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CHAPTER I 

 

3-ALKYLPIPERIDINES: ISOLATION, BIOSYNTHESIS, & SYNTHESES 

 

Introduction to Marine Secondary Metabolites 

  Marine organisms produce a fascinating array of structurally novel secondary 

metabolites.1  These compounds are presumed to have no direct relationship to the 

organism’s normal function, although many scientists believe these metabolites may play 

a significant role in the life of the producing species, despite lack of any evidence related 

to actual function.2  An important source of marine secondary metabolites are sponges.  

Sponges are aquatic animals that occur in all oceans and have a wide distribution from 

tropical to temperate to arctic regions.  They occasionally develop symbiotic relationship 

with both algae and bacteria, and quite often contain many complex chemicals that have 

potential medicinal value. Because of their prevalence, ease of collection, and ability to 

produce a variety of natural product structural classes, sponges have become one of the 

dominant sources of biologically active marine natural products.2 

   One important class of secondary metabolites isolated from marine sponges is 

the alkaloid group, one of the largest classes of natural products.  There is some variation 

in the definition of alkaloids; however, they are generally known to be plant-derived 

compounds that are physiologically active, contain at least one basic nitrogen in a 

heterocyclic ring, have complex structure, and are often of limited distribution in natural 

sources.3  There has been a great deal of biological, chemical, and pharmacological 

interest in naturally occurring alkaloids worldwide.  This diverse group of secondary 



2 

 

metabolites has been classified into smaller sub-groups based upon their biogenetic 

origin.3   One unique group of alkaloids is believed to share a common biogenetic 

pathway starting from various bis-pyridine macrocycles.4,6 Many of these alkaloids 

possess significant biological activity including antimicrobial, antiviral, cytotoxic, and 

protein kinase inhibition.4  These alkaloids have been isolated from marine invertebrates, 

particularly from sponges and tunicate, and a majority are composed of 3-alkylpyridines 

or reduced 3-alkylpiperidine units.4  Furthermore, these alkaloids can be categorized by 

increasing molecular complexity with incorporation of tricyclic, tetracyclic, and 

pentacyclic motifs among other relatives4.  Collectively this group of natural products is 

referred to as 3-alkylpiperidine alkaloids with representative examples shown in Figure 1. 

  

 

 

Figure 1.  Representatives of 3-Alkylpiperidine Marine Alkaloids. 
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Proposed Biosynthetic Pathways 

 

Manzamine A (1.3) and B (1.8) 

  In 1986 Higa and co-workers isolated the structurally unprecedented cytotoxic 

alkaloid manzamine A (1.3), as a hydrochloride salt, from the marine sponge Haliclona 

sp. while searching for bioactive natural products in the Okinawan waters off the coast of 

Japan.5  This complicated pentacyclic alkaloid consisting of 5-, two 6-, 8-, and 13- 

membered rings, apart from the β-carboline substituent, elicited the statement, “… its 

provenance is problematical as there appears to be no obvious biogenic path.”5  This 

prompted Baldwin and Whitehead to propose a bis-dihydropyridine macrocycle (1.9)  as 

a biosynthetic precursor to manzamines A (1.3) and B (1.8) (Scheme 1).6,7  Their 

insightful proposal not only revealed a “hidden symmetry” not previously recognized in 

the complex manzamine alkaloids, but provided a key to defining biosynthetic pathways 

to a number of structurally diverse alkaloids (Figure 1).6  The following discussion will 

focus on Baldwin and Whitehead’s hypothesis, with experimental evidence to follow. 

 

 

 

Scheme 1.  Bis-dihydropyridine Precursor (1.9) to Manzamine B (1.8). 
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Scheme 2.  Baldwin’s Proposed Biosynthesis of Manzamine B (1.8). 

 

The biosynthesis of manzamine B (1.8) is proposed to start from the 

condensation/reduction of two equivalents of acrolein with two dialdehyde units and two 



5 

 

equivalents of ammonia.6  After protonation of one of the dihyropyridine units (1.10), an 

intramolecular Diels-Alder cycloaddition proceeds to pentacyclic iminium salt 1.11 with 

the relative stereochemistry and connectivity from the expected endo cycloaddition.  

Redox exchange between the two piperidine rings leads to a new imimium salt 1.12.  

Hydrolytic ring cleavage then leads to aldehyde 1.13, which condensation with β-

carboline provides 1.14.  Selective oxidation of 1.14 at the trisubstituted olefin yields 

manzamine B (1.8).  Manzamine B (1.8) is proposed to be converted to manzamine A 

(1.3) by an isomerization and allylic oxidation leading to ring closure and formation of 

the 8-membered ring (Scheme 3).6   

 

 

 

Scheme 3.   Baldwin’s Proposed Biosynthesis of Manzamine A (1.3). 

 

Ircinal A (1.17) and B (1.18) / Ircinol A (1.19) and B (1.20) 

Two additional alkaloids isolated from Okinawan waters in 1992 by Kobayashi 

and co-workers are ircinal A (1.17) and B (1.18).8  Interestingly, the structures of ircinal 

A and B are very similar to the tetracyclic aldehyde (1.13) proposed earlier by Baldwin.  

Ircinal A was indeed converted to manzamine A through a Pictet-Spengler cyclization 
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with tryptamine by Kobayashi.8  These two cytotoxic alkaloids were the first supportive 

evidence for the Baldwin proposal.6,8  Ircinol A (1.19) and B (1.20) were actually found 

to be antipodal to ircinal A (1.17) and B (1.18).9  This poses some interesting questions 

about the nature of the [4+2] cycloaddition reaction and subsequent transformations 

presented in Baldwin’s biosynthetic hypothesis.  Potentially, the cycloaddition leads to a 

racemic cycloadduct (1.21) that undergoes an enzyme-mediated kinetic resolution to 

provide ircinol A/B and ircinal A/B (Scheme 4).9   

 

 

 

Scheme 4.  Biosynthetic Rational of Ircinols A/B (1.19/1.20) / Ircinals A/B (1.17/1.18). 
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Marazano’s Modification of Baldwin’s Proposal 

  Marazano and co-workers have proposed an alternative to the Baldwin and 

Whitehead manzamine biosynthetic proposal.10  They believe that intermediates that are 

more flexible than bis-dihydropyridine macrocycle (1.9) are the biogenetic precursors to 

manzamine and related alkaloids.  Their hypothesis suggests 5-amino-2,4-pentadienal 

derivatives lead to the production of pyridinium salts (c.f. 1.1).  In this way they propose 

to arrive at key macrocycle 1.22 by substituting malondialdehyde for acrolein in the 

condensation step with ammonia and an appropriate dialdehyde.  This pathway would 

then lead to a direct cyclization of 1.22 to give 1.23 followed by reduction and 

cyclization of the imine functionality to produce enamine 1.24 (Scheme 5).10 

 

 

 

Scheme 5.  Marazano’s Modification of Baldwin’s Approach. 
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Proposed Biosynthesis of Related Alkaloids 

  The original proposal put forth by Baldwin and Whitehead has lead to 

biosynthetic proposals accounting for many related 3-alkylpiperidines.  Manzamine C 

(1.25)7, keramamine C (1.26), and keramiphidin C (1.27)11 could also be products of a 

condensation between a dialdehyde, acrolein, and ammonia.  This was indeed proposed 

by Baldwin and Whitehead for manzamine C (Scheme 6).6  After the isolation of 

keramiphidin C (1.27) and keramamine C (1.26) by Kobayashi and co-workers, they 

produced a modified biosynthetic approach as well.  Kobayashi proposes a coupling of a 

dialdehyde unit with ammonia to construct keramiphidin C (1.27).  After condensation 

with acrolein, a Pictet-Spengler type cyclization with tryptamine, keramiphidin C (1.27) 

can account for the biosynthesis keramamine C (1.26).11   Further oxidation of 1.26 leads 

to manzamine C (1.25).  Notably, the Kobayashi group isolated tryptamine from the same 

sponge that produced keramiphidin C (1.25) and keramamine C (1.26).11 

 

 

 

Scheme 6.  Proposal of Keramamine C, Keramiphidin C, and Manzamine C (1.25-1.27). 

 

  Most natural products derived from 3-alkylpyridines do not have an obvious 

relationship to the manzamines at first glance.  However, the haliclamines12 and the 
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cyclostellettamines A-F13 not only have a clear relationship, but represent the building 

blocks of this sub-group of natural products according to the Baldwin hypothesis.  By 

varying the chain length in the dialdehydes that are reductively coupled with two units of 

acrolein and two equivalents of ammonia, followed by partial reduction of the 

dihydropyridine moieties leads to haliclamine B (1.28).  Further reduction of the cis 

double bond produces haliclamine A (1.29).  Then an oxidation of the dihydropyridine 

units would yield the cyclostellettamines A-F (1.30-1.35).  Additionaly, Berlinck and co-

workers have isolated cyclostellettamines G-I, K, and L.14  
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Scheme 7.  Haliclamines (1.28 and 1.29) and Cyclostellettamines (1.30-1.35). 
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Keramaphidin B (1.36)15, ingenamines16,17, inagamines16,17, and the 

xestocyclamines18,19 are another class of pentacyclic 3-alkylpiperidines that have a close 

resemblance to the proposed Diels-Alder cycloadduct of Baldwin (Figure 2).  Likewise, 

these compounds would arrive from an intramolecular cycloaddition reaction of a 

reduced bis-dihydropyridine macrocycle with varying alkyl chain lengths and degrees of 

unsaturation.  Keramaphidin B (1.36)15 is structurally identical to the reduced form of the 

proposed cycloadduct (1.11) in the Baldwin hypothesis.  In fact, this class of alkaloids 

was anticipated by Baldwin and Whitehead in their proposal.6  Crews and co-workers 

found that xestocyclamine A and B19 were inhibitors of protein kinase C. 
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Figure 2.  Keramaphidin B (1.36) and Ingenamines A-D (1.37 – 1.40). 

 

Closer examination of the ingamines20 and ingenamines17 reveals some 

ambiguities in the nature of the proposed Diels-Alder cycloaddition.  Ingamine A (1.41) 

and B (1.42)20 and ingenamine E (1.43)17 and F (1.44)17 appear to arise from the same 
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bis-dihydropyridine macrocycle (1.45).   Ingamine A (1.41) and B (1.42)20 are formed by 

a reduced ring B acting as the diene and a reduced ring A as the dienophile in the 

cycloaddition.  However, ingenamine E (1.43) and F (1.44)17 are formed by ring A acting 

as the diene and ring B as the dienophile (Scheme 8).  This observation, along with the 

ircinals and ircinols rationale (Scheme 4), suggest multiple products can be formed.  The 

ingenamines have been found to be antipodal to manzamine A (1.3) and B (1.8).   

 

 

 

Scheme 8.  Cycloaddition of the Ingamines (1.41, 1.42) and Ingenamines (1.43, 1.44). 

 

 The petrosins21, aragupetrosines22, araguspongines23-25, and xestospongins24,26,27 

are another class of 3-alkylpiperidines that derive from oxidation of the alkyl portion of a 

hypothetical bis-dihydropyridine macrocycle.  Beginning from common precursor 

iminium salt (1.46), oxidation of both alkyl chains leads to diketone (1.47) (Scheme 9).  

Petrosin A (1.48)20 is then produced by rotation of the alkyl chains, followed by two 

Mannich cyclizations, and methylation.  Methylation and Mannich cyclizations with both 

oxygen and carbon acting as the nucleophile lead to aragupetrosine A (1.49).22  Rotation 

of the alkyl chains of 1.46, followed by nucleophilic attack by oxygen yields (+)-
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xestospongin A (1.50).25  Cyclization and methylation would produce (+)-araguspongine 

H (1.51) (Scheme 9).22 

 

 

 

Scheme 9.  Hypothetical Biosynthesis of Petrosin A (1.48), (+)-Araguspetrosine A 

(1.49), (+)-Araguspongine H (1.51), and (+)-Xestospongin A (1.50). 
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The madangamines28,29 are pentacyclic alkaloids presumably derived from bis-

dihydropyridine macrocycles similar to those in the ingenamine biosynthesis.  The 

proposed biosynthesis for madangamine A is shown below (Scheme 10).  Cycloaddition 

of ingenamine like precursor 1.52 yields diamine 1.53.  Allylic activation, followed by 

fragmentation provides tetracyclic iminium intermediate 1.55.  Redox exchange and 

Mannich like trapping of the iminium salt, followed by oxidation provides madangamine 

A (1.6).27 All the madangamines have identical N-1 to C-3 bridges, but vary in 

unsaturation within the N-7 to C-9 bridge.  Kong and Anderson have suggested that the 

enzyme(s) catalyzing this rearrangement may have a specific requirement for a particular 

functionality and chain length.28  

 
 

 

 

Scheme 10.  Hypothetical Biosynthesis of Madangamine A (1.6). 
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 Another class of structurally impressive pentacyclic alkaloids is the sarains.30-32  

Cimino and co-workers were able to produce a crystal of an acetate derivative of sarain A 

(1.5) suitable for X-ray analysis to unambiguously assign its structure.  The biosynthesis 

begins with formation of a 3, 4-linked bis-macrocycle (1.58), reduction of iminium salt 

and olefin activation of 1.59, followed by Mannich-like reaction gives 1.61.  Hydrolysis, 

followed by nucleophilic attack by the nitrogen and dihydroxylation yields sarain A (1.5).     
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Scheme 11.  Hypothetical Biosynthesis of Sarain A (1.5). 
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 Sarain -130 is another pentacyclic alkaloid which presumably arises from a 3, 4-

linked bis-piperidine precursor.  Starting from the iminium salt of the 3, 4-linked bis-

piperidine (1.63), oxidation at the γ-position of the macrocycle leads to ketone (1.64).  

Intramolecular Mannich cyclization of ketone 1.64 yields sarain-1 (1.65).31   

 

 

 

Scheme 12.  Hypothetical Biosynthesis of Sarain-1 (1.65). 

 

A majority of natural products derived from 3-alkylpyridines comprise the 

pentacyclic alkaloids described above.  Another growing class of biologically active 

compounds derived from 3-alkylpyridines is the tetracyclic alkaloids, which features a 

3,4-linked bis-piperidine core attached to two macrocycles.33-37  In 1994 Crews and co-

workers isolated halicyclamine A(1.68)33 from the marine sponge Haliclona sp which has 

recently been evaluated as a lead for the discovery of new anti-tuberculosis agents.38  The 

hypothetical biosynthesis of halicyclamine A (1.68) is outlined in Scheme 13.  

Fragmentation of the keramaphindin and ingenamine-like precursor leads to iminium salt 

1.67.  Reduction of the iminium species and the enamine produces halicyclamine A 

(1.68).  It is easy to see how these tetracyclic compounds are related to their pentacyclic 
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relatives. Iminium salt 1.67 is almost identical to intermediate 1.58 in the propsed 

biosynthesis of sarain A (1.5).         

 

 

 

Scheme 13.  Hypothetical Biosynthesis of Halicyclamine A (1.68). 

 

In Vivo Evidence for Biosynthetic Proposals 

 The natural products discussed above in the proposed biosynthetic pathways 

section are clearly related based on a common biosynthetic precursor, the 3-alkylpyridine 

moiety.  Although the number of natural products isolated within this class of alkaloids 

supports the logical hypothesis by Baldwin and Whitehead, there has been no in vivo 

evidence in support of their proposal to date.  Therefore, a key issue that has to be 

address is the origin of the 3-alklypyridines.  Baldwin and Whitehead have proposed a 

condensation of a C-3 (acrolein) and a C-10 (an unsaturated dialdehyde) with an 

equivalent of ammonia.  Marazano has altered this proposal using malonaldehyde in 

place of acrolein. 

 In 2003 Fontana and co-workers described the only in vivo evidence to date 

concerning the origin of 3-alkylpyridines.39,40  By conducting feeding studies, they have 
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been able to elucidate a polyketide biosynthetic pathway leading to haminol-2 (1.69).  

Haminol -2 (1.69) is a 3-alkylpyridine alkaloid isolated from the Meditteranean mollusc 

Haminoea orbignyana.  Fontana and co-workers were able to feed the mollusc Haminoea 

orbignyana with radio-labelled [2-14C]-acetic acid and nicotinic acid-carboxy-14C.  After 

injection of the labeled precursors they detected significant levels of radioactivity in the 

isolated haminol-2 (1.69).  They also administered to the mollusc d4-nicotinic acid ethyl 

ester or [1-13C] acetic acid.  After multiple feeding experiments, they proved the origin of 

haminol-2 (1.69) via a polyketide synthase (PKS) using nicotinic acid (1.70) as a starter 

unit and six molecules of acetate as extender units.   Loss of the terminal carbon of the 

PKS-emerging chain (1.71), presumably due to a post-PKS decarboxylation, provides the 

skeleton (1.72) of haminol-2 (1.69) (Scheme 14).39  This discovery proves that haminols 

are produced in the mollusc Haminoea orbignyana by a PKS (polyketide synthase) 

pathway.40   

 

 

 

Scheme 14.  Proposed Biosynthesis of Haminol-2 (1.69). 
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 Fontana’s experiments rule out other hypotheses about the origin of 3-

alkylpyridines.  This experimental work does not however, discount the subsequent 

biosynthetic steps in which complex natural products arise from 3-alkylpyridines.  

Recognizing that a nicotinic acid moiety serves as the biosynthetic precursor a 

biosynthesis of haliclonacyclamine C (1.4)36 is shown below (Scheme 15). Starting form 

nicotinic acid (1.70), the bis-dihyropyridine intermediate (1.73) would now arrive by 

acetate or malonate acting as extender intermediates, followed by a decarboxylation step.  

Once the key intermediate is formed, the Diels-Alder cyclization leads to 1.75 which 

after fragmentation and reduction yields haliclonacyclamine C (1.4). 
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Scheme 15.  Proposed Biosynthesis of Haliclonacyclamine C (1.4).  
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Biomimetic Approaches 

 

Baldwin’s Biomimetic Studies 

 One area of interest to Baldwin and co-workers is applying their proposed 

biosynthesis to a biomimetic approach towards various 3-alkylpiperidines.  Their initial 

work involved a model study on the proposed [4+2] cyclization to obtain the core of 

keramiphidin B (1.36).41,42  They began the study by treating 3-methylpyridine with 

bromoethane in acetone, followed by sodium borohydride reduction, and oxidation with 

m-CPBA provided N-oxide 1.77 (Scheme 16).  Reaction of 1.77 with trifluoroacetic 

anhydride gave dihyropyridinium salt 1.78.  Treatment of 1.78 with TRIS/HCl buffer (pH 

8.3), followed by sodium borohydride reduction produced tetrahydropyridine 1.79, as 

well as a minor amount of the desired tricycle 1.80 (10% yield from 1.78).  Oxidation 

with m-CPBA provided N-oxide 1.81. (Scheme 16).41,42   

 

 

 

Scheme 16.  Baldwin’s Biomimetic Model Study. 
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Baldwin’s next report involved the installation of the necessary alkyl chains with 

terminal olefins to obtain a more functionalized core of keramaphidin B (1.36) which 

would allow for further progress toward keramaphidin.41-43  Their synthesis started with 

reaction of 6-iodohex-1-ene with 3-pyridinepropanol (1.82) to give pyridinium salt 1.84 

(Scheme 17).  Sodium borohydride reduction followed by oxidation and subsequent 

Wittig olefination gave tetrahydropyridine 1.86.  Formation of the N-oxide using m-

CPBA, followed by treatment with trifluoroacetic anhydride and in situ trapping of the 

iminium ion provided 1.88.   
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Scheme 17.  Baldwin’s Approach to the Tricyclic Core of Keramaphidin B (1.36). 
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Conversion of 1.88 to the dihydropyridinium salt 1.89 was accomplished by addition of 

AgOCOCF3.  The Diels-Alder cycloaddition of dihydropyridinium salt 1.89 was achieved 

by using a buffered (pH 8.3) solution of 1:1 ethanol/water at 23 °C for one hour.  The 

crude product was then treated with sodium borohydride to afford tetrahydropyridine 

1.90 as the major product and the desired tricycle 1.91 in 22% yield.  In addition, when 

tricycle 1.91 was treated with sodium borohydride at 23 °C “small quantities” of a 

structure tentatively assigned (1.92) resembling the 3,4-linked bis-piperidine core 

common to of halicyclamine A (1.68) was formed (Scheme 17).43,44 

 Armed with the evidence that the [4+2] cycloaddition reaction was indeed 

feasible, Baldwin and co-workers continued their study toward a biomimetic synthesis of 

keramaphidin B (1.36).44,45  One unanswered question that still remained was could the 

[4+2] cycloaddition be performed in a transannular fashion?45  To investigate this 

problem Baldwin and co-workers first oxidized 3-pyridinepropanol (1.83) under Swern 

conditions to aldehyde 1.93.  Wittig olefination of 1.93 afforded 3-alkylpyridine 1.94 

(Scheme 18).  After removal of the THP protecting group, the Oxford group found 

dimerization was optimal using an iodide leaving group.  Thus, the alcohol was converted 

to the iodide by treatment with triphenylphospine, iodine, and imidazaole.  Unfortunately, 

they found that the yield was inconsistent (56-90%) and upon concentration the product 

underwent polymerization.  Later it was determined conversion of the alcohol to the 

corresponding tosylate provided a product that underwent decomposition after extended 

storage.  The iodide could now be generated in situ by utilizing a 

Finkelstein/dimerization/macrocyclization reaction by slow addition of the derived 
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tosylate to a refluxing solution of sodium iodide in butan-2-one to yield bis-pyridinium 

macrocycle 1.95.   

 

 

 

Scheme 18.  Biomimetic Synthesis of Keramaphidin B (1.36). 

 

Sodium borohydride reduction of bis-pyridinium salt 1.95 provided bis-

tetrahydropyridine 1.96.  Treatment of 1.96 with two equivalents of m-CPBA followed 

by trifluoroacetic anhydride afforded the hypothetical manzamine biosynthetic precursor 
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1.97.  Extensive studies on the transannular Diels-Alder reaction of 1.97 to form 

keramaphidin B (1.36) were then conducted.  Baldwin found that using a 1 M aqueous 

solution of 1:1 TRIS/HCl (pH 7.3) and methanol, followed by reduction with sodium 

borohydride provide a very minor amount of keramaphidin B (1.36) that was detected 

after tedious HPLC purification.  The major product of the attempted [4+2] cycloaddition 

was reduced bis-tetrahydropyridine 1.96 (Scheme 18).45 

Due to the biomimetic synthesis of keramaphidin B (1.36) resulting in such a low 

yield, Baldwin and co-workers turned their attention to a semi-biomimetic approach.45  

Having optimized the biomimetic synthesis of the keramaphidin core (1.91) to 22% 

overall yield, they investigated a ring closing metathesis using both the Schrock 

molybdenum catalyst and Grubbs first generation ruthenium catalyst.  The Grubbs 

catalyst was found to give the best result providing mono-cyclized product 1.98 and 

keramaphidin B (1.36) in 1-2% yield (Scheme 19).45 

 

 

 

Scheme 19.  Semi-biomimetic Synthesis of Keramaphidin B (1.36). 
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Marazano’s Biomimetic Studies 

 The initial biomimetic experiments carried out by Marazano and co-workers are 

quite similar to the Baldwin approach.46,47  Marazano’s synthesis begins by treating 

dihydropyridinium salt 1.99 with NaOMe to afford tetrahydropyridine 1.100 (Scheme 

20).  Reaction with camphorsulfonic acid provided dihydropyridinium salt 1.101.  

Treatment of salt 1.101 with 0.6 equivalents of triethylamine in dichloromethane, 

followed by sodium borohydride reduction in isopropanol gave 1.102 in 40% yield, along 

with the tricycle core of keramaphindin (1.103) and the halicyclamine-type compound 

(1.104) in 25% and 7% yields, respectively.46,47   

 

 

 

Scheme 20.   Marazano’s Approach to the Tricyclic Core of Keramaphidin B (1.36). 
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 Marazano’s next approach focused on a semi-biomimetic entry to the bis-

dihydropyridine precursor.10  The synthesis began with lithiation of 3-picoline (1.105), 

followed by quenching with the alkyl bromide to yield pyridine 1.106 (Scheme 21).  

Removal of the protecting group followed by reactions with hydrobromic acid and 

sodium azide provided an intermediate azide, which was treated with triphenylphosphine 

to produce amine 1.107.  After Boc protection of the amine (1.108), the pyridine moiety 

was reacted with 1-chloro-2,4-dinitrobenzene to afford salt 1.109 in quantitative yield.  

The Boc protecting group was then removed with HCl and treatment with triethylamine 

was presumed to provide dimeric species 1.110  Refluxing salt 1.110 resulted in the 

formation of the symmetric bis-pyridinium dimer 1.111 in 43% yield (Scheme 21).10     

 

 

Scheme 21.  Marazano’s Synthesis of the Bis-pyridinium Intermediate. 
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 With a biomimetic approach to the key bis-pyridinium intermediate complete, 

Marazano was able to apply this chemistry to a synthesis of cyclostellettamine B (1.31) 

(Scheme 22).10  They extended the alkyl chains by altering the reactions above with 3-

picoline (1.105) to obtain a protected (1.112) and unprotected amine (1.113). Exposure of 

a mixture of 1.112 and 1.113 to refluxing n-BuOH afforded (1.114).  Treatment of 1.114 

and 1-chloro-2,4-dinitrobenzene with HCl afforded salt 1.115.  They subjected salt 1.115 

to triethylamine in refluxing n-BuOH to provide cyclostellattamine B (1.31) in 20-25% 

overall yield from 3-picoline (1.105) (Scheme 22).10  Marazano was also able to arrive at 

haliclamine A (1.28) in a similar fashion.48     

 

 

Scheme 22.  Marazano’s Synthesis of Cyclostellettamine B (1.31). 
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CHAPTER II 

 

SYNTHETIC APPROACHES AND TOTAL SYNTHESES OF 3-ALKYLPIPERIDINE 

ALKALOIDS 

 

Introduction 

 The number of natural products isolated containing 3-alkylpiperidines continues 

to grow.  The unique structures of these alkaloids along with the biological activity have 

stimulated a considerable amount of interest in the total synthesis of many of these 

compounds.  A number of elegant synthetic approaches have been developed by multiple 

investigators in order to develop new synthetic strategies and gain entry into this class of 

alkaloids.  Target structures have ranged from some of the simpler tricyclic bis-pyridine 

macrocycles to more complex structures such as the sarains and madangamines, 

culminating in a number of impressive synthetic routes.  This section will attempt to 

highlight some of the synthetic strategies toward the more complex 3-alkylpiperidines, 

beginning with the manzamine alkaloid, manzamine A (1.3). 

 

Synthetic Approaches Toward Manzamine A 

 

Winkler Total Synthesis of Manzamine A (1.3) 

 The total synthesis of manzamine A (1.3), along with ircinol A (1.19) and ircinal 

A (1.17), was accomplished by Winkler and co-workers in 1998.49,50  Their synthesis 
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involves a Pictet-Spengler reaction to convert ircinal A (1.17) to manzamine A (1.3).  

The synthesis of ircinal A (1.17) is described below. 

   

 

 

Scheme 23.  Winkler’s Approach to Manzamine A (1.3). 
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The key reaction leading to the framework of the manzamine alkaloids was a 

tandem [2+2] photocycloaddition, retro Mannich, followed by a Mannich cyclization 

(Scheme 23).  The key photochemical substrate is prepared starting with Michael 

addition of amine 2.1 to alkynone 2.2 (Scheme 23) .49,50  The [2+2] cycloadduct was not 

isolated but underwent a retro Mannich reaction and cyclization to provide aminal 2.6.  

Enol ether 2.6 was isomerized to tetracycle 2.8 by treatment of aminal 2.6 with 

pyridinium acetate providing a 20% overall yield of 2.6 from 2.3.  The primary alcohol 

was then protected as a TBS ether, followed by formation of β-keto ester 2.9 using 

Mander’s reagent.  Ketone reduction followed by dehydration afforded a mixture of 

unsaturated esters 2.10 and 2.11.49,50  Completion of tetracycle 2.11 (Scheme 23) set the 

stage for completion of ircinol A (1.19) and ircinal A (1.17), with only macrocyclization 

through N-alkylation remaining to afford the complex pentacyclic motif of manzamine 

natural products.    

     Macrocyclization of 2.11 required selective alkene epoxidation (m-CPBA) 

followed by based promoted (NaOMe) isomerization to allylic alcohol 2.12.50  The 

assigned stereochemistry of the newly formed secondary hydroxyl group was supported 

by hydrogen bonding observed between the hydroxyl hydrogen of 2.12 and the azocine 

nitrogen by 1H-NMR.  The silicon protecting group was removed by treatment with 

TBAF, and the corresponding alcohol was converted to the tosylate by reaction with tosyl 

chloride and triethylamine.50  
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Scheme 24.  Completion of Manzamine A (1.3) by Winkler. 

 

Deprotection of carbamate 2.13 was accomplished using trifluoroacetic acid.  

Exposure of the derived secondary amine to Hunig’s base under high dilution conditions 

led to the formation of the 13-membered macrocycle in a modest 12% yield (Scheme 

24).50  The yield was later improved by using an alkyne in place of the isolated cis-

alkene. Lindlar semi-hydrogenation then afforded 2.14.50  Reaction of enolate 2.14 with 

DIBAL-H completed ircinol A (1.19) and oxidation of 1.19 produced ircinal A (1.17).  

Finally, manzamine A (1.3) was obtained by reaction of ircinal (1.17) and tryptamine, 
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followed by oxidation with DDQ (Scheme 24).8  This completed the first total synthesis 

of manzamine in 33 overall steps (31 steps longest linear sequence).50  

 

Martin Total Synthesis of Manzamine A (1.3) 

 In 1999 Martin and co-workers completed the total synthesis of manzamine A 

(1.3).51,52  Their route also utilizes a Pictet-Spengler cyclization to convert ircinal A 

(1.17) to manzamine A (1.3).  One of the major differences between the Winkler and 

Martin routes is Martin’s use of the ring closing metathesis reaction in two key ring 

forming reactions.  First, he employs the RCM reaction to close the 13-membered 

macrocycle, and later the 8-membered ring.  The Martin group also makes use of a Diels-

Alder cyclization to form the tricyclic core of manzamine A (1.3). 

 The Martin synthesis begins with a “one pot” conversion of imide 2.16 to 

“dieneophilic precursor” 2.17 by carboxylation and reduction (Scheme 25). 51,52 Reaction 

of 2.17 with oxalyl chloride followed by addition of ammonium tosylate 2.18 produced 

amide 2.19.  The tricycle (2.21) was then generated by a sequential Stille cross-coupling 

and spontaneous Diels-Alder reaction to give 2.21 in 68% yield.  The stereocenter in 2.19 

nicely defines the absolute and relative stereochemistry in the tricyclic unit of ircinal A 

(1.17).  Oxidation of the allylic methylene group was achieved by treatment with CrO3 

and 3,5-dimethylpyrazole to produce tricyclic subunit 2.22 in good yield.  Removal of the 

silyl protecting groups was accomplished by reaction with hydrochloric acid in methanol.  

The resulting diol was oxidized to the dialdehyde under Swern conditions, and then 

converted to the bis alkene by a double Wittig reaction.51,52  
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Scheme 25.  Martin’s Approach to Manzamine A (1.3). 

 

 With the tricyclic core complete, reduction of the ester and ketone carbonyls was 

accomplished with excess DIBAL-H and the resulting allylic alcohols were oxidized with 

Dess-Martin Periodinane to provide keto-aldehyde 2.24.  Protection of aldehyde 2.24 as a 

dimethyl acetal, followed by a 1,2-addition of 4-butenyllithium provided the ring closing 

metathesis substrate 2.25.  Treatment of 2.25 with Grubbs’ first generation catalyst 

furnished 2.26 as a 8:1 (Z:E) mixture of geometrical isomers in 67% yield.51,52  Notably, 

the tertiary amine did not require protonation prior to exposure to the ruthenium catalyst.  

Hydrolytic cleavage and N-acylation provided diene 2.27 which was characterized by X-

ray crystallography.51,52   
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Scheme 26.  Martin Total Synthesis of Manzamine A (1.3). 

 

Although the ring closing metathesis of the 13-membered ring proceeded in good 

yield and stereoselectivity, the 8-membered ring proved difficult.51,52  Difficulty in the 

latter closure might be due to either the allylic nature of the olefin, or conformational 

restraint within the molecule.  Nonetheless, the closure was accomplished in 26% yield 

“under the best conditions.”  Reduction of 2.28 with DIBAL-H yielded ircinol A (1.19) 

and oxidation with Dess-Martin Periodinane provided ircinal A (1.17).  Ircinal A (1.17) 

was then converted to manzamine A using Kobayashi’s protocol.8,51,52 
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Pandit’s Approach to Manzamine A (1.3) 

 Pandit and co-workers published a series papers detailing the formation of the 

tricyclic core of manzamine A starting from inexpensive L-serine.53-58  By utilizing an 

intramolecular Diels-Alder strategy they were able to not only form the tricycle, but set 

three chiral centers in a single step (Scheme 27).6  They constructed the unsaturated 13-

membered ring using a ring closing metathesis reaction.9-11  They were also able to install 

the 8-membered ring by a lactamization and introduced the β-carboline unit using the 

Pictet-Spengler reaction similar to the Winkler and Martin approaches.7,8 

The Pandit synthesis began with L-Serine (2.29), which was transformed to iodide 

2.30 in five steps.  Conversion to 2.31 was achieved by protecting group manipulation 

and treatment with t-butyl acetothioacetate and sodium hydride followed by dehydration 

to provide thioester 2.32 and the 1,3-diketone (2.33) in a 3:1 ratio.  Installation of the 

diene moiety for the cycloaddition was accomplished by conversion of 2.32 to an O-

silyketene acetal which upon reaction with Eschenmoser salt yielded an intermediate 

terminal amine.  Formation of the quaternary ammonium salt and subsequent treatment 

with DBU completed diene 2.34.  The cyclization precursor was attained in 69% yield by 

reaction of the benzyl protected secondary amine and thioester 2.34 in the presence of 

silver triflate.  Enantiopure diene 2.35 was then heated at reflux in xylenes to provide the 

desired tricycle 2.36 in 90% combined yield as a 3.5:1 ratio of diastereomers6-8 (Scheme 

27). 
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Scheme 27.  Pandit’s Assembly of the Tricyclic Core. 

 

 Tricycle 2.36 was further manipulated to install the 8-membered ring common to 

the manzamine alkaloids (Scheme 28).  Thus, conversion of tricycle 2.36 to aldehyde 

2.37 set the stage for olefination using a Wittig to arrive at alkene ester 2.38.  With the 

ester in hand, the t-butyl group was removed under acidic conditions to an amino-acid 

that was cyclized to azocine 2.39.  Reduction of the ester moiety with 

diisobutylaluminum hydride and oxidation to the aldehyde prepared the Pictet-Spengler 

precursor 2.40.  Pictet-Spengler reaction with tryptamine and aldehyde 2.40 followed by 

aromatization provided 2.41 with the 8-membered ring and β-carboline moieties in place 

(Scheme 28).9      

 



36 

 

 

 

Scheme 28.  Pandit’s Synthesis of an Advanced Manzamine A Intermediate. 

 

 Pandit and co-workers were the first to accomplish the synthesis of the difficult 

13-membered ring employing a ring closing metathesis in a manner similar to the Martin 

approach.  Ene carbamate 2.42, lacking the protected hydroxylmethyl group (compound 

2.36), was treated with osmium tetroxide followed by acid catalyzed dehydration to 

afford ketone 2.43.  One of the terminal olefins required for the ring closing metathesis 

reaction was installed utilizing an allyl Grignard addition.  Hydroboration of the resulting 

terminal olefin followed by Dess-Martin oxidation and subsequent Wittig reaction with 

methylenetriphenylphosphorane afforded the newly formed terminal olefin 2.45.  
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Removal of the benzyl protecting group and alkylation with 1-iodo-5-hexene delivered 

the ring closing metathesis precursor 2.46.  In the presence of the ruthenium catalyst 

afforded the desired 13-membered macrocycle as a single isomer in 30% yield (Scheme 

29).9,10  

 

 

 

Scheme 29.  Pandit’s Approach to the 13-membered Marcocycle of Manzamine A (1.3).  

 

Hart’s Approach to Manzamine A (1.3) 

A racemic route to manzamine A (1.3) developed by Hart and co-workers utilizes 

an N-alkylation to form the 8-membered ring, followed by an amine opening of an 

epoxide (Scheme 30).59,60  Starting with benzoic acid the Hart group produced 
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iodolactone 2.49 in 70% yield over 4 steps.  Radical mediated allylation with 

allyltributylstannane followed by ring opening of the lactone with an arylamine installed 

the requisite nitrogen (2.50). 

   

 

Scheme 30. Hart’s Approach to Manzamine A (1.3). 

 

Oxidative cleavage of the terminal olefin and intramolecular reductive amination 

afforded 2.51.  Addition of the lithium acetylide followed by Lindlar reduction resulted in 

a separable mixture of diastereomeric alcohols (2.52).  Conversion of 2.52 to 2.53 
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proceeded with retention of configuration via a double inversion process involving 

neighboring group participation.  The 8-membered azocine ring was produced by 

treatment of 2.53 with potassium hydride under high dilution conditions.  Reaction with 

lithium hydroxide resulted in deacetylation and facial selective epoxidation of the 

homoallylic alcohol using VO(acac)2/t-BuOOH provided 2.54.  Deprotection of the 

sulfonamide with cesium fluoride promoted amine opening of the epoxide to produce the 

tetracyclic core of manzamine A (2.55).  Further manipulation yielded enone 2.56.59,60 

 

Nakagawa’s Approach to Manzamine A (1.3) 

 Nakagawa and co-workers reported the synthesis of the tetracyclic core of 

manzamine A in 1992.  Their route to the tricyclic core involves an intermolecular Diels-

Alder reaction between a racemic dihydropyridinone and Danishefsky’s diene, followed 

by an intramolecular 1,4-addition of an amine to an α,β-unsaturated ketone (Scheme 

31).61-63  The tetracyclic ring system was completed by lactamization to afford azocine 

2.64.64-66  Michael addition of the anion derived from 2.57 to amido acrylate 2.58 

followed sulfoxide elimination provided dienophile 2.59.  Diels-Alder reaction of 2.59 

with Danishefsky’s diene to afforded the cis-fused isoquinoline 2.60 as a 1:1 mixture of 

diastereomers.  Removal of the SEM group followed by exposure of the 

trifluoroacetamide to DABCO afforded tricycle 2.61.  Standard deprotections and 

functional group manipulations provided 2.63 as a 5:2 mixture of Z and E olefins.  

Trifluoroacetic acid removal of the carbamate provided the substrate needed for 

lactamization and azocine formation. 
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Scheme 31.  Nakagawa’s Route to the Tetracyclic Core of Manzamine A (1.3). 

 

Overman’s Synthesis of the Tricyclic Core 

 Starting with (-)-quinic acid Overman and co-workers examined an 

enantioselective approach toward manzamine A (1.3).67  In four steps (-)-quinic acid was 

converted to enone 2.66 which was treated with an allylstannane in the presence of 

TBSOTf to stereoselectively deliver ketone 2.67.  Reaction with TBSCl and DBU 

resulted in formation of enone 2.68 (Scheme 32). 

 



41 

 

 

 

Scheme 32.  Overman’s Appraoch to the Tricyclic Core of Manzamine A(1.3). 

 

 The isoquinoline ring construction began with alkylation of enone 2.68 with an 

N,N-disubstituted iodoacteamide and subsequent reduction of the enone to give an α-

substituted ketone.  The protected amine was introduced by oxidative cleavage of the 

terminal olefin under Lemieux conditions, followed by reductive amination with 

benzylamine and in situ Boc-protection to afford 2.69.  A key Mannich cyclization was 

accomplished by reaction of 2.69 with aqueous formaldehyde in formic acid.  Protection 
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group removal and dehydration using camphor sulfonic acid resulted in formation of 

tricycle 2.71.  Epoxidation and acid catalyzed rearrangement followed by β-elimination 

gave an enone that upon 1,4-addition with benzyloxymethyl homocuprate in the presence 

of TMSCl yielded enone 2.72.  Cleavage of the benzyl ether and subsequent Dess-Martin 

oxidation provided desired enal 2.73.67 

 

Langolis’ Synthesis of the Tricyclic Core   

The Langlois approach to manzamine A (1.3) involved a Bradsher intermolecular 

[4+2]-cycloaddition of a pyridinium salt with an ethyl vinyl ether and a radical 

cyclization to enable construction of the tricyclic core.68-70  Thus, cycloaddition of 

quaternary salt 2.74 and ethyl vinyl ether in water led to compound 2.75 which 

underwent ring expansion with cyanogen bromide. Reduction of the pyridine moiety with 

sodium borohydride and in situ benzyl protection produced acetal 2.76.  Protecting group 

manipulation and methanolysis of the acetal furnished alcohol 2.77.  The alcohol was 

then converted to the mesylate and displacement with the sodium salt of phenyl selenide 

gave selenide 2.78.  Treatment of selenide 2.78 with triphenylstannane and AIBN 

produced the desired tricyclic core along with the undesired diastereomer in a 1:1 ratio 

(Scheme 33).68-70 
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Scheme 33.  Langlois’ Approach to the Tricyclic Core of Manzamine A(1.3). 

 

 Among all 3-alkylpiperidine the synthesis of manzamines has undoubtedly been 

studied more than any other group of alkaloids isolated from this family of natural 

products.  With the total synthesis of manzamine C by Hino65,71 and Gerlach,72 the 

approaches to manzamine A by Yamamura,73-78 Clark,79,80 Simpkins,81,82 Leonard,83,84 

Markό,85,86 as well as the total syntheses and approaches outlined above, the manzamines 

have clearly been the target of choice among the synthetic community.  However, sarain 

A (1.5) is another structurally intriguing pentacyclic natural product presumably 

biosynthesized from 3-alkylpyridines that has also caught the attention of synthetic 

investigators.  The major challenges associated with constructing sarain A (1.5) include 

stereocontrol of the seven stereogenic centers and formation of the tightly fused tricyclic 

core annulated to two large ring systems.  The zwitterionic tertiary amine-aldehyde 
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interaction is another unique feature that must be taken into account.  Despite these 

signifigant challenges a number of routes have been developed including the only total 

synthesis reported by Overman and co-workers.  

 

Synthetic Approaches Toward Sarain A 

 

Overman Total Synthesis of Sarain A (1.5) 

The Overman synthesis of sarain A (1.5) began with a seven step sequence from 

(-)-diethyl D-tartrate to provide lactam 2.80 (Scheme 34).87-89  Alkylation of lactam 2.80 

with allyl bromide provided 2.81 which on treatment with acid led to oxazoline ring 

cleavage, followed by translactamazation, and protection to provide pyrrolidinone 2.82. 

   

 

 

Scheme 34.  Overman’s Synthesis of Tetracycle 2.86. 



45 

 

A two step reduction of the lactam afforded 2.83 and mono-Boc deprotection, 

desilyation, and spirolactone formation furnished intermediate 2.84.  Tetracycle 2.86 was 

acquired in two steps from 2.84 by DIBAL-H reduction of the lactone followed by 

reaction of β-amino alcohol 2.85 with sodium methoxide.  An ozonolysis/Grignard 

addition/oxidation sequence delivered ketone 2.88 in a 76% yield.  One carbon 

homologation of 2.88 by way of a Wittig reaction provided aldehyde 2.89 upon 

hydrolysis. Aldehyde 2.89 was converted to TIPS enol ether 2.90 as an inconsequential 

3:2 mixture of stereoisomers.  It was found that treatment of  2.90 with BCl3 at 0 °C and 

slowly warming to room temperature led to aldehyde 2.91 in 20:1 diastereoselectivity 

(Scheme 35).87-89     

 

 

   

Scheme 35. Overman’s Enoxysilane-N-Sulfonyliminium Ion Cyclization. 
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 Having a high-yielding route to the diazatricycloundecane core established, 

Overman and co-workers began to focus their attention on elaboration to a ring-closing 

metathesis precursor (Scheme 36).  Thus, TBS-protection of the primary alcohol 

followed by reduction and subsequent TIPS-protection afforded 2.92.  Removal of the 

tosyl protecting group and reductive amination with 6-hepten-1-al provided ring-closing 

metathesis precursor 2.94.  Under optimal conditions, the Western macrocycle was 

formed without need for protonation of the tertiary amine using Grubbs’ first generation 

catalyst to furnish an inconsequential mixture of geometrical isomers, macrocycles 

2.95.88,89  
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Scheme 36.  Overman’s Closure of the Western Ring of Sarain A (1.5). 

 

 Hydrogenation of 2.95 with Pd/C completed installation of the saturated 

macrocycle and exposure to hydrochloric acid yielded alcohol 2.96.  Treatment of alcohol 

2.96 with para-methoxybenzyl chloride and NaHMDS led to the rearrangement of the 
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oxzaolidine to the 5-hydroxy-[1,3]oxizinan-2-one with protection of the secondary 

hydroxyl to afford PMB ether 2.97.  After considerable experimentation it was found that 

removal of the TIPS protecting group could be accomplished with 

tris(dimethylamino)sulfonium difluorotrimethylsilicate in dimethylacetamide.  The 

tetrahydroooxazine fragment was cleaved with potassium hydroxide in ethanol to provide 

diamine diol 2.98.88,89 

 

 

 

Scheme 37.  Overman’s Elaboration in Route to Sarain A (1.5). 

 

 With the diamine diol 2.98 in hand attention was turned toward construction of 

the Eastern half of sarain A.  To begin this process diamine 2.98 was condensed with the 

protected butanal to provide oxazocane 2.99.  IBX oxidation followed by a Grignard 

addition accomplished installation of the requisite vinyl stannane (2.100) with 3-4:1 

diastereoselectivity.  Removal of the TBS protecting group and subsequent protection of 
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the diol with TES groups was found to be necessary due to the inability to selectively 

oxidize the primary alcohol.  This proved to be advantageous, as the separation of 

diastereomers became possible at this point.  Selective cleavage of the primary TES 

protective group followed by Dess-Martin oxidation, allowed for reaction with a 

phosphonium ylide that delivered the key Stille coupling substrate in 76% over two steps.  

Treatment of coupling precursor 2.102 with Pd(PPh3)4 and excess LiCl in THF completed 

closure of the 14-membered triene ring product 2.103.88,89 

      

N NH

OH

PMBO

OH
H

OTBS

O

PhH, 80 oC

86%

N N

OH

PMBO

O

OTBS

1) IBX, DMSO

2) THF, -15 oC

SnBu3

BrMg

(71% yield)

(68%, dr 3-4:1)

N N

OH

PMBO

O

OTBS

SnBu3

1) TBAF, THF, 85%

2) TESCl, imid., DMF

(70% single diastereomer)

N N

OTES

PMBO

O

OTES

SnBu3

1) K2CO3, MeOH, 92%

2) Dess-Martin, 0 oC

NaHCO3, CH2Cl2

3)
I

PPh3Br

NaHMDS, DME

-78 to 0 oC

76% 2 steps

N N

OTES

PMBO

O

SnBu3

I

Pd(PPh3)4,

LiCl, THF, rt N N

PMBO

OTES

O

2.98 2.99

2.100 2.101

2.102 2.103  

 

Scheme 38.  Closure of the 14-Membered Ring of Sarain A (1.5). 
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 Reduction of the N,O-acetal with DIBAL-H delivered the full skeleton of sarain A 

(1.5), pentacyclic alcohol 2.104.  To complete the synthesis of Sarain A (1.5) oxidation of 

a sterically encumbered, neopentylic alcohol and deprotection of two different protecting 

groups lied ahead.  The resulting oxidation would yield an extremely advanced synthetic 

intermediate that would result in a zwitterionic product (due to the close proximity to the 

tertiary amine) that would be difficult to handle in the laboratory.  The unique nature of 

this substrate is a prime example of the difficulty encountered when executing a synthesis 

of any of the complex 3-alkylpiperidine natural products.  With predicted difficulty of 

handling the product, and the inherent difficult with oxidations in the presence of tertiary 

amines, several mild oxidants were examined.  Ultimately, Dess-Martin periodinane 

buffered with sodium bicarbonate proved to be the most effective to provide crude 

aldehyde 2.105, which was directly used in the next step without further purification.88,89  

 

 

 

Scheme 39.  Completion of Sarain A (1.5) by Overman.  
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With the aldehyde now in place only one major problem remained, deprotection 

to provide sarain A (1.5).  Thus, an authentic sample of sarain A (1.5), provided by 

Cimino, was treated with iodotrimethylsilane for 15 minutes to probe the stability of the 

skipped triene moiety.  The skipped triene was found to stable and aldehyde 2.105 was 

treated with iodotrimethylsilane but found to only produce a mixture of complex 

products.  Ultimately, treatment with HF•pyridine at 0 °C in dichloromethane for 1.5 

hours led to the clean formation of sarain A (1.5) (Scheme 39).88,89  

 

Cha’s Approach to Sarain A (1.5) 

 In 1999 Cha and co-workers published a route to the tricyclic core of the 

sarains using Katritzky’s cycloaddition with 3-oxidopyridinium betaines.90  Thus, 

exposure of 3-oxidopyridinium betaines 2.106 to cyclopentadiene in the presence of 

triethylamine led to the formation of three cycloaddition products (Scheme 40).  Enamine 

2.107 was reduced with NaBH3CN to tricycle 2.110.  Oxidative cleavage, reduction, and 

acetylation provided diacetate 2.111.  The α,β-unsaturated ester (2.112) was obtained 

through Swern oxidation, subsequent Wittig olefination, and deacetylation.  TPAP 

oxidation provided lactone 2.113 as a single regioisomer.  To begin the assembly of the 

pyyrolidine ring the lactone (2.113) was converted to N-p-methoxybenzyl amide 2.114, 

which was converted to tricycle 2.115 by treatment with sodium hydride.90 
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Scheme 40.  Cha’s Formation of the Tricyclic Core. 

   

Using the same synthetic sequence described above (Scheme 40) a modified 

substrate (2.116) was aimed at the formation of the Western macrocycle of sarain A 

(1.5).91  Deprotection and Swern oxidation provided aldehyde 2.117 which was treated 

with an excess of aqueous formaldehyde in the presence of sodium carbonate produced 

diol 2.119, presumably through a Tishchenko reaction and subsequent hydrolysis of the 

resulting formate.  Formation of a tetrahydropyran protecting group produced an almost 

equal mixture of three products.  Treatment of 2.120 with diethylphosphonoacetyl 

chloride in the presence of pyridine, followed by removal of the THP-protective group 
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provided alcohol 2.123.  Dess-Martin oxidation and intramolecular Wittig olefination 

provide α,β-unsaturated lactone 2.125, which was converted to lactone 2.126 by reaction 

with Pd/C in a hydrogen atmosphere (Scheme 41).91   

     

 

Scheme 41.  Cha’s Route to the Western Macrocycle of Sarain A (1.5). 

 

 To begin building the necessary substrate for formation of the 13-membered ring 

by ring-closing metathesis compound 2.126 was treated with TBSOTf and acylated with 
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5-hexenoyl chloride in 75% yield.  Sodium borohydride reduction of the lactone, 

followed by indium-mediated allylation resulted in ring-closing metathesis precursor 

2.128.  Formation of the 13-membered ring was accomplished using Grubbs’ second 

generation catalyst followed by dehydration with Martin sulfurane and hydrogenation 

afforded the saturated 13-membered macrocycle of sarain A (1.5), compound 2.131.91 
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Scheme 42.  Cha’s Formation of the Western Macrocycle of Sarain A (1.5). 
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Weinreb’s Approach to Sarain A (1.5) 

 The Weinreb approach to Sarain A (1.5) begins with N-benzyllactam 2.132, 

prepared via a 1,3-dipolar azomethine ylide/olefin intramolecular cycloaddition (Scheme 

43).92-94  Hydrogenolysis of the benzyl protected amine and subsequent protection as the 

carbamate, followed by alkylation afforded β-ketolactam 2.133.  Treament of 2.133 with 

zinc borohydride provided alcohol 2.134 as a single stereoisomer.  Protecting group 

manipulation led to N-tosyllactam 2.135.  Removal of the silyl protecting group and 

conversion to the mesylate promoted cyclization via the Ohfune protocol provided cyclic 

carbamate 2.137.  Acetal 2.137 was then hydrolyzed to the aldehyde which underwent 

Grignard addition to yield allylic alcohol 2.138 as a mixture of stereoisomers.  

       

 

 

Scheme 43.  Weinreb’s Synthesis of the Cyclic Core of Sarain A (1.5). 
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Allylic alcohol 2.138 was acetylated subjected to the Fleming silyl cuprate 

reagent to provide allylsilane 2.139 as a mixture of geometrical isomers.  The N-

tosyllactam moiety was reduced with DIBALH and the resulting aminal underwent ferric 

chloride catalyzed allylsilane/N-sulfonyliminium ion cyclization to afford the sarain core 

2.140 as a 2.1:1 mixture of epimers (Scheme 44).  Protecting group manipulation, 

oxidative cleavage, and condensation with the hydroxyl amine provided oxime 2.141.  

Arrival at anion 2.143, produced from nitrile 2.142 and deprotonation with KHMDS, 

underwent stereoselective alkylation with the mesylate of 4-pentenol from the less 

hindered equatorial face to afford olefin 2.144.92-94 

 

 

 

Scheme 44.  Weinreb’s Access to the Tricyclic Core of Sarain A (1.5). 
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 Aside from the synthetic work on sarain A (1.5) described above, significant 

progress has been made by the Heathcock95,96 and Marazano97 groups.  Madangamine A 

(1.6) is yet another pentacyclic alkaloid that has attracted attention in the field of 

synthetic organic chemistry.  Isolated from the sponge Xestospongia ingens in 1994, it 

was shown to be cytotoxic against several tumor cell lines.  Structurally, the natural 

product is composed of a diamond lattice core and two macrocycles.  Yamazaki98,99 and 

co-workers as well as the Weinreb100 group have reported approaches to this 

unprecedented alkaloid. 

 

Synthetic Approaches Toward Madangamine A 

 

Yamazaki’s Approach to Madangamine A (1.6) 

 Yamazaki and co-workers were able to obtain the 11-membered ring of the 

madangamines using an intramolecular reductive amination and N, O-acetalization 

protocol.98,99  The synthesis commenced with protection of the keto group with 1,2 

bis(hydroxymethyl)benzene to yield the seven membered ring acetal. 

 Hydroxymethylation with potassium carbonate and protection with TBDMSCl 

provided ester 2.146.  Reduction of the ester with lithium borohydride and protecting 

group manipulation led to cyclohexanone 2.147.  A modified Rubottom oxidation 

followed by treatment with ethylene glycol, trimethylsiylchloride, and TBDMSOTf in the 

presence of 2,6-lutidine gave 2.148 as a 3:1 mixture of diastereomers.  The nitrile was 

then reduced with DIBAL-H and the resulting primary amine was converted to amine 

2.149 via reductive amination with salicylaldehyde (Scheme 45).98,99 
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Scheme 45.  Yamazaki’s Route Toward Madangamine A (1.6). 

 

 Ketal 2.149 was treated with hydrochloric acid in refluxing methanol to provide 

N,O-acetal 2.150 as a single diastereomer (Scheme 46).  Some of the uncyclized product 

was produced as well and was converted to 2.150 under the same conditions.  The 2-aza-

bicyclo[3.3.1]nonane derivative was obtained by reductive cleavage of the  N,O-acetal 

with alane.  Cleavage of the (2-hydroxyphenyl)methyl group was accomplished by 

hydrogenation with palladium hydroxide providing bicycle 2.152.  The secondary amine 

was then protected as a carbamate, followed by oxidation of the alcohol with Dess-

Martin.  The resulting ketone was converted to the (Z)-exo-olefin as inseparable 

geometrical mixture (11:1) by employing Still’s Z-selective Horner-Emmons olefination 

using KHMDS as a base.  Reduction of the corresponding ester with DIBAL-H provided 

the separable (Z)-allylic alcohol 2.153.  Methoxycarbonylation set the stage for a Stille 

coupling with the allylic acetate and the vinyl stannane to afford skipped diene 2.154 as a 

single stereoisomer.  After removal of the TBDPS group with TBAF, the 11-membered 
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ring was constructed by oxidation with Dess-Martin followed by deprotection of the Boc 

group and intramolecular reductive amination provided tricyclic product 2.155 (Scheme 

46).98,99   

     

 

Scheme 46.  Synthesis of the 11-Membered Ring.  

 

Weinreb’s Approach to the Tricyclic Core of Madangamine A (1.6). 

 The Weinreb approach began with ring expansion of a SES-protected 

furfurylamine (2.156) to a hemiaminal by exposure to m-chloroperbenzoic acid and in 

situ reaction with triethylsilane/BF3•Et2O to yield enone 2.157 (Scheme 47).100  High 

pressure cycloaddition with 1,3-butadiene afforded the cis-decaline system 2.158.  
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Homologation to aldehyde 2.159 followed by palladium catalyzed aza-Claisen 

rearrangement of the corresponding diallyl enamine gave aldehyde 2.160.  O-

Benzyloxime formation, followed by hydroboration, protection of the resulting alcohol as 

the PMB ether and subsequent reduction afforded amine 2.161.  Electrophilic cyclization 

mediated by mercury (II), followed by oxidative cleavage of the organomercury 

intermediate furnished tricycle 2.162.  Protection of the secondary amine as a Boc 

carbamate and Swern oxidation to the ketone provided 2.163 ready for further 

manipulation to madangamine A (1.6).100  Significant progress toward Madangamine A 

has also been made by Bonjoch101 and Marazano102 as well.    
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Scheme 47.  Weinreb’s Synthesis of the Tricyclic Core of Madangamine A (1.6). 
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CHAPTER III 

 

TETRACYCLIC 3-ALKYLPIPERIDINE ALKALOIDS: ISOLATION, STRUCTURE 

ELUCIDATION, AND BIOACTIVITY 

 

Introduction 

  The pentacyclic alkaloids containing 3-alkylpiperidine motifs have attracted a 

great deal of attention from the synthetic community.50,52,88  However, very little progress 

has been reported on the intermediate class of tetracyclic alkylpiperidines featuring a 3,4-

linked bis-piperidine core.46,103,104  These tetracyclic natural products are presumed to be 

derived via a Diels-Alder cycloaddition as described in Chapter I.6  The structural 

variations within this sub-group primarily occur in the relative stereochemistry of the 3,4-

linked bis-piperidine core and the degree and location of unsaturation in the two 

appending macrocycles.33-37,105,106   

Due to subtle variations in their complex framework, the structure elucidation of 

many tetracyclic alkaloids has been extremely challenging.  Rigorous NMR studies using 

in depth experiments were required for structural assignment of this group of 

alkylpiperidines.  The 1H-NMR spectra of these compounds are difficult to extract 

information from due to significant signal overlap in the δ 0.9-2.0 region, making 

determination of structure and relative stereochemistry difficult.  Impurities leading to 

broad 1H-NMR resonances have also contributed to difficulty in structural assignment, 

which are replaced by sharp, but severely overlapping signals upon purification.  Despite 

the challenges encountered during structure elucidation of tetracyclic 3-alkylpiperidines, 
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Crews, Garson, Berlinck, Kashman, and co-workers have isolated and determined 

structure for over sixteen tetracyclic alkaloids.33-37,105,106  This chapter will examine 

structural differences and the assignment of relatively stereochemistry among this sub-

group of 3-alkylpiperidine alkaloids. 

 

Halicyclamines 

 

Halicyclamine A (1.68)  

 In 1994 Crews and co-workers began investigation on a crude extract from a 

massive, olive green, tubular sponge, Haliclona sp., collected from Biak, Indonesia.33  

Interest in purification and structure elucidation was stimulated by observed inhibition 

activity against the enzyme target inosine monophosphate dehyrogenase.  Extensive 

purification led to the identification of halicyclamine A, a tetracyclic alkaloid possessing 

5 olefins   (Figure 3).33 

 

 

 

Figure 3.  Proposed Structure of Halicyclamine A (1.68). 
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Connectivity of halicyclamine A (1.68) was assigned using 2D-NMR techniques 

including HMBC, 1H-1H COSY, HMQC-TOCSY correlations, as well as analysis of MS 

fragmentation patterns.  The relative orientation between H18 and H19 was assigned 

using 2D NMR J-resolved data.  A coupling constant of 0 Hz between H2 and H3 

indicated H3 was axial and the syn relationship between H3 and H19 was assigned based 

on the presumed Diels-Alder cyclization in the hypothetical biosynthesis.  Furthermore, a 

coupling constant of 7.5 Hz between H34 and H18 oriented H18 in an axial position and 

a coupling constant between H18 and H19 of 8.0 Hz suggested H18 and H19 to occupy 

in a diaxial relationship.  Molecular modeling using the MMX forcefield in PCMOD 4.0 

supported the observed coupling constants with calculated J 34-18 = 8.0 Hz and  J 18-19 = 

5.7 Hz.  Alternative modeled isomers were shown to have different predicted coupling 

constants.33 

 

Halicyclamine B (3.1) 

 Two years after the isolation and structure elucidation of halicyclamine A (1.68) 

the Crews group isolated a second tetracyclic alkaloid from  Xestospongia sp. assigned 

halicyclamine B (3.1) (Figure 4).34  Analysis of high resolution mass spectra and 13C 

NMR data suggested the molecular formula C26H42N2 and seven degrees of unsaturation, 

three of which were double bonds.  A combination of HMBC and 1H-1H COSY 

correlations led to the proposed tetracyclic alkaloid incorporating a 3,4-linked bis-

piperidine core.  However, difficulties were encountered while trying to join fragments 

assigned by NMR experiments to the bis-piperidine core due to severe overlap of 

aliphatic resonances.34  Fortunately, crystals formed during the slow evaporation of a 
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methanol solution containing halicyclamine B (3.1), which were then subjected to single-

crystal X-ray analysis leading to the assigned structure.34  Halicyclamine B (3.1) was 

shown to have weak but selective antimicrobial activity as it showed growth inhibition of 

20% and 50% at 200 µg/disk against E. coli and B. subtilis.34      

   

 

Figure 4.  Halicyclamine B (3.1). 

 

Haliclonacyclamines 

 

Haliclonacyclamine A (3.2) 

 In 1996 the Garson group (University of Queensland) isolated two new tetracyclic 

alkaloids from the extracts of the olive-brown finger sponge Haliclona sp. found at Heron 

Island, Great Barrier Reef.35  The first of the two metabolites was haliclonacyclamine A 

(3.2), which displaced an IC50 value of 0.8 ug/mL in a P388 assay.  Garson determined the 

molecular formula of haliclonacyclamine A (3.2) to be C32H56N2, indicating the presence 

of two olefins, and a tetracyclic core.  Further structural features were established by 

interpretation of HMQC, HMBC, DFQCOSY, and HOHAHA NMR data.  Once 

structural connectivity was established the four allylic carbons were examined and found 
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to possess a chemical shift below 30 ppm, consistent with a cis geometry at both isolated 

carbon-carbon double bonds.35  Treatment of haliclonacyclamine A (3.2) with Pd/C under 

an atmosphere of hydrogen (60 psi) provided tetrahydrohaliclonacyclamine A (3.3, 

Figure 5).   
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Figure 5.  Haliclonacyclamine A (3.2) and Tetrahydrohaliclonacyclamine A (3.3). 

 

 Unfortunately, due to the highly congested methylene region the relative 

stereochemistry of the bis-piperidine core could only be partially deduced by analysis of 

2D NOESY data.  The Garson group determined that H7 and H9 possessed a cis 

relationship, but were unable to assign relative stereochemistry of the second piperidine 

ring.  Alternate solvents and higher field strength of (750 MHz) did not improve 

resolution.  Using an ethyl acetate/hexane/triethylamine solvent system they were able to 

produce X-ray quality crystals of haliclonacyclamine A (3.2).  X-ray analysis confirmed 

structural assignments and relative stereochemistry as shown in Figure 5.  Recently, 

Garson and co-workers reported on the absolute configuration (as shown in Figure 5) of 

haliclonacyclamine A (3.2) by using X-ray crystallographic analysis.35  Notably, the 
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structural assignments of haliclonacyclamine A (3.2) based on a single-crystal x-ray 

analysis allows confident structural assignment of tetrahydrohaliclonacyclamine A (3.3). 

         

Haliclonacyclamine B (3.4) 

 An isomer of haliclonacyclamine A (3.2) was isolated by the Garson group and 

assigned haliclonacyclamine B (3.4, Figure 6).35  This secondary metabolite showed 

potent cytotoxicity with an IC50 value of 0.6 ug/mL in a P388 assay.  A combination of 

HSQC, HMBC, DQFCOSY, and HOHAHA experiments led to an initial structural 

assignment of haliclonacyclamine B.35  The assigned structure was supported by 

hydrogenation of haliclonacyclamine B (3.4) to afford (+) tetrahydrohaliclonacyclamine 

A (3.3).36  This result indicates haliclonacyclamines A and B share identical bis-

piperidine stereochemistry and absolute stereochemistry.35  Crystals were obtained of 

haliclonacyclamine B (3.4), but yielded an incomplete analysis due to disorder in the 

crystal lattice.35 

 

 

 

Figure 6.  Originally Proposed Structure of Haliclonacyclaime B (3.4). 
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Haliclonacyclamine C (1.4) 

 In 1998 Garson and co-workers published a correction of the original 

haliclonacyclamine B (3.4) structural assignments.36  The minor correction relocated the 

cis carbon-carbon double bond from the C30-C29 to C28-C27 position.  The structural 

correction was based on resolved X-ray data.  In the same publication a third 

haliclonacyclamine was described from the olive-brown finger sponge Haliclona sp. and 

named haliclonacyclamine C (1.4).  Haliclonacyclamine C (1.4) was reported to be 

cytotoxic in a P388 assay, have antibacterial activity towards Bacillus subtilis, and strong 

antifungal activity toward Candida albicans and Trichophyton mentagrophytes.36 
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Figure 7.  Structure of Haliclonacyclamine C (1.4). 

 

Haliclonacyclamine C (1.4) could be considered a dihydro analogue of 

haliclonacyclamine A (3.2).  Indeed, hydrogenation of haliclonacyclamine C (1.4) 

provided tetrahydrohaliclonacyclamine A (3.3) with an optical rotation ([α]D +12.7°) of 

the same sign and similar magnitude as the hydrogenated products obtained from 

haliclonacyclamines A (3.2) and B (3.4), +23.9° and +24.9° respectively.36  This 
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observation indicates that all three haliclonacyclamines isolated thus far have identical 

stereochemistry in the 3,4-linked bis-piperdine core.  We suggest this configuration to be 

described as cis-syn-cis. 

 

 

 

Figure 8.  Hydrogenation Product of Haliclonacyclamine C (1.4). 

 

 The structural assignment for haliclonacyclamine C (1.4) followed a similar line 

of NMR analysis as reported for haliclonacyclamine A (3.2) and haliclonacyclamine B 

(3.4).  First a series of HSQC, HMBC, DQFCOSY, and TOCSY experiments provided 

basic structural connectivity.36  The assigned cis olefin was based on 13C NMR analysis 

of chemical shift.  A NOESY experiment showed a correlation between H7 and H9, 

which was consistent with the assigned stereochemistry for haliclonacyclamines A (3.2) 

and B (3.4).  Unfortunately, no concrete conclusions could be made concerning the 

stereochemistry between H3 and H9 from NOESY data, however convergence to the 

dihydro product proved that haliclonacyclamine C (1.4) possesses the same relative ring 

stereochemistry as haliclonacyclamine A (3.2) and B (3.4).36  
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Haliclonacyclamine D (3.5) 

 Haliclonacyclamine D (3.5, Figure 9), was later identified by the Garson group 

and found to have a molecular formula of C32H58N2 by high resolution mass 

spectrometry, which combined with the 13C NMR data indicated only one double bond 

present within the tetracyclic system.36  Structural assignments for the bis-piperdine core 

and the two appending macrocycles were made through extensive HSQC, HMBC, 

DQFCOSY, and TOCSY experiments.  This NMR data also suggested that 

haliclonacyclamine D (3.5) had a structure that was similar to haliclonacyclamine B (3.3) 

except the olefin located at C15-C16.  There was insufficient material to compare relative 

stereochemistry to haliclonacyclamines A-C by hydrogenation and convergence to 

(tetrahydrohaliclonacyclamine A (3.4)).  However, NOESY data suggested that the 

stereochemistry at C7 and C9 was identical to haliclonacyclamines A-C.  No biological 

studies were conducted on haliclonacyclamine D (3.5) due to lack of material.36 

 

 

 

Figure 9.  Proposed Structure of Haliclonacyclamine D (3.5). 
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Haliclonacyclamine E (3.6) 

 In 2000 the Berlinck group isolated four new tetracyclic alklaoids from the 

extracts of a marine sponge belonging to the order Haplosclerida, Arenosclera 

brasiliensis, collected off the southeastern coast of Brazil.37  The first of these new 

isolates was assigned haliclonacyclamine E (3.6, Figure 10).  High resolution mass 

spectrometry provided the molecular formula C32H55N2, and the 13C NMR indicated six 

sp2 hybridized carbons corresponding to three double bonds within the tetracyclic 

framework.  Structural arrangement of haliclonacyclamine E (3.6) was made through a 

series of HSQC, 1H-1H COSY, HSQC-TOCSY, and HMBC experiments.  However, the 

Berlinck group was unable to produced crystals suitable for single crystal X-ray analysis 

of any isolated natural products, including haliclonacyclamine E (3.6).  This forced them 

to rely solely on dipolar couplings from NOESY and ROESY data for assignment of 

relative stereochemistry.37  

 

 

 

Figure 10.  Proposed Structure of Haliclonacyclamine E (3.6). 

 

 Throughout their structural analysis the Berlinck group noticed several spectral 

discrepancies for haliclonacyclamine E (3.6) in comparison to data for 
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haliclonacyclamines A-D.  Spectral differences resided in the bis-piperidine core.37  First, 

the chemical shifts around the core were different.  For example, C2 (δ 31.6) in 

haliclonacyclamine E (3.6) was shielded by 10 ppm compared to haliclonacyclamines A-

D (δ between 40.0 and 41.1), C2 (∆δ of +5 ppm in 3.6), C4 (∆δ of -3 ppm in 3.6), C5 (∆δ 

of +4 ppm in 3.6), and C8 (∆δ of -8 ppm in 3.6).  This difference in spectral data 

suggested a different relative core stereochemistry for haliclonacyclamine E (3.6).  

Differences in bis-piperidine stereochemistry was further supported by NOESY and 

ROESY data.  For example, H8b (in this chapter a and b will denote downfield and 

upfield resonances respectively of a germinal pair) was a well-defined quartet (12 Hz) 

having the same coupling constant as H7, H8a, and H9.  Thus, H8b and H7 must be 

axial-axial, as well as H8b and H9.  This supported the C7 and C9 relative 

stereochemistry was identical to haliclonacyclamines A-D.37 

 

 

 

Figure 11.  NOESY Correlations for Haliclonacyclamine E (3.6). 
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The NOESY spectra also showed clear dipolar couplings between H8b, H6b, and 

H10b indicating are all axial and on the same face of the piperidine ring (Figure 11).37  A 

dipolar coupling observed between H2 and H10b indicated that the C2/C3 relative 

stereochemistry was opposite of that observed in the haliclonacyclamines A-D.  Other 

dipolar couplings placed H2, H4a, H6b, H8b, and H10b in an axial orientation and on the 

same face of the bis-piperidine system.  Dipolar couplings observed between H1a and 

H3, as well as H5a and H3, indicated that H1a, H3, and H5a were all axial.37 

 

Haliclonacyclamine F (3.7) 

 In 2007 Berlinck isolated haliclonacyclamine F (3.7) from a Brazilan marine 

sponge Pachychalina alcaloidifera.106  The cytotoxicity of haliclonacyclamine F (3.7) 

was evaluated against several cell lines showing activities of 4.5µg/mL for SF 295 

(human CNS), 1.0 µg/mL for MDA-MB435 (human breast), 8.6 µg/mL for HCT8 

(colon), and 2.2 µg/mL for HL60 (leukemia) cancer cell lines using the MTT method.106 

 

 

 

Figure 12.  Proposed Structure of Haliclonacyclamine F (3.7). 
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The tetracyclic nature of haliclonacyclamine F (3.6) was established through 13C-

NMR and high resolution mass spectrometry indicating a molecular formula of C32H55N2.  

Structural assignments were made by interpretation of COSY, HMBC, and HSQC-

TOCSY data.  A NOESY spectrum was used to establish relative stereochemistry of the 

bis-piperidine core (Figure 13).106  There were dipolar couplings between H2 and H4b, 

H2 and H9, H6b and H10b, and between H8b and H10b.  This indicated that the relative 

stereochemistry of H3 and H2 was the same as haliclonacyclamine E (3.6).  Comparison 

of the 13C-NMR chemical shifts of C1 to C5 was in agreement with this conclusion.  

Unfortunately, the relative stereochemistry of the eastern ring could not be completely 

established since NOE dipolar couplings were not observed for H7.  Since the chemical 

shifts of C6 to C10 are almost identical to arenosclerin C (3.10, arenosclerin section), the 

relative stereochemistry was proposed as shown in Figures 12 and 13.106  Notably, the 

proposed relative stereochemistry between H3 and H9 is in contrast to the stereochemical 

outcome of the Diels-Alder cyclization proposed by Baldwin and Whitehead (Schemes 2 

and 13).6 

 

 

Figure 13.  NOESY Correlations for Haliclonacyclamine F (3.7) 
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Arenosclerins 

 

Arenosclerin A (3.8) 

 In addition to haliclonacyclamine E (3.7), Berlinck and co-workers isolated three 

other tetracyclic alkaloids in 2000, arenosclerins A-C (3.8 – 3.10).37  The arenosclerins 

were the first examples of hydroxylated haliclonacyclamine/halicyclamine type alkaloids.  

The tetracyclic nature and the presence of three double bonds were established by 

analysis of 13C-NMR and high resolution mass spectrometry data indicating the 

molecular formula C32H55N2O of an optically active glassy solid, arenosclerin A (3.8, 

Figure 14).37  Structural assignments of arenosclerin A (3.8) were made by interpretation 

of COSY, HMBC, and HSQC-TOCSY data. 

 

 

 

Figure 14.  Proposed Structure of Arenosclerin A (3.8). 

 

 Assignment of relative stereochemistry for arenosclerin A (3.8) was identical to  

haliclonacyclamine E (3.6).37  This comparison was based primarily on 13C chemical 

shifts of the bis-piperidine ring system.  Analysis of the 1H-NMR spectrum futher 

supported a core structure identical to haliclonacyclamine E (3.6). The 1H-NMR 
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spectrum of haliclonacyclamine E (3.6) presented a well-defined quartet (12 Hz) at δ 0.85 

assigned to H8b.  In the 1H-NMR spectrum of arenosclerin A (3.8) an identical quartet 

(12 Hz) was located at δ 0.83.  There were also dipolar couplings observed between H8b 

and H2, and H6b, H10b, and H18b (Figure 15).  Furthermore, NOEs were observed 

between H2 and H10b, and H2 and H8b.  This indicated that the C-2 stereochemistry was 

opposite to the haliclonacyclamines A-D (3.2-3.4, 1.4).  Furthermore, dipolar couplings 

were observed between H4a and H10b indicating H2, H4a, H8b, and H10b were all 

located on the same face of the bis-piperidine system.37 

 

 

 

Figure 15.  NOESY Correlations for Arenosclerin A (3.8).  

 

Arenosclerin B (3.9) 

 The second hydroxylated tetracyclic alkaloid isolated from the sponge belonging 

to the order Haplosclerida, Arenosclera brasiliensis, was the optically active arenosclerin 

B (3.9).37  It presented the same molecular formula, C32H55N2O, and same number of 

olefins as arenosclerin A (3.8).  Thus, it was assumed that the new alkaloid had the same 
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basic structure as arenosclerin A (3.8), but differed in relative stereochemistry.  This 

assumption was confirmed by COSY, HMBC, and HSQC-TOCSY spectral analysis, 

which showed that arenosclerin B (3.9) had identical connectivity as arenosclerin A (3.8).  

Dipolar couplings between H12 and H15, between H22 and H25, and between H24 and 

H27a observed in the NOESY and ROESY spectra supported the same cis geometry for 

the three double bonds as in arenosclerin A (3.8).37 

        

  

 

 

Figure 16.  Proposed Structure of Arenosclerin B (3.9). 

  

 The assignment of relative stereochemistry of the bis-piperidine core was based 

on analysis of the 1H-NMR, NOESY, and ROESY data (Figure 17).37  The first evidence 

of different stereochemistry of arenosclerin B (3.9) relative to arenosclerin A (3.8) and 

the haliclonacyclamines was the chemical shift of the H8b quartet (12 Hz).  For 

haliclonacyclamine E (3.6) and arenosclerin A (3.8) the chemical shift of the H8b quartet 

was δ 0.85 and 0.83 respectively.  However for arenosclerin B (3.9) H8b had a chemical 

shift of δ 0.58, which was indicative of a strong steric compression on H8b.37  There were 

dipolar couplings observed between H5 and H3 and between H3 and H1a, indicative of 
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an axial orientation in a chair conformation.  An NOE between H1b and H4b confirmed 

the assumption.  Furthermore, dipolar couplings between H2 and H10a and between H3 

and H10a placed H2 and H3 on the same face of the ring.  Dipolar couplings between 

H10b and H8b, between H8b and H20a, and between H20a, H6, and H10b suggested a 

chair conformation and that H8b, H10b, and one of the H6 protons were all axial.37 

 

 

 

Figure 17.  NOESY Correlations for Arenosclerin B (3.9). 

 

  An interesting long range dipolar coupling was observed between H3 and one of 

the H6 hydrogens.  This assignment was rationalized by magnetization transfer either 

through H8b or through H10b.37  Magnetization transfer (or saturation transfer) arises 

from a relay mechanism in which the population changes on hydrogen B (A, B, and C 

will be used for three generic hydrogens on a system), brought about by the initial NOE 

between hydrogen A and hydrogen B, and subsequently alters the population of spin C 

when this also shares a dipolar coupling with B.107  However, this is typically slow to 

develop and long presaturation periods are needed for magnetization transfer to occur.  
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This is usually done by conducting a separate experiment where the long presaturation 

periods are employed and is typically used to study the proximity of a smaller molecule 

to a larger one.  Nevertheless, this observation for arenosclerin B (3.9) suggested that H3, 

H8b, H10b, and one of the hydrogens of H6 were all on the same face of the molecule, 

justifying the shielding effect on H8b.37  Further dipolar coupling between H7 and H10a 

was observed indicating that H7 and H9 were on the same face of the molecule.  As in 

the proposed structure for haliclonacyclamine F (3.7) the relative stereochemistry joining 

the two piperidine rings is anti, where as the predicted stereochemistry of these 

tetracycles from the proposed Diels-Alder cyclization is syn.37 

 

Arenosclerin C (3.10) 

 The third hyroxylated alkaloid isolated from Arenosclera brasiliensis, 

arenosclerin C (3.10, Figure 18), presented a molecular formula C32H55N2O and the same 

number of olefins as arenosclerins A and B (3.8, 3.9).37  The connectivity and carbon-

carbon double bond geometry was shown to be identical by analysis of COSY, HMBC, 

and HSQC data.   

 

 

 

Figure 18.  Proposed Structure of Arenosclerin C (3.10). 
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The relative stereochemistry of the bis-piperidine system was established by 

NOESY and ROESY spectra.37  Observed dipolar couplings suggested a different relative 

stereochemistry than the two previously isolated arenosclerins.37  A dipolar coupling 

between H3 and H10b and between H2 and H10a indicated that H3 and H2 were on 

opposite faces of the ring.  Furthermore, the lack of dipolar couplings between H5 and 

H3 and between H1 and H3 suggested that the C3 relative configuration had changed.  

 

 

 

Figure 19.  NOESY Correlations for Arenosclerin C (3.10). 

 

Arenosclerin D (3.11) 

 In addition to arenosclerins A-C isolated from Arenosclera brasiliensis in 2000 by 

Berlinck, a new arenoseclerin was isolated from the Brazilian marine sponge 

Pachychalina alcaloidifera in 2007, arenosclerin D (3.11, Figure 20).106  The Berlinck 

group quickly observed a close relationship of the new isolate with arenosclerins A-C, 

evident by a molecular formula of C32H55N2O and the presence of three double bonds.  

This initial observation confirmed by analysis of 1H and 13C NMR data.  Analysis of 

COSY, HMBC, and HSQC-TOCSY spectra secured structural assignments for 
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arenosclerin D (3.11).  Minor differences in the chemical shifts for H2, H7, H9, C20, and 

C3 suggested a different relative stereochemistry of the bis-piperidine core than 

arenosclerins A-C.106 

 

 

Figure 20.  Tentative Structure of Arenosclerin D (3.11). 

 

 The relative stereochemistry for arenosclerin D (3.11) proved to be difficult to 

determine.106  Based on the chemical shift and coupling constants of H8b (δ 0.91, dd, 7 

and 11 Hz) it was deduced that this proton was in a pseudoaxial orientation.  The H8a 

proton (δ 2.31) showed a geminal coupling constant of 11 Hz, thus the 7 Hz coupling of 

H8b had to be either with H7 or H9.  This corresponded to either H7 or H9 in a 

pseudoaxial position relative to H8b.  Further NOEs were observed between H8b and 

H5b, between H5b and H3, between H2 and H10b, and between H-10a and the 

methylene at C32.  There were no dipolar couplings observed at all for H7, thus a 

tentatively proposed structure of the bis-piperidine core that can accommodate theses 

couplings is shown Figure 21.106 
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Figure 21.   NOESY Correlations for Arenosclerin D (3.11).  

 

Arenosclerin E (3.12) 

 In addition to arenosclerin D (3.11) another tetracyclic alkaloid with a molecular 

formula C32H55N2O, three double bonds, and an allylic hydroxyl group was isolated, 

arenosclerin E (3.12, Figure 22).106  COSY, HMBC, and HSQC-TOCSY spectra were 

anlayzed in order to make structural assignments. 

 

 

 

Figure 22.  Proposed Structure of Arenosclerin E (3.12). 
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Their analysis yielded the first haliclonacyclamine/arenosclerin alkaloid to have a 

completely saturated macrocycle with a 12-carbon chain length connecting Nα to C7.  

Moreover, the macrocycle connecting Nβ to C2 was on 10 carbons in length and 

possessed an unprecedented three cis alkenes.106  In all other haliclonacyclamines and 

arenosclerins the chain lengths are reversed, with the Nα to C7 connection being 10 

carbons and the Nβ to C2 having 12 carbons.   

As in the other tetracyclic alkaloids isolated by Berlinck and co-workers, the bis-

piperdine relative stereochemistry was established by ROESY and NOESY 

correlations.106  There were dipolar couplings between H1, H3 and H5b, placing these 

hydrogens in an axial orientation.  NOEs were also observed between H4b and H9, 

between H9 and H7, between H7 and H10a, between H6b and H10b, and between H10b 

and H8b, indicating a conformation where H9, H7, H6b, H8b. and H10b are all axially 

oriented.  Further, dipolar couplings between H2 and H10a, as well as between H32b and 

H9 indicated the relative configuration at C2 as shown in Figure 23.106 

 

 

 

Figure 23.   NOESY Correlations for Arenosclerin E (3.12). 
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Halichondramine 

 

A new tetracyclic bis-piperidine alkaloid was isolated in 2002  from the extracts 

of a marine sponge belonging to the order Halichondria sp., in the Dahlak archipelago 

(the Red Sea, Eritrea), by a group from Israel.105  Kashman and co-workers used the 

electron ionization mass spectrometry and 13C NMR experiments to determine that 

halchondramine (3.13, Figure 24) was a diamine tetracyclic alkaloid possessing two 

olefins.  The 1H-NMR was extremely congested and made interpretation of data difficult 

however, a combined analysis of COSY, HMQC, HMBC, and HMQC-TOCSY spectra 

provided structural connectivity.105 

 

 

 

Figure 24.  Two Possible Structures of Halichondramine (3.13). 

 

The relative stereochemistry of halichondramine (3.13) was unclear.105  

Assignments were made from the multiplicity, coupling constants, and interpretation of 

the NOESY spectrum.  The distinctive H8b quartet presented a 12.7 Hz coupling 

constant, due to coupling with H8a, H9, and H7.  It was thus inferred that H8b, H9, and 
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H7 were all axial.  H6b and H10b had coupling constants of 12.7 and 12.9 respectively, 

and were axial as well.105  NOESY correlations between H8b and both H10b and H6b 

suggested the relative stereochemistry of C7 and C9 as shown in Figure 25.  The H1b 

proton is a triplet having a coupling constant of 13 Hz due to coupling to H1a and H2, 

thus H1b and H2 are axial.  Further NOEs between H5b and H1b, between H2 and H1a, 

and between H3 and both H1b and H5b provided the relative stereochemistry of C2 and 

C3.105 

 

 

 

Figure 25.  NOESY Correlations for Halichondramine (3.13). 

   

The stereochemistry could be established for each ring based on the correlations 

above, but the relative stereochemistry could not be determine due to overlapping in the 

1H-NMR spectrum.105  Although two possible structures of halichondramine have been 

proposed that could conform to the stereochemical analysis above, the absence of a 

COSY correlation between H3 and H9, and that H9 is a triplet (J = 13.7 Hz) indicated the 

relative stereochemistry in structure I (Figure 24) was more accurate.  However, on the 
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basis of the proposed Diels-Alder cycloaddition by Baldwin and Whitehead, Kashman 

and co-workers prefer structure II over I (Figure 24).105 
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CHAPTER IV 

 

TOTAL SYNTHESIS OF TETRAHYDROHALICLONACYCLAMINE A AND 

HALICLONACYCLAMINE C 

 

Introduction 

 The tetracyclic alkaloids that are presumed to arrive biosynthetically from an 

intramolecular cycloaddition of a bis-dihydropyridine macrocycle (1.9) represent a 

unique class of 3-alkylpiperidines that have been the subject of modest synthetic 

exploration.46,103,104  Many of these natural products not only have a distinctive 

architecture, but have also shown good biological activity.  For example, in a P388 assay 

haliclonacyclamine C displayed an IC50 value of 0.7 µg/mL, displays antibacterial 

activity against Bacillus subtilus, and strong antifungal properties against Candida 

Albicans and Trichophyton mentagrophytes.36 

 Although the exquisite biosynthetic proposal put forth by Baldwin and Whitehead 

suggested a biomimetic approach to the tetracyclic alkaloids, we decided to gain access to 

the tetracyclic alkaloids using a classical synthetic approach.6,44  We specifically chose to 

first examine the synthesis of tetrahydrohaliclonacyclamine A (3.3) obtained from the 

palladium catalyzed hydrogenation of natural haliclonacyclamines A-C, as described by 

Garson and co-workers (Figure 26).36  
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Figure 26.  Hydrogenation Product of Haliclonacyclamines A-C. 

 

 As discussed in Chapter III, one of the primary structural features that all 

tetracyclic 3-alkylpiperidines alkaloids have in common is a 3,4-linked bis-piperidine 

core (Figure 27).  We expected the introduction of the four stereocenters incorporated 

within the 3,4-linked bis-piperidine core to be a major hurdle in our attempt to access the 

tetracyclic alkylpiperidine alkaloids.  Tetrahydrohaliclonacyclamine A (3.3) was selected 

as the initial target in order to direct focus primarily toward the incorporation of these 

four stereocenters common to biosynthetically related tetracyclic 3-alkylpiperidine 

alkaloids, with the synthesis of haliclonacyclamine C (1.4) being our ultimate goal.36 

 

 

 

Figure 27.  Examples of Differing Stereochemistry for Tetracyclic Alkaloids. 
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 We anticipated the common cis-syn-cis relative stereochemistry pattern of 

haliclonacyclamines A-C could be obtained through stereoselective hydrogenation of the 

3,4-linked bis-piperidine core (c.f.4.1).  Preliminary results were obtained by our group 

using a heterogeneous catalyst system as illustrated in Scheme 48.108  Thus, treatment of 

diene 4.1 with Pd/C in ethanol under hydrogen at 40 psi in a Parr shaker produced 

hydrogenation products 4.2 and 4.3.  

 

 

 

Scheme 48.  Preliminary Hydrogenation Results of the Bis-piperidine Core. 

 

Interestingly, when bis-piperidine 4.2 was analyzed by Gas Chromatography 

(GC), only one product was detected.  Initial 1H-NMR experiments at 500 MHz were not 

well resolved due to rotamers and little information could be obtained concerning the 

number of isomers formed.108  However, when a variable temperature NMR was 

conducted at 75 °C in (CD3)2SO the spectrum showed a single diastereomer.  The 

unreacted enamide product (4.3) was also isolated, which indicated that the 

tetrasubstituted olefin was more easily reduced than the enamide olefin (Scheme 48).108 

   Conformational analysis was then carried out on partially reduced enamide 4.3 

using molecular modeling in macromodel (MMFF94 force field, water GB/SA model).108  
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The molecular modeling clearly showed that the methyl ester moiety blocks one face of 

the northern ring of 4.1.  Hydrogenation would therefore take place on the opposite face 

of this ring to yielding the undesried cis-anti-cis isomer. Using this molecular modeling 

analysis, it was assumed that the hydrogenation of diene 4.1 leads to the formation of 

diastereomer 4.4 and not the desired diastereomer 4.5 as illustrated in Scheme 49.108  

Unfortunately, attempts to crystallize hydrogenation product 4.2 were unsuccessful in 

order to confirm this hypothesis.108 

 

 

 

Scheme 49.  Predicted Hydrogenation Product of Diene 4.1. 

 

Armed with the initial results above, we chose to develop a synthetic strategy 

toward tetrahydrohaliclonacyclamine A (3.3) and haliclonacyclamine C (1.4) that would 

support peripheral hydrogenation of the C9-C10 alkene by incorporation of the 

macrocycle, in order to obtain the desired cis relationship between the C7 and C9 

stereocenters.  This concept of peripheral stereocontrol was first introduced by Still in the 

context of periplanone B by accessing one face of a carbonyl, with the other side being 

hindered by a medium ring.109  Vedejs further elaborated on peripheral control as a means 

of stereoselective reaction by using the directing properties of an allylic methyl 
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substituent in 8-15 membered rings to provide a single epoxide.110,111  Schreiber later 

applied this strategy to epoxidize macrocycles containing 1,5-dienes using conformer 

control.112  Other work using a peripheral control approach in the context of epoxidation 

been carried out by Mulzer and Weiler as well.113,114 

We were interested in extending this type of approach to the hydrogenation of a 

substrate similar to diene 4.2, with the western macrocycle already in place to dictate 

facial preference and provide the correct relative stereochemistry between C7 and C9 

(Scheme 50).  While this tactic provided confidence in potentially securing a cis 

relationship between C7 and C9, we were unsure of the diastereofacial selectivity of the 

hydrogenation of the C2-C3 olefin.  Hydrogenation of bis-piperidine 4.6 might be 

problematic as ring B incorporates a stereochemically dynamic nitrogen atom.  This 

could potentially result in the production of two diastereomers, which we have denoted as 

our desired cis-syn-cis isomer and the cis-anti-cis isomer as shown in Scheme 50. 
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Scheme 50.  Hydrogenation Strategy Toward Tetrahydrohaliclonacyclamine A (3.3). 

 

 Conformational analysis was carried out on 4.6 by evaluating a series of 

stochastic conformational settings (MMFF94 force field).  Two representative low energy 
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conformations are shown in Figure 28.  Based on the molecular modeling, the 

macrocycle present in conformation A clearly blocks one face of the bis-piperidine 

system, and hydrogenation would therefore take place on the opposite face of this ring to 

produce the desired cis-syn-cis relative stereochemistry.  However, conformation B 

represents a system similar to diene 4.6b, which upon hydrogenation would lead to the 

undesired cis-anti-cis relative stereochemistry.  This simple model supports our strategy 

represented in Scheme 50.    

 

 

 

Figure 28.  Conformation Analysis of 4.6 using a MMFF94 Force Fiels. 

 

An N-Alkylation Route to Tetrahydrohaliclonacyclamine A 

With a proposal to access the correct relative stereochemistry incorporated within 

the core, we needed to devise a route to install the western macrocycle represented in 

diene 4.6a, as well as the unsaturated eastern macrocycle with the correct cis geometry as 

required for haliclonacyclamine C (1.4).  An initial retrosynthetic analysis, outlined in 

Scheme 51, requires lactam reduction and a key ring-closing metathesis (RCM) of the 
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advanced intermediate 4.8.115,116  It was envisioned that the terminal diene 4.8 would be 

obtained from 4.9 via peripheral hydrogenation, oxidation to the dialdehyde, followed by 

olefination.  Diene 4.9 would be obtained via alkylation of an amide enolate, and N-

alkylation50 of 4.10 to construct what would eventually become the saturated macrocycle 

of haliclonacyclamine C (1.4).  Alkene 4.10 would be synthesized through cross-coupling 

of allylic acetate 4.11 and the appropriate vinyl stannane.  Finally, the 3,4’-linked bis-

piperidine core would be prepared by a Stille cross-coupling reaction of the 

independently prepared vinyl tin 4.12 and vinyl iodide 4.13. 

 

 

 

Scheme 51.  Initial Retrosynthetic Analysis of Haliclonacyclamine C (1.4). 

 

At the outset of the project, the goal was to first produce the bis-piperidine core 

by utilizing a carbon-carbon bond forming cross-coupling reaction.  We began by 
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preparing 3-iodoenamide 4.13 from glutarimide and as illustrated in Scheme 52.  

Iodoenamide 4.13 would serve as one of two piperidine units to produce the C3-C9 bond. 
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Scheme 52.  Preparation of Vinyl Iodide 4.13. 

 

The reaction sequence was initiated with a Mitsunobu117 reaction between 

glutarimide and mono benzylated 1,5-pentanediol to yield imide 4.15 (Scheme 52).  

Sodium borohydride reduction followed by treatment with trifluoroacetic anhydride 

yielded enamine 4.17 in 79% overall yield.118  This transformation was originally carried 

out with boron trifluoride etherate (30-40%), but trifluoroacetic anhydride gave improved 

yields and shorter reaction times.  Enamine 4.17 was then treated with iodine 

monochloride in methanol resulting a regioselective iodo methoxylation to afford an 

intermediate δ-methoxylactam that was immediately subjected to a catalytic amount of 

trifluoroacetic acid in refluxing toluene for 15 minutes to furnish iodoenamide 7 in 66% 

yield from 4.13.119 
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With a successful route toward iodoenamide 4.13 complete attention turned to the 

construction of the cross-coupling counterpart 4.12.  This synthesis of 4.12 started with t-

butyl carbamate protection of commercially available 4-piperidone (4.18) to give 

carbamate 4.19, which was treated with lithium hexamethyldisilazide followed by a 

methyl cyanoformate quench to generate β-keto ester 4.20 (Scheme 53).120,121   
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Scheme 53.  Preparation of Vinyl Stannane 4.12. 

 

The β-keto ester was then converted to vinyl triflate 4.21 by treatment with 

potassium hexamethyldisilazide followed by the addition of Comins’ reagent.122  

Reduction of 4.21 with diisobutylaluminium hydride afforded allylic alcohol 4.22, which 

was immediately converted to the silyl ether (4.23) without further purification in 
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preparation of the Stille coupling.123,124  Vinyl triflate 4.23 was treated with 

hexamethyldistannane to yield desired vinyl stannane 4.12.24 

The stage was now set for a cross-coupling between vinyl stannane 4.12 and 

iodoenamide 4.13.  Optimal conditions for the cross-coupling employed cuprous chloride 

as an accelerant to provided bis-piperidine 4.24 in 78% yield.125,126  To this end,  Corey-

Liebskind conditions (copper chloride, lithium chloride, and tetrakis(triphenylphosphine) 

palladium(0) in dimethyl sulfoxide) and heating for 4 hours gave diene 20 in 50-60% 

yield.  It was later found that shorter reaction times between 2 and 4 hours gave yields 

greater than 70%.  However, reaction times longer than 4 hours led to slow 

decomposition of the desired product.  Exchange of the TBS ether (4.24) for allylic 

acetate 4.11 set the stage for a second cross-coupling reaction. (Scheme 54). 

 

 

 

Scheme 54.  Completion of the Bis-piperidine Core.  
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The proposed mechanism for the general cuprous chloride accerlated Stille 

coupling is represented in Scheme 55.125  Thus, a 18-electron palladium(0) species (B) is 

generated, which then reacts with an organic electrophile (C) through oxidative addition 

to form the 16-electron palladium(II) intermediate D.  The cuprous chloride serves to 

convert the vinylstannane to a more reactive vinylcopper species (E) in order to 

accelerate transmetalation.  Intermediate D then reacts with vinylcopper species E to 

form a key palladium(II) intermediate F.  The desired coupling product G is then 

produced by reductive elimination, which regenerates active catalyst B. 

  

 

 

Scheme 55.  Mechanism of the Cuprous Chloride Accelerated Stille Coupling. 
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We next wanted required a cross-coupling partner for allylic acetate 4.11.  Due to 

our success with the vinyl stannane for the synthesis of the bis-piperidine core, we began 

preparation of another vinyl stannane species for the allylic acetate cross-coupling.    

Thus, commercially available 5-hexyn-1-ol (4.26) was treated with N-bromosuccinimide 

and silver nitrate in acetone to give alkynyl bromide 4.27 in 95% yield, followed by 

hydrostannylation to yield vinyl stannane 4.28 (Scheme 56).127-129   

 

 

 

 

Scheme 56.  Further Elaboration to Tetrahydroaliclonacyclamine A (3.3). 

 

Next, the primary alcohol of 4.28 was benzyl protected to afford vinyl stannane 

4.29.  It is noteworthy that by protecting the alcohol last and quenching the benzyl 

protection reaction with sodium bicarbonate a minimal amount of stannane protolysis 

product was observed.130  With vinyl stannane 4.29 in hand, the Stille cross-coupling was 
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attempted with allylic acetate 4.11.  Using conditions developed by Stille and Hegedus,131 

allylic acetate 4.11 and vinyl stannane 4.29 were dissolved in dimethylformamide, treated 

with lithium chloride, bis(dibenzylideneacetone) palladium(0), and heated to 70 oC for 18 

hours providing advanced precursor 4.10  (Scheme 56). 

Interestingly, in the course of examining a protected route to the western 

macrocycle of tetrahydrohaliclonacyclamine A (3.3), we also examined a displacement 

method in place of an allylic acetate Stille coupling (Table 1).  This would potentially 

provide us with the desired product (4.10) without having to use expensive palladium 

catalysts or vinyl stannanes.  Unfortunately, all attempts to install a proper leaving group 

in preparation for the substitution led to an undesired elimination product 4.32. 

 

 

 

Table 1.  Undesired Elimination to Triene 4.32. 
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We quickly turned our attention back to the formation of the eastern macrocycle 

of tetrahydrohaliclonacyclamine A (3.3).  Beginning with 1,6-hexanediol a one pot 

double oxidation, double Wittig132 was performed using Swern133 conditions, followed by 

the addition of (carboethoxymethylene)triphenylphosphorane to give the diester 4.34 in 

75% yield (Scheme 57).134  The diester was reduced to diol 4.35 by treatment with 

diisobutylaluminum hydride, followed by conversion to dibromide 4.36 using 

triphenylphosphine and carbon tetrabromide.   Having dibromide 4.36 in hand, we 

submitted lactam 4.10 to a solution of lithium hexamethyldisilazide in tetrahydrofuran at 

-78 oC.  The enolate was then added to a stirring solution of dibromide 4.36 in 

tetrahydrofuran at -78 oC to provide alkylation product 4.37 in an unoptimized yield of 

41%.  
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Scheme 57.  Macrocyclization Precusor 4.37. 
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 We were now in position to attempt the first macrocyclic closure.  To prepare for 

macrocyclization through N-alkylation,50 we needed to remove the carbamate protecting 

group on 4.37.  Unfortunately, all efforts to remove the Boc protecting group resulted in 

decomposition of starting material as illustrated in Table 2.135  We attempted to use the 

crude material from one of the deprotection reactions in the N-alkylation step without any 

further purification (although no product could be isolated).  Ring closure under basic 

conditions (N,N-diisopropylethylamine) yielded unpromising results.   

   

 

 

Table 2.  Attempted Carbamate Deprotection. 

 

 At this point in our synthetic endeavor we had exhausted all of our material to 

produce 4.37 and were now at crossroads in the synthesis.  It was necessary to 
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contemplate a synthetic appraoch that would allow for reproducible closure of the 

western macrocycle in good yield and set the stage for the key hydrogenation of the core.  

We could produce more of our alkylation precursor 4.37 and further examine 

deprotection conditions, or alter the current route to a more feasible approach.  Since we 

had been unable to successfully remove the carbamate protecting to even attempt 

macrocyclic ring closure by N-alkylation, we choose to modify our strategy. 

 

A Ring Closing Metathesis Approach to Tetrahydrohaliclonacyclamine A 

Although we were unable to form the western macrocycle in the previous route, 

we decided to employ the two Stille125,131 cross-couplings and create an altered route to 

arrive at tetrahydrohaliclonacyclamine A (3.3).  The new strategy involved the 

installation of two terminal olefins early in the synthesis and closure of the ring by a 

metathesis reaction115,116,136 in place of the failed N-alkylation.  Our original 

retrosynthesis had already outlined a ring closing metathesis approach for the closure of 

the eastern unsaturated macrocycle of haliclonacyclamine C (1.4)   Thus, this new 

approach would not only solve the problem of closing the eastern ring, but provide 

information on the ring-closing metathesis catalysts, as we had considered the 

incompatibility of tertiary amines in this context.137  

 Having established a route to the bis-piperdine core we had two major 

uncertainties to consider; the diastereoselectivity of the hydrogenation and the E/Z ratio 

obtained from a ring-closing alkene metathesis to provide the unsaturated macrocycle.  

For the latter, we had considered using an alkyne metathesis/Lindlar semi-reduction 

approach.138  A complete retrosynthetic analysis is shown in Scheme 58.   
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Scheme 58.  Revised Retrosynthetic Analysis of Haliclonacyclamine C (1.4). 

 

A ring closing (alkene or alkyne) metathesis of the advanced intermediate 4.39 or 

4.40 would provide tetrahydrohaliclonacyclamine A (3.3) and haliclonacyclamine C 

(1.4).  It was envisioned that terminal diene 4.39, or terminal diyne 4.40, would be 

obtained from 4.41 via oxidation to the dialdehyde, followed by either olefination or 

alkynlation, and lactam reduction.  Diol 4.41 was thought to arrive from peripheral 

hydrogenation as previously discussed.   Tetraene 4.42 would be obtained via a ring-

closing metathesis reaction and cross-coupling of 4.43.  Finally, the bis-piperidine core 

would be prepared by a similar carbon-carbon bond forming cross coupling reaction 

using Corey-Liebskind conditions, with an alkylated vinyl tin 4.44 and vinyl iodide 4.45. 
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Our new synthesis began with an eight step preparation of vinyl stannane 4.44 

from commercially available 5-hexen-1-ol (Scheme 59).  This would serve as the first of 

two piperidine units used to construct the bis-piperidine core in preparation for closure of 

the western macrocycle by ring closing metathesis.  The reaction sequence started with 

Mitsunobu117 condensation of phthalimide with 5-hexen-1-ol to provide imide 4.47.  

Treatment of imide 4.47 with hydrazine resulted in primary amine 4.48 in good yield.139  

β-keto ester 4.49 was prepared in two steps by a double Michael addition followed by a 

Dieckmann cyclization.140-142   

 

  

Scheme 59.  Preparation of Alkylated Vinyl Stannane 4.44. 

  

With the requisite terminal alkene now in place for the ring-closing metathesis 

reaction we followed our previous route (Scheme 53) to complete the synthesis of vinyl 
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stannane 4.44.  Thus, β-keto ester 4.49 was converted to the intermediate enol triflate 

4.50 that was subsequently reduced to an allylic alcohol.122  Silylation of the allylic 

alcohol paved the way for Stille coupling with hexamethyldistannane to provide vinyl 

stannane 4.44.124 

 We next had to prepare the proper counterpart for the cross-coupling with vinyl 

stannane 4.44, which would then set the stage for a ring closing metathesis reaction.  This 

was accomplished by deprotonation of the previously prepared iodoenamide 4.13 

(Scheme 52) with lithium hexamethyldisilazide in tetrahydrofuran at -78 °C followed by 

the addition of 6-iodo-1-hexene143 to yield iodoenamide 4.45 (Scheme 60).  This 

completed the second of our requisite two piperidine units, in 31% overall yield from 1,5-

pentandiol (4.4, Scheme 52), used to construct the bis-piperidine core in preparation for 

closure of the western macrocycle by ring-closing metathesis. 

 

 

 

Scheme 60.  Preparation of Alkylated Vinyl Iodide 4.45.   

 

By employing the cuprous(I) chloride accelerated Stille cross coupling previously 

described the assembly of bis piperidine 4.43 was complete (Scheme 61).  Removal of 

the silyl protecting group and treatment with acetic anhydride provided allyic acetate 4.52 



104 

 

in excellent yield.  We then utilized a second Stille coupling with unprotected (E)-6-

(tributylstannyl)hex-5-1-ol144 to provide ring closing metathesis substrate 4.53. 

 

 

 

Scheme 61.  Stille Cross Couplings. 

 

Closure of Western Macrocycle 

With all carbons now in place we began to investigate the first of two ring-closing 

metathesis reactions.  The ruthenium carbene complexes originally developed by Grubbs 

are known to be far superior to the molybdenum systems developed by Schrock in terms 

of handling and reactivity for metathesis of alkenes.137  The Grubbs’ catalysts are robust 

enough that they can be weighed in air and still provide active catalyst solutions, which is 

inconceivable with all other structurally defined molybdenum catalysts and precatalysts 

known to date (Figure 29).115,137 
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Figure 29.  Alkene Ring-Closing Metathesis Catalysts. 

 

  Moreover, the molybdenum systems are known to react with acids, alcohols, and 

aldehydes, where the ruthenium complexes are stable to these functional groups.137,145  

However, the commonly used first and second generation ruthenium carbene 

systems146,147 are not always an effective catalyst with substrates incorporating sulfides or 

amines.  Conversion to the corresponding ammonium salts is sometimes necessary in the 
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latter case for metathesis to occur.137  We had anticipated that this could be a problem for 

our system due to the tertiary amine present in the bis-piperidine core.   

 Although we wanted to effect a ring-closing metathesis for our substrate (4.53), 

alkene metathesis can occur in three types of related reactions: 1) ring opening metathesis 

polymerization (ROMP); 2) acyclic cross metathesis, which can result in polymers 

(ADMET); 3) ring-closing metathesis.115  It is generally accepted that the mechanism for 

acyclic and cyclic metathesis occurs through a series of a ruthenium carbene complexes 

and metacyclobutanes.136    A basic catalytic cycle for a ring-closing metathesis is shown 

in Scheme 62.136 

 

 

 

Scheme 62.  General Mechanism for Ring-Closing Alkene Metathesis. 

 

There are three main factors that govern the success of a ring-closing metathesis 

reaction.  The forward progress of a ring-closing metathesis reaction is entropically 

driven because ring-closing metathesis cuts one substrate molecule into two products.  
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Typically the two products are ethylene gas and the desired cycloalkene.  The sensitivity 

of the catalyst to the substitution pattern of the olefin, as this constitutes a kinetic 

obstacle.  Also, there is usually competition between competing ring-closing and acyclic 

diene metathesis polymerization (ADMET), which can be somewhat controlled by 

dilution and preexisting conformational constraints in the substrate.136  The potential 

formation of dimers is a typical problem with the closure of large macrocycles and was a 

concern we would take into consideration. 

We decided to first attempt the closure of diene 4.53 as the free amine to form the 

western 17-membered macrocycle of tetrahydrohaliclonacyclamine A (3.3).  While 

amines are typically not compatible with the ruthenium catalyst systems, there was 

literature precedent for ring closure of large macrocycles in the presence of amines using 

ruthenium catalysts specifically in the context of 3-alkylpiperdine natural product 

synthesis, as discussed in chapter II.51,88  Thus, we submitted diene 4.53  to both Grubbs’ 

first and second generation catalysts (4.56 and 4.60) in refluxing toluene and 

dichloromethane.  Unfortunately, our desired product was not formed.  We noticed that 

consumption of starting material had occurred.  Analyzing the crude reaction mixture by 

LC/MS (Agilent Technologies 6130 Quadrupole instrument) provided a consistent mass 

of 617, with the molecular weight of our desired product being 603.  Although we were 

unable to provide a structure for the unidentified substance corresponding to a mass of 

617, we believe our starting material possessing the tertiary amine interacted in an 

unfavorable way with the ruthenium catalyst and shut down the catalytic cycle.137 

The next step was to attempt the closure using the quaternary ammonium salt of 

diene 4.53.  To our delight, product was obtained using both Grubbs’ first generation 
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catalyst (4.56) and Fürstner’s ruthenium indenylidene catalyst148 (4.61) in refluxing 

dichloromethane (Scheme 63).  Although we could obtain product with both catalysts in 

good yield, we choose to use Fürstner’s ruthenium indenylidene catalyst (4.61) to provide 

tricycle 4.42 as almost exclusively the trans isomer (> 90%) due to cost and ease of 

handing in air.  

 

 

 

Scheme 63.  Closure of the Eastern Macrocycle. 

 

Removal of Ruthenium By-Products 

It was now time to test the peripheral hydrogenation in order to set correct relative 

incorporated within the bis-piperidine core.  We wanted examined a stepwise approach 

by removing the benzyl protecting group and reducing the olefins residing in the alkyl 

chains of tetraene 4.42, to later focus on hydrogenation of the core.  Although we had 

obtained the hydrogenation precursor 4.42, there was concern regarding the purity of our 

metathesis product.  Due to the polar nature of tricycle 4.42, we obtained a product that 

was contaminated with a substantial amount of residual ruthenium left over from the 
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reaction, despite examing multiple purification methods.  This problem has been address 

by various research groups and some solutions are represented in Figure 30 below.          

 

 

 

Figure 30.  Methods for Ruthenium Removal. 

 

While all are viable methods, we were discouraged by both the methods 

developed by Grubbs and Paquette.149,150  The Grubbs method involved using 

tris(hydroxymethyl)phosphine to react with residual ruthenium by-products that would 

later be removed during aqueous work-up.  However,   tris(hydroxymethyl)phosphine is 

an extremely expensive reagent and we sought other means to remedy this problem.  We 
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were also unenthusiastic about the Paquette method due to the harsh reaction conditions 

involved and potential exchange of ruthenium impurities for lead impurities.  Attempts 

using the method developed by Georg involving polymer-bound triphenylphosphine 

oxide unfortunately did not provide a product that was much cleaner than we had 

originally isolated.151  Removal with activated carbon leads to the same unfavorable 

result.152  The problem was finally resolved by use of Varian strong cation exchange 

chromatography.153  Using our ruthenium contaminated crude reaction mixture we were 

able to wash out ruthenium by-products using methanol as the eluent, and then releasing 

our desired tricycle from the acidic stationary phase using a 2N solution of ammonia in 

methanol to provide tricycle 4.42 with significantly less ruthenium contamination.153 

 

Hydrogenation of the Bis-piperidine Core 

 With pure tricycle 4.42 in hand, we were ready to investigate hydrogenation of 

the core.  We wanted to first examine a stepwise approach by removing the benzyl 

protecting group and reducing the olefins residing in the alkyl chains in order to focus on 

hydrogenation of the core, as mentioned above.  The analysis began by a preliminary 

examination of the reactivity of hydrogenation catalysts with our substrate.  We initially 

conducted these reactions on the free tertiary amines, but realized this provided 

inconsistent results.154  Thus, we choose to carry out the hydrogenation on an ammonium 

salt, which provided reproducible results.   Our preliminary results are represented in 

Table 3. 
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Table 3.  Preliminary Hydrogenation Results. 

 

 We choose to examine multiple hydrogenation conditions at one atmosphere 

pressure to obtain a general knowledge concerning the reactivity of tetraene 4.42 using 

mostly heterogeneous hydrogenation as well as Wilkinson’s catalyst.155  All results were 

analyzed by LC/MS in order to indicate the degree of hydrogenation that had taken place.  

Most catalysts were found to yield inseparable mixtures of hydrogenation products 

(Figure 31).    
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Figure 31.  Products Observed During Hydrogenation Catalyst Analysis. 

 

The homogenous system was found to be very slow to react (ethanol and ethyl 

acetate as solvent) resulting in mostly starting material and very little reduction of one 

alkene.  The heterogeneous catalysts were found to be much more effective in terms of 

reactivity.  Palladium on carbon (ethanol and ethyl acetate) provided a mixture of 

products and eventually decomposed when exposed to prolonged reaction times.  

Platinum on carbon (ethanol) resulted in good reactivity, but again yielded mixtures of 

hydrogenation products without approaching completion.  Palladium hydroxide on 

carbon (Pearlman’s catalyst)156 afforded the best reactivity providing complete 

hydrogenation when using ethanol as a solvent.  However, using any of the catalysts 

above, we could not consistently obtain complete hydrogenation or selective 
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hydrogenation of the benzyl group and the olefins residing in the alkyl chains in order to 

focus on hydrogenation of the core.   

Due to the inability to effect a stepwise reduction of tetraene 4.42, we began to 

examine more rigorous reaction conditions.  Thus, tetraene 4.42 was treated with 

Pearlman’s catalyst under an atmosphere of hydrogen in ethanol at 60 °C for 24 hours.  

LC/MS analysis indicated that 4 major products formed which we tentatively assigned as 

the two diastereomers of compounds 4.41 and 4.68 as illustrated in Scheme 64.      
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Scheme 64.  LC/MS Analysis of Initial Exhaustive Hydrogenation Attempt. 
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With this encouraging result in hand, we wanted to investigate Pearlman’s 

catalyst further.  At this point, we were unsure of relative stereochemistry and could not 

separate the products from the small scale test reaction described in Scheme 63.  

However, this result looked to be consistent with our initial peripheral hydrogenation 

analysis of tetraene 4.42.   We decided to increase reaction time in hope of producing 

only complete hydrogenation products 4.41.  Treatment of tetraene 4.42 with Pearlman’s 

catalyst under an atmosphere of hydrogen in ethanol at 60 °C for 60 hours provided 

almost complete hydrogenation shown in Scheme 65 below. 

 

 

 

Scheme 65.  LC/MS Analysis of Exhaustive Hydrogenation Attempt. 
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Optimal conditions for the reduction of 4.42 provided a ca. 1:1 mix of products 

tentatively assigned 4.41a and 4.41b.  A Parr hydrogenator mini bench top reactor (model 

4560) was then used to ensure exhaustive hydrogenation.  Thus, the TFA salt of tetraene 

4.42 was dissolved ethanol, transferred to the Parr reactor and treated with Pearlman’s 

catalyst.  The mixture was placed under a hydrogen atmosphere at 500 psi and heated to 

70 °C.  The progress of the reaction was monitored by LC/MS, and after 3 days the 

reaction was incomplete with compound 4.68 still remaining.  After much 

experimentation we found that 500 psi at 70 °C for 8 days lead to complete 

hydrogenation of the bis-piperdine core in 79% yielding an inseparable mixture of two 

isomers in a ratio of 1.3:1.  We tentatively assigned the relative stereochemistry of the 

two inseparable isomers based upon our analysis as shown in Scheme 66.   

 

 

 

Scheme 66.  Tentatively Assigned Hydrogenation Products 4.41. 
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Completion of Tetrahydrohaliclonacyclamine A (3.3) 

 The synthesis of 4.41 represented the completion of three of the four rings.  We 

now turned our attention to the formation of the remaining macrocycle of 

haliclonacyclamines A-C.  Surprisingly, the oxidation of diols 4.41 to the corresponding 

bis-aldehydes proved to be difficult.  It is known that the oxidation of alcohols in the 

presence of tertiary amines is not always a trivial proces.89  Attempts using Swern,133 

Ley-Griffith,157 and chromium based oxidants proved unproductive.  However, treatment 

with Dess-Martin periodinane158 provided a crude oxidation product that could be taken 

directly to the next step following careful reaction work-up.  This bis-aldehyde proved to 

be unstable to purification using flash chromatography.  Conversion to diene 4.70 was 

accomplished using 10 equivalents of methylenetriphenylphosphorane in a 51% over all 

yield for the two-step process (Scheme 67).  

 

 

 

Scheme 67.  Conversion to the Ring-Closing Metathesis Precursor. 

 

Once we developed a route to dienes 4.70 we were now prepared to examine 

closure of the 17-membered ring and completed the tetracyclic framework of the 
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haliclonacyclamines.  We anticipated that the two isomers would be separable by 

chromatography upon formation of the tetracycle.  Indeed, the ring system was fashioned 

upon treatment of the TFA salt of dienes 4.70 with Grubbs’ first generation catalyst 

(4.56) to afford isomers 4.71a and 4.71b in a combined yield of 80% (Scheme 68), 

separated by flash chromatography (3:6.5:0.25 hexanes/ethyl acetate/triethylamine). 

 

 

 

Scheme 68.  Formation of the Tetracyclic Framework. 

 

Lactams 4.71a and 4.71b were then reduced with Red-Al to provided diamines 

4.72a and 4.72b.  At this point we were able to determine both possessed an undesired 

trans double bond [6:1 (4.72a) and > 95:5 (4.72b)] by 13C-NMR analysis (Scheme 69).  

Interestingly, the 13C-NMR values of the 4.72a, (6:1 E/Z ratio) corresponding to the cis 

geometry were found to be in agreement with the assigned values for natural 

haliclonacyclamine C (1.4).36  The reported 13C-NMR values in the olefin region for 

natural haliclonacyclamine C (1.4) were δ 130.0 and 131.2, which were in exact 

agreement with the minor amount of the cis isomer, diamine 4.72a, obtained by ring-

closing metathesis (Figure 33).36          
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Scheme 69.  Attempted Formation of Haliclonacyclamine C (1.4) by RCM. 
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  Figure 32.  13C-NMR Analysis of 4.72a. 
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 Although we had obtained the undesired trans isomer (4.71a) as the major 

product, we were encouraged by the 13C-NMR values corresponding to the minor cis 

isomer as it indicated the relative stereochemistry was in alignment with 

haliclonacyclamine C (1.4).  This initial observation was validated upon conversion of 

metathesis product 4.71a to tetrahydrohaliclonacyclamine A (3.3).  Thus, metathesis 

product 4.71a was treated with Pd/C and stirred vigorously in an atmosphere of hydrogen 

at 100 psi to provide lactam 4.73a.  Crystals were formed from pure 4.73a using an ethyl 

acetate/ hexane/triethylamine solvent system.  Single crystal x-ray analysis confirmed the 

desired cis-syn-cis stereochemistry.  Lactam 4.73a was then reduced with Red-Al to 

afford tetrahydrohaliclonacyclamine A (3.3, Scheme 70).   
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Scheme 70.  Crystal Structure and Formation of Haliclonacyclamine C (1.4). 

 

 Mary Garson (University of Queensland) was kind enough to provided us with a 

small sample of natural haliclonacyclamine A (3.2) and tetrahydrohaliclonacyclamine A 
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(3.3).  We were now in a position to compare synthetic tetrahydrohaliclonacyclamine A 

(3.3) to semi-synthetic tetrahydrohaliclonacyclamine A (3.3) obtained from Garson.  To 

our surprise the two samples did not match by 1H-NMR or 13C-NMR.  We suspected that 

semi-synthetic tetrahydrohaliclonacyclamine A (3.3) was possibly contaminated with 

acid or palladium, thus altering the spectral properties.  Our suspicions were proven to be 

correct. Their spectral properties agreed upon purification using a strong cation exchange 

column (Figure 33).  

    

3.0 2.5 2.0 1.5 1.0 0.5 ppm

3.0 2.5 2.0 1.5 1.0 0.5 ppm

 

 

Figure 33.  1H-NMR Comparison of Synthetic and Semi-Synthetic Samples. 
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The cis-anti-cis isomer, 4.71b, was converted to the dihydroanalogue using the 

same protocol for tetrahydrohaliclonacyclamine A (3.3).  Metathesis product 4.71b was 

treated with Pd/C and stirred vigorously in an atmosphere of hydrogen at 100 psi to 

provide lactam 4.73b.  The lactam was then reduced with Red-Al to afford diamine 4.74b 

(Scheme 71).  The assignment of relative stereochemistry for the undesired cis-anti-cis 

isomer 4.74b is outlined in Chapter V. 

 

 

Scheme 71.  Reduction of the Cis-Anti-Cis Isomer 4.74b. 

   

Total Synthesis of Haliclonacyclamine C (1.4) 

 The unambiguous assignment of relative stereochemistry for the two 

diastereomers, obtained from the hydrogenation of tetraene 4.42 (Scheme 66), enabled 

the completion of tetrahydrohaliclonacyclamine A (3.3).  However, the total synthesis of 

haliclonacyclamine C (1.4) had not yet been reached.  The major problem with the 

current synthesis was one we had anticipated, unfavorable geometrical outcome of the 

olefin ring-closing metathesis reaction.  To produce the cis double bond present in 

haliclonacyclamine C (1.4) we wanted to explore a ring-closing alkyne metathesis 

followed by semi-hydrogenation strategy first introduced by Fürstner.138 
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 We were aware that this was an ambitious endeavor as few examples of this 

approach applied in the context of total synthesis have been reported.139,148,159-170  One 

major issue that has likely contributed to little published work in the area of alkyne 

metathesis is preparation and use of catalysts and precatalysts, which typically requires 

rigorous exclusion of moisture and air in order to preserve activity.   Furthermore, basic 

amines were known to be incompatible with the most common and readily accessible 

alkyne metathesis catalyst, Schrock’s tungsten neopentylidyne (4.75), due to the Lewis 

acidic tungsten center (Figure 34).138,171-174  Mindful of these issues, we were aware of 

other tungsten and molybdenum catalysts and precatalysts that might possibly be 

compatible with amines, as well as exploring the reactivity of amines protected as 

ammonium salts. 

 

 

 

Figure 34.  Representative Alkyne Metathesis Catalysts. 

 

 The synthesis of the ring-closing alkyne metathesis precursor 4.40 required 

conversion of diols 4.41a and 4.41b to the bis-aldehyde, then to a diyne, followed by bis 

methylation of the terminal alkynes.  To this end, diols 4.41a and 4.41b were treated with 

Dess-Martin158 to provided the crude bis-aldehyde that was immediately subjected to an 
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excess of the Bestmann-Ohira175,176 reagent to afford diynes 4.79a and 4.79b (Scheme 

72). 
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Scheme 72.  Conversion to Diynes 4.79a and 4.79b. 

 

 With a reliable route to diynes 4.79a and 4.79b, attention was focused on 

preparation of the ring-closing alkyne metathesis precursor.  Fortunately, lactam 

reduction with Red-Al provided diamines 4.80a (51%) and 4.80b (39%) that separated by 

flash chromatography (3:6.5:0.5 hexane/ethyl acetate/ triethylamine).  Bis-methylation of 

terminal alkyne 4.80a proved to be more difficult than anticipated.  Despite our best 

efforts, bis-methylation of terminal alkyne was invariably accompanied by N-methylation 

yielding quaternary ammonium salt 4.81.  After extensive experimentation, the diamine 

ring-closing alkyne metathesis precursor 4.40 was generated following a two step 

procedure. 

  Unable to achieve selective bis-methylation of the terminal alkynes we 

proceeded with complete methylation to quaternary ammonium salt 4.80 by treatment 

with n-butyllithium and an excess of methyl iodide, following a methanol quench and 

concentration, the crude product was taken immediately to the next step.  Selective N-



124 

 

demethylation of the crude mixture was realized upon treatment of ammonium salt 4.80 

with an excess of sodium thiophenoxide in dimethylformamide at 130 °C to provide 

diamine 4.40 in 41% yield for the two step procedure (Scheme 73).177      

 

 

 

Scheme 73.  Preparation of Ring-Closing Alkyne Metathesis Precursor (4.40).  

 

The production of methylated diyne 4.40 had now put us in position to begin 

studying the ring-closing alkyne metathesis of a complex diamine intermediate.  

Schrock’s tungsten neopentylidyne catalyst (4.75) was a logical first choice as it is the 

most commonly used and currently the only alkyne metathesis catalyst commercially 

available.  Although we were aware the catalytic activity of tungsten neopentylidyne 

catalyst 4.75 would likely be inhibited by the free amine of 4.40, a solution of diyne 4.40 

and tungsten catalyst 4.75 in toluene was heated to 80 °C for 6 hours and eventually 
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heated to reflux (Scheme 74).  No product was detected by thin-layer chromatography or 

LC/MS analysis, with only starting material remaining.  We submitted both quaternary 

ammonium salt 4.81 and a salt generated by treatment of diamine 4.40 with TFA to the 

same reaction conditions only to recover unreacted starting material. 

 

 

 

Scheme 74.  Attempted Ring-Closing Alkyne Metathesis. 

 

 The unfavorable results with Schrock’s tungsten neopentylidyne catalyst (4.75) 

led us to examine a different catalyst system.  We were particularly interested in a recent 

publication by Fürstner and co-workers describing practical and tolerant molybdenum 

nitride systems.172  The preparation of the two catalysts, as described by literature 

procedure, is outlined in scheme 75.172  Notably, the Fürstner group found molybdenum 

nitride species 4.84 to be completely inactive as a catalyst for metathesis.  After 

examination of additives they found that triphenylsilanol and precatalyst 4.84 led to the in 



126 

 

situ formation of active species 4.85 which is structurally undefined.  However, NMR 

evidence suggested the –(NSiMe3)2 unit is protonated by triphenolsilanol and following 

substiution gives 4.85.  Treatment of complex 4.85 with pyridine did lead to a complex 

that not only could be crystallized for structure determination, but also retained similar 

activity to complex 4.85 while being robust enough to quickly be weighed in air with 

high catalysts loadings.172  This concept is impossible with all other catalysts systems to 

date.  

 

 

 

Scheme 75.  Preparation of Molybdenum Nitride Systems as Described by Fürstner. 

 

 Of particular interest to our studies was Furstner’s successful alkyne cross 

metathesis of a basic pyridine derivative.172  This result suggested that species 4.77 might 

tolerate tertiary amines as well.  We decided to construct a very simple model system to 

test our hypothesis.  An alkylation of piperidine provided us with amine 4.86, an easily 

accessible system to attempt alkyne cross metathesis with both complexes 4.85 and 4.77.  
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Although this provided no information on a successful ring-closing alkyne metathesis, it 

provided knowledge about the catalytic activity of these species in the presence of basic 

amines.  Thus, treatment of amine 4.86 with molybdenum nitride species 4.77 in toluene 

at 80 °C provided no product and only starting material.  However, attempts with the in 

situ formation of catalyst 4.85 with tertiary amine 4.86 under the same conditions led to 

successful construction of cross metathesis product 4.87 (Scheme 76).  This result was 

somewhat surprising due to the success with a pyridine system by Fürstner and co-

workers using pyridine coordinated catalyst 4.77, not in situ prepared catalyst 4.85.   
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Scheme 76.  Catalyst Compatibility Accessment. 

 

 With a catalyst system proven to be active in the presence of a tertiary amine, we 

immediately turned our attention back to the ring-closing alkyne metathesis of diamine 

4.40.  To this end, precatalyst 4.84 was treated with 3 equivalents of triphenolsilanol in 
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toluene over 4Å molecular sieves and heated to 80 °C for 30 minutes.  Notably, the 

formation of active system 4.85 can be qualitatively determined by observation of 

solution color change from bright yellow, to light orange, and finally turning a pale 

yellow.  Diamine 4.40 was then added to the catalyst solution at room temperature and 

the resulting solution was heated to 80 °C.  To our delight, all starting material had been 

consumed after 2 hours and product was detected by LC/MS.  Further analytical data on 

the pure product confirmed the successful construction of cycloalkyne 4.88 (Scheme 77).  

This establishes the first ring-closing alkyne metathesis of a substrate containing basic 

amine functionality to date.  Subsequent Lindlar reduction of cycloalkyne 4.88 provided 

synthetic haliclonacyclamine C (1.4) identical to the natural product in all respects except 

for optical rotation. 

 

 

 

Scheme 77.  Completion of Haliclonacyclamine C (1.4). 
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Bioactivity of Tetrahydrohaliclonacyclamine A 

 

 Haliclonacyclamines A-C have been reported to display cytotoxic, antibiotic, and 

antifungal activity.  Haliclonacyclamine C (1.4) specifically has an IC50 value of 0.7 

µg/mL in a P388 assay, displays antibacterial activity against Bacillus subtilus, and strong 

antifungal properties against Candida Albicans and Trichophyton mentagrophytes.36  

Berlinck and co-workers have also shown that some arenosclerins have bioactivity as 

well.106  With the synthesis of tetrahydrohaliclonacyclamine A (3.3) and 

haliclonacyclamine C (1.4) complete, we wanted to further investigate the potential 

biological activity of tetrahydrohaliclonacyclamine A (3.3). 

 Our evaluation began by submitting the bis-TFA salt of 

tetrahydrohaliclonacyclamine A (3.3) to MSD Pharma Services for a primary 

biochemical analysis.  A panel of ion channel and GPCR receptors were used for 

evaluation in a radioligand single-point (10 µM) biochemical assay to obtain information 

on the primary biochemical activity.  Responses of greater than 50% inhibition or 

stimulation are listed in Table 4 below. 

 

Primary Biochemical 

Assay 

Species Source Concentration % Inihibition 

 
Adenosine A3 Human recombinant CHO 

cells 
10 µM 77 

Adrenergic α1A Wister Rat submaxillary 10 µM 98 
Adrenergic α1B Wistar Rat liver 10 µM 100 
Adrenergic α1D Human recombinant HEK-

293 cells 
10 µM 89 

Adrenergic α2A Human recombinant insect 
Sf9 cells 

10 µM 99 

Adrenergic β1 Human recombinant CHO-
K1 cells 

10 µM 54 
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Transporter, 
Norepineephrine (NET) 

Human recombinant MDCK 
cells 

10 µM 70 

Calcium Channel L-
Type, Benzothiazepine 

Wistar Rat brain 10 µM 81 

Dopamine D25 Human recombinant CHO 
cells 

10 µM 52 

Dopamine D3 Human recombinant CHO 
cells 

10 µM 97 

Transporter, Dopamine 
(DAT) 

Human recombinant CHO-
K1 cells 

10 µM 86 

Histamine H1 Human recombinant CHO-
K1 cells 

10 µM 63 

Histamine H2 Human recombinant CHO-
K1 cells 

10 µM 73 

Muscarinic M1 Human recombinant CHO 
cells 

10 µM 82 

Neuropeptide Y Y1 Human SK-N-MC cells 10 µM 64 
Opiate κ (OP2, KOP) Human recombinant HEK-

293 cells 
10 µM 83 

Opiate µ (OP3, MOP) Human recombinant CHO-
K1 cells 

10 µM 92 

Potassium Channel 
hERG 

Human recombinant HEK-
293 cells 

10 µM 98 

Serotonin (5-Hydroxy- 
tryptamine) 5-HT1A  

Human recombinant CHO-
K1 cells 

10 µM 100 

Sodium Channel, Site 2 Wister Rat brain 10 µM 111 
 

Table 4.  Summary of Signifigant Biochemical Assay Results. 

   

Tetrahydrohaliclonacyclamine A (3.3) was found to inhibit endogenous ligand 

binding of a number of receptors including opiate k (83%), muscarinic M1 (82%), 

potassium hERG channel (98%), as well as other receptor assays at a concentration of 10 

µM as shown in Table 4.  Although tetrahydrohaliclonacyclamine A (3.3) possessed 

signifigant bioactivity, it was not found to be receptor selective.  These preliminary 

results provided us with a solid inital analysis, but provided no information about 

functional activity (i.e. agonist or antagonist effect). 
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We were particularly interested in further examinination of the agonist and 

antagonist affects of tetrahydrohaliclonacyclamine A (3.3) with muscarinic receptors.  

This was based on two factors.  The first being that macrocyclic bis-pyridinium 

marcocycles cyclostellettamines A-F (1.30-1.35) have been found to block the binding of 

[3H]-methyl quinuclidinyl benzilate to the muscarinic subtypes M1 (rat brain), M2 (rat 

heart), and M3 (rat salivary gland).178  It is proposed that the positively charged 

pyridinium moieties of the cyclostellettamines participate in binding to TM III Asp 

residue in the ligand-binding domain of the muscarinic receptors.178  The second factor 

was the availability to evaluate tetrahydrohaliclonacyclamine A (3.3) and congeners with 

muscarinic receptors within Vanderbilt University. 

In a collaboration with Craig Lindsley’s group, Meredith Notezel led an 

investigatation examining the functional activity on hM1 mAChR with 

tetrahydrohaliclonacyclamine A (3.3), the cis-anti-cis isomer (4.74b), and 2 other 

analogues with the lactam carbonyl in place as depicted in Figure 35.  We wanted to 

evaluate the lactam systems as this significantly reduces the basicity of one nitrogen 

within the tetracycle system.  Unfortunately, the lactam systems and the cis-anti-cis 

diamine were modestly active and not fully functional antagonist against hM1.  However, 

tetrahydrohaliclonacyclamine A (3.3) (Vanderbilt University ID: 110N) was shown to be 

a fully functional antagonist against hM1 as illustrated in Figure 35.  Analysis of 

haliclonacyclamine C (1.4) bioactivity has currently not been evaluated.      
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Figure 35.  In Vitro Screening of Tetrahyrdohaliclonacyclamine A (3.3). 

 

 In summary, we have completed the synthesis of 

tetrahydrohaliclonacyclamine A (3.3) in 19 steps and haliclonacyclamine C (1.4) in 21 

steps by utilizing the Stille cross coupling and ring closing metathesis protocols.  We 

were also able to achieve semi-stereoselective hydrogenation of the bis-piperidine core, 

common to the haliclonacyclamines and related tetracyclic alkaloids, as well as a ring-

closing alkyne metathesis of a complex diamine alkaloid. 
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CHAPTER V 

 

EXPERIMENTAL SECTION 

 

General Procedure 

All non-aqueous reactions were performed in flame-dried or oven dried round-bottomed 

flasks under an atmosphere of argon. Where necessary (so noted) solutions were 

deoxygenated by alternate freeze (liquid nitrogen)/evacuation/argon-flush/thaw cycles 

(FPT, three iterations) or degassed by purging with argon for several minutes.  Stainless 

steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. 

Reaction temperatures were controlled using a thermocouple thermometer and analog 

hotplate stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) 

unless otherwise noted. Flash column chromatography was conducted as described Still 

et. al. using silica gel 230-400 mesh.179  Where necessary, silica gel was neutralized by 

treatment of the silica gel prior to chromatography with the eluent containing 1% 

triethylamine.  Were indicated ammonium salts were converted to free-amines using 

Strong Cation Exchange (SCX) cartridges purchased from Varian.  Analytical thin-layer 

chromatography (TLC) was performed on E. Merck silica gel 60 F254 plates and 

visualized using UV, ceric ammonium molybdate, potassium permanganate, and 

anisaldehyde stains. Yields were reported as isolated, spectroscopically pure compounds. 
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Materials 

Solvents were obtained from either a MBraun MB-SPS solvent system or freshly distilled 

(tetrahydrofuran was distilled from sodium-benzophenone; toluene was distilled from 

calcium hydride and used immediately; dimethyl sulfoxide was distilled from calcium 

hydride and stored over 4Å molecular sieves). Commercial reagents were used as 

received with the following exceptions: N,N-bis(trifluoromethylsulfonyl)-5-chloro-2-

pyridylamine was prepared according to literature procedure.122  The molarity of n-

butyllithium solutions was determined by titration using diphenylacetic acid as an 

indicator (average of three determinations).   

 

Instrumentation 

Reverse phase HPLC was conducted on a Varian ProStar HPLC system using a 

Phenomenex Luna 5u C18(2) 100A Axia 50 x 30.00 mm column.  All reverse phase 

fractions were concentrated using a Genevac EZ-2 plus.  Hydrogenation was conducted 

using a Parr hydrogenator mini bench top reactor (model 4560).   Infrared spectra were 

obtained as thin films on NaCl plates using a Thermo Electron IR100 series instrument 

and are reported in terms of frequency of absorption (cm-1).  1H NMR spectra were 

recorded on Bruker 300, 400, 500, or 600 MHz spectrometers and are reported relative to 

deuterated solvent signals.  Data for 1H NMR spectra are reported as follows: chemical 

shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = 

multiplet, br = broad, app = apparent), coupling constants (Hz), and integration. 13C 

NMR spectra were recorded on Bruker 75, 100, 125, or 150 MHz spectrometers and are 

reported relative to deuterated solvent signals.  LC/MS was conducted and recorded on an 
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Agilent Technologies 6130 Quadrupole instrument.  High-resolution mass spectra were 

obtained from the Department of Chemistry and Biochemistry, University of Notre Dame 

using either a JEOL AX505HA or JEOL LMS-GCmate mass spectrometer or from 

Vanderbilt Institute of Chemical Biology Drug Discovery Program laboratory using a 

Waters Acquity UPLC and Micromass Q-Tof Ultima API.  The structure of lactam 26 

was obtained by Dr. Joseph Reibenspies at the X-ray diffraction facility of Department of 

Chemistry, Texas A&M University. 

 

Compound Preparation 

 

 

 

 1-(5-(benzyloxy)pentyl)piperidine-2,6-dione (4.15)  To a solution of glutarimide (840 

mg, 4.33 mmol), triphenylphosphine (1.23 g, 4.70 mmol), and 5-benyzyloxypentanol 

(5.1)180 at 0 °C in tetrahydrofuran (23 mL) was added diisopropylazodicarboxylate (0.93 

mL, 4.70 mmol) dropwise.  The solution was allowed to warm to room temperature and 

stirring continued for 24 h.  The reaction mixture was concentrated and the residue 

triturated with a 1:1 ratio of hexanes/diethyl ether.  The newly formed solid was removed 

by filtration and the filtrate was concentrated.  The residue was purified by flash column 

chromatography on silica gel (eluent: 2:1 hexanes/ethyl acetate) to yield 1-(5-

(benzyloxy)pentyl)piperidine-2,6-dione 4.15 (863 mg, 91%) as a pale yellow oil:  IR 

(neat) 2936, 2861, 1690, 1354 cm-1;  1H-NMR (CDCl3, 400 MHz) δ 7.32-7.30 (m, 5H), 
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4.47 (s, 2H), 3.73 (t, J = 8.0 Hz, 2H), 3.43 (t, J = 8.0 Hz, 2H),  2.62 (t, J = 8.0 Hz, 4H), 

1.89 (m, 2H), 1.65 (m, 2H), 1.51 (m, 2H), 1.39 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 

172.1, 138.3, 128.1, 127.2, 127.2, 127.1, 72.4, 69.8, 39.1, 32.5, 29.0, 27.5, 23.2, 16.8.  

HRMS calculated for C17H23NO3 (M + H)+ m/z: 290.1756, measured: 290.1749. 

 

 

 

1-(5-(benzyloxy)pentyl)-3,4-dihydropyridin-2(1H)-one (4.17)  A solution of imide 4.15 

(16.0 g, 55.4 mmol) in ethanol (500 mL) was cooled to -20 °C.  Sodium borohydride 

(16.8 g, 443.2 mmol) was added and the mixture was stirred for 5 h at -20 °C.  During 

this 5 h period 2 N HCl/ethanol (12.0 mL/h) was added dropwise via syringe pump.  The 

reaction was quenched with cold water (500 mL).  The aqueous phase was extracted with 

chloroform (4 x 300 mL).  The combined organic extracts were dried over MgSO4, 

filtered, and concentrated to yield alcohol 4.16 as a colorless oil used without further 

purification. 

 

To a solution of alcohol 4.16 (16.1 g, 55.4 mmol) in tetrahydrofuran (500 mL) was added 

trifluoroacetic anhydride (8.46 mL, 60.9 mmol).  The solution was stirred for 30 min at 

room temperature and quenched with saturated aqueous sodium bicarbonate (500 mL) 

and extracted with ethyl acetate (3 x 300 mL), the combined organic extracts were dried 

over MgSO4, filtered, and concentrated.  The residue was purified by flash column 
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chromatography on silica gel (eluent: 2:1 hexanes/ethyl acetate) to yield 1-(5-

(benzyloxy)pentyl)-3,4-dihydropyridin-2(1H)-one 4.17 (12.0 g, 79% over two steps) as a 

yellow oil:  IR (neat) 2963, 2858, 1676, 1386 cm-1;  1H-NMR (CDCl3, 300 MHz) δ 7.33-

7.30 (m, 5H), 5.97 (d, J = 8.0 Hz, 1H), 5.09 (dt, J = 7.7, 4.4 1H), 4.47 (s, 2H), 3.44 (m, 

4H) 2.49 (t, J = 7.8 Hz, 2H), 2.28 (m, 2H), 1.65 (m, 4H), 1.39, (m, 2H); 13C NMR 

(CDCl3, 100 MHz) δ 169.0, 138.5, 129.8, 128.2, 127.4, 127.3, 105.7, 72.7, 70.0, 45.8, 

31.3, 29.3, 28.3, 23.2, 20.2.  HRMS calculated for C17H23NO2 (M + H)+ m/z: 274.1807, 

measured: 274.1809. 

 

 

 

1-(5-(benzyloxy)pentyl)-5-iodo-3,4-dihydropyridin-2(1H)-one (4.13). To a solution of 

enamine 4.17 (200 mg, 1.07 mmol) in methanol (10 mL) at -78 °C was added a 1.0 M 

solution of iodine monochloride (1.60 mL, 1.60 mmol) in dichloromethane (10 mL).  The 

mixture was allowed to stir at -78 °C for 1 h.  The solution was allowed to warm to room 

temperature and methanol was removed in vacuo.  The residue was diluted with 

dichloromethane (10 mL) and aqueous sodium sulfite was slowly added until the deep 

red solution became clear.   The mixture was diluted with water (5 mL). The aqueous 

layer was extracted with dichloromethane (3 x 10 mL).  The combined organic extracts 

were dried over MgSO4, filtered, and concentrated to give iodoaminal 5.1 (360 mg as a 

crude weight).  The product was immediately used in the next step without further 

purification. 



138 

 

To a solution of the iodo aminal (5.1, 369 mg 1.07 mmol) in toluene (10 mL) was added 

a catalytic amount of trifluoroacetic acid (10 µL).  The flask was immersed into an oil 

bath at 145 °C and allowed to reflux for 15 min at which time the mixture turned a dark 

red color.  The solution was cooled to room temperature and then to 0 °C.  Triethylamine 

(1.00 mL) was introduced to the solution.  The solvent was removed in vacuo and the 

residue purified by flash column chromatography (eluent: 4:1 hexane/ethyl acetate) to 

afford 213 mg (66% over two steps) of 1-(5-(benzyloxy)pentyl)-5-iodo-3,4-

dihydropyridin-2(1H)-one 4.13 as a light brown oil:  IR (neat) 2933, 2857, 1671 cm-1;  

1H-NMR (CDCl3, 300MHz) δ 7.23 – 7.21 (m, 5H), 6.39 (s, 1H), 4.64 (s, 2H), 3.42 (m, 

4H), 2.66 (t, J = 7.4 Hz, 2H), 2.54 (t, J = 7.1 Hz, 2H) 1.61 (m, 4H), 1.34 (m, 2H);  13C 

NMR (CDCl3, 100 MHz) δ 167.3, 138.5, 135.4, 128.3, 127.6, 127.5, 72.6, 70.0, 68.6, 

46.2, 33.4, 32.6, 29.3, 28.5, 23.3.  HRMS calculated for C17H22INO2 (M + H)+ m/z: 

400.0774, measured: 400.0787. 

 

N
H

O

(Boc)2O

Et3N, MeOH
N
Boc

O

4.18 4.19

HCl > 95 %

 

 

tert-butyl 4-oxocyclohexanecarboxylate  (4.19).  To a stirred solution of triethylamine 

(4.52 mL, 32.5 mmol) in methanol (25 mL) was added 4-piperidone monohydrate 

hydrochloride 4.18 (1.00 g, 6.49 mmol) and di-tert-butyl dicarbonate (4.48 mL, 19.5 

mmol).  The reaction mixture was heated at 45 oC for 1.5 h, the solvent was evaporated in 

vacuo.  2 N HCl (10 mL) and ethyl acetate (20 mL) were added.  The two phases were 
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seperated and the aqueous phase was extracted with ethyl acetate (EtOAc) (3 x 10 mL).  

The combined organic extracts were dried over MgSO4, filtered, and concentrated.  The 

residue was purified by flash column chromatography on silica gel eluting with 3:1 

(hexanes/ethyl acetate) to yield tert-butyl 4-oxocyclohexanecarboxylate 4.19 (1.29 g, 

95%) as a white solid.  Spectral data correlated with the reported values.120 

 

 

 

1-tert-butyl 3-methyl 4-oxocyclohexane-1,3-dicarboxylate (4.20).  To a stirred solution 

of carbamate 4.19 (4.10 g, 20.60 mmol) in tetrahydrofuran at -78 oC, LiHMDS (26.87 mL 

of 1.0 M solution in tetrahydofuran, 26.78 mmol) was added dropwise.  The mixture was 

stirred at -78 oC for 1 h. Methyl cyanoformate (2.62 mL, 26.78 mmol) was added and the 

resulting solution was stirred for an additional hour then quenched with H2O.  The 

mixture was washed with water (100 mL).  The aqueous phase extracted with EtOAc (3 x 

50 mL).  The combined organics were dried over MgSO4, filtered, and concentrated. The 

residue was purified by flash column chromatography on silica gel eluting with 8:1 

(hexanes/ethyl acetate) to yield 1-tert-butyl 3-methyl 4-oxocyclohexane-1,3-

dicarboxylate 4.20 (4.11 g, 74%) as a yellow oil.  Spectral data correlated with the 

reported values.121 
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1-tert-butyl 3-methyl 4-(trifluoromethylsulfonyloxy)cyclohex-3-ene-1,3 dicarboxylate 

(4.21).  To a solution of β-keto ester 4.20 (2.64 g, 10.27 mmol) KHMDS (24.65 mL of a 

0.5 M solution in toluene, 12.32 mmol) was added dropwise at -78 oC.  The reaction 

mixture was warmed to -20 oC during the course of 2 h, then cooled down to -78 oC.  

Then 2 – [N, N – bis (trifluromethylsulfonyl) amino] – 5 chloropyridine (4.81 g, 12.32 

mmol) was added in tetrahydrofuran via cannula.  The reaction was warmed to room 

temperature and proceeded for 24 h.  The solution was concentrated and purified by flash 

column chromatography on silica gel eluting with 10:1 (hexanes/ethyl acetate 1% 

triethylamine) to yield 1-tert-butyl 3-methyl 4-(trifluoromethylsulfonyloxy) cyclohex-3-

ene-1,3-dicarboxylate 4.21 (3.84 g, 96%) as a yellow oil.   IR (neat) 2976, 1706, 1424, 

1245, 1209 cm-1; 1H-NMR (500 MHz, CDCl3) δ 4.27 (s, 2H), 3.83 (s, 3H), 3.62 (t, J = 

5.5 Hz, 2H), 2.51 (m, 2H), 1.48 (s, 9H); 13C-NMR (125MHz, CDCl3) δ 162.8, 153.9, 

122.0, 119.5, 116.9, 114.4, 81.0, 52.3, 43.0, 39.3, 28.8, 28.3; HRMS (ESI) calculated for 

C13H19O7F3NS (M+H)+ m/z: 390.0834, measured 390.0804.  
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Allylic Alcohol (4.22).  To a solution of vinyl triflate 4.21 (3.84 g, 9.87 mmol) in diethyl 

ether (150 mL) at 0 oC was added DIBAL (5.28 mL in ether, 29.61 mmol).  The reaction 

was stirred for 30 minutes then quenched with 1 N HCl.  The solution was washed with 1 

N HCl.  The aqueous phase was extracted with ethyl acetate (3 x 80 mL).  The combined 

organics were dried over MgSO4, filtered, and concentrated.  The residue was purified by 

flash column chromatography on silica gel eluting with 3:1 (hexanes/ethyl acetate 1% 

triethylamine) to yield allylic alcohol 4.22 (2.92g, 79%) as a pale yellow oil.  1H-NMR 

(CDCl3, 300 MHz) δ 4.26 (s, 2H), 4.12 (s, 2H), 3.61 (t, J = 5.8 Hz, 2H), 2.43 (m, 2H), 

1.46 (s, 9H). 

 

 

 

Vinyl Triflate (4.23).  To a solution of allylic alcohol 4.22 (2.23 g, 6.18 mmol) in DMF 

at 0 oC was added Imidazole (2.10 g, 30.90 mmol) followed by TBSCl, (4.67 g, 30.90 

mmol) then DMAP (151 mg, 1.24 mmol).  The reaction mixture was allowed to warm to 

room temperature and stir for 19 h.  The solution was washed with water and the aqueous 

phase was extracted with ethyl acetate (3 x 90 mL).  The combined organics were dried 

over MgSO4, filtered, and concentrated.  The residue was purified by flash column 
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chromatography on silica gel eluting with 50:1 (hexanes/ethyl acetate 1% triethylamine) 

to yield vinyl triflate 4.23 (2.82 g, 96%) as a colorless oil .  IR (neat) 2927, 2856, 1699, 

1418, 1365, 1249, 1162;  1H-NMR (CDCl3, 300 MHz) δ 4.32 (s, 2H), 4.08 (br s, 2H), 

3.59 (t, J = 6.0 Hz, 2H), 2.44 (m, 2H), 1.45 (s, 9H), 0.88 (s, 9H), 0.07 (s, 6H); 13C NMR 

(CDCl3, 100 MHz) δ 154.3, 140.2, 128.6, 119.8 (q, J = 310), 80.2, 58.4, 43.3, 41.1, 39.9, 

28.1, 25.6, 18.0, -4.3; HRMS (ESI) m/z 482.1788 [(M + Li)+ calculated for 

C18H32F3NO6SSiLi: 482.1832. 

 

 

 

Vinyl Stannane (4.12).  To a solution of vinyl triflate 4.23 (1.5 g, 3.15 mmol) in 

tetrahydrofuran was added hexamethylditin (1.96 mL, 9.45 mmol) dropwise followed 

addition of LiCl (794 mg, 18.90 mmol), and tetrakis(triphenylphosphine)palladium(0) 

(726 mg, 0.63 mmol).  The resulting solution was degassed (3x) by the freeze-pump-thaw 

method. The mixture was then placed in an oil bath preheated to 80 oC and allowed to stir 

for 20 h monitoring by thin layer chromatography 10:1 (hexane/ethyl acetate).  The 

solution was quenched and washed with sodium bicarbonate.  The aqueous phase was 

extracted with ethyl acetate (3 x 50 mL).  The combined organic extracts dried over 

MgSO4, filtered, and concentrated.  The residue was purified by flash column 

chromatography on silica gel eluting with 100:1 (hexanes/ethyl acetate 1% triethylamine) 

to yield vinyl stannane 4.12 (1.00 g, 65%) as a colorless oil.  1H-NMR (CDCl3, 300 
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MHz) δ 4.03 (s, 2H), 3.96 (br s, 2H), 3.40 (t, J = 6.4 Hz, 2H), 2.24 (m, 2H), 1.44 (s, 9H), 

0.89 (s, 9H), 0.15 (s, 9H), 0.06 (s, 6H). 

  

 

 

Bis-piperidine (4.24). To a flame dried flask/condenser was added vinyl tin 4.12 (1.70 g, 

3.46 mmol) and vinyl iodide 4.13 (1.38 g, 3.46 mmol) in dimethyl sulfoxide, followed by 

addition of copper chloride (1.71 g, 17.30 mmol), lithium chloride (874 mg, 20.80 

mmol), and tetrakis (triphenylphosphine)palladium(0) (400 mg, 0.35 mmol).  The 

solution was stirred, then degassed (3x) freeze–pump–thaw.  The reaction mixture was 

placed into an oil bath preheated to 70 oC, stirred for 4 h cooled to room temperature and 

quenched with saturated NaHCO3.  The resulting solution was filtered over Celite.  The 

filtrate was washed with H2O (100 mL), extracted with ethyl acetate (3 x 75 mL), dried 

over MgSO4, filtered, and concentrated.  The residue was purified by flash column 

chromatography on silica gel eluting with 3:1 (hexanes/ethyl acetate) to yield bis-

piperidine 4.24 (1.62 g, 78%) as a yellow oil.  IR (neat) 2983, 2811, 1731, 1669, 1366, 

1248, 1165, 698; 1H-NMR (CDCl3, 300 MHz) δ 7.29 - 7.25 (m, 5H), 5.96 (s, 1H), 4.46 

(br s, 2H), 4.15 (br s, 2H), 3.97 (br s, 2H), 3.44 (m, 6H), 2.49 (t, J = 7.2 Hz, 2H), 2.27 (t, 

J = 7.1 Hz, 2H), 2.13 (br s, 2H), 1.61 (m, 4H), 1.45 (s, 9H), 1.35 (m, 2H), 0.88 (s, 9H), 

0.05 (s, 6H); 13C NMR (CDCl3, 100MHz) δ 168.2, 154.4, 138.2, 131.1, 127.9, 127.3, 
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127.1, 117.2, 79.3, 72.5, 69.8, 62.5, 45.8, 44.5, 39.7, 31.0, 29.1, 28.2, 28.1, 27.8, 25.6, -

5.54; HRMS (ESI) m/z 605.3872 [(M + Li)+ calculated for C34H54N2O5SiLi: 605.3962. 

 

 

 

Allylic Acetate (4.11).  To a stirred solution of diene 4.24 (1.62 g, 2.70 mmol) in 

tetrahydrofuran (45 mL) at 0 oC was added a 1.0 M solution of tertbutylammonium 

fluoride in tetrahydrofuran (5.40 ml, 5.40 mmol).  The mixture was stirred at 0 oC for 40 

minutes.  The reaction was quenched and washed with water.  The aqueous phase was 

extracted with ethyl acetate (3 x 50 mL).  The combined organics were dried over 

MgSO4, filtered, and concentrated.  The residue was taken directly to the next step 

without any further purification. 

To a stirred solution of alcohol 4.25 (1.30 g, 2.69 mmol) in dichloromethane (25 mL) 

were added 4-dimethylaminopyridine (26.0 mg, 0.22 mmol), triethylamine (1.31 mL, 

9.42 mmol), and acetic anhydride (0.52 mL, 5.38 mmol).  The mixture was stirred at 

room temperature for 45 minutes then quenched with water. The solution was washed 

with water (100 mL), extracted with ethyl acetate (3 x 50 mL), dried over MgSO4, 

filtered, and concentrated.  The residue was purified by flash column chromatography on 

silica gel eluting with 1:1 (hexanes/ethyl acetate) to yield allylic acetate 4.11 (1.25 g, 

86%) as a dark yellow gum.  1H-NMR (CDCl3, 300 MHz) δ 7.28 - 7.25 (m, 5H), 5.96 (s, 
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1H), 4.46 (br s, 2H), 4.15 (br s, 2H), 3.97 (br s, 2H), 3.44 (m, 6 H), 2.49 (t, J = 7.6 Hz, 

2H), 2.27 (t, J = 7.4 Hz, 2H), 2.13 (br s, 2H), 1.91 (s, 3H), 1.61 (m, 4H), 1.45 (s, 9H), 

1.35 (m, 2H). 

 

 

 

6-bromohex-5-yn-1-ol (4.27).  To a solution of 5-Hexyn-1-ol (4.26, 526 mg, 5.37 mmol) 

in acetone (22.0 mL) was N-bromosuccinimde (1.43 g, 8.06 mmol) and silver nitrate (274 

mg, 1.61 mmol).  The mixture was allowed to stir for 30 minutes, and then concentrated.  

The residue was purified by flash column chromatography on silica gel eluting with 4:1 

(hexanes/ethyl acetate) to yield 6-bromohex-5-yn-1-ol 4.27 (920 mg, 95%) as a pale 

yellow oil.  Spectral data correlated to reported values.181  

 

 

 

(E)-6-(tributylstannyl)hex-5-en-1-ol (4.28).  To a solution of alkynyl bromide 4.27 (670 

mg, 3.78 mmol) in tetrahydrofuran (15 mL) was added 

bis(triphenylphosphine)palladium(II) chloride (53.0 mg, 0.08 mmol) followed by the 

slow addition of tributyltin hydride (1.32 mL, 4.91 mmol).  The yellow solution turned to 

a dark orange color after approximately 10 minutes, and after the addition of another 

equivalent of tributyltin hydride the mixture turned to a dark brownish-red color.  The 
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mixture was concentrated and the residue was purified by flash column chromatography 

on silica gel eluting with 10:1 (hexanes/ethyl acetate) to yield (E)-6-(tributylstannyl)hex-

5-en-1-ol 4.28 (999 mg, 68%) as a colorless oil.  Spectral data correlated to reported 

values.144 

 

 

 

(E)-(6-(benzyloxy)hex-1-enyl)tributylstannane (4.29).  To a solution of vinyl tin 4.28 

(1.00 g, 2.57 mmol) in tetrahydrofuran (20 mL) at 0 oC was added sodium hydride (514 

mg, 12.85 mmol, in two portions over 10 minutes).  Then benzyl bromide (0.76 mL, 6.43 

mmol) was added dropwise.  The mixture was allowed to warm to room temperature and 

stir for 27 h.  The solution was cooled to 0 oC and quenched with saturated sodium 

bicarbonate.  The aqueous phase was extracted with ethyl acetate.  The combined 

organics were dried over MgSO4, filtered, and concentrated. The residue was purified by 

flash column chromatography on silica gel eluting with 4:1 (hexanes: ethyl acetate, 1% 

triethylamine) to yield (E)-(6-(benzyloxy)hex-1-enyl)tributylstannane 4.29 (1.00 g mg, 

82%) as a pale yellow oil.  Spectral data correlated to reported values.182   
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Triene (4.10).  To a solution of allylic acetate 4.11 (18.0 mg, 0.034 mmol) and vinyl tin 

4.29 (49.0 mg, 0.103 mmol) in dimethylformamide (0.6 mL) was added bis 

(dibenzylidieneacetone) palladium(0) (4.0 mg, 0.007 mmol) and lithium chloride (7.0 

mg, 0.170 mmol).  The mixture was immediately degassed 3x (freeze-pump-thaw).  The 

solution was allowed to warm back to room temperature after the final degassing, placed 

into a preheated oil bath a 65 oC, and stirred for 18 h.  The mixture was then quenched 

with saturated sodium bicarbonate.  The solution was washed with water (15 mL).  The 

aqueous phase was extracted with ethyl acetate (3 x 10 mL).  The combined organics 

were dried over MgSO4, filtered, and concentrated.  The residue was purified by flash 

column chromatography on silica gel eluting with 2:1 (hexanes/ethyl acetate) to yield 

triene  4.10 (18.4 mg, 84%) as a yellow gum.  1H-NMR (CDCl3, 400 MHz) δ 7.35 - 7.25 

(m, 10H), 5.85 (s, 1H), 5.39 (m, 1H), 5.33 (m, 1H), 4.47 (s, 2H), 4.46 (s, 2H), 3.80 (br s, 

2H), 3.43 (m, 8H), 2.75 (d, J = 5.3 Hz, 2H), 2.49 (t, J = 7.6 Hz, 2H), 2.27 (t, J = 7.3 Hz, 

2H), 2.11 (m, 2H), 1.99 (m, 2H), 1.61 (m, 10H), 1.52 (s, 9H).  13C NMR (CDCl3, 

100MHz) δ  168.4, 154.5, 138.4 (2C), 131.1, 128.3 (5C), 127.6 (5C), 127.5 (3C), 126.5, 

118.4, 79.7, 72.8, 72.9, 70.1, 70.2, 65.8, 40.7, 35.2, 32.4, 31.5, 30.3, 29.6, 29.4, 29.3, 

28.5, 26.1, 24.0, 23.4; HRMS (ESI) m/z 663.4197 [(M + Li)+ calculated for 

C41H56N2O5Li: 663.4349. 
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Representative Procedure for Elimination Product (4.32). To a solution of allylic 

alcohol 4.30 (18.0 mg, 0.0174 mmol) in dichloromethane at -78 °C was added 

triethylamine (3.4 µL, 0.0224 mmol).  Methanesulfonyl chloride (1.8 µL, 0.0226 mmol) 

was added and the solution was slowly warmed to room temperature.  The reaction 

mixture was monitored by thin layer chromatography every 15 minutes to monitor for 

any products forming other than elimination product 4.32.  The reaction was quenched 

with water (3 mL) and extracted with ethyl acetate (3 x 5 mL), the combined organic 

extracts were dried over MgSO4, filtered, and concentrated.  The residue was purified by 

flash column chromatography on silica gel (eluent: 2:1 hexanes/ethyl acetate) to yield 

elimination product 4.32 (11.3 mg, 0.0111 mmol) in a 64% yield.  1H-NMR (CDCl3, 300 

MHz) δ 7.65 (m, 8H), 7.39-7.30 (m, 17H), 6.01 (s, 1H), 5.63 (br s, 1H), 4.95 (d, J = 9.3 

Hz, 1H), 4.46 (s, 2H), 3.62 (m, 4H), 3.43 (app t, J = 6.3 Hz, 4H), 3.12 (m, 4H), 2.43-3.36 

(m, 4H), 2.17 (m, 1H), 1.58-1.35 (m, 18H), 1.02 (s, 18H); 13C NMR (CDCl3, 100 MHz) δ 

171.5, 138.6, 136.4, 135.6, 134.1, 134.1, 129.5, 129.5, 128.3, 127.6, 127.5, 127.3, 125.2, 

117.7, 111.4, 72.9, 70.2, 63.9, 63.8, 57.9, 57.8, 46.3, 40.6, 32.5, 29.9, 29.8, 29.5, 28.5, 

26.9, 25.9, 23.8, 23.4.  LC/MS m/z 1016.500 [(M + H)+ calculated for C65H87N2O4Si2: 

1016.560.    
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(2E, 8E)-diethyl deca-2,8-dienedioate (4.34).  To a solution of oxalyl chloride (1.82 

mL, 21.2 mmol) in dichloromethane (80 mL) at -78 oC was added dimethyl sulfoxide 

(3.61 mL, 42.4 mmol) dropwise.  After 10 minutes, a solution of 1,6 hexanediol (4.33, 

1.00 g, 8.47 mmol) in dichloromethane (10 mL) was added to the reaction mixture.  The 

solution was allowed to stir for 30 minutes, treated with triethylamine (11.8 mL, 84.7 

mmol) and allowed to warm to 0 oC. (Carbethoxymethylene) triphenylphosphorane (14.8 

g, 42.4 mmol) was then added to the mixture as a solid and the resulting solution was 

allowed to warm to room temperature and stir overnight.  The reaction was quenched and 

washed with H2O.  The aqueous phase was extracted with ethyl acetate (3 x 50 mL).  The 

combined organic extracts were dried over MgSO4, filtered, and concentrated.  The 

residue was purified by flash column chromatography on silica gel eluting with 12:1 

(hexanes/ethyl acetate) to yield (2E, 8E)-diethyl deca-2,8-dienedioate 4.34 (1.61 g, 75%) 

as a yellow oil.  Spectral data correlated to reported values.183 

 

 

 

 

(2E, 8E)-deca-2,8-diene-1,10-diol (4.35).  To a solution of diisobutyl- aluminum hydride 

(12.4 mL, 69.7 mmol) in dichloromethane (100 mL) at -78 oC was added the bis allylic 
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ester 4.34 (2.95 g, 11.6 mmol) in dichloromethane (10 mL) dropwise.  The mixture was 

allowed to stir at -78 oC for 1 h.  The reaction was poured into 50 mL of Rochelle’s salt 

and allowed to stir for 30 minutes.  The mixture was extracted with ethyl acetate (3 x 50 

mL).  The combined organics were dried over MgSO4, filtered, and concentrated.  The 

residue was purified by flash column chromatography on silica gel eluting with 1:1 

(hexanes/ethyl acetate) to yield (2E, 8E)-deca-2,8-diene-1,10-diol 4.35 (1.65 g, 84%) as a 

colorless oil.  Spectral data correlated to reported values.184 

 

 

 

(2E, 8E)-1,10-dibromodeca-2,8-diene (4.36).  To a solution of diol 4.35 (20.0 mg, 0.12 

mmol) in acetonitrile (1.50 mL) was added triphenylphosphine (108 mg, 0.41 mmol), 

followed by carbon tetrabromide (137 mg, 0.41 mmol).  The solution was allowed to stir 

for 17 h.  The mixture was concentrated in vacuo.  The residue was purified by flash 

column chromatography on silica gel eluting with 20:1 (hexanes/ethyl acetate) to yield 

(2E, 8E)-1,10-dibromodeca-2,8-diene 4.36 (21 mg, 60%) as a pale yellow oil.  Spectral 

data correlated to reported values.185  
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Alkylated Bis-Piperidine (4.37).  To a solution of amide 4.10 (43.0 mg, 0.065 mmol) in 

tetrahydrofuran (0.50 mL) at -78 oC was added LiHMDS (91 µL, 0.091 mmol) dropwise.  

The mixture was stirred for 1.5 h at -78 oC.  In a separate flask the bis allylic bromide 

(29.0 mg, 0.098 mmol) in tetrahydrofuran (0.20 mL) was cooled to -78 oC.  The enolate 

solution was added to the allylic bromide via cannula.  The resulting solution was stirred 

for 1 h at -78 oC.  The reaction was quenched with aqueous sodium bicarbonate.  The 

mixture was washed with aqueous sodium bicarbonate.  The aqueous phase extracted 

with ethyl acetate (3 x 10 mL).  The combined organics were dried over MgSO4, filtered, 

and concentrated.  The residue was purified by flash column chromatography on silica 

gel eluting with 5:1 to 4:1 (hexanes/ethyl acetate) to yield alkylated bis-piperidine 4.37 

(23.3 mg, 41%) as a yellow gum.  1H-NMR (CDCl3, 400 MHz) δ 7.35 - 7.25 (m, 10H), 

5.84 (s, 1H), 5.71 (m, 2H), 5.39 (m, 4H), 4.46 (s, 4H), 3.93 (d, J = 8.0 Hz, 2H), 3.80 (br 

s, 2H), 3.43 (m, 8H), 2.77 (d, J = 4.0 Hz, 2H), 2.51 – 2.42 (m, 2H), 2.12 – 2.10 (m, 3H), 

2.02 – 1.98 (m, 6H), 1.60 (m, 4H), 1.58 (m, 4H), 1.45 (s, 9H), 1.34 (m, 8H). 
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2-(hex-5-enyl)isoindoline-1,3-dione (4.47)   To a solution of  5-hexen-1-ol (4.46, 5.21 g, 

52.1 mmol), triphenylphosphine (15.3 g, 67.7 mmol), phthalimide (7.73 g, 52.6 mmol) at 

0 °C in tetrahydrofuran (23.0 mL) was added diiospropylazodicarboxylate (13.3 mL, 67.7 

mmol) dropwise.  The solution was allowed to warm to room temperature and stirred for 

24 h.  The reaction mixture was concentrated and the residue triturated with diethyl 

ether/hexanes (1:1).  The combined extracts were concentrated and the residue purified 

by flash column chromatography on silica gel (eluent: 2:1 hexanes/ethyl acetate) to yield 

2-(hex-5-enyl)isoindoline-1,3-dione 4.47 (11.3 g, 95%) as a pale yellow oil.  Spectral 

data correlated with the reported values.186 

 

 

 

5-Amino-1-hexene (4.48).  To a solution of imide 4.47 (10.9 g, 47.4 mmol) in 95% 

ethanol (150 mL) was added hydrazine hydrate (6.91 mL, 142.1 mmol) dropwise.  The 

solution was heated to reflux for 1 h.  The reaction mixture was cooled to room 

temperature and the resulting white precipitate removed by filtration and washed with 

ethanol (100 mL).  The filtrate was treated with 12 M hydrochloric acid (10 mL) and 

concentrated in vacuo.  The residue was diluted with water (100 mL) and the pH adjusted 

to 10 by the dropwise addition of 1 M NaOH.  The alkaline solution was extracted with 
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diethyl ether (4 x 50 mL), the combined organic extracts dried over MgSO4, filtered, and 

concentrated in vacuo at 0 °C.  The residue was distilled (bp 90-110 °C, 760 mm) to yield 

hex-5-en-1-amine 4.48 (4.38 g, 93%) as a colorless oil.  Spectral data correlated with the 

reported values.187 

 

 

 

Amine 5.2.  To a mixture of amine 4.48 (200 mg, 2.02 mmol) and methyl acrylate (0.64 

mL, 7.07 mmol) was added 1 drop of acetic acid.  The mixture was heated to 75 °C for 

24 h.  The excess methyl acrylate was removed in vacuo and the crude amine (5.2) taken 

to the next step without further purification.  Isolated as a light yellow oil: IR (neat) 2949, 

1737, 1437 cm-1;  1H-NMR (CDCl3, 400 MHz) δ 5.77 (ddt, J = 6.7, 10.2, 16.9 Hz, 1H), 

5.00 (m, 2H), 3.65 (s, 6H), 2.74 (t, J = 7.3 Hz, 2H), 2.42 (t, J = 7.3 Hz, 2H), 2.39 (t, J = 

7.5 Hz, 2H), 2.04 (m, 2H), 1.33 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ 173.0, 138.7, 

114.4, 53.4, 51.5, 49.1, 33.5, 32.3, 26.5, 26.3.  HRMS calculated for C14H26NO4 (M + 

H)+ m/z: 272.1862, measured: 272.1852. 

 

 

 

Methyl 1-(hex-5-enyl)-4-oxopiperidine-3-carboxylate (4.49)   To a solution of amine 

5.2 (100 mg, 0.37 mmol) in tetrahydrofuran (3 mL) at -78 °C was added sodium 
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bis(trimethylsilyl)amide dropwise (0.55 mL, 0.55 mmol, of a 1.0 M solution in 

tetrahydrofuran).  The resulting solution was stirred for 1.5 h at -78 °C, and then 

quenched with saturated sodium bicarbonate (10 mL).  The aqueous phase was extracted 

with ethyl acetate (3 x10 mL).  The combined organic extracts were dried over MgSO4, 

filtered, and concentrated.  The residue was purified by column chromatography on silica 

gel (eluent: 3.5:1 hexanes/ethyl acetate) to yield β-keto ester 4.49 (74 mg, 84%) as a pale 

yellow oil:  IR (neat) 2937, 2807, 1665, 1625, 1443 cm-1;  1H-NMR (CDCl3, 300 MHz) δ 

5.77 (ddt, J = 6.7, 10.2, 16.9 Hz, 1H), 5.02 (m, 2H), 3.73 (s, 3H), 3.10 (s, 2H), 2.58, (t, J 

= 5.9 Hz, 2H), 2.43, (m, 4H), 2.15, (s, 1H), 2.04, (m, 4H), 1.53-1.39, (m, 4H); 13C NMR 

(CDCl3, 150 MHz) δ 204.1, 171.4, 170.4, 169.3, 138.7, 114.5, 96.7, 57.8, 56.8, 56.4, 

55.1, 53.4, 52.2, 51.4, 49.8, 49.3, 40.7, 36.6, 33.5, 29.4, 26.8, 26.7, 26.5.  HRMS 

calculated for C13H21NO3 (M + H)+ m/z: 240.1600, measured: 240.1592. 

 

 

 

Methyl 1-(hex-5-enyl)-4-(trifluoromethylsulfonyloxy)-1,2,5,6-tetrahydropyridine-3-

carboxylate 4.50.  A solution of β-keto ester 4.49 (4.45 g, 19.87 mmol) in 

tetrahydrofuran (150 mL) at -78 °C was treated with potassium bis(trimethylsiyl) amide 

(47.7 mL, 23.85 mmol, of a 0.5 M solution in toluene) dropwise.  The solution was 

warmed to -20 °C over 2 h.  The mixture was then cooled back to -78 °C and N,N-

bis(trifluoromethylsulfonyl)-5-chloro-2-pyridylamine (9.37 g, 23.85 mmol) in 
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tetrahydrofuran (20 mL) was added dropwise via cannula.  The resulting solution was 

slowly warmed to room temperature and stirring continued overnight.  The solution was 

quenched with saturated sodium bicarbonate.  The aqueous phase was extracted with 

ethyl acetate (3 x 100 mL).  The combined organic extracts were dried over MgSO4, 

filtered, and concentrated. The residue was purified by column chromatography on silica 

gel (eluent: 4:1 hexanes/ethyl acetate) to yield triflate 4.50 (6.92 g, 94%) as a pale yellow 

oil:  IR (neat) 2932, 1723, 1424 cm-1;  1H-NMR (CDCl3, 300 MHz) δ 5.77 (ddt, J = 6.7, 

10.3, 16.9 Hz, 1H), 5.02 (m, 2H), 3.79 (s, 1H), 3.36, (s, 2H) 2.71, (t, J = 5.6 Hz, 2H), 

2.52 (m, 4H), 2.05, (m, 2H) 1.53-1.40, (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 163.1, 

150.8, 138.3, 124.0, 120.2 (q, J = 282 Hz), 114.6, 56.5, 52.1, 51.5, 48.8, 33.3, 28.7, 26.3, 

26.1.  HRMS calculated for C13H20F3NO5S (M + H)+ m/z: 372.1093, measured: 372.1080. 

 

 

 

Allylic alcohol 5.3.  A solution of diisobutylaluminum hydride (28.2 mL, 158.1 mmol 

diluted in 50 mL of CH2Cl2) was added to a solution of ester 4.50 (19.5 g, 52.7 mmol) in 

CH2Cl2 (600 mL) at -50 °C via cannula.  The mixture was stirred for 2 h and allowed to 

warm to 0 °C.  The solution was quenched by slow addition of a saturated aqueous 

solution of potassium sodium tartrate (50 mL).  The resulting mixture was vigorously 

stirred for 1 h.  The aqueous phase was extracted with ethyl acetate (3 x 50 mL).  The 

combined organic extracts were dried over MgSO4, filtered, and concentrated to yield a 

residue that was taken directly to the next step without further purification.  Isolated as 
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light yellow oil: IR (neat) 3430, 1415, 1209, 1140 cm-1;  1H-NMR (CDCl3, 300 MHz) δ 

5.77 (ddt, J = 6.8, 10.3, 17.1 Hz, 1H), 5.02 (m, 2H), 4.19 (s, 1H), 3.21, (s, 2H), 2.67 (t, J 

= 5.7 Hz, 2H), 2.45 (m, 4H), 2.05 (m, 2H) 1.55-1.40 (m, 4H); 13C NMR (CDCl3, 75 

MHz) δ 141.6, 138.5, 128.5, 119.6 (q, J = 319 Hz), 114.6, 57.6, 57.1, 52.5, 49.6, 33.5, 

27.8, 26.6, 26.3.  HRMS calculated for C13H20F3NO4S (M + H)+ m/z: 344.1143, 

measured: 344.1131. 

 

 

 

Silyl Ether 4.51. To a solution of 4-(dimethylamino)pyridine (406 mg, 3.34 mmol), 

imidazole (2.27 g, 33.4 mmol), and alcohol 5.3 ( 5.72 g, 16.7 mmol) in tetrahydrofuran 

(150 mL) at 0 °C was added tert-butylchlorodimethylsilane (5.04 g, 33.4 mmol).  The 

resulting solution was slowly warmed to room temperature and stirring continued for 22 

h.  The mixture was quenched with brine (100 mL) and the aqueous phase extracted with 

ethyl acetate (3 x 100 mL). The combined organic extracts were dried over MgSO4, 

filtered, and concentrated to yield a residue that was purified by column chromatography 

on silica gel (gradient elution: 100:1 to 10:1 hexanes/ethyl acetate, 1% triethylamine)  

yield silyl ether 4.51 (6.74 g, 88%) as a pale yellow oil:  IR (neat) 3075, 2857, 1640 cm-1; 

1H-NMR (CDCl3, 300 MHz) δ 5.78 (ddt, J = 7.0, 9.8, 16.9 Hz), 5.00 (m, 2H), 4.02 (s, 

2H), 3.00, (s, 2H), 2.46 (t, J = 6.0 Hz), 2.33 (m, 4H), 2.04 (m, 2H), 1.53 (m, 2H), 1.39 

(m, 2H), 1.23 (m, 2H),  0.88 (s, 9H), 0.05 (s, 6H); 13C NMR (CDCl3, 125 MHz) δ 140.6, 

138.5, 128.3, 119.6 (q, J = 318 Hz), 114.6, 58.5, 56.9, 52.3, 49.9, 33.65, 27.9, 26.7, 26.6, 
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25.7, 18.2, -5.6.  HRMS calculated for C19H34F3NO4Si (M + H)+ m/z: 458.2008, 

measured: 458.1999. 

 

 

 

Vinyl stannane 4.44.  Silyl ether 4.51 (5.00 g, 10.9 mmol) was dissolved in 

tetrahydrofuran (100 mL) then treated with hexamethyldistannane (4.65 g, 14.2 mmol), 

lithium chloride (2.29 g, 54.7 mmol), and tetrakis(triphenylphosphine)palladium (1.26 g, 

1.09 mmol).  The resulting mixture was degassed 3 times (freeze-pump-thaw) and 

warmed to room temperature.  Once the mixture had reached room temperature, it was 

placed into an oil bath pre-heated to 80 °C and kept at reflux for 24 h (until the yellow 

solution turned black).  The solution was quenched with saturated aqueous sodium 

bicarbonate then filtered over celite.  The filtrate was extracted with with ethyl actetate (3 

x 100 mL).  The combined organic extracts were dried over MgSO4, filtered, and 

concentrated to yield a residue that was purified by column chromatography on silica gel 

(eluent: 300:10:0.05 hexane/ethyl acetate/triethylamine) to yield vinyl stannane 4.44 

(3.87 g, 75%) as a yellow oil.  IR (neat) 2933, 1416, 1250, 1210 cm-1; 1H-NMR (CDCl3, 

300 MHz) δ 5.77 (ddt, J = 6.6, 10.2, 16.8 Hz), 5.01 (m, 2H), 4.28 (s, 2H), 3.16, (s, 2H), 

2.68 (t, J = 5.5 Hz), 2.45 (m, 4H), 2.04 (m, 2H), 1.52-1.40 (m, 4H), 0.87 (s, 9H), 0.122 (s, 

6H), 0.42 (s, 9H); 13C NMR (CDCl3, 125 MHz) δ 143.7, 138.6, 133.7, 114.4, 68.04, 58.6, 

55.3, 50.6, 33.6, 32.7, 26.9, 26.5, 25.9, 18.3, -5.3, -8.7.  HRMS calculated for 

C21H44NOSiSn (M + H)+ m/z: 474.2214, measured: 474.2206. 
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Vinyl Iodide 4.45.  Lithium bis(trimethylsilyl)amide (5.75 mL of a 1.0 M solution in 

tetrahydrofuran) was added to vinyl iodide 4.13 (2.00 g, 5.01 mmol) in tetrahydrofuran 

(42 mL) at -78 °C.  The solution was strirred for 2 h and allowed to warm to 0 °C.  The 

resulting enolate solution was cooled to -78 °C and treated with alkyl iodide 6-iodo-1-

hexene (1.26 g, 6.01 mmol).143  The resulting solution was allowed to warm to 0 °C over 

1 h.  The reaction was quenched with water and extracted with ethyl acetate (3 x 50 mL).  

The combined organic extracts were dried over MgSO4, filtered, and concentrated to 

yield a residue that was purified by column chromatography on silica gel (gradient 

eluent: 12:1 to 8:1 hexane/ethyl acetate) to yield vinyl iodide 4.45 (2.03 g, 84%) as a 

yellow oil:  IR (neat) 2931, 2858, 1671 cm-1;  1H-NMR (CDCl3, 300MHz) δ 7.31 – 7.23 

(m, 5H), 6.36 (s, 1H), 7.0 (ddt, J = 7.0, 11.4, 18.4 Hz, 1H), 5.00 (m, 2H), 4.47 (s, 2H),  

3.43 (m, 4H), 2.71 (m, 4H), 2.47 (m, 2H), 2.02 (m, 2H), 1.86 (m, 2H), 1.61-1.49 (m, 4H), 

1.41-1.31 (m, 6H);  13C NMR (CDCl3, 100 MHz) δ 169.8, 138.5, 138.4, 134.9, 128.2, 

127.4, 127.3, 114.4, 72.7, 69.8, 67.4, 46.2, 41.9, 38.4, 33.4, 29.6, 29.2, 28.6, 28.4, 26.2, 

23.1.  HRMS calculated for C23H32INO2Na (M + Na)+ m/z: 504.1376, measured: 

540.1374. 
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Bis-piperidine 4.43. A solution of vinyl stannane 4.44 (2.47 g, 5.23 mmol) and vinyl 

iodide 4.45 (2.05 g, 4.26 mmol) in dimethyl sulfoxide (38 mL) was treated with copper 

chloride (2.26 g, 22.8 mmol), lithium chloride (1.15 g, 27.3 mmol, flame dried under 

argon), and tetrakis(triphenylphosphine)palladium (526 mg, 0.46 mmol) at room 

temperature.  The mixture was immediately degassed (3x) under high vacuum with an 

argon purge.   The mixture was then warmed to room temperature and stirred for 2 h, 

followed by heating to 60 °C for 14 h.  The black mixture was quenched with brine, and 

the resulting solution was filtered over celite.  The filtrate was washed with brine (100 

mL) and 5% ammounium hydroxide (5 mL), extracted with ethyl acetate (4 x 50 mL), 

and the combined organic extracts were washed again with brine (25 mL).  The combined 

extracts were dried over MgSO4, filtered, and concentrated.  The residue was purified by 

flash column chromatography on silica gel (gradient elution: 2:1 to 1:1 to 1:1:0.01 

hexanes:ethyl acetate:triethylamine) to yield bis-piperidine 4.43 (1.90 g, 67%) as a 

yellow oil:  IR (neat) 2930, 2855, 1670, 1403 cm-1;  1H-NMR (CDCl3, 400MHz) δ 7.32 - 

7.26 (m, 5H), 5.91 (s, 1H), 5.79 (m, 2H), 4.94 (m, 4H), 4.47 (s, 2H), 4.13 (s, 2H), 3.43 

(m, 4H), 3.04 (m, 2H), 2.54 (m, 2H), 2.40 – 2.36, (m, 2H), 2.20 (m, 2H), 2.10 – 2.02 (m, 

5H), 1.82, (m, 2H), 1.62 – 1.50 (m, 6H), 1.43 – 1.31 (m, 8H), 0.88 (s, 9H), 0.02 (s, 6H);  

13C NMR (CDCl3, 100 MHz) δ 171.1, 138.8, 138.6, 138.5, 131.0, 130.3, 128.3, 127.5, 
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127.4, 126.8, 116.7, 114.4, 114.3, 72.8, 70.1, 62.5, 58.4, 54.8, 50.2, 46.2, 40.4, 33.6, 33.5, 

29.8, 29.3, 29.1, 28.9, 28.8, 28.5, 26.8, 26.6, 26.5, 25.8, 23.3, 18.2, -5.8  HRMS 

calculated for C41H67N2O3Si (M + H)+ m/z: 663.4954, measured: 663.4921. 

 

 

Allylic acetate 18.  Tetrabutylammonium fluoride (1.0 mL of a 1.0 M solution in 

tetahydrofuran) was added dropwise to a solution of silyl ether 4.43 (329.0 mg, 0.496 

mmol)  in THF (8 mL) at 0 °C.  The solution was stirred for 1 h at 0 °C, and then 

quenched with water (5 mL).  The aqueous layer was extracted with ethyl acetate (4 x 10 

mL), dried over MgSO4, filtered, and concentrated.  The crude alcohol (5.4) was taken 

directly to the next step without further purification. 

To a solution of crude alcohol 5.4 (272.0 mg, 0.496 mmol) in dichloromethane (6 mL) at 

room temperature was added acetic anhydride (85 µL, 0.893 mmol), 4–

(dimethylamino)pyridine (48 mg, 0.397), and triethylamine (0.21 mL, 1.49 mmol).  The 

resulting solution was allowed to stir for 1 h, and then quenched with brine (10 mL).  The 

aqueous layer was extracted with ethyl acetate (3 x 10 mL).  The combined organic 

extracts were dried over MgSO4, filtered, and concentrated.  The residue was purified by 

flash column chromatography on silica gel (gradient elution: 1:1 to 1:1:0.01 

hexanes:ethyl acetate:triethylamine) to yield allylic acetate 4.53 (280 mg, 96% from 4.43) 

as a yellow oil.  IR (neat) 2930, 1738, 1668 cm-1;  1H-NMR (CDCl3, 500MHz) δ 7.30 - 
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7.25 (m, 5H), 5.87 (s, 1H), 5.76 (m, 2H), 4.93 (m, 4H), 4.58 (m, 2H), 4.45 (s, 2H), 3.43 – 

3.35 (m, 4H), 3.06 (m, 2H), 2.61 (m, 2H), 2.45, (t, J = 7.6 Hz, 2H), 2.35 (m, 2H), 2.25 

(m, 2H), 2.06 – 2.01, (m, 8H), 1.59 – 1.50 (m, 6H), 1.38 – 1.32 (m, 10H);  13C NMR 

(CDCl3, 125 MHz) δ 171.0, 170.8, 138.8, 138.5 (2C), 135.6, 128.2, 127.5, 127.4, 127.2, 

125.0, 115.9, 114.6, 114.3, 72.7, 70.0, 63.7, 57.7, 54.3, 49.4, 46.3, 40.3, 33.5 (2C), 29.7, 

29.3, 28.8, 28.7 (2C), 28.4, 26.7, 26.4, 25.9, 23.3, 20.9. HRMS calculated for C37H55N2O4 

(M + H)+ m/z: 591.4162, measured: 591.4161. 

 

 

 

Tetraene 4.53.  To a solution of alyllic acetate 4.52 (2.50 g, 4.23 mmol) in 

dimethylformamide (35 mL) at room temperature was added (E)-6-(tributylstannyl)hex-

5-en-1-ol144 (2.47 g, 6.34 mmol), lithium chloride (888 mg, 21.2 mmol), and 

bis(dibenzylidieneacetone)palladium (245 mg, 0.42 mmol).  The mixture was heated to 

65 °C and stirred for 22 h total with 0.01 equivalents of 

bis(dibenzylidieneacetone)palladium (24.5 mg, 0.04 mmol) added after 14 h.  The 

reaction was filtered thru Celite and the filtrate was washed with brine (20 mL).  The 

aqueous layer was extracted with ethyl acetate (3 x 40 mL) and the combined organic 

extracts were washed with brine (2 x 20 mL), dried over MgSO4, filtered, and 

concentrated.  The residue was purified by flash column chromatography on silica gel 
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(gradient elution with 2:1 to 1:1:0.01 hexanes:ethyl acetate:triethylamine) to yield 

tetraene 4.53 (2.13 g, 80%) as a yellow oil.  IR (neat) 3625, 2928, 2856, 1666, 1404 cm-1;  

1H-NMR (CDCl3, 300MHz) δ 7.30 - 7.24 (m, 5H), 5.85 (s, 1H), 5.78 (m, 2H), 5.00 – 4.92 

(m, 4H), 4.46 (s, 2H), 3.57 (m, 2H), 3.43 – 3.32 (m, 4H), 2.88 (m, 2H), 2.73 (m, 2H), 

2.52, (m, 2H), 2.39 – 2.35 (m, 3H), 2.18 (m, 2H), 2.18, (m, 2H), 2.07 – 2.02 (m, 6H), 

1.62 – 1.50 (m, 10H), 1.41 – 1.33 (m, 12)H;  13C NMR (CDCl3, 125 MHz) δ 171.1, 

138.8, 138.6, 138.5, 134.4, 129.3, 129.0, 128.5, 128.3, 127.6, 127.5, 125.8, 117.6, 114.4, 

114.3, 72.8, 70.1, 62.5, 58.3, 56.0, 50.4, 46.2, 40.5, 35.5, 33.5, 33.5, 32.2, 29.8, 29.6, 

29.4, 29.2, 28.8, 28.5, 27.8, 26.9, 26.8, 26.5, 25.6, 23.3, 17.5, 13.5.  HRMS calculated for 

C41H63N2O3 (M + H)+ m/z: 631.4839, measured: 631.4850. 

 

 

 

Tricycle 4.42.  A hydrochloric acid (5 mL of 2 M solution in ether) was added to a 

solution of tetraene 4.53 (220 mg, 0.35 mmol) in dichloromethane (5 mL), and the 

resulting solution was stirred for 30 min at ambient temperature.  The solution was then 

concentrated and dried in vacuo.  The viscous, bright yellow hydrochloride salt was 

dissolved in dichloromethane (1 L) and Bis(tricyclohexylphosphine)-3-phenyl-1H-inden-

1-ylidene ruthenium(II) dichloride (32 mg, 0.035 mmol) was quickly added in one 

portion.  The solution was brought to reflux for 2 h, at which point an additional (32 mg, 
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10 mol%) of the catalyst was added.  The solution was maintatained at reflux for an 

additional 20 h, cooled to room temperature and concentrated.  The resulting residue was 

dissolved in methanol and passed through a Varian SCX ion exchange column to remove 

ruthenium byproducts, followed by eluting tricycle 4.42 with 2N ammonia in methanol to 

release the free amine.  Additionally, the residue was purified by Biotage (KP-C18-HS) 

reverse phase chromatography eluting with H2O (0.1% TFA) / Acetonitile (20 % to 60% 

acetonitrile over 10 column volumes).  The aqueous fractions were concentrated by 

Genevac and the resulting material analyzed by LC/MS to yield 134 mg, 64% of tricycle 

4.42.  The material was typically kept as the trifluoroacetic acid salt for use in the next 

step.  The salt was converted to the free amine passage through a Varian SCX ion 

exchange column for calculation of yield and analytical data.  IR (neat) 3530, 2932, 2846, 

1666 cm-1;  1H-NMR (CDCl3, 400MHz) δ 7.30 - 7.24 (m, 5H), 5.87 (s, 1H), 5.44 – 5.30 

(m, 4H), 4.46 (s, 2H), 3.62 – 3.57 (m, 2H), 3.44 (app. t, J = 6.4 Hz, 2H), 3.32 (m, 2H), 

3.06 (m, 2H), 2.73 (m, 2H), 2.60 (m, 2H), 2.50, (m, 1H), 2.37 (m, 2H), 2.07 – 2.02 (m, 

6H), 1.61 – 1.52 (m, 10H), 1.42 – 1.35 (m, 7H), 1.23 (m, 6H), 0.88 – 0.83 (m, 2H);  13C 

NMR (CDCl3, 100 MHz) δ 172.2, 133.1, 132.7, 132.0, 131.9, 130.8, 130.7, 130.6 (2C), 

128.7, 128.2, 128.0, 127.9, 73.3, 70.5, 62.8, 51.8, 46.4, 41.1, 36.2, 32.8, 32.7, 31.9, 31.8, 

31.0, 30.1 (2C), 29.8, 28.9 (2C), 27.6, 27.5, 26.2, 26.1 (2C), 25.1, 23.8.  HRMS 

calculated for C39H59N2O3 (M + H)+ m/z: 603.4526, measured: 603.4528. 
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Diols 4.41.  The trifluoroacetic acid salt of tetraene 4.42 (340.0 mg, 0.56 mmol, free 

amine weight) was dissolved in ethanol (30 mL), treated with palladium hydroxide (79.0 

mg, 0.11 mmol), and transferred to a Parr hydrogenator.  Once the vessel was tightly 

secured, the solution was purged with hydrogen, evacuated, and back-filled a total of five 

times.  The pressure was set to 500 psi and the mixture was heated to 70 °C with vigorous 

stirring.  The progress of the reaction mixture was monitored by LC/MS.  After 8 days 

the reaction was filtered thru Celite and concentrated.  The resulting residue was purified 

by reverse phase HPLC chromatography eluting with H2O (0.1% TFA) / Acetonitile 

(12% to 40% acetonitrile) to afford a non-separable mixture of 4.41a and 4.41b.  

Fractions were analyzed using LC/MS and concentrated by Genevac.  The products were 

converted to their free amines by passing through a Varian SCX ion exchange column by 

eluting first with methanol then 2N ammonia in methanol to release 230.1 mg [79% yield 

of 4.41a and 4.41b (1.3:1 determined by 13C NMR), characterized as a mixture]: IR 

(neat) 3400, 2920, 1622, 1494, 1461 cm-1 ;  1H-NMR (CDCl3, 400 MHz) δ 3.61 (app. t, J 
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= 6.4 Hz, 4H), 3.37 – 3.27 (m, 2H), 3.23 – 3.17 (m, 1H), 3.03 (m, 1H), 2.85 – 2.77 (m, 

3H), 2.65 – 2.53 (m, 5H), 2.26 (m, 1H), 2.11 (m, 2H), 1.93 – 1.86 (m, 3H), 1.67 (m, 1H), 

1.63 – 1.55 (9H), 1.38 – 1.26 (28H);  13C NMR (CDCl3, 100 MHz) δ 172.1, 171.9 (2 

diasteromers); 62.6 (2C); 62.3, 56.9, 56.8, 54.5, 53.9, 52.9, 52.2, 47.2, 47.0, 46.0, 42.0, 

41.6, 41.0, 40.1, 39.9, 36.0, 34.7, 34.6, 33.7, 33.3, 32.9, 32.6, 32.5, 32.2, 31.4, 30.9, 30.6, 

29.7, 29.3 (2C), 28.1, 27.9, 27.5, 27.4, 27.2, 27.1 (2C), 26.9 (2C), 26.6, 26.5, 26.3, 26.1, 

25.9, 25.7 (2C), 25.3, 22.8, 21.8, 21.6.  HRMS calculated for C32H61N2O3 (M + H)+ m/z: 

521.4682, measured: 521.4682. 

 

 

 

Dienes 4.70.  To a solution of diols 4.41 (170.0 mg, 0.327 mmol ) in dichloromethane (8 

mL) at 0 °C was added freshly prepared Dess Martin periodinane158 (277.0 mg, 0.654 

mmol).  The resulting mixture was stirred at 0 °C for 30 minutes, then additional Dess 

Martin periodinane (277 mg, 0.654 mmol) was added.  The mixture was slowly warmed 

to room temperature and stirred for 1 h.  The light yellow solution was then cooled to 0 

°C and quenched with water (2 mL), saturated aqueous sodium bicarbonate (2 mL), and 

saturated aqueous NaHSO3 (2 mL).  The mixture was stirred for 5 min at 0 °C, allowed to 

warm to room temperature and stirring continued for 30 min.  The solution was then 

extracted with dichloromethane (4 x 10 mL).  The combined organic extracts were dried 
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over MgSO4, filtered, and concentrated.  The crude bis-aldehydes 5.5 was used 

immediately in the next step without further purification. 

A solution of methyl triphenylphosphonium bromide (1.17 g, 3.27 mmol) in 

tetrahydrofuran (8.0 mL) was cooled to 0 °C and potassium bis(trimethylsilyl)amide 

(3.90 mL of a 0.5 M solution in toluene) was added dropwise.  The yellow mixture was 

allowed to warm to room temperature and stirred for 1 h.  The mixture was cooled to 0 

°C and bis-aldehydes 5.5 in tetrahydrofuran (1.5 mL) added dropwise.  The resulting 

mixture was stirred for 20 min, and then quenched with water (10 mL).  The aqueous 

layer was extracted with ethyl acetate (4 x 10 mL) and the combined organic extracts 

were dried over MgSO4, filtered, and concentrated.  The residue was purified by flash 

column chromatography on silica gel (gradient elution 2:2:0.25 hexanes:ethyl 

acetate:methanol to 3:6.5:0.5 hexanes:ethyl acetate:triethylamine) to yield dienes 4.70 

(85.0 mg, 51%) as a yellow oil.  Characterized as a mixture of 2 diastereomers:  IR (neat) 

3076, 2918, 2236, 1643, 1490 cm-1;  1H-NMR (CDCl3, 400MHz) δ 5.81 – 5.71 (m, 2H), 

5.00 – 4.90 (m, 4H), 3.32 – 3.14 (m, 4H), 2.99, (m, 1H), 2.76 – 2.67 (m, 3H), 2.57 (m, 

2H), 2.52 – 2.50 (m, 2H), 2.23, (m, 2H), 2.08 – 1.99 (m, 6H), 1.85 (m, 3H), 1.62 (m, 1H), 

1.51 – 1.48 (m, 6H), 1.37 – 1.28 (m, 30H);  13C NMR (CDCl3, 100 MHz) δ 172.0, 171.7, 

139.0, 138.5, 114.6, 114.2, 60.3, 57.2, 57.1, 55.9, 54.6, 54.2, 54.0, 53.7, 53.6, 53.4, 53.1, 

52.4, 49.1, 47.4, 47.1, 47.0, 46.0, 43.3, 42.0, 41.7, 41.4, 41.3, 40.2, 40.1, 39.4, 38.5, 36.4, 

34.9, 34.1, 33.9, 33.7, 33.4, 32.9, 32.7, 31.8, 31.6, 31.0, 30.6, 30.4, 29.8, 29.6, 29.0, 28.9, 

28.3, 28.0, 27.7, 27.5, 27.4, 27.3, 27.2, 27.1, 27.0, 26.9, 26.7, 26.5, 26.4 (2C), 26.1, 26 

(2C), 25.3, 22.1, 21.9.  HRMS calculated for C34H61N2O (M + H)+ m/z: 513.4784, 

measured: 513.4784. 
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Alkenes 4.71a and 4.71b.  To a solution of dienes 4.70a/4.70b (20.0 mg, 0.039 mmol, 

free amine weight) in dichloromethane (2.0 mL) was added trifluoroacetic acid (2 drops).  

The solution was stirred for 30 minutes and concentrated.  The residue was then 

dissolved in dichloromethane (250 mL) and Bis(tricyclohexylphosphine)benzylidine 

ruthenium(IV) chloride (3.3 mg, 0.004 mmol) was added.  The solution was refluxed for 

2 h, cooled to room temperature and treated with additional catalyst (3.3 mg, 0.004 

mmol).  This solution was heated at reflux for 16 h and concentrated.  The resulting 

residue was purified by a SCX ion exchange column24; eluting with methanol, then 2N 

ammonia in methanol.  This residue was further purified by reverse phase HPLC 

chromatography eluting with H2O (0.1% TFA) / Acetonitile (30 % to 60% acetonitrile).  

The resulting fractions were concentrated by Genevac.  The purified TFA salt was 

converted to the free amine by running the residue through an SCX ion exchange column.  

The fractions were concentrated and the 2 pure diastereomers were separated by flash 

column chromatography on silica gel (eluent 3:6.5:0.25 hexanes:ethyl 

acetate:triethylamine) to yield 5.6 mg of 4.71b and 9.5 mg of 4.71a (80 % combined 

yield).  
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4.71a: light yellow oil: IR (neat) 2925, 2853, 1639 cm-1.  1H-NMR (CDCl3, 600MHz) δ 

5.31 – 5.23 (m, 2H), 4.34 (m, 1H), 3.53 (app t, J = 12.0 Hz, 1H), 2.99 (m, 1H), 2.87 (app. 

t, J = 10.8 Hz, 1H), 2.73 (m, 1H), 2.71 – 2.58 (m, 4H), 2.37 (m, 1H), 2.25 (m, 1H), 2.07 – 

1.95 (m, 7H), 1.69 (m, 1H), 1.71 (m, 2H), 1.54 (m, 4H), 1.42 – 1.24 (m, 29H);  13C NMR 

(CDCl3, 150 MHz) δ 171.8, 131.0, 130.8, 57.0, 54.7, 52.3, 47.7, 46.3, 42.7, 42.0, 41.4, 

36.0, 35.2, 34.2, 33.1, 32.4, 31.6, 31.3, 29.6, 28.4, 28.2, 27.4, 27.3, 27.2, 27.1, 27.1, 26.8, 

26.5, 26.3, 26.2, 25.6, 21.6.  HRMS calculated for C32H57N2O (M + H)+ m/z: 485.4471, 

measured: 485.4471. 

 

4.71b: light yellow oil: IR (neat) 2923, 2851, 1644 cm-1;  1H-NMR (CDCl3, 600MHz) δ 

5.31 – 5.25 (m, 2H), 4.14 (m, 1H), 3.18, (m, 1H), 2.99 (app. t, J = 11.4 Hz, 1H) 2.77 (m, 

1H), 2.68 (m, 3H), 2.55 (m, 1H), 2.37 (app t, J = 11.4 Hz, 1H), 2.29 (m, 2H), 2.17 (m, 

1H), 2.05 – 1.97 (m, 5H), 1.84 (m, 3H), 1.51 (m, 3H), 1.33 – 1.29 (m, 32H);  13C NMR 

(CDCl3, 150 MHz) δ 171.7, 131.1, 130.1, 56.7, 55.3, 52.4, 47.4, 47.1, 41.0, 40.8, 32.3, 

32.3, 31.7, 31.6, 31.4, 30.5, 29.7, 29.3, 28.3, 28.0, 27.6, 27.4, 27.3, 27.2, 27.2, 27.0, 26.9, 

26.8, 26.5, 26.4, 26.0.  HRMS calculated for C32H57N2O (M + H)+ m/z: 485.4471, 

measured: 485.4469. 
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Alkene 4.72a.  A solution of lactam 4.71a (7.0 mg, 0.014 mmol) in toluene (1.5 mL) was 

cooled to 0 °C and sodium bis(2 – methoxyethoxy)aluminuim hydride ( 43.0 µL, 0.14 

mmol of a 65 % wt. solution in toluene) was added dropwise.  The solution was then 

placed into a pre-heated oil bath at 90 °C and stirred for 16 h.  The resulting solution was 

cooled to 0 °C and slowly quenched with a saturated aqueous solution of potassium 

sodium tartrate (1.5 mL) and stirred for 5 minutes.  The mixture was then diluted with 

ethyl acetate, warmed to room temperature, and stirred for 30 minutes.  The aqueous 

layer was extracted with ethyl acetate (4 x 5 mL) and the combined extracts were dried 

over MgSO4, filtered, and concentrated. The residue was purified by flash column 

chromatography on silica gel (eluent 3:6.5:0.5 hexanes:ethyl acetate:triethylamine) to 

yield alkenes (4.72a) as a inseparable mixture of E:Z (6:1) isomers  (4.5 mg, 66 %).  IR 

(neat) 2923, 2853 cm-1.  1H-NMR (CDCl3, 600MHz) δ 2.95 (app t, J = 11.2 Hz, 1H), 2.78 

(m, 1H), 2.70 – 2.66 (m, 2H), 2.62 – 2.56 (m, 4H), 2.45 – 2.43 (m, 1H), 2.38 (m, 1H), 

2.33 (app t, J = 11.5 Hz, 1H), 2.16 – 2.09 (2H), 1.95 – 1.83 (m, 4H), 1.81 – 1.73 (m, 2H), 

1.69 (m, 1H), 1.54 – 1.51 (m, 4H), 1.44 – 1.15 (m, 32H), 0.92 (m, 1H), 0.85 (m, 1H); 13C 

NMR (CDCl3, 150 MHz) δ 131.6, 130.5, 59.5, 59.4, 58.0, 57.2, 53.0, 47.1, 45.7, 41.6, 

38.3, 37.9, 36.4, 36.2, 34.0, 33.5, 32.1, 30.0, 28.8, 28.1, 28.0, 27.9, 27.7, 27.0, 26.9, 26.8, 
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26.7, 26.6, 25.7, 25.4, 21.5 (2C).  HRMS calculated for C32H59N2 (M + H)+ m/z: 

471.4678, measured: 471.4678. 
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Alkene 4.72b.  A solution of lactam 4.71b (5.6 mg, 0.011 mmol) in toluene (1.5 mL) was 

cooled to 0 °C and sodium bis(2 – methoxyethoxy)aluminuim hydride ( 34.0 µL, 0.11 

mmol of a 65 % wt. solution in toluene) was added dropwise.  The solution was then 

placed into a pre-heated oil bath at 90 °C and stirred for 16 h.  The resulting solution was 

cooled to 0 °C and slowly quenched with a saturated aqueous solution of potassium 

sodium tartrate (1.5 mL) and stirred for 5 minutes.  The mixture was then diluted with 

ethyl acetate, warmed to room temperature, and stirred for 30 minutes.  The aqueous 

layer was extracted with ethyl acetate (4 x 5 mL) and the combined extracts were dried 

over MgSO4, filtered, and concentrated. The residue was purified by flash column 

chromatography on silica gel (eluent 3:6.5:0.25 hexanes:ethyl acetate:triethylamine) to 

yield alkene (4.72b)  as a light yellow oil  (2.9 mg, 54 %).  IR (neat) 2923, 2853 cm-1.  

1H-NMR (CDCl3, 600MHz) δ 5.25 (m, 2H), 3.11 (m, 1H), 2.87 (m, 1H), 2.69 (m, 1H), 

2.57 (m, 3H), 2.48 (m, 1H), 2.41 – 2.36 (m, 2H), 2.09 (m, 2H), 1.99 – 1.96 (m, 4H), 1.81 

(m, 1H), 1.70 -1.55 (m, 8H), 1.37 – 1.23 (m, 30H), 0.88 (m, 1H), 0.45 (m, 1H).  13C 

NMR (CDCl3, 150 MHz) δ 131.6, 130.4, 63.9, 61.3, 59.4, 56.6, 51.0, 47.9, 42.6, 36,0, 
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34.6, 34.1, 33.3, 33.1, 32.9, 32.0, 31.8, 30.2, 30.0, 28.8 (2C), 28.1 (2C), 27.8, 27.6, 27.2, 

27.1 (2C), 26.9, 26.5, 24.8, 21.7.   HRMS calculated for C32H59N2 (M + H)+ m/z: 

471.4678, measured: 471.4676. 

 

 

 

Lactam 4.73a.  The trifluoroacetic acid salt of lactam 4.71a (28.5 mg, 0.059 mmol, free 

amine weight) was dissolved in ethanol (20 mL), treated with palladium hydroxide (8.5 

mg, 0.012 mmol), and transferred to a Parr Hydrogenator.  Once the vessel was tightly 

secured, the solution was purged with hydrogen, evacuated, and back-filled a total of five 

times.  The pressure was set to 100 psi and the mixture was heated to 70 °C with vigorous 

stirring.  The progress of the reaction mixture was monitored by LC/MS.  After 40 h the 

mixture was filtered thru Celite and concentrated.  The resulting residue was carefully 

purified by reverse phase HPLC chromatography eluting with water (0.1% TFA) / 

Acetonitile (35 % to 60% acetonitrile).  Fractions were analyzed using LC/MS and 

concentrated by Genevac.  The resulting residue was further purified and converted to the 

free amines by passing through a Varian SCX ion exchange column by eluting first with 

methanol then 2N ammonia in methanol.  The resulting residue was subjected to flash 

column chromatography on silica gel (eluent 3:6.5:0.25 hexane:ethyl 

actetate:triethylamine) to yield lactam 4.73a (17.6 mg, 62%) as a clear oil.  Crystals were 
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obtain of 4.73a using hexane:ethyl actetate:triethylamine (3:6.5:0.25) white crystalline 

solid (crystallized from 6.5:3:0.25 EtOAc/hexanes/triethylamine) m.p. 134-135 °C.  IR 

(neat) 2923, 2856, 1632, 1456 cm-1;  1H-NMR (CDCl3, 600MHz) δ 4.26 (m, 1H), 3.53 

(app. t, J = 11.9 Hz, 1H), 3.27 (m, 1H), 3.05 (m, 1H), 2.89 (app. t, J = 11.3 Hz, 1H), 2.78 

– 2.59 (m, 6H), 2.41 (m, 2H), 2.27 (m, 2H), 2.08 (m, 2H), 2.00 – 1.99 (m, 2H), 1.74 – 

1.69 (m, 2H), 1.55 – 1.27 (m, 36H ), 0.87 (m, 1H);  13C NMR (CDCl3, 150 MHz) δ 171.8, 

56.8, 55.5, 52.1, 48.2, 46.1, 42.5, 41.8, 41.2, 35.8, 35.3, 33.9, 33.3, 31.1, 28.8, 27.7 (2C), 

27.3, 27.2, 27.2, 27.0 (2C), 26.9, 26.8, 26.6 (2C), 26.5, 26.2, 26.1, 25.5, 25.4, 21.5.  

HRMS calculated for C32H59N2O (M + H)+ m/z: 487.4627, measured: 487.4624. 

 

 

 

Tetrahydrohaliclonacyclamine A (3.3).  A solution of lactam 4.73a (20.0 mg, 0.041 

mmol) in toluene (4 mL) was cooled to 0 °C and sodium bis(2 – 

methoxyethoxy)aluminuim hydride ( 130 µL, 0.410 mmol of a 65 % wt. solution in 

toluene) was added dropwise.  The solution was then placed into a pre-heated oil bath at 

130 °C and stirred for 6 h.  The resulting solution was cooled to 0 °C and slowly 

quenched with a saturated aqueous solution of potassium sodium tartrate (4 mL) and 

stirred for 5 minutes.  The mixture was then diluted with ethyl acetate, warmed to room 

temperature, and stirred for 30 minutes.  The aqueous layer was extracted with ethyl 



173 

 

acetate (4 x 10 mL) and the combined extracts were dried over MgSO4, filtered, and 

concentrated. The residue was purified by passing through a Varian SCX ion exchange 

column by eluting first with methanol then 2N ammonia in methanol.  After 

concentration, the residue was subjected to flash column chromatography on silica gel 

eluting with 3:6.5:0.5 (hexanes:ethyl acetate:triethylamine) to yield 

tetrahydrohaliclonacyclamine A (3.3) (15.8 mg, 90 %).  1H-NMR (CDCl3, 600MHz) δ 

2.96 (app. t, J = 11.1 Hz, 1H), 2.80 – 2.79 (m, 2H), 2.75 – 2.64 (m, 3H), 2.59 (m, 1H), 

2.55 – 2.51 (m, 1H), 2.46 – 2.39 (m, 3H), 2.15 (app. t, J = 11.2 Hz, 1H), 1.95 (m, 1H), 

1.85 – 1.76 (m, 4H), 1.72 – 1.69 (m, 2H), 1.53 – 1.50 (m, 5H), 1.39 – 1.20 (m, 34H), 0.92 

– 0.88 (m, 2H);  13C NMR (CDCl3, 150 MHz) δ 60.7, 60.3, 58.4, 57.1, 53.2, 47.0, 45.5, 

41.4, 38.3, 37.8, 36.4, 35.6, 34.1, 33.5, 29.3, 27.9, 27.8 (2C), 27.7, 27.6, 27.2, 27.1, 26.8 

(2C), 26.5, 26.3, 26.1, 25.7 (2C), 25.6, 22.0, 21.5.  HRMS calculated for C32H61N2 (M + 

H)+ m/z: 473.4835, measured: 473.4833. 
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Lactam 4.73b.  The trifluoroacetic acid salt of lactam 4.71b (20.9 mg, 0.041 mmol, free 

amine weight) was dissolved in ethanol (20 mL), treated with palladium hydroxide (6.2 

mg, 0.009 mmol), and transferred to a Parr Hydrogenator.  Once the vessel was tightly 

secured, the solution was purged with hydrogen, evacuated, and back-filled a total of five 
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times.  The pressure was set to 100 psi and the mixture was heated to 70 °C with vigorous 

stirring.  The progress of the reaction mixture was monitored by LC/MS.  After 40 h the 

mixture was filtered thru Celite and concentrated.  The resulting residue was carefully 

purifed by reverse phase HPLC chromatography eluting with water (0.1% TFA) / 

Acetonitile (35 % to 60% acetonitrile).  Fractions were analyzed using LC/MS and 

concentrated by Genevac.  The resulting residue was further purified and converted to the 

free amines by passing through a Varian SCX ion exchange column by eluting first with 

methanol then 2N ammonia in methanol.  The resulting residue was subjected to flash 

column chromatography on silica gel (eluent 3:6.5:0.25 hexane:ethyl 

actetate:triethylamine) to yield lactam 4.73b (14.1 mg, 67%) as a clear oil.  IR (neat) 

2924, 2856, 1643, 1460 cm-1;  1H-NMR (CDCl3, 600MHz) δ 4.12 (m, 1H), 3.16 (m, 1H), 

3.06 (app. t, J = 11.7 Hz, 1H), 2.64 (m, 1H), 2.69-2.65 (m, 3H), 2.51 (m, 1H), 2.46-2.39 

(m, 2H), 2.27 (m, 2H), 2.16 (m, 1H), 2.04 (m, 2H), 1.83 (m, 2H), 1.56-1.52 (m, 4H), 

1.34-1.25 (m, 36H), 0.86 (m, 1H) ;  13C NMR (CDCl3, 150 MHz) δ  171.9, 56.9, 55.1, 

53.0, 47.4, 47.0, 41.3, 40.8, 34.5, 32.9, 32.1, 31.3, 30.6, 28.5, 27.8, 27.7, 27.6, 27.2 (2C), 

27.1 (2C), 27.0 (2C), 26.8, 26.7, 26.4 (2C), 26.3 (2C), 25.8, 25.2, 21.6.  HRMS calculated 

for C32H59N2O (M + H)+ m/z: 487.4627, measured: 487.4627. 
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Diamine 4.74b (cis-anti-cis isomer).  A solution of lactam 4.73b (8.0 mg, 0.016 mmol) 

in toluene (2 mL) was cooled to 0 °C and sodium bis(2 – methoxyethoxy)aluminuim 

hydride ( 49 µL, 0.16 mmol of a 65 % wt. solution in toluene) was added dropwise.  The 

solution was then placed into a pre-heated oil bath at 95 °C and stirred for 15 h.  The 

resulting solution was cooled to 0 °C and slowly quenched with a saturated aqueous 

solution of potassium sodium tartrate (4 mL) and stirred for 5 minutes.  The mixture was 

then diluted with ethyl acetate, warmed to room temperature, and stirred for 30 minutes.  

The aqueous layer was extracted with ethyl acetate (4 x 10 mL) and the combined 

extracts were dried over MgSO4, filtered, and concentrated. The residue was purified by 

passing through a Varian SCX ion exchange column by eluting first with methanol then 

2N ammonia in methanol.   Flash column chromatography on silica gel eluting with 

3:6.5:0.3 (hexanes:ethyl acetate:triethylamine) to yield cis-anti-cis product (4.74b) (5.1 

mg, 67 %).  1H-NMR (CDCl3, 600MHz) δ 2.97 (app. d, J = 10.9 Hz, 1H), 2.85 (m, 1H), 

2.69 (app. d, J = 9.6 Hz, 1H), 2.62 (m, 1H), 2.58 (m, 1H), 2.56 (m, 1H), 2.45-2.43 (m, 

2H), 2.39 (m, 2H), 2.10 (app. d, J = 12.2 Hz, 1H), 2.04 (m, 1H), 1.84 (m, 1H), 1.74 (m, 

1H), 1.72 (m, 1H), 1.63 (m, 1H), 1.62 (m, 1H), 1.59 (m, 1H), 1.51 (m, 1H), 1.45 (m, 1H), 

1.43 (m, 1H), 1.36-1.24 (m, 38H), 0.52 (m, q, J = 10.9 Hz, 1H);  13C NMR (CDCl3, 150 

MHz) δ 63.1, 61.4, 58.8, 56.8, 52.2, 47.9, 42.1, 35.5, 35.3, 35.1, 33.6, 33.2, 32.1, 29.3, 
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28.4, 28.3, 28.1, 27.8, 27.7, 27.6, 27.5, 27.3, 27.0 (3C), 26.8 (2C), 26.7, 26.5, 26.0, 24.9, 

21.7 .  HRMS calculated for C32H61N2 (M + H)+ m/z: 473.4835, measured: 473.4835. 

 

 

 

Diynes 4.79.  To a solution of diols 4.41 (65.0 mg, 0.125 mmol ) in dichloromethane (3 

mL) at 0 °C was added freshly prepared Dess Martin periodinane158 (106.0 mg, 0.250 

mmol).  The resulting mixture was stirred at 0 °C for 45 minutes, and then additional 

Dess Martin periodinane (106.0 mg, 0.250 mmol) was added.  The mixture was slowly 

warmed to room temperature and stirred for 1.15 h.  The light yellow solution was then 

cooled to 0 °C and quenched with water (2 mL), saturated aqueous sodium bicarbonate (2 

mL), and saturated aqueous sodium metabisulfite (2 mL).  The mixture was stirred for 5 

min at 0 °C, allowed to warm to room temperature and stirring continued for 15 min.  

The solution was then extracted with dichloromethane (4 x 10 mL).  The combined 

organic extracts were dried over MgSO4, filtered, and concentrated.  The crude bis-

aldehydes 5.6 was used immediately in the next step without further purification. 

To a solution of crude bis-aldehydes 5.6 (64.5 mg, 0.125 mmol) in methanol (3 mL) was 

added potassium carbonate (260.0 mg, 1.88 mmol) followed by dropwise addition of 

dimethyl-1-diazo-2-oxopropylphosphonate175,176 (192 mg, 1.00 mmol in 0.5 mL of 

methanol).  The resulting mixture was stirred for 16 h and then concentrated.  The residue 
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was diluted with ethyl acetate (5 mL) and water (5 mL).  The aqueous layer was extracted 

with ethyl acetate (4 x 10 mL) and the combined organic extracts were dried over 

MgSO4, filtered, and concentrated.  The residue was purified by flash column 

chromatography on silica gel eluting with 3:6.5:0.25 (hexanes:ethyl 

acetate:triethylamine) to yield diynes 4.79 (34.0 mg, 54% over 2 steps) as a yellow oil.  

Characterized as a mixture of 2 diastereomers:  IR (neat) 2926, 2857, 1639, 1456 cm-1;  

1H-NMR (CDCl3, 600MHz) δ 3.30 – 3.15 (m, 4H), 2.74 (app. t, J = 6.6 Hz, 2H), 2.71 (m, 

1H), 2.59 (m, 2H), 2.52 – 2.48 (m, 2H), 2.19 (m, 3H), 2.15 (m, 4H), 1.90 (m, 4H), 1.64 – 

1.59 (m, 3H), 1.49 – 1.46 (m, 6H), 1.36 – 1.27 (m, 25);  13C NMR (CDCl3, 150 MHz) δ 

172.1, 171.8, 84.6, 84.1, 68.5, 68.1, 57.0, 56.9, 54.5, 53.9, 52.9, 52.2, 47.2, 46.6, 46.5, 

45.9, 42.0, 41.7, 41.2, 40.0, 36.4, 34.8, 33.9, 33.4, 32.8, 32.7, 31.5, 31.0, 30.5, 29.2 (2C), 

28.6, 28.4, 28.2, 28.0, 27.6, 27.5, 27.3, 27.2, 27.1, 26.9 (2C), 26.7, 26.6, 26.4, 26.1, 26.0, 

25.6, 25.3, 22.0, 21.7, 18.3, 18.1.  HRMS calculated for C34H57N2O (M + H)+ m/z: 

509.4471, measured: 509.4471. 

 

 

 

Diyne 4.80a and 5.7b.  A solution of diynes 4.79 (45.0 mg, 0.088 mmol) in toluene (2 

mL) was cooled to 0 °C and sodium bis(2 – methoxyethoxy)aluminuim hydride ( 270 µL, 

0.880 mmol of a 65 % wt. solution in toluene) was added dropwise.  The solution was 
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then placed into a pre-heated oil bath at 130 °C and stirred for 6 h.  The resulting solution 

was cooled to 0 °C and slowly quenched with a saturated aqueous solution of potassium 

sodium tartrate (4 mL) and stirred for 5 minutes.  The mixture was then diluted with ethyl 

acetate, warmed to room temperature, and stirred for 30 minutes.  The aqueous layer was 

extracted with ethyl acetate (4 x 5 mL) and the combined extracts were dried over 

MgSO4, filtered, and concentrated.  The residue was purified by flash column 

chromatography on silica gel (gradient elution 3:6.5:0.2 to 3.6.5:0.5 hexanes:ethyl 

acetate:triethylamine) to yield diynes 5.7b (17.0 mg, 39%) and 4.80a (22.0 mg, 51%) in a 

90% overall yield.  

 

 Diyne 4.80a:  IR (neat) 2927, 2857, 1460 cm-1;  1H-NMR (CDCl3, 600MHz) δ 2.88 (app. 

t, J = 11.9 Hz, 2H), 2.82 (m, 2H), 2.77 (m, 1H), 2.68 (m, 1H), 2.62 (app. t, J = 11.6 Hz, 

1H), 2.54 (app. t, J = 11.3Hz, 2H), 2.30 – 2.24 (m, 3H), 2.17 (dddd, J = 16.5, 7.0, 7.0, 2.6 

Hz, 4H), 1.91 (app. q, J  = 2.9 Hz, 2H), 1.79 – 1.73 (m, 4H), 1.62 – 1.56 (m, 4H), 1.50 – 

1.48 (m, 7H), 1.38 – 1.22 (m, 24H), 1.03 (m, 1H), 0.85 (m, 1H), 0.70 (app. q, J = 11.9 

Hz, 1H) ;  13C NMR (CDCl3, 150 MHz) δ 84.7, 84.4, 68.4, 68.1, 62.2, 61.3, 58.5, 56.7, 

52.2, 45.9, 41.8, 41.1, 37.0, 36.4, 36.1, 33.9, 33.5, 33.4, 29.2, 28.7, 28.4, 28.3, 28.2, 28.0, 

27.4 (2C), 27.2, 26.7, 26.6, 26.1, 25.3, 22.0, 18.4 (2C).  HRMS calculated for C34H59N2 

(M + H)+ m/z: 495.4678, measured: 495.4674. 

 

Diyne 5.7b:  IR (neat) 2924, 2855, 1460 cm-1;  1H-NMR (CDCl3, 600MHz) δ 2.79 – 2.71 

(m, 4H), 2.67 (app. d, J = 10.1 Hz, 1H), 2.58 (m, 1H), 2.50 (m, 2H), 2.27 (app. t, J = 7.6 

Hz, 1H), 2.14 (dddd, J = 19.8, 7.1, 7.1, 2.6 Hz, 4H), 2.03 (app. d, J = 12.1 Hz, 1H), 1.91 
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(app. q, J = 2.5 Hz, 2H), 1.81 (app. d, J = 12.2 Hz, 3H), 1.71 (m, 2H), 1.58 (m, 3H), 1.51 

– 1.48 (m, 9H), 1.36 – 1.25 (m, 20H), 0.99 (m, 1H), 0.85 – 0.79 (m, 3H), 0.68 (m, 1H);  

13C NMR (CDCl3, 150 MHz) δ 84.7, 84.3, 68.4, 68.1, 61.4, 61.1, 59.2, 58.5, 56.9, 52.7, 

47.7, 40.6, 37.3, 36.0, 35.7, 34.8, 33.5, 31.6, 29.7, 29.3, 28.7, 28.5, 28.2, 27.6, 27.4, 27.3, 

27.1, 26.6 (2C), 26.0, 24.6, 22.0, 18.4 (2C).  HRMS calculated for C34H59N2 (M + H)+ 

m/z: 495.4678, measured: 495.4677. 

 

 

Methylated Diyne 4.40.  A solution of diyne 4.80a (32.0 mg, 0.065 mmol) over 4Å 

molecular sieves in tetrahydrofuran (2 mL) was cooled to -78 °C and n-butyllithium ( 236 

µL, 0.517 mmol of a 2.19 M solution in hexanes) was added dropwise.  The resulting 

solution was allowed to slowly warm to room temperature over the course of 1 h.  The 

solution was cooled back to -78 °C and methyl iodide (60.0 µL, 0.971 mmol) was added 

dropwise.  The -78 °C bath was immediately removed after the addition and the solution 

was stirred for 1 h at room temperature.  The progress of the reaction was monitored by 

LC/MS analysis.  After completion, the mixture was quenched by the addition of 

methanol (3 mL) and concentrated.   The crude ammonium salt 4.81 was used 

immediately in the next step without further purification.  
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To a solution of crude ammonium salt 4.81 (34.8 mg, 0.065 mmol) in 

dimethylformamide (1.0 mL) at room temperature was added the sodium salt of 

benzenethiol (86 mg, 0.65 mmol).  The resulting mixture was placed into a pre-heated oil 

bath set to 130 °C and stirred for 1.5 h.  The solution was then cooled to room 

temperature and quenched with water (10 mL).  Sodium hydroxide (2.0 mL of a 1 M 

aqueous solution) was added and aqueous layer was extracted with ethyl acetate (4 x 15 

mL).  The combined organic extracts were washed with water (2 x 10 mL) and the 

combined organic extracts were dried over MgSO4, filtered, and concentrated.  The 

resulting residue was carefully purifed by reverse phase HPLC chromatography eluting 

with water (0.1% TFA) / Acetonitile (18 % to 55% acetonitrile).  Fractions were analyzed 

using LC/MS and concentrated by Genevac.  The resulting residue was further purified 

and converted to the free amine by passing through a Varian SCX ion exchange column 

by eluting first with methanol then 2N ammonia in methanol.  The resulting residue was 

subjected to flash column chromatography on silica gel (eluent 3:6.5:0.5 hexane:ethyl 

actetate:triethylamine) to yield methylated diyne 4.40 (13.7 mg, 41% over 2 steps) as a 

pale yellow oil.  IR (neat) 2933, 2856, 1442 cm-1;  1H-NMR (CDCl3, 600MHz) δ 2.85 

(app. t, J = 11.8 Hz, 1H), 2.79 (m, 1H), 2.76 (m, 1H), 2.65 (m, 1H), 2.59 (app. t, J = 11.5 

Hz, 1H), 2.48 (m, 2H), 2.29 – 2.24 (m, 3H), 2.11 – 2.08 (m, 4H), 1.75 – 1.73 (m, 7H), 

1.62 (m, 2H), 1.55 (m, 3H), 1.48 – 1.41 (m, 8H), 1.34 – 1.25 (m, 26H), 1.03 (m, 1H), 

0.68 (app. q, J = 11.2 Hz, 1H);  13C NMR (CDCl3, 150 MHz) δ 79.3, 79.0, 75.6, 75.3, 

62.3, 61.4, 58.6, 56.9, 52.4, 45.9, 42.1, 41.0, 37.3, 36.4, 36.1, 34.1, 33.6, 33.4, 29.3, 29.0, 

28.9, 28.4, 28.2, 28.1, 27.5, 27.4, 27.3, 27.1, 26.6, 26.3, 25.2, 22.2, 18.7 (2C), 3.4 (2C).  

HRMS calculated for C36H63N2 (M + H)+ m/z: 523.4991, measured: 523.4988. 
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Cycloalkyne 4.88.  Triphenylsilanol (3.5 mg, 0.0121 mmol) was added to a two neck 15 

mL flask charged with 4Å molecular sieves and fit with a condenser.  Toluene (1 mL) 

was added and [(Me3SiO)2((Me3Si)2N)Mo≡N]172 (2.0 mg, 0.004 mmol in 0.5 mL of 

toluene) was introduced dropwise.  The resulting solution was heated to 80 °C for 30 

minutes changing from a yellow solution to a light orange, and finally pale yellow.  The 

newly formed complex was cooled to room temperature and methylated diyne 4.40 (4.3 

mg, 0.008 mmol in 5 mL of toluene) was added to the catalyst solution.  The solution was 

heated to 130 °C for 2 h, then cooled to room temperature and filtered through a pad of 

silica.  The filtrate was concentrated and the resulting residue was carefully purified by 

reverse phase HPLC chromatography eluting with water (0.1% TFA) / Acetonitile (15 % 

to 50% acetonitrile).  Fractions were analyzed using LC/MS and concentrated by 

Genevac.  The resulting residue was converted to the free amine by passing through a 

Varian SCX ion exchange column by eluting first with methanol then 2N ammonia in 

methanol.   After concentrating, the residue was subjected to flash column 

chromatography on silica gel (eluent 3:6.5:1.0 hexane:ethyl actetate:triethylamine) to 

yield cycloalkyne 4.88 (2.4 mg, 63%) as a light yellow oil.   IR (neat) 2933, 2854, 1442, 

1123 cm-1;  1H-NMR (CDCl3, 600MHz) δ 3.30 – 3.15 (m, 4H), 2.74 (app. t, J = 6.6 Hz, 

2H), 2.71 (m, 1H), 2.59 (m, 2H), 2.52 – 2.48 (m, 2H), 2.19 (m, 3H), 2.15 (m, 4H), 1.90 
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(m, 4H), 1.64 – 1.59 (m, 3H), 1.49 – 1.46 (m, 6H), 1.36 – 1.27 (m, 25);  13C NMR 

(CDCl3, 150 MHz) δ 80.8, 79.9, 59.7, 59.5, 58.0, 57.1, 53.1, 47.2, 45.8, 41.6, 38.3, 37.9, 

35.7, 34.1, 33.3, 29.7, 29.5, 28.7, 28.2, 28.1, 28.0, 27.7, 27.0, 26.7, 26.5, 25.3, 25.6, 25.4, 

21.6, 21.5, 18.6, 18.2.  HRMS calculated for C32H57N2 (M + H)+ m/z: 469.4522, 

measured: 469.4514. 

 

 

 

Haliclonacyclamine C (1.4).  To a solution of cycloalkyne 4.88 (2.4 mg, 0.005 mmol) 

and quinoline (10.0 µL, 0.080 mmol) in ethyl acetate (2 mL) was added 10 mg of 

Lindlar’s catalyst (Pd/CaCO3, poisoned with Pb by the supplier).  The mixture was 

placed under H2 (1 atm) and degassed/purged with H2 a total of five times.  The resulting 

mixture was vigorously stirred for 2.5 h at room temperature, then filtered through a 

Millipore syringe filter (0.2 µm, 13 mm) and concentrated.   The resulting residue was 

subjected to flash column chromatography on silica gel (eluent 3:6.5:0.75 hexane:ethyl 

actetate:triethylamine) to yield haliclonacyclamine C (1.4) (2.1 mg, 88%) as a colorless 

gum.  1H-NMR (CDCl3, 600MHz) δ 5.27 (m, 2H), 2.97 (app. t, J = 11.5 Hz, 1H), 2.82 

(m, 2H), 2.73 (m, 2H), 2.65 (m, 3H), 2.47 – 2.36 (m, 3H), 2.17 – 2.12 (m, 3H), 1.99 – 

1.79 (m, 6H), 1.73 (m, 1H), 1.63 – 1.54 (m, 4H), 1.43 – 1.24 (m, 28H), 1.12 (app. t, J = 

13.1 Hz, 1H), 0.94 – 0.85 (m, 2H);  13C NMR (CDCl3, 150 MHz) δ 131.2, 130.0, 60.6, 
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59.4, 58.5, 56.9, 53.5, 46.9, 45.0, 41.0, 38.0, 37.6, 36.1, 34.3, 34.0, 32.7, 29.3, 29.1, 28.3, 

27.9, 27.7 (2C), 27.5, 27.0, 26.8, 26.7, 26.2, 26.1, 25.8, 25.4, 22.1, 21.3.  HRMS 

calculated for C32H59N2 (M + H)+ m/z: 471.4678, measured: 471.4679. 
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Compound Analysis and Comparison 

Table 5. Comparison of synthetic and semi-synthetica tetrahydrohaliclonacyclamine A 

(3.3). 

Carbon Signal 
(Ordered from 
downfield to 

upfield) 

 
Published 
Data36 

 
Semisynthetic 
from HalAa,36 

 
Semisynthetic 

Passed thru 
SCX Column 

 
Synthetic 

Passed thru 
SCX Column 

1 59.5 59.4 60.7 60.7 
2 59.2 59.0 60.3 60.3 
3 57.7 57.7 58.4 58.4 
4 55.8 55.8 57.0 57.1 
5 53.4 51.9 53.1 53.2 
6 52.0 46.8 47.0 47.0 
7 46.7 43.8 45.4 45.5 
8 44.0 39.3 41.4 41.4 
9 39.5 37.3 38.2 38.3 
10 37.4 36.7 37.7 37.8 
11 36.9 34.1 36.3 36.4 
12 34.3 33.9 35.6 35.6 
13 34.1 33.8 34.0 34.1 
14 33.8 32.9 33.5 33.5 
15 32.9 29.1 29.3 29.3 
16 29.2 27.7 27.9 27.9 
17 27.8 27.4 27.8 27.8 
18 27.5 27.4 27.7 27.8 
19 27.5 27.4 27.7 27.7 
20 27.3 27.3 27.6 27.6 
21 27.1 27.0 27.2 27.2 
22 26.8 26.8 27.0 27.1 
23 26.7 26.6 26.8 26.8 
24 26.6 26.6 26.8 26.8 
25 26.1 26.0 26.4 26.5 
26 26.0 26.0 26.2 26.3 
27 25.6 25.5 26.1 26.1 
28 25.5 25.5 25.7 25.7 
29 25.3 25.2 25.7 25.7 
30 23.4 23.3 25.5 25.6 
31 21.5 21.4 21.9 22.0 
32 20.9 20.9 21.4 21.5 
aPrepared by Garson and co-workers by hydrogenation of haliclonacyclamine A 

according to literature procedure.36 
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Figure 36. Comparison of 1H NMR spectrum of synthetic and semisynthetic 

tetrahydrohaliclonacyclamine A (3.3) (from hydrogenation of haliclonacyclamine A). 
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Table 6.  
1H and 13C Data for Compound 4.74b (cis-anti-cis isomer). 

Position 1Ha,c 13Ca,c DQFCOSYa,b,d HMBCa,b 

1 2.97, 1.45 61.4 H2, H3 H5b, H3, H2, 
H11ab 

2 1.72 33.6 H1a, H3, H1b H1b, H3 
3 1.43 35.5 H2, H5a, H4a H1b, H5b, H4a 
4 1.84, 1.62 28.3 H5a H1b, H5b 
5 2.69, 1.59 63.1 H4b, H3 H1b, H11b, H3 
6 2.62, 2.56 47.9  H7, H8b, H21 H21b, H10ab, 

H7 
7 1.63 35.1 H8a, H6ab H8a 
8 2.10, 0.52 35.3 H9, H7, H6 H10ab, H7 
9 1.74 42.1 H8a, H10ab H10ab, H8b 
10 2.45, 2.43 52.2 H9 H21b, H6ab,  
11 2.39, 2.04 58.8 H1ab, H5b, H1b - 
21 2.85, 2.58 56.8 - - 
aAll 2D data obtained by 600 MHz NMR; solution in CDCl3 referenced to 7.25 and 77.0 
ppm. 
ba and b denote upfield and downfield resonances respectively of a germinal pair.  
cProton and carbon correlations obtained by HSQC  and further  confirmed by 
DQFCOSY. 
dTOCSY correlations in italics.  
 
 

 

 

Figure 37.  Representation of Lowest Energy Conformation of 4.74b. 
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Figure 38.  NOESY Correlations for 4.74b. 

 

Table 7.  NOESY Correlations for Compound 4.74b. 

Position 1H 13C NOESY 
1 2.97, 1.45 61.4 H3, H11a 
2 1.72 33.6 H3, H1b(w) 
3 1.43 35.5 H1b, H2, H5b, 

H4b(w)  
4 1.84, 1.62 28.3 H3, H5b 
5 2.69, 1.59 63.1 H11b, H4b 
6 2.62, 2.56 47.9 H8b 
7 1.63 35.1 H9 
8 2.10, 0.52 35.3 H6b, H3(w) 
9 1.74 42.1 H7, H10a 
10 2.45, 2.43 52.2 H9, H21b(w) 
11 2.39, 2.04 58.8 H5b, H1a(w) 
21 2.85, 2.58 56.8 H10(w) 
 

The carbon resonances were matched to their respective protons by HSQC, and 

the germinal proton pairings crosschecked by DQFCOSY.  The 1H NMR spectrum was 

extremely congested, with the region from δ 3.00 – 2.00 ppm having the most resolved 

resonances, although some resonances had significant overlap.  The carbons at δ 63.1, 

61.4, 58.8, 56.8, 52.2, and 47.9 were assigned to be adjacent to nitrogen atoms, and the 

four methine protons at δ 1.74, 1.72, 1.63, and 1.43 were used for initial correlations.  
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The resonance at δ 61.4 (C-1) showed an HMBC link to H5b, H3, H2, and H11ab. The 

resonance at δ 63.1 (C-5) showed an HMBC link to H1b, H11b, and H3.  The resonance 

at 47.9 (C-6) showed an HMBC link to H21b, H10ab, and H7.  The resonance at 52.2 (C-

10) showed an HMBC to link H21b and H6ab.  These initial assignments enabled 

grouping of the six atoms adjacent to the nitrogen; 63.1 (C-1), 61.4 (C-5) and 58.8 (C-11) 

were on one ring while 56.8 (C-21), 52.2 (C-10), and 47.9 (C-6) were on the other ring.  

DQFCOSY correlations enabled further placing.  There were DQFCOSY correlations 

from H-2 to H1a and H3, H-1 to H-2, and H-3 to H-2 which indicated all of the 

resonances were located on ring A.  The DQFCOSY correlation between H-3 and H-2, 

along with the lack of any DQFCOSY correlation between H-3 and H-9 indicated H-3 

and H-2 were on ring A.  Other DQFCOSY correlations of H-4 to H5a, and H5 to H4b 

helped in beginning to put together ring A.  TOCSY correlations of H-1 to H-3, H-2 to H-

1b, H-3 to H5a and H4a, and H-5 to H-3 along with the DQFCOSY correlations above 

finalized the assignment of ring A.  The assignments of ring B were made in a similar 

manner.  Key DQFCOSY assignments were H-7 to H8 and H6ab, as well as, H-8 to H7 

and H-9.  H-9 also had a DQFCOSYcorrelation to H-10.  A 2-D NOESY experiment 

confirmed that C-7 and C-9 were on the same face of the molecule.  Furthermore, the 

signal of H8a is a well defined quartet, presenting the same 12-Hz coupling constant as 

H-7, H-8b, and H-9 (although H-7 and H-9 are highly congested regions and the coupling 

constants are not easily defined).  This analysis indicates the relative stereochemistry 

between H8a and H7 must be axial-axial, as well as between H-8a and H-9 indicating the 

C-7 and C-9 stereochemistry.    There were no NOESY correlation between C-9 and C-3, 

however there was a correlation between H-2 and H-3 indicating they were on the same 
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face of the molecule but opposite to H-9 and H-7.  Due to crystal structure of isomer 

4.73a and the NOESY correlations above the relative stereochemistry is as shown in 

Figure 38. 
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Table 8. Comparison of natural and synthetic haliclonacyclamine C (1.4). 

Carbon Signal 
(Ordered from 
downfield to 

upfield) 

 
Published 
Data36 

 
Synthetic 

1 131.2 131.2 
2 130.0 130.0 
3 60.5 60.6 
4 59.4 59.4 
5 58.4 58.5 
6 56.8 56.9 
7 53.4 53.5 
8 46.7 46.9 
9 45.0 45.0 
10 41.1 40.0 
11 38.0 38.0 
12 37.6 37.6 
13 36.2 36.1 
14 34.9 34.3 
15 34.1 34.0 
16 32.7 32.7 
17 29.3 29.3 
18 29.1 29.1 
19 28.3 28.3 
20 27.9 27.9 
21 27.8 27.7 
22 27.7 27.7 
23 27.5 27.5 
24 27.0 27.0 
25 26.9 26.8 
26 26.7 26.7 
27 26.3 26.2 
28 26.1 26.1 
29 25.8 25.8 
30 25.5 25.4 
31 22.1 22.1 
32 21.3 21.3 
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Figure A1.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.15 in CDCl3 
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Figure A2.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.17 in CDCl3 
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Figure A3.  300 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.13 in CDCl3 
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Figure A4.  300 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.45 in CDCl3 
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Figure A5.  400 MHz 1H-NMR 75 MHz 13C-NMR spectrum of 5.2 in CDCl3 
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Figure A6.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.49 in CDCl3 
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Figure A7.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.50 in CDCl3 
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Figure A8.  300 MHz 1H-NMR and 75 MHz 13C-NMR spectrum of 5.3 in CDCl3 
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Figure A9.  300 MHz 1H-NMR and 125 MHz 13C-NMR spectrum of 4.51 in CDCl3 
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Figure A10.  300 MHz 1H-NMR and 125 MHz 13C-NMR spectrum of 4.44 in CDCl3 
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Figure A11.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.43 in CDCl3 
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Figure A12.  500 MHz 1H-NMR and 125 MHz 13C-NMR spectrum of 4.52 in CDCl3 
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Figure A13.  300 MHz 1H-NMR and 125 MHz 13C-NMR spectrum of 4.53 in CDCl3 
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Figure A14.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.42 in CDCl3 
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Figure A15.  400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 4.41a/b in CDCl3 
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Figure A16.  400 MHz 1H-NMR and 125 MHz 13C-NMR spectrum of 4.70a/b in CDCl3 
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Figure A17.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.71a in CDCl3 
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Figure A18.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.71b in CDCl3 
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Figure A19.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.73a in CDCl3 
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Figure A20.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.73b in CDCl3 
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Figure A21.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.73a in CDCl3 
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Figure A22.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.72b in CDCl3 
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Figure A23.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 3.3 in CDCl3 
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Figure A24.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.74b in CDCl3 
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Figure A25.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.79a/b in CDCl3 
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Figure A26.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.80a in CDCl3 



234 

 

 

 
 
 

Figure A27.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 5.7b in CDCl3 
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Figure A28.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.40 in CDCl3 
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Figure A29.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 4.88 in CDCl3 
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Figure A30.  600 MHz 1H-NMR and 150 MHz 13C-NMR spectrum of 1.4 in CDCl3 
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