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CHAPTER I 

 

INTRODUCTION 

 

cVEMP and oVEMP 

When an acoustical stimulus of sufficiently high intensity is presented to an ear, a 

series of reflexes are triggered that include short latency sound-evoked activations, and, 

sound-evoked inhibitions, of electromyographic (EMG) activity.  These sound evoked 

muscle reflexes are also known as “sonomotor” reflexes and consist of a receptor end 

organ, an afferent pathway, central connections, an efferent pathway, and an end muscle.  

High intensity auditory signals not only stimulate the cochlea but also activate the 

vestibular system and can evoke short latency sound evoked muscle reflexes in the 

anterior neck muscles and extraocular muscles, and elsewhere.  This sonomotor response 

can easily be recorded with surface electrodes placed either on the sternocleidomastoid 

muscle (SCM) or in proximity to the inferior oblique (extraocular) muscle (Colebatch and 

Halmagyi 1992; Rosengren, McAngus Todd et al. 2005; Todd, Rosengren et al. 2007).  

These evoked responses are referred to as vestibular evoked myogenic potentials 

(VEMP).  A VEMP recorded from the SCM is traditionally referred to as the cervical 

VEMP (or “cVEMP”) and a VEMP recorded from surface electrodes placed beneath the 

eyes has been termed the ocular VEMP (or “oVEMP”).  

The end organ of the cVEMP is the saccule (Colebatch and Halmagyi 1992; 

Colebatch, Halmagyi et al. 1994; McCue and Guinan 1994).  Electrical activity from the 

saccule is routed through the inferior vestibular nerve to the medial, lateral, or inferior 
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vestibular nuclei.  The efferent limb of the reflex begins when the electrical activity is 

routed from the vestibular nucleus through the medial or lateral vestibulospinal tract to 

the spinal accessory nucleus of cranial nerve XI and finally to the motor neurons of the 

SCM resulting in an inhibition/relaxation of the muscle from its contracted state (for 

review see Rosengren et al, 2010).   

The end organ origin of the oVEMP in response to air conduction stimuli is being 

debated in the most contemporary literature and is either the saccule, utricle, or both 

(Curthoys 2010; Halmagyi and Carey 2010; Manzari, Burgess et al. 2010; Murofushi, 

Wakayama et al. 2010; Rosengren, Welgampola et al. 2010; Govender, Rosengren et al. 

2011).  However the strongest contemporary evidence supports the utricle as being the 

end organ responsible for the oVEMP in response to both vibratory and acoustical 

stimulation (Curthoys 2010; Manzari, Burgess et al. 2010; Manzari, Tedesco et al. 2010; 

Murofushi, Wakayama et al. 2010; Taylor, Wijewardene et al. 2010; Govender, 

Rosengren et al. 2011; Lin and Young 2011; Valko, Hegemann et al. 2011).  First, recent 

studies in guinea pigs have confirmed that both otolith end organs respond to acoustic 

stimulation (Curthoys and Vulovic 2010).  Second, there is considerable evidence 

suggesting that the inferior oblique is the end muscle responsible for the oVEMP 

(Rosengren, McAngus Todd et al. 2005; Iwasaki, McGarvie et al. 2007; Todd, Rosengren 

et al. 2007; Welgampola, Migliaccio et al. 2009).  The utricle has strong connections to 

the extraocular muscles, whereas the saccule does not.  Third, several reports have been 

published illustrating different results from the cVEMP and oVEMP in humans with 

known vestibular lesions.  These studies support the contention that the cVEMP and 

oVEMP have different peripheral origins and are measuring two different pathways.   
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We contend that the peripheral end organ of the oVEMP is the utricle, thus the 

afferent pathway of the oVEMP is the superior vestibular nerve.  The central pathway for 

the oVEMP is a bilateral pathway mediated by the vestibulo-ocular reflex (VOR) to the 

vestibular nucleus (i.e. superior vestibular nerve to vestibular nucleus).  The efferent 

pathway begins at the medial longitudinal fasciculus (MLF).  The MLF routes electrical 

activity through cranial nerve III which innervates four of the six extraocular muscles.   

 

Effects of Aging on the VEMP 

 

Both the cVEMP and oVEMP can be recorded across the lifespan, but the 

responses are often reduced and/or absent in older individuals.  Age-related changes in 

both the cVEMP and oVEMP are well-documented and appear to be very similar for both 

responses (Welgampola and Colebatch 2001; Ochi and Ohashi 2003; Su, Huang et al. 

2004; Zapala and Brey 2004; Basta, Todt et al. 2007; Brantberg, Granath et al. 2007; 

Iwasaki, Smulders et al. 2008; Nguyen, Welgampola et al. 2010; Tseng, Chou et al. 

2010).  The most consistent finding is a decrease in peak-to-peak amplitude and increased 

threshold with increasing age.  Reportedly up to 40% of otologically and neurologically 

intact subjects over the age of 60 years do not produce a cVEMP response in response to 

an air conduction tone burst at 500 Hz (Su, Huang et al. 2004).  Absent oVEMPs in 

response to the same stimulus have been reported in 25% of normal subjects over 60 

years of age (Piker, Jacobson et al. 2011).  Aging has an effect on more routinely used 

vestibular function tests, such as caloric testing, but a dramatic decline with aging is not a 

prominent feature of all measures.  For example, bilaterally absent caloric responses are 
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uncommonly observed in elderly patients while we often see (e.g. up to 40% of the time) 

a complete absence of cVEMP responses in elderly patients (e.g. Su et al, 2004).  The 

absence of VEMP responses in elderly patients may be due to an impairment occurring 

anywhere along the VEMP pathway, or may be due to the limited stimulus levels and/or 

type of stimulus used (i.e. acoustic stimulation vs a more natural vestibular stimulus such 

as head decelerations/accelerations). Whereas the presence of impairment along the 

VEMP reflex pathway is difficult to study non-invasively, we can examine the stimulus 

used to elicit the VEMP response.  Further, there appears to be frequency “tuning” in the 

vestibular system with certain acoustic frequencies eliciting larger amplitude VEMPs, at 

least in young healthy individuals (McCue and Guinan 1995; Sheykholeslami, Habiby 

Kermany et al. 2001; Welgampola and Colebatch 2001; Akin, Murnane et al. 2003; 

Rauch, Zhou et al. 2004; Node, Seo et al. 2005; Lin, Timmer et al. 2006; Timmer, Zhou 

et al. 2006; Chihara, Iwasaki et al. 2009; Todd, Rosengren et al. 2009; Todd, Rosengren 

et al. 2009; Donnellan, Wei et al. 2010; Lewis, Mustain et al. 2010; Park, Lee et al. 2010; 

Murnane, Akin et al. 2011; Zhang, Govender et al. 2011; Winters, Berg et al. 2012).  

 

Frequency Tuning of the VEMP 

 

 Several investigators have assessed the effectiveness of different acoustic stimuli for 

evoking VEMPs with supramaximal stimulation (i.e. between 120 and 130 dB pSPL).  

Welgampola & Colebatch (2001) measured cVEMP responses using tone bursts at 100 

Hz increments between 200 Hz and 1000 Hz.  They observed the largest cVEMP 

amplitude in response to tone bursts between 600 Hz and 1000 Hz, with a mean ~700 Hz 
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(Welgampola and Colebatch 2001).  Other human studies have shown very similar results 

with the maximum cVEMP recorded in response to a tone burst between 500 and 1000 

Hz (Murofushi, Matsuzaki et al. 1999; Akin, Murnane et al. 2003; Node, Seo et al. 2005; 

Lin, Timmer et al. 2006; Timmer, Zhou et al. 2006; Park, Lee et al. 2010).  The finding 

that mid-frequency tone burst stimuli yield larger VEMP responses at lower threshold 

levels has been viewed as evidence of frequency “tuning” in the vestibular system. 

The oVEMP has also demonstrated frequency tuning to air conduction tone 

bursts.  Several investigators have recorded the oVEMP in response to air conducted tone 

bursts with peak amplitude elicited by tone bursts between 400 and 1000 Hz (Todd, Cody 

et al. 2000; Chihara, Iwasaki et al. 2007; Chihara, Iwasaki et al. 2009; Lewis, Mustain et 

al. 2010; Park, Lee et al. 2010).  Park et al (2010) measured oVEMP responses to 

frequencies of 250, 500, 1000, and 2000 Hz in 20 normal subjects.  Mean amplitudes 

were similar across the four frequencies (3.0 µV, 5.7 µV, 5.7 µV, and 3.2 µV, 

respectively) but an analysis of variance revealed that amplitudes at 500 and 1000 Hz 

were significantly larger than those at 250 and 2000 Hz.  Similarly, Lewis et al (2010) 

reported the greatest oVEMP amplitude at 1000 Hz for 8 out of their 12 subjects.  In 

summary, most studies have reported very similar frequency tuning between the cVEMP 

and oVEMP.  The notion that changes in the saccule and utricle, and consequent changes 

in their resonant frequency, could alter the frequency tuning of the VEMP has also been 

investigated. 
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Altered Frequency Tuning Due to Pathology of the Inner Ear 

 

Meniere’s disease (MD) is associated with pathologic changes in the saccule.  

Histopathologic studies in human temporal bones have shown that MD patients often 

present with cochleosaccular hydrops (Fraysse, Alonso et al. 1980; Okuno and Sando 

1987; Rauch, Merchant et al. 1989; Yazawa and Kitahara 1990; Sperling, Paparella et al. 

1993; Merchant, Adams et al. 2005; Morita, Kariya et al. 2009).  Cochleosaccular 

hydrops causes an expansion in the saccule membrane as the saccule is distended.  This 

can disrupt the electrical resonance of the hair cells and cause the saccule to become 

thinner and stiffer.  Horner & Rydmarker (1991) reported that prolonged cochleosaccular 

hydrops injures the saccular hair cells causing a loss of kinocilia and stereocilia (Horner 

and Rydmarker 1991).  Several investigators hypothesized that these saccular changes 

result in either a complete loss of frequency tuning or an increase in the resonant 

frequency of the saccule.   

cVEMP tuning curves in MD patients have been reported to be broader (i.e. less 

frequency specific) and more tuned to higher frequencies compared to normal subjects 

(Rauch, Zhou et al. 2004; Node, Seo et al. 2005; Lin, Timmer et al. 2006; Timmer, Zhou 

et al. 2006).  Using tone burst stimuli at 250, 500, and 1000 Hz, Rauch et al (2004) 

observed the lowest cVEMP threshold (i.e. best sensitivity of the system) in normal 

controls in response to a 500 Hz tone burst.  In the MD patients there was no clear 

“tuning curve” (i.e. there was no increased sensitivity at any frequency).  Rauch et al 

(2004) hypothesized that the frequency tuning in MD patients had been either shifted to 

another frequency that was not tested or had simply been lost.  Additionally, the 
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unaffected ears of MD patients produced results that were more similar to the affected 

ears (i.e. reduced amplitudes and a loss or a shift of tuning) than to normal controls.  The 

authors stated that this finding may indicate the beginnings of bilateral MD.  Node et al 

(2005), who also examined frequency tuning of the cVEMP in patients with MD, 

reported a best frequency between 500 Hz and 1000 Hz in 35 of the 36 normal control 

ears.  The mode tone burst frequency was 500 Hz.  The best frequency was reportedly 

between 700 Hz and 1000 Hz in MD patients.  They attributed this slight shift to a higher 

best frequency in patients with MD to the changes in the morphologic features of the 

saccule due to cochleosaccular hydrops.   

Winters et al (2012) examined the possible differences in oVEMP frequency 

tuning for healthy controls and patients with MD using tone burst stimuli at 250, 500, and 

1000 Hz.  They reported findings similar to Rauch et al (2004) stating the best frequency 

for healthy controls was 500 Hz and the best frequency for MD patients was 1000 Hz.  

Their data actually showed no statistical difference in the amplitudes between 500 and 

1000 Hz in the healthy control group, though threshold at 500 Hz was significantly better 

than that at 1000 Hz (105 dB vs 109 dB).  They did not report any statistically significant 

differences between the 3 frequencies in the MD group, but stated that the largest 

amplitude and lowest thresholds in the MD group were observed at 1000 Hz (Winters, 

Berg et al. 2012).   

There are several confounds in these studies that should be addressed.  First, 

typically only 3 frequencies are assessed, such as 250, 500 and 1000 Hz.  Welgampola & 

Colebatch (2001) reported frequency tuning around 700 Hz in normal subjects, a 

frequency that falls directly between the presumed “normal” 500 Hz and the MD altered 
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frequency tuning at 1000 Hz.  Animal studies have shown minor differences in the tuning 

across vestibular nerve fibers, even in the same ear.  It is possible that these differences in 

frequency tuning are normal variants.  This may explain why the unaffected ears in the 

MD patients showed a similar tuning curve pattern to that of the affected ear.  In other 

words, either the frequency tuning was occurring at a higher frequency than normal 

controls or a lack of a clear tuning curve altogether was a normal variant for that subject.  

A more accurate measure of the cVEMP frequency tuning in MD patients may be 

possible by plotting tuning curves using tone bursts at smaller frequency intervals.  

cVEMPs recorded at multiple frequencies are required to accurately measure the tuning 

of the response.   

An additional confound with these studies was that age was not considered.  A 

consistent observation in older adults is the considerable variation in the amount of 

change in the vestibular system that occurs with age (Schuknecht 1965; Johnsson 1971; 

Rosenhall 1973; Ross, Peacor et al. 1976; Igarashi, Saito et al. 1993; Tang, Lopez et al. 

2001; Jang, Hwang et al. 2006; Walther and Westhofen 2007).  Some elderly individuals 

retain an almost normal vestibular system while others at the same age show extensive 

degeneration.  It is not known if these well-documented neuroanatomic age-related 

changes occurring in the otolith organs result in altered frequency tuning, similar to that 

reported in patients with MD.  In the report by Rauch and colleagues (2004), the control 

group ranged in age from 21 – 52 years, the mean age was not reported.  The MD group 

was older and ranged in age from 21 – 77 years.  Similarly, in the report by Winter et al, 

(2012) the control group ranged in age from 23-52 years with a mean age of 30.  The age 

range of the MD group was from 33 – 76 year with a mean age of 56 years.   
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Purpose 

 

In studies examining younger adults, tone burst frequencies yielding the largest 

VEMP amplitude and smallest VEMP threshold occur in response to stimulation between 

500 and 1000 Hz (Murofushi, Matsuzaki et al. 1999; Akin, Murnane et al. 2003; Node, 

Seo et al. 2005; Lin, Timmer et al. 2006; Timmer, Zhou et al. 2006; Park, Lee et al. 

2010).  For this reason 500 Hz has been the most commonly used frequency to record a 

VEMP.  In an aged vestibular system it is possible that the same 500 Hz auditory 

stimulus might not generate enough force to evoke the sonomotor response.  The result 

would be an absent VEMP.  It is not known if the changes in the aging vestibular system 

also alter the frequency tuning of the system, as has been suggested for pathological 

vestibular systems (e.g. Meniere’s Disease; Rauch et al, 2004).  If this is true we may 

need to alter the stimulus parameters to accommodate aging populations.  Using an age 

adjusted optimal stimulus protocol for recording the VEMP might have the effect of 

improving the recordability of the response and accordingly improve the overall 

sensitivity of the diagnostic test battery for the identification of vestibular impairments.   

The purpose of the present investigation was to define for young, middle age, and 

elderly subjects the best frequency(cies) to record both the cVEMP and the oVEMP.  

Further, it is the objective of this study to describe age related changes in the “tuning” of 

these two sonomotor responses.   

 



  

 10 

CHAPTER II 

 

METHODS 

 

Subjects 

Thirty-nine subjects met inclusion criteria and participated in the main portion of 

this investigation (mean age 46.3 ± 15.7 years; range = 22 – 78 years; 15 males).  

Subjects were equally divided into 3 age groups of 13 subjects each:  Age Group 

1/Young Adult (18 - 39 years), Age Group 2/Middle Age (40 – 59 years), and Age Group 

3/Old Adult (≥ 60 years). Data was obtained from one ear of the 39 participants (left ear 

of the odd-numbered participants and right ear of the even-numbered participants) 

yielding data from 20 left ears and 19 right ears.  Five from the initial 39 subjects were 

recruited to participate in two smaller sub-studies examining the test-retest reliability and 

the inter-ear symmetry of VEMP frequency tuning.  Data was obtained from these 5 

subjects from both ears and on 2 separate test sessions. 

 

Screening 

 

To assess hearing sensitivity and middle-ear status, air-conduction threshold 

testing was conducted at 250, 500, 1000, 2000, 4000, and 8000 Hz and bone-conduction 

threshold audiometry was conducted at 500, 1000, 2000, and 4000 Hz.  Tympanometry 

and ipsilateral auditory reflex testing at 1000 Hz was also completed.  Additionally, we 
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screened for the presence of an oVEMP in both ears using a stimulus consisting of 500 

Hz, 750 Hz, and 1000 Hz tone bursts presented randomly.   

To be enrolled in this investigation, subjects could not present with a conductive 

hearing loss or an asymmetry between ears of 15 dB or greater at any frequency.  One 

subject did not meet these criteria and was excluded during the screening process.  Four 

subjects did not produce an oVEMP response during the screening process and were 

excluded.  Subjects with sensorineural hearing loss that presented with a positive Metz 

test were included.  The Metz test measures the difference between acoustic reflex 

threshold and pure-tone threshold and is used to evaluate recruitment.  Reflexes occur at 

reduced sensation levels in ears with cochlear hearing loss (positive Metz test) but are 

elevated or absent in ears with 8
th

 nerve lesions (Metz 1952).  In a normal ear the acoustic 

reflex threshold is between 70-105 dB above the pure tone hearing threshold level 

(Jerger, Jerger et al. 1972).  In subjects with hearing loss, a difference less than 60 dB 

between pure tone threshold in HL and the acoustic reflex threshold is considered a 

positive Metz test (Jerger, Jerger et al. 1972) and supports a cochlear origin of the hearing 

impairment.  Since we know VEMP responses are not affected by sensorineural hearing 

impairment we did not want to exclude subjects with cochlear hearing loss.  For this 

reason 3 subjects with sensorineural hearing loss and a positive Metz test were included.  

Additional exclusion criteria for all participants included complaints of dizziness or 

imbalance, known otologic disease, neurologic disease, conductive hearing loss, or 

known disease affecting the cervical vertebrae or spinal cord.   

 

 



  

 12 

Procedures 

 

Subjects were placed in semi-recumbent position in a comfortable reclining chair 

for the cVEMP and were sitting upright for the oVEMP.  Disposable silver/silver-

chloride electrodes were used.   To record the cVEMP, subjects were asked to lift their 

heads off the headrest and turn their heads away from the ear that was being stimulated.  

To record the oVEMP subjects were instructed to direct their gaze at a visual target at a 

vertical elevation of ~30 degrees.  Subjects maintained these positions during data 

collection and were asked to rest while data collection was paused.  Subjects were given 

as many rest periods as they needed.  All recordings were replicated a minimum of one 

time so that repeatability of the data could be assessed. 

A 1-channel cVEMP recording was made with the non-inverting input placed on 

the sternocleidomastoid muscle midway between the insertion at the mastoid and the 

sternum ipsilateral to the side of stimulus presentation.  The inverting electrode was 

placed on the chin.  The ground electrode was placed at Fpz.  Individual electrode 

impedances were ≤ 10 kOhms and interelectrode impedances were ≤ 5 kOhms.  Ongoing 

EMG in the SCM was monitored visually using a second evoked potential machine that 

contained an EMG feedback system (Interacoustics, Denmark) in an attempt to ensure 

that subjects were generating a consistent and adequate amount of tonic background 

EMG activity between 50 and 200 µV.  

Two-channel oVEMP recordings were made with the non-inverting (active) 

electrodes placed infraorbitally at midline as close as possible to the lower margin of the 

lower eyelid of both the ipsilateral and contralateral eye (relative to the ear being 
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stimulated). The inverting (reference) electrodes were placed 2-3 cm inferior to the active 

electrodes.  The ground electrode was placed at Fpz.  Individual electrode impedances 

were ≤ 10 kOhms and interelectrode impedances were ≤ 5 kOhms.   

The stimuli for both the cVEMP and oVEMP were presented monoaurally 

through Etymotic ER-3A insert earphones.  A single stimulus was used consisting of 125, 

250, 500, 750, 1000, 1500, and 2000Hz Blackman-gated tone bursts with a 2ms rise/fall 

and 2ms plateau.  Each stimulus block (i.e. each run) consisted of the 7 test frequencies 

presented in a randomized sequence at a rate of 5.1/second.  Each run lasted ~30 seconds, 

with ~30 second rest periods between runs, and each stimulus was presented 

approximately ~150 times.  The tone bursts were presented at three stimulus levels, 127 

dB pSPL, 122 dB pSPL, and 117 dB pSPL, which were also randomized in their order of 

presentation.   

Artifact rejection was used off-line for the oVEMP recordings in an attempt to 

eliminate eye blinks.  The bioelectrical activity was amplified and analog filtered (5 – 

500 Hz) with a commercially produced multi-channel neurophysiological amplifier 

(Neuroscan Synamp, Herndon, VA).  For each single record the electromyographic 

activity was digitized (at a rate of 5000 Hz) and recorded as a continuous one-channel 

recording on a commercially available electrophysiological recording system (Neuroscan, 

Herndon, VA).  A second channel contained unique triggers associated with the 7 

stimulus frequencies. Data was off-line epoched into segments of EMG associated with 

stimulus onset.  The data for each frequency was signal averaged separately.  Following 

signal averaging the latencies of the prominent peaks were recorded as well as their peak- 

to-peak amplitudes.  
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To account for the possibility that the differences in VEMP frequency tuning 

between subjects were due to differences in the transmission of the air-conduction stimuli 

through the middle ear, the status of the middle ear was assessed using the Mimosa 

Acoustics HearID middle ear power analyzer (MEPA3; Mimosa Acoustics, Champaign, 

IL).  The MEPA3 can be used to assess the status of the middle ear and provides a 

measurement of how the middle ear filters the sound it receives.  In other words, when 

sound is presented to the ear, some of the sound is absorbed by the middle ear and some 

of the sound is reflected from the ear drum, and this varies by frequency.  Power 

reflectance is defined as the percentage of reflected power to incidental (total) power.  

Power absorption is the percentage of the absorbed power to the incident power, and 

mirrors the results of power reflectance.  Power transmittance is the power absorption 

converted to a decibel scale.   

MEPA measurements were made on each subject either before or after the VEMP 

recordings.  The MEPA3 system was calibrated prior to each recording session using a 

four-chamber coupler (model: CC4-V) in accordance with manufacture guidelines.  A 

probe tip (Etymotics ER10C) was used to deliver sound into the external ear canal.  An 

in-the-ear pressure calibration with the probe in the subject’s ear was performed on each 

subject, in each ear, prior to the MEPA measurement.  The stimuli consisted of a chirp 

stimulus set to 60 dB SPL presented over a measurement time period of 1 second.  The 

MEPA measurement was made a minimum of 2 times in each ear. 
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Statistical Analysis 

 

For each subject, VEMPs were derived separately for the 7 frequencies and at the 

3 different stimulus levels.  Each VEMP was repeated and the average of the two runs 

was used.  Thus, each subject yielded 21 cVEMPs and 21 contralateral and ipsilateral 

oVEMPs. 

A present cVEMP was defined as an initial positive polarity peak (i.e. occurring 

at ~ 15 ms) followed by a subsequent negative polarity (i.e. occurring at ~25 ms).  All 

responses were repeated and the two runs were grand averaged.  The first positive 

polarity peak of the averaged run was labeled as P1 and the following negative peak 

labeled N1.  P1 absolute latency and P1-N1 peak-to-peak amplitudes were measured and 

tabulated.  An absent response was assigned an amplitude value of 0 µV and the latency 

value was considered missing data.  

A present oVEMP was defined as an initial negative peak (i.e. occurring at ~10 

ms) with a subsequent positive peak (i.e. occurring at ~15 ms).  All responses were 

repeated and the two runs were grand averaged.  The first negative peak of the averaged 

run was labeled as N1 and the following positive peak as P1.  N1 absolute latency and 

N1-P1 peak-to-peak amplitude was measured and tabulated.  An absent response was 

assigned an amplitude value of 0 µV and the latency value was considered missing data.  

The data were analyzed using SPSS version 20.0 (SPSS, Inc., Chicago, IL).  An 

analysis of variance (ANOVA) was used to assess the effect of age group, stimulus level, 

and stimulus frequency on the amplitude and latency of the VEMP.  A post hoc analysis 
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of multiple comparisons was conducted, when appropriate, using a Tukey test.  When 

significant interaction effects were present, simple main effects tests were performed. 
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CHAPTER III 

 

RESULTS 

 

cVEMP 

 

cVEMP Descriptives 

Figure 1a shows the individual (left column) and grand average (right column) 

cVEMP waveforms in response to 127 dB pSPL stimuli at 125, 250, 500, 750, 1000, 

1500, and 2000 Hz.  The cVEMP peak-to-peak amplitude means ± standard deviations 

(SD) for each frequency, for each intensity level, and for all 3 age groups are shown in 

Appendix 1. The largest average peak-to-peak amplitude was obtained at 750 Hz.   
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Figure 1a:  The effect of stimulus frequency on the cVEMP.  The individual cVEMP 

waveforms from all 39 subjects (including those responses classified as “absent” and 

entered into the database with an amplitude value of 0 µV) are in the left column and the 

corresponding grand average waveforms are in the right column.  Stimulus level was 127 

dB pSPL 
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Table 1 shows the cVEMP response frequency of occurrence for each age group 

at each stimulus level across stimulus frequency. At the maximum stimulus intensity (127 

dB pSPL), the cVEMP response rate was highest at 750 and 1000 Hz (39 of 39 subjects, 

100%).  The response rate decreased slightly at 500 Hz (38 of 39 subjects, 97%), and 

continued to fall at the lowest and highest frequencies.  The response rate tended to 

decrease as age increased and as stimulus intensity level decreased. 

  

Table 1. cVEMP response rates across stimulus frequencies 

 125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

1500 

Hz 

2000 

Hz 

127 dB 

pSPL 

Young 

Adult (n = 

13) 

69% 92% 100% 100% 100% 100% 46% 

Middle Age 

(n = 13) 
38% 92% 100% 

  

100% 
100% 85% 38% 

Old Adult  

(n = 13) 
23% 46% 92% 100% 100% 53% 31% 

122 dB 

pSPL 

Young 

Adult (n = 

13) 

23% 62% 100% 100% 100% 85% 31% 

Middle Age 

(n = 13) 
8% 61% 100% 100% 100% 61% 8% 

Old Adult  

(n = 13) 
0% 8% 54% 61% 54% 23% 8% 

117 dB 

pSPL 

Young 

Adult (n = 

13) 

15% 54% 85% 92% 77% 31% 0% 

Middle Age 

(n = 13) 
0% 15% 69% 61% 69% 0% 0% 

Old Adult  

(n = 13) 
0% 0% 15% 23% 23% 8% 0% 
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cVEMP Amplitude Main Effects 

 

The peak-to-peak amplitude of the cVEMP varied with stimulus frequency, 

stimulus level, and age group.  A 3 x 3 x 7 univariate ANOVA was conducted examining 

Age Group x Level x Frequency with mean cVEMP peak-to-peak amplitude as the 

dependent variable.  There were significant main effects for Age Group (F = 111.6, df = 

2, p < .001; see Figure 2a), stimulus Level (F = 102.5, df = 2, p < .001; see Figure 2b), 

and stimulus Frequency (F = 36.0, df = 6, p < .001; see Figure 2c).  cVEMP amplitude 

decreased with increasing age and decreasing stimulus intensity.  The effects of 

frequency on cVEMP amplitude were more complex.  cVEMP amplitude was greater at 

the mid frequencies than at the highest and lowest frequencies. 
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(a) 

 
(b)   

 
(c) 

 

Figure 2:  Effects of age, stimulus level, and stimulus frequency on the peak-to-peak 

amplitude of the cVEMP. (a) The main effect of Age Group is shown.  Data is collapsed 

between stimulus level and stimulus frequency. (b) The main effect of stimulus Level is 

shown.  Data is collapsed between age groups and frequencies. (c) The main effect of 

stimulus Frequency is shown.  Data is collapsed between age groups and stimulus levels. 
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Post hoc Tukey tests revealed that the mean amplitude for the young adult age 

group was significantly larger than that for both the middle age and older adult age 

groups.  The mean amplitude for the middle age group was significantly larger than that 

of the older adult group.  There were also significant differences in amplitude between all 

possible pairs of stimulus intensity levels.  Stimulus frequencies at 500, 750, and 1000 Hz 

produced significantly larger amplitudes than 125, 250, 1500, and 2000 Hz.  However, no 

significant differences in mean amplitude were observed between 500, 750, and 1000 Hz.  

cVEMP amplitude for 125 Hz was not statistically different from the amplitude for the 

2000 Hz (most likely due to the number of absent responses at those frequencies).  

cVEMP amplitudes at 250 Hz and 1500 Hz were not significantly different from each 

other, but did show significantly larger amplitudes than 125 Hz and 2000 Hz. 

 

cVEMP Amplitude Interaction Effects 

 

Age Group X Frequency 

There was a significant interaction between the effects of Age Group and 

Frequency on the amplitude of the cVEMP (F = 4.1, df = 12, p < .001; see Figure 3), 

indicating that the change in cVEMP amplitude as a function of frequency was dependent 

on age group.  Simple main effects analysis showed that cVEMP amplitude was 

significantly more affected by frequency in the young adult group (p < .01, all intensity 

levels) and middle age group (p < .01, all intensity levels) with no significant differences 

between frequencies in the older adult group (127 dB pSPL: p = .139; 122 dB pSPL: p = 

.531; 117 dB pSPL3: p = .999).  There may be a “flattening” or loss of frequency tuning 
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in the older adult age group.  Alternatively, the lower response rate in the older adults 

(see Table 1) may have contributed to this interaction.   

(a) 

            
(b) 

             
(c) 

 
Figure 3:  The peak-to-peak amplitude of the cVEMP as a function of stimulus frequency 

for each age group.  The interaction effect of Age group x Frequency at: (a) stimulus 

intensity level of 127 dB pSPL, (b) stimulus intensity level of 122 dB pSPL, and  (c) 

stimulus intensity level of 117 dB pSPL 
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Frequency X Level 

There was a significant interaction between the effects of Frequency and Level on 

the amplitude of the cVEMP (F = 2.22, df = 12, p = .01; see Figure 4), indicating that the 

change in cVEMP amplitude as a function of stimulus frequency was dependent on 

stimulus level.   

(a) 

        
(b) 

        
(c) 

       
Figure 4: The peak-to-peak amplitude of the cVEMP as a function of stimulus level at 

each stimulus frequency.  (a)  The interaction effect of Frequency x Level in the young 

adult group. (b) The interaction effect of Frequency x Level in the middle age group. (c) 

The interaction effect of Frequency x Level in the old adult group 



  

 25 

 

 

Simple main effects analysis showed that for each Age Group, cVEMP amplitude 

was significantly more affected by frequency for the intensities 127 dB pSPL (p <.01) 

and 122 dB pSPL (young adult: p < .01; middle age: p < .001; old adult: p = .01).  There 

were no significant differences between frequencies at 117 dB pSPL (young adult: p = 

.079; middle age: p = .13; old adult: p = .995).  The interaction effect seen at 117 dB 

pSPL may be due to the low response rates at that intensity level (see Table 1).  In other 

words, at least for the 2 highest stimulus intensity levels, there is no difference in 

frequency tuning between stimulus levels.  At the lowest stimulus intensity level there did 

not appear to be a best frequency (i.e. the frequency plot appeared flat).  This occurred 

more than likely because we were below cVEMP threshold for many subjects (i.e. there 

were no data points at the highest and lowest frequencies).  As shown in Figure 4, there 

was greater variation in the amplitude of the cVEMP across frequencies at 127 and 122 

dB pSPL compared to 117 dB pSPL.  At 117 dB pSPL the amplitude of the cVEMP 

tended to be smaller at all frequencies.  This effect is best illustrated in the older adult 

group (Figure 4c). 

 

Age Group X Level 

The Age Group x Level interaction was significant (F = 7.58, df = 4, p < .001), 

indicating that the change in cVEMP amplitude as a function of stimulus level was 

dependent on age group.  Simple main effects analysis showed that cVEMP amplitude 

was significantly affected by stimulus intensity level for all age groups (p < .001).  Figure 

5 displays the input/out (I/O) functions.   
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Figure 5:  The input/output (I/O) function for the cVEMP shown for each age group 

 

 

The slope of the I/O function was steeper for the younger age group.  For the 

young adult group, the cVEMP amplitude grew an average of 87.5 uV per 5 dB increase 

in stimulus intensity level (i.e. mean of 70.6 uV at 117 dB pSPL, mean of 147.2 uV at 

122 dB pSPL, and a mean of 245 uV at 127 dB pSPL).  The cVEMP amplitude grew an 

average of 53.5 uV for the middle age group and 32.5 uV per 5 dB increase in stimulus 

intensity level for the old adult group. In other words, there was a greater increase in 

amplitude with increasing stimulus level for the young adult group compared to the other 

two groups. 

 

cVEMP Frequency “Tuning” 

 

The frequency resulting in the largest response amplitude (i.e. “best” frequency) 

for each individual subject is shown in Table 2.   
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Table 2.   Frequencies with the greatest cVEMP peak-to-peak amplitude (i.e. “best” 

frequency), with the corresponding amplitude, from each individual subject.  The mean 

peak amplitude for each age group and for the entire cohort is also shown.  Stimulus 

intensity level was 127 dB pSPL. 

Subject Age Group Best Frequency (Hz) Peak Amplitude (µV) 

1 1 500 390.3 

2 1 500 410.9 

3 1 500 613.6 

4 1 500 583.6 

5 1 750 824.3 

6 1 750 107.4 

7 1 750 278.8 

8 1 750 140.7 

9 1 750 279.1 

10 1 750 364.6 

11 1 750 147.7 

12 1 1000 344.7 

13 1 1000 275.1 

Age Group 1 Average  366.22 ± 206.2 

14 2 500 280.9 

15 2 500 230.7 

16 2 500 120.1 

17 2 500 354.4 

18 2 750 182.4 

19 2 750 273.4 

20 2 750 208.6 

21 2 750 59.6 

22 2 1000 221.1 

23 2 1000 288.6 

24 2 1000 531.9 

25 2 1000 241.8 

26 2 1500 175.2 

Age Group 2 Average  243.7 ± 115.2 

27 3 750 134.8 

28 3 750 88.9 

29 3 750 144.6 

30 3 750 257.4 

31 3 750 316.8 

32 3 750 239.7 

33 3 750 93.3 

34 3 750 106.6 

35 3 1000 107.0 

36 3 1000 64.0 

37 3 1000 158.2 

38 3 1000 98.5 
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39 3 1000 134.8 

Age Group 3 Average  149.58 ± 75.7 

 

Total Average  253.18 ± 165.8 

 

 

The best frequency tended to increase with increasing age.  For example 85% of 

the youngest age group showed greatest amplitudes at either 500 or 750 Hz with only 

15% showing the best amplitude at 1000 Hz.  In contrast to this, no one in the oldest age 

group demonstrated a best amplitude at 500 Hz.  However, 62% in the oldest age group 

showed the greatest amplitude at 750 Hz and 38% at 1000 Hz.  The best frequency for the 

middle age group was evenly split at 31%, 31%, and 31% for 500, 750, and 1000 Hz with 

1 subject (7%) at 1500 Hz. 

To qualitatively examine the frequency tuning of the cVEMP, frequency tuning 

curves were constructed by plotting the peak-to-peak cVEMP amplitude as a function of 

stimulus frequency for each subject.  Given the variability in amplitude, tuning curves 

were graphed based on normalized amplitudes at each frequency (f) expressed as a ratio 

of the largest measured amplitude (at fmax Hz).  Thus the normalized amplitude for a 

given frequency was equal to amplitude(f)/amplitude(fmax) and expressed on a scale 

from 0 – 1.0.  The tuning curves for individual subjects are show in Figure 6.  The 

frequency tuning of the cVEMP is very broad and varies greatly between subjects.  As 

Figure 6 shows, the frequency tuning peaks between 500 and 1000 Hz. 
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Figure 6:  cVEMP frequency tuning curves from all 39 subjects based on normalized 

peak amplitudes. The stimulus level was 127 dB pSPL 

 

 

Frequency tuning curves based on the mean normalized peak amplitudes from 

each age group are show in Figure 7. Figure 7(b) highlights the youngest and oldest age 

groups.  In the young adult group, the peak of the tuning curve is at 750 Hz, whereas in 

the old adult group the tuning curve peaks at 1000 Hz.  The frequency “tuning” shifted to 

a slightly higher frequency in the old adult group.  
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Figure 7: cVEMP frequency tuning curves from mean normalized peak amplitudes at 127 

dB pSPL. (a) Tuning curves from all 3 age groups. (b)  Tuning curves from the young 

adult and old adult groups only 

 

Contralateral oVEMP 

 

Contralateral oVEMP Descriptives 

Figure 1b shows the individual (left column) and grand average (right column) 

oVEMP waveforms in response to 127 dB pSPL stimuli at 125, 250, 500, 750, 1000, 

1500, and 2000 Hz.  The oVEMP peak-to-peak amplitude means ± standard deviations 

(SD) for each frequency, for each intensity level, and for all 3 age groups are shown in 
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Appendix 2. As with the cVEMP, the largest average peak-to-peak amplitude was 

obtained at 750 Hz.   

 

 
Figure 1b:  The effect of stimulus frequency on the oVEMP.  The individual oVEMP 

waveforms from all 39 subjects (including those responses classified as “absent” and 

entered into the database with an amplitude value of 0 µV) are in the left column and the 

corresponding grand average waveforms are in the right column.  Stimulus level was 127 

dB pSPL 
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Table 3 shows the oVEMP response frequency of occurrence for each age group 

at each stimulus level across stimulus frequency.  At the maximum stimulus intensity 

(127 dB pSPL), the oVEMP response rate was highest at 750 and 1000 Hz (39 of 39 

subjects, 100%).  The response rate decreased slightly to 95% (37 of 39 subjects) at 500 

Hz and continued to fall at the lowest and highest frequencies. The response rate tended 

to decrease as age increased and as stimulus intensity level decreased. 

 

Table 3. Contralateral oVEMP response rates across stimulus frequencies. 

 125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

1500 

Hz 

2000 

Hz 

127 dB 

pSPL 

Young 

Adult (n = 

13) 

46% 69% 92% 100% 100% 69% 31% 

Middle Age 

(n = 13) 
15% 54% 100% 100% 100% 46% 31% 

Old Adult  

(n = 13) 
0% 23% 92% 100% 100% 31% 8% 

122 dB 

pSPL 

Young 

Adult (n = 

13) 

23% 46% 85% 85% 85% 31% 0% 

Middle Age 

(n = 13) 
15% 15% 69% 77% 77% 8% 8% 

Old Adult  

(n = 13) 
0% 0% 8% 23% 15% 8% 0% 

117 dB 

pSPL 

Young 

Adult (n = 

13) 

8% 8% 38% 23% 23% 0% 0% 

Middle Age 

(n = 13) 
0% 8% 15% 15% 15% 0% 0% 

Old Adult  

(n = 13) 
0% 0% 0% 8% 0% 0% 0% 
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Contralateral oVEMP Amplitude Main Effects 

 

The peak-to-peak amplitude of the oVEMP varied with stimulus frequency, 

stimulus level, and age group.  A 3 x 3 x 7 univariate ANOVA was conducted examining 

Age Group x Level x Frequency with oVEMP peak-to-peak amplitude as the dependent 

variable.  There were significant main effects for Age Group (F = 38.1, df = 2, p < .001; 

see Figure 8a), Level (F = 121.1, df = 2, p < .001; see Figure 8b), and Frequency (F = 

33.7, df = 6, p < .001; see Figure 8c).  oVEMP amplitude decreased with increasing age 

and decreasing stimulus intensity.  As with the cVEMP, the effects of frequency on the 

contralateral oVEMP amplitude were more complex.  As with the cVEMP, it appears that 

oVEMP amplitude was greater at the mid frequencies than at the highest and lowest 

frequencies. 
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(a) 

           
(b) 

           
(c) 

           
Figure 8:  Effects of age, stimulus level, and stimulus frequency on the peak-to-peak 

amplitude of the oVEMP. (a) The main effect of Age Group is shown.  Data is collapsed 

between stimulus level and stimulus frequency. (b) The main effect of stimulus Level is 

shown.  Data is collapsed between age groups and frequencies. (c) The main effect of 

stimulus Frequency is shown.  Data is collapsed between age groups and stimulus levels 

 

 

 

Post hoc Tukey tests showed that the mean oVEMP amplitude for the young adult 

and middle age groups were significantly larger than for the old adult group.  Unlike the 
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cVEMP, the young and middle age adults were not significantly different from each 

other.  As with the cVEMP, there were significant differences in amplitude between all 

possible pairs of stimulus intensity levels.  Stimulus frequencies 500, 750, and 1000 Hz 

produced significantly larger oVEMP amplitudes than 125, 250, 1500, and 2000 Hz.  No 

significant differences in mean amplitude were observed between 500, 750, and 1000 Hz.  

oVEMP amplitudes at125, 250, 1500, and 2000 Hz were also not significantly different 

from each other.  

 

Contralateral oVEMP Amplitude Interaction Effects 

 

Age Group X Frequency 

There was a significant interaction between the effects of Age Group and 

Frequency on the amplitude of the contralateral oVEMP (F = 2.58, df = 12, p = .002; See 

Figure 9), indicating that the magnitude of change in oVEMP amplitude as a function of 

frequency was dependent on age group.  Simple main effects analysis showed that at the 

greatest stimulus intensity (i.e. 127 dB pSPL) oVEMP amplitude was significantly 

affected by frequency in all Age Groups (young adult: p < .001; middle age: p < .001; old 

adult: p = .005).  At 122 dB pSPL the oVEMP amplitude was significantly more effected 

by frequency in the two younger age groups (p < .01) with no significant differences 

between frequencies in the old adult group (p = .902).  At 117 dB pSPL, the oVEMP 

amplitude was significantly affected by frequency only in the young adult group (p = 

.006) with no significant differences between frequencies in middle age group (p = .187) 

or old adult group (p = 1.0).  
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(a) 

             
(b) 

              
(c) 

 
Figure 9:  The peak-to-peak amplitude of the contralateral oVEMP as a function of 

stimulus frequency for each age group.  (a) The interaction effect of Age group x 

Frequency at stimulus intensity level of 127 dB pSPL. (b) The interaction effect of Age 

group x Frequency at stimulus intensity level of 122 dB pSPL. (c) The interaction effect 

of Age group x Frequency at stimulus intensity level of 117 dB pSPL 

 

 

 

In contrast to the cVEMP, at the highest intensity levels we observed similar 

frequency tuning for all 3 age groups.  The low oVEMP response rate observed often in 
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the older adults at the lesser intensity levels (see Table 3) may have contributed to the 

Age x Frequency interaction.   

 

Frequency X Level 

There was a significant interaction between the effects of Frequency and Level on 

the amplitude of the oVEMP (F = 8.85, df = 12, p < .001; see Figure 10), indicating that 

the change in oVEMP amplitude as a function of frequency was dependent on stimulus 

level.   
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(a) 

            
(b) 

            
(c) 

           
Figure 10: The peak-to-peak amplitude of the contralateral oVEMP as a function of 

stimulus level at each stimulus frequency.  (a)  The interaction effect of Frequency x 

Level in the young adult group. (b) The interaction effect of Frequency x Level in the 

middle age group. (c) The interaction effect of Frequency x Level in the old adult group 

 

Simple main effects analysis showed that contralateral oVEMP amplitude was 

significantly more affected by frequency at 127 dB pSPL (p < .01), for all age groups, 
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and at 122 dB pSPL for the 2 younger age groups (young adult: p < .01; middle age: p = 

.034).  There were no significant differences between frequencies at 117 dB pSPL (young 

adult: p = .87; middle age: p = .993; old adult: p = 1.0).  The interaction effect seen at the 

lowest stimulus intensity level (i.e. 117 dB pSPL) may be due to the low response rates at 

that stimulus level (see Table 3).  In other words, at least for the 2 younger age groups, at 

the highest intensity levels there is no difference in frequency tuning between levels.  At 

the lowest stimulus intensity level there may be a loss of frequency tuning, but more than 

likely there is no tuning because we were below oVEMP threshold for a many subjects.  

As shown in Figure 10, there were greater differences in the amplitude of the oVEMP 

across frequencies at 127 and 122 dB pSPL compared to 117 dB pSPL.   

 

Age Group X Level 

The Age Group x Level interaction was significant (F = 7.16, df = 4, p < .001), 

indicating that the change in oVEMP amplitude as a function of stimulus level was 

dependent on age group.  Simple main effects analysis showed that oVEMP amplitude 

was significantly affected by stimulus intensity level for all age groups (p < .001).  Figure 

11 displays the I/O function.   
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Figure 11: The input/output (I/O) function for the contralateral oVEMP shown for each 

age group 

 

 

The slope of the I/O function was steeper for the young adult and middle age 

compared to the old adult group.  The oVEMP amplitude grew 2.7 - 3.1 uV per 5 dB 

increase in stimulus intensity level for the young adult and middle age groups.  The 

oVEMP amplitude only grew an average and 1.2 uV per 5 dB increase in stimulus 

intensity level for the old adult group. In other words, there was less of an increase in 

amplitude with increasing stimulus level for the old adult group compared to the other 

two groups. 

 

Contralateral oVEMP Frequency “Tuning” 

 

The frequency resulting in the largest response amplitude (i.e. “best” frequency) 

for each individual subject is shown in Table 4.  The best frequency tended to increase 

with increasing age.  For example 92% of subjects in the young adult age group showed 

greatest amplitudes at either 500 or 750 Hz with only a single subject showing the best 

amplitude at 1000 Hz. In contrast to this, no one in the old adult age group had the best 
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amplitude at 500 Hz.  However, 38% of subjects in the old adult group showed the 

greatest amplitude at 750 Hz and 62% at 1000 Hz.  The best frequency for the middle age 

group was 31%, 38%, and 31% for 500, 750, and 1000 Hz, respectively. 

 

Table 4. Frequencies with the greatest contralateral oVEMP peak-to-peak amplitude (i.e. 

“best” frequency), with the corresponding amplitude, from each individual subject.  The 

mean peak amplitude for each age group and for the entire cohort is also shown.  

Stimulus intensity level was 127 dB pSPL 

Subject Age Group Best Frequency (Hz) Peak Amplitude (µV) 

1 1 500 16.1 

2 1 500 10.1 

3 1 500 5.8 

4 1 750 14.4 

5 1 750 11.4 

6 1 750 24.4 

7 1 750 8.7 

8 1 750 23.9 

9 1 750 20.6 

10 1 750 9.7 

11 1 750 21 

12 1 750 4.2 

13 1 1000 21.8 

Age Group 1 Average  14.77 ± 7.0 

14 2 500 12.8 

15 2 500 20.8 

16 2 500 9.1 

17 2 500 16.6 

18 2 750 37.7 

19 2 750 3.7 

20 2 750 6.2 

21 2 750 10.6 

22 2 750 5.1 

23 2 1000 9.3 

24 2 1000 8.4 

25 2 1000 11.7 

26 2 1000 11.2 

Age Group 2 Average  12.55 ± 8.84 

27 3 750 7.1 

28 3 750 10.7 

29 3 750 1.9 

30 3 750 4.1 
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31 3 750 12.4 

32 3 1000 14.8 

33 3 1000 5.5 

34 3 1000 3.4 

35 3 1000 3.6 

36 3 1000 8.7 

37 3 1000 9.3 

38 3 1000 4.4 

39 3 1000 5.7 

Age Group 3 Average  7.05 ± 3.89 

 

Total Average  11.46 ± 7.47 

 

To qualitatively examine the frequency tuning of the contralateral oVEMP, 

frequency tuning curves were constructed by plotting the peak-to-peak oVEMP 

amplitude as a function of stimulus frequency for each subject.  Just as with the cVEMPs, 

tuning curves were graphed based on normalized amplitudes (i.e. normalized on a scale 

from 0 – 1.0 with respect to the peak amplitude of the best frequency for that individual 

subject).  The tuning curves for individual subjects are show in Figure 12.   
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Figure 12: Contralateral oVEMP frequency tuning curves from all 39 subjects based on 

normalized peak amplitudes. The stimulus level was 127 dB pSPL 

 

 

The frequency tuning of the contralateral oVEMP (Figure 12) is qualitatively 

sharper than that of the cVEMP (Figure 6).  As Figure 12 shows, the frequency tuning 

curves peaked between 500 and 1000 Hz and amplitude values were reduced significantly 

at the lower and higher frequencies. 

Frequency tuning curves based on the mean normalized peak amplitudes from 

each age group are show in Figure 13. Figure 13(b) highlights the youngest and oldest 

age groups.  In the young adult group, the peak of the tuning curve is at 750 Hz, whereas 

in the old adult group the tuning curve peaks at 1000 Hz.  As with the cVEMP, the best 

frequency shifted to a slightly higher frequency in the oldest age group.  
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Figure 13: Contralateral oVEMP frequency tuning curves from mean normalized peak 

amplitudes at 127 dB pSPL. (a) Tuning curves from all 3 age groups. (b)  Tuning curves 

from the young adult and old adult groups only 

 

 

Ipsilateral oVEMP 

 

Ipsilateral oVEMP Descriptives 

The response rate of the ipsilateral oVEMP was markedly reduced compared to 

the contralateral oVEMP.  At 127 dB pSPL, 21/39 (54%) of subjects generated an 

oVEMP response beneath the ipsilateral eye for at least one frequency.  Of those 21, 4 

(19%) showed the greatest amplitude at 500 Hz, 12 (57%) showed the greatest amplitude 

at 750 Hz, and 5 (24%) showed the greatest amplitude at 1000 Hz.  Only 12/39 subjects 
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had an ipsilateral oVEMP response at 122 dB pSPL, and only 1/39 had a response at 117 

dB pSPL.  Table 5 shows the response frequency of occurrence for each age group across 

stimulus frequency at a stimulus level of 127 dB pSPL.  The ipsilateral oVEMP response 

rate was highest at 500, 750 and 1000 Hz.  The response rate tended to decrease as age 

increased. 

 

Table 5. Ipsilateral oVEMP response rates across stimulus frequencies.  Stimulus level 

was 127 dB pSPL 

 

 

Ipsilateral oVEMP Amplitude Main Effects 

 

A 3 x 7 univariate ANOVA was conducted examining Age Group x Frequency 

with ipsilateral oVEMP peak-to-peak amplitude as the dependent variable.  Due to the 

lack of ipsilateral responses at the lower intensity levels, stimulus level was not included 

in the statistical analysis.  Only the data from 127 dB pSPL was analyzed.  There were 

significant main effects for Age Group (F = 4.39, df = 2, p = .013) and Frequency (F = 

6.42, df = 6, p < .001).  The interaction of Age Group x Frequency was not significant (p 

= .776). 

 125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

1500 

Hz 

2000 

Hz 

127 dB 

pSPL 

Young 

Adult (n = 

13) 

0% 31% 69% 77% 62% 31% 0% 

Middle Age 

(n = 13) 
8% 8% 38% 31% 38% 8% 0% 

Old Adult  

(n = 13) 
0% 0% 8% 15% 23% 0% 0% 
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Post hoc Tukey tests showed that the mean amplitude for the young adult group 

was significantly larger than both the middle age and old adult groups.  The middle age 

and old adult groups were not significantly different from each other.  As with the 

contralateral oVEMP, responses for 500, 750, and 1000 Hz resulted in significantly larger 

amplitudes than the other 4 frequencies. No significant differences in mean amplitude 

were observed between 500, 750, and 1000 Hz.  Frequencies 125, 250, 1500, and 2000 

Hz were not significantly different from each other.  

 

Ipsilateral oVEMP Frequency Tuning 

 

To qualitatively examine the frequency tuning of the ipsilateral oVEMP, 

frequency tuning curves were constructed by plotting the peak-to-peak amplitude as a 

function of stimulus frequency for the 21 subjects with present ipsilateral oVEMP 

responses.  Tuning curves were graphed based on normalized amplitudes.  The tuning 

curves for individual subjects are show in Figure 14.   
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Figure 14:  Ipsilateral oVEMP frequency tuning curves based on normalized peak 

amplitudes at 127 dB pSPL 

 

The frequency tuning of the ipsilateral oVEMP is qualitatively sharper than the 

contralateral oVEMP.  This is most likely a result of the marked decline in response rate 

for frequencies below 500 Hz and above 1000 Hz (i.e. amplitude = 0 uV for most 

responses at those frequencies).  Frequency tuning curves based on the mean normalized 

peak amplitudes are shown in Figure 15.  The tuning curve peaks at 750 Hz.  Given the 

low response rates, frequency tuning curves between age groups were not compared. 
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Figure 15:  Ipsilateral oVEMP frequency tuning curves from mean normalized peak 

amplitudes at 127 dB pSPL.  Mean data is collapsed across age groups 

 

cVEMP and oVEMP Latency 

 

cVEMP Latency 

A 3 x 3 x 7 univariate ANOVA was conducted examining Age Group x Level x 

Frequency with mean P13 latency of the cVEMP as the dependent variable.  The main 

effects of Age Group (F = 1.25, df = 2, p = .286) and stimulus Level (F = 1.18, df = 2, p = 

.306) were not significant.  The main effect of stimulus Frequency was significant (F = 

9.71, df = 6, p < .001).  Since there was no main effect of Age Group or Level, data was 

collapsed across Age Group and Level to show the mean latencies and standard 

deviations across frequencies.  Results are shown in Figure 16. 
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Figure 16:  Mean latency of the first positive peak of the cVEMP (P13) as a function of 

stimulus frequency.  Mean data was collapsed across Age Group and Level. 

 

 

Post hoc Tukey tests showed that the mean latency at 125 Hz (13.8 ms) was 

significantly shorter than the other 6 frequencies.  Additionally, the mean latencies at 

250, 500, 750, and 1000 Hz (range: 15.9 – 16.5 ms) were significantly longer than the 

mean latencies at 1500, and 2000 Hz (15.4 ms and 15.3 ms, respectively). With the 

exception of 125 Hz, cVEMP latency decreased as the stimulus frequency increased. 

 

oVEMP Latency 

 

The same effect of stimulus frequency on latency was not seen in the oVEMP.  

The latency of the contralateral oVEMP ranged from 11.6 – 12.3 ms across frequencies.  

The oVEMP latency values are shown in Figure 17.   
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Figure 17: Mean latency of the first negative peak for both the contralateral and 

ipsilateral oVEMP as a function of frequency. Mean data was collapsed across Age 

Group and Level for the contralateral oVEMP and across Age Group for the ipsilateral 

oVEMP 

 

There was no significant main effect for Age Group (F = .231, df = 2, p = .995), 

stimulus Level (F = 5.42, df = 2, p = .89), or stimulus Frequency (F = 2.63, df = 6, p = 

.99).  The ipsilateral oVEMP data from the 127 dB pSPL stimulus level were also 

analyzed to assess the effects of age and frequency (due to the low response prevalence, 

the effects of stimulus level were not analyzed for the ipsilateral oVEMP).  The latency 

of the ipsilateral oVEMP ranged from 13.3 – 13.6 ms across frequencies.  There was no 

significant main effect for Age Group (F = 1.46, df = 2, p = .243) or Frequency (F = 1.33, 

df = 5, p = .930).  No subject produced an ipsilateral oVEMP in response to 2000 Hz.  

The mean latency of the ipsilateral oVEMP was longer than the contralateral oVEMP, 

and this was consistent across frequencies (see Figure 17). 
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Frequency Tuning Test-Retest Reliability 

 

To examine the test-retest reliability of VEMP frequency tuning, cVEMPs and 

oVEMPs were recorded at 2 stimulus intensities, 127 and 122 dB pSPL , from 5 subjects 

on two separate occasions averaging 30 days (sd 7 days) apart.  Pearson product 

correlation coefficients were calculated between the test and retest sessions.  There was a 

moderate to strong correlation (i.e. range of r = .5 - .9) between the test and re-test 

session for each VEMP condition at each frequency.  Table 6 shows the mean peak-to-

peak amplitude for the test session and the re-test session.   

 

Table 6. Mean (SD) peak-to-peak amplitude of the oVEMP and cVEMP at 127 and 122 

dB pSPL during the test and re-test sessions of 5 subjects ranging in age from 25 – 50 

years.  The greatest amplitude for each VEMP condition is in bold 
VEMP 

Conditi

on 

Test Session Re-test Session 

125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

150

0 

HZ 

200

0 

Hz 

125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

100

0 

Hz 

150

0 

HZ 

200

0 

Hz 

oVEMP 

127 dB 
0.9 

(1.3) 

6.4 

(4.7) 

11.9 

(4.6) 
12.4 

(6.2) 

12.1 

(6.8) 

6.4 

(5.7) 

2.8 

(5.3) 

0.4 

(.9) 

4.4 

(5.0) 

9.72 

(3.8) 
12.3 

(7.7) 

10.5 

(6.0) 

6.04 

(4.5) 

2.42 

(5.4) 

oVEMP 

122 dB 
0 

(0) 

1.6 

(2.1) 

5.6 

(3.9) 

5.3 

(3.9) 
5.7 

(4.3) 

1.5 

(2.2) 

0 

(0) 

0 

(0) 

1.3 

(1.8) 

4.6 

(2.2) 

5.7 

(3.1) 
5.9 

(3.2) 

1.8 

(1.9) 

0 

(0) 

cVEMP 

127 dB 119.8 

(101.

6) 

192.
2 

(91.7

) 

247.
1 

(83.9

) 

254.

6 

(89.5

) 

226.5 

(150) 

180.
2 

(61.1

) 

27.6 

(61.8

) 

95.1 

(79.6

) 

139.
6 

(53.4

) 

224.
4 

(76.8

) 

238.

8 

(96.7

) 

196 

(79.7

) 

179.
9 

(60.3

) 

22.9 

(51.3

) 

cVEMP 

122 dB 
0 

(0) 

43.8 

(64.8
) 

162.

2 

(70.6

) 

160.

4 

(75.2
) 

150 

(104.
7) 

52.3 

(77.6
) 

0 
(0) 

0 
(0) 

37.9 

(52.7
) 

159.

8 

(67.7
) 

180.

5 

(53.6

) 

153.

7 

(62.6
) 

73.3 

(75.3
) 

0 
(0) 

 

The “best” frequency (highlighted in bold in Table 6) was always 500, 750 or 

1000 Hz and was consistent between the test and re-test sessions, with the exception of 

the cVEMP at 122 dB pSPL where the “best” frequency changed from 500 Hz during the 

test session to 750 Hz during the re-test session.  Overall, frequency tuning was found to 

be reliable across time. 
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Frequency Tuning Inter-Ear Differences 

 

The possibility of a difference in frequency tuning between ears was examined in 

5 subjects.  In these 5 subjects, cVEMP and oVEMP responses were recorded at 2 

stimulus intensities, 127 and 122 dB pSPL, in both the right and left ears.  The interaural 

amplitude asymmetry (IAA) values between the right and left ears are shown in Table 7.  

 

Table 7.  Mean (SD) interaural amplitude asymmetries (IAA). Values are given as a 

percentage (%).  In conditions where the mean is based on a single subject no SD is given 

VEMP 

Condition 

125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

1500 

HZ 

2000 

Hz 

oVEMP 127 

dB 

18 

(14) 

15 

(05) 

13 

(08) 

17 

(.09) 

21 

(06) 

13 

.14) 

27 

 

oVEMP 122 

dB 

0 

 

17 

(21) 

15 

(07) 

21 

(09) 

20 

(09) 

20 

 

0 

 

cVEMP 127 

dB 

08 

(08) 

8 

(09) 

9 

(07) 

13 

(08) 

8 

(07) 

13 

(18) 

22 

 

cVEMP 122 

dB 

0 

 

10 

(09) 

15 

(08) 

13 

(07) 

12 

(09) 

9 

 

0 

 

 

 

 For the 3 best frequencies (500, 750, and 1000 Hz), the upper limit of IAA (i.e. 

mean + 2 SD) ranged from 29% – 39% for the oVEMP and from 22 – 31% for the 

cVEMP.  VEMP responses were symmetrical (i.e. these IAA values are consistent with 

those reported previously in the literature; e.g. (Zapala and Brey 2004; Chihara, Iwasaki 

et al. 2007).  Table 8 shows the mean peak-to-peak amplitude from each stimulus 

frequency for the right and left ears in each VEMP condition.  The mean data show that 

although the frequencies resulting in the greatest VEMP amplitudes for both ears were 
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always 500, 750, and 1000 Hz, the “best” frequency (highlighted in bold in Table 8) was 

often different between ears.   

 

Table 8. Mean (SD) peak-to-peak amplitude of the oVEMP and cVEMP at 127 and 122 

dB pSPL from the right and left ears of 5 subjects ranging in age from 25 – 50 years.  The 

greatest amplitude for each VEMP condition is in bold.   
VEMP 

Conditi

on 

Right Ear Left Ear 

125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

100

0 

Hz 

150

0 

HZ 

200

0 

Hz 

125 

Hz 

250 

Hz 

500 

Hz 

750 

Hz 

1000 

Hz 

150

0 

HZ 

200

0 

Hz 

oVEMP 

127 dB 
0.5 

(1.2) 

6.3 

(4.6) 

12 

(4.6) 
12.4 

(6.3) 

12 

(6.8) 

6.3 

(5.6) 

2.9 

(5.3) 

0.2 

(.5) 

7.9 

(6.5) 
11.6 

(6.5) 

11 

(4.4) 

10.5 

(4.3) 

6.2 

(4.8) 

1.4 

(3.1) 

oVEMP 

122 dB 
0 

(0) 

1.6 

(2.1) 

5.6 

(3.9) 

5.3 

(3.9) 
5.7 

(4.3) 

1.5 

(2.2) 

0 

(0) 

0 

(0) 

2.3 

(3.3) 
6.3 

(4.3) 

5.6 

(3.9) 

4.9 

(1.8) 

1.1 

(1.5) 

0 

(0) 

cVEMP 

127 dB 95.1 

(79.6

) 

139.
6 

(53.

4) 

224.
4 

(76.

8) 

238.

8 

(96.

7) 

196 

(79.7

) 

179.
9 

(60.3

) 

22.9 

(51.3

) 

81.1 

(54.

9) 

142.
5 

(75.

1) 

236.2 

(101.

5) 

224.1 

(130.

8) 

208 

(109.

6) 

149.
1 

(85.3

) 

40.3 

(58.4

) 

cVEMP 

122 dB 
0 

(0) 

37.9 

(52.
7) 

159.

8 

(67.
7) 

180.

5 

(53.

6) 

153.

7 

(62.6
) 

73.3 

(75.3
) 

0 
(0) 

0 
(0) 

30.8 

(42.
2) 

167.3 
(64.8) 

195.8 

(117.

5) 

184.2 

(115.
2) 

86.2 

(98.6
) 

0 
(0) 

 

 

Middle Ear Power Analysis (MEPA) 

 

Qualitatively, middle ear power reflectance varied as a function of frequency.  

Higher power reflectance values were observed below 1000 Hz and above 5000 Hz.  At 

the lower and higher frequencies a larger proportion of the incident power was reflected 

back out through the ear canal.  Overall results were a U-shaped curve that approximates 

the middle ear transfer function (see Figure 18).  
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Figure 18:  Screenshot of the frequency-reflectance profile created by the MEPA3 from 

an individual subject.  The upper panel shows power reflectance (%) as a function of 

frequency, for the left and right ear separately.  The lower power shows the power 

transmittance (dB) as a function of frequency.  The shaded region represents the 

normative values provided by the manufacturer 

 

These results were similar to previous investigations examining middle ear power 

reflectance in adults without middle ear pathology (e.g. (Feeney and Sanford 2004; Allen, 

Jeng et al. 2005) and were consistent across age groups.  In other words, the tendency for 

the best VEMP frequency in older adults to be at a higher frequency was independent of 

the middle ear transfer function.  
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CHAPTER IV 

 

DISCUSSION 

 

Frequency Tuning of the VEMP 

The purpose of this investigation was to characterize the frequency tuning of the 

cVEMP and oVEMP and to examine the effects of age on the tuning of the response.  

Previous studies that have used air conduction tone bursts have reported frequency 

specific tuning in both the cVEMP and oVEMP of young normal adults centered around 

500 Hz.  Our findings slightly disagree with this.  Although there is an effect of stimulus 

frequency on the response rate and VEMP amplitude, this effect is not very frequency 

specific.  In fact, air conduction tone bursts of 500, 750, and 1000 Hz all produced 

repeatable VEMP responses at amplitudes that did not significantly differ from one 

another.  Both response rate and amplitude decreased at frequencies above and below 

these mid frequencies.  One reason for the discrepancy in our findings compared to others 

(i.e. we did not find specific frequency tuning) may be due to our stimulus.  First, we 

used seven different frequencies to measure the frequency dynamics of the cVEMP and 

oVEMP.  Second, we developed a stimulus consisting of all 7 different tone burst 

frequencies. The amplitude of the response depends on muscle tone (at least for the 

cVEMP) and repeated examination may cause muscular fatigue (especially in aged 

individuals).  Thus, we reasoned that the best way to compare multiple frequencies would 

be to present them all during the same run.  In doing this we showed that VEMP 

amplitude and response rates for 500, 750, and 1000 Hz tone bursts were not different 
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from one another.  Further, the “best” frequency (i.e. frequency resulting in the largest 

response amplitude) was always 500, 750, or 1000 Hz, but the best frequency often 

differed between ears.  Given that there was no single “best” stimulus frequency but 

instead a range of best frequencies, it may be a misnomer to describe the VEMP as being 

“tuned.” Additionally, though it is clear why the auditory system requires fine tuning, it is 

not clear what benefit fine tuning would provide the vestibular system.  

The response to sound from vestibular neurons is very different than that of 

cochlear neurons.  Cochlear neurons respond to a broader frequency range and at much 

lower thresholds (i.e. softer intensity levels) compared to the vestibular neurons, which 

respond to a very restricted range of frequencies at greater thresholds.  Single 8
th

 nerve 

fibers demonstrate very fine frequency tuning, which is vital to the function of our 

auditory system.  The basilar membrane (BM) varies in thickness and elasticity with the 

base being relatively narrow and stiff allowing it to respond best to high frequencies, 

while at the apex the BM is wider and more flexible and responds best to low 

frequencies.  Each point on the BM shows greater displacement to a certain frequency, 

called its characteristic frequency (CF). While the cochlea has both passive (i.e. BM) and 

active (i.e. outer hair cells) processes contributing to its fine frequency tuning, the 

vestibular system’s frequency “tuning” is a by-product of the system’s resonant 

frequency.   

The frequency tuning of the otolith end organs has been attributed to the elastic 

and inertial properties of the end organs, the mechanical resonance of individual 

stereocilia, and/or the electrical tuning of the hair cells (Fernandez and Goldberg 1976; 

Young, Fernandez et al. 1977; Crawford and Fettiplace 1981; Holton and Hudspeth 1983; 
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Fettiplace and Fuchs 1999; Welgampola and Colebatch 2001).  The physical mass of the 

saccule and utricle and the way they are attached to the temporal bone contribute to their 

inertial properties and passive resonance.  In other words, a smaller, and more rigidly 

attached (i.e. stiffer) end organ should resonate at a higher frequency than a larger and 

more mobile end organ.  Stereocilia also behave as mechanical resonators with the 

resonant frequency being a function of the stereocilia’s stiffness and mass.  Thus shorter 

and more stiff stereocilia should resonate at a higher frequency (Fettiplace and Fuchs 

1999).  The electrical tuning of a hair cell is determined by the number of potassium (K
+
) 

channels (Fettiplace and Fuchs 1999; Steinacker 2004).  The cell’s resonant frequency is 

correlated with the number of K
+
 channels, with more channels resulting in a higher 

resonant frequency (Fettiplace and Fuchs 1999; Steinacker 2004).  This would enable a 

stimulus with a frequency corresponding to the resonant frequency of the end organ, 

stereocilia, and/or hair cells to produce the largest signal in the cell.  Thus, the term 

“resonant frequency” may be a more accurate description than “frequency tuning” when 

describing the effects of stimulus frequency on the vestibular system.  

 

Effects of Age on the Resonant Frequency of the VEMP 

 

Consistent with the findings of previous investigators, we observed an effect of 

age on the amplitude of both the cVEMP and oVEMP.  The tonic EMG of the SCM was 

held relatively constant across subjects (i.e. between 50 - 200 µV), but VEMP amplitude 

still significantly decreased with increasing age.  The effect of age was more pronounced 

for the cVEMP where amplitudes from both the middle age and older adult groups were 
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significantly smaller compared to the young adult group, whereas for the oVEMP 

amplitudes were significantly smaller in the older adult group only.  What was more 

interesting, however, was the Age Group x Frequency interaction effect.  cVEMP 

amplitude was more affected by frequency in the young adult and middle age group, with 

no significant differences between frequencies in the older adult group.  These results 

suggest a “flattening” or loss of frequency tuning with no best frequency in the older 

adult group.  In contrast, oVEMP amplitude was affected by frequency in all age groups 

at least at the greatest stimulus intensity level.   

We hypothesized that damage to the saccule or utricle, as a result of aging, would 

alter the resonant frequency of the end organ thus altering the frequency tuning 

characteristics of the vestibular system.  In the auditory system, the BM is sharply tuned 

in young healthy subjects.  The better the physiological condition of the cochlea, the 

sharper the tuning (Moore 1998).  We posited that the better the physiological condition 

of the saccule and utricle, the sharper the vestibular frequency “tuning”.  Our results 

showed an Age Group x Frequency interaction for the cVEMP with a loss of best 

frequency for adults 60 years of age and older.  This interaction was not observed for the 

oVEMP.  However, older adults showed a slightly higher “best” frequency compared to 

young adults for both the cVEMP and oVEMP.  Thus, aging does appear to affect the 

frequency tuning of the VEMP and the effect is greater on the cVEMP than the oVEMP.  

Significant hair cell and neuronal loss with increasing age has been reported for 

the saccule, with lesser effects for the utricle.  Johnsson (1971) examined human 

temporal bones from 150 patients ranging in age from newborns to 97 years and observed 

a marked degeneration in the saccular macula and with only a moderate degeneration in 
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the utricular macula after the age of 60 years (Johnsson 1971).   Richter (1980) observed 

a decrease in the density of hair cells in the sensory epithelium of the saccule of 

individuals over the age of 50 years, with relatively little decrease in the utricle (Richter 

1980).  In a series of case studies, Schuknecht et al (1965) observed extensive age-related 

degeneration with a 50% loss of  hair cells in the macula of the saccule of both animal 

and human temporal bones (Schuknecht 1965).  As with Johnson (1971) and Richter 

(1980), the utricle appeared relatively undamaged.  Merchant et al (2000) reported a 

highly significant age-related decline in the density of Type I and Type II hair cells in all 

the peripheral vestibular end organs, including both the saccule and utricle (Merchant, 

Velazquez-Villasenor et al. 2000).  Rosenhall (1973) also found age-related affects in 

both otolith end organs with a 24% decrease in the hair cell density of the saccule and a 

21% decrease in the utricle (Rosenhall 1973). 

The volume and number of otoconia in the macula of both the utricle and saccule 

in elderly individuals is also reduced compared to younger adults.  Again, the effects of 

age appear to be greater for the saccule.  Igarashi et al (1993) examined temporal bones 

in both children and elderly adults and reported a ratio of utricular otoconia volume 

between young and elderly at 100:42 and a ratio of 100:21 for saccular otoconia (i.e. 

greater age-related loss of saccular otoconia with age; (Igarashi, Saito et al. 1993).  Ross 

et al (1976) examined the otoconia from the saccule and utricle across varying ages and 

reported a decrease in number and a “hollowed-out” appearance in the saccular otoconia 

of older subjects.  These findings were less pronounced in the utricular otoconia of older 

subjects (Ross, Peacor et al. 1976).  In addition to the reduction of otoconia with age, 

distinct changes in the shape of otoconia have been shown in aged individuals (Johnsson 
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and Hawkins 1972; Igarashi, Saito et al. 1993; Jang, Hwang et al. 2006).  “Giant” 

otoconia have been observed in the otolith organs of older rats, presumably due to a loss 

of controlled inhibition of mineralization (Jang, Hwang et al. 2006).  These changes in 

the shape and number of otoconia in the otoliths may result in a smaller otolith mass.  

Lower mass results in less force translating the kinocilia so we would expect poorer 

threshold levels.  Additionally, a change in otolith mass may alter the resonant frequency 

of the end organ, thereby altering the frequency tuning characteristics of the VEMPs of 

the older subjects in this study.   

If the air conduction cVEMP and oVEMP originate from two different end organs 

(i.e. saccule and utricle, respectively) we may expect to see some differences in the 

frequency tuning of the two VEMP responses.  The utricle is larger (i.e. larger in mass) 

and less anchored (i.e. less rigid) to the temporal bone than is the saccule.  Thus, if it is 

the elastic and inertial properties of the end organ alone that contribute to the frequency 

tuning of the VEMP we would expect a lower best frequency for the oVEMP compared 

to the cVEMP.  The resonant frequency characteristics of the cVEMP and oVEMP in this 

investigation were very similar and consistent with previous investigations reporting 

similar frequency tuning for the cVEMP and oVEMP in response to air conduction 

stimuli (Park, Lee et al. 2010).  However, if the frequency tuning of the VEMP is also 

related to mechanical resonance of individual stereocilia and the electrical tuning of the 

hair cells then we would expect to see a change in tuning in individuals with this type of 

end organ damage.  We cannot deduce from these findings if the older adults in our study 

had degenerative changes in the otolith organs.  However, the greater effects of age on 
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the cVEMP compared to the oVEMP are consistent with structural investigations 

showing a greater effect of age on the saccule compared to the utricle.  

 

Other Age Effects 

 

The effects of stimulus level on the amplitude of the VEMP response differed by 

age group.  Previous studies have shown that both cVEMP and oVEMP amplitude 

increase with increases in stimulus intensity level (e.g. Colebatch, 1994; Ochi et al, 2001; 

Akin et al 2003; Murnane et al, 2011).  Our findings show that this increase is not 

uniform across age groups as the slope of the I/O function was steeper for the younger 

age group.  Again, this age effect is more pronounced for the cVEMP where the I/O 

function was shallower for both the middle age and old age groups, whereas this effect 

was only evident for the old age group in the oVEMP.  The finding that amplitude grows 

more with increasing stimuli for younger subjects may be related to hair cell and neuronal 

loss reported with increasing age.  In a young healthy adult, the consequence of 

increasing the stimulus intensity level is a greater translation of otoliths, a greater 

transduction at the hair cell level, and a greater population of neurons fire.  The result is a 

larger amplitude evoked potential.  In an older individual where the number of otoliths, 

hair cells, and neurons has decreased, an increase in stimulus intensity does not have the 

same effect as there are less available neurons to recruit. 
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Effects of stimulus Frequency on the Latency of the VEMP  

 

The effects of stimulus frequency on the latency of the VEMP differed between 

the cVEMP and oVEMP.  The cVEMP and oVEMP latency values reported in this 

investigation were both independent of age group and stimulus level.  However, even 

with stimulus gating (i.e. stimulus rise/fall time) held constant, frequency was found to 

have an effect on the P1 latency of the cVEMP, but not the N1 latency of the oVEMP.  

Previous investigators have shown that cVEMPs elicited by AC clicks occur earlier than 

cVEMPs elicited by mid-frequency tone bursts (~13 ms vs ~15 ms; e.g. Colebatch & 

Halmagyi, 1992; Akin et al 2003; Janky and Shepard 2009).  The mean P1 latency of the 

cVEMP elicited by the 125 Hz stimulus in this investigation (i.e. mean 13.8 ms) is more 

consistent with cVEMP latency values elicited by click stimuli.  It is possible that our 125 

Hz stimulus was more akin to a transient than a low frequency tone burst, resulting in 

such an early latency cVEMP response.  Our findings showed that the mean latencies for 

125 Hz (i.e. possibly a click stimulus) were significantly shorter compared to the other 6 

stimulus frequencies.  These findings were consistent across subjects.  For example, 16 

subjects produced a cVEMP at 125 Hz and of those 16, 14 showed a latency value 2-3 ms 

shorter than the other test frequencies.    

Akin et al (2003) reported that cVEMP latency, when stimulation duration was 

held constant, was independent of tone burst frequency; however a closer look at their 

data showed that this was only true for frequencies 250 – 1000 Hz.  The cVEMP latency 

at 1500 Hz was found to be significantly shorter (Akin, Murnane et al. 2003).  Those 

findings are very consistent with ours showing that the mean latencies for 1500 and 2000 



  

 63 

Hz (i.e. 15.4 and 15.3 ms, respectively) were significantly shorter compared to 250 – 

1000 Hz (i.e. range: 15.9 – 16.5 ms).  The high frequency stimuli of 1500 and 2000 Hz 

may also have acted more “click-like” compared to the low and mid frequency stimuli. 

There was no affect of stimulus frequency on cVEMP latency between 250, 500, 750, 

and 1000 Hz.   

In contrast to the cVEMP, the mean latency of the oVEMP did not significantly 

decrease as frequency increased (i.e. mean N1 latency ranged from 11.6 – 12.3 across 

frequencies).  The frequency of the oVEMP at 125 Hz was also not significantly different 

from the other frequencies.  Eight subjects produced an oVEMP at 125 Hz and of those 8, 

7 showed a latency value similar to the other test frequencies.  Similarly, Zhang et al 

(2011) reported no significant effect of frequency on N1 latency values for frequencies 

100 – 1200 Hz (Zhang, Govender et al. 2011).   Murnane et al (2011) reported no 

significant differences in N1 latency between 500, 1000, and 2000 Hz and Winters et al 

(2012) reported no significant differences in oVEMP latency at the frequencies of 250, 

500, and 1000 Hz (Murnane, Akin et al. 2011; Winters, Berg et al. 2012). Additionally, 

Rosengren et al (2011) reported that the first negative peak of the oVEMP in response to 

AC clicks occurred at approximately the same latency as AC 500 Hz tone bursts 

(Rosengren, Govender et al. 2011).  Overall, these results suggest that the frequency of 

the acoustic stimulus has more of an effect on cVEMP latency than oVEMP latency.   

The reason why stimulus type (AC click vs AC tone burst) and stimulus 

frequency affect the latency of the cVEMP but not the oVEMP is not understood.  

Neither VEMP response is cochlear in origin.  One possible reason may have to do with 

the fact that the saccule and utricle attach differently to the temporal bone.  Recent 
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studies using high-resolution x-ray microtomography have shown that the saccule is 

closely attached to a curved bony surface while the utricle is delicately suspended by 

cells attached to a flexible membrane (Uzun-Coruhlu, Curthoys et al. 2007; Curthoys, 

Uzun-Coruhlu et al. 2009).  Uzun-Coruhlu et al (2007) described the utricular macula as 

“essentially floating on fluid”.  Given these morphological differences it can be 

reasonably hypothesized that an acoustic stimulus would deflect the saccular and 

utricular macula differently.  The utricle is partly affixed and mostly free-floating in 

endolymph and is thus mass dominated.  If the input signal is a click, or noise burst, the 

system will respond only to the low frequency energy in the signal, which may explain 

the low response rate in this study for the oVEMP at 125 Hz (i.e. the click-like 125 Hz 

tone burst contained little low frequency energy).  The utricle will respond normally but 

at a greater amplitude to low and mid frequency tone bursts.  The result would be similar 

oVEMP latencies across stimuli.  It may be that the cVEMP occurs at a shorter latency 

for clicks and high frequency tone bursts (i.e. 1500 and 2000 Hz) because the saccule is 

firmly attached to the temporal bone allowing the system to be stiffness dominated.  

Thus, the stiffer saccule is responding to the high frequency energy of a click stimulus. 

Although the reasons for the different effects of stimulus frequency on the latency 

of the cVEMP and oVEMP are speculation, the finding that acoustic stimulation has 

more of an effect on cVEMP latency than oVEMP latency adds to the growing 

knowledge that the origins of the cVEMP and oVEMP in response to air conduction 

differ from one another.  Further studies are needed to both confirm these findings and 

further examine the differences in the effects of stimulus frequency between the latency 

of the cVEMP and the latency of the oVEMP. 
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CHAPTER V 

 

CONCLUSION 

 

Whether it is due to the electrical resonance of the hair cells or due to the mass-

spring damping properties of the otolith end organs, the frequency tuning of the 

vestibular system is presumably influenced by the resonance characteristics of the saccule 

and utricle.  The finding that there was no significant difference in VEMP amplitude 

evoked by 500 Hz, 750 Hz and 1000 Hz tone bursts suggests that there is no true 

frequency “tuning” in the vestibular system, but in fact a range of best frequencies that 

may be used to evoke the VEMP response.   

Our results suggest that aging had an effect on the resonant frequency 

characteristics of the saccule and utricle as shown by a change in the frequency tuning of 

both the cVEMP and oVEMP.  Accordingly, for elderly patients 500 Hz may not be the 

ideal frequency to elicit VEMPs. In fact, for some older subjects in this investigation the 

VEMP was only present using tone burst stimuli of 750 and 1000 Hz.  For this reason in 

cases where the VEMP response is absent at 500 Hz we recommend using a stimulus 

frequency of 750 or 1000 Hz. 

In summary, we conclude the following:  1) the frequency “tuning” of the cVEMP 

and oVEMP is very broad and may, or may not, be inappropriately interpreted as 

evidence of true frequency tuning, 2) the “best” frequency (i.e. frequency resulting in the 

largest VEMP amplitude) was found to be reliable across time, but often differed between 

ears, 3) aging had an effect on the frequency tuning curves of the VEMP with results 
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showing either a loss of tuning or tuning to a slightly higher frequency, 4) VEMP 

amplitude grows more with increasing stimulus intensity for younger subjects compared 

to older subjects, 5) the aging effects observed in this study (i.e. loss of frequency tuning, 

shallower I/O functions) were more pronounced for the cVEMP than the oVEMP, and 6) 

stimulus frequency has an effect of the latency of the cVEMP but not the oVEMP. 
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APPENDIX 

 

A. CVEMP AMPLITUDE MEANS AND STANDARD DEVIATIONS 

 

Age Group 
 

 Level  
 (dB pSPL) 

     Frequency 
        (Hz) 

Mean 
Amplitude 

(uV) SD 

Young Adult 127  125 123.60 143.40 

250 238.06 170.52 

500 338.05 206.19 

750 355.82 202.83 

1000 297.14 188.38 

1500 271.27 170.47 

2000 96.39 151.38 

122  125 20.65 50.45 

250 91.86 103.56 

500 236.37 161.19 

750 245.58 146.53 

1000 233.76 178.37 

1500 144.75 128.65 

2000 57.38 131.47 

117  125 13.40 46.44 

250 61.05 80.94 

500 132.98 148.16 

750 145.25 131.23 

1000 96.93 99.54 

1500 44.97 86.71 

2000 .00 .00 

Middle Age 127  125 44.87 76.81 

250 120.80 82.11 

500 187.00 74.46 

750 218.32 87.75 

1000 226.08 121.29 

1500 129.23 92.00 

2000 41.04 61.76 



  

 68 

122  125 11.57 41.74 

250 58.06 73.21 

500 126.04 86.34 

750 145.86 84.80 

1000 143.54 90.45 

1500 53.28 61.08 

2000 7.03 25.37 

117  125 .00 .00 

250 22.38 67.86 

500 65.29 71.75 

750 65.56 80.95 

1000 65.75 65.43 

1500 .00 .00 

2000 .00 .00 

Old Adult 127  125 21.66 46.85 

250 35.99 57.22 

500 100.87 86.85 

750 126.70 87.27 

1000 114.81 68.88 

1500 54.53 75.85 

2000 35.28 72.40 

122  125 .00 .00 

250 2.89 10.42 

500 44.32 59.83 

750 53.18 66.95 

1000 42.23 45.80 

1500 16.31 33.43 

2000 2.99 10.78 

117  125 .00 .00 

250 .00 .00 

500 6.20 15.61 

750 9.99 19.69 

1000 9.54 19.27 

1500 1.84 6.65 

2000 .00 .00 
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B. CONTRALATERAL OVEMP MEANS AND STANDARD DEVIATIONS 

 

Age Group 
 

 Level 
(dB pSPL) 

     Frequency 
        (Hz) 

Mean 
Amplitude 

(uV) SD 

Young Adult 127  125 1.72 2.68 

250 4.69 5.61 

500 9.63 5.77 

750 13.33 7.82 

1000 10.85 6.48 

1500 6.60 3.78 

2000 1.00 1.94 

122  125 .63 1.49 

250 1.71 2.41 

500 5.70 3.72 

750 7.13 5.58 

1000 5.71 4.48 

1500 .50 .92 

2000 .00 .00 

117  125 .15 .51 

250 .38 1.32 

500 1.74 2.51 

750 1.32 2.59 

1000 .93 1.85 

1500 .00 .00 

2000 .00 .00 

Middle Age 127  125 1.54 3.80 

250 3.97 5.83 

500 9.13 8.29 

750 10.76 9.31 

1000 10.42 8.86 

1500 3.37 4.29 

2000 2.16 3.96 

122  125 1.10 2.90 

250 1.59 4.05 

500 4.30 5.89 
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750 4.54 5.89 

1000 4.14 4.11 

1500 .22 .80 

2000 .25 .91 

117  125 .00 .00 

250 .59 2.13 

500 1.00 2.45 

750 .97 2.63 

1000 .66 1.68 

1500 .00 .00 

2000 .00 .00 

Old Adult 127  125 .00 .00 

250 .66 1.29 

500 3.56 2.94 

750 5.71 4.08 

1000 5.70 3.85 

1500 1.11 1.91 

2000 .21 .77 

122  125 .00 .00 

250 .00 .00 

500 .43 1.10 

750 1.39 2.23 

1000 .63 1.61 

1500 .19 .69 

2000 .00 .00 

117  125 .00 .00 

250 .00 .00 

500 .00 .00 

750 .16 .61 

1000 .00 .00 

1500 .00 .00 

2000 .00 .00 
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