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CHAPTER 1

INTRODUCTION

This body of work systematically approaches unresolved aspects of the modern causal
inference process in a sequential manner. In a causal inference framework, one first
identifies the weighting scheme that will be used, then estimates the causal estimand of
interest, along with its corresponding variance, and finally conducts sensitivity analyses
to quantify how susceptible the result is to unknown factors, such as unmeasured
confounding. In this mindset, we first examine the finite-sample properties of three
weighting schemes, weights to estimate the average treatment effect (ATE), the average
treatment effect among the matchable (ATM), and the average treatment effect for
the overlap population (ATO). The latter two weighting schemes are relatively new to
the field, introduced in 2013 and 2016 respectively (Li and Greene 2013; Li, Morgan,
and Zaslavsky 2016). Once we have determined the appropriate weights, Chapter 3
provides derivations to estimate the quantity of interest as well as its variance. Finally,
Chapter 4 focuses on contextualizing sensitivity to unmeasured confounding analyses.
This work will be illustrated via applied examples.

In an observational study setting, inverse probability weighting (IPW) can be imple-
mented to reduce bias in the causal estimate of interest. A seminal paper by Freedman
and Berk (2008) revealed that weights designed to estimate the average treatment
effect (ATE) could suffer from finite-sample biases and inefficiency (Freedman and
Berk 2008). Revisiting the setting of this paper, in Chapter 2 we demonstrate that two
new weighting approaches (ATM and ATO weights) do not have these downsides. We
extend the setting to explore how large a sample size is required for good performance
to be observed. Finally, we highlight the importance of identifying the true causal
effect in studies like these, where simple interpretations of model coefficients can be
misleading.

The methods and performance of IPW and IPW doubly robust estimators incorporating
the recently defined ATO weights are important open questions in the field. In Chapter
3, we derive the large-sample variance estimator for the ATO estimator and doubly
robust estimator for generalized linear models with identity, log, or logistic links. We
then explore how this estimation compares to commonly used modeling and variance
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estimation techniques under settings where the propensity score and outcome models
are both correctly specified, when one is incorrectly specified, and when both are
incorrectly specified.

The strength of evidence provided by epidemiological and observational studies is
inherently limited by the potential for unmeasured confounding. Thus, we would
expect every observational study to include a quantitative sensitivity to unmeasured
confounding analysis. However, we reviewed 90 recent studies with “statistically
significant” findings, published in top tier journals, and found 41 mentioned the
issue of unmeasured confounding as a limitation, but only 4 included a quantitative
sensitivity analysis. Moreover, the rule of thumb that considers hazard ratios, odds
ratios, and relative risks of 2 or greater as robust can be misleading in being too low for
studies missing an important confounder and being too high for studies that extensively
control for confounding. In Chapter 4, we have worked to simplify the seminal work
of Rosenbaum and Rubin (1983), Lin, Psaty, and Kronmal (1998), and Vanderweele
and Ding (2017) to a formulation of a sensitivity to unmeasured confounding analysis
that appeals to medical researchers. We offer guidelines to researchers for anchoring
the tipping point analysis in the context of the study and provide examples.
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CHAPTER 2

EXPLORING FINITE-SAMPLE BIAS IN PROPENSITY SCORE WEIGHTING
CHOICES

2.1 Background

A primary goal of medical research is examining how a treatment will affect an outcome.
This can be achieved via a randomized controlled trial, where participants are randomly
assigned a treatment or control, and then their outcomes can be observed and directly
compared. Alternatively, we can observe data that are collected on participants
who are on the treatment or control for potentially nonrandom reasons, e.g. varying
health care provider practices dependent on various patient characteristics. The
latter setting, an observational study, is ubiquitous in the medical literature. Since
deliberate randomization has not taken place, meaningful differences in observed
covariates can exist between the treatment and control groups. These differences can
bias the estimated effect of the treatment on the outcome of interest. Many popular
methods to control for this utilize a propensity score model, estimating the probability
that each participant would have received the treatment given observed pre-treatment
covariates (Rosenbaum and Rubin 1983). These propensity scores can be incorporated
in estimating the treatment-outcome effect in a variety of ways such as matching,
stratification, adjusting, and weighting (D’Agostino 1998). This paper focuses on the
final method, incorporating the conditional probability of treatment assignment in
the treatment-outcome effect via propensity score weighting.

In a widely cited simulation study, Freedman and Berk (2008) explored the operating
characteristics of propensity score weighting under specified conditions, with the
propensity score model correctly specified and the outcome model incorrectly specified.
The paper ultimately concludes that while the propensity score weighting does result
in bias reduction, with realistic sample sizes the bias remains large (Freedman and
Berk 2008). Despite attempts to refute this claim (Busso, DiNardo, and McCrary
2014; Busso, DiNardo, and McCrary 2009), and despite new methods for weighting
(Li and Greene 2013; Li, Morgan, and Zaslavsky 2016) with improved efficiency and
simple interpretability, propensity score weighting has not seen widespread use in
research, perhaps partially due to these initial concerns. We replicate the simulations
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of Freedman and Berk (2008) to examine the performance of two new weighting
methods, ATM and ATO weights (Li and Greene 2013; Li, Morgan, and Zaslavsky
2016; Samuels 2017). We demonstrate that within the framework of this seminal paper
that revealed poor finite-sample performance of weighting estimators, the ATM and
ATO weights perform excellently.

2.1.1 Potential outcomes framework

The potential outcomes framework, first put forth by Neyman in 1923 (Neyman 1923;
Imbens and Rubin 2015), and applied to the observational study setting by Rubin in
1974 (Rubin 1974), describes methods for estimating quantities based on unobserved,
potential events. For example, in a study measuring the efficacy of a treatment, we
would like to know how a participant’s outcome would differ had they received the
treatment versus the control. In the potential outcomes framework, we have two
quantities, two potential outcomes, for each individual (i), their outcome if they had
received the control, Yi(0), and their outcome had they received the treatment, Yi(1).
The estimand of interest then is Yi(1)− Yi(0), the difference in outcomes dependent
on which treatment participant i received. It is almost always the case, however, that
only one of these two paired potential outcomes (Yi(0), Yi(1)) is observed, dependent
on whether you received the treatment (denoted as Z), or the control (denoted as
1− Z).

Yi = ZiYi(1) + (1− Zi)Yi(0) (2.1)

Often this is handled fundamentally as a missing data problem (Imbens and Rubin
2015). While only one of these paired outcomes is observed, we can estimate what the
other, the counterfactual, would have been had the participant received the opposite
treatment.

Ultimately, we are interested in some estimate of the treatment effect, for example
we may want to know what the average treatment effect is across all participants,
or we may want to know what the average treatment effect is among participants
who received the treatment. At times these estimates will yield the same result, for
example if the distribution of the conditional probability of receiving treatment is the
same across both the treatment and control group, the average treatment effect across
all participants will be the same as the average treatment effect among the treated.
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The various potential estimators of interested are described below, along with the
associated weighting schemes that can be used to estimate them.

2.1.1.1 Average treatment effect

The average treatment effect (ATE) is defined in the potential outcomes framework
as the seen in Equation (2.2) (Imbens and Rubin 2015).

ATE = E[Y (1)− Y (0)] (2.2)

In order to mimic the elegant results of a randomized controlled trial to observe an
unbiased treatment effect in observational studies, we make the assumption that the
outcomes under each treatment, Y (1) and Y (0), do not depend on which treatment
was actually received, given the observed covariates. Formally, this is expressed as
Equation (2.3)

(Y (1), Y (0)) ⊥ Z|X (2.3)

This is known as the strongly ignorable treatment assignment or the assumption of no
unmeasured confounders (Imbens and Rubin 2015; D’Agostino 1998; Li, Morgan, and
Zaslavsky 2016).

In the observational study setting, the probability of receiving treatment is no longer
constant, as in a randomized controlled trial. We can use propensity scores to estimate
this probability of treatment using observed pre-treatment covariates. Let Z be the
treatment effect, where Z = 1 indicates the participant received the treatment and
Z = 0 indicates the participant received the control. Pre-treatment covariates are
denoted as X. The propensity score, the conditional probability of receiving treatment
given the observed covariates, is written as seen in Equation (2.4) (D’Agostino 1998;
Austin and Stuart 2015; Li, Morgan, and Zaslavsky 2016).

ei = P (Zi = 1|X) (2.4)

When estimating the ATE, the target population is the whole population, both treated
and controlled, and therefore inference is drawn with this in mind. The ATE can be
estimated using the inverse probability weight of receiving treatment, derived from
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the propensity score, ei, as follows,

wATE = Zi
ei

+ 1− Zi
1− ei

(2.5)

While this is often declared as the population of interest, it is not always the medically
or scientifically appropriate population (Li, Morgan, and Zaslavsky 2016; Imbens and
Wooldridge 2009; Rosenbaum 2012; Crump et al. 2009). Estimating the ATE assumes
that every participant can be switched from their current treatment to the opposite
(Li, Morgan, and Zaslavsky 2016). This is not always sensible, for example it may
not be medically appropriate for every participant who didn’t receive a treatment to
receive it.

2.1.1.2 Average treatment effect among the treated

The average treatment effect among the treated (ATT) sets all subjects in the treated
population to hold a weight of 1, and weights the control population accordingly. Here
the inference is made with the treated group as the target population.

ATT = E[Y (1)− Y (0)|Z = 1] (2.6)

The weights are defined as,

wATT = eiZi
ei

+ ei(1− Zi)
1− ei

(2.7)

2.1.1.3 Average treatment effect among the controls

The average treatment effect among the controls (ATC) sets all subjects in the control
population to hold a weight of 1, and weights the treated population accordingly. Here
the inference is made with the control group as the target population.

ATC = E[Y (1)− Y (0)|Z = 0] (2.8)

The weights are defined as,

wATC = (1− ei)Zi
ei

+ (1− ei)(1− Zi)
1− ei

(2.9)
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2.1.1.4 Average treatment among the evenly matchable

The average treatment effect among the evenly matchable (ATM) was formally defined
by Samuels as (Samuels 2017)

ATMd = E[Y (1)− Y (0)|Md = 1] (2.10)

Like the ATE, ATT, and ATC, the ATM is a population average treatment effect. To
define whether a subject is evenly matchable (Md = 1) for a given matching process,
d, for example propensity score caliper matching, consider a random sample from the
general population. Let the sample size go to infinity. A subject is evenly matchable
if the limit of the ratio of the number of subjects from the opposite treatment to
the number from its own treatment is greater than 1 within the localized region of
the covariate space around the subject defined by d. As with the ATE, ATT, and
ATC, the population defined by the ATM is usually not observable; it is estimated
from the observed sample. For the ATE, all of the subjects in the sample estimate
the population. For the ATT, only the exposed subjects in the sample estimate the
population. For the ATM, the population is estimated by the subjects who meet the
evenly matchable criterion within the sample. If the ratio of exposed to unexposed
subjects in a given region of the covariate space is exactly 1, without loss of generality,
the exposed are considered the evenly matchable subjects. In practice, the estimated
population is nearly equivalent to the cohort formed by one-to-one pair matching using
d. Thus, the population defined by the ATM may be thought of as the population
formed by pair matching. An exciting version of the ATM weight was introduced by
Li and Greene as, (Li and Greene 2013)

wATM = min{ei, 1− ei}
Ziei + (1− Zi)(1− ei)

(2.11)

Samuels demonstrates that these ATM weights are equal to the minimum of the
ATT (Equation (2.7)) and ATC (Equation (2.9)) weights, wATM = min(wATT , wATC)
(Samuels 2017).

2.1.1.5 Average treatment effect for the overlap population

The average treatment effect for the overlap population (ATO) was first formally
introduced by Li, Morgan, and Zaslavsky (Li, Morgan, and Zaslavsky 2016). The
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ATO is not easy to describe in the same way as the estimators above – it essentially
creates a pseudo-population that has excellent variance properties. In practice, the
reference populations created by ATM and ATO weights will look similar due to the
weights themselves being similar. In best practice, a paper using either method should
include a detailed description of this reference population, for example via a thorough
“Table 1”.

The weights are defined as,

wAT0 = (1− ei)Zi + ei(1− Zi) (2.12)

Li et al demonstrate how this compares to known estimators showing when the
conditional probability of receiving treatment is small (ei ≈ 0), the wATO approximates
the wATT .

(1− ei, ei) ≈
(

1, ei
1− ei

)
Similarly, if the conditional probability of receiving control is small (1− ei ≈ 0), the
wAT0 approximates the wATC .

(1− ei, ei) ≈
(1− ei

ei
, 1
)

Finally, if there is nearly a 50-50 chance of receiving treatment or control (ei ≈ 0.5),
in other words the treatment and control groups are balanced in distribution and size,
the wATO approximates the wATE.

(1− ei, ei) ≈
(0.25
ei

,
0.25

1− ei

)

2.2 Doubly Robust Estimators

In order to generate the estimators described above, we first fit a propensity score
model to estimate ei, and then fit an outcome model, applying the weight specified
for the given estimator of interest. A doubly robust estimator is one that is robust
when either the propensity score model or the outcome model is correctly specified
(Scharfstein, Rotnitzky, and Robins 1999; Robins 2000; Robins, Rotnitzky, and Laan
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2000; Laan and Robins 2003; Neugebauer and Laan 2005). Doubly robust estimators
for the ATE have been described in great detail (Lipsitz, Ibrahim, and Zhao 1999;
Lunceford and Davidian 2004; Neugebauer and Laan 2005; Bang and Robins 2005;
Kang and Schafer 2007; Robins et al. 2007; Robins, Rotnitzky, and Zhao 2012; Funk et
al. 2011). The doubly robust ATE is estimated by first estimating ei via the propensity
score model, e(Xi, β̂), then fitting the outcome model separately among the treated
population and the control population, and using these models to predict outcome
values, (Ŷi(1) = m1(Xi, α̂1), Ŷi(0) = m0(Xi, α̂0)), for all participants. These estimates
are then combined using the weights specified above. This can be generalized to the
following doubly robust estimator for any of the above stated quantities, resulting in
the augmented estimator, ∆̂DR,w.

∆̂DR,w =
∑n
i=1 wi(m1(Xi, α̂1)−m0(Xi, α̂0))∑n

i=1 wi
+∑n

i=1 wiZi(Yi −m1(Xi, α̂1))∑n
i=1 wiZi

−
∑n
i=1 wi(1− Zi)(Yi −m0(Xi, α̂0))∑n

i=1 wi(1− Zi)

(2.13)

Where w represents the weight for the estimator of interest. For example, if we were
interested in the ATO estimate, we would use wATO for each participant. The doubly
robust estimator has been formally proven for the ATE (Lunceford and Davidian 2004)
and ATM (Li and Greene 2013). The proof for the ATO logically follows, however we
include a formal derivation in Chapter 3.

Using the framework described in Freedman and Berk (2008), we will examine the
properties of the doubly estimators for the ATE, ATO, and ATM under various
scenarios. R code for computing these weights and doubly robust estimators is
included in Appendix A.

2.3 Methods

Simulations are conducted using R version 3.4.3 (R Core Team 2017).
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2.3.1 Freedman and Berk simulation setting

Freedman and Berk set up their simulation with X as the exposure and Z as the
pre-treatment covariates. This is the opposite of how we have defined these quantities
above, as we have attempted to remain consistent with the majority of the potential
outcomes literature. For simplicity, we are changing their notation to match ours used
elsewhere.

2.3.1.1 Continuous outcome

The outcome model is a linear model with normally distributed errors, U ∼ N(0, 1)
defined as

Y = 1 + Z +X1 + 2X2 + U (2.14)

The propensity score model is defined as a probit selection model with normally
distributed errors, V ∼ N(0, 1).

Z =

1 0.5 + 0.25X1 + 0.75X2 + V > 0

0 o.w.
(2.15)

X is bivariate normal, defined as X ∼MVN

0.5
1

 ,
2 1

1 1

.
This setup results in populations with about 83.12% exposed to the treatment and
16.88% controlled.

Drawing from the distributions stated above, we fix the propensity score model as
specified, but estimate the outcome model leaving out the confounder X2 to examine
the effect this has on the bias of the estimated coefficient for our exposure of interest,
Z. We run this simulation, varying the sample size by 10 from 100 to 10,000 to
examine the properties and rate of convergence of this finite-sample bias using 50,000
simulations for sample sizes 100 to 1,000 and 10,000 simulations at each subsequent
sample size. In addition to the wATE we examine the wATM and wATO. In this
continuous setting, the true ATE, ATM, and ATO are all the same, the coefficient
specified for Z in the outcome model specified, 1, therefore all models will be compared
to this true value.
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Figure 2.1: Distribution of the propensity score for the continous outcome model. The blue represents
the exposed population, where Z = 1, the red represents where Z = 0, and the grey represents the
overlap between the two.
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We examine the bias for the exposure effect using these three weighting schemes:
wATE, wATM and wATO. Freedman and Berk (2008) reports a bias of 1.131 in the
unweighted model with X2 excluded from the outcome model, and a remaining bias of
0.1366 using the ATE weights with the sample size, n, set to 1,000 and 250 simulations.
While we do not have the original paper’s simulation code, under the same model
specifications and sample size of 1,000, we see similar biases. In our unweighted model,
we observe a bias of 1.129 and in our model weighted with ATE weights, we observe
a bias of 0.143. Using the ATM and ATO weights, however, we observe attenuated
biases of -0.001 and -0.001, respectively. Figure 2.2 displays this relationship over
sample sizes ranging from 100 to 10,000. While there is a clear finite-sample bias
present for the ATE weights, the ATM and ATO weights have negligible bias. Even
at a quite large sample (n = 10,000), the ATE weights remain slightly biased. It has
been pointed out that this is likely due in part to the particular simulation setting
chosen by Freedman and Berk (Busso, DiNardo, and McCrary 2014), however it is
worth noting that not all weighting methods are subject to this finite-sample bias,
and indeed it is nearly negligible when using the ATM and ATO weights.

Additionally, Freedman and Berk (2008) comments on the standard error of the wATE
method, demonstrating that in the case where the outcome model is correctly specified
and there is no bias to reduce, the wATE adjusted models are inefficient, and in fact
the standard error is double that of the unweighted model. The standard error here
refers to the observed standard deviation across the 10,000 simulations. In their
simulation with a sample size of 1,000, the standard error of the exposure coefficient
in the unweighted model is 0.0974 and the standard error of the exposure coefficient in
the wATE weighted model is 0.2130 when the outcome model is correctly specified. We
observe similar values in our simulation, 0.096 and 0.22 for the unweighted and ATE
weighted models, respectively. The standard error for the ATM and ATO weighted
models, however, are much more efficient, with standard errors of 0.1 and 0.102,
respectively. Figure 2.3 demonstrates the relationship between the standard error by
sample size and weighting method. Again, the ATM and ATO weights represent a
superior method.

2.3.1.2 Binary outcome

In the logistic case, the story is considerably more complicated. Here the outcome
model has errors with a standard logistic distribution, U ∼ logis(0, 1). The model is
specified as,
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Figure 2.2: Bias in the causal estimate, introduced by excluding a confounder, X2, from the continuous
outcome model, by sample size. The unweighted estimate (red) has the most bias, the ATE weighted
estimate (yellow) is next, and finally the ATO (green) and ATM (thick, purple) weighted estimates
show little to no bias. The left panel shows the full plot, the right panel zooms in on the weighted
estimates for n between 100 and 1,000.

Y =

1 1 + Z +X1 + 2X2 + U > 0

0 o.w.
(2.16)

The propensity score model errors also have a standard logistic distribution, V ∼
logis(0, 1), and the model is specified as,

Z =

1 0.5 + 0.25X1 + 0.75X2 + V > 0

0 o.w.
(2.17)

Same as the continuous setting, X is bivariate normal, defined as X ∼

MVN

0.5
1

 ,
2 1

1 1

.

13



0.1

0.2

0.3

0.4

0.5

0 2500 5000 7500 10000

n

S
ta

nd
ar

d 
er

ro
r weight

ate

ato

atm

unweighted

Figure 2.3: Standard error of the causal estimate by sample size. The ATE has the largest variability
(yellow), with the ATM (thick, purple) and ATO (green) with a smaller variability, almost directly
on top of eachother (the ATO is slightly below the ATM), and the unweighted (red) just below that.

This simulation setting results in about 86.85% outcome events with about 75.75% of
the population exposed.

Freedman and Berk (2008) states,

“The bad behavior of the weighted simple logistic regression is not a small-
sample problem. It is quite reproducible. We think it is due to occasional
large weights.” (Freedman and Berk 2008)

While it is true that this issue is not only a small-sample problem, the constant bias
seen across large sample sizes may indeed be due to the collapsibility of the odds ratio
they are drawing inference on. In the case where the odds ratio will approximate
the relative risk, this indeed will yield similar results as the continuous case, the
bias noticed will be due to a small-sample problem. In the case where the odds
ratio does not approximate the relative risk, as we have in this simulation where the
outcome is not rare, the relationship is more nuanced. In fact, in these scenarios, it has

14



0

1

2

3

0.00 0.25 0.50 0.75 1.00

p

de
ns

ity

Figure 2.4: Distribution of the propensity score for the binary outcome model. The blue represents
the exposed population, where Z = 1, and red represents where Z = 0.
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been suggested by VanderWeele and others that perhaps logistic regression should be
avoided all together, and rather a log-linear model should be fit (VanderWeele 2015).
In order to adequately examine the properties here, rather than examining the odds
ratio, we examine the mean difference in the probability of the outcome, again using
the doubly robust estimators for the weighted models. By difference in the probability
of the outcome, we mean we are estimating the following for each individual,

P (Yi(1) = 1)− P (Yi(0) = 1)

and then taking the average across all individuals. Our estimator of interest is on the
probability scale, and therefore is no longer a linear estimator, therefore the “true”
values for the ATE, ATM, and ATO will differ. To illustrate this, Figure 2.5 plots
the distribution of these risk differences in each population, ATE, ATM, and ATO,
respectively.
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Figure 2.5: Distribution of risk difference for each population, ATE, ATM, and ATO. Red line
indicates the mean risk difference within each population.

Drawing from the distributions stated in Equations (2.16) and (2.17), as with the
continuous outcome model we fix the propensity score model as specified, but estimate
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the outcome model leaving out the confounder X2 to examine the effect this has
on the bias of the estimated effect of our exposure of interest, Z. Again, we run
this simulation varying the sample size by 10 from 100 to 10,000. We use 50,000
simulations for sample sizes 100 to 1,000, and 10,000 simulations for all subsequent
sample sizes. We compare each method to its “true” value for the mean risk difference,
0.05938, 0.08698, and 0.10156 for the ATE, ATO, and ATM, respectively. Here, all of
the weighting schemes perform similarly (Figure 2.6). This is likely because this is an
easier setting for the ATE to perform well. The bias due to missing the confounder X2

is smaller in this setting. Additionally, the propensity model is specified in a slightly
different manner, with logit errors versus normal, causing the underlying model to
have more overlap in propensity scores between the treated and control population in
the binary outcome case versus the continuous (Figure 2.1, under the probit propensity
score model, compared to Figure 2.4 under the logit propensity score model).
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Figure 2.6: Bias in the causal estimate, introduced by excluding a confounder, X2, from the binary
outcome model, by sample size. The unweighted estimate (red) has the most bias, the ATE weighted
estimate (yellow), ATO (green), and ATM (purple) weighted estimates overlap, showing little to no
bias. The left panel shows the full plot, the right panel zooms in on the weighted estimates for n
between 100 and 1000.
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2.3.1.3 Binary Outcome (revised)

In replicating the setup for the binary outcome model specified in Freedman and Berk
(2008), we were able to replicate the paper’s original findings but found surprisingly
good overlap between the propensity scores for the treatment and control group
(Figure 2.4), as well as a relatively small mean risk difference (0.05938, 0.08698, and
0.10156 for the ATE, ATO, and ATM, respectively). We revise this simulation to
decrease the overlap, using the same probit model for the propensity score distribution
(Equation (2.15)), as specified in the continuous case, as well as update the outcome
model by changing the coefficient for Z from 1 to 3. As previously specified, the errors
have a standard logistic distribution, U ∼ logis(0, 1). The outcome model is specified
as,

Y =

1 1 + 3Z +X1 + 2X2 + U > 0

0 o.w.
(2.18)

Same as the previous settings, X is bivariate normal, defined as X ∼

MVN

0.5
1

 ,
2 1

1 1

.
This simulation setting results in about 90.72% outcome events with about 83.16% of
the population exposed. The distribution of the propensity scores here are identical
to those specified in the continuous setting (Figure 2.2).

We conduct the same simulation as the binary case, varying the sample size by 10
from 100 to 10,000 with 50,000 simulations for sample sizes 100 to 1,000, and 10,000
simulations for all of the subsequent sample sizes. We compare each method to it’s
“true” value for the mean risk difference, 0.1294, 0.2727, and 0.3104 for the ATE, ATO,
and ATM, respectively (Figure 2.7). The weighting schemes now perform similarly to
the continuous setting (Figure 2.8). The ATE weights take slight longer to converge to
their “true” value, where as the ATM and ATO weights converge a bit faster, although
the difference is not as noticeable as the continuous case.

2.4 Discussion

While we replicated the results seen in Freedman and Berk (2008) for the ATE weights,
we demonstrate that this seminal paper ought not to be viewed as the final word on
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Figure 2.7: Distribution of risk difference for each population, ATE, ATM, and ATO in the revised
binary outcome setting. Red line indicates the mean risk difference within each population.
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Figure 2.8: Bias in the causal estimate, introduced by excluding a confounder, X2, from the revised
binary outcome model, by sample size. The unweighted estimate (red) has the most bias, the ATE
weighted estimate (yellow) the next most, followed by the ATM (purple), and finally ATO (green).
The left panel shows the full plot, the right panel zooms in on the weighted estimates for n between
100 and 1000.

the use of weighting methods in general. In particular, new more stable weighting
schemes, ATM and ATO weights, do not suffer from the poor finite-sample properties
seen in the ATE weights. Thus, we have demonstrated that the utility of weighting
depends upon the weighting method used. These findings have important implications
on how analyses should be performed in medical research, particularly with the large
number of observational studies emerging in the literature.

Through the two simulation settings presented in Freedman and Berk (2008), we have
also demonstrated that the degree of overlap in the propensity scores between the
treatment and control groups is important when assessing the preferable weighting
method. In the first (continuous) example, the setting is “favorable to weighting”
because the propensity score model is correctly specified, it is unfavorable for the ATE
weights because the degree of overlap in propensity scores is poor (Busso, DiNardo,
and McCrary 2009). It has been shown elsewhere that under more favorable conditions
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(i.e. strong overlap in propensity scores between the treatment and control groups),
the ATE weights do quite well (Busso, DiNardo, and McCrary 2009; Busso, DiNardo,
and McCrary 2014). It turns out, as we demonstrate, that stable weights, such as
the ATM and ATO weights, work quite well in both settings. In the continuous
outcome setting explored here, the ATM and ATO estimands are the same as the ATE,
since we are dealing with a linear outcome and a constant treatment effect. However,
this no longer holds when moving into the binary outcome. There ATE, ATM, and
ATO are different quantities because the standardizing population influences the
average risk difference. This simulation setting is notably different from the continuous
setting. When comparing Figure 2.1 and Figure 2.4, although the coefficients for
the propensity score model are the same, we notice the degree of overlap is greater
due to the underlying propensity score model having a logit distribution, as opposed
to a probit distribution in the continuous case. Because of this greater degree of
overlap, the ATE, ATM, and ATO have similar characteristics when comparing their
finite-sample bias. In settings such as this, where the degree of overlap in propensity
scores between the treatment and control group is adequate, the choice of weighting
method becomes one of preference, often based on the population of interest. When
overlap is adequate such that it is plausible that anyone in the population could have
received either exposure with a nontrivial probability, the ATE may be philosophically
appealing. However, when overlap is poor such that the researchers could see a
one-to-one matched cohort as a compelling design, the ATM weights become more
appealing. We examine a more extreme binary outcome case than that of the original
study, in the sense of less overlap between the propensity score distributions and a
larger treatment-outcome effect. We see a similar, but less extreme, result as in the
continuous case, further solidifying our claim that the ATM and ATO weights do not
suffer from this finite-sample bias.

In addition to demonstrating the decreased finite-sample bias in the ATM and ATO
estimators, we have also shown that these methods have lower variance. Freedman and
Berk (2008) states that “weighting is likely to increase random error by a substantial
amount”; while we are able to replicate the magnitude of the variability they see using
the ATE weights in the continuous case, we show that the variability for the ATM and
ATO weights is nearly the same as those of the correctly specified unweighted model.
The correctly specified unweighted model, as shown in Figure 2.3, has the minimum
possible variance, as it is fit using ordinary least squares. The ATO estimator has
nearly identical standard errors, while the ATM standard errors are only slightly larger.
A topic of future research will be exploring methods for estimating these variances

21



appropriately under various scenarios.

We demonstrate compelling evidence to show that the ATM and ATO weights perform
well in the simulation settings presented in Freedman and Berk (2008). However,
there are other simulation settings which have not been explored, and therefore
need further research. For example, this paper does not explore the implications of
having neither model correctly specified. Nevertheless we have demonstrated that the
conclusions of the original study should be reconsidered in light of these new weighting
estimates; propensity score weighting does not unilaterally suffer from finite-sample
bias. Therefore, weighting should be considered as a viable option in research studies
that use propensity score methodology.

2.5 Conclusion

Revisiting the setup of the seminal paper Freedman and Berk (2008), where poor
finite sample properties of ATE weights were revealed, we demonstrate that ATM and
ATO weights have excellent finite sample properties. We hope that these findings will
persuade researchers to reconsider the benefits of propensity score based weighting
methods.

2.6 Appendix A

The following provides a coding walk through in R for calculating these doubly robust
estimators. The data are generated using a single simulation from the settings detailed
in this paper, with n = 1,000. There are two datasets, the first simulated with a
continuous outcome, and the second simulated with a binary outcome. The simulation
code and datasets are provided on GitHub (https://github.com/LucyMcGowan/dr-
example-code).

2.6.1 Continuous outcome

df_url <- "http://bit.ly/df_continuous"
load(url(df_url))

## Fit the propensity score ----

22

https://github.com/LucyMcGowan/dr-example-code
https://github.com/LucyMcGowan/dr-example-code
https://github.com/LucyMcGowan/dr-example-code


p_1 <- predict(
glm(z ~ x_1 + x_2,

data = df_continuous,
family = binomial("probit")),

type = "response"
)

## Create weights ----

## Calculate the probability of receiving control
p_0 <- 1 - p_1

### Calculate the probability of being assigned the treatment
### you received
p_assign <- ifelse(df_continuous$z == 1, p_1, p_0)

### ATE
w_ate <- 1 / p_assign

### ATM
w_atm <- pmin(p_1, p_0) / p_assign

### ATO
w_ato <- 1 - p_assign

## Fit outcome models ----

m_1 <- predict(
glm(y ~ x_1, data = df_continuous[df_continuous$z == 1, ]),
newdata = df_continuous

)

m_0 <- predict(
glm(y ~ x_1, data = df_continuous[df_continuous$z == 0, ]),
newdata = df_continuous

)
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The DR estimator is estimated using Equation (2.13), plugging in the given weight
for wi.

∆̂DR,w =
∑n
i=1 wi(m1(Xi, α̂1)−m0(Xi, α̂0))∑n

i=1 wi
+∑n

i=1 wiZi(Yi −m1(Xi, α̂1))∑n
i=1 wiZi

−
∑n
i=1 wi(1− Zi)(Yi −m0(Xi, α̂0))∑n

i=1 wi(1− Zi)

For example, we can plug in w_atm to get ∆̂DR,ATM

(dr_atm <- (sum(w_atm * (m_1 - m_0)) / sum(w_atm)) +
(sum(w_atm * df_continuous$z * (df_continuous$y - m_1)) /

sum(w_atm * df_continuous$z)) -
(sum(w_atm * (1 - df_continuous$z) * (df_continuous$y - m_0)) /

sum(w_atm * (1 - df_continuous$z)))
)

## [1] 1.003834

Rather than re-typing this equation each time, we can create a function that will
calculate it.

dr <- function(weight, y, m_1, m_0, z) {
(sum(weight * (m_1 - m_0)) / sum(weight)) +

(sum(weight * z * (y - m_1)) / sum(weight * z)) -
(sum(weight * (1 - z) * (y - m_0)) / sum(weight * (1 - z)))

}

dr(w_ate, df_continuous$y, m_1, m_0, df_continuous$z)

## [1] 1.381388

dr(w_atm, df_continuous$y, m_1, m_0, df_continuous$z)

## [1] 1.003834

dr(w_ato, df_continuous$y, m_1, m_0, df_continuous$z)

## [1] 1.0054
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2.6.2 Binary outcome

df_url <- "http://bit.ly/df_binary"
load(url(df_url))

## Fit the propensity score ----
p_1 <- predict(

glm(z ~ x_1 + x_2, data = df_binary, family = binomial),
type = "response"

)

## Create weights ----

## Calculate the probability of receiving control
p_0 <- 1 - p_1

### Calculate the probability of being assigned the treatment
### you received
p_assign <- ifelse(df_binary$z == 1, p_1, p_0)

### ATE
w_ate <- 1 / p_assign

### ATM
w_atm <- pmin(p_1, p_0) /p_assign

### ATO
w_ato <- 1 - p_assign

## Fit outcome models ----

m_1 <- predict(
glm(y ~ x_1,

data = df_binary[df_binary$z == 1, ],
family = binomial),

newdata = df_binary,
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type = "response"
)

m_0 <- predict(
glm(y ~ x_1,

data = df_binary[df_binary$z == 0, ],
family = binomial),

newdata = df_binary,
type = "response"

)

Using the function defined above, we calculate the DR estimator.

dr(w_ate, df_binary$y, m_1, m_0, df_binary$z)

## [1] 0.06305217

dr(w_atm, df_binary$y, m_1, m_0, df_binary$z)

## [1] 0.1056484

dr(w_ato, df_binary$y, m_1, m_0, df_binary$z)

## [1] 0.09410479
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CHAPTER 3

DOUBLY ROBUST AND LARGE SAMPLE VARIANCE ESTIMATOR FOR
OVERLAP WEIGHTS

3.1 Background

In 2016, Li et al proposed an overlap weight, a method for propensity score weighting
with improved variance properties (Li, Morgan, and Zaslavsky 2016). In Chapter
2, we explored the improved finite sample properties of a doubly robust estimator
for the average treatment effect for the overlap population (ATO). In this chapter,
we prove the doubly robust property of this estimator, that is a form that is robust
when either the propensity score model or the outcome model is correctly specified
(Scharfstein, Rotnitzky, and Robins 1999; Robins 2000; Robins, Rotnitzky, and Laan
2000; Laan and Robins 2003; Neugebauer and Laan 2005). In addition we derive
a large-sample variance estimator for the IPW and doubly robust ATO estimator,
extending the Williamson variance (Williamson, Forbes, and White 2013), similar to
the sandwich estimator proposed for the ATE by Lunceford and Davidian (Lunceford
and Davidian 2004) as well as the sandwich estimator proposed for the ATM by Li
and Greene (Li and Greene 2013). Our extension can by applied to outcomes modeled
with a generalized linear model with a identity, log, or logistic link. We then use a
simulation setup similar to that in Chapter 2 to compare this doubly robust estimator
and large-sample variance estimator to two conditions, a naive model and a naive
sandwich estimator.

For calculating the uncertainty of an estimator that incorporates both propensity
scores and conditional outcome models, we demonstrate the utility of a large-sample
variance estimator that accounts for the propensity scores being themselves estimated.
Alternatively, the bootstrap has been recommended to acquire the appropriate standard
errors (Li, Morgan, and Zaslavsky 2016; Li and Greene 2013; Funk et al. 2011). We
focus on weighting as the method for incorporating the propensity score, however there
are other ways such as matching, stratification, or covariate adjustment. McCandless
et al. (2009) introduce a Bayesian propensity score methodology that adjusts for
the propensity score as a covariate, allowing for the incorporation of the uncertainty
associated with fitting the propensity score model (McCandless, Gustafson, and Austin
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2009). Zigler et al. (2013) highlight the challenges that can occur with combining the
propensity score estimation and outcome model into a joint estimation process within
a Bayesian framework. They present strategies for augmenting the propensity score
adjustment to prevent these problems (Zigler et al. 2013). Zigler (2016) addresses the
natural tension in using Bayesian methods to estimate causal effects and elucidates
how propensity score adjustment fits into the Bayesian framework (Zigler 2016).

3.2 Methods

3.2.1 ATO estimator and large-sample variance

The estimator of the average treatment effect for the overlap population (ATO) is as
follows (Li, Morgan, and Zaslavsky 2016).

τ̂ATO =
∑n
i=1(1− e(Xi, β̂))ZiYi∑n
i=1(1− e(Xi, β̂))Zi

−
∑n
i=1 e(Xi, β̂)(1− Zi)Yi∑n
i=1 e(Xi, β̂)(1− Zi)

(3.1)

where e(Xi, β̂) is the estimated propensity score, Zi is the indicator for treatment,
and Yi is the observed outcome. The first term above can be defined as µ̂1 and the
second term as µ̂0.

The point estimate can be estimated by plugging in the propensity score obtained
from a logistic regression for e(Xi, β̂). Alternatively, as Williamson et al. mention, a
generalized linear model can be fit for the outcome on the treatment, applying the
ATO weight, Zi(1−ei)+(1−Zi)ei, and appropriate link function (Williamson, Forbes,
and White 2013). Of note, this is distinct from the doubly robust estimator in that
here the outcome model does not include any additional covariates, only the treatment
indicator.

Williamson et al. demonstrate a general form for a variance estimator for inverse prob-
ability of treatment weighted estimators (estimators using ATE weights) (Williamson,
Forbes, and White 2013). Their large-sample variance estimator, was generalized to
include models fit with the identity, log, or logit link function. These large sample
variance estimators are distinct from a “naive” sandwich estimator calculated using
only the outcome model in that they account for the propensity score estimation.
When the propensity score model is correctly specified, incorporating the estimation of
the propensity score model in the variance calculation leads to smaller, more accurate
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variances (Williamson, Forbes, and White 2013; Funk et al. 2011).

Following the process of Williamson et al., we can solve the following estimating
equations ∑n

i=1 u(θ(Yi, Zi, Xi)) = 0 for θ = (µ1, µ0,β
T )T to calculate τ̂ATO (Equation

(3.1)) where,

u(θ;Y, Z,X) =


(Y − µ1)Z(1− e(X,β))
(Y − µ0)(1− Z)e(X,β)

X(Z − e(X,β))

 (3.2)

This estimator is an M-estimator with an asymptotically normal distribution. Using
the delta method, the estimator has a large-sample variance equal to:

var(θ̂) = 1
n

A−1BA−T (3.3)

where A = −E[∂u/∂θT ] and B = E[uuT ]. These can be estimated by

v̂ar(θ̂) = 1
n
Â−1
n B̂nÂ

−T
n (3.4)

where Ân = 1
n

∑n
i=1−∂u/∂θT and B̂n = 1

n

∑n
i=1 uuT .

Using the notation of Williamson et al., this derivation results in the following large-
sample variance estimator.

v̂ar(τ̂ATO) = K2
1j v̂ar(µ̂1) +K2

0j v̂ar(µ̂0)− 2K0jK1j v̂ar(µ̂1, µ̂0) (3.5)

where K̂01 = 1 and K̂11 = 1 are used if τ̂ATO is calculated using a generalized
linear model with the identity link, K̂02 = µ̂−1

0 and K̂12 = µ̂−1
1 for a log link, and

K̂03 = (µ̂0(1− µ̂0))−1 and K̂04 = (µ̂1(1− µ̂1))−1 for a logit link.

The full derivation of A and B as well as the final variance estimator can be found in
Appendix A1.

3.2.2 ATO doubly robust estimator

The doubly robust estimator for the ATM is derived by Li and Greene (Li and
Greene 2013). We extend the derivation to demonstrate that the same holds when
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implementing the ATO weights. The doubly robust estimator for the ATO weights,
denoted is ∆̂DR,ATO, is as follows,

∆̂DR,ATO =
∑n
i=1((1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi))(m1(Xi, α̂1)−m0(Xi, α̂0))∑n

i=1(1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi)
+

∑n
i=1(1− e(Xi, β̂))Zi(Yi −m1(Xi, α̂1))∑n

i=1(1− e(Xi, β̂))Zi
−

∑n
i=1 e(Xi, β̂)(1− Zi)(Yi −m0(Xi, α̂0))∑n

i=1 e(Xi, β̂)(1− Zi)
(3.6)

where e(Xi, β̂) is the estimated propensity score, often obtained from a logistic
regression, m1(Xi, α̂1) is the predicted value of the outcome obtained from the
outcome model fit among those who received the treatment (Zi = 1), and m0(Xi, α̂0)
is the predicted value of the outcome obtained from the outcome model fit among
those who did not receive the treatment (Zi = 0). The outcome models can be fit
with a generalized linear model with the identity, log, or logit link as appropriate.

Theorem 2.1.1

When the outcome model is correctly specified, that is m1(X,α1) and m0(X,α0) are
correctly specified, ∆̂DR,ATO (Equation (3.6)) will yield an unbiased estimator for the
ATO effect (∆).

The first term of ∆̂DR,ATO is consistent for

E[((1− e(X,β))Z + e(X,β)(1− Z))(m1(X,α1)−m0(X,α0))]
E[((1− e(X,β))Z + e(X,β)(1− Z)] (3.7)

Therefore, the first term of ∆̂DR,ATO converges to ∆.

The second and third terms of ∆̂DR,ATO converge to E[(1− e(X,β))Z(Y − E[Y |Z =
1,X])] and E[(e(X,β))(1−Z)(Y −E[Y |Z = 0,X])] which both equal 0, as seen below.

E[(1− e(X,β))Z(Y −E[Y |Z = 1,X])] = E[(1− e(X,β))Z(E[Y1|X]−E[Y1|X])] = 0
(3.8)
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The full proof follows in Appendix B1.

Theorem 2.1.2

When the propensity score model is correctly specified, that is e(X,β) is correctly
specified, ∆̂DR,ATO will yield an unbiased estimator for the ATO effect (∆).

We can rewrite ∆̂DR,ATO as follows.

∆̂DR,ATO =


∑n
i=1(1− e(Xi, β̂))ZiYi∑n
i=1(1− e(Xi, β̂))Zi

−
∑n
i=1 e(Xi, β̂)(1− Zi)Yi∑n
i=1 e(Xi, β̂)(1− Zi)


+


∑n
i=1(1− e(Xi, β̂))Zim1(Xi, α̂1) +∑n

i=1 e(Xi, β̂)(1− Zi)m1(Xi, α̂1)∑n
i=1(1− e(Xi, β̂))Zi +∑n

i=1 e(Xi, β̂)(1− Zi)
−

∑n
i=1(1− e(Xi, β̂))Zim1(Xi, α̂1)∑n

i=1(1− e(Xi, β̂))Zi


+


∑n
i=1(1− e(Xi, β̂))Zim0(Xi, α̂0) +∑n

i=1 e(Xi, β̂)(1− Zi)m0(Xi, α̂0)∑n
i=1(1− e(Xi, β̂))Zi +∑n

i=1 e(Xi, β̂)(1− Zi)
−

∑n
i=1 e(Xi, β̂)(1− Zi)m0(Xi, α̂0)∑n

i=1 e(Xi, β̂)(1− Zi)


(3.9)

Since we know the propensity score model is correctly specified, the first term is an
unbiased estimator for ∆ (as it is equivalent to τ̂ATO, Equation (3.1), laid out in the
section above), therefore, we just need to show that the second and third term are 0.

e(X,β) = e(X) = E[Z|X] = E[Z|Y1,X] by no unmeasured confounders.

The E[(1 − e(X,β))Zm1(X,α1)] = E[(e(X,β))(1 − Z)m1(X,α1)] and E[(1 −
e(X,β))Z] = E[e(X,β)(1 − Z)], therefore the second term converges to Equation
(3.10).

E[(1− e(X))Zm1(X,α1)] + E[(1− e(X))Zm1(X,α1)]
E[(1− e(X))Z] + E[(1− e(X))Z]

− E[(1− e(X))Zm1(X,α1)]
E[(1− e(X))Z] = 0

(3.10)

Similarly, the third term, E[(1 − e(X))Zm0(X,α0)] = E[(e(X))(1 − Z)m0(X,α0)],
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converges to Equation (3.11).

E[(1− e(X))Zm0(X,α0)] + E[(1− e(X))Zm0(X,α0)]
E[(1− e(X))Z] + E[(1− e(X))Z]

− E[(1− e(X))Zm0(X,α0)]
E[(1− e(X))Z] = 0

(3.11)

Therefore, ∆̂ATO,DR →p ∆. The full proof follows in Appendix B2.

3.2.3 ATO doubly robust large-sample variance estimator

The large-sample variance estimator (a sandwich estimator) for the ATE doubly
robust estimator was originally proposed by Lunceford and Davidian (Lunceford and
Davidian 2004). Li and Greene derive a large-sample variance estimator for the ATM
doubly robust estimator following the same M-estimation process (Li and Greene 2013;
Mao and Li 2018). We extend this to the ATO doubly robust estimator.

The doubly robust ATO estimator derived in Equation (3.6), ∆̂DR,ATO, can be written
as δ̂1 + δ̂2 − δ̂3, where

δ̂1 =
∑n
i=1((1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi))(m1(Xi, α̂1)−m0(Xi, α̂0))∑n

i=1(1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi)
(3.12)

δ̂2 =
∑n
i=1(1− e(Xi, β̂))Zi(Yi −m1(Xi, α̂1))∑n

i=1(1− e(Xi, β̂))Zi
(3.13)

δ̂3 =
∑n
i=1 e(Xi, β̂)(1− Zi)(Yi −m0(Xi, α̂0))∑n

i=1 e(Xi, β̂)(1− Zi)
(3.14)

Using these quantities, we can solve the following estimating equations∑n
i=1 u(θ(Yi, Zi, Xi, Vi)) = 0 for θ = (δ1, δ2, δ3,α

T
1 ,α

T
0 ,β

T )T , similar to Equa-
tion (3.2) where,

32



u(θ;Y, Z,X,X) =



(m1(X,α1)−m0(X,α0)− δ1)(Z(1− e(X,β)) + (1− Z)e(X,β))
(Y −m1(X,α1)− δ2)Z(1− e(X,β))
(Y −m0(X,α0)− δ3)(1− Z)e(X,β)

(Y −m1(X,α1))ZX
(Y −m0(X,α0))(1− Z)X

X(Z − e(X,β))


(3.15)

Using the same method detailed above, we can solve for the large-sample variance
using the delta method.

The variance of our estimator, ∆̂DR,ATO will be the variance of δ̂1 + δ̂2− δ̂3, which can
be estimated by Equation (3.16).

v̂ar(∆̂DR,ATO) = (1, 1,−1,0,0,0) 1
n

Â−1
n B̂nÂ−Tn (1, 1,−1,0,0,0)T (3.16)

Full derivations of A and B are included in Appendix A2. R code to calculate these
quantities is included in Appendix C.

3.2.4 Simulations

Simulations are conducted using R version 3.4.3 (R Core Team 2017).

We conducted simulations using both a continuous and binary outcome, based on
the simulations in Chapter 2, adapted from Freedman and Berk (Freedman and Berk
2008). The parameters are slightly modified. In both cases, the propensity score model
is defined as a probit selection model with normally distributed errors, V ∼ N(0, 1).

Z =

1 0.5 + 0.25X1 + 0.75X2 + V > 0

0 o.w.
(3.17)

X is bivariate normal, defined as X ∼MVN

0.5
1

 ,
2 1

1 1

.
For the continuous case, the outcome model is the following with normally distributed
errors, U ∼ N(0, 1), defined as
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Y = 1 + Z +X1 + 3X2 + U (3.18)

For the binary case, the outcome model has errors with a standard logistic distribution,
U ∼ logis(0, 1). The model is specified as,

Y =

1 1 + Z +X1 + 3X2 + U > 0

0 o.w.
(3.19)

For each outcome, we fit three models. We fit a naive model, defined as a weighted
generalized linear model, a naive model with robust standard errors, defined as
a weighted generalized linear model with variances estimated using the sandwich
estimator (not including the propensity score estimation), and a doubly robust model
with our derived large-sample variance estimator. For the continuous outcome, the
models were fit with the identity link; the binary models were fit with a log link. The
point estimates for the naive model and the naive model with robust standard errors
are calculated by maximizing the sum of weighted likelihood function, with respect to
ϕ and θ. This can be done using the following score function, the derivative of the
log likelihood function, u.

u(θ) = wi
{yi − b′(θi)}

ϕ
(3.20)

where for the models fit with the identity link, ϕ = Σ, θ = Xiα, and b′(θ) = θ, and
for the models fit with the log link, ϕ = 1, θ = log(Xiα), and b′(θ) = exp(θ). Here,
wi is our ATO weight, Zi(1− e(Xi,β)) + (1− Zi)e(Xi,β).

These can be estimated using the glm function in R along with the weights parameter
(Venables and Ripley 2002).

The variance for the naive model is estimated using b′′(θ)ϕ/wi, whereas the variance for
the naive model with robust standard errors in calculated using the sandwich estimator,
that is A−1BA−T , where A is estimated using the observed model variance, here
b′′(θ)ϕ/wi and B is the expectation of the squared estimating equation u (Equation
(3.20)). This can be estimated in R using the sandwich function (Zeileis 2004; Zeileis
2006).

We also add a doubly robust estimator fit with the logit link to demonstrate how this
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fit compares to the doubly robust estimator with a log link. We then fit each of these
under four model conditions: “correct-correct”, where both the propensity score model
and the outcome model are correctly specified, “correct-wrong” where the propensity
score model is correctly specified, but the outcome model is missing the covariate
X2, “wrong-correct” where the propensity score model is misspecified, missing the
covariate X2 and the outcome model is correctly specified, and “wrong-wrong” where
X2 is missing from both the propensity score and the outcome model. We fit two
additional “wrong-wrong” models, reducing the “true” coefficient for X2 to 1 and then
0.25 to demonstrate how this model performs when a less severe confounder is missed.
We also examine each simulation under three sample sizes, 200, 1000, and 5000, each
carried out 1000 times.

For each simulation, we report the bias, the ratio of the estimated standard error and
the “true” Monte Carlo standard error, the root mean square error (RMSE) of the
standard error, and the 95% coverage.

3.3 Results

Figures 3.1-3.6 display the ratio of the estimated standard error and the “true” standard
error for the continuous outcome for each of the model states. Figures 3.7-3.12 display
the ratio of the estimated standard error and the “true” standard error for the binary
outcome for each of the model states. In addition we report the bias, the ratio of the
estimated standard error and the “true” Monte Carlo standard error, the root mean
square error (RMSE) of the standard error, and the 95% coverage. The bias for the
continuous model is calculated based on our “true” effect of 1, as set up in Equation
(3.18); the bias for the binary model is calculated based on the “true” risk difference
in the ATO population, 0.105, as determined by Equation (3.17) and Equation (3.19).
Tables 3.1 - 3.3 display the results for the continuous outcome, simulated via Equation
(3.18) and Tables 3.4-3.6 display the results for the binary outcome, simulated via
Equation (3.19).

The model “c-c” represents the correct-correct simulation, where both the propensity
score model and the outcome model are correctly specified. The model “c-w” represents
the correct-wrong simulation, where the propensity score model is correctly specified,
but the outcome model is incorrectly specified via missing the covariate X2. The model
“w-c” represents the wrong-correct simulation, where the propensity score model is
incorrectly specified, missing the covariate X2, and the outcome model is correctly
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specified. The model “w-w (a = 0.25)” represents the wrong-wrong simulation, where
both models are missing X2 and the coefficient for X2 in the outcome model is 0.25.
The model “w-w (a = 1)” is the wrong-wrong simulation, where both models are
missing X2 and the coefficient for X2 in the outcome model is 1. The model “w-w
(a = 3)” is the wrong-wrong simulation, where both models are missing X2 and the
coefficient for X2 in the outcome model is 3. All simulations were carried out 1000
times.

3.3.1 Continuous outcome

In the continuous outcome case, the doubly robust estimator slightly outperforms the
naive model in terms of bias in the small sample (n = 200), however the bias is the
same in the larger sample sizes, regardless of the model specification (Tables 3.1-3.3).
The variance estimation and coverage appear slightly improved using the large-sample
variance for the doubly robust estimator for correct-correct and correct-wrong models.
The naive estimator with the robust variance performs similarly to the large-sample
variance for the doubly robust estimator in the correct-correct (Figure 3.1) and wrong-
correct case (Figure 3.3), where the propensity score model is misspecified, but the
outcome model is correctly specified, however in the correct-wrong case, the naive
estimator with the robust variance is notable conservative (Figure 3.2). In the case of
the three wrong-wrong models (Figures 3.4 - 3.6), it appears that the large-sample for
the doubly robust estimator and the naive estimator with the robust variance perform
well in terms of the “true” variance, however eventually, regardless of the size of the
unmeasured confounder, although the variance estimate may be close, the bias will
over-rule, as seen in the coverage (Tables 3.1 - 3.3), particularly as n increases. The
naive variance underestimates the variance in all cases except when the propensity
score model is correctly specified and the outcome model is incorrectly specified, in
which case it overestimates the variance.

Table 3.1: Monte Carlo results for the simulation of the continuous outcome, n = 200

model method bias se / true se RMSE(se) coverage

c-c DR (robust
variance*)

-0.006 0.954 0.031 0.93

c-c naive -0.007 0.594 0.011 0.74
c-c naive (robust

variance)
-0.007 0.938 0.030 0.93
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model method bias se / true se RMSE(se) coverage

c-w DR (robust
variance*)

0.001 0.932 0.030 0.93

c-w naive 0.003 1.217 0.026 0.98
c-w naive (robust

variance)
0.003 1.927 0.060 1.00

w-c DR (robust
variance*)

0.009 0.952 0.032 0.94

w-c naive 0.009 0.654 0.013 0.80
w-c naive (robust

variance)
0.009 0.953 0.033 0.94

w-w (a=0.25) DR (robust
variance*)

-0.151 0.968 0.027 0.88

w-w (a=0.25) naive -0.151 0.649 0.011 0.70
w-w (a=0.25) naive (robust

variance)
-0.151 0.960 0.026 0.88

w-w (a=1) DR (robust
variance*)

-0.594 0.979 0.032 0.34

w-w (a=1) naive -0.594 0.657 0.013 0.17
w-w (a=1) naive (robust

variance)
-0.594 0.971 0.031 0.34

w-w (a=3) DR (robust
variance*)

-1.768 0.976 0.056 0.04

w-w (a=3) naive -1.769 0.659 0.023 0.01
w-w (a=3) naive (robust

variance)
-1.769 0.968 0.056 0.04

Table 3.2: Monte Carlo results for the continuous outcome, n = 1000

model method bias se / true se RMSE(se) coverage

c-c DR (robust
variance*)

0.005 0.976 0.006 0.94

c-c naive 0.005 0.614 0.002 0.76
c-c naive (robust

variance)
0.005 0.973 0.006 0.94
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model method bias se / true se RMSE(se) coverage

c-w DR (robust
variance*)

-0.002 0.952 0.006 0.94

c-w naive -0.002 1.249 0.005 0.98
c-w naive (robust

variance)
-0.002 1.986 0.012 1.00

w-c DR (robust
variance*)

0.002 0.980 0.007 0.95

w-c naive 0.002 0.666 0.003 0.81
w-c naive (robust

variance)
0.002 0.988 0.007 0.94

w-w (a=0.25) DR (robust
variance*)

-0.146 1.021 0.005 0.67

w-w (a=0.25) naive -0.146 0.684 0.002 0.42
w-w (a=0.25) naive (robust

variance)
-0.146 1.019 0.005 0.67

w-w (a=1) DR (robust
variance*)

-0.582 1.040 0.006 0.00

w-w (a=1) naive -0.582 0.699 0.002 0.00
w-w (a=1) naive (robust

variance)
-0.582 1.038 0.006 0.00

w-w (a=3) DR (robust
variance*)

-1.763 0.990 0.011 0.00

w-w (a=3) naive -1.763 0.669 0.005 0.00
w-w (a=3) naive (robust

variance)
-1.763 0.987 0.011 0.00

Table 3.3: Monte Carlo results for the continuous outcome, n = 5000

model method bias se / true se RMSE(se) coverage

c-c DR (robust
variance*)

0.001 1.005 0.001 0.95

c-c naive 0.001 0.632 0.000 0.79
c-c naive (robust

variance)
0.001 1.004 0.001 0.95
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model method bias se / true se RMSE(se) coverage

c-w DR (robust
variance*)

-0.002 0.939 0.001 0.94

c-w naive -0.002 1.235 0.001 0.98
c-w naive (robust

variance)
-0.002 1.961 0.003 1.00

w-c DR (robust
variance*)

-0.001 0.978 0.001 0.94

w-c naive -0.001 0.653 0.001 0.79
w-c naive (robust

variance)
-0.001 0.973 0.001 0.94

w-w (a=0.25) DR (robust
variance*)

-0.148 0.993 0.001 0.07

w-w (a=0.25) naive -0.148 0.665 0.000 0.02
w-w (a=0.25) naive (robust

variance)
-0.148 0.993 0.001 0.07

w-w (a=1) DR (robust
variance*)

-0.588 1.030 0.001 0.00

w-w (a=1) naive -0.588 0.692 0.000 0.00
w-w (a=1) naive (robust

variance)
-0.588 1.029 0.001 0.00

w-w (a=3) DR (robust
variance*)

-1.761 1.027 0.002 0.00

w-w (a=3) naive -1.761 0.694 0.001 0.00
w-w (a=3) naive (robust

variance)
-1.761 1.026 0.002 0.00

3.3.2 Binary outcome

Generally, we expect the naive variance estimator to underestimate the variance, and
the naive sandwich estimator to be more conservative. In the case of a Poisson model,
however, if the model is underdispersed, as is the case in our simulations, the opposite
will be true, the naive variance estimator will overestimate the variance. We see this
here, since our simulated outcome has a variance smaller than its mean, whereas the
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Figure 3.1: The ratio of the estimated standard error to the "true" Monte Carlo standard error for
the simulation where both the propensity score model and the outcome model are correctly specified
at n = 200, 1000, and 5000 for the continuous outcome. The red line indicates the ratio for the
standard error estimated using our large-sample variance for the doubly robust estimator, the green
line indicates the ratio for the standard errors obtained from the naive model, and the blue line
indicates the standard errors obtained from the naive model with robust standard errors (sandwich
estimator) applied.
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Figure 3.2: The ratio of the estimated standard error to the "true" Monte Carlo standard error for
the simulation where the propensity score model is correctly specified and the outcome model is
incorrectly specified at n = 200, 1000, and 5000 for the continuous outcome. The red line indicates
the ratio for the standard error estimated using our large-sample variance for the doubly robust
estimator, the green line indicates the ratio for the standard errors obtained from the naive model,
and the blue line indicates the standard errors obtained from the naive model with robust standard
errors (sandwich estimator) applied.
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Figure 3.3: The ratio of the estimated standard error to the "true" Monte Carlo standard error for
the simulation where the propensity score model is incorrectly specified and the outcome model is
correctly specified at n = 200, 1000, and 5000 for the continuous outcome. The red line indicates
the ratio for the standard error estimated using our large-sample variance for the doubly robust
estimator, the green line indicates the ratio for the standard errors obtained from the naive model,
and the blue line indicates the standard errors obtained from the naive model with robust standard
errors (sandwich estimator) applied.
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Figure 3.4: The ratio of the estimated standard error to the "true" Monte Carlo standard error for the
simulation where both the propensity score model and the outcome model are incorrectly specified
and the missing covariate has a coefficient of 3, at n = 200, 1000, and 5000 for the continuous
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator, the green line indicates the ratio for the standard errors
obtained from the naive model, and the blue line indicates the standard errors obtained from the
naive model with robust standard errors (sandwich estimator) applied.
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Figure 3.5: The ratio of the estimated standard error to the "true" Monte Carlo standard error for the
simulation where both the propensity score model and the outcome model are incorrectly specified
and the missing covariate has a coefficient of 1, at n = 200, 1000, and 5000 for the continuous
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator, the green line indicates the ratio for the standard errors
obtained from the naive model, and the blue line indicates the standard errors obtained from the
naive model with robust standard errors (sandwich estimator) applied.
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Figure 3.6: The ratio of the estimated standard error to the "true" Monte Carlo standard error for the
simulation where both the propensity score model and the outcome model are incorrectly specified
and the missing covariate has a coefficient of 0.25, at n = 200, 1000, and 5000 for the continuous
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator, the green line indicates the ratio for the standard errors
obtained from the naive model, and the blue line indicates the standard errors obtained from the
naive model with robust standard errors (sandwich estimator) applied.
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Poisson model assumes they are equal.

In the binary case, the bias is slightly smaller in the doubly robust estimator using the
Logistic models compared to the doubly robust estimator using the Poisson models.
Generally, the doubly robust estimators are less biased than the naive models, with
the exception of the scenario where the propensity score model is incorrect and the
outcome model is correct, in which case the doubly robust estimator using the Poisson
models is slightly more biased (Tables 3.4 - 3.6). In all scenarios, the model variance
for the naive model is very conservative (Figures 3.7-3.12). In the case where both the
propensity score model and the outcome model are correctly specified, the large-sample
variance for the doubly robust estimator for both the Poisson and Logistic models as
well as the robust variance for the naive model perform similarly (Figure 3.7). In the
case where the propensity score model is correctly specified and the outcome model is
incorrectly specified, the large-sample variance for the doubly robust estimator for
both the Poisson and Logistic models slightly underestimate the variance and the
robust variance for the naive model slightly overestimates the variance (Figure 3.8).
Because the doubly robust estimators for the Poisson and Logistic models are less
biased in this case, however, the coverage is much better compared to that of the
robust variance for the naive model (Tables 3.4 - 3.6). In the case where the propensity
score model is incorrectly specified and the outcome model is correctly specified,
the large-sample variance for the doubly robust estimator for both the Poisson and
Logistic models as well as the robust variance for the naive model perform similarly,
with the Poisson model underestimating the variance at the smaller sample size (n =
200) (Figure 3.9). Here the coverage is similar for the large-sample variance for the
doubly robust estimator for the Logistic model and the robust variance for the naive
model (Tables 3.4 - 3.6). Again examining the models where both the propensity score
model and the outcome model are incorrectly specified, while the variance estimation
appears close for the large-sample variance for the doubly robust estimator for both
the Poisson and Logistic models as well as the robust variance for the naive model
(Figures 3.10-3.12), the bias over-rules the variance in the coverage, regardless of the
size of the unmeasured confounder (Tables 3.4 - 3.6).
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model method bias se / true se RMSE(se) coverage

Table 3.4: Monte Carlo results for the simulation of the binary outcome, n = 200

model method bias se / true se RMSE(se) coverage

c-c DR logistic
(robust
variance*)

0.003 0.932 0.014 0.92

c-c DR poisson
(robust
variance*)

0.018 0.926 0.025 0.94

c-c naive -0.034 2.936 0.039 1.00
c-c naive (robust

variance)
-0.034 0.947 0.026 0.95

c-w DR logistic
(robust
variance*)

0.006 0.959 0.011 0.94

c-w DR poisson
(robust
variance*)

0.014 0.967 0.011 0.93

c-w naive -0.030 3.087 0.037 1.00
c-w naive (robust

variance)
-0.030 1.090 0.029 0.98

w-c DR logistic
(robust
variance*)

0.009 0.893 0.013 0.90

w-c DR poisson
(robust
variance*)

0.121 0.569 0.299 0.89

w-c naive -0.028 2.899 0.046 1.00
w-c naive (robust

variance)
-0.028 0.934 0.033 0.95

w-w (a=0.25) DR logistic
(robust
variance*)

-0.083 0.944 0.010 0.86
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w-w (a=0.25) DR poisson
(robust
variance*)

-0.079 0.946 0.010 0.87

w-w (a=0.25) naive -0.169 2.325 0.033 1.00
w-w (a=0.25) naive (robust

variance)
-0.169 0.920 0.031 0.85

w-w (a=1) DR logistic
(robust
variance*)

-0.091 0.942 0.010 0.82

w-w (a=1) DR poisson
(robust
variance*)

-0.088 0.953 0.010 0.84

w-w (a=1) naive -0.178 2.419 0.033 1.00
w-w (a=1) naive (robust

variance)
-0.178 0.938 0.030 0.82

w-w (a=3) DR logistic
(robust
variance*)

-0.136 0.944 0.010 0.65

w-w (a=3) DR poisson
(robust
variance*)

-0.133 0.937 0.009 0.67

w-w (a=3) naive -0.241 2.365 0.034 1.00
w-w (a=3) naive (robust

variance)
-0.241 0.915 0.031 0.62

Table 3.5: Monte Carlo results for the binary outcome, n = 1000

model method bias se / true se RMSE(se) coverage

c-c DR logistic
(robust
variance*)

0.002 0.965 0.002 0.93

c-c DR poisson
(robust
variance*)

0.003 0.958 0.002 0.93
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c-c naive -0.039 2.936 0.007 1.00
c-c naive (robust

variance)
-0.039 0.961 0.005 0.90

c-w DR logistic
(robust
variance*)

0.003 0.944 0.002 0.94

c-w DR poisson
(robust
variance*)

0.004 0.938 0.002 0.94

c-w naive -0.038 2.997 0.007 1.00
c-w naive (robust

variance)
-0.038 1.065 0.005 0.94

w-c DR logistic
(robust
variance*)

0.012 0.989 0.002 0.92

w-c DR poisson
(robust
variance*)

0.049 0.927 0.007 0.83

w-c naive -0.020 3.031 0.008 1.00
w-c naive (robust

variance)
-0.020 0.971 0.005 0.94

w-w (a=0.25) DR logistic
(robust
variance*)

-0.081 0.977 0.002 0.49

w-w (a=0.25) DR poisson
(robust
variance*)

-0.080 0.982 0.002 0.50

w-w (a=0.25) naive -0.161 2.494 0.006 0.99
w-w (a=0.25) naive (robust

variance)
-0.161 0.977 0.006 0.26

w-w (a=1) DR logistic
(robust
variance*)

-0.092 0.959 0.002 0.37
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w-w (a=1) DR poisson
(robust
variance*)

-0.092 0.954 0.002 0.40

w-w (a=1) naive -0.176 2.420 0.006 0.98
w-w (a=1) naive (robust

variance)
-0.176 0.943 0.006 0.18

w-w (a=3) DR logistic
(robust
variance*)

-0.140 0.979 0.002 0.05

w-w (a=3) DR poisson
(robust
variance*)

-0.139 0.981 0.002 0.06

w-w (a=3) naive -0.239 2.474 0.006 0.90
w-w (a=3) naive (robust

variance)
-0.239 0.959 0.006 0.02

Table 3.6: Monte Carlo results for the binary outcome, n = 5000

model method bias se / true se RMSE(se) coverage

c-c DR logistic
(robust
variance*)

0.001 0.988 0.000 0.94

c-c DR poisson
(robust
variance*)

0.002 0.967 0.000 0.94

c-c naive -0.040 2.931 0.001 1.00
c-c naive (robust

variance)
-0.040 0.966 0.001 0.66

c-w DR logistic
(robust
variance*)

0.001 0.938 0.000 0.94

c-w DR poisson
(robust
variance*)

0.001 0.952 0.000 0.94
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c-w naive -0.041 3.005 0.001 1.00
c-w naive (robust

variance)
-0.041 1.069 0.001 0.69

w-c DR logistic
(robust
variance*)

0.012 1.018 0.000 0.86

w-c DR poisson
(robust
variance*)

0.040 0.957 0.002 0.57

w-c naive -0.021 3.065 0.002 1.00
w-c naive (robust

variance)
-0.021 0.984 0.001 0.85

w-w (a=0.25) DR logistic
(robust
variance*)

-0.081 1.015 0.000 0.00

w-w (a=0.25) DR poisson
(robust
variance*)

-0.081 1.014 0.000 0.00

w-w (a=0.25) naive -0.161 2.588 0.001 0.22
w-w (a=0.25) naive (robust

variance)
-0.161 1.016 0.001 0.00

w-w (a=1) DR logistic
(robust
variance*)

-0.091 0.962 0.000 0.00

w-w (a=1) DR poisson
(robust
variance*)

-0.091 0.955 0.000 0.00

w-w (a=1) naive -0.174 2.435 0.001 0.12
w-w (a=1) naive (robust

variance)
-0.174 0.945 0.001 0.00

w-w (a=3) DR logistic
(robust
variance*)

-0.138 1.034 0.000 0.00
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w-w (a=3) DR poisson
(robust
variance*)

-0.138 1.033 0.000 0.00

w-w (a=3) naive -0.236 2.633 0.001 0.00
w-w (a=3) naive (robust

variance)
-0.236 1.018 0.001 0.00

3.4 Discussion

We have derived a doubly robust estimator for the ATO estimand, as well as the large-
sample variance for both the ATO estimator and the doubly robust ATO estimator.
We perform a Monte Carlo simulation to compare the large-sample variance for the
doubly robust estimator to two other variance estimation techniques. Although this
large-sample variance estimator is only intended for the case when both the propensity
score model and the outcome model are correctly specified, it appears that in our
simulation settings it performs relatively well as long as at least one of the two
models is correctly specified. Similarly, it seems that incorporating the propensity
score estimation in the variance does generally improve the coverage properties when
compared to the naive model with robust standard errors when the propensity score
model is correctly specified, but the outcome model is incorrectly specified. This
has some significance, as use of these sandwich estimators (or, nearly equivalently,
estimating the variances using the survey package in R (Lumley 2011)), is commonly
seen in the literature. When both models are correct, or the propensity score model
is incorrectly specified but the outcome model is correctly specified, incorporating
the propensity score estimation in the variance performs similarly to the naive model
with robust standard errors in the continuous case, and slightly outperforms the naive
model with robust standard errors in terms of coverage the binary case, due to a
decrease in bias. When the models are incorrectly specified, the variance estimation
does not seem negatively impacted, however the bias over-rules the variance and
thus the coverage is essentially 0 as n increases. Based on these results, we would
recommend using the large-sample variance for the doubly robust estimator when
intending to incorporate both a propensity score and outcome model in the estimation
process. In the case of model uncertainty, should the researcher find themselves in
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Figure 3.7: The ratio of the estimated standard error to the "true" Monte Carlo standard error for the
simulation where both the propensity score model and the outcome model are both correctly specified
at n = 200, 1000, and 5000 for the binary outcome. The red line indicates the ratio for the standard
error estimated using our large-sample variance for the doubly robust estimator estimated using the
logit link, the green line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator estimated using the log link, the blue line indicates the ratio
for the standard errors obtained from the naive model, and the purple line indicates the standard
errors obtained from the naive model with robust standard errors (sandwich estimator) applied.
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Figure 3.8: The ratio of the estimated standard error to the "true" Monte Carlo standard error for
the simulation where the propensity score model is correctly specified and the outcome model are
is incorrectly specified at n = 200, 1000, and 5000 for the binary outcome. The red line indicates
the ratio for the standard error estimated using our large-sample variance for the doubly robust
estimator estimated using the logit link, the green line indicates the ratio for the standard error
estimated using our large-sample variance for the doubly robust estimator estimated using the log
link, the blue line indicates the ratio for the standard errors obtained from the naive model, and the
purple line indicates the standard errors obtained from the naive model with robust standard errors
(sandwich estimator) applied.
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Figure 3.9: The ratio of the estimated standard error to the "true" Monte Carlo standard error for
the simulation where the propensity score model is incorrectly specified and the outcome model are
is correctly specified at n = 200, 1000, and 5000 for the binary outcome. The red line indicates
the ratio for the standard error estimated using our large-sample variance for the doubly robust
estimator estimated using the logit link, the green line indicates the ratio for the standard error
estimated using our large-sample variance for the doubly robust estimator estimated using the log
link, the blue line indicates the ratio for the standard errors obtained from the naive model, and the
purple line indicates the standard errors obtained from the naive model with robust standard errors
(sandwich estimator) applied.
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Figure 3.10: The ratio of the estimated standard error to the "true" Monte Carlo standard error
for the simulation where both the propensity score model and the outcome model are incorrectly
specified and the missing covariate has a coefficient of 3, at n = 200, 1000, and 5000 for the binary
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator estimated using the logit link, the green line indicates the
ratio for the standard error estimated using our large-sample variance for the doubly robust estimator
estimated using the log link, the blue line indicates the ratio for the standard errors obtained from
the naive model, and the purple line indicates the standard errors obtained from the naive model
with robust standard errors (sandwich estimator) applied.
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Figure 3.11: The ratio of the estimated standard error to the "true" Monte Carlo standard error
for the simulation where both the propensity score model and the outcome model are incorrectly
specified and the missing covariate has a coefficient of 1, at n = 200, 1000, and 5000 for the binary
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator estimated using the logit link, the green line indicates the
ratio for the standard error estimated using our large-sample variance for the doubly robust estimator
estimated using the log link, the blue line indicates the ratio for the standard errors obtained from
the naive model, and the purple line indicates the standard errors obtained from the naive model
with robust standard errors (sandwich estimator) applied.
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Figure 3.12: The ratio of the estimated standard error to the "true" Monte Carlo standard error
for the simulation where both the propensity score model and the outcome model are incorrectly
specified and the missing covariate has a coefficient of 0.25, at n = 200, 1000, and 5000 for the binary
outcome. The red line indicates the ratio for the standard error estimated using our large-sample
variance for the doubly robust estimator estimated using the logit link, the green line indicates the
ratio for the standard error estimated using our large-sample variance for the doubly robust estimator
estimated using the log link, the blue line indicates the ratio for the standard errors obtained from
the naive model, and the purple line indicates the standard errors obtained from the naive model
with robust standard errors (sandwich estimator) applied.
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the wrong-wrong scenario, we recommend sensitivity analyses to assess the impact of
a potential unmeasured confounder on the bias of the estimate of interest. This is
discussed further in Chapter 4.

3.5 Appendix A1. Derivation of the large-sample variance for the ATO estimator

Using the estimating equations specified in Equation (3.2), we can solve for A and B
where A = −E[∂u/∂θT ] and B = E[uuT ].

A =


a11 0 a13

0 a22 a23

0 0 a33



a11 = E[Z(1− e(X,β))]

a13 = E[XT (Y − µ1)Ze(X,β)(1− e(X,β))]

a23 = −E[XT (Y − µ0)(1− Z)e(X,β)(1− e(X,β))]

a22 = E[(1− Z)e(X,β)]

a33 = E[XXT e(X,β)(1− e(X,β))]

B =


b11 0
0 b22 b23

b31 b32 b33



b11 = E[(Y − µ1)2Z(1− e(X,β))2]

b13 = E[XT (Y − µ1)Z(1− e(X,β))2]

b22 = E[(Y − µ0)2(1− Z)e(X,β)2]

b23 = −E[XT (Y − µ0)(1− Z)e(X,β)2]

b31 = E[(Y − µ1)Z(1− e(X,β))2X]

b32 = −E[(Y − µ0)(1− Z)e(X,β)2X]

b33 = E[XXT (Z − e(X,β))2]

var(µ̂1) = a−2
11 (b11 − 2a13a

−1
33 b13 + a13a

−1
33 (a13a

−1
33 b33))

var(µ̂0) = a−2
22 (b22 − 2a23a

−1
33 b23 + a23a

−1
33 (a23a33b33))
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cov(µ̂1, µ̂0) = a−1
11 a

−1
22 (a23a

−1
33 b13 + a13a

−1
33 (b23 − a23a

−1
33 a33)T )

We can plug in the sample estimators for these expectations to estimate the variance
as follows.

v̂ar(τ̂ATO) = K2
1j v̂ar(m̂u1) +K2

0j v̂ar(µ̂0)− 2K0jK1j v̂ar(µ̂1, µ̂0)

where K̂01 = 1 and K̂11 = 1 are used for when τ̂ATO is estimated using a generalized
linear model with the identity link, K̂02 = µ̂−1

0 and K̂12 = µ̂−1
1 for when τ̂ATO is fit

with a log link, and K̂03 = (µ̂0(1− µ̂0))−1 and K̂04 = (µ̂1(1− µ̂1))−1 for τ̂ATO fit with
a logit link.

3.6 Appendix A2. Derivation of the large-sample variance for the ATO doubly
robust estimator

Using the estimating equations specified Equation (3.15), we can solve for A and B
as follows.

A = −E[∂u/∂θT ], so we will be taking the derivative of u with respect to θ =
(δ1, δ2, δ3,α

T
1 ,α

T
0 ,β

T )T .

A =



a11 0 0 a14 a15 a16

0 a22 0 a24 0 a26

0 0 a33 0 a35 a36

0 0 0 a44 0 0
0 0 0 0 a55 0
0 0 0 0 0 a66


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a11 = E[(1− e(X,β))Z + e(X,β)(1− Z)]

a14 = −E
[
∂m1(X,α1)

∂α1
((1− e(X,β))Z + e(X,β)(1− Z))

]

a15 = E

[
∂m0(X,α0)

∂α0
((1− e(X,β))Z + e(X,β)(1− Z))

]
a16 = −E[X(−e(X,β)(1− e(X,β))Z + e(X,β)(1− e(X,β))(1− Z))

(m1(X,α1)−m0(X,α0)− δ1)]

a22 = E[(1− e(X,β))Z]

a24 = E

[
∂m1(X,α1)

∂α1
(1− e(X,β))Z

]
a26 = E[Xe(X,β)(1− e(X,β))Z(Y −m1(X,α1)− δ2)]

a33 = E[e(X,β)(1− Z)]

a35 = E

[
∂m0(X,α0)

∂α0
e(X,β)(1− Z)

]
a36 = −E[Xe(X,β)(1− e(X,β))(1− Z)(Y −m0(X,α0)− δ3)]

a44 = E

[
∂m1(X,α1)

∂α1
XTZ

]

a55 = E

[
∂m0(X,α0)

∂α0
XT (1− Z)

]
a66 = E[XXT e(X,β)(1− e(X,β))]

where ∂m1(X,α1)
∂α1

and ∂m0(X,α0)
∂α0

are defined as follows, depending on the form of the
outcome model.

Since B = E[uuT ], we define B as the following.

identity link ∂m1(X,α1)
∂α1

= X
∂m0(X,α0)

∂α0
= X

log link ∂m1(X,α1)
∂α1

= m1(X,α1)X
∂m0(X,α0)

∂α0
= m0(X,α0)X

logit link ∂m1(X,α1)
∂α1

= m1(X,α1)(1−m1(X,α1))X
∂m0(X,α0)

∂α0
= m0(X,α0)(1−m0(X,α0))X
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B =



E[(m1(X,α1)−m0(X,α0)− δ1)(Z(1− e(X,β) + (1− Z)e(X,β))]
E[(Y −m1(X,α1)− δ2)Z(1− e(X,β))]
E[(Y −m0(X,α0)− δ3)(1− Z)e(X,β)]

E[(Y −m1(X,α1))ZX]
E[(Y −m0(X,α0))(1− Z)X]

E[X(Z − e(X,β))]


×



E[(m1(X,α1)−m0(X,α0)− δ1)(Z(1− e(X,β) + (1− Z)e(X,β))]
E[(Y −m1(X,α1)− δ2)Z(1− e(X,β))]
E[(Y −m0(X,α0)− δ3)(1− Z)e(X,β)]

E[(Y −m1(X,α1))ZX]
E[(Y −m0(X,α0))(1− Z)X]

E[X(Z − e(X,β))]



T

We can estimate these quantities by plugging in the sample average for each expectation.
Since ∆̂DR,ATO = δ̂1 + δ̂2 − δ̂3, the variance is estimated by the following.

v̂ar(∆̂DR,ATO) = (1, 1,−1,0,0,0) 1
n
Â−1
n B̂nÂ−Tn (1, 1,−1,0,0,0)T

Appendix C includes R code to calculate this.

3.7 Appendix B1. Proof of the doubly robust property of the ATO doubly robust
estimator when the outcome model is correctly specified

We will first prove that when the outcome model is correctly specified, that ism1(X,α1)
and m0(X,α0) are correctly specified, (3.6) will yield an unbiased estimator for the
ATO effect (∆).

m1(X,α1) = E[Y |Z = 1,X] = E[Y1|Z = 1,X] = E[Y1|Z,X] = E[Y1|X], similarly
m0(X,α0) = E[Y |Z = 0,X] = E[Y0|Z = 0,X] = E[Y0|Z,X] = E[Y0|X], and
(m1(X,α1),m0(X,α0)) ⊥ Z|X since we are assuming that there are no unmeasured
confounders.

δ̂1 =
∑n
i=1((1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi))(m1(Xi, α̂1)−m0(Xi, α̂0))∑n

i=1(1− e(Xi, β̂))Zi + e(Xi, β̂)(1− Zi)

62



δ̂1 is consistent for

E[((1− e(X,β))Z + e(X,β)(1− Z))(m1(X,α1)−m0(X,α0))]
E[((1− e(X,β))Z + e(X,β)(1− Z)]

= E[(1− e(X,β))Z + [e(X,β)(1− Z))(E[Y1|X]− E[Y0|X])]
E[(1− e(X,β))Z + e(X,β)(1− Z)]

= E[(E[Y1|X]− E[Y0|X])((1− e(X,β))Z + e(X,β)(1− Z))]
E[(1− e(X,β))Z + e(X,β)(1− Z)]

= E[(1− e(X,β))Z(E[Y1|X]− E[Y0|X])] + E[e(X,β)(1− Z)(E[Y1|X]− E[Y0|X])]
E[(1− e(X,β))Z] + E[e(X,β)(1− Z)]

= E[E[(E[Y1|X]− E[Y0|X])((1− e(X,β))Z + e(X,β)(1− Z))|Z,X]]
E[E[(1− e(X,β))Z + e(X,β)(1− Z)|Z,X]

= E[E[(E[Y1|X]− E[Y0|X])|Z,X]]E[E[((1− e(X,β))Z + e(X,β)(1− Z))|Z,X]]
E[E[(1− e(X,β))Z + e(X,β)(1− Z)|Z,X]

= E[E[Y1|X]− E[Y0|X])]

= ∆

Therefore, δ̂1 converges to ∆.

Since m1(X,α1) is correctly specified, E[Y1−m1(X,α1)] = 0 and (Y1−m1(X,α1)) ⊥
Z|X

E[(1− e(X,β))Z(Y − E[Y |Z = 1,X])]

= E[(1− e(X,β))Z(Y1 − E[Y |Z = 1,X])]

= E[E[(1− e(X,β))Z(Y1 − E[Y |Z = 1,X])|Z,X]]

= E[(1− e(X,β))ZE[(Y1 − E[Y |Z = 1,X])|Z,X]]

= E[(1− e(X,β))Z(E[Y1|Z,X]− E[Y |Z = 1,X])]

= E[(1− e(X,β))Z(E[Y1|X]− E[Y1|X])] = 0

Similarly, since m0(X,α0) is correctly specified, E[Y0 −m0(X,α0)] = 0 and (Y0 −
m0(X,α0)) ⊥ Z|X
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E[(1− e(X,β))Z(Y − E[Y |Z = 0,X])]

= E[(1− e(X,β))Z(Y0 − E[Y |Z = 0,X])]

= E[E[(1− e(X,β))Z(Y0 − E[Y |Z = 0,X])|Z,X]]

= E[(1− e(X,β))ZE[(Y0 − E[Y |Z = 0,X])|Z,X]]

= E[(1− e(X,β))Z(E[Y0|Z,X]− E[Y |Z = 0,X])]

= E[(1− e(X,β))Z(E[Y0|X]− E[Y0|X])] = 0

Plugging these into the Equation (3.6), ∆̂DR,ATO, we have demonstrated that when the
outcome model is correctly specified, that is m1(X,α1) and m0(X,α0) are correctly
specified ∆̂DR,ATO →p ∆

3.8 Appendix B2. Proof of the doubly robust property of the ATO doubly robust
estimator when the propensity score model is correctly specified

We will now prove that when the propensity score model is correctly specified ∆̂DR,ATO

converges to ∆.

We can rewrite the Equation (3.6) as

∆̂DR,ATO =


∑n
i=1(1− e(Xi, β̂))ZiYi∑n
i=1(1− e(Xi, β̂))Zi

−
∑n
i=1 e(Xi, β̂)(1− Zi)Yi∑n
i=1 e(Xi, β̂)(1− Zi)


+


∑n
i=1(1− e(Xi, β̂))Zim1(Xi, α̂1) +∑n

i=1 e(Xi, β̂)(1− Zi)m1(Xi, α̂1)∑n
i=1(1− e(Xi, β̂))Zi +∑n

i=1 e(Xi, β̂)(1− Zi)

−
∑n
i=1(1− e(Xi, β̂))Zim1(Xi, α̂1)∑n

i=1(1− e(Xi, β̂))Zi


+


∑n
i=1(1− e(Xi, β̂))Zim0(Xi, α̂0) +∑n

i=1 e(Xi, β̂)(1− Zi)m0(Xi, α̂0)∑n
i=1(1− e(Xi, β̂))Zi +∑n

i=1 e(Xi, β̂)(1− Zi)

−
∑n
i=1 e(Xi, β̂)(1− Zi)m0(Xi, α̂0)∑n

i=1 e(Xi, β̂)(1− Zi)


e(X,β) = e(X) = E[Z|X] = E[Z|Y1,X] by no unmeasured confounders.

The first term converges to
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E[(1− e(X,β))ZY ]
E[(1− e(X,β))Z] −

E[e(X,β)(1− Z)Y ]
E[e(X,β)(1− Z)]

This is a consistent estimator for ∆, as this is the estimator, τ̂AT0 (Equation (3.1))
defined by Li et al. (Theorem 1 (Li, Morgan, and Zaslavsky 2016)).

We now need to show that the second and third term are 0.

The second term converges to

E[(1− e(X,β))Zm1(X,α1)] + E[e(X,β)(1− Z)m1(X,α1)]
E[(1− e(X,β))Z] + E[e(X,β)(1− Z)]

− E[(1− e(X,β))Zm1(X,α1)]
E[(1− e(X,β))Z]

The E[(1 − e(X,β))Zm1(X,α1)] = E[(e(X,β))(1 − Z)m1(X,α1)] and E[(1 −
e(X,β))Z] = E[e(X,β)(1− Z)], therefore the this is equivalent to

E[(1− e(X))Zm1(X,α1)] + E[(1− e(X))Zm1(X,α1)]
E[(1− e(X))Z] + E[(1− e(X))Z]

− E[(1− e(X))Zm1(X,α1)]
E[(1− e(X))Z] = 0

Similarly, for the third term, E[(1− e(X))Zm0(X,α0)] = E[(e(X))(1−Z)m0(X,α0)]
therefore

E[(1− e(X))Zm0(X,α0)] + E[(1− e(X))Zm0(X,α0)]
E[(1− e(X))Z] + E[(1− e(X))Z]

− E[(1− e(X))Zm0(X,α0)]
E[(1− e(X))Z] = 0

Therefore, ∆̂ATO,DR →p ∆

3.9 Appendix C. R Code to calculate the large-sample variance for the ATO doubly
robust estimator

The following functions will calculate the ATO doubly robust estimator (Equation
(3.6)) along with the large-sample variance (Equation (3.16)) derived in Appendix A2.
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The sandwich_ato function will output a tibble with the doubly robust estimator
(est) and the appropriate standard deviation (se).

sandwich_ato <- function(data,
ps_form,
outcome_form,
ps_family,
outcome_family) {

ps_form <- as.formula(ps_form)
ps_model <- glm(ps_form, data = data, family = ps_family)
x <- names(coef(ps_model))[-1]
z <- data[, all.vars(ps_form)[1]]

outcome_form <- gsub(glue::glue(all.vars(ps_form)[1], " \\+|",
all.vars(ps_form)[1], "\\+") ,

"", outcome_form)
outcome_form <- as.formula(outcome_form)
out_model_y1 <- glm(outcome_form,

data = data[z == 1, ],
family = outcome_family)

out_model_y0 <- glm(outcome_form,
data = data[z == 0, ],
family = outcome_family)

v <- names(coef(out_model_y1))[-1]
y <- data[, all.vars(outcome_form)[1]]

n <- nrow(data)

ps <- predict(ps_model, type = "response")
y1 <- predict(out_model_y1, newdata = data, type = "response")
y0 <- predict(out_model_y0, newdata = data, type = "response")

delta1 <- (sum((1 - ps) * z * (y1 - y0))
+ sum(ps * (1 - z) * (y1 - y0))) /

(sum((1 - ps) * z ) + sum(ps * (1 - z)))
delta2 <- sum((1 - ps) * z * (y - y1)) / sum((1 - ps) * z)
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delta3 <- sum(ps * (1 - z) * (y - y0)) / sum(ps * (1 - z))

data$z <- z
data$y <- y
data$ps <- ps
data$y1 <- y1
data$y0 <- y0

u <- purrr::pmap(data, build_u,
x = x, v = v,
delta1 = delta1,
delta2 = delta2,
delta3 = delta3)

l_b <- purrr::map(u, ~ outer(.x, .x))
B <- purrr::reduce(l_b, `+`) / n
l_a <- purrr::pmap(data, build_a,

x = x, v = v,
delta1 = delta1,
delta2 = delta2,
delta3 = delta3,
family = outcome_family)

A <- purrr::reduce(l_a, `+`) / n
yum <- solve(A) %*% B %*% t(solve(A)) / n
var <-

t(c(1, 1, -1, rep(0, nrow(A) - 3))) %*%
yum %*%
c(1, 1, -1, rep(0, nrow(A) - 3))

se <- sqrt(var)
tibble::tibble(est = delta1 + delta2 - delta3, se = as.numeric(se))

}

build_u <- function(z, ps,
y, y1, y0,
x, v,
delta1, delta2, delta3, ...) {

dots <- list(...)
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x <- matrix(c(1, unlist(dots[x])), nrow = 1 + length(x))
v <- matrix(c(1, unlist(dots[v])), nrow = 1 + length(v))
u1 <- ((1 - ps) * z + ps * (1 - z)) * (y1 - y0 - delta1)
u2 <- (1 - ps) * z * (y - y1 - delta2)
u3 <- ps * (1 - z) * (y - y0 - delta3)
u4 <- v %*% z * (y - y1)
u5 <- v %*% (1 - z) * (y - y0)
u6 <- x %*% (z - ps)
c(u1, u2, u3, u4, u5, u6)

}

build_a <- function(z, ps,
y, y1, y0,
x, v,
delta1, delta2, delta3,
family, ...) {

dots <- list(...)
x <- matrix(c(1, unlist(dots[x])), nrow = 1 + length(x))
v <- matrix(c(1, unlist(dots[v])), nrow = 1 + length(v))

y1_deriv <- y_deriv(family, y1, v)
y0_deriv <- y_deriv(family, y0, v)

# derivative with respect to delta1

a_delta1 <- c(((1 - ps) * z + ps * (1 - z)),
rep(0, (2 + 2 * length(v) + length(x))))

# derivative with respect to delta2

a_delta2 <- c(0, (1 - ps) * z,
rep(0, (1 + 2 * length(v) + length(x))))

# derivative with respect to delta3

a_delta3 <- c(0, 0, ps * (1 - z),
rep(0, (2 * length(v) + length(x))))

# derivative with respect to alpha1

a_alpha1 <- matrix(
c(-((1 - ps) * z + ps * (1 - z)) * y1_deriv,

(1 - ps) * z * y1_deriv,
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matrix(0, ncol = length(v)),
y1_deriv %*% t(v) * z,
matrix(0, ncol = length(v), nrow = c(length(v) + length(x)))),

ncol = length(v), byrow = TRUE)
# derivative with respect to alpha0

a_alpha0 <- matrix(
c(((1 - ps) * z + ps * (1 - z)) * y0_deriv,

matrix(0, ncol = length(v)),
ps * (1 - z) * y0_deriv,
matrix(0, ncol = length(v), nrow = length(v)),
y0_deriv %*% t(v) *(1 - z),
matrix(0, ncol = length(v), nrow = length(x))),

ncol = length(v), byrow = TRUE)
# derivative with respect to beta

a_beta <- matrix(
c(- x %*%

((- ps * (1 - ps)) * z + (ps * (1 - ps)) * (1 - z)) *
(y1 - y0 - delta1),

x %*% ps * (1 - ps) * z * (y - y1 - delta2),
- x %*% ps * (1 - ps) * (1 - z) * (y - y0 - delta3),
matrix(0, ncol = length(x), nrow = c(2 * length(v))),
x %*% t(x) * ps * (1 - ps)),

ncol = length(x), byrow = TRUE)
cbind(a_delta1, a_delta2, a_delta3, a_alpha1, a_alpha0, a_beta)

}

y_deriv <- function(family, y, v) {
if (family == "gaussian") {

y_deriv <- v
}

if (family == "binomial") {
y_deriv <- y * (1 - y) * v

}

if (family == "poisson") {
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y_deriv <- y * v
}
as.matrix(y_deriv)

}

Here is an example using the sandwich_ato function along with the data from Chapter
2 (available on GitHub (https://github.com/LucyMcGowan/dr-example-code)).

df_url <- "http://bit.ly/df_continuous"
load(url(df_url))
sandwich_ato(df_continuous,

ps_form = "z ~ x_1 + x_2",
outcome_form = "y ~ z + x_1",
ps_family = binomial("probit"),
outcome_family = "gaussian")

## # A tibble: 1 x 2
## est se
## <dbl> <dbl>
## 1 1.01 0.101
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CHAPTER 4

CONTEXTUALIZED TIPPING POINT SENSITIVITY ANALYSES FOR
UNMEASURED CONFOUNDING

4.1 Background

The strength of the evidence provided by observational studies is inherently limited by
the potential influence of unmeasured confounding variables. This limitation should
neither be ignored nor used as a blanket dismissal of all observational studies’ findings.
Researchers should quantify the aspects of a hypothetical confounder that could
change the size of their observed effect or make a true null effect appear statistically
significant. Every observational study with a statistically significant finding should
include a quantified sensitivity to unmeasured confounding analysis. However, a
2008 systematic review by Groenwold et al. showed such analyses were rarely done
(Groenwold et al. 2008). They examined 174 observational studies in five general
medical journals and five epidemiological journals published between January 2004
and April 2007. While the potential for unobserved confounding was reported in 102
(58.6%) of reviewed articles, 15 (8.6%) commented on the potential effect of such
remaining confounding and only 4 (2.3%) conducted sensitivity analysis to estimate
potential impact of unobserved confounding. To see if the landscape had improved since
then, we performed a review of 90 observational studies with statistically significant
findings published in 2015 in the Journal of the American Medical Association, the
New England Journal of Medicine, and the American Journal of Epidemiology. We saw
little improvement with 41 (45.6%) mentioning the issue of unmeasured confounding
as a limitation and only 4 (4.4%) performing a quantitative sensitivity analysis. Even
when sensitivity analyses are performed, they can remain difficult for clinically oriented
readers to understand. These deficiencies reveal the need for practical guidance and
simple tools to help both the medical research community incorporate sensitivity
analyses into their papers and readers perform such analyses themselves when a paper
has failed to provide one.

One challenge of translating these methods into common practice is finding the right
level of simplification. Consider the rule of thumb, “In a study with binary outcomes
and binary exposures the relative risk may be off by a factor of 2, but unlikely to

71



be off more than that.” (Belle 2011). While under simplified assumptions, this rule
applies widely to generalized regression settings yielding relative risks, odds ratios,
and hazard ratios; the criteria may be too liberal for studies missing one or more
variables known to be strong confounders and too conservative for studies that adjust
for all major known confounders. It ignores the study design’s quality; whereas, a
sensitivity analysis should guide the reader through evaluating it. A sensitivity analysis
should focus the discussion on the rigor of the design, the thoroughness of capturing
known confounders, and the plausibility of an unmeasured confounder or confounders
being sufficient to nullify the conclusions. A well designed study that has controlled
for several important confounders via matching, weighting, and/or regression-based
covariate adjustment can provide the context in which the hypothetical unmeasured
confounder’s properties should be viewed.

This article re-frames the work of Cornfield et al. (Cornfield et al. 1959), Schlesselman
(Schlesselman 1978), Rosenbaum and Rubin (Rosenbaum and Rubin 1983), and Lin,
Psaty, and Kronmal (Lin, Psaty, and Kronmal 1998) to focus on three quantities
within the context of a study with a binary exposure showing a statistically significant
effect. The quantities are:

1. The bound of the confidence interval for the exposure’s observed effect that is
closer to the null, i.e. the bound closer to 1 for an odds ratio, hazards ratio, or
relative risk.

2. A strength of the association between an unmeasured binary confounder and the
outcome based on clinical knowledge and/or the observed effects of the measured
covariates.

3. Given 1 and 2, calculate the differential prevalence of the unmeasured binary
confounder between the exposed and unexposed populations needed to nullify
the statistically significant effect.

Focusing on these three quantities allows us to simplify the methods to a tipping
point analysis, that can be referenced by researchers wanting to include a quantitative
sensitivity analyses and by readers wishing to understand the sensitivity of studies
that failed to include such an analysis.

Additionally, VanderWeele and Ding recently suggested a tipping point sensitivity
analysis simplification referred to as the E-value (Ding and VanderWeele 2016; Van-
derWeele and Ding 2017). We extend this E-value to a setting where one can calculate
an “observed E-value” for each measured confounding, contextualizing the sensitivity
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analysis.

This paper will demonstrate best practices for calculating these tipping point analyses
under a variety of scenarios, with a focus on contextualizing the sensitivity analysis
using observed confounders, in the spirit of Hsu and Small (Hsu and Small 2013).

There has been a large amount of research in this area; a brief history is included in
Appendix A.

4.2 Methods

4.2.1 Tipping point calculation

The main objective of a tipping point sensitivity analysis is to report the qualities of an
unmeasured confounder needed to change the statistical significance of one’s findings.
For example, a hazard ratio of 1.25 with a 95% confidence interval (1.1, 1.5) would no
longer be significant at the α = .05 level if adjusting for a hypothetical unmeasured
confounder caused the lower bound to cross 1. The “tipping point” analysis would
find the smallest possible effect of an unmeasured confounder that would cause this to
happen. The methods explained here apply to both binary outcomes, analyzed using
logistic regression, as well as survival time outcomes with censoring, analyzed using
proportional hazards models.

To determine whether an exposure, Z, is associated with an outcome, Y , one can
observe whether the relative risk, odds ratio, or hazard ratio of Z is equal to 1. As a
tipping point analysis, we are interested in which values of an unmeasured confounder
would cause the lower or upper confidence interval of the association measure to
cross the null; we refer to this bound closest to the null as the “limiting bound”, or
LB. Lin et al. (Lin, Psaty, and Kronmal 1998), show that the observed association
between Z and Y can be adjusted based on the size and prevalence of an independent
unmeasured confounder U , for a binary unmeasured confounder, and the size and mean
difference between exposure groups for a continuous unmeasured confounder. Under
the assumption that the sensitivity parameters are fixed, the variance of the observed
effect is the same as the variance of the adjusted effect. This allows all adjustments to
apply to confidence intervals the same way they would apply to point estimates. Lin
et al. algebraically derive equations to update biased estimates in log-linear regression
for unmeasured confounders. Simulations show that these sensitivity analyses can be
extended to the logistic regression and censored survival time cases (Lin, Psaty, and
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Kronmal 1998). The relationship for the binary unmeasured confounder is as shown
in Equation (4.1).

LBadj = LBobs
RRUDp0 + (1− p0)
RRUDp1 + (1− p1) (4.1)

Where LBadj is the limiting bound of the risk ratio, odds ratio, or hazard ratio for
Z adjusting for the unmeasured confounding and known confounders, LBobs is the
observed limiting bound obtained from the model including known confounders but
excluding the unmeasured confounder, p1 and p0 are the prevalences of the unmeasured
confounder in the exposed and unexposed populations, respectively, and RRUD is the
association between the unmeasured confounder and the outcome both in the presence
and absence of the exposure, i.e. with the assumption of no interaction. Notice here
the unmeasured confounder is assumed to be binary, as we are estimating prevalences
in the exposed and unexposed populations. Using a similar equation, Lin et al. derive
the relationship between a continuous unmeasured confounder (normally distributed,
U ∼ N(µZ , 1)) and an outcome.

LBadj = LBobs

RRµ1−µ0
UD

(4.2)

Where µ1 is the mean of the unmeasured confounder in the exposed population, and
µ0 is the mean of the unmeasured confounder in the unexposed population. Notice
here the variance is assumed to be 1. Any normally distributed confounder can fit
this specification by scaling by the standard deviation within each exposure group.

In order to encourage widespread use of this methodology, we offer a rearranged
version of these equations. We use the relationship shown in the equations above
to solve for the minimum RRUD with varying levels of p0 and p1 in the binary case,
and µ1 and µ0 in the continuous case, such that the original association is no longer
statistically significant, in the binary case setting LBadj equal to 1 (Equation (4.3)).

RRUD(LBobs, p0, p1) = (1− p1) + LBobs(p0 − 1)
LBobsp0 − p1

(4.3)

This would allow investigators to state, “A hypothetical unobserved binary confounder
that is prevalent in p1 of the exposed population and p0 of the unexposed population
would need to have an association with Y of RRUD to tip this analysis at the 5%
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level, rendering it inconclusive.” Similarly we have rearranged this equation to solve
for p1 or p0, given the remaining parameters. For example, solving for p1 is shown in
Equation (4.4).

p1(LBobs, RRUD, p0) = LBobs(p0(RRUD − 1) + 1)− 1
RRUD − 1 (4.4)

Similarly, solving for p0 results in Equation (4.5).

p0(LBobs, RRUD, p1) = p1(RRUD − 1)− LBobs + 1
LBobs(RRUD − 1) (4.5)

Suppose that we are interested in a number of small unmeasured confounders that
would tip the analysis. We can solve for n, the number of independent unmeasured
confounders that would cause this analysis to tip as follows (Equation (4.6)).

n(LBobs, RRUD, p1, p0) = − log(LBobs)
log{RRUDp0 + (1− p0)} − log{RRUDp1 + (1− p1)} (4.6)

In the continuous case, the relationship is only dependent on the difference between
the means, µ1 and µ0, rather than the means themselves, so we can simplify equation
2, replacing µ1− µ0 with δ. Rearranging equation 2 as a tipping point analysis results
in Equation (4.7).

RRUD(LBobs, δ) = LB
1/δ
obs (4.7)

Solving for the unmeasured confounder’s difference in means between exposure groups
results in Equation (4.8).

δ(LBobs, RRUD) = log(LBobs)
log(RRUD) (4.8)

Similar to the binary case (Equation (4.6)), we can also solve for n the number of
unmeasured confounders we would need to tip the analysis with a given δ and RRUD.

n(LBobs, RRUD, δ) = log(LBobs)
δ log(RRUD) (4.9)

75



Building on this methodology, Ding and VanderWeele offer an “assumption free”
method that no longer requires that the unmeasured confounding be binary, but
rather represent this relationship as relative risk, in the binary case represented as
RREU = p1/p0. (Ding and VanderWeele 2016) They further recommend reporting
the minimum RRUD needed to tip under a particular RREU . In the binary case, this
is equivalent setting p1 to 1, varying p0 from 0 to 1. Since we are interested in the
tipping point such that the original association is no longer statistically significant,
the adjusted limiting bound, LBadj is set equal to 1 (Equation (4.10)).

1 = LBobs
RRUD/RREU + (1− 1/RREU)

RRUD

(4.10)

VanderWeele and Ding further suggest focusing on the point that minimizes the
strength of association, on the risk ratio scale, that an unmeasured confounder would
need to have with both the exposure and outcome, conditional on the measured
covariates, to explain away an observed exposure-outcome association (Ding and
VanderWeele 2016; VanderWeele and Ding 2017). They call this value an “E-value”
(Equation (4.11)).

E-value = LBobs +
√
LBobs × (LBobs − 1) (4.11)

This E-value demonstrates the joint minimum strength of association with both the
exposure and outcome needed to tip the analysis (allow the lower bound to cross one,
i.e. LBadj = 1). If one was interested in a different tipping point, we can reintroduce
the LBadj into the equation as shown in Equation (4.12).

E-valueadj = LBobs

LBadj

+

√√√√LBobs

LBadj

×
(
LBobs

LBadj

− 1
)

(4.12)

We will demonstrate the utility of each of these equations below.

4.2.2 Software

We have created an R package (R Core Team 2017), tipr, that allows for the
implementation of this method. It can be installed by running the following.

The tip_with_binary() function takes the following arguments:
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• p1: estimated prevalence of the unmeasured confounder in the exposed popula-
tion

• p0: estimated prevalence of the unmeasured confounder in the unexposed
population

• gamma: estimated size of an unmeasured confounder
• lb: lower bound of your observed effect
• ub: upper bound of your observed effect

A user can supply this function with any two of the three sensitivity parameters, p1,
p0, and gamma, as well as the upper confidence bound (ub) and lower confidence bound
(lb) of the observed effect, and the size of the third parameter needed to tip the
analysis will be calculated. If all three parameters (p1, p0, and gamma) are specified,
the function will return number of independent unmeasured confounders of the size
and prevalence specified will be needed to tip the analysis.

Similarly, the tip_with_continuous() function takes the following arguments:

• mean_diff: estimated mean difference of the unmeasured confounder between
the exposure groups

• gamma: estimated size of an unmeasured confounder
• lb: lower bound of your observed effect
• ub: upper bound of your observed effect

Note that only the limiting bound, the bound closer to the null, is actually utilized in
the calculation, but for ease of use we ask for both the upper and lower confidence
bounds and determine the limiting bound for the user. The utility will be demonstrated
in the examples below.

4.2.3 Tipping point contextualization

There are three main quantities that make an unmeasured confounder, or any covariate
for that matter, meaningful:

1. How imbalanced is the unmeasured confounder between the exposure groups?
2. How predictive is the unmeasured confounder of the outcome?
3. How independent is the unmeasured confounder from the other covariates?

The first two quantities have a straight forward impact; the more imbalanced the
unmeasured confounder is between exposure groups and the more predictive the
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unmeasured confounder is of the outcome, the larger it’s impact. Generally, the
more “independent” the unmeasured confounder is from other covariates, given it is a
confounder, the larger it’s impact. In other words, if the covariates you have already
measured account for the majority of the variability in the exposure or outcome that
would be explained by the unmeasured confounder, then the impact of missing this
confounder will be less pronounced. An assumption of the equations above is that
the unmeasured confounder is independent from all measured covariates, making it a
conservative way to assess sensitivity.

We propose that perhaps having a good understanding of the confounders that
were measured will assist in conceptualizing and constructing plausible scenarios for
sensitivity analyses for confounders that are unmeasured. We suggest examining the
imbalance between exposure groups using standardized mean differences, visualized
through a Love plot (Love 2002; Hansen and Fredrickson 2014), and examining the
predictive power and independence of each covariate, using a new plot we have named
the “observed bias” plot.

4.2.3.1 Love plots

Shifting our focus to the measured covariates, there are many tools suggested to
examine this first quantity, the imbalance between the exposure groups (Austin 2009;
Groenwold et al. 2011; Li, Morgan, and Zaslavsky 2016; Stuart, Lee, and Leacy 2013;
Rubin 2001; Imai, King, and Stuart 2008). A common metric is standardized mean
difference. For continuous covariates, standardized mean difference is calculated as
seen in Equation (4.13).

d = (x̄exposed − x̄unexposed)√
s2

exposed+s2
unexposed

2

(4.13)

Where x̄exposed and s2
exposed are the sample mean and variance in the exposed group, and,

similarly, x̄unexposed and s2
unexposed are the sample mean and variance in the unexposed

group. For binary covariates, standardized mean difference is calculated as seen in
Equation (4.14).

d = (p̂exposed − p̂unexposed)√
p̂exposed(1−p̂exposed)+p̂unexposed(1−p̂unexposed)

2

(4.14)
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Where p̂exposed and p̂unexposed are the prevalence of the dichotomous variable in the
exposed and unexposed subjects.

One can calculate the standardized mean difference for each covariate before and after
propensity score adjustment; these quantities are often visualized by ordering by their
magnitude in the unadjusted cohort and plotting the values in a figure known as a
“Love plot” (Love 2002; Hansen and Fredrickson 2014). This metric and associated
plot give important insight into the covariate balance before and after propensity score
adjustment, however it only addresses one of the three crucial quantities.

In addition to Love plots, side-by-side boxplots and empirical cumulative distribution
fuctions can be used to compare the distribution of continuous covariates between
the exposed and unexposed subjects pre-and post-propensity score adjustment, as
suggested by Austin and Stuart (Austin and Stuart 2015; Joffe et al. 2004). This can
give more detailed insight into the full distribution of the covarite, ensuring that the
propensity score adjustment balances the full distribution.

4.2.3.2 Observed bias plots

We propose an additional plot in addition to the Love plot, an “observed bias plot”.
This plot demonstrates how much leaving each single covariate out of the full modeling
process “biases” the final result, the effect of the exposure on the outcome. The general
idea is similar to the “omitted variable bias” discussed by Hosman et al. (Hosman,
Hansen, and Holland 2010). Here, we are interested in how omitting each covariate
shifts the point estimate and 95% confidence interval of the exposure-outcome effect.
To create this plot, we first fit our model(s) as we normally would. In the case of an
analysis that includes propensity score adjustment, for example, we fit the propensity
score model and then the outcome model, estimating the exposure-outcome effect.
We then repeat the entire process, leaving one covariate out at a time, and record the
exposure effect and 95% confidence interval each time. We plot this exposure effect
for every covariate, demonstrating how the effect of interest would change had we not
observed the covariate at hand.

In addition to plotting the exposure effect for each covariate, we can also plot the
adjusted E-value for each covariate. That is the E-value for moving the observed lower
bound (the lower bound of the effect observed without the unmeasured confounder)
to the adjusted lower bound (the lower bound of the effect with the unmeasured
confounder), using Equation (4.12). This adds context to the E-value, allowing it to
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be somewhat grounded in the observed covariates.

These observed bias plots need not be limited to the effect of leaving out each
confounder one at a time. For example, it may be of interest to see the effect of
leaving out a group of confounders. In the example here, we leave out all lab values
to demonstrate how that would have changed our analysis. In addition, we can add a
shifted effect for a hypothetical unmeasured confounder that would tip this analysis,
i.e. bring the lower bound of the effect to 1, as well as a hypothetical unmeasured
confounder that would bring the point estimate to 1.

4.3 Examples

We have constructed a series of scenarios we have seen prevalent in the medical
literature where a contextualized sensitivity analysis may have been useful. In each of
these scenarios, we are assuming that the result of interest, the association between
the exposure and outcome, is significant.

1. You observe a particularly imbalanced covariate. If you missed an unmeasured
confounder that has the same imbalance as this, that is independent of all the
observed covariates, how predictive of the outcome would it need to be in order
to tip your analysis?

2. You observe a covariate strongly associated with the outcome. If you missed an
unmeasured confounder that has the same association as this, that is independent
of all the observed covariates, how imbalanced between exposures would it need
to be in order to tip your analysis?

3. You observe many covariates that are all slightly associated with the outcome.
How many independent covariates of this magnitude would be needed to tip
your analysis.

4. You calculate the E-value for your study and would like to ground this in your
observed covariates.

To demonstrate each of these scenarios, we will use the Right Heart Catheterization
dataset, originally used in Connors et al (Connors et al. 1996). This dataset was used
to assess the effectiveness of right heart catheterization (RHC) in the initial care of
critically ill patients. This cohort contains 5,735 patients, 2,184 in the treatment group
(RHC) and 3,551 in the control group (no RHC). This is a particularly interesting
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observational study, as it demonstrated a result counter to previously published
recommendations for the use of RHC. The original analysis included 50 covariates used
to estimate the propensity of being assigned to RHC. For demonstration purposes,
we chose 20 to use here. We use demographics (age, sex), comorbidities (upper GI
bleeding, renal disease, transfer status), physiological measurements taken on day 1
(bilirubin, hematocrit, white blood cell count, mean blood pressure, pH, PaO2/FiO2
ratio, albumin, respiratory rate, PaCO2, heart rate), diagnosis categories (Neurology
and Hematology), APACHE score, SUPPORT model estimate of the probability of
surviving 2 months, and DNR status on day 1. Please see Connors et al for the
fully adjusted analysis and clinical interpretation of the RHC effect (Connors et al.
1996). We examine the balance using standardized mean differences and a Love
plot. Additionally, we demonstrate the side-by-side boxplot and empirical cumulative
distribution function for the continuous covariate APACHE score. We construct
overlap weights (Li, Morgan, and Zaslavsky 2016) for each individual and perform a
weighted survival analysis estimating the effect of right heart catheterization on 30
day survival, adjusting for all 20 covariates. We then fit the full analysis, leaving out
one covariate at a time. Each time we estimate the effect of the exposure, right heart
catheterization, on the outcome, 30 day survival, and compare it to the estimate with
the fully specified analysis. Figure 4.1 displays the Love plot, Figure 4.2 displays the
side-by-side boxplots and empirical cumulative distribution function for APACHE
score, and Figure 4.3 displays the observed bias plot. The observed effect of RHC on
30 day survival is 1.24 (95% CI: 1.11, 1.37) (Table 4.1).

Table 4.1: The association with 30 day survival, adjusting for all other covariates.

Hazard Ratio 95% LCL 95% UCL

RHC 1.24 1.11 1.37
APACHE score 1.00 1.00 1.01
WBC 1.00 1.00 1.00
Heart rate 1.00 1.00 1.00
PaO2/FIO2 ratio 1.00 1.00 1.00
Albumin 0.98 0.92 1.04
Hematocrit 1.00 0.99 1.01
Bilirubin 1.03 1.02 1.04
Mean blood pressure 1.00 1.00 1.00
PaCo2 0.99 0.99 1.00
PH 0.62 0.34 1.14
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Hazard Ratio 95% LCL 95% UCL

Respiratory rate 1.00 0.99 1.00
Age 1.00 1.00 1.01
Support prob. of surviving 2
months

0.08 0.06 0.11

Chronic Renal Disease 1.05 0.80 1.37
Upper GI Bleeding 1.58 1.23 2.03
Transfer Status 1.30 1.11 1.52
DNR status on day 1 2.59 2.22 3.02
Neurological Diagnosis 1.40 1.17 1.68
Hematologic Diagnosis 1.39 1.16 1.67
Sex 1.07 0.97 1.19
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WBC
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Bilirubin
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DNR status on day 1
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Figure 4.1: Love plot. This displays the standardized mean difference between the exposed and
unexposed groups before (red) and after (blue) propensity score weighting. The vertical line at 0.1
represents the "rule of thumb" for an acceptable standardized mean difference.

Before diving into the scenarios, observe what we have learned from the two figures,
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Figure 4.2: Distribution of APACHE score between exposed and unexposed subjects. The plots on
the left represent the distribution among the unweighted sample, and the plots on the right represent
the distribution among the propensity score weighted sample. The top plots are boxplots and the
bottom plots are cumulative distributions. The blue represents the exposed, those with RHC, and
the red represents the unexposed.
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Figure 4.3: Observed bias plot. This displays how the hazard ratio and 95% confidence interfal of
RHC on 30 day survival changes if each covariate were unobserved. The solid blue line is the hazard
ratio for RHC in the full model (1.24). The blue shaded regin is the 95% confidence interval for the
association between RHC and 30 day survival in the full model (1.11, 1.37).
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the Love plot (Figure 4.1) and the observed bias plot (Figure 4.3). The Love plot
demonstrates which covariates are most imbalanced prior to the propensity score
adjustment (here the top 3 are APACHE Score, mean blood pressure, and PaO2/FiO2
ratio), and how balanced they are post-propensity score analysis. Although many
covariates have large imbalance when unadjusted, after the propensity score adjustment,
they all achieve acceptable balance, certainly below the 0.1 rule of thumb. The observed
bias plot shows an important additional piece of information. For example, despite the
large imbalance in these top three covariates, leaving them out of the entire process, as
if they were unobserved, does not shift the overall observed exposure-treatment effect
much. Table 4.1 sheds some light on partially why this is; while these covariates are
strongly associated with the exposure, they are less so with the outcome. Additionally,
their independence from the remaining covariates effects the observed bias plot. If,
for example, APACHE score is highly correlated with the observed covariates, not
including it in the study will not have as large of an impact. This careful study of the
observed covariates will lend itself to a careful sensitivity analysis. Additionally, we
can glean information about how sensitive our analysis was, for example what if we
hadn’t observed DNR status – it seems this would have almost tipped our analysis to
cross 1, rendering it inconclusive.

4.3.1 Scenario 1

In this first scenario, we are concerned that there may be an unmeasured confounder
with imbalance similar to that of “APACHE Score”, as evidence by the magnitude of
the standardized mean difference in Figure 4.1. Using the formula in Equation (4.8),
we can calculate the size of the unmeasured confounder needed to tip an analysis with
a mean difference the size of that observed for APACHE Score. Notice that Equation
(4.8) relies on the unmeasured confounder to have a variance of 1 – in order to match
this assumption using the observed covariate, we will scale the mean by dividing by
it’s standard deviation. The scaled mean APACHE score among the exposed is 3 and
the scaled APACHE score among the unexposed is 2.71. We can calculate the size of
an unmeasured confounder needed to tip this analysis given a mean difference of 0.29.

library(tipr)
tip_with_continuous(mean_diff = 0.29,

lb = 1.11,
ub = 1.37)
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## [1] 1.433132

This allows us to state the following:

Examining one of our most imbalanced covariates, APACHE score, we observe a scaled
mean difference of 0.29. A hypothetical unobserved binary confounder that has a
mean difference of 0.29 between exposure groups would need to have an association
with 30 day survival (HR) of 1.43 to tip this analysis at the 5% level, rendering it
inconclusive.

4.3.2 Scenario 2

In this scenario, we have a covariate that is highly associated with the outcome and
are interested in calculating how imbalanced an unmeasured confounder of the same
magnitude would need to be in order to tip the analysis. Using the same example
as above, we choose DNR status as our observed covariate of interest, since it has a
large association with the outcome. Examining Table 4.1, one covariate has a larger
association with our outcome of interest, the SUPPORT probability of surviving 2
months (which is to be expected since the outcome of interest is 30 day survival).
This makes this covariate a poor choice for a sensitivity analysis, as it is unlikely that
there is another covariate like it missing from the study.

In our outcome model, DNR status has an adjusted association with 30 day survival
(HR) of 2.59 (Table 4.1). Since this is a binary confounder, the prevalence in the
unexposed population is necessary in order to calculate the prevalence in the exposed
population needed to tip this analysis. The prevalence of DNR status in the unexposed
population is 0.14. Using Equation (4.4), we can calculate the how prevalent an
unmeasured confounder with these specifications would need to be in the exposed
population to tip this analysis.

tip_with_binary(p0 = 0.14,
gamma = 2.59,
lb = 1.11,
ub = 1.37)

## [1] 0.2245824

This allows us to state the following:

Examining one of our covariates most highly associated with 30 day survival, we
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observe an adjusted association of 2.59. A hypothetical unobserved binary confounder
that is prevalent in 14% of the unexposed population with an association of 2.55 with
30 day survival would need to be prevalent in 22.46% of the exposed population to tip
this analysis at the 5% level, rendering it inconclusive.

4.3.3 Scenario 3

In our third scenario, rather than being concerned with a single unmeasured con-
founder of the magnitude of one that was observed, we are interested in the effect
of multiple independent unmeasured confounders. Using the RHC example, many
of the physiological measurements, (bilirubin, hematocrit, white blood cell count,
mean blood pressure, PaO2/FiO2 ratio, albumin, respiratory rate, PaCO2, heart
rate), resulted in very small associations with the outcome, all less than 1.05 (or the
inverse, 0.95). How many unmeasured confounders of this magnitude would it take
to tip our analysis to render it inconclusive? In order to calculate this quantity for
a continuous unmeasured confounder, we will need to specify the mean difference
between the exposed and unexposed groups. Examining Figure 4.1, we can again
choose the observed confounder that is the most imbalanced to ground this analysis,
for example for mean blood pressure. The scaled mean difference in mean blood
pressure between exposure groups is -0.19. This means that this is more prevalent
in the unexposed group than the exposed, therefore the association between the
hypothetical unmeasured confounder and outcome would need to be < 1 in order to
tip this analysis. We will set it at 0.95. Alternatively, we will get the same answer if
we flip the mean difference, and use 1/0.95, resulting in a mean difference of 0.19 and
an association between the unmeasured confounder and outcome of 1.05.

tip_with_continuous(mean_diff = -0.19,
gamma = 1/1.05,
lb = 1.11,
ub = 1.37)

## [1] 11.25766

tip_with_continuous(mean_diff = 0.19,
gamma = 1.05,
lb = 1.11,
ub = 1.37)
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## [1] 11.25766

It would take at least 11 more independent unmeasured confounders with a scaled mean
difference between exposure groups of 0.19 to and an association with 30 day survival
(HR) of 1.05 tip the observed analysis at the 5% level, rendering it inconclusive.

4.3.4 Scenario 4

Given the observed lower bound of 1.11, the associated E-value is 1.46. Examining
Figure 4.3, we can add some context to this value. The only associated E-value close
to this is that for DNR status on day 1. This implies that we would need to be missing
an additional independent covariate akin to DNR status on day 1 in order to tip our
analysis. Even dropping all physiological measurements would not reach an E-value
great enough to tip this study to inconclusive.

4.4 Discussion

With the inclusion of quantified sensitivity to unmeasured confounding analyses being
estimated at around 4%, the need for approaches that can gain traction is high. The
goal of this paper is to encourage researchers to evaluate the potential impact of
unmeasured confounders, using the straightforward methods we have presented here.
It is our hope that the guidance and tools provided here ultimately lead to greater
utilization of many of the methods available.

We want to emphasize that there has been extensive research in this area; please see
additional background and references in Appendix A. The main method we build on
was put forth by Lin et al. (Lin, Psaty, and Kronmal 1998). These derivations result
in the same equations as Schlesselman (Schlesselman 1978) (Equation (4.1)). Setting
LBadj to 1, as we do, creates a rearranged version of Cornfield’s original equation
(Cornfield et al. 1959). These methods are also related to recent advancements the
literature by Ding and VanderWeele (Ding and VanderWeele 2016; VanderWeele and
Ding 2017). Ding and VanderWeele put forth a proposal for a sensitivity analysis
without assumptions, which allows the researcher to set only two parameters, the
relationship between the unmeasured confounder and the exposure (RREU) and the
relationship between the unmeasured confounder and the outcome (RRUD). This
setting appears to be the same as our proposed Equation (4.3) with p1 set to 1 and p0

88



as 1/RREU . They extend this idea to calculate an E-value, the minimum strength of
association that an unmeasured confounder would need to have with both the exposure,
RREU , and the outcome, RRUD, to fully explain away the observed exposure-outcome
association. The E-value method adds simplification, in that no sensitivity parameters
need to be specified, however it may not generalize well. We contend that this may
result in an ambiguous number, as it is not intrinsically grounded in the observed
covariates and does not take into account plausible associations. For example this
bounding factor, or E-value, may be unnecessarily conservative in many settings where
a prevalence of 1 is not plausible. We therefore have updated these methods to allow
them to be grounded in the observed covariates, via the adjusted E-value and observed
bias plot.

This paper is most useful for the researcher who is concerned about the presence of
an unmeasured confounder, but does not know the relationship of this confounder
with the exposure and outcome, as well as the uncertainty involved. If all quantities
were known, one could backwards engineer an unmeasured confounder that has
specified prevalences in each exposure and a given association with the outcome
while not changing your existing dataset’s outcome, exposure, and covariates. This
simulation would answer a slightly different question, which is how would the confidence
intervals shift, probabilistically, if the unmeasured confounder were measured with
some uncertainty. This is slightly different from our analysis, which is testing what if
the effect of the unmeasured confounder was perfectly known and adjusted for. The
latter allows for a simpler description of its impact.

Another frequent question that these methods evoke is “Can I do this for negative
study results?”. Theoretically yes, these methods could be used for negative study
results, however we discourage it because it is unlikely to be illuminating. Consider
the following three scenarios. 1) The setting most researchers have in mind is having
a moderately wide confidence interval that just barely includes the null. Here a
quantified sensitivity analysis would show that a fairly weak unmeasured confounder
could shift the interval to exclude the null. So the negative result could easily be the
result of an unmeasured confounder. However, a lack of statistical power is an equally,
if not more, compelling argument. The sensitivity analysis seems unnecessary. 2) The
confidence interval is centered on the null and is very wide. While it would take a
strong unmeasured confounder to shift the interval enough to exclude the null, this is
a reflection of the study’s imprecision (the wide interval) not a reflection of the study’s
negative result being robust to unmeasured confounding. 3) The confidence interval is
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centered on the null and is very narrow. While a weak unmeasured confounder could
easily shift the interval to exclude the null, the plausible effect sizes would still be
clinically meaningless. The sensitivity to unmeasured confounding analysis would not
make a case that a clinically meaningful effect was potentially missed. That said, it
is possible to estimate the strength of a confounder needed to shift the interval to
exclude all clinically meaningless values, which could be informative.

4.5 Conclusion

This paper presents a useful, easily implemented, and intuitively understood approach
to allow researchers to assess the potential impact of unmeasured confounders in
observational research. The method can be applied to both past and future research,
allowing readers to understand the sensitivity of studies that do not include such an
analysis and allowing researchers to readily include such an analysis.

4.6 Appendix A. History of unmeasured confounding literature

In 1959, it was well known that there existed an association between smoking and
lung cancer, but debate raged as to whether that was a causal relationship. Cornfield
et al. engaged in a discussion about the association between smoking and lung cancer
(Cornfield et al. 1959). They derived the association between smoking and lung cancer
in the event that this association was due solely to a binary unmeasured confounder. In
this capacity, Cornfield quantified the prevalence of a binary unmeasured confounder
in the exposed and unexposed population that would be necessary to fully nullify
the observed association between smoking and lung cancer. Cornfield demonstrated
“if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer,
and this is not because cigarette smoke is a causal agent, but only because cigarette
smokers produce hormone X, then the proportion of hormone-X-producers among
cigarette smokers must be at least 9 times greater than that of nonsmokers.” (Cornfield
et al. 1959)

In 1966, Bross coined the “Size Rule” (Bross 1966). Similar to Cornfield et al., Bross
described the impact of a single unmeasured confounder on a given unadjusted effect
by estimating what the relative risk of the exposure effect would be if there was really
no exposure effect.
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“The Size Rule makes it plain that the counterhypothesis is incompatible
with the facts concerning cigarette-cancer risks. Hence at this stage there
are two choices: Cease to assert the counterhypothesis and continue to be
a scientist, or continue to assert the counterhypothesis and cease to be a
scientist. In either case there is no longer a scientific controversy.” (Bross
1966)

In 1978, Schlesselman allowed the association between the exposure and outcome to
vary (Schlesselman 1978). In 1983, Rosenbaum and Rubin moved the conversation
forward by allowing categorical covariate adjustment for the exposure-outcome effect
(Rosenbaum and Rubin 1983). In 1998, Lin Psaty, and Kronmal generalized the
advancement of Rosenbaum and Rubin by framing the sensitivity analysis within a
regression framework (Lin, Psaty, and Kronmal 1998). To this end, they demonstrated
that in the case of a binary outcome (analyzed using logistic regression) and a censored
time-to-event outcome (analyzed using a proportional hazards model), the “true”
odds ratio or hazard ratio of an exposure can be estimated in the same manner that
Schlesslman suggests. Using the Lin et al. method, the R (R Core Team 2017) package
obsSens (Snow 2013) generates a tabular analysis with options for different outcome
and confounder types.

This paper focuses on Lin, Psaty, and Kronmal’s method, however several important
advancements in this field have been made since then. Robins, Rotnitzky, and
Scharfstein describe an approach that models the association of a counterfactual
outcome with an exposure of interest within levels of the measured confounders
(Robins, Rotnitzky, and Scharfstein 2000). Using this approach, the analyst no
longer has to specify the type of unmeasured confounder (ie: whether it is discrete
or continuous, whether there is a single confounder or multiple confounders, etc).
They also briefly discuss sensitivity analyses in a Bayesian framework. Brumback et
al. describe sensitivity analyses for unmeasured confounding assuming a marginal
structural model for repeated measures (Brumback et al. 2004). This approach builds
on that of Robins, Rotnitzky, and Scharfsein, essentially building a non-identifiable
model that quantifies unmeasured confounding in terms of a sensitivity parameter
and a user-specified function.

Greenland describes a Bayesian approach to sensitivity to unmeasured confounders
analyses using Monte Carlo risk assessment (Greenland 2001). Greenland explains that
the common method for approaching a sensitivity analysis, treating the unmeasured
confounders as fixed values as if they are known, does not formally incorporate the
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uncertainty about the sensitivity parameters and can be sensitive to the specification
of the unmeasured confounder (Greenland 1998). He demonstrates that under certain
circumstances, the output from a Monte Carlo risk adjustment with priors for the
sensitivity parameters can approximate the posterior that would be obtained from a
Bayesian analysis. Greenland further describes choosing priors for bias parameters
and demonstrates how even in the case of a relatively low prior probability that an
unmeasured confounder explains the association between an exposure and outcome,
introducing unmeasured confounders in this manner can considerably increase the
uncertainty of a causal relationship (Greenland 2003). These results are further
summarized and described as Monte Carlo sensitivity analyses (MCSA) by Greenland
(Greenland 2005). Similarly, McCandless, Gustafson, and Levy describe Bayesian
sensitivity analyses for unmeasured confounding using MCMC (McCandless, Gustafson,
and Levy 2007). They build on methods put forth by Lin, Psaty, and Kronmal (Lin,
Psaty, and Kronmal 1998) to build Bayesian models with prior distributions used for the
sensitivity analyses that approximate the sampling distribution of model parameters
in a hypothetical sequence of observational studies. They demonstrate that credible
intervals will on average have approximately nominal coverage probability under these
circumstances. The authors further show that sensitivity analyses using information
about measured confounders can improve the determination of the uncertainty of
unmeasured confounders (McCandless, Gustafson, and Levy 2008). They assert that if
the confounding effect of the unmeasured confounder is similar to that of the measured
confounders, the Bayesian Sensitivity Analysis may give results that overstate the
uncertainty about bias.

Sturmer et al. describe a method that utilizes propensity scores and regression
calibration when a validated data set is available (Stürmer et al. 2005). This results
in propensity score calibration to adjust for unmeasured confounding in cohort studies.
They suggest estimating the propensity of the exposure as one normally would in
the main study, then estimating the propensity score in a validation study twice -
initially specified the same way the model in the main study is specified, then specified
with additional covariates only available in the validation study. The propensity score
for the main study is then calibrated using the two propensity score models in the
validation study.

Schneeweiss recommends an array-based method that conducts sensitivity analyses
on an array of parameters. This can then be visualized on a three dimensional plane
with each parameter varied on an axis (Schneeweiss 2006). Schneeweiss also describes
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a “Rule-out” method, in which one finds all combinations of the association between
the unmeasured confounder and the outcome and the unmeasured confounder and the
exposure that would move the point estimate to 1. The rule-out method is similar to
the tipping point approach advocated here, with the latter focusing on the confidence
bound closest to the null rather than the point estimate such robustness is influenced
by the study’s observed effect size and the estimate’s precision.

VanderWeele has written extensively in this area with his coauthors (VanderWeele,
Hernán, and Robins 2008; VanderWeele 2008b; VanderWeele 2008a; VanderWeele and
Arah 2011; VanderWeele, Mukherjee, and Chen 2012; VanderWeele 2013; VanderWeele
and Ding 2017; Ding and VanderWeele 2016). These important contributions include
bringing sensitivity methods into the causal inference framework, extending them to
mediation analyses, eliminating the assumptions regarding unmeasured confounders
previously needed to create bounding inequalities, and proposing the E-value.
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CHAPTER 5

CONCLUSION

In Chapter 2 we replicate the simulations set up by Freedman and Berk, and refute
the broad claim that “weighting is likely to increase random error by a substantial
amount”. In particular, we recommend the more stable propensity score weights, the
ATO and ATM weights. We hope that these results will encourage researchers to
consider propensity score weighting for bias reduction.

In Chapter 3, we derive the doubly robust estimator for the ATO estimand, as well as
the large-sample variance for both the ATO estimator and the doubly robust ATO
estimator. Our Monte Carlo simulation comparing the large-sample variance for the
doubly robust estimator to two other variance estimation techniques reveals that under
our settings our doubly robust estimator and large-sample variance perform relatively
well as long as at least one of the two models is correctly specified. Similarly, it seems
that incorporating the propensity score estimation in the variance does generally
improve the coverage properties when compared to the “naive robust standard errors”
when the propensity score model is correctly specified, but the outcome model is
incorrectly specified. When both models are correct, or the propensity score model is
incorrectly specified but the outcome model is correctly specified, incorporating the
propensity score estimation in the variance performs similarly to the naive model with
robust standard errors in the continuous case, and slightly outperforms the naive model
with robust standard errors in terms of coverage the binary case, due to a decrease in
bias. Based on these results, we would recommend using the large-sample variance for
the doubly robust estimator when intending to incorporate both a propensity score
and outcome model in the estimation process.

In Chapter 4, we present an intuitive approach to allow researchers to assess the
potential impact of unmeasured confounders in observational research. We extend
the work of Rosenbaum and Rubin (1983) and Lin, Psaty, and Kronmal (1998) to
create a contextualized “tipping point” analysis, as well as extend the Vanderweele
and Ding (2017) E-value to be grounded in the observed covariates. In addition we
provide guidance on best practices in assessing the impact of measured confounders,
using tools such as Love plots and observed bias plots. Finally, we provide a number
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of scenarios as well as an R package, tipr, to illustrate how these methods can be
applied in practical settings.

Taken as a whole, these chapters provide guidance for a holistic causal inference
process, from the choice of weighting scheme, to estimating the causal estimand and
variance, to conducting a sensible sensitivity analysis. We provide both technical
detail and derivation as well as applied examples and simulations to fully ground the
reader in the ideas presented.
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