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                                              CHAPTER I 

 

 

                                          INTRODUCTION 

 

 
                                             Integrin structure and function 

 

Integrins are cell surface receptors that mediate the interactions between cells and 

extracellular matrix (ECM).  They consist of non-covalently bound α and β subunits 

that combine in a restricted manner to form specific α β dimers. In mammals there are 

18α and 8β subunits that form more than 20 different dimers, each of which exhibits 

different ligand binding properties(Hynes 2002);(Legate, Wickstrom et al. 2009). β1 is 

the most abundantly expressed β subunit and is found in almost all cell types in the body, 

including the kidney. Integrins α3β1, α6β1 and α6β4 are the major laminin binding 

receptors, while the predominant collagen receptors are integrins α1β1and α2β1. 

Although they are primarily thought of as anchoring molecules, integrins play a crucial 

role in cell adhesion, migration, proliferation and apoptosis by transducing signals 

through their cytoplasmic tails following ligand binding (Ginsberg, Partridge et al. 2005);  

(Moser, Legate et al. 2009); (Legate and Fassler 2009). 

 

Each integrin subunit is composed of a large extracellular domain, a single 

transmembrane pass and a cytoplasmic tail. The head region of the extracellular domain 

contains a metal-ion-dependent adhesion site (MIDAS), which is critical for ligand 

recognition(Shimaoka, Takagi et al. 2002); (Moser, Legate et al. 2009).  Integrin β 
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cytoplasmic tails, with the exception of those of β4 and β8, are short. The affinity states 

of integrins are tightly regulated by their conformations. Integrins are usually expressed 

on the cell surface in a low-affinity bent conformation and quickly switch to a high 

affinity extended form upon binding of specific adaptors to their cytoplasmic tails. This 

process is called integrin activation or “inside-out” signaling (Calderwood, Zent et al. 

1999; Carman and Springer 2003); (Arnaout, Goodman et al. 2007). Once integrins are 

activated, they are able to bind extracellular ligands and transmit a vast array of 

intracellular changes, which is known as the “outside –in” signaling (Figure 1). This bi-

directional integrin signaling plays important roles in regulating cell functions (Hynes 

2002; Schwartz and Ginsberg 2002); (Legate and Fassler 2009). 

 

Integrin cytoplasmic tails provide anchors for multiple adaptor proteins with 

which they co-localize in focal adhesion sites(Zaidel-Bar, Itzkovitz et al. 2007). There are 

three categories of integrin adaptor proteins– adaptors that mainly have structural 

functions, scaffolding functions and catalytic functions. Talin, filamin and tensin are the 

main structural adaptors, which bind to F-actin and therefore connect integrins to 

cytoskeletal networks directly. CD98 and paxillin are examples of scaffolding adaptors, 

which provide binding sites for other proteins, including kinases, phosphatases and 

proteases. Catalytic adaptors, such as FAK, Src, ILK, Fyn, are critical for transmitting 

signals to the downstream upon integrin activation(Humphries, Byron et al. 2006); 

(Moser, Legate et al. 2009); (Zaidel-Bar, Itzkovitz et al. 2007); (Legate and Fassler 2009). 

Integrin downstream signaling can regulate cell functions at multiple levels. The 
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immediate changes following integrin activation includes increased tyrosine 

phosphorylation of specific adaptors such as FAK/Src complex, which is recognized as 

one of the central regulators of integrin signaling. Integrins also lead to increased 

concentrations of lipid second messengers, such as PIP2 and PIP3, which further activate 

AKT signaling pathways. Short term attachment to ECM leads to cell cytoskeletal 

rearrangement, which regulates cell migration, spreading and polarization. Long term 

integrin-mediated cell adhesion results in changes in signaling pathways and gene 

expression which mediate cell survival, growth and differentiation (Legate and Fassler 

2009); (Calderwood, Fujioka et al. 2003). 

 

                               Integrin-growth factor crosstalk 

Integrins co-localize with multiple growth factor receptors (GFRs) in focal 

adhesion sites. Although both receptors can act independently, more frequently they act 

synergistically through a dynamic dialogue in response to the composition of 

extracellular matrix, its mechanical properties as well as the growth factor environment. 

Both integrin occupancy and aggregation are required for maximally synergistic, 

collaborative signaling output.   

 

The crosstalk between integrin signaling and GFR signaling is bi-directional. 

Integrins are shown to work either as upstream or downstream regulators of GFR activity. 

For example, it was demonstrated that β1 integrin regulates EGFR expression, which is 

reduced upon cell detachment from ECM (Reginato, Mills et al. 2003). And EGFR  
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.  

 

 

 

                                         Integrin - growth factor crosstalk 

 
                                   Modified from (Legate, Wickstrom et al. 2009) Figure1 

 

 

Figure 1: Integrin “outside-in” signaling   Integrins usually express on cell surface in an inactive 

bent conformation and quickly switch to an extended conformation upon integrin activation. 
Integrin activation leads to the downstream signaling events that can be divided into three temporal 

stages, which regulate various cell functions.  
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stimulation leads to increased β3- and β1- dependent cell adhesion (Zheng, Woodard et al. 

2000). Several mechanisms have been proposed how integrins mediate GFR activity 

(Figure 2). The first mechanism is that integrins lead to aggregation of adaptor proteins 

such as FAK, which are recruited to the plasma membrane where they associate with 

GFRs. Growth factor binding activates GFRs, which function synergistically with 

integrins leading to enhanced downstream signaling(Alam, Goel et al. 2007). The second 

mechanism is that integrins alter GFR activity by changing their localization. Integrins 

co-localize GFRs, along with multiple signaling molecules, cytoskeletal molecules in the 

focal contacts. Integrins are shown to mediate IGF-1R signaling by perturbing their 

localization in focal contacts (Goel, Breen et al. 2005). α2β1 integrin is also demonstrated 

to co-localize with and activate EGFR at cell-cell contact sites(Yu, Miyamoto et al. 2000).  

The third hypothesized mechanism is that integrins may alter GFR rate of internalization 

or of degradation. A recent study has demonstrated that cell adhesion can change PDGFR 

rate of degradation via ubiquitination(Alam, Goel et al. 2007). 

 

Several studies indicate that integrins are critical for the propagation of growth 

factor dependent cell signaling. Absence of integrins leads to diminished growth factor 

mediated signaling, despite normal growth factor receptor expression and activation on 

the cell surface (Baron and Schwartz 2000). Studies in Erk-MAPK pathway have 

provided us an example of the mechanisms whereby integrins regulate growth factor 

mediated signaling. It was shown that activation of MEK1 by FAK-Src complex, 

following integrin-mediated cell adhesion, is required for the signal to proceed to MAPK 
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activation, although growth factors are able to activate Ras independently of adhesion 

(Slack-Davis, Eblen et al. 2003). Also Raf1 phosphorylation is lost in non-adherent cells, 

which renders EGF unable to induce activation of Erk (Edin and Juliano 2005). Therefore 

MEK1 and Raf1 are two convergence points in integrin-mediated growth factor-

dependent MAP kinase signaling.  

 

Furthermore, studies suggest that, integrins are able to induce ligand-independent 

activation of GFRs, at least to the extent of enhanced tyrosine phosphorylation. For 

example, integrin αvβ3 activation leads to EGFR phosphorylation in the absence of EGF 

(Moro, Dolce et al. 2002). The biological effects of ligand-independent integrin mediated 

GFR activation remain unknown. It may be necessary for maximal physiological 

regulation of ECM and GFRs, as well as for the cells to respond to mechanical stimuli 

detected by integrins. Recent evidence also indicates that, integrin activation increases 

growth factor expression in the cellular micro-environment. For example, β1c integrin 

up-regulates IGF expression at both the mRNA and protein levels, leading to increased 

cell adhesion (Goel, Moro et al. 2006).   

 

Many fundamental questions still need to be addressed to dissect the mechanisms 

of this integrin-growth factor crosstalk. For example, it remains unknown which 

regulators control integrin-GFR association and disassociation. Integrins may potentially 

serve as the primary target in pathological conditions, such as degenerative disease, 

inflammation and cancer, since they appear to be molecular switches controlling GFR 
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activity (Streuli and Akhtar 2009); (Alam, Goel et al. 2007). Furthermore, since integrin 

functions are tissue-specific and cell type-specific, the mechanism whereby integrins 

mediate growth factor-dependent signaling in different developmental processes may 

differ and remain unclear (Legate, Wickstrom et al. 2009). 

 

                                           Integrin function in development 

 

Integrin activation is critical for dynamic processes such as embryonic 

development, inflammation and wound healing. The role of integrins in development has 

been investigated utilizing both transgenic mice models and in vitro cell culture system. 

Homozygous deletion of integrin subunit sometimes leads to early embryonic lethality or 

neonatal death in mice. For example, mice homozygous for null mutation in the gene for 

β1 integrin die at pre-implantation stage around E5.5. The functions of integrins in 

different organs, such as skin, neuron and mammary gland, have been studied utilizing 

tissue specific integrin deletion. All the studies have highlighted that integrins have an 

effect on cell survival, proliferation and matrix remodeling. These effects are integrin-

type, cell type- and developmental stage-dependent. For example, ablation of integrin α3 

subunit in skin only generated microblistering, whereas specific integrin β1 deletion in 

the epidermis resulted in severe skin blistering, massive failure of BM 

assembly/organization, hemidesmosome instability, and a failure of keratinocytes within 

the hair follicles to remodel BM and invaginate into the dermis (DiPersio, van der Neut et 

al. 2000); (DiPersio, Hodivala-Dilke et al. 1997). In vitro studies have revealed that skin 

maintains homeostasis via ECM synthesis and degradation which are regulated by  
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                                          Modified from Alam, Goel et al. 2007 Figure 1  

Figure 2: Regulation of GFR signaling by integrins   Integrins, upon association with GFRs, 

modulate GFR dependent cell signaling at multiple levels. This synergism between integrins and 
GFRs leads to maximal signaling output.   
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different integrin subunits. α2β1 is the predominant collagen receptor on keratinocytes 

and its activation up-regulates MMP1 synthesis via p38 MAP kinase signaling pathways. 

In contrast, integrin α1β1 is expressed predominantly by fibroblasts and its activation 

leads to decreased MMP synthesis depending on ERK1/2 signaling(Pozzi and Zent 2003). 

 

In mammary gland, deletion of α6 integrins did not result in any functional or 

developmental abnormalities in mice, although these integrins are expressed in 

development (Klinowska, Alexander et al. 2001). However when β1 is deleted early in 

mammary gland development the alveoli was disorganized and contained clumps of 

epithelial cells bulging into what would normally be luminal space, suggesting that β1 

integrin is essential for normal lobuloalveolar development. When β1 integrin was 

deleted in already developed mammary glands, no obvious abnormalities were observed, 

although mice showed smaller glands and produced less milk than control mice. 

Furthermore in a cell culture model β1 integrin was shown to be essential for terminal 

differentiation of the epithelial cells.  Thus in early mammary development β1 integrin is 

required for normal formation of the gland, while in the setting of a developed mammary 

gland it is required for normal function of the gland (Naylor, Li et al. 2005). Neuronal 

differentiation is also retarded in β1 integrin-deficient stem cell derived neurons due to 

limited migration and morphological differentiation (Clegg, Wingerd et al. 2003). 

However, the role of β1 integrins in kidney development was poorly characterized.  
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                                                     Kidney development 

 

Kidney is the mammalian excretory system and contributes to the maintenance of 

homeostasis through urine production. Various metabolic waste products are eliminated 

in the urine by a complex process that involves filtration, active absorption, passive 

absorption and secretion. Most of the filtrates are reabsorbed in the kidneys. Kidneys also 

regulate the fluid and electrolyte balance of the body and are the sites of production of 

renin, which plays roles in the regulation of blood pressure. Each kidney can be divided 

into an outer cortex and an inner medulla. The renal medulla consists of pyramidal 

structures, the medullary pyramids， from the base of which parallel arrays of tubules, 

referred to as the medullary rays, penetrate the cortex. The nephron is the functional unit 

of the kidney. There are around one million nephrons in an adult human kidney. Each 

nephron includes the glomerulus, the proximal convoluted tubule, loop of Henle, and the 

distal convoluted tubule, which is joined to a collecting duct. 

 

The metanephric kidney develops from the metanephric mesenchyme (MM), 

which is a specialized region of the caudal end of the intermediate mesoderm. MM 

signals to the wolffian duct, a tube running along each side of the body，which 

evaginates ureteric bud (UB) in response to the signal. UB invades the MM and finally 

gives rise to the collecting system of the kidney via a process known as branching 

morphogenesis. The kidney collecting system includes the collecting ducts, calyces, 

pelvis, and ureter. In the mouse, UB formation is initiated at day 10.5 and undergoes the 

first bifid branching event, forming a T-shaped bud at E11.5. After a rapid branching 
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stage, on E17.5 it enters a stage when the tubules elongate extensively(Costantini 2006). 

The signals that promote and direct UB branching morphogenesis could be derived from 

multiple sources, including the UB itself and any other cell population in the developing 

kidney, such as the MM, stroma or vascular cells(Dressler 2009). 

 

Induced MM is aggregated around the UB tips. Aggregates proliferate, begin to 

exhibit evidence of epithelial cell polarity and form renal vesicles. The structure referred 

to as comma shaped body is generated when a single cleft forms in the vesicle. The 

second cleft generates the S-shaped body, which differentiates into glomerulus when it is 

infiltrated by endothelial cells at E14.5 in mice. Glomerular basement membrane (GBM) 

is formed at the boundary between podocyte and endothelial cells. The podocytes begin 

to extend primary and secondary foot processes, while endothelial cells become 

fenestrated. The fenestrated endothelia on the capillary side and interdigitated podocyte 

foot processes on the urinary space side separated by GBM together form the glomerular 

filtration barrier. A specific structure called slit diaphragm between podocyte foot 

processes helps to maintain a specific pore size that only allows small molecules to 

traverse the filtration barrier. The integrity of the glomerular filter depends in large part 

on the proteins of the nephrin complex including nephrin, podocin and CD2AP, which 

localize to the slit diaphragm (Boute, Gribouval et al. 2000; Roselli, Gribouval et al. 

2002). Mutations in several proteins of the nephrin complex lead to the effacement of 

podocyte foot process (Dressler 2006); (Jarad and Miner 2009).  
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The kidney development can be regulated at both transcriptional and cellular 

levels. For example, Lim1, Pax2/8, Eya1 and Odd1 genes are known to be critical for 

early patterning of the kidney (Xu, Adams et al. 1999). Several transcriptional factors, 

such as Foxc1, FoxC2, suppress ectopic UB outgrowth (Wilm, James et al. 2004), while 

the Hox family genes are positive regulators of UB branching (Wellik, Hawkes et al. 

2002). Up-regulation of Wnt4 gene in MM aggregates is required for the formation of 

polarized renal vesicles, which further differentiate into nephrons (Merkel, Karner et al. 

2007). At the cellular level, multiple signal transduction proteins, such as protein kinase 

C (PKC), protein kinase A (PKA) and Erk MAPK kinase, have been implicated in UB 

development. PKC and Erk MAPK signaling pathways have been shown to induce UB 

branching, while PKA signaling inhibits branching. Notch signaling in early aggregates 

and s-shaped bodies is revealed to play an essential role in proximal-distal patterning as 

the nephron develops (Dressler 2006). Furthermore, several growth factors and distal 

effector molecules, such as ECM proteins, proteases and integrins, are all critical for 

kidney development (Orellana and Avner 1998; Reidy and Rosenblum 2009) 

 

Several model systems have been generated to investigate kidney development, 

including whole embryonic kidney organ culture system, isolated UB culture system, 

genetically engineered mice and cell culture models. Three renal cell lines have been 

used extensively for studies of branching morphogenesis – UB (ureteric bud), IMCD 

(inner medullary collecting duct) and MDCK (mardin darby canine kidney) cells (Pohl, 

Stuart et al. 2000). 
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                             Growth factor function in kidney development 

 

Several growth factors, such as GDNF, FGF, HGF and BMP7, are essential for 

UB branching morphogenesis. VEGF plays fundamental roles in glomerulogenesis and 

maintenance of glomerular integrity. (Figure 4) 

 

GDNF is first expressed in the metanephric mesenchyme adjacent to the caudal region of 

the WD, where the UB will emerge. GDNF signals through a receptor tyrosine kinase, 

Ret, together with the co-receptor Gfrα1. Knock-out of any of these genes usually leads 

to renal agenesis due to failure of the UB to emerge from the WD. Thus GDNF signaling 

promotes UB outgrowth and is also important for continued UB branching 

morphogenesis, based on several types of evidence in vitro and in vivo (Shakya, 

Watanabe et al. 2005). Among the cellular processes that might mediate epithelial 

branching, GDNF has been implicated in two of them, proliferation and migration, and 

might also have effects on cell-cell adhesion. At least three of the well-studied signaling 

pathways downstream of Ret contribute to UB branching - the PI3-kinase/Akt, Ras/Erk 

MAP kinase, and PLC-γ/calcium pathways (Tang, Cai et al. 2002; Kim and Dressler 

2007). 

While numerous members of the FGF family are expressed in the developing 

kidney(Cancilla, Davies et al. 2001), FGF7 and FGF10 have been implicated as two 

central players in UB branching morphogenesis (Qiao, Uzzo et al. 1999; Ohuchi, Hori et 

al. 2000).  The kidneys of FGF10-null mice are slightly smaller than normal. Mice  
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                                Modified from Cebrián 2004 Figure2 & Dressler 2006 Figure2 

Figure 3  Development of the kidney   Induction of the MM by the UB promotes aggregation 

of the condensed mesenchyme around UB tips. UB undergoes rounds of branching events and 

finally gives rise to the kidney collecting system. The aggregates become polarized as they 
undergo mesenchymal-to-epithelial conversion and finally differentiate into the nephrons. 

Glomerulogenesis starts upon invasion of endothelial cells into the proximal cleft at S-shaped 

body In a mature glomerulus, the filtration barrier includes the fenestrated endothelial on the 

capillary side and the interdigitated podocyte foot process on the urinary side separated by GBM. 
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lacking FGF7 have defects in basement membrane and reduced nephron numbers. These 

two FGFs are likely to be partially redundant in vivo, but the phenotype of FGF7/FGF10 

double mutant mice has not been reported yet. FGFR2 is the receptor for both FGF7 and 

FGF10. Mice with deletions of FGFR1 or FGFR2 are early embryonic lethal prior to the 

initiation of kidney development. UB specific deletion of FGFR2 results in aberrant UB 

branching, thin ureteric bud stalks, and fewer ureteric bud tips with reduced proliferation 

and inappropriate regions of apoptosis(Zhao, Kegg et al. 2004); (Beenken and 

Mohammadi 2009). 

 

Hepatocyte growth factor (HGF) is a mesenchymally derived factor and signals 

through its transmembrane receptor c-Met. HGF/c-Met signaling plays important roles in 

renal tubule branch and elongation. In vitro, when IMCD or MDCK cells are grown 

suspended in a collagen gel in the presence of HGF, they form an elongated, spindle-like 

morphology with processes extended into the matrix. However, in the absence of HGF, 

they form cysts consisting of a monolayer of cells which surrounds a central lumen.  

Following HGF stimulation, some of the cyst cells migrate away from the cyst and into 

the surrounding matrix where they elongate and proliferate (Karihaloo, Nickel et al. 

2005). 

 

Bone morphogenic protein 4(BMP-4) and BMP7, which are made by developing 

tubules, have been implicated in MM proliferation. In vitro, BMP7 inhibits apoptosis of 

the uninduced MM (Dudley, Lyons et al. 1995). BMP7 in coordination with fibroblast 
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growth factor2 (FGF2), play roles in maintaining the competence of the mesenchyme to 

respond to inductive signals.  

 

During glomerular development, the podocytes express a number of vascular 

growth factors such as VEGF-A, and the glomerular endothelial cells express the VEGF 

receptors (Eremina, Sood et al. 2003). Using cell-specific gene targeting, it is shown that 

VEGF production by podocytes is required for glomerular endothelial cell migration, 

differentiation, and survival. The podocyte-specific homozygotes for VEGF usually die at 

birth with renal failure and grossly abnormal glomeruli that lack mature endothelial cells. 

Mice carrying one hypomorphic VEGF-A allele and one podocyte-specific null VEGF-A 

die at 3 weeks age due to renal failure, characterized by dilated capillary loops as well as 

severe endothelium and mesangium injuries. Over-expression of VEGF-A in podocytes 

also leads to end-stage renal failure. These findings demonstrate that a strict regulation of 

VEGF signaling is required between the podocyte and glomerular endothelium (Eremina, 

Cui et al. 2006). Platelet-derived growth factor (PDGF) secreted by endothelial cells may 

also help to maintain the mesangium integrity (Lindahl, Hellstrom et al. 1998). 

 

 

                                  ECM function in kidney development 

 

The roles of extracellular matrix proteins in kidney development have also been 

investigated utilizing both genetic mice models and in vitro cell culture systems. GBM 

plays an important role in maintenance of glomerular filtration barrier through the 
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function of its major components collagen IV, laminins and proteoglycans. Changes in 

GBM composition occur during kidney development. A laminin α1
 
to α5 expression 

transition occurs at capillary formation stage, concurrently with the laminin β1 to β2 and 

collage α1, 2 to α3, 4, 5 chain switches. At the onset of metanephrogenesis,
 
laminin α5 is 

mostly expressed in the Wolffian duct and in the UB basement membranes. Once the 

mesenchyme condensation and polarization occur, there is a significant increase in 

laminin α1 expression.
 
At the S-shape stage,

 
the developing GBM express both laminin 

α1 and α5 chains. But at the capillary formation stage, α1 chain is eliminated leaving α5 

as the only GBM laminin α chain(Miner 2005).  

 

Targeted mutations in ECM components significantly affect the kidney function (Muller 

and Brandli 1999). A striking defect in glomerulogenesis is found in laminin322 mutant 

embryos, characterized by an abnormal GBM and a complete absence of vascularized 

glomeruli(Miner and Li 2000). In mice lacking collagen IV α3 chain, there are aberrant 

deposition of BM components such as collagen α1, α2, perlecan and fibronectin, resulting 

in compromised GBM integrity over time (Miner and Sanes 1996; Miner and Li 2000). 

ECM proteins also play essential roles in regulating UB branching morphogenesis, either 

through simple adhesions or adhesion mediated signaling pathways. Matrix 

metalloproteases are found to contribute to UB branching, possibly by creating available 

spaces and modifying growth factor availability.  

Most of the interactions between cells and ECM proteins are mediated through 

cell surface receptor integrins. Activated integrins modulate cell functions, such as cell 
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                                        Modified from (Sariola and Saarma 1999)  Figure3 

Figure 4: Growth factors in kidney development   Key signals regulating the development of the 

ureteric bud include growth factors, distal effector molecules and genes that regulate proliferation and 

apoptosis. Several growth factors, such as GDNF, FGF and HGF, are all critical for this 

developmental process. 
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migration, spreading, proliferation and apoptosis, which are important for kidney 

development. Integrins exhibit spatiotemporal expression in the mammalian kidneys. The 

α2β1, α3β1 and α6β1 integrins are all expressed by distal tubules and by collecting duct 

epithelial cells(Korhonen, Ylanne et al. 1990). The α3β1 integrin is the major ECM 

receptor expressed by podocytes along the GBM. Endothelial cells express α3β1, α5β1, 

α6β1 and αv-containing integrins(Miner 2005). α1β1 integrin is the most prominent type 

expressed on mesangial cells. Altered expression and localization of integrins have been 

observed in several renal diseases. But the mechanisms whereby integrins mediate kidney 

development are poorly characterized.  

 

 

                                  Integrin function in kidney development 

 

β1 is abundantly expressed in the kidneys and it can bind to at least 12 α 

subunits(Hynes 2002). The specific functions of β1 integrins in kidney development are 

poorly characterized in genetic mouse models, as homozygous β1-deletion results in pre-

implantation lethality (Fassler and Meyer 1995). As an alternative approach, mutations in 

α subunits were generated to identify their roles in renal development. Both integrin α3β1 

(Kreidberg, Donovan et al. 1996) and α8β1 (Denda 1999) were shown to be important for 

UB branching morphogenesis. α3β1 is the only integrin shown to play a significant role 

in glomerular development in vivo (Kreidberg, Donovan et al. 1996). Deletion of α6 

subunit leads to neonatal death, but surprisingly these mice don’t show any renal 

phenotypes (Georges-Labouesse, Messaddeq et al. 1996).  

 

1) αβ1 function in renal collecting system development 
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Both integrin α8-null and α3-null mice showed severe renal collecting system 

defects (Brandenberger, Schmidt et al. 2001); (Kreidberg, Donovan et al. 1996). α8-null 

mice have defects in growth and branching of the UB and in recruitment of mesenchymal 

cells into epithelial structures. Most homozygous mutants die by the first or second day 

after birth and have severe kidney abnormalities. Half of the mutant animals were born 

without ureters or kidneys.  Consistent with these phenotypes, α8 expression is induced in 

mesenchymal cells upon contact with the ureteric bud, since inductive interactions 

between the ureteric epithelium and MM are essential for kidney morphogenesis in wild 

type animals (Brandenberger, Schmidt et al. 2001).  

 

The α3 integrin gene is expressed during the development of many epithelial 

organs, including the kidney, lung and skin. The collecting system of α3-null mice is also 

severely affected with fewer than normal collecting ducts in the papilla and more dilated 

tubules, suggesting decreased UB branching morphogenesis (Rahilly and Fleming 1992; 

Kreidberg, Donovan et al. 1996). When the integrin α3 subunit was specifically deleted 

in the UB, the kidney papillaes were either absent or abnormal (Liu, Chattopadhyay et al. 

2009), however the rest of the collecting system of the kidney was unaffected. 

 

2) αβ1 function in glomerular development 

 

Integrin α3-null mice (Kreidberg, Donovan et al. 1996) show severe abnormalities 

in glomeruli formation and structure as well. In mature glomerulus, α3β1 integrin is the 

predominant integrin expressed by glomerular podocytes in a polarized pattern along the 
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GBM. It is primarily a receptor for laminins322 and 511/521 but it can also interact with 

collagen IV and is expressed in all glomerular and tubule cells(Kreidberg 2000). α3-null 

mice show abnormal glomeruli formation, with alterations in glomerular capillary loops, 

disorganized glomerular BMs and inability of the podocyte foot processes to mature 

properly. When integrin α3 subunit was specifically deleted in the podocyte (Sachs, Kreft 

et al. 2006), α3-null pod mice develop massive proteinuria in the first week of life and 

nephrotic syndrome by 5–6 weeks of age. The kidneys of the 6 week old mice contained 

sclerosed glomeruli, a disorganized GBM and prominent protein casts in dilated proximal
 

tubules. Electron microscopy revealed complete effacement of podocyte
 
foot processes in 

newborn mice and widespread
 
lamination and protrusions of the GBM in 6 week-old 

mice. Integrin α1β1 is also highly express in the glomerulus and plays a minor role in 

glomerular development, as integrin α1- mice show subtle glomerular phenotypes 

characterized by mild mesangial hypercellularity and matrix deposition (Hartner, 

Cordasic et al. 2002; Haas, Amann et al. 2003; Chen, Moeckel et al. 2004).  Glomeruli of 

integrin α2-null mice do not exhibit any overt glomerular phenotypes. 

 

In contrast, when integrin α6 was deleted in mice, no renal phenotypes were seen 

(Georges-Labouesse, Messaddeq et al. 1996). α6 is highly expressed in both the tubules 

and glomerulus and can heterodimerize with either β1 or β4(Hemler, Crouse et al. 1989). 

α6β1 is predominantly a receptor for laminins111 and 511/521, while α6β4 appears to 

interact specifically with laminins 511/521 and 322, where it participates in the formation 

of hemidesmosomes(Colognato and Yurchenco 2000). These ECM components are 



 22 

highly expressed in the BMs of both the tubules and glomerulus. α3/α6 double-deficient 

mice die at late embryonic stage; have a similar renal phenotype to that seen in the 3-

null mice, with the exception that the double mutants did not develop ureters (De 

Arcangelis, Mark et al. 1999). This may possibly be explained by the fact that the α3/α6 

null mice die at late embryonic stage when the renal phenotype is not easily seen.  

 

In contrast to these in vivo data there is considerable evidence that α6 integrins 

are important for renal development in vitro and that inhibiting α3 and α6 function has an 

additive effect with respect to branching morphogenesis (Zent, Bush et al. 2001). 

Utilizing organ culture models, integrin α6β1 was shown to be required for normal 

nephrogenesis by interacting with its ligand laminin111(Falk, Salmivirta et al. 1996). And 

laminin111 has previously been shown to be of major importance for the development of 

kidney tubules. In contrast, the collagen receptors, integrins α1β1 and α2β1, do not play a 

major role in this process in vitro (Zent, Bush et al. 2001), and the role of the RGD 

binding receptors α5β1 and v integrins is unknown. 

 

From the above data it is clear that integrins that interact with BMs (i.e. α1β1, 

α3β1, α6β1) do play a role in both renal collecting system development and glomerular 

development; however there is conflict between the in vivo and in vitro data. In addition, 

with the exception of the α3- or α8-null mice, integrin α-null mice did not exhibit as 

severe a phenotype as expected. This is most likely because multiple α integrins can 

interact with the same ligands thus compensating for the lack of a particular α subunit. 

This phenomenon was observed in skin development and mammary gland development. 
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Specific integrin β1 deletion leads to much more severe skin blistering than α3-null mice, 

which suggest that multiple α1 integrins contribute to keratinocyte proliferation and 

differentiation (DiPersio, van der Neut et al. 2000); (DiPersio, Hodivala-Dilke et al. 

1997). Also in mammary gland, deletion of α3β1 or α6 integrins did not result in any 

functional or developmental abnormalities in mice, while deletion of β1 integrin in early 

mammary gland development results in severe lobuloalveolar phenotypes (Klinowska, 

Alexander et al. 2001);(Naylor, Li et al. 2005). These results suggest that αsβ1 integrins 

other than α3β1 and α6β1 play a role in their development. The roles played by β1 are 

organ specific and cell type-specific. β1 integrin function in kidney development was 

unknown and, as demonstrated by results from the studies indicated above, it was 

difficult to predict. Although integrin α3β1 is the major ECM receptor required for renal 

development, it is possible that deleting β1 integrin would result in a more profound 

phenotype, as multiple BM-interacting αβ1 integrins would be deleted simultaneously 

and the conflict between in vitro and in vivo data does suggest a likely functional 

redundancy among α subunits. Based on these observations, we hypothesize that β1 

integrin is critical for kidney development.  

 

 

                                                      Aims of dissertation 

 

 

The overall aims of this dissertation are: 

1) To determine the role of β1 integrin in collecting system development  
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The kidney collecting system develops from branching morphogenesis of the 

ureteric bud. This process requires signaling by growth factors such as GDNF and FGF, 

as well as cell-ECM interactions mediated by integrins.   

 

To investigate the function of β1 integrin in UB development we selectively 

deleted integrin 1 at initiation (E10.5) and late (E18.5) stages of development. We 

analyzed morphological and physiological properties of these two β1-null mice kidneys 

in vivo. Furthermore, we explored the underlying mechanisms via in vitro cell culture 

system.  

 

 

2) To determine the role of β1 integrin in glomerular development 

β1 containing integrins are highly expressed in the glomerulus of the kidney; 

however their roles in glomerular morphogenesis and maintenance of glomerular 

filtration barrier integrity are poorly understood.  

 

To study these questions we selectively deleted β1 integrin in the podocyte at 

capillary formation stage (E14.5).  We analyzed morphologies of β1-null mice kidneys at 

different developmental stages utilizing both light microscopy and electron microscopy. 

As podocyte is an important component of glomerular filtration barrier, we focused on 

investigation of glomerular structural integrity.  
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                                                        CHAPTER II 

 

 

      CHARACTERIZATION OF β1 INTEGRIN FUNCTION IN 

KIDNEY  DEVELOPMENT 
 

 

                                                          Introduction 

 

Formation, growth and branching morphogenesis of the collecting system of the 

kidney require interactions between the UB and the MM. The UB ultimately forms the 

multi-branched collecting system within the kidney, as well as the ureter and the bladder 

trigone. Development of the collecting system initially involves many iterations of 

branching morphogenesis followed by a period where kidney growth predominates.  This 

complex developmental process is dependent on numerous factors, including growth 

factor-dependent cell signaling induced by GDNF and FGFs as well as interactions 

between cells and ECM components (Dressler 2006). 

 

1 is one of the most abundantly expressed β subunit in the kidney (Kreidberg 

and Symons 2000). Integrins have the potential to play important roles in organ 

morphogenesis by modulating cell growth, motility and shape(Schwartz and Ginsberg 

2002). The role of β1 integrins in kidney collecting system development is unclear.  

Among the different integrin -null mice generated, only integrin α3- and α8-null mice 

show a severe collecting system phenotype (Muller, Wang et al. 1997); (Linton, Martin et 

al. 2007); (Liu, Chattopadhyay et al. 2009). Interestingly, integrin α6-null mice do not 

display a collecting system phenotype (Georges-Labouesse, Messaddeq et al. 1996), 
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although the α3/α6 double-deficient mice fail to develop ureters (De Arcangelis, Mark et 

al. 1999). In contrast to the in vivo data, in organ and cell culture models, α6 integrins (i.e. 

α6β1 and α6β4) have been found to be important for UB branching morphogenesis and 

blocking the α6 subunit alone or in combination with the α3 subunit affects UB branching 

morphogenesis(Zent, Bush et al. 2001). 

 

To determine whether β1 integrins other than α3β1 play a role in UB development 

in vivo; we selectively deleted β1 integrin in the UB at two time points.  A severe 

branching phenotype was observed when β1 integrin was deleted at E10.5, at the time 

that UB branching morphogenesis is initiated.  In contrast, when 1 integrin was deleted 

in collecting ducts at E18.5, development was normal; however severe collecting system 

injury was observed in adult animals following ureteric obstruction.  We found that 

canonical signaling pathways activated by FGFs require β1 integrin expression in CD 

cells in vitro and most importantly, activation of the same pathways was decreased in β1-

null UBs in vivo, despite the normal activation state of the FGF receptor. Thus in addition 

to their well characterized roles in adhesion and migration, β1 integrins play a critical 

role in transducing growth factor-dependent signals required for UB branching 

morphogenesis and maintaining collecting tubule integrity following injury. 

 

 

                                                    Material and methods 

 

                  Generation of Hox7b-Cre;β1
flox/flox

 mice, AQP2-Cre1
flox/flox

 mice 
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All experiments were approved by the Vanderbilt University Institutional Animal 

Use and Care Committee. Integrin β1
flox/flox

 mice (generous gift of Dr. E. Fuchs, Howard 

Hughes Medical Institute, The Rockefeller University) or integrin 1
flox/flox

 lacZ mice, in 

which a promoterless lacZ reporter gene was introduced after the downstream loxP site 

(Brakebusch, Grose et al. 2000)were crossed with the Hox7b-Cre mice (Hox-Cre) 

(generous gift of Dr.A.McMahon) or aqp2-Cre mice mice (Ouvrard-Pascaud, Puttini et al. 

2004). Mice varied between 4
th

 and 6
th
 generation C57BL6. Age-matched littermates 

homozygous for the floxed integrin 1 gene, but lacking Cre (β1
flox/flox

 mice), were used 

as negative controls. 

 

                                                 Morphologic analysis 

For morphological and immunohistochemical analysis, kidneys at different stages 

of development were removed immediately at sacrifice and fixed in 4% formaldehyde 

and embedded in paraffin, or embedded in OCT compound and stored at -80
o
C until use, 

or fixed in 2.5% glutaraldehyde, post-fixed in OsO4, dehydrated in ethanol and embedded 

in resin. Paraffin tissue sections were stained with either hematoxylin and eosin (H&E) or 

Periodic Acid Schiff's (PAS) for morphological evaluation by light microscopy. For 

electron microscopy, ultrastructural assessments of thin kidney sections were performed 

using a Morgagni transmission electron microscope (FEI, Eindhoven, Netherlands).  

 

                                                        Organ Culture 

Embryonic kidneys were isolated from E12.5 mice and placed on the top of 

Transwell filters and cultured (37C and 5% CO2/100% humidity) in DMEM/F12 media 
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supplemented with 10% FBS. After 3 days, the kidneys were fixed in 4% 

paraformaldehyde and stained with fluorescein-conjugated E-cadherin antibodies (BD 

Transduction Laboratories,
 
Lexington, KY). The number of branching structures was 

counted. 

 

                                                Generation of β1-null cell line 

CD cells were isolated from β1
flox/flox 

mice following the methodology described 

by Husted et al (Husted, Hayashi et al. 1988) and β1 was deleted by infecting the cells 

with an adenocre virus. To verify adequate deletion the cells were subjected to flow 

cytometry as described below.  

 

                                                     Flow Cytometry  

β1
flox/flox 

IMCD cells and β1-null cells were incubated with anti-β1,β4,α1,α2,α6,αv 

integrin antibodies (BD Transduction Laboratories,
 
Lexington, KY), followed by FITC-

conjugated secondary antibodies. Expression levels of different integrins in these two cell 

lines were detected by flow cytometry. 

 

                                                       Cell adhesion 

Cell adhesion assays were performed in 96 well plates. Briefly plates were coated 

with different concentrations of ECM components and blocked with BSA. 10
5
 cells were 

placed in each well in serum-free DMEM for 60 minutes and non-adherent cells
 
were 

removed and the remaining cells were fixed, stained with crystal violet,
 
solubilized and 

the O.D. of the cell lysates was
 
read at 570 nm. Four independent experiments were 

performed in triplicate. 
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                                                      Cell migration 

Cell migration was assayed on transwells with 8-µm pores that were coated with 

different ECM components.  10
5
 cells were added to the upper part and that migrated 

through the filter were counted 4 hours later. Four independent experiments were 

performed in triplicate.
 
 

                                                    Cell Proliferation 

5 x 10
3
cells were plated per well in

 
96-well plates on different ECM components 

and maintained in DMEM (10% FBS) overnight followed by DMEM (2% FBS) for 

another 24 hrs. Cells were then incubated for 24hrs with 1 µCi/well [
3
H] thymidine 

(PerkinElmer
 
Life Sciences). The cells were solubilized and radioactivity was

 
measured 

using a scintillation counter. For sequential counting assays, 6 X 10
4 
cells were plated per 

plated on collagen or vitronectin and maintained in a serum-free environment. Cells were 

counted 48 hrs after FGF (10ug/ml) administration.   

                                                         Cell Polarity 

Cells were grown on transwells consisting of polyvinylpyrolidone-free
 

polycarbonate filters with 0.4µm pores. When the cells were confluent, they were fixed
 
in 

3.7% formaldehyde and incubated with anti-ZO-1 (1:200) (BD Transduction Laboratories,
 

Lexington, KY) antibodies followed by the appropriate FITC-conjugated
 
secondary 

antibody. Chamber slides were mounted and viewed using a confocal microscope.
 
 

                                                         Cell Spreading 
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Cells were plated onto slides coated with Collagen-I (10ug/ml) or Vitronectin for 

30mins after which FGF (10ug/ml) or GDNF (10ug/ml) was added. Forty five minutes 

later cells were fixed, permeabilized and exposed to Rhodamine-Phallodin (1:5000). For 

p-FGFR1 and t-FGFR1 staining, cells were incubated with anti-pFGFR1 (directed against 

Y654) (Abcam, Cambridge, MA) and tFGFR1 antibody (Cell Signaling, Beverly, MA) 

overnight, then incubated with a FITC conjugated secondary antibody for 2hrs and 

visualized under a microscope. 

                                                 

                                                 

                                                                  Results 

 

Deleting β1 integrin in the UB at E 10.5 results in a major branching morphogenesis 

phenotype 

 

To define the role of 1 integrin in the developing UB, we crossed HoxB7Cre 

mice, which express Cre in the Wolfian duct and UB from E10.5, with integrin 1
flox/flox

 

mice, in which a promoterless lacZ reporter gene was introduced after the downstream 

loxP site (Brakebusch, Grose et al. 2000). As demonstrated in Figure 5A, strong -

galactosidase staining was evident in the collecting system of the kidney.  We confirmed 

β1 integrin deletion by performing immunoblotting on isolated papillae of newborn 

HoxB7Cre;β1
flox/flox

 mice with an antibody directed at the integrin 1 subunit (Figure 

5A). Although these mice were born in the normal Mendelian ratio, all the 

HoxB7Cre;β1
flox/flox

 mice died between four and six weeks of age. The kidneys of 6 week 

old were smaller and slightly cystic compared to those isolated from 1
flox/flox

 mice 

(Figure 5B and C). On microscopic examination, we found that HoxB7Cre;β1
flox/flox
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kidneys had far fewer nephrons than 1
flox/flox

 kidneys. Moreover, there were many more 

dilated tubules in both the cortex and medulla, and there was marked interstitial fibrosis 

(Figure 1 D-I). The most severe tubular dilatation was seen in the CDs located in both 

the medulla and the cortex (Figure 5 D-I). 

To further define the defects present in these mice, we performed studies on 

embryonic kidneys from E11.5 until birth. At every stage analyzed, we observed clearly a 

branching morphogenesis defect in HoxB7Cre;β1
flox/flox

 mice. At day E11.5 the UB was 

less branched and smaller in HoxB7Cre;β1
flox/flox

 mice (Figure 6A and B).  Kidneys of 

HoxB7Cre;β1
flox/flox

 mice at E13.5 (Figure 6C and D) as well as E15.5 (Figure 6E and 

F) were significantly smaller with a decreased number of UB branches and nephrons. We 

further verified the branching phenotype observed in HoxB7Cre;β1
flox/flox 

mice by 

performing in vitro cultures of E12.5 embryonic kidney. After 48 hours in culture, 

HoxB7Cre;β1
flox/flox

 E12.5 kidneys formed approximately 5 branches per structure 

relative to the 50 detected in the 1
flox/flox

 kidneys (Figure G-I). 

 

Kidneys of newborn HoxB7Cre;β1
flox/flox 

were also smaller and had less collecting 

ducts than β1
flox/flox 

mice (Figures 6J and K).  Interestingly the tubules, although 

somewhat disorganized, did not appear to have abnormalities with respect to polarity 

(Figures 6L and M). We confirmed this observation by staining the newborn kidneys with 

antibodies directed against E-cadherin (Figure N and O) and ZO1.  Electron microscopy 

on non-perfused newborn kidneys also established that cells forming the tubules were 

polarized and that the tubular basement membranes were normal, despite the finding that  
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Figure 5. HoxB7Cre;β1
flox/flox

 mice develop severe end stage renal failure. (A) LacZ staining 

of HoxB7Cre;β1
flox/flox

 mice at P10 demonstrating excision of 1 integrin (left panel).  Deletion of 

1 integrin in the HoxB7Cre;β1
flox/flox

 mice was confirmed by immunoblotting. (right panel).  (B-

C) Gross appearance of kidneys of 6 week old HoxB7Cre;β1
flox/flox

 and 1
flox/flox

 mice . (D-E) 

Microscopy of PAS stained kidney slides (100x). (F-G) The collecting ducts in the medulla and 

papilla of the HoxB7Cre;β1
flox/flox

 mice are dilated and disorganized (100x). (H-I) Dilatation of 

the collecting ducts is present in the papilla (200x). 
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the tubular lumens were dilated (Figure 6P and Q). A significant decrease in nephrons 

was also present in newborn HoxB7Cre;β1
flox/flox

 mice as there were 1.6 vs 4.2 

glomeruli/mm
2
 of cortex in the HoxB7Cre;β1

flox/flox
 and β1

flox/flox
 mice respectively 

(Figure 6R). 

 

Taken together our data demonstrate that deleting 1 integrin in the UB of the 

kidney at the time of initiation of branching morphogenesis results in a profound 

branching phenotype with fewer nephrons and a severely dysmorphic dysplastic 

collecting system. 

 

 

Deleting 1 integrin in the CDs at E18.5 results in normal kidney development but an 

abnormal response to renal injury 

To determine the role of β1 integrin in CD development, we utilized the 

aquaporin 2 Cre (Aqp2Cre) mouse to delete β1 in CDs at E18.5 (Stricklett, Nelson et al. 

1999; Zhang, Zhang et al. 2005). We confirmed gene deletion in the Aqp2Cre; β1
flox/flox

 

mice by immunoblots on isolated papillae of 6 week old mice (Figure 7A).  These mice 

were born in the normal Mendelian ratio and lived a normal lifespan. Despite intensive 

investigation, no gross or microscopical abnormalities were found at any age in these 

mice (Figure 7B-G). Due to this surprising lack of phenotype, we investigated the timing 

of the β1 integrin subunit deletion and found that it was still expressed in the CDs at P21, 

suggesting that β1 integrin was still present when development was complete. 

 

 



 34 

               
 

 

Figure 6.  HoxB7Cre;β1
flox/flox

 mice have a severe branching morphogenesis phenotype. (A-B) 

Decreased branching of the UB is present in E11.5 HoxB7Cre;β1
flox/flox

 embryos (600x). (C-F) 

Decreased UB branching and nephron number is present in E13.5 (C and D) and E15.5 (E and F) 

HoxB7Cre;β1
flox/flox

 kidneys when compared to β1
flox/flox

 kidneys (40x). (G-I) Cultures of E12.5 

kidneys of HoxB7Cre;β1
flox/flox

 and 1
flox/flox

 mice were performed on transwells. The kidneys were 

stained with antibodies directed against E-cadherin (G and H). The number of branches was counted 

in 10 kidneys from both genotypes and expressed as mean +/- SD. p<0.01 (I). (J-K) PAS staining of 

P1 HoxB7Cre;β1
flox/flox

 and 1
flox/flox

 mice kidneys (25x). (L-M) Collecting ducts within the papilla of 

P1 HoxB7Cre;β1
flox/flox

 mice were dilated and irregular  (200x). (N-O) E-cadherin staining of P1 

kidneys  (P-Q) Electron microscopy of collecting ducts. (R) The number of glomeruli in the cortices 

from similar sections of 10 P1 HoxB7Cre;β1
flox/flox

 and 1
flox/flox

 mice were counted and expressed as 

glomeruli/mm
2
. The mean and +/- SD are shown. p<0.01. 
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These mice provided us a model to determine whether β1 integrin played a 

protective role to obstructive injury of the collecting system.  When 6 week old β1
flox/flox

 

and Aqp2Cre; β1
flox/flox

 mice were subjected to unilateral ureteric obstruction, we 

observed markedly increased tubular dilatation and flattening of  tubular epithelial cells 

in the Aqp2Cre; β1
flox/flox

 mice at both 5 (Figure 7H-K) and 10 days following injury. 

When tubular injury was scored at day 5, it was significantly worse in the Aqp2Cre; 

β1
flox/flox

  than the β1
flox/flox

 mice (4.8+/-0.6 versus 1.8+/-0.3 p<0.01).  We also found in 

these mice significantly more trichrome blue positive matrix (Figure 7L and M), 

consistent with interstitial fibrosis.  Moreover, we found that injured Aqp2Cre;1
flox/flox

 

mice had more tubular apoptosis by performing TUNEL staining (Figure 7N-P), which 

was further verified by increased activation of caspase-3 (Figure 7Q). Thus, deleting 1 

integrins at late stages of UB development renders mice susceptible to severe renal injury 

following ureteric obstruction. 

 

 

Deleting β1 integrin in renal IMCD cells results in adhesion, migration and proliferation 

defects 

 We next isolated IMCD cells from 3 week old β1
flox/flox

 mice and deleted β1 in 

vitro utilizing adeno-cre virus to define its role in IMCD cell function. IMCD cells are an 

ideal in vitro model to study integrin-dependent functions in both adult and embryonic 

tubular epithelial cells derived from the UB (Chen, Roberts et al. 2004). We verified 

successful deletion of β1 in IMCD (β1
-/-

) cells by flow cytometry utilizing an antibody 

directed at the extracellular domain of the mouse β1 integrin (Figure 8A).  Similarly, all  
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 Figure 7. Aqp2Cre;1
flox/flox

 mice develop severe injury following unilateral ureteric obstruction. 

(A) Papillae of 6 week old Aqp2Cre;1
flox/flox

 and 1
flox/flox

 mice were isolated and immunoblotted for 

1 integrin. (B-G) Microscopy of PAS stained kidney slides (40x) (B-C) or high (100) (D-G) power of 

either the cortex (D-E) or medulla (F-G). (H-K) Kidneys of 6 week old Aqp2Cre;1
flox/flox

 mice and 

1
flox/flox

 mice (H-I; 100x and J-K; 200x). (L-M) More intense and abundant trichrome blue staining 

was evident in 5 day injured Aqp2Cre;1
flox/flox

 than 1
flox/flox

 mice. (N-P) Increased TUNEL staining 

was evident in 5 day injured Aqp2Cre;1
flox/flox

 compared to 1
flox/flox

 mice. Insets emphasize the degree 

of apoptosis in the kidneys. The degree of apoptosis was quantified and expressed as the mean of 

apoptotic cells/microscopic field +/- SD (10 fields of 10 kidneys from either genotype were analyzed).  

p<0.01.  (Q) Immunoblots with an antibody directed against caspase-3 were performed on medullas of 

5 days injured Aqp2Cre;1
flox/flox

 and 1
flox/flox

.  
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the  subunits that heterodimerize exclusively with β1 were not expressed on the β1
-/-

 

cells. No differences in β4 or v expression (Figure 8A) were observed between the two 

cell types.  Next we investigated cell adhesion to various matrices and found that β1
-/-

 

IMCD cells adhered poorly to collagen I and laminin 1 (Figure 8B).  In contrast, 

adhesion to fibronectin (ligand for both integrin α5β1 and v containing integrins) was 

only partially impaired, while binding to vitronectin (ligand for αvβ3 and αv5 integrins) 

was unaffected.  Similar results were observed for cell migration (Figure 8C). β1
-/-

 

IMCD cells also proliferated significantly less than β1
flox/flox

 cells when plated on β1 

integrin-dependent substrates (Figure 8D), an effect that was not observed on fibronectin, 

vitronectin or plastic substrata. To determine the role of β1 integrin in the regulation of 

IMCD cell polarity, we grew cells on transwells till confluent and stained them with ZO-

1 (Figure 8E) and E-cadherin antibodies.  Confocal microscopy revealed no difference in 

ZO-1 or E-cadherin localization on Z sectioning between the two cell lines.  Thus, 

deleting integrin β1 from IMCD cells results in decreased cell adhesion, migration and 

proliferation on β1-integrin dependent substrates; however it does not significantly alter 

the ability of the cells to polarize. 

 

 

β1 integrin expression is essential for growth factor signaling required for UB branching 

morphogenesis 

UB branching morphogenesis in vivo is regulated by critical growth factors, 

including GDNF and FGF family members.  As the major UB developmental defect in 

the HoxB7Cre;β1
flox/flox

 mice occurred during the rapid branching phase known to be  
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Figure 8. Deleting the 1 integrin from CD cells results in abnormal adhesion, migration and 

proliferation on 1 integrin-dependent substrates.  (A) Flow cytometry was performed on 1
flox/flox

 

and 1
-/-

 cells utilizing antibodies directed against the extracellular domain of the 1 and v integrin 

subunits. (B) CD cell populations were allowed to adhere to collagen I (Col I) , laminin-1 (Ln I), 

fibronectin (Fn) or vitronectin (Vn) (all at 10 ug/ml) and cell adhesion was evaluated 1 hour after 

plating. Values are the mean ± SD of three experiments performed in triplicates. p<0.05 (C) CD cells 

were plated on transwells coated with the matrices indicated (all at 10 µg/ml) and migration was 

evaluated after 4 hours.  p<0.05 (D) The CD cell populations were plated on plastic (PL) or the ECM 

matrices denoted (all at 10 µg/ml). After 24 hours cells were treated with 
3
H-Thymidine and incubated 

for a further 24 hours.  
3
H-Thymidine incorporation was then determined as described in the Methods. 

p<0.05 (E) CD cell populations were grown on transwells and stained with antibodies directed against 

ZO-1. 
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dependent on these growth factors, we investigated the role of β1 integrin in GDNF- as 

well FGF2- and 10-mediated signaling in vitro. Since GDNF and FGF2 can induce cell 

spreading (Klint, Kanda et al. 1999; Murakami, Iwashita et al. 1999), we determined the 

requirement of β1 integrin for growth factor-mediated IMCD cell spreading on collagen I 

or laminin I. We found that, unlike 1
flox/flox

, 1
-/- 

IMCD cells adhered poorly when plated 

on collagen I and the few that did adhere were unable to spread (Figure 9A). Addition of 

GDNF, FGF2, FGF10 (Figure 5A) or HGF (data not shown) induced much less spreading 

of β1
-/- 

cells compared to β1
flox/flox

 IMCD cells. In contrast both β1
-/- 

and 1
flox/flox

 CD 

cells spread equally when plated on vitronectin, and this effect was increased to a 

comparable degree in both genotypes following the addition of GDNF (Figure 9A). 

 

To determine the requirement of β1 integrin for GDNF, FGF2, FGF10 and HGF 

signaling on collagen I, we placed β1
flox/flox

 and β1
-/- 

IMCD cells on collagen I for 2 hours, 

and stimulated them with the growth factor afterwards. We found that, compared to 

1
flox/flox

 IMCD cells, FAK, ERK, p38MAPK and Akt phosphorylation was markedly 

decreased in the 1
-/- 

IMCD cells in response to GDNF, FGF2, FGF10 (Figures 9B-D) as 

well as HGF. As expected, no difference in GDNF-dependent signaling was observed 

between the β1
flox/flox

 and β1
-/- 

IMCD cells plated on vitronectin (Figure 9E).  These 

results suggest that β1 integrin expression is required for CD cells to spread and mediate 

signaling induced by GDNF, FGF2, FGF10 and HGF when plated on β1 integrin-

dependent substrates. 

 



 40 

       

 

 

 

     

Figure 9. 1
-/-

 CD cells are unable to spread or signal in response to growth factors.  (A) 1
flox/flox

 

and 1
-/-

 CD cells were allowed to adhere to collagen I or vitronectin (both at 10 µg/ml) for 45 minutes 

Cells were then incubated with or without FGF2, FGF10 or GDNF (all at 10 ng/ml) and after 1 hour 

they were stained with rhodamine phalloidin.  (B-E) 1
flox/flox

 and 1
-/-

 CD cells were allowed to adhere 

to collagen I (B-D) or vitronectin (E) for 2 hours after which they were treated with the growth factor 

designated for various times.  The cells were then lysed and 20 g of total cell lysates were analyzed by 

western blot for levels of activated and total FAK, ERK, p38 MAPK, and Akt.  A representative 

experiment is shown. 
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       Deleting β1 integrin in the UB results in diminished cell proliferation and signaling 

As β1
-/-

 IMCD cells showed a significant decrease in activation of signaling 

pathways stimulated by GDNF and FGFs, we assessed the activation status of the same 

pathways in the developing collecting system in vivo. We performed western blot 

analysis of isolated medullas of newborn mice and observed drastically decreased 

activation of FAK, ERK, p38 MAPK and Akt in HoxB7Cre;β1
flox/flox

 compared to 

β1
flox/flox

 mice (Figure 10A).  As expected the decreased signaling activation correlated 

with decreased cellular proliferation in the UB, which was particularly evident in E15.5 

where the proliferation in β1
flox/flox

 mice was 10 fold greater than that of 

HoxB7Cre;β1
flox/flox

 mice (Figure 10B). Similarly, we observed decreased proliferation 

in the collecting ducts of newborn HoxB7Cre;β1
flox/flox

 relative to the β1
flox/flox

 mice 

(Figure 10B).  As FGFs play an important role in mediating proliferation and branching 

of the UB at E15 (Bates 2007), we determined FGF2, FGFR1, and FGFR2 expression in 

renal tubules at this time point. We didn’t observe any differences in FGF2 and the FGFR 

expression between HoxB7Cre;β1
flox/flox

 and β1
flox/flox

 kidneys (Figure 10C), suggesting 

that decreased proliferation and signaling were not due to decreased expression of the 

growth factors or their receptors. 

 

To further investigate whether β1 expression might alter FGF receptor 

localization and/or activation, we plated β1
-/- 

and β1
flox/flox

 IMCD cells on collagen I and 

subsequently stimulated with FGF2. We observed equal amounts of FGFR1 surface 

expression and phosphorylation by IF in both β1
-/- 

and β1
flox/flox 

IMCD
 
cells, despite the  
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Figure 10. HoxB7Cre;β1
flox/flox

 mice have severe signaling and proliferative defects. (A) Medullas 

of P1 1
flox/flox

 and  HoxB7Cre;β1
flox/flox

 kidneys were lysed and 20 g of total protein was analyzed by 

western blot for levels of activated and total FAK, ERK, p38 MAPK, and Akt. (B) Ki67 staining was 

performed on kidneys of 1
flox/flox

 and HoxB7Cre;β1
flox/flox

 E15.5 and newborn mice.  The number of 

Ki67 positive cells in the UB (E15.5) or collecting ducts (newborn) of the mice was quantified and 

expressed as mean ± SD of five high power fields of three different mice. (*) indicates statistically 

significant differences (p<0.05) between HoxB7Cre;β1
flox/flox

 and 1
flox/flox

 mice.  (C) Tubules derived 

from both the metanephric mesenchyme and ureteric bud of E15.5 1
flox/flox

 and HoxB7Cre;β1
flox/flox

 

kidneys were immunostained for FGF2, FGFR1 and FGFR2. 
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Figure 11.  FGFR1 is localized to the cell membrane and is equally phosphorylated in 1
flox/flox

 

and 1
-/-

 cells.  (A-B) 1
flox/flox

 and 1
-/-

 CD cells were allowed to adhere for 30 minutes to 

collagen I (A) or vitronectin (B) (both 10 µg/ml), after which they were incubated with or without 

FGF2 (FGF) ( 10 ng/ml) for 1 hour and then stained with an anti-pFGFR1 antibody.  The lower 

panel of A shows the levels of pFGFR1 and total FGFR1 in 1
flox/flox

 and 1
-/-

 CD that were 

allowed to adhere to collagen I for 30 minutes and then treated with FGF2 for the times indicated.  

(C)  3 x 10
5 
1

flox/flox
 and 1

-/-
 CD cells were grown in 6 well plates coated with collagen I or 

vitronectin (10 µg/ml) with or without FGF2 (10 ng/ml).  Forty-eight hours later the cells were 

trypsinized and counted.  Values are the mean ± SD of three different experiments. p<0.05 (D)  

Medullas of P1 1
flox/flox 

and HoxB7Cre;β1
flox/flox

 mice were lysed and 20 g of total cell lysates 

were immunoblotted for levels of pFGFR1.  Equal protein loading was verified by incubating the 

blots with anti-Akt antibodies. 
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inability of the β1
-/- 

cells to spread on this matrix (Figure 11A).  Our immunoblot 

analysis also confirmed comparable FGFR1 phosphorylation and expression in 1
-/- 

and 

1
flox/flox 

CD
 
cells plated on collagen (Figure 11A).  As expected, localization and 

phosphorylation of FGFR1 was the same in the β1
-/- 

and β1
flox/flox 

IMCD
 
cells plated on 

vitronectin (Figure 11B). Next we determined the proliferative response of 1
-/- 

and 

1
flox/flox 

IMCD
 
cells to FGF2. β1

-/- 
IMCD

 
cells

 
plated on collagen I did not proliferate, 

while both cell populations responded to this growth factor when grown on vitronectin 

(Figure 11C).  Thus, although the FGFR1 is expressed on the cell surface of 1
-/-

 IMCD 

cells and can be activated by FGF2, ligation of β1 integrin is required for this growth 

factor receptor to signal normally and induce cell proliferation. 

 

To determine whether similar findings were seen in vivo, we performed 

immunoblotting on renal papillae isolated from newborn β1
flox/flox

 and 

HoxB7Cre;β1
flox/flox

 kidneys. Similar to the in vitro results, we found equal 

phosphorylation levels of FGFR1 in β1
flox/flox

 and HoxB7Cre;β1
flox/flox

 mice (Figure 11D), 

verifying that UBs lacking β1 integrins have severe abnormalities in branching 

morphogenesis, without alterations in  the levels of growth factor receptor 

phosphorylation/activation. 

 

                                                          Conclusions 

In this study we demonstrate that deleting β1 integrin in the UB at E10.5 results in 

severe branching morphogenesis abnormalities and decreased nephron formation, with 
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death of the mice by 4 to 6 weeks of age. These results confirm the recent observation 

that deleting 1 integrin in the developing UB results in small kidneys with hypoplastic 

renal medullary collecting ducts (Wu, Kitamura et al. 2009). The abnormality in 

branching morphogenesis was significantly worse in mice where β1 integrin rather than 

α3 was specifically deleted in the UB (Liu, Chattopadhyay et al. 2009), suggesting that 

other αβ1 integrins play a role in this process. This was exemplified by the concomitant 

decrease in nephron number in the hoxb7Cre;1
flox/flox

 kidneys, which was not seen 

when α3 was either deleted in the whole mouse or specifically in the UB. The only other 

branching organ where α3, α6 and β1 integrin subunits have been deleted is in the 

mammary gland (Klinowska, Alexander et al. 2001); (Naylor, Li et al. 2005); 

 

(Taddei, Deugnier et al. 2008). Mammary gland development was normal when the α3 or 

α6 integrin subunits were deleted and β1 deletion resulted in a loss of epithelial integrity 

and displacement of cells from the basement membrane, but no branching phenotype was 

evident. Similar to the kidney phenotype there were no abnormalities in epithelial cell 

polarity or basement membrane deposition. 

 

When 1 integrin was deleted in the collecting ducts at E18.5 using the Aqp2Cre 

mouse, no developmental phenotype was observed. This likely occurs because sufficient 

1 integrin is expressed in the collecting ducts until P21 when normal development is 

complete and suggests that early but not late loss of βintegrin expression regulates 

terminal differentiation and collecting duct function (Wu, Kitamura et al. 2009). The lack 
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of phenotype in the Aqp2Cre;1
flox/flox

  mice could be explained by the fact that either 

β1 was inefficiently deleted or its turnover is slow.  We would suggest that the latter 

explanation is more likely, since deleting this matrix receptor rendered the adult kidney 

more susceptible to injury following ureteric obstruction. Thus 1 integrins are required 

to maintain structural integrity when the collecting system is subjected to the increased 

hydrostatic pressure induced by tying the ureter.  

 

Utilizing cultured IMCD cells, we found that deleting 1 integrin significantly 

impaired canonical signaling pathways activated by FGFs and GDNF, both of which are 

known to be important in UB branching (Pachnis, Mankoo et al. 1993; Zhao, Kegg et al. 

2004). Similar alterations in signaling pathways were seen in the HoxB7Cre;β1
flox/flox

 

mice despite normal expression levels of FGF2 and the FGF receptors 1 and 2. As the 

phenotype of the HoxB7Cre;β1
flox/flox

 kidney is primarily that of decreased UB branching 

morphogenesis, which phenocopies many of the features seen in the GDNF, Ret (the 

GDNF receptor) and FGFR2 null mice, we attribute the phenotype, at least in part to 

abnormalities in growth factor-dependent signaling.  To the best of our knowledge, this is 

the first illustration that β1 integrin mediates growth factor-dependent branching 

morphogenesis during a developmental process. 

 

 Growth factor receptors and integrin-stimulated pathways undergo cross talk at 

many levels. We demonstrate the requirement of β1 integrins for FGF2 and FGF10 

signaling in polarized epithelial cells, despite normal FGFR1 activation and expression 
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on the cell membrane.  FGFR1 phosphorylation is also normal in HoxB7Cre; β1
flox/flox

 

and β1
flox/flox

 mice despite a severe branching phenotype suggesting that 1 integrins are 

not required for normal phosphorylation of the receptor in vivo. Thus in the context of 

UB development we propose that 1 is required for the propagation of the signals 

downstream of receptors like the FGF receptors rather than for receptor phosphorylation  

per se. 

 

In conclusion, our data demonstrates that β1 integrins play a role in mediating 

growth factor-dependent branching morphogenesis in the developing UB. This novel role 

for 1 integrins in developmental processes is in addition to their well defined function in 

maintaining structural integrity of tubules by promoting adhesion to basement 

membranes.  

 

 

 

 

 

 

 

 

 

 



 48 

                                                  CHAPTER III 

 

         CHARACTERIZATION OF β1 INTEGRIN FUNCTION IN 

GLOMERULAR DEVELOPMENT 

 

                                                         Introduction 

The glomerulus is the principal filtering unit of the kidney and its filtration barrier 

consists of endothelial cells and podocytes separated by a GBM comprised primarily of 

collagen IV and laminins (Miner 2005).  Both the cellular components and the GBM are 

required to maintain the integrity of the filtration barrier, and perturbations of any of 

these components results in developmental or functional aberrations of the glomerulus. 

The importance of ECM components in glomerular development and integrity has been 

demonstrated in genetically engineered mice (Noakes, Miner et al. 1995; Cosgrove, 

Meehan et al. 1996; Miner and Sanes 1996; Miner, Patton et al. 1997; Miner and Li 

2000); however the role of integrins is far less clear. 

 

 α3β1 is the only integrin shown to play a significant role in glomerular 

development in vivo (Kreidberg, Donovan et al. 1996). Mice lacking the integrin α3 

subunit die in the neonatal period and show severe glomerular abnormalities. Similar 

glomerular phenotypes have also observed in mice with podocyte specific deletion of α3 

integrin. In contrast to these mice, the total integrin α6-null mice do not have an overt 
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renal phenotype (Georges-Labouesse, Messaddeq et al. 1996), although integrin α6β1 is 

expressed with its major ligands laminins-111, -511, and -521 (Aumailley, Bruckner-

Tuderman et al. 2005) during various stages of glomerular development (Miner 1999; 

Kreidberg and Symons 2000). Integrins α1β1 and α2β1 are highly expressed in the 

glomerulus where they play a minor role in glomerular development (Hartner, Cordasic 

et al. 2002; Chen, Moeckel et al. 2004).  

 

 Although integrin α3β1 is the major ECM receptor required for glomerular 

development, we hypothesized that deleting β1 integrin in podocytes would result in a 

more profound phenotype than that found in mice lacking the α3 integrin subunit in the 

podocytes as multiple β1 (αsβ1) integrins that interact with the GBM would not be 

expressed.   

 

 To determine the role of all the αsβ1 integrin heterodimers in glomerular 

development, we deleted β1 integrin selectively in glomerular podocytes by crossing 

integrin β1
flox/flox

 mice (Raghavan, Bauer et al. 2000) with the same podocin-Cre (pod-

Cre) mice (Moeller, Sanden et al. 2003) used to delete the integrin α3 subunit (Sachs, 

Kreft et al. 2006).  We provide evidence that pod-Cre;β1
flox/flox

 mice develop end stage 

renal failure by 3 to 5 weeks of age due to glomerular abnormalities characterized by 

podocyte loss followed by degeneration of the glomerulus. Thus, mice in which integrin 

β1 was deleted from the podocytes have for the most part a similar but worse phenotype 

than mice where only the α3 integrin subunit was deleted, suggesting that α3β1 is the 
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principal but not the only podocyte integrin required to maintain the glomerular filtration 

barrier. 

 

                                                    Materials and methods 

 
                                             Generation of pod-Cre; β1flox/flox mice 

All experiments were approved by the Vanderbilt University Institutional Animal 

Use and Care Committee and are housed in a pathogen free environment. Integrin 

β1
flox/flox

 mice (generous gift of Dr. E. Fuchs, Howard Hughes Medical Institute, The 

Rockefeller University)(Raghavan, Bauer et al. 2000) or integrin β1
flox/flox

 lacZ mice, in 

which a promoterless lacZ reporter gene was introduced after the downstream loxP site 

(Brakebusch, Grose et al. 2000) were crossed with the podocin-Cre mice (pod-Cre) 

generated as previously described (Moeller, Sanden et al. 2003). Mice varied between 4
th

 

and 6
th
 generation C57BL6. Aged-matched littermates homozygous for the floxed 

integrin β1 gene, but lacking Cre (β1
flox/flox

 mice), were used as negative controls for pod-

Cre; β1
flox/flox

 mice.   

                                   
                                         Clinical parameters and morphologic analysis 

Proteinuria was determined by analyzing 2 µl of urine per mouse on 10% SDS-

PAGE gels that were subsequently stained by Comassie Brilliant Blue. 

 The mesangial cell number was evaluated in a blind fashion by a renal pathologist 

counting the number of mesangial cells in 100 random glomerular sections per mouse. 

Glomeruli were counted in 5 individual mice with a total of 500 glomeruli examined in 

each group. The mesangial cell number was expressed as a mean +/- standard deviation. 
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GBM thickness was assessed by point to point measurements using a 2Kx2K 

camera (Advanced Microscopy Techniques Corp., Danvers, MA) with the associated 

digital imaging software. Ten different segments of GBM per mouse from 3 mice were 

measured and values were expressed as mean +/- standard deviation.  

The number of podocytes was determined by counting their number in 10 

randomly chosen EM sections of glomeruli with 3 different mice per genotype analyzed. 

The number of podocytes was expressed as mean +/- standard deviation. 

 
                                                               Immunostaining 

Rat anti-mouse β1 integrin (MAB1997) was purchased from Chemicon.  Rat anti-

mouse laminin α1 mAb 8B3 was a gift from Dr. D. Abrahamson (St John and 

Abrahamson 2001)and rabbit anti-human podocin was a gift from Dr. Corinne Antignac 

(Roselli, Gribouval et al. 2002). Rabbit anti-laminin β5 (Miner, Patton et al. 1997), rabbit 

anti-sera specific for the mouse collagen type IV α4 chain (Miner and Sanes 1994)and 

rabbit anti-nephrin(Holzman, St John et al. 1999) have been described. Rabbit anti-chick 

integrin α3 was a gift from Mike Dipersio, Albany Medical College (DiPersio, Shah et al. 

1995), CD2AP antibody was a gift from Andrey Shaw (St. Louis, Washington 

University); and ILK antibody (3862) was purchased from Cell Signaling.  Anti-mouse 

CD31, rabbit polyclonal antibodies to WT1 and anti-VEGF antibodies were purchased 

from Santa Cruz Biotechnology. Monoclonal antibodies to entactin (clone ELM1 Rat 

monoclonal) were purchased from Chemicon. Alexa 488- and Cy3- conjugated secondary 

antibodies were purchased from Molecular Probes (Eugene, OR) and Chemicon 

(Temecula, CA), respectively. 
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 Seven µm kidney frozen sections were incubated with the antibodies described 

above diluted in PBS with 1% BSA followed by incubation with the appropriate 

secondary antibody. The sections were subsequently mounted in 90% glycerol containing 

0.1X PBS and 1 mg/ml p-phenylenediamine and viewed under epifluorescence with a 

Nikon Eclipse 800 compound microscope.  Images were captured with a Spot 2 cooled 

color digital camera (Diagnostic Instruments, Sterling Heights, MI). 

 

Podocyte apoptosis was determined on kidney paraffin sections utilizing Apoptag 

Apoptosis Detection Kit, as described by the manufacturer (Chemicon). Positive 

apoptotic cells were counted as podocytes when residing on the outer aspect of PAS-

positive basement membrane. Apoptotic cells were determined in 25 random glomeruli 

per kidney with 4 different mice per genotype analyzed.  The number of podocytes was 

expressed as mean +/- standard deviation. 

 
                                                            In situ hybridization 

Kidneys were dissected from mice on postnatal day 0, 10 and 21, washed
 
briefly 

in RNase-free PBS and fixed overnight in DEPC-treated
 
4% paraformaldehyde. The 

tissues were then placed in 30% sucrose
 
for 12–24 hours, embedded in Tissue-Tek OCT 

4583 compound
 
(Sakura Finetek USA Inc.) and snap

 
frozen. Ten-micron tissue samples 

were cut on a Leica Jung cryostat
 
(model CM3050; Leica Microsystems Inc.) and 

transferred to Superfrost
 
microscope slides (Fisher Scientific Co.). The slides were stored 

at –20°C until needed.
 
Digoxigenin-labeled VEGF-A (kind gift of A. Nagy,

 
Samuel 
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Lunenfeld Research Institute, Toronto, Canada) probes were prepared according to the 

Roche
 
Molecular Biochemicals protocol (Roche Molecular Biochemicals). 

 

 Slides were dried at room temperature for 2 hours, treated with 15ng/ml 

proteinase K in depc-PBS at 37
0
C for 5 minutes, washed in depc PBS, fixed in 4% PFA 

at room temperature for 7 minutes and washed first in depc PBS and then in 2x SSC (PH 

7).  Slides were prehybridized in mailers for 1 hour at 60
0
C using hybridization buffer 

(2.5 ml - 20x SSC, 5 ml formamide, 250 l – 20% CHAPS, 100 l – 10% Triton X-100, 

50 l – 10 mg/ml yeast RNA, 25l – 20 mg/ml Heparin, 100 l – 0.5 EDTA, 0.2 g 

blocking powder, 1.2 ml depc H2O) after which they were hybridized with the probe (1 

ng/ml) diluted in hybridization buffer at 60
0
C overnight.  The next day the slides were 

washed sequentially in 0.2XSSC and formamide/0.2x SSC. The slides were blocked with 

blocking solution from Roche as per instructions and then incubated with anti-DIG 

antibody for 2 hours. Slides were washed and substrate was added as per instructions 

from Roche. Slides were washed again and then immersed in Fast Red, dehydrated and 

mounted.  

 
 

                                                                 Results 

 

Loss of β1 integrin in the podocyte results in massive proteinuria and end stage renal 

failure 

To determine the function of αsβ1 integrins expressed by podocytes in the 

glomerulus, we crossed mice carrying the floxed β1 integrin gene
 
(β1

flox/flox
)
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Fig. 12. β1 integrin subunit is deleted in pod-Cre;β1
flox/flox

 mice. Frozen sections of kidneys 

from P1, P10 and P21 β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice were co-stained with anti-mouse 

integrin β1 (red) and anti laminin-α5 chain (green) or anti-mouse integrin α3 (green) and anti-

entactin (red), respectively. 
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(Raghavan, Bauer et al. 2000) with mice expressing Cre recombinase under the control of 

the podocin promoter (pod-Cre)(Moeller, Sanden et al. 2003), in which recombination 

occurs during the capillary loop stage in glomerular development. To verify that the β1 

integrin subunit was deleted in the podocytes, we performed immunostaining for the β1 

and α3 integrin subunits in P1, P10 and P21 mice. Expression of both of these subunits 

was significantly reduced in a segmental pattern in P1 pod-Cre;β1
flox/flox

 mice (Figure 12) 

and were further decreased in the glomeruli of P10 and P21 pod-Cre;β1
flox/flox

 mice. 

 

 Pod-Cre;β1
flox/flox

 mice were born in the expected Mendelian ratio, 

however the pod-Cre;β1
flox/flox

 mice became less physically active than their littermate 

β1
flox/flox

 controls
 
and developed severe edema 3 weeks after birth. Ninety percent (18/20) 

of the pod-Cre;β1
flox/flox

 mice were euthanized between 4 and 5 weeks of age due to end 

stage renal failure and nephrotic syndrome and only 10% (2/20) survived to 6 weeks of 

age (Figure 13A). The six week old pod-Cre;β1
flox/flox

 mice had massive proteinuria, with 

the predominant band running at the molecular weight of albumin (~66Kd) (Figure 13B). 

Autopsy of the mutant mice revealed smaller and paler kidneys than those isolated from 

age matched control animals, which are characteristic features of end stage disease 

(Figure 13C). Numerous Bowmans capsules in pod-Cre;β1
flox/flox

 mice were either empty 

or had partially disintegrated glomeruli as shown in Figures 13G. Interestingly the 

mesangium was only mildly hypercellular with little matrix expansion, and segmental 

areas of mesangiolysis were noted (Figure 13I). In addition to the glomerular pathology, 

we observed marked tubular dilatation and flattening of epithelial cells with extensive 

proteinaceous tubular casts (Figure 13E). Thus, all the mutant mice developed end stage  
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Fig. 13. Six-week-old pod-Cre;β1

flox/flox
 mice develop severe proteinuria and end stage renal 

disease. (A–C) Six-week-old pod-Cre;β1
flox/flox

 mice are smaller with evidence of severe edema (A), 

albuminuria (2 μl urine/lane) (B) and end stage kidneys (C) compared to aged matched β1
flox/flox

 mice. 

(D–I) PAS staining of kidneys derived from the mice described above showing glomerular and 

tubular interstitial abnormalities in the mutant group. The arrows in panel E show dilated tubules 

filled with hyaline material and the asterisks in panel G show the remnants of glomeruli in the pod-

Cre;β1
flox/flox

 mice. (D, E = 100×; F, G = 200×; H, I = 630×). 
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kidney disease characterized by pathological changes in the glomeruli and tubulo-

interstitium. 

 

Glomerular capillary morphogenesis is normal in embryonic and newborn pod-

Cre;β1
flox/flox

 mice but becomes abnormal 10 days after birth  

Due to the severity of the renal phenotype in the mutant mice we investigated 

when the abnormalities first became apparent. The podocin promoter is activated during  

the capillary formation stage (Moeller, Sanden et al. 2003), so we initially determined the 

histology of kidneys derived from E15.5 embryos from 10 wild type and mutant mice.  

Glomeruli were indistinguishable from the wild type controls in all the pod-Cre;β1
flox/flox

 

mice (Figures 14A and 14B). Also in mutant P1 (n=10) mice, no overt abnormalities 

were apparent (Figures 14C and 14D), however even at this early age the mice exhibited 

proteinuria (Figure 14M) but no hematuria.  

 

In contrast, kidneys from mutant P10 mice demonstrated tubular dilatation and 

multiple cytoplasmic vacuoles within the tubular epithelial cells (Figures 14E-H), which 

are consistent with heavy proteinuria.  In addition, some glomeruli from mutant mice 

showed segmentally expanded capillary lumens (Figures 14H). By 3 weeks of age the 

tubules showed increased dilatation and there were a number of expanded capillary loops 

and mesangial hypercellularity (Figures 14J and 14L). When mesangial cell number was 

assessed, there were significantly more in the pod-Cre;β1
flox/flox

 mice compared to the 

β1
flox/flox

 mice (17.1+/-3.6, vs 11.3+/-2.3. p< 0.05).       
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Fig. 14. Kidneys from pod-Cre;β1
flox/flox

 mice exhibit severe abnormalities in the glomerulus and 

tubulointerstitium. (A, B) PAS staining of kidneys derived from E15.5 β1
flox/flox

 and pod-Cre;β1
flox/flox

 

mice (200×). (C, D) PAS staining of kidneys derived from newborn β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice 

(200×). (E, F) PAS staining of kidneys derived from P10 β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice (100×). 

(G, H) In P10 mutant mice there was evidence of “ballooned” glomerular capillary loops (asterisk) and 

protein containing vacuoles (arrow) in the tubules of the pod-Cre;β1
flox/flox

 mice (400×). (I–L) PAS 

staining of kidneys derived from 3-week-old β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice revealed dilated 

tubules, evidence of “ballooned” capillary loops and mesangial hypercellularity (I, J = 200×; K, 

L = 400×). (M) Comassie staining of urine (2 μl/lane) from newborn β1
flox/flox

 and pod-Cre;β1
flox/flox

 

mice showing albuminuria in the latter group. 
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              Deletion of β1 integrin in the podocyte results in foot process effacement 

To further evaluate the integrity of the glomerular filtration barrier, we examined 

glomeruli of mice at various ages by electron microscopy. At E15 we observed evidence 

of foot process effacement in the pod-Cre;β1
flox/flox

 mice but surprisingly the GBM was 

intact in both genotypes (Figure 15). Similar ultrastructural findings were present in the 

kidneys isolated from P1 mice (Figure 15). Also no significant difference in thicknessof 

the GBM was seen in β1
flox/flox

 and pod-Cre;β1
flox/flox

 P1 mice (130+/-25.9 nm vs. 143+/-

39.5: p=0.16). In P10 pod-Cre;β1
flox/flox

 mice, we observed extensive foot process 

effacement and early segmental splitting of the GBM. In the P21 mutant mice, these 

features became more evident (Figure 15).    

 

 To determine whether the abnormalities in the filtration barrier in newborn mice 

was due to altered expression or localization of proteins involved in slit diaphragm 

formation or structural proteins known to be associated with nephrotic syndrome, we 

performed immunofluorescence for nephrin, podocin and CD2AP (Figure 16A). We 

found similar expression and localization of these proteins in control and mutant mice. As 

integrins are thought to be critical for normal BM development, we further examined 

expression of collagen IV and laminins in glomeruli. Unexpectedly, no differences in 

collagen IV α1, α3, α4, α5 and α6 chain expression were observed (Figure 16B). 

Expression of both laminin α1 and α5 chains as well as α2 and β2 chains was also similar 

in both genotypes (Figure 16C).  
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 Fig. 15. Glomeruli from pod-Cre;β1
flox/flox

 mice demonstrate podocyte foot process 

effacement. EM analysis was performed on kidneys of mice at various ages. In the E15 mutant 

mice there is evidence of foot process effacement of the podocytes but the GBM (arrow) was 

normal. Similar findings are present in P1 kidneys. In P10 mice, in addition to the foot process 

effacement, there was evidence of very mild segmental splitting of the GBM (arrow) which 

progressed by day P21. Abbreviations: FP = Foot Process; Po = Podocyte. 
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Fig 16. Glomeruli from newborn pod-Cre;β1

flox/flox
 mice demonstrate normal 

expression of podocyte-specific structural proteins glomerular basement membrane 

components. Frozen sections of kidneys derived from newborn mice were stained with 

antibodies to (A) Nephrin, podocin or CD2AP, (B) the α4 (green) or α1 (red) chains of 

collagen IV and (C) the α5 (green) or α1 (red) laminin chains. 
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Taken together these data suggest that during embryogenesis lack of integrin β1 

results in podocyte abnormalities characterized by dysmorphic foot processes, with no 

gross abnormalities in GBM composition or ultrastructure. 

 

  

             Podocyte apoptosis occurs in pod-Cre;β1
flox/flox

 mice within 10 days of birth 

Based on the phenotypes of the P21 and 6 week old pod-Cre;β1
flox/flox

 mice, where 

there were dilated glomerular capillaries and subsequent glomerular disintegration, we 

determined whether the podocytes in the mutant mice were undergoing apoptosis. As 

seen in Figure 17A, a significant number of apoptotic podocytes were present in the P10 

and P21 mutant mice.  Furthermore, we determined expression of the specific podocyte 

markers WT1 (Figure 17B), podocin, CD2AP and synaptopodin by immunofluoresence 

and found that they were significantly decreased in P10 and P21 mutant glomeruli 

suggesting the possibility of podocyte loss in the pod-Cre;β1
flox/flox

 mice. 

 

 As deletion of the β1 integrin binding protein, integrin linked kinase (ILK), in 

podocytes results in focal segmental glomerulosclerosis and alteration in the distribution 

of integrin α3β1 starting at 4 weeks of age (Dai, Stolz et al. 2006; El-Aouni, Herbach et 

al. 2006), we investigated whether deleting the β1 integrin subunit from podocytes altered 

glomerular ILK expression. As shown in Figure 17B, we didn’t observe any differences 

in glomerular ILK expression in P1 mutant and control mice. However, by P10 the 

mutant mice showed a marked decrease in glomerular ILK expression. By P21 virtually 
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no ILK was detected in glomeruli. The pattern and time course of ILK expression in the 

mutant mice was very similar to that seen for β1 integrin (Figure 12), suggesting that 

expression of the β1 integrin subunit might play a specific role in regulating ILK 

expression in the podocyte. 

 

 To specifically confirm podocyte loss in the P21 pod-Cre;β1
flox/flox

 mice, we 

determined the number of podocytes per glomerular section utilizing electron microscopy. 

An example of a low power EM picture from P21 pod-Cre;β1
flox/flox

 and Cre;β1
flox/flox

 

mice (Figure 17C) illustrates the decreased number of podocytes in a section of a 

glomerulus of the mutant mice. When formally quantified, P21 pod-Cre;β1
flox/flox

 had 

about one third of the number of podocytes compared to their β1
flox/flox 

litter mates 

(Figure 17C). All together, these data suggest that there are significantly less podocytes 

in the P21 pod-Cre;β1
flox/flox

 mice. 

 

Deletion of β1 integrin in the podocyte results in abnormalities of both capillary loops 

and the mesangium 

One of the most surprising findings of this study was that despite the obvious 

abnormalities of the podocytes, the principal lesions seen in P21 mutant mice was the 

degeneration of the capillary loops and mesangium with little glomerulosclerosis.  To 

determine the possible mechanism underlying these capillary loop abnormalities, we 

initially investigated the integrity of the endothelium by staining the kidneys with 

antibody to CD31, a specific endothelial cell marker.  As shown in Figure 18A, in P1  
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 Fig. 17. Podocytes of pod-Cre;β1
flox/flox

 mice undergo apoptosis. (A) Examples of apoptosis, 

as determined by TUNEL assay, detected in the glomeruli of β1
flox/flox

 or pod-Cre;β1
flox/flox

 mice 

at the time points indicated. The number of apoptotic podocytes expressed per 10 glomeruli is 

demonstrated graphically. The (*) indicates significant differences (p < 0.01) between the two 

genotypes. (B) Frozen sections of glomeruli were co-stained for WT-1 (green) and entactin (red) 

or ILK (green) and entactin (red) as described in Materials and methods. (C) The number of 

podocytes in EM sections were evaluated as described in Materials and methods and expressed 

as mean ± S.D. (*) indicates significant differences (p < 0.05) between P21 β1
flox/flox

 and P21 

pod-Cre;β1
flox/flox

 mice.  
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β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice, the intensity and distribution of CD31 positive cells 

was similar. By P10 there was significantly less CD31 staining in the glomeruli of mutant 

mice and by P21 the CD31 staining was virtually undetectable in the mutant mice, 

suggesting that endothelial cells had undergone cell death during this time period.  To 

verify these findings, we performed electron microscopy on the glomerular capillary 

loops. At day 10, we observed significant vacuolation, a sign of cell damage, in the 

endothelial cells of mutant mice (Figure 18B), and by 3 weeks of age only a nuclear 

remnants of capillary endothelial cells were evident in many capillary loops (Figure 18B). 

 

 As mesangial injury was evident in the mutant mice starting at 3 weeks of age 

(Figure 14), we studied the mesangium in detail by EM. We found multiple cytoplasmic 

vacuoles, indicative of cellular damage, in the mesangial cells of mutant mice starting at 

10 days of age (Figure 18C).  By 3 weeks the chromatin material of mesangial cells was 

clumped, suggestive of severe cellular injury and there were lucent areas within the 

mesangial matrix indicative of defective matrix assembly.  These results suggest that the 

mesangium, like the endothelium, was injured in the mutant mice.  

 

 Vascular endothelial growth factor-A (VEGF), which is primarily produced by 

the podocytes, is a growth factor required for both normal capillary loop development as 

well as mesangial cell survival (Eremina, Sood et al. 2003; Eremina, Cui et al. 2006). In 

this context, mice lacking podocyte-produced VEGF develop grossly abnormal 

glomerular capillary loops. Furthermore, in mice hypomorphic for podocyte-produced   
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Fig. 18. Glomerular capillary and mesangium injury in pod-Cre;β1

flox/flox
 mice. (A) Frozen 

sections of kidneys derived from newborn, P10 and P21 mice were stained with CD31 antibodies to 

visualize the glomerular vasculature. (B) EM of kidneys from P21 β1
flox/flox

 (3000×) as well as P10 

(11,000×) and P21 (11,000×) pod-Cre;β1
flox/flox

 mice revealed normal morphology of endothelial cells 

in the β1
flox/flox

 mice. Vacuoles (arrow) in the endothelial cells (arrow) were evident in the P10 and 

P21 mutant mice. Abbreviations: EC = endothelial cells; CL = capillary loops; (C) EM of kidneys 

emphasizing the mesangium. Note the presence of vesicles (arrow) in the mesangial cells of mutant 

mice by P10 (8900×) and the increased mesangial matrix in the P21 pod-Cre;β1
flox/flox

 mice (4th 

panel) (2200×). Abbreviations: MC = mesangial cell. (D) In situ hybridizations on kidneys of 

newborn, P10 and P21-day-old mice showing VEGF mRNA expression. 
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VEGF, there is ballooning of the glomerular capillaries and mesangiolysis(Eremina, Sood 

et al. 2003). This finding suggests that VEGF is required for the normal development and 

maintenance of glomerular integrity, especially with respect to the capillary loops and the 

mesangium. As the pod-Cre;β1
flox/flox

 mice reduce podocyte number with time, we 

analyzed the levels of VEGF in the glomeruli of β1
flox/flox

 and pod-Cre;β1
flox/flox

 mice. The 

mRNA of this growth factor was similar in both genotypes at birth (Figure 18D). In 10 

days old mutant mice, we observed decreased mRNA expression (Figure 18D). By 3 

weeks significantly less VEGF message was detected in the glomeruli of the pod-

Cre;β1
flox/flox

 mice (Figure 18D). Thus, the timing of glomerular degeneration correlates 

with the lack of VEGF expression by the podocytes. 

 

 

                                                            Conclusions 

In our study we showed that selectively deleting αsβ1 integrins in the podocyte 

resulted in 1) a defective glomerular filtration barrier present at birth; 2) podocytes loss 

over time; 3) capillary loop and mesangium degeneration with little evidence of 

glomerulosclerosis and 4) the development of end stage kidneys characterized by both 

tubulointerstitial and glomerular pathology by 3 to 6 weeks of age. Taken together these 

results demonstrate that although the injury in the β1 integrin null mouse is more severe 

and has some differences in pattern, the overall phenotype is similar to that found in mice 

where the α3 integrin subunit is selectively deleted in podocytes. This suggests that 

integrin α3β1 is the principal integrin required to maintain the structural integrity of the 

glomerulus and other αsβ1 integrins play a relatively minor role. 
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 The end stage kidneys of the pod-Cre;β1
flox/flox

 mice were characterized by severe 

tubulointerstitial disease in addition to the glomerular pathology. This was likely a 

consequence of the heavy glomerular proteinuria that results in interstitial mononuclear 

cell accumulation and activation of interstitial fibroblasts to deposit collagens in the 

tubulointerstitial compartment of the kidney (Remuzzi 1995); (Eddy 1994) 

 

 The mutant mice in this study showed normal glomerular morphogenesis, GBM 

formation as well as normal expression of slit diaphragm and key cytoskeletal proteins. In 

contrast, in the newborn integrin α3-null mouse, the GBM was disorganized and capillary 

loop numbers were reduced in addition to the podocyte abnormalities (Kreidberg, 

Donovan et al. 1996). The differences in glomerular morphogenesis between these two 

mice may mostly be because: i) sufficient αsβ1 integrins are expressed by the podocytes 

prior to Cre-mediated excision, as podocin is expressed at the S-shape body stage of 

development(Moeller, Sanden et al. 2003). ii) αsβ1 integrins might still be expressed by 

the podocytes following cre expression due to inefficient deletion of β1 integrin. Also 

pod-Cre; α3
flox/flox

 mice showed abnormally thickened GBM and severe lamellations, 

compared with normal GBM formation in our pod-Cre; β1
flox/flox

 mice. A possible 

explanation for this discrepancy is that integrin α3β1 might negatively regulate integrin 

α2β1-dependent glomerular collagen production. This hypothesis is based on the 

observation that integrin α2β1 is a positive regulator of collagen synthesis (Ivaska, 

Reunanen et al. 1999); integrin α2β1 function can be negatively regulated by the 

expression of other integrin family members. 
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Overall, the renal phenotypes we observed in pod-Cre;β1
flox/flox

 mice are more 

severe than that of α3-null mice. We observed earlier onset and increased severity of 

injury in the pod-Cre;β1
flox/flox

 compared to α3-null mice. This could be due to the loss of 

interactions of podocytes with the GBM via the collagen binding receptors, integrins  

α1β1and α2β1 and the laminin receptor integrin α6β1 which are expressed by podocytes 

during development (Korhonen, Ylanne et al. 1990; Rahilly and Fleming 1992). This 

finding suggests that other αβ1 integrins also play minor roles in maintenance of 

glomerular structural integrity. Another one of the most interesting features of the 

podocyte β1-null mouse was the rapidity with which the glomeruli degenerated and the 

lack of glomerular fibrosis relative to the glomerular injury. We tried to link this feature 

with the phenotypes we observed in pod-Cre;β1
flox/flox

, such as foot process effacement, 

slit diaphragm abnormalities or podocyte loss overtime. However, mice deficient for ILK 

(Dai, Stolz et al. 2006; El-Aouni, Herbach et al. 2006)or the integrin α3 subunit in the 

podocytes as well as lacking proteins required for normal slit diaphragm formation (i.e. 

podocin and CD2-associated protein) (Shih, Li et al. 1999) also had foot process 

effacement, proteinuria, but developed severe glomerulosclerosis prior to developing end 

stage kidney. Similarly, In addition to these genetic models, when 40% of podocytes 

were destroyed in rats by diphtheria toxin, the primary lesion observed was 

glomerulosclerosis (Wharram, Goyal et al. 2005), which is consistent with the theory that 

if sufficient podocytes detach leaving a naked GBM, a circumscribed region of focal 

segmental sclerosis will initially form and eventually result in global 

glomerulosclerosis(Kriz 2002). Thus foot process and slit diaphragm abnormalities or 
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loss of up to 40% of podocytes in glomeruli does not explain why pod-Cre; β1
flox/flox

 did 

not develop glomerulosclerosis. 

 

           In an attempt to explain the lack of glomerulosclerosis and the severe 

mesangiolysis in our mouse model, we noted that the glomerular phenotype of the pod-

Cre;β1
flox/flox

 mice at 3 weeks of age had many features similar to those seen in mice  

expressing one hypomorphic VEGF-A allele. Both these mice have dilated capillary 

loops and severe abnormalities within the mesangium. The phenotype in the VEGF 

hypomorphic mouse is proposed to be due to a requirement of podocyte-dependent 

VEGF production for both endothelial cell proliferation and survival, and disruption of 

the endothelial compartment leads to the mesangial defects (Eremina, Cui et al. 2006). 

Since the pod-Cre; β 1
flox/flox

 mice demonstrate significant podocyte loss and the principal 

source of VEGF in the glomerulus is the podocytes, we postulate that when sufficient 

podocytes are lost in this mouse, the endothelial cells undergo apoptosis due to their 

dependence on this angiogenic factor, or other factors produced by the podocyte, for 

survival. The lack of VEGF would not explain the mesangium phenotype as mesangial 

cells do not express receptors for VEGF. However mesangial cells do require PDGF-β 

secretion by endothelial cells for their survival (Bjarnegard, Enge et al. 2004). Thus with 

progressive podocyte loss in the pod-Cre; β1
flox/flox

, we propose that the glomerulus loses 

VEGF and probably other podocyte-specific growth factors production, which results in 

endothelial cell death. The loss of growth factor production from both these cells types 
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subsequently results in the inability of the glomerulus to maintain integrity of the 

mesangium. 

 

In conclusion we provide evidence that podocyte expression of αsβ1 integrins is 

required for the normal formation and integrity of the glomerular filtration barrier. 

Although the GBM appears to form relatively normally in newborn pod-Cre;β1
flox/flox

 

mice, podocyte foot process effacement and proteinuria is seen. With the increase in 

glomerular hydrostatic pressure, podocytes are lost from the glomerulus, which promotes 

rapid destruction of the capillary loops and mesangium with little glomerulosclerosis. The 

rapidly degenerating glomeruli promote tubulointerstitial disease which is likely due to 

the increased proteinuria. This phenotype is for the most part similar but more severe 

than that seen in mice lacking the α3 integrin subunit in podocytes, where proteinuria and 

glomerulosclerosis are the primary features, suggesting that in addition to integrin α3β1, 

other αsβ1 integrins play a role in maintaining the glomerular filtration barrier.   
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                                        CHAPTER IV 

 

 

                    CONCLUSIONS AND FUTURE DIRECTIONS 
 

 
                                                                 Overview 

The development of an organism requires precise spatiotemporal coordination of 

cell behaviors，which are regulated by a complex network of regulatory factors, 

including growth factors and ECM proteins. Morphogenesis of the kidney serves as an 

excellent model system to analyze the cellular and molecular mechanisms underlying 

organogenesis. β1 integrin is one of the most widely expressed integrins in kidneys. The 

major goal of this thesis was to examine the role of β1 integrin in kidney development. 

We illustrated the novel role of 1 integrins in transducing growth factor-dependent 

signals required for UB branching morphogenesis, in addition to their well characterized 

roles in adhesion and migration. We also demonstrated that β1 integrin is required for 

normal development and maintenance of glomerular filtration barrier. These findings 

have significantly improved the current knowledge of the function of β1 integrins. They 

also facilitated further in depth investigation focusing on several important issues that we 

have found but not fully addressed in this study 

 

                                            Discussion and future directions 

 

First, in our study to investigate the role of β1 integrin in collecting system 

development, we observed significantly worse renal phenotypes in our 
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Hoxb7Cre;1
flox/flox

 than in mice where α3 was specifically deleted in the UB (Liu, 

Chattopadhyay et al. 2009), suggesting that other 1 integrins play a role in this process. 

Collagen receptor α2β1 and laminin receptor α6β1 integrins are candidates as minor 

players since they are both highly expressed in the collecting tubules. The different α 

integrin subunits may work synergistically or negatively regulate each other, maintaining 

homeostasis of a developmental process. For example, α3 and α6 integrins work 

synergistically to regulate apical ectodermal ridge formation and organogenesis (De 

Arcangelis, Mark et al. 1999), while α1β1 negatively regulates integrin α2β1-dependent 

functions in renal epithelial cells (Abair, Sundaramoorthy et al. 2008). Homozygous 

deletion of either α2 or α6 subunit results in subtle if any renal phenotypes, suggesting a 

possible functional redundancy. The relative importance of these integrin α subunits 

during collecting system development could be investigated by generating UB-specific 

double knockout mice utilizing Hox7bCre. Furthermore, the integrin α8 subunit may play 

a role during this process as well. α8 subunit associates specifically with β1 integrin and 

is expressed at both the mesenchyme aggregates and UB tips from E10.5 to E14.5. 

Deletion of β1 integrin in our  Hoxb7Cre;1
flox/flox

 mice leads to diminished α8 integrin 

expression in the UB tips, which may contribute to the severe branching defect and also 

the decreased nephron numbers since α8 is important for epithelization of MM (Muller, 

Wang et al. 1997). 

 

We did not observe any overt renal phenotypes in our Aqp2Cre;1
flox/flox

  mice 

when β1 integrin is deleted at the tubule growth and elongation stage. As we discussed 
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previously, this lack of phenotype could be explained by inefficient deletion or the slow 

turnover of β1 integrins which are abundantly expressed in the collecting system before 

E18.5. We could utilize a β1 knock-out, lacZ knock-in mice model and immunostaining 

analysis to further test this possibility. It is also possible that the function of β1 integrin is 

dispensable for tubule elongation and growth stage when other integrins serve as major 

players or compensate for loss of β1 integrin expression due to a functional redundancy.  

αv containing integrins and α6β4 integrin are potential candidates since they are also 

expressed in the tubules. α6β4 is a major laminin receptor and a functional redundancy 

possibly exists between β1 and β4 integrins. The role of these integrin subunits could be 

investigated by generating mice carrying null mutations for αv or β4 integrin subunits 

specifically in the collecting system utilizing AQP2Cre. UB-specific double β1/β4 

knockout mice could also be generated to investigate if these two β subunits compensate 

for each other. 

 

We found that, deletion of β1 integrin at the tubule growth and elongation stage 

still renders the adult mice kidneys more susceptible to injury when we performed 

ureteric obstruction on Aqp2Cre;1
flox/flox

  mice. The similar effect has been observed 

in mice carrying null mutations for integrin α subunits. For example, lack of α1β1 leads 

to severe glomerulosclerosis after injury although no overt renal phenotypes are seen in 

α1-null mice kidneys (Chen, Moeckel et al. 2004). These results indicate that β1 integrin 

plays a role in maintaining tubule integrity. Several cell behaviors, including cell 

adhesion, migration and proliferation, are known to be important for the process of tissue 



 75 

repair following injury. β1 integrin has a well defined role in promoting cell adhesion. 

Thus deletion of β1 integrin in collecting tubules leads to decreased cell adhesion to 

basement membrane, resulting in impaired tubule reconstitution. Furthermore, β1 integrin 

may also play a role in regulation of cell survival and proliferation under stress, via a 

tyrosine switch in its cytoplasmic tail.  Previous structure function analysis shows that the 

tyrosine residue within the well conserved NPXY motif in β1 cytoplasmic tail functions 

as a switch, the phosphorylation of which occurs under stressed conditions such as 

inflammation and wound healing, activating downstream signaling by regulating adaptor 

binding(Czuchra, Meyer et al. 2006).  Therefore, deletion of β1 integrin in our 

Aqp2Cre;1
flox/flox

  mice leads to decreased cell adhesion to basement membrane and 

possibly decreased cell survival following obstruction, resulting in more severe injuries. 

Mice carrying collecting system-specific non-phosphorylatable point mutation in the 

tyrosine residues could be generated utilizing AQP2Cre to test if the tyrosine switch in β1 

cytoplasmic tail is important for maintaining kidney collecting tubule integrity,.  

 

In our vitro study, we explored the mechanism underlying the branching defect in 

Hoxb7Cre;1
flox/flox 

mice. As expected, we found that deleting 1 integrin leads to 

significantly decreased cell proliferation on β1-dependent matrices. In contrast, one 

interesting finding is that β1
-/-

 IMCD cells proliferate faster when plated on vitronectin, a 

ligand for αv-containing integrins such as αvβ3 and αvβ5. αv-containing integrins and β1 

integrins share a lot of downstream signaling pathways in common. This increased 

proliferation of β1-null cells could be explained by: 1) the activation level of αv integrins 
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is higher in β1
-/-

 IMCD cells than that in β1
flox/flox 

cells, although FACS analysis reveals 

equal αv integrin expression levels between these two cell lines; 2) αvβ3 and αvβ5 work 

synergistically leading to maximal proliferative signaling output; 3) β1-containing 

integrins may have trans-dominant inhibitory effects on αv integrin mediated cell 

proliferation; 4) glucose transporters express at a higher level on β1
-/-

 IMCD cell surface 

based on immunostaining. αv integrin activation levels could be detected via FACS 

analysis utilizing an antibody that specifically recognizes αv activation epitopes on its 

extracellular domain. Inhibitory antibodies could be added into the cell culture medium to 

determine if blocking β3 or β5 subunit has an additive effect in decreasing cell 

proliferation. And re-transfection of β1 integrin into our β1
-/-

 IMCD cells as well as 

generation of a β1 over-expressing cell line could be performed to investigate whether 

increased β1 integrin expression has an inhibitory effect on αv integrin-dependent cell 

proliferation. Further investigation could also be done to determine if increased glucose 

transporter expression level contributes to increased cell proliferation of β1
-/-

 IMCD cells. 

β1 integrins co-localize with CD98, an amino acid transporter, on basolateral cell surface 

(Feral, Nishiya et al. 2005). Deletion of β1 integrin possibly leads to decreased cell 

surface CD98 expression level along with reduced amino acid intake. Alternatively, β1
-/-

 

IMCD cells express higher levels of glucose transporters, leading to increased cell 

proliferation. CD98 expression levels on β1
flox/flox

 and β1
-/-

 IMCD cell surfaces could be 

assessed along with measurement of their amino acid uptake and glucose uptake abilities. 

In our study, we also observed increased ZO-1 expression levels on β1
-/-

 IMCD cells 

according to confocal microscopic examination on Z sectioning. We propose that it is in 
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large part due to increased cell confluency on transwells at the time of staining, because 

of the higher proliferation rates of β1-null cells. 

 

 Furthermore, we found that several signaling pathways, such as FAK, EKR, AKT 

and p38, show drastically decreased activation in β1
-/-

 IMCD cells following growth 

factor stimulation. Different pathways may correlate with different growth factor-

mediated cell behaviors. ERK and p38 signaling pathways are mostly correlated with cell 

proliferation, while decreased FAK expression usually leads to decreased cell migration 

and adhesion. Therefore decreased signaling activation leads to the decreased 

proliferative and spreading responses in our β1-null cells. Since integrin function is very 

cell type-specific, we could further utilize signaling inhibitors to dissect the correlation 

between a single signaling pathway and cell function in our culture system. Cell adhesion, 

migration and proliferation abilities could be accessed following growth factor 

stimulation in the presence of a certain signaling inhibitor. Decreased signaling activation 

and decreased cell proliferation were also evident on HoxB7Cre;β1
flox/flox 

mice
 
kidneys at 

E15.5, despite normal expression levels of growth factor and GFRs.  This decreased 

proliferation can be explained at several levels: 1) input from both integrin and GFRs is 

required to stimulate progression through the G1 phase of the cell cycle via induction of 

G1 cyclins through sustained ERK activation; 2) loss of integrin signaling leads to 

decreased translation of cyclin D1 mRNA ; 3) integrin signals are important for the down 

regulation of p21 family CDK inhibitors(Schwartz and Assoian 2001).  
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Our study has initiated future in-depth structure function analysis to dissect the 

mechanism whereby β1 integrin cytoplasmic tail mediates growth factor-dependent UB 

branching morphogenesis. Three regions are found to be preferred binding sites for most 

adaptors and are conserved among β-integrin tails - membrane proximal HDRK motif, 

membrane proximal NPXY motif and membrane distal NxxY motif (Legate and Fassler 

2009).  Both in vivo and in vitro studies suggest that membrane proximal HDRK 

sequence is not important for β1 integrin activation and function (Czuchra, Meyer et al. 

2006), while the two NPXY motifs as well as a serine-threonine rich region are critical 

for β1 integrin(Chen, Zou et al. 2006); (Takala, Nurminen et al. 2008); (Nurmi, Autero et 

al. 2007). We could conduct both in vitro and in vivo studies to explore the mechanism 

whereby β1 integrin cytoplasmic tail regulates UB branching. In vitro, IMCD cells could 

be generated carrying point mutations in the two NPXY motifs and the serine-threonine 

rich region in β1 cytoplasmic tail. In vivo, knock-in mice with β1 cytoplasmic tail point 

mutants expressing specifically in the ureteric bud could be generated utilizing Hoxb7Cre. 

More future study may involve dissection of the complex integrin-adaptor protein 

network, utilizing proteomics and system biology strategies, which will give us a much 

clearer view of the cellular mechanism of renal development.  

 

 

In the second part of our study, we investigated the function of β1 integrin in 

glomerular development and proposed that glomerulus loses VEGF following 

progressive podocyte loss in the pod-Cre; β1
flox/flox 

mice, leading to endothelial cell death 

and mesangium injuries. However, we proposed this hypothesis mostly based on 
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morphological analysis and the role of VEGF during this process could be explored more 

extensively. In vivo, immunostaining could be performed to assess VEGFR expression 

and activation levels on endothelial cell surface, PDGF expression levels in endothelial 

cells as well as PDGFR levels on mesangial cell surface, in both β1
flox/flox 

and pod-Cre; 

β1
flox/flox 

mice glomeruli
 
at

  
different developmental stages(Eremina, Baelde et al. 2007). 

VEGF overexpression/β1-null double mutant mice could be generated to investigate if 

increased VEGF expression in podocytes is able to, at least in part, compensate for loss 

of podocyte numbers, and thereby extenuate the endothelium and mesangium injuries. 

We could further test this hypothesis in vitro by co-culture of β1-null podocytes and 

endothelial cells. The endothelial cell apoptosis and proliferation rates could be assessed 

over time. VEGFR as well as endothelial PDGF expression levels could be investigated 

by immunostaining. Possible alterations in signaling pathways, such as p38 MAPK, 

ERK1/2, PKC and PI3-kinase, could also be investigated after co-culture(Bohnsack and 

Hirschi 2004); (Chen, Luque et al. 2010); (Foster 2009).  

 

Loss of expression of other growth factors following podocyte detachment may 

also contribute to endothelium and mesangium injuries in our pod-Cre; β1
flox/flox 

mice. 

FGF is a strong candidate. Several in vitro studies have demonstrated that FGF stimulates 

endothelial cell proliferation via stimulation of MAPK pathway which results in 

activation of cyclin D1 and therefore cell cycle progression.  FGF signaling has also been 

shown to regulate actin filament reorganization of endothelial cells during wound healing 

and thus helps to maintain endothelium integrity (Davidson, Dono et al. 2001). αvβ3 
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integrin on endothelial cell surface helps to sustain signaling activation by FGF 

stimulation. Blocking either αv or β3 subunit abrogates downstream proliferative 

signaling (Genersch, Ferletta et al. 2003). Furthermore, αvβ3 integrin is shown to 

directly associate with PDGFR β and help to maintain the mesangium integrity. Thus it is 

possible that deletion of β1 integrin in podocytes leads to podocyte detachment over time 

followed by decreased FGF expression, resulting in impaired αvβ3-dependent endothelial 

cell signaling and proliferation. Decreased proliferation and survival of endothelial cells 

may further lead to decreased cell surface αvβ3 expression, impaired αvβ3-PDGFR 

signaling and mesangium injury(Somanath, Malinin et al. 2009).  FGF expression levels 

in the podocytes and αvβ3 expression levels on endothelial cell surfaces could be 

assessed by immunostaining on kidneys of our pod-Cre; β1
flox/flox 

mice. In our study, we 

also demonstrated decreased ILK expression levels in pod-Cre; β1
flox/flox 

mice glomeruli. 

ILK is known to form a ternary signaling complex with Pinch and Parvin, which 

participates in regulating various cell functions. Thus the role of β1 integrin in 

maintenance of glomerular integrity may involve active signaling networks mediated by 

ILK (Shi, Qu et al. 2008). 

 

Furthermore, the correlation between podocyte injury and the progression of 

diabetic kidney disease is evident in a lot of recent studies (Sulikowska and Manitius 

2007). Formation of proteinuria not only predicts the pace of renal decline; it also 

indicates cardiovascular disease (CVD) progression (Ratto, Leoncini et al. 2006). It 

would be interesting to investigate if loss of β1 integrins in podocytes increases risks of 



 81 

diabetic kidney disease and cardiovascular disease. Mice muscle samples could be 

collected for investigation and physiological studies could be performed on β1
flox/flox 

and 

pod-Cre; β1
flox/flox 

mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 82 

                                           REFERENCES 

 

 

Abair, T. D., M. Sundaramoorthy, et al. (2008). "Cross-talk between integrins 

alpha1beta1 and alpha2beta1 in renal epithelial cells." Exp Cell Res 314(19): 

3593-3604. 

Alam, N., H. L. Goel, et al. (2007). "The integrin-growth factor receptor duet." J Cell 

Physiol 213(3): 649-653. 

Arnaout, M. A., S. L. Goodman, et al. (2007). "Structure and mechanics of integrin-based 

cell adhesion." Curr Opin Cell Biol 19(5): 495-507. 

Aumailley, M., L. Bruckner-Tuderman, et al. (2005). "A simplified laminin 

nomenclature." Matrix Biol 24(5): 326-332. 

Baron, V. and M. Schwartz (2000). "Cell adhesion regulates ubiquitin-mediated 

degradation of the platelet-derived growth factor receptor beta." J Biol Chem 

275(50): 39318-39323. 

Bates, C. M. (2007). "Role of fibroblast growth factor receptor signaling in kidney 

development." Pediatr Nephrol 22(3): 343-349. 

Beenken, A. and M. Mohammadi (2009). "The FGF family: biology, pathophysiology 

and therapy." Nat Rev Drug Discov 8(3): 235-253. 

Bjarnegard, M., M. Enge, et al. (2004). "Endothelium-specific ablation of PDGFB leads 

to pericyte loss and glomerular, cardiac and placental abnormalities." 

Development 131(8): 1847-1857. 

Bohnsack, B. L. and K. K. Hirschi (2004). "Red light, green light: signals that control 

endothelial cell proliferation during embryonic vascular development." Cell Cycle 

3(12): 1506-1511. 

Boute, N., O. Gribouval, et al. (2000). "NPHS2, encoding the glomerular protein podocin, 

is mutated in autosomal recessive steroid-resistant nephrotic syndrome." Nat 

Genet 24(4): 349-354. 

Brakebusch, C., R. Grose, et al. (2000). "Skin and hair follicle integrity is crucially 

dependent on beta 1 integrin expression on keratinocytes." EMBO J 19(15): 3990-

4003. 

Brandenberger, R., A. Schmidt, et al. (2001). "Identification and characterization of a 

novel extracellular matrix protein nephronectin that is associated with integrin 

alpha8beta1 in the embryonic kidney." J Cell Biol 154(2): 447-458. 

Calderwood, D. A., Y. Fujioka, et al. (2003). "Integrin beta cytoplasmic domain 

interactions with phosphotyrosine-binding domains: a structural prototype for 

diversity in integrin signaling." Proc Natl Acad Sci U S A 100(5): 2272-2277. 

Calderwood, D. A., R. Zent, et al. (1999). "The Talin head domain binds to integrin beta 

subunit cytoplasmic tails and regulates integrin activation." J Biol Chem 274(40): 

28071-28074. 

Cancilla, B., A. Davies, et al. (2001). "Fibroblast growth factor receptors and their 

ligands in the adult rat kidney." Kidney Int 60(1): 147-155. 

Carman, C. V. and T. A. Springer (2003). "Integrin avidity regulation: are changes in 

affinity and conformation underemphasized?" Curr Opin Cell Biol 15(5): 547-556. 



 83 

Chen, D., R. Roberts, et al. (2004). "Differential expression of collagen- and laminin-

binding integrins mediates ureteric bud and inner medullary collecting duct cell 

tubulogenesis." Am J Physiol Renal Physiol 287(4): F602-611. 

Chen, H., Z. Zou, et al. (2006). "In vivo beta1 integrin function requires phosphorylation-

independent regulation by cytoplasmic tyrosines." Genes Dev 20(8): 927-932. 

Chen, T. T., A. Luque, et al. (2010). "Anchorage of VEGF to the extracellular matrix 

conveys differential signaling responses to endothelial cells." J Cell Biol 188(4): 

595-609. 

Chen, X., G. Moeckel, et al. (2004). "Lack of integrin alpha1beta1 leads to severe 

glomerulosclerosis after glomerular injury." Am J Pathol 165(2): 617-630. 

Clegg, D. O., K. L. Wingerd, et al. (2003). "Integrins in the development, function and 

dysfunction of the nervous system." Front Biosci 8: d723-750. 

Colognato, H. and P. D. Yurchenco (2000). "Form and function: the laminin family of 

heterotrimers." Dev Dyn 218(2): 213-234. 

Cosgrove, D., D. T. Meehan, et al. (1996). "Collagen COL4A3 knockout: a mouse model 

for autosomal Alport syndrome." Genes Dev 10(23): 2981-2992. 

Costantini, F. (2006). "Renal branching morphogenesis: concepts, questions, and recent 

advances." Differentiation 74(7): 402-421. 

Czuchra, A., H. Meyer, et al. (2006). "Genetic analysis of beta1 integrin "activation 

motifs" in mice." J Cell Biol 174(6): 889-899. 

Dai, C., D. B. Stolz, et al. (2006). "Essential role of integrin-linked kinase in podocyte 

biology: Bridging the integrin and slit diaphragm signaling." J Am Soc Nephrol 

17(8): 2164-2175. 

Davidson, G., R. Dono, et al. (2001). "FGF signalling is required for differentiation-

induced cytoskeletal reorganisation and formation of actin-based processes by 

podocytes." J Cell Sci 114(Pt 18): 3359-3366. 

De Arcangelis, A., M. Mark, et al. (1999). "Synergistic activities of alpha3 and alpha6 

integrins are required during apical ectodermal ridge formation and organogenesis 

in the mouse." Development 126(17): 3957-3968. 

Denda, S. (1999). "[The role of integrin alpha 8 beta 1 in kidney morphogenesis]." 

Tanpakushitsu Kakusan Koso 44(2): 136-142. 

DiPersio, C. M., K. M. Hodivala-Dilke, et al. (1997). "alpha3beta1 Integrin is required 

for normal development of the epidermal basement membrane." J Cell Biol 

137(3): 729-742. 

DiPersio, C. M., S. Shah, et al. (1995). "alpha 3A beta 1 integrin localizes to focal 

contacts in response to diverse extracellular matrix proteins." J Cell Sci 108 ( Pt 

6): 2321-2336. 

DiPersio, C. M., R. van der Neut, et al. (2000). "alpha3beta1 and alpha6beta4 integrin 

receptors for laminin-5 are not essential for epidermal morphogenesis and 

homeostasis during skin development." J Cell Sci 113 ( Pt 17): 3051-3062. 

Dressler, G. R. (2006). "The cellular basis of kidney development." Annu Rev Cell Dev 

Biol 22: 509-529. 

Dressler, G. R. (2009). "Advances in early kidney specification, development and 

patterning." Development 136(23): 3863-3874. 



 84 

Dudley, A. T., K. M. Lyons, et al. (1995). "A requirement for bone morphogenetic 

protein-7 during development of the mammalian kidney and eye." Genes Dev 

9(22): 2795-2807. 

Eddy, A. A. (1994). "Experimental insights into the tubulointerstitial disease 

accompanying primary glomerular lesions." J Am Soc Nephrol 5(6): 1273-1287. 

Edin, M. L. and R. L. Juliano (2005). "Raf-1 serine 338 phosphorylation plays a key role 

in adhesion-dependent activation of extracellular signal-regulated kinase by 

epidermal growth factor." Mol Cell Biol 25(11): 4466-4475. 

El-Aouni, C., N. Herbach, et al. (2006). "Podocyte-specific deletion of integrin-linked 

kinase results in severe glomerular basement membrane alterations and 

progressive glomerulosclerosis." J Am Soc Nephrol 17(5): 1334-1344. 

Eremina, V., H. J. Baelde, et al. (2007). "Role of the VEGF--a signaling pathway in the 

glomerulus: evidence for crosstalk between components of the glomerular 

filtration barrier." Nephron Physiol 106(2): p32-37. 

Eremina, V., S. Cui, et al. (2006). "Vascular endothelial growth factor a signaling in the 

podocyte-endothelial compartment is required for mesangial cell migration and 

survival." J Am Soc Nephrol 17(3): 724-735. 

Eremina, V., M. Sood, et al. (2003). "Glomerular-specific alterations of VEGF-A 

expression lead to distinct congenital and acquired renal diseases." J Clin Invest 

111(5): 707-716. 

Falk, M., K. Salmivirta, et al. (1996). "Integrin alpha 6B beta 1 is involved in kidney 

tubulogenesis in vitro." J Cell Sci 109 ( Pt 12): 2801-2810. 

Fassler, R. and M. Meyer (1995). "Consequences of lack of beta 1 integrin gene 

expression in mice." Genes Dev 9(15): 1896-1908. 

Feral, C. C., N. Nishiya, et al. (2005). "CD98hc (SLC3A2) mediates integrin signaling." 

Proc Natl Acad Sci U S A 102(2): 355-360. 

Foster, R. R. (2009). "The importance of cellular VEGF bioactivity in the development of 

glomerular disease." Nephron Exp Nephrol 113(1): e8-e15. 

Genersch, E., M. Ferletta, et al. (2003). "Integrin alphavbeta3 binding to human alpha5-

laminins facilitates FGF-2- and VEGF-induced proliferation of human ECV304 

carcinoma cells." Eur J Cell Biol 82(3): 105-117. 

Georges-Labouesse, E., N. Messaddeq, et al. (1996). "Absence of integrin alpha 6 leads 

to epidermolysis bullosa and neonatal death in mice." Nat Genet 13(3): 370-373. 

Ginsberg, M. H., A. Partridge, et al. (2005). "Integrin regulation." Curr Opin Cell Biol 

17(5): 509-516. 

Goel, H. L., M. Breen, et al. (2005). "beta1A integrin expression is required for type 1 

insulin-like growth factor receptor mitogenic and transforming activities and 

localization to focal contacts." Cancer Res 65(15): 6692-6700. 

Goel, H. L., L. Moro, et al. (2006). "Beta1 integrins modulate cell adhesion by regulating 

insulin-like growth factor-II levels in the microenvironment." Cancer Res 66(1): 

331-342. 

Haas, C. S., K. Amann, et al. (2003). "Glomerular and renal vascular structural changes 

in alpha8 integrin-deficient mice." J Am Soc Nephrol 14(9): 2288-2296. 



 85 

Hartner, A., N. Cordasic, et al. (2002). "The alpha8 integrin chain affords mechanical 

stability to the glomerular capillary tuft in hypertensive glomerular disease." Am J 

Pathol 160(3): 861-867. 

Hemler, M. E., C. Crouse, et al. (1989). "Association of the VLA alpha 6 subunit with a 

novel protein. A possible alternative to the common VLA beta 1 subunit on 

certain cell lines." J Biol Chem 264(11): 6529-6535. 

Holzman, L. B., P. L. St John, et al. (1999). "Nephrin localizes to the slit pore of the 

glomerular epithelial cell." Kidney Int 56(4): 1481-1491. 

Humphries, J. D., A. Byron, et al. (2006). "Integrin ligands at a glance." J Cell Sci 119(Pt 

19): 3901-3903. 

Husted, R. F., M. Hayashi, et al. (1988). "Characteristics of papillary collecting duct cells 

in primary culture." Am J Physiol 255(6 Pt 2): F1160-1169. 

Hynes, R. (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 

673-687. 

Hynes, R. O. (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 

673-687. 

Ivaska, J., H. Reunanen, et al. (1999). "Integrin alpha2beta1 mediates isoform-specific 

activation of p38 and upregulation of collagen gene transcription by a mechanism 

involving the alpha2 cytoplasmic tail." J Cell Biol 147(2): 401-416. 

Jarad, G. and J. H. Miner (2009). "Update on the glomerular filtration barrier." Curr Opin 

Nephrol Hypertens 18(3): 226-232. 

Karihaloo, A., C. Nickel, et al. (2005). "Signals which build a tubule." Nephron Exp 

Nephrol 100(1): e40-45. 

Kim, D. and G. R. Dressler (2007). "PTEN modulates GDNF/RET mediated chemotaxis 

and branching morphogenesis in the developing kidney." Dev Biol 307(2): 290-

299. 

Klinowska, T. C., C. M. Alexander, et al. (2001). "Epithelial development and 

differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 

integrin subunits." Dev Biol 233(2): 449-467. 

Klint, P., S. Kanda, et al. (1999). "Contribution of Src and Ras pathways in FGF-2 

induced endothelial cell differentiation." Oncogene 18(22): 3354-3364. 

Korhonen, M., J. Ylanne, et al. (1990). "The alpha 1-alpha 6 subunits of integrins are 

characteristically expressed in distinct segments of developing and adult human 

nephron." J Cell Biol 111(3): 1245-1254. 

Kreidberg, J. A. (2000). "Functions of alpha3beta1 integrin." Curr Opin Cell Biol 12(5): 

548-553. 

Kreidberg, J. A., M. J. Donovan, et al. (1996). "Alpha 3 beta 1 integrin has a crucial role 

in kidney and lung organogenesis." Development 122(11): 3537-3547. 

Kreidberg, J. A. and J. M. Symons (2000). "Integrins in kidney development, function, 

and disease." Am J Physiol Renal Physiol 279(2): F233-242. 

Kreidberg, J. A. and J. M. Symons (2000). "Integrins in kidney development, function, 

and disease." Am J Physiol Renal Physiol 279(2): F233-242. 

Kriz, W. (2002). "Podocyte is the major culprit accounting for the progression of chronic 

renal disease." Microsc Res Tech 57(4): 189-195. 



 86 

Legate, K. R. and R. Fassler (2009). "Mechanisms that regulate adaptor binding to beta-

integrin cytoplasmic tails." J Cell Sci 122(Pt 2): 187-198. 

Legate, K. R., S. A. Wickstrom, et al. (2009). "Genetic and cell biological analysis of 

integrin outside-in signaling." Genes Dev 23(4): 397-418. 

Lindahl, P., M. Hellstrom, et al. (1998). "Paracrine PDGF-B/PDGF-Rbeta signaling 

controls mesangial cell development in kidney glomeruli." Development 125(17): 

3313-3322. 

Linton, J. M., G. R. Martin, et al. (2007). "The ECM protein nephronectin promotes 

kidney development via integrin alpha8beta1-mediated stimulation of Gdnf 

expression." Development 134(13): 2501-2509. 

Liu, Y., N. Chattopadhyay, et al. (2009). "Coordinate integrin and c-Met signaling 

regulate Wnt gene expression during epithelial morphogenesis." Development 

136(5): 843-853. 

Merkel, C. E., C. M. Karner, et al. (2007). "Molecular regulation of kidney development: 

is the answer blowing in the Wnt?" Pediatr Nephrol 22(11): 1825-1838. 

Miner, J. H. (1999). "Renal basement membrane components." Kidney Int 56(6): 2016-

2024. 

Miner, J. H. (2005). "Building the glomerulus: a matricentric view." J Am Soc Nephrol 

16(4): 857-861. 

Miner, J. H. and C. Li (2000). "Defective glomerulogenesis in the absence of laminin 

alpha5 demonstrates a developmental role for the kidney glomerular basement 

membrane." Dev Biol 217(2): 278-289. 

Miner, J. H., B. L. Patton, et al. (1997). "The laminin alpha chains: expression, 

developmental transitions, and chromosomal locations of alpha1-5, identification 

of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform." J Cell 

Biol 137(3): 685-701. 

Miner, J. H. and J. R. Sanes (1994). "Collagen IV alpha 3, alpha 4, and alpha 5 chains in 

rodent basal laminae: sequence, distribution, association with laminins, and 

developmental switches." J Cell Biol 127(3): 879-891. 

Miner, J. H. and J. R. Sanes (1996). "Molecular and functional defects in kidneys of mice 

lacking collagen alpha 3(IV): implications for Alport syndrome." J Cell Biol 

135(5): 1403-1413. 

Moeller, M. J., S. K. Sanden, et al. (2003). "Podocyte-specific expression of cre 

recombinase in transgenic mice." Genesis 35(1): 39-42. 

Moeller, M. J., S. K. Sanden, et al. (2003). "Podocyte-specific expression of cre 

recombinase in transgenic mice." Genesis 35(1): 39-42. 

Moro, L., L. Dolce, et al. (2002). "Integrin-induced epidermal growth factor (EGF) 

receptor activation requires c-Src and p130Cas and leads to phosphorylation of 

specific EGF receptor tyrosines." J Biol Chem 277(11): 9405-9414. 

Moser, M., K. R. Legate, et al. (2009). "The tail of integrins, talin, and kindlins." Science 

324(5929): 895-899. 

Muller, U. and A. W. Brandli (1999). "Cell adhesion molecules and extracellular-matrix 

constituents in kidney development and disease." J Cell Sci 112 ( Pt 22): 3855-

3867. 



 87 

Muller, U., D. Wang, et al. (1997). "Integrin alpha8beta1 is critically important for 

epithelial-mesenchymal interactions during kidney morphogenesis." Cell 88(5): 

603-613. 

Murakami, H., T. Iwashita, et al. (1999). "Rho-dependent and -independent tyrosine 

phosphorylation of focal adhesion kinase, paxillin and p130Cas mediated by Ret 

kinase." Oncogene 18(11): 1975-1982. 

Naylor, M. J., N. Li, et al. (2005). "Ablation of beta1 integrin in mammary epithelium 

reveals a key role for integrin in glandular morphogenesis and differentiation." J 

Cell Biol 171(4): 717-728. 

Noakes, P. G., J. H. Miner, et al. (1995). "The renal glomerulus of mice lacking s-

laminin/laminin beta 2: nephrosis despite molecular compensation by laminin 

beta 1." Nat Genet 10(4): 400-406. 

Nurmi, S. M., M. Autero, et al. (2007). "Phosphorylation of the LFA-1 integrin beta2-

chain on Thr-758 leads to adhesion, Rac-1/Cdc42 activation, and stimulation of 

CD69 expression in human T cells." J Biol Chem 282(2): 968-975. 

Ohuchi, H., Y. Hori, et al. (2000). "FGF10 acts as a major ligand for FGF receptor 2 IIIb 

in mouse multi-organ development." Biochem Biophys Res Commun 277(3): 

643-649. 

Orellana, S. A. and E. D. Avner (1998). "Cell and molecular biology of kidney 

development." Semin Nephrol 18(3): 233-243. 

Ouvrard-Pascaud, A., S. Puttini, et al. (2004). "Conditional gene expression in renal 

collecting duct epithelial cells: use of the inducible Cre-lox system." Am J Physiol 

Renal Physiol 286(1): F180-187. 

Pachnis, V., B. Mankoo, et al. (1993). "Expression of the c-ret proto-oncogene during 

mouse embryogenesis." Development 119(4): 1005-1017. 

Pohl, M., R. O. Stuart, et al. (2000). "Branching morphogenesis during kidney 

development." Annu Rev Physiol 62: 595-620. 

Pozzi, A. and R. Zent (2003). "Integrins: sensors of extracellular matrix and modulators 

of cell function." Nephron Exp Nephrol 94(3): e77-84. 

Qiao, J., R. Uzzo, et al. (1999). "FGF-7 modulates ureteric bud growth and nephron 

number in the developing kidney." Development 126(3): 547-554. 

Raghavan, S., C. Bauer, et al. (2000). "Conditional ablation of beta1 integrin in skin. 

Severe defects in epidermal proliferation, basement membrane formation, and 

hair follicle invagination." J Cell Biol 150(5): 1149-1160. 

Raghavan, S., C. Bauer, et al. (2000). "Conditional ablation of beta1 integrin in skin. 

Severe defects in epidermal proliferation, basement membrane formation, and 

hair follicle invagination." J Cell Biol 150(5): 1149-1160. 

Rahilly, M. A. and S. Fleming (1992). "Differential expression of integrin alpha chains 

by renal epithelial cells." J Pathol 167(3): 327-334. 

Ratto, E., G. Leoncini, et al. (2006). "Microalbuminuria and cardiovascular risk 

assessment in primary hypertension: should threshold levels be revised?" Am J 

Hypertens 19(7): 728-734; discussion 735-726. 

Reginato, M. J., K. R. Mills, et al. (2003). "Integrins and EGFR coordinately regulate the 

pro-apoptotic protein Bim to prevent anoikis." Nat Cell Biol 5(8): 733-740. 



 88 

Reidy, K. J. and N. D. Rosenblum (2009). "Cell and molecular biology of kidney 

development." Semin Nephrol 29(4): 321-337. 

Remuzzi, G. (1995). "Abnormal protein traffic through the glomerular barrier induces 

proximal tubular cell dysfunction and causes renal injury." Curr Opin Nephrol 

Hypertens 4(4): 339-342. 

Roselli, S., O. Gribouval, et al. (2002). "Podocin localizes in the kidney to the slit 

diaphragm area." Am J Pathol 160(1): 131-139. 

Sachs, N., M. Kreft, et al. (2006). "Kidney failure in mice lacking the tetraspanin 

CD151." J Cell Biol 175(1): 33-39. 

Sariola, H. and M. Saarma (1999). "GDNF and its receptors in the regulation of the 

ureteric branching." Int J Dev Biol 43(5): 413-418. 

Schwartz, M. A. and R. K. Assoian (2001). "Integrins and cell proliferation: regulation of 

cyclin-dependent kinases via cytoplasmic signaling pathways." J Cell Sci 114(Pt 

14): 2553-2560. 

Schwartz, M. A. and M. H. Ginsberg (2002). "Networks and crosstalk: integrin signalling 

spreads." Nat Cell Biol 4(4): E65-68. 

Schwartz, M. A. and M. H. Ginsberg (2002). "Networks and crosstalk: integrin signalling 

spreads." Nat Cell Biol 4(4): E65-68. 

Shakya, R., T. Watanabe, et al. (2005). "The role of GDNF/Ret signaling in ureteric bud 

cell fate and branching morphogenesis." Dev Cell 8(1): 65-74. 

Shi, X., H. Qu, et al. (2008). "Roles of PINCH-2 in regulation of glomerular cell shape 

change and fibronectin matrix deposition." Am J Physiol Renal Physiol 295(1): 

F253-263. 

Shih, N. Y., J. Li, et al. (1999). "Congenital nephrotic syndrome in mice lacking CD2-

associated protein." Science 286(5438): 312-315. 

Shimaoka, M., J. Takagi, et al. (2002). "Conformational regulation of integrin structure 

and function." Annu Rev Biophys Biomol Struct 31: 485-516. 

Slack-Davis, J. K., S. T. Eblen, et al. (2003). "PAK1 phosphorylation of MEK1 regulates 

fibronectin-stimulated MAPK activation." J Cell Biol 162(2): 281-291. 

Somanath, P. R., N. L. Malinin, et al. (2009). "Cooperation between integrin alphavbeta3 

and VEGFR2 in angiogenesis." Angiogenesis 12(2): 177-185. 

St John, P. L. and D. R. Abrahamson (2001). "Glomerular endothelial cells and 

podocytes jointly synthesize laminin-1 and -11 chains." Kidney Int 60(3): 1037-

1046. 

Streuli, C. H. and N. Akhtar (2009). "Signal co-operation between integrins and other 

receptor systems." Biochem J 418(3): 491-506. 

Stricklett, P. K., R. D. Nelson, et al. (1999). "The Cre/loxP system and gene targeting in 

the kidney." Am J Physiol 276(5 Pt 2): F651-657. 

Sulikowska, B. and J. Manitius (2007). "[Proteinuria as a predictor of risk of 

cardiovascular disease: a new insight]." Pol Arch Med Wewn 117(9): 411-414. 

Taddei, I., M. A. Deugnier, et al. (2008). "Beta1 integrin deletion from the basal 

compartment of the mammary epithelium affects stem cells." Nat Cell Biol 10(6): 

716-722. 



 89 

Takala, H., E. Nurminen, et al. (2008). "Beta2 integrin phosphorylation on Thr758 acts as 

a molecular switch to regulate 14-3-3 and filamin binding." Blood 112(5): 1853-

1862. 

Tang, M. J., Y. Cai, et al. (2002). "Ureteric bud outgrowth in response to RET activation 

is mediated by phosphatidylinositol 3-kinase." Dev Biol 243(1): 128-136. 

Wellik, D. M., P. J. Hawkes, et al. (2002). "Hox11 paralogous genes are essential for 

metanephric kidney induction." Genes Dev 16(11): 1423-1432. 

Wharram, B. L., M. Goyal, et al. (2005). "Podocyte depletion causes glomerulosclerosis: 

diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria 

toxin receptor transgene." J Am Soc Nephrol 16(10): 2941-2952. 

Wilm, B., R. G. James, et al. (2004). "The forkhead genes, Foxc1 and Foxc2, regulate 

paraxial versus intermediate mesoderm cell fate." Dev Biol 271(1): 176-189. 

Wu, W., S. Kitamura, et al. (2009). "Beta1-integrin is required for kidney collecting duct 

morphogenesis and maintenance of renal function." Am J Physiol Renal Physiol 

297(1): F210-217. 

Xu, P. X., J. Adams, et al. (1999). "Eya1-deficient mice lack ears and kidneys and show 

abnormal apoptosis of organ primordia." Nat Genet 23(1): 113-117. 

Yu, X., S. Miyamoto, et al. (2000). "Integrin alpha 2 beta 1-dependent EGF receptor 

activation at cell-cell contact sites." J Cell Sci 113 ( Pt 12): 2139-2147. 

Zaidel-Bar, R., S. Itzkovitz, et al. (2007). "Functional atlas of the integrin adhesome." 

Nat Cell Biol 9(8): 858-867. 

Zent, R., K. T. Bush, et al. (2001). "Involvement of laminin binding integrins and 

laminin-5 in branching morphogenesis of the ureteric bud during kidney 

development." Dev Biol 238(2): 289-302. 

Zhang, H., A. Zhang, et al. (2005). "Collecting duct-specific deletion of peroxisome 

proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid 

retention." Proc Natl Acad Sci U S A 102(26): 9406-9411. 

Zhao, H., H. Kegg, et al. (2004). "Role of fibroblast growth factor receptors 1 and 2 in 

the ureteric bud." Dev Biol 276(2): 403-415. 

Zheng, D. Q., A. S. Woodard, et al. (2000). "Substrate specificity of alpha(v)beta(3) 

integrin-mediated cell migration and phosphatidylinositol 3-kinase/AKT pathway 

activation." J Biol Chem 275(32): 24565-24574. 

 

 


