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 CHAPTER I 

 

INTRODUCTION 

 

Introduction 

 
This dissertation presents the development and application of virtual-reality based 

gaze-sensitive system with adaptive response technology for children with Autism 

Spectrum Disorder (ASD). Such a system can intelligently adapt itself in an 

individualized manner to encourage a child to participate in social communication tasks 

while trying to improve his/her level of engagement and performance in the social task. 

Children with ASD are characterized by core deficits in social interaction and 

communication accompanied by restricted patterns of interest and behavior (APA, 2000), 

infrequent engagement in social interactions (APA, 1994), atypicalities surrounding eye-

gaze and social information processing (Rutherford, and Towns, 2008; Jones, Carr, and 

Klin, 2008), and impaired understanding of mental states of others (Baron-Cohen, 1997; 

Frith, and Frith, 1999). Clinicians 1  involved in interventions must overcome these 

communication impairments generally exhibited by children with ASD by adeptly 

inferring the affective cues of the children to adjust the intervention accordingly. There is 

growing consensus that appropriately individualized intensive behavioral and educational 

interventions can improve core social communication vulnerabilities seen in individuals 

with ASD (NRC, 2001). However, there are potent barriers related to accessing and 

implementing appropriately individualized intensive intervention services such as limited 

                                                 
1 We use the terms "clinician," "clinical observer," and "therapist" interchangeably to mean an expert with skill in making judgments, 
such as rating affective states, about the meaning of observable behaviors from individuals with autism. 
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access to and availability of appropriately trained professionals, lack of available data 

suggesting which interventions will work better for specific children, and exorbitant costs 

(Ganz, 2007; Goodwin, 2008). Given these barriers, researchers are now employing 

technology to develop more accessible, quantifiable, intensive and individualized 

interventions for core deficit areas related to ASD (Goodwin, 2008). Thus development 

of an intelligent system with an ability to objectively identify the affective and attentive 

states of the children with ASD and adapt itself targeted to the specific child is critical. 

This can pave the way for the development of an individualized, intensive, and cost-

effective ASD intervention tool.  

Even though there is increasing research in technology-assisted autism intervention, 

there is a paucity of published studies that specifically address how to automatically 

detect and respond to affective and attentive cues of children with ASD. The currently 

available systems as applied to tasks involving children with ASD are capable of 

modifying tasks based only on objective performance characteristics (i.e., correct or 

incorrect) of responses (Parsons et al., 2004; Strickland et al., 1996). Though being able 

to adapt tasks based on performance is an important aspect of potential intervention 

systems for children with ASD, such adaptation based solely on task performance limits 

the individualization of application and likely potential generalization of skills. 

Specifically, performance based social communication skill-training tasks do not often 

involve measurements of or necessitate appropriate subtle, yet critically important, 

aspects of effective social communication (e.g., such as eye-gaze, and other forms of 

social convention). In fact, while many children with ASD are capable of yielding correct 

performance on objective tasks measures, it is their vulnerabilities surrounding elements 
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of social communication that is so closely tied to their functional social impairments. 

Thus to foster effective social communication tasks, the system should be capable of 

intelligently responding to the subtle aspects of social communication to engage the child 

in the social task through a high degree of individualization. We believe that such ability 

could be critical given the importance of affective information in human-computer 

interaction (Picard, 1997) and the significant impacts of the affective (Ernsperger, 2003; 

Seip, 1996; Wieder, and Greenspan, 2005), attentive (Rutherford, and Towns, 2008; 

Jones, Carr, and Klin, 2008), and task performance (Blackorby, and Cameto, 2005) 

factors of children with ASD on the intervention practice. 

Thus, there is a need to develop a technologically-advanced social interactive system 

capable of automatic detection of affective and attentive states and adapting itself to 

address some of the core social vulnerabilities of these children in an individual-specific 

manner. Motivated by this need to develop a system that can objectively identify one’s 

attentive indices and provide individualized services, our ongoing research has 

demonstrated the feasibility of Virtual Reality (VR) based social interaction to elicit 

variations in the attentive indices of the children with ASD. Also, these indices can be 

correlated to the affective state that underlies the presumed core social impairments 

associated with ASD.  The work presented in this dissertation utilizes and merges (i) the 

technological advances in the area of virtual reality, (ii) dynamic eye-gaze tracking and 

(iii) intelligent adaptive response technology with an aim to provide a technology-based 

tool that can intelligently adapt itself in an individualized manner to encourage a child to 

engage in social communication task. In addition, this would also help us to better 

understand the underlying affective and attentive mechanisms associated with some of 
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the core social vulnerabilities of children with ASD.         

The research work presented in this dissertation utilizes the attentive factors, namely, 

the behavioral viewing patterns, and eye physiological parameters, and the performance 

metric of an individual, to achieve the primary objective of developing technology-based 

assessment tools capable of identifying specific aspects of interaction that induce an 

affective (e.g., engagement) response in individuals with ASD. Additionally, the 

presented system is capable of adaptively responding to the engagement level as 

predicted from the behavioral viewing pattern, eye physiological indices, and 

performance of a child with ASD during social interaction of the child with the VR-based 

system. We use engagement as the target affective state, because, engagement, defined as 

‘‘sustained attention to an activity or person’’ (NRC, 2001), is one of the key factors for 

children with ASD to make substantial gains in communication and social domains 

(Ruble, and Robson, 2006). Infrequent or no engagement in social interaction is one of 

the defining characteristics of ASD (APA, 1994). The engagement of children with ASD 

is the ground basis for the 'floor-time-therapy' to help them develop relationships and 

improve their social skills (Wieder and Greenspan, 2005). Thus, if we can engage these 

children to a social task, then we can teach them social skills. The behavioral viewing 

patterns speak of one’s attention and interest in a target (Denver, 2004; Poole, and Ball, 

2005; Just, and Carpenter, 1976) and children with ASD often demonstrate atypical 

viewing patterns by attending more towards non-human objects than the human faces 

during social interaction (Anderson, Colombo, and Shaddy, 2006). In addition, eye 

physiology based methodologies (Libby, Lacey, and Lacey, 1973; Partala, and Surakka, 

2003) have compelling advantages over other observational modalities (e.g., facial 
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expression, vocal intonation, or gesture) in evaluating the affective responses of children 

with ASD, since they permit continuous gathering of rich data in the face of potential 

communicative limitations of these children, particularly regarding expression of 

affective states. Further, we also consider the participant’s task performance, because, 

clinicians involved in ASD intervention, often look out for the task performance metric 

which is positively correlated to the participant’s engagement level (Blackorby, and 

Cameto, 2005). The presented system can be employed to develop new intervention 

paradigms, which can promote interventions for individuals with ASD that are practical, 

widely available, and specific to the unique strengths and vulnerabilities of individuals 

with ASD. Thus this can serve as a valuable tool which can provide important 

information to caregivers and clinicians. Also, it can be utilized to adaptively drive 

behavioral interventions in an individualized manner towards achieving realistic social 

interaction to challenge, and expectantly promote scaffolded skill development in 

particular areas of vulnerability while improving the engagement level and the task 

performance of these children. Additionally, the presented technology with a behavioral 

engagement profiling system is capable of adapting to one’s predicted engagement level 

in controlled environments and thereby reinforcing skills in core domains gradually but 

automatically, which can prove an effective tool for developing tailored interventions for 

individuals with ASD. The research work presented here has the following two 

objectives: 

 Objective 1: To design and evaluate a VR-based gaze-sensitive social interactive 

system capable of delivering individualized feedback based on one’s dynamic 

viewing patterns  
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We plan to design social interaction modules on a VR platform. These are to be 

integrated to computationally-enhanced eye-tracker to provide individualized 

feedback. Specifically, the designed VR-based gaze-sensitive system will be capable 

of quantifying eye-gaze patterns of a child with ASD detected in real-time during 

virtual social interaction and utilizing this data to provide specific feedback aimed at 

altering viewing patterns (e.g., fixation counts, fixation duration, face-to-nonface 

ratio, and object-to-face ratio) at each instant of time. Also the developed system 

would be capable of communicating some of these indices to the participant at a 

preferred time as the task proceeds depending on the study design.  

We plan to investigate the effectiveness of the VR-based gaze-sensitive social 

interactive system to elicit variations in the participants’ behavioral viewing patterns, 

scanning patterns of the visual stimulus, and the engagement level, measured by 

ratings from the observers, during virtual social interaction as a result of the 

individualized feedback. Further, we plan to evaluate (in an off-line manner) the 

potential of such a system to have an impact on the participants’ eye physiological 

indices (e.g., blink rate, pupil diameter) while recognizing emotions of their virtual 

peers (i.e., the avatars). 

 Objective 2: To enhance the developed VR-based gaze-sensitive social interactive 

system with adaptive response technology based on one’s behavioral viewing, eye 

physiological indices, and performance metrics 

 Our aim is to enhance the system (as mentioned in Objective 1) by designing a 

VR-based gaze-sensitive system with adaptive response technology which can be 

applied to social communication task for children with ASD. We plan to formulate 
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the system to present VR-based social tasks coupled with gaze-sensitive feature to 

monitor the behavioral viewing and eye physiological indices of the participants in 

real-time, as they interact with the virtual social scenarios. Additionally, this system 

will feature bidirectional interaction in the form of social conversations between a 

participant and his/her virtual peer. Also, we plan to develop VR-based social tasks 

equipped with varying degrees of task difficulty (e.g., Low, Medium, and High) for 

social communication between the participant and his/her virtual peer. The system 

will monitor the performance of a participant while he/she interacts with the system 

using the bidirectional social conversation module of different degrees of task 

difficulty. Based on the participant’s behavioral viewing, eye physiological indices, 

and performance metric, the system will adaptively and socially respond by using a 

rule-governed strategy generator.  

 We will assess the potential of the designed social interactive system using the 

rule-governed strategy generator to adaptively respond and encourage a participant to 

continue virtual social interaction. The rule-based strategy generator will fuse the 

participant’s behavioral viewing, eye physiological indices, and the performance 

metric to implement an individualized task modification strategy. We plan to 

investigate the ability of the strategy generator to enhance the participant’s 

performance (e.g., whether the participant’s task performance improves on interacting 

socially with tasks of higher degree of interaction difficulty) via adaptively modifying 

the task difficulty (i.e., increasing/decreasing).      

The dissertation is organized as follows: The motivation for the present research work 

is briefly discussed in Chapter II. Chapter III presents the design and development of VR-
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based social communication task and its feasibility to influence one’s peripheral 

physiological signals and affective states (e.g., engagement, enjoyment/liking, and 

anxiety). In addition, this presents the mapping of one’s physiological responses with the 

affective states while an individual participates in a VR-based social communication task. 

In Chapter IV, the design and development of a VR-based social communication system 

seamlessly integrated with technologically-enhanced eye-tracking technology is 

presented. The system is capable of computing one’s real-time behavioral viewing 

patterns during social communication and thereby delivering individualized feedback. 

Here, the impact of the individualized feedback on one’s behavioral viewing patterns has 

also been investigated. Chapter V elaborates on the detailed design specifications of the 

VR-based gaze-sensitive system along with bidirectional conversation module and 

adaptive response technology. Also this describes the rationale behind the rule-governed 

strategy generator that administers the dynamic switching of the social communication 

tasks. Chapter VI describes the design of the usability study to demonstrate the feasibility 

of such a system. Also, this presents the implication of such a VR-based gaze-sensitive 

system that adaptively responds based on the composite effect of one’s real-time 

behavioral viewing, eye physiology and performance metric. Specifically, this describes 

the effect of interaction with such a system, on one’s engagement level and performance 

while participating in the VR-based social communication task. Chapter VII shows the 

efficacy of such a system to influence the physiological signals, whether it is peripheral 

physiology or the eye physiology of the participants while they interact with the VR-

based social situations. In addition, this presents the correlation of the physiological 

signals with the affective state of the participants as rated by the clinical 
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observer/therapist. Finally, chapter VIII summarizes the contributions of the present work 

and describes the scope for future work. 
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 CHAPTER II 

 
 SIGNIFICANCE AND BACKGROUND 

 

Significance 

 
Emerging research suggests prevalence rates in the United States recorded as high as 

approximately 1 in 110 for the broad autism spectrum (CDC, 2009). Impairments in 

social communication skills are thought to be core deficits in children with ASD (APA, 

2000). Specifically, these children demonstrate atypical viewing patterns in part 

characterized by greater fixation towards non-social objects than faces of individuals 

during social communication. These are thought to contribute to difficulties in social 

interaction, including difficulties reading others' nonverbal emotional cues. To 

understand the social communication vulnerabilities of individuals with ASD, research 

has examined how they process salient social cues, specifically from faces (Rutherford, 

and Towns, 2008; Jones, Carr, and Klin, 2008). The ability to derive socially relevant 

information from faces is thought to be a fundamental skill for facilitating reciprocal 

social interactions (Trepagnier, Sebrechts, and Peterson, 2002) and an early deficit may 

contribute in part to the developmental cascade associated with core vulnerabilities of the 

disorder (Dawson, 2008). As children with ASD show (Baron-Cohen et. al., 1999; 

Carpenter, Pennington, and Rogers, 2002) difficulties in social judgment (e.g., deciding 

on appropriate social behaviors, understanding others’ emotions, etc.), attenuated 

attention with increased engagement in atypical behavior and non-social tasks (McGee, 

Feldman, and Morrier, 1997; Sigman, and Ruskin 1999), focus in autism research has 

been to devise affect-sensitive interactive techniques to address some of the core deficits 
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of these children in communication and social domains. 

While there is at present no single accepted intervention, treatment, or known cure for 

ASD, there is growing consensus that intensive behavioral and educational intervention 

programs can significantly improve long-term outcomes for individuals and their families 

(Cohen, Amerine-Dickens, and Smith, 2006; Rogers, 1998; NRC, 2001). In response to 

this need, a growing number of studies have been investigating the application of 

advanced interactive technologies to address core deficits related to autism, namely 

computer technology (Bernard-Opitz, Sriram, and Nakhoda-Sapuan, 2001; Moore, 

McGrath, and Thorpe, 2000; Swettenham, 1996), VR environments (Parsons, Mitchell, 

and Leonard, 2004; Strickland et al., 1996; Tartaro, and Cassell, 2007), and robotic 

systems (Dautenhahn, and Werry, 2004; Kozima, Nakagawa, and Yasuda, 2005; 

Michaud, and Theberge-Turmel, 2002; Pioggia et al., 2005; Scassellati, 2005). Computer- 

and VR-based intervention may provide a simplified but exploratory interaction 

environment for children with ASD (Moore, McGrath, and Thorpe, 2000; Parsons, 

Mitchell, and Leonard, 2004; Strickland et al., 1996).   

A computer that can detect the affective states of a child with ASD and interact with 

him/her based on such perception could have a wide range of potential impacts. 

Interesting activities likely to retain the child’s attention could be chosen when a low 

level of engagement is detected. The engagement of children with ASD is the ground 

basis for the 'floor-time-therapy' to help them develop relationships and improve their 

social skills (Wieder and Greenspan, 2005). Clinicians who work with children in autism 

intervention intensely monitor affective cues, e.g., engagement in order to make 

appropriate decisions about adaptations to their intervention and reinforcement strategies. 
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Thus, allowing a computer to recognize the engagement level of a child in terms of 

his/her performance, behavioral viewing pattern, and eye physiological indices during 

social tasks and applying this information as a means of taking appropriate decisions 

about the adaptation of the child to the intervention may be important. Complex social 

stimuli, sophisticated interactions, and unpredictable situations could be gradually, but 

automatically, introduced when the computer recognizes that the child is engaged at a 

certain level of interaction dynamics for a reasonably long period of time. A clinician 

could use the history of the child’s affective information to analyze the effects of the 

intervention approach. With the record of the activities and the consequent emotional 

changes in a child, a computer could learn individual preferences and affective 

characteristics over time and thus could alter the manner in which it responds to the needs 

of different children. 

The current research as presented in this dissertation describes development of a 

gaze-sensitive virtual interactive platform that can dynamically adapt itself based on an 

individual’s engagement level predicted by the performance metric, real-time behavioral 

viewing pattern and eye physiological indices during a child’s virtual socially-oriented 

tasks. In addition, we assess the effectiveness of this system with adaptive response 

technology to enhance the child’s performance (e.g., the participant’s performance 

improves on interacting socially with tasks of higher degree of interaction difficulty) with 

improved engagement to the social interaction tasks. Thus, this will provide an integrated 

computer and eye physiological profiling system which would serve as a tool for 

designing intervention strategies. In the future, such an integrated intelligent system 

could be effective for use in developing adaptive controlled environments that can 
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systematically manipulate various aspects of social communication and thereby help 

individuals to explore social interaction dynamics gradually and automatically. 

 

Background 
 

 
Use of Eye Physiology for Affect Recognition of Children with ASD  
 

Explicit as well as implicit channels of communication with presumed underlying 

affective states are thought to characterize human interactions with technology (Picard, 

1997). While the explicit channel transmits overt messages, the implicit one transmits 

hidden messages about the communicator (e.g., his/her intention and attitude). However, 

children with ASD often have communicative impairments (both verbal and nonverbal), 

particularly regarding expression of affective states (APA, 2000; Green et al., 2002; 

Schultz, 2005). Typically, observation of facial emotional expressions automatically 

prompts imitation, termed as mimicry (Canon, Hayes, and Tipper, 2009) due to emotional 

contagion, social perception, and embodied effect (Moody et al., 2007). But, children 

with ASD often show an absence of quick, automatic matching of others' emotional 

expressions (McIntosh et al., 2006) leading to communicative impairments. They often 

experience states of emotional or cognitive stress measured as Autonomic Nervous 

System activation without external expression (Picard, 2009) challenging their interests 

in learning and communicating. These vulnerabilities characterizing the communicative 

impairments place limits on traditional conversational and observational methodologies. 

There is a growing consensus that endowing a computer with an ability to understand 

implicit affective cues should permit more meaningful and natural human-computer 

interaction (Picard, 1997; Reeves, and Nass, 1996). There are several modalities such as 
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facial expression (Bartlett et al., 2003), vocal intonation (Lee, and Narayanan, 2005), 

gestures and postures (Asha et al., 2005; Kleinsmith et al., 2005), and eye physiology 

(Bradley et al., 2008; Partala, and Surakka, 2003; Wilbarger, McIntosh, and 

Winkielmanc, 2009) that can be utilized to evaluate the affective states of individuals 

interacting with a computer. However, as children with ASD often have communicative 

impairments, particularly regarding explicit expression of affective states, we plan to 

choose the implicit measure by using the eye physiological signals. The physiological 

signals are continuously available and are not necessarily directly impacted by the 

communicative impairments (Ben Shalom et al., 2006; Groden et al., 2005; Toichi, and 

Kamio, 2003). As such, physiological signal acquisition may represent a methodology for 

gathering rich data despite the potential communicative impairments of children with 

ASD. In addition, physiological data may offer an avenue for recognizing aspects of 

affect that may be less obvious for humans but more suitable for computers by using 

signal processing and pattern recognition tools. Furthermore, there is evidence that the 

dynamic shifts in indicators of Autonomic Nervous System activity are accompanied 

with transition from one affective state to another (Bradley, 2000).  

When estimating human affective response, an important question is how to 

operationalize the affective state. Although much existing research on affective 

computing categorizes physiological signal data into "basic emotions," there is no 

consensus on a set of basic emotions among the researchers (Cowie et al., 2001). This 

fact implies that practical choices are required to select target affective states for a given 

application (Cowie et al., 2001). In part of our completed preliminary research work, we 

chose anxiety, engagement, and liking to be the target affective states. Anxiety was 
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chosen for two primary reasons. First, anxiety plays an important role in various human-

machine interaction tasks that can be related to task performance (Brown et al., 1997). 

Second, anxiety frequently co-occurs with ASD and plays an important role in the 

behavior difficulties of children with autism (Gillott, Furniss, and Walter, 2001). 

Engagement, defined as "sustained attention to an activity or person" (NRC, 2001), has 

been regarded as one of the key factors for children with ASD to make substantial gains 

in academic, communication, and social domains (Ruble, and Robson, 2006). With 

"playful" activities during the intervention, the liking of the children (i.e., the enjoyment 

they experience when interacting with the computer) may create urges to explore and 

allow prolonged interaction for the children with ASD, who are susceptible to being 

withdrawn (Papert, 1993).  

A review of literature provides a rich history in support of physiology based 

methodologies for studying stress (Zhai, and Barreto, 2006), engagement (Anderson, 

Colombo, and Shaddy, 2006; Jensen et. al., 2009), and other similar mental states based 

on eye physiological measures such as those derived from blink rate (BR), and pupil 

diameter (PD). Meehan et al. reported that changes in physiological activity are evoked 

by different amounts of presence in stressful VR environments (Meehan et al., 2005). 

Jensen et al. has demonstrated the measurement of BR as important to indicate 

engagement, with increased BR being observed in ASD participants during task-free 

periods, but not in the higher engagement state (Jensen et al., 2009). Also, PD is an 

important indicator of affective processing with significant pupillary constriction for 

children with ASD while being engaged in attending to static face stimulus (Anderson, 

Colombo, and Shaddy, 2006). Therefore, the development of a VR-based gaze-sensitive 
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adaptive response technology system for exploration of physiological signals and the 

target affective state of engagement that may be associated with core social deficits for 

children with ASD is scientifically and technologically valid and feasible. 

 

Necessity for Monitoring Behavioral Viewing Patterns of Children with ASD  
 

Eye-gaze is a richly informative behavior in face-to-face interaction. In dyadic 

communication, eye-gaze serves at least five distinct communicative functions (Argyle, 

and Cook, 1976; Kendon, 1967): regulating conversation flow, providing feedback, 

communicating emotional information, communicating the nature of interpersonal 

relationships and avoiding distraction by restricting visual input. Eye-gaze helps control 

the flow of turn taking in conversations. For example, the person who is listening uses 

eye gaze to indicate whether he/she is paying attention, while the person who is speaking 

uses it to track whether the listener is still engaged in the conversation (Colburn, Drucker, 

and Cohen, 2000). Kendon (Kendon, 1967) reports that a typical pattern of interaction 

when two people converse with each other consists of the listener maintaining fairly long 

gazes at the speaker, interrupted by short glances away. In contrast, the speaker makes 

longer gazes away from the listener with shorter gazes at the listener. For example, a 

listener looking at the speaker 70 percent of the time during an interaction has been 

identified as 'normal while listening' and a speaker looking at the listener 30 percent of 

the time has been defined as ‘normal while speaking’ (Colburn, Drucker, and Cohen, 

2000; Argyle, and Cook, 1976). 

Thus one’s fixation pattern with respect to different components of a visual stimulus 

plays an important role in communication. Fixation duration is an important indicator of 
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affective processing (Anderson, Colombo, and Shaddy, 2006). Another important 

indicator of behavioral viewing pattern is the number of fixations of eye-gaze. The higher 

the fixation frequency on a region as measured by Sum of Fixation Counts (Denver, 

2004; Poole, and Ball, 2005), the greater the attention and interest (Just, and Carpenter, 

1976) in the target.   

However, children with ASD exhibit lower fixation duration (FD) while viewing 

human faces than the non-human face stimuli (Anderson, Colombo, and Shaddy, 2006). 

Children with ASD tend to fixate less towards faces and more to other objects (Jones, 

Carr, and Klin, 2008; Dawson et al., 1998; Pelphrey et. al., 2002; Cohen, and Volkmar, 

1997) in the environment. Study reveals that children with ASD exhibit reduced FD 

while viewing faces with fewer shifts from object to face (Swettenham et al., 1998). 

Atypical viewing patterns of individuals with ASD may emerge early in childhood 

(Jones, Carr, and Klin, 2008). Many children with autism are delayed in early, face-

related social milestones, such as looking to another person's face to reference that 

person's reactions or to share their own experience of objects and events (Mundy, 

Sigman, and Kasari, 1994; Joseph, and Tager-Flusberg, 1997). There is considerable 

amount of work using static faces (Joseph, and Tanaka, 2003; Trepagnier, Sebrechts, and 

Peterson, 2002) with offline analysis of gaze information while viewing static scene (Klin 

et. al., 2002). Eye-tracking techniques have been used to capture one's behavioral 

viewing patterns to the presented stimuli in terms of instantaneous gaze coordinates 

(Scassellati, 1998) and visual fixation patterns (Klin et al., 2002). Eye-tracking has great 

potential for application to technological intervention as a) aytpicalities surrounding eye-

gaze and processing of salient social cues, specifically cues and information from faces 



 19

are thought to be inherent to the disorder (Rutherford, and Towns, 2008; Jones, Carr, and 

Klin, 2008) and may potentially contribute to the underlying developmental mechanisms 

of the disorder itself (Dawson, 2008) and b) this technology makes exact location of gaze 

easily quantifiable with specifically designed regions within the visual stimuli (Anderson, 

Colombo, and Shaddy, 2006). As such, sophisticated application of eye-tracking 

technology within complex intervention systems could provide a way for elucidating a 

wide variety of cognitive processes, from visual–spatial attention to object perception to 

complex social interactions (Trepagnier et al., 2006). In spite of this potential of eye-

tracking technology, development of interactive system based on dynamic gaze patterns 

of these children to address some of their core deficits in communication and social 

domains is still at its infancy. 

 

Use of Monitoring Performance Metric for Children with ASD 

Performance measurement is an important facet in realizing the success/failure in a 

particular task and is universally used to assess how well someone has done against some 

set objectives. Previous study has shown the importance of engagement in determining 

performance at school for children with ASD with performance being positively 

correlated with one’s engagement (Blackorby, and Cameto, 2005). Studies have shown 

that communication and social difficulties constitute the primary hindrance to satisfactory 

job performance among individuals with ASD (Camerena, and Sarigiani, 2009; Ruef, and 

Turnbull, 2002). These indicate the importance of determining a performance metric and 

adopting measures to improve performance in tasks. For example, while being engaged in 

social communication tasks, the performance metric can be the success of an individual 
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to retrieve some intended information from the communicator. Thus, measurement of 

improvement in task performance is also an important ingredient in ASD intervention.    

      The novelty of our VR-based gaze-sensitive system with adaptive response 

technology is that it is individual-specific based on an individual’s engagement level 

predicted by monitoring the eye physiological indices, real-time behavioral viewing 

pattern, and performance metric of the individual during virtual socially-oriented tasks.  

 

Application of Technology in ASD Intervention 

There is growing consensus that appropriately individualized intensive behavioral and 

educational interventions can improve core social communication vulnerabilities seen in 

individuals with ASD (NRC, 2001). However, there are potent barriers related to 

accessing and implementing appropriately individualized intensive intervention services 

(e.g., limited access to and availability of appropriately trained professionals, lack of 

available data suggesting which interventions will work better for specific children, 

concerns about efficacy and generalization regarding certain interventions, and exorbitant 

costs (Ganz, 2007; Goodwin, 2008)). Given these barriers, researchers are employing 

technology to develop more accessible, quantifiable, intensive and individualized 

intervention services for core deficit areas related to ASD (Goodwin, 2008). A growing 

number of studies are investigating applications of advanced interactive technologies e.g., 

computer technology, robotic systems, and VR environments to social and 

communication related intervention (Blocher, and Picard, 2002; Kozima, Nakagawa, and 

Yasuda, 2005; Parsons, Mitchell, and Leonard, 2004). 

Among these alternative interactive technologies, we chose VR because of the 
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numerous reasons for a VR-based intervention system to be particularly relevant for 

children with ASD. The strength of VR technology for ASD intervention includes 

controllability, reduced sensory stimuli, individualized approach, safety, and a reduction 

of human interaction during initial skill training (Strickland, 1997). VR does not 

necessarily include direct human-to-human interaction, which may work well for an 

initial intervention to remove the difficulties common in ASD related to mere human 

interaction that is part of a typical intervention setting involving a child and a clinician 

(Chen, and Bernard-Opitz, 1993; Tartaro, and Cassell, 2007). Having the controllable 

complexity of a virtual world with minimized distractions may allow for simplified but 

embodied social interaction that is less intimidating or confusing for children with ASD 

than human-to-human interaction (Moore, McGrath, and Thorpe, 2000; Standen, and 

Brown, 2005). However, VR should not be considered an isolating agent, because dyadic 

communication accomplished between a child and a VR environment can lead into triadic 

communication including a clinician, caregiver, or peer and in due course potentially 

accomplish the intervention goals of developing social communication skills between the 

child with ASD and another person (Bernard-Opitz, Sriram, and Nakhoda-Sapuan, 2001). 

Furthermore, the main sensory output of VR is auditory and visual, which may represent 

a reduction of information from a real-world setting but also represents a full description 

of a setting without need for imagined components (Sherman, and Craig, 2003; 

Strickland, 1997). Individuals with ASD can improve their learning skills related to a 

situation if the proposed setting can be manifested in a physical or visual manner (Kerr, 

and Durkin, 2004). Since VR mimics real environments in terms of imagery and contexts, 

it may allow for efficient generalization of skills from the VR environment to the real 
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world (Cromby, Standen, and Brown, 1996). However, since limited social insight and 

social cognition are vulnerabilities that are often part of the core deficits associated with 

ASD, individuals may lack the skills to envision abstract concepts or changes to 

situations on their own. Virtual environments can easily change the attributes of, add, or 

remove objects in ways that may not be possible in a real-world setting but could be 

valuable to teach abstract concepts. Therefore, VR can offer the benefit of representing 

abstract concepts through visual means (e.g., thought bubbles with text descriptions of a 

virtual character's thoughts) and seamlessly allows for changes to the environment (e.g., 

changing the color of a ball or making a table disappear) that may be difficult or even 

impossible to accomplish in a real-world setting (Sherman, and Craig, 2003; Strickland, 

1997). Furthermore, the spectrum nature of autism means an individual approach is 

appropriate, and computers can accommodate individualized treatment (Strickland, 

1997). The highly versatile VR environment can illustrate scenarios which can be 

changed to accommodate various situations that may not be feasible in a given 

therapeutic setting because of space limitations, resource deficits, safety concerns, etc. 

(Parsons, and Mitchell, 2002). VR has also shown the capacity to ease the burden, both 

time and effort, of trained clinicians in an intervention process as well as the potential to 

allow untrained personnel (e.g., parents or peers) to aid a participant in the intervention 

(Standen, and Brown, 2005). Therefore, VR represents a medium well-suited for creating 

interactive intervention paradigms for skill training in the core areas of impairment for 

children with ASD (i.e., social interaction, social communication, and imagination). 

However, to date the capability of VR technology has not been fully explored to examine 

the factors that lead to difficulties in impairments such as social communication, which 
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could be critical in designing an efficient intervention plan. 

Despite potential advantages, current VR environments as applied to assistive 

intervention for children with ASD are designed based only on performance metrics 

(Parsons, Mitchell, and Leonard, 2004; Tartaro, and Cassell, 2007). Various VR 

environments have been developed and applied to address specific deficits associated 

with autism (e.g., understanding of false belief (Swettenham, 1996), attention (Trepagnier 

et al., 2006), expression recognition (Silver, and Oakes, 2001), social problem solving 

(Bernard-Opitz, Sriram, and Nakhoda-Sapuan, 2001), and social conventions (Parsons, 

Mitchell, and Leonard, 2005)). These systems may be able to chain learning via aspects 

of performance; however, they are not capable of a high degree of individualization. 

Specifically, these systems cannot automatically detect and respond based on behavioral 

viewing and eye physiological indices, and thus cannot objectively identify and predict 

social engagement targeted to the specific child. Given the importance of social 

engagement (Pan, 2009), behavioral viewing (Trepagnier et al., 2006), eye physiological 

(Anderson, Colombo, and Shaddy, 2006; Jensen et al., 2009) indices, and performance 

metrics (Blackorby, and Cameto, 2005), developing a VR-based gaze-sensitive social 

interactive system that can adaptively respond based on these indices can be critical. Thus 

the development of such a system can be a step towards achieving realistic social 

interaction to challenge, and expectantly promote scaffolded skill development in 

particular areas of vulnerability for the children with ASD.     

 

 

 



 24

References 

 
APA, "Diagnostic and statistical manual of mental disorders: DSM-IV-TR," American Psychiatric 
Association, Washington, DC, 2000. 
 
Anderson, C.J., Colombo, J., and Shaddy, D.J. "Visual Scanning and Pupillary Responses in Young 
Children with Autism Spectrum Disorder," J. of Cli. and Exp. Neuropsy., vol. 28, pp. 1238–1256, 2006. 
 
Argyle, M., and Cook, M. "Gaze and Mutual Gaze," Cambridge, MA: Cambridge Univ. Press, 1976. 
 
Asha, K., Ajay, K., Naznin, V., George, T., and Peter, D. "Gesture-based affective computing on motion 
capture data," In Proceedings of the International Conference on Affective Computing and Intelligent 
Interaction, 2005. 
 
Baron-Cohen, S., Ring, H.A., Wheelwright, S., Bullmore, E.T., Brammer, M.J., Simmons, A., and 
Williams, S.C.R. “Social intelligence in the normal and autistic brain: An fMRI study,” The European 
Journal of Neuroscience, vol. 11, no. 6, pp. 1891–1898, 1999. 
 
Bartlett, M.S., Littlewort, G., Fasel, I., and Movellan, J. R. "Real Time Face Detection and Facial 
Expression Recognition: Development and Applications to Human Computer Interaction," Conference on 
Computer Vision and Pattern Recognition Workshop, 2003. 
 
Ben Shalom, D., Mostofsky, S. H., Hazlett, R. L., Goldberg, M. C., Landa, R. J., Faran, Y., McLeod, D. R., 
Hoehn-Saric, R. "Normal physiological emotions but differences in expression of conscious feelings in 
children with highfunctioning autism," Journal of Autism and Developmental Disorders, vol. 36, no. 3, pp. 
395-400, 2006. 
 
Bernard-Opitz, V., Sriram, N., and Nakhoda-Sapuan, S. "Enhancing social problem solving in children 
with autism and normal children through computer-assisted instruction," Journal of Autism and 
Developmental Disorders, vol. 31, no. 4, pp. 377-384, 2001. 
 
Blackorby, J., and Cameto, R. “Changes in the School Engagement and Academic Performance of Students 
with Disabilities,” in Engagement and Academics, pp. 1-24, 2005. 
 
Blocher, K., and Picard, R.W. "Affective social quest: emotion recognition therapy for autistic children," 
In: K. Dautenhahn, A. H. Bond, L. Canamero, and B. Edmonds (Eds.), Socially Intelligent Agents: 
Creating Relationships with Computers and Robots, Kluwer Academic Publishers, 2002. 
 
Bradley, M.M. “Emotion and motivation,” In J.T. Cacioppo, L.G. Tassinary, and G. Berntson (Eds.), 
Handbook of Psychophysiology, pp. 602-642. New York: Cambridge University Press, 2000. 
 
Bradley, M.B., Miccoli, L., Escrig, M.A., and Lang, P.J. “The pupil as a measure of emotional arousal and 
autonomic activation,” Psychophysiology, vol. 45, no. 4, pp. 602-607, 2008. 
 
Brown, R. M., Hall, L. R., Holtzer, R., Brown, S. L., and Brown, N. L. "Gender and video game 
performance," Sex Roles, vol. 36, pp. 793-812, 1997. 
 
Camerena, P., and Sarigiani, P. “Postsecondary educational aspirations of high-functioning adolescents 
with autism spectrum disorders and their parents,” Focus on Autism and Other Developmental Disabilities, 
vol. 24, no. 2, pp. 115-128, 2009. 
 
Canon, P.R., Hayes, A.E., and Tipper, S.P. “An Electromyographic Investigation of the Impact of Task 
Relevance on Facial Mimicry,” Cognition and Emotion, vol. 23, no. 5, pp. 918-929, 2009. 
 
Carpenter, M., Pennington, B.F., and Rogers, S.J. “Interrelations among social-cognitive skills in young 



 25

children with autism,” Journal of Autism and Developmental Disorders, vol. 32, no. 2, pp. 91–106, 2002. 
 
CDC, "Prevalence of Autism Spectrum Disorders-ADDM Network," United States, 2006. MMWR Surveill 
Summ, vol. 58, pp. 1-20, 2009. 
 
Chen, S. H., and Bernard-Opitz, V. "Comparison of personal and computer assisted instruction for children 
with autism," Mental Retardation, vol. 31, no. 6, pp. 368-376, 1993. 
 
Cohen, H., Amerine-Dickens, M., and Smith, T. "Early intensive behavioral treatment: replication of the 
UCLA model in a community setting," J Dev Behav Pediatr, vol. 27, no. 2 Suppl, pp. S145-155, 2006. 
 
Cohen, D.J., and Volkmar, F.R. “Handbook of Autism and Pervasive Developmental Disorders,” 2nd Ed., 
New York, NY: John Wiley and Sons, 1997. 
 
Colburn, A., Drucker, S., and Cohen, M. “The role of eye-gaze in avatar-mediated conversational 
interfaces,” In SIGGRAPH Sketches and Applications, New Orleans, Louisiana, USA, 2000. 
 
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., and Taylor, J. G. 
"Emotion recognition in human-computer interaction," IEEE Signal Processing Magazine, vol. 18, no. 1, 
pp. 32-80, 2001. 
 
Cromby, J. J., Standen, P. J., and Brown, D. J. "The potentials of virtual environments in the education and 
training of people with learning disabilities," Journal Intellectual Disability Research, vol. 40, pp. 489-501, 
1996. 
 
Dautenhahn, K., and Werry, I. "Towards interactive robots in autism therapy: Background, motivation and 
challenges," Pragmatics and Cognition, vol. 12, pp. 1-35, 2004. 
 
Dawson, G. "Early behavioral intervention, brain plasticity, and the prevention of autism spectrum 
disorder," Dev. Psychopathol, vol. 20, no. 3, pp. 775-803, 2008. 
 
Dawson, G., Meltzoff, A.N., Osterling, J., Rinaldi, J., and Brown, E. “Children with Autism fail to orient to 
naturally occuring social stimuli,” Journal of Autism and Developmental Disorders, vol. 28, pp. 479-485, 
1998. 
 
Denver, J.W. "The Social Engagement System : Functional Differences in Individuals with Autism," 
Dissertation, 2004. www.lib.umd.edu/drum/bitstream/1903/1351/1/umi-umd-1486.pdf 
 
Ganz, M. L. “The lifetime distribution of the incremental societal costs of autism,” Arch Pediatr Adolesc 
Med, vol. 161, no. 4, pp. 343-349, 2007. 
 
Gillott, A., Furniss, F., and Walter, A. "Anxiety in high-functioning children with autism," Autism, vol. 5, 
no. 3, pp. 277-286, 2001. 
 
Goodwin, M.S. “Enhancing and accelerating the pace of Autism Research and Treatment: The promise of 
developing Innovative Technology,” Focus on autism and other developmental disabilities, vol. 23, pp. 
125-128, 2008. 
 
Green, D., Baird, G., Barnett, A.L., Henderson, L., Huber, J., and Henderson, S.E. “The severity and nature 
of motor impairment in Asperger’s syndrome: a comparison with specific developmental disorder of motor 
function,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 43, no. 5, pp. 655–668, 
2002. 
 
Groden, J., Goodwin, M.S., Baron, M.G., Groden, G., Velicer, W.F., Lipsitt, L.P., Hofmann, S.G., and 
Plummer, B. “Assessing cardiovascular responses to stressors in individuals with autism spectrum 
disorders,” Focus on Autism and Other Developmental Disabilities, vol. 20, no. 4, pp. 244–252, 2005. 



 26

 
Jensen, B., Keehn, B., Brenner, L., Marshall, S.P., Lincoln, A.J., and Müller, R.A. "Increased Eye-Blink 
Rate in Autism Spectrum Disorder May Reflect Dopaminergic Abnormalities," Intl. Society for Autism 
Research, Poster Presentation, 2009. 
 
Jones, W., Carr, K., and Klin, A. "Absence of preferential looking to the eyes of approaching adults 
predicts level of social disability in 2-year-old toddlers with autism spectrum disorder," Arch. Gen. 
Psychiatry, vol. 65, no. 8, pp. 946-954, 2008. 
 
Joseph, R.M., and Tager-Flusberg, H. “An Investigation of Attention and Affect in Children with Autism 
and Down Syndrome,” J. Autism Dev. Disord., vol. 27, pp. 385-395, 1997. 
 
Joseph, R.M., and Tanaka, J. “Holistic and part-based face recognition in children with autism,” Journal of 
Child Psychology and Psychiatry, vol. 44, no. 4, pp. 529–542, 2003. 
 
Just, M.A., and Carpenter, P.A. “Eye fixations and cognitive processes,” Cognitive Psychology, vol. 8, pp. 
441-480, 1976. 
 
Kendon, A. "Some functions of gaze direction in social interaction,” Acta Psychologica, vol. 26, pp. 22- 63, 
1967. 
 
Kerr, S., and Durkin, K. “Understanding of thought bubbles as mental representations in children with 
autism: Implications for theory of mind,” Journal of Autism and Developmental Disorders, vol. 34, no. 6, 
2004. 
 
Kleinsmith, A., Ravindra De Silva, P., and Bianchi-Berthouze, N. “Recognizing emotion from postures: 
crosscultural differences in user modeling,” In Proceedings of User Modeling, pp. 50-59, 2005. 
 
Klin, A., Jones, W., Schultz, R., Volkmar, F., and Cohen, D. “Visual fixation patterns during viewing of 
naturalistic social situations as predictors of social competence in individuals with autism,” Archives of 
General Psychiatry, vol. 59, no. 9, pp. 809-816, 2002. 
 
Kozima, H., Nakagawa, C., and Yasuda, Y. "Interactive robots for communication-care: A case-study in 
autism therapy," in Proceedings of the IEEE International Workshop on Robot and Human Interactive 
Communication, pp. 341-346, Nashville, Tennessee, 2005. 
 
Lee, C. M., and Narayanan, S. S. "Toward detecting emotions in spoken dialogs," IEEE Transactions on 
Speech and Audio Processing, vol., 13, no. 2, pp. 293-303, 2005. 
 
McGee, G. G., Feldman, R. S., and Morrier, M. J. “Benchmarks of social treatment for children with 
autism,” Journal of Autism and Developmental Disorders, vol. 27, pp. 353–364, 1997. 
 
McIntosh, D.N., Reichmann-Decker, A., Winkielman, P., and Wilbarger, J.L. “When the social mirror 
breaks: Deficits in automatic, but not voluntary mimicry of emotional facial expressions in autism,” 
Developmental Science, vol. 9, pp. 295–302, 2006. 
 
Meehan, M., Razzaque, S., Insko, B., Whitton, M., and Brooks, Jr., F. P. “Review of four studies on the use 
of physiological reaction as a measure of presence in stressful virtual environments,” Applied 
Psychophysiology and Biofeedback, vol. 30, no. 3, pp. 239-258, 2005. 
 
Michaud, F., and Theberge-Turmel, C. “Mobile robotic toys and autism,” in Socially Intelligent Agents: 
Creating Relationships With Computers and Robots, K. Dautenhahn, A. H. Bond, L. Canamero, and B. 
Edmonds (Eds.) Norwell, MA: Kluwer, pp. 125-132, 2002. 
 
Moody, E.J., McIntosh, D.N., Mann, L.J., and Weisser, K.R. “More Than Mere Mimicry? The Influence of 
Emotion on Rapid Facial Reactions to Faces,” Emotion, vol. 7, no. 2, pp. 447-457, 2007. 



 27

 
Moore, D.J., McGrath, P., and Thorpe, J. “Computer aided learning for people with autism - A framework 
for research and development,” Innovations in Education and Training International, vol. 37, no. 3, pp. 
218-228, 2000. 
 
Mundy, P., Sigman, M., and Kasari, C. “Theory of mind and joint-attention deficits in autism,” in S. Baron-
Cohen, H. Tager-Flusberg, and D. Cohen, (eds), Understanding Other Minds: Perspectives from Autism, 
Oxford University Press, London, pp. 181-203, 1994. 
 
NRC. “Educating children with autism,” National Academy Press, Washington, DC, 2001. 
 
Pan, C.Y. "Age, social engagement, and physical activity in children with Autism Spectrum Disorder," 
Research in Autism Spectrum Disorders, vol. 3, pp. 22-31, 2009. 
 
Papert, S. “Mindstorms: Children, Computers, and Powerful Ideas,” 2nd ed. New York: Basic Books, 1993. 
 
Parsons, S., and Mitchell, P. "The potential of virtual reality in social skills training for people with autistic 
spectrum disorders," Journal of Intellectual Disability Research, vol. 46, pp. 430-443, 2002. 
 
Parsons, S., Mitchell, P., and Leonard, A. "The use and understanding of virtual environments by 
adolescents with autistic spectrum disorders," J Autism Dev Disord, vol. 34, no. 4, pp. 449-466, 2004. 
 
Parsons, S., Mitchell, P., and Leonard, A. "Do adolescents with autistic spectrum disorders adhere to social 
conventions in virtual environments?," Autism, vol. 9, pp. 95-117, 2005. 
 
Partala, T., and Surakka, V. "Pupil size variation as an indication of affective processing," Int. J. Human-
Computer Studies, vol. 59, pp. 185-198, 2003. 
 
Pelphrey, K.A., Sasson, N.J., Reznick, J.S., Paul, G., Goldman, B.D., and Piven, J. “Visual scanning of 
faces in autism,” Journal of Autism and Developmental Disorders, vol. 32, pp. 249–261, 2002. 
 
Picard, R. W. “Affective Computing,” Cambridge, MA: MIT Press, 1997. 
 
Picard, R.W. "Future Affective Technology for Autism and Emotion Communication," Philosophical 
Transactions of the Royal Society B., vol. 364, no. 1535, pp. 3575-3584, 2009. 
 
Pioggia, G., Igliozzi, R., Ferro, M., Ahluwalia, A., Muratori, F., and De Rossi, D. “An android for 
enhancing social skills and emotion recognition in people with autism,” IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, vol. 13, no. 4, pp. 507-515, 2005. 
 
Poole, A., and Ball, L.J. “Eye Tracking in Human-Computer Interaction and Usability Research: Current 
Status and Future Prospects,” In C. Ghaoui (Ed.), Encyclopedia of Human Computer Interaction, Idea 
Group, 2005. 
 
Reeves, B., and Nass, C. I. “The media equation: how people treat computers, televisions, and new media 
as real people and places,” New York: Cambridge University Press, 1996. 
 
Rogers, S. J. "Empirically supported comprehensive treatments for young children with autism," Journal of 
Clinical Child Psychology, vol. 27, pp. 168-179, 1998. 
 
Ruble, L.A., and Robson, D.M. "Individual and environmental determinants of engagement in autism," J. 
of Aut. and Dev. Dis., vol. 37, no. 8, pp. 1457–1468, 2006. 
 
Ruef, M. B., and Turnbull, A. P. “The perspectives of individuals with cognitive disabilities and/or autism 
on their lives and their problem behavior,” Research and Practice for Persons with Severe Disabilities, vol. 
27, no. 2, pp. 125-140, 2002. 



 28

 
Rutherford, M.D., and Towns, M.T. “Scan Path differences and similarities during Emotion Perception in 
those with and without Autism Spectrum Disorders,” J. Aut. Dev Disord, vol. 38, pp. 1371-1381, 2008. 
 
Scassellati, B. “Eye Finding via Face Detection for a Foveated Active Vision System,” Fifteenth Nat. Conf. 
on Artificial Intelligence (AAAI-98), Madison, Wisconsin, USA., pp. 969 – 976, 1998. 
 
Scassellati, B. “Quantitative metrics of social response for autism diagnosis,” in Proceedings of the IEEE 
International Workshop on Robot and Human Interactive Communication, pp. 585-590, Nashville, 
Tennessee, 2005. 
 
Schultz, R.T. “Developmental deficits in social perception in autism: the role of the amygdala and fusiform 
face area,” International Journal of Developmental Neuroscience, vol. 23, pp. 125–141, 2005. 
 
Sherman, W. R., and Craig, A. B. “Understanding virtual reality: interface, application, and design,” 
Boston: Morgan Kaufmann Publishers, 2003. 
 
Sigman, M., and Ruskin, E. “Continuity and change in the social competence of children with autism, 
down syndrome, and developmental delays,” Monographs of the Society for Research in Child  
Development, vol. 64, pp. 11–30, 1999. 
 
Silver, M., and Oakes, P. “Evaluation of a new computer intervention to teach people with autism or 
Asperger syndrome to recognize and predict emotions in others,” Autism, vol. 5, no. 3, pp. 299–316, 2001. 
 
Standen, P. J., and Brown, D. J. “Virtual reality in the rehabilitation of people with intellectual disabilities: 
review,” CyberPsychology and Behavior, vol. 8, no. 3, pp. 272-282; discussion pp. 283-288, 2005. 
 
Strickland, D. “Virtual reality for the treatment of autism,” in Virtual reality in neuropsycho-physiology, G. 
Riva, Ed., pp. 81-86, Amsterdam: IOS Press, 1997. 
 
Strickland, D., Marcus, L. M., Mesibov, G. B., and Hogan, K. “Brief report: two case studies using virtual 
reality as a learning tool for autistic children,” Journal of Autism and Developmental Disorders, vol. 26, no. 
6, 1996. 
 
Swettenham, J. “Can children with autism be taught to understand false belief using computers?,” Journal 
of Child Psychology and Psychiatry, vol. 37, no. 2, pp. 157-165, 1996. 
 
Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., Rees, L., and Wheelwright, 
S. “The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in 
autistic, typically developing, and nonautistic developmentally delayed infants,” J Child Psychology and 
Psychiatry, vol. 39, no. 5, pp. 747–753, 1998. 
 
Tartaro, A., and Cassell, J. “Using Virtual Peer Technology as an Intervention for Children with Autism,” 
In: J. Lazar (Ed.), Towards Universal Usability: Designing Computer Interfaces for Diverse User 
Populations. UK: John Wiley and Sons, Chichester, 2007. 
 
Toichi, M., and Kamio, Y. “Paradoxical autonomic response to mental tasks in autism,” Journal of Autism 
and Developmental Disorders, vol. 33, no. 4, pp. 417–426, 2003. 
 
Trepagnier, C., Sebrechts, M.M., and Peterson, R. “Atypical face gaze in autism,” Cyberpsychology and 
Behavior, vol. 5, no. 3, pp. 213–217, 2002. 
 
Trepagnier, C.Y., Sebrechts, M.M., Finkelmeyer, A., Stewart, W., Woodford, J., and Coleman, M. 
“Simulating social interaction to address deficits of autistic spectrum disorder in children,” Cyberpsych 
Behav, vol. 9, no. 2, pp. 213-217, 2006. 
 



 29

Wieder, S., and Greenspan, S. “Can Children with Autism Master the Core Deficits and Become 
Empathetic, Creative, and Reflective?,” The Journal of Developmental and Learning Disorders, vol. 9, 
2005. 
 
Wilbarger, J. L., McIntosh, D. N., and Winkielmanc, P. “Startle modulation in autism: Positive affective 
stimuli enhance startle response,” Neuropsychologia, vol. 47, pp. 1323–1331, 2009. 
 
Zhai, J., and Barreto, A. “Stress Detection in Computer Users through Noninvasive Monitoring of 
Physiological Signals,” Biomedical Science Instrumentation, vol. 42, pp. 495-500, 2006.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30

CHAPTER III 

 
VIRTUAL REALITY SYSTEM FOR SOCIAL INTERACTION AND 

PHYSIOLOGY-BASED AFFECT RECOGNITION 

 

Introduction 

The primary objective of this chapter is to present the design and development of a 

VR-based system for social interaction and to examine a physiology-based approach for 

affect recognition. The VR-based system discussed in this chapter is capable of 

systematic manipulation of specific aspects of social communication. The virtual peers 

(i.e., avatars) within this system can display varying amounts of eye contact, and can vary 

proximity to the participant, as they interact socially with the participants. The design is 

evaluated through an experiment that combines ratings reported from a clinical observer 

with physiological responses indicative of affective states of the participants, both being 

collected when the participants participate in social tasks with the avatars in the VR 

environment.  

 

Design Specifications of VR-based Tasks 

VR is often effectively experienced on a desktop system using standard computer 

input devices (Parsons, and Mitchell, 2002) for ASD intervention. Our participants also 

view the avatars in the VR environment (with avatars narrating personal stories) on a 

computer monitor from the first-person perspective, which is comparable to research on 

social anxiety and social conventions (Pereira et al., 2009). Vizard (www.worldviz.com), 

a commercially available VR design package, is employed to develop the environments. 
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Within the controllable VR environment, components of the interaction are 

systematically manipulated to allow users to explore different social compositions. The 

avatars can make different eye contact and stand at varying distances from the participant 

in virtual environment. They can converse by lip-synching with the recorded sound files. 

The participant responds to the avatars using a keypad to select from transparent text 

boxes superimposed in the corner of the VR scene. 

The social parameters of interest for this preliminary work, namely eye gaze and 

social distance, are manipulated in a 4x2 experimental design, which makes possible 

eight distinct situations. These parameters are chosen because they play significant roles 

in social communication and interaction (Bancroft, 1995), and manipulation of these 

factors may elicit variations in affective reactions (Argyle, and Dean, 1965) and 

physiological responses (Groden et al., 2005). Each situation is represented three times, 

which creates 24 trials in the experiment, following a Latin Square design to balance for 

sequencing and order effects (Keppel, 1991). Each trial of an experiment session includes 

one avatar for one-on-one interaction with the participant. Participants are asked to 

participate in a social communication task in VR. In each trial, participants are instructed 

to watch and listen as the virtual peer tells a 2-min story. The stories are written in first-

person. Thus, the task can be likened to having different people introduce themselves to 

the user, which is comparable to research on social anxiety and social conventions 

(Argyle, and Dean, 1965; Schneiderman, and Ewens, 1971; Sommer, 1962). Other social 

parameters, such as facial expression and vocal tone are kept as neutral as possible. 
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Detailed Specifications of the Social Parameters Studied 

The two social parameters e.g., eye gaze and social distance of the virtual peers of the 

participants are systematically manipulated in this study.  

The eye gaze parameter dictates the percentage of time a virtual peer looks at the 

participant (i.e., staring straight out of the computer monitor). Four types of eye gaze are 

examined. These are defined as "straight," "averted," "normal," and "flip of normal." 

Straight gaze means looking straight ahead for the duration of the story (i.e., for the entire 

trial). Averted gaze means the avatar never attempts to make direct eye contact with the 

participant, but instead alternates between looking to the left, right, and up. Research 

represents averted gaze as looking more than 10° away from center in evenly-distributed, 

randomly-selected directions (Garau et al., 2001; Jenkins, Beaver, and Calder, 2006). 

Therefore, our averted gaze is an even distribution (33.3% each) of gazing left, right, and 

up more than 10° from the center. Based on social psychology literature from 

experimental observations of typical humans (Argyle, and Cook, 1976) and algorithms 

adopted by the artificial intelligence community to create realistic virtual characters 

(Colburn, Drucker, and Cohen, 2000; Garau et al., 2001), normal eye gaze is defined as a 

mix of straight and averted gaze. A person displays varying mixes of direct and averted 

eye contact depending on if the person is speaking or listening during face-to-face 

conversations. Since the virtual peer in the VR environment is speaking, we use the gaze 

definitions for a person speaking, which is approximately 30% straight gaze and 70% 

averted gaze (Argyle, and Cook, 1976; Colburn, Drucker, and Cohen, 2000). Flip gaze is 

defined as the flip of normal, which means looking straight approximately 70% of the 
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time and averted 30% of the time, which is indicative of a person's gaze while listening. 

The social distance parameter is characterized by the distance between the virtual 

peer and the participant. Two types of social distance, termed "invasive" and "decorum," 

are examined. In the VR environment, distance is simulated but can be appropriately 

represented to the view of the participant. For invasive distance, the virtual peer stands 

approximately 1.5 ft. from the main view of the scene. This social distance has been 

characterized as intimate space not used for meeting people for the first time or for 

having casual conversations with friends (Hall, 1955). A distance of 1.5 ft. apart has been 

investigated by several research groups in experiments with similar experimental setups 

to ours in which two people are specifically positioned while one introduces 

himself/herself to the other and discusses a personal topic for approximately 2 min 

(Argyle, and Dean, 1965; Schneiderman, and Ewens, 1971; Sommer, 1962), and this 

invasive distance is characterized by eliciting uncomfortable feelings and attempts to 

increase the distance to achieve a social equilibrium consistent with comfortable social 

interaction (Argyle, and Dean, 1965). Decorum distance means the avatar stands 

approximately 4.5 ft. from the main view of the scene. This social distance is consistent 

with conversations when meeting a new person or a casual friend (Hall, 1966), and 

research indicates this distance results in a more comfortable conversation experience 

than the invasive distance (Argyle, and Dean, 1965). Using Vizard software we project 

virtual social peers who display different eye gaze patterns at different distances; two 

examples are shown in Figure III-1. 
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Figure III-1. Avatar displays direct gaze at invasive distance

(top); and averted gaze at decorum distance (bottom).  

 

 

 

 

 

 

 

 

 

 

 
 
Design Specifications of the Humanoid Avatars 

The virtual peers i.e., the avatars have fixed male or female body (supplied by 

Worldviz), but Dr. Jeremy Bailenson, director of the Virtual Human Interaction Lab at 

Stanford University, provided a set of distinct humanoid avatar heads for use in this 

work. These avatar heads are created from front and side 2D photographs of college-age 

students. Using 3DMeNow software (biovirtual.com), the photos are then converted to 

3D heads for compatibility with Vizard. These avatar heads are chosen because of the 

following advantages: 

(i) open accessibility, (ii) age range close to our participant pool's peers, (iii) and the 

authentic facial features (e.g., variations in skin complexion, brow line, nose dimensions, 

etc.) allow the interaction to be interpreted as realistically as possible. 
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Design Specifications of Audio Files Used 

The personal stories that the virtual peers share with the participants are adapted from 

Dynamic Indicators of Basic Early Literacy Skills (DIBELS, 2007) reading assessments. 

The assessments are written on topics such as geographical locations, weather 

phenomena, and intriguing occupations. In each trial of the experiment, an avatar narrates 

one of these first-person stories to the user. The voices are gathered from teenagers and 

college-age students from the regional area. Their ages (range = 13-22 years, mean = 18.5 

yrs, SD = 2.3 yrs) are similar to the age of people used for the avatar heads and our 

participant pool. 

 

Design of Menu-Driven Social Interactions 

The interaction involves the virtual peer telling a personal story while a participant 

listens. At the end of the story, the virtual peer asks the participant a question based on 

some basic facts narrated in the story. The questions are designed to facilitate interaction 

and to serve as a possible objective measure of engagement. The participant is not aware 

of the exact question before the story begins so that he/she engages in the task and is not 

focused on listening to one specific part of the discourse. The questions are intended to be 

easy to answer correctly if the participant listened to the story. Near the beginning of the 

first experiment session, the participant takes part in two demonstrations of the process of 

the VR task; therefore, any difficulty over correctly answering the questions that could be 

related to not understanding the process of the task is dealt with prior to starting the 

experiment and collecting data. Each question is accompanied by three possible answer 

choices (Figure III-2). The correct choice is spoken at least five times during the story, 
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Figure III-2. Example of question asked at the end of a

story.  

which is sufficient for the information to be relayed (Jonides et al., 2008), and the 

incorrect choices are never spoken in the story. We expect that a participant who engages 

in the task would achieve near to or complete 100% accuracy on the questions; and 

consequently, a severely low percentage of correct answers would indicate a lack of 

engagement with the task. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Mapping of Physiological Indices to Affective States 

Literature review indicates evidence of the association of physiological activity with 

the underlying affective states to be differentiated (Bradley, 2000). Studies in the human 

factors and psychophysiology fields provide a rich history in support of physiology-based 

methodologies for studying stress (Groden et al., 2005; Zhai et al., 2005), engagement 

(Pecchinenda, and Smith, 1996), operator workload (Kramer, Sirevaag, and Braune, 

1987), mental effort (Vicente, Thornton, and Moray, 1987), and other similar mental 

states based on physiological measures such as those derived from electromyogram 

(EMG), galvanic skin response (GSR; i.e., skin conductance), and heart rate variability 

(HRV). Meehan et al. (Meehan et al., 2005) reported that changes in physiological 

activity are evoked by different amounts of presence in stressful VR environments. 
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Prendinger et al. (Prendinger, Mori, and Ishizuka, 2005) demonstrated that the 

measurement of GSR and EMG can be used to discriminate a user’s instantaneous 

change in levels of anxiety due to sympathetic vs. unconcerned reactions from a life-like 

virtual teacher. Cardiovascular and EMG activities have been used to examine positive 

and negative affective states of people (Cacioppo et al., 2000; Papillo, and Shapiro, 

1990). Also, Electrodermal activities (EDA) have been shown to be associated with task 

engagement (Pecchinenda, and Smith, 1996). Different studies have investigated the 

relationships between both EDA and cardiovascular activities with anxiety (Dawson, 

Schell, and Filion, 1990; Pecchinenda, and Smith, 1996). Further, variation of peripheral 

temperature due to emotional stimuli was studied by Kataoka et al. (Kataoka et al., 1998). 

In our study presented here, the peripheral physiological signals, such as 

cardiovascular, electrodermal, electromyographic, etc. of the participants were acquired 

while they interacted with the VR-based social tasks. At the same time, a clinical 

observer/therapist and the participant’s caregiver/parent rated the participant as to what 

they thought the level of the affective state (e.g., engagement, enjoyment/liking, and 

anxiety) was for the participant during the finished trial. Then the physiological signals 

were mapped to the affective states of the participants.    

 
 
Experimental Investigation 

 

Participant Characteristics 

Thirteen pairs of ASD and typically-developing (TD) participants were recruited 

through existing clinical and research programs of the Vanderbilt Kennedy Center’s 

Treatment and Research Institute for Autism Spectrum Disorders and Vanderbilt 
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University Medical Center. Our protocol calls for enlisting participants with ASD age 13-

18 years old and an age- and verbal-ability-matched control group of TD participants. 

ASD participants must have documentation of their diagnosis on the autism spectrum, 

either Autism Spectrum Disorder, Autistic Disorder, or Asperger's Syndrome, according 

to their medical records. For all participants, the Social Responsiveness Scale (SRS; 

Constantino, 2002) profile sheet and Social Communication Questionnaire (SCQ; Rutter, 

et al., 2003a) are completed by a participant's parent/caregiver before the first session to 

provide an index of current functioning and ASD symptom profiles. Selection is also 

based on a receptive vocabulary standard score of 80 or above on the Peabody Picture 

Vocabulary Test – 3rd Edition (PPVT-III; Dunn and Dunn, 1997) to ensure that language 

understanding is adequate for participating in the current protocol. Table III-1 presents 

summary of participant characteristics. 

Table III-1 Characteristics of Participants. 

Participant 
(Gender) 

Age 
(years) 

PPVTa 
Standard 

score

SRSb 
Total T-score

SCQc 
Total score 

ADOS-Gd 
Total score 

ADI-Re 
Total score

ASD (N=13)       

Group Mean 16.0 105.9 79.5 21.9 10.7 50.8 

TD (N=13)       

Group Mean 15.6 113.7 41.9 3.3 – – 

t-value 0.66 1.50 11.84 9.62   

Exact p-value 0.5175 0.1468 1.6500e-11** 1.0341e-9**   
aPeabody Picture Vocabulary Test-3rd edition (Dunn, and Dunn, 1997) 
bSocial Responsiveness Scale (Constantino, 2002) 
cSocial Communication Questionnaire (Rutter, et al., 2003a) 
dAutism Diagnostic Observation Scale-Generic: Module 3 or 4 depending upon subject’s developmental 
level (Lord, et al., 2000) 
eAutism Diagnostic Interview-Revised (Rutter et al., 2003b) 
Significant group differences, **p<0.001. 
No significant group differences were found for the age or PPVT standard score variables (p>0.05 for all). 
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Procedure 
 

Each participant participated in a total of two sessions lasting for approximately 2.5 

hrs. The first session ran approximately 1.5 hrs, due to gathering consent and assent, 

administering the PPVT-III, and running demonstrations of the social task. The second 

session lasted about 1 hr. For each completed session, a participant received 

compensation in the form of gift cards. The equipment setup included a computer 

dedicated to the social interaction tasks where the participants interacted with the VR 

environment, biological feedback equipment (www.biopac.com) that collected 

physiological signals of the participant, and another PC dedicated to acquiring signals 

from the Biopac system (see Figure III-3). The Vizard Virtual Reality Toolkit ran on a 

computer (C1) connected to the Biopac system via a parallel port to transmit task-related 

event-markers (e.g., start/stop of a trial, participant’s response to question asked at the 

end of each trial, etc.). The physiological signals along with the task-related event 

markers were acquired by the Biopac system and sent over an Ethernet link to the Biopac 

computer (C2). We also video recorded the sessions to cross-reference observations made 

during the experiment. The clinical observer/therapist and a participant's parent/caregiver 

watched the participant from the view of the video camera, whose signal was routed to a 

television hidden from the view of the participant. The signal from the participant’s 

computer screen where the task was presented was routed to a separate computer monitor 

(M2) so that the clinical observer and the caregiver could view how the task progressed. 

Each participant was engaged in two VR-based social interaction sessions on two 

different days. During the first session, the participants were told about the experiment 

purpose, the sensors, and the VR tasks. After the physiological sensors were placed, the 
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participants were asked to relax quietly for three minutes while a resting/baseline 

recording of physiological signals was taken. The first session included two 

demonstrations of the VR task, the resting/baseline physiological measurement, and a set 

of eight 2-min trials with different virtual social peers. The second session consisted of 

the resting/baseline physiological measurement and the remaining 16 trials of social 

interaction tasks. After each trial, the participant answered a story-related question and 

self report questions on affective states. The clinical observer and parent/caregiver also 

rated as to what they thought the level of the affective states of anxiety, engagement, and 

enjoyment/liking was for the participant during the finished trial.      

 
 

 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
Figure III-3. Experimental setup. 

 
 
 

Acquisition of Physiological Signals and Extraction of Physiological Indices 

In this work, the physiological signals were acquired using the Biopac MP150 

physiological data acquisition system (www.biopac.com). Various physiological signals, 
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broadly classified as Cardiovascular activities including electrocardiogram (ECG), 

impedance cardiogram (ICG), photoplethysmogram (PPG), and phonocardiogram 

(PCG)/heart sound; Electrodermal activity (EDA) including tonic and phasic responses 

from skin conductance; Electromyographic activities from corrugator supercilii, 

zygomaticus major, and upper trapezius muscles; and Peripheral Temperature were 

examined. ECG was measured from the chest using the standard two-electrode 

configuration. ICG describes the changes of thorax impedance due to cardiac contractility 

and was measured by four pairs of surface electrodes that were longitudinally configured 

on both sides of the body. A microphone specially designed to detect heart sound waves 

was placed on the chest to measure PCG. PPG, peripheral temperature, and EDA were 

measured from the middle finger, the thumb, and the index and ring fingers of the non-

dominant hand, respectively. EMG was measured by placing surface electrodes on two 

facial muscles (corrugator supercilii and zygomaticus major) and an upper back muscle 

(upper trapezius). Figure III-4a and III-4b show the sensor setup. The sampling rate was 

fixed at 1000 Hz for all the channels. Appropriate amplification and band-pass filtering 

were performed.  

These signals were selected because they are likely to demonstrate variability as a 

function of the target affective states, as well as they can be measured non-invasively, 

and are relatively resistant to movement artifacts (Dawson, Schell, and Filion, 1990; 

Lacey, and Lacey, 1958). The peripheral physiological signals examined in this work 

along with the large set of features derived from each signal are described in Appendix A 

(Table A-1). Signal processing techniques such as Fourier transform, wavelet transform, 

thresholding, and peak detection were used to derive the relevant features from the 
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physiological signals. For example, inter beat interval (IBI) is the time interval between 

two "R" waves in the ECG waveform. Power spectral analysis is performed on the IBI 

data to localize the sympathetic and parasympathetic nervous system activities associated 

with the different frequency bands. The high-frequency component (0.15–0.4 Hz; which 

corresponds to the rate of normal respiration) measures the influence of the vagus nerve 

in modulating the sinoatrial node and is associated with parasympathetic nervous system 

activity. The low-frequency component (0.04–0.15 Hz) provides an index of sympathetic 

effects on the heart. The very low-frequency is associated with the frequency band 

<0.04Hz. The ratios of the power at these frequency components are also computed. PPG 

signal measures changes in the volume of blood in the finger tip associated with the pulse 

cycle and provides an index of the relative constriction versus dilation of the blood 

vessels in the periphery. Pulse Transit Time (PTT) is estimated by computing the time 

between systole at the heart (as indicated by the R-wave of the ECG) and the peak of the 

pulse wave reaching the peripheral site where PPG is being measured. The heart sound 

signal measures sounds generated during each heartbeat. The features extracted from the 

heart sound signal consist of the mean and standard deviation of the third-, fourth-, and 

fifth-level coefficients of the Daubechies wavelet transform. Bioelectrical impedance 

analysis (BIA) measures the impedance or opposition to the flow of an electric current 

through the body fluids contained mainly in the lean and fat tissue. A common variable in 

recent psychophysiology research, pre-ejection period (PEP) is derived from ICG and 

ECG and is most heavily influenced by sympathetic innervation of the heart. EDA 

consists of two main components - tonic response and phasic response. Tonic skin 

conductance refers to the ongoing or the baseline level of skin conductance in the absence 
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Figure III-4. Sensor setup showing the position of facial EMG sensors (a) and the

placement of sensors on the non-dominant hand (b). 

of any particular discrete environmental events. Phasic skin conductance refers to the 

event-related changes that occur, caused by a momentary increase in skin conductance 

(resembling a peak). The EMG signal from corrugator supercilii muscle (eyebrow) 

captures a person's frown and detects the tension in that region. This EMG signal is also a 

valuable source of blink information. The EMG signal from the zygomaticus major 

muscle captures the muscle movements while smiling. Upper trapezius muscle activity 

measures the tension in the shoulders, one of the most common sites in the body for 

developing stress. Variations in the peripheral temperature mainly come from localized 

changes in blood flow caused by vascular resistance or arterial blood pressure and reflect 

the autonomic nervous system activity. 

In the work presented in this chapter, we examined the physiological signals collected 

from the participants when they interacted with their virtual peers during each trial. We 

investigated the different physiological signals to understand the mapping of physiology 

with the underlying affective states of anxiety, engagement, and liking. 

 

(a) (b) 
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Results 

While our participants interacted with the virtual peers, their affective states of 

anxiety, engagement and liking were labeled by a clinical observer. In addition, we tried 

to capture the subtle variations in the physiological signals of the participants and thereby 

correlate these physiological signals with the affective states as labeled by the clinical 

observer.  

 

Group Analysis of Physiological Features with Affective States 

Our hypothesis was that manipulation of the social parameters in a VR environment 

may elicit variations in affective reactions (Argyle, and Dean, 1965; Bancroft, 1995) and 

physiological responses (Farroni et al., 2002; Groden et al., 2005). A participant is likely 

to experience a range of short-lived affective states (such as, anxiety, interest, etc.) as 

he/she interacts with the VR system. However, these feelings should not be more intense 

than the levels of these affective states that are commonly experienced in daily life and 

should not carry over when the participant leaves the laboratory. 

In this work, we studied how the affective states of anxiety, engagement, and 

enjoyment/liking, measured by ratings from a clinical observer and a participant's 

physiological signals, vary with respect to the variation of specific communication factors 

(e.g., social distance and eye contact) presented in the virtual environment. Here we 

present results of the similarities and differences in physiological responses within the 

two groups of participants (ASD and TD) during the interaction with the VR avatars 
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associated with manipulation of the two communication factors. 

A group of 13 (10 male) adolescents with ASD and a matched group of TD 

adolescents, age 13-18 years old participated in the VR experiment. Their characteristics 

are summarized in Table III-1. Physiological signals from the participants and ratings of 

affective states from a clinical observer, a participant's parent (or caregiver), and self-

reports from the participant were recorded during the 2-min. experiment trials. The 

clinical observer rated what she thought the level of the affective state was for the 

participant during the finished trial using a binary scale (e.g., Low Engagement or High 

Engagement). This binary scale was used to label trials as "high" or "low" for data 

analysis. 

Here we present the results of our investigation to evaluate the potential of VR-based 

social interaction system capable of objectively identifying specific communication 

aspects to induce affective response in the group of ASD and TD individuals by using a 

physiology-based approach. The results indicate significant within-group differences in 

responses to elements of social interaction and this can help to enhance our ability to 

understand and tailor interventions to the specific vulnerabilities in social communication 

of participants with ASD. Thus this study can provide valuable information to caregivers 

and clinicians about the specific affect-eliciting aspects of social communication for this 

target population. Further, the ability to detect the physiological processes that are a part 

of impairments in social communication may also prove important for understanding the 

physiological mechanisms that underlie the presumed core impairments associated with 

ASD themselves. 

Table III-2 presents the reactions in the physiological signals of the participants for 
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trials rated as eliciting “Low Anxiety” (LA) and “High Anxiety” (HA) by the clinical 

observer. Our preliminary investigation identified certain physiological features of the 

participants that were statistically different between the two groups. Additionally, we also 

found certain physiological features that varied similarly between these two groups and 

those that varied for each of the two groups.   

Table III-2. Variations in Physiological Signals of participants during trials rated as eliciting Low Anxiety 
(LA) and High Anxiety (HA) states.  

Physiological Feature Within ASD (Exact p-value) Within TD (Exact p-value)
IbiMean (bpm) 0.0223* 0.1311 
PEPMean (ms)  0.0367* 0.8044 
ZFreqMed (Hz) 0.0441* 0.4304 
CBlinkPeakMean (μV)  0.0127* 0.9966 
CBlinkStd (μV) 0.0451* 0.4250 
PPGIbiMean (ms) 0.2917 0.0399* 
PhasicMax (μS) 0.9360 0.0473* 
ZMean (μV) 0.6485 0.0070** 
ZSlope (μV/s) 0.3130 0.0353* 
TStd (μV) 0.9289 0.0471* 
PPGPeakMax (μV)  0.1329 0.0012** 
PPGPeakMean (μV)  0.6001 0.0311* 
PhasicRate (peaks/min) 0.0311* 0.0211* 
* : p<0.05; ** : p<0.01 
 

As reports on enjoyment/liking varied from "low liking" (LL) to "high liking" (HL), 

physiological signals also varied significantly. Table III-3 presents the reactions in the 

physiological signals of the participants for trials rated as LL and HL by the clinical 

observer. 

Table III-3. Variations in Physiological Signals of participants during trials rated as eliciting Low Liking 
(LL) and High Liking (HL) states. 

Physiological Feature Within ASD (Exact p-value) Within TD (Exact p-value)
PEPMean (ms)  0.0004** 0.3002 
ZFreqMed (Hz) 0.0216* 0.6309 
IbiStd (ms) 0.0060** 0.8758 
PowerPara (unit/s2) 0.0061** 0.9333 
TonicMean (μS) 0.0146* 0.8791 
CMean (μV) 0.0235* 0.3185 
HSStdD5 0.0532 0.0116* 
PTTStd (ms)  0.4111 0.0097** 
ZSlope (μV/s) 0.5082 0.0289* 
PPGPeakMax (μV) 0.0984 0.0241* 
CStd (μV)  0.0275* 0.0411* 
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* : p<0.05; ** : p<0.01 
 

The result for significant changes in physiological signals to trials rated as eliciting 

"low engagement" (LE) versus "high engagement" (HE) for the ASD and TD groups is 

shown in Table III-4. 

Table III-4. Variations in Physiological Signals of participants during trials rated as eliciting Low 
Engagement (LE) and High Engagement (HE) states. 

Physiological Feature Within ASD (Exact p-value) Within TD (Exact p-value)
PEPMean (ms) 0.0248* 0.7606 
TonicMean(μS)  0.0410* 0.7135 
CStd (μV) 0.0497* 0.1312 
ZFreqMed (Hz) 0.0079** 0.8917 
TFreqMed (Hz) 0.0090** 0.1537 
TFreqMean (Hz) 0.0048** 0.2044 
PowerVLF (units/s2)  0.0310* 0.3832 
TonicMean (μS) 0.0263* 0.74 
CBlinkPeakMean (μV)  0.0178* 0.1224 
CBlinkStd (μV)  0.0098** 0.3343 
PTTStd (ms) 0.7695 0.0393* 
PPGPeakMean (μV) 0.6015 0.0487* 
PPGPeakMax (μV)  0.36 0.0136* 
PowerSym (units/s2)  0.2947 0.0199* 
PowerPara/VLF 0.86 0.0364* 
CIbiBlinkMean (s)  0.5914 0.0217 * 
ZSlope (μV/s)  0.0392* 0.0106* 
 
* : p<0.05; ** : p<0.01 
 
 
 
Discussion 

In this work, a number of peripheral physiological features, broadly categorized as 

cardiovascular, electrodermal, electromyographic, etc., were examined for a group of 

ASD and TD adolescents during social communication task presented on a VR platform 

for elicitation of multiple affective states. The results show that the VR system provokes 

variations in both affective ratings and physiological signals to changes in social 

experimental stimuli for participants with ASD and TD participants. This work used 

virtual peers and systematically manipulated specific aspects of social communication 
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and thereby provides a vital step towards development of future social interventions using 

technologies such as VR for the ASD population. Since physiological signals have been 

shown to be differentiated during social interaction with a virtual environment, the 

signals could be a useful measure in real-time VR-assisted social skill intervention, an 

important therapeutic instrument for addressing the core deficits in the ASD population. 
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 CHAPTER IV 

 

VIRTUAL REALITY SYSTEM FOR SOCIAL COMMUNICATION WITH 

GAZE-SENSITIVE INDIVIDUALIZED FEEDBACK 

 

Introduction 

The objective of this chapter is to describe the design, development and a usability 

study of a VR-based system seamlessly integrated to technologically enhanced eye-

tracking technology to provide individualized feedback. In recent years, several assistive 

technologies, particularly VR, have been investigated to promote social interactions in 

children with ASD. Also, it is well-known that these children demonstrate atypical 

viewing patterns during social interactions and monitoring eye-gaze can be valuable to 

design intervention strategies. There are several studies that have used eye-tracking 

technology to monitor eye-gaze with static stimuli along with off-line analysis (Joseph 

and Tanaka, 2003; Trepagnier, Sebrechts, and Peterson, 2002; Klin, et. al., 2002). Also a 

recent study has shown that eye-tracking can be used to drive changes in visual behavior 

of a virtual character in a gaze-contingent individualized manner while following joint-

attention task (Wilms et al., 2010). However, there exists no system that monitors eye-

gaze dynamically and use this information to provide individualized feedback to 

investigate the effect of the feedback on the participants’ viewing pattern. Given the 

promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-

time, a novel VR-based dynamic eye-tracking system is developed in this work. This 

system is capable of delivering individualized feedback based on a child's instantaneous 

gaze patterns during VR-based social communication task. Results from a usability study 
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with 6 adolescents with ASD are presented that examine the acceptability of this system 

and investigate how these participants interact with such a system. The results in terms of 

improvement in behavioral viewing and changes in relevant eye physiological indices of 

the participants while interacting with the system indicate the potential of this novel 

technology. 

 

Design of VR-based Gaze-Sensitive Social Communication System with Individualized 

Feedback Capability 

The dynamic closed-loop interaction provided by VR-based Gaze-Sensitive Social 

Communication System has three main subsystems: (i) a VR-platform that can present 

social tasks; (ii) a real-time eye-gaze monitoring mechanism; and (iii) an integration 

module that establishes communication between the VR-based task presentation module 

and the real-time eye-gaze monitoring module. 

 

VR-based Task Presentation 
 

VR-based tasks are created using Vizard VR design package from Worldviz 

(http://www.worldviz.com/) as the primary design platform. This software comes with a 

limited number of avatars and virtual objects and scenes that can be used to create a story 

in VR. However, there were a number of enhancements that were made on the VR-

platform to make it appropriate for intervention applications with children with ASD. In 

order to perform social communication tasks with children with ASD, we need to develop 

more extensive social situations with custom-designed backgrounds and avatars whose 

age and appearance resemble those of the participants' peers without trying to achieve 
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Figure IV-1 Screenshots of

avatars demonstrating neutral

(top), happy (middle) and

angry (bottom) facial

expression. 

exact similarities. 

Thus new avatar heads are created from 2D photographs of teenagers, which are then 

converted to 3D heads by '3DmeNow' software for compatibility with Vizard. These new 

avatar heads are used to create avatars: (i) with age range close to our participant pool's 

peers, and (ii) with more authentic facial features (e.g., 

realistic brow line, nose dimensions, etc.) allowing the 

interaction to be interpreted as realistically as possible. 

Facial expressions (e.g., 'neutral', 'happy', 'angry') (Figure 

IV-1) are morphed by 'PeopleMaker' software. The 

avatar's eyes are made to blink randomly with an interval 

between 1 and 2 s to render automatic animation of a 

virtual face similar to the work of Itti et al. (Itti, Dhavale, 

and Pighin, 2003). One can view the avatars within the 

system from first-person perspective while the avatars 

narrate personal stories, which is comparable to research 

on social anxiety and social conventions (Pereira et. al., 

2009). In the present study, the first-person stories shared 

by avatars are adapted from Dynamic Indicators of Basic 

Early Literacy Skills (Dibels, 2007) reading assessments 

and includes content thought to be related to potential topics of school presentations (e.g., 

reports on experiences, trips, favorite activities, etc.). Audio files are developed first by 

using text-to-speech 'NaturalReader' converter and then recorded using 'Audacity' 

software. In order for the avatars to speak the content of the story, these audio files are 

Fig. IV-1a

Fig. IV-1c

Fig. IV-1b



 54

lip-synched with the avatars using a Vizard-based speak module. Additionally, where a 

participant is looking inside the VR-based visual stimuli (e.g., avatar’s face, objects of 

interest, etc.) is characterized by a set of Regions of Interest (ROIs) that have been 

programmed such that the dynamic eye-tracking algorithm we develop would keep track 

of the eye-gaze of the participant as they interact with the VR-based tasks. 

 

Real-time Eye-Gaze Monitoring Mechanism 

The system captures eye data of a participant interacting with a virtual peer (i.e., an 

avatar) using an Eye-Tracker goggles from Arrington Research 

(http://www.arringtonresearch.com/). This eye-tracker comes with some basic features 

(e.g., acquiring raw pupil diameter (PD), raw pupil aspect ratio (PAR), etc.) acquiring 

capability for offline analysis.  

One of the key research issues is acquiring the raw eye-gaze data, performing signal 

processing on this data, and extracting relevant features that can be correlated with 

engagement and emotion recognition, all in real-time. In this study, we correlate the 

extracted features reflecting the behavioral viewing patterns of a participant with ASD 

with his/her engagement level because, engagement, defined as ‘‘sustained attention to an 

activity or person’’ (NRC, 2001), is one of the key factors for these children to make 

substantial gains in communication and social domains (Ruble and Robson, 2006). In 

addition, we correlate the extracted features reflecting the eye physiological indices with 

emotion recognition capability of the participants because it is characterized as one of the 

core deficits indicating ASD (Baron-Cohen, 1997; Frith and Frith, 1999) as well as its 

importance in social communication (Buchnan, Pare´, and Munhall, 2007; Hsiao and 
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Figure IV-2. Schematic of Data Acquisition and the Control Mechanism used. 

Cottrell, 2008; Williams, et al., 2001). 

 Data Acquisition 

The Eye-Tracker that we use comes with a Video Capture Module with a refresh 

rate of 30Hz to acquire a participant's eye-gaze data using software called Viewpoint. 

We designed Viewpoint-Vizard Handshake module (Figure IV-2) for communication 

between the Viewpoint Interface (Eye-Tracker) and the Vizard Interface (VR 

platform) modules. Subsequently, we design a new database that captures the task-

related event markers (e.g., trial start/stop, amount of viewing of different ROIs, etc.), 

raw eye physiological signal data (e.g., pupil diameter (PD), pupil aspect ratio 

(PAR)), raw behavioral viewing data (e.g., fixation duration (FD), 2D gaze 

coordinates) and performance measures (e.g., a participant's responses to questions 

asked by the system) with a refresh rate of 30 Hz in a time-synchronized manner. 

Signal processing techniques such as windowing, noise elimination, and thresholding 

are used to filter these data to eliminate noise and subsequently extract the relevant 

features. 
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 Feature Extraction 

The Gaze DataBase (Figure IV-2) is processed to extract 6 features, which are:  

mean PD (PDMEAN), mean BR (BRMEAN), Sum of Fixation Counts (SFC), Total FD 

(FDTOTAL), Face-to-nonFace Ratio (FNFR), and Object-to-Face Ratio (OFR) for each 

ROI from each segment of the signals monitored (Figure IV-3).  

 

 

 

 

 

 

 

 

 

Figure IV-3. Schematic of Feature Extraction. 

 

Computation of PDMEAN: The raw Pupil Diameter (PD) is recorded by 

Viewpoint software in terms of normalized value (0-1) with respect to the 

EyeCamera window of the eye-tracker. However, this data does not reflect actual 

PD. Literature review indicates use of actual PD of typical (Partala, Jokiniemi, 

and Surakka, 2000; Kahneman, 1973), autistic (Anderson and Colombo, 2009) or 

schizophrenic (Bar et al., 2008) participants in different studies showing the 

importance of evaluating the true PD. Again, Anderson et al. (Anderson, and 
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Colombo, 2009) reports larger tonic pupil size in children with ASD than their 

typically developing counterparts. In the work presented in this chapter, in order 

to extract the actual PD at each instant, we use the recorded data on PAR (i.e., the 

ratio of the major and minor axes of the pupil image) defining the eye image (with 

1 indicating a perfect circle). The raw PD value corresponding to PAR closest to 1 

defines the optimal PD for a participant. Artifact removal incorporates elimination 

of the discontinuities in the raw PD due to blinking effects and other minor 

artifacts as detected by PAR value. Then using the actual EyeCamera window 

dimensions [Arrington Research Inc. (http://www.arringtonresearch.com/)] 

(640x480 pixel with each pixel equivalent to 0.13 mm approx. at the high 

precision setting of 30 Hz.), the PD (in mm) is computed. This is the true PD. We 

also record the ROIs visited by the eye at each instant. Subsequently, the PDMEAN 

corresponding to each ROI is computed.  

 

Computation of BRMEAN: The Blink Rate (BR) is determined using the PAR 

data which is recorded by the Viewpoint software. Although Arrington [Arrington 

Research, Inc. (2002). Data Collection. In ViewPoint EyeTracker®: PC-60 

Software User Guide (pp.47). Scottsdale, Arizona: Arrington Research, Inc.] 

mentions that blinks can be computed by monitoring the PAR data, Viewpoint 

software does not provide direct measurement of BR. In the present work, we 

computed the BR by considering the number of times the PAR value falls below 

the lower threshold of 0.5 within a window width of 1 minute. This threshold 

value for PAR was chosen after several trial test runs detecting BR with an 
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accuracy of ±0.05%. Subsequently, the BRMEAN corresponding to each ROI is 

computed.  

 

Computation of Fixation Counts, and FDTOTAL : The recorded data on FD 

corresponding to each ROI is first filtered to remove the artifacts due to blinking 

and noise spikes are eliminated by thresholding. This incorporates filtering the 

raw data by a moving window having the lower and upper amplitude thresholds 

of 200 and 450 msec. respectively. There are different views on fixation durations 

with respect to visual stimuli. In one study (Jacob, 1994), fixations have been 

stated to typically last between 200-600 ms, where blinks of up to 200 ms may 

occur during a fixation without terminating it and a window of 50 ms lying 

outside 10 of the current fixation has been considered to terminate a fixation. 

Some researchers have advised to set the lower threshold for fixation as 100 ms 

(Inhoff, and Radach, 1998). Still others have classified short fixations with FD < 

240 ms and long fixations with FD > 320 ms (Graf and Kruger, 1989). In the 

present study, we compute the FD by using a thresholding window of 200 ms as 

the lower limit to eliminate the blinking effects and 450 ms as the upper threshold 

(i.e., up to 1.5 standard deviations from the lower threshold), the reliable data 

range restricted by noise due to glare effects of cameras of the eye-tracker that we 

use. Subsequently, the sum of fixation counts (SFC), and total fixation duration 

(FDTOTAL) are computed for each ROI. 

 

Computation of ROIs viewed: The 2D gaze coordinates (x,y) of the 



 59

Figure IV-4. Allocation of ROIs (Face_ROI,

Object_ROI, and Others_ROI). 

participant's viewing of the presented visual stimulus are recorded. Our 

computational algorithm, i.e., the Real-time Gaze-based Feedback Algorithm 

(RGFA) then determines whether the gaze coordinates correspond to our task-

specific segmented regions of the visual stimulus presented to participants. 

Subsequently, RGFA assigns numeric tags (e.g., 1, 2, etc.) for each ROI. In the 

work presented in this chapter, we segmented the VR-based visual stimulus into 3 

ROIs: avatar's face (Face_ROI), a context-relevant object (Object_ROI), and rest 

of the VR environment (Others_ROI) (Figure IV-4). Face_ROI captures the 

forehead, eye brows, eyes and surrounding muscles, nose, cheeks, mouth and 

surrounding muscles. Object_ROI captures a context-relevant object (e.g., for a 

story on outdoor games, the context-relevant object is a picture displaying collage 

of snapshots of narrated games). 

 

 

 

 

 

 

 

 

Computation of FNFR: A new behavioral index that is analyzed in this work 

is the Face-to-NonFace Ratio (FNFR). Previous research has indicated an atypical 

visual scanning pattern of children with ASD while viewing the face and the non-
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face stimuli, in which they tend to look less towards the face (Anderson, 

Colombo, and Shaddy, 2006). Thus a computation of FNFR will capture the 

amount and trend of a participant’s viewing patterns towards the face of an avatar. 

In this work, the visual stimulus presented to our participants is segmented into 

the Face_ROI, Object_ROI, and the Others_ROI (Figure IV-4). We compute the 

FDTOTAL for Face_ROI which indicates the total time spent by a child in looking 

towards the face region of the visual stimulus. Also, we compute the sum of 

FDTOTAL for Object_ROI and Others_ROI which represents the total time spent by 

a child in viewing the nonface region of the visual stimulus. Subsequently, the 

FNFR is computed from the ratio of the total time spent by a child in looking 

towards the face and nonface regions of the presented visual stimulus.  The effect 

of the gaze-based dynamic feedback on the FNFR is investigated here as the 

participants view the different ROIs of the visual stimulus during the VR-based 

social interaction.   

 

Computation of OFR: Another behavioral index that we introduce in this work 

is the Object-to-Face Ratio (OFR). Children with ASD tend to fixate less towards 

faces and more to other objects (Jones, Carr, and Klin, 2008; Dawson, et al., 

1998) in the environment. Study reveals that children with ASD exhibit reduced 

FD while viewing faces with fewer shifts from object to face (Swettenham, et al., 

1998). We compute the FDTOTAL for Face_ROI and FDTOTAL for Object_ROI 

indicating the total time spent by a child in looking towards the face region and 

the object region (Figure IV-4) respectively of the visual stimulus. Subsequently, 
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the OFR is computed from the ratio of these two durations. Thus OFR will 

indicate how much time a participant spends in viewing the face of the avatar and 

how much time he/she spends in viewing a context-relevant object. Further, OFR 

will also quantify the behavioral viewing patterns. 

The task-related event markers along with the ROI tags are then used by RGFA to 

segregate the derived filtered physiological and behavioral indices (as discussed above) 

during viewing of different ROIs by a participant. 

 

Design of the Integration Module 

Unlike the currently available VR environments (Parsons, Mitchell, and Leonard, 

2004; Tartaro and Cassell, 2007) as applied to assistive intervention for children with 

ASD which are designed with an ability to chain learning via aspects of performance 

alone, the present system uses VR-based social situation as a platform for delivering 

feedback based on one's performance and real-time gaze patterns, thereby offering a high 

degree of individualization. 

 
Rationale behind Gaze-based Individualized Feedback Mechanism 

The presented system is capable of providing a participant with gaze-based 

individualized feedback based on the behavioral viewing patterns so as to capture his/her 

attention. In dyadic communication, eye-gaze information underlying one's expressive 

behavior (i.e., amount of time a speaker and a listener look at each other) plays a vital 

role in regulating conversation flow, providing feedback, communicating emotional 

information, and avoiding distraction by restricting visual input (Argyle, and Cook, 

1976). For example, a listener looking at the speaker 70% of the time during an 
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interaction has been identified as 'normal while listening' (Colburn, Drucker, and Cohen, 

2000; Argyle and Cook, 1976).  

In the present study, a participant can serve as a listener while interacting with the 

avatars narrating personal stories and displaying context-relevant facial expressions 

(Figure IV-1) to capture the mood inherent in the story content. Thus, we chose the 

'normal while listening' criterion for our participants while looking at the avatar during 

VR-based social interaction. Subsequently, the participant's Fixation Duration (FD) 

extracted from the behavioral viewing data (FD for Face_ROI viewing as a percentage of 

total FD) and the performance measure (the participant's response to question asked by 

the system) initiates a rule-based mechanism (Figure IV-2) to trigger the system to 

provide feedback (Table IV-1) to the participant using the individualized real-time gaze-

based feedback algorithm (RGFA).  

 

 

 

 

 

 

 

 

Overview of the Individualized Real-time Gaze-based Feedback Algorithm (RGFA)  

The Data Flow Diagram for the RGFA (Figure IV-5) presents a brief overview of the 

logic used by the present system. Real-time gaze coordinates of a participant (interacting 

Table IV-1. Rationale behind Attention-based Real-time Motivational Feedback. 
Response 
to Q1 

t ≥ 70% System Response [Label] 

Right Yes Your classmate really enjoyed having you in the audience. You have paid attention to 
her and also made her feel comfortable. Keep it up!  [S1] 

Right No Your classmate did not know if you were interested in the presentation. Perhaps, if you 
had paid more attention to her, she would have felt more comfortable. Try next time. 
[S2] 

Wrong Yes Your classmate felt comfortable in having you in the audience. But, try to pay some 
more attention to her as she makes the presentation so that you can correctly understand 
her emotion. [S3] 

Wrong No Your classmate would have felt more comfortable if you had paid more attention to her.
You paid little attention to the presenter. If you had paid more attention to the presenter, 
then you would have correctly understood her emotion as well as made her feel 
comfortable. Try next time. [S4]  

Q1 : Question asked by the system; t : Duration of participant's looking towards the Face_ROI of visual 
stimulus. 
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Figure IV-5. Data Flow Diagram for Individualized Real-time Gaze-based Feedback 

Algorithm (RGFA). 

with an avatar) are acquired using the Viewpoint software and converted to VR (Vizard) 

compatible format using Vizard-Viewpoint handshake module (Figure IV-2). A 

Computer (where the VR-based tasks are presented) runs Viewpoint Software at the 

background and Vizard software at the foreground and the RGFA triggers a 33 ms timer 

to acquire the gaze coordinates. Based on the participant’s 2D gaze-coordinates, the 

RGFA then computes the specific ROI looked at by the participant. Times spent by the 

participant looking at different ROIs are stored in respective buffers which are added up 

at each instant during participant-avatar interaction. This determines the Face_ROITime, 

Object_ROITime, and Others_ROITime. Then these times are summed up to get the 

TotalTime. Then, the RGFA computes the percentage of time spent by a participant in 
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looking at Face_ROI. Subsequently, based on the participant's percentage of time spent 

for Face_ROI viewing and response to question asked by the system, 4 different 

responses (S1-S4) (Table IV-1) are generated by the system. 

In short, the algorithm (RGFA) seamlessly integrates the VR-based platform where 

social tasks are presented with a participant's behavioral viewing patterns as captured by 

monitoring his/her dynamic gaze data in real-time. This is then used to provide 

individualized feedback in an attempt to improve the participant's involvement in the 

social tasks. 

 
Experimental Investigation 

 
 

Experimental Setup 

In this work a pilot study was designed and tested with 6 children with ASD while 

interacting with the system. We wanted to investigate whether the system was acceptable 

to the target population, and how the children responded to the system in a virtual social 

communication task. The experiment was created using the VR design package described 

in Section ‘VR-based Task Presentation’. The participant's eye movements were tracked 

by the eye frame Eye-Tracker (discussed in Section ‘Real-time Eye-Gaze Monitoring 

Mechanism’). Stimuli were presented on a 17" computer monitor (C1) (Figure IV-6a). A 

chin rest (with height-adjustable telescopic shaft) was designed and used to stabilize the 

participant's head (Figure IV-6b) and maintain participant-monitor distance of 50cm, 

considered as an appropriate distance in social gaze-based experiments (Wieser et al., 

2009). Uniform room illumination was maintained. The computer (C1) was customized 

to present the VR-based social tasks in the foreground and compute dynamic gaze 
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Figure IV-6a. Experimental setup. 

 
Figure IV-6b. Participant with Eye-Tracker and Chin Rest. 

information in the background using the eye-tracking data. Gaze data along with task-

related event markers (e.g., trial start and trial stop, participant feedback etc.) were logged 

in a time-synchronized manner. The participant's caregiver (i.e., the observer) watched 

the participant from a video camera view, whose signal was routed to a television, hidden 

from the participant's view. Signal from C1 was routed to a separate monitor (M1) for the 

caregiver to view how the task progressed. Based on these two observations, the observer 

rated the participant’s engagement level. 
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Participant Characteristics 

Six adolescents (Male: n = 5, Female: n = 1) with ASD, ages 13-17y (M=15.60y, 

SD=1.27y) participated in this study. All participants were recruited through existing 

clinical research programs at Vanderbilt University (VU) and had established clinical 

diagnoses of ASD. Participants were also required to score ≥ 80 on the Peabody Picture 

Vocabulary Test-3rd Edition (PPVT-III: Dunn and Dunn, 1997) to ensure that language 

understanding was adequate for participating in the current protocol. Data on core ASD 

related symptoms and functioning was obtained through parents' report on the Social 

Responsiveness Scale (SRS) (Constantino, 2002) profile sheet and the Social 

Communication Questionnaire (SCQ) (Rutter, et al., 2003) with all participants falling 

above clinical thresholds. Autism Diagnostic Observation Schedule (ADOS) scores were 

also available for 5 of the 6 participants from prior evaluation (Table IV-2 provides 

individual participant characteristics). All research procedures were approved by the VU 

Institutional Review Board. 

Table IV-2. Individual Participant Characteristics. 
Participant 
(Gender) 

Age 
(years) 

PPVTa

Standard score
SRSb

Total T-score
SCQc  

Total score
ADOS-Gd 

Total score  
ASD1 (Male) 13.83 126 69 23 11 
ASD2 (Male) 15.5 110 73 13 7 
ASD3 (Female) 15.17 83 90 28 10 
ASD4 (Male) 16.5 97 63 17 9 
ASD5 (Male) 15.08 92 87 20 Not Available 
ASD6 (Male) 17.5 103 83 31 20 
Mean (SD) 15.60 (1.27) 102 (15) 78 (11) 22 (7) 11 (5) 
aPeabody Picture Vocabulary Test-3rd edition (Dunn and Dunn, 1997) 
bSocial Responsiveness Scale (Constantino, 2002) 
cSocial Communication Questionnaire (Rutter et al., 2003) 
dAutism Diagnostic Observation Scale-Generic: Module 3 or 4 depending upon subject’s developmental 
level (Lord et al., 2000) 
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Procedure 

In the present study, we constructed five VR-based social communication scenarios 

(Trial 1 – Trial 5) in which the virtual peers (i.e., the avatars) narrated personal stories on 

diverse topics such as, outdoor sports, travel, favorite food, etc. The participants listened 

and viewed their virtual peers from the first person perspective. 

Each participant participated in an approximately 50 min. laboratory visit. During the 

visit, the participant sat comfortably on a height-adjustable chair and was asked to wear 

the eye-tracker goggles and the chair was adjusted so that his/her eyes were collinear with 

center of C1 (Figure IV-6a). The experimenter briefed the participant about the 

experiment and told him/her that he/she could choose anytime to withdraw from the 

experiments for any reason, especially if he/she was not comfortable interacting with the 

system. Then the eye-tracker was calibrated. The average calibration time was 

approximately 15 s in which the participant sequentially fixated on a grid of 16 points 

displayed randomly on C1. We achieved a gaze coordinate accuracy of 0.40 (or, approx. 

0.366 cm on the visual stimulus screen C1 at a 50 cm viewing distance). The task began 

with the participant resting for 3 min to acclimate him/her to the experimental set-up. The 

participants viewed an initial instruction screen followed by an interaction with their 

virtual classmate narrating a personal story. Each storytelling trial was approximately 3 

min long. The participants were asked to imagine that the avatars were his/her classmates 

at school giving presentations on several different topics. They were informed that after 

the presentations they would be required to answer a few questions about the 

presentations. They were also asked to try and make their classmate feel as comfortable 
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as possible while listening to the presentation. While it was not explicitly stated that in a 

presentation a speaker feels good when the audience pay attention to him/her (by looking 

towards the speaker), the idea here was to give feedback to the participants about their 

viewing patterns and thereby study how that affects the participants as the task 

proceeded. The participant’s virtual peer always maintained 'direct' eye-contact (staring 

straight out of C1) with the participant. The experiment began with trial1 with the virtual 

classmate exhibiting a 'neutral' facial expression (Figure IV-1a) and narrating a personal 

story. This trial was followed by 4 other trials that were similar to the trial1 except that in 

these subsequent trials the virtual peer displayed 'happy' (Figure IV-1b) or 'angry' (Figure 

IV-1c) facial expressions to capture the mood inherent in the content of the story. After 

each trial, the participant was asked an emotion-identification question (Q1) and a story-

related question (Q2). The Q1 was about the virtual peer’s emotion which had 3 answer 

choices (A. Happy, B. Angry, C. Not Sure). The Q2 was about some basic facts as 

narrated in the story. It also had 3 answer choices. The correct choice was spoken at least 

5 times during the narration, considered sufficient for information relay (Jonides et al., 

2008). The incorrect choices were never spoken. The participant responded with a 

keypad. Q2 was asked to encourage a participant to pay attention to the story content. 

Depending on the participant’s response to Q1 and how much attention he/she paid to the 

virtual peer, as measured by the real-time computation of the percentage of time spent in 

looking at the avatar’s face, the system encouraged the participant to either pay more or 

keep the same attention towards the presentation (Table IV-1). After each trial, the 

observer (e.g., the caregiver) rated about what he/she thought about how engaged the 

participant was during the VR-based social interaction using a 1-9 scale (1 - least 



 69

engagement, 9 - most engagement). Each participant was compensated in the form of $15 

gift card for completing a session. 

In our study, the participant served as a listener while interacting with the avatars. 

After the participant’s reply, an audio-visual feedback, which was computed based on the 

real-time gaze data to determine the actual time the participant spent looking at the face 

of the avatar during the presentation, was provided to the participant. The feedback had 

two parts. First, it informed the participant whether their answers to Q1 and Q2 were 

correct, and how much attention they paid to the presenter (i.e., the avatar). Second, 

based on how they responded to Q1 and how much attention they paid to the presenter, 

the system encouraged them to either pay more or keep the same attention towards the 

presentation (using RGFA). Since our objective was to encourage a participant to look 

more towards avatar’s face during the social interactions, we used the response to Q1 and 

amount of attention on the face as the basis for providing feedback. However, Q2 was 

asked to determine whether the participant was actually paying attention to the story 

content. Table IV-1 shows the system's responses for providing feedback to the 

participant. 

 
 
Results 
 

Here we present the results of our pilot study with 6 adolescents with ASD to (i) 

examine the acceptability of the system by the target population, and (ii) investigate the 

effectiveness of the system to elicit variation in participant’s engagement level (based on 

the observers’/caregivers’ rating on participants’ engagement level) as a result of the 

individualized feedback. Subsequently, we (iii) analyze the impact of gaze-based 
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dynamic feedback on the behavioral viewing patterns of the participants while scanning 

the faces of the avatars, and (iv) scanning of the total visual stimulus presented to the 

participants. These are studied by using the set of quantitative indices e.g., Sum of 

Fixation Counts (SFC), Total Fixation Duration (FDTotal), Face-to-non Face Ratio 

(FNFR) and Object-to-Face Ratio (OFR), and the scan paths between their gaze fixation 

points distributed over the different ROIs of the visual stimulus. These behavioral 

viewing indices interpret the participant’s performance from pre-training (PT) (i.e., Trial 

1) to post-training (PoT) (Trial 5) trial. In addition, we (v) also present our results that 

show the ability of the system to influence the eye physiology of the participants during 

emotion recognition, although our experiment in this usability study was not designed to 

improve the emotion-recognition capability of our participants. 

 

System Acceptability 

In this usability study, we wanted to investigate whether the system, presenting gaze-

sensitive VR-based social communication tasks and capable of providing individualized 

feedback, was acceptable to the children with ASD. In order to achieve this, we tested our 

system with a small sample of 6 participants with ASD. In spite of being given the option 

of withdrawing from the experiment at any time during their interaction with the system, 

all the participants completed the session. An exit survey carried out at the end of the 

experiment revealed that all 6 participants liked interacting with the system, and had no 

problem in either wearing the eye-tracker goggles, understanding the stories narrated by 

their virtual peers, or responding to questions asked by the system. In fact 5 of them 

inquired whether there would be any future participation possibilities with this new 
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system. Thus it is reasonable to infer from this small usability study that the system has a 

potential to be accepted by the target population. 

 
 
 
Impact of gaze-based dynamic feedback on Participants' Engagement (based on 

Caregivers’ rating) 

We wanted to assess whether the presented system can be used in virtual social 

communication task to create improved engagement levels among the participants so that 

engagement manipulation using individualized feedback could be potentially feasible in 

the future as a part of intervention. In our usability study with the system, the participants' 

caregivers rated as to what they thought regarding the participants' engagement level 

while interacting socially with their virtual peers. We asked the caregivers to rate the 

participants using a 1-9 scale (1 - least engagement, 9 - most engagement). With dynamic 

feedback during VR-based social interaction, the reported group engagement mean (as 

evident from the caregivers’ rating on participants’ engagement level) (Table IV-3) 

improved during Post-Training (PoT) trial from Pre-Training (PT) trial. For all 

participants (except ASD2) the engagement rating improved from PT to PoT. Further 

analysis revealed that ASD2 was incorrect in responding to story-related question in PoT 

(i.e., Trial5) which may be due to his lower engagement. The caregiver of ASD2 reported 

that he liked the story in PT (i.e., Trial1) the most and the PoT (i.e., Trial5) the least. Also 

the range (1-9 scale) of engagement rating shows that group engagement increased during 

PoT.  
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Table IV-3. Impact of gaze-based dynamic feedback on Participants' Engagement. 

Participant 
Reported Observer rating on 
Engagement (Full Range: 1-9) 

PT PoT 
ASD1 2 5 
ASD2 7 6 
ASD3 4 7 
ASD4 6 7 
ASD5 4 5 
ASD6 4 7 
 Mean 4.50 6.17 
Range 2 – 7 5 – 7 
PT : Pre-Training (i.e., Trial1); PoT: Post-Training (i.e., Trial5). 
 

Impact of gaze-based dynamic feedback on Behavioral Viewing Patterns in terms of 

Attention to the Faces (Face_ROI) of the Avatars 

We chose to use certain primary behavioral viewing indices (e.g., SFC, and FDTotal) 

of the participants, as they viewed the Face_ROI of the avatars while attending to the 

avatars' presentations to gauge attention towards social stimuli in the VR environment. 

Results indicate that the participants looked more frequently towards the face region 

(Face_ROI) of the avatars from the pre-to-post measurement. This is reflected from the 

improvement in the SFC for each participant from pre-training (PT) to post-training 

(PoT) measurement for Face_ROI viewing with dynamic feedback (Table IV-4) with 

SFC for Face_ROI viewing during PT trial being statistically different (t = 3.464; p = 

0.0180) from that during PoT trial by using a dependent sample t-test between these two 

groups. 

Also, in this work, the FD of the participants was analyzed while viewing Face_ROI 

due to its importance as an indicator of social engagement (Jones, Carr, and Klin, 2008). 

The FDTotal of the participants was computed during Face_ROI viewing and the results 

indicate increase in this index for all of the participants from pre-to-post measurement 

and in statistically different ways (t = 8.068; p = 0.0005) by using a dependent sample t-
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Table IV-4. Improvement in Viewing Pattern in terms of Sum of Fixation Counts (SFC), and Total Fixation 
Duration (FDTotal) while viewing Face_ROI.  
Participant SFC for Face_ROI viewing FDTotal for Face_ROI viewing

PT(no.) PoT(no.) %Improvement PT(s) PoT(s) %Improvement

ASD1 314 400 27.39 98.80 135.72 37.37 
ASD2 418 494 18.18 141.87 179.49 26.52 
ASD3 411 564 37.23 122.35 170.39 39.27 
ASD4 427 501 17.33 146.37 172.78 18.05 
ASD5 214 543 153.74 58.27 121.17 107.93 
ASD6 140 253 80.71 41.31 77.78 88.29 
M(SD) 321(121) 459(116) 55.76(53.40) 101.49(43.76) 142.89(39.38) 52.91(36.38)

test between these two groups (Table IV-4). Overall, the results reflect a trend for 

participants to not only fixate on the Face_ROI more frequently, but also for a longer 

duration with dynamic feedback. 

 

Impact of gaze-based dynamic feedback on Behavioral Viewing Patterns in terms of 

Scanning of the total Visual Stimulus (i.e., Face_ROI, Object_ROI, and Others_ROI) 

Furthermore, both FNFR and OFR were computed from the above primary viewing 

indices. Results of FNFR based on FDTotal of the participants indicate a non-statistically 

significant trend (t = 1.3332; p = 0.2400) toward improvement in viewing patterns (Table 

IV-5). The percent of total fixation duration towards Face_ROI, as compared to the 

Object_ROI and Others_ROI improved (Figure IV-7) as well for all participants implying 

that each participant looked at avatar's face for a longer duration of time during the PoT 

than the PT trial. Thus, with the gaze-based feedback, the participants attended to the 

Face_ROI of the avatars more than the non-face regions (i.e., the Object_ROI and the 

Others_ROI).   

 

 

 

 

Table IV-5. Improvement in Viewing Pattern in terms of Face-To-NonFace Ratio 
(FNFR). 
Participant FNFR based on FDTotal

PT PoT %Improvement 
ASD1 1.2805 2.9336 129.10 
ASD2 8.3477 403.3562 4731.95 
ASD3 3.4581 19.9005 475.47 
ASD4 8.2131 40.5131 393.27 
ASD5 3.8033 48.4755 1174.55 
ASD6 2.2628 13.1104 479.39 
M(SD) 4.5609(3.02) 88.0482(155.40) 1230.62  (1749.95)
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Figure IV-7. Comparative Analysis of FDTotal for Face_ROI, Object_ROI, 
and Others_ROI Viewing for each Participant (Left bars indicate PT trial and
Right bars indicate PoT trial). 

 

 

 

 

 

 

 

 

 

Subsequently, the Object-to-Face Ratio (OFR) was computed based on the FDTotal 

while viewing the face_ROI and object_ROI. From Table IV-6, it can be seen that the 

OFR decreased from PT to PoT trial for each participant, implying that the participants 

fixated more on the face region than the context-relevant object of the visual stimulus, 

during PoT trial of VR-based tasks. The group mean FDTotal during Face_ROI viewing 

increased by 52.91% from PT to PoT (p = 0.0005). Significant group difference (p = 

0.0351) existed for FDTotal during Object_ROI viewing, which decreased by 91.20% and 

also for OFR (t = 3.1722; p = 0.0248) which decreased by 95.16% between the PT and 

PoT trials. Thus, with gaze-based dynamic feedback, the participants demonstrated 

increased attention to the faces of the avatars and reduced distraction by objects. 
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Figure IV-8. Improvement in Behavioral Viewing pattern of ASD3 in terms of Scan Path 
distributed over different ROIs (Face_ROI, Object_ROI, and Others_ROI). 

Table IV-6. Improvement in Viewing Pattern in terms of Object-to-Face  
Ratio (OFR) based on Total Fixation Duration (FDTotal). 
Participant OFR 

PT PoT %Reduction 
ASD1 0.3622 0.0049 98.64 
ASD2 0.0242 0.0000 100.00 
ASD3 0.1802 0.0041 97.72 
ASD4 0.0707 0.0000 100.00 
ASD5 0.2269 0.0000 100.00 
ASD6 0.1250 0.0317 74.62 
 M(SD) 0.1649(0.12) 0.0068(0.01) 95.16 (10.11)

 

 

 

 

 

 

We also studied the impact of dynamic feedback on the scan paths of the participants 
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as children with ASD have been shown to exhibit atypical scan paths during social 

interaction (Rutherford, and Towns, 2008). Our investigation revealed that all 

participants fixated more on the Face_ROI of the avatars, with reduced distraction by the 

Object_ROI and the Others_ROI, during the PoT trial as compared to the PT trial. For 

example, as is evident from the scan path (Figure IV-8), ASD3 fixated on different ROIs 

of the visual stimulus during the PT trial. However, during the PoT trial, ASD3 fixated 

mainly on the Face_ROI and much less on the Object_ROI and Others_ROI. Note that, 

these scan paths were analyzed in the background and they were not visible to the 

participant. 

 

Potential of VR-based Gaze-sensitive system to influence the Eye Physiological Indices 

(e.g., BR and PD) as Function of the Participants’ capability of Emotion Recognition 

Children with ASD often experience states of emotional or cognitive stress measured 

as Autonomic Nervous System activation without external expression (Picard, 2009) 

challenging their interests in learning and communicating. Thus observation of facial 

expressions may not be reliable to learn whether they are able to recognize the emotional 

expressions of others during social communication (McIntosh, et al., 2006; Picard, 2009). 

In this context, eye physiological indices could be a valuable source to indicate the 

process of emotion recognition in these children. In fact, literature review indicates an 

important role of BR and PD in emotion recognition.  

One study reports that children with autism exhibit normal BR on seeing static human 

faces displaying emotional expression (Wong et al., 2008). Other findings show startle 

potentiation for both positive and negative stimuli (static pictures) for children with ASD 
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(Wilbarger, McIntosh, and Winkielmanc, 2009) and increased BR for some emotions 

e.g., anger (Karson, 1983). Additionally, pupil has been considered as an indicator of 

emotion recognition (Bradley et. al., 2008). However, links between PD and emotional 

status are not yet clearly established due to diverse views. One study reports pupillary 

dilation for pleasant, and contraction for aversive stimuli (Hess, 1972). Again, other 

studies indicate pupil to have sympathetic innervation with pupillary dilation to both 

pleasant and unpleasant auditory stimuli (Partala, Jokiniemi, and Surakka, 2000; Partala 

and Surakka, 2003), being greater to unpleasant than pleasant visual stimuli (Libby, 

Lacey, and Lacey, 1973). Still another has reported ability of static visual displays of 

avatars displaying emotional expressions to create pupillary dilation to pleasant facial 

expression and this ability being reduced by the participants' emotional habituation 

beyond first two avatars (Causse et al., 2007). 

Eye physiological indices, namely BR and PD can be made continuously available 

within the system using the feature extraction method discussed in Section ‘Feature 

Extraction’ when a participant socially interacts with the avatars. As a result, we 

analyzed to see whether the eye physiological indices are also influenced by interaction 

with the system. 

 

Analysis of changes in Blink Rate: In our present study, investigation results, as 

presented in Table IV-7, (similar to the findings of non-VR based applications studied by 

Wilbarger, McIntosh, and Winkielmanc, 2009; Karson, 1983) reflect a higher change in 

BRMEAN for Neutral-to-Angry (an overall increase of 107.93% and p = 0.0489) than that 

for Neutral-to-Happy (an overall increase of 49.91% and p = 0.0495) for all participants, 
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Table IV-7. Change in Blink Rate (BR) as a measure of emotion recognition. 
Participant BRMEAN (times/min) %Increase 

Neutral-To-
Happy 

BRMEAN (times/min) %Increase 
Neutral-To-

Angry 
 (Neutral)  (Happy)  (Neutral)  (Angry) 

ASD1 8.13 13.02 60.18 8.13 23.83 193.20 
ASD2 5.42 8.13 50.00 5.42 8.63 59.23 
ASD3 7.35 13.16 79.05 7.35 9.86 34.15 
ASD4 12.39 14.42 16.38 12.39 15.20 22.68 
ASD5 43.34 42.41 -2.16 43.34 71.50 64.96 
ASD6 11.30 22.15 96.02 11.30 42.19 273.36 

except ASD3. In addition, BRMEAN for all participants (except ASD5) while viewing the 

Angry and Happy facial expression of their virtual peer was greater than that of while 

viewing Neutral expression. A detailed analysis revealed that ASD3 and ASD5 could not 

identify the avatar's Angry facial expression. ASD3 responded to the Angry face as Not 

Sure while ASD5 responded as Happy. Also, ASD5 was not able to identify the Neutral 

facial expression and misidentified this as Happy and he possessed a much higher 

BRMEAN in general, as compared to the other participants. 

 
 
 
 
 
 
 
 
 
 

 

Analysis of changes in Pupil Diameter: In the present investigation, our findings on PD 

as presented in Table IV-8, are in line with some of the previous non-VR based findings 

(e.g., Libby, Lacey, and Lacey, 1973; Partala, Jokiniemi, and Surakka, 2000; Partala and 

Surakka, 2003). We found that the PDMEAN of each participant was less for pleasant 

(Happy) than that for the unpleasant (Angry) one and both being greater than that with no 

emotional (Neutral) expression (except ASD5). Also, the change in PDMEAN for Neutral-

to-Angry (an overall increase of 8.84% and p = 0.1653) was found to be greater than that 

for Neutral-to-Happy (an overall increase of 3.43% and p = 0.0721) for all participants 

(except ASD5) (Table IV-8). We examined the participants' responses to each of the 

emotion-identification questions and found that ASD5 could not identify the Neutral and 
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Table IV-8. Change in Pupil Diameter (PD) as a measure of emotion recognition. 
Participant PDMEAN 

(Neutral) 
(mm) 

PDMEAN 
(Happy) 

(mm) 

%Increase 
Neutral-

To-Happy 

PDMEAN 
(Neutral) 

(mm) 

PDMEAN 
(Angry) 
(mm) 

%Increase 
Neutral-To-

Angry 
ASD1 8.036 8.809 9.61 8.036 10.713 33.30 
ASD2 6.213 6.272 0.96 6.213 6.394 2.92 
ASD3 6.730 6.966 3.51 6.730 7.215 7.21 
ASD4 6.741 6.817 1.12 6.741 7.262 7.73 
ASD5 7.678 8.032 4.61 7.678 7.711 0.44 
ASD6 7.209 7.264 0.77 7.209 7.311 1.42 

Angry facial expressions of his virtual peers, misidentifying them as Happy. We believe 

that this may be the reason for his percent increase in PDMEAN for Neutral-to-Angry to be 

lower than that for Neutral-to-Happy. 

 

 

 

 

 

In the present usability study, with a limited sample size, we find that the BR of the 

participants is more sensitive to their ability of recognizing different emotional 

expressions exhibited by their virtual peers, than the PD. For PD, the percent change for 

Neutral-to-Happy and that for Neutral-to-Angry though quite small, yet, the overall trend 

is similar to that of other non-VR based tasks. More importantly, the above results 

indicate the ability of the system to correlate the eye physiological indices (BR and PD) 

to a participant’s ability to recognize emotions while interacting socially with virtual 

peers.  

 

Discussion 

In the work presented in this chapter, we set out to a) develop a new technology-

based system that could measure gaze information and provide dynamic feedback during 

social interaction tasks presented in a VR environment and to b) assess the impact of such 

a feedback on the viewing patterns of a small sample of adolescents with ASD. There is 

considerable amount of work using static faces (i.e., photographs) (Joseph and Tanaka, 
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2003; Trepagnier, Sebrechts, and Peterson, 2002) with published results on offline 

analysis of gaze information while viewing static scene (Klin, et al., 2002). However, 

work on VR-based systems with a capability to process eye-gaze data in real-time and 

communicate this individualized information (as feedback) to the participants is at its 

infancy. In this chapter, we describe the development of a prototyped model of VR-based 

social communication system for children with ASD with the ability to process eye-gaze 

information in real-time and communicate this to the VR environment to provide 

feedback to the participants based on their instantaneous interaction with the virtual 

social world. While our feedback mechanism was limited to providing systematic 

information about performance at the end of a several minute interval, we actually 

realized capability for calculating viewing indices in real-time (i.e., every 33 ms). Thus, 

while our technology paused and presented feedback to participants within fairly discrete 

training trials, ultimately the developed technology is capable of providing feedback in an 

on-line, continuous manner. Such capability suggests great potential for flexible 

intervention paradigms.  For example, such feedback could be continuously monitored 

and conveyed to the participant when they are not paying proper attention or levels of 

engagement could be set and modified in an individualistic and relativistic manner (i.e., 

thresholds of performance based on baseline and learning trajectory).  

In addition, the results of this study indicate the ability of the system to measure the 

eye physiological indices (blink rate and pupil diameter) and correlate these as function 

of a participant’s ability to recognize emotions while interacting socially with virtual 

peers. Thus, the results suggest that a participant’s eye physiological response in VR-

based social communication task as presented in VR-based gaze-sensitive system indicate 
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whether or not one is able to recognize emotion similar to that which has been observed 

in non-VR based tasks. Therefore, it is reasonable to believe that such a system could be 

used in intervention, perhaps as a supplementary tool, to allow an individual with ASD to 

enhance his/her social communication skills. The developed technology reported here 

could be integrated into a more complex and sophisticated social interaction task to 

achieve targeted goals if paired with appropriate reinforcement paradigms. 
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VIRTUAL REALITY BASED GAZE-SENSITIVE SYSTEM WITH ADAPTIVE 

RESPONSE TECHNOLOGY: SYSTEM DEVELOPMENT 

 

Introduction 

The objective of this chapter is to present the detailed design specifications of the 

Virtual-Reality based gaze-sensitive system with Adaptive Response Technology for 

social communication for children with ASD. Our research as described in Chapter III 

show the capability of VR-based system to present social communication tasks to the 

children with ASD and systematically manipulate specific aspects of social 

communication. In addition, the evaluation of the design was carried out through an 

experiment to combine the ratings on the affective states of anxiety, engagement, and 

enjoyment/liking, reported from a clinical observer with the physiological responses of 

the participants, both being collected when the participants participate in social tasks with 

the avatars in the VR environment. The evaluation results demonstrate the feasibility of 

VR-based social communication to cause variations in both the affective states of the 

participants as reported by the clinical observer, and the physiological responses of the 

participants. Further, our research, discussed in Chapter IV, indicates the feasibility of 

designing a VR-based gaze-sensitive system which quantifies the gaze patterns of a child 

with ASD detected in real-time during virtual social interaction and utilizes this data to 

provide individualized feedback. In addition, our analysis reveals the ability of such a 

system to improve the participants’ engagement level, and influence their dynamic 

behavioral viewing patterns as a result of this individualized feedback. 

CHAPTER V



 86

Thus given the promise of VR-based gaze-sensitive social interaction to influence 

one’s affective states, behavioral viewing patterns, and performance in the social task, the 

development of a VR-based gaze-sensitive social interactive system that can integrate the 

objective metrics and adapt itself to promote improved social communication skills 

among the children with ASD is critical. Specifically, such a system must be capable of 

objectively identifying and quantifying the dynamic viewing patterns, subtle changes in 

eye physiological responses in real-time, and performance metric of a participant and 

adaptively responding in an individualized manner. Motivated by this need, the objective 

of our present research is to develop a Virtual Interactive system with Gaze-sensitive 

Adaptive Response Technology that can seamlessly integrate VR-based tasks with eye-

tracking techniques to encourage a participant to engage in social communication tasks 

while maintaining the niceties of social interactions. By this we hope to foster improved 

social communication skills among the participants in an individualized manner, and 

adaptively encourage the participants to improve his/her level of engagement and 

performance during social interaction. 

Such a system could provide valuable information to caregivers and clinicians about 

the specific aspects of social communication. In addition, this will provide an integrated 

computer and eye physiological profiling system which may serve as a tool for designing 

intervention strategies. In the future, such an integrated intelligent system could be 

effective for use in developing a more comprehensive adaptive controlled environment 

that can systematically manipulate various aspects of social communication and thereby 

help individuals to explore social interaction dynamics gradually and automatically, 

while improving their engagement level and performance during social interaction task. 
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Thus, this would serve as an adaptive technology-assisted tool to encourage social 

communication. In the future, an autism intervention paradigm could use this system as a 

tool for adaptively responding to the systematically manipulated effects of elements of 

social interaction that lead to struggles in social communication in children with ASD. 

This chapter presents the design and development of the dynamic closed-loop VR-

based gaze-sensitive adaptive response technology system. This system has five main 

subsystems: (i) a VR-based social communication task module, (ii) a real-time eye-gaze 

monitoring module, (iii) a real-time peripheral physiological signal acquisition module, 

(iv) a behavioral engagement prediction module, and (v) an integration module that 

establishes communication between the VR-based task presentation module and the real-

time eye-gaze monitoring module to provide individualized adaptive response utilizing a 

rule-governed intelligent behavioral engagement prediction module.     

 
 
VR-based Social Communication Task Module 

In this work, we use desktop VR applications, because it is accessible, and affordable 

(Cobb, et al., 1999). For ASD intervention, VR is often effectively experienced on a 

desktop system using standard computer input devices (Parsons and Mitchell, 2002). 

Vizard (www.worldviz.com), a commercially available VR design package, is used to 

develop the virtual environments and the assistive technology. Vizard, VR Toolkit 

(Enterprise edition) allows for intense access to levels of programming control such that 

realistic avatars, virtual social scenarios, and interactions can be designed. However, 

Vizard comes with a limited number of avatars, virtual objects, and scenes that can be 

used to create a story in VR. Thus, a number of enhancements were made on the VR-
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platform. In order to perform socially interactive tasks with children with ASD, we 

developed more extensive social situations with context-relevant backgrounds, and 

avatars whose age and appearance resemble those of the participants' peers without trying 

to achieve exact similarities. Also, for effective bidirectional social communication 

between the avatars and the participants, we developed conversation threads so that the 

participants can socially interact with the avatars while retrieving a targeted piece of 

information. Our social communication task module comprises of (i) a task presentation 

module, and (ii) a bidirectional conversation module.     

 
(i) Design of VR-based Task Presentation Module 

In the VR-based task presentation module, an avatar narrates his/her personal 

experience to the participant while making pointing gestures and moving dynamically in 

a context-relevant virtual environment. 

Specifications of Social Situations with Context-Relevant Backgrounds 

In this work we developed 24 social task presentation modules with avatars narrating 

personal stories to the participants. The personal stories that the avatars share with each 

participant are based on diverse topics of interest to teenagers e.g., favorite sport, best 

friend, memorable day in life, field trip with classmates, experience on film, and travel 

with family. These stories were adopted from an online database 

(http://www.allfreeessays.com/) of term papers which contains thousands of quality 

essays, book reports, and research papers written by teenagers. The voices for the avatars 

were gathered from teenagers from the regional area. We developed 24 different social 

situations where avatars narrated their personal experience, with the stories forming the 

context of their narrations. In each social situation, an avatar carried out one-on-one 
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interaction with a participant. We developed three context-specific backgrounds relevant 

to the social situation being narrated by the avatar for each social task presentation 

module.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-1. Snapshot of an avatar narrating his tour experience during his visit to a 
sea beach with (a) the VR environment displaying the view of the rocky beach in the 
background with the avatar pointing to the rocks, (b) the VR environment showing the 
view the beach where people lie down for tanning, and (c) the VR environment 
displaying the view of sunset on the beach.    

 

For example, when an avatar narrates his tour experience to a sea beach in Martinique 

and introduces the participant to the rocky beach while narrating the rocks on the beach, 

the VR environment reflects the view of the beach (Figure V-1a). When the avatar 

narrates some of his favorite activities on the beach such as, tanning during the day, the 

(a) (b)

(c)
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VR world displays such a situation to the participant (Figure V-1b). Subsequently, when 

the avatar narrates his experience of the remarkable view of sunset he witnessed on the 

beach, the VR situation changes with a smooth transition of the background image to 

display such a situation to the participant (Figure V-1c). To achieve this, we created a 

database of 72 context-relevant backgrounds for all the 24 stories which are mounted on 

the VR world with the avatar superimposed on the virtual environment. This helped us to 

create realistic social situations relevant to the topic being narrated by the avatar and 

thereby expose the participant to real-life social scenarios. 

 

Avatar Selection and their Interaction with the participant while Moving Dynamically 

within the Virtual Environment 

The humanoid avatars used in this work have fixed male or female body (supplied by 

Vizard). New avatar heads, as used in our previous research work (Chapters III and IV) 

are used in this work. We used 12 avatar heads (6 each for male and female) distributed 

randomly over the 24 task presentation modules with each avatar appearing twice. These 

heads were created from 2D photographs of teenagers, which were then converted to 3D 

heads by '3DmeNow' software for compatibility with Vizard. These new avatar heads 

were used to create avatars: (i) with age range close to our participant pool's peers, and 

(ii) with more authentic facial features (e.g., realistic brow line, nose dimensions, etc.) 

allowing the interaction to be interpreted as realistically as possible. One can view the 

avatars within the virtual environment from first-person perspective while the avatars 

narrate personal stories, which is comparable to research on social anxiety and social 

conventions (Pereira et al., 2009). 
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The participants are instructed to watch and listen as the avatar tells a story. The 

avatars are lip-synched with the recorded sound files by using a Vizard based ‘speak’ 

module. While the avatar narrates his/her personal story, the avatar’s eyes are made to 

blink randomly with an interval between 1-2 s to render automatic animation of a virtual 

face similar to the work of Itti et al. (Itti et al., 2003). Also, the avatar displays a normal 

eye contact which is a mix of 30% straight gaze and 70% averted gaze (Argyle and Cook, 

1976; Colburn, Drucker, and Cohen, 2000). Straight gaze means looking straight ahead. 

Averted gaze means looking alternately to the left, right, and up more than 10° away 

from center in evenly-distributed, randomly-selected directions (Garau et al., 2001; 

Jenkins, Beaver, and Calder, 2006). Thus, to display normal eye contact, the avatar looks 

straight ahead 30% of the time and looks alternately to left, right and up the remaining 

70% of the time. In addition, the avatar moves dynamically in the virtual world making 

pointing gestures such as, pointing his/her hand, rotating his/her head towards the object 

being narrated. For example, when an avatar narrates his tour experience to a sea beach, 

and describes the remarkable view of the rocky beach, the avatar turns his head and his 

hand to point towards the rocks on the sea beach (Figure V-1a). The avatar changes its 

3D configuration in the virtual world by using Vizard based ‘walkTo’ module. Also, the 

avatar is programmed to demonstrate the niceties of social communication, such as, 

waving of hands and making friendly gestures while introducing himself/herself to the 

participant. With these features being added to the avatar, the interaction of the avatar 

with the participant, in the VR world, appear as realistic. 

(ii) Design of Bidirectional Conversation Module 

The VR-based task presentation is followed by a bidirectional social conversation. 



 92

This module encourages the participant to retrieve a targeted information from the avatar 

by interacting socially with the avatar.  

 

Design Specifications of Bidirectional Conversation Module  

The participant is asked to listen and watch the avatar, narrating personal story during 

the VR-based task presentation. At the end of this task presentation, the participant is 

asked to extract a piece of information from the avatar. The topic of the target piece of 

information that the participant is asked to extract from the avatar can be either ‘benign’, 

or ‘projected contingent’ (i.e., not directly narrated in the presentation by the avatar), or 

‘sensitive’ (e.g., one’s personal feeling, or behavior, etc.) depending on the degree of 

interaction difficulty (discussed below). This is followed by a number of 

questions/statements for the participant to ask/discuss with the avatar. These appear as a 

menu of choices and displayed as a transparent text box on one half of the screen with the 

avatar at the other half of the VR screen.  

For example, after an avatar narrates her experience of watching car racing during the 

VR-based task presentation, the participant (named as ‘Andrew’) is asked to find a target 

piece of information from the avatar (named as ‘Tonia’) using the bidirectional 

conversation module. Thus the participant is asked to find the avatar’s experience while 

getting her driver’s license. This is followed by a menu of 3 choices (Figure V-2) for the 

participant to ask the avatar.  
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After the participant selects a choice by clicking on the radio button accompanying 

the choice followed by clicking the OK button to submit the selected choice, the menu of 

choices disappears and the avatar responds to the question asked by the participant by 

speaking out his/her response (Figure V-3). This continues till the end of the conversation 

between the avatar and the participant. The menu of choices is framed in such a way so 

that the participant is required to select the choices in a particular sequence to gain the 

target piece of information. The participant selects option choices using a mouse.           

 

 

 

 

 
Figure V-2. Snapshot of a bidirectional conversation module with a participant
(Andrew) provided a menu of choices to converse with the avatar (Tonia). 
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Design Specifications of the Degree of Interaction Difficulty for the Bidirectional 

Conversation Module    

The degree of interaction difficulty while designing the bidirectional conversation 

module depends on two factors: 1) the nature of the target piece of information that the 

participant is asked to extract from the avatar and 2) the number of option choices (e.g., 

questions and/or introductory statements) that the participant have to select to carry out 

the conversation with the avatar in order to retrieve the target piece of information. 

Specifically, the nature of the topic of the target piece of information that a participant is 

asked to extract from an avatar can be ‘benign’ or, ‘projected contingent’ or, ‘sensitive’. 

Also, the number of option choices that the participant is required to choose can be 3 or, 

Figure V-3. Snapshot of a bidirectional conversation module with the avatar
responding to the participant’s selected choice.
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5 or, 7. Each of the bidirectional conversation modules within a particular difficulty level 

is designed to follow a specific structure for the flow of conversation threads to ensure 

consistency among the bidirectional conversation modules. 

- Easy Level of Interaction Difficulty  

For an easy scenario, a participant is asked to retrieve a ‘benign’ piece of information 

from the avatar using the bidirectional conversation module which comprises of a menu 

of 3 choices to select from. The structure of the conversation flow is represented by the 

block diagram (Figure V-4).    

 

 

 

 

For example, after an avatar narrates his experience of a football game during the 

VR-based task presentation, the participant is asked to find from the avatar the experience 

of his first football game that he played (Figure V-5). Thus for this Easy Level of 

Interaction Difficulty, the participant (named as ‘Andrew’) first selects the choice 3 (from 

the top) of the menu (Figure V-5) to introduce himself to the avatar (named as ‘Tom’) 

(represented by (A) in Figure V-4). Tom responds by saying “Hi. I am Tom. Yes. I really 

love football, especially when I get to play!” Then the participant selects the choice 1 

(from the top) of the menu (Figure V-5) to ask the avatar about the topic of the 

conversation (i.e., regarding the first time Tom played a football game) (represented by 

(B) in Figure V-4). Tom responds by saying “Of course! I was in the second grade. Our 

P.E. teacher split our class into two small junior football teams.” Finally, the participant 

Figure V-4. Block Diagram of the Conversation Threads for Easy Level of Interaction

Difficulty.  

Introduction with the presenter 
(avatar). (A) 

Asking about the topic of the 
conversation. (B) 

Asking about an overall feeling 
regarding the topic. (C) 
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selects the choice 2 (from the top) of the menu (Figure V-5) to ask Tom regarding his 

overall feeling of his first football game (represented by (C) in Figure V-4). Tom 

responds by saying “Yes, it was a lot of fun to play with my classmates.”    

 

 

 

 

 

 

 

 

 

 

 

 

- Medium Level of Interaction Difficulty  

For a scenario with a medium level of interaction difficulty, a participant is asked to 

retrieve a ‘projected contingent’ piece of information from the avatar using the 

bidirectional conversation module which comprises of a menu of 5 choices to select from. 

The structure of the conversation flow is represented by the block diagram (Figure V-6).    

 

 

 

 
Figure V-5. Snapshot of a bidirectional conversation module for Easy Level of
Interaction Difficulty. 
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Figure V-7. Snapshot of a bidirectional conversation module for Medium Level of
Interaction Difficulty. 

 

 

 

 

                 

 

For example, after an avatar narrates her experience of her vacation while she went to 

a playground, ice-cream parlor, and a zoo with her friends Cindy and Tracy during the 

VR-based task presentation, the participant is asked to find out some more details (i.e., 

‘extended contingent’ topic) from the avatar about her experience at the zoo (Figure V-7). 

 

Thus for this Medium Level of Interaction Difficulty, the participant (named as 

Figure V-6. Block Diagram of the Conversation Threads for Medium Level of
Interaction Difficulty.  

Introduction with the presenter 
(avatar). (A) 

Asking about the topic of the 
conversation. (B) 

Asking about the particulars of 
the topic of conversation. (C) 

Discussing specifics of the 
topic of  conversation. (D) 

Discussing the overall reactions 
associated with the topic of 
conversation. (E) 
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‘Andrew’) first selects the choice 2 (from the top) of the menu (Figure V-7) to introduce 

himself to the avatar (named as ‘Alexia’) (represented by (A) in Figure V-6). The avatar 

responds by saying “Hi. It was a super busy but really enjoyable day.” Then the 

participant selects the choice 4 (from the top) of the menu (Figure V-7) to ask the avatar 

about the topic of the conversation (i.e., regarding their decision in going to the zoo) 

(represented by (B) in Figure V-6). In response to this question, the avatar says “Well, we 

all really like animals and seeing them in their own habitats. Plus this zoo is the only 

place in America where people can see animals from China.” This prompts the 

participant to select choice 5 (from the top) of the menu (Figure V-7) to ask the avatar 

about the particulars of the conversation topic (i.e., regarding any animal at the zoo that 

seemed exciting to them) (represented by (C) in Figure V-6). The avatar responds by 

saying “Sure—it was definitely the Giant Pandas! There was a mom and a dad, and three 

babies.”  Then the participant selects choice 3 (from the top) of the menu (Figure V-7) to 

ask the avatar regarding the specifics of the conversation topic (i.e., regarding the Giant 

Pandas) (represented by (D) in Figure V-6). The avatar responds “Well, there are only 5 

Giant Pandas in the whole United States, and I saw them! Also, they’re interesting 

because although they look like big teddy bears, they are very aggressive.” Finally, the 

participant selects the choice 1 (from the top) of the menu (Figure V-7) to ask the avatar 

regarding her overall reactions (represented by (E) in Figure V-6). The avatar ends the 

conversation by responding as “It really was. I had a great time with my friends and it 

was exciting to see the pandas. I can’t wait to go again!” 
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Figure V-8. Block Diagram of the Conversation Threads for High Level of
Interaction Difficulty.  

- High Level of Interaction Difficulty  

For a scenario with a high level of interaction difficulty, a participant is asked to 

retrieve a ‘sensitive’ piece of information from the avatar using the bidirectional 

conversation module which comprises of a menu of 7 choices to select from. The 

structure of the conversation flow is represented by the block diagram (Figure V-8).    

 

 

 

 

 

 

 

 

For example, after an avatar narrates her experience of playing softball with her best 

friend Lyndsey and her not liking the softball coach, during the VR-based task 

presentation, the participant is asked to find out reason for the avatar’s not liking the 

softball coach (i.e., ‘sensitive’ topic) (Figure V-9). Thus for this High Level of 

Interaction Difficulty, the participant (named as ‘Andrew’) first selects the choice 7 (from 

the top) of the menu (Figure V-9) to introduce himself to the avatar (named as ‘Karen’) 

(represented by (A) in Figure V-8). The avatar responds by saying “Sure, I’m glad you 

liked it. I love my best friend, Lyndsey. Both of us love playing softball.” Then the 

participant selects the choice 5 (from the top) of the menu (Figure V-9) to ask permission 

from the avatar to discuss a sensitive topic (represented by (B) in Figure V-8). In 

Introduction with the presenter 
(avatar). (A) 

Asking for permission from the 
avatar to discuss a personal 
issue (sensitive question). (B) 

Approaching the sensitive 
question broadly. (C) 

Asking specific details of the 
sensitive question with due 
permission. (D) 

Asking about any memorable 
incident / event related to the 
sensitive topic. (E) 

Discussing the details of the 
memorable incident / event 
related to the topic. (F) 

Discussing the effects of the 
incident / event on anyone. (G) 
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Figure V-9. Snapshot of a bidirectional conversation module for High Level of
Interaction Difficulty. 

response to this question, the avatar says “OK. What is it about?” After getting due 

permission from the avatar, the participant selects choice 3 (from the top) of the menu 

(Figure V-9) to ask the avatar about the sensitive topic broadly (i.e., regarding the reason 

behind her not liking the softball coach) (represented by (C) in Figure V-8).  

 

 

 

 

 

 

 

 

 

 

 

 

The avatar responds by saying “Sure. You see, our coach was really strict and he didn’t 

spend much time talking to the team. He had a bad habit of shouting at the players on the 

field. My best friend, Lyndsey is really sensitive and I am too, so we didn’t like our coach 

that much.” This prompts the participant to select choice 1 (from the top) of the menu 

(Figure V-9) to ask the avatar regarding the specific details of the sensitive topic 

(represented by (D) in Figure V-8). The avatar responds “Usually I’d get really nervous 

when he yelled and I’d worry I was making a mistake.” On hearing that the avatar used to 
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become nervous when the coach yelled at her, the participant selects the choice 2 (from 

the top) of the menu (Figure V-9) to know about any particular incident related to the 

sensitive topic (represented by (E) in Figure V-8). The avatar responds by saying “Oh 

yes. Lots of times. But one time in particular I got really upset.” This leads to the next 

question represented by choice 4 (from the top) of the menu to be selected by the 

participant to ask the avatar regarding the details of the particular incident when the 

coach shouted at her (represented by (F) in Figure V-8). In reply to the participant’s 

question, the avatar says “Not at all. I was trying to pitch the ball, but I’m not the best 

pitcher. The coach shouted at me with a red face, saying, Hey, don’t you know how to 

throw?” Finally, the participant selects the choice 6 (from the top) of the menu (Figure V-

9) to ask the avatar regarding the effects that incident had on her (represented by (G) in 

Figure V-8). The avatar ends the conversation by responding “Lyndsey saw the whole 

thing! She made me feel better because she agreed he had been mean. Then, she helped 

me practice pitching and the next day I was a lot better. Our coach didn’t yell at me 

then!” 

 

Design Specifications of the Feedback Given by the Avatars to Facilitate Participants to 

Continue Bidirectional Conversation 

The bidirectional conversation module in our present work also equips the avatar with an 

ability to execute the role of a facilitator to help the participant to carry on the 

conversation. For example, with reference to Figure V-5, where the participant is asked to 

find out from the avatar regarding the experience of the first football game that the avatar 

had, if the participant (‘Andrew’) starts the conversation with choice 3 (i.e., an 
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introductory question), then the avatar (‘Tom’) says “Hi. I am Tom. Yes. I really love 

football, especially when I get to play!” However, instead of selecting choice 3, if the 

participant makes an irrelevant choice (e.g., choice 1 or choice 2), then the avatar gives 

feedback to the participant, saying “I’m sorry, do I know you? Maybe we should 

introduce ourselves.” Thus, the avatar also plays the role of a facilitator during the VR-

based conversation. After the introduction is complete, if the participant selects choice 1, 

instead of choice 2, then the avatar says “It sounds like you want to know about a time I 

played football. But you haven’t asked me about that yet.”         

 

Real-time Eye-gaze Monitoring Module 

The system captures eye data of a participant interacting with an avatar using Eye-

Tracker goggles from Arrington Research (http://www.arringtonresearch.com/). This eye-

tracker comes with some basic features (e.g., acquiring raw pupil diameter (PD), raw 

pupil aspect ratio (PAR), etc.) acquiring capability for offline analysis. In addition, this 

eye-tracker comes with a Video Capture Module with a refresh rate of 30Hz to acquire a 

participant’s gaze data using the ‘Viewpoint’ software. We designed the Viewpoint-

Vizard handshake module as discussed in Chapter IV to serve as an interface between the 

two programming platforms. We acquired the raw gaze data using Viewpoint, 

transformed it to the Vizard compatible format using the handshake interface at a refresh 

rate of 30 Hz. Subsequently, we applied signal processing techniques, such as 

windowing, thresholding, etc. to eliminate noise and extract the relevant features. 
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Participant with Eye-
Tracker Goggles 

Raw eye-gaze 
data 

Raw Pupil 
Diameter

Raw Pupil 
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Mean Blink Rate 
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Artifact 
Removal Region of Interest 

Raw Data Acquisition Data Processing Feature Extraction 

Figure V-10. Block Schematic of Eye-gaze data acquisition and feature extraction. 

Gaze Data Processing and Feature Extraction   

Raw eye gaze data was acquired with a sampling rate of 30 Hz while the participant 

wore the eye-tracker goggles and interacted with the avatar during the social 

communication task. This raw data was subsequently processed to extract the features 

(Figure V-10), such as, Mean Pupil Diameter (PDMEAN), Mean Blink Rate (BRMEAN), 

Mean Fixation Duration (FDMEAN), and the Region of Interest (ROI) being looked at by 

the participant during the interaction.  

 

 

The raw eye-gaze data acquisition involves the acquisition of gaze data by using the 

video capture module and the transformation to the Vizard compatible format using the 

Viewpoint-Vizard handshake module. Thus the parameters of interest are the pupil 

diameter, the pupil aspect ratio (i.e., the ratio of the major and the minor axes of the pupil 

image), the fixation duration and the 2D gaze coordinates.  

The data processing stage involves the artifact removal.  

- For the pupil diameter, artifact removal involves removing the effects due to 

blinking. Thus value of pupil diameter > 0 is considered.  
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- We use the pupil aspect ratio (PAR) to compute the blink rate. Although 

Arrington [Arrington Research, Inc. (2002). Data Collection. In ViewPoint 

EyeTracker®: PC-60 Software User Guide (pp.47). Scottsdale, Arizona: Arrington 

Research, Inc.] mentions that blinks can be computed by monitoring the PAR data, 

Viewpoint software does not provide direct measurement of blink rate. In the present 

work, we computed the blink rate by considering the number of times the PAR value 

falls below the lower threshold of 0.5 within a window width of 1 minute. This 

threshold value for PAR was chosen after several trial test runs detecting blink rate 

with an accuracy of ±0.05%.  

- The recorded data on fixation duration (FD) is first filtered to remove the artifacts 

due to blinking and noise spikes are eliminated by thresholding. This incorporates 

filtering the raw data by a moving window having the lower and upper amplitude 

thresholds of 200 and 450 ms respectively. There are different views on fixation 

durations with respect to visual stimuli. In one study (Jacob, 1994), fixations have 

been stated to typically last between 200-600 ms, where blinks of up to 200 ms may 

occur during a fixation without terminating it and a window of 50 ms lying outside 10 

of the current fixation has been considered to terminate a fixation. Some researchers 

have advised to set the lower threshold for fixation as 100 ms (Inhoff, and Radach, 

1998). Still others have classified short fixations with FD < 240 ms and long fixations 

with FD > 320 ms (Graf and Kruger, 1989). In the present study, we compute the 

fixation duration by using a thresholding window of 200 ms as the lower limit to 

eliminate the blinking effects and 450 ms as the upper threshold (i.e., up to 1.5 
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standard deviations from the lower threshold), the reliable data range restricted by 

noise due to glare effects of cameras of the eye-tracker that we use. 

- The 2D gaze coordinates (x,y) of the participant's viewing of the presented visual 

stimulus are recorded. We first remove the points whose coordinates lie beyond the 

visual stimulus screen. Then our algorithm determines whether one’s gaze 

coordinates correspond to our task-specific segmented regions of the visual stimulus 

presented to participants. In this present work, we are mainly interested to encourage 

a participant to interact with an avatar in a socially appropriate way while paying due 

attention towards the avatar during conversation. This is important as, previous 

research has indicated atypical visual scanning pattern of children with ASD while 

viewing the face and the non-face stimuli, in which they tend to look less towards the 

face (Anderson, Colombo, and Shaddy, 2006) than the non-face objects. Thus, we 

segment our visual stimulus into two broad regions, face region (Face_ROI) of the 

avatar and the non-face region (i.e., the entire presented visual stimulus without the 

face of the avatar).  

 

Design Specifications of the Feedback Given by the System based on the Viewing Pattern 

of the Participants during Social Conversation 

Based on the dynamic fixation pattern of the participant while conversing with the 

avatar using the bidirectional conversation module, the VR-based gaze-sensitive adaptive 

response technology provides feedback to the participant at the end of the interaction 

during each social communication task. Our previous research (Chapter IV) has 

demonstrated that gaze-based individualized feedback contributes to improving the 
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Table V-1. Rationale behind Gaze-based Feedback. 
Fixation Duration System Response 

t ≥ 90% Your classmate noticed that you were staring at her, and it made her feel awkward. 
You might try looking somewhere else sometimes to make her feel comfortable.  

90% > t ≥ 70% Your classmate really enjoyed talking with you. You paid attention to her and 
made her feel comfortable. Keep it up!  

30% < t < 70% Your classmate felt pretty comfortable talking with you, but sometimes she 
noticed you weren’t paying attention. Try to let your classmate know that you’re 
engaged in the conversation. 

t ≤ 30% Your classmate didn’t think you were interested in your conversation with her. If 
you pay more attention to her, she will feel more comfortable. 

 t : Fixation Duration (as a percentage of the total viewing time) of participant's looking towards the Face 
region of visual stimulus during conversation.  

engagement level and the behavioral viewing pattern of children with ASD. Our present 

system also has the capability of providing gaze-based individualized feedback (Table V-

1).      

  

Real-time Peripheral Physiological Signal Acquisition Module 

The real-time peripheral physiological signal acquisition module is also one of the 

sub-systems of our present system. This system is capable of capturing event-marked 

synchronized peripheral physiological responses of the participants while they participate 

in the social communication task with the avatars. We do not feedback the inference from 

the peripheral physiological signals in our present work. Instead we analyze these signals 

off-line to show the physiological features which are most sensitive to the level of 

engagement of the participants. Thus this can be a step towards more effective fusion of 

sensory signals to enable more robust mapping of physiology with one’s engagement and 

thereby help to develop an improved physiology-based behavioral profiling system.  

We acquire the physiological signals when a participant interacts with the VR-based 

social communication task. The VR Task Computer (Figure V-11) is dedicated to the 

VR-based social communication task. This transmits task-related event-markers to the 
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Figure V-11. Block schematic of Real-time
acquisition of peripheral physiological signals.  

parallel port of a Physiological Data Acquisition Module which also collects the 

peripheral physiological signals of the participant during his/her interaction with the VR-

based social task. The physiological signals along with the task-related event-markers are 

acquired and stored by a Physiological Data Logger Computer via an Ethernet Port. 

 

 

 

 

 

 

 

 

 

The system acquires peripheral physiological signals using the Biopac MP150 

physiological data acquisition system (www.biopac.com). The peripheral physiological 

signals that we acquire are broadly classified as Cardiovascular activities including 

electrocardiogram (ECG), impedance cardiogram (ICG), photoplethysmogram (PPG), 

and phonocardiogram (PCG)/heart sound; Electrodermal activity (EDA) including tonic 

and phasic responses from skin conductance; Electromyographic activities from 

corrugator supercilii, zygomaticus major, and upper trapezius muscles; and Peripheral 

Temperature. The sampling rate is 1000 Hz for all the channels. Appropriate 

amplification and band-pass filtering are performed. These signals are processed to 

extract features (detailed description in Chapter III). 
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Behavioral Engagement Prediction Module 

Children with ASD are often characterized by infrequent engagement in social 

interactions (APA, 1994). Engagement, defined as ‘‘sustained attention to an activity or 

person’’ (NRC, 2001), is one of the key factors for children with ASD to make 

substantial gains in communication and social domains (Ruble and Robson, 2006). The 

engagement of children with ASD is the ground basis for the 'floor-time-therapy' to help 

them develop relationships and improve their social skills (Wieder and Greenspan, 2005). 

Thus, if we can engage these children to a social task, then we can teach them social 

skills. Also, it is well-known that these children demonstrate atypical viewing patterns 

during social interactions (Rutherford and Towns, 2008) and monitoring eye-gaze can be 

valuable to design intervention strategies. Several studies have used eye-tracking 

technology to monitor eye-gaze with static faces (Joseph and Tanaka, 2003; Trepagnier, 

Sebrechts, and Peterson, 2002) along-with off-line analysis while viewing static scene 

(Klin et al., 2002). Also a recent study (Wilms et al., 2010) has named VR-based gaze-

sensitive system as a ‘tool of the trade’ in social cognitive and affective neuroscience. 

This study has shown that eye-tracking can be used to drive changes in visual behavior of 

a virtual character in a gaze-contingent individualized manner. Specifically, it indicates 

that the gaze behavior of a virtual character can be made responsive to a human 

observer’s gaze position on the visual stimulus screen while being involved in a joint-

attention task. We fully recognize that developing a technology simply asking and 

reinforcing individuals with ASD to look toward a social target may be a limited 
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enterprise and this is not the ultimate goal of the current study. Instead the present 

research aims to develop a VR-based gaze-sensitive system that can monitor eye-gaze 

dynamically during a VR-based social communication task, predict one’s level of 

engagement to a social task based on objective metrics such as, dynamic viewing patterns 

(e.g., fixation duration), eye physiological indices (e.g., blink rate, pupil diameter) and 

performance measures (e.g., successful / unsuccessful to retrieve a targeted piece of 

information through a social conversation) to intelligently adapt itself to improve a 

child’s performance in a social communication task. 

 

Fixation Duration as a Predictor of Engagement  

Our previous research (Chapter IV) demonstrates the significance of fixation duration 

while an individual looks towards the face of the communicator during social 

communication. Also, Jones et al. (Jones, Carr, and Klin, 2008) have showed that one’s 

fixation duration while looking towards the face region of a speaker indicates social 

engagement. Fixation duration is a valuable measure, as children with ASD often exhibit 

lower fixation duration while viewing human faces than the non-human face stimuli 

(Anderson, Colombo, and Shaddy, 2006) during social interaction. Evidence from 

literature suggests that, in dyadic communication, eye-gaze information underlying one's 

expressive behavior (i.e., amount of time a speaker and a listener look at each other) 

plays a vital role in regulating conversation flow, providing feedback, communicating 

emotional information, and avoiding distraction by restricting visual input (Argyle and 

Cook, 1976). For example, a listener looking at the speaker 70% of the time during an 

interaction has been identified as 'normal while listening' (Colburn, Drucker, and Cohen, 



 110

Table V-2. Prediction of Engagement from Fixation Duration (FD). 
Inference from Fixation Duration Engagement Label 

0% ≤ [((FDFace ROI)/FDTOTAL)*100]  ≤  50% 1 
50% < [((FDFace ROI)/FDTOTAL)*100] < 70% 2 
[((FDFace ROI)/FDTOTAL)*100]  ≥ 70% 3 
FDFace_ROI : Time spent by an individual while looking towards the face region of the avatar. 
FDTOTAL : Total time spent by an individual while looking towards the entire presented visual stimulus. 

2000; Argyle and Cook, 1976).  

In this work, we use certain range of values for the fixation duration as a predictor of 

one’s engagement. To ensure smooth transition from the low engagement to the high 

engagement state, we also assign a range of values to the engagement label. 

As can be seen from Table V-2, we ascertain a numeric value of 1 to the Engagement 

Label when a participant’s percentage Fixation Duration while looking towards the face 

of the avatar is between 0 and 50 percent. We give a value of 2, when the participant’s 

percentage Fixation Duration while looking towards the face of the avatar is between 50 

and 70 percent. Finally, we give a value of 3, when the participant’s percentage Fixation 

Duration while looking towards the face of the avatar is greater than or equal to 70 

percent. 

 

Pupil Diameter as a Predictor of Engagement  

Pupil diameter is an important indicator of social engagement with significant 

pupillary constriction being observed for children with ASD while being engaged in 

attending to face stimuli (Anderson, Colombo, and Shaddy, 2006). Another study 

(Gilzernat et al., 2010) has shown the association of reduced pupil diameter with task 

engagement which they have termed as the phasic mode. Pupil diameter has been 

described as a reliable and sensitive autonomic measure of attentional engagement and 

information processing (Anderson, Colombo, and Shaddy, 2006). 
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Table V-3. Prediction of Engagement from Pupil Diameter (PD). 
Inference from Pupil Diameter Engagement Label 

PDPresent > PDPrevious 1 
PDPrevious ≥PDPresent ≥ 0.95PDPrevious  2 
PDPresent < 0.95PDPrevious 3 

As is evident from Table V-3, if the Pupil Diameter (PD) of a participant while 

interacting with a social situation is greater than that during the previous scenario, we 

ascertain the lowest value of 1 to the predicted engagement label. Similarly, if one’s PD 

while interacting with the present scenario is less than that during previous situation by 0 

to 5 percent, then we use 2 for the engagement label. Further, if the reduction in the PD 

of a participant from the previous social interaction is greater than 5 percent, then we use 

the value of 3 for the participant’s engagement label. 

 

Blink Rate as a Predictor of Engagement 

Blink rate is another important indicator of one’s engagement. Literature indicates 

that there occurs spontaneous inhibition in one’s blink rate with increased attentional 

engagement during visual tasks (Palomba et al., 2000). Some studies have attributed the 

decrease in one’s blink rate with increased engagement to one’s attempts to minimize the 

likelihood of missing important information (Baumstimler, and Parrot, 1971; Kennard, 

and Glaser, 1964). In a study conducted by Bentivoglio et. al., blink rate for normal 

subjects was found to decrease from 17 times/min while at rest to 4.5 times/min while 

being engaged to a reading task (Bentivoglio, et. al., 2004). Increased BR was found in 

schizophrenic patients in the “relaxed” condition but not in the higher engaged condition 

(Chen, et. al., 1996). Decreased blink rate was observed by Jensen et al. (Jensen et al., 

2009) among children with ASD while being engaged in a task and increased blink rate 

during task-free condition.           
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Table V-4. Prediction of Engagement from Blink Rate (BR). 
Inference from Blink Rate Engagement Label 

BRPresent > BRPrevious 1 
BRPrevious ≥ BRPresent ≥ 0.95BRPrevious 2 
BRPresent < 0.95BRPrevious 3 

 Thus, if the Blink Rate (BR) of a participant while interacting with a social situation 

is greater than that during the previous scenario, we ascertain the lowest value of 1 to the 

predicted engagement label (Table V-4). If one’s BR while interacting with the present 

scenario is less than that during previous situation by 0 to 5 percent, we use 2 for the 

engagement label. Finally, we ascertain a value of 3 to the engagement label if the 

reduction in the BR of a participant from the previous social interaction is greater than 5 

percent. 

 

Integration of VR-based social communication module with the Real-time eye-gaze 

monitoring module to provide Adaptive Response Technology with Dynamic Decision 

Task Switching based on Overall Predicted Engagement Level  

In recent years, VR has been investigated to promote social interactions in individuals 

with ASD (Parsons, Mitchell, and Leonard, 2004; Tartaro and Cassell, 2007). These 

systems are able to adapt tasks based only on performance which is an important aspect 

of potential VR-based intervention systems for children with ASD. However, such 

adaptation based solely on task performance limits the individualization of application 

and likely potential generalization of skills. Specifically, performance based virtual social 

interactions do not often involve measurements of or necessitate appropriate subtle, yet 

critically important, aspects of effective social communication (such as, eye-gaze, and 

other forms of social convention). In fact, while many children with ASD are capable of 

yielding correct performance on objective task measures, it is their vulnerabilities 
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surrounding elements of social communication that is so closely tied to their functional 

social impairments. 

Thus, for effective social communication, the system must be intelligent enough to 

predict both the behavioral engagement level and the performance of a participant during 

VR-based social communication to promote an adaptive individualized social skill 

training paradigm.  

 

Rationale behind the Behavioral Engagement 

In this work, we predict one’s behavioral engagement level from one’s behavioral 

viewing pattern and eye physiological indices. Thus, we monitor one’s real-time 

fixation patterns, blink rate and pupil diameter to predict the behavioral engagement 

while being involved with the VR-based social communication task. The logic behind 

the prediction of one’s behavioral engagement level is as follows: 

- A participant’s behavioral engagement is considered as ‘Good Enough’ if the 

cumulative sum of the engagement label, as obtained by real-time monitoring 

of his/her fixation duration (Table V-2), pupil diameter (Table V-3), and blink 

rate (Table V-4) is ≥ 6. 

- A participant’s behavioral engagement is considered as ‘Not Good Enough’ if 

the cumulative sum of the engagement label is < 6.    

Rationale behind the Performance Metric 

Our present work considers one’s performance metric to be measured from 

his/her ability to extract the target piece of information from the avatar during the 

VR-based social interaction while using the bidirectional conversation module. 
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- A participant’s performance in the social communication task is considered as 

‘Adequate’ if he/she scores ≥ 75% of the total score possible in a social 

conversation belonging to a particular difficulty level. 

- Otherwise, the participant’s performance in the social conversation task is 

considered as ‘Inadequate’. 

As a step towards social communication skill training, our system requires the 

participants to carry out the social conversation with the avatar by following the 

conversation flow threads, as discussed in Section, ‘Design Specifications of the 

Degree of Interaction Difficulty for the Bidirectional Conversation Module’. 

Maximum scores that can be acquired while using the bidirectional social 

conversation module are 30, 50, and 70 for Easy, Medium, and High Level of 

interaction difficulty respectively. The scores acquired by a participant decreases 

progressively if he/she makes irrelevant choices at each turn while conversing with 

the avatar. For example, as shown in Figure V-5, which represents an Easy Level of 

interaction difficulty, while starting the conversation with the avatar, the participant 

makes the relevant choice, i.e., selects choice 3 at the first attempt, he/she scores 10 

for that selection. But, if he/she mistakenly selects choice 1 or choice 2, and then 

selects choice 3 at the second attempt, he/she scores 6, while on making a third 

attempt he/she scores 2. Similar is the case for the Medium and the High Level of 

interaction difficulty. However, our algorithm allows 2, 3, and 5 misses for the Easy, 

Medium, and High Level of interaction difficulty, respectively, after which the task 

progression switches to the next VR-based social task trial.   

Our present work tries to fuse the behavioral engagement level with the performance 
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metrics of an individual during social communication task. The system adapts itself 

intelligently based on the behavioral engagement level and the performance metrics by 

utilizing a Dynamic Decision Task Switching Module. 

 

Design of Dynamic Decision Task Switching Module 

No existing technology (e.g., VR-based systems, robotic systems) specifically 

addresses how to autonomously detect and flexibly respond to the affective cue, such as, 

engagement of children with ASD within an intervention paradigm (Bernard-Opitz, 

Sriram, and Nakhoda-Sapuan, 2001; Dautenhahn and Werry, 2004; Kozima, Nakagawa, 

and Yasuda, 2007; Michaud and Theberge-Turmel, 2002; Mitchell, Parsons, and 

Leonard, 2007; Parsons, Mitchell, and Leonard, 2005; Pioggia et al., 2005; Scassellati, 

2005; Strickland, 1997; Swettenham, 1996; Tartaro and Cassell, 2007; Trepagnier, et al., 

2006). Affective cue, such as engagement is insight into the behavior of children with 

ASD, and is one of the key factors for these children to make substantial gains in 

communication and social domains (Ruble and Robson, 2006). The ability to utilize the 

power of these cues may permit a smooth, natural, and more productive interaction 

process (Gilleade, Dix, and Allanson, 2005; Kapoor, Mota, and Picard, 2001; Picard, 

1997; Prendinger, Mori, and Ishizuka, 2005) especially considering the core social and 

communicative vulnerabilities that limit individuals with ASD to accurately self-identify 

affective experiences (Hill, Berthoz, and Frith, 2004). Common in autism intervention, 

clinicians who work with children with ASD intensively monitor the engagement of the 

children in order to make appropriate decisions about adaptations to their intervention. 

The engagement of children with ASD is the ground basis for the "floor-time therapy" to 
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help them develop relationships and improve their social skills (Wieder and Greenspan, 

2005). Also, clinicians look out for task performance metric which is positively 

correlated to the engagement (Blackorby and Cameto, 2005). Given the importance of 

affective cues (e.g., engagement) in ASD intervention practice (Ernsperger, 2003; Seip, 

1996; Wieder and Greenspan, 2005), predicting one’s engagement level from implicit 

measures (e.g., behavioral viewing fixation pattern and eye physiology) to facilitate 

bidirectional communication may be critical to encourage a child to improve his/her 

engagement level and performance in social task. 

Our present research deals with the development of a Dynamic Decision Task 

Switching Module that autonomously decides to change the interaction difficulty level 

with an aim to improve a participant’s engagement to the social task. In order to achieve 

this, we consider one’s predicted behavioral engagement, as detected from his/her 

viewing pattern and eye physiological indices (as discussed above) as ‘Good enough’ or 

‘Not Good Enough’. In addition, a participant’s performance in the virtual social 

communication task can be ‘Adequate’ (e.g., if the participant scores ≥ 75% of the total 

score possible while extracting intended information from the avatar), otherwise the 

participant’s performance is considered as ‘Inadequate’. Subsequently, we use a rule-

governed strategy generator that fuses the information on the predicted behavioral 

engagement (e.g., ‘Good Enough’, or ‘Not Good Enough’) and the task performance 

(e.g., ‘Adequate’, or ‘Inadequate’) to predict and implement an individualized task 

modification strategy. The generator has the ability to enhance performance via 

modifying task difficulty (i.e., increasing/decreasing) and thus provides reengagement 

strategy in the form of access to preferred level of interaction difficulty for a specific 
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Table V-5. Individualized task modification strategy based on the composite effect of Behavioral Viewing, 
Eye Physiological Indices, and Performance Metric. 
Case 
No. 

Predicted Behavioral 
Engagement (from 
Viewing Pattern and 
Physiological Indices) 

Task 
Performance

Predicted 
Overall 
Behavioral 
Engagement 

Decision taken by Strategy Generator 
for Task Difficulty Level Modification 

1 Good Enough Adequate Engaged Increase the difficulty level / Maintain at 
the same difficulty level, if that is the 
highest. 

2 Good Enough Inadequate Not Engaged Decrease the difficulty level / Maintain at 
the same difficulty level, if that is the 
lowest. 

3 Not Good Enough Adequate Semi-Engaged a) Maintain at the same difficulty 
level and look for improvement in the 
next cycle and  
b) In case of no further 
improvement, decrease the difficulty level 
or maintain it, if that is the lowest. 

4 Not Good Enough Inadequate Not Engaged Too difficult. So decrease the difficulty 
level / Maintain it at the same difficulty 
level, if that is the lowest. 

controlled interval of time. The system has the ability to recognize patterns of 

performance - not just to make a decision based on engagement and performance in one 

interval. In this way, the system's embodied intelligence is capable of recognizing 

patterns of success and failure based on its own modifications. The system attempts to 

promote both engagement and performance, but performance progression is the super-

ordinate variable that trumps conflicting decisions in the model and ensure that we do not 

reward escape/avoidance. We present the individualized task modification strategy based 

on the composite effect of one’s behavioral viewing, eye physiological indices, and 

performance metric in a social communication task, in Table V-5.  

 

From Table V-5, we find that when a participant’s engagement and task performance 

are sufficient, indicating the overall behavioral engagement as ‘Engaged’, then the task 

progression continues stepwise (i.e., increasing task difficulty after successful 

completion) to promote continued optimal learning (Case 1). If task performance 
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becomes ‘Inadequate’, indicating the overall behavioral engagement as ‘Not Engaged’ 

the task difficulty is lowered (Case 2). If the task performance is ‘Adequate’ and the 

behavioral engagement is ‘Not Good Enough’, indicating the overall behavioral 

engagement as ‘Semi-Engaged’ then the performance progression is the super-ordinate 

variable (Case 3). In this case, the strategy generator maintains the task progression at the 

same level of difficulty (Case 3a) and look out for an improvement in the next cycle. In 

case of no improvement, the difficulty level is reduced (Case 3b). Thus, the system has 

the ability to recognize patterns of one’s engagement and performance - not just to make 

a decision based on engagement and performance in one interval. Further, if both the task 

performance and the behavioral engagement are ‘Inadequate’ and ‘Not Good Enough’ 

respectively, indicating the overall behavioral engagement as ‘Not Engaged’, and 

implying that the task might be too difficult for the participant, then the strategy 

generator reduces the task difficulty (Case 4). 

In the present work we implemented this dynamic task switching module by using a 

Finite State Machine representation. Finite state machine (Booth, 1967) is a behavior 

model composed of a finite number of states, transitions between those states, and 

actions, similar to a flow graph in which one can inspect the way logic runs when certain 

conditions are met. In our present work, we have three levels of interaction difficulty 

(such as, Easy, Medium, and High), and the strategy generator provides the logic for the 

transition from one difficulty level to another. Thus the dynamic task switching used in 

our present work is represented by the finite state machine representation (Figure V-12).     
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C1: Case1; C2 : Case2; C3a : Case3a; C3b : Case3b; C4 : Case4 
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C2/C3b/C4
C3a 

EASY

HIGH 

 
Figure V-12. State Machine Representation of Dynamic Decision
Task Switching based on composite effect of one’s Behavioral
Viewing, Eye Physiological Indices, and Performance Metric. 

Table V-6. Task modification strategy based on the Performance Metric. 
Case 
No. 

Task 
Performance 

Predicted Overall 
Engagement 

Decision taken by Strategy Generator for Task Difficulty 
Level Modification 

1 Adequate Engaged Increase the difficulty level / Maintain at the same difficulty 
level, if that is the highest. 

2 Inadequate Not Engaged Decrease the difficulty level / Maintain at the same difficulty 
level, if that is the lowest. 

 

 

 

 

 

 

 

 

 

 

In the present work, we carried out a comparative analysis between ‘a system that 

predicts social engagement based on the rule-governed composite effect of one’s 

behavioral viewing, eye physiological indices, performance’ and ‘a system that predicts 

social engagement based on the performance metric alone’. In order to achieve this, our 

present system also features switching of task difficulty level based on the performance 

metric only. We present the task modification strategy based on one’s performance 

metric only in Table V-6. 

 

From Table V-6, we find that when a participant’s task performance is ‘Adequate’, 

we consider the overall predicted engagement as ‘Engaged’ and the task progression 
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Figure V-13. State Machine Representation of Task Switching
based on one’s Performance Metric. 

continues stepwise (Case 1). But, if on the other hand, the participant’s task performance 

is ‘Inadequate’, which indicates that the participant is ‘Not Engaged’, then the system 

lowers the task difficulty. This task switching is represented by the following State 

Machine Diagram (Figure V-13). 

 

 

 

 

 

 

 

 

    

 

Discussion 

This chapter presents the detailed design specifications of the developed VR-based 

Gaze-sensitive Adaptive Response Technology system. This system intelligently fuses 

the information derived from one’s behavioral viewing patterns, variation in one’s eye 

physiological indices and one’s performance metric during a VR-based social 

communication task to predict one’s overall engagement to the social task. Based on the 

predicted overall engagement, the system adaptively responds with an aim to improve 

one’s engagement and performance in the social communication task. By this we hope to 

foster improved social communication skills among the participants in an individualized 
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manner, and adaptively encourage the participants to improve his/her level of 

engagement and performance during social interaction. Such a system could provide 

valuable information to caregivers and clinicians about the specific aspects of social 

communication. In addition, this will provide an integrated computer and eye 

physiological profiling system which may serve as a tool for designing intervention 

strategies.  

 

References 

 

Anderson, C. J., Colombo, J., and Shaddy, D. J. “Visual Scanning and Pupillary Responses in Young 

Children with Autism Spectrum Disorder,” J. of Cli. and Exp. Neuropsy., vol. 28, pp. 1238–1256, 2006. 

 

APA, “Diagnostic and statistical manual of mental disorders,” (4th ed.), Washington, DC: American 

Psychiatric Association, 1994. 

 

Argyle, M., and Cook, M. “Gaze and Mutual Gaze,” Cambridge, MA: Cambridge Univ. Press, 1976. 

 

Baumstimler, Y., and Parrot, J. “Stimulus generation and spontaneous blinking in man involved in a 

voluntary activity,” J. Exp. Psychol., vol. 88, pp. 95-102, 1971. 

 

Bentivoglio, A.R., Bressman, S.B., Cassetta, E. Carretta, D. Tonali, P., and Albanese, A. “Analysis of blink 

rate patterns in normal subjects,” Movement Disorders, vol. 12, no. 6, pp. 1028-1034, 2004. 

 

Bernard-Opitz, V., Sriram, N., and Nakhoda-Sapuan, S. “Enhancing social problem solving in children 

with autism and normal children through computer-assisted instruction,” Journal of Autism and 

Developmental Disorders, vol. 31, no. 4, pp. 377-384, 2001. 

 

Blackorby, J. and Cameto, R. “Changes in the School Engagement and Academic Performance of Students 

with Disabilities,” in Engagement and Academics, pp. 1-24, 2005. 

 

Booth, T. “Sequential Machines and Automata Theory,” John Wiley and Sons, New York, 1967. 

 



 122

Chen, E.Y.H., Lam L.C.W., Chen, R.Y.L., and Nguyen, D.G.H. “Blink rate, Neurocognitive impairments, 

and symptoms in Schizophrenia,” Biological Psychiatry, vol. 40, no. 7, pp. 597-603, 1996. 

 

Cobb, S. V. G., Nichols, S., Ramsey, A., and Wilson, J. R. “Virtual reality induced symptoms and effects,” 

Presence, vol. 8, no. 2, pp. 169-186, 1999. 

 

Colburn, A., Drucker, S., and Cohen, M. “The role of eye-gaze in avatar-mediated conversational 

interfaces,” In SIGGRAPH Sketches and Applications, New Orleans, Louisiana, USA, 2000. 

 

Dautenhahn, K. and Werry, I. “Towards interactive robots in autism therapy: Background, motivation and 

challenges,” Pragmatics and Cognition, vol. 12, pp. 1-35, 2004. 

 

Ernsperger, L. “Keys to Success for Teaching Students with Autism,” Future Horizons, 2003. 

 

Garau, M., Slater, M., Bee, S., and Sasse, M. A. “The impact of eye gaze on communication using 

humanoid avatars,” in Proceedings of the SIGCHI conference on human factors in computing systems, pp. 

309-316, 2001. 

 

Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., and Cohen, J. D. “Pupil diameter tracks changes in control 

state predicted by the adaptive gain theory of locus coeruleus function,” Cognitive, Affective, & Behavioral 

Neuroscience, vol. 10, pp. 252-269, 2010.    

 

Gilleade, K., Dix, A., and Allanson, J. “Affective videogames and modes of affective gaming: Assist me, 

challenge me, emote me,” in Proceedings of the Digital Games Research Association Conference, 2005. 

 

Graf, W., and Krueger, H. “Ergonomic evaluation of user-interfaces by means of eye-movement data,” In 

M. J. Smith, and G. Salvendy (eds.) Work with Computers: Organizational, Management, Stress and Health 

Aspects, Elsevier Science Publishers, B.V., Amsterdam, pp. 659-665, 1989. 

 

Hill, E., Berthoz, S., and Frith, U. “Brief report: cognitive processing of own emotions in individuals with 

autistic spectrum disorder and in their relatives,” Journal of Autism and Developmental Disabilities, vol. 

34, no. 2, 2004. 

 

Inhoff, A. W., and Radach, R. “Definition and computation of oculomotor measures in the study of 

cognitive processes,” In G. Underwood (Ed.), Eye guidance in reading, driving and scene perception. New 

York: Elsevier, pp. 29-53, 1998. 



 123

 

Itti, L., Dhavale, N., and Pighin, F. “Realistic Avatar Eye and Head Animation Using a Neurobiological 

Model of Visual Attention,” In: Proc. Intl. Sym. on Opt. Science and Tech., vol. 5200, pp. 64-78, 2003. 

 

Jacob, R. J. K. “Eye Tracking in Advanced Interface Design,” in Advanced Interface Design and Virtual 

Environments, ed. W. Barfield and T. Furness, Oxford University Press, Oxford, 1994. 

 

Jenkins, R., Beaver, J. D., and Calder, A. J. “I thought you were looking at me: Direction-specific 

aftereffects in gaze perception,” Psychological Science, vol. 17, pp. 506-513, 2006. 

 

Jensen, B., Keehn, B., Brenner, L., Marshall, S.P., Lincoln, A.J., and Müller, R.A. “Increased Eye-Blink 

Rate in Autism Spectrum Disorder May Reflect Dopaminergic Abnormalities,” Intl. Society for Autism 

Research, Poster Presentation, 2009. 

 

Jones, W., Carr, K., and Klin, A. “Absence of preferential looking to the eyes of approaching adults 

predicts level of social disability in 2-year-old toddlers with autism spectrum disorder,” Arch. Gen. 

Psychiatry, vol. 65, no. 8, pp. 946-954, 2008. 

 

Joseph, R.M., and Tanaka, J. “Holistic and part-based face recognition in children with autism,” Journal of 

Child Psychology and Psychiatry, vol. 44, no. 4, pp. 529–542, 2003. 

 

Kapoor, A., Mota, S., and Picard, R. W. “Towards a learning companion that recognizes affect,” in 

Proceedings of Emotional and Intelligent II: The Tangled Knot of Social Cognition AAAI Fall Symposium, 

2001. 

 

Kennard, D.W., and Glaser, G.H. “An analysis of eyelid movements,” J. Nervous Mental Disorder, vol. 

139, pp. 31-48, 1964.  

 

Klin, A., Jones, W., Schultz, R., Volkmar, F., and Cohen, D. “Visual fixation patterns during viewing of 

naturalistic social situations as predictors of social competence in individuals with autism,” Archives of 

General Psychiatry, vol. 59, no. 9, pp. 809-816, 2002. 

 

Kozima, H., Nakagawa, C., and Yasuda, Y. “Children-robot interaction: a pilot study in autism therapy,” 

Progress in Brain Research, vol. 164, pp. 385-400, 2007. 

 

Michaud, F., and Theberge-Turmel, C. “Mobile robotic toys and autism,” in Socially Intelligent Agents: 



 124

Creating Relationships With Computers and Robots, K. Dautenhahn, A. H. Bond, L. Canamero, and B. 

Edmonds, Eds. Norwell, MA: Kluwer, pp. 125-132, 2002. 

 

Mitchell, P., Parsons, S., and Leonard, A. “Using virtual environments for teaching social understanding to 

adolescents with autistic spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 37, pp. 

589-600, 2007. 

 

NRC. (2001). Educating children with autism. National Academy Press, Washington, DC. 

 

Palomba, D., Sarlo, M., Angrilli, A., Mini, A., Stegagno, L. “Cardiac responses associated with affective 

processing of unpleasant film stimuli,” International Journal of Psychophysiology, vol. 36, pp. 45-57, 2000. 

 

Parsons, S., and Mitchell, P. “The potential of virtual reality in social skills training for people with autistic 

spectrum disorders,” Journal of Intellectual Disability Research, vol. 46, pp. 430-443, 2002. 

 

Parsons, S., Mitchell, P., and Leonard, A. “The use and understanding of virtual environments by 

adolescents with autistic spectrum disorders,” J Autism Dev Disord, vol. 34, no. 4, pp. 449-466, 2004. 

 

Parsons, S., Mitchell, P., and Leonard, A. “Do adolescents with autistic spectrum disorders adhere to social 

conventions in virtual environments?,” Autism, vol. 9, pp. 95-117, 2005. 

 

Pereira, A.F., Yu, C., Smith, L.B., and Shen, H. “A First-Person Perspective on a Parent-Child Social 

Interaction During Object Play,” Proc. 31st Annual Meeting of Cog. Sc. Society, Amsterdam, 2009. 

 

Picard, R. W. “Affective Computing,” Cambridge, MA: MIT Press. 1997. 

 

Pioggia, G., Igliozzi, R., Ferro, M., Ahluwalia, A., Muratori, F., and De Rossi, D. “An android for 

enhancing social skills and emotion recognition in people with autism,” IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, vol. 13, no. 4, pp. 507-515, 2005. 

 

Prendinger, H., Mori, J., and Ishizuka, M. “Using human physiology to evaluate subtle expressivity of a 

virtual quizmaster in a mathematical game,” International Journal of Human-Computer Studies, vol. 62, no. 

2, pp. 231-245, 2005. 

 

Ruble, L. A., and Robson, D. M. “Individual and environmental determinants of engagement in autism,” J. 

of Aut. and Dev. Dis., vol. 37, no. 8, pp. 1457–1468, 2006. 



 125

 

Rutherford, M. D., and Towns, M. T. “Scan Path differences and similarities during Emotion Perception in 

those with and without Autism Spectrum Disorders,” J. Aut. Dev Disord, vol. 38, pp. 1371-1381, 2008. 

 

Scassellati, B. “Quantitative metrics of social response for autism diagnosis,” in Proceedings of the IEEE 

International Workshop on Robot and Human Interactive Communication, pp. 585-590, Nashville, 

Tennessee, 2005. 

 

Seip, J. “Teaching the Autistic and Developmentally Delayed: A Guide for Staff Training and 

Development,”  Delta, BC: Author, 1996. 

 

Strickland, D. “Virtual reality for the treatment of autism,” in Virtual reality in neuropsycho-physiology, G. 

Riva, Ed., pp. 81-86, Amsterdam: IOS Press, 1997. 

 

Swettenham, J. “Can children with autism be taught to understand false belief using computers?,” Journal 

of Child Psychology and Psychiatry, vol. 37, no. 2, pp. 157-165, 1996. 

 

Tartaro, A., and Cassell, J. “Using Virtual Peer Technology as an Intervention for Children with Autism,” 

In: J. Lazar (Ed.), Towards Universal Usability: Designing Computer Interfaces for Diverse User 

Populations. UK: John Wiley and Sons, Chichester, 2007. 

 

Trepagnier, C., Sebrechts, M.M., and Peterson, R. “Atypical face gaze in autism,” Cyberpsychology and 

Behavior, vol. 5, no. 3, pp. 213–217, 2002. 

 

Trepagnier, C. Y., Sebrechts, M. M., Finkelmeyer, A., Stewart, W., Woodford, J., and Coleman, M. 

“Simulating social interaction to address deficits of autistic spectrum disorder in children,” Cyberpsych 

Behav, vol. 9, no. 2, pp. 213-217, 2006. 

 

Wieder, S., and Greenspan, S. “Can Children with Autism Master the Core Deficits and Become 

Empathetic, Creative, and Reflective?,” The Journal of Developmental and Learning Disorders, vol. 9, 

2005. 

 

Wilms, M., Schilbach, L., Pfeiffer, U., Bente, G., Fink, G. R., and Vogeley, K.  “It’s in your eyes: using 

gaze-contingent stimuli to create truly interactive paradigms for social cognitive and affective 

neuroscience,” Social Cognitive and Affective Neuroscience, vol. 5, no.1, pp. 98-107, 2010. 

 



 126

 

 

 

IMPACT OF VIRTUAL REALITY BASED SOCIAL INTERACTIVE GAZE-

SENSITIVE SYSTEM WITH ADAPTIVE RESPONSE TECHNOLOGY ON 

PERFORMANCE AND BEHAVIORAL VIEWING FOR CHILDREN WITH ASD 

 

Introduction 

The primary objective of this chapter is to present our findings on the effects of 

interacting with a Virtual Reality (VR) based gaze-sensitive social communication 

system equipped with adaptive response technology. A growing number of studies have 

been investigating the application of VR-based applications to address some of the core 

deficit areas related to the realm of social communication for children with ASD 

(Parsons, Mitchell, and Leonard, 2004; Strickland et al., 1996). However, the current VR 

environments as applied as assistive technologies to tasks involving children with ASD 

are capable of modifying tasks based only on objective performance characteristics (i.e., 

correct or incorrect) of responses. Though being able to adapt tasks based on performance 

is an important aspect of potential VR-based intervention systems for children with ASD, 

such adaptation based solely on task performance limits the individualization of 

application and likely potential generalization of skills. Specifically, performance based 

virtual social interactions do not often involve measurements of or necessitate appropriate 

subtle, yet critically important, aspects of effective social communication (e.g., eye-gaze, 

and other forms of social convention).  In fact, while many children with ASD are 

CHAPTER VI
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capable of yielding correct performance on objective task measures, it is their 

vulnerabilities surrounding elements of social communication that is so closely tied to 

their functional social impairments.    

In the current work we focus on the development of a novel VR technology capable 

of incorporating real-time measurement and flexible adaptation to dynamic gaze patterns 

of children with ASD. It is a common finding that individuals with ASD often exhibit 

atypical gaze patterns during social interactions (e.g., greater fixation towards non-social 

objects than faces) (Cohen, and Volkmar, 1997; Pelphrey et al., 2002). As such, a flexible 

technology designed to detect, respond to, and potentially enhance appropriate and 

socially modulated gaze during social interactions could be seen as a tool for potential 

ASD intervention. Emerging work suggests that integration of a VR-based system with 

eye-tracking technology appears to be the next logical step towards establishing a gaze-

sensitive virtual social interaction. While discussing the importance of such a system, a 

recent study (Wilms et al., 2010) has named it as a ‘tool of the trade’ in social cognitive 

and affective neuroscience. This study has shown that eye-tracking can be used to drive 

changes in visual behavior of a virtual character in a gaze-contingent individualized 

manner. Specifically, it indicates that the gaze behavior of a virtual character can be made 

responsive to a human observer’s gaze position on the visual stimulus screen while being 

involved in a joint-attention task. We fully recognize that developing a technology simply 

asking and reinforcing individuals with ASD to look towards a social target may be a 

limited enterprise and this is not the ultimate goal of the current study. Instead the current 

work represents a first-step in demonstrating the feasibility of potential more complex, 

sophisticated, robust intervention system designed to detect patterns of gaze, as well as 
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other subtle and necessary components of social communication, in order to develop 

subtle methods for incorporating these differences in terms of making intelligent and 

automatic decisions that could be built into complex systems in a virtual environment. 

In this chapter, we study the effects of interaction of a group of ASD participants with 

our designed VR-based gaze-sensitive social communication system equipped with 

adaptive response technology. Each participant participated in two VR-based social 

communication tasks on two different sessions. In one session (henceforth referred to as 

Session1), the participant interacted with the system that adaptively responded based on 

one’s performance metric alone. In the other session (henceforth referred to as Session2), 

the participant interacted with the system that adaptively responded by predicting one’s 

engagement to the social task, based on the composite effect of one’s behavioral viewing, 

eye physiological indices, and performance metric while participating in the social task. 

We investigate the effects of interacting with such a system that can intelligently adapt 

itself based on one’s predicted engagement level while participating in the social 

communication task so far as one’s performance and behavioral viewing during the social 

communication task are concerned.   

 

Experimental Investigation 

 

Participants 

A group of 8 adolescents (Male: n=7, Female: n=1) with high-functioning ASD and 

ages ranging from 13-18 years (Mean = 15.76 years, SD = 1.89 years) participated in this 

study. Their characteristics are shown in Table VI-1. The majority of male participants is 
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Table VI-1. Participant Characteristics. No significant group difference was found for age, and standard 
score on the PPVT, scores SRS, SCQ, ADOS-G, and ADI-R. 

Participant  
(Gender) 

Age 
(years) 

PPVTa 
Standard 

score 

SRSb 
Total 

T-score 

SCQc  
Total 
score 

ADOS-Gd 
Total score  
(cutoff = 7) 

ADI-Re 
Total score  
(cutoff = 22) 

Group1       
ASD1 (Male)  17.583 134 80 12 13 49 
ASD2 (Male)  16.917 110 73 13 7 33 
ASD3 (Male)  14.250 130 89 16 15 34 
ASD4 (Male) 13.833 170 92 14 13 53 
Group Mean 
(SD) 

15.645 
(1.88) 

136  
(24.98) 

83.50  
(8.66) 

13.75 
(1.71) 

12  
(3.46) 

42.25  
(10.24) 

Group2       
ASD5 (Male) 16.500 92 87 20 - - 
ASD6 (Male) 18.250 97 63 17 9 49 
ASD7 (Female) 13.000 133 90 10 7 25 
ASD8 (Male)  15.750 126 69 23 11 56 
Group Mean 
(SD) 

15.875 
(2.18) 

112  
(20.51) 

77.25  
(13.28) 

17.5  
(5.57) 

9  
(2) 

43.33  
(16.26) 

t-value 0.1839 1.4851 0.7886 1.2878 1.3241 0.1092 
p-value ns ns ns ns ns ns 
Exact p-value 0.8586 0.1881 0.4604 0.2452 0.2428 0.9173 
aPeabody Picture Vocabulary Test-3rd edition (Dunn and Dunn, 1997) 
bSocial Responsiveness Scale (Constantino, 2002) 
cSocial Communication Questionnaire (Rutter et al., 2003a) 
dAutism Diagnostic Observation Scale-Generic: Module 3 or 4 depending upon subject’s developmental 
level (Lord et al., 2000) 
eAutism Diagnostic Interview-Revised (Rutter et al., 2003b) 
ns : No Significant group difference. 

reflective of the autism community, which has been found to have a male to female ratio 

of 4:1 (Ehlers, and Gillberg, 1993). All ASD participants had a confirmed diagnosis from 

evaluations by a licensed clinical psychologist using DSM-IV criteria according to their 

medical records. All but one participant met cutoffs for ASD according to ADOS and 

ADI-R assessments. ASD5 did not have ADOS or ADI-R records, however his scores on 

the SRS and the SCQ questionnaires met ASD cutoffs. The participants were categorized 

in two groups (e.g., Group1 and Group2). Group1 participants were first exposed to VR-

based social communication tasks with task-switching based on one’s performance metric 

alone on the first day, followed by VR-based tasks with task-switching based on the 

composite effects of one’s behavioral viewing, eye physiology, and performance metrics 



 130

on the second day (i.e., Session1-followed by-Session2, as discussed in ‘Introduction’). 

Group2 participants were exposed to VR-based social tasks in the reverse order, i.e., 

Session2-followed by-Session1).    

All 8 participants underwent the Peabody Picture Vocabulary Test (PPVT) to assess 

cognitive function (Dunn, and Dunn, 1997). The PPVT is a measure of single-word 

receptive vocabulary that is often used as a proxy for IQ testing because of its high 

correlations with standardized tests such as the Wechsler Intelligence Scale for Children 

(Bee, and Boyd, 2004). It provides standard scores with a mean of 100 and a standard 

deviation of 15, and the DSM-IV classifies full scale IQ’s above 70 as nonretarded (APA, 

2000). Participants in this study obtained a standard score of 80 or above on the PPVT 

measure. 

The Social Responsiveness Scale (SRS) is a 65-item, 15-min parent-report 

questionnaire designed to quantitatively measure the severity of autism-related 

symptoms. This measure provides an index of ASD-related social competence with 

questions related to social awareness, social information processing, capacity for 

reciprocal social communication, social anxiety/avoidance, and autistic preoccupations 

and traits. The SRS has been shown to correlate on the order of 0.7 with the ADI-R 

(Constantino et al., 2003). Behaviors and characteristics are rated on a 4-point scale that 

ranges from “Not True” to “Almost Always True.” The SRS generates a total T-score 

reflecting severity of social deficits in the autism spectrum, as well as five Treatment 

Subscales: Receptive, Cognitive, Expressive, and Motivational aspects of social behavior, 

and Autistic Preoccupations. The T-score categorizes measurements in the Normal Range 

(≤ 59T), Mild to Moderate ASD Range (60T-75T), or Severe Range (≥ 76T) 
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(Constantino, 2002). Three participants ranked within the Mild to Moderate Range 

(ASD2, ASD6, and ASD8) with the remaining five falling into the Severe Range (ASD1, 

ASD3, ASD4, ASD5, and ASD7). 

The Social Communication Questionnaire (SCQ) is a brief instrument for the valid 

screening or verification of ASD symptoms in children that has been developed from the 

critical items of the Autism Diagnostic Interview (ADI) and compiled into a parent report 

questionnaire (Rutter et al., 2003a). As in the ADI, these questions tap the three critical 

autism diagnostic domains of qualitative impairments in reciprocal social interaction, 

communication, and repetitive and stereotyped patterns of behavior. Among 200 children 

and adolescents, domain scale scores of the SCQ were significantly correlated with 

corresponding scores derived from the full ADI (r = 0.55 to 0.71, p <0.005) (Berument et 

al., 1999). Analysis indicated that the SCQ was comparable to the ADI in discriminating 

ASD from non-ASD, autism vs. mental retardation, and autism vs. other aspects of ASD. 

A cutoff score of 13 is recommended to maximize valid ascertainment of cases of ASD 

(specificity) while minimizing errors of omission (sensitivity). The SCQ was designed for 

use with children over the age of four years with a mental age of at least two years. All 

participants (except ASD1 and ASD7) met the ASD cutoff for SCQ measure with ASD1 

and ASD7 falling off marginally. However, ASD1 and ASD7 met the ASD cutoffs on the 

ADOS and the ADI-R measures. 

The Autism Diagnostic Observation Schedule-Generic (ADOS-G) is a 45-min. semi-

structured standardized observational assessment of play, social interaction, and 

communicative skills that was designed as a diagnostic tool for identifying the presence 

of autism (Lord et al., 2000). It is organized into four modules, which are distinguished 
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by their appropriateness for use with individuals functioning at different developmental 

levels, ranging from nonverbal children to highly fluent adults. Each module provides a 

set of behavioral ratings in five domains: Language and Communication, Reciprocal 

Social Interaction, Play or Imagination/Creativity, Stereotyped Behaviors and Restricted 

Interests, and Other Abnormal Behaviors. The scoring algorithm provides cutoffs that can 

be used to discriminate between a diagnosis of autism, autism spectrum, or non-spectrum. 

Across all modules, inter-observer agreement for the algorithm score was 0.92, and the 

test-retest correlation was 0.82. Agreement about diagnostic classification (autism vs. 

autism spectrum vs. non-spectrum) ranged from 81%-93% (Lord et al., 2000). After 

coding ratings on the five domains, a total score on the two main components of 

Communication and Reciprocal Social Interaction equal to or above 7 would indicate 

autism spectrum, and a score of 10 or more would indicate autistic disorder. All the 

participants in our study met the cutoff criterion. 

The Autism Diagnostic Interview-Revised (ADI-R) is a semi-structured, investigator-

based interview for parents/caregivers that was developed for the purpose of diagnostic 

classification of individuals who may have autism or other pervasive developmental 

disorders (Rutter et al., 2003b). This interview covers areas of background and history, 

early development, acquisition and loss of skills, language and communication, social 

development and play, favorite activities/toys, interests and behaviors, and general 

behaviors. The ADI-R provides explicit scoring criteria that yield cutoff scores in the 

domains of social reciprocity, language and communication, and restricted and repetitive 

activities. The scores from a subset of critical items of the ADI-R are summed to yield 

scores for each domain; cutoffs are used to determine whether the individual’s diagnostic 
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classification is consistent with an autism spectrum disorder. This measure possesses 

strong psychometric properties in terms of inter-observer agreement, internal consistency, 

and test-retest reliability. The ADI-R has been found to discriminate autism from non-

autism in individuals with mental ages of at least 18 months (Lord et al., 1997). A total 

score on the four domains: Reciprocal Social Interaction, Communication, Restricted and 

Repetitive Patterns of Behavior, and Evidence of Abnormal Development before 36 

months of age, of the ADI-R equal to or above 22 would indicate autistic disorder (Rutter 

et al., 2003b). All the participants (except ASD5) in our study met the ADI-R cutoff. For 

ASD5, the ADI-R score was not available, although ASD5 was above the clinical 

threshold on the other measures, such as, SRS and SCQ. 

A comparative analysis was carried out between the two groups of participants on 

their age, PPVT scores, and ASD measures such as, SRS, SCQ, ADOS-G, and ADI-R 

scores. An independent sample t-test between the two groups of participants, as shown in 

Table VI-1 indicates that no statistically significant group difference exists between the 

two groups on all the measures. This implies that the two groups are matched on all the 

above measures. 

    

Procedure 

We designed a usability study of the designed system to investigate the implications 

of the designed VR-based social interactive system with adaptive response technology. 

The commitment required of interested participants is a total of 2 sessions (lasting for 

approximately 2.5 hours). The first session runs approximately 1.5 hours, due to two brief 

adaptation phases (for the participant) with the gathering of the consent/assent. The 
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second session lasts about 1 hour. For each completed session, a participant receives a 

$15 gift card. 

The experiment setup (Figure VI-1) for the usability study, includes a 17" task 

computer monitor (C1) dedicated to VR-based tasks. For the VR-based tasks, we use 

Vizard (Worldviz, Santa Barbara, CA), a commercially available Python-based VR 

design package (discussed in Chapter V). A participant’s eye-movement is tracked by 

using Eye-Tracker goggles (from http://www.arringtonresearch.com/; discussed in 

Chapter V). Also, a child's physiological data (such, as cardiovascular, electrodermal, 

electromyographic, and skin temperature) are acquired via wearable biofeedback sensors 

and Biopac system (MP150 from www.biopac.com; discussed in Chapter V). The data 

collection system is wearable. The sensors are small, lightweight, non-invasive, and FDA 

approved. They have been successfully used to collect physiological data of children with 

ASD in our previous work (Conn, et al., 2008a; Conn, et al., 2008b; Liu, et al., 2008a; 

Liu, et al., 2008b). All the signal conditioning, and feature extraction routines are written 

in MATLAB (www.mathworks.com). Computer C1 is connected to the Biopac system 

via a parallel port to transmit task related event-markers. The physiological signals along 

with the event markers (e.g., start/end of a social interaction task, performance events) 

are acquired by the Biopac system and sent over an Ethernet link to the Biopac computer 

C2 where the physiological signals are stored in a time synchronized manner. Also, eye-

data along with task-related event markers and participant's responses while interacting 

with the VR-based system are logged onto C1. The signal from C1 presenting the VR-

based social task are routed to a separate monitor (M1) so that both the participant’s 

parent/caregiver and a clinical observer/therapist can view how the task progresses. Also, 
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Figure VI-1. Experimental setup.

both the observers can watch the participant from a video camera view, whose signal is 

routed to a television, hidden from the participant's view. We video record each session 

to cross-reference observations made during the experiment. 

 

 

 

 

 

 

 

 

 

 

 

Each participant participated in two VR-based social interaction sessions on two 

different days. The first session began with the adaptation of the participant. This 

adaptation stage consisted of two phases. In the first phase, the experimenter briefed the 

participant about the experiment, the physiological sensors to be used during the 

experiment, and that they could choose anytime to withdraw from the experiments for 

any reason, especially if they were not comfortable interacting with the system. This 

phase ran for approximately 10 min. This was followed by gathering of consent and 

assent forms for about the next 5 min. Then in the second phase of the adaptation of the 



 136

Hello! You’re about to interact with your virtual classmates. Here’s how things will go: 
 

SETTING UP 
 
1) You’ll sit at the computer and we will help you put on some sensors. The sensors are sticky and go on 
your face, your hands, shoulder, and over your heart. They won’t hurt, but they’ll feel a little like a band-
aid. They tell us information about how your body is responding. 
 

 
 

2) You will wear a pair of glasses that have small cameras. These cameras will make a video of your eyes 
to see where you are looking. 
 

 
 
3) To make sure the cameras follow your eyes, we have to “calibrate” your glasses. That means you will 
look at the computer screen and watch green boxes of collapsing squares. You will keep your head still by 
using a chin rest. After we calibrate, it is important that you stay still so that the camera gets a good video. 
If you move, we will need to take a break to recalibrate your glasses. 
 

 

Figure VI-2. Visual Schedule (part (a))

participant, the experimenter asked the participant to sit comfortably on a height-

adjustable chair. The chair was adjusted so that his/her eyes were collinear with the 
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PLAYING THE SESSION 
 

1) First, you will watch your classmates give presentations. Some will be interesting, and some might be 
boring. Remember to keep your chin on the chin rest.  
 

 
 
2) After your classmates give their presentations, you will start a conversation with them by choosing 
questions in a particular order to ask. Your classmates can tell if you are looking at them or not. Remember 
to pay attention to them. 
 

 
 
3) You will first complete 3 presentations and 3 conversations. Then, you will take a break and we will talk 
to you about them. When we take a break, you can move around. If you have any questions or comments, 
this is when you will tell us. After we finish talking, we will recalibrate your glasses and then continue with 
the session again. 
 

 +    +   =  +  
1      2            3                         Break to Talk            Recalibrate 

 
4) You will then continue the session. After every two presentations and conversations you complete, you 
will take a break we will talk with you about them. After we finish talking, we will recalibrate your glasses 
and then continue with the session again. 
 

 +   =  +  
 1   2       Break to Talk          Recalibrate 

Figure VI-2. Visual Schedule (part (b)) 

center of the task computer, C1 (Figure VI-1). Then the experimenter walked the 

participant through a visual schedule (Figure VI-2, part (a) and part (b)). This served to 
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contribute to the second phase of adaptation on the one hand along with ensuring 

consistency in this introductory presentation of the experimental session to the 

participants on the other hand. This phase ran for approximately 15 min.         

After getting the verbal confirmation from the participant that he/she was ready to 

start the experiment, the experimenter placed the peripheral physiological sensors on the 

participant’s body. Then the participant was asked to wear the eye-tracker goggles. Then 

the eye-tracker was calibrated. The average calibration time was approximately 15 s in 

which the participant sequentially fixated on a grid of 16 points displayed randomly on 

the task computer (C1). This was followed by the VR-based social communication task. 

In Session1, the participant viewed an initial instruction screen followed by an avatar 

giving presentation by narrating a personal story while moving dynamically in the VR 

world displaying context-relevant social situations (discussed in Chapter V) to the 

participant. At the end of the VR-based presentation by the avatar, the participant was 

asked to find out a piece of information from the avatar. The participant then interacted 

with the avatar socially by using the bidirectional social conversation module (discussed 

in Chapter V) by selecting one choice at a time from the menu, using a mouse. The avatar 

responded to the question/statement selected by the participant and after a few back-and-

forth turns, the avatar ended the conversation. Then the system moved to the next VR-

based social communication task. The first three VR-based social communication tasks 

helped in selecting the baseline for each participant. Specifically, these three social 

communication tasks consisted of social tasks of the three interaction difficulty levels, 

with one in each level. Out of these three social tasks, only one was selected as the 

baseline depending on the highest performance score achieved by the participant while 
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interacting with the avatar using the bidirectional conversation module. In addition, in 

order to identify the baseline level of the participant while interacting with the avatar 

using the bidirectional conversation module (discussed in Chapter V), during these first 

three social tasks, the avatar did not give any feedback (discussed in Section ‘Design 

Specifications of the Feedback Given by the Avatars to Facilitate Participants to 

Continue Bidirectional Conversation’ in Chapter V) to the participant when the 

participant made an irrelevant choice. However, the bidirectional conversation modules 

of the social communication tasks following the baseline were accompanied with 

appropriate feedback provided by the avatar to the participant so as to facilitate the 

participant to walk though the conversation process when the avatar felt necessary. At the 

end of each social communication task, both the clinical observer/therapist and the 

participant’s parent/caregiver rated the participant as to what they thought the level (using 

a 1-9 scale, with 1-not at all, and 9-very much) of the target affective states of 

engagement, enjoyment, and anxiety was for the participant during the finished social 

communication task.  

Session2 was similar to Session1, except that in Session2, the system delivered an 

audio-visual feedback to the participants based on their viewing patterns (discussed in 

Table V-1). In addition, in Session1, the VR-based social task modification strategy was 

based only on one’s task performance metric while participating in the social 

communication task (Table V-6). However, in Session2, the VR-based social task 

modification strategy was based on the composite effect of one’s behavioral viewing, eye 

physiological indices and the task performance metric (Table V-5). 

Among the 8 adolescents who participated in the study, 4 participants (ASD1-ASD4) 
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participated first in Session1-followed by-Session2 (henceforth referred to as Group1). In 

Session1, the VR-based gaze-sensitive social communication system adapted the social 

tasks presented to the participants based only on the performance metric. In Session2, the 

VR-based social system intelligently adapted itself based on the engagement level of a 

participant predicted from the composite effect of his/her behavioral viewing, eye-

physiological indices, and the performance metric. The other group (henceforth referred 

to as Group2) of 4 participants (ASD5-ASD8) was exposed first to the Session2-followed 

by-Session1. This was carried out to determine whether there existed any ordering effect 

(Heiman, 2002) of presentation of Session1 and Session2. Also a washout period of 

approximately 2-4 weeks was maintained between each participant’s participation in 

Session1 and Session2. This washout period was used after a literature review where 

studies used washout period of 2 weeks (Bolman, and Richmond, 1999; Castner, 

Williams, and Goldman_Rakic, 2000) and 4 weeks (Zhang et al., 2004; Brownell, 2002).  

 

Results   

The objective of this section is to examine the acceptability of the system by the 

target population and to present the results of an investigation to study the effects of 

interacting with a VR based gaze-sensitive social communication system equipped with 

adaptive response technology. We discuss the effects of interaction with such a system so 

far as one’s affective states (e.g., engagement, enjoyment, and anxiety), performance and 

behavioral viewing during the social communication task are concerned.  
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System Acceptability 

In the current study, we wanted to investigate whether our VR-based gaze-sensitive 

system with adaptive response technology was acceptable to our participants with ASD. 

In spite of being given the option of withdrawing from the experiment at any time during 

their interaction with the system, all the participants completed the sessions. An exit 

survey carried out at the end of the experiment revealed that all the participants liked 

interacting with the system particularly while using the bidirectional conversation 

module, had no problems in wearing the eye-tracker goggles and accepting the peripheral 

physiological sensors, and understanding the stories narrated by their virtual classmates. 

When asked about any take-home lesson that they had from the conversation between 

them and their virtual classmates, most of them (6 out of 8) said that they learned that 

they should introduce themselves first while speaking to a new friend for the first time 

and that they should look towards the faces of their friends during conversation. Thus, it 

is reasonable to infer from this study that our system has a potential to be accepted by the 

target population. 

 

Feasibility of the System to Create Varying Levels of Engagement, Enjoyment, and 

Anxiety corresponding to the different Difficulty Levels of VR-based Social Interaction 

While the participants participated in the VR-based social communication task, both 

the clinical observer/therapist and the participant’s parent/caregiver rated as to what they 

thought the level of engagement of the participant was during the finished trial (using a 1-

9 scale, with 1:not engaged and 9: very engaged). The same therapist was involved in all 

of the experiment sessions, which aided in establishing a consistent reporter. As literature 
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Figure VI-3. Variation in the Reported Engagement level of participants with different 

Difficulty Levels of social interaction. 

review indicates that a clinical observer / therapist’s report on the affective states of 

participants is a reliable measure (Eisenberg et al., 1995) as an experiment design 

methodology, reports from the therapist are used whenever referring to the participant’s 

affective states. Thus, we investigated the variation in the engagement level of the 

participants as reported by the therapist corresponding to the three difficulty levels (easy, 

medium, and high) of social interaction. The Fig. VI-3 indicates that the varying 

difficulty levels of VR-based social interaction were capable of generating varying levels 

of participants’ engagement, as reported by the therapist. A dependent sample T-test on 

the participants’ engagement level as rated by the therapist corresponding to the ‘Easy’ 

and ‘High’ level of interaction difficulty reveals the engagement levels to be marginally 

statistically different (p = 0.0719) for Session 1 and not significantly different for Session 

2. 
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Figure VI-4. Variation in the Reported Enjoyment level of participants with different 
Difficulty Levels of social interaction. 

We investigated the variation in the participants’ level of enjoyment as rated by the 

therapist (using a 1-9 scale with 1: not enjoyed and 9: very enjoyed). The Fig. VI-4 

indicates that variation in the difficulty levels of VR-based social interaction was capable 

of generating varying levels of participants’ enjoyment, as reported by the therapist. A 

dependent sample T-test on the participants’ enjoyment level as rated by the therapist 

corresponding to the ‘Easy’ and ‘High’ level of interaction difficulty reveals the 

enjoyment levels to be marginally statistically different (p = 0.0543) for Session 1 and 

not significantly different for Session 2. 

Similarly, we investigated the variation in the participants’ level of anxiety as rated 

by the therapist (using a 1-9 scale with 1: not anxious and 9: very anxious). Fig. VI-5 

shows that a variation in the difficulty levels of VR-based social interaction was capable 

of generating varying levels of participants’ anxiety, as reported by the therapist. A 



 144

Figure VI-5. Variation in the Reported Anxiety level of participants with different 

Difficulty Levels of social interaction. 

dependent sample T-test on the participants’ anxiety level as rated by the therapist 

corresponding to the ‘Easy’ and ‘High’ level of interaction difficulty reveals the anxiety 

levels to be statistically different (p = 0.0387) for Session 1 and not significantly different 

for Session 2. 

 

To summarize, we can say that our VR-based gaze-sensitive social interactive system 

was capable of eliciting varying levels of affective states of engagement, enjoyment, and 

anxiety among the participants, as is evident from the therapist’s ratings. In addition, the 

dependent sample statistical T-test between the reported measures on the level of the 

affective states during the trials corresponding to the lowest difficulty level (i.e., ‘Easy’) 

and the highest difficulty level (i.e., ‘High’) indicates that they are statistically different 

(marginally statistically different for engagement and enjoyment and statistically 

significantly different for anxiety) for Session1. However, during Session2, while our 
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system adaptively responded based on the participant’s engagement level predicted from 

the composite effect of behavioral viewing, eye physiology, and performance metric, 

thereby allowing the participant to progress through the social tasks while encouraging 

socially-appropriate interaction and maintaining the basic levels of comfort, these 

affective states are found to be non-statistically significant while compared across the 

‘Easy’ and the ‘High’ difficulty levels. This may imply that our system which used 

adaptive response technology during Session2 was capable of adequately adapting itself 

to the participants’ predicted engagement level which resulted in bridging the gap in the 

affective states corresponding to the different difficulty levels.        

 

A Brief Description of Participant Interaction during Session1 and Session2 

Here we present a brief description of the VR-based social interaction for each 

participant during Session1 and Session2. 

ASD1: 

Session1: This participant interacted in six VR-based social task trials of which two were 

in Easy level of difficulty (average score 28 out of 30), one in Medium level of difficulty 

(average score 46 out of 50), and three in High level of difficulty (average score 68.67 

out of 70). ASD1 started with Easy level of difficulty as the baseline, followed by one 

trial of Easy level, then switched to one trial of Medium difficulty level, and then to three 

trials of High difficulty level. Also ASD1 fixated on the face of the avatar for an average 

of approximately 49% of the time during the VR-based social conversation tasks.  

Session2: This participant interacted in nine VR-based social task trials of which two 

were in Easy level of difficulty (average score 30 out of 30), four in Medium level of 
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difficulty (average score 48 out of 50), and three in High level of difficulty (average score 

68.67 out of 70). ASD1 started with Medium level of difficulty as the baseline, followed 

by one trial of Medium level, then switched to one trial of Low difficulty level, then to 

two trials of Medium difficulty level. With decrease in predicted engagement level, the 

system then offered one trial of Low difficulty level to him. Subsequently, when the 

predicted engagement level of ASD1 was high, the system having no more games of 

Medium difficulty level, offered the participant with a trial of High difficulty level. This 

was followed by two more trials of High difficulty level. Also ASD1 fixated on the face 

of the avatar for an average of approximately 56% of the time during the VR-based social 

conversation tasks. 

Inference: Thus we find that ASD1 interacted in more VR-based social task trials during 

Session2 than that during Session1. Also, ASD1 achieved greater performance scores 

during the trials of Easy level of difficulty and the Medium level of difficulty during 

Session2 than those during Session1. In addition, ASD1 fixated on the face of the 

communicator (i.e., the avatar) for greater percentage of the time during the VR-based 

social communication task during Session2 than that during Session1. 

ASD2: 

Session1: This participant interacted in five VR-based social task trials with two in 

Medium level of difficulty (average score 50 out of 50), and three in High level of 

difficulty (average score 63.33 out of 70). ASD2 started with Medium level of difficulty 

as the baseline, followed by one trial of Medium level, then switched to three trials of 

High difficulty level. Also ASD2 fixated on the face of the avatar for an average of 

approximately 10% of the time during the VR-based social conversation tasks.  
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Session2: This participant interacted in four VR-based social task trials with all four in 

Easy level of difficulty (average score 30 out of 30). ASD2 started with Easy level of 

difficulty as the baseline, followed by one trial of Easy level. Then, on predicting low 

engagement level of ASD2 and the Easy level of difficulty being the lowest of the three 

difficulty levels, the system continued to offer ASD2 with trials of Easy difficulty level. 

ASD2 fixated on the face of the avatar for an average of approximately 30% of the time 

during the VR-based social conversation tasks. 

Inference: We find that ASD2 interacted in less VR-based social task trials during 

Session2 than that during Session1. However, ASD2 fixated on the face of the 

communicator (i.e., the avatar) for greater percentage of the time during the VR-based 

social communication task during Session2 than that during Session1. Thus, though 

ASD2 could go to High level of difficulty during Session1, this was achieved in socially 

inappropriate way as is evident from the very less percent of fixation on the face of the 

avatar during this Session1. In fact, ASD2 was one of the two participants who declined 

to comment anything on the take-home lessons from the sessions during the exit survey 

(as discussed in ‘System Acceptability’).  

ASD3: 

Session1: This participant interacted in four VR-based social task trials with all four in 

High level of difficulty (average score 64 out of 70). ASD3 started with High level of 

difficulty as the baseline, followed by three trials of High level. Also ASD3 fixated on 

the face of the avatar for an average of approximately 7% of the time during the VR-

based social conversation tasks.  

Session2: This participant interacted in seven VR-based social task trials with three in 
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Easy level of difficulty (average score 30 out of 30), and four in Medium level of 

difficulty (average score 47 out of 50). ASD3 started with Medium level of difficulty as 

the baseline, followed by one trial of Medium level, then switched to two trials of Easy 

difficulty level as the system predicted a low engagement level. However, on getting an 

improved predicted engagement level, the system offered ASD3 with two numbers of 

trials of Medium level. Subsequently, with decreased engagement level, the system 

switched to the Easy difficulty level. ASD3 fixated on the face of the avatar for an 

average of approximately 29% of the time during the VR-based social conversation tasks. 

Inference: ASD3 interacted in more VR-based social task trials during Session2 than that 

during Session1. In addition, ASD3 fixated on the face of the communicator (i.e., the 

avatar) for greater percentage of the time during the VR-based social conversation task 

during Session2 than that during Session1. Thus, though ASD3 could go to High level of 

difficulty during Session1, this was achieved in socially inappropriate way as is evident 

from the very less percent of fixation on the face of the avatar during this Session1. 

ASD4: 

Session1: This participant interacted in four VR-based social task trials with all four in 

High level of difficulty (average score 61 out of 70). ASD4 started with High level of 

difficulty as the baseline, followed by three trials of High level. Also ASD4 fixated on 

the face of the avatar for an average of only approximately 1% of the time during the VR-

based social conversation tasks.  

Session2: This participant interacted in nine VR-based social task trials with two in Easy 

level of difficulty (average score 28 out of 30), four in Medium level of difficulty 

(average score 47 out of 50), and three in High level of difficulty (average score 64.67 
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out of 70). ASD4 started with Medium level of difficulty as the baseline, followed by one 

trial of Medium level, then switched to two trials of Easy difficulty level. Then the 

system predicted improved engagement level of ASD4, thereby offering him with two 

numbers of trials of Medium level of difficulty. With continued improved predicted 

engagement level, the system offered three trials of High difficulty level. Also ASD4 

fixated on the face of the avatar for an average of approximately 37% of the time during 

the VR-based social conversation tasks. 

Inference: Thus we find that ASD4 interacted in more VR-based social task trials during 

Session2 than that during Session1. Also, ASD4 achieved greater performance scores 

during the trials of High level of difficulty during Session2 than that during Session1. In 

addition, ASD4 fixated on the face of the communicator (i.e., the avatar) for greater 

percentage of the time during the VR-based social conversation task during Session2 than 

that during Session1. 

ASD5: 

Session1: This participant interacted in seven VR-based social task trials with two in 

Easy level of difficulty (average score 28 out of 30), two in Medium level of difficulty 

(average score 48 out of 50), and three in High level of difficulty (average score 56 out of 

70). ASD5 started with Easy level of difficulty as the baseline, followed by one trial of 

Easy level, then switched to one trial of Medium difficulty level, then to two trials of 

High difficulty level, then to one trial of Easy difficulty level, and ultimately with one 

trial of High difficulty level. Also ASD5 fixated on the face of the avatar for an average 

of approximately 3% of the time during the VR-based social conversation tasks.  

Session2: This participant interacted in eight VR-based social task trials with four in Easy 
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level of difficulty (average score 29 out of 30), two in Medium level of difficulty 

(average score 48 out of 50), and two in High level of difficulty (average score 64 out of 

70). ASD5 started with Easy level of difficulty as the baseline, followed by one trial of 

Easy level, and then with prediction of reduced engagement level of ASD5, the system 

continued at the Easy level of difficulty (with the Easy level being the lowest of the three 

levels of difficulty). On predicting an improved engagement level of ASD5, the system 

offered him with trial of Medium level of difficulty. With predicted engagement level 

being high, the system offered him with two trials of High level of difficulty. Again with 

fall in predicted engagement level of ASD5, the system reduced the difficulty level to 

Medium followed by a trial of Easy level of difficulty. Also ASD5 fixated on the face of 

the avatar for an average of approximately 18% of the time during the VR-based social 

conversation tasks. 

Inference: Thus we find that ASD5 interacted in more VR-based social task trials during 

Session2 than that during Session1. Also, ASD5 achieved greater performance scores 

during the trials of Easy level of difficulty and the High level of difficulty during 

Session2 than those during Session1. In addition, ASD5 fixated on the face of the 

communicator (i.e., the avatar) for greater percentage of the time during the VR-based 

social conversation task during Session2 than that during Session1. 

ASD6: 

Session1: This participant interacted in seven VR-based social task trials with two in 

Easy level of difficulty (average score 30 out of 30), two in Medium level of difficulty 

(average score 50 out of 50), and three in High level of difficulty (average score 58.67 

out of 70). ASD6 started with Easy level of difficulty as the baseline, followed by one 
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trial of Easy level, then switched to one trial of Medium difficulty level, then to three 

trials of High difficulty level, and finally to one trial of Medium difficulty level. Also 

ASD6 fixated on the face of the avatar for an average of approximately 28% of the time 

during the VR-based social conversation tasks.  

Session2: This participant interacted in seven VR-based social task trials with two in 

Easy level of difficulty (average score 30 out of 30), two in Medium level of difficulty 

(average score 48 out of 50), and three in High level of difficulty (average score 66 out of 

70). ASD6 started with Easy level of difficulty as the baseline, followed by one trial of 

Easy level, and then with prediction of improved engagement level of ASD6, the system 

offered him with a trial of Medium level of difficulty. With decrease in predicted 

engagement level of ASD6, the system maintained at the Medium level of difficulty. 

With predicted engagement level going high, the system offered him with three trials of 

High level of difficulty. Also ASD6 fixated on the face of the avatar for an average of 

approximately 29% of the time during the VR-based social conversation tasks. 

Inference: Though ASD6 interacted in same VR-based social task trials during Session2 

as that during Session1, he achieved greater performance score during the trials of High 

level of difficulty during Session2 than those during Session1. However, ASD6 showed a 

very less improvement in the percent of time spent by him in fixating on the face of the 

communicator (i.e., the avatar) during the VR-based social conversation task during 

Session2 than that during Session1. 

ASD7: 

Session1: This participant interacted in five VR-based social task trials with two in 

Medium level of difficulty (average score 50 out of 50), and three in High level of 
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difficulty (average score 67.33 out of 70). ASD7 started with Medium level of difficulty 

as the baseline, followed by one trial of Medium level, and then switched to three trials of 

High difficulty level. Also ASD7 fixated on the face of the avatar for an average of 

approximately 42% of the time during the VR-based social conversation tasks.  

Session2: This participant interacted in four VR-based social task trials with all being of 

the High difficulty level (average score 69 out of 70). ASD7 started with High level of 

difficulty as the baseline, followed by three trials of High level. Also ASD7 fixated on 

the face of the avatar for an average of approximately 69% of the time during the VR-

based social conversation tasks. 

Inference: Though ASD7 interacted in less VR-based social task trials during Session2 

than that during Session1, she achieved greater performance score during the trials of 

High level of difficulty during Session2 than those during Session1. In addition, ASD7 

showed improvement in the percent of time spent by her in fixating on the face of the 

communicator (i.e., the avatar) during the VR-based social communication task during 

Session2 than that during Session1. 

ASD8: 

Session1: This participant interacted in five VR-based social task trials with two in 

Medium level of difficulty (average score 50 out of 50), and three in High level of 

difficulty (average score 68.67 out of 70). ASD8 started with Medium level of difficulty 

as the baseline, followed by one trial of Medium level, and then switched to three trials of 

High difficulty level. Also ASD8 fixated on the face of the avatar for an average of 

approximately 7% of the time during the VR-based social conversation tasks.  

Session2: This participant interacted in four VR-based social task trials with all being of 
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the High difficulty level (average score 68 out of 70). ASD8 started with High level of 

difficulty as the baseline, followed by three trials of High level. Also ASD8 fixated on 

the face of the avatar for an average of approximately 36% of the time during the VR-

based social conversation tasks. 

Inference: ASD8 interacted in less VR-based social task trials during Session2 than that 

during Session1, and also he was the only participant to achieve a slightly lower 

performance score during the trials of High level of difficulty during Session2 than those 

during Session1. However, ASD8 showed improvement in the percent of time spent by 

him in fixating on the face of the communicator (i.e., the avatar) during the VR-based 

social communication task during Session2 than that during Session1. In fact, ASD8 was 

one of the two participants who declined to comment anything on the take-home lessons 

from the sessions during the exit survey (as discussed in ‘System Acceptability’). 

 

Quantitative Analysis of Performance of Participants during Trials (VR-based social 

communication tasks) for the Session1 and Session2 

The engagement of children with ASD is the ground basis for the 'floor-time-therapy' 

to help them develop relationships and improve their social skills (Wieder, and 

Greenspan, 2005). Clinicians who work with children in autism intervention intensely 

monitor affective cues, e.g., engagement in order to make appropriate decisions about 

adaptations to their intervention and reinforcement strategies. Thus our hypothesis was 

that if we can allow a computer to recognize the engagement level of a child in terms of 

his/her behavioral viewing pattern, eye physiological indices, and performance during 

VR-based social communication tasks and apply this information as a means of taking 
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appropriate decisions about the adaptation of the child to the social task, then it may 

contribute to improved social task performance. Our usability study comprised of two 

sessions, namely Session1 and Session2. In Session1, the task switching was based only 

on one’s performance metric alone and in Session2, the task switching was based on the 

composite effect of one’s behavioral viewing, eye physiology, and performance metric 

during the VR-based social task. 

In order to carry out a quantitative analysis of the performance of the participants 

while they interacted with VR-based social communication system during Session1 and 

Session2, we computed the weighted performance score similar to other studies (Javier, 

2007; Hirsch et al., 2004). For this we first computed the normalized weighted 

performance score (Table VI-2). Specifically, the weight of the social communication 

task is considered as ‘1’ for the ‘Easy’ difficulty level, ‘2’ for the ‘Medium’ difficulty 

level, and ‘3’ for the ‘High’ difficulty level of the VR-based bidirectional social 

communication module. In order to carry out a comparative analysis among the 

performance of the participants, each of whom participated in different VR-based social 

communication tasks (of varying numbers of trials and of difficulty levels), we need to 

compute normalized values of the performance scores achieved by the participants during 

the Session1 and Session2. The formulae that we have used to compute the normalized 

scores are as follows: 

Let us consider that the VR-based social task trials of ‘Easy’, ‘Medium’, and ‘High’ 

difficulty levels have weights designated by ‘x’, ‘y’, and ‘z’ respectively. Also, let a 

participant acquires an average performance score of ‘XAvg’ (out of maximum possible 

score of ‘XMax’ (i.e., 30) for trials of ‘Easy’ difficulty level), ‘YAvg’ (out of maximum 
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possible score of ‘YMax’ (i.e., 50) for trials of ‘Medium’ difficulty level), and ‘ZAvg’ (out 

of maximum possible score of ‘ZMax’ (i.e., 70) for trials of ‘High’ difficulty level). 

 

Case1- A participant interacted with VR-based social task trials of ‘Easy’, ‘Medium’, and 

‘High’ difficulty levels. The Weighted Performance Score Achieved (Normalized) is: 

 …………….(VI.1) 

 

Case2- A participant interacted with VR-based social task trials of ‘Easy’, and ‘Medium’ 

difficulty levels. The Weighted Performance Score Achieved (Normalized) is: 

……………………………..(VI.2) 

 

Case3- A participant interacted with VR-based social task trials of ‘Medium’, and ‘High’ 

difficulty levels. The Weighted Performance Score Achieved (Normalized) is: 

……………………………..(VI.3) 

 

 

Case4- A participant interacted with VR-based social task trials of ‘Easy’ difficulty level 

only. The Weighted Performance Score Achieved (Normalized) is: 

………………………………………………(VI.4) 

 

Case5- A participant interacted with VR-based social task trials of ‘Medium’ difficulty 
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level only. The Weighted Performance Score Achieved (Normalized) is: 

...........................................................................(VI.5) 

 

Case6- A participant interacted with VR-based social task trials of ‘High’ difficulty level 

only. The Weighted Performance Score Achieved (Normalized) is: 

………………………………………………(VI.6) 
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Table VI-2. Summary of Performance Progression for participants of Group1 during Session1 and 
Session2. 
 Session Performance Score 

Achieved 
(a) 

Difficulty 
Level  Wt. 

(b) 

Max.Possible 
Score  

(c) 

Weighted Perf. 
Score (Norm) 

(d) 

ASD1 

1 

26 1 30 

0.96 

30 1 30 
46 2 50 
66 3 70 
70 3 70 
70 3 70 

2 

50 2 50 

0.98 

50 2 50 
30 1 30 
46 2 50 
46 2 50 
30 1 30 
66 3 70 
70 3 70 
70 3 70 

ASD2 

1 

50 2 50 

0.94 
50 2 50 
58 3 70 
66 3 70 
66 3 70 

2 

30 1 30 

1.00 
30 1 30 
30 1 30 
30 1 30 

ASD3 

1 

70 3 70 

0.91 
70 3 70 
62 3 70 
54 3 70 

2 

50 2 50 

0.95 

50 2 50 
30 1 30 
30 1 30 
46 2 50 
42 2 50 
30 1 30 

ASD4 

1 

58 3 70 

0.87 
62 3 70 
58 3 70 
66 3 70 

2 

50 2 50 

0.93 

42 2 50 
30 1 30 
26 1 30 
46 2 50 
50 2 50 
66 3 70 
62 3 70 
66 3 70 
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Thus, we find from Table VI-2, that all participants in Group1, i.e., ASD1-ASD4 showed 

an improvement in the normalized weighted performance score that they achieved during 

Session2 than that during Session1. 

Similarly, we investigated the performance progression for participants of Group2 for 

Session1 and Session2. From Table VI-3, we find that all the participants of Group2 

(except ASD8) showed an improvement in the normalized weighted performance score 

that they achieved during Session2 than that during Session1. ASD8 showed a small 

decrement (1.59% from its normalized score during Session1) in the performance score. 

ASD8 was one of the participants who declines to comment on any take-home lesson 

from the sessions during exit survey (mentioned in Section ‘System Acceptability’).               
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Table VI-3. Summary of Performance Progression for participants of Group2 during Session1 and 
Session2. 
 Session Performance Score 

Achieved 
(a) 

Difficulty 
Level  Wt.

(b) 

Max.Possible 
Score  

(c) 

Weighted Perf. 
Score (Norm) 

(d) 

ASD5 

1 

30 1 30 

0.86 

26 1 30 
50 2 50 
58 3 70 
44 3 70 
46 2 50 
66 3 70 

2 

30 1 30 

0.93 

30 1 30 
30 1 30 
46 2 50 
66 3 70 
62 3 70 
50 2 50 
26 1 30 

ASD6 

1 

30 1 30 

0.90 

30 1 30 
50 2 50 
58 3 70 
66 3 70 
52 3 70 
50 2 50 

2 

30 1 30 

0.95 

30 1 30 
50 2 50 
46 2 50 
62 3 70 
70 3 70 
66 3 70 

ASD7 

1 

50 2 50 

0.97 
50 2 50 
62 3 70 
70 3 70 
70 3 70 

2 

70 3 70 

0.99 
70 3 70 
66 3 70 
70 3 70 

ASD8 

1 

50 2 50 

0.99 
50 2 50 
66 3 70 
70 3 70 
70 3 70 

2 

66 3 70 

0.97 
70 3 70 
70 3 70 
66 3 70 
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Then we carried out statistical analysis to determine whether the improvement in the 

normalized performance score of the participants while interacting with the VR-based 

social situations during Session1 and Session2 was statistically significant. For this, we 

(a) first computed a dependent sample T-test for all the participants (ASD1-ASD8) on the 

normalized performance scores during Session1 and Session2, (b) carried out a dependent 

sample T-test for each group of participants separately, i.e., for Group1 (ASD1-ASD4) 

and for Group2 (ASD5-ASD8), and finally (c) performed an independent sample T-test 

between the normalized performance scores achieved by Group1 and Group2 during 

Session1 and Session2 to determine whether the presentation of Session1 and Session2 

had any statistically significant ordering effect. 

A dependent sample T-test for the participants’ normalized performance score 

between Session1 and Session 2 (as mentioned in point (a) above) indicates that they are 

statistically significantly (p = 0.0102) different (Table VI-4). In addition, a dependent 

sample T-test carried out on the normalized weighted performance score separately for 

the Group1 and Group2 between Session1 and Session 2 (as mentioned in point (b) 

above) indicates that they are statistically significantly (p = 0.0235) different for Group1 

(Table VI-4), but not statistically significant for Group2 (Table VI-4). 
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Table VI-4. Comparative Analysis of Performance Progression for Group1 and Group2 between 
Session1 and Session2. 

 
 

Normalized Weighted 
Performance Score 

 
  

 Session1 Session2 Session1 Session2  
Group1 ASD1 0.96 0.98 0.92 0.96 Mean 

 ASD2 0.94 1.00 0.04 0.03 SD 
 ASD3 0.91 0.95 0.0235 p-value 
 ASD4 0.87 0.93 4.2720 t-value 

Group2       
 ASD5 0.86 0.93 0.93 0.96 Mean 
 ASD6 0.90 0.95 0.06 0.02 SD 
 ASD7 0.97 0.99 0.2255 p-value 
 ASD8 0.99 0.97 1.5216 t-value 

Mean  0.93 0.96    
SD  0.05 0.03    

p-value  0.0102    
t-value  3.4814    

Table VI-5. Comparative Analysis of Performance Progression across Group1 and Group2 for Session1 
and for Session2. 

 
 

Normalized Weighted 
Performance Score 

 
 

 Session1 Session1   
Group1 ASD1 0.96 0.86 ASD5 Group2 

 ASD2 0.94 0.90 ASD6  
 ASD3 0.91 0.97 ASD7  
 ASD4 0.87 0.99 ASD8  

Mean  0.92 0.93   
SD  0.04 0.06   

p-value  0.7885   
t-value  0.2805  

  Session2 Session2  
Group1 ASD1 0.98 0.93 ASD5 Group2

 ASD2 1.00 0.95 ASD6  
 ASD3 0.95 0.99 ASD7  
 ASD4 0.93 0.97 ASD8  

Mean  0.96 0.96   
SD  0.03 0.02   

p-value  0.8280   
t-value  0.2270   

As mentioned in the Section ‘Procedures’, participants in Group1 (ASD1-ASD4) 

participated in the VR-based social communication tasks first in Session1-followed by-

Session2. However, the participants in Group2 (ASD5-ASD8) participated first in 

Session2-followed by-Session1. We carried out a statistical analysis (as mentioned in 

point (c) above) to determine whether there was any ordering effects due to the order of 
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Interaction difficulty level=1: ‘Easy’ difficulty level; Interaction difficulty level=2: 
‘Medium’ difficulty level; Interaction difficulty level=3: ‘High’ difficulty level. 
Figure VI-6. Comparative Analysis of progression of VR-based social communication 
tasks during Session1 (task switching based on performance metric) and Session2 (task 
switching based on the composite effect of performance metric, behavioral viewing, and
eye-physiology) for ASD1. 

presentation of Session1 and Session2 VR-based social tasks. Thus an independent 

sample T-test carried out on the normalized performance scores achieved across Group1 

and Group2 for each of Session1 and Session2 indicates that they are not statistically 

significantly (p = 0.7885 for Session1 and p = 0.8280 for Session2) different, as can be 

seen from Table VI-5. Thus, we can say that there were no significant ordering effects 

due to the order of presentation of VR-based social tasks of Session1 and Session2. 

           

Progression of VR-based Social Communication Tasks for Session1 and Session2 

Here we discuss in details the patterns of task progression for two participants in each 

of the two groups while they participate in the VR-based social communication tasks 

during Session1 and Session2. 
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Participant ASD1 (Group1) progressed through six VR-based social communication 

tasks during Session1 and nine during Session2 (Table VI-2). The nature of progression 

through the social tasks during the Session1 and Session2 is represented in Fig. VI-6.  

Thus during Session1 (when task switching was based on the performance metric 

alone), ASD1 started with VR-based social communication task of ‘Easy’ difficulty level 

as the baseline (i.e., Trial1), continued in ‘Easy’ difficulty level in Trial2, then moved to 

the ‘Medium’ difficulty level in Trial3, and finally to the ‘High’ difficulty level from 

Trial4-Trial6. On the other hand, Session2 equipped with the adaptive response 

technology predicted the engagement level of ASD1 and switched the difficulty levels 

based on his engagement level. During Session2, ASD1 starts at ‘Medium’ difficulty 

level as the baseline (Trial1), remains at the ‘Medium’ difficulty level in Trial2. Then the 

strategy generator (discussed in Chapter V) of the adaptive response technology predicted 

a lower engagement level of ASD1 which switched the task presented to ASD1 to ‘Easy’ 

difficulty level. On detecting an improvement in the engagement level of ASD1, the 

strategy generator moved ASD1 to the ‘Medium’ difficulty level in Trial4. Again, the 

predicted engagement level of ASD1 went to low in this trial along with ‘Successful’ 

performance (discussed in Chapter V). Thus the strategy generator maintains the 

difficulty level i.e., ‘Medium’ in Trial5. On further prediction of low engagement level of 

ASD1, the strategy generator lowered the difficulty level to ‘Easy’ in Trial6. In this trial, 

our adaptive response technology was capable of improving the predicted engagement 

level of ASD1 and now with all ‘Medium’ difficulty levels being executed by ASD1 our 

system offered the VR-based social task of ‘High’ difficulty level in Trial7. Thereafter, 

our adaptive response technology predicted an improved engagement level of ASD1 and 
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Interaction difficulty level=1: ‘Easy’ difficulty level; Interaction difficulty level=2: 
‘Medium’ difficulty level; Interaction difficulty level=3: ‘High’ difficulty level. 
Figure VI-7. Comparative Analysis of progression of VR-based social communication 
tasks during Session1 (task switching based on performance metric) and Session2 (task 
switching based on the composite effect of performance metric, behavioral viewing, and
eye-physiology) for ASD4. 

progressed ASD1 through the ‘High’ difficulty level tasks of Trial7 to Trial9. 

Let us consider the case of VR-based social communication task progression for 

participant ASD4 (Group1). The participant ASD4 moved through four Trials during 

Session1 and nine Trials during Session2 (Table VI-2). A detailed analysis of the task 

progression pattern for ASD4 is presented in Fig. VI-7. 

As can be seen from Fig. VI-7, during Session1, ASD4 started at the ‘High’ difficulty 

level as the baseline (Trial1). Further, ASD4 continued at the ‘High’ difficulty level for 

the subsequent trials (i.e., Trial2 – Trial4). But, we get a completely different picture for 

VR-based social task progression for ASD4 during Session2. During Session2, ASD4 

started with the VR-based social communication task of ‘Medium’ difficulty level as the 
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baseline (Trial1). Then ASD4 continues in the ‘Medium’ difficulty level during Trial2. 

At the end of Trial2, the strategy generator predicted a lower engagement level of ASD4 

which caused ASD4 to be shifted to the ‘Easy’ difficulty level in Trial3. At the end of 

Trial3, the strategy generator detected a low predicted engagement level along with 

‘Successful’ performance, thereby causing the adaptive response technology to maintain 

the same difficulty level, i.e., ‘Easy’ with hopes of regaining the engagement level of 

ASD4 during Trial4. This strategy worked out well and the strategy generator then 

detected an improved engagement level of ASD4 at the end of Trial4. Thus, the adaptive 

response technology offered a task of ‘Medium’ difficulty level in Trial5. Again, the 

strategy generator detected a reduced predicted engagement level of ASD4 at the end of 

Trial5. Similar to Trial3, the strategy generator maintained the task at the same difficulty 

level, but this time at ‘Medium’ difficulty level during Trial6. This strategy worked out 

for ASD4. Subsequently, the strategy generator detected an improved predicted 

engagement level of ASD4 and thereby continued the VR-based task presentation at the 

‘High’ difficulty level from Trial7 to Trial9.            

Next let us consider the case of progression of VR-based social communication tasks 

for participant ASD6 (Group2). ASD6 progressed though seven Trials during each of 

Session1 and Session2 (Table VI-3). The task progression pattern for ASD6 is presented 

in Fig. VI-8. From Fig. VI-8, it can be seen that during Session1, ASD6 started at the 

‘Easy’ difficulty level as the baseline (Trial1), continued at the ‘Easy’ difficulty level in 

Trial2, then moved to ‘Medium’ difficulty level in Trial3. In Trial4, ASD6 moved to 

‘High’ difficulty level and remained at the same difficulty level up to Trial6. 

Subsequently, ASD6 moved down to ‘Medium’ difficulty level in Trial7. Although the 
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Interaction difficulty level=1: ‘Easy’ difficulty level; Interaction difficulty level=2:
‘Medium’ difficulty level; Interaction difficulty level=3: ‘High’ difficulty level. 
Figure VI-8. Comparative Analysis of progression of VR-based social communication 
tasks during Session1 (task switching based on performance metric) and Session2 (task
switching based on the composite effect of performance metric, behavioral viewing, and
eye-physiology) for ASD6. 

same number of trials is executed by ASD6 during Session2, yet we get a completely 

different picture for VR-based social task progression during Session2. During Session2, 

ASD6 started with the VR-based social communication task of ‘Easy’ difficulty level as 

the baseline (Trial1). Then ASD6 continued in the ‘Easy’ difficulty level during Trial2. 

At the end of Trial2, the strategy generator predicted an increased engagement level of 

ASD6 which caused ASD6 to be shifted to the ‘Medium’ difficulty level in Trial3. At the 

end of Trial3, the strategy generator detected a low predicted engagement level along 

with ‘Successful’ performance, thereby causing the adaptive response technology to 

maintain the same difficulty level, i.e., ‘Medium’ with the hope of regaining the 

engagement level of ASD6 during Trial4. This strategy of the strategy generator worked 
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Interaction difficulty level=1: ‘Easy’ difficulty level; Interaction difficulty level=2:
‘Medium’ difficulty level; Interaction difficulty level=3: ‘High’ difficulty level. 
Figure VI-9. Comparative Analysis of progression of VR-based social communication
tasks during Session1 (task switching based on performance metric) and Session2 (task
switching based on the composite effect of performance metric, behavioral viewing, and
eye-physiology) for ASD7. 

out well and the strategy generator then detected an improved engagement level of ASD6 

at the end of Trial4. Thus, the adaptive response technology offered a task of ‘High’ 

difficulty level in Trial5. Thereafter, the strategy generator detected a continued high 

engagement level of ASD6, thereby causing ASD6 to carry on with the ‘High’ difficulty 

level up to Trial7. 

Finally, we consider the case of progression of VR-based social communication tasks 

for participant ASD7 (Group2). ASD7 progressed through five Trials during Session1 

and four trials during Session2 (Table VI-3). The task progression pattern for ASD7 is 

presented in Fig. VI-9. It can be seen from Fig. VI-9, that during Session1, ASD7 started 

at the ‘Medium’ difficulty level as the baseline (Trial1), continued at the ‘Medium’ 

difficulty level in Trial2, then moved to ‘High’ difficulty level in Trial3 and remained at 
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the ‘High’ difficulty level up to Trial5. However, during Session2, we find that ASD7 

started with the VR-based social communication task of ‘High’ difficulty level as the 

baseline (Trial1). Then ASD7 continued in the ‘High’ difficulty level during Trial2. 

Thereafter, the strategy generator detected a high engagement level of ASD7 which 

caused ASD7 to stay at the ‘High’ difficulty level up to Trial4. 

 

Individual Analysis of variation in Behavioral Viewing Pattern during Session1 and 

Session2 

For the behavioral viewing pattern, we have considered the fixation duration (FD) 

while the participants look at the Face_ROI of the avatar during VR-based social 

communication task as a percentage of the total viewing time. This metric is particularly 

important as children with ASD are characterized by atypical viewing pattern in which 

they tend to fixate less towards the face of the communicator during social conversation 

(Jones, Carr, and Klin, 2008). In dyadic communication, eye-gaze serves at least five 

distinct communicative functions (Argyle, and Cook, 1976; Kendon, 1967): regulating 

conversation flow, providing feedback, communicating emotional information, 

communicating the nature of interpersonal relationships and avoiding distraction by 

restricting visual input. Eye-gaze helps control the flow of turn taking in conversations. 

For example, the person who is listening uses eye gaze to indicate whether he/she is 

paying attention, while the person who is speaking uses it to track whether the listener is 

still engaged in the conversation (Colburn, Drucker, and Cohen, 2000). Thus in order to 

encourage the participants to carry out VR-based interaction with the avatars in socially 

appropriate ways, our system provided gaze-based feedback (discussed in Chapter V) 
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Figure VI-10. Variation in individual Percent Fixation Duration while looking
towards the Face_ROI of the avatars during VR-based social conversation. 

during Session2. 

We investigated to determine whether the gaze-based individualized feedback 

provided by our system during Session2 has contributed to any improvement in 

behavioral viewing pattern among the participants. In particular, we were interested to 

determine the impact of the gaze-based individualized feedback on the participants’ 

behavioral viewing pattern during dyadic communication with the avatar while using the 

bidirectional conversation module (discussed in Chapter V). 

 

 

 

 

 

 

 

 

 

 

 

Thus from Fig. VI-10, we find that for each participant, there had been an 

improvement in the behavioral viewing pattern in terms of greater attention towards the 

face region of the avatar during the VR-based social conversation. However, the 

improvement for ASD6 is quite less (approximately, 1%). A dependent sample T-test 

between the percent fixation duration while looking towards the Face_ROI of the avatars 
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during Session1 and Session2 indicate that the variation in the behavioral viewing pattern 

for the group was statistically significantly different (p = 0.002).      

 

Group Analysis of variation in Behavioral Viewing Pattern with Baseline, Last Trial, and 

Rated Engagement Level during Session1 and Session2 

Here, we present the group analysis of the behavioral viewing pattern of the 

participants in terms of their fixation duration (FD) while they look at the Face_ROI of 

the avatar during VR-based social communication task (which comprised of the 

participant’s role as audience to the avatar’s presentation and also the participants’ role as 

social communicator while using the bidirectional conversation module) as a percentage 

of the total viewing time. Engagement is defined as “sustained attention to an activity or 

person” (NRC, 2001). In addition, Jones et al. (Jones, Carr, and Klin, 2008) have showed 

that one’s FD while looking towards the face region of a speaker indicates social 

engagement. Further, FD is a valuable measure, as children with ASD often exhibit lower 

FD while viewing human faces than the non-human face stimuli (Anderson, Colombo, 

and Shaddy, 2006) during social interaction. Thus increased FD towards the face of the 

communicator during social communication has been shown to be indicative of greater 

engagement. 

Our results indicate that the percentage fixation duration of the group of participants 

increased both from the baseline to the last trial and also with the increase in engagement 

of the participants, as rated by the therapist, particularly during Session2 (Fig. VI-11). 

From Fig. VI-11, it can be seen that during Session1, the percent fixation duration of the 

participant group while looking towards the face of the avatar during VR-based social 
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Figure VI-11. Variation in the Group Percent Fixation Duration while looking
towards the Face_ROI with Baseline, Last Trial, and Level of Engagement (as rated
by Therapist). 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged). Low Engagement (LE) : corresponds to therapist’s engagement rating
of 1-3. 
Medium Engagement (ME) : corresponds to therapist’s engagement rating of 4-6. 
High Engagement (HE) : corresponds to therapist’s engagement rating of 7-9. 

communication decreased from Baseline to last trial and showed variation with increase 

in engagement rating. But, during Session2, where our system switched tasks based on 

the predicted engagement level of the participants, we find from Fig. VI-11, that all the 

participants fixated on the face_ROI of the avatar more during the last trial than that 

during the baseline. This indicates that the feedback on the behavioral viewing pattern of 

the participants given by our system during Session2 has encouraged the participants to 

improve their behavioral viewing. Also, we find that during Session2, the participants’ 

behavioral viewing pattern in terms of increased fixation on the face of the communicator 

(i.e., the avatar) during social conversation, improved with increased engagement level of 

the participants (as rated by the therapist). 



 172

 

 

Discussion 

This chapter presents the results to show the effects of interacting with our developed 

system that is capable of intelligently adapting itself based on the predicted engagement 

level. The developed system is capable of switching VR-based social tasks based on 

one’s performance metric alone (Session1) and also capable of bringing about 

progression of virtual social tasks based on the composite effect of one’s behavioral 

viewing, eye physiology, and the performance metric (Session2). The results show that 

such a system is acceptable to the participants with ASD. Additionally, interaction with 

such a system featuring varying levels of social interaction difficulty can elicit variations 

in the affective states (e.g., engagement, enjoyment, and anxiety) level of the participants.  

More importantly, the results presented in this chapter show that if we allow a 

computer to recognize the engagement level of an individual in terms of his/her 

behavioral viewing pattern, eye physiological indices, and performance during VR-based 

social communication tasks and apply this information as a means of flexibly taking 

appropriate decisions about the adaptation of the individual to the social task, then it may 

contribute to improved social task performance and also behavioral viewing pattern. In 

fact, in order to achieve effective social communication skills, one must not only acquire 

adequate social task performance measures, but also be able to carry out conversation in 

socially appropriate way (e.g., paying proper attention towards the face of the 

communicator). The investigation results presented in this chapter show the efficacy of 

the VR-based gaze-sensitive adaptive response technology to encourage individuals with 
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ASD to improve social communication skills, both in terms of improved performance 

metric and also in terms of improved behavioral viewing pattern of the participants 

during social conversation. 

Also note that the VR-based social communication tasks offered by our system had 

their own limitations. For example, the presented social tasks offered limited back-and-

forth conversation turns (such as, six, ten, and fourteen back-and-forth conversation turns 

between the participant and his/her virtual peer, i.e., the avatar, corresponding to the 

‘Easy’, ‘Medium’ and ‘High’ level of interaction difficulty). In addition, these tasks 

offered limited challenge to the participants when compared to other available computer-

based games, such as Pong, Anagram, etc. Also, the participants in our study were high-

functioning adolescents with ASD who might find some of the social tasks somewhat less 

challenging than those on the low-functioning spectrum.         

However, in spite of the limitations of the current system, the VR-based gaze 

sensitive social interactive system with adaptive response technology was capable of 

eliciting variations in affective states, performance scores and behavioral viewing 

patterns among the participants with ASD. With further improved and more challenging 

interaction tasks, we may expect greater variation in the affective states, performance 

scores, and behavioral viewing patterns among this target population. 

In short, the VR-based gaze-sensitive adaptive response technology which can 

intelligently adapt itself based on one’s predicted engagement level has the potential to 

promote improved task performance along with encouraging socially appropriate 

mechanisms (such as improved attention to the face of the communicator) during social 

communication. Thus this work demonstrates the efficacy and impact of VR-based gaze-
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sensitive social communication system with adaptive response technology to serve as an 

effective tool for developing tailored interventions for individuals with ASD. In a sense, 

deploying such technological tools could make targeted and personalized intervention a 

reality for these individuals and could be incorporated into complex intervention 

paradigms aimed at improving functioning and quality of life for older children, 

adolescents, and adults with ASD.  
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UNDERSTANDING PSYCHOPHYSIOLOGICAL RESPONSE WITH VIRTUAL 

REALITY BASED ADAPTIVE SOCIAL INTERACTIVE GAZE-SENSITIVE 

SYSTEM FOR CHILDREN WITH ASD 

 

Introduction 

The primary objective of this chapter is to present an analysis on the 

psychophysiological effects of interacting with a Virtual Reality (VR) based gaze-

sensitive social communication system equipped with adaptive response technology. 

Children with ASD often have communicative impairments (both verbal and nonverbal), 

particularly regarding expression of affective states (APA, 2000; Green et al., 2002; 

Schultz, 2005). They often experience states of emotional or cognitive stress measured as 

Autonomic Nervous System activation without external expression (Picard, 2009) 

challenging their interests in learning and communicating. Clinicians involved in 

interventions must overcome these communication impairments generally exhibited by 

children with ASD by adeptly inferring the affective (e.g., engagement, enjoyment, and 

anxiety) cues of the children to adjust the intervention accordingly. However, the 

vulnerabilities characterizing the communicative impairments of children with ASD 

place limits on traditional conversational and observational methodologies. There is a 

growing consensus that endowing a computer with an ability to understand implicit 

affective cues should permit more meaningful and natural human-computer interaction 

CHAPTER VII
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(Picard, 1997; Reeves, and Nass, 1996). Thus, for affective computing, we choose the 

implicit measure by using the physiological signals. The physiological signals are 

continuously available and are not necessarily directly impacted by the communicative 

impairments (Ben Shalom et al., 2006; Groden et al., 2005; Toichi, and Kamio, 2003). As 

such, physiological signal acquisition may represent a methodology for gathering rich 

data despite the potential communicative impairments of children with ASD.  

In this chapter, we present our offline analysis of the impact of interaction with our 

developed system on physiological signals. Out of the three affective states (e.g., 

engagement, enjoyment, and anxiety) we carried out investigation based on the 

engagement of the participant, since in the present study we are mainly interested with 

the participant’s engagement level during the VR-based social communication task. Thus 

we studied the effects of varying engagement level of the participants, as rated by the 

therapist, on the physiological signals, while the participants interacted with our system.  

The results could provide valuable information to caregivers and clinicians about the 

specific affect-eliciting aspects of social communication such that this feedback could 

drive behavioral interventions that scaffold skills from basic levels of comfort. 

Investigation of the physiological signals may help in isolating physiological features 

which are more sensitive to one’s engagement and thereby lead to the development of a 

more robust adaptive controlled system. In future, such a system can fuse the 

discriminatory physiological signals from the peripheral physiology (e.g., cardiovascular, 

electrodermal, electromyographic, etc.) and the eye physiology (e.g., blink rate and pupil 

diameter) for a more robust individualized adaptive system. 
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Experimental Investigation 

 

Procedure 

In the present study each participant participated in two sessions. Each participant 

was walked through the Adaptation Phase (discussed in Chapter VI). The participant was 

positioned in front of a task computer (C1, Fig. VI-1). Then the peripheral physiological 

sensors from Biopac were placed on the participant’s body. The peripheral physiological 

signals recorded in this work are the same as those described in Chapter III with the 

features listed in Appendix A. These signals were collected using a Biopac MP150 

system (biopac.com) and small wearable sensors were placed on a participant's left 

eyebrow (Corrugator Supercilii EMG), left cheek (Zygomaticus Major), upper 

back/lower neck muscle on right (Upper Trapezius EMG), chest (ECG and Heart Sound), 

neck and torso (ICG), ring and pointer finger of left hand (GSR), middle finger of left 

hand (PPG), and thumb on the participant's left hand (Skin Temperature). Participants 

used their right hand to click a mouse for interaction with the VR system. The sensors 

have been successfully used to collect physiological data of typical individuals (Rani, 

Liu, and Sarkar, 2006) and our previous work with participants with ASD (as discussed 

in Chapter III). The eye-tracker goggles from Arrington were then calibrated for the 

participant’s eyes (discussed in Chapter VI). Data acquired from the eye-tracker was used 

to compute the real-time pupil diameter, and blink rate of the participant (discussed in 

Chapter V) during the VR-based social communication task. This was followed by the 

participant’s participation in the VR-based social communication Task.  
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Results   

The objective of this section is to present the results of an investigation to study the 

effects of interacting with a VR based gaze-sensitive social communication system 

equipped with adaptive response technology. We discuss the results of the offline 

analysis to show how various physiological responses are influenced when the 

participants interact with such a system.  

 

Impact of Varying Engagement Levels on the Physiological Signals 

We studied the implications of varying engagement level of the participants, as rated by 

the therapist, on their physiological signals, while the participants interacted with our 

system. The therapist rated the participants’ engagement level using a 1-9 scale (1: not 

engaged, 9: very engaged). We segregated the engagement rating into Low Engagement 

(LE: for engagement rating 1-3), and High Engagement (HE: for engagement rating 7-9). 

Subsequently, we investigated the implications of varying engagement on the peripheral 

physiological signals (broadly categorized as electrocardiographic (ECG), skin 

temperature (SKT), galvanic skin response (GSR) and electromyographic (EMG)), eye 

physiological signals (namely, pupil diameter (PD) and blink rate (BR)). 
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Table VII-1. Group Analysis of Physiological Features for Low Engagement 
(LE) and High Engagement (HE) for Session1. 
  Feature 

Spec. 
LE HE Significance 

(p-value) 

P
er

ip
he

ra
l P

hy
si

ol
og

y 

ECG 
pep mean 
(ms) 

106.66 158.70 2.3621e-06*

SKT 
temp mean 
(˚F) 

92.73 90.16 0.0058 

EMG 

Cfreq mean 
(Hz) 

62.50 141.32 2.5809e-06*

Cemg std 
(µV) 

0.08 0.05 0.0326 

blink amp 
(µV) 

0.23 0.08 6.0924e-05*

blink std 
(µV) 

0.15 0.05 0.0318 

Zemg mean 
(µV) 

-1.42e-06 7.87e-09 0.0465 

Zemg std 
(µV) 

0.12 0.01 2.9516e-10*

E
ye

 
P

hy
si

ol
og

y 

EYE 
blink rate 

mean 
(blinks/min) 

149.46 6.93 0.0153 

Note : Therapist rated participants engagement level on a 1-9 scale (1-not 
engaged; 9-most engaged).  
Low Engagement (LE) corresponds to therapist’s rating on engagement of 1-3. 
High Engagement (HE) corresponds to therapist’s rating on engagement of 7-9. 
* :p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table VII-1, it can be seen that a number of features from the peripheral 

physiological signals and one feature from the eye physiology are found to be statistically 

significantly different for the LE and the HE states (as rated by the therapist) of the 

participants for Session1. 

When investigated for Session2, also a number of features from peripheral 

physiological signals, and one feature from eye physiology are found to be statistically 

significantly different (Table VII-2).     
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Table VII-2. Group Analysis of Physiological Features for Low Engagement (LE) 
and High Engagement (HE) for Session2. 

  Feature Spec. LE HE Significance 
(p-value) 

P
er

ip
he

ra
l P

hy
si

ol
og

y 

ECG 

pep mean (ms) 124.14 97.26 0.0275 
pep std (ms) 39.47 57.85 0.0198 
imp ibi std (ms) 125.84 172.36 0.0267 
HR (beats/min) 82.29 96.39 0.0017 
mean ibi ppg 
(ms) 

713.63 610.17 0.0023 

ppgpeak mean 
(µV) 

0.58 0.26 0.0087 

SKT temp mean (˚F) 93.67 92.25 0.0101 

EMG 
Cemg std (µV) 0.03 0.02 0.0368 
Temg std (µV) 0.02 0.08 0.0145 

E
ye

 
P

hy
si

ol
og

y 

EYE 
blink rate mean 

(blinks/min) 
73.22 4.46 0.0151 

 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 
9-most engaged).  
Low Engagement (LE) corresponds to therapist’s rating on engagement rating of 1-3. 
High Engagement (HE) corresponds to therapist’s rating on engagement of 7-9. 
* :p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus during both Session1 and Session2, our investigation results show that a number 

of peripheral physiological (e.g., ECG, EMG, etc.) and one eye physiological (e.g., blink 

rate) features are found to vary statistically significantly with the engagement level (as 

rated by the therapist) of the participant group.    

 

Understanding the Psychophysiological Response (Selected Eye Physiological and 

Peripheral Physiological Features) with Varying Engagement Level 

We carried out further investigation to analyze and understand the variation in some 

selected features and thereby determine whether the nature in the variation is similar to 

non-VR based studies. Among the eye physiological signals, we chose the Blink Rate 
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(blinks/min) since it is found to be statistically significant with varying levels of one’s 

engagement for both Session1 (Table VII-1) and Session2 (Table VII-2). In addition, we 

also analyzed the somatic and autonomic responses – heart (Cardiovascular (ECG)), and 

skin (Electrodermal (EDA)) which have been referred to as hallmarks of affective 

response (Cacioppo et al., 2000). Thus, among these peripheral physiological signals, we 

chose some signals broadly categorized as Cardiovascular, and Electrodermal. Among 

the Cardiovascular features, we considered the Heart Rate (bpm), and the mean interbeat 

interval Pulseplethysmogram (IBI_PPG mean) signal (ms). Among the Electrodermal 

features, we chose the mean of Tonic Amplitude (µS) and the mean of the Phasic 

Amplitude (µS).  

- Variation in the Eye Physiological Feature 

Literature indicates Blink Rate (BR) as an important measure of affective state. In a 

study conducted by Bentivoglio et al., mean BR for normal subjects was found to 

decrease from 17 times/min while at rest to 4.5 times/min while reading (i.e., in attentive 

condition) (Bentivoglio et al., 2004). Increased BR was found in schizophrenic patients in 

the “relaxed” condition but not in the “attentive” condition (Chen et al., 1996) and in 

children with ASD (Jensen et al., 2009) during task-free periods. Thus the BR has been 

shown to decrease with increased engagement to a task for non-VR based studies. In the 

present study, we obtained similar findings so far as the variation in BR with engagement 

is concerned. 
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 Figure VII-1. Variation in the Group Blink Rate with Engagement. 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged).  
Low Engagement corresponds to therapist’s rating on engagement of 1-3.  
High Engagement corresponds to therapist’s rating on engagement of 7-9.  

Thus from Fig. VII-1, we find that the blink rate (BR) decreases from Low 

Engagement to High Engagement state for both the Sessions 1 and 2, similar to non-VR 

based studies. 

- Variation in Cardiovascular features 

With sustained attention, the parasympathetic activity of the Autonomic Nervous 

System (ANS) is suppressed (Weber, Van der Molen, and Molenaar, 1994; Ravaja, 2002) 

resulting in sympathetic activation of the ANS. Also, Selvaraj et al., showed that 

vasoconstriction (sympathetic activation) has a very noticeable effect on the interbeat 

interval of the Pulseplethysmogram (IBI_PPG) pulse (Selvaraj, Santhosh, and Anand, 

2007).       
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Figure VII-2. Variation in the Group Heart Rate with Engagement. 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged). Low Engagement corresponds to therapist’s rating on engagement of
1-3.  
High Engagement corresponds to therapist’s rating on engagement of 7-9.  

 

 

 

 

 

 

 

 

 

 

 

From Fig. VII-2, we find that with increased attention and engagement, the Heart 

Rate (HR) of the participants increases for both the Session1 and 2, similar to the 

observation made for non-VR based studies. Also, we find that the increase in HR from 

the Low Engagement state to the High Engagement state is greater for Session2 than that 

for Session1. This implies a greater improvement in the engagement level of the 

participants from Session1 to session2 and the same is reflected from the variation in the 

HR of the participant group.   
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Figure VII-3. Variation in the Group mean Interbeat Interval of Pulseplethysmogram
with Engagement. 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged). Low Engagement corresponds to therapist’s rating on engagement of
1-3.  

So far as the mean interbeat interval Pulseplethysmogram (IBI_PPG) is concerned, 

sympathetic activity results in a decrease in IBI_PPG mean and vice-versa for 

parasympathetic activity.  

 

From Fig. VII-2, we find that with increase in engagement level from Low 

Engagement to High Engagement, the HR increases for both Session1 and 2 which 

prompts a decrease in the mean IBI PPG. In fact, we find from Fig. VII-3 that as the 

participants move from Low Engagement to High Engagement state, the mean IBI PPG 

decreases (as is expected). However, the decrease in the mean IBI PPG from Low 

Engagement to High Engagement state is greater for Session2 than that for Session1. 
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Figure VII-4. Variation in the Group Tonic mean Amplitude with Engagement. 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged). Low Engagement corresponds to therapist’s rating on engagement of
1-3.  
High Engagement corresponds to therapist’s rating on engagement of 7-9.  

 

- Variation in Electrodermal Features 

Electrodermal activity (EDA), commonly known as skin conductance, is an important 

psychophysiological index of arousal (Lang et al., 1993). As people experience arousal, 

their sympathetic nervous system is activated, resulting in increased sweat gland activity 

and skin conductance (Ravaja et al., 2006). EDA consists of two main components e.g., 

tonic response and phasic response. Tonic skin conductance refers to ongoing skin 

conductance level in the absence of any discrete environmental events. Phasic skin 

conductance refers to event-related momentary increase in skin conductance.  
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Figure VII-5. Variation in the Group Phasic mean Amplitude with Engagement. 
Note : Therapist rated participants engagement level on a 1-9 scale (1-not engaged; 9-
most engaged). Low Engagement corresponds to therapist’s rating on engagement of
1-3.  
High Engagement corresponds to therapist’s rating on engagement of 7-9.  

 

 

 

 

We find from Fig. VII-4 and Fig. VII-5, that although the Tonic component shows a 

decrease from the Low Engagement state to the High Engagement state for Session1, the 

Tonic component increases from the Low to High Engagement for Session2 similar to the 

findings from non-VR based studies. However, the mean Phasic amplitude increases 

from the Low Engagement to the High Engagement state (Fig. VII-5) during both 

Session1 and 2, similar to the findings in non-VR based literature.      

 

Discussion 

This chapter presents the results of offline analysis to study the how various 
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physiological responses are influenced when the participants interact with our system 

capable of switching VR-based social tasks based on one’s performance metric alone 

(Session1) and that capable of bringing about progression of virtual social tasks based on 

the composite effect of one’s behavioral viewing, eye physiology, and the performance 

metric (Session2). Investigation into the offline analysis of the eye physiological and 

peripheral physiological signals collected from the participants during the VR-based 

social communication tasks reveals the efficacy of the system to cause variations in the 

physiological signals. 

More importantly, the results presented in this chapter show that if we allow a 

computer to recognize the engagement level of an individual in terms of his/her 

behavioral viewing pattern, eye physiological indices, and performance during VR-based 

social communication tasks and apply this information as a means of flexibly taking 

appropriate decisions about the adaptation of the individual to the social task, then it may 

contribute to psychophysiological variations similar to non-VR based studies. Thus this 

work demonstrates the efficacy of VR-based gaze-sensitive social communication system 

with adaptive response technology to serve as an effective tool for developing tailored 

interventions for individuals with ASD using a physiology-based approach. In a sense, 

deploying such technological tools could make targeted and personalized intervention a 

reality for these individuals and could be incorporated into complex intervention 

paradigms aimed at improving functioning and quality of life for older children, 

adolescents, and adults with ASD.  
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CONTRIBUTIONS AND FUTURE WORK 

 

Contributions 

Impairments in social communication skills are thought to be core deficits in children 

with Autism Spectrum Disorder (ASD). There is growing consensus that appropriately 

individualized intensive behavioral and educational interventions can improve core social 

communication vulnerabilities seen in individuals with ASD. However, there are potent 

barriers related to accessing and implementing appropriately individualized intensive 

intervention services (e.g., limited access to and availability of appropriately trained 

professionals, lack of available data suggesting which interventions will work better for 

specific children, concerns about efficacy and generalization regarding certain 

interventions, and exorbitant costs. Given these barriers, researchers are employing 

technology to develop more accessible, quantifiable, intensive and individualized 

intervention services for core deficit areas related to ASD. In recent years, several 

assistive technologies, particularly Virtual Reality (VR), have been investigated to 

promote social interactions in this population. However, current VR environments as 

applied to assistive intervention for children with ASD are designed in an open-loop 

fashion. These VR systems may be able to chain learning via aspects of performance; 

however, they are not capable of a high degree of individualization. Also, it is well-

known that children with ASD demonstrate atypical viewing patterns during social 

interactions and thus monitoring eye-gaze can be valuable to design intervention 

CHAPTER VIII
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strategies. Thus researchers have been trying to link VR with gaze measurement in tasks 

such as joint-attention tasks. However, the currently available systems though may 

automatically detect and respond based on one’s viewing pattern, cannot objectively 

identify and predict social engagement, understand viewing patterns, and 

psychophysiological effect of the specific child based on attentive indices. 

Given the promise of VR-based gaze-sensitive social interaction to influence one’s 

affective states, behavioral viewing patterns, and performance in the social task, the 

development of a VR-based gaze-sensitive social interactive system that can integrate the 

objective metrics and adapt itself to promote improved social communication skills 

among the children with ASD is critical. Our present research bridges this gap by closing 

the loop by developing a novel Virtual Interactive system with Gaze-sensitive Adaptive 

Response Technology that can seamlessly integrate VR-based tasks with eye-tracking 

techniques to intelligently encourage a participant to engage in social communication 

tasks while maintaining the niceties of social interactions. Specifically, such a system is 

capable of objectively identifying and quantifying the dynamic viewing patterns, subtle 

changes in eye physiological responses in real-time, and performance metric of a 

participant and adaptively responding in an individualized manner to foster improved 

social communication skills among the participants in an individualized manner. Thus, 

the contributions of this dissertation can be broadly categorized into two major areas, 

namely, (i) System Development and (ii) Development of new paradigms for technology-

assisted intervention. 

System Development 

This involves developing intelligent software platforms that (a) can detect subtle 
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variations in one’s peripheral physiological, eye-physiological signal features, and 

behavioral viewing patterns in real-time and (b) seamlessly integrate these information 

with the VR-platform to take intelligent decisions regarding the adaptation of the 

individual to the VR-based social tasks. Thus, we present the        

1. Design and development of a physiology-based assessment tool that identifies 

specific aspects of VR-based social interaction inducing affective response (e.g., 

engagement, enjoyment, and anxiety) in individuals with ASD. The VR-based social 

communication system discussed in Chapter III is capable of systematic manipulation of 

specific aspects of social communication. Specifically, the virtual peers (i.e., the avatars) 

within this system can display varying amounts of eye contact, and can vary proximity to 

the participant as they interact socially with the participants. The design is evaluated 

through a usability study that combines ratings reported from a clinical observer with 

physiological responses indicative of affective states of the participants, both being 

collected when the participants interact in the VR-based social tasks with the avatars. In 

the usability study, a number of peripheral physiological features, broadly categorized as 

cardiovascular (ECG), electrodermal (EDA), electromyographic (EMG), etc., were 

examined for a group of ASD and Typically Developing (TD) adolescents during social 

communication task presented on a VR platform for elicitation of multiple affective states. 

The investigation results show that the VR system provokes variations in both affective 

ratings and physiological signals to changes in social experimental stimuli for 

participants with ASD and TD participants. Thus, this work provides a vital step towards 

development of future social interventions using technologies such as VR for the ASD 

population. Since physiological signals have been shown to be differentiated during 
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social interaction within a virtual environment, the signals could be a useful measure in 

real-time VR-assisted social skill intervention, an important therapeutic instrument for 

addressing the core deficits in the ASD population.  

2. Design and development of a VR-based gaze-sensitive social interactive system 

capable of providing individualized feedback based on the real-time viewing pattern of an 

individual interacting with the VR platform. Chapter IV presents the design details of 

such a system and also describes the investigation results from a usability study. Results 

indicate that gaze-based individualized feedback can lead to an improvement in the 

behavioral viewing patterns and the engagement level of participants with ASD during 

computer mediated VR-based social communication tasks. In addition, the usability study 

shows the feasibility of measuring eye physiological indices such as blink rate and pupil 

diameter in real-time and that they can be correlated to the emotion recognition capability 

of the participants with ASD. Thus, it is reasonable to believe that such a system could be 

used in intervention, perhaps as a supplementary tool, to allow an individual with ASD to 

enhance his/her social communication skills. 

3. Design and development of an intelligent VR-based gaze-sensitive system with 

adaptive response technology. The system, as presented in Chapter V, intelligently fuses 

the information derived from an individual’s behavioral viewing, eye physiological 

indices, and performance metrics through a rule-governed strategy generator during VR-

based social communication tasks. Thus, the embodied intelligence of the VR-based 

gaze-sensitive system encourages a participant by adaptively responding in an 

individualized manner to participate in social communication task with improved 

engagement and subsequently improved performance during the social task. The results 
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of a usability study shows that if we allow a computer to recognize the engagement level 

of an individual in terms of his/her behavioral viewing pattern, eye physiological indices, 

and performance during VR-based social communication tasks and apply this information 

as a means of flexibly taking appropriate decisions about the adaptation of the individual 

to the social task, then it may contribute to improved social task performance. In addition, 

the investigation results also indicate that the VR-based gaze-sensitive adaptive response 

technology has the potential to promote improved task performance along with 

encouraging socially appropriate mechanisms (such as improved attention to the face of 

the communicator) to foster improved social communication skills among the individuals 

with ASD. 

Development of new paradigms for technology-assisted intervention 

This involves developing new paradigms for technology-assisted intervention. 

Specifically, the VR-based gaze-sensitive adaptive response technology for social 

communication for children with ASD intelligently fuses one’s behavioral viewing, eye 

physiological indices and performance metric to predict one’s engagement level to 

promote social communication skills among the target population. The presented research 

shows for the first time the capability of an intelligent closed loop system that adaptively 

responds based on the composite effect of one’s behavioral viewing, eye physiological 

indices and performance metric during a social task to encourage social communication 

skills as opposed to an open loop system that responds based only on one’s performance 

metric alone. The intelligent adaptive closed loop system provides a comprehensive 

platform for fostering socially appropriate mechanisms utilizing rule-governed strategy 

generator implemented using finite state machine automaton. Such a system with 
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adaptive response technology has the potential to serve as an effective tool for developing 

intensive, individualized, and tailored interventions for individuals with ASD. In a sense, 

deploying such technological tools could make targeted and personalized intervention a 

reality for these individuals and could be incorporated into complex intervention 

paradigms aimed at improving functioning and quality of life for older children, 

adolescents, and adults with ASD.  

The results of the usability study are promising. However, a much larger study must 

be conducted before such findings can be generalized. The presented usability study 

shows, in principle, that the VR-based gaze-sensitive system with adaptive response 

technology has the potential to be used as a supplement to real-life social skills training 

tasks in an individualized and intensive manner. However, we acknowledge that current 

findings, particularly toward skill improvement, are preliminary and limited in nature. 

While demonstrating proof of concept of the technology and trends of ‘improved’ social 

communication skills in a VR-based social task, questions about the practicality, efficacy, 

and ultimate benefit of the use of this and other technological tools for demonstrating 

clinically significant improvements in terms of ASD impairment remain, which will 

eventually be addressed by empirical investigation in the future.   

 

Future Work 

Our integrated technology fuses the behavioral viewing, eye physiological indices, 

and performance metrics of an individual with an aim to foster improved social 

communication skills among the participants in an individualized manner by adaptively 

encouraging the participants to continue social interaction. Though our system is capable 
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of capturing event-marked synchronized peripheral physiological responses, such as, 

ECG, EDA, EMG, etc. during VR-based interaction, we did not feedback the inference 

from these peripheral physiological signals at this stage of research. Presently, we 

analyzed these responses off-line so that we can systematically isolate the most sensitive 

physiological features for future online feedback. In the future, an overall integrated 

system that fuses the behavioral viewing, most sensitive physiological features (eye-

physiology and peripheral physiological signals) as derived from the investigation in the 

presented work, and the performance metrics, can be applied. Thus this can be a step 

towards more effective fusion of sensory signals to enable more robust mapping of 

physiology with one’s engagement and thereby help to develop an improved physiology-

based behavioral profiling system. 

Note that the presented work requires physiological sensing that has its own 

limitations. For example, one needs to wear physiological sensors and put on the eye-

tracker goggles, and use of such sensors could be restrictive under certain circumstances. 

However, none of the participants in our previous studies and in our presented study had 

any objection in either wearing the physiological sensors or in putting on the eye-tracker 

goggles. Given the rapid progress in wearable computing with small, non-invasive 

sensors and wireless communication, physiological sensors can be worn in a wireless 

manner, which could alleviate possible constraints on experimental design. Also, with 

increased research on remote desktop-mounted eye-tracker, experimental design may 

become even more simplified. In future the proposed system can be integrated with 

wireless sensors and remote eye-tracker thereby allowing a wider range of ASD 

population to be involved in the study. 
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Future work may also involve designing socially-directed interaction experiments with 

embodied robots interacting with children with ASD while systematically varying various 

aspects of social communication. For example, the real-time VR-based adaptive response 

technology described in the presented work can be integrated with 3D humanoid robot so 

as to produce realistic life-like social interaction with children with ASD. 
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APPENDIX A 
Table A-1. Peripheral Physiological Indices 
Physiological 
Response 

Features Derived Label Used 
Unit of  
Measurement 

Electrocardiogram  

Sympathetic power  
from ECG 

Sym 
unit/square second
(unit/s2) 

Parasympathetic power 
from ECG 

Para unit/s2 

Very Low Frequency Power 
from ECG 

VLF unit/s2 

Ratio of powers  
Para/VLF 
Para/Sym 
VLF/Sym 

No unit 

Mean of IBI IBI_ECGmean milliseconds (ms) 

SD of IBI IBI_ECGstd 
Standard Deviation 
(SD, ms) 

Photoplethysmogram 

Mean amplitude of the  
peak values of the PPG signal 

PPG_Peakmean microvolt (V) 

Maximum amplitude of the  
peak values of the PPG signal 

PPG_Peakmax V 

Mean of IBI of PPG IBI_PPGmean ms 

SD of IBI of PPG IBI_PPGstd ms 

Mean Pulse Transit Time (PTT) PTTmean ms 
SD Pulse Transit Time (PTT) PTTstd ms 

Heart Sound 

Mean of the 3rd, 4th, and 5th level  
coefficients of the Daubechies 
wavelet transform of heart sound 

D3_HSmean 
D4_HSmean 
D5_HSmean 

No unit 

SD of the 3rd, 4th, and 5th level  
coefficients of the Daubechies  
wavelet transform of heart sound 

D3_HSstd 
D4_HSstd 
D5_HSstd 

No unit 

Bioimpedance 

Mean Pre-Ejection Period (PEP) PEPmean ms 
SD Pre-Ejection Period (PEP) PEPstd ms 
Mean of IBI of ICG IBI_ICGmean ms 
SD of IBI of ICG IBI_ICGstd ms 

Electrodermal  
Activity 

Mean tonic activity level Tonicmean microsiemens (S)
Slope of tonic activity Tonicslope S/s 
Mean amplitude of skin conductance
response (phasic activity) 

Phasicmean S 

Maximum amplitude of skin  
conductance response (phasic activity) 

Phasicmax S 

Rate of phasic activity Phasicrate peaks/min 

Electromyographic  
activity   

Mean of Corrugator Supercilii activity Cormean V 
SD of Corrugator Supercilii activity Corstd V 
Slope of Corrugator Supercilii activity Corslope V/s 
Mean of IBI of blink activity IBI_Blinkmean s 
Mean amplitude of the peak values  
of blink activity 

Blink_Peakmean V 
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Physiological 
Response 

Features Derived Label Used 
Unit of  
Measurement 

Electromyographic  
activity   

Mean amplitude of blink activity Blinkmean V 
SD of blink activity Blinkstd V 
Mean of Zygomaticus Major activity Zygmean V 
SD of Zygomaticus Major activity Zygstd V 
Slope of Zygomaticus Major activity Zygslope V/s 
Mean of Upper Trapezius activity Trapmean V 
SD of Upper Trapezius activity Trapstd V 
Slope of Upper Trapezius activity Trapslope V/s 

Mean and Median frequency  
of Corrugator, Zygomaticus,  
and Trapezius 

Cfreqmean 
Zfreqmean 
Tfreqmean 
Cfreqmedian 
Zfreqmedian 
Tfreqmedian 

Hertz 

Temperature 
Mean temperature Tempmean 

Degree  
Fahrenheit (F) 

Slope of temperature Tempslope F/s 
SD of temperature Tempstd F 

 

 

 


