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CHAPTER I 

 

INTRODUCTION 

 

 Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder 

characterized by the production of autoantibodies to a variety of self-antigens, most 

notably double stranded DNA (dsDNA) and other nuclear antigens. The chronic 

inflammatory nature of SLE is hypothesized to lead to many co-morbidities including, but 

not limited to, renal disease, vasculitis, anemia, neuropathies and premature accelerated 

atherosclerosis. While the exact cause of SLE remains a mystery, there are a number of 

factors that are thought to contribute to disease pathogenesis including gender, race, 

environmental factors and genetics. 

 SLE disproportionately affects women, especially women of child bearing age. 

Although the exact etiology is unknown, it is thought that high estrogen levels, which are 

at their peak in this age range, contribute to the gender bias (1). Additionally, race is 

thought to be a major factor in SLE onset as African-American and Hispanic women are 

more likely to develop SLE compared to their Caucasian counterparts. With regard to the 

environment, studies have linked exposure to certain toxins, such as heavy metals and 

silica as well as exposure to ultraviolet light, to SLE disease. Genetic predisposition is 

also associated with SLE pathogenesis as polymorphisms and mutations in a number of 

genes including the Fcγ receptor, the complement receptor C1q, and tumor necrosis 

factor α (TNFα) have all been associated with SLE (1, 2). 

 In addition to the lack of understanding regarding the predisposing risk factors for 

SLE, the trigger for SLE onset is likewise unknown, and most likely multifactorial.  

According to recent studies, ineffective clearance of apoptotic cells may be a main culprit 

behind SLE. Under normal circumstances, apoptotic cells and debris are cleared through 
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a phagocytic process termed efferocytosis. However, in SLE, this apoptotic debris 

accumulates in tissues, allowing the immune cells to be exposed to self-antigens to 

which they otherwise would not be exposed. These defects in apoptosis trigger a chronic 

sterile inflammatory environment that is thought to lead to the loss of B cell tolerance. 

This in turn mediates the production of anti-nuclear antibodies, which can then form 

immune complexes. Immune complex deposition in tissues and organs exacerbates 

inflammation and leads to tissue damage typically seen in SLE patients. (3)  

Furthermore, these events result in the over-expression of pro-inflammatory cytokines, 

most notably type I interferons, which have been shown to mediate disease activity in 

both humans and mouse models (4-7).  These events and others are thought to initiate 

and sustain SLE pathogenesis. 

SLE and Cardiovascular Disease.  Atherosclerosis, one of the most common 

cardiovascular diseases (CVD), continues to be a significant cause of morbidity and 

mortality despite recent advances in diagnosis and therapies. While it is widely 

recognized that hypertension, dyslipidemia and hypercholesterolemia predispose to 

atherosclerosis, studies in the past decades have revealed that the etiology of this 

disease is more complex than originally thought. Recent evidence suggests that the 

immune system is important in atherosclerosis pathogenesis and that these interactions 

occur early in the disease process (8). 

 Nearly thirty-five years ago, Urowitz et al. (9) first documented what was referred 

to as a bi-modal pattern of mortality in SLE, where early deaths in SLE were attributed to 

active SLE end organ disease, such as renal failure, while later deaths were mostly 

cardiovascular related. Since this pioneering discovery, many follow-up studies have 

demonstrated that, with all other risk factors being equal, the incidence of coronary 

artery disease in women with SLE is five to nine times higher compared to women 

without SLE. (10-12)  Even more striking is the finding by Manzi et al. (13) that in 
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premenopausal women—an age group normally protected against CVD—having SLE 

increases the likelihood of suffering from myocardial infarction by 50 times compared to 

their non-SLE premenopausal counterparts.  All of these studies indicate that both 

classical and non-classical risk factors play a pivotal role in SLE-accelerated 

atherosclerosis.  However, the mechanisms of accelerated CVD in SLE remain to be 

elucidated. 

In the following sections of this introduction we will: 1) briefly summarize the 

association between autoimmunity and atherosclerosis; 2) summarize recent data 

highlighting risk factors associated with atherosclerosis and SLE-accelerated 

atherosclerosis; 3) highlight current models used to study these phenomena and  4) 

state the goal(s) of the subsequent chapters. 

Autoimmunity and Atherosclerosis.  While the role of the immune system in 

atherosclerosis is fairly well established, it is not completely understood. Over the past 

two decades, the literature describing modulation of atherosclerosis by the immune 

system has continued to grow.  In general, the body of work can be summarized by 

stating that the role of immunity in atherosclerosis is complex and, depending on the cell 

or immune axis of choice, can be either pro-atherogenic or anti-atherogenic.  Therefore, 

it is probably not surprising that immune dysregulation would have detrimental effects on 

cardiovascular health.  There is a growing body of evidence supporting a causal link 

between chronic autoimmune inflammation and development of accelerated 

atherosclerosis.  Although much is still not known regarding autoimmunity and 

atherosclerosis, many studies have illustrated a correlation between several 

autoimmune diseases and CVD (12, 14, 15). To date, the best characterized 

autoimmune diseases associated with atherosclerosis include rheumatoid arthritis (RA), 

antiphospholipid syndrome and SLE.  
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RA and CVD.  RA is characterized by inflammation, mainly of the synovial joints. 

Increased expression of adhesion molecules, matrix metalloproteinases and pro-

inflammatory cytokines all contribute to bone and joint erosion in RA. These processes 

are hypothesized to contribute to accelerated atherosclerosis in patients with RA (15, 

16). Furthermore, an accumulation of CD4+ T cells within both the synovial fluid and 

atherosclerotic plaques point to a role for lymphocytes in propagating the atherosclerotic 

process (17). T cells from RA patients are unique in that they lack expression of the co-

stimulatory molecule CD28. As a result, they do not depend on the B7/CD28 pathway for 

co-stimulation (15). This expanded T cell population has been associated with clinical 

markers of atherosclerosis (15, 18) and a study by Gerli et al. (17) found that RA 

patients had increased CD4+CD28- T cells compared to control patients.  This was 

accompanied by increased intima-to-media thickness and arterial endothelial 

dysfunction. This study and others indicate that modulating T cell response would be an 

attractive therapeutic target in RA-associated CVD. 

APS and CVD.  Antiphospholipid syndrome is an autoimmune disease characterized by 

excessive production of antibodies against phospholipids, mainly cardiolipin and β2-

glycoprotein1 (β2GP1). This disease can cause dangerous blood clots due to increased 

formation of circulating immune complexes, and can lead to miscarriage and premature 

birth in pregnant women. Phospholipids play an integral role in cardiovascular disease 

and several studies have uncovered a link between APS and cardiovascular disease. In 

human studies, β2GP1 was found in the atherosclerotic plaque, mostly in association 

with CD4+ T cells (19).  Immune complexes composed of antibodies against 

oxLDL/β2GP1 are capable of being taken up via Fcγ receptors and facilitating the 

differentiation of macrophages into foam cells (20). Moreover, studies have shown that 

anti-cardiolipin antibodies contribute to accelerated atherosclerosis by inducing 

endothelial activation and the adherence of monocytes to the endothelium (21). In 
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addition to occurring alone, APS can also be presented in conjunction with SLE. The 

remainder of this introduction will highlight features relevant to SLE and SLE-accelerated 

cardiovascular disease (SACVD). 

Risk factors for SACVD. Several clinical studies have suggested that while traditional 

risk factors for cardiovascular disease—such as hypertension, dyslipidemia, and 

diabetes mellitus—can be present in the SLE population, these risk factors do not fully 

explain the increased prevalence of cardiovascular disease (9, 11, 22). Recent evidence 

suggests that a number of factors contribute to SACVD.  Therefore, it is not surprising 

that since the association of premature CVD with SLE was discovered, basic and pre-

clinical studies have been focused on determining the mechanism(s) driving this very 

serious co-morbidity in SLE patients.  

While dyslipidemia is a well-known risk factor for atherosclerosis, clinical studies 

have demonstrated that abnormal lipoprotein functions may contribute to SACVD. HDL 

is known for its participation in cholesterol efflux. In addition to efflux, HDL can also 

regulate oxidation of LDL and inhibit adhesion molecule expression adding to its anti-

atherogenic functions. However, under chronic inflammatory conditions such as SLE, 

normal HDL can lose its anti-oxidant capacity. This HDL is said to be more pro-

inflammatory and therefore thought to have deleterious effects in both traditional CVD 

and SACVD (23). A study using autoimmune gld mice detected a significant reduction in 

HDL cholesterol and paraoxonase-1 activity, independent of HDL biogenesis.  This 

phenotype was attributable to increased autoantibodies against apo-AI (24). Moreover, a 

clinical study observed that women with SLE have increased pro-inflammatory HDL, 

which was strongly associated with a 17-fold increased risk for CVD (25). Although not 

seen in this study, studies using other cohorts have found that SLE is also associated 

with an overall decrease in HDL and apoA-I levels and this decrease correlates with 
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increased SACVD risk. (26, 27)  The similar phenotypes seen in mice and human SLE 

studies could perhaps hint at HDL dysregulation as a culprit in SACVD. 

Mouse models of SLE and SACVD. Clinical studies have been extremely useful in 

determining predictors for SACVD risk. However, because SLE and atherosclerosis are 

complex diseases, human studies to elucidate causal mechanisms for autoimmune-

accelerated CVD could prove difficult.  As with many animal models for human disease, 

the availability of mouse models for SLE can be staggering.  These models include mice 

that develop SLE spontaneously, drug induced models of SLE and gene-knockout 

animals, such as the FcγRIIB-deficient mouse, which develops lupus, but only on a 

C57Bl/6 background (28).  To complicate the issue, many of the SLE mouse models 

only develop certain features of the human disease.  For example, the MRL-Faslpr mouse 

is a good model for the cutaneous skin lesions often seen in human SLE patients (29).  

However, except for the fluorouracil-induced model, skin lesions are not common in the 

other lupus animals (30).  In addition, few of the animal models develop the lupus-

associated arthritis seen in human SLE.  All of the animal models develop the 

characteristic anti-dsDNA antibodies and glomerulonephritis, although to varying 

degrees. (30, 31)   

 To date, there are relatively few mouse models specifically used to study the 

mechanism of SACVD (see Table 1). Published in 2004, the gld.apoE-/- mouse model, 

which contains an inactivating FasL mutation, was found to be more susceptible to 

atherosclerosis.  Aprahamian et al (32) proposed that impaired macrophage function and 

inadequate clearance of apoptotic bodies were responsible for the observed accelerated 

atherosclerosis in their model. An alternative mouse model of SACVD was generated by 

Feng and colleagues using apoE-/- Fas-/- mice (33).  The authors of this study observed 

that in addition to the presence of lupus-like disease and increased antibodies to 



 

 
 

Table 1. Mouse Models of SLE-Accelerated Atherosclerosis 

Animal 
Model Diet 

Increased 
Atherosclerosis 

Renal 
disease Cholesterol 

Spleno-
megaly 

Antibody 
Production 

Other 
Findings 

gld.apoE-/- 

(32) 

Western 
Diet 

(12 wks) 

 
Yes 

Yes ↓ Yes Yes  ↑ apoptosis 

 Impaired clearance of 
apoptotic debris 
 

Chow diet  
(12 wks) Yes Yes ↓ Yes Yes 

LDLr.Sle1.2.
3 

(34, 35) 

Western 
diet (8 

wks) (34) 
Yes Yes ↓ Yes Yes 

 ↑ T cell activation 

 ↑ T cell accumulation 
in plaque 

Chow diet 
(8 wks) 

(35) 
Yes Yes ↓ Yes Yes 

apoE-/-Fas-/- 

(33) 

Chow diet 
(5 mos.) 

 
Yes Yes ↓ Yes Yes 

 Ostopenia 

 Accumulation of 
apoptotic debris 

MRL/lpr. 
apoE-/- 

(36) 

Chow diet 
(24 wks) 

 
Yes n/a ↑ n/a Yes - 

cGVHD 
induced 
lupus in 

apoE-‘- mice 
(36) 

Chow diet 
(24 wks) 

Yes n/a ↔ n/a Yes 
 ↓ marginal zone B 

cells 
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oxidized phospholipids, apoE-/- Fas-/- mice also uniquely develop osteopenia while 

exhibiting increased apoptosis similar to gld.apoE-/- mice. Correspondingly, Ma et al. (36) 

combined apoE-/- mice with three separate models of SLE and reported similar results. 

While the abovementioned studies have significantly advanced our 

understanding of SACVD, one can argue that because SLE is likely a polygenic complex 

disease, it may be difficult to make human correlates from studies conducted in single-

gene knockout animals. The development of the NZM2410-derived congenic B6.Sle 

mouse strains has made it feasible to examine SLE and atherosclerosis together on the 

susceptible C57Bl/6 background. Through linkage analyses, Morel et al. (37) identified 

three major genomic intervals linked to SLE susceptibility in the NZM2410 mouse strain. 

Using these three chromosomal intervals, termed Sle1, Sle2 and Sle3, the investigators 

made a series of single, bi-, and triple congenic mice on the atherosclerosis susceptible 

C57Bl/6 background (38, 39). While having one or two intervals can lead to varying 

symptoms associated with SLE, all three intervals are necessary to display a fully 

penetrant SLE phenotype similar to the disease in humans.  

Our laboratory took advantage of this mouse strain and developed an animal 

model of SLE-accelerated atherosclerosis and demonstrated that transfer of SLE 

susceptibility by bone marrow transplantation increases atherosclerosis in LDLr-/- mice 

(34). The increase in atherosclerosis was later determined to be independent of diet and 

was accompanied by a three-fold increase in CD4+ T cell burden within the 

atherosclerotic lesion (35) (see Chapter 2). CD4+ T cells from the SLE-susceptible mice 

also displayed higher expression of activation markers such as CD69 (34) and CD40L 

(35). Further studies from our laboratory revealed that transfer of Sle3-associated T cell 

dysregulation alone to LDLr-/- mice was not sufficient to affect atherosclerotic lesion area 

but leads to exacerbated humoral immune responses that are frequently associated with 

atherosclerosis in LDLr-/- mice (40) (see Chapter 3). This could mean that all three 
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genetic loci are necessary to induce accelerated atherosclerosis in our model. Also, it 

could suggest that B cell hyperactivity and dysregulation may influence the T cell 

phenotype in SACVD. The latter would be an intriguing model as more data from recent 

literature show that certain B cell subsets may be pro-atherogenic in the absence of 

autoimmunity (41, 42). Insights from these and other animal models will be extremely 

useful in delineating mechanisms of SLE and SACVD pathogenesis as well as targets 

for treatment of SACVD. 

The Immune System in SACVD.  Cytokines in SACVD. Traditional pro-inflammatory 

markers have been associated with SACVD risk; these include increased serum levels 

of pro-inflammatory cytokines such as IFN-γ, IL-6, TNFα, IL-10 and TGF-β (43-45). 

While IFN-γ and TNFα are largely known as pro-atherogenic cytokines in both humans 

and mouse models it is still unclear whether IL-6 has strictly anti-atherogenic effects. 

One study showed that treatment of mice with IL-6 exacerbates atherosclerosis (46). 

However, another study by Schieffer et al. (47) showed that 1 year old apoE-/-IL-6-/- mice 

had increased plaque area, although the plaques contained less inflammatory cell 

infiltration, indicating that IL-6 may have multiple roles in disease pathogenesis.  

The traditional anti-inflammatory cytokines, IL-10 and TGF-β, have been shown 

to be protective in the more traditional mouse models of CVD: the apoE-/- and LDLr-/- 

mice (48-50). However, both SLE patients and most animal models exhibit elevated 

serum levels of IL-10 and this cytokine is thought to mediate SLE pathogenesis (51, 52).  

Therefore, it is not known whether responses to IL-10 in the context of SLE might 

exacerbate the atherogenic process in these patients.  Interestingly, we have shown that 

treatment of SLE-susceptible LDLr-/- mice with mycophenolate mofetil (MMF) (i.e. 

Cellcept®) leads to dramatic reductions in atherosclerotic plaque burden and significant 

decreases in circulating levels of IL-10 (53) (see Chapter V). Therefore, further 
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investigations regarding the role of IL-10 in SLE-accelerated atherosclerosis are 

certainly warranted. 

TGF-β, another largely anti-atherogenic cytokine, likewise remains a mystery in 

the context of SLE.  While it has been found that TGF-β is protective against 

atherosclerosis (48) and that TGF-β deletion, specifically in T cells, accelerates 

atherosclerosis (54, 55), it is not known how TGF-β may function in SLE.   Several 

studies have reported decreased TGF-β expression in lymphocytes of SLE patients, and 

one study found that peripheral blood mononuclear cells from SLE patients were 

resistant to exogenous TGF-β stimulation(56, 57). A study by Jackson et al. (58) 

examined the efficiency of TGF-β activation in SLE patients with early atherosclerosis. 

They found an inverse correlation between TGF-β activation and LDL levels along with 

IMT scores, where SLE patients with higher IMT and LDL levels had decreased TGF-β 

activation. These trends were not found in control patients, suggesting that this 

phenomenon was specific to SACVD. While many of the current studies show a 

favorable link between pro-inflammatory cytokines and SACVD, future studies are 

warranted in order to fully assess their role in the disease process. 

Immunomodulators in SACVD.  There have been very few published clinical trials that 

have examined the effect of immunomodulatory agents on SACVD.  Statins, while widely 

known for their cholesterol lowering capabilities, can also control inflammatory 

responses making it an attractive therapy for SACVD. There have been a number of 

trials attesting to the lipid lowering abilities of statins in patients with high risk of CVD. 

Furthermore, recent studies suggest that high dose statin therapy may halt or even 

reverse the atherosclerotic process in non-SLE patients (59). A review from our 

laboratory highlights clinical trials that have tested the potential benefits of these drugs in 

treating SACVD (60).Interestingly, although perhaps disappointingly, a complete 

analysis of data from the Lupus Atherosclerosis Prevention Study (LAPS) recently 
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revealed that while atorvastatin lowers cholesterol in SLE patients, it does not protect 

them from CVD (61). 

Investigations in our laboratory and others have also been undertaken to assess 

the usefulness of currently marketed immuno-modulatory agents in treating SACVD in 

mouse models. Treatment of gld.apoE-/- mice with simvastatin led to a significant 

reduction in autoantibody production, lymphoproliferation, lupus nephritis and 

atherosclerotic lesion area, compared to gld and apoE-/- control mice (62).  Despite the 

fact that this study suggests that immuno-modulatory statins could prove beneficial in 

treating both SLE and SACVD in mice, the same results have unfortunately not been 

found in other models (53, 61, 63). 

To test the hypothesis that therapies targeted toward CVD and SLE could 

ameliorate atherosclerotic disease progress and osteopenia in their model, Woo and 

colleagues treated apoE-/- Fas-/- mice with a statin and/or apo-AI mimetic (63).(63). 

Perhaps counter-intuitively, combination therapy led to an increase in plaque size.  

However, this was associated with a beneficial remodeling of the plaque with decreased 

macrophage infiltration and increased smooth muscle content. This is a pivotal study as 

it suggests that while inhibition of atherosclerosis progression may be the current 

readout of success in our human studies of SACVD, the role of therapeutics on 

modifying plaque stability may be of equal or greater importance.  

Our laboratory recently evaluated the effectiveness of atorvastatin and MMF 

treatment in ameliorating SACVD progression. We found that similar to human SLE 

trials, treatment of LDLr.Sle1.2.3 mice with atorvastatin reduced cholesterol levels with 

no effect on atherosclerosis. However, MMF treatment had an athero-protective effect 

with decreased CD4+ T cell migration into the lesion(53). While this is expounded upon in 

the manuscript, the results from this study and other human studies assessing the 

benefit of statin therapy in SLE imply that dysregulated lymphocytic activity could be the 
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predominant driver in SACVD and that lipid-lowering by itself cannot resolve these 

perturbations. These studies and others, again, emphasize the complexities associated 

with SACVD. 

The Role of B cells in SACVD. B cells are central to both SLE and atherosclerosis 

pathogenesis. The production of auto-antibodies is a hallmark feature of SLE and one of 

the main markers used to diagnose the disease. B cells can serve as antigen presenting 

cells, secrete cytokines which skew T helper cell responses, and modulate immune 

responses. While primarily known for their function in antibody production, B cells have 

been shown to have both antibody-dependent and independent functions in lupus. B cell 

deficiency or depletion in lupus-prone MRL/lpr mice was shown to inhibit disease 

progression while there was little change in lupus nephritis progression in mice with B 

cells that were unable to secrete antibodies (64). Additionally, when B cell deficient mice 

were infused with serum from mice with autoantibodies, little to no nephritis was 

observed thus, supporting the varied functions of B cells in SLE (65). In humans, B cells 

have been a long standing target in the race for therapeutic interventions. There have 

been several studies using antibodies toward B cells and B cell signaling mechanisms, 

most notable are the LUNAR and EXPLOROR trials which looked at the efficacy of 

rituximab, an antibody directed against CD20, in SLE patients with (LUNAR) or without 

(EXPLOROR) lupus nephritis (66). Despite favorable preliminary data, both trials failed 

to meet their target expectations.  However, there are several ongoing trials targeting B 

cells, which may prove to be promising in the treatment of lupus.  An exciting 

development occurred earlier this year when the Federal Drug Administration approved 

the first drug specifically for the treatment of SLE since 1955. Benlysta® (Belimumab) is 

a human neutralizing antibody targeted against B Lymphocyte Stimulator (BlyS). BlyS, 

also known as BAFF (B-cell activating factor), is important for B cell selection, survival 

and activation (67, 68). Clinical trials have reported an effective, albeit modest, reduction 
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in disease activity compared to patients given placebo. It will be interesting to see how 

this drug and other BlyS inhibitors that are currently being investigated stand up against 

SLE. 

The story of B cells in atherosclerosis has recently taking a sharp turn. While 

originally thought to be anti-atherogenic, recent data suggest that the effects of B cells 

on atherosclerosis may depend on their subtype and the antibody subclass they 

produce. An early study by Major et al. revealed that transfer of B cell deficient µMT 

hematopoietic cells into LDLr-/- mice led to aggravated atherosclerosis (69). Moreover, 

transfer of splenic B cells from apoE-/- mice to splenectomized mice resulted in protection 

from atherosclerosis (70). Studies from the laboratory of Joe Witztum have indicated that 

while titers of antibodies against oxidized LDL (oxLDL) correlate with cardiovascular 

disease risk, immunization of atherosclerosis-susceptible mice with oxLDL and 

malondialdehyde (MDA)-LDL resulted in protection against atherosclerosis through an 

anti-inflammatory Th2 mechanism.  Additionally, the authors showed that the 

atheroprotective effects of oxLDL and MDA-LDL are due to IL-5 mediated stimulation of 

B-1 B cells (71). It was also demonstrated that these B-1 B cells secreted natural IgM 

antibodies, including the T15/E06 idiotype, showing athero-protective effects by blocking 

oxLDL uptake through scavenger receptors (72) and controlling the immune response 

against apoptotic bodies containing oxidized phospholipids  Unfortunately, like many 

aspects of the immune system in atherosclerosis, things are not always how they first 

appear and the role of B cells in this disease is no different.  In fact, the most recent data 

seem to point to a pro-atherogenic role for B cells. Specifically, depletion of mature B 

cells using an anti-CD20 antibody resulted in reduced atherosclerosis, while transfer of 

B-2 but not B-1 cells resulted in aggravated atherosclerosis (41, 42). Taken together, 

these studies indicate that B cell subsets may have divergent effects on atherosclerosis 

pathogenesis. 
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The Role of T cells in SACVD. T cells have a major role in SLE initiation and 

development. Their importance is underscored in studies showing that T cell depletion 

ameliorates disease while lack of T cells inhibits SLE development (73-75).  

Furthermore, the T cell phenotype in SLE patients and mouse models is 

characteristically different than normal T cells. These cells display a spontaneous 

hyperactive phenotype where there is a low threshold for activation, permitting increased 

T-B cell cooperation, increased antibody production by B cells and increased cytokine 

secretion. Additionally, these cells are resistant to antibody induced cell death and have 

altered signaling mechanisms. (76-78) 

 Two subsets of T lymphocytes have recently garnered attention in both the SLE 

and atherosclerosis fields. The first type, termed regulatory T (Treg) cells, is a subset of 

suppressor T cells that control autoreactivity and maintain immunologic homeostasis. 

Tregs are characterized by the expression of CD25 and the transcription factor Foxp3. 

Impaired Treg function has long been associated with autoimmune disease development 

and progression. Their dysfunction and/or deficiency has been reported in human SLE 

and mouse models of SLE  suggesting that Treg dysfunction may be one of the driving 

forces in SLE pathogenesis (79-82). Along the same lines, Tregs have been associated 

with protection from atherosclerosis. Foxp3+ Tregs have been detected in the 

atherosclerotic lesions of both mice and humans (83).  Ait-Oufella et al. (84) first showed 

that Treg deficiency in LDLr-/- mice leads to enhanced atherogenesis and that transfer of 

Tregs into Treg-poor apoE-/- mice attenuated atherosclerosis and reduced T cell 

accumulation within the lesions of the mice. An additional study showed that transfer of 

Tregs to apoE-/- hosts also led to decreased atherosclerotic plaque size (85). 

Another T cell subset most recently implicated in the pathogenesis of SLE and 

atherosclerosis is the T helper 17 (Th17) cell. Th17 cells are regulatory CD4+ T helper 

cells characterized by their ability to secrete large amounts of the pro-inflammatory 
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cytokine IL-17. Studies have found elevated levels of IL-17 in the sera of patients with 

SLE and an increased frequency of IL17+ cells in the peripheral blood of SLE patients 

(86, 87).  Changes in the IL-17 secreting cell population have been noted in other animal 

models of SLE such as the SNF1 and BXD2, where it was shown that blockade of IL-17 

signaling reduces germinal center formation and antibody production (88, 89).  These 

studies all indicate a potential role for Th17 cells in autoimmune disease progression. 

The role of Th17 cells in the pathogenesis of atherosclerosis is not well defined. 

Increased circulating IL-17 was found in patients with coronary artery disease, and the 

authors from this study concluded that IL-17 and IFN-γ produced by T cells infiltrating the 

coronary artery induce pro-inflammatory responses in vascular smooth muscle cells 

(90). Similar to this finding in patients, Pejnovic et al. (91) found that mice doubly 

deficient in both apoE and IL-18 have increased atherosclerosis and unstable plaques 

due to an increase in the Th17 cell population.  Several studies have shown that 

blockade of IL-17A either through genetic deletion, retroviral inhibition or IL-17A 

neutralizing antibody, mediated a significant reduction in aortic lesion area and cellular 

infiltration (92, 93). Transfer of IL-17 receptor deficient bone marrow into LDLr-/- host 

caused a 46% decrease in lesion area along with a decrease in macrophage content in 

the lesion (94). However, a divergent study by Taleb et al. (95) found that loss of 

suppressor of cytokine signaling 3 (SOCS3) expression leads to an IL-17-dependent 

reduction in lesion size. Additionally, IL-17 administration in mice reduced vascular T cell 

infiltration and atherosclerosis development thus indicating an athero-protective role for 

Th17 cells and IL-17. To complicate the issue even more, a recent study by Cheng et al. 

(96) found that the host origin of the IL-17 neutralizing antibody used in mice can lead to 

differential effects on lesion area.  Specifically, mice treated with an anti-IL-17 antibody 

derived from rat led to a decrease in lesion area, while neutralizing antibody generated 

in mouse had no significant effect on atherosclerosis despite reduced IL-17 serum 
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levels.  The role of IL-17 in atherosclerosis has been extensively reviewed by Taleb et al. 

(97). Given the disparity in results from studies of this fascinating cytokine, it is obvious 

that additional studies are warranted to shed light on the role of IL-17 in the 

atherosclerotic process.  

Summary and Statement of the Problem 

This introduction highlighted data from recent studies from our laboratory and 

others investigating the role of immunity in SLE and atherosclerosis. While the link 

between autoimmunity and cardiovascular disease has been firmly established, more 

work needs to be done in order to fully understand the mechanisms of these co-

morbidities. Commonalities between the two diseases are undeniable. As outlined in 

Figure 1, both processes deal with dysregulation, inflammation and ultimately lead to 

end organ disease. However, the complex nature of both of these diseases makes it 

hard to study them together. For instance, atherosclerosis is thought to be a Th1 

mediated disease process; however studies show that under hypercholesterolemic 

conditions, and as atherosclerosis progresses, a Th2 dominant environment is observed 

(98, 99).  

In the following chapters, we attempt to elucidate the mechanism of SACVD in 

our model. The studies outlined in chapters 3-5 are an extension from our work 

summarized in Chapter 2 as we try to understand the role of T cell dysregulation in SLE-

accelerated atherosclerosis. Through these studies, we provide evidence that in our 

mouse model, T cells play an indispensable role in mediating and sustaining SACVD, 

potentially through their hyper-migratory capacity; and that modulating their function 

could be the key to effective treatment of both diseases. 
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Figure 1.  Immune mechanisms in common between SLE (left side of triangle) and 
atherosclerosis (right side of triangle).  Both diseases involve immune dysregulation and 
increased inflammation leading ultimately to end organ disease. 
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CHAPTER II* 

 

Accelerated atherosclerosis is independent of feeding high fat diet in systemic lupus 
erythematosus-susceptible LDLr-/- mice. 

 
 
 

Introduction 
 
 

 Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory 

disease characterized by the production of a wide range of autoantibodies. Clinical 

complications because of SLE usually result in end-organ disease such as 

glomerulonephritis, arthritis, vasculitis and various neurological disorders(100). First 

recognized as a serious complication in SLE over 30 years ago, atherosclerosis has 

gained interest as a major cause of mortality in patients with lupus (100-103). In fact, 

with all other risk factors being equal, including hypertension, hyperlipidemia, diabetes 

and obesity, the risk of coronary events in patients with SLE is approximately eight times 

greater when compared with non-SLE controls and approximately 30% of deaths in SLE 

are atherosclerosis related (102, 103). Therefore, understanding how the presence of 

SLE exacerbates the atherosclerotic condition is essential to optimize risk reduction for 

cardiovascular disease (CVD) while treating the SLE-associated inflammation. 

 Atherosclerosis, like SLE, is a disease involving many cellular processes, and 

has classically been associated with hypercholesterolemia. A large body of evidence 

also supports inflammation and immunity in the pathogenesis of CVD. It is well known 

that macrophages and T cells are present in all stages of atherosclerotic lesions and 

promote inflammation by producing various cytokines, attracting smooth muscle cells 

                                                
*
Most of the data presented in this chapter were published in (35). Unpublished data presented 
here are denoted with an * preceding the paragraph. 
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and other lymphocytes and increasing plaque vulnerability (104). B-cell responses are 

also thought to be involved in the pathogenesis of atherosclerosis and for the most part 

are thought to be protective. Although the involvement of acquired immunity in 

atherosclerosis is strongly supported by these studies, mechanisms appear to be cell 

type dependent and multifaceted. 

 A recent study by our laboratory described the development of an animal model 

for accelerated atherosclerosis in the face of SLE. We made LDLr−/− mice susceptible to 

SLE by transferring hematopoietic cells from the congenic B6.Sle1.2.3 mouse strain. 

This unique animal model of human SLE was developed by placing three lupus-

susceptibility gene intervals identified in NZM2410 mouse strain on the C57Bl/6 

background (37). Using this approach, we showed that making LDLr−/− mice susceptible 

to SLE increased atherosclerosis in the aortic root and increased inflammatory cell 

accumulation in lesions. However, in general, patients with SLE do not suffer from the 

severe hypercholesterolemia observed in LDLr−/− mice fed a high fat diet (e.g., 

cholesterol levels >500 mg/dL). Therefore, the current study was conducted to show that 

exacerbation of atherosclerosis in lupus-susceptible mice occurs under conditions of 

more moderate dyslipidemia as that observed in LDLr−/− mice on a normal chow diet 

(total cholesterol of approximately 200 mg/dL) and that overt accumulation of 

atherogenic lipoproteins (i.e., VLDL and LDL) can enhance SLE disease. 

 

Materials and Methods 

 

Mice. All mice used in these studies have been backcrossed onto the C57Bl/6 

background. C57Bl/6 and LDLr-/- mice were originally obtained from The Jackson 

Laboratory and are maintained in our colony. The SLE congenic B6.Sle1.2.3 strain has 

been described and characterized extensively (37-39, 105-108). The B6.Sle1.2.3 mice 
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are essentially 97% genetically homologous to the C57Bl/6 strain with the NZM2410-

derived lupus susceptibility loci accounting for approximately 3% of the genome. All mice 

are maintained in microisolator cages and used according to the guidelines and the 

approval of the Vanderbilt University Institutional Animal Care and Use Committee. 

Production of radiation chimeras. Transfer of the wild type or lupus-susceptible bone 

marrow has been previously described (34). 

Atherosclerosis studies. LDLr-deficient animals received either C57Bl/6 or B6.Sle1.2.3 

bone marrow. Sixteen weeks following transplantation, one half of the animals in each 

group were started on a high fat Western diet (21% milk fat and 0.15% cholesterol) for 8 

weeks. The remaining mice were kept on chow diet for the same period of time. At the 

end of this time, animals were sacrificed and analyzed for the extent of atherosclerosis 

and the presence and severity of symptoms of SLE. 

Immunohistochemistry. Staining for macrophages (Moma-2) and CD4+ T cells was 

performed as previously described (34). CD11c staining for dendritic cells was 

conducted using a rat anti-CD11c primary antibody (BD Biosciences, San Jose, CA 

USA) followed by incubation with Texas red-conjugated anti-rat IgG (Vector Labs, 

Burlingame, CA, USA). Cells were visualized by fluorescent microscopy and quantified 

by counting the number of positive cells in lesions. 

ELISAs. Serum titers for antibodies against oxLDL and dsDNA were conducted as 

previously described (34). ELISAs for antibodies against β2-glycoprotein I (β2GP1) was 

performed by coating a 96-well Maxisorb plate with 10 µg/mL of purified β2GP1 in PBS. 

Plates were blocked and mouse serum was added at a dilution between 1:1000 and 

1:5000 and incubated overnight at 4 °C. Plates were washed with 0.5% Tween/PBS and 

incubated with HRP conjugated goat anti-mouse IgG (Promega, Madison, WI, USA) for 

1 h at RT. Reactions were developed using the TMB substrate (BD Biosciences). 
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Serum lipoprotein analyses. Total serum cholesterol and triglyceride were measured 

in fasted mice using a colorometric assay as previously described (34). Fast 

performance liquid chromatography (FPLC) was conducted by separating lipoproteins on 

a Superose 6 column (Amersham Promega, Piscataway, NJ, USA) followed by 

cholesterol measurement in each fraction as described (34, 69). 

Measurement of systolic blood pressure. Systolic blood pressure was measured 

using a tail cuff BP-2000 instrument (Visitech Systems, Apex, NC, USA) on conscious, 

preconditioned mice as described (34). 

Purification and activation of CD4+ T cells. CD4+ T cells from the spleens of C57Bl/6 

and B6.Sle1.2.3 congenic mice were isolated by positive selection using magnetic beads 

conjugated to anti-CD4 antibodies according to the manufacture’s protocol (Miltenyi 

Biotec, Auburn, CA,USA). Cells were then stimulated with Phorbol myristate acid (PMA) 

(10ng/ml) and ionomycin (1µg/mL) for 2 h at 37 °C and 5% CO2. Cells were then 

washed, stained with anti-CD40L antibody (BD Biosciences) and analyzed by flow 

cytometry unless otherwise indicated. 

*Western blotting. CD4+ T cells were isolated and stimulated as referenced above. Cells 

were then harvested and nuclear and cytoplasmic fractions prepared using the Thermo 

Scientific NE-PER kit. Nuclear and cytoplasmic fractions were loaded on an SDS-PAGE 

gel and transferred to a nitrocellulose membrane. The membrane was blocked in 3% 

milk/PBS-T, and incubated with the primary antibody for one hour. This was followed by 

incubation with an anti-mouse IgG-HRP (Promega, Madison, WI) secondary antibody for 

45 minutes. Primary antibodies: mouse anti-NFATc1 or mouse anti-NFATc2 (both from 

BD Pharmingen). 

Statistical analyses. Statistical analyses were conducted using PRISM 5.0 software 

(GraphPad Software Inc., La Jolla, CA, USA). For data showing a normal distribution, 

significant differences were calculated using an ANOVA with a Bonferroni post-test. For 
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data that require a nonparametric test, a Kruskal–Wallis test was conducted with a 

Dunns post-test. 

Results 

 

High fat Western diet increases dsDNA antibody titers and increases mortality in 

lupus-susceptible LDLr−/− mice. 

  Lethally irradiated LDLr−/− mice received either C57Bl/6 or lupus-susceptible 

B6.Sle1.2.3 congenic bone marrow. Recipient mice are hereafter referred to as LDLr.B6 

and LDLr.Sle1.2.3, respectively. Sixteen weeks following transplantation, mice were 

either fed a high fat Western diet for eight additional weeks or left on normal rodent 

chow. LDLr.Sle1.2.3 mice fed with high fat Western diet had a 37% mortality rate, 

whereas LDLr.Sle1.2.3 mice on a chow diet only showed a 10% mortality rate (Figure 

2A). Control LDLr.B6 mice tolerated both diets with a 100% survival rate at the end of 

the 24-week study. At the time of sacrifice, the LDLr.Sle1.2.3 mice had significantly 

higher titers of anti–double stranded DNA (anti-dsDNA) serum antibodies compared with 

LDLr.B6 controls (Figure 2B). This was evident independent of diet. In addition, the 

LDLr.Sle1.2.3 mice on Western diet had significantly increased anti-dsDNA antibodies 

compared with chow fed LDLr.Sle1.2.3 mice. Body weight at the time of sacrifice did not 

differ between the LDLr.B6 and LDLr.Sle1.2.3 mice in either diet group (Figure 2C). The 

data confirm that the SLE phenotype was transferred to the LDLr-deficient mice. In 

addition, they show that feeding lupus-susceptible mice a high fat Western diet 

increases mortality and disease severity as determined by dsDNA autoantibody titer. 

 Increased immunoglobulin deposition in kidneys correlated to the dsDNA 

antibody titer in that LDLr.B6 mice on chow diet had the least staining and LDLr.Sle1.2.3 

mice on Western diet had the most staining (Figure 3A). Similarly, urine protein was the 

greatest in LDLr.Sle1.2.3 mice on Western diet (Figure 3B). Finally, systolic blood 
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pressure in LDLr.Sle1.2.3 mice on a Western diet was significantly greater than 

LDLr.Sle1.2.3 mice on chow or LDLr.B6 mice on either Western or chow diet (Figure 

3C). Collectively, these data suggest that renal function was decreased in LDLr.Sle1.2.3 

mice on high fat diet. 

 

 

 

 

 

 
Figure 2. Severe dyslipidemia increases mortality and serum titers of dsDNA antibodies in 
LDLr.Sle1.2.3 mice. (A) Percentage of mice (total of 9–13 mice per group) surviving following 
feeding chow diet (squares) or Western diet (circles) for 8 weeks. (B) Serum titers for anti-dsDNA 

antibodies in LDLr.B6 (solid symbols) and LDLr.Sle (open symbols) mice fed a chow or Western 
diet. (C) Body weights for LDLr.B6 (solid symbols) and LDLr.Sle (open symbols) mice fed a chow or 

Western diet. *p < 0.05 as determined by one-way ANOVA. Data represent two identical 
experiments. 
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Figure 3. Immune complex deposition, urine protein and blood pressure are increased in 
LDLr.Sle1.2.3 mice fed high fat diet. (A) LDLr.Sle mice fed high fat diet exhibit increased immune 

complex deposition in glomeruli as detected by immunohistochemistry. Shown is one representative 
mouse per group. Kidney sections from a total of five mice per group were analyzed with similar 
results. (B) Urine protein grade in mice (3–7 mice per group) was determined by Chemstix at the 

time of sacrifice. LDLr.Sle mice (open bars) have increase urine protein compared with LDLr.B6 
controls (closed bars). (C) LDLr.Sle mice (open circles) on Western diet have increased systolic 

blood pressure compared with LDLr.Sle mice on chow diet (open squares) and LDLr.B6 mice fed 
chow (closed squares) or Western diet (closed circles). *p < 0.05 as determined by one-way 
ANOVA. Data represent two identical experiments. 

Table 1 

    Serum cholesterol and triglyceride 

Group N 
Cholesterol mg/dL Triglyceride mg/dL 

 (±SEM) (±SEM) 

 Chow diet    

   LDLr.B6 11 230.4 (11.3) 76.6 (13.0) 

   LDLr.Sle1.2.3 12 239.4 (10.7) 86.2 (12.5) 

 Western diet    

   LDLr.B6 10 971.4 (57.4) 311.6 (10.6) 

   LDLr.Sle1.2.3 10 767.1 (73.3)
a
 201.8 (26.6)

a
 

 a
P < 0.05 compared with LDLr.B6 mice on Western diet. 
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Lupus-susceptibility increases atherosclerosis in LDLr-deficient mice in the 

absence of overt dyslipidemia.  

 Our previous study showed that transfer of lupus susceptibility increases 

atherosclerosis in LDLr-/- mice on a Western diet (34).  However, feeding high fat diet in 

this animal model results in extreme elevations in circulating cholesterol; often greater 

than 1,000 mg/dL. This level of cholesterol would not be considered physiological to the 

SLE patient. We hypothesized that SLE could exacerbate atherosclerosis under more 

physiologic levels of serum lipoproteins (i.e., approximately 200 mg/dL). Measurement of 

atherosclerotic lesions in the proximal aorta showed that LDLr.Sle1.2.3 mice had 

increased atherosclerosis compared with LDLr.B6 controls independent of diet (Figure 

4A). In fact, the increase in atherosclerosis in LDLr.Sle1.2.3 mice on chow compared 

with controls was actually greater (approximately 2.0-fold) than the difference between 

the mice fed Western type diet (approximately 1.3-fold). Analysis of the cellular 

composition of plaques by immunohistochemistry showed similar macrophage (Moma-2) 

and dendritic cell (CD11c) content among all groups of mice (data not shown). However, 

CD4+ T-cell content was increased approximately threefold in the LDLr.Sle1.2.3 mice 

compared with LDLr.B6 animals (Figure 4B). This increase was independent of diet 

because both chow and Western diet fed animals showed similar percentages of CD4+ T 

cells in lesions. Stimulation with PMA and ionomycin showed an increase in CD40L 

expression in B6.Sle1.2.3 primary CD4+ T cells compared with wild type C57Bl/6 mice 

(Figure 4C). 

 The increase in atherosclerosis in LDLr.Sle1.2.3 mice fed a chow diet occurred in 

the absence of changes in serum cholesterol or triglyceride levels (Table 2) or 

cholesterol-containing lipoprotein distribution as determined by FPLC (Figure 5, left 

panel). Mice fed a Western diet showed increased serum cholesterol and triglycerides 

compared with chow fed mice (Table 2). In addition, as reported in our previous study 
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Figure 4. Transfer of lupus-susceptibility to LDLr-deficient mice increases atherosclerosis 
independent of diet. (A) Average lesion area as determined by oil-red-O staining in LDLr.B6 
(closed bars) and LDLr.Sle (open bars) mice. Lesion quantitation was performed on 9–11 mice in 
each group. Shown is data from two identical experiments. (B) Detection of CD4

+
 T cells in lesions 

of LDLr.B6 (closed bars) and LDLr.Sle (open bars) on chow or Western diet. Positive cells are 
expressed as a percent of all lesion cells as determined by DAPI staining. (C) Representative 

histograms of CD40L expression by stimulated T cells.Primary CD4
+
 T cells were isolated from 

C57Bl/6 (B6) and B6.Sle1.2.3 (Sle) mice and stimulated for 2 h with PMA and ionomycin. Shown is 
one of three experiments with similar results. 
 

 
 
 

(34), serum cholesterol and triglycerides were slightly, but significantly, decreased in 

LDLr.Sle1.2.3 mice. The difference in total cholesterol was associated with decreased 

non–high density lipoprotein (HDL) cholesterol (Figure 5, right panel). These data show 

that transfer of SLE to LDLr-/- mice can increase atherosclerosis independent of large 

increases in total serum cholesterol or triglycerides associated with high fat diet feeding. 

In addition, they show that increased numbers of CD4+ T cells in the lesions of 

LDLr.Sle1.2.3 mice is also independent of severe hyperlipidemia. 
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Lupus susceptibility increases oxLDL and phospholipid antibodies in LDLr-

deficient mice.   

 To examine the effect of diet on production of immunoglobulin against modified 

LDL and phospholipid, we measured titers of oxLDL- and β2-glycoprotein I (β2GP1)–

specific antibodies in sera of control and SLE-susceptible LDLr-/- mice. Table 3 contains 

the anti-oxLDL total antibody and IgG isotype titers from chow and Western diet fed 

mice. In general, the LDLr.Sle1.2.3 mice had higher total antibody, IgG1 and IgG2a titers 

in serum compared with LDLr.B6 mice. This increase in oxLDL-specific IgG was 

independent of diet feeding (Table 3). In addition, chow fed LDLr.Sle1.2.3 mice had 

significantly higher anti-oxLDL IgM levels compared with LDLr.B6 mice. The 

LDLr.Sle1.2.3 mice fed a Western diet had increased, but not significantly higher, levels 

of anti-oxLDL IgM. 

 To determine whether the antibody response to oxLDL was associated with a 

Th2 or a Th1 T helper phenotype, we calculated the IgG1 (Th2) to IgG2a (Th1) isotype 

ratio. Independent of diet, the LDLr.Sle1.2.3 mice had an increased IgG1/IgG2a ratio 

indicating that the immune response of these animals was skewed toward a Th2 

phenotype. Additionally, the LDLr.B6 mice fed a Western diet appeared to have more of 

a Th1 type phenotype than LDLr.B6 mice on chow. 

 Antibodies to the phospholipid β2GP1 are present in patients with SLE and the 

anti-phospholipid syndrome (109, 110). These antibodies are thought to be associated 

with increased risk of CVD. Therefore, we determined the serum titer of β2GP1 

antibodies in our chow and Western diet fed animals. LDLr.Sle1.2.3 mice fed with chow 

diet had significantly higher total antibody, IgM and IgG1 specific for β2GP1 compared 

with chow fed LDLr.B6 mice (Table 4). IgG2a showed a trend toward increased levels in 

LDLr.Sle1.2.3 mice, but did not reach statistical significance. In mice fed with Western 

diet, β2GP1-specific IgG1 and IgG2a were significantly increased in LDLr.Sle1.2.3 mice 
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compared with control LDLr.B6 mice. Analysis of the IgG1/IgG2a ratio showed similar 

trends as seen with the oxLDL antibody titers. In general, the LDLr.Sle1.2.3 mice had 

more of a Th2 phenotype compared with LDLr.B6 mice, independent of the diet fed. 

Additionally, LDLr.B6 mice fed a high fat diet appeared to have more of a Th1 

phenotype. Collectively, these data indicate that there are quantitative and qualitative 

differences in the immune response to vascular disease–associated antigens between 

the LDLr.B6 and LDLr.Sle1.2.3 mice. 

 

 
  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. FPLC analyses of serum cholesterol lipoprotein distribution. Lipoproteins were 

separated by size-exclusion chromatography and assayed for cholesterol as described in ‘Materials 
and Methods’. Serum from LDLr.B6 (closed circles) and LDLr.Sle (open circles) was pooled before 
undergoing separation and analysis (9–11 mice per group). Similar profiles were obtained from 
individual mice. 
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Table 3

Groupa Total Ig (±SEM)b IgM (±SEM) IgG1 (±SEM) IgG2a (±SEM) IgG1/IgG2a (±SEM)

Chow

   LDLr.B6 0.402 (0.104) 0.770 (0.114) 0.302 (0.093) 0.431 (0.097) 0.661 (0.020)

   LDLr.Sle1.2.3 0.900 (0.128)c 1.267 (0.102)c 0.956 (0.095)c 0.743 (0.069)c 1.307 (0.101)c

Western

   LDLr.B6 0.398 (0.108) 1.01 (0.180) 0.236 (0.090) 0.527 (0.131) 0.399 (0.059)c

   LDLr.Sle1.2.3 0.839 (0.090)c 1.335 (0.069) 1.058 (0.024)c 0.944 (0.006)c 1.119 (0.022)d

a n = 6-9 mice per group
b 

average OD450nm ± SEM.
c p<0.05 compared to LDLr.B6 mice on the same diet as determined by one way analysis of variance.
d  p<0.05 compared to LDLr.B6 mice on chow diet as determined by one way analysis of variance.

Serum titres of oxLDL-specific antibodies

Table 4

Groupa Total (±SEM)b IgM (±SEM) IgG1 (±SEM) IgG2a (±SEM) IgG1/IgG2a (±SEM)

Chow

   LDLr.B6 0.149 (0.033) 0.120 (0.030) 0.128 (0.061) 0.158 (0.065) 0.981 (0.187)

   LDLr.Sle 0.690 (0.180)c 0.543 (0.172)c 0.588 (0.115)c 0.370 (0.122) 2.040 (0.304)c

Western

   LDLr.B6 0.467 (0.186)d 0.253 (0.101) 0.069 (0.024) 0.179 (0.063) 0.474 (0.084)

   LDLr.Sle 0.514 (0.140) 0.402 (0.089) 0.722 (0.051)c 0.635 (0.093)c 1.270 (0.219)c

a n = 6-8 mice per group.
b average OD450nm ± SEM.

c p<0.05 compared to LDLr.B6 mice on the same diet as determined by one way analysis of variance.
d  p<0.05 compared to LDLr.B6 mice on chow diet as determined by one way analysis of variance.

Serum titres of β2-GPI-specific antibodies
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* T cells from B6.Sle mice display dysregulated phenotypes similar to those seen 

in SLE patients. 

 T cells are central to the immune system and abnormalities associated with this 

cell type can lead to a number of diseases. Evidence from a number of studies has 

shown that T cells from SLE patients harbor significant signaling defects which impact 

their function and correlate with disease severity (76-78). Given our results of increased 

T cell hyperactivation and infiltration into the lesion, we analyzed T cells from 

B6.Sle1.2.3 mice to determine if they harbored similar T cell defects as observed in SLE 

patients. 

  Th17 cells –named  for their ability to secrete large amounts of IL-17—are a 

highly pro-inflammatory T cell subset and an imbalance between regulatory T cells 

(Tregs) and Th17 cells is thought to drive the progression of many inflammatory 

diseases including SLE and atherosclerosis (111-115). In SLE, the Treg compartment of 

both patients and mouse models is known to be impaired. Conventional 

CD4+CD25+Foxp3+ Tregs were found to be decreased and/or dysfunctional in humans 

and mice, including our model (116-119).  Induced Tregs (iTregs), which are induced in 

the periphery from naïve CD4+CD25- T cells by IL-2 and transforming growth factor β 

(TGF-β) administration (120-122), are another Treg subset known to be important for 

maintaining immunologic tolerance. While these regulatory T cell populations have been 

investigated in other disease models, their status in our SLE model was unknown. These 

studies compelled our laboratory to examine these regulatory populations in B6.Sle1.2.3 

mice. Our analyses revealed that B6.Sle1.2.3 mice displayed decreased TGF-β-induced 

Tregs compared to B6 mice (Figure 6B). Conversely, B6.Sle1.2.3 mice had a two-fold 

increase in CD4+IL-17+ T cells, which was similar to other mouse models of autoimmune 

disease (Figure  6A).These data provide evidence that regulatory T cell populations are 



 

31 
 

imbalanced in our model and that this imbalance could partly facilitate the accelerated 

atherosclerosis in the LDLr.Sle1.2.3 mice. 

 Given the similarities between our mouse model and observations in SLE 

patients, we decided to further characterize the T cell defect in B6.Sle1.2.3 mice. We 

first examined Nuclear Factor of Activated T-cells (NFAT) expression. NFAT is a calcium 

dependent transcription factor whose translocation to the nucleus leads to the 

transcription of target genes involved in T cell responses, including IL-2 and CD40L (77). 

Studies in SLE patients have shown that there is increased nuclear accumulation of 

NFAT, in the absence of its transcriptional co-activator, activator protein-1, which is 

associated with increased CD40L expression and decreased IL-2 expression  (123, 

124). In our laboratory, we isolated CD4+ T cells from control B6 mice and B6.Sle1.2.3 

mice with active disease and stimulated these T cells in vitro with PMA and ionomycin. 

We found that after stimulation, the nuclear fraction from B6.Sle1.2.3 T cells contained 

increased NFATc1 and NFATc2 nuclear protein expression compared to B6 mice 

(Figure 7A). Along with increased nuclear NFAT expression, we also observed 

increased CD40L expression (Figure 4C) and decreased IL-2 levels (Figure 7B). These 

results illustrate that T cells from B6.Sle1.2.3 possess similar signaling defects as 

observed in SLE patients, making it an even more relevant model to study the 

pathogenesis of SLE accelerated atherosclerosis. 
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Figure 6. iTreg differentiation is abrogated in B6.Sle1.2.3 mice while Th17 cells are increased. 
(A) Representative FACS plot of Tregs. CD4

+
CD25

-
 splenocytes were stimulated with plate bound α-

CD3 and α-CD28 for 72 hours in the presence or absence of TGF-β (2ng/ml). Plots are gated on CD4
+ 

cells. In the left panel, the p-value is less that 0.05 compared to B6 mice. (n=3-4 mice per group).  (B) 

Representative FACS plot of Th17 cells. Gated on TCRβ
+
CD4

+
 cells. One of  three repeated 

experiments.  
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Figure 7. B6.Sle1.2.3 T cells have decreased nuclear NFAT expression and decreased IL-2 
secretion upon stimulation. (A) Representative blot of nuclear NFATc2 (top panel) and NFATc1 

(bottom panel) expression in CD4
+
 T from B6 and B6.Sle1.2.3 (SLE) mice. Splenocytes were harvested 

from mice and CD4
+ 

cells isolated by magnetic separation. Isolated cells were cultured with PMA and 
ionomycin. NFAT, β-actin and TATA binding protein (TBP) expression was detected by Western blot. 
One of  at least three repeated experiments. (B) IL-2 secretion by CD4

+
 T cells stimulated for 48 hours 

with PMA and ionomycin. Closed bars represent B6 while open bars represent B6.Sle1.2.3 mice. N ≥ 3 
mice per group. Experiment was repeated at least twice with similar results. 
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Discussion 

 

 Individuals suffering with SLE are at increased risk for developing accelerated 

forms of atherosclerosis and vascular disease. Because many patients with SLE do not 

fall into the traditional risk group for atherosclerosis, the underlying etiology for its 

acceleration remains largely unknown. Until recently, SLE and atherosclerosis studies 

have been hampered by the lack of an appropriate animal model that simultaneously 

develops both diseases.However, recent studies by our laboratory (34) and others (32, 

62, 125) have reported that transfer of the SLE phenotype to atherosclerosis-susceptible 

mouse strains (e.g., LDLr-/- or apoE-/- mice) results in dysregulated immunity, chronic 

inflammation and increased atherosclerotic lesions. However, we also observed that 

when placed on the traditional atherosclerosis-inducing Western diet, the LDLr.Sle1.2.3 

animals exhibited increased mortality compared with the LDLr.B6 controls with the first 

animals dying as early as 2 weeks following diet initiation. Mortality by the end of the 8-

week feeding period was approximately 40%. Whether this increased death was due to 

renal failure, heart failure or both is currently unknown. However, in the surviving LDLr. 

Sle1.2.3 mice, urine protein was elevated indicating the presence of some degree of 

kidney disease. 

 In general, patients with SLE do not develop the severe dyslipidemia observed in 

LDLr-/- mice fed with Western diet (cholesterol ≥600 mg/dL). In addition, increased serum 

cholesterol is not predictive of accelerated atherosclerosis in patients with SLE.(126, 

127) Therefore, we decided to test the hypothesis that the transfer of SLE is sufficient to 

exacerbate atherosclerosis in the presence of more physiological levels of serum 

cholesterol (approximately 200 mg/dL). To test this hypothesis, we transferred lupus-

susceptible or resistant bone marrow to LDLr-/- mice and fed the mice either chow or 

high fat Western diet. In line with our previous study, we observed a 37% mortality rate 
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at the end of 8 weeks in LDLr.Sle1.2.3 mice fed with Western diet compared with 

LDLr.Sle1.2.3 mice fed with chow diet or LDLr.B6 mice fed either diet (Figure 2A). In 

addition, LDLr.Sle1.2.3 mice fed a high fat diet had higher serum titers of dsDNA 

antibodies compared with LDLr.B6 mice on high fat and LDLr.Sle1.2.3 mice on chow 

diet. These data are in line with previous work reporting that lupus-susceptible NZB/W 

F1 mice fed a high fat diet develop increased anti-dsDNA and cardiolipin antibody titers 

(128, 129), increased MHC class II expression on accessory cells (130), increased 

cytokine production and more severe lupus nephritis (131). However, the dietary effects 

in these studies were observed over a period of 2–9 months of feeding. In the current 

study, the LDLr.Sle1.2.3 mice were only fed diet for 2 weeks when the animals started 

dying. In two separate studies, Lin et al. (129, 130) reported a decreased life span in the 

NZB/W F1 mice fed with high fat diet. The average life span of these animals was 285 

days compared with the low fat fed controls, which lived for an average of 389 days. 

Because we were interested in measuring atherosclerosis, we did not allow the mice to 

proceed past 8 weeks of diet feeding. However, by 6 weeks of diet feeding, the 

LDLr.Sle1.2.3 mice on high fat diet had already suffered significant mortality compared 

with the other three groups indicating that the life span of these animals was greatly 

decreased. Because the LDLr.Sle1.2.3 mice fed a high fat diet had dsDNA titers even 

greater than the chow fed LDLr.Sle1.2.3 mice, we were not surprised to see that the 

immunoglobulin deposition, urine protein grade and systolic blood pressure were also 

elevated in these animals (Figure 3). Although most individuals with SLE do not exhibit 

total serum cholesterol levels greater than 200 mg/dL, the fact that the LDLr.Sle1.2.3 

mice fed high fat diet have even greater disease symptoms compared with the 

LDLr.Sle1.2.3 mice on chow diet suggests that severe dyslipidemia can further 

exacerbate SLE disease in these animals. Certainly, these data are consistent with the 
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clinical evidence showing that elevated serum total cholesterol in patients with SLE is 

associated with increased kidney pathology and death (132). 

 Examination of atherosclerosis in the proximal aorta of the mice showed that 

increased atherosclerosis in LDLr.Sle1.2.3 mice compared with control LDLr.B6 controls 

was independent of high fat diet feeding (Figure 4). In fact, the LDLr.Sle1.2.3 mice fed 

chow diet showed an even greater increase over controls compared with their high fat 

fed counterparts. Additionally, the average serum total cholesterol and triglyceride levels 

did not differ between the LDLr.B6 and LDLr.Sle1.2.3 mice on chow diet and the serum 

lipoprotein distribution of cholesterol was similar (Figure 5). However, the LDLr.Sle1.2.3 

mice fed a high fat diet had decreased serum cholesterol and triglyceride with decreased 

non-HDL cholesterol. The accumulation of CD4+ T cells in the atherosclerotic lesions of 

LDLr.Sle1.2.3 was similarly not dependent of high fat diet feeding and CD4+ T cells 

isolated from chow fed B6.Sle1.2.3 mice show increased CD40L expression upon 

stimulation with PMA and ionomycin compared with C57Bl/6 controls. Collectively, these 

data suggest that the autoimmune dysregulation and perhaps chronic inflammation have 

a greater influence on atherosclerosis than serum cholesterol; a more traditional risk 

factor for atherosclerosis. More importantly, the data show that non-physiologically high 

serum cholesterol levels are not necessary to exacerbate atherosclerosis in the setting 

of lupus. 

 Although the lipoprotein distribution of cholesterol did not differ between LDLr-/- 

mice receiving either normal or lupus-susceptible bone marrow, we cannot exclude the 

possibility that the LDLr.Sle1.2.3 mice harbor dysfunctional HDL. HDL functions not only 

in reverse cholesterol transport but also acts to prevent oxidation of LDL (133). When 

inflammation becomes chronic, HDL appears to lose its capacity to prevent the formation 

of oxLDL. In SLE, it has been shown that HDL function is abnormal in 45% of patients 

compared with only 4% of control (23). Therefore, in the SLE mice, it will be interesting 
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to determine whether we see similar decreases in HDL’s anti-oxidative abilities 

compared with normal control animals. 

 Patients with SLE are known to develop autoantibodies to many atherosclerosis-

associated antigens, such as oxLDL, β2-glycoprotein I, cardiolipin (134) and antibodies 

to atheroprotective proteins such as the HDL-associated apolipoprotein AI (135). A 

recent study by Svenungsson, et al. (136) reported a strong correlation between plasma 

concentrations of oxLDL and anti-oxLDL antibodies in SLE patients with coronary heart 

disease complications. The authors suggest using atherosclerosis-associated antibodies 

as a screen for identifying SLE patients with increased risk for the development of 

atherosclerosis. However, whether the autoantibody production in these studies was the 

cause of enhanced atherosclerosis or a secondary effect of other immune responses 

remains to be determined. In the current study, we observed an increase in the anti-

oxLDL and β2GP1 serum IgG levels in LDLr.Sle1.2.3 mice compared with control 

LDLr.B6 animals. This increase appeared to be diet independent as the LDLr.Sle1.2.3 

mice fed a Western diet did not show increased levels of antibodies compared with 

LDLr.Sle1.2.3 mice fed with chow diet. Interestingly, the LDLr.Sle1.2.3 mice show an 

IgG1 bias for both anti-oxLDL and anti-β2GP1 antibodies compared with LDLr.B6 mice 

independent of diet. This suggests that high fat feeding in LDLr.Sle1.2.3 mice skews the 

immune response toward a Th2-like phenotype. It has been shown in apoE-deficient 

mice that atherosclerotic lesion progression is accompanied by an increase in the oxLDL 

IgG1 serum titers (98) and a bias toward Th2 immune responses. Therefore, these data 

support the hypothesis that the atherosclerotic disease in the LDLr.Sle1.2.3 mice is more 

advanced that those seen in the LDLr.B6 controls. 

 Although titers of oxLDL antibodies are shown to correlate directly with severity 

of disease and are often used as markers of CHD risk (137-140), their role in the 

initiation and/or progression of atherosclerosis is not yet conclusive. In addition, it has 
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been shown that in patients with SLE, there is extensive antibody cross-reactivity 

between antiphospholipid (e.g., β2GP1) and oxLDL. Therefore, in the current study, it 

cannot be concluded that the oxLDL antibodies are unique from the β2GP1 antibodies. 

However, a recent report by Kobayashi et al. (141), suggested that anti-β2GP1 IgG 

significantly increases oxLDL/β2GP1 complex binding to macrophages and uptake via 

Fcγ receptors and, thus, may contribute to the atherosclerotic process. Therefore, one 

may hypothesize that the increase in β2GP1 antibody titers seen in the LDLr.Sle1.2.3 

mice accelerates uptake of modified atherogenic lipoproteins such as oxLDL/β2GP1 

complexes and potentiates foam cell formation in these animals. Interestingly, although 

increased anti-β2GP1 antibodies are associated with increased risk of atherosclerosis, 

one study in mice showed that β2GP1 reactive T cells, and not antibodies, may be 

pathogenic (142). The authors reported that adoptive transfer of whole splenocytes, but 

not T-depleted splenocytes, from mice immunized with β2GP1 increased atherosclerosis 

in LDLr-/- animals in the absence of detectable antigen-specific antibody. These data 

would argue that antibodies against β2GP1 are a useful marker for cardiovascular risk 

but are not pathological. However, the current studies do not directly address either of 

these possibilities and ongoing studies in our laboratory are aimed at examining these 

hypotheses. 

 *We also examined regulatory T cell populations in B6.Sle1.2.3 mice. The finding 

of increased Th17 and decreased Tregs was not surprising given data from other 

models of autoimmunity (88, 143, 144). Ex vivo expanded iTregs were found to delay or 

prevent autoimmune disease in mice. Su et al. (145) demonstrated that both freshly 

isolated and ex vivo expanded CD4+CD25+ T cells inhibited dsDNA antibody production 

in an autoimmune model of chronic graft versus host disease. Furthermore, Scalapino et 

al. (146) showed that transfer of iTregs delayed the onset of glomerulonephritis in the 
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NZB/W mouse model of lupus. These and other studies implicate a therapeutic potential 

for iTregs in modulating SLE disease progression. 

 Interestingly, it has been shown that induced Tregs are resistant to Th17 

conversion by IL-6 (both in vitro and in vivo) and are able to inhibit autoantibody 

production in models of chronic graft-versus-host disease (147). In atherosclerosis, it is 

well known that Tregs are anti-atherogenic. However, these studies focus only on 

naturally occurring Tregs. While one study proposed an anti-atherogenic role for antigen 

specific regulatory T cells (148), to date there are no studies that exclusively examine 

the effect of iTregs on cardiovascular disease development and progression. Although 

this chapter does not directly address the role of iTregs and Th17 cells in SACVD, it is 

possible that the creation of methods to control the differentiation of these cell types may 

be advantageous. The “Addendum” will attempt to shed light on the differentiation and 

regulation of these two cell types as well.   

  In conclusion, in our current study, we have reported that severe dyslipidemia, 

as that seen in LDLr-/- mice fed a Western diet, can exacerbate the SLE phenotype and 

accelerate mortality beyond that previously reported in the NZB/W F1 mice fed with high 

fat diets (130). This suggests that perhaps the lipoprotein profile (i.e., increased VLDL 

and LDL cholesterol) can adversely affect the SLE disease process. Additionally, we 

also provide strong evidence that the accelerated atherosclerosis observed in 

LDLr.Sle1.2.3 mice is more directly associated with immune hyperactivity and not due to 

increased non-HDL cholesterol or a secondary effect of autoimmune-mediated renal 

pathology associated with SLE. Planned future studies will allow us to delineate which 

specific immune cell type and function facilitates accelerated atherogenesis, ultimately 

leading to the identification of novel therapeutics that target both SLE and CVD.
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CHAPTER III 

 

The lupus susceptibility locus Sle3 is not sufficient to accelerate atherosclerosis 
in lupus susceptible LDLr-/- mice. 

 
 
 

Introduction 
 
 

 
Our laboratory currently uses a triple congenic mouse model as a model of 

SACVD in order to elucidate the immune mechanism(s) of atherosclerosis in the setting 

of SLE. As discussed in Chapter 2, this model is derived from three chromosomal 

intervals linked to SLE genetic susceptibility. When SLE susceptible hematopoietic cells 

are transferred to atherosclerosis susceptible LDLr-/- mice, they develop accelerated 

atherosclerosis. This increase in atherosclerosis is independent of diet and accompanied 

by a three-fold increase in CD4+ T cell burden within the atherosclerotic lesion area 

(refer to Chapter 2) (34, 35).  

The laboratories of Drs. Laurence Morel and Edward Wakeland are using this 

B6.Sle1.2.3 model and their derivative single and bi-congenic models to dissect and 

determine the genes responsible for SLE-susceptibility. Our laboratory is taking a similar 

approach in regards to SACVD as the minimal genetic interval in B6.Sle1.2.3 mice 

necessary to accelerate atherosclerosis is unknown. Data from our LDLr.Sle1.2.3 mice 

suggest that T cell hyperactivity and lesional T cell accumulation drive the 

atherosclerotic process in SACVD. Genetic studies have determined that the 

susceptibility locus Sle3 is associated with increased CD4:CD8 ratios, increased T cell 

activation and decreased activation induced cell death (108, 149, 150).  Additionally, it 

has been shown that many of these phenotypes are due to Sle3 expression on antigen 

presenting cells (108).These data led us to hypothesize that T cell dysregulation 
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mediated by the lupus susceptibility interval Sle3 can facilitate the accelerated 

atherosclerosis seen in mice susceptible to SLE. In the current study, we examined 

whether Sle3 expression on hematopoietic cells is sufficient to accelerate 

atherosclerosis in LDLr-/- mice.  

 

Materials and Methods 

 

Mice. C57Bl/6J (B6) and B6.129S7-Ldlrtm1Her/J (LDLr−/−) mice were originally 

purchased from The Jackson Laboratory (Bar Harbor, ME) and maintained in the 

Vanderbilt University animal care facility. All procedures were approved by the 

Vanderbilt Institutional Animal Care and Use Committee. The B6.NZMc7 (B6.Sle3) mice, 

a generous gift from Edward Wakeland at the University of Texas Southwestern Medical 

Center, are C57Bl/6 mice congenic for the NZM2410-derived chromosome 7 lupus 

susceptibility interval. This single congenic strain has been described previously (108, 

149, 150). 

Production of radiation chimeras and atherosclerosis studies. Transfer of bone 

marrow was accomplished by bone marrow transplantation as described previously (34). 

Female LDLr−/− mice received either C57Bl/6 or B6.Sle3 bone marrow, hereafter referred 

to as LDLr.B6 and LDLr.Sle3, respectively. Sixteen weeks after transplantation, mice 

were placed on a high-fat Western diet (21% milk fat, 0.15% cholesterol) for eight 

weeks. Mice were then sacrificed and analyzed for the degree of atherosclerosis and the 

presence and severity of symptoms associated with SLE. 

Serum Lipoprotein Analysis. Total serum cholesterol and triglyceride were measured 

in mice fasted for at least four hours using a colorimetric assay as described previously 

(151). Lipoprotein distribution was determined by using FPLC. 
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Serum Cytokine Analysis. Serum cytokine levels were analyzed using the Milliplex 

Mouse Cytokine/Chemokine kit according to manufacturer’s protocol and detected using 

Luminex® xMAP® (Millipore, Billerica, MA). 

Enzyme-Linked Immunosorbent Assays (ELISAs). Serum titers of dsDNA were 

measured according to the method of Shivakumar et al. (152).  Anti-oxLDL antibodies 

were measured as previously described (69). Serum antibody titers against β2-

glycoprotein I (β2GP1) were measured by coating a 96-well Maxisorb plate with 10 

μg/ml of purified β2GP1 in 1% bovine serum albumin (1% BSA)/PBS overnight. Plates 

were blocked in 1% BSA/PBS for two hours at room temperature. Mouse serum was 

added at a dilution between 1:500 and 1:5000 and incubated overnight at 4°C. Plates 

were washed with 0.5% Tween-20/PBS (PBS-T) and incubated with biotin-conjugated 

goat anti-mouse Ig(H+L) (SouthernBiotech, Birmingham, AL) for 45 minutes at room 

temperature then incubated with avidin-peroxidase for 30 minutes at room temperature. 

Plates were then washed with PBS-T and developed using TMB substrate (BD 

Bioscience). Anti-β2GP1 immunoglobulin isotype ELISAs were performed as described 

above using a biotin-conjugated goat anti-mouse IgG1, IgG2C or IgM (SouthernBiotech) 

secondary antibody. Cardiolipin antibody titers were determined by coating a 96-well 

Maxisorb plate with cardiolipin (Sigma-Aldrich) (15μg/ml in 95% ethanol). The cardiolipin 

ELISA was then conducted as described above for β2GP1. Serum was diluted 1:1000, 

1:500 and 1:5000 for oxLDL, β2GP1 and cardiolipin ELISAs, respectively. 

Immunohistochemistry. Staining for macrophages (MOMA-2) and CD4+ T cells was 

performed as described previously (34, 35). Cells were visualized and staining quantified 

using Image-Pro Plus software (Media Cybernetics, Bethesda, MD). 

Flow Cytometry. For flow cytometric analyses, spleens were removed and processed 

through a 0.70 μm mesh screen. Cells were counted, resuspended in 4% fetal bovine 

serum (FBS) in PBS with 0.5% sodium azide, and incubated with appropriate antibodies 
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for 40 minutes at 4°C. Cells were then washed and analyzed using a 5-Laser BD LSRII 

flow cytometer (BD Bioscence) and FacsDiva software (BD Bioscience). The following 

antibodies were used: TCRβ (H57–597), CD8α (53–6.7), CD4 (GK1.5), CD69 (H1.2F3), 

B220 (RA3-6B2), NK1.1 (PK136), CD44 (IM7), CD40L (MR1), CD11b (M1/70), CD40 

(1C10), CD80 (16-10A1) and CD86 (GL1) (all purchased from BD Bioscience). 

Statistical Analyses. Statistical analyses were conducted using PRISM 5.0 software 

(GraphPad Software Inc., La Jolla, CA). For data with a normal Gaussian distribution, a 

Student’s t-test was used to calculate significant differences between groups. For data 

not normally distributed, a Mann-Whitney test was performed. A p value of < 0.05 was 

considered significant. 

 

Results 

 

Characterization of the lupus phenotype in LDLr.Sle3 mice.  

 B6.Sle3 mice are known to produce antibodies against dsDNA (39). To confirm 

the hematopoietic transfer of the lupus phenotype into LDLr−/− hosts, dsDNA antibody 

titers were measured in serum collected at time of sacrifice. As expected, LDLr.Sle3 

mice had higher dsDNA antibody titers compared to control (Figure 8A). Examination of 

spleen weights at the time of sacrifice showed that LDLr.Sle3 mice had increased 

spleen:body weight ratios compared to LDLr.B6 mice (Figure 8B). 

 The congenic B6.Sle3 mouse model is additionally associated with T cell 

hyperactivity, increased CD4/CD8 T cell ratios, and hyperstimulatory antigen presenting 

cells in the absence of spleen size differences when compared to B6 controls (108, 149, 

150). We sought to determine if these differences in splenic cell populations could also 

be observed when the NZM2410-derived Sle3 congenic interval is transferred 

hematopoietically to atherosclerosis susceptible LDLr−/− mice fed a Western diet. Spleen 
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cells were incubated with the panel of fluorophore-conjugated antibodies as outlined in 

the “Materials and Methods” section and cell populations were analyzed by flow 

cytometry. Flow cytometric analyses showed no significant differences in B cell, CD8+ T 

cell, macrophage, dendritic cell or NK cell numbers in the spleens of LDLr.B6 and 

LDLr.Sle3 mice (Figure 8C). However, we did observe a variable 2-fold increase in CD4+ 

T cell numbers and CD4:CD8 T cell ratios. The increase in CD4+ T cells was also 

accompanied by an increase in the activation marker CD40L and a trend toward 

increased percentages of CD4+CD69+ and CD4+CD44+ T cells in LDLr.Sle3 mice (Figure 

8D-E). 

 

Transfer of lupus susceptibility interval Sle3 is not sufficient to accelerate 

atherosclerosis in LDLr−/− mice.   

 Sixteen weeks after transplantation, mice were placed on a Western diet 

containing 21% milk fat and 0.15% cholesterol for eight weeks. After eight weeks, mice 

were sacrificed and analyzed for severity of atherosclerosis. Examination of 

atherosclerotic lesion area in the proximal aorta of LDLr.B6 and LDLr.Sle3 by oil-red-O 

staining revealed no statistically significant difference in lesion area between the two 

groups (Figure 9A). In addition, the cellular composition of the atherosclerotic plaque, as 

assessed by Moma-2 and CD4 staining, was similar in both lupus-susceptible and 

control animals (Figure 9B and C). 

 Interestingly, as observed in our previous studies with LDLr.Sle1.2.3 mice, 

measurement of serum cholesterol and triglyceride levels revealed a significant 

decrease in cholesterol in LDLr.Sle3 mice compared to LDLr.B6 mice (Figure 10A). In 

addition, although not statistically significant, there was a trend for lower serum 

triglyceride levels in LDLr.Sle3 mice compared to controls (Figure 10B). FPLC analysis 

revealed that the 20% decrease in serum cholesterol in LDLr.Sle3 mice was due to a 
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decrease in the very low density lipoprotein (VLDL) and low density lipoprotein (LDL) 

cholesterol fractions (Figure 10C). Overall, these results show that while there was no 

difference in lesion area and cellular composition of plaques between the two groups, 

the LDLr.Sle3 mice did have lower cholesterol and triglyceride levels than control 

animals. 

 
Figure 8. Characterization of lupus phenotype in LDLr.Sle3 mice. (A) Serum titers of anti-dsDNA 
antibodies in LDLr.B6 (n=19) and LDLr.Sle3 (n=17) mice. (1:1000 dilution; p=0.038). (B) Spleen:body 
weight ratio of LDLr.B6 (n=19) and LDLr.Sle3 (n=17) mice (p=0.044). (C) Absolute numbers of spleen 
cell populations in LDLr.B6 (open bars) and LDLr.Sle3 (closed bars) mice (n=3-6 mice per group). (D) 
Representative FACS plot of designated T cell activation markers in LDLr.B6 and LDLr.Sle3 mice. (E) 

Percentage of CD4
+
 T lymphocytes expressing the designated activation marker in LDLr.B6 and 

LDLr.Sle3 (n=3 mice per group). * indicates a p value < 0.05 compared to LDLr.B6 mice. 
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Atherosclerosis associated antibody production is augmented in LDLr.Sle3 mice. 

 We examined total immunoglobulin levels against the anti-phospholipid antibody 

cofactor β2GP1 and the phospholipid cardiolipin. Measurements of antibodies against 

both antigens are indicative of anti-phospholipid antibody titers. We observed a trend 

toward increased anti-β2GP1 (Figure 11A) and anti-cardiolipin (Figure11B) 

immunoglobulin levels in LDLr.Sle3 mice although neither reached statistical 

significance. Antibody measurements for oxLDL also revealed the same trend, with 

LDLr.Sle3 mice producing more antibodies than control (Figure 11C). 

 Evaluation of anti-β2GP1 and anti-cardiolipin immunoglobulin isotype titers 

demonstrated significantly higher IgG1 and IgM, but not IgG2c, titers in the sera of 

LDLr.Sle3 mice compared to control mice. Calculation of the IgG1 (Th2) to IgG2c (Th1) 

isotype ratio demonstrated that LDLr.Sle3 mice had an increased IgG1/IgG2c ratio 

(Table 5). We then went on to analyze the levels of IFN-γ and IL-4 in the sera of these 

mice and found significantly less IFN-γ levels (p=0.036) in LDLr.Sle3 mice (35.22pg/ml; 

n=8) compared to LDLr.B6 controls (66.33pg/ml; n=8). IL-4 was not different between 

the two groups (data not shown). Taken together, these results show that the LDLr.Sle3 

mice have increased auto-antibody production compared to control animals and that 

hematopoietic transfer of the Sle3 lupus-susceptibility loci is sufficient to exacerbate 

humoral immune responses against atherosclerosis-associated antigens, such as 

β2GP1 and oxLDL. 
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Figure 9. Analysis of atherosclerosis and cellular composition in the aortic sinus. (A) Average 
lesion area as determined by Oil-Red-O staining. N=17-19 mice per group (B) Immunohistochemical 
detection of macrophages (MOMA-2) and (C) CD4

+
 T cells. In all panels closed bars represent LDLr.B6 

mice while open bars represent LDLr.Sle3 mice.  For B and C, n=3 mice per group. 
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Figure 10. Transfer of Sle3 to LDLr

-/-
 mice decreases serum cholesterol and triglyceride levels. 

(A)  Serum cholesterol (p=0.013) and (B) triglyceride levels (p=0.159) in LDLr.B6 (closed bars) and 
LDLr.Sle3 (open bars) mice.  For both analyses, n=17-19 mice per group. (C) FPLC analysis of 

cholesterol lipoprotein distribution in LDr.B6 (closed bars) and LDLr.Sle3 (open bars) mice. Serum 
from eight mice per group was pooled. * indicates a p value < 0.05 compared to LDLr.B6 mice. 
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Discussion 

 

It is well known that individuals with SLE have an increased risk for developing 

CVD. Our laboratory (34, 35) and others (117), have shown that accelerated 

atherosclerosis can occur following hematopoietic transfer of SLE to LDLr−/− mice and 

that immune dysregulation and chronic inflammation can modulate atherosclerosis. 

However, the exact mechanisms mediating accelerated vascular disease in SLE are yet 

to be determined. 

In an effort to elucidate possible mechanisms of SLE-accelerated 

atherosclerosis, we examined whether the Sle3 lupus-susceptibility locus alone was 

sufficient to increase vascular disease in LDLr−/− mice. Sle3 was found to mediate T cell 

and antigen presenting cell hyperactivity (108, 149, 150). In the present study, we 

hypothesized that T cell dysregulation, mediated by Sle3, is sufficient to accelerate 

atherosclerosis. However, we found no differences in proximal aortic lesion sizes or 

cellular composition between LDLr.B6 and LDLr.Sle3. Our results suggest that just as 

having one lupus susceptibility interval is not sufficient to induce fully penetrant lupus 

disease, 2 or more lupus susceptibility loci may be necessary to accelerate 

atherosclerosis in mice. 

Patients with SLE produce large amounts of autoantibodies, including antibodies 

against atherosclerotic antigens (153, 154). In our model, analyses of humoral immune 

responses against such antigens demonstrated an increase in antibody production in the 

absence of increased atherosclerosis. When isotype specific immunoglobulin levels 

against β2GP1 and cardiolipin were measured, we found increased IgG1 and IgM 

antibodies along with an increased IgG1/IgG2c ratio in LDLr.Sle3 mice compared to 

controls. These results are congruent with our previous study using LDLr.Sle1.2.3. mice 

(35) and demonstrate that while Sle3 is not able to mediate accelerated atherosclerosis, 
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it is sufficient to induce humoral responses similar to those seen in the triple congenic 

model. 

While antibody titers against atherosclerosis-associated antigens are traditionally 

thought to be a biomarker for cardiovascular disease risk (138, 140), reports suggest 

such responses can be pro- or anti-atherogenic (153). Antibodies of the IgG isotype, 

specific for oxLDL/ β2GP1 immune complexes are postulated to be proatherogenic as 

they may facilitate uptake of immune complexes through Fc receptors (141). However, 

other reports show that anti-oxLDL (mainly IgM) and anti-cardiolipin could potentially be 

anti-atherogenic (71, 155). In general, both IgM and IgG1 antibodies are thought to be 

atheroprotective. Additionally, IgG1 antibodies indicate a Th2 immune response as IL-4 

facilitates B cell class switching to the IgG1 isotype. Conversely, Th1 cells, through their 

production of IFN-γ, facilitate IgG2c class switching, and IFN-γ is thought to be pro-

atherogenic (156-158). Given these reports, our results present an interesting outcome. 

In this study, we find that although LDLr.B6 mice have an increased Th1 antibody 

response and LDLr.Sle3 mice have increased atheroprotective antibodies, there are no 

differences in lesion area between the groups. Therefore, despite having more possibly 

atheroprotective antibodies, the atherosclerotic lesions develop similarly in LDLr.Sle3 

mice compared to LDLr.B6 mice. Thus it is possible that that although the Sle3 gene 

locus is not enough to push the animals toward increased atherosclerosis, it does 

decrease the protective phenotype or functions of atherosclerosis-associated antibodies. 

It is possible that addition of the Sle1 or Sle2 loci would be enough to increase 

autoimmune dysregulation and increase atherosclerosis in this model. Obviously this 

hypothesis is the focus of future investigations by our laboratory and will allow us to 

ascertain how epistatic interaction between these loci may affect CVD. 
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Figure 11. Antibody production is increased in LDLr.Sle3 mice. Serum titers of (A) anti-β2GP1 
(p=0.356), (B) anti-cardiolipin (p=0.053) and (C) anti-oxLDL (p=0.049) antibodies in LDLr.B6 (n=19) 

and LDLr.Sle3 (n=17) mice. * indicates a p value < 0.05 compared to LDLr.B6 mice. 

 

 

Table 5.

Serum titers of isotype specific antibodies

Group

IgG1                   

(Average OD ± 

S.E.M.)

IgG2c                   

(Average OD ± 

S.E.M.)

IgM                   

(Average OD ± 

S.E.M.)

IgG1/IgG2c                   

(Average OD ± 

S.E.M.)

β2-GP1
a

LDLr.B6 0.291 ± 0.041 0.426 ± 0.040 0.470 ± 0.051 0.692 ± 0.078

LDLr.Sle3 0.525 ± 0.083
b

.556 ± 0.083 0.829 ± 0.108
b

1.064 ± 0.143
b

Cardiolipin
a

LDLr.B6 0.384 ± 0.040 0.438 ± 0.028 0.643 ± 0.041 0.863 ± 0.071

LDLr.Sle3 0.601 ± 0.072
c

0.487 ± 0.049 0.778 ± 0.038
b

1.255 ± 0.111
c

a
 16-19 mice per group.

b
 p< 0.05 compared to LDLr.B6 mice.

c 
p< 0.001 compared to LDLr.B6 mice.
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 Parallel with our previous studies, we also observed decreased serum 

cholesterol and triglyceride levels in LDLr.Sle3 mice compared to control animals. (34, 

35)  This is an interesting observation since it suggests that either genes encoded on the 

Sle3 chromosomal interval are playing a role in cholesterol homeostasis in the LDLr.Sle3 

mice, or that increased anti-oxLDL and anti-phospholipid antibody levels in the lupus-

susceptible mice increase uptake and/or clearance of circulating lipoproteins. We 

hypothesize the latter because cholesterol and triglyceride levels are similar between 

LDLr.B6 and LDLr.Sle3 mice before the initiation of Western diet and the appearance of 

dsDNA antibodies; the first biomarker of lupus-associated immune dysregulation. Again, 

we find that despite lower cholesterol levels, our LDLr.Sle3 mice have similar 

atherosclerotic lesion area compared to controls. These data lend further support to the 

hypothesis that autoimmunity rather than traditional risk factors, such as elevated 

cholesterol levels, is the primary mediator of accelerated atherosclerosis in the 

autoimmune disease. 

Previously, our laboratory reported a three-fold increase in CD4+ T cell burden in 

the atherosclerotic plaques of LDLr.Sle1.2.3 mice (34, 35). This led us to hypothesize 

that the increase in vascular disease in these mice may be mediated primarily by T cell 

hyperactivity. Our recent findings suggest that while there is evidence of a hyperactive T 

cell phenotype in LDLr.Sle3 mice (Figure 8C-E), Sle3 by itself is not enough to initiate 

CD4+ T cell infiltration into atherosclerotic plaques. Furthermore, the data also indicate 

that T cell accumulation in lesions may be one driving force of lesion progression in 

LDLr.Sle1.2.3 mice as the LDLr.B6 and LDLr.Sle3 mice had similar amounts of T cell 

percentages within the lesion. Indeed this is a plausible hypothesis as Zhou et al. found 

that transfer of CD4+ T cells into ApoE−/−scid/scid mice drastically increased lesion 

formation and that these T cells also homed to the atherosclerotic lesion area (159, 160). 
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Further studies examining the kinetics of T cell migration into lesions are necessary to 

determine if this is the case. 

In conclusion, we have reported that transfer of the lupus susceptibility interval 

Sle3 to LDLr−/− mice is not sufficient to accelerate the progression of atherosclerosis. It 

can, however, mediate antibody production against dsDNA and antigens typically 

associated with atherosclerosis, such as phospholipids and oxLDL. Additionally, the 

introduction of Sle3 onto the LDLr−/− background is sufficient to mediate Th2 antibody 

bias, as previously seen in the triple congenic mouse model. Interestingly, our results 

suggest that in autoimmune disease, serum cholesterol levels may be a weak indicator 

of atherosclerosis progression. Future studies should be designed to study how the loss 

of tolerance to nuclear antigens may facilitate atherosclerosis and to determine how 

dyslipidemia may affect the autoimmune status of other congenic SLE mouse models. 

These studies will ultimately advance our knowledge regarding autoimmune-mediated 

atherosclerosis and lead to the development of therapeutic agents designed to treat both 

SLE and atherosclerosis. 
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CHAPTER IV 

 

The lupus susceptibility loci Sle1 and Sle1.3 are not sufficient to accelerate 
atherosclerosis in LDLr-/- mice. 

 
 

Introduction 

 

 In the previous chapter, we hypothesized that transfer of the lupus susceptibility 

interval Sle3, which is associated with T cell dysregulation, to LDLr-/-
 mice would be 

sufficient to accelerate atherosclerosis. We found that while Sle3 did not lead to 

accelerated atherosclerosis, it did result in T cell hyperactivation and humoral responses 

associated with SACVD.  Therefore, we hypothesized that perhaps a second interval, 

Sle1 might synergize with Sle3 to accelerate atherosclerosis. 

 Expression of the susceptibility locus Sle1 most notably leads to the loss of 

tolerance to nuclear antigens. In addition to mediating this critical step in SLE 

pathogenesis, T cells expressing this locus also display a hyperactive phenotype 

consisting of increased proliferation and increased B cell cooperation (106, 107, 161-

163). Further analysis of this locus has revealed that Sle1 not only regulates T effector 

functions but also mediates decreased Treg numbers and functions through multiple 

mechanisms (82, 117, 164).  Co-expression of Sle1 and Sle3 leads to splenomegaly, 

increased numbers of activated B and T cells and nephrophilic autoantibody production 

(165, 166), even more than expression of each locus singularly. Moreover, intracellular 

expression of both of these loci simultaneously is necessary to produce these 

phenotypes, supporting the hypothesis that epistatic interactions between SLE 

susceptibility loci are critical to lupus pathogenesis (167). Since we did not observe 

increased atherogenesis in the presence of Sle3 alone, we sought to determine if –
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similar to SLE nephritis development – co-expression of Sle1 and Sle3 was necessary to 

accelerate atherosclerosis in LDLr-/- mice. 

 

Materials and Methods 

 

Mice. C57Bl/6J (B6) and mice were originally purchased from The Jackson Laboratory 

(Bar Harbor, ME) and a breeding colony maintained in the Vanderbilt University animal 

care facility. Female B6.129S7-Ldlrtm1Her/J (LDLr−/−) mice used as bone marrow 

recipient mice were purchased from The Jackson Laboratory. The B6.NZMc1 (B6.Sle1), 

B6.NZMc7 (B6.Sle3) and B6.NZMc1│c7 (B6.Sle1.3) mice are C57Bl/6 mice single or bi 

congenic for NZM2410-derived lupus susceptibility intervals and have been extensively 

characterized (106-108, 149, 161-163, 167, 168). These mice were a generous gift from 

Edward Wakeland at the University of Texas Southwestern Medical Center. All 

procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee.  

Production of radiation chimeras. Transfer of bone marrow was accomplished by 

bone marrow transplantation as previously described (34). Female LDLr−/− mice received 

either C57Bl/6, B6.Sle1, B6.Sle3 or B6.Sle1.3  bone marrow, hereafter referred to as 

LDLr.B6, LDLr.Sle1, LDLr.Sle3 and LDLr.Sle1.3, respectively.  

Atherosclerosis studies. Sixteen weeks after transplantation, mice were placed on a 

high-fat Western diet (21% milk fat, 0.15% cholesterol) for eight weeks. For chow diet 

studies, mice were kept on chow diet for 32 weeks after bone marrow transplantation. 

Mice were then sacrificed and analyzed for the degree of atherosclerosis and the 

presence and severity of symptoms associated with SLE.  
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Serum Lipoprotein Analysis. Total serum cholesterol and triglyceride were measured 

in mice fasted for at least four hours using a colorimetric assay as described previously 

(151).  

Serum Enzyme-Linked Immunosorbent Assays (ELISAs). Serum titers of dsDNA 

were measured according to the method of Shivakumar et al. (152). Anti-oxLDL 

antibodies were measured as described previously (69). Serum antibody titers against 

β2-glycoprotein I (β2GP1) were measured by coating a 96-well Maxisorb plate with 10 

μg/ml of purified β2GP1 in 1% bovine serum albumin (1% BSA)/PBS overnight. Plates 

were blocked in 1% BSA/PBS for two hours at room temperature. Mouse serum was 

added at a dilution between 1:500 and 1:5000 and incubated overnight at 4°C. Plates 

were washed with 0.5% Tween-20/PBS (PBS-T) and incubated with biotin-conjugated 

goat anti-mouse Ig(H+L) (SouthernBiotech, Birmingham, AL) for 45 minutes at room 

temperature then incubated with avidin-peroxidase for 30 minutes at room temperature. 

Plates were then washed with PBS-T and developed using TMB substrate (BD 

Bioscience). Anti-oxLDL immunoglobulin isotype ELISAs were performed as described 

above using a biotin-conjugated goat anti-mouse IgG1, IgG2c or IgM (SouthernBiotech) 

secondary antibody. Cardiolipin antibody titers were determined by coating a 96-well 

Maxisorb plate with cardiolipin (Sigma-Aldrich) (15μg/ml in 95% ethanol). The cardiolipin 

ELISA was then conducted as described above for β2GP1.  

Cytokine ELISAs. Supernatant cytokine levels were measured by sandwich ELISA 

according to manufacturer’s protocol (BD Pharmingen). 

Immunohistochemistry. Staining for macrophages (MOMA-2) and CD4+ T cells was 

performed as described previously (34, 35). Trichrome staining was performed using a 

trichome staining kit (Newcome Supply; Middleton, WI). Cells were visualized and 

staining quantified using Image-Pro Plus software (Media Cybernetics, Bethesda, MD). 
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Flow Cytometry. For flow cytometric analyses, spleens were removed and processed 

through a 0.70 μm mesh screen. Cells were counted, resuspended in 1% bovine serum 

albumin (BSA) in HBSS with 0.02% sodium azide and 0.035% sodium bicarbonate, and 

incubated with appropriate antibodies for 40 minutes at 4°C. Cells were then washed 

and analyzed using a 7-laser MACSQuant Analyzer flow cytometer and FCS Express 

software (De Novo Software). 

Intracellular cytokine staining. For intracellular cytokine staining, splenocytes were 

stimulated with 10ng/ml phorbol myristate acid (PMA) and ionomycin (1µg/mL) in the 

presence of GolgiStop or GolgiPlug for 4-5 hous at 37 °C and 5% CO2. Cells were then 

stained with extracellular antibodies, washed, and fixed overnight in 2% 

paraformaldehyde in PBS. The following day, cells were permeabilized with Cytoperm 

(BD Bisciences) reagent, stained with the appropriate intracellular antibodies and 

analyzed by flow cytometry. For IL-17 secretion, instead of incubating splenocytes for 5 

hours in the presence of GolgiPlug, cells were first stimulated with PMA and ionomycin 

without Golg-Plug for two hours then incubated an additional three hours in the presence 

of GolgiPlug.  

Statistical Analyses. Statistical analyses were conducted using PRISM 5.0 software 

(GraphPad Software Inc., La Jolla, CA). Statistical significance between multiple groups 

was determined using a one way ANOVA with a Tukey multiple comparison test to 

calculate differences between groups. A p value of < 0.05 was considered significant. 

 

Results 

 

Phenotypes associated with Sle1.3 can be transferred hematopoietically to LDLr-/- 

mice.  
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 Hematopoietic cells from four to ten week old female B6, B6.Sle1, B6.Sle3, or 

B6.Sle1.3 mice were transferred into lethally irradiated LDLr-/- mice. Although we have 

previously reported our findings on the effects of Sle3 on lupus-accelerated 

atherosclerosis (see Chapter 3), we felt that it was important to include mice with this 

genotype in this study as an internal control. At the time of sacrifice, serum was collected 

to determine autoantibody production by ELISA. Similar to B6.Sle1.3 mice, we found that 

serum from LDLr.Sle1.3 chimeras contained increased antibodies against dsDNA 

compared to LDLr.B6 mice (Figure 12A).  Additionally, these mice exhibited 

splenomegaly. This splenomegaly was also seen in LDL.Sle1 mice. However, there 

were no differences in body weight between any of the groups (Figure 12B and C). 

 Spontaneous activation of various splenocyte populations is known to occur in 

mice harboring the Sle1, Sle3, or Sle1.3 lupus susceptibility loci (39, 108, 149, 161, 

167). To determine if these changes also occurred in our radiation chimeras, 

splenocytes were incubated with a panel of fluorophore-conjugated antibodies and cell 

populations analyzed by flow cytometry. As seen previously, we observed increased 

CD4+ T cell percentages in all experimental groups compared to LDLr.B6 mice with 

LDLr.Sle1 and LDLr.Sle1.3 mice having the highest percentages. (Figure 13A-B) This 

was also accompanied by increased T cell activation as both CD4+ and CD8+ T cells had 

increased CD69 expression (Figure 13C-D). While there were no differences in the 

percentage of CD19+ B cells, NK cells, CD11c+ or CD11b+ cells, there was a trend 

towards an increased percentage of CD11c+ and CD11b+ cells in LDLr.Sle1 mice (Figure 

13C). Analysis of dendritic cell activation markers on CD11c+ cells revealed that while 

LDLr.Sle1 and LDLr.Sle1.3 had a lower percentage of CD11c+ cells expressing the late 

marker of activation, CD80, CD11c+ cells from these groups also had more cells 

expressing the early marker of activation CD86 (Figure 14). 
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Figure 12. Characterization of lupus phenotype in single and bi-congenic SLE mice. (A) 
Serum titers of anti-dsDNA antibodies in LDLr.B6 (circles), LDLr.Sle1 (squares), LDLr.Sle3 (upright 
triangles) and LDLr.Sle1.3 (inverted triangles) mice. (B) Spleen:body weight ratio of LDLr.B6 

(circles), LDLr.Sle1 (squares), LDLr.Sle3 (upright triangles) and LDLr.Sle1.3 mice (inverted 
triangles). (C) Body weights of LDLr.B6 (circles), LDLr.Sle1 (squares), LDLr.Sle3 (triangles) and 
LDLr.Sle1.3 (inverted triangles) mice. * indicates a p value < 0.05 compared to LDLr.B6 mice. N=7-
9 mice per group. Experiment was repeated twice. 
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Figure 13. Analysis of splenocyte populations. (A) Representative FACS plot of CD4

+ 
T cells in 

LDLr.B6, LDLr.Sle1, LDLr.Sle3 and LDLr.Sle1.3 mice. (B) Percentage of CD4
+
 T lymphocytes (n=3-5 

mice per group). (C) Percentage of CD4
+
CD69

+ 
T cells (n=3-5 mice per group). (D) Percentage of 

CD8
+
CD69

+
 T cells (n=3-5 mice per group). (E) Percentage of various cell types in mice (n=3-5 mice per 

group). In all bar graphs, black bar = LDLr.B6, white bar = LDLr.Sle1, blue bar = LDLr.Sle3, red bar = 
LDLr.Sle1.3. * indicates a p value < 0.05 compared to LDLr.B6 mice.  
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The combination of the lupus susceptibility loci Sle1 and Sle3 mediates decreased 

atherosclerosis in LDLr-/- mice when placed on a high fat diet.  

 Sixteen weeks after transplantation, mice were placed on a high fat Western diet 

for eight weeks. Upon sacrifice, hearts were sectioned an atherosclerotic lesion area 

assessed. Measurement of atherosclerosis in the proximal aorta revealed that while 

there were no differences between LDLr.B6, LDLr.Sle1 and LDLr.Sle3 groups, the 

LDLr.Sle1.3 mice had significantly smaller atherosclerotic lesions compared to LDLr.B6 

mice (Figure15A-B). In order to understand what could be responsible for this 

phenomenon, we examined the cellular composition of the atherosclerotic lesions of 

these mice. MOMA-2 staining showed no statistical differences in macrophage content 

of the lesions between the four groups (Figure 15C). The same was true for collagen 

content (assessed by Trichome staining) and CD4+ T cells within the lesions, suggesting 

 
Figure 14. Effects of SLE susceptibility loci on dendritic cell activation. (A) Percentage of 
CD11c

+
cells expressing CD80. (B) Percentage of CD11c

+
cells expressing CD86. (n=3-5 mice 

per group). In both graphs, black bar = LDLr.B6, white bar = LDLr.Sle1, blue bar = LDLr.Sle3, 
red bar = LDLr.Sle1.3. * indicates a p value < 0.05 compared to LDLr.B6 mice. ** indicates a p 

value < 0.01 compared to LDLr.B6 mice. 
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that the lack of increased T cell accumulation could be responsible for the decreased 

lesion area observed in LDLr.Sle1.3 mice. 

 Interestingly, we found that all experimental groups (LDLr.Sle1, LDLr.Sle3 and 

LDLr.Sle1.3) had significantly less serum cholesterol levels compared to LDLr.B6 mice 

(Figure 16A). This trend was also true for serum triglyceride levels although only 

LDLr.Sle1.3 reached statistical significance (Figure 16B).  

 

A Th2 bias is present in LDLr.Sle1.3 mice.  

 Antibodies against atherosclerosis associated antigens such as phospholipids 

and oxLDL are often used to assess atherosclerotic risk. Given that we found a 

decrease in atherosclerosis in LDLr.Sle1.3 mice, we sought to determine if differences in 

these antigens could account for the atherosclerotic changes that we observed. Total 

immunoglobulin response against β2GP1, cardiolipin and oxLDL was assessed. We 

found no significant differences in anti- β2GP1, anti-cardiolipin or anti-oxLDL titers 

between any of the groups (Figure 17). 

 We also evaluated anti-oxLDL immunoglobulin isotypes. While there were no 

statistical differences in anti-oxLDL IgM, IgG1 or IgG2c titers, there was trend towards 

increased IgG1 and IgG2c production in LDL.Sle1 and LDLr.Sle1.3 mice (Figure 18A). 

Calculation of the IgG1 to IgG2c isotype ratio revealed that LDLr.Sle1.3 had a 

significantly higher IgG1/IgG2c ratio, indicative of shift towards Th2 response (Figure 

18B). To further verify this increased Th2 response, splenocyte populations were 

depleted of CD11c+ and CD19+ antigen presenting cells, leaving mostly T cells, and 

stimulated with plate bound anti-CD3 and anti-CD28 for 72 hours. After incubation, 

supernatants were collected and IL-4 secretion was assessed by cytokine ELISA. In 

concert with the findings above, we detected increased IL-4 secretion from LDLr.Sle1.3 

cultures after stimulation compared to LDLr.B6 cultures.  There was also a trend toward 
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increased IL-4 levels from LDLr.Sle1 cultures but it did not reach statistical significance 

(Figure 18C).  

 

LDLr.Sle1 and LDLr.Sle1.3 mice have a shift in their Th17 and Treg balance. 

 Regulatory T cells are known to be anti-atherogenic (84) while the role of Th17 in 

atherosclerosis remains controversial (95-97). We sought to determine if a shift in 

regulatory T cell balance was present in our experimental mice. We performed 

intracellular cytokine and Foxp3 staining on spleen cells collected to evaluate the 

percentage of Foxp3+ Tregs and Th17 cells. We observed a trend towards decreased 

Tregs in LDLr.Sle1 and LDLr.Sle1.3 mice (Figure 19C). This was accompanied by a 

significant increase in Th17 cells in both groups, suggesting that lesion area is inversely 

correlated with splenic Th17 cell accumulation in LDLr.Sle1.3 mice (Figure 19A-B). 

 Previous studies suggest that TLR9 stimulation on antigen presenting cells 

promotes increased IL-6 secretion. It is thought that increased IL-6 secretion by antigen 

presenting cells help drive T cells toward a Th17 fate (169, 170) (see Addendum). Given 

that we found increased Th17 cells in our LDLr.Sle1.3 mice, we hypothesized that this 

Th17 cell expansion was due to increased TLR9 stimulation on antigen presenting cells. 

To test this hypothesis, we isolated both CD11c+ and CD19+ spleen cells from mice and 

stimulated these antigen presenting cells with CpG DNA, a known TLR9 agonist, or LPS 

(a TLR4 agonist) for 48 hours. Afterwards, supernatants were collected and IL-6 levels 

assessed. Interestingly, we found decreased IL-6 levels in all experimental groups 

compared to LDL.B6 mice, indicating that TLR9 stimulation by CpG does not induce IL-6 

secretion in our model (Figure 20A) However, LPS stimulation did not affect IL-6 

secretion (Figure 20B).   
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Figure 15. Analysis of atherosclerosis and cellular composition in the aortic sinus. (A) 
Representative aortic section stained with Oil-red-O from LDLr.B6, LDLr.Sle1, LDLr.Sle3 and 
LDLr.Sle1.3 mice. (B) Average lesion area as determined by Oil-Red-O staining. n=7-9 mice per 
group. (C) Immunohistochemical detection of macrophages (MOMA-2), (D) CD4

+
 T cells, and (E) 

collagen content. N=3-5 mice per group in C, D, & E. In all graphs, black bar = LDLr.B6, white bar 
= LDLr.Sle1, blue bar = LDLr.Sle3, red bar = LDLr.Sle1.3.. * indicates a p value < 0.05 compared 
to LDLr.B6 mice.  
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Figure 16. Serum cholesterol and triglyceride levels in single and bi-cogenic mice. (A)  
Serum cholesterol and (B) triglyceride levels in LDLr.B6 (circles), LDLr.Sle1 (squares), LDLr.Sle3 

(upright triangles) and LDLr.Sle1.3 (inverted triangles) mice. N=7-9 mice per group. * indicates a p 
value < 0.05 compared to LDLr.B6 mice.  ** indicates a p value < 0.01 compared to LDLr.B6 mice. 
*** indicates a p value < 0.005 compared to LDLr.B6 mice. 

 

 
Figure 17. Phospholipid antibody production in single and bi-congenic mice. Serum titers of 
(A) anti-β2GP1, (B) anti-cardiolipin and (C) anti-oxLDL antibodies in LDLr.B6 (circles), LDLr.Sle1 
(squares), LDLr.Sle3 (upright triangles) and LDLr.Sle1.3 (inverted triangles) mice. N=7-9 mice per 
group. 
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There is no difference in atherosclerosis when lupus susceptible mice are kept on 

a normal chow diet. Previously, studies from our laboratory and others have shown that 

severe dyslipidemia induced by high fat diet feedings can have significant effects on 

both atherosclerosis and SLE (35, 128, 129). Particularly in our LDLr.Sle1.2.3 model we 

found that keeping mice on chow diet led to a greater fold increase in atherosclerotic 

lesion area compared to those mice placed on high fat diet (refer to Chapter 2). Given 

our rather surprising result of decreased atherosclerosis in high fat diet fed LDLr.Sle1.3 

mice, we thought it would be interesting to examine if there were changes in 

atherosclerosis when SLE susceptible mice are not overtly dyslipidemic.   

 After hematopoietic cell transfer, mice were kept on a standard chow diet for 32 

weeks total. After sacrifice, proximal aortic lesion area was assessed as usual by Oil-

Red O staining. We found that there were no differences in lesion area between any of 

the groups when kept on a chow diet (Figure 21A). However, similar to previous findings, 

we observed significant decreased is serum cholesterol levels in all experimental groups 

compared to LDLr.B6 mice on chow diet (Figure 21B-C) We also assayed autoantibody 

production and saw a slight, yet significant, increase in anti-dsDNA titers in LDLr.Sle1.3 

mice compared to LDLr.B6 mice (data not shown). The prototypical increase in CD4+ T 

cells was seen as well (data not shown). Additionally, there was an increase in anti-

β2GP1, anti-cardiolipin and anti-oxLDL titers in LDLr.Sle1 mice; although, this increase 

was only significant for anti-cardiolipin (Table 6). These findings suggest that indeed 

high fat diet feeding can affect parameters of both SLE and atherosclerosis in our mice. 

However, even on chow diet, the combination of Sle1 and Sle3 is not sufficient to 

accelerate atherosclerosis in atherosclerosis-susceptible mice. 
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Discussion 

 

 In this chapter, we set out to determine if the break in tolerance to nuclear 

antigens is necessary to accelerate atherosclerosis in SLE, as the minimal genetic 

interval in B6.Sle1.2.3 mice necessary to exacerbate vascular disease is not known. In 

the previous chapter, we demonstrated that transfer of Sle3 alone to LDLr-/- mice was 

not sufficient to exacerbate atherosclerosis. However, these studies did not determine 

whether Sle3 was necessary to enhance atherosclerosis in lupus. Given the increased T 

cell burden in our LDLr.Sle1.2.3 mice and since Sle1 and Sle3 are mainly responsible for 

T cell dysregulation, this study was designed to examine the effects of both loci, both 

coupled and singularly, on atherosclerosis progression.  

 Contrary, to our hypothesis, we found that the presence of Sle1 and Sle3 

together in LDLr-/- mice led to a decrease in atherosclerosis when mice were placed on 

Western diet. This is a surprising finding for us given that in most of our analyses, 

LDLr.Sle1.3 mice displayed the highest amount of immune hyperactivity. The most 

straightforward explanation for this conundrum would be that decreased circulating 

lipoprotein levels are responsible for the decrease in atherosclerosis we observed. This 

suggests that expression lupus susceptibility loci Sle1 and Sle3 by hematopoietic cells 

can modulate cholesterol homeostasis relative to LDLr.B6 mice (even in the presence of 

autoimmunity). This may indeed be the case; however, even in the presence decreased 

serum lipoprotein levels in LDLr.Sle1.2.3 mice we observe increased atherosclerosis. 

Moreover, when we normalize plaque area to cholesterol levels we find no correlation 

between circulating lipoprotein levels and lesion area. Therefore are more likely scenario 

is that in single and bi-congenic mice, the lack of increased T cell accumulation in the 

lesion is responsible for the differences in lesion area. Studies using other mouse 

models of SACVD have reported similar drops in cholesterol levels suggesting that in the 
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setting of autoimmunity, immune dysregulation is paramount to elevated cholesterol 

when assessing cardiovascular disease risk. 

 Parallel with published studies we found that the presence of Sle1 and/or Sle3 

loci was associated with a Th2 bias in LDLr-/- mice, as our experimental groups had an 

increased IgG1 to IgG2c antibody ratio against oxLDL, an antigen linked to 

cardiovascular disease risk (Figure 18).  SLE is considered to be a largely Th2 mediated 

disease therefore these results are not surprising. Nonetheless, this is an intriguing 

observation as it could imply that without all 3 lupus susceptibility loci present, the Th2 

environment established in LDLr.Sle1.3 mice may result in Th2 mediated athero-

protective  phenotypes associated with traditional atherosclerosis. Furthermore, as 

alluded to in Chapter 3, the increased IgG1 anti-oxLDL antibody titers seen in 

LDLr.Sle1.3 mice could facilitate increased clearance of circulating lipoproteins, adding 

to the atheroprotective phenomenon we observe. These interpretations definitely warrant 

future studies. 

 In an effort to rule out the possibility of severe dyslipidemia masking the effects of 

our lupus susceptibility loci on SACVD, we initiated a parallel study in which 

experimental mice were kept on a chow diet instead of being switched to Western diet. 

We found that on chow diet there were no differences in atherosclerosis between any of 

the groups. Additionally, we found that all experimental groups had half the amount of 

serum cholesterol than LDLr.B6 mice (Figure 21). This finding also suggests that 

cholesterol levels serve as a weak indicator of cardiovascular risk in SLE and that 

lesional T cell accumulation in responsible for the accelerated atherosclerosis observed 

in LDLr.Sle1.2.3 mice.  It is important to note that in these studies mice were fed chow 

diet for 32 weeks, while in our Western diet studies mice were switched to Western diet 

sixteen weeks after hematopoietic cell transplantation and kept on diet for 8 weeks, 

giving the Western diet-fed mice a chimeric life span of 24 weeks. Thus it is possible that 
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even without severe dyslipidemia, by allowing atherogenesis to progress for an 

additional eight weeks, we could have veiled any changes that may have been apparent 

if we had sacrificed the mice at the same time point of our Western diet studies. This is a 

plausible explanation as we note in Chapter 2 there was an increased fold change in 

lesion area seen in LDLr.Sle1.2.3 and LDLr.B6 mice kept on chow diet versus those on 

Western diet for the same time period. Also, premature cardiovascular events are linked 

with SLE in humans indicating that understanding early atherosclerotic events may be 

more important when evaluating SACVD.  

 Finally, we are aware that some of the trends in our analyses from Chapter 3 

were not seen when we repeated the studies using LDLr.Sle3 mice in Chapter 4. Our 

most plausible explanation lies in the difference between the mice used for these 

studies. In Chapter 3, all of the LDLr-/- bone marrow recipient mice used were bred in 

our animal facility at Vanderbilt University. In Chapter 4, we purchased all of our bone 

marrow recipient mice from The Jackson Laboratory, as it was more efficient given the 

large number of mice needed for the study. Recently a study by the Hazen laboratory 

examined the role of gut flora in promoting cardiovascular disease (171). They found 

that gut flora from apoE-/- mice played a critical role in metabolizing dietary choline, 

promoting diet-induced atherosclerosis when mice were placed on a choline-rich diet. 

Elimination of commensal gut flora through broad spectrum antibiotic treatment led to an 

inhibition of diet-induced atherogenesis. Moreover, the Mathis group has also reported 

that commensal gut flora is important for the pathogenesis of autoimmune rheumatoid 

arthritis (172). In view of the fact that the LDLr-/- mice (and their parents) from Chapter 4 

were initially housed in The Jackson Laboratory facility which may have different animal 

housing standards than Vanderbilt University facilities, it is possible that differences in 

gut microflora could partly explain the variances in results between the two chapters. 

Further investigation on the role of intestinal microbiota on atherosclerosis and 
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autoimmunity are needed to verify this claim. Nevertheless, since all four groups of mice 

compared in this study came from the same institution, we believe that the results 

reflected here are accurate. 

 In summary, here we report that the loss of tolerance to nuclear antigens in 

addition to T cell hyperactivity, mediated my Sle1 and Sle3, is not sufficient to accelerate 

atherosclerosis. These results indicate that all three lupus susceptibility loci are needed 

to exacerbate cardiovascular disease. However, this does not exclude the possibility that 

phenotypes associated with Sle2 may be sufficient to accelerate atherosclerosis. In 

addition, results presented here lead us to consider the fact that peripheral T cell 

hyperactivity alone does not drive atherogenesis and that there are other factors 

involved in the migration and accumulation of T cells within the plaques of LDLr.Sle1.2.3 

mice.  In any case, these results demonstrate that further studies are warranted to 

ascertain how these genetic loci modulate SACVD development. 
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Figure 18. A Th2 bias is present in LDLr.Sle1.3  mice. (A) Serum isotype titers of anti-oxLDL in 
LDLr.B6, LDLr.Sle1, LDLr.Sle3 and LDLr.Sle1.3 mice. (B) Anti-oxLDL IgG1/IgG2c isotype ratio. (C) 

Supernatant IL-4 secretion in mice. In all panels, black bar = LDLr.B6, white bar = LDLr.Sle1, blue bar 
= LDLr.Sle3, red bar = LDLr.Sle1.3. In A-C, n=3-5 mice per group. * indicates a p value < 0.05 
compared to LDLr.B6 mice.  ** indicates a p value < 0.01 compared to LDLr.B6 mice. 
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Figure 19. Increased Th17 and decreased Tregs in experimental groups. (A) Representative 

FACS plot of CD4
+
IL-17

+ 
T cells in LDLr.B6, LDLr.Sle1, LDLr.Sle3 and LDLr.Sle1.3 mice (Gated on 

TCRβ
+
 cells). (B) Percentage of CD4

+
IL-17

+
 T lymphocytes (n=3-5 mice per group). (C) Percentage of 

CD4
+
CD25

+
Foxp3

+ 
T cells (n=3-5 mice per group). In all bar graphs, black bar = LDLr.B6, white bar = 

LDLr.Sle1, blue bar = LDLr.Sle3, red bar = LDLr.Sle1.3. ** indicates a p value < 0.01 compared to 
LDLr.B6 mice. Experiment repeated at least twice with comparable results. 
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Figure 20. TLR signaling in experimental mice. IL-6 production by CD11c

+
 (left panel) or CD19

+ 
(right 

panel) cells after CpG (A) or LPS (B) stimulation (n= 6-7 mice per group). In all bar graphs, black bar = 
LDLr.B6, white bar = LDLr.Sle1, blue bar = LDLr.Sle3, red bar = LDLr.Sle1.3. * indicates a p value < 
0.05 compared to LDLr.B6 mice.  ** indicates a p value < 0.01 compared to LDLr.B6 mice. *** indicates a 
p value < 0.005 compared to LDLr.B6 mice. 
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Figure 21. Effects of chow diet feeding on atherosclerosis in experimental SLE  mice. (A) 
Average lesion area as determined by Oil-Red-O staining in LDLr.B6 (circles), LDLr.Sle1 (squares), 
LDLr.Sle3 (upright triangles) and LDLr.Sle1.3 (inverted triangles) mice. (B)  Serum cholesterol and (C) 

triglyceride levels. *** indicates a p value < 0.005 compared to LDLr.B6 mice. For A-C, n=5-8 mice per 
group. 

 
 
 
 

 

 

 

 

Table 6. 

    
Serum titers of auto-antibodies 

  

Group
a
 

anti-dsDNA               

(Average OD ± 
S.E.M.) 

anti-β2GP1              

(Average OD ± 
S.E.M.) 

anti-oxLDL                  

(Average OD ± 
S.E.M.) 

anti-cardiolipin                   

(Average OD ± 
S.E.M.) 

 LDLr.B6 0.067 ± 0.0087 0.030 ± 0.0060 0.298 ± 0.0347 0.067 ± 0.0080 

 LDLr.Sle1 0.233 ± 0.0598 0.064 ± 0.0166 0.500 ± 0.0835 0.179 ± 0.0340 

 LDLr.Sle3 0.139 ± 0.0178 0.035 ± 0.0077 0.321 ± 0.0455 0.144 ± 0.0323 

 LDLr.Sle1.3 0.423 ± 0.2018
b
 0.043 ± 0.0096 0.328 ± 0.1093 0.130 ± 0.0273 

a
 5-8 mice per group. 

   b
 p< 0.05 compared to LDLr.B6 mice. 
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CHAPTER V† 

 

Transfer of Sle1.2.3 T cells is sufficient to accelerate atherosclerosis in  
Rag-/-LDLr-/- mice. 

 

INTRODUCTION 

 

 T cells are known to be pro-atherogenic under classical atherosclerosis settings. 

In mice, absence of T and B lymphocytes through recombinase activating gene (RAG) 

deficiency or severe combined immune deficiency was shown to decrease 

atherogenesis. Moreover, transfer of CD4+ T lymphocytes into immunodeficient apoE-/- 

mice resulted in an almost two–fold increase in lesion area. (159, 160)  In humans, it has 

also been shown that T cell accumulation is inversely associated with plaque stability 

(173, 174). These and other studies underscore the importance of T cells in mediating 

disease. 

 Sle1.2.3 expression on mouse T cells is associated with T cell hyperactivity (39, 

107). In our mouse model of SLE accelerated atherosclerosis, we observe increased T 

cell accumulation within the atherosclerotic plaque (34, 35) and this increased T cell 

accumulation has also been seen in another model of SACVD, suggesting that in the 

setting of lupus, T cells play an important role in mediating enhanced vascular disease 

(32). While the previous chapters in this discourse focused on determining the minimal 

genetic interval necessary to induce changes in CVD progression, in this chapter we 

shift our focus to examine the cellular compartments needed to exacerbate 

atherosclerosis in LDLr.Sle1.2.3 mice. The goals of these studies were to (1) determine 

if Sle1.2.3 expression on T cells is necessary to induce changes in atherosclerotic 

                                                
†
 Certain data in this chapter were published in the reference (53). Data from this reference will 

be denoted by a “†”. 
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disease progression and (2) examine how modulation of T cell compartment can affect 

CVD and SLE pathogenesis. 

 

Materials and Methods 

 

Mice. C57Bl/6 (B6) mice were originally obtained from The Jackson Laboratory and are 

maintained in our colony. The SLE congenic B6.Sle1.2.3 strain has been described and 

characterized extensively (37-39, 105-108). Rag-/-LDLr-/- mice were generated in our 

laboratory by crossing B6.129S7-Rag1tm1Mom/J mice (obtained from The Jackson 

Laboratory) to LDLr-/- mice (maintained in our colony) and screening for the absence of 

both genes. All mice are maintained and used according to the guidelines and the 

approval of the Vanderbilt University Institutional Animal Care and Use Committee. 

Purification of T cells. To isolate CD4+ T cells, spleens were passed through a 0.70µm 

mesh screen to create a single cell suspension. CD4+ T cells were isolated using CD4+ 

magnetic beads according to Miltenyi Biotecs positive selection cell sorting protocol. 

Purity was assessed by flow cytometry and cell found to be ~90% enriched  for CD4 

expression. 

Adoptive transfer of T cells. Female Rag-/-LDLr-/- mice were sublethally irradiated (450 

rads). Mice received 7X106 CD4+ T cells from B6 or B6.Sle1.2.3 mice via the retro-orbital 

venous plexus.  

Atherosclerosis studies. Two weeks after T cell transfer, mice were placed on a high-

fat Western diet (21% milk fat, 0.15% cholesterol) for ten weeks.  Mice were then 

sacrificed and analyzed for the degree of atherosclerosis and the presence and severity 

of symptoms associated with SLE. 

† MMF treatment studies. Lethally irradiated female LDLr−/− mice were transplanted 

with bone marrow from either lupus-susceptible B6.Sle1.2.3 (LDLr.Sle) or C57BL/6 
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(LDLr.B6) mice as previously described. At 16 weeks after transplantation, LDLr.B6 mice 

and LDLr.Sle1.2.3 mice were placed on a Western diet (20% milk fat, 0.15% cholesterol) 

containing either no treatment (control) or MMF (40 mg/kg/day) for 8 weeks. After 8 

weeks mice were sacrificed and analyzed for parameters of SLE and atherosclerosis. 

Flow Cytometry. For flow cytometric analyses, spleens were removed and processed 

through a 0.70 μm mesh screen. Cells were counted, resuspended in 1% bovine serum 

albumin (BSA) in HBSS with 0.02% sodium azide and 0.035% sodium bicarbonate, and 

incubated with appropriate antibodies for 40 minutes at 4°C. Cells were then washed 

and analyzed using a 7-laser MACSQuant Analyzer flow cytometer (MACS and FCS 

Express software (De Novo Software). 

Intracellular cytokine staining. For intracellular cytokine staining, splenocytes were 

stimulated with 10ng/ml phorbol myristate acid (PMA) and ionomycin (1µg/mL) in the 

presence of GolgiStop or GolgiPlug (both from BD BoSciences) for 4-5 hours at 37 °C 

and 5% CO2. Cells were stained for extracellular receptors, washed, and fixed overnight 

in 2% paraformaldehyde in PBS. Cells were then permeabilized with Cytoperm (BD 

Biosciences) reagent, stained with the appropriate intracellular antibodies and analyzed 

by flow cytometry. For IL-17 secretion, instead of incubating splenocytes for 5 hours in 

the presence of GolgiPlug, cells were first incubated with PMA and ionomycin without 

Golg-Plug for two hours then incubated and additional three hours in the presence of 

GolgiPlug.  

Cytokine ELISAs. Supernatant cytokine levels were measured by sandwich ELISA 

according to manufacturer’s protocol (BD Pharmingen). 

Statistical Analyses. Statistical analyses were conducted using PRISM 5.0 software 

(GraphPad Software Inc., La Jolla, CA). A  Student’s t-test was used to calculate 

significant differences between groups that were normally distributed while a Mann-
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Whitney U test was performed for data not normally distributed. A p value < 0.05 was 

considered significant. 

 

Results 

 

Analysis of transferred T cell populations. 

 To determine whether lupus T cells are sufficient to accelerate atherosclerosis, 

we performed adoptive transfer experiments. CD4+ T cells were isolated from 6 to 9 

month old B6 or B6.Sle1.2.3 mice. These mice were screened for the presence of anti-

dsDNA antibody titers, indicative of active SLE disease (Figure 22A). We found that our 

isolation protocol yielded a highly enriched CD4+ T cell population (90-95% purity, Figure 

22B). Before transfer we also assessed the phenotype of these purified T cells by flow 

cytometry. We found that of the B6 T cells purified over 75% of them were naïve 

(CD4+CD25-Foxp3-) and 9% percent CD25+Foxp3+ Tregs. Yet twice as many of the SLE 

T cells were CD25+Fop3+. There was also an increased prevalence of CD4+CD25-

Foxp3+ cells (Figure 22C). 

 7 X106 T cells were transferred into six to eight week old, sublethally irradiated 

Rag-/-LDLr-/- mice. Two weeks after transplantation mice were placed on a Western diet 

for 10 weeks then sacrificed. At sacrifice, we found no differences in body, spleen or 

kidney mass between the two groups (data not shown). 
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Figure 22. Analysis of CD4

+ 
population in B6 and B6.Sle1.2.3 mice before adoptive transfer.  

(A) Anti-dsDNA antibody titers in donor B6 (black bar) and B6.Sle1.2.3 (grey bar) mice (n=3 mice per 
group). (B) Representative histogram of CD4

+
 expression before (red line) and after (black line) 

CD4-positive magnetic bead separation. (B) CD25 and Foxp3 expression on isolated CD4
+ 

cells 
before adoptive transfer into Rag

-/-
LDLr

-/-
 mice (gated on CD4

+ 
cells). *** indicates a p value < 0.005 

compared to control mice. 
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Transfer of B6.Sle1.2.3 T cells into Rag-/-LDLr-/- mice results in increased 

atherosclerosis. 

 As a result of our previous studies which suggest that T cells are the 

predominant force driving SACVD in LDLr.Sle1.2.3 chimeras, we hypothesized that 

transfer of B6.Sle1.2.3 T cells from diseased mice is sufficient to accelerate 

atherosclerosis in Rag-/-LDLr-/- mice. Analysis of Oil-Red-O staining of proximal aorta 

sections showed that indeed Rag-/-LDLr-/- mice that received B6.Sle1.2.3 T cells had 

increased lesion area compared to those with B6 T cells (Figure 23A, top panel and 

23B). Moreover, the increase in lesion area was accompanied by increased lesional T 

cell accumulation (Figure 23A, bottom panel and 23C). Evaluation of serum lipoprotein 

levels confirmed that there were no differences in cholesterol or triglyceride levels 

suggesting that changes in atherogenesis were not due to changes in cholesterol 

homeostasis (Figure 24). 

 

The effect of adoptive transfer of B6.Sle1.2.3 T cells on splenocyte populations. 

 We analyzed the effects of adoptive transfer of T cells on antigen presenting cell 

populations. There were no differences in CD11c+ or CD11c+CD11b+ cell populations, 

however transfer of B6.Sle1.2.3 T cells resulted in increased CD11c+B220+ 

plasmacytoid-like dendritic cells (Figure 25A). Furthermore, when we examined dendritic 

cell activation marker expression we found decreased expression of CD80 and CD86 on 

CD11c+ cells (Figure 25B). 

 Taking into account the hyperactive T cell phenotype associated with our original 

SACVD mouse model, we evaluated the activation status of adoptively transferred T 

cells in the Rag-/-LDLr-/- mouse model. We found no differences in the percentage of 

CD4+ T cells between the two groups (Figure 26A).  Surprisingly, there were also no 

differences the ex vivo expression of CD44 or CD69 on B6 or B6.Sle1.2.3 CD4+ T cells 
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when isolated from Rag-/-LDLr-/- mice (Figure 26B-C).  Assessment of CD40L and CD69 

expression after in vitro stimulation with PMA and ionomycin revealed that there were 

again no differences between the groups (Figure 26D-E), indicating that while transfer of 

B6.Sle1.2.3 T cells can enhance atherogenesis, T cells in peripheral lymphoid organs of 

Rag-/-LDLr-/- mice are not hyperactive. 

 To determine if differences in T helper responses could be responsible for the 

accelerated atherosclerosis we observed, we stimulated splenocytes and measured 

intracellular cytokine expression. We found no differences in expression of IL-2 or IL-17 

by CD4+ T cells between the groups (Figure 27A-C). There was slight increase in IFN-γ 

levels in mice with B6.Sle.1.2.3 T cells but this increase was not significant (Figure 27D). 

 

†Inhibition of lymphocyte function by mycophenolate mofetil treatment 

ameliorates SLE  and atherosclerosis pathogenesis in LDLr.Sle1.2.3 mice. 

 Mycophenolate mofetil (MMF) is an immunosuppressant used commonly in 

organ transplantation and autoimmunity. It inhibits lymphocyte proliferation and function 

and studies indicate that MMF treatment is beneficial in treating both atherosclerosis and 

SLE. (175, 176)Given our findings that expression of Sle expression on T cells was 

sufficient to accelerate atherosclerosis, we asked if MMF would be an effective treatment 

for SLE and atherosclerosis in our LDLr.Sle1.2.3 mice.  

 LDL.Sle.1.2.3 radiation chimeras were treated with MMF as outlined in the 

“Materials and Methods” section. We observed that MMF treatment significantly reduced 

dsDNA antibody titers (Figure 28A).  Upon examination of proximal aortic lesion area, 

we discovered that mice treated with MMF had notably smaller lesions compared to 

untreated mice (Figure 28B, top panel) This decrease in lesion area also correlated with 

a decrease in T cell infiltration into the proximal aorta (Figure 28B, bottom panel). Flow 

cytometric analysis of T cell activation revealed that treatment also led to a decrease in 
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CD69 expression on both CD4 and CD8 T cells (data not shown).  These data indicate 

that therapies known to modulate T cell function may prove beneficial in patients with 

SACVD. 

 

 
Figure 23. Transfer of B6.Sle1.2.3 T cells accelerates atherosclerosis in Rag

-/-
LDLr

-/-
 mice. (A) 

Top panel, representative aortic sections stained with Oil-red-O. Bottom panel, representative CD4 
staining. (B) Quantitative analysis of lesion area as assessed by Oil-red-O staining. (C) Percentage of 
CD4

+
 cells in the lesion. In B & C, n= 6 mice per group. * indicates a p value < 0.05 compared to 

control mice.  ** indicates a p value < 0.01 compared to control mice. 
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Figure 24. There are no differences in serum lipoprotein levels after adoptive 
transfer of CD4

+
 T cells. Serum cholesterol (A) and triglyceride (B) levels in Rag

-/-
LDLr

-

/-
 mice transferred with B6 (black bars) or B6.Sle1.2.3 (grey bars) CD4

+
 T cells. In both 

panels, n= 6-8 mice per group. 

 

 
 
Figure 25. Analysis of antigen presenting cells in Rag

-/-
LDLr

-/-
 mice at sacrifice. (A) 

Percentages of various antigen presenting cell populations in Rag
-/-

LDLr
-/-

 mice transferred with 
B6 (black bars) or B6.Sle1.2.3 (grey bars) CD4

+
 T cells. (B) Percentage of CD11c

+ 
cells 

expressing CD80 (right panel) or CD86 (left panel) in Rag
-/-

LDLr
-/-

 mice transferred with B6 (black 
bars) or B6.Sle1.2.3 (grey bars) CD4

+
 T cells. N=3 mice per group. Experiment repeated at least 

twice. * indicates a p value < 0.05 compared to control mice.   

 



 

84 
 

Discussion 

 

 It is well known that T cells contribute to the pathogenesis of both SLE and 

atherosclerosis. Yet, our results represent the novel finding that Sle1.2.3 expression on 

T cells alone is enough to enhance atherosclerosis. Indeed this is significant as it 

indicates that T cells play an indispensable role in SACVD. 

 In our study we found that transfer of B6.Sle1.2.3 T cells to Rag-/-LDLr-/- mice not 

only led to increased atherosclerosis but also led to increased T cell accumulation in the 

lesion. These results have several implications. Firstly, they show that Sle expression on 

antigen presenting cells, such as macrophages or dendritic cells, is necessary to sustain 

T cell hyperactivity. We know that before transfer, B6.Sle1.2.3 T cells were hyperactive 

as there was increased CD25 expression (Figure 22B). However at the end of our 

adoptive transfer studies we found no differences in activation marker expression 

between B6 and B6.Sle1.2.3 T cells. Zhu et. al. (150) has reported that expression of 

Sle3 on antigen presenting cells mediates T cell hyperactivation in B6.Sle3 mice. We 

believe that our results also validate their conclusions. 

   T cell trafficking to sights of inflammation is mediated by a number of receptors 

and adhesion molecules. These include Very Late Antigen 4 (VLA4), CD44, Signaling 

Lymphocyte Activation Molecule (SLAM) family receptors, and selectins (177, 178). It is 

known through genetic dissection that Sle1 contains genes that encode for SLAMF6 

along with L-, P- and E-selectin (37). In SLE patients, SLAMF6 expression was shown to 

promote Th17 cell differentiation (179). Taking into account these data, further 

investigation of the molecular mechanisms controlling T cell migration are merited and 

we hypothesize that changes in these markers are important for SACVD progression. 

 In assessing the phenotype of transferred T cells we observed a two fold 

increase in the percentage of B6.Sle1.2.3 expressing the regulatory markers CD25 and 
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Foxp3. This is unusual as previous studies characterizing this model found that these 

mice had decreased regulatory T cells (117).  Regulatory T cells are generally thought to 

be anti-atherosclerotic and protective against SLE yet here we find that the B6.Sle1.2.3 

Treg population transferred to Rag-/-LDLr-/- mice was unable to protect against SACVD.  

This is congruent with previous studies from others (82, 117) and unpublished 

observations from our laboratory which show that regulatory T cell functions are 

perturbed in B6.Sle1.2.3 mice; and indicates that in SACVD, restoring Treg functions 

may be advantageous in inhibiting disease pathogenesis. 

 Finally, we show that modulation of T cell function through MMF treatment can 

be an effective treatment in SACVD. While the implications of these data are discussed 

in (53), the data from the published study were included in this chapter to re-emphasize 

the fact that T cells play a central role in SACVD. 
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Figure 26. Analysis of T cell populations cells in Rag

-/-
LDLr

-/-
 mice at sacrifice. (A) Percentage of splenic 

CD4
+
 T cells in  Rag

-/-
LDLr

-/-
 mice transferred with B6 or B6.Sle1.2.3 CD4

+
 T cells. (B-C) Percentage of 

CD4
+
CD44

+
 (B)

 
and CD4

+
CD69

+ 
(C) T cells. (D-E) CD69 (D) and CD40L (E) expression on TCRβ

+
CD4

+
 T 

cells with or without PMA/Ionomycin stimulation. In all panels, black bars represent B6 donors while grey bars 
represent B6.Sle1.2.3 donors. N=3-5 mice per group. Experiment repeated at least twice with comparable 
results. 
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Figure 27. Analysis of intracellular cytokine expression in T cells. (A) Representative FACS 

plots of IL-17 expressing (top panel) and IFN-γ expressing CD4
+
 T cells (gated on TCRβ

+
CD4

+
 

cells).(B-D) Percentage of CD4
+
 T cells expressing IL-17 (B), IFN-γ (C), and IL-2 (D) after 

PMA/Ionomycin stimulation. In all bar graphs, black bars represent B6 donors while grey bars 
represent B6.Sle1.2.3 donors. N=3 mice per group. Experiments repeated at least twice with 
comparable results. 

 



 

88 
 

 
 

 

 

 

 

 

 

 
Figure 28. MMF treatment ameliorates lupus and atherosclerosis in LDLr.Sle1.2.3 mice. (A) 
Serum anti-dsDNA titers in LDLr.Sle.1.2.3 mice with or without MMF treatment. (B) Top panel, 

representative aortic sections stained with Oil-red-O. Bottom panel, representative CD4 
immunofluorescent staining. (C) Average lesion area as determined by Oil-Red-O staining (left panel). 

Immunohistochemical detection of CD4
+
 T cells (middle panel) and macrophages (right panel). In all 

panels closed circles represent control LDLr.Sle1.2.3 mice while closed triangles represent MMF 
treated LDLr.Sle1.2.3 mice. n ≥ 6 mice per group. * indicates a p value < 0.05 compared to control 
mice.  ** indicates a p value < 0.01 compared to control mice. *** indicates a p value < 0.005 

compared to control mice. 
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CHAPTER VI 

 

The Role of Notch1 in SLE pathogenesis. 

 

Introduction 

 

 Notch cell-surface receptors are some of the most evolutionarily conserved 

proteins that function in cell fate determination. In mammals, there are four Notch 

proteins (Notch1-Notch4) and five canonical Notch ligands, Delta-like 1 (Dll1), Delta-like 

3 (Dll3), Delta-like 4 (Dll4), Jagged1 and Jagged2. Upon ligand interaction, Notch 

undergoes two consecutive cleavages. The first is by the ADAM protease TACE which 

cleaves the extracellular portion; subsequently gamma secretase cleaves the 

transmembrane domain. This results in an intracellular form of Notch that translocates to 

the nucleus where it associates with CSL (RBP-J in humans) and other transcriptional 

activators to regulate the transcription of various genes such as hes1 and the deltex 

family genes (180, 181).  

 The role of Notch signaling in lymphoid development has been well 

characterized. In the absence of Notch1, thymic lymphoid progenitors fail to initiate T cell 

development and instead adopt a B cell fate (180, 182). Conversely, overexpression of 

Notch1 in bone marrow progenitor cells inhibits B cell development (183). While the role 

for Notch in T cell development is known, less is known about the role of Notch in 

peripheral T cell regulation. Several studies have suggested that specific Notch-ligand 

interactions can mediate T cell polarization. For example, Dll1-Notch3 interaction is 

thought to direct CD4+ T cells toward a Th1 cell fate (184) while Jagged1-Notch 

interaction leads to a Th2 cell fate (185, 186). Recent reports suggest that Notch1 may 

also play a role in Treg versus Th17 cell differentiation (187). Notch-Dll4 interaction 
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mediated by TLR9 expression was found to enhance Th17 responses in murine 

mycobacterium infection (188). A more recent study showed that dll4 blockade promotes 

Treg development (189). Additionally, Hall and colleagues found that TLR9 signaling 

limits iTreg conversion both in vitro and in an in vivo model of inflammatory bowel 

disease (190). These studies indicate that the pathogenesis of autoimmune disease 

could be mediated in part by dysregulation in Notch1-mediatedTh17/Treg fate decision. 

 Recently, there have been a number of studies implying a role for Notch in 

mediating autoimmune diseases. A study by Samon et. al. (191) found that mice 

carrying a Notch1 antisense transgene, which causes a 20-40% reduction in Notch1 

levels, developed an autoimmune phenotype characterized by hepatic lymphocyte 

infiltration and reduced peripheral regulatory T cell expression. Pharmacological 

inhibition of Notch was found to attenuate symptoms of experimental autoimmune 

encephalomyelitis (EAE). Additionally, another study found that T cells from MRL-lpr 

mice have increased Notch1 levels and that inhibition of Notch1 decreases autoimmunity 

and nephritis (192). Give these findings, our lab sought to determine if Notch1 

expression is dysregulated in our autoimmune B6.Sle1.2.3 mice and if in vivo Notch 

inhibition in our mouse model could affect SLE disease. We hypothesized that SLE mice 

have increased Notch1 expression and that this increase in Notch1 expression 1) is due 

to increased Dll4 expression on antigen presenting cells and 2) promotes Th17 

differentiation in a TLR9-dependepent mechanism (see Figure 29 for proposed 

mechanism). We also hypothesized that Notch inhibition would ameliorate disease 

progression in B6.Sle1.2.3 mice with active SLE. Our results show that in vivo Notch1 

inhibition ameliorates SLE pathogenesis; however, the increased Th17 cell 

differentiation that we observe occurs in a Notch-TLR9 independent manner. 
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Materials and Methods 

 

Mice. C57Bl/6 (B6) mice were originally obtained from The Jackson Laboratory and 

were maintained in our colony. The lupus congenic B6.Sle1.2.3 strain has been 

described and characterized extensively (37-39, 105-108).  All mice were maintained 

and used according to the guidelines and the approval of the Vanderbilt University 

Institutional Animal Care and Use Committee. 

In vivo Notch inhibition. To inhibit Notch in vivo, B6.Sle1.2.3 mice were fed a chow diet 

containing LY 411575 ad libitum.  The LY 411575 diet is a Harlan-Teklad mouse/rat 

chow formulated with a combination of 2 enantiomers of the gamma secretase inhibitor 

LY 411575, used at a ratio of 80%:20%, respectively. It delivers 5 mg/kg per day. Serum 

was collected every 4 weeks to determine disease progression by ELISA and body 

 
 

Figure 29. Schematic diagram of hypothesized pathway of Th17 development. CpG DNA 

stimulates TLR9 activation which upregulates Dll4 expression on antigen presenting cells. Notch1-
Dll4 interaction in combination with IL-6 secretion by antigen presenting cells promotes Th17 
differentiation and inhibits iTreg differentiation. 
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weight was recorded weekly. At 18 weeks mice were sacrificed, organs removed and 

analyzed for the severity of SLE.  

Western blotting. Cell lysates were loaded on an SDS-PAGE gel and transferred to a 

nitrocellulose membrane. The membrane was blocked in 3% milk/PBS-T, and incubated 

with the primary antibody for one hour. This was followed by incubation with an anti-

rabbit or anti-mouse IgG-HRP (Promega, Madison, WI) secondary for 45 minutes and 

blot development by ECL reagent. Primary antibodies: mouse anti-Notch1 (eBioscience), 

rabbit anti-mouse dll4 (AbCam). 

Cytokine ELISAs. Supernatant cytokine levels were measured by sandwich ELISA 

according to the manufacturer’s protocol (BD Pharmingen). 

Serum Enzyme-Linked Immunosorbent Assays (ELISAs). Serum titers of dsDNA 

were measured according to the method of Shivakumar et al. (152). Anti-oxLDL 

antibodies were measured as described previously (151). Serum antibody titers against 

β2-glycoprotein I (β2GP1) were measured by coating a 96-well Maxisorb plate with 10 

μg/ml of purified β2GP1 in 1% bovine serum albumin (1% BSA)/PBS overnight. Plates 

were blocked in 1% BSA/PBS for two hours at room temperature. Mouse serum was 

added at a dilution between 1:500 and 1:5000 and incubated overnight at 4°C. Plates 

were washed with 0.5% Tween-20/PBS (PBS-T) and incubated with biotin-conjugated 

goat anti-mouse Ig(H+L) (SouthernBiotech, Birmingham, AL) for 45 minutes at room 

temperature then incubated with avidin-peroxidase for 30 minutes at room temperature. 

Plates were then washed with PBS-T and developed using TMB substrate (BD 

Bioscience). Cardiolipin antibody titers were determined by coating a 96-well Maxisorb 

plate with cardiolipin (Sigma-Aldrich) (15μg/ml in 95% ethanol). The cardiolipin ELISA 

was then conducted as described above for β2GP1. 

Flow Cytometry. For flow cytometric analyses, spleens were removed and processed 

through a 0.70 μm mesh screen. Cells were counted, resuspended in 1% bovine serum 
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albumin (BSA) in HBSS with 0.02% sodium azide and 0.035% sodium bicarbonate, and 

incubated with appropriate antibodies for 40 minutes at 4°C. Cells were then washed 

and analyzed using a 7-laser MACSQuant Analyzer flow cytometer and FCS Express 

software (De Novo Software). 

Intracellular cytokine staining. For intracellular cytokine staining, splenocytes were 

stimulated with 10ng/ml phorbol myristate acid (PMA) and ionomycin (1µg/mL) in the 

presence of GolgiStop or GolgiPlug for 4-5 hous at 37 °C and 5% CO2. Cells were then 

stained for extracellular antibodies, washed, and fixed overnight in 2% 

paraformaldehyde in PBS. Cells were then permeabilized with Cytoperm (BD 

Bisciences) reagent, stained with the appropriate intracellular antibodies and analyzed 

by flow cytometry. For IL-17 secretion, instead of incubating splenocytes for 5 hours in 

the presence of GolgiPlug, cells were first incubated with PMA and ionomycin without 

Golg-Plug for two hours then incubated and additional three hours in the presence of 

GolgiPlug. 

Statistical Analyses. Statistical analyses were conducted using PRISM 5.0 software 

(GraphPad Software Inc., La Jolla, CA). A  Student’s t-test was used to calculate 

significant differences between groups. A p value < 0.05 was considered significant. 

 

Results 

 

Notch1 expression is upregulated in older SLE mice. 

 In order to assess activated Notch expression levels, we isolated CD4+ T cells 

from spleens of B6 and B6.Sle1.2.3 mice and stimulated them with plate bound anti-CD3 

and anti-CD28 for 48 hours in vitro. After stimulation, we assessed intracellular Notch1 

(Notch1IC) (indicative of active Notch) levels through western blotting. We found that 

while there was no difference in NotchIC expression between younger B6 and 
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B6.Sle1.2.3 mice (Figure 30, left panel), older B6.Sle1.2.3 mice had increased Notch1IC 

protein expression (Figure 30, right panel). These data suggest that Notch1 is 

dysregulated in B6.Sle1.2.3 mice, and that this dysregulation correlates with disease 

progression. 

 

 

 

 In vitro Notch1 inhibition decreases serum lipoprotein levels and autoantibody 

production B6.Sle1.2.3 mice.  

 Two separate papers have implicated a role for Notch1 in autoimmunity. Samon 

et al. (191) showed that in vivo inhibition of Notch1 through gamma secretase inhibition 

in B6 mice led to autoimmune hepatic lymphocyte infiltration. Additionally, Teachy et al. 

showed that gamma secretase treatment in autoimmune MRL-lpr mice ameliorated 

autoimmune disease progression by decreasing the double negative T cell population in 

lymphoid organs; this led to decreased dsDNA antibody titers, decreased splenomegaly 

and lympho-proliferation (191, 192). Given these two disparate reports, our laboratory 

 
Figure 30. Notch activity correlates with disease progression in B6.Sle1.2.3 mice.  Notch1

IC
 

expression in isolated CD4+ T cells from mice at 8 weeks (A) and 28 weeks (B) of age. CD4
+
 T cells 

were isolated and cultured for 48 hours and lysates were analyzed for Notch1
IC

 and β-actin 
expression by Western blot. 
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sought to determine if in vivo Notch inhibition in our mouse model could affect SLE 

disease.  

 Eight week old B6.Sle1.2.3 mice were fed a diet containing gamma secretase 

inhibitor (GSI) (LY411575) or control diet for 18 weeks. Consistent with other studies 

(193) GSI diet feeding led to a progressive greying of fur (Figure 31A), indicative of 

Notch inhibition. Upon further examination, these experimental mice exhibited 

splenomegaly and decreased body weight (Figure 31B-C). The decrease in body weight 

was not due to decreased food intake as both groups had similar weekly food intake 

levels (Figure 31D). 

 To confirm that GSI treatment led to Notch inhibition, splenocytes were harvested 

and stimulated with anti-CD3/anti-CD28 for 72 hours. Western blotting of cell lysates 

was performed to assess NotchIC protein levels. As shown in Figure 31E-F, upregulation 

of NotchIC upon stimulation is impaired in GSI diet fed mice thus confirming inhibited 

Notch activity. 

 

Notch inhibition decreases autoantibody production and serum cholesterol levels. 

 In order to determine the effect of Notch inhibition, serum was collected every 

four weeks and autoantibody titers measured. At 12 weeks of diet, there were no 

differences in autoantibody titers between the two groups, with anti-dsDNA titers steadily 

rising in both groups. However, at sacrifice (18 weeks on diet) GSI-fed B6.Sle1.2.3 mice 

had decreased serum antibody titers against dsDNA, β2GP1, and cardiolipin. (Figure 

32A-C)  

 Serum lipoprotein analyses revealed that mice on GSI had decreased serum 

cholesterol levels with no difference in serum triglyceride levels (Figure 32D-E). The 

decrease in serum cholesterol was found to be due to a decrease in the non-VLDL 

fractions (Figure 32F). 



 

96 
 

 

 
Figure 31. Effects of in vivo Notch inhibition. (A) Evidence of progressive hair greying in GSI-fed 
mice (on right) but not control diet-fed mice (on left). (B) Average spleen weight in control diet-fed and 
GSI-fed B6.Sle1.2.3 mice. (C) Average body weight in control diet-fed and GSI-fed B6.Sle1.2.3 mice. 
(D) Average weekly food intake (per mouse, per week) in control diet-fed and GSI-fed mice. N=3-4 
mice per group.(E) Confirmation of in vivo inhibition of Notch activity in GSI-fed but not control-fed 
B6.Sle1.2.3 mice. Splenocytes were harvested from mice and cultured for 72 hours with or without 

αCD3/αCD28 stimulation. Whole-cell lysates were prepared and Notch1
IC

 and β-actin expression was 
detected by Western blot. Data are representative of n = 3 (control) and n = 4 (GSI). (F) Graphic 
representation of band intensities from panel E. Expression of Notch1

IC
 was normalized to β-actin 

expression. * indicates a p value < 0.05 compared to control fed mice.   
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Figure 32. Effects of Notch inhibition on auto-antibody titers and serum lipoprotein levels. (A-
C) Serum antibody titers of anti-dsDNA (A), anti-β2GP1 (B), and anti-cardiolipin (C) antibodies in 
B6.Sle1.2.3 mice fed control (closed bars) or GSI (open bars) diet. (D-E) Serum cholesterol (D) and 
triglyceride (E) levels in B6.Sle1.2.3 mice fed control (closed bars) or GSI (open bars) diet. In A-E, 
n=3-4 mice per group. (F) FPLC analysis of cholesterol lipoprotein distribution B6.Sle1.2.3 mice fed 

control (closed bars) or GSI (open bars). Serum from 3-4 mice per group was pooled. ** indicates a p 
value < 0.01 compared to control fed mice. 
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Effects of Notch inhibition on immune cells.  

 As shown before, GSI diet feeding led to splenomegaly in B6.Sle1.2.3 mice. Flow 

cytometric analyses showed that this increase in spleen weight was due to an increase 

in CD4+ T cells and CD11b+ macrophages (Figure 33A). We also found a decrease in 

the percentage of CD19+ B cells, partly explaining the decrease in autoantibody 

production (Figure 33B), and a slight increase in regulatory T cells (Figure 33C). 

 

TLR9 stimulation does not upregulate cytokines associated with Th17 

differentiation in B6.Sle1.2.3 mice. 

  In our proposed model, increased Dll4 expression on antigen presenting cells, 

resulting from increased in Notch expression mediates enhanced TLR9-CpG stimulation. 

To determine if increased Notch1 expression is due to increased Dll4 expression on 

antigen presenting cells in B6.Sle1.2.3 mice CD11c+ (dendritic cells) and CD19+ (B cells) 

were isolated by magnetic separation from splenocytes of B6 and B6.Sle1.2.3 mice.  

 CD11c+ and CD19+ cell populations were stimulated with the TLR9 agonist CpG 

DNA.  After stimulation, Dll4 protein expression was analyzed by western blot. We found 

that after stimulation, there were no differences in Dll4 expression levels on dendritic 

cells (Figure 34A) or B cells (not shown) in neither control nor B6.Sle.1.2.3 mice. We 

also harvested supernatants from these stimulations and assessed IL-6, IL-1β and IL-23 

secretion levels. While we could not detect IL-1β or IL-23, we found a significant 

decrease in IL-6 levels from B6.Sle1.2.3 mice compared to control (Figure 34B), 

indicating that CpG stimulation does not facilitate the increased Th17 differentiation that 

we observe in these mice. 
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Figure 33. Analysis of splenocyte populations in GSI-fed B6.Sle1.2.3 mice. (A) Absolute 
numbers of spleen cell populations in B6.Sle1.2.3 mice fed control (open bars) or GSI (control 
bars) diet. (B-C) Percentage of B lymphocytes (B) and regulatory T cells (C) in B6.Sle1.2.3 

mice fed control (closed bars) or GSI (open bars) diet. In all panels, n=3-4 mice per group. * 
indicates a p value < 0.05 compared to control fed mice. ** indicates a p value < 0.01 
compared to control mice. 

 
Figure 34. CpG stimulation on does not upregulate dll4 expression or IL-6 secretion in 
B6.Sle1.2.3 mice.  (A) Dll4 expression by CD11c

+
 splenocytes from B6 and B6.Sle1.2.3 mice. 

Splenocytes were harvested from mice and CD11c
+ 

cells isolated by magnetic separation. 
Isolated cells were cultured with CpG-DNA for 48 hours and lysates prepared. Dll4 and β-actin 
expression was detected by Western blot. Data are representative of 4 mice per group. (B) IL-6 

secretion by CD11c
+
 and CD19

+
 cells stimulated for 48 hours with CpG-DNA. Closed bars 

represent B6 mice while open bars represent B6.Sle.1.2.3 mice. N=3-4 mice per group. ** 

indicates a p value < 0.01 compared to control mice.  *** indicates a p value < 0.001 compared 
to control mice.   
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Discussion 

 In this chapter we investigated how Notch inhibition affects SLE pathogenesis. 

We found that while inhibiting Notch activity delayed SLE onset, this delay was not 

through the mechanism we originally hypothesized. Although we saw a decrease in 

autoantibody and phospholipid antibody titers, there was no increase the percentage of 

regulatory T cells after treatment. Additionally, we found that TLR9 activation of antigen 

presenting cells, through CpG DNA stimulation, did not increase IL-6 secretion by these 

cells. These results lead us to believe that Notch modulation of SLE pathogenesis may 

function in an alternate, TLR9-independent manner. 

 Notch1 and its signaling molecules are expressed on many cell types including T 

cells, B cells and macrophages. A number of studies have found that macrophage 

activation by various TLR ligands can lead to Notch upregulation on macrophages (194, 

195). Moreover, it has been shown that GSI treatment in an activated lymphocyte-

derived DNA (ALD-DNA) immunization model of SLE results in amelioration of SLE 

symptoms by inhibiting macrophage activation and M2b cell polarization (196). Given 

these studies it is possible that GSI treatment led to the alteration of other cell types 

which led to the amelioration of SLE disease. Additionally, it is possible that activation of 

other TLR ligands and or Notch1 ligands could lead to Th17 cell differentiation. These 

and other options remain to be explored in our model.  

 Similar to one study (192), we found that GSI treatment led to a decrease in 

CD4+ T cells (Figure 34A) and double negative T cells (data not shown). Yet, in our 

study, GSI treatment was also associated with splenomegaly and decreased body 

weight, which was not previously observed. There are several potential explanations for 

these discrepancies. The first is the type of GSI inhibitor used. In Teachey et al. N-S-

phenyl-glycine-t-butyl ester (DAPT) was given by gavage five days a week at a 5mg/kg 

dosage. The authors chose this drug and dosage scheme to limit the amount of drug 
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toxicity. In our studies we fed the mice a diet with LY411575 ad libitum, which delivered 

5mg/kg of the drug per day. Toxicities associated with GSI inhibition include thymic 

atrophy and increased intestinal goblet cell formation (197). Upon gross examination of 

our mice we found some of these morphologies indicating the possible existence of drug 

toxicity. Additionally, while our study was a preventative study, the study referenced 

above was a drug efficacy study. Their treatment didn’t start until the mice were five or 

six months old, an age at which SLE symptoms are at their peak, while our studies 

began in 2 month old mice in order to delay disease onset. Finally, while we used our 

triple congenic B6.Sle1.2.3 disease model, they used the Mrl/lpr model which is mainly a 

model of lymphoproliferative disease. Though there were several differences between 

the two studies, inhibition of SLE was the end result of both studies suggesting to us that 

GSI treatment could be an attractive therapy for the treatment of SLE. 
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CHAPTER VII 

 

GENERAL DISCUSSION 

 

Summary and Proposed Mechanism. 

 In this body of work, we have shown that SLE and atherosclerosis susceptible 

LDLr.Sle1.2.3 mice have increased atherosclerosis and that CD4+ T cells play a 

significant role in mediating this co-morbidity. In our initial studies we find that SLE 

accelerates atherosclerosis and that this enhanced atherogenesis is independent of 

dietary lipids. Additionally, we observe that increased T cell accumulation occurs in the 

lesions of LDLr.Sle1.2.3 mice and that T cells from SLE mice display dysregulated 

phenotypes commonly observed in SLE patients. Next, we show that transfer of 

individual lupus susceptibility loci associated with T cell hyperactivity is not sufficient to 

cause accelerated atherosclerosis; however, they mediate pathologies associated with 

lupus. Finally we demonstrate that while individual loci aren’t able to exacerbate 

atherosclerosis in SLE m ice, transfer of CD4+ T cells that contain all three loci into 

immunodeficient mice can enhance atherogenesis, implying that B6.Sle1.2.3. T cells 

alone are sufficient to induce SACVD. 

  In addition to demonstrating that T cells play an critical role in SACVD, our 

results show that the mode by which T cells regulate this enhanced disease is 

multifaceted. Conventional T effector cells in SLE mice have a pro-inflammatory, pro-

migratory phenotype which favors T cell infiltration into the atherosclerotic lesion. This 

increased T cell accumulation in the lesion is the primary mode of enhanced 

atherogenesis. Additionally, there is a defect in the differentiation of anti-inflammatory, 

anti-atherogenic regulatory T cells which augments the disease process. These studies 



 

103 
 

ultimately show that modulation of T cell function could be an attractive therapeutic 

target in treating at risk SLE patients. 

 Figure 35, illustrates our proposed mechanism of SACVD. We believe that 

conventional T cell accumulation within the plaque drives the atherosclerotic process in 

SLE-susceptible mice. Correspondingly, impaired Treg development and function allows 

for increased T cell activation, lesional T cell accumulation, and systemic inflammation. 

 

Regulation of SACVD by conventional T cells. 

 Conventional T cells are known to have a largely pro-atherogenic role in 

traditional atherosclerosis. Both human and animal studies have revealed that the T cells 

found in lesions are largely CD4+ and pro-inflammatory (198). In our adoptive transfer 

studies (Chapter V) we found that transfer of B6.Sle1.2.3 T cells from diseased mice led 

to increased atherosclerosis compared to mice with B6 T cells. Additionally, while 

B6.Sle1.2.3 T cells were hyperactive before transfer, there were no differences in the 

activation status of either group at sacrifice. This suggests that B6.Sle1.2.3 T cells 

possess a hyper-migratory phenotype. However, our studies did not address whether 

the increased lesional T cell accumulation is a consequence of hyperactivation before 

transfer (due to their micro-environment) or if these two phenotypes are distinct. A 

simple experiment to test this hypothesis would be to repeat the adoptive transfer 

experiment, adding a group in which B6 T cells are activated in vitro prior to being 

transferred to Rag-/-LDLr-/- mice. The results from this study will tell us if T cell activation 

is solely responsible for increased T cell infiltration into the plaque. Furthermore, we can 

also determine if B6.Sle1.2.3 T cells from younger mice (pre-disease onsent) would 

have the same effect as older B6.Sle1.2.3 T cells (nature versus nurture). 

 Our results may also indicate that while B6.Sle1.2.3 T cells are efficient in 

traveling to the atherosclerotic plaque, they may be unable to emigrate out of the lesion 
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to secondary lymphoid organs. As a result, their inability to emigrate leads to increased 

T cell accumulation. Galkina et al. (199) observed that leukocyte trafficking into the aorta 

is partially dependent on CD62L in ApoE-/- mice. Additionally, two groups have found 

that the chemokine receptor CCR7 is important for the emigration of T cells from the 

atherosclerotic lesion; whereas absence of this receptor leads to lymphocyte 

accumulation and inhibits cell emigration in atherosclerosis-prone mice (200, 201). 

Given these published studies and our observations, the examination of these proteins 

and others involved in T cell migration will offer great insight into how T cell trafficking 

into/out of the lesion is regulated and its effects on SACVD progression. 

 

Regulation of SACVD by regulatory T cells. 

 In addition to dysregulated conventional T effector cells, B6.Sle1.2.3 mice also 

have impaired Treg development and function. We found that B6.Sle1.2.3 mice have 

either the same or slightly elevated percentages of Tregs, contrasting previously 

published data by Cuda et. al.(117).  Nonetheless, our own unpublished in vitro 

observations have indicated that these B6.Sle1.2.3 Tregs are dysfunctional an unable to 

suppress conventional T cell functions mirroring data from the above studies. 

Furthermore, we have shown that Treg development induced by TGF-β is also impaired 

(Chapter II). These observations have recently been published by the Morel laboratory 

using single congenic mice (202). 

 Studies show that Tregs have anti-inflammatory, anti-atherogenic effects (84, 

85). However, therapeutic benefit of ex vivo expanded Tregs on traditional 

atherosclerosis or SACVD has not been assessed. Many studies have demonstrated 

that transfer of iTregs can prevent autoimmunity. Scalapino et al. (146) observed that 

transfer of iTregs expanded ex vivo suppressed autoimmunity and glomerulonephritis in 

NZB/NZW mice and Su et al.(145) found that iTregs protected against autoimmunity in a 
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SLE like model of chronic graft versus host disease. These and others indicate that 

expansion of Tregs may be an effective option in treating SAVD. Simple adoptive 

transfer techniques using ex vivo expanded iTregs can be used to determine if iTregs 

can inhibit progression of SACVD.  

 In Chapter VI, we assess the role of the Notch1, a protein commonly studied in 

cell fate determination, in Treg/Th17 homeostasis. Although, we find that in vivo 

inhibition of Notch1 does not directly alter the Treg/Th17 balance, there have been a 

number of recent studies to explore other methods of reestablishing this balance. In a 

review by Yang et al. (203) four therapeutic agents that restore immune balance 

between Tregs and Th17 cells are discussed; these include all-trans retinoic acid 

(ATRA), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), rapamycin and H471-94 (a 

nucleosomal histone peptide epitope). While ATRA maintained Foxp3 expression, 

rapamycin was more effective in expanding human nTregs ex vivo; and their combined 

use increased the suppressive activity of expanded Tregs (204). Future studies in our 

laboratory are aimed at determining if treatment of LDLr.Sle1.2.3 with these agents 

could positively regulate SACVD pathogenesis. 

 

Observations from LDLr.Sle1.2.3 mice. 

 While this dissertation focuses on the role of T cells in SACVD, it is important for 

us to highlight and discuss observations from our studies not necessarily related to T 

cells. In the majority of our radiation chimera studies we found that mice containing lupus 

susceptibility loci had decreased serum cholesterol levels compared to control mice at 

sacrifice. There was no correlation between cholesterol levels and atherosclerotic lesion 

area, indicating that immune dysregulation and not dyslipidemia is a more important risk 

factor in SACVD. In addition, we found that cholesterol levels at 16 weeks post bone 

marrow transplant (prior to Western diet initiation) were equal between all groups as 
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were auto-antibody titers. These observations lead us to hypothesize that as 

atherosclerosis progresses, lupus-susceptible mice become more efficient in uptake 

and/or clearance of circulating lipoproteins, potentially through Fcγ receptor-mediated 

uptake of anti-oxLDL or anti-phospholipid immune complexes. Furthermore, these 

effects on cholesterol metabolism are not specific to any one SLE locus indicating that 

there is some constant between these loci which regulates cholesterol homeostasis.  

Elucidation of the link between cholesterol homeostasis and these lupus susceptibility 

loci may prove useful in designing therapies against traditional atherosclerosis, where 

lipid dysregulation plays a more prominent role. 

 In chapters 3 and 4 we found that neither lupus susceptibility loci Sle1, Sle3 nor 

Sle1.3 were sufficient to accelerate atherosclerosis. This leads us to question the role of 

Sle2 in mediating SACVD. Sle2 is associated with B-1a B cell accumulation (105). On 

the other hand, recent studies in traditional atherosclerosis have indicated a protective 

role for B-1a B cells and an atherogenic role for B-2 B cells  (41, 42).  Xu et.al (205) 

demonstrated that combination of the Sle2 sub-locus, Sle2c1, with lpr (associated with 

defects in fas-mediated apoptosis), leads to altered T cell homeostasis, with a skewing 

of T cells towards a Th17 fate and away from a Treg fate. These observations 

emphasize the importance of assessing the effect of Sle2 alone on SACVD in the near 

future. Furthermore, one could speculate that B-1 B cell–mediated T cell 

differentiation/activation, through synergy with Sle1 and/or Sle3 could have pro-

atherogenic effects, just as its synergy with lpr has pro-inflammatory effects.  This would 

be an exciting finding as it would imply that SACVD and traditional CVD pathogenesis 

occur by two distinct mechanisms.  

 Finally, T cell and antigen presenting cell interactions are important for the 

initiation and sustentation of inflammatory processes. Dendritic cells from B6.Sle1.2.3 

mice have a hyperactive phenotype as observed in studies from the laboratories of 
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Wakeland and Morel (39, 107). Congruent with these studies, we found increased MHC 

class II (I-Ab) expression in the lesions of LDLr.Sle1.2.3 mice (presumably on antigen 

presenting cells) along with increased CD86 and/or CD80 expression in our single 

congenic mouse studies. The hyperactive dendritic cell phenotype is dendritic cell- 

intrinsic and calls into question the significance T cell-dendritic cell cooperation in SLE-

accelerated atherosclerosis. Indeed, it is possible that while Sle1.2.3 T cells are 

sufficient to accelerate atherosclerosis, Sle1.2.3 dendritic cells may have an additive 

effect and exacerbate atherosclerotic disease even more than T cells alone. This would 

indicate that Sle1.2.3 expression in both T cells and DC’s work cooperatively to affect 

vascular disease progression. Along the same lines, future studies may indicate that 

Sle1.2.3 dendritic cells alone are sufficient to promote SACVD, further emphasizing the 

role of dendritic cells in the atherosclerotic process. The observations pointed out above 

accentuate the fact while T cells are important in SACVD, there are a host of other cell 

types/pathways waiting to be explored in both atherosclerosis and SLE.  

 

The Role of T cells in SACVD: A Clinical Perspective 

 A definite correlation between autoimmunity and premature cardiovascular 

events in SLE patients has been established, with the finding of SLE-related CVD risk 

factors such as increased inflammation, increased autoantibody production and the use 

of certain drugs. Despite these findings, the mechanism(s) behind this co-morbidity 

remain elusive. It is known that perturbations of the immune system associated with 

traditional atherosclerosis are increased in some SLE patients; these include increased 

pro-inflammatory cytokine production and anti-phospholipid antibody production (45) 

(206). However, very few studies have provided evidence that immune dysregulations 

definitively promote the accelerated cardiovascular disease seen in many SLE patients. 
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 The same is true in regards to human studies and T cells in SACVD. T cells from 

SLE patients are known to have signaling abnormalities which influence cell function. 

These abnormalities include replacement of the CD3 zeta chain with Fcγ receptor, an 

imbalance in transcription factor regulation and translocation, increased CD40L 

expression, decreased IL-2 expression and decreased activation induced cell death (77, 

124, 207, 208). These aberrations are known to mediate SLE pathogenesis and thought 

to be important in SACVD. While one study found that decreased TGF-β activity 

correlated with increased LDL levels and carotid intima to media thickness (58), to date 

there are a very limited number of clinical studies that correlate T cell signaling 

abnormalities with CVD risk in SLE patients.  

 In LDLr.Sle1.2.3 mice, T cells display some of the same abnormalities as 

discussed above in humans (see Chapter II). Moreover, we find that increased T cell 

accumulation in the atherosclerotic plaques is partly responsible for increased 

atherogenesis observed.  We believe that data highlighted in this dissertation have 

broad implications in the clinical setting. The results from our studies suggest that clinical 

studies should now be undertaken to evaluate the connection between T cell dysfunction 

and cardiovascular disease risk in SLE. Relevant clinical investigations include 

determining if infarcts from SLE patients have more T cells present, examining the 

migratory capacity of T cells from SLE patients with clinical or subclinical cardiovascular 

disease, and undertaking correlative studies which examine the relationship between 

SLE associated T cell aberrations and cardiovascular disease risk factors. 

 Furthermore, our studies indicate that the discovery of new treatment options 

which target T cells should be aggressively pursued. Most current therapies for SLE 

target B cell function and antibody production. This is especially evident as the most 

recent drug approved specifically for SLE targets BAFF, a factor that promotes B cell 

survival and proliferation (209). Although B cells are known to be largely pathogenic in 
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SLE, in traditional atherosclerosis, both pro- and anti- atherogenic properties have be 

ascribed to B cells (41, 42, 69) attesting to the complexity of the disease process. On the 

other hand, the role of T cells in both SLE and atherosclerosis remains the same as they 

have consistently been found to be pro-inflammatory and pro-atherogenic. 

 Our laboratory found that treatment of LDLr.Sle1.2.3 mice with MMF resulted in 

decreased lesion area which was associated with decreased lesional T cell 

accumulation (Chapter V and (53)). It is important to note that a recent study by Kiani et 

al. found that treatment of SLE patients with MMF did not improve carotid intima to 

media thickness or coronary artery calcification over a two year period (210). However, 

interpretation of the results from this study are severely limited by a number of factors 

including sample size, MMF dosage, CVD risk assessment parameters and time frame. 

Even so, the data presented in this dissertation should spur more clinical investigations 

that strive to understand how T cells shape the atherosclerotic process in SLE. These 

investigations can yield a number of discoveries—from improved clinical biomarkers to 

assess SACVD risk to tailored therapies for SACVD—ultimately leading to improved 

quality of life for SLE patients. 

 

Concluding Remarks 

 In this body of work, I have taken advantage of a novel mouse model of SLE-

accelerated atherosclerosis to understand the role of T cell dysregulation in SACVD. 

While much more remains to be discovered, our work provides confirmation that T cells 

are important in SACVD and that T cell intrinsic and extrinsic mechanisms facilitate this 

enhanced disease process. The results taken from these studies will allow us to further 

delve into the molecular processes that regulate SACVD, ultimately facilitating the 

development of therapeutics designed to treat both SLE and cardiovascular disease. 
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Figure 35. Proposed mechanism of SACVD. In LDLr.Sle1.2.3 mice, T cell accumulation within the 

plaque drives the atherosclerotic process. This is associated with impaired Treg development and 
function which allows for increased T cell activation, lesional T cell accumulation, and systemic 
inflammation. 
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