-HVVD (l 2 ) 5.4187 5.3392 5.9950 5.0054 5.4698 5.4354 4.9455 5.2687 5.2705 3.0891 4.0630 7.1910 5.2076
OS-HVDD (l 1) 5.5803 5.3492 6.1683 5.095 5.6334 5.7073 5.2328 5.4310 5.5121 3.0445 4.2258 5.7090 5.2241
OS-HVDD (l 2 ) 5.6998 5.5077 6.2507 5.1815 5.7209 5.7537 5.2733 5.4315 5.5148 3.2126 4.3137 7.3063 5.4305
LDT-HVDD (l 1) 5.2640 5.1165 5.7155 4.681 5.1513 5.1760 4.8405 5.0837 4.9286 2.8978 3.7500 6.0005 4.8838
LDT-HVDD (l 2 ) 5.2757 5.1237 5.8025 4.6878 5.1630 5.1841 4.8643 5.1105 4.9265 2.9456 3.7524 6.8235 4.9716

Comparative SPIHT coding (bits/pixel) of 3-level image decomposition obtained with different image transformations

 
 

Table 5.6 Comparative SPIHT coding (bits/pixel) of 5-level lossless image decomposition. 

Methods/Images Airplane Camera Barbara Face Lena Peppers Milkdrop Tiffany Zelda CT X-rays Fingerprint Average (bpp)
S+P 4.9060 4.9304 5.1487 4.4471 4.7419 4.7877 4.4334 4.7820 4.5450 2.7409 3.3092 5.3655 4.5115

Modified S+P (l 1) 5.1021 5.0504 5.2167 4.5510 4.8118 4.9355 4.5913 4.8916 4.7738 2.7993 3.5835 5.6564 4.6636
Modified S+P (l 2 ) 5.1371 5.0602 5.3663 4.5735 4.8742 4.9775 4.5582 4.9392 4.8248 2.8099 3.6135 5.6401 4.6979

2D-HVDD (l 1) 4.9784 4.9042 5.1728 4.4371 4.7783 4.9684 4.6588 4.7936 4.6102 2.7581 3.4516 5.4141 4.5771
2D-HVDD (l 2 ) 5.0204 4.9128 5.1822 4.4541 4.7939 5.0284 4.6858 4.7960 4.6152 2.8549 3.4651 5.7187 4.6273
OS-HVD (l 1) 5.3245 5.1783 6.0206 4.9013 5.4721 5.4841 4.9808 5.2789 5.3233 2.8619 4.0093 5.5460 5.0318
OS-HVD (l 2 ) 5.4496 5.3174 6.1070 4.9781 5.5599 5.5467 5.0483 5.2793 5.3255 3.0282 4.0960 7.2814 5.2515
OS-HVVD (l 1) 5.2976 5.2197 5.9230 4.9298 5.3575 5.3751 4.8551 5.2385 5.2294 2.8504 3.9570 5.6572 4.9909
OS-HVVD (l 2 ) 5.3917 5.3116 5.9727 4.9752 5.4501 5.4221 4.9098 5.2411 5.2321 3.0123 4.0119 7.1911 5.1768
OS-HVDD (l 1) 5.5556 5.3205 6.1486 5.0682 5.6170 5.6980 5.2008 5.4037 5.4780 2.9926 4.1725 5.7042 5.1966
OS-HVDD (l 2 ) 5.6762 5.4829 6.2310 5.1552 5.7047 5.7443 5.2420 5.4043 5.4806 3.1607 4.2680 7.3063 5.4047
LDT-HVDD (l 1) 5.2357 5.0835 5.6880 4.6422 5.1230 5.1531 4.8006 5.0520 4.8876 2.8389 3.6847 5.9995 4.8491
LDT-HVDD (l 2 ) 5.2477 5.0991 5.7781 4.6462 5.1418 5.1599 4.8205 5.0852 4.8842 2.8894 3.6848 6.8351 4.9393

Comparative SPIHT coding (bits/pixel) of 5-level image decomposition obtained with different image transformations

 

 

 The lossless compression results shown in Table 5.3 – Table 5.6 indicates that the S+P-

transform is superior to the other techniques.  Nevertheless, the 2D-HVDD method gives 

improved results in comparison to the modified S+P-transform, the optimum scalar transform 

and the LDT method.  Furthermore, it is seen that lossless compression of using SPIHT coding 

improves the average bits/pixel over that of using Huffman coding.  The SPIHT coding not only 

reduces the statistical dependency between detail subbands but also provides embedded codes 

supporting progressive transmission.  In progressive transmission, the bits receiving process can 

be halted at any time to reconstruct the image.  Nowadays, this feature is important, especially 

for viewing images on the Internet. 
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Lossy Image Compression Results  

For the experiment of lossy image compression, the transformed image coefficients based 

on the proposed techniques are encoded by the SPIHT coding.  The reconstructed images at 

specified bits per pixel compression resulting from the proposed methods are compared with 

those of the wavelet transform and the LDT-HVDD method in which the following criterion is 

employed.  The power of signal to noise ratio (PSNR (dB)) criterion is defined by 
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reconstructed image pixel of size M x N image, respectively.  This expression is employed to 

measure the fidelity of the reconstructed images compared with the original version.  The 

measurement provided by this criterion, however, may not correspond to the human perception.  

The percentage of normalized absolute error (PNE
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additional criteria to measure the goodness of compressed image reconstruction as designated by 
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Furthermore, it is interesting to investigate in the Fourier characteristic of the 

reconstructed images, especially the Fourier phase.  The importance of image phase information 

has been studied in [79][80][81] and it was found that much of the important information is 

contained in the Fourier transform’s phase component [80].  Additionally, a similar conclusion 
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was found in [82].  Namely, for an equivalent distortion, phase encoding of the discrete Fourier 

transform of random sequences used 1.37 more bits than magnitude encoding.  These studies 

imply that phase information plays an important role in frequency synthesis.  The magnitude and 

phase characteristics of the reconstructed images therefore has been examined and compared 

with those of the original version in term of the signal-to-noise ratio (dB) evaluation as defined 

by 
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where  is the average squared value of signal and  is the mean squared error. 2
sσ 2

dσ

 

Additionally, due to the fact that human perception tends to be more sensitive to image’s 

edges distortion than smooth area distortion, the edge preservation of the reconstructed images 

resulted by different tested schemes was investigated.  This process is accomplished by applying 

the edge detection operator to the original and the reconstructed images.  The result of the 

reconstructed image is then compared with that of the original version using the SNR 

measurement.  The well-known Sobel operator is employed [83] for image edge detector in this 

research.  In the conduct of lossy image compression, the four widely used images, Airplane, 

Lena, Barbara, and Peppers are employed in three-level image decomposition.  Table 5.7 

illustrates the numerical results of the reconstructed Airplane image obtained from tested 

techniques at 0.5, 1.0, and 1.5 bits/pixel of compression while Figure 5.1 and 5.2 represent the 

reconstructed Lena images and their Sobel gradients at 1.0 bits/pixel, respectively.  Similarly, the 

lossy experiment is also performed on Lena, Barbara, and Peppers images.  The comparative 

numerical results of the reconstructed Barbara, Lena, and Peppers images obtained from different 

tested techniques at 0.5, 1.0, and 1.5 bits/pixel of compression are shown in Table 5.8, 5.9, and 

5.10, respectively.  The reconstructed Barbara image and the Sobel gradients of the reconstructed 

Barbara images at 1.0 bit/pixel are respectively shown in Figure 5.3 and 5.4.  For Lena image, 

the reconstructed images at 1.5 bits/pixel are depicted in Figure 5.5 whereas their associated 

Sobel gradients are shown in Figure 5.6.  Additionally, Figure 5.7 and 5.8 successively 

demonstrate the reconstructed Peppers images at 1.5 bits/pixel and the related Sobel gradients. 
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Table 5.7 Comparative numerical results of reconstructed Airplane images for 3-level image 
decomposition obtained with different tested methods at 0.5, 1.0, and 1.5 bits/pixel of lossy 
compression. 

Comparative edge preservation
 of reconstructed images

Magnitude component Phase component
0.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 26.5305 4.7958 6.5151 25.7259 -1.0335 10.4416

2D-HVDD(l 1) 19.4221 12.6983 14.7688 17.4365 -0.3738 8.4537
2D-HVDD(l 2) 19.4433 12.6743 14.7328 17.4653 -0.3171 8.4606
OS-HVD(l 1) 16.6505 16.4005 20.3200 15.5619 -1.3810 5.1844
OS-HVD(l 2) 16.0862 18.3536 21.6838 14.6938 -1.3564 5.3458

OS-HVVD(l 1) 16.6664 16.3655 20.2828 15.5947 -1.4441 5.1357
OS-HVVD(l 2) 16.0787 18.3489 21.7026 14.7016 -1.4016 5.2330
OS-HVDD(l 1) 16.5970 16.4825 20.4455 15.5797 -1.4824 4.9830
OS-HVDD(l 2) 16.1129 18.1608 21.6172 14.8123 -1.4572 5.1508

LDT-HVDD(l 1) 17.6547 15.3576 18.1015 15.8679 -0.9933 7.3303
LDT-HVDD(l 2) 17.6114 15.5705 18.1919 15.7913 -0.9572 7.3783

1.0 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 30.8513 2.9647 3.9617 29.8659 1.0080 14.5545

2D-HVDD(l 1) 26.0252 5.7619 6.9054 24.3138 1.4878 12.5039
2D-HVDD(l 2) 25.9782 5.7930 6.9428 24.2723 1.6440 12.4866
OS-HVD(l 1) 20.8791 10.8390 12.4880 19.2304 0.2327 10.0951
OS-HVD(l 2) 19.8082 12.6669 14.1267 17.8639 0.2005 10.2550

OS-HVVD(l 1) 20.8179 10.8884 12.5763 19.2008 0.1974 9.9541
OS-HVVD(l 2) 19.7463 12.7471 14.2276 17.8238 0.1493 10.0974
OS-HVDD(l 1) 20.9010 10.8017 12.4565 19.2501 0.0442 10.1302
OS-HVDD(l 2) 19.9460 12.4588 13.9043 18.0128 0.0480 10.2943

LDT-HVDD(l 1) 21.6546 10.1348 11.4214 19.5714 0.8124 11.2908
LDT-HVDD(l 2) 21.5047 10.3845 11.6202 19.3754 0.8481 11.2590

1.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 34.6109 1.9579 2.5698 33.6908 2.7256 18.3026

2D-HVDD(l 1) 27.4799 5.0078 5.8405 25.5049 3.1791 15.1225
2D-HVDD(l 2) 27.2765 5.1204 5.9789 25.3099 3.1762 15.0293
OS-HVD(l 1) 26.3966 5.5626 6.6164 25.1549 1.9382 14.4041
OS-HVD(l 2) 24.6226 7.1225 8.1155 22.8502 1.8689 14.1748

OS-HVVD(l 1) 26.2947 5.6231 6.6944 25.0871 1.7971 14.1903
OS-HVVD(l 2) 24.5462 7.1800 8.1872 22.7877 1.7986 13.9986
OS-HVDD(l 1) 26.4111 5.5563 6.6053 25.1833 1.5901 14.3652
OS-HVDD(l 2) 24.8898 6.9061 7.8697 23.1616 1.4982 14.3474

LDT-HVDD(l 1) 27.3626 5.0825 5.9199 25.5656 2.5464 15.5249
LDT-HVDD(l 2) 27.1566 5.2705 6.0620 25.2813 2.5177 15.5382

Comparative reconstructed images

Airplane

Comparative the Fourier characteristic
 of reconstructed images
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Figure 5.1 The reconstructed Airplane images at 1.0 bit/pixel of lossy compression: original 
image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method (3rd row-left), l2 norm 
based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD method (top row-middle), l2 
norm based OS-HVD method (2nd row-middle), l1 norm based OS-HVDD method (3rd row-
middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm based OS-HVVD 
method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 norm based LDT-
HVDD method (3rd row-right), and l2 norm based LDT-HVDD method (bottom row-right). 
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Figure 5.2 Sobel gradients of the reconstructed Airplane images at 1.0 bit/pixel of lossy 
compression: original image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method 
(3rd row-left), l2 norm based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD 
method (top row-middle), l2 norm based OS-HVD method (2nd row-middle), l1 norm based OS-
HVDD method (3rd row-middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm 
based OS-HVVD method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 
norm based LDT-HVDD method (3rd row-right), and l2 norm based LDT-HVDD method 
(bottom row-right). 
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Table 5.8 Comparative numerical results of reconstructed Barbara images for 3-level image 
decomposition obtained with different tested methods at 0.5, 1.0, and 1.5 bits/pixel of lossy 
compression. 

Comparative edge preservation
 of reconstructed images

Magnitude component Phase component
0.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 25.9097 8.1188 10.0703 21.6646 -1.7094 8.1718

2D-HVDD(l 1) 21.6377 14.5856 16.4680 16.7818 -1.2838 8.0822
2D-HVDD(l 2) 21.7049 14.4429 16.3411 16.9410 -1.2255 8.2687
OS-HVD(l 1) 16.3317 26.9926 30.3348 11.8575 -2.2187 4.7533
OS-HVD(l 2) 15.7554 29.2789 32.4158 10.9820 -2.2009 5.0700

OS-HVVD(l 1) 16.4046 26.7778 30.0813 11.9091 -2.1947 4.8906
OS-HVVD(l 2) 15.8405 28.9958 32.0998 11.0509 -2.1665 5.1762
OS-HVDD(l 1) 16.3184 26.9962 30.3811 11.8550 -2.2065 4.5273
OS-HVDD(l 2) 15.8418 28.9083 32.0947 11.1273 -2.2177 4.8062

LDT-HVDD(l 1) 17.3598 24.6164 26.9485 12.1909 -1.9775 6.2552
LDT-HVDD(l 2) 17.2420 24.9707 27.3163 11.9976 -1.9738 5.7581

1.0 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 29.9999 5.0677 6.2882 25.7097 -0.7936 12.1183

2D-HVDD(l 1) 26.7218 8.0436 9.1714 22.0033 -0.3097 12.2402
2D-HVDD(l 2) 26.8699 7.8891 9.0164 22.3410 -0.3503 12.5841
OS-HVD(l 1) 20.3225 16.5971 19.1602 16.3118 -1.5759 7.6990
OS-HVD(l 2) 19.5381 18.6378 20.9709 15.0236 -1.5574 7.9248

OS-HVVD(l 1) 20.5267 16.2417 18.7150 16.3796 -1.4891 7.9882
OS-HVVD(l 2) 19.7663 18.2040 20.4272 15.1883 -1.4961 8.1474
OS-HVDD(l 1) 20.3999 16.5150 18.9903 16.3568 -1.5928 7.7043
OS-HVDD(l 2) 19.7483 18.2304 20.4696 15.2941 -1.6048 7.9035

LDT-HVDD(l 1) 22.0166 14.2560 15.7650 16.9163 -1.2180 9.6751
LDT-HVDD(l 2) 21.7871 14.6833 16.1870 16.6041 -1.2447 9.1285

1.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 33.7499 3.3448 4.0835 29.6822 -0.0643 16.1927

2D-HVDD(l 1) 30.2275 5.2285 6.1256 25.9353 0.6968 14.3231
2D-HVDD(l 2) 30.1819 5.2384 6.1579 26.1883 0.6889 14.7177
OS-HVD(l 1) 24.0671 10.6450 12.4501 20.4624 -0.9044 10.3959
OS-HVD(l 2) 23.0058 12.3452 14.0681 18.7319 -0.9792 10.3818

OS-HVVD(l 1) 24.6450 10.0297 11.6486 20.9300 -0.7149 11.2387
OS-HVVD(l 2) 23.5731 11.6156 13.1786 19.2031 -0.7471 11.3071
OS-HVDD(l 1) 21.2895 15.0882 17.1416 16.7917 -1.0830 9.4035
OS-HVDD(l 2) 20.6663 16.5987 18.4166 15.8748 -1.0882 9.5573

LDT-HVDD(l 1) 26.8532 8.0201 9.0337 22.0012 -0.4352 13.3394
LDT-HVDD(l 2) 26.5070 8.3974 9.4010 21.5880 -0.5423 12.7334

Comparative reconstructed images

Barbara

Comparative the Fourier characteristic
 of reconstructed images
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Table 5.9 Comparative numerical results of reconstructed Lena images for 3-level image 
decomposition obtained with different tested methods at 0.5, 1.0, and 1.5 bits/pixel of lossy 
compression. 

Comparative edge preservation
 of reconstructed images

Magnitude component Phase component
0.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 27.7782 6.3004 7.8616 24.0263 -0.8746 9.9721

2D-HVDD(l 1) 22.2448 13.4871 14.8656 17.2964 0.0492 9.0359
2D-HVDD(l 2) 22.2377 13.5064 14.8777 17.3169 0.0295 9.2004
OS-HVD(l 1) 16.7823 24.8849 27.8809 12.3760 -1.4537 4.1614
OS-HVD(l 2) 16.2866 26.9612 29.5182 11.6615 -1.4301 4.4156

OS-HVVD(l 1) 16.7265 25.0336 28.0607 12.3453 -1.3394 4.1454
OS-HVVD(l 2) 16.2466 27.0730 29.6548 11.6369 -1.3516 4.3752
OS-HVDD(l 1) 16.8295 24.7235 27.7300 12.4478 -1.4548 4.1103
OS-HVDD(l 2) 16.3705 26.6210 29.2347 11.7707 -1.4414 4.3250

LDT-HVDD(l 1) 21.4446 14.5107 16.3001 16.8431 -0.5861 8.3434
LDT-HVDD(l 2) 21.3729 14.7174 16.4352 16.7187 -0.5948 8.2521

1.0 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 33.2254 3.3356 4.1991 29.8728 1.0318 15.0341

2D-HVDD(l 1) 27.4894 7.1927 8.1274 22.7149 2.0121 12.8523
2D-HVDD(l 2) 27.4305 7.2512 8.1827 22.7331 1.8882 13.1440
OS-HVD(l 1) 21.1127 15.0176 16.9351 16.9172 -0.0810 7.6687
OS-HVD(l 2) 20.3492 16.8738 18.4911 15.8548 -0.1535 7.8845

OS-HVVD(l 1) 21.0800 15.0689 16.9990 16.8736 -0.0706 7.7821
OS-HVVD(l 2) 20.3598 16.8253 18.4686 15.8465 -0.0798 7.9265
OS-HVDD(l 1) 21.2357 14.8150 16.6969 17.0536 -0.1823 7.7530
OS-HVDD(l 2) 20.5473 16.4770 18.0741 16.0654 -0.3021 7.9405

LDT-HVDD(l 1) 26.7523 7.7587 8.8472 22.2925 1.1170 12.5214
LDT-HVDD(l 2) 26.5702 8.0171 9.0347 22.0105 1.0998 12.4142

1.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 35.4812 2.6038 3.2386 31.6391 2.5909 16.9363

2D-HVDD(l 1) 32.4090 3.9967 4.6129 27.9657 3.6406 16.4918
2D-HVDD(l 2) 32.1847 4.0818 4.7335 27.8777 3.4581 16.7365
OS-HVD(l 1) 25.8842 8.4551 9.7771 21.8562 1.2215 11.8924
OS-HVD(l 2) 24.8071 9.9019 11.0679 20.4204 1.0709 11.8549

OS-HVVD(l 1) 25.8394 8.4822 9.8278 21.8350 1.2255 11.7759
OS-HVVD(l 2) 24.7603 9.9287 11.1277 20.4013 1.2216 11.6632
OS-HVDD(l 1) 26.1105 8.2781 9.5257 22.0512 1.0572 12.0335
OS-HVDD(l 2) 24.9870 9.7209 10.8411 20.5894 0.9425 11.9771

LDT-HVDD(l 1) 27.7548 7.0035 7.8829 23.0083 2.4313 14.3375
LDT-HVDD(l 2) 27.5683 7.2297 8.0540 22.7423 2.3332 14.2782

Comparative reconstructed images

Lena

Comparative the Fourier characteristic
 of reconstructed images
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Table 5.10 Comparative numerical results of reconstructed Peppers images for 3-level image 
decomposition obtained with different tested methods at 0.5, 1.0, and 1.5 bits/pixel of lossy 
compression. 

Comparative edge preservation
 of reconstructed images

Magnitude component Phase component
0.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 28.3801 6.0507 7.5230 24.4547 -0.6872 10.7124

2D-HVDD(l 1) 22.1805 13.8898 15.3591 17.0811 -0.4089 8.7580
2D-HVDD(l 2) 22.0045 14.1200 15.6736 16.9184 -0.3899 8.7318
OS-HVD(l 1) 16.3969 27.8864 29.8917 11.6922 -1.5106 4.7308
OS-HVD(l 2) 15.8787 29.9658 31.7292 10.9798 -1.5462 5.0516

OS-HVVD(l 1) 16.3605 28.0085 30.0170 11.6755 -1.4916 4.7061
OS-HVVD(l 2) 15.8371 30.0964 31.8816 10.9368 -1.4744 5.0275
OS-HVDD(l 1) 16.4069 27.8851 29.8574 11.7266 -1.7419 4.5961
OS-HVDD(l 2) 15.9479 29.7453 31.4775 11.0803 -1.7615 4.9019

LDT-HVDD(l 1) 21.8058 14.4296 16.0363 16.9609 -0.5623 8.8985
LDT-HVDD(l 2) 21.7475 14.5739 16.1443 16.8901 -0.6242 8.9049

1.0 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 33.8335 3.2703 4.0153 30.2520 0.9377 16.0987

2D-HVDD(l 1) 27.2815 7.5502 8.5373 22.3806 1.4420 12.8762
2D-HVDD(l 2) 26.7769 7.9331 9.0480 21.8957 1.3700 12.6972
OS-HVD(l 1) 21.3136 15.1441 16.9712 16.8808 -0.3762 8.5698
OS-HVD(l 2) 20.5830 16.8449 18.4605 15.8432 -0.3028 8.7635

OS-HVVD(l 1) 22.5534 12.6632 14.7138 18.8836 -0.2969 8.6212
OS-HVVD(l 2) 22.7746 12.7879 14.3438 18.7300 -0.2428 9.3142
OS-HVDD(l 1) 21.4056 15.0188 16.7925 16.9985 -0.5395 8.5589
OS-HVDD(l 2) 20.8002 16.4558 18.0045 16.1052 -0.5138 8.8543

LDT-HVDD(l 1) 27.2053 7.7007 8.6125 22.4579 1.0125 13.4527
LDT-HVDD(l 2) 27.0436 7.8686 8.7743 22.2918 0.9554 13.4370

1.5 bpp PSNR(dB) PNE1(%) PNE2(%) SNR(dB) SNR(dB) SNR(dB)
DWT 36.4498 2.4518 2.9710 32.8688 2.1965 18.5082

2D-HVDD(l 1) 31.9674 4.3281 4.9776 27.4109 2.6995 16.5586
2D-HVDD(l 2) 30.8400 4.7985 5.6675 26.4257 2.4487 16.1189
OS-HVD(l 1) 26.2201 8.5540 9.6469 22.1130 0.9231 12.7566
OS-HVD(l 2) 25.2500 9.7915 10.7868 20.7132 0.9307 12.7167

OS-HVVD(l 1) 26.0922 8.6637 9.7901 22.0094 1.0291 12.5687
OS-HVVD(l 2) 25.1487 9.9038 10.9133 20.6181 1.0608 12.5672
OS-HVDD(l 1) 26.3091 8.4940 9.5486 22.1771 0.6825 12.8014
OS-HVDD(l 2) 25.3515 9.7025 10.6616 20.8258 0.6447 12.8130

LDT-HVDD(l 1) 30.0469 5.2910 6.2094 25.6241 2.2343 15.0238
LDT-HVDD(l 2) 29.4132 5.7310 6.6794 24.8840 2.1522 14.9202

Comparative reconstructed images

Peppers

Comparative the Fourier characteristic
 of reconstructed images
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Figure 5.3 The reconstructed Barbara image at 1.0 bit/pixel of lossy compression: original image 
(top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method (3rd row-left), l2 norm based 
2D-HVDD method (bottom row-left), l1 norm based OS-HVD method (top row-middle), l2 norm 
based OS-HVD method (2nd row-middle), l1 norm based OS-HVDD method (3rd row-middle), l2 
norm based OS-HVDD method (bottom row-middle), l1 norm based OS-HVVD method (top 
row-right), l2 norm based OS-HVVD method (2nd row-right), l1 norm based LDT-HVDD method 
(3rd row-right), and l2 norm based LDT-HVDD method (bottom row-right). 
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Figure 5.4 Sobel gradients of the reconstructed Barbara image at 1.0 bit/pixel of lossy 
compression: original image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method 
(3rd row-left), l2 norm based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD 
method (top row-middle), l2 norm based OS-HVD method (2nd row-middle), l1 norm based OS-
HVDD method (3rd row-middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm 
based OS-HVVD method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 
norm based LDT-HVDD method (3rd row-right), and l2 norm based LDT-HVDD method 
(bottom row-right). 
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Figure 5.5 The reconstructed Lena images at 1.5 bits/pixel of lossy compression: original image 
(top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method (3rd row-left), l2 norm based 
2D-HVDD method (bottom row-left), l1 norm based OS-HVD method (top row-middle), l2 norm 
based OS-HVD method (2nd row-middle), l1 norm based OS-HVDD method (3rd row-middle), l2 
norm based OS-HVDD method (bottom row-middle), l1 norm based OS-HVVD method (top 
row-right), l2 norm based OS-HVVD method (2nd row-right), l1 norm based LDT-HVDD method 
(3rd row-right), and l2 norm based LDT-HVDD method (bottom row-right). 
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Figure 5.6 Sobel gradients of the reconstructed Lena image at 1.5 bits/pixel of lossy 
compression: original image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method 
(3rd row-left), l2 norm based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD 
method (top row-middle), l2 norm based OS-HVD method (2nd row-middle), l1 norm based OS-
HVDD method (3rd row-middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm 
based OS-HVVD method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 
norm based LDT-HVDD method (3rd row-right), and l2 norm based LDT-HVDD method 
(bottom row-right). 
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Figure 5.7 The reconstructed Peppers images at 1.5 bits/pixel of lossy compression: original 
image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method (3rd row-left), l2 norm 
based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD method (top row-middle), l2 
norm based OS-HVD method (2nd row-middle), l1 norm based OS-HVDD method (3rd row-
middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm based OS-HVVD 
method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 norm based LDT-
HVDD method (3rd row-right), and l2 norm based LDT-HVDD method (bottom row-right). 
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Figure 5.8 Sobel gradients of the reconstructed Peppers image at 1.5 bits/pixel of lossy 
compression: original image (top row-left), DWT(2nd row-left), l1 norm based 2D-HVDD method 
(3rd row-left), l2 norm based 2D-HVDD method (bottom row-left), l1 norm based OS-HVD 
method (top row-middle), l2 norm based OS-HVD method (2nd row-middle), l1 norm based OS-
HVDD method (3rd row-middle), l2 norm based OS-HVDD method (bottom row-middle), l1 norm 
based OS-HVVD method (top row-right), l2 norm based OS-HVVD method (2nd row-right), l1 
norm based LDT-HVDD method (3rd row-right), and l2 norm based LDT-HVDD method 
(bottom row-right). 
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 The numerical results represented in Table 5.7 – 5.10 imply that the wavelet transform 

generally provides best results in terms of PSNR (dB), PNE1 (%), and PNE2 (%) measurements 

of the reconstructed images relative to the original version.  In addition, the comparative SNR 

(dB) of the Fourier magnitude characteristic indicates that the wavelet transform is superior to 

the other techniques.  On the other hand, the 2D-HVDD method always provides best SNR (dB) 

results when the reconstructed images are compared in term of the Fourier phase characteristic 

respected to the original image.  As results shown for PEPPERS image at 1.5 bits/pixel in Table 

5.10, the numerical PSNR(dB), PNE1(%), and PNE2(%) results of using between the wavelet 

transform and the 2D-HVDD method are relatively different; however, it is difficult to 

distinguish the difference of visual image quality in Figure 5.7.  Contrarily, even though the 

numerical results of using the 2D-HVDD and the LDT-HVDD techniques are quite close, the 

difference between the images resulted by these methods is perceptually noticeable.  This 

observation suggests that the comparative numerical criteria are not directly related to visual 

image quality.  The Sobel edge operator was then employed to examine Sobel gradients of the 

reconstructed images.  It was found that the wavelet transform preserves image edge relative to 

the original image better than the other methods.  In this study, the results indicate that the 2D-

HVDD and the LDT-HVDD methods are not significantly different while the optimum scalar 

transform does not perform well in general. 
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CHAPTER VI 

 

CONCLUSIONS 

 

In this research, two decorrelation techniques are proposed for the application of lossless 

and lossy image compression.  The first method, called the optimum scalar decomposition, 

simply decomposes image into subbands and then approximates the decomposed subbands as a 

scalar multiple of the retained subband.  Another decorrelation technique motivated by the linear 

decomposition transform (LDT) employs a two-dimensional decorrelation structure to improve 

the decorrelation performance over one-dimensional row-wise and column-wise processing 

techniques as used in the LDT.  The basic concept of these methods is based on the interpolative 

subband decomposition.  Due to the fact that every image has its own distintive characteristic, 

the advisability of using a fixed universal interpolation filter is questionable.  The proposed 

techniques adapt such filters to the image being compressed.  The adapted interpolation filters 

are optimally designed to reduce statistical dependence between the prediction errors as much as 

possible based on  and l  norm criteria. 1l 2

In the decorrelation performance examination, it was shown that, without the S+P-

transform, the 2D-HVDD method provides better decorrelation performance than the modified 

S+P-transform, the optimum scalar transform and the LDT method in one-level image 

decomposition.  However, this performance tends to be decreased (which is always be the case 

for other tested methods) in two-level of decomposition due to the fact that neighboring image 

pixels tend to be less correlated at higher levels of decomposition.  As expected, the two-

dimensional interpolation filter used in the 2D-HVDD method has shown the better decorrelation 

performance compared to one-dimensional interpolation filter employed in the LDT-HVDD 

technique.  It also suggests that the 2D-HVDD method will provide the promising results for 

lossless and lossy image compression. 

As shown in lossless image compression results using Huffman or SPIHT coding, even 

though the 2D-HVDD method inferior produced results relative to those obtained by the S+P-

transform, it resulted in an improvement over other methods, especially the LDT.  When the 

SPIHT algorithm is employed as a coding tool, the average bits/pixel improves compared to the 

results employing Huffman coding.  This improvement indicates that the SPIHT coding has 
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taken advantage of the self-similarity between subbands and reduced the correlation in those 

subbands. 

With the progressive transmission property of the SPIHT coding, this coding is then 

employed to encode the transformed image coefficients obtained with the wavelet transform, the 

2D-HVDD and the LDT-HVDD methods for lossy image compression.  It is found that the 

wavelet transform leads the other techniques based on the numerical PSNR(dB), PNE1(%), and 

PNE2(%) results.  These measurements are mathematically tractable; unfortunately, they do not 

provide a very accurate indication of the perceptible fidelity of image reconstruction.  Therefore, 

better numerical results do not always imply better visual image quality and vice versa.  To 

measure the perceptible fidelity of the reconstructed image, an accurate model for human 

perception must be employed in order that the transform of the reconstructed images in the 

perceptual space be compared.  However, the human perception is very complex and an accurate 

model has not yet established.  This topic is one of the active area research in the present [78].  In 

this dissertation, the Sobel edge detector was used to investigate the edge preservation in the 

reconstructed images compared to the original version.  The SNR (dB) result generally shows 

that the wavelet transform achieves the smallest error between the Sobel gradients of the 

reconstructed image and that of the original image. 

It is interesting to note that, however, the 2D-HVDD method is superior to the other 

schemes for lossy image compression in term of the SNR (dB) of the Fourier phase characteristic 

of the reconstructed image relative to the original version.  On the other hand, the SNR (dB) of 

the Fourier magnitude characteristics of the 2D-HVDD based reconstructed image is very 

inferior to the wavelet.  Even though the image phase component of the Fourier transform is 

found to be more important than the magnitude component [79][80][81], much distortion in the 

magnitude component arose using the 2D-HVDD method.  This resulted in inferior numerical 

result and perceptual image quality in comparison to that of the wavelet transform.  Furthermore, 

the property of the SPIHT coding is to first transmit the most significant bits of the transformed 

coefficients.  When the bit receiving process is halted, the bits not yet been received are assumed 

to be zero.  This is akin to truncating the smallest detail coefficients which does not greatly 

impact the reconstructed image for an orthogonal transformation (e.g., wavelet).  Contrarily, the 

2D-HVDD method, the optimum scalar transform, and the LDT-HVDD technique are not 

orthogonal transforms.  Truncating a number of the smallest non-orthogonal transform based 
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detail coefficients does not always result in an optimum reconstruction.  Recently, the selection 

of a set of truncated detail coefficients for the LDT method has been extensively investigated in 

[84].  The results of using this developed selection technique have shown an improvement over 

the conventional smallest coefficients truncation.  This study may be applied for the 2D-HVDD 

method and the optimum scalar transform for improving both numerical results and visual image 

quality.  Based on this described reason and poor decorrelation structure, the optimum scalar 

transform generally does not provide the potential results in lossless and lossy image 

compression.  However, the 2D-HVDD technique has shown an improved capability and 

encourages further development. 
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APPENDIX A 

 

TESTED IMAGES 

 

           

          

          

Figure A.1 Tested images: Airplane (top left-row), Barbara (top right-row), Camera (middle left 
row), Face (middle right-row), Lena (bottom left-row), and Milkdrop (bottom right-row). 
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Figure A.2 Tested images: Peppers (top left-row), Tiffany (top right-row), Zelda (middle left 
row), CT (middle right-row), X-rays (bottom left-row), and Fingerprint (bottom right-row). 
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APPENDIX B 

 

LISTS OF THE OPTIMUM PARAMETERS 

 

Table B.1 The optimum scalars of Airplane image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Airplane
Method

Modified S+P(l 1) -0.0528 0.1682 0.0530 -0.1679 -0.0527 0.1670 0.0500 -0.1724
Modified S+P(l 2) -0.0813 0.2155 0.0663 -0.2383 -0.0817 0.2140 0.0638 -0.2427

2D-HVDD(l 1) : hv filter 0.2427 0.2996 0.2231 0.2353 0.2398 0.3062 0.2220 0.2327
                     : d filter 0.1947 0.2104 0.2931 0.3028 0.1921 0.2095 0.2941 0.3053

2D-HVDD(l 2) : hv filter 0.2348 0.2744 0.2487 0.2443 0.2344 0.2801 0.2478 0.2399
                     : d filter 0.2134 0.1931 0.2965 0.2992 0.2126 0.1934 0.2966 0.2995

LDT-HVDD(l 1) : h filter -0.0170 0.5197 0.5058 -0.0086 -0.0157 0.5182 0.5061 -0.0086
                          : v filter -0.0158 0.5075 0.5282 -0.0198 -0.0150 0.5059 0.5284 -0.0192
                          : d filter -0.0109 0.5079 0.5089 -0.0058 -0.0099 0.5051 0.5100 -0.0052
LDT-HVDD(l 2) : h filter -0.0026 0.5102 0.4956 -0.0039 -0.0002 0.5055 0.4967 -0.0029
                          : v filter -0.0109 0.4935 0.5287 -0.0124 -0.0067 0.4868 0.5276 -0.0088
                          : d filter 0.0003 0.4974 0.4884 0.0124 0.0056 0.4890 0.4875 0.0164

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9955 1.0000

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
OS-HVD(l 2)    : alpha 0.9970 0.9941 0.9901 0.9970 0.9941 0.9901 0.9871 1.0302

                      : beta 0.9954 0.9892 0.9651 0.9954 0.9892 0.9651 0.9805 1.0064
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9955 1.0000

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 0.5857 0.4182 0.2632 0.5857 0.4182 0.2632 0.3333 0.7786

OS-HVVD(l 2)  : alpha 0.9970 0.9941 0.9901 0.9970 0.9941 0.9901 0.9871 1.0302
                       : beta 0.9954 0.9892 0.9651 0.9954 0.9892 0.9651 0.9805 1.0064

                            : gamma 0.6699 0.5330 0.4044 0.6699 0.5330 0.4044 0.5337 0.7871
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0046

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0152

OS-HVDD(l 2)  : alpha 0.9969 0.9948 0.9870 0.9969 0.9948 0.9870 0.9849 1.0496
                       : beta 0.9954 0.9892 0.9651 0.9954 0.9892 0.9651 0.9805 1.0064

                            : gamma 0.9948 0.9883 0.9717 0.9948 0.9883 0.9717 0.9822 1.0377

5-level image decomposition3-level image decomposition
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Table B.2 The optimum scalars of Barbara image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Barbara
Method

Modified S+P(l 1) -0.0612 0.2658 0.2660 0.2368 -0.0611 0.2639 0.2599 0.2296
Modified S+P(l 2) -0.0392 0.1877 0.1885 0.2919 -0.0410 0.1852 0.1843 0.2855

2D-HVDD(l 1) : hv filter -0.0341 -0.0325 0.5311 0.5367 -0.0328 -0.0310 0.5308 0.5342
                     : d filter -0.0052 0.5342 0.5042 -0.0312 -0.0009 0.5300 0.5014 -0.0285

2D-HVDD(l 2) : hv filter -0.0216 -0.0238 0.5185 0.5274 -0.0157 -0.0177 0.5151 0.5187
                     : d filter 0.0512 0.4718 0.4450 0.0279 0.0616 0.4611 0.4361 0.0374

LDT-HVDD(l 1) : h filter 0.0899 0.3986 0.4073 0.1056 0.0856 0.4004 0.4105 0.1049
                          : v filter -0.0993 0.5861 0.6084 -0.0952 -0.0983 0.5849 0.6066 -0.0932
                          : d filter 0.1834 0.3004 0.3307 0.1872 0.1773 0.3057 0.3344 0.1842
LDT-HVDD(l 2) : h filter 0.2342 0.2495 0.2637 0.2513 0.2271 0.2559 0.2703 0.2457
                          : v filter -0.0696 0.5645 0.5661 -0.0621 -0.0657 0.5598 0.5619 -0.0571
                          : d filter 0.2889 0.1914 0.2234 0.2946 0.2837 0.1953 0.2265 0.2929

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 0.9931 0.9868 0.9774 0.9931 0.9868 0.9774 0.9778 0.9657

                      : beta 1.0000 0.9939 0.9895 1.0000 0.9939 0.9895 0.9886 0.9691
OS-HVD(l 2)    : alpha 0.9725 0.9579 0.9543 0.9725 0.9579 0.9543 0.9601 0.9651

                      : beta 0.9940 0.9794 0.9597 0.9940 0.9794 0.9597 0.9430 0.9146
OS-HVVD(l 1)  : alpha 0.9931 0.9868 0.9774 0.9931 0.9868 0.9774 0.9778 0.9657

                       : beta 1.0000 0.9939 0.9895 1.0000 0.9939 0.9895 0.9886 0.9691
                            : gamma 0.8571 0.5088 0.3214 0.8571 0.5088 0.3214 0.3077 0.2222

OS-HVVD(l 2)  : alpha 0.9725 0.9579 0.9543 0.9725 0.9579 0.9543 0.9601 0.9651
                       : beta 0.9940 0.9794 0.9597 0.9940 0.9794 0.9597 0.9430 0.9146

                            : gamma 0.8262 0.4229 0.1457 0.8262 0.4229 0.1457 0.2659 0.2487
OS-HVDD(l 1)  : alpha 0.9932 0.9867 0.9777 0.9932 0.9867 0.9777 0.9833 0.9558

                       : beta 1.0000 0.9939 0.9895 1.0000 0.9939 0.9895 0.9886 0.9691
                            : gamma 0.9896 0.9821 0.9703 0.9896 0.9821 0.9703 0.9684 0.9897

OS-HVDD(l 2)  : alpha 0.9726 0.9563 0.9489 0.9726 0.9563 0.9489 0.9601 0.9514
                       : beta 0.9940 0.9794 0.9597 0.9940 0.9794 0.9597 0.9430 0.9146

                            : gamma 0.9650 0.9644 0.9473 0.9650 0.9644 0.9473 0.9471 0.9773

3-level image decomposition 5-level image decomposition
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Table B.3 The optimum scalars of Camera image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Camera
Method

Modified S+P(l 1) -0.0224 0.1336 0.0206 -0.0694 -0.0236 0.1320 0.0178 -0.0696
Modified S+P(l 2) -0.0733 0.2237 0.0922 -0.0943 -0.0745 0.2223 0.0880 -0.0958

2D-HVDD(l 1) : hv filter 0.1316 0.1334 0.3820 0.3535 0.1276 0.1295 0.3860 0.3573
                     : d filter 0.2264 0.2855 0.2832 0.2052 0.2184 0.2898 0.2905 0.2015

2D-HVDD(l 2) : hv filter 0.1420 0.1356 0.3691 0.3565 0.1445 0.1370 0.3677 0.3538
                     : d filter 0.2162 0.2988 0.2847 0.2026 0.2120 0.3028 0.2842 0.2027

LDT-HVDD(l 1) : h filter -0.0010 0.4988 0.5066 -0.0044 -0.0001 0.4996 0.5044 -0.0039
                          : v filter -0.0105 0.4981 0.5297 -0.0173 -0.0093 0.5010 0.5242 -0.0160
                          : d filter 0.0000 0.4884 0.5165 -0.0050 0.0001 0.4896 0.5153 -0.0051
LDT-HVDD(l 2) : h filter 0.0048 0.4814 0.5069 0.0056 0.0088 0.4770 0.5024 0.0101
                          : v filter -0.0112 0.5047 0.5210 -0.0139 -0.0074 0.5052 0.5154 -0.0130
                          : d filter 0.0307 0.4603 0.4896 0.0188 0.0297 0.4616 0.4854 0.0220

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 0.9946 1.0000 1.0000 0.9946 0.9938 0.9834

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9940 0.9934
OS-HVD(l 2)    : alpha 0.9869 0.9703 0.9465 0.9869 0.9703 0.9465 0.9349 0.8966

                      : beta 0.9922 0.9743 0.9652 0.9922 0.9743 0.9652 0.9130 0.9161
OS-HVVD(l 1)  : alpha 1.0000 1.0000 0.9946 1.0000 1.0000 0.9946 0.9938 0.9834

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9940 0.9934
                            : gamma 0.6116 0.5410 0.2588 0.6116 0.5410 0.2588 0.6702 0.0667

OS-HVVD(l 2)  : alpha 0.9869 0.9703 0.9465 0.9869 0.9703 0.9465 0.9349 0.8966
                       : beta 0.9922 0.9743 0.9652 0.9922 0.9743 0.9652 0.9130 0.9161

                            : gamma 0.6864 0.5983 0.3891 0.6864 0.5983 0.3891 0.4933 0.3303
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9887 0.9721

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9940 0.9934
                            : gamma 1.0000 0.9946 1.0000 1.0000 0.9946 1.0000 0.9882 0.9822

OS-HVDD(l 2)  : alpha 0.9871 0.9687 0.9571 0.9871 0.9687 0.9571 0.9320 0.8936
                       : beta 0.9922 0.9743 0.9652 0.9922 0.9743 0.9652 0.9130 0.9161

                            : gamma 0.9825 0.9578 0.9275 0.9825 0.9578 0.9275 0.8903 0.8585

3-level image decomposition 5-level image decomposition
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Table B.4 The optimum scalars of Face image for 3-level and 5-level image decomposition using 
the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the l1 and 
l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based OS-
HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Face
Method

Modified S+P(l 1) -0.0305 0.2551 0.1387 -0.0876 -0.0326 0.2564 0.1353 -0.0917
Modified S+P(l 2) -0.0727 0.2818 0.1350 -0.1171 -0.0782 0.2861 0.1274 -0.1282

2D-HVDD(l 1) : hv filter 0.1580 0.1635 0.3397 0.3402 0.1618 0.1646 0.3375 0.3373
                     : d filter 0.1623 0.3362 0.3328 0.1718 0.1624 0.3348 0.3310 0.1747

2D-HVDD(l 2) : hv filter 0.1364 0.1321 0.3669 0.3691 0.1522 0.1427 0.3550 0.3548
                     : d filter 0.1734 0.3256 0.3237 0.1852 0.1820 0.3155 0.3190 0.1911

LDT-HVDD(l 1) : h filter -0.0344 0.5361 0.5342 -0.0355 -0.0322 0.5327 0.5354 -0.0356
                          : v filter -0.0502 0.5663 0.5210 -0.0373 -0.0470 0.5609 0.5202 -0.0343
                          : d filter -0.0335 0.5384 0.5241 -0.0280 -0.0314 0.5358 0.5236 -0.0270
LDT-HVDD(l 2) : h filter -0.0413 0.5428 0.5414 -0.0439 -0.0385 0.5410 0.5359 -0.0393
                          : v filter -0.0547 0.5658 0.5373 -0.0495 -0.0481 0.5522 0.5392 -0.0447
                          : d filter -0.0379 0.5431 0.5330 -0.0384 -0.0327 0.5372 0.5281 -0.0329

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9888

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9921 0.8000
OS-HVD(l 2)    : alpha 0.9899 0.9702 0.9451 0.9899 0.9702 0.9451 0.8492 0.9450

                      : beta 0.9912 0.9873 0.9490 0.9912 0.9873 0.9490 0.8975 0.6815
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9888

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9921 0.8000
                            : gamma 0.6563 0.5946 0.4615 0.6563 0.5946 0.4615 0.4945 0.4783

OS-HVVD(l 2)  : alpha 0.9899 0.9702 0.9451 0.9899 0.9702 0.9451 0.8492 0.9450
                       : beta 0.9912 0.9873 0.9490 0.9912 0.9873 0.9490 0.8975 0.6815

                            : gamma 0.7089 0.6279 0.5242 0.7089 0.6279 0.5242 0.5728 0.5237
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0114

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9921 0.8000
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9646 0.7303

OS-HVDD(l 2)  : alpha 0.9888 0.9712 0.9482 0.9888 0.9712 0.9482 0.8533 1.0025
                       : beta 0.9912 0.9873 0.9490 0.9912 0.9873 0.9490 0.8975 0.6815

                            : gamma 0.9839 0.9631 0.9168 0.9839 0.9631 0.9168 0.8010 0.7164

3-level image decomposition 5-level image decomposition
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Table B.5 The optimum scalars of Lena image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Lena
Method

Modified S+P(l 1) -0.0420 0.2142 0.2205 0.0515 -0.0438 0.2110 0.2173 0.0526
Modified S+P(l 2) -0.0958 0.1923 0.2060 0.0559 -0.0973 0.1905 0.2021 0.0560

2D-HVDD(l 1) : hv filter 0.0352 0.0381 0.4610 0.4661 0.0340 0.0376 0.4612 0.4676
                     : d filter 0.1185 0.3969 0.3641 0.1227 0.1198 0.3945 0.3654 0.1225

2D-HVDD(l 2) : hv filter 0.0726 0.0853 0.4157 0.4278 0.0718 0.0865 0.4131 0.4297
                     : d filter 0.1717 0.3376 0.3244 0.1684 0.1738 0.3332 0.3247 0.1705

LDT-HVDD(l 1) : h filter -0.0218 0.5123 0.5414 -0.0315 -0.0205 0.5112 0.5391 -0.0293
                          : v filter -0.0271 0.5232 0.5212 -0.0173 -0.0248 0.5221 0.5173 -0.0145
                          : d filter -0.0151 0.4979 0.5365 -0.0186 -0.0141 0.4954 0.5363 -0.0170
LDT-HVDD(l 2) : h filter -0.0063 0.5063 0.5073 -0.0075 -0.0029 0.5035 0.4997 -0.0007
                          : v filter -0.0196 0.5281 0.4967 -0.0057 -0.0152 0.5275 0.4891 -0.0022
                          : d filter 0.0043 0.4901 0.4990 0.0052 0.0075 0.4856 0.4964 0.0092

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0134 1.0000

                      : beta 1.0000 0.9952 0.9924 1.0000 0.9952 0.9924 0.9868 0.9530
OS-HVD(l 2)    : alpha 0.9914 0.9798 0.9698 0.9914 0.9798 0.9698 0.9608 0.8956

                      : beta 0.9937 0.9884 0.9733 0.9937 0.9884 0.9733 0.9380 0.8734
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0134 1.0000

                       : beta 1.0000 0.9952 0.9924 1.0000 0.9952 0.9924 0.9868 0.9530
                            : gamma 0.7000 0.6023 0.5563 0.7000 0.6023 0.5563 0.4451 0.1159

OS-HVVD(l 2)  : alpha 0.9914 0.9798 0.9698 0.9914 0.9798 0.9698 0.9608 0.8956
                       : beta 0.9937 0.9884 0.9733 0.9937 0.9884 0.9733 0.9380 0.8734

                            : gamma 0.5774 0.5239 0.4770 0.5774 0.5239 0.4770 0.4328 0.2357
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0127 0.9800

                       : beta 1.0000 0.9952 0.9924 1.0000 0.9952 0.9924 0.9868 0.9530
                            : gamma 1.0000 1.0000 0.9937 1.0000 1.0000 0.9937 1.0151 0.9574

OS-HVDD(l 2)  : alpha 0.9912 0.9811 0.9670 0.9912 0.9811 0.9670 0.9422 0.8739
                       : beta 0.9937 0.9884 0.9733 0.9937 0.9884 0.9733 0.9380 0.8734

                            : gamma 0.9878 0.9747 0.9605 0.9878 0.9747 0.9605 0.9503 0.8458

3-level image decomposition 5-level image decomposition
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Table B.6 The optimum scalars of Milkdrop image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Milkdrop
Method

Modified S+P(l 1) -0.0417 0.2199 0.0718 -0.1491 -0.0404 0.2173 0.0684 -0.1533
Modified S+P(l 2) -0.0686 0.3153 0.1219 -0.1303 -0.0661 0.3122 0.1195 -0.1390

2D-HVDD(l 1) : hv filter 0.1010 0.1316 0.3797 0.3886 0.1038 0.1321 0.3790 0.3860
                     : d filter 0.1374 0.1386 0.3491 0.3753 0.1367 0.1409 0.3497 0.3731

2D-HVDD(l 2) : hv filter 0.1274 0.1633 0.3577 0.3549 0.1326 0.1692 0.3564 0.3452
                     : d filter 0.1472 0.1312 0.3465 0.3787 0.1471 0.1367 0.3451 0.3741

LDT-HVDD(l 1) : h filter -0.0209 0.6044 0.4363 -0.0203 -0.0195 0.6035 0.4351 -0.0195
                          : v filter -0.0171 0.5275 0.5128 -0.0235 -0.0159 0.5282 0.5084 -0.0210
                          : d filter -0.0157 0.5941 0.4377 -0.0168 -0.0148 0.5914 0.4392 -0.0166
LDT-HVDD(l 2) : h filter -0.0558 0.6761 0.4108 -0.0331 -0.0453 0.6610 0.4136 -0.0313
                          : v filter -0.0423 0.5468 0.5405 -0.0460 -0.0305 0.5355 0.5301 -0.0365
                          : d filter -0.0343 0.6247 0.4394 -0.0328 -0.0290 0.6134 0.4408 -0.0288

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9935 1.0058

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9835
OS-HVD(l 2)    : alpha 0.9910 0.9791 0.9548 0.9910 0.9791 0.9548 0.9472 0.9400

                      : beta 0.9966 0.9909 0.9886 0.9966 0.9909 0.9886 0.9446 0.9118
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9935 1.0058

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9835
                            : gamma 0.9836 0.9753 0.9504 0.9836 0.9753 0.9504 0.9211 0.0593

OS-HVVD(l 2)  : alpha 0.9910 0.9791 0.9548 0.9910 0.9791 0.9548 0.9472 0.9400
                       : beta 0.9966 0.9909 0.9886 0.9966 0.9909 0.9886 0.9446 0.9118

                            : gamma 0.8801 0.8496 0.7159 0.8801 0.8496 0.7159 0.5666 -0.0473
OS-HVDD(l 1)  : alpha 1.0000 1.0000 0.9957 1.0000 1.0000 0.9957 0.9920 1.0000

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9835
                            : gamma 1.0000 1.0000 0.9912 1.0000 1.0000 0.9912 0.9825 0.9906

OS-HVDD(l 2)  : alpha 0.9909 0.9786 0.9545 0.9909 0.9786 0.9545 0.9460 0.9368
                       : beta 0.9966 0.9909 0.9886 0.9966 0.9909 0.9886 0.9446 0.9118

                            : gamma 0.9890 0.9757 0.9556 0.9890 0.9757 0.9556 0.9146 0.9167

3-level image decomposition 5-level image decomposition
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Table B.7 The optimum scalars of Peppers image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Peppers
Method

Modified S+P(l 1) -0.0434 0.2498 0.1390 -0.1094 -0.0435 0.2477 0.1342 -0.1124
Modified S+P(l 2) -0.0681 0.2829 0.1433 -0.1844 -0.0708 0.2783 0.1379 -0.1858

2D-HVDD(l 1) : hv filter 0.1711 0.1871 0.3135 0.3294 0.1676 0.1813 0.3178 0.3346
                     : d filter 0.1613 0.2989 0.3132 0.2288 0.1612 0.2942 0.3159 0.2309

2D-HVDD(l 2) : hv filter 0.2116 0.2196 0.2705 0.3027 0.2121 0.2154 0.2746 0.3024
                     : d filter 0.1336 0.2883 0.3030 0.2816 0.1347 0.2820 0.3049 0.2856

LDT-HVDD(l 1) : h filter -0.0237 0.5179 0.5310 -0.0251 -0.0229 0.5176 0.5292 -0.0238
                          : v filter -0.0199 0.5152 0.5149 -0.0101 -0.0178 0.5113 0.5160 -0.0095
                          : d filter -0.0199 0.5147 0.5202 -0.0144 -0.0196 0.5139 0.5206 -0.0143
LDT-HVDD(l 2) : h filter -0.0265 0.5233 0.5414 -0.0400 -0.0193 0.5138 0.5396 -0.0356
                          : v filter -0.0289 0.5291 0.5114 -0.0122 -0.0217 0.5164 0.5137 -0.0087
                          : d filter -0.0246 0.5282 0.5160 -0.0217 -0.0187 0.5212 0.5145 -0.0189

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0048 1.0000 1.0000 1.0048 1.0000 1.0110 1.0396

                      : beta 1.0000 0.9947 0.9896 1.0000 0.9947 0.9896 0.9890 0.9550
OS-HVD(l 2)    : alpha 0.9940 0.9823 0.9588 0.9940 0.9823 0.9588 0.9509 0.9759

                      : beta 0.9964 0.9896 0.9724 0.9964 0.9896 0.9724 0.9851 0.9492
OS-HVVD(l 1)  : alpha 1.0000 1.0048 1.0000 1.0000 1.0048 1.0000 1.0110 1.0396

                       : beta 1.0000 0.9947 0.9896 1.0000 0.9947 0.9896 0.9890 0.9550
                            : gamma 0.7910 0.6944 0.6727 0.7910 0.6944 0.6727 0.6831 0.4545

OS-HVVD(l 2)  : alpha 0.9940 0.9823 0.9588 0.9940 0.9823 0.9588 0.9509 0.9759
                       : beta 0.9964 0.9896 0.9724 0.9964 0.9896 0.9724 0.9851 0.9492

                            : gamma 0.7447 0.6753 0.6211 0.7447 0.6753 0.6211 0.6429 0.4630
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0097 1.0326

                       : beta 1.0000 0.9947 0.9896 1.0000 0.9947 0.9896 0.9890 0.9550
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0088 1.0761

OS-HVDD(l 2)  : alpha 0.9939 0.9820 0.9566 0.9939 0.9820 0.9566 0.9517 0.9755
                       : beta 0.9964 0.9896 0.9724 0.9964 0.9896 0.9724 0.9851 0.9492

                            : gamma 0.9923 0.9791 0.9470 0.9923 0.9791 0.9470 0.9676 1.0126

3-level image decomposition 5-level image decomposition
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Table B.8 The optimum scalars of Tiffany image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Tiffany
Method

Modified S+P(l 1) -0.0424 0.1660 0.0894 -0.0480 -0.0430 0.1598 0.0832 -0.0496
Modified S+P(l 2) -0.0903 0.1403 0.0676 -0.0506 -0.0907 0.1378 0.0652 -0.0505

2D-HVDD(l 1) : hv filter 0.0855 0.1186 0.3889 0.4077 0.0847 0.1180 0.3896 0.4085
                     : d filter 0.1836 0.2498 0.3253 0.2431 0.1818 0.2492 0.3276 0.2432

2D-HVDD(l 2) : hv filter 0.1236 0.1552 0.3509 0.3704 0.1241 0.1570 0.3503 0.3687
                     : d filter 0.1622 0.2164 0.3439 0.2786 0.1600 0.2153 0.3459 0.2800

LDT-HVDD(l 1) : h filter 0.0028 0.5081 0.4779 0.0116 0.0033 0.5072 0.4783 0.0116
                          : v filter 0.0000 0.5000 0.5000 0.0000 0.0000 0.5000 0.5000 0.0000
                          : d filter 0.0040 0.5101 0.4761 0.0116 0.0054 0.5078 0.4760 0.0127
LDT-HVDD(l 2) : h filter 0.0375 0.4786 0.4392 0.0447 0.0407 0.4762 0.4391 0.0439
                          : v filter 0.0248 0.4864 0.4738 0.0151 0.0295 0.4826 0.4692 0.0188
                          : d filter 0.0368 0.4719 0.4473 0.0443 0.0415 0.4670 0.4436 0.0482

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0041 1.0000 1.0000 1.0041 1.0047 1.0086

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
OS-HVD(l 2)    : alpha 1.0003 1.0012 1.0054 1.0003 1.0012 1.0054 1.0086 1.0191

                      : beta 0.9989 0.9989 1.0003 0.9989 0.9989 1.0003 0.9948 0.9723
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0041 1.0000 1.0000 1.0041 1.0047 1.0086

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 0.5641 0.5238 0.5000 0.5641 0.5238 0.5000 0.3750 0.6667

OS-HVVD(l 2)  : alpha 1.0003 1.0012 1.0054 1.0003 1.0012 1.0054 1.0086 1.0191
                       : beta 0.9989 0.9989 1.0003 0.9989 0.9989 1.0003 0.9948 0.9723

                            : gamma 0.5462 0.5161 0.5014 0.5462 0.5161 0.5014 0.4732 0.4408
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0040 1.0000 1.0000 1.0040 1.0045 1.0086

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 1.0000 1.0000 1.0043 1.0000 1.0000 1.0043 1.0043 1.0000

OS-HVDD(l 2)  : alpha 1.0001 1.0013 1.0058 1.0001 1.0013 1.0058 1.0052 1.0034
                       : beta 0.9989 0.9989 1.0003 0.9989 0.9989 1.0003 0.9948 0.9723

                            : gamma 1.0004 1.0020 1.0088 1.0004 1.0020 1.0088 1.0119 1.0233

3-level image decomposition 5-level image decomposition
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Table B.9 The optimum scalars of Zelda image for 3-level and 5-level image decomposition 
using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the 
l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based 
OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Zelda
Method

Modified S+P(l 1) -0.0233 0.2699 0.1240 -0.1269 -0.0249 0.2695 0.1197 -0.1310
Modified S+P(l 2) -0.0575 0.2620 0.0970 -0.1577 -0.0606 0.2633 0.0948 -0.1626

2D-HVDD(l 1) : hv filter 0.1206 0.1218 0.3817 0.3766 0.1225 0.1231 0.3800 0.3752
                     : d filter 0.2471 0.2513 0.2659 0.2374 0.2471 0.2525 0.2664 0.2356

2D-HVDD(l 2) : hv filter 0.1563 0.1633 0.3403 0.3424 0.1620 0.1670 0.3377 0.3357
                     : d filter 0.2357 0.2535 0.2647 0.2491 0.2364 0.2560 0.2658 0.2449

LDT-HVDD(l 1) : h filter -0.0422 0.5429 0.5389 -0.0394 -0.0398 0.5396 0.5377 -0.0373
                          : v filter -0.0370 0.5337 0.5507 -0.0473 -0.0359 0.5322 0.5522 -0.0484
                          : d filter -0.0317 0.5334 0.5309 -0.0322 -0.0294 0.5309 0.5295 -0.0306
LDT-HVDD(l 2) : h filter -0.0263 0.5407 0.5005 -0.0143 -0.0194 0.5310 0.5001 -0.0113
                          : v filter -0.0364 0.5334 0.5528 -0.0492 -0.0314 0.5276 0.5526 -0.0480
                          : d filter -0.0251 0.5312 0.5049 -0.0101 -0.0183 0.5229 0.5034 -0.0070

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 0.9937 1.0000 1.0000 0.9937 0.9677 0.9675

                      : beta 1.0000 1.0000 0.9926 1.0000 1.0000 0.9926 0.9944 0.9172
OS-HVD(l 2)    : alpha 0.9959 0.9919 0.9804 0.9959 0.9919 0.9804 0.9432 0.9841

                      : beta 0.9978 0.9940 0.9857 0.9978 0.9940 0.9857 0.9883 0.9309
OS-HVVD(l 1)  : alpha 1.0000 1.0000 0.9937 1.0000 1.0000 0.9937 0.9677 0.9675

                       : beta 1.0000 1.0000 0.9926 1.0000 1.0000 0.9926 0.9944 0.9172
                            : gamma 0.7500 0.6667 0.6296 0.7500 0.6667 0.6296 0.6176 0.2174

OS-HVVD(l 2)  : alpha 0.9959 0.9919 0.9804 0.9959 0.9919 0.9804 0.9432 0.9841
                       : beta 0.9978 0.9940 0.9857 0.9978 0.9940 0.9857 0.9883 0.9309

                            : gamma 0.7256 0.5544 0.5065 0.7256 0.5544 0.5065 0.5282 0.1380
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9762 1.0000

                       : beta 1.0000 1.0000 0.9926 1.0000 1.0000 0.9926 0.9944 0.9172
                            : gamma 1.0000 0.9932 0.9811 1.0000 0.9932 0.9811 0.9512 0.9854

OS-HVDD(l 2)  : alpha 0.9959 0.9928 0.9811 0.9959 0.9928 0.9811 0.9494 0.9596
                       : beta 0.9978 0.9940 0.9857 0.9978 0.9940 0.9857 0.9883 0.9309

                            : gamma 0.9950 0.9882 0.9743 0.9950 0.9882 0.9743 0.9402 0.9610

3-level image decomposition 5-level image decomposition
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Table B.10 The optimum scalars of CT image for 3-level and 5-level image decomposition using 
the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the l1 and 
l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based OS-
HVVD, and the l1 and l2 norm based OS-HVDD methods. 

CT
Method

Modified S+P(l 1) -0.0138 0.2034 0.1389 0.0215 -0.0142 0.2037 0.1379 0.0246
Modified S+P(l 2) -0.0391 0.2932 0.2035 -0.0520 -0.0429 0.2924 0.2004 -0.0524

2D-HVDD(l 1) : hv filter 0.0143 0.0264 0.4906 0.4690 0.0153 0.0278 0.4936 0.4635
                     : d filter 0.1394 0.3677 0.3547 0.1396 0.1349 0.3700 0.3641 0.1324

2D-HVDD(l 2) : hv filter 0.1161 0.1607 0.3889 0.3403 0.1219 0.1629 0.3883 0.3334
                     : d filter 0.1832 0.3059 0.2912 0.2263 0.1854 0.3005 0.2942 0.2260

LDT-HVDD(l 1) : h filter -0.0144 0.5216 0.4960 -0.0032 -0.0131 0.5194 0.4956 -0.0019
                          : v filter -0.0156 0.4978 0.5273 -0.0095 -0.0141 0.4906 0.5332 -0.0097
                          : d filter -0.0061 0.5191 0.4870 0.0000 -0.0057 0.5131 0.4926 0.0000
LDT-HVDD(l 2) : h filter -0.0317 0.5536 0.5054 -0.0301 -0.0282 0.5473 0.5020 -0.0237
                          : v filter -0.0261 0.5260 0.5214 -0.0228 -0.0221 0.5117 0.5331 -0.0239
                          : d filter -0.0110 0.5269 0.4893 -0.0074 -0.0084 0.5219 0.4896 -0.0056

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9692 0.8844

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8185
OS-HVD(l 2)    : alpha 0.9783 0.9523 0.9026 0.9783 0.9523 0.9026 0.8349 0.6721

                      : beta 0.9840 0.9724 0.9280 0.9840 0.9724 0.9280 0.9134 0.7626
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9692 0.8844

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8185
                            : gamma 0.7992 0.5882 0.3858 0.7992 0.5882 0.3858 0.3000 0.9804

OS-HVVD(l 2)  : alpha 0.9783 0.9523 0.9026 0.9783 0.9523 0.9026 0.8349 0.6721
                       : beta 0.9840 0.9724 0.9280 0.9840 0.9724 0.9280 0.9134 0.7626

                            : gamma 0.5797 0.5595 0.4722 0.5797 0.5595 0.4722 0.4760 0.8177
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9647 0.9098

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8185
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9725 0.6196

OS-HVDD(l 2)  : alpha 0.9765 0.9529 0.9083 0.9765 0.9529 0.9083 0.8488 0.6989
                       : beta 0.9840 0.9724 0.9280 0.9840 0.9724 0.9280 0.9134 0.7626

                            : gamma 0.9689 0.9394 0.8680 0.9689 0.9394 0.8680 0.7784 0.5348

3-level image decomposition 5-level image decomposition
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Table B.11 The optimum scalars of X-rays image for 3-level and 5-level image decomposition 
using the l1 and l2 modified S+P transform, the l1 and l2 2D-HVDD, the l1 decomposition using 
the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 2D-HVDD, the l1 and 
l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and l2 norm based OS-
HVVD, and the l1 and l2 norm based OS-HVDD methods. 

X-rays
Method

Modified S+P(l 1) -0.0408 0.2991 0.1173 -0.1902 -0.0376 0.2936 0.1230 -0.1812
Modified S+P(l 2) -0.0667 0.3219 0.1009 -0.2548 -0.0646 0.3122 0.1203 -0.2203

2D-HVDD(l 1) : hv filter 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
                     : d filter 0.2242 0.2669 0.2829 0.2260 0.2215 0.2694 0.2859 0.2232

2D-HVDD(l 2) : hv filter 0.2549 0.2548 0.2436 0.2484 0.2486 0.2495 0.2461 0.2574
                     : d filter 0.2146 0.2870 0.2931 0.2073 0.2097 0.2940 0.2983 0.2000

LDT-HVDD(l 1) : h filter -0.0564 0.5551 0.5652 -0.0639 -0.0565 0.5578 0.5586 -0.0598
                          : v filter -0.0518 0.5454 0.5601 -0.0536 -0.0505 0.5448 0.5576 -0.0519
                          : d filter -0.0415 0.5365 0.5555 -0.0505 -0.0392 0.5341 0.5535 -0.0484
LDT-HVDD(l 2) : h filter -0.0654 0.5691 0.5594 -0.0634 -0.0608 0.5682 0.5391 -0.0469
                          : v filter -0.0597 0.5534 0.5658 -0.0598 -0.0567 0.5507 0.5581 -0.0523
                          : d filter -0.0458 0.5420 0.5592 -0.0558 -0.0360 0.5294 0.5531 -0.0470

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 0.9958 1.0000 1.0000 0.9958 0.9882 0.9609

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
OS-HVD(l 2)    : alpha 0.9943 0.9878 0.9719 0.9943 0.9878 0.9719 0.9390 0.8673

                      : beta 0.9982 0.9928 0.9878 0.9982 0.9928 0.9878 0.9615 0.9350
OS-HVVD(l 1)  : alpha 1.0000 1.0000 0.9958 1.0000 1.0000 0.9958 0.9882 0.9609

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 0.8333 0.6818 0.5000 0.8333 0.6818 0.5000 0.3733 0.0183

OS-HVVD(l 2)  : alpha 0.9943 0.9878 0.9719 0.9943 0.9878 0.9719 0.9390 0.8673
                       : beta 0.9982 0.9928 0.9878 0.9982 0.9928 0.9878 0.9615 0.9350

                            : gamma 0.8274 0.6770 0.4842 0.8274 0.6770 0.4842 0.4088 0.2310
OS-HVDD(l 1)  : alpha 1.0000 1.0000 0.9958 1.0000 1.0000 0.9958 0.9874 0.9609

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9948 0.9874

OS-HVDD(l 2)  : alpha 0.9942 0.9873 0.9734 0.9942 0.9873 0.9734 0.9361 0.8355
                       : beta 0.9982 0.9928 0.9878 0.9982 0.9928 0.9878 0.9615 0.9350

                            : gamma 0.9926 0.9825 0.9644 0.9926 0.9825 0.9644 0.9215 0.8953

3-level image decomposition 5-level image decomposition
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Table B.12 The optimum scalars of Fingerprint image for 3-level and 5-level image 
decomposition using the l1 and l2 norm based modified S+P transform, the l1 and l2 norm based 
2D-HVDD, the l1 and l2 norm based LDT-HVDD, the l1 and l2 norm based OS-HVD, the l1 and 
l2 norm based OS-HVVD, and the l1 and l2 norm based OS-HVDD methods. 

Fingerprint
Method

Modified S+P(l 1) -0.0459 0.1142 0.0132 0.0727 -0.0510 0.1107 0.0110 0.0693
Modified S+P(l 2) -0.0348 0.1431 0.0279 0.0396 -0.0367 0.1414 0.0265 0.0376

2D-HVDD(l 1) : hv filter 0.0928 0.0884 0.4155 0.4033 0.0956 0.0900 0.4146 0.3997
                     : d filter 0.4203 0.1011 0.0859 0.3927 0.4165 0.1044 0.0859 0.3931

2D-HVDD(l 2) : hv filter 0.1548 0.1589 0.3466 0.3407 0.1565 0.1587 0.3467 0.3392
                     : d filter 0.3532 0.1562 0.1643 0.3186 0.3503 0.1575 0.1665 0.3176

LDT-HVDD(l 1) : h filter 0.0089 0.4929 0.5088 -0.0106 0.0108 0.4924 0.5079 -0.0111
                          : v filter 0.0000 0.5143 0.4969 -0.0112 0.0000 0.5124 0.4976 -0.0100
                          : d filter 0.0705 0.4090 0.4300 0.0905 0.0679 0.4092 0.4292 0.0938
LDT-HVDD(l 2) : h filter 0.0798 0.4176 0.4251 0.0687 0.0810 0.4160 0.4235 0.0710
                          : v filter 0.0473 0.4497 0.4534 0.0445 0.0500 0.4484 0.4507 0.0454
                          : d filter 0.1559 0.3224 0.3529 0.1604 0.1561 0.3224 0.3520 0.1604

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-4 Level-5
OS-HVD(l 1)    : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

                      : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
OS-HVD(l 2)    : alpha 0.9644 0.9194 0.9626 0.9644 0.9194 0.9626 0.9433 0.8777

                      : beta 0.9721 0.9460 0.9378 0.9721 0.9460 0.9378 0.9218 0.9806
OS-HVVD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 0.5682 0.0678 0.0390 0.5682 0.0678 0.0390 0.1296 0.3873

OS-HVVD(l 2)  : alpha 0.9644 0.9194 0.9626 0.9644 0.9194 0.9626 0.9433 0.8777
                       : beta 0.9721 0.9460 0.9378 0.9721 0.9460 0.9378 0.9218 0.9806

                            : gamma 0.5643 0.1090 0.0433 0.5643 0.1090 0.0433 0.0416 0.2403
OS-HVDD(l 1)  : alpha 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

                       : beta 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                            : gamma 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OS-HVDD(l 2)  : alpha 0.9644 0.9174 0.9752 0.9644 0.9174 0.9752 0.9588 0.8883
                       : beta 0.9721 0.9460 0.9378 0.9721 0.9460 0.9378 0.9218 0.9806

                            : gamma 0.9592 0.9434 0.9411 0.9592 0.9434 0.9411 0.9150 0.8702

3-level image decomposition 5-level image decomposition
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APPENDIX C 

 

WAVELET AND S+P-TRANSFORM FILTER COEFFICIENTS 

 

Table C.1 Wavelet Daubechies length-4 filter coefficients. 

 

 n h (n ) g (n )
0 0.48296291314453 0.12940952255126
1 0.83651630373781 0.22414386804201
2 0.22414386804201 -0.83651630373781
3 -0.12940952255126 0.48296291314453

Wavelet Daubechies (N  = 4) scaling function and wavelet coefficients 

 

 

Table C.2 S+P-transform universal filter coefficients. 

 

Predictor A Predictor B Predictor C
0 0 - 1/

1/4 1/4 1/4
1/4 3/8 1/2
0 1/4 3/8

S+P-transform universal filter coefficients

0α
1−α

1α
1β

16
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APPENDIX D 

 

SPIHT CODING ALGORITHM 

 

Progressive Image Transmission 

 Let the original image be defined by a set of pixel values , where (i,j) is the pixel 

coordinate and let T represent a subband transformation.  The coding is normally performed on 

the two-dimensional transform coefficients as given by 

),( jip

 

 ( )),(),( jipTjic = . (D.1)∗ 

 

Let  and  be the received coefficients and reconstructed image coefficients, 

respectively. In a progressive transmission scheme,  are initially set to be zero.  Each 

component is updated according to the received coded message when after receiving the value of 

some coefficients, a reconstructed image is obtained by 

),(ˆ jic ),(ˆ jip

),(ˆ jip

 

 ( )),(ˆ),(ˆ jicTjip = . (D.2) 

 

The main concept of the progressive transmission scheme is to select and primarily transmit the 

most important information, which yields the smallest distortion.  Hence, the transform 

coefficients  are first ranked according to their binary representation then the most 

significant bits are first transmitted.  This idea is also known as a bit-plane method for 

progressive transmission. 

),( jic

 

Set Partitioning Sorting Algorithm 

 In the progressive transmission, the ordering data is not explicitly transmitted to the 

decoder.  However, the execution path of any algorithm is defined on the results of the 

                                                 

∗ For coding, it is assumed that each transform coefficient can be treated as an integer. 
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comparisons on its branching points.  It is then possible to have the same execution path for both 

encoder and decoder.  By the knowledge of the execution path and the received information, the 

recovered process can be completed by the decoder.  However, not all coefficients need to be 

ranked.  In fact, it is necessary to design a sorting algorithm such that it divides the set of pixels 

into portioning subsets P and then performs the magnitude comparison as given by 

 

 
{ }





 ≥

= ∈

otherwise

jicfor
PS

n

Pji
n ,0

2),(max,1
)( ),(  (D.3) 

where { } 



 





= ),(maxlog

),(2 jicn
ji

0)( =PSn

) =

.  The objective of these partition subsets is to have insignificant 

subsets ( ) contain a relatively large number of elements while significant subsets 

( 1) contain a relatively small number of elements.  For the significant case, a certain 

rule, shared by the encoder and the decoder, is used to partition P into new subsets and the 

magnitude comparison is the repeated to the new subsets.  This division process continues until 

all single coefficients are identified to be either significant or insignificant. 

(PSn

 

Spatial Orientation Trees 

 In the subband pyramid, the image energy is normally concentrated in the low frequency 

components.  Accordingly, the variance decreases from the highest to the lowest levels of the 

subband pyramid [54].  Additionally, it has a spatial self-similarity between subbands.  Hence, 

the coefficients are expected to be better magnitude-ordered if the direction moves downward 

following the same spatial orientation in the subband pyramid.  The spatial orientation tree is 

spatial relationship defined on the hierarchical pyramid.  It is constructed with recursive four-

subband splitting.  Each node of the tree is defined by the pixel coordinate and the pixels of the 

same spatial orientation in the next finer level of the pyramid are defined to be its descendants 

(offspring).  However, each node of the tree can have either no offspring or four offspring, which 

always produces a group of 2 x 2 arrays.  Figure D.1 illustrates the described spatial orientation 

tree defined in a pyramid [78].  The arrows indicate the oriented direction from lowest resolution 

(Band I) to its four offspring.  It is interesting to note that the coefficient in the top-left corner of 

the lowest resolution has no descendants. 
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 The trees are further partitioned into the following sets of coordinates used to present the 

new coding method: 

• O(i,j): the set of coordinates of all offspring of node (i,j) where each node can 

either have four offspring or none. 

• D(i,j): the set of coordinates of all descendants of the node (i,j) which include the 

offspring, the offspring of the offspring and so on. 

• H: the set of coordinates of all spatial orientation tree roots in the lowest 

resolution band. 

• L(i,j): the set of coordinates of all the descendants of node (i,j) except for the 

immediate offspring of node (i,j), in other words 

 

 ),(),(),( jiOjiDjiL −= . (D.4) 

 

 

I II

III IV

V

VI VII
 

Figure D.1 The data structure used in the SPIHT algorithm. 

 

 

 The parts of the spatial orientation trees are employed as the partitioning subsets in the 

sorting algorithm in which the set partitioning rules are 

1) The initial partition is formed with the sets { }),( ji  and D(i,j) for all Hji ∈),( . 

2) If D(i,j) is significant, then it is partitioned into L(i,j) and the four single-element 

sets with . ),(),( jiOlk ∈
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3) If L(i,j) is significant, then it is partitioned into the four sets D(k,l), with 

. ),(),( jiOlk ∈

 

Coding Algorithm 

 Due to the fact that the order in which the subsets are tested for significance is important, 

practically, the significance information is stored in three ordered lists called list of insignificant 

sets (LIS), list of insignificant pixels (LIP), and list of significant pixels (LSP).  Each element in 

all lists is identified by a coordinate (i,j), which in the LIP and LSP represents individual pixels 

whereas in the LIS represents either the set D(i,j) (type A) or L(i,j) (type B).  The sorting pass 

algorithm using the set partitioning approach is described as follows. 

 

1) Initialization: 

1.1) Output { } 



 





 ),(maxlog

),(2 jic
ji

=n  

1.2) Set the LSP as an empty list, add all coordinates Hji ∈),(  to the LIP and   only those 

with descendants to the LIS as type A entries. 

2) Sorting Pass: 

2.1) For each entry (i,j) in the LIP do: 

2.1.1) Output S ; ),( jin

2.1.2) If S  then move (i,j) to the LSP and output the sign of c(i,j); 1),( =jin

2.2) For each entry (i,j) in the LIS do: 

2.2.1) If the entry is type A then 

¾ Output ; ( )),( jiDSn

¾ If  then ( ) 1),( =jiDSn

� For each  do: ),(),( jiOlk ∈

o Output ; ),( lkSn

o If 1),( =lkSn  then add (k,l) to the LSP and output the sign of c(k,l); 

o If 0),( =lkSn  then add (k,l) to the end of the LIP; 
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� If  then move (i,j) to the end of the LIS as an entry of type B and go 

to step 2.2.2); otherwise, remove entry (i,j) from the LIS; 

0),( ≠jiL

2.2.2) If the entry is of type B then 

¾ Output ; ( )),( jiLSn

¾ If  then add each (( ) 1),( =jiLSn ),(), jiOlk ∈  to the end of the LIS as an entry of 

type A and remove (i,j) from the LIS. 

3) Refinement Pass: For each entry (i,j) in the LSP, except those included in the last sorting 

pass, output the nth most significant bit of ),( jic . 

4) Quantization-Step Update: Decrement n by 1 and go to step 2. 
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APPENDIX E 

 

OPTIMUM SCALAR TRANSFORM ON THE CHECKERBOARD IMAGES 

 

A set of 32 x 32 pixels checkerboard images representing different frequencies binary 

images shown in Figure E.1.  They are employed as a test for 6-level image decomposition using 

the l1 norm based OS-HVDD technique.  The resulted optimum scalars are represented in Table 

E.1.  Furthermore, the results of using checkerboard images#1, #3, and #5 are shown in Figure 

E.2, E.3, and E.4, respectively. 

 As the optimum scalars shown in Table E.1, they imply that more levels of optimum 

scalar decomposition are required (until the subsampled binary image cannot be further 

decomposed) to decompose low frequency binary image than of high frequency binary images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114



 

 

 

 
Figure E.1 A set of tested checkerboard images. 
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Figure E.2 The 6-level OS-HVDD(l1) method for checkerboard image #1. 
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Figure E.3 The 6-level OS-HVDD(l1) method for checkerboard image #3. 
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Figure E.4 The 6-level OS-HVDD(l1) method for checkerboard image #5. 
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Table E.1 The optimum scalars of 6-level image decomposition using l1 norm based OS-HVDD 
method to a set of 32 x 32 checkerboard images. 

Level of
decomposition Horizontal orientation Vertical orientation Diagonal orientation

#1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 0 0 0

#2 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 0 0 0
6 0 0 0

#3 1 1 1 1
2 1 1 1
3 1 1 1
4 0 0 0
5 0 0 0
6 0 0 0

#4 1 1 1 1
2 1 1 1
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

#5 1 1 1 1
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

#6 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

Checkerboard image
Optimum scalar
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