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The small GTPase Rab11 family proteins have been implicated in the plasma 

membrane recycling system in such diverse model systems as H/K-ATPase trafficking in 

parietal cells to GLUT4 trafficking in heart and skeletal muscle. Rab11 family interacting 

protein 2 (Rab11-FIP2) was previously identified as binding to both Rab11a and the 

motor protein, myosin Vb. Therefore, we hypothesized that Rab11-FIP2 is a critical 

regulator of the plasma membrane recycling system. In these studies, we sought to 

characterize the role of Rab11-FIP2 function in polarized epithelial cells. To address the 

role of Rab11-FIP2, we uncovered a new role for Rab11-FIP2 in the establishment of 

polarity. We found that Rab11-FIP2 is phosphorylated by MARK2, and that this 

phosphorylation is necessary for the proper formation of the adherens junction. Next, we 

characterized a new dominant mutant Rab11-FIP2 mutant, which has unique effects on 

the recycling system than all previously characterized mutants. Analysis of the data 

suggests that FIP2 is involved in multiple stages in passage through the Rab11a 

associated recycling system. Multiple points of entry into the Rab11a/ FIP2 recycling 

system may be exploited depending upon the origin of the protein and possibly, its 

destination. This model supports a dynamic vision of the recycling system trafficking. 



  

We also analyzed new Rab11-FIP2 interacting proteins utilizing a novel approach of 

immunoprecipitation from stable cell lines overexpressing either wild type Rab11-FIP2 

or its mutants followed by identification of the associated proteins using mass 

spectrometry. This proteomics approach revealed novel interactions with proteins known 

to be involved in trafficking (dynein and Rab10) in early endosomal membrane 

regulation (Rab5b and EpsinR), and vesicle coat proteins (AP-1 and clathrin heavy 

chain). Validation of these interactions proves that this methodology reveals robust 

interactions that are readily confirmed. All together, this body of work significantly 

advances our understanding of the diverse roles of Rab11-FIP2 in the regulation of 

epithelial cell function. 
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CHAPTER I 

INTRODUCTION 

 
 

Cells have evolved complex processes to maintain a functional dynamic 

equilibrium. One of the fundamental tasks of a cell is to interact with its environment. In 

order to respond accurately to external stimuli, the cell has evolved an intricate system 

for the regulation of its plasma membrane proteins. Much of this pathway is facilitated by 

the movement of proteins to and from the cell surface via vesicular structures along the 

cytoskeleton. This system is ubiquitous in many aspects of cell physiology from nutrient 

internalization to receptor and ion channel recycling (Takei and Haucke, 2001), 

collectively known as trafficking. 

Epithelial Cell polarization 

The defining characteristic of an epithelial cell is the involvement of directionality 

in the cell. The cell defines its top, or apical, side as well as its bottom, or 

basal/basalateral, side. The existence of these different sides of the cell is fundamental to 

all aspects of epithelial cell-specific functions. The process of defining the apical and 

basolateral domains is known as polarization. A cell begins to polarize in response to 

signals sent from neighboring cells and the extracellular matrix, which the cells have 

adhered to and forms the basis of the basolateral domain (Shin et al., 2005). As a cell 

polarizes, two distinct junctions are formed that help to define the polarized domains: the 

adherens junction and the tight junction. 
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The adherens junction forms at the site of cell-cell adhesion where calcium 

dependent cell-to-cell binding occurs. E-cadherins from one cell bind to those in the 

neighboring cell forming the adherens junction (Lock and Stow, 2005b). E-cadherin also 

binds a number of internal proteins that serve to stabilize the complex. As E-cadherin is 

synthesized, it binds to beta-catenin. Once E-cadherin is trafficked to the plasma 

membrane, it interacts with cytosolic p120-catenin (Lock and Stow, 2005b). However, 

approximately 13% of the E-cadherin is in a constantly recycling pool (Le et al., 1999). If 

cells are incubated at 18° C, a temperature that results in accumulation of endocytosed 

proteins in early or sorting endosomes, recycling E-cadherin accumulates in a Rab5 

positive early endosomal structure (Le et al., 1999). 

The tight junction forms a physical barrier between two adjacent cells that serves 

to regulate the flow of materials across the epithelial monolayer between cells as well as 

to maintain the distinction between the apical and basolateral membrane domains 

(Kobayashi et al., 2002). This physiological significance of the tight junction is 

exemplified by a phenotype of severe dehydration leading to death in mice lacking the 

barrier function afforded by these junctions (Tunggal et al., 2005). Proteins destined for 

the tight junction are transported in vesicles to the lateral domain (Kobayashi et al., 

2002). Numerous tight junction proteins have been identified and tracked through the 

polarization process. The first known protein to move apically is PATJ, which begins the 

definition and formation of the tight junction (Figure 1). Another protein, ZO-1, is 

brought with E-cadherin to the site of cell-cell adhesion (Stevenson and Keon, 1998; Shin 

et al., 2005). Shortly after the movement of PATJ, ZO-1 assembles with ZO-2 and ZO-3 

at the adherens junction (Stevenson and Keon, 1998) before moving to the tight junction 
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(Shin et al., 2005). In fact, in PATJ knock-down studies, ZO-1 had a delayed progression 

to the tight junction (Shin et al., 2005) and PATJ is required for occludin and ZO-3 

localization to tight junctions (Michel et al., 2005). The tight junction proteins interact 

with filamentous actin found at the apical membrane (Shin et al., 2005) (Figure 1). If the 

actin is disrupted, the tight junction looses its barrier function and internalizes the 

junctional proteins ZO-1 and occludin (Shin et al., 2005). The generation of polarity in 

epithelia is dependent upon microtubules. Microtubules have intrinsic directionality with 

their plus ends directed basally and their minus ends directed apically. The kinase 

MARK2 promotes microtubule assembly at the lateral membrane essentially initiating 

polarity (Musch, 2004). Specifically, junctional assembly requires microtubules and 

microtubule motors: first dynein tethers the complex and then kinesin mediates transport 

along microtubules (Caviston and Holzbaur, 2006). 

Following the formation of junctional complexes, the cell has defined apical and 

basolateral domains. All subsequently synthesized proteins must be targeted to the correct 

domain. Some proteins have defined directionality cues. Sorting to the apical membrane 

is driven by N- and O-linked glycosylation or GPI anchors (Folsch, 2005). Delivery to 

the basolateral membrane is directed by the presence of a tyrosine or dileucine motif in 

the cytoplasmic tail of the newly synthesized protein (Folsch, 2005). Recent reports 

suggest that individualized endocytosis routes may exist for different receptors. For 

example, the transferrin receptor utilizes AP-2 as its clathrin adaptor protein while LDL 

receptor and EGFR employ Epidermal growth factor receptor pathway substrate 15 (Eps 

15) as its clathrin adaptor (Perret et al., 2005). The orchestration of delivery of proteins to 

apical and basal domains is mediated by trafficking events. 
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Figure 1: A Schematic Depicting a Portion of the Known Junctional Proteins 

Modified from ((Bryant and Stow, 2004); (Matter et al., 2005); (Nelson, 2003); (Shin et al., 
2005); (Ivanov et al., 2006); (Gumbiner, 2005)). Arrows indicate the protein at the arrow head is 
activated by the initial protein. Lines indicate that the proteins interact with each other. 

Cells can internalize and direct vesicles in four distinct ways. A cell can 

internalize a vesicle from the apical side and return it back to the apical side, known as 

apical recycling. Alternatively, a cell can utilize basolateral recycling when it internalizes 

a vesicle from the basolateral side and recycles it back to that same side. The cell can also 

transport a vesicle from one side of the cell to the other in a process known as 
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transcytosis. Finally, a cell can target the contents of vesicles for degradation by the 

lysosome (2). 

 

 

Figure 2: Schematic of the potential trafficking routes in polarized cells 
A cell can internalize cargo and direct it to a variety of different places. A cell can send the cargo 
to the lysosome for degradation. Alternatively, cargo endocytosed, from the apical membrane can 
enter an apical recycling pathway that brings it back out to the apical membrane. A cell can also 
internalize cargo from the basolateral membrane. This cargo can either be trafficked to the 
apical membrane, known as transcytosis, or send it back out to the basolateral membrane, known 
as basolateral recycling. TJ refers to tight junction while AJ refers to adherens junction. 

Small GTPases 

Small GTP-binding proteins are monomeric proteins with molecular masses of 

20-40 kDa (Takei and Haucke, 2001). The small GTPase superfamily currently has been 

subdivided into five families: Ras, Rho/Rac/cdc42, Ran, Arf/Sar, and Rab. Each of these 
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small GTPases share structural homology but have functional specificity. The first 

protein class described in the family was Ras. Ras was subsequently found to regulate 

cell proliferation, differentiation, morphology, and apoptosis (Takei and Haucke, 2001). 

Rho/Rac/Cdc42 proteins regulate cytoskeletal reorganization in response to extracellular 

signals in mammalian cells (Wennerberg and Der, 2004). Ran regulates nuclear import 

and export through the nuclear pore complex (Madrid and Weis, 2006). The Arf/Sar 

family of proteins regulates vesicle budding and formation (Kahn et al., 2005 ). Finally, 

the Rab family regulates vesicle trafficking (Takei and Haucke, 2001). The work 

described herein specifically furthers our understanding of Rab proteins. 

The Importance of Rab Proteins 

Investigations over the past decade have demonstrated that a family of small 

GTPases, known as Rab (‘Ras genes from rat brain’) proteins, regulates many diverse 

aspects of vesicle trafficking within both non-polarized and polarized cells (Pfeffer, 

2001). Researchers have identified over sixty mammalian Rabs to date, each with a 

unique role in cellular trafficking. Each Rab helps to define a subsection of vesicular 

membranes, which, while dynamic, is generally exclusive for each type of Rab 

(Sonnichsen et al., 2000). In many cases, the membrane domains are continuous (Brown 

et al., 2000) yet functionally distinct (Sonnichsen et al., 2000). It has become a standard 

practice in the trafficking field to use Rabs to define distinct subdomains within a 

continuous membrane (Seabra and Coudrier, 2004) (see below for examples).  

Rabs are critical for the regulation of vesicle budding and fusion during 

trafficking events. The Tavitian lab first identified and named mammalian Rabs 1 

through 4 in 1987 (Touchot et al., 1987). Subsequently, further work revealed that Rabs 
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can have such high conservation from yeast through mammals that they often can 

substitute for each other in in vitro situations (Stenmark and Olkkonen, 2001). Rab 

family members have a carboxyl-terminal CC or CXC sequence, which allows 

isoprenylation with a geranylgeranyl motif (Khosravi-Far et al., 1991), accounting for 

their membrane association. Double geranylgeranylation is necessary for proper 

membrane targeting and activation of Rabs (Gomes et al., 2003). Finally, Rabs cycle 

between an active (GTP-bound) and inactive (GDP bound). The transition between these 

states utilizes guanine-nucleotide exchange factors (GEFs) to exchange GDP for GTP 

and GTPase-activating proteins (GAPs) to aid in GTP hydrolysis to GDP (reviewed in 

(Segev, 2001)) (Figure 3). 

 

Figure 3: Common Features of Rab Proteins 
Rab GTPase Cycle. Rab proteins cycle between an active GTP bound form and an inactive GDP 
bound form. GTPase-activating proteins (GAPs) enhance the exchange from GDP to GTP. The 
hydrolysis of GTP to GDP is facilitated by guanine nucleotide exchange factors (GEFs).  

Rab Protein Function 

 In the early 1990s, two hypotheses emerged to explain the functional importance 

of Rab proteins: 1) Rab proteins serve as switches/timers or 2) Rab proteins coordinate 
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protein complex assembly. The first hypothesis was suggested in 1991 based upon a 

comparison with other small GTPases (Khosravi-Far et al., 1991). This work suggested 

that because small GTPases had a common structure, they would also have a common 

function. By comparing EF-Tu to the other GTPase families, Bourne et al concluded that 

the hydrolysis of GTP to GDP served as a timer to turn off the core function of the 

GTPase. Further support of this hypothesis found that Rab5 could undergo GTP-binding 

and hydrolysis without causing endosome fusion (Rybin et al., 1996). However, the 

fusion event did require hydrolysis. This work suggested that the binding of GDP or GTP 

regulated the recruitment of interacting proteins, which would in turn slow the hydrolysis 

step. This work set the stage for the second hypothesis that the primary role of Rab 

proteins is to recruit other effector molecules. The specificity of Rab localization 

facilitates the assembly of all components in a complex necessary for vesicle formation 

(Schimmoller et al., 1998; Hammer and Wu, 2002). For example, Rab5-GTP specifically 

recruits Rabaptin-5 to the Rab5 positive membrane (Rybin et al., 1996). Thus, these two 

hypotheses were unified into the postulate that the binding of GTP to Rab proteins served 

as a timer to recruit the appropriate proteins in order for a vesicle to correctly form 

(Woodman, 1998). 

 A seminal paper reported that the carboxy-terminal variable region of Rab 

proteins determines their subcellular localization (Chavrier et al., 1991). This work 

exchanged portions of the Rab2, 5 or 7 proteins with each other creating chimeric 

proteins. They found that the carboxy-terminal domain conferred specificity. For 

example, N-terminal Rab5 fused to C-terminal Rab7 caused localization of the chimera to 

the late endosome (Chavrier et al., 1991). These results supported a hypothesis that Rab 
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localization was dependent on C-terminal protein interactions (Seabra and Wasmeier, 

2004). 

 The original work comparing the classes of small GTPases used sequence 

homology to determine putative functions for conserved sequences (Khosravi-Far et al., 

1991). They suggested the GTP binding region was divided into three regions based upon 

the known function in EF-Tu: region 1 bound α and β-phosphate of GDP and/or GTP; 

region 2 was used to bind the coordinating Mg ion; and region 3 bound the γ-phosphate 

of GTP (Khosravi-Far et al., 1991) (Figure 4). Recent work analyzing crystal structures 

of Rab proteins have supported this general hypothesis (Pfeffer, 2005). 

 

 

Figure 4: Small GTPase Protein Structure 
Small GTPase  proteins are characterized by GTP binding regions and a variable domain. Three 
GTP binding domains are used to bind separate components of GTP: Region 1 binds the α- or β-
phosphate of GDP and GTP; Region 2 binds magnesium; and Region 3 binds the γ-phosphate of 
GTP. The C-terminal variable domain consists of the last 30 amino acids.  

Rab11 Family  

Over the past 10 years, a number of studies have led to the recognition that Rab11 

family members regulate the plasma membrane recycling system. Rab11a was cloned as 

the Sec4 homolog in MDCK cells in 1990 (Chavrier et al., 1990a; Chavrier et al., 1990b). 

The Rab11 Family now consists of Rab11a, Rab11b, and Rab25, all of which share a 
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similar genomic structure (Bhartur et al., 2000). To date, Rab11a is the best-characterized 

member of the family. Tissues with high levels of secretion such as the brain, lung, 

fundus, and ileum, as well as the parietal cell have enriched levels of Rab11 protein 

(Goldenring et al., 1994). In non-polarized cells such as HeLa or CHO cells, Rab11a is 

associated with perinuclear recycling endosomes. Rab11a colocalizes with transferrin 

receptor in the recycling endosome (Ullrich et al., 1996; Green et al., 1997). GTP 

hydrolysis is required for the recycling of these vesicles, while carboxy-terminal 

prenylation is required for Rab11a association with recycling vesicles (Ren et al., 1998).  

Following the identification of the basic characteristics of Rab11a, more detailed 

work sought to understand more fully the role of this protein in the cell. Early work 

began in non-polarized cells and began to define sorting compartments. The early 

endosome initially was characterized as a pre-lysosomal compartment in the receptor-

mediated endocytotic pathway (Helenius and Marsh, 1982). Gradually, these 

compartments became defined by the presence of Rab proteins. Rab5, one of the first 

Rabs isolated in mammalian cells was associated with the early endosome (Chavrier et 

al., 1990a). Rab11a was associated with a perinuclear structure termed the recycling 

endosome that was defined as the last step before delivery to the plasma membrane 

(Ullrich et al., 1996). The trafficking field quickly developed a canonical pathway 

marked by specific Rab proteins (). The first defined compartment following endocytosis 

is the peripheral vesicles known as early endosomes. Rab5 is associated both with the 

plasma membrane and these early endosomes. Rab4 parses out cargo to different 

destinations in a sorting endosome (Mohrmann et al., 2002). Cargo destined for 

degradation is directed towards the Rab7 positive late endosome and subsequently to the 
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lysosome (Ren et al., 1998). Proteins that are recycling back to the plasma membrane 

traverse a Rab11 positive recycling endosome (Chen et al., 1998; Ren et al., 1998). 

 

 
 

Figure 5: Vesicle Trafficking Pathway in non-polarized cells 
Cargo is internalized from the plasma membrane via endocytosis into a Rab5 positive early 
endosome (EE). It is then either targeted for degradation by trafficking to the Rab7 positive late 
endosome (LE) followed by the lysosome or is sent to the Rab4 positive sorting endosome (SE). 
Finally, cargo traffics to the Rab11 recycling endosome (RE) before returning to the membrane 
and undergoing exocytosis. 

Original work in the Rab field hypothesized that each Rab marked a unique 

membrane population. As mentioned above, a Rab5 positive structure was synonymous 

with the EEA1 positive early endosome. However, as additional Rab proteins were 

characterized, it became clear that such a rigid framework was not always accurate. For 

example, Rab 21 (Simpson et al., 2004) and Rab22 (Magadan et al., 2006) are also on 

EEA1 positive early endosomes. Therefore, the canonical view of one Rab per vesicle 

was replaced with a multiple Rabs per vesicle hypothesis. In addition, the concept that a 

particular lab is present only on a vesicle population is also no longer supported by recent 

studies. This work suggested that Rabs mark trafficking pathways rather than specific 
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vesicle populations. For example, a single endosome contained both Rab 5 and Rab4 or 

Rab4 and Rab11 when followed over time (Sonnichsen et al., 2000). Further studies 

found that staining for Rab5 decreased as Rab7 increased during vesicle maturation (Rink 

et al., 2005). 

At the same time, numerous physiologic implications for Rab11 were emerging. 

For example, Rab11 interacts with Presenilin 1 and 2, important proteins in the 

progression of Alzheimer’s disease (Dumanchin et al., 1999). Estrogen signaling via the 

ER-alpha receptor induces Rab11, and this regulation is hypothesized to initiate a cascade 

of proteins to enter into the secretory pathway during implantation (Chen et al., 1999). In 

addition, Rab11 is involved in the trafficking of the H/K ATPase in parietal cells 

allowing for acid secretion in the stomach (Duman et al., 1999). 

Rab11 was emerging as an important regulator in the membrane recycling 

endosomal pathway. Therefore, two labs began screening for proteins that interact with 

Rab11a. These labs identified the same protein, Rab11BP/Rabphillin reported in 1999, 

which was enriched in Rab11a positive endosomes (Mammoto et al., 1999; Zeng et al., 

1999). The characterization of this protein determined that it was not a GAP or a GEF for 

Rab11 (Mammoto et al., 1999) but did interact very specifically with the GTP-bound 

form of Rab11a. Rab11BP/Rabphillin was primarily cytosolic but required membrane 

binding to interact with Rab11a (Zeng et al., 1999). Subsequently, Prekeris et al found 

that pp75/rip11 bound to Rab11a-GTP and was involved in the transcytotic pathway. 

pp75/rip11 had a cytosolic form akin to Rab11BP/Rabphillin, but cytosolic pp75/rip11 

was phosphorylated. The group hypothesized that de-phosphorylation was necessary for 

membrane association and interaction with Rab11a (Prekeris et al., 2000). Our lab 
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followed with the identification of a Rab11 interaction with the unconventional myosin, 

myosin Vb. Generally, myosins are known as actin motor proteins. We found that myosin 

Vb was unexpectedly associated with microtubules since taxol treatment caused 

mislocalization (Lapierre et al., 2001). 

The Cloning of Rab11a interacting proteins: FIPs 

Our lab sought to identify additional proteins that interacted with Rab11a employing a 

yeast two-hybrid library screen. This approach resulted in the characterization of the 

founding member of the Rab11-Family Interacting Proteins (Rab11-FIPs), Rab11-FIP1. 

Rab11-FIP1 uses its carboxy-terminus to bind to Rab11a, and thus this area was called 

the Rab11 Binding Domain (RBD) (Figure 6). Homology searches using the sequence of 

the RBD identified three other proteins as family members: Rab11-FIP2, eferin (now 

termed Rab11-FIP3), and pp75 (now termed Rab11-FIP5). All four proteins bind to the 

three Rab11 Family members, Rab11a, Rab11b, and Rab25. 

 
Figure 6: Rab11-FIP2 has a Rab11 binding domain comprised of an amphipathic 
alpha helix 
Each Rab11-FIP has a Rab11 binding domain comprised of an amphipathic alpha helix. This 
diagram of the Rab11-FIP2 helix is representative of this domain, which occurs between amino 
acids 465 and 492 in Rab11-FIP2. Image courtesy of Joseph Roland, www.cytogrpahica.com. 
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However, Rab11-FIP2 had three distinctive characteristics that set it apart from 

the other family members. First, it was able to bind to both Rab11a-GDP (dominant 

negative) and Rab11-GTP (dominant active), while the other members only interacted 

with the GTP bound form. Rab11-FIP2 was also able to interact with the motor protein 

myosin Vb. Finally, Rab11-FIP2 only partially co-localized in MDCK cells with Rab11a, 

while Rab11-FIP1 and Rab11-FIP5 seem to entirely co-localize with Rab11a (Hales et 

al., 2001).  

Another lab independently confirmed the interaction of Rab11a with Rab11-FIP3 

(Prekeris et al., 2001) and Rab11-FIP5 (Prekeris et al., 2000; Prekeris et al., 2001). 

Shortly after the report of the cloning of the Rab11-FIPs, an additional lab cloned Rab11-

FIP4 (Wallace et al., 2002). Finally, Rab Coupling Protein (RCP) was cloned as a Rab4 

interacting protein that colocalized with Rab11a (Lindsay et al., 2002). Recent work has 

determined that the Rab11-FIP1 gene codes for seven splice variants, one of which is 

RCP. Therefore, this protein is now characterized as Rab11-FIP1C/RCP while the 

original FIP1 is now FIP1A (Jin and Goldenring, 2006). Thus, the family now contains 

six family members in mammalian cells (Figure 7). 

 
 



 

15 

 
 

Figure 7: Schematic of Rab11-FIP Proteins 
A diagrammatic depiction of the Rab11-FIPs. FIPs are characterized by having a carboxy-terminal Rab11 binding domain (orange). RCP 
and FIP2 have C2 domains (blue), while FIP3 and FIP4 have EF hand domains (red). FIP2 also has a myosin Vb binding domain 
(purple) and three NPF motifs.
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Rab11-FIP2 Interactions 

Rab11-FIP2 binds to other proteins in addition to the Rab11 Family members. 

Rab11-FIP2 was the only member of the family that was able to bind to the motor 

protein, myosin Vb (Hales et al., 2001). Therefore, our lab studied this interaction in 

more detail and found that Rab11-FIP2 interacts with myosin Vb between amino acids 

191 and 290 of Rab11-FIP2 (Hales et al., 2002) (Figure 8). The distinction of this domain 

from the RBD led to the hypothesis that Rab11-FIP2, myosinVb and Rab11a form a 

ternary complex (Hales et al., 2002). 

Another structural feature of Rab11-FIP2 is the presence of three NPF motifs (), 

which are thought to bind the Eps15 homology domain (EH domains). EH domain 

proteins contain a pair of EF hand motifs that may or may not bind to calcium. The first 

Rab11-FIP2 interacting EH domain protein reported was Rep1 (Cullis et al., 2002). This 

same study reported that Rab11-FIP2 also binds to α-adaptin, a component of the AP-2 

complex and suggested that Rab11-FIP2 might be involved in the transition from 

receptor-mediated endocytosis to the sorting endosomes (Cullis et al., 2002). An 

additional report suggested that Rab11-FIP2 interacts with EHD1 and EHD3 through its 

second NPF motif (Naslavsky et al., 2006). However, EHD1-4 have an identity of 70% 

(Rappoport et al., 2006), and since our lab has not been able to duplicate this interaction, 

the Rab11-FIP2 interaction may be with EHD2 or EHD4 in vivo. 
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Figure 8: Schematic of Rab11-FIP2 Domains 
The amino terminus of Rab11-FIP2 contains a C2 domain from amino acids 1 through 129. 
Rab11-FIP2 binds to myosin Vb between amino acids 191 and 290. Rab11-FIP2 binds to Rab11a 
in a carboxy-terminal Rab Binding Domain between residues 465-592. Rab11-FIP2 has three 
NPF motifs beginning at amino acid 322, 406 and 440. Rab11-FIP2 is phosphorylated on serine 
227. Mutation of R413 results in a dominant negative Rab11-FIP2 construct by causing a 
collapse of the Rab11 positive apical recycling system. 

Rab proteins in polarized cells 

While the trafficking field was rapidly progressing in non-polarized cells, the 

pathway in polarized cells was proving to be more complex. In a polarized system, cells 

have more options for cargo internalization and destination (). The polarized cell includes 

a more elaborate endosomal structure involving progression through either an apical or 

basolateral early endosome (EE), sorting or common endosome (CE), and apical 

recycling endosome (ARE) (Brown et al., 2000) (). Between 1976 and 1978, MDCK 

cells were established as the model for studying polarity and polarized trafficking 

(Rodriguez-Boulan et al., 2005). 

The apical early endosome (AEE) is a 100-150 nm cup shaped vesicle defined by 

the presence of Rab5 (Hoekstra et al., 2004). Cargo internalized from the basolateral 

membrane enters a basolateral early endosome (BEE) also marked by Rab5. Recent work 

suggests that there are at least two early endosomal populations that are defined based on 

cargo destination. One population rapidly matures, acquires Rab7 within 30 seconds of 
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internalization, and is destined for lysosomal degradation. The other endosomal 

population slowly matures, acquires Rab11 within 100 seconds of internalization, and 

tubulates during its progression through the recycling pathway (Lakadamyali et al., 

2006). In addition, Rab21 moves bidirectionally between the early endosome and the 

plasma membrane (Pellinen et al., 2006). To add to the complexity, some receptors may 

utilize different trafficking strategies depending upon the circumstances. For instance, the 

stimulation of EGFR with a low does of EGF results in EGFR internalized by clathrin-

mediated endocytosis and trafficking through the canonical endosomal system. However, 

if a large amount of EGF is used to stimulate the receptor, it is internalized utilizing 

raft/caveolin dependent endosome that segregates the receptor for degradation (Polo and 

Di Fiore, 2006).  

Following progression through the early endosome, cargo is delivered to a 60 nm 

vesicle known as the common endosome (Hoekstra et al., 2004); the analogous 

compartment in non-polarized cells is the Rab4 positive compartment. However, little 

work has explored the role of Rab4 in MDCK cells. One report suggests that Rab4 

controls the export of transcytotic cargo from the common endosome to the apical 

membrane (Mohrmann et al., 2002). Additional work suggests that transcytotic cargo 

enters an ill-defined Rab10 compartment that regulates the exit from the early endosome 

(Babbey et al., 2006). Rab10 may also be present on the basolateral face of CE (Babbey 

et al., 2006). In addition, a recent report suggests that Rab11a is localized on vesicles in 

the basolateral portion of hepatocyotes (Permsin Marbet, 2006), which may actually be 

the common endosome. However, little work has been done to define this process. 

Finally, Rab17, a rab specific for epithelial cells (Lutcke et al., 1993), has been 
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alternatively reported to localize to the CE (Hunziker and Peters, 1998) and the apical 

recycling endosome (Zacchi et al., 1998). One possibility is that multiple rabs accompany 

vesicles through the CE, depending upon their origin or destination. However, little work 

has explored the CE. 

 

 
Figure 9: Generalized Model of Trafficking in Polarized Cells 

Apical cargo is internalized via a Rab5a positive early endosome (EE). Basolateral cargo is 
internalized via a Rab5 positive basolateral early endosome (BEE). Both cargos are directed 
towards a common endosome (CE) or diverted to a Rab7 positive late endosome (LE). If the 
cargo is destined to the apical plasma membrane, it will be trafficked through a Rab11a positive 
apical recycling endosome (ARE).Tight junctions (TJ) serve as barriers along the epithelial 
monolayer while adherens junctions (AJ) serve as a conduit between adjacent cells. 

After traversing through the common endosome, apically destined cargo enters 

the apical recycling endosome (ARE). The ARE consists of a branching tubulovesicular 

network that begins in the apical region and extends to the cell periphery (Hoekstra et al., 

2004). Rab11a containing vesicles localize near the centrosome beneath the apical 
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membrane in the ARE dependent upon intact microtubules. Destabilization of 

microtubules with nocodazole causes Rab11a positive vesicles to disperse, while 

stabilization with taxol causes congregation near tight junctions (Casanova et al., 1999). 

Rab11 has been seen to remain with the vesicle through fusion with the plasma 

membrane (Ward et al., 2005) and is suggested to have a role in vesicle fusion or docking 

since it is often found between two fusing vesicles (Savina et al., 2005). 

Endocytic trafficking in polarized cells 

In addition to more intricate pathways in polarized cells, recent work suggests that 

the internalization method of the cargo influences the trafficking pathway followed. 

There are numerous examples of receptors following the canonical pathway, and yet the 

details of the internalization process reveal added complexity based on the proteins 

involved. Cargo internalization occurs via clathrin-coated pits, caveosomes, or clathrin- 

and caveolae-independent mechanisms (Kirkham and Parton, 2005). Each process has 

distinct effectors and adaptors (). Of most relevance to this work are proteins specifically 

related to the recycling endosome. 

Transferrin receptor is internalized using a clathrin-coated pit mediated by AP-2. 

However, while LDL and EGFR also use clathrin-coated pits, they do not use the AP-2 

adaptor but instead use Eps 15 and epsin (Perret et al., 2005). The cystic fibrosis 

transmembrane receptor (CFTR) is internalized via clathrin-coated pits by binding to AP-

2 (Gentzsch et al., 2004). Internalized CFTR is recycled back to the plasma membrane 

along microtubules in a Rab5 and Rab11 dependent manner (Gentzsch et al., 2004). 

However, integrins utilize the actin cytoskeleton during internalization and an entirely 

different small GTPase, ARF6 (Powelka et al., 2004). The ARF6 compartment is 
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internalized in a clathrin-independent manner (Donaldson, 2003) that is also used by LH 

and beta2-adrenergic receptors. However, recycling cargo from this internalization route 

also can utilize a Rab11 positive pathway for exit back to the plasma membrane (Powelka 

et al., 2004). Both Rab11-FIP3 and FIP4 interact with ARF6, creating a potential linking 

mechanism between this internalization route and the Rab11 recycling endosome 

(Hickson et al., 2003; Fielding et al., 2005). 

Table 1: Proteins and lipids in polarized systems 
Proteins associated with the various endocytic processes and compartments in polarized 
epithelial cells.  

Apical Endocytosis AP-2 (Folsch, 2005) 

Rab5 family (Bucci et al., 1994) 

Basolateral Sorting AP-1B (Folsch, 2005) 

AP-4 (Folsch, 2005) 

Rab8 (Lock and Stow, 2005a) 

Actin (Rodriguez-Boulan et al., 2004) 

Rme-1/EHD3 (Babbey et al., 2006) 

Endosomal Sorting AP-1A (Folsch, 2005) 

AP-3A (Folsch, 2005) 

AP-4 (Folsch, 2005) 

Basolateral to apical transcytosis Cholesterol (Perret et al., 2005) 

Sphingolipids (Perret et al., 2005) 

Caveolin-1 (Rodriguez-Boulan et al., 2004) 

Early endosome PI(3)P (Perret et al., 2005) 

Rab5 family (Bucci et al., 1994) 

Rab21 (Simpson et al., 2004) 

EEA1 (Mu et al., 1995) 

Rab22 (Magadan et al., 2006) 

Recycling endosome PI(4)P (Perret et al., 2005) 

Rab11 family (Goldenring et al., 1996) 

Sec15 (Zhang et al., 2004) 

Common Endosome Rab17 (Hoekstra et al., 2004) 

Rab4 (Mohrmann et al., 2002) 

 



 

22 

Even cargo that is internalized together may be destined for separate trafficking 

pathways. For example, a BEE containing recently internalized transferrin receptor and 

polymeric IgA receptor (pIgAR) does not deliver its contents to the same compartment. 

Clathrin-coated vesicles retrieve TfR resulting in a cup-shaped pIgAR-containing vesicle. 

The pIgAR vesicle uses microtubules to traffic into the sorting endosome (Musch, 2004).   

The polarized trafficking field continues to place the components of vesicle 

machinery on the correct membrane subdomain and/or endosomal structure. The work 

presented here addressed the hypothesis that Rab11-FIP2 is a critical regulator of plasma 

membrane recycling. We have uncovered a novel role for Rab11-FIP2 in the re-

establishment of polarity regulated in part by phosphorylation by MARK2 (chapter 2). 

We developed and analyzed a new Rab11-FIP2 mutant, which has differentiable effects 

on the endosomal structure than previously characterized mutants (chapter 3). Finally, we 

have identified proteins that interact in complex with Rab11-FIP2 (chapter 4), the results 

of which will greatly enhance our understanding of the endosomal structure in polarized 

MDCK cells (chapter 5). 

References 

Babbey, C.M., Ahktar, N., Wang, E., Chen, C.C., Grant, B.D., and Dunn, K.W. (2006). 
Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby 
canine kidney cells. Mol Biol Cell 17, 3156-3175. 

Bhartur, S.G., Calhoun, B.C., Woodrum, J., Kurkjian, J., Iyer, S., Lai, F., and Goldenring, 
J.R. (2000). Genomic structure of murine Rab11 family members. Biochem Biophys Res 
Commun 269, 611-617. 

Brown, P.S., Wang, E., Aroeti, B., Chapin, S.J., Mostov, K.E., and Dunn, K.W. (2000). 
Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) 



 

23 

cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 1, 124-
140. 

Bryant, D.M., and Stow, J.L. (2004). The ins and outs of E-cadherin trafficking. Trends 
Cell Biol 14, 427-434. 

Bucci, C., Wandinger-Ness, A., Lutcke, A., Chiariello, M., Bruni, C.B., and Zerial, M. 
(1994). Rab5a is a common component of the apical and basolateral endocytic machinery 
in polarized epithelial cells. Proc Natl Acad Sci U S A 91, 5061-5065. 

Casanova, J.E., Wang, X., Kumar, R., Bhartur, S.G., Navarre, J., Woodrum, J.E., 
Altschuler, Y., Ray, G.S., and Goldenring, J.R. (1999). Association of Rab25 and Rab11a 
with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol 
Cell 10, 47-61. 

Caviston, J.P., and Holzbaur, E.L. (2006). Microtubule motors at the intersection of 
trafficking and transport. Trends Cell Biol 16, 530-537. 

Chavrier, P., Gorvel, J.-P., Stelzer, E., Simons, K., Gruenberg, J., and Zerial, M. (1991). 
Hypervariable C-termmal domain of rab proteins acts as a targeting signal 353, 769-772. 

Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K., and Zerial, M. (1990a). Localization 
of low molecular weight GTP binding proteins to exocytic and endocytic compartments. 
Cell 62, 317-329. 

Chavrier, P., Vingron, M., Sander, C., Simons, K., and Zerial, M. (1990b). Molecular 
cloning of YPT1/SEC4-related cDNAs from an epithelial cell line. Mol Cell Biol 10, 
6578-6585. 

Chen, D., Ganapathy, P., Zhu, L.J., Xu, X., Li, Q., Bagchi, I.C., and Bagchi, M.K. 
(1999). Potential regulation of membrane trafficking by estrogen receptor alpha via 
induction of rab11 in uterine glands during implantation. Mol Endocrinol 13, 993-1004. 

Chen, W., Feng, Y., Chen, D., and Wandinger-Ness, A. (1998). Rab11 is required for 
trans-golgi network-to-plasma membrane transport and a preferential target for GDP 
dissociation inhibitor. Mol Biol Cell 9, 3241-3257. 

Cullis, D.N., Philip, B., Baleja, J.D., and Feig, L.A. (2002). Rab11-FIP2, an adaptor 
protein connecting cellular components involved in internalization and recycling of 
epidermal growth factor receptors. J Biol Chem 277, 49158-49166. 

Donaldson, J.G. (2003). Multiple Roles for Arf6: Sorting, Structuring, and Signaling at 
the Plasma Membrane. 10.1074/jbc.R300026200. J. Biol. Chem. 278, 41573-41576. 
 
Duman, J.G., Tyagarajan, K., Kolsi, M.S., Moore, H.P., and Forte, J.G. (1999). 
Expression of rab11a N124I in gastric parietal cells inhibits stimulatory recruitment of 
the H+-K+-ATPase. Am J Physiol 277, C361-372. 



 

24 

Dumanchin, C., Czech, C., Campion, D., Cuif, M.H., Poyot, T., Martin, C., Charbonnier, 
F., Goud, B., Pradier, L., and Frebourg, T. (1999). Presenilins interact with Rab11, a 
small GTPase involved in the regulation of vesicular transport. Hum Mol Genet 8, 1263-
1269. 

Fielding, A.B., Schonteich, E., Matheson, J., Wilson, G., Yu, X., Hickson, G.R., 
Srivastava, S., Baldwin, S.A., Prekeris, R., and Gould, G.W. (2005). Rab11-FIP3 and 
FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. Embo 
J 24, 3389-3399. 

Folsch, H. (2005). The building blocks for basolateral vesicles in polarized epithelial 
cells. Trends Cell Biol 15, 222-228. 

Gentzsch, M., Chang, X.-B., Cui, L., Wu, Y., Ozols, V.V., Choudhury, A., Pagano, R.E., 
and Riordan, J.R. (2004). Endocytic Trafficking Routes of Wild Type and {Delta}F508 
Cystic Fibrosis Transmembrane Conductance Regulator. 10.1091/mbc.E04-03-0176. 
Mol. Biol. Cell 15, 2684-2696. 
 
Goldenring, J.R., Smith, J., Vaughan, H.D., Cameron, P., Hawkins, W., and Navarre, J. 
(1996). Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am 
J Physiol 270, G515-525. 

Goldenring, J.R., Soroka, C.J., Shen, K.R., Tang, L.H., Rodriguez, W., Vaughan, H.D., 
Stoch, S.A., and Modlin, I.M. (1994). Enrichment of rab11, a small GTP-binding protein, 
in gastric parietal cells. Am J Physiol 267, G187-194. 

Gomes, A.Q., Ali, B.R., Ramalho, J.S., Godfrey, R.F., Barral, D.C., Hume, A.N., and 
Seabra, M.C. (2003). Membrane Targeting of Rab GTPases Is Influenced by the 
Prenylation Motif. Mol. Biol. Cell 14, 1882-1899. 

Green, E.G., Ramm, E., Riley, N.M., Spiro, D.J., Goldenring, J.R., and Wessling-
Resnick, M. (1997). Rab11 is associated with transferrin-containing recycling 
compartments in K562 cells. Biochem Biophys Res Commun 239, 612-616. 

Gumbiner, B.M. (2005). REGULATION OF CADHERIN-MEDIATED ADHESION IN 
MORPHOGENESIS. Nature Reviews Molecular Cell Biology 
Nat Rev Mol Cell Biol 6, 622-634. 

Hales, C.M., Griner, R., Hobdy-Henderson, K.C., Dorn, M.C., Hardy, D., Kumar, R., 
Navarre, J., Chan, E.K., Lapierre, L.A., and Goldenring, J.R. (2001). Identification and 
characterization of a family of Rab11-interacting proteins. J Biol Chem 276, 39067-
39075. 

Hales, C.M., Vaerman, J.P., and Goldenring, J.R. (2002). Rab11 family interacting 
protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J Biol 
Chem 277, 50415-50421. 



 

25 

Hammer, J.A., 3rd, and Wu, X.S. (2002). Rabs grab motors: defining the connections 
between Rab GTPases and motor proteins. Curr Opin Cell Biol 14, 69-75. 

Helenius, A., and Marsh, M. (1982). Endocytosis of enveloped animal viruses. Ciba 
Found Symp, 59-76. 

Hickson, G.R., Matheson, J., Riggs, B., Maier, V.H., Fielding, A.B., Prekeris, R., 
Sullivan, W., Barr, F.A., and Gould, G.W. (2003). Arfophilins are dual Arf/Rab 11 
binding proteins that regulate recycling endosome distribution and are related to 
Drosophila nuclear fallout. Mol Biol Cell 14, 2908-2920. 

Hoekstra, D., Tyteca, D., and van IJzendoorn, S.C.D. (2004). The subapical 
compartment: a traffic center in membrane polarity development. J Cell Sci 117, 2183-
2192. 

Hunziker, W., and Peters, P.J. (1998). Rab17 Localizes to Recycling Endosomes and 
Regulates Receptor-mediated Transcytosis in Epithelial Cells 
10.1074/jbc.273.25.15734. J. Biol. Chem. 273, 15734-15741. 

Ivanov, A., McCall, I., Babbin, B., Samarin, S., Nusrat, A., and Parkos, C. (2006). 
Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biology 7, 
12. 

Jin, M., and Goldenring, J.R. (2006). The Rab11-FIP1/RCP gene codes for multiple 
protein transcripts related to the plasma membrane recycling system. Biochim Biophys 
Acta. 

Kahn, R.A., Volpicelli-Daley, L., Bowzard, B., Shrivastava-Ranjan, P., Li, Y., Zhou, C., 
and Cunningham, L. (2005 ). Arf family GTPases: roles in membrane traffic and 
microtubule dynamics.  10.1042/BST20051269. Biochem. Soc. Trans. 33, 1269-1272. 
 
Khosravi-Far, R., Lutz, R.J., Cox, A.D., Conroy, L., Bourne, J.R., Sinensky, M., Balch, 
W.E., Buss, J.E., and Der, C.J. (1991). Isoprenoid modification of rab proteins 
terminating in CC or CXC motifs. Proc Natl Acad Sci U S A 88, 6264-6268. 

Kirkham, M., and Parton, R.G. (2005). Clathrin-independent endocytosis: new insights 
into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746, 349-363. 

Kobayashi, J., Inai, T., and Shibata, Y. (2002). Formation of tight junction strands by 
expression of claudin-1 mutants in their ZO-1 binding site in MDCK cells. Histochem 
Cell Biol 117, 29-39. 

Lakadamyali, M., Rust, M.J., and Zhuang, X. (2006). Ligands for clathrin-mediated 
endocytosis are differentially sorted into distinct populations of early endosomes. Cell 
124, 997-1009. 



 

26 

Lapierre, L.A., Kumar, R., Hales, C.M., Navarre, J., Bhartur, S.G., Burnette, J.O., 
Provance, D.W., Jr., Mercer, J.A., Bahler, M., and Goldenring, J.R. (2001). Myosin vb is 
associated with plasma membrane recycling systems. Mol Biol Cell 12, 1843-1857. 

Le, T.L., Yap, A.S., and Stow, J.L. (1999). Recycling of E-Cadherin: A Potential 
Mechanism for Regulating Cadherin Dynamics. 10.1083/jcb.146.1.219. J. Cell Biol. 146, 
219-232. 
 
Lindsay, A.J., Hendrick, A.G., Cantalupo, G., Senic-Matuglia, F., Goud, B., Bucci, C., 
and McCaffrey, M.W. (2002). Rab coupling protein (RCP), a novel Rab4 and Rab11 
effector protein. J Biol Chem 277, 12190-12199. 

Lock, J.G., and Stow, J.L. (2005a). Rab11 in recycling endosomes regulates the sorting 
and basolateral transport of E-cadherin. Mol Biol Cell. 

Lock, J.G., and Stow, J.L. (2005b). Rab11 in Recycling Endosomes Regulates the Sorting 
and Basolateral Transport of E-Cadherin 
10.1091/mbc.E04-10-0867. Mol. Biol. Cell 16, 1744-1755. 

Lutcke, A., Jansson, S., Parton, R., Chavrier, P., Valencia, A., Huber, L., Lehtonen, E., 
and Zerial, M. (1993). Rab17, a novel small GTPase, is specific for epithelial cells and is 
induced during cell polarization. 10.1083/jcb.121.3.553. J. Cell Biol. 121, 553-564. 
 
Madrid, A.S., and Weis, K. (2006). Nuclear transport is becoming crystal clear. 
Chromosoma V115, 98-109. 

Magadan, J.G., Barbieri, M.A., Mesa, R., Stahl, P.D., and Mayorga, L.S. (2006). Rab22a 
Regulates the Sorting of Transferrin to Recycling Endosomes. Mol. Cell. Biol. 26, 2595-
2614. 

Mammoto, A., Ohtsuka, T., Hotta, I., Sasaki, T., and Takai, Y. (1999). 
Rab11BP/Rabphilin-11, a downstream target of rab11 small G protein implicated in 
vesicle recycling. J Biol Chem 274, 25517-25524. 

Matter, K., Aijaz, S., Tsapara, A., and Balda, M.S. (2005). Mammalian tight junctions in 
the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 17, 453-
458. 

Michel, D., Arsanto, J.-P., Massey-Harroche, D., Beclin, C., Wijnholds, J., and Le Bivic, 
A. (2005). PATJ connects and stabilizes apical and lateral components of tight junctions 
in human intestinal cells 
10.1242/jcs.02528. J Cell Sci 118, 4049-4057. 

Mohrmann, K., Leijendekker, R., Gerez, L., and van der Sluijs, P. (2002). rab4 Regulates 
Transport to the Apical Plasma Membrane in Madin-Darby Canine Kidney Cells 
10.1074/jbc.M111237200. J. Biol. Chem. 277, 10474-10481. 



 

27 

Mu, F.-T., Callaghan, J.M., Steele-Mortimer, O., Stenmark, H., Parton, R.G., Campbell, 
P.L., McCluskey, J., Yeo, J.-P., Tock, E.P.C., and Toh, B.-H. (1995). EEA1, an Early 
Endosome-Associated Protein. 10.1074/jbc.270.22.13503. J. Biol. Chem. 270, 13503-
13511. 
 
Musch, A. (2004). Microtubule Organization and Function in Epithelial Cells 
doi:10.1111/j.1600-0854.2003.00149.x. Traffic 5, 1-9. 

Naslavsky, N., Rahajeng, J., Sharma, M., Jovic, M., and Caplan, S. (2006). Interactions 
between EHD Proteins and Rab11-FIP2: A role for EHD3 in early endosomal transport 
10.1091/mbc.E05-05-0466. Mol. Biol. Cell 17, 163-177. 

Nelson, W.J. (2003). Adaptation of core mechanisms to generate cell polarity. Nature 
422, 766-774. 

Pellinen, T., Arjonen, A., Vuoriluoto, K., Kallio, K., Fransen, J.A.M., and Ivaska, J. 
(2006). Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of 
{beta}1-integrins. 10.1083/jcb.200509019. J. Cell Biol. 173, 767-780. 
 
Permsin Marbet, C.R., Bruno Stieger, Lukas Landmann,. (2006). Quantitative 
microscopy reveals 3D organization and kinetics of endocytosis in rat hepatocytes. 
Microscopy Research and Technique 69, 693-707. 

Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R., and Rodriguez-Boulan, E. (2005). 
Evolving endosomes: how many varieties and why? Curr Opin Cell Biol 17, 423-434. 

Pfeffer, S.R. (2001). Rab GTPases: specifying and deciphering organelle identity and 
function. Trends Cell Biol 11, 487-491. 

Pfeffer, S.R. (2005). Structural Clues to Rab GTPase Functional Diversity 
10.1074/jbc.R500003200. J. Biol. Chem. 280, 15485-15488. 

Polo, S., and Di Fiore, P.P. (2006). Endocytosis conducts the cell signaling orchestra. 
Cell 124, 897-900. 

Powelka, A.M., Sun, J., Li, J., Gao, M., Shaw, L.M., Sonnenberg, A., and Hsu, V.W. 
(2004). Stimulation-Dependent Recycling of Integrin beta-1 Regulated by ARF6 and 
Rab11. doi:10.1111/j.1600-0854.2004.00150.x. Traffic 5, 20-36. 
 
Prekeris, R., Davies, J.M., and Scheller, R.H. (2001). Identification of a novel Rab11/25 
binding domain present in Eferin and Rip proteins. J Biol Chem 276, 38966-38970. 

Prekeris, R., Klumperman, J., and Scheller, R.H. (2000). A Rab11/Rip11 protein complex 
regulates apical membrane trafficking via recycling endosomes. Mol Cell 6, 1437-1448. 

Rappoport, J.Z., Kemal, S., Benmerah, A., and Simon, S.M. (2006). Dynamics of clathrin 
and adaptor proteins during endocytosis 
10.1152/ajpcell.00160.2006. Am J Physiol Cell Physiol 291, C1072-1081. 



 

28 

Ren, M., Xu, G., Zeng, J., De Lemos-Chiarandini, C., Adesnik, M., and Sabatini, D.D. 
(1998). Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from 
the pericentriolar recycling compartment to the cell surface but not from sorting 
endosomes. Proc Natl Acad Sci U S A 95, 6187-6192. 

Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005). Rab conversion as a 
mechanism of progression from early to late endosomes. Cell 122, 735-749. 

Rodriguez-Boulan, E., Kreitzer, G., and Musch, A. (2005). ORGANIZATION OF 
VESICULAR TRAFFICKING IN EPITHELIA. Nature Reviews Molecular Cell Biology 
Nat Rev Mol Cell Biol 6, 233-247. 

Rodriguez-Boulan, E., Musch, A., and Le Bivic, A. (2004). Epithelial trafficking: new 
routes to familiar places. Current Opinion in Cell Biology 16, 436-442. 

Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, M.C., Goody, R., 
and Zerial, M. (1996). GTPase activity of Rab5 acts as a timer for endocytic membrane 
fusion 383, 266-269. 

Savina, A., Fader, C.M., Damiani, M.T., and Colombo, M.I. (2005). Rab11 Promotes 
Docking and Fusion of Multivesicular Bodies in a Calcium-Dependent Manner 
doi:10.1111/j.1600-0854.2004.00257.x. Traffic 6, 131-143. 

Schimmoller, F., Simon, I., and Pfeffer, S.R. (1998). Rab GTPases, Directors of Vesicle 
Docking. 10.1074/jbc.273.35.22161. J. Biol. Chem. 273, 22161-22164. 
 

Seabra, M.C., and Coudrier, E. (2004). Rab GTPases and myosin motors in organelle 
motility. Traffic 5, 393-399. 

Seabra, M.C., and Wasmeier, C. (2004). Controlling the location and activation of Rab 
GTPases. Current Opinion in Cell Biology 16, 451-457. 

Segev, N. (2001). Ypt/Rab GTPases: Regulators of Protein Trafficking 
10.1126/stke.2001.100.re11. Sci. STKE 2001, re11-. 

Shin, K., Straight, S., and Margolis, B. (2005). PATJ regulates tight junction formation 
and polarity in mammalian epithelial cells. 10.1083/jcb.200408064. J. Cell Biol. 168, 
705-711. 
 
Simpson, J.C., Griffiths, G., Wessling-Resnick, M., Fransen, J.A.M., Bennett, H., and 
Jones, A.T. (2004). A role for the small GTPase Rab21 in the early endocytic pathway 
10.1242/jcs.01560. J Cell Sci 117, 6297-6311. 

Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J., and Zerial, M. (2000). Distinct 
membrane domains on endosomes in the recycling pathway visualized by multicolor 
imaging of Rab4, Rab5, and Rab11. J Cell Biol 149, 901-914. 



 

29 

Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol 2, 
REVIEWS3007. 

Stevenson, B.R., and Keon, B.H. (1998). THE TIGHT JUNCTION: Morphology to 
Molecules. doi:10.1146/annurev.cellbio.14.1.89. Annual Review of Cell and 
Developmental Biology 14, 89-109. 
 
Takei, K., and Haucke, V. (2001). Clathrin-mediated endocytosis: membrane factors pull 
the trigger. Trends Cell Biol 11, 385-391. 

Touchot, N., Chardin, P., and Tavitian, A. (1987). Four additional members of the ras 
gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-
related cDNAs from a rat brain library. Proc Natl Acad Sci U S A 84, 8210-8214. 

Tunggal, J.A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., Kemler, 
R., Krieg, T., and Niessen, C.M. (2005). E-cadherin is essential for in vivo epidermal 
barrier function by regulating tight junctions. Embo J 24, 1146-1156. 

Ullrich, O., Reinsch, S., Urbe, S., Zerial, M., and Parton, R.G. (1996). Rab11 regulates 
recycling through the pericentriolar recycling endosome. J Cell Biol 135, 913-924. 

Wallace, D.M., Lindsay, A.J., Hendrick, A.G., and McCaffrey, M.W. (2002). Rab11-
FIP4 interacts with Rab11 in a GTP-dependent manner and its overexpression condenses 
the Rab11 positive compartment in HeLa cells. Biochem Biophys Res Commun 299, 
770-779. 

Ward, E.S., Martinez, C., Vaccaro, C., Zhou, J., Tang, Q., and Ober, R.J. (2005). From 
Sorting Endosomes to Exocytosis: Association of Rab4 and Rab11 GTPases with the Fc 
Receptor, FcRn, during Recycling 
10.1091/mbc.E04-08-0735. Mol. Biol. Cell 16, 2028-2038. 

Wennerberg, K., and Der, C.J. (2004). Rho-family GTPases: it's not only Rac and Rho 
(and I like it). 10.1242/jcs.01118. J Cell Sci 117, 1301-1312. 
 
Woodman, P. (1998). Vesicle transport : More work for the Rabs? Current Biology 8, 
R199-R201. 

Zacchi, P., Stenmark, H., Parton, R.G., Orioli, D., Lim, F., Giner, A., Mellman, I., Zerial, 
M., and Murphy, C. (1998). Rab17 Regulates Membrane Trafficking through Apical 
Recycling Endosomes in Polarized Epithelial Cells. 10.1083/jcb.140.5.1039. J. Cell Biol. 
140, 1039-1053. 
 
Zeng, J., Ren, M., Gravotta, D., De Lemos-Chiarandini, C., Lui, M., Erdjument-
Bromage, H., Tempst, P., Xu, G., Shen, T.H., Morimoto, T., Adesnik, M., and Sabatini, 
D.D. (1999). Identification of a putative effector protein for rab11 that participates in 
transferrin recycling. Proc Natl Acad Sci U S A 96, 2840-2845. 



 

30 

Zhang, X.-M., Ellis, S., Sriratana, A., Mitchell, C.A., and Rowe, T. (2004). Sec15 Is an 
Effector for the Rab11 GTPase in Mammalian Cells 
10.1074/jbc.M402264200. J. Biol. Chem. 279, 43027-43034. 
 



 

31 

 
 

CHAPTER II 
 

MARK2 PHOSPHORYLATION OF RAB11-FIP2 IS NECESSARY FOR THE 
TIMELY ESTABLISHMENT OF POLARITY IN MDCK CELLS 

 

 

Nicole A. Ducharme, Chadwick M. Hales,* Lynne A. Lapierre, Amy-Joan L. Ham, † 

Asli Oztan, ‡ Gerard Apodaca,‡ and James R. Goldenring 

From the Departments of Surgery and Cell & Developmental Biology, †Department of 
Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of 
Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, 
TN 37232. *Institute of Molecular Medicine, Medical College of Georgia, Augusta, GA 30912. 
‡Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. 
 

 

Running Title: MARK2 Phosphorylation of Rab11-FIP2 

 
 
 
 
 
 
 
 
 
Published in Molecular Biology of the Cell. 
 
Credit Line: MOLECULAR BIOLOGY OF THE CELL by DUCHARME, NICOLE A . 
Copyright 2006 by AMERICAN SOCIETY FOR CELL BIOLOGY. Reproduced with 
permission of AMERICAN SOCIETY FOR CELL BIOLOGY in the format Dissertation via 
Copyright Clearance Center.   
 

 



 

32 

Abstract 

 Rab11a, myosin Vb and the Rab11-Family of Interacting Protein 2 (FIP2) 

regulate plasma membrane recycling in epithelial cells. This study sought to characterize 

more fully Rab11-FIP2 function by identifying kinase activities modifying Rab11-FIP2. 

We have found that gastric microsomal membrane extracts phosphorylate Rab11-FIP2 on 

serine 227. We identified the kinase that phosphorylated Rab11-FIP2 as 

MARK2/EMK1/Par-1Bα (MARK2), and recombinant MARK2 phosphorylated Rab11-

FIP2 only on serine 227. We created stable MDCK cell lines expressing EGFP-Rab11-

FIP2 wild type or a non-phosphorylatable mutant (Rab11-FIP2(S227A)). Analysis of 

these cell lines demonstrates a new role for Rab11-FIP2 in addition to that in the plasma 

membrane recycling system. In calcium switch assays, cells expressing Rab11-

FIP2(S227A) showed a defect in the timely reestablishment of p120-containing 

junctional complexes. However, Rab11-FIP2(S227A) did not affect localization with 

recycling system components or the normal function of apical recycling and transcytosis 

pathways. These results indicate that phosphorylation of Rab11-FIP2 on serine 227 by 

MARK2 regulates an alternative pathway modulating the establishment of epithelial 

polarity. 

Introduction 

 The establishment of polarity is an intricately regulated process in epithelial cells. 

The apical and basolateral domains must remain separated by the tight junctions to 

segregate membrane proteins. For example, while the apical domain of MDCK cells 
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contains GP-135 (Ojakian and Schwimmer, 1988), the basolateral domain expresses 

Na/K-ATPase (Louvard, 1980). The tight junction serves as a physical barrier between 

the two protein pools and is characterized by the expression of ZO-1, claudins and 

occludin in an epithelial monolayer. An adherens junction facilitates cell-cell contact 

which is regulated in part by E-cadherin and p120 (reviewed in (Miyoshi and Takai, 

2005)). Each of these proteins must be trafficked to the correct domain of the cell for the 

epithelial monolayer to function appropriately. These diverse destinations require 

intricate trafficking pathways to ensure their accuracy. Recently, Rab11a has been 

implicated in the trafficking of E-cadherin to the adherens junction (Lock and Stow, 

2005a), suggesting that the Rab11a pathway may be important in the establishment of 

polarized domains. 

 Rab11a, a member of the Rab11 sub-family of small GTPases, is well-established 

as a participant in the regulation of recycling endosomal trafficking. Rab11a is associated 

with vesicles in the apical portion of epithelial cells near the centrosome and beneath the 

apical plasma membrane (Casanova et al., 1999). Plasma membrane recycling is critical 

in maintaining proper membrane protein expression in response to stimuli for such 

diverse events as nutrient internalization and the recycling of ion channels and receptors 

(Takei and Haucke, 2001; Volpicelli et al., 2002; Fan et al., 2003; Fan et al., 2004). 

However, recent work has begun to connect the recycling system to the trafficking 

pathways of junctional proteins (Le et al., 1999a; Lock and Stow, 2005a).  

 The family of small GTPases, including Rab11a, interacts with and is regulated 

by specific interacting proteins. Numerous binding partners have been elucidated for 

Rab11a including: 1) myosin Vb (Lapierre et al., 2001), 2) rabphillin11/Rab11-binding 
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protein (Mammoto et al., 1999; Zeng et al., 1999), and 3) a family of Rab11-interacting 

proteins (FIPs): Rab11-FIP1, Rab11-FIP2, Rab11-FIP3 (Hales et al., 2001), Rab11-FIP4 

(Wallace et al., 2002), Rab11-FIP5 (pp75/Rip11) (Prekeris et al., 2000), and RCP 

(Lindsay et al., 2002). The Rab11-FIP proteins each interact with Rab11 family members 

(Rab11a, Rab11b and Rab25) at their carboxyl-termini through predicted coiled-coil 

regions containing an amphipathic alpha helical Rab binding domain (Hales et al., 2001; 

Prekeris et al., 2001). The diversity of multiple Rab11-FIP proteins, all of which bind to 

Rab11 with similar helices, suggests that each Rab11-FIP may be important in a spatially 

restricted manner or in separate trafficking processes.  

 In particular, Rab11-FIP2 appears to form a ternary complex with both Rab11a 

and myosin Vb (Hales et al., 2002). A truncation of Rab11-FIP2 lacking its amino 

terminal C2 domain (Rab11-FIP2(129-512)) strongly inhibits plasma membrane 

recycling (Hales et al., 2002). Nevertheless, studies in non-polarized cells have also 

implicated Rab11-FIP2 in the regulation of endocytosis through interaction with the early 

endosomal protein Reps1 (Cullis et al., 2002). 

 In this study, we describe the involvement of Rab11-FIP2 in the establishment of 

polarity. We have biochemically purified a kinase activity, which phosphorylated Rab11-

FIP2 on serine 227 and was identified by mass spectrometry as MARK2/EMK1/Par-1Bα 

(MARK2). Previous studies have associated MARK2 with changes in aspects of polarity 

(Cohen et al., 2004). Disruption of the junctional integrity with low calcium followed by 

reestablishment of normal extracellular calcium (calcium switch) showed that 

phosphorylation of Rab11-FIP2 is important for the timely re-establishment of polarity. 
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The results indicate that phosphorylation of Rab11-FIP2 by MARK2 serves as an 

important regulatory mechanism for the establishment of epithelial cell polarity. 

Materials and Methods 

Materials: Rabbit anti-Rab11a (VU57) antibodies were developed against the amino 

terminus of human Rab11a and were specific for Rab11a versus Rab11b and Rab25 

(Lapierre, manuscript in preparation). The other antibodies used were rat anti-ZO-1 

(Chemicon), mouse anti-ZO-1 (Zymed), mouse pan anti-cadherin (Sigma), mouse anti-

p120 catenin (BD), mouse monoclonal anti-ezrin (4A5, Chemicon), rabbit anti-occludin 

(8 ug/ml, Zymed), anti-GFP mouse monoclonal (8362-1, BD), and anti-GFP rabbit 

(AB290, AbCam). All secondary antibodies were from Jackson Immuno Research. Dr. 

Roy Zent of Vanderbilt University kindly provided mouse monoclonal anti-GP135.  

Database searches and alignment: Rab11-FIP2 homologs were identified through 

GenBank searches using the Rab11 binding domain. FlyBase, JGI Xenopus, UCSC 

Genscan were also used to identify homologs. Alignments were performed using 

ClustalW. 

Site directed mutagenesis: All site-directed mutagenesis of Rab11-FIP2 was performed 

using Pfu Turbo polymerase according to the QuikChange Site-Directed Mutagenesis Kit 

from Stratagene (La Jolla, CA) with a 16 minute extension time. Primers were 

synthesized (Invitrogen) with one nucleotide change per oligonucleotide sequence. The 

TCA encoding for amino acid 227 was changed to GCA for the S227A mutant. All 
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constructs were created in pEGFP-C2 (Clontech) and subsequently recloned into pET-

30a (Novagen) with EcoRI and SalI restriction sites.  

Protein Production: For recombinant protein production constructs in pET-30a vectors 

were retransformed into BL21(DE3)pLysS bacteria. Bacteria were grown to log phase 

and then induced with IPTG (400 ng/ml) for 3 hours at 37°C. To harvest protein, bacteria 

were pelleted at 2,000 g and then resuspended in lysis buffer (50 mM sodium phosphate 

buffer, pH 8.0, 300 mM NaCl with protease inhibitors (protein buffer) and 10 mM 

imidazole). Protein was harvested according to the manufacturer’s protocol (Novagen). 

Briefly, the bacteria were then sonicated 4 times for 20 seconds at maximum potency on 

ice. The lysate was extracted with 0.1% Triton X-100 for 5 minutes on ice. The extracted 

lysate was cleared by centrifugation at 15,000 g, and the resulting supernate was 

incubated with nickel-affinity resin at 4°C (His-Bind, Novagen). The beads and protein 

were washed in protein buffer with 20 mM imidazole. The bound protein was eluted 

overnight at 4°C with elution buffer (protein buffer with 250 mM imidazole). 

Recombinat MARK2 was purchased from Upstate (14-544). 

Rabbit Gastric Tubulovesicle Preparation: Fractions of rabbit gastric mucosal 

microsomes were prepared as previously described from the fundic mucosa of New 

Zealand White rabbits (Basson et al., 1991). The rabbit gastric mucosa tissue was 

homogenized in five volumes of 15 mM HEPES, 300 mM sucrose buffer, pH 7.4 with 

protease inhibitors (Sigma) with a Potter homogenizer at 1000 rpm. The homogenate was 

sequentially centrifuged at 500g for 10 min, 5000g for 10 min, 17,000g for 20 min, and 

100,000g for 60 min, and the 100,000 g pellet was resuspended in the homogenization 

buffer and frozen at -80°C until use. 
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Kinase Identification: The 100,000g microsomal pellet from rabbit gastric mucosa was 

thawed on ice and then extracted for 30 minutes with 1% Triton-X 100. The solubilized 

microsomes were centrifuged at 100,000 g for 1 hour at 4°C. The supernatant from this 

spin was diluted 1:10 with Buffer A (5mM sodium phosphate, pH 7.2, 0.1% Triton-

X100) for protein purification. The diluted homogenate was loaded on a HiTrap Q FF 

column, (2 ml, Amersham) pre-equilibrated in Buffer A at 1 ml/min. The Rab11-FIP2 

kinase activity which voided the column was collected and then further purified over a 

ceramic hydroxylapatite column (Econo-Pac CHT-I 1 ml cartridge, BioRad) 

preequilibrated in Buffer A. The void fraction was collected and the bound protein was 

eluted in a gradient from 0 to 500 mM sodium phosphate, pH 7.2, 0.1% Triton-X100. The 

Rab11-FIP2 kinase activity eluted at approximately 250 mM sodium phosphate. The 

fractions with the highest activity were pooled, diluted 1:1 in Buffer A, and 

chromatographed over MONO-S resin (5 ml) (Pharmacia-Biotech). The bound protein 

was eluted with a continuous salt gradient from 0 to 1M NaCl in Buffer A. The Rab11-

FIP2 kinase activity eluted at 400 mM NaCl. The fractions with the highest activity were 

pooled and further purified over a Cibachrome-Blue affinity column (HiTrap Blue, 1ml, 

Amersham). The proteins were eluted with a continuous gradient to 2 M NaCl in Buffer 

A. Kinase activity eluted at approximately 500 mM NaCl. Finally, the fractions with the 

highest activity were loaded onto a 10% to 40% glycerol gradient and centrifuged for 24 

hours at 160,000g. The Rab11-FIP2 kinase activity peaked at approximately 17% 

glycerol. Each step was monitored by the in vitro kinase activity assay.  

 The fraction from the glycerol gradient that contained the greatest amount of 

kinase activity was subjected to trypsin digestion and the resulting peptides were 
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analyzed by LC-MS/MS for protein identification. Prior to trypsin digestion, the samples 

were cleaned up using a 10 KD Ultrafree MC regenerated cellulose filter (Millipore) and 

the proteins were subsequently digested directly off of the filter as previously described 

(Manza, 2005).  

 LC-MS analysis of the resulting peptides was performed using a ThermoFinnigan 

LTQ ion trap mass spectrometer equipped with a Thermo MicroAS autosampler and 

Thermo Surveyor HPLC pump, Nanospray source, and Xcalibur 1.4 instrument control. 

The peptides were separated on a packed capillary tip, 100 μm x 11 cm, with C18 resin 

(Monitor C18, 5 micron, 100 angstrom, Column Engineering, Ontario CA) using an inline 

solid phase extraction column that was 100μm x 6cm packed with the same C18 resin 

(using a frit generated with liquid silicate Kasil 1 (Cortes et al., 1987)) similar to that 

previously described (Licklider et al., 2002), except the flow from the HPLC pump was 

split prior to the injection valve. The flow rate during the solid phase extraction phase of 

the gradient was 1 μL/min and during the separation phase was 700 nL/min. Mobile 

phase A was 0.1% formic acid, mobile phase B was acetonitrile with 0.1% formic acid. A 

95 min gradient was performed with a 15 min washing period (100 % A for the first 10 

min followed by a gradient to 98% A at 15 min) to allow for solid phase extraction and 

removal of any residual salts. After the initial washing period, a 60 minute gradient was 

performed where the first 35 min was a slow, linear gradient from 98% A to 75 % A, 

followed by a faster gradient to 10 % A at 65 min and an isocratic phase at 10 % A to 75 

min. The MS/MS spectra of the peptides was performed using data-dependent scanning 

in which one full MS spectra, using a full mass range of 400-2000 amu, was followed by 

3 MS/MS spectra. Proteins were identified using the SEQUEST algorithm (Yates et al., 
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1995) and the SEQUEST Browser software in the Bioworks 3.1 software package 

(Thermo Electron, San Jose, CA), using the non-redundant database from NCBI.  

 For phosphorylation mapping experiments, the Rab11-FIP2 band was excised 

from a one-dimensional-SDS-PAGE gel and either trypsin or chymotrysin digestion was 

performed in-gel. The samples were then analyzed using data-dependent analysis similar 

to that described above with the addition of a neutral loss scan to scan for neutral loss of 

phosphoric acid (loss of 98) in the top three ions. If a neutral loss ion was found, it was 

fragmented and an MS/MS/MS spectrum was collected. In addition to using the 

SEQUEST algorithm to search for phosphorylations on serines, threonines or tyrosines, 

the data were searched for modifications using the PMOD algorithm (Hansen et al., 

2005). 

 In vitro kinase activity assay during purification: The chromatographic fractions were 

added to the substrate (Rab11-FIP2(190-383)) in a 50 mM Tris buffer containing 5 mM 

MgCl2, EGTA (1mM), protease inhibitors (1:100) and 25 μM dithiothreitol on ice. [32P]-

γ-ATP was added and the reaction was incubated at 35° C for 10 minutes. The reactions 

were terminated with the addition of SDS buffer (final concentrations, 300 mM Tris, pH 

7.5, 1% SDS, 20 mM EDTA, 17.5 mM sucrose) and incubated at 70° C for 10 minutes. 

The samples were resolved on 12% SDS-PAGE gels, stained with colloidal Coomassie 

(GelCode Blue, Pierce, Rockford IL) for protein detection, dried under vacuum and 

analyzed with Phosphorimaging (Molecular Dynamics) for [32P]-phosphate 

incorporation. 

In situ phosphorylation: We utilized [32P]-orthophosphate incorporation to assess 

phosphorylation in situ. MDCK cells were plated on 60 mm Transwell filters (Corning) 
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and allowed to polarize at confluence for 3 days. MDCK cells stably expressing EGFP-

Rab11-FIP2 or EGFP-Rab11-FIP2(S227A) constructs were incubated with [32P]-

orthophosphate in phosphate-free DMEM supplemented with 2 mg/ml bovine serum 

albumin for 2 hours. The cells were solubilized in lysis buffer (30mm Tris, pH 8.5, 150 

mM NaCl, 20 mM magnesium acetate, 1% CHAPS with protease inhibitors and 

phosphatase inhibitors), extracted on ice for 20 minutes, and centrifuged for 20 min at 

15,000g to pellet the insoluble material.  

 For immunoprecipitation, anti-rabbit IgG Dynabeads (Dynal) were loaded with 

either 5 μl of anti-GFP antibody AB290 serum (AbCam) or control rabbit serum for two 

hours at 4°C. Beads were washed 3 times with TBS. Lysate was diluted in 

immunoprecipitation buffer (final concentration 30 mM Tris pH 7.5, 150 mM NaCl, 20 

mM magnesium acetate, protease inhibitors and phosphatase inhibitors) and incubated 

with the beads overnight at 4°C. The beads were washed twice for 20 minutes with 

immunoprecipitation buffer with 0.1% CHAPS and then once with 30 mM Tris, pH 7.5. 

The beads were eluted in 1% SDS buffer and proteins were resolved on 10% SDS-PAGE 

gels which were either dried and visualized by a phosphoryimaging screen (Molecular 

Dynamics) for [32P]-phosphoproteins or transferred to nitrocellulose for anti-GFP 

immunoblotting. 

Immunoblotting: Protein samples were resolved on 10% SDS–polyacrylamide gels 

following a standard Laemmli protocol (Laemmli, 1970). All incubations were performed 

at room temperature. Proteins were transferred to nitrocellulose. Blots were blocked for 1 

h with 5% DMP/TBS-T (5% dry milk powder, Tris-buffered saline, 0.05% Tween-20). 

The blots were incubated with primary antibody diluted in 2.5% DMP/TBS-T for 1.5 h 
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(mouse monoclonal anti-GFP 1:2000, washed three times for 10 min in TBS-T, and 

incubated for 1 h with horseradish perioxidase-labeled anti-mouse secondary (Jackson 

Immunological) diluted in 1% DMP/TBS-T. The blots were then washed three times with 

TBS-T followed by one time with TBS and specific labeling was detected by enhanced 

chemiluminescence (Supersignal, Pierce) with autoradiography using Kodak BioMax ML 

film. 

Cell Culture: Parental T23 MDCKs (Barth et al., 1997) as well as the stably transfected 

cell lines were grown in D-MEM supplemented with 10% fetal bovine serum (Gibco), 

penicillin-streptomycin, 2mM L-glutamine, and 0.1 mM MEM non-essential amino acids 

(Gibco/BRL). Media for cell lines also contained 0.5mg/ml G418 sulfate (Cellgro), and 

0.25ng/ml hygromycin (Invitrogen). In the stable cell lines, expression of the EGFP 

chimeras was inhibited with doxycycline (20ng /ml) (Calbiochem). To examine EGFP 

protein expression, cells were grown on 0.4 µm Transwell filters (Costar) without 

doxycycline in tetracycline screened fetal bovine serum (HyClone) media for 2-4 days. 

GFP constructs and transfections: Doxycycline-inhibitable expression vectors were 

generated by excising the EGFP-Rab11-FIP2 wild type and mutant sequences from 

pEGFP-vectors with NheI and SmaI and ligating into a pTRE2hyg vector (Clontech) cut 

with NheI and EcoRV. Transfection was performed using Effectene (Qiagen) following 

the manufactures protocol. One µg of vector was transfected into a 60 mm plate of T23 

MDCK cells in normal media. The following day, the cells were trypsinized and replated 

in serial dilutions including 0.25 ng/ml hygromycin for selection and 20ng/ml 

doxycycline for suppression of EGFP expression. Multiple colonies were selected, 

expanded for 10 days, and then screened for EGFP expression in media with tetracycline 
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screened serum. Multiple clones were initially characterized, all of which showed the 

same expression pattern and level of the EGFP construct. One clone was selected for 

each construct to use as the tetracycline-repressible stable cell lines (expressing EGFP-

Rab11-FIP2 wild type or EGFP-Rab11-FIP2(S227A)). 

Polymeric Immunoglobin A (pIgA) Trafficking in MDCK Cells Labeling of pIgA and 

trafficking experiments were done as previously described (Hales et al., 2002) except that 

we used the cell culture media described above. Cells were loaded from the apical side 

and fixed at time 0 following a 30 minute loading. 

Analysis of [125I]IgA Postendocytotic Fate: [125I]IgA was iodinated using the ICl method 

to a specific activity of 1.0-2.0 x 107 cpm/µg (Breitfeld et al., 1989). The postendocytotic 

fate of a preinternalized cohort of [125I]IgA (at 5-10 µg/ml) was analyzed as described 

previously (Apodaca et al., 1994). In brief, filter-grown MDCK cells expressing the 

various FIP2 constructs and wild-type pIgR were cultured in the presence or absence of 

doxycycline, and [125I]IgA internalized from the basolateral cell surface of the cells for 10 

min at 37˚ C. The basal surface of the cells were rapidly washed three-times, the apical 

and basolateral medium aspirated, and replaced with fresh medium. The cells were then 

incubated for 3 min at 37˚ C. This wash procedure takes 5 min at 37˚ C. Fresh medium 

was added to the cells and they were chased for up to 2 h at 37˚ C. At the designated time 

points, the apical and basolateral media (0.5 ml) were collected and replaced with fresh 

media. After the final time point, filters were cut out of the insert and the amount of 

[125I]IgA quantified with a gamma counter. The media samples were precipitated with 

10% trichloroacetic acid (TCA) for 30 min on ice, and then centrifuged in a microfuge 
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for 15 min at 4˚ C. The amount of [125I]IgA in the TCA-soluble (degraded) and insoluble 

fractions (intact) was quantified with a gamma counter. 

Calcium Switch: Cells were grown to confluencey on filters in regular media with or 

without doxycycline. Cells were washed with low calcium media (MEM, Cellgro 15-015-

CV, 10% dialyzed FBS, penicillin-streptomycin, 2mM L-glutamine, and 0.1 mM MEM 

non-essential amino acids (Gibco/BRL)). The cells were incubated in low calcium media 

overnight with or without doxycycline. Calcium was added to the top and bottom of the 

filter to a final concentration of 1.8 mM. The cells were collected at the indicated 

timepoints.  

Laminin Replating Assay: Cells were trypsinized and replated on 24-well plate 0.45 

micron laminin coated filters (BD Biosciences). The cells were collected at the indicated 

timepoints. 

Immunofluorescence for calcium switch and replating experiments: Cells were washed 

one time with PBS and then pre-extracted on ice in 0.2% Triton X-100 in PBS. Cells 

were fixed for 30 minutes in 3% paraformaldehyde at room temperature. Cells were 

permeabilized with 0.05% Trition X-100 in PBS for 5 minutes on ice. Cells were 

incubated with anti-p120 and ZO-1 antibodies in PBS for one hour on ice. Cells were 

washed one time with PBS. Cells were incubated with species-specific cy3-anti mouse 

IgG and cy5-anti-rat IgG in PBS for 30 minutes at room temperature. Cells were washed 

first with PBS and then with 50mM sodium phosphate. Finally cells were stained with 

DAPI in sodium phosphate. Filters were cut out of the transwells and mounted with 

Prolong Anitfade solution (Molecular Probes). Cells were imaged on a Zess LSM510 

confocal microscope using a 100X lens. Z-sections were 0.3 microns. 
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Additional Immunofluorescence: Cells were washed three times with PBS and then fixed 

in 4% paraformaldehyde for 15 minutes at room temperature. The cells were washed 

twice with PBS and stored at 4° in PBS until staining. Cells were blocked with extraction 

buffer (10% normal donkey serum, 150 mM NaCl, 20 mM sodium phosphate, pH 7.4, 

0.3% TritonX-10) for twenty minutes. Primary antibody was immediately added in 

antibody buffer (10% normal donkey serum, 150 mM NaCl, 20 mM sodium phosphate, 

pH 7.4, 0.05% Tween-20) for 2 hours. The cells were washed with PBS three times. 

Secondary species-specific Cy dye-labeled anti-IgGs were added for 1 hour in antibody 

buffer. After washing with PBS two times, the cells were washed with 50 mM sodium 

phosphate once and then stained with DAPI in sodium phosphate. Filters were cut out of 

the transwells and mounted with Prolong Antifade solution (Molecular Probes). Cells 

were imaged on a Zeiss LSM510 confocal microscope using a 100X lens. Z-sections 

were 0.5 microns. 

Results 

Phosphorylation of Rab11-FIP2 

 While previous investigations have noted potential phosphorylation sites 

on Rab11-FIP2, no discrete kinase activities phosphorylating the protein have 

been identified. We sought to identify potential phosphorylating activities for 

Rab11-FIP2 by assaying phosphorylation of recombinant Rab11-FIP2 in vitro 

using extracts from rabbit 100,000g gastric microsomes that are enriched in 

parietal cell tubulovesicles (H/K-ATPase containing apical recycling membranes). 
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Extracts of rabbit gastric microsomes solubilized in 1% Triton X-100 strongly 

phosphorylated recombinant Rab11-FIP2 (Figure 10A). Phosphoamino acid 

analysis indicated that Rab11-FIP2 was primarily phosphorylated on serine 

residues (Figure 10B). Two-dimensional tryptic phosphopeptide mapping revealed 

that Rab11-FIP2 was phosphorylated on a major site (80%) and a minor site 

(20%) (data not shown). Carboxyl and amino terminal recombinant truncations 

narrowed the region of phosphorylation to amino acids 187-356. A further 

truncation to amino acids 227-356 was not phosphorylated. We therefore 

performed site directed mutagenesis on high probability serine residues between 

187 and 230. Mutation of serine 227 to alanine led to a greater than 80% 

reduction in the in vitro phosphorylation by gastric microsomal extracts (Figure 

10A). Serine to alanine mutations at serines 223, 224 and 229 had no effect on 

phosphorylation (data not shown).  

 Since we had no evidence for the phosphorylation of Rab11-FIP2 by the more 

common characterized protein kinases, and since serine 227 did not fall into any 

canonical consensus sites for known kinases, we sought to isolate the Rab11-FIP2 kinase 

activity from rabbit gastric microsomes. The 100,000g microsomal membrane fraction 

from rabbit gastric mucosa was used to isolate the kinase activity that phosphorylated 

Rab11-FIP2 on serine 227. Microsomal proteins were extracted with 1% Triton X-100 

and proteins were resolved sequentially on Mono-Q, hydroxylapatite, Mono-S, and 

Cibachrome Blue resins followed by resolution on continuous glycerol gradients (see 

Materials and Methods). The fractions with the highest activity from column 

chromatography and the final glycerol gradient fraction containing serine 227 Rab11-
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FIP2 kinase activity were submitted for proteomic analysis by total trypsin digestion and 

analysis of peptides by LC-MS/MS (Vanderbilt University Proteomics Laboratory, Mass 

Spectrometry Research Center). Only one kinase was identified consistently in these 

fractions from two different sample preparations: Par-1Bα/MARK2/EMK1 (MARK2) 

(5.5% - 14.7% coverage by amino acid). Seven separate peptides were identified 

matching either rat or human sequences (Table 2). 

 

Table 2: Peptides Obtained from Mass Spectrometry for R ab11-FIP2 Kinase 
Identification 

Peptide sequences of MARK2 identified in Rab11-FIP2 kinase preparations by Mass 
Spectrometry. Xcorr - Cross Correlation Score as identified by SEQUEST {Link et al.,1999}; z - 
charge state of peptide 

 

 

 To verify MARK2 as a Rab11-FIP2 kinase, we assessed the ability of 

recombinant activated MARK2 to phosphorylate recombinant Rab11-FIP2 in 

vitro. While recombinant MARK2 strongly phosphorylated recombinant Rab11-

FIP2, we observed little phosphorylation of Rab11-FIP2(S227A) (Figure 10C). In 

addition, we examined by LC/MS tandem mass spectrometry phosphorylation 

sites in recombinant Rab11-FIP2 when the protein was phosphorylated by 

MARK2 and found that Serine 227 was phosphorylated in peptides produced 
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from both trypsin and chymotrypsin digestions. In addition, spectra of the peptides 

from both digests contained a neutral loss of 98 (NL98) ion, indicative of a 

phosphorylation site, and an MS/MS/MS spectrum of the NL98 ion in the tryptic peptide 

confirmed that the ion resulted from neutral loss of phosphoric acid resulting from the 

phosphorylation. 

Upon inspection of the available genomic databases using the Rab11 binding 

domain, we found that the serine 227 site is an evolutionarily conserved residue in 

putative Rab11-FIPs from numerous species including Drosophilia melanogaster and 

Danio rerio (Figure 10D). Interestingly, this phosphorylation site, the first serine residue 

of SMSxL, is a non-canoncial site for MARK2. Previous studies have suggested that 

MARK2 phosphorylates KxGS sites (Drewes et al., 1997). This non-canonical site is also 

present in two other human Rab11-interacting proteins, RCP and Rab11-FIP1. Activated 

recombinant MARK2 phosphorylated both RCP and Rab11-FIP1 in vitro (data not 

shown).  
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Figure 10: Rab11-FIP2 kinase activities. 
A: A kinase activity associated with rabbit gastric microsomes phosphorylates Rab11-FIP2 on 
serine 227. Top: coomassie stain for protein levels; bottom: phosphorimage. B: Phosphoamino 
acid analysis demonstrates phosphorylation of Rab11-FIP2 is on serine resdiues. Positions of 
phosphoamino acid standards are shown by dotted lines. PS is phosphoserine. PT is 
phosphothreonine. PY is phosphotyrosine. C: Rab11-FIP2 is phosphorylated by recombinant 
activated MARK2 in vitro on serine 227 of Rab11-FIP2 wild type by not Rab11-FIP2(S227A). 
Top blot coomassie stain for protein levels; bottom blot, phosphorimage. D: Amino acid 
alignment of the putative Rab11-FIP2 sequences. The conserved phosphorylation site is boxed 
and in bold font. The phosphorylated serine is marked by a star.   

Rab11-FIP2 is phosphorylated in situ 

To assess the importance of Rab11-FIP2 phosphorylation in situ, we generated 

MDCK T23 cell lines with tetracycline-repressible expression of EGFP-Rab11-FIP2 wild 

type and non-phosphorylatable EGFP-Rab11-FIP2(S227A). EGFP-Rab11-FIP2 and 

EGFP-Rab11-FIP2(S227A) expressing cells were grown on permeable filters and labeled 
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for 2 hours with [32P]-orthophosphate, followed by lysis and immunoprecipitiation of 

GFP-Rab11-FIP2 proteins with anti-GFP antibodies. An immunoblot using anti-GFP 

showed that the amount of protein immunoprecipitated was similar between the two 

conditions. However, while the wild-type Rab11-FIP2 was strongly phosphorylated in 

situ, Rab11-FIP2(S227A) demonstrated far less in situ phosphorylation (Figure 11). We 

consistently observed a phosphorylated breakdown product in the EGFP-Rab11-FIP2 

wild type cell line that was not present in the EGFP-Rab11-FIP2(S227A) line. This 

breakdown was also apparent in recombinant protein preparations, suggesting that 

Rab11-FIP2 is readily degraded by an as yet unknown mechanism. 

 

 

Figure 11: EGFP-Rab11-FIP2 is phosphorylated in situ. 
Upper blot: Phosphorimage of phosphorylation of immunoprecipitated EGFP-Rab11-FIP2 from 
MDCK cell lines stably expressing either EGFP-Rab11-FIP2 or EGFP-Rab11-FIP2(S227A). 
Cells were loaded with [32P]-orthophosphate, lysed and immunoprecipitated with an anti-GFP 
antibody and proteins were resolved on SDS-PAGE gels. Lower blot: Immunoblot probing for 
GFP of immunoprecipitated lysates. Full length EGFP-Rab11-FIP2 is 75 kd (depicted with an 
arrow), but is consistently broken down by an as yet unknown mechanism. 

Recently, PEST sequences have been implicated in the degradation of RCP, a member of 

the Rab11-FIPs (Marie et al., 2005). While, Rab11-FIP2 does not have PEST sequences, 

degradation may be a prominent regulatory mechanism in this family. Although mutation 
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of the phosphorylation site appears to stabilize the protein, we have no evidence that 

phosphorylated Rab11-FIP2 binds 14-3-3 proteins (data not shown). These results 

establish the presence of Rab11-FIP2 phosphorylation on serine 227 in polarized MDCK 

cells.  

Overexpression of cargo alters Rab11-FIP2 morphology 

During the characterization of the tetracycline-repressible stable MDCK T23 cell 

lines, we noticed two morphologies apparent in each of 10 lines cloned of EGFP-Rab11-

FIP2 wild type. One morphology was similar to the EGFP-Rab11-FIP2 distribution 

previously reported by our lab in transiently transfected MDCK cells (Hales et al., 2001) 

and others in A431 cells (Lindsay and McCaffrey, 2004), maintaining an apical vesicular 

appearance traditionally attributed to the apical recycling endosome. In the second 

morphology, EGFP-Rab11-FIP2 localized on smaller vesicles and along the lateral 

membrane. One publication has reported this alternate morphology in A431 cells in 

response to treatment with EGF (Lindsay and McCaffrey, 2004). Because we isolated 

multiple individual clones that exhibited both morphologies, we sought to understand the 

implications of this diversity. One difference between this and our previous study (Hales 

et al., 2001), was the use of T23 MDCK cells as the parental line (Barth et al., 1997) 

instead of MDCK II cells. The T23 clone incorporates both the stable expression of 

polymeric IgA receptor (pIgR) and the tetracycline-repressible transactivator tTA into 

MDCK II cells. When we compared MDCK II cells transiently expressing EGFP-Rab11-

FIP2 to T23 cells expressing EGFP-Rab11-FIP2, the difference in distribution was 

apparent. The transiently transfected MDCK II cells displayed our previously published 

distribution for EGFP-Rab11-FIP2, while the T23 cells stably expressing EGFP-Rab11-
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FIP2 displayed both morphologies (Figure 12A). Upon initiation of pIgA trafficking, the 

cells changed to the more traditional apical recycling endosomal morphology (Figure 

12B). These dynamic localizations suggest an additional new role for Rab11-FIP2 

beyond the recycling pathway. 

 

 

 

Figure 12: Distribution of EGFP-Rab11-FIP2 in stably overexpressing cell lines. 
A) T23 cells stably expressing EGFP-Rab11-FIP2 exhibit two different morphologies. B) 
Transiently transfected MDCK II cells show only a punctuate subapical distribution of EGFP-
Rab11-FIP2. C) T23 cells expressing EGFP-Rab11-FIP2 in the presence or absence of pIgA (red 
in merge). Upon induction of trafficking, the EGFP-Rab11-FIP2 exhibits dynamic relocalization 
to the more traditional recycling system. EGFP images are from two different z positions in the 
same confocal stack, as indicated in the XY orthogonal view, to enhance the visualization of both 
morphologies. 
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Manipulation of Rab11-FIP2 phosphorylation alters its apical distribution. 

Rab11-FIP2 was initially characterized as an interacting protein for Rab11a 

(Hales et al., 2001). Rab11a has traditionally been associated with trafficking through the 

plasma membrane (Casanova et al., 1999). Therefore, we examined the general effect of 

overexpression of EGFP-Rab11-FIP2 and it nonphosphorylatable mutant on the 

distribution of the recycling system components in our inducible cell lines. The 

phenotype observed in each of these lines was most prominent in polarized cells grown 

on filters and was difficult to discern in non-polarized cells grown on glass (data not 

shown).  

In both cell lines, EGFP-Rab11-FIP2 and EGFP-Rab11-FIP2(S227A) showed 

overlapping localization with Rab11a (data not shown). The EGFP-Rab11-FIP2 in the 

wild type cell line localized near the apical membrane as shown by comparison with the 

apical marker GP135 ( 

Figure 13). A portion of the EGFP-Rab11-FIP2 was interspersed with the GP135 

staining while the remainder was immediately subapical to the membrane. The non-

phosphorylatable EGFP-Rab11-FIP2(S227A) population of vesicles extended further 

below the plasma membrane as shown by comparison with both GP135 ( 

Figure 13). Similar results were seen comparing the distribution of EGFP-Rab11-

FIP2 proteins with that of ezrin (data not shown).  
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Figure 13: Subapical distribution of EGFP-Rab11-FIP2 in stably expressing cell 
lines. 
Localization of the apical maker GP135 with EGFP-Rab11-FIP2 and EGFP-Rab11-
FIP2(S227A) was compared in stable cell lines. Confocal immunofluorescence imaging of the 
EGFP-Rab11-FIP2 constructs with GP135 showed that EGFP-Rab11-FIP2 partially colocalized 
and interspersed with the apical marker GP135 (red in merge). EGFP-Rab11-FIP2(S227A) was 
also partially colocalized with and partially beneath the apical marker GP135 (red in merge). 
The x-y planes are optical sections taken 2.5 microns apart.  
 

Effects of phosphorylation site mutations on Rab11-FIP2 recycling system 
interactions 

Next, we analyzed the interaction of Rab11-FIP2(S227A) with known apical 

recycling system components including association with myosin Vb and Rab11a 

as well as Rab11-FIP2 dimerization by far western analysis (Ducharme et al., 

2005). All three interactions were maintained regardless of the mutated state of 

Rab11-FIP2 (data not shown). These interactions were confirmed by yeast two 

hybrid analyses, which revealed that phosphorylation of S227 did not affect 

Rab11a or myosin Vb interactions with Rab11-FIP2 or Rab11-FIP2 – Rab11-

FIP2 dimerization (data not shown). We have previously demonstrated that 
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expression of myosin Vb tail causes compaction of the Rab11a-containing apical 

recycling system and marked inhibition of both apical recycling and transcytosis 

(Lapierre et al., 2001). Transfection of EGFP- Rab11-FIP2 or EGFP-Rab11-

FIP2(S227A) expressing cell lines with DsRed2-myosin Vb tail elicited 

colocalization of both EGFP-Rab11-FIP2 proteins with myosin Vb tail and Rab11a 

in a collapsed recycling system (Figure 14) further indicating that phosphorylation 

state does not affect association with myosin Vb. We also examined the effects of over-

expression of wild type EGFP-Rab11-FIP2 or EGFP-Rab11-FIP2(S227A) on trafficking 

of polymeric IgA in the tetracycline repressible cell lines. Both transcytosis and apical 

 

  

Figure 14: Phosphorylation of Rab11-FIP2 does not alter interaction with myosin 
Vb tail. 
The phosphorylation state of Rab11-FIP2 does not affect known interactions with myosin Vb. 
Stable EGFP-RAB11-FIP2 cells lines were transiently transfected with Ds-Red2 myosin Vb tail. 
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Rab11-FIP2 wildtype and Rab11-FIP2(S227A) as well as Rab11a were pulled into the myosin Vb 
tail collapsed recycling system as expected 

recycling of pIgA, well characterized functions of the Rab11a containing recycling 

system, were unaffected by the overexpression of wild type or mutant EGFP-Rab11-FIP2 

proteins (Figure 15). 

 

 

Figure 15: Phosphorylation of Rab11-FIP2 does not alter apical recycling or 
transcytosis 
Recycling functions of Rab11-FIP2 are not affected by phosphorylation on serine 227. Apical 
recycling and transcytosis of [125I]IgA were assessed in stable transfected cell lines in the 
presence or absence of doxycycline. Neither apical recycling nor transcytosis were affected by 
the phosphorylation state of Rab11-FIP2. Top graphs are EGFP-Rab11-FIP2 wild type. Bottom 
graphs are EGFP-Rab11-FIP2(S227A). Left hand side shows data from transcytosis assays, 
while the right hand side shows results from apical recycling assays. Dark blue and pink lines 
indicate that doxycycline was present in the media (inhibiting expression of the EGFP-chimera). 
Yellow and light blue lines indicate that the cells were incubated in doxycycline-free media 
allowing for expression of EGFP-chimera proteins. Dark blue and yellow lines indicate media 
was collected from the apical side of the transwell. Pink and light blue lines indicate media was 
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collected from the basal side of the transwell. The results show no effects of EGFP-Rab11-FIP2 
expression on either transcytosis or apical recycling. 

Rab11-FIP2 phosphorylation is important for the formation of calcium dependent 
junctions. 

MARK2 has previously been implicated in the proper establishment of polarity in 

both C. elegans embryos (Guo and Kemphues, 1995) and MDCK cells (Bohm et al., 

1997; Cohen and Musch, 2003). Thus, we hypothesized that Rab11-FIP2 phosphorylation 

may also impact on polarity. We assessed the effect of Rab11-FIP2 phosphorylation 

mutants on the re-establishment of polarity following calcium switch. Cell polarity was 

disrupted by switching confluent cells to calcium free media overnight. Cells were then 

fixed at indicated time intervals following re-addition of 1.8 mM calcium. These cells 

were stained for ZO-1 and p120 catenin to assess the re-establishment of tight and 

adherens junctions, respectively. 

 EGFP-Rab11-FIP2 wild type exhibited dynamic movements during the re-

establishment of polarity. After incubation overnight in calcium free media, 

EGFP-Rab11-FIP2 localized along the lateral membrane and in perinuclear 

pools. Following re-addition of calcium, Rab11-FIP2 initially moved to perincular 

pools where it colocalized with Rab11a (data not shown). Over time, EGFP-

Rab11-FIP2 redistributed near the apical membrane, a pattern similar to that in 

cells that did not undergo a calcium switch (Figure 16). These cells did reform 

proper junctions as measured by immunofluorescence staining for both p120 

catenin and ZO-1 localization by 6 hours and 3 hours, respectively, after re-

establishment of normal extracellular calcium (Figures Figure 17A and B). Similar 
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results were seen with the tight junction marker occludin as well as adherens junction 

proteins beta-catenin and E-cadherin (data not shown).  

 Interestingly, the EGFP-Rab11-FIP2(S227A) did not exhibit the same dynamic 

movement during the establishment of polarity. The EGFP-Rab11-FIP2(S227A) initially 

localized along the apical and lateral membranes following incubation with calcium free 

media, often appearing as subapical rings. Moreover, after re-addition of calcium, EGFP-

Rab11-FIP2(S227A) was less compacted in the internal pools compared with EGFP-

Rab11-FIP2. Finally, 1.5 hours after the re-addition of calcium, the non- 

phosphorylatable mutant localized diffusely near the apical surface exclusively (Figure 

16). EGFP-Rab11-FIP2(S227A) expressing cells did not re-establish proper adherens 

junctions as assessed by a lack of p120 catenin localization to the lateral junctions by 6 

hours after the re-addition of calcium (Figure 17A). This cell line did re-localize ZO-1 by 

3 hours after calcium addition (Figure 17B). When calcium switch was performed in the 

presence of doxycycline to block expression of EGFP-Rab11-FIP2(S227A), both p120 

catenin and ZO-1 re-localized to their junctions after re-addition of calcium by 3 hours 

(Figure 17A and B), as seen previously (Gumbiner et al., 1988; Straight et al., 2004).  
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Figure 16: Distribution of EGFP-Rab11-FIP2 during calcium switch. 
Cell lines expressing EGFP-Rab11-FIP2 or its phosphorylation mutant were subjected to the 
calcium switch protocol and fixed at the indicated time points following readdition of 
extracellular calcium. The EGFP-Rab11-FIP2 initially moved to a lateral membrane before 
accumulating in a tight spot internally. As the junctions reformed, the construct localized to the 
apical membrane as seen for those cells not subject to the switch. EGFP-Rab11-FIP2(S227A) 
initially localized in sub-apical rings. As the junctions reformed, the construct was less compact 
and became diffusely apical. The x-y planes are compiled stacks of optical sections taken 2.5 
microns apart. 
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Figure 17: Phosphorylation of Rab11-FIP2 is necessary for the proper 
reestablishment of p120 at adherens junctions, but not ZO-1 at tight junctions. 
Cell lines expressing EGFP-Rab11-FIP2 or its phosphorylation mutant were subjected to the 
calcium switch protocol and fixed at the indicated time points. A) Z sections from cells in the 
calcium switch experiment stained for p120 catenin. Note the delayed establishment of p120 
localization in Rab11-FIP2(S227A) compared to wild type. p120 staining showed a normal re-
establishment at the adherens junction in EGFP-Rab11-FIP2 cells grown in the presence of 
doxycycline (uninduced). B) Projections of z-stacks from ZO-1 staining during the calcium switch 
experiment demonstrate the normal reestablishment of ZO-1 at tight junctions in all cell lines. 

 A recent report suggests that the Rab11a pathway is involved in the 

trafficking of newly synthesized E-cadherin (Lock and Stow, 2005a). Therefore, it 

was possible that the Rab11a pathway was involved in the internalization or 
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recycling of junctional constituents. Nevertheless, we did not observe 

colocalization of any junctional protein with Rab11-FIP2 during the calcium 

switch assay. We therefore examined the localization of junctional makers in 

cells expressing the previously characterized dominant negative recycling system 

trafficking mutants EGFP-myosin Vb tail (Figure 18A) and EGFP-Rab11-

FIP2(129-512) (data not shown). Neither dominant negative construct showed 

colocalization with p120 or ZO-1. To confirm that a Rab11a-dependent pathway 

utilizing Rab11-FIP2 pathway was not involved during trafficking, we examined 

the effects of these dominant negative mutants in the calcium switch assay. No 

p120 was observed in myosin Vb tail or Rab11-FIP2(129-512) containing 

collapsed recycling systems (Figure 18B). Furthermore, throughout the timecourse of 

the calcium add-back, we did not observe localization of any junctional marker within the 

inhibited recycling system (data not shown).  

 As an independent method of assessing junction formation, we trypsinized cells 

and replated them at high density on laminin-coated filters. We examined the cells at 

fixed time points to assess the establishment of junctions by staining for p120 and ZO-1. 

Cells overexpressing EGFP-Rab11-FIP2 wild type reestablished normal junctions by 4 

hours after replating, while the EGFP-Rab11-FIP2(S227A) expressing cells did not 

(Figure 19). ZO-1 localization was reestablished similarly in both lines by 4 hours. Thus, 

the inability to phosphorylate serine 227 of Rab11-FIP2 delays adherens junction 

formation in multiple assays.  
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Figure 18: Dominant negative Rab11a recycling system trafficking mutants do not 
co-localize with junctional proteins p120 or ZO-1. 
A) X-Y confocal sections showing dual labeling of p120 catenin (cy 3, pseudo colored red) and 
ZO-1 (cy5, pseudo colored blue) in EGFP-myosin Vb tail cells. No colocalization was found 
between the junctional markers and EGFP-myosin Vb tail. B) Projections showing dual labeling 
of p120 catenin (cy 3, pseudo colored red) and ZO-1 (cy5, pseudo colored blue) in EGFP-Rab11-
FIP2(129-512) and EGFP-myosin Vb tail cells following calcium switch at t = 0. Junctional 
markers do not colocalize with the dominant negative inhibitors of the Rab11a apical recycling 
system. No localization with the collapsed recycling system was seen at any time point following 
reestablishment of extracellular calcium 
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Figure 19: Phosphorylation of Rab11-FIP2 is necessary for the proper 
reestablishment of polarity in a replating assay.  
Cell lines expressing EGFP-Rab11-FIP2 or EGFP-Rab11-FIP2(S227A) were trypsinzied and 
replated on laminin-coated filters. The cells were fixed at the indicated time points and stained 
with p120 (pseudo colored red) and ZO-1 (pseudo colored blue). These overlays show x-y planes 
following replating. While ZO-1 was reestablished at tight junctions in both lines, EGFP-Rab11-
FIP2(S227A) expressing cells demonstrated a deficit in p120 localization four hours after 
replating. 
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Discussion 

 Traditionally, the apical recycling system is marked by the presence of Rab11a. 

Rab11a and its known family of interacting proteins (Rab11-FIPs) regulate trafficking 

through the apical recycling system. For example, removal of the C2 domain from 

Rab11-FIP2 causes a disruption of the trafficking of pIgA through the apical recycling 

system (Hales et al., 2002). In addition, we have shown that myosin Vb associates with 

the Rab11a and Rab11-FIP2 to form a ternary regulatory complex for apical recycling 

(Hales et al., 2002). However, Rab11-FIP2 also has a role in cellular function beyond 

apical recycling. We and others have previously shown that a subset of the Rab11-FIP2 is 

not with the recycling system in quiescent cells (Hales et al., 2001; Cullis et al., 2002). 

Rab11-FIP2 associates with EH domain proteins such as Reps1, assisting in receptor 

mediated endocytosis (Cullis et al., 2002). In the initial characterization of Rab11-FIP2, 

we found that not all Rab11-FIP2 colocalized with Rab11a. This was apparent 

particularly when cells were treated with the microtubule-stabilizing drug, taxol. Taxol 

treatment of polarized cells caused Rab11a containing recycling vesicles to relocate to 

apical corners near the tight junction complex (Casanova et al., 1999). However, taxol 

treatment of cells caused Rab11-FIP2 to localize at both the apical corner and laterally 

(Hales et al., 2001), suggesting that not all of Rab11-FIP2 was involved in the Rab11a-

containing recycling pathway. This lateral localization is similar to that seen after the 

removal of calcium in the EGFP-Rab11-FIP2(S227A) cells. Importantly, in these studies, 

we have demonstrated that phosphorylation of Rab11-FIP2 on serine 227 by MARK2 is 

not involved in the traditional apical recycling pathway, but is instead involved in the 

establishment of epithelial cell polarity.  
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 The recycling system is a dynamic tubular network with multiple regulators and 

signaling pathways. Present models suggest that the assembly of multiple proteins 

associating with Rab11a regulates trafficking through the recycling system. While few of 

the Rab proteins are directly regulated by protein phosphorylation (van der Sluijs et al., 

1992), phosphorylation of Rab interacting proteins has emerged as an important 

regulatory mechanism. Thus, the Rab3 interacting protein, rabphilin-3, is phosphorylated 

both by protein kinase A and calmodulin-dependent kinase II (Kato et al., 1994; Numata 

et al., 1994). Rabphilin-3 phosphorylation reduces its affinity for membranes (Foletti et 

al., 2001; Lonart and Sudhof, 2001). Rab11-FIP5 (pp75/Rip11) was originally described 

as an autoantigen phosphoprotein, and as in the case of rabphilin-3, phosphorylation 

appeared to alter subcellular localization (Wang et al., 1999; Prekeris et al., 2000). The 

kinase activity responsible for Rab11-FIP5 phosphorylation is unclear, although we have 

not found phosphorylation of Rab11-FIP5 by MARK2 (data not shown). In the present 

report, we have found that MARK2 can phosphorylate Rab11-FIP2. Nevertheless, 

mutation of serine 227 does not alter apical membrane recycling or transcytosis. Thus, 

MARK2 appears to regulate Rab11-FIP2 functions distinct from its role in the recycling 

system. 

 MARK2 is a member of the PAR (partitioning-defect) family originally 

characterized as PAR1 in C. elegans (Kemphues et al., 1988). Since that time, the 

majority of the work on this kinase has related to phosphorylation of Tau, MAP2C and 

MAP4 on their microtubule binding domains which results in disruption of the 

microtubule network (Drewes et al., 1995; Drewes et al., 1997; Ebneth et al., 1999). In 

Drosophila, MARK2 regulates the density, stability and apicobasal organization of 
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microtubules by regulating the microtubule plus ends (Doerflinger et al., 2003). While 

MARK2 phosphorylation of Rab11-FIP2 does not appear to affect the traditional Rab11a 

trafficking pathway, it previous studies have implicated MARK2 in the breakdown of the 

microtubule network. MARK2 phosphorylation events may also be regulating the 

movement of vesicles along the microtubule network.  

 The S. pombe family MARK2 member, kin1, is necessary to establish the rod 

shaped morphology and for progression of cytokinesis (Drewes and Nurse, 2003). This 

kinase also plays a role in the establishment of polarity. MARK2 is essential for epithelial 

specific microtubule arrays in polarized cells (Cohen et al., 2004). Overexpression of the 

kinase inhibits apical/basolateral polarization in MDCK cells partially by altering apical 

protein transport. Interestingly, cells overexpressing MARK2 form a polarity axis parallel 

to the substratum (Cohen and Musch, 2003). Recently, the yeast homolog was reported to 

interact with components of the exocytic machinery including the yeast Rab family 

member, Sec4 (Elbert et al., 2005), thus establishing a precedent for the involvement of 

this kinase family in Rab related trafficking. The results presented here indicate that 

phosphorylation of Rab11-FIP2 by MARK2 is necessary for the proper localization of 

junctional proteins. The importance of the phosphorylation site was most obvious when 

manipulating the system through a calcium switch assay. The re-establishment of polarity 

was grossly delayed in cells overexpressing EGFP-Rab11-FIP2(S227A). p120 catenin did 

not organize into junctions when cells were examined up to eight hours after the addition 

of normal media. Similar defects in the establishment of polarity in EGFP-Rab11-

FIP2(S227A) expressing cells were also observed in replating assays. Nevertheless, we 

did not observe any difference in trans-epithelial resistance (TER) between cells 
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expressing EGFP-Rab11-FIP2, EGFP-Rab11-FIP2(S227A) or uninduced cell lines (data 

not shown). However, cells that have ZO-1 knocked out also do not have reduced TER, 

suggesting that other junctional proteins such as ZO-2 can compensate for a lack of 

junctional ZO-1 (Umeda et al., 2004).  

 Previous work by Parkos and colleagues demonstrated that junctional proteins 

including cadherin, p120 and ZO-1 are internalized in response to calcium depletion 

(Ivanov et al., 2004). During Drosophila cellularization, cadherin is initially localized 

along the entire lateral membrane and then becomes sequestered into both apical lateral 

and basal lateral compartments, finally restricted to the apically oriented adherens 

junction (Le Bivic, 2005). This dual localization found during mid-cellularization is 

reminiscent of the localization of p120 observed in cells overexpressing EGFP-Rab11-

FIP2(S227A), suggesting that these cells may never achieve proper adherens junctions. 

The role of Rab11-FIP2 in adherens junction protein trafficking is supported by a recent 

study by Stow and colleague demonstrating that newly synthesized cadherin requires 

functional Rab11 for proper localization (Lock and Stow, 2005a). However, our work 

suggests that establishment of junctions is not blocked by expression of previously 

characterized inhibitors of the apical recycling system, Rab11-FIP2(129-512) and Myosin 

Vb tail. Another Rab11-FIP, Rab Coupling Protein (RCP), was also recently found to 

relocalize with Rab11a to the lateral membrane in the presence of calpeptin, a potent 

blocker of calcium mediated calpain actions (Marie et al., 2005). In the presence of 

calpain inhibitor, RCP relocalized in a pattern similar to that for Rab11-FIP2 during the 

initial stages of junctional reformation following readdition of calcium. Interestingly, 

RCP also has the MARK2 phosphorylation site and is phosphorylated by MARK2 in 
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vitro, suggesting a possible common regulatory mechanism for both RCP and Rab11-

FIP2 in response to calcium.  

 In summary, the present studies have defined a novel consensus site for 

phosphorylation by MARK2 of Rab11-FIP2. Manipulation of the serine 227 

phosphorylation site in Rab11-FIP2 alters the establishment of polarity in polarized 

MDCK cells but does not affect traditional recycling system trafficking pathways. These 

studies demonstrate that Rab11-FIP2 plays an important role in regulating epithelial cell 

polarity, distinct from its function in the Rab11a-containing recycling pathways. 
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Abstract 

Transcytosis through the apical recycling system of polarized cells is regulated by 

Rab11a and a series of Rab11a-interacting proteins. We have identified a point mutant in 

Rab11 Family Interacting Protein 2 (Rab11-FIP2) which alters the function of Rab11a-

containing trafficking systems. Rab11-FIP2(S229A/R413G) or Rab11-FIP2(R413G) 

cause the formation of a tubular cisternal structure containing Rab11a and decrease the 

rate of polymeric IgA transcytosis. The R413G mutation does not alter Rab11-FIP 

interactions with any known binding partners. Overexpression of Rab11-

FIP2(S229A/R413G) alters the localization of a sub-population of the apical membrane 

protein GP135. In contrast, Rab11-FIP2(129-512) alters the localization of early 

endosome protein EEA1. Both Rab11-FIP2(S229A/R413G) and Rab11-FIP2(129-512) 

cause an uncoupling of Rab11a-containing membranes from the microtubule and actin 

cytoskeletons. The results indicate that Rab11-FIP2 regulates trafficking at multiple 

points within the apical recycling system.  

Introduction 

 The interaction of cells with their environment is dependent upon their repertoire 

of plasma membrane proteins including ion channels, ion pumps, and receptors. 

Regulation of the expression or activity of these proteins at the cell surface can influence 

cell physiology. Recent studies have focused increasing attention on protein 
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internalization and recycling as modulators of cell function. In particular, Rab11a, a 

member of the Rab11 sub-family of small GTPases, is well-established as a regulator of 

the recycling system. Rab11a is associated with vesicles in the apical portion of epithelial 

cells near the centrosome and beneath the apical plasma membrane (1).  

 Rab11a interacts with and is regulated by specific interacting proteins. The exit of 

cargo from the recycling endosome is dependent upon interaction of Rab11a with the 

actin motor protein, myosin Vb (2), as well as with a group of proteins, the Rab11 Family 

Interacting Proteins (Rab11-FIPs). The growing family of Rab11-FIPs currently include: 

four Rab11-FIP1 proteins (3-5), Rab11-FIP2, Rab11-FIP3 (4), Rab11-FIP4 (6), and 

Rab11-FIP5 (pp75/Rip11) (7, 8). The Rab11-FIP proteins each interact with Rab11 

family members (Rab11a, Rab11b and Rab25) at their carboxyl-termini through 

predicted coiled-coil regions containing an amphipathic alpha helical Rab binding 

domain (4, 9). The diversity of multiple Rab11-FIP proteins, all of which bind to Rab11 

with similar helices, suggests that each Rab11-FIP may be important in distinct 

trafficking processes.  

 In particular, Rab11-FIP2 (FIP2) appears to form a ternary complex with both 

Rab11a and myosin Vb (10). In addition, FIP2 and Rab11a were redistributed when the 

microtubule architecture was modified with either taxol or nocodazole, demonstrating a 

link between the microtubule network and the recycling system (4). FIP2 has an amino 

terminal C2 domain as well as a carboxy terminal Rab11 binding domain (4). A 

truncation of FIP2 lacking its amino terminal C2 domain (FIP2(ΔC2)) strongly inhibits 

plasma membrane recycling, (10). This mutant has been used by us and others to assess 

proteins utilizing the Rab11a recycling pathway (10-13). Similarly, a mutant myosin Vb 
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lacking the motor domain, myosin Vb-tail, also acts as a dominant negative mutant and 

has proven useful in the assessment of trafficking through the Rab11a trafficking 

pathway (14-17). However, we recently have reported that FIP2 also has a role in the 

establishment of cell polarity (18). In this study, we sought to confirm our initial 

hypothesis that FIP2 is involved in the recycling pathway (4) utilizing a newly identified 

dominant negative mutant of FIP2. Unexpectedly, this mutant has differentiable effects 

from the previously characterized FIP2 mutant FIP2(ΔC2). The availability of multiple 

mutants for manipulation of the Rab11a pathway allows a greater appreciation of the 

complexity of the steps required for trafficking through the apical recycling system. 

Materials and Methods 

Materials: Rabbit anti-Rab11a (VU57) antibodies were developed against the amino 

terminus of human Rab11a and were specific for Rab11a versus Rab11b and Rab25 

(Lapierre, submitted). The other antibodies used were rat anti-ZO-1 ([1:200]; Chemicon), 

mouse anti-G97 ([1:1000]; CDF4, Invitrogen), and mouse anti-EEA1 ([1:100]; 610457, 

BD Transduction). All secondary antibodies were from Jackson Immuno Research. Dr. 

Roy Zent of Vanderbilt University kindly provided mouse monoclonal anti-GP135 

[1:100]. The cytoskeletal manipulation drug were Cytochalasin D and Nocodazole 

(Calbiochem). EHD1 and EHD3 cDNA sequences were a gift of Dr. Steven Caplan. 

Site directed mutagenesis: All site-directed mutagenesis of Rab11-FIP2 was performed 

using Pfu Turbo polymerase according to the QuikChange Site-Directed Mutagenesis Kit 

from Stratagene (La Jolla, CA) with a 16 minute extension time. Primers were 
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synthesized (Invitrogen) with one nucleotide change per oligonucleotide sequence. All 

site-directed mutants were created in pEGFP-C2 (Clontech) and subsequently recloned 

into pET-30a (Novagen) with EcoRI and SalI restriction sites.  

Cell Culture: Parental T23 MDCKs (19) as well as the stably transfected cell lines were 

grown in D-MEM supplemented with 10% fetal bovine serum (Gibco), penicillin-

streptomycin, 2mM L-glutamine, and 0.1 mM MEM non-essential amino acids 

(Gibco/BRL). Media for cell lines also contained 0.5mg/ml G418 sulfate (Cellgro), and 

0.25ng/ml hygromycin (Invitrogen). In the stable cell lines, expression of the EGFP 

chimeras was inhibited with doxycycline ([20ng/ml]; Calbiochem). To examine EGFP 

protein expression, cells were grown on 0.4 µm Transwell filters (Costar) without 

doxycycline in tetracycline screened fetal bovine serum (HyClone) media for 2-4 days. 

GFP constructs and transfections: Doxycycline-inhibitable expression vectors were 

generated by excising the FIP2 wild type and mutant sequences from pEGFP-vectors 

with NheI and SmaI and ligating into a pTRE2hyg vector (Clontech) cut with NheI and 

EcoRV. Transfection was performed using Effectene (Qiagen) following the 

manufactures protocol. One µg of vector was transfected into a 60 mm plate of T23 

MDCK cells in normal media. The following day, the cells were trypsinized and replated 

in serial dilutions including 0.25 ng/ml hygromycin for selection and 20ng/ml 

doxycycline for suppression of EGFP expression. Multiple colonies were selected, 

expanded for 10 days, and then screened for EGFP expression in media with tetracycline 

screened serum. Multiple clones were initially characterized, all of which showed similar 

expression patterns and levels of the EGFP construct. One clone was selected for each 



 

79 

construct to use as the tetracycline-repressible stable cell lines (expressing FIP2 wild 

type, FIP2(ΔC2), FIP2(S229A), FIP2(R413G) or EGFP-Rab11FIP2(SARG)). 

Electron microscopy procedures: Cells were plated on Costar clear Transwell filters and 

allowed to polarize for 4-5 days. The cells were washed twice in PBS prior to fixing in 

4% gluteraldyhe, 0.1 M Cacodylate buffer and PBS for 1 hour on ice. Following fixation, 

the cells were washed twice in 0.1 M Cacodylate buffer and 1XPBS. After washing, the 

filters with the cells were excised from the Transwell and rolled into a cylindrical tube 

and tied with a strand of hair to prevent unraveling. Once rolled into tubes, the filters 

were transferred to 1.5ml eppendorf tubes and fixed for 2 hours on ice in 1% osmium 

tetraoxide and 0.1 M Cacodylate buffer. Next, the cells were washed once with 0.1 M 

Cacodylate buffer followed by an ethanol dehydration series with 10-minute incubations 

on ice. Following the final 100% ethanol dehydration, the samples were rocked and 

incubated in equal volumes of 100% ethanol and Spurrs resin for at least 8 hours, then 

incubated in a 1:2 ratio of 100% ethanol and Spurrs resin for another 8-16 hours before 

undergoing two 8 hour pure resin incubations. Transwell filters were then transferred to 

molds with fresh resin and allowed to polymerize 24-48 hours at 65°C. 50-100 nm thick 

sections were then taken of each filter of cells and collected on 200 nm copper grids. 

Grids of sections were then stained for 12 minutes in 1% depleted uranyl acetate and 

washed for 1 minute. After the grids air-dried, they were counter stained with saturated 

lead citrate for 10 minutes, followed by a 2 minute water wash. The sections were imaged 

using a Philips CM12 electron microscope.  

Fluorescent Polymeric Immunoglobin A (pIgA) Trafficking in MDCK Cells: Fluorescent 

labeling of pIgA and trafficking experiments were done as previously described described 
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(10) except that we used the cell culture media described above. Cells were loaded from 

the basolateral side and fixed at times 0 and 40 minutes following a 15 minute loading 

incubation. 

Analysis of [125I]IgA Postendocytotic Fate: [125I]IgA was iodinated using the ICl method 

to a specific activity of 1.0-2.0 x 107 cpm/µg (20). The postendocytotic fate of a 

preinternalized cohort of [125I]IgA (at 5-10 µg/ml) that was transcytosed was analyzed as 

described previously (21). In brief, filter-grown MDCK cells expressing the various 

Rab11-FIP2 constructs and wild-type pIgR were cultured in the presence or absence of 

doxycycline, and [125I]IgA internalized from the basolateral cell surface of the cells for 10 

min at 37˚ C. The basal surface of the cells were rapidly washed three-times, the apical 

and basolateral medium aspirated, and replaced with fresh medium. The cells were then 

incubated for 3 min at 37˚ C. This wash procedure takes 5 min at 37˚ C. Fresh medium 

was added to the cells and they were chased for up to 2 h at 37˚ C. At the designated time 

points, the apical and basolateral media (0.5 ml) were collected and replaced with fresh 

media. After the final time point, filters were cut out of the insert and the amount of 

[125I]IgA quantified with a gamma counter.  

The postendocytic fate of apically internalized [125I]IgA was essentially as 

described above. However, following ligand internalization the apical surface of the cells 

were treated three times for 10 min with 100 µg/ml trypsin at 4 °C to strip surface bound 

ligand. The cells were then treated with 125 µg/ml soybean trypsin inhibitor for 10 min at 

4 C (22). The postendocytic fate was determined as described above. 

Statistical Significance: Two-way ANOVA with a Bonferroni post-hoc test was 

performed using GraphPad Prism version 4 for Macintosh, GraphPad Software, San 
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Diego, California USA, www.graphpad.com. The quantified trafficking numbers were 

assessed for statistically significant differences between each cell line with and without 

doxycycline in the media for either apical and basolateral media collection. If a 

statistically significant difference was found by ANOVA between the two conditions, the 

differences at each individual time point were assessed using the post-hoc test. 

Immunofluorescence: Cells grown on Transwell filters were washed three times with PBS 

and then fixed in 4% paraformaldehyde for 15 minutes at room temperature. The cells 

were washed twice with PBS and stored at 4° in PBS until staining. Cells were blocked 

with extraction buffer (10% normal donkey serum, 150 mM NaCl, 20 mM sodium 

phosphate, pH 7.4, 0.3% TritonX-10) for twenty minutes. Primary antibody was added in 

antibody buffer (10% normal donkey serum, 150 mM NaCl, 20 mM sodium phosphate, 

pH 7.4, 0.05% Tween-20) for 2 hours. Secondary species-specific Cy dye-labeled anti-

IgGs were added for 1 hour in antibody buffer. After washing with PBS two times, filters 

were cut out of the Transwells. These filters were washed once more in PBS and mounted 

with Prolong Antifade solution (Molecular Probes). Cells were imaged on a Zeiss 

LSM510 confocal microscope using a 100X lens. Z-sections were 0.5 microns. 

Manipulations of the cytoskeleton: Manipulations of the microtubule cytoskeleton (1) 

were performed as previously described. Briefly, for assessment of the microtubule 

network, polarized cells were incubated at 4˚ C for 30 minutes. Nocodazole was added in 

a final concentration of 33μM for 30 minutes at 4˚ C. The cells were then moved to 37˚ C 

for an hour prior to fixation. For manipulation of the actin network, cells were incubated 

with cytochalasin D at a final concentration of 2 µM for 2 hours at 37˚ C. 
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Results 

Isolation of a new Rab11-FIP2 mutant 

We isolated a mutant FIP2 construct, FIP2(S229A/R413G) (hereafter referred to 

as SARG), through a spontaneous mutation at R413 when constructing FIP2(S229A) as a 

control for previous studies (18). FIP2(SARG) was accumulated in pleomorphic tubular 

cisternae which were acentrically located in the subapical region (Figure 20A). This 

tubular structure was in contrast to our previously characterized dominant negative FIP2 

mutant, FIP2(ΔC2), a FIP2 construct lacking the C2 domain (10), which localizes as a 

central subapical ring. Following identification of the double mutant, we assessed the 

effects of each single mutant in stable cell lines. FIP2(S229A) has no discernible effect 

on the morphology of the recycling system, with EGFP labeled vesicles scattered 

throughout the subapical region as we have previously seen with overexpression of wild 

type FIP2 (Figure 20A) (4, 18). In contrast, FIP2(R413G) had a severe phenotype with 

collection of the EGFP in tubular cisternae. These results suggested that the 

FIP2(R413G) mutation was responsible for the altered morphology seen in the double 

mutant. The cells expressing FIP2(R413G) were difficult to maintain in a uniform 

monolayer in culture on Transwell filters. Therefore, we utilized the more uniform 

pattern found in the double mutant FIP2(SARG) cell line for our further studies (Figure 

20A).  

Next, we looked specifically at the EGFP patterns of the FIP2(SARG) and 

FIP2(ΔC2) in the Z axis. The FIP2(SARG) pattern is a long tubular structure that 

localizes from the apical membrane down towards the nucleus of the cells. In contrast, 

the FIP2(ΔC2) localizes in a centrally expansive tangle of tubules reminiscent of a donut 
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shape above the nucleus (Figure 20 B,C). In multiple cloned cell lines expressing Rab11-

FIP2(SARG), the size of polarized cells was smaller than in cells expressing Rab11-

FIP2(ΔC2). We have previously observed a similar enlarged cell phenotype in MDCK 

cells overexpressing the constitutively GTP-bound form of Rab11a, Rab11a(S20V) (23). 

 

 

Figure 20: Localization of FIP2 mutants. 

A) T23 cells stably expressing each of the mutants (FIP2(S229A), (R413G), (SARG) and (ΔC2)) 
were imaged by confocal microscopy in the X-Y plane. FIP2(S229A) is indistinguishable from 
wild type localization. FIP2(R413G) localizes in tight tubular cisternae, but has a non-uniform 
morphology. FIP2(SARG) always leans towards one corner as tubular cisternae. All images are 
100X. B) The FIP2(SARG) and FIP2(ΔC2) cells visualized along the z-axis. 644-phalloidin was 
pseudo colored red for ease of visualization. Images were taken with a 100x lens with a 3X zoom. 
C) The relative cell size of the Rab11-FIP2(SARG) mutant was smaller than that of Rab11-
FIP2(ΔC2). 644-phalloidin was pseudo colored red for ease of visualization. Images were taken 
with a 100X objective. Scale bars are 5 μm. 

To gain a better understanding of the morphological features of the Rab11-FIP2 

mutants, we analyzed the FIP2(ΔC2), FIP2(SARG), and FIP2 wild type cell lines using 
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transmission electron microscopy (Figure 21). Electron microscopic images demonstrated 

that both Rab11-FIP2 mutants induced extensive tubular systems within the apical region 

of the cells. While vesicular elements were always observed throughout the apical region 

of MDCK cells expressing wild type Rab11-FIP2, no extensive tubular elements were 

observed. 

 
Figure 21: FIP2 mutants show a tangle of tubules by electron microscopy. 

T23 cells stably expressing wild type FIP2, FIP2(SARG), or FIP2(ΔC2) were imaged by 
transmission electron microscopy. Both mutants showed a complex tubular system in the apical 
region of the cells compared to the wild type cells. Scale bars are 500 nm. 

FIP2(SARG) alters localization of traditional components of the recycling system 

One potential mechanism to explain the dominant negative phenotype of the 

FIP2(SARG) mutations is an uncoupling from the other components of the recycling 

system such as Rab11a. However, we observed that Rab11a colocalized in the tubular 

cisternae with FIP2(SARG) (Figure 22) and FIP2(R413G) (data not shown). We also 

observed colocalization of endogenous Rab11-FIP1A and Rab11-FIP5 with FIP2(R413) 

(data not shown). To assess whether the R413G mutation could alter the interaction of 

FIP2 with either Rab11a or myosin Vb, we performed yeast two-hybrid binary assays 
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with both FIP2(R413G) and FIP2(SARG). We observed no differences in interactions 

with either Rab11a or the tail of myosin Vb (data not shown). 

Others have reported that Rab11a localizes at the Golgi apparatus in non-

polarized CHO cells but not in MDCK cells (24). In order to assess if FIP2(SARG) 

accentuated this Golgi associated population of Rab11, we assessed potential 

colocalization with Golgin-97. However, FIP2(SARG) did not associate with the Golgi 

population marked by Golgin-97 (Figure 22). Thus, the FIP2(SARG) construct does not 

cause a collapse of the recycling endosome into the Golgi apparatus.  

 

 

Figure 22: Localization of FIP2(SARG) in relationship to cell markers. 
T23 cells stably expressing FIP2(SARG) were stained with antibodies to ZO-1 and either Rab11a 
(A) or Golgin 97 (B) for immunofluorescence analysis and imaged by confocal microscopy in the 
X-Y plane. A) Extensive colocalization was seen in T23 cells stably expressing FIP2(SARG) 
stained for endogenous Rab11a (pseudo-colored red). B) No colocalization of FIP2(SARG) was 
observed with the Golgi apparatus marker golgin 97 (pseudo-colored red). Expression of the 
Rab11-FIP2 mutant had no effect on the morphology of the Golgi apparatus. Scale bars are 5 
μm. 
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FIP2(SARG) and FIP2(R413G) decrease the rate of transcytosis 

In previous studies, a collapsed cisternal phenotype was associated with decreases 

in transcytosis. We therefore assessed whether the tubular cisternae of FIP2(SARG) 

affected the efficiency of trafficking. We examined the ability of the two single and the 

double Rab11-FIP2 mutants to traffic pIgA. Expression of the FIP2(R413G) mutant 

resulted in a reproducible decrease in transcytosis (Figure 23). FIP2(SARG) also induced 

a marked delay in transcytosis through the plasma membrane recycling system (Figure 

23). The effects of the two mutants were similar to the inhibition of transcytosis observed 

in cells expressing FIP2(ΔC2). In addition, expression of FIP2(ΔC2) also appeared to 

promote basolateral recycling of pIgA. Expression of FIP2(S229A) had no effect on 

transcytosis. FIP2(R413G) had a slight, but significant decrease on apical recycling. The 

other three FIP2 mutants did not elicit any apparent effects on the apical recycling of 

pIgA (Figure 23).  

 To gain further insights into the inhibition of transcytosis, we visualized IgA 

trafficking by incubating cells with Alexa568-labeled fluorescent polymeric IgA (Figure 

24). When cells were allowed to internalize the fluorescent-IgA from the basolateral 

medium and then chased for up to 60 minutes, we observed accumulation of IgA 

containing vesicles in apposition with the EGFP-labeled tubular cisternae in cells 

expressing either Rab11-FIP2(ΔC2) or Rab11-FIP2(SARG). While in cells expressing 

Rab11-FIP2(ΔC2), pIgA was present in small vesicles in Rab11-FIP2(SARG) expressing 

cells, pIgA was present in more tubular structures. These results suggested an alteration 

of trafficking into or out of the recycling system. 
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Figure 23: FIP2 mutants (R413G) and (SARG) cause a delay in pIgA transcytosis. 
 Graphs showing two representative trials in triplicate of transcytosis of [125I]IgA assessed in 
stable transfected cell lines in the presence or absence of doxycycline. Transcytosis was delayed 
in cells overexpressing FIP2(R413G) (right, second graph) or (SARG) (right, third graph) but not 
in cells overexpressing FIP2(S229A) (right, top graph). FIP2(R413G) had a small, but significant 
effect on apical recycling (left, second graph). The other three lines showed no effects of FIP2 
expression on apical recycling. Close symbols indicated the presence of doxycycline in the media 
(inhibiting expression of the EGFP-chimera). Open symbols indicate that the cells were 
incubated in doxycycline-free media allowing for expression of EGFP-chimera proteins. Squares 
indicate media was collected from the apical side of the transwell. Circles indicate media was 
collected from the basal side of the transwell. Data was mean +/- SD (n=2, performed in 
triplicate). Error bars are included for each data point showing +/- one standard deviation. 
Statistical significance was assessed with two-way ANOVA tests between each cell line with and 
without doxycycline at each time point as described in materials and methods. * indicates 
p<0.05; ** indicates p<0.01; *** indicates p<0.001 
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 Figure 23: FIP2 mutants (R413G) and (SARG) cause a delay in pIgA transcytosis 
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Figure 24: FIP2 mutants (ΔC2) and (SARG) cause an aggregation of pIgA 
containing vesicles. 
Alexa568-pIgA was loaded into stably transfected cell lines expressing FIP2(SARG) or 
FIP2(ΔC2). The presence of both mutants delayed transcytosis as evidenced by the localization 
with pIgA containing vesicles around the tubular cisternae after a 30 minute chase. Images were 
taken with a 100X objective lens with a 3X zoom. Scale bars are 5 μm. 

Differentiable effects of FIP2(SARG) from previously characterized dominant 
negative mutants. 

We and others have used the dominant negative construct FIP2(ΔC2) to 

investigate regulators of cargoes within the apical recycling pathway. The FIP2(SARG) 

mutant has effects on the recycling system that are distinctly separate from the 

FIP2(ΔC2) mutant. Figure 25 demonstrates that FIP2(ΔC2) alters the morphology of the 

early endosomal system marked by the Rab5 interacting protein, EEA1. EEA1 does not 

colocalize with FIP2(ΔC2), but the EEA1 containing early endosomes appear more 
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centrally clustered around the EGFP-labeled tubular cisternae. However, this alteration 

was not seen in FIP2(SARG) cells, thus providing additional evidence that this mutant is 

not simply causing a collapse of the entire endosomal pathway.  

We also compared the effects of Rab11-FIP2 trafficking mutants on apical 

membrane trafficking. GP135 is a traditional marker for the apical membrane in MDCK 

cells (25). FIP2(SARG) expressing cells demonstrated a partial accumulation of GP135 

within the tubular cisternae. No accumulation of GP135 was seen in FIP2(ΔC2) 

expressing cells (Figure 26). These results indicate that Rab11-FIP2(SARG), but not 

Rab11-FIP2(ΔC2), can alter either recycling or de novo trafficking of GP135. 

 

Figure 25: FIP2(ΔC2) causes an aggregation of EEA1 that does not occur in 
FIP2(SARG). 
T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were stained with antibodies to EEA1 
for immunofluorescence analysis and imaged by confocal microscopy in the X-Y plane.. The 
EEA1 positive early endosomes (pseudo colored red) showed a collapse towards the FIP2 
containing cisternae in cells over-expressing FIP2(ΔC2) but not in cells expressing FIP2(SARG). 
Scale bars are 10 μm 
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Figure 26: GP135 Accumulates with FIP2(SARG) but not the previously 
characterized dominant negative FIP2 mutant, ΔC2. 
T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were stained with antibodies GP135 for 
immunofluorescence analysis and imaged by confocal microscopy in the X-Y plane. Endogenous 
GP135 (pseudo colored red) was partially accumulated into the sub-apical extension of the 
FIP2(SARG) containing structure, but not into the FIP2(ΔC2) collapsed structures. 644-
phalloidin was included in the merge image to highlight relative localization within the cell. 
Scale bars are 5 μm. Images were taken with a 100X lens with a 3X zoom. 

FIP2(SARG) is uncoupled from the microtubule and actin cytoskeletal networks 

To understand more fully the mechanism behind the reduced efficiency of 

transcytosis, we assessed the effects of manipulation of the cytoskeleton on the 

FIP2(SARG) tubular cisternae and on the FIP2(ΔC2) collapsed recycling system. 

Previous studies had shown that stabilization of microtubules with taxol causes relocation 

of the Rab11a-containg recycling endosomes to one subapical corner of polarized MDCK 

cells (2). However, taxol did not alter localization of either FIP2(SARG) or FIP2(ΔC2) 

(data not shown). Furthermore, disruption of microtubules with nocodazole treatment did 
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not affect the localization of either FIP2(SARG) or FIP2(ΔC2) (Figure 27). In contrast, 

the localization of FIP2 wild type in cells was affected by both treatments as we have 

previously reported (data not shown) (4). 

 

 

Figure 27: FIP2(SARG) and FIP2(ΔC2) are uncoupled from the microtubule 
network. 

T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were treated with nocodazole and 
stained with antibodies to Rab11a for immunofluorescence analysis imaged by confocal 
microscopy in the X-Y plane. Disruption of the microtubule network with nocodazole did not alter 
localization of the FIP2 mutants. Endogenous Rab11a (pseudo-colored red) is also maintained in 
the EGFP-FIP2 structures. Images were taken with a 100X lens with a 3X zoom. Scale bars are 5 
μm. 

Because Rab11-FIP2 associates in a ternary complex with the actin motor myosin 

Vb and Rab11a, we examined the potential dependence of FIP2(SARG) localization on 

the actin microfilament network. Neither treatment with cytochalasin D (Figure 28) nor 

treatment with latrunculin B (data not shown) altered localization of the FIP2(SARG) 
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tubular cisternae. This independence from the actin cytoskeleton was also apparent in the 

FIP2(ΔC2)-expressing cell line (Figure 28). To confirm that the actin cytoskeleton was 

affected, we stained with phalloidin and saw the expected disruption of the network (data 

not shown). We also analyzed the localization of Rab11-FIP1 and Rab11-FIP5. Both 

Rab11-FIP2 mutants maintained their localization with these other Rab11-FIPs despite 

manipulation of the cytoskeletal networks (data not shown). Thus, expression of either 

FIP2(SARG) or FIP2(ΔC2) uncoupled the complex from both the actin and microtubule 

networks.  

 

 
Figure 28: FIP2(SARG) and FIP2(ΔC2) are uncoupled from the actin network. 

T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were treated with cytochalasin for two 
hours and stained with antibodies to Rab11a for immunofluorescence analysis and imaged by 
confocal microscopy in the X-Y plane. Disruption of the actin cytoskeleton with cytochalasin did 
not alter localization of the FIP2 mutants or their association with Rab11a (pseudo-colored red). 
Images were taken with a 100X lens with a 3X zoom. Scale bars are 5 μm. 
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FIP2(SARG) does not alter interactions with EHD proteins 

Galperin et al have suggested that Eps15 homology domain 3 protein (EHD3) 

containing vesicles may regulate vesicular microtubule-dependent movement (26). Since 

previous studies have reported that Rab11-FIP2 interacts with the Eps15 homology 

domain containing proteins EHD1 and EHD3 (27) and we observed an uncoupling of 

FIP2(SARG) from the microtubules, we examined the effect of the FIP2(SARG) mutant 

on these interactions. We found that FIP2(SARG) is able to associate with endogenous 

EHD1 by immunoprecipitation (data not shown). We visualized associations with EHD 

proteins through transfection into FIP2(SARG) and FIP2(ΔC2) expressing cells (Figure 

29). EHD1 showed extensive colocalization with the cisternal accumulations in both 

Rab11-FIP2 mutant cell lines (data not shown). In addition, a portion of the 

overexpressed EHD3 population accumulated in the FIP2(SARG) and FIP2(ΔC2) tubular 

structures (Figure 29). 
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Figure 29: Dominant negative FIP2 mutants do not alter association with EHD3. 
Cell stably expressing EGFP-tagged mutants were co-transfected with myc-EHD3 (pseudo-
colored red). A portion of the EHD3 population localizes with the collapsed EGFP-mutant 
structures. Images were taken with a 100X lens. Scale bars are 10 μm 

Discussion 

Mutations of key proteins within trafficking pathways have led to important 

insights into the processes of intracellular trafficking in systems ranging from yeast to 

mammalian cells (2, 28, 29). We have serendipitously isolated a novel FIP2 mutant, 

FIP2(SARG), which acts as a dominant negative inhibitor of trafficking through the 

recycling system. Previous reports have noted dominant negative trafficking inhibitors 

including the truncation of myosin Vb and various carboxyl terminal Rab11-FIP 

truncations for expression of the Rab11-binding domain helix. All of these truncations of 

Rab11-interacting proteins have elicited phenotypes with varying levels collapse of the 
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recycling system into perinuclear tubular cisternae. Nevertheless, the morphologies 

induced by these trafficking inhibitors, especially in polarized MDCK cells are 

phenotypically distinct, suggesting differentiable effects on the process of plasma 

membrane recycling. Thus, the FIP2(SARG) and FIP2(R413G) mutants cause the 

formation of an eccentrically located and pleomorphic tubular structure. In contrast with 

previous truncated versions of FIP2, which might have also had effects on general 

Rab11-FIP function due to the over-expression of Rab11-binding domains, the point 

mutants of FIP2 are likely specific for FIP2 function. Over-expression of wild type FIP2 

does not cause a collapsed or inhibited recycling system phenotype. Thus, the differential 

effects of the R413G mutation in FIP2 demonstrate the importance of this protein in 

regulating transcytotic trafficking in polarized MDCK cells.  

The inhibitory effects on FIP2 action appear to accrue from the Rab11-

FIP2(R413G) mutation. We have utilized the cell lines expressing the dual 

S229A/Rab11-FIP2(R413G) mutant for a number of our studies on apical recycling 

system morphology, since the cell lines expressing the single mutation demonstrated 

significant cell shape alterations over time. Both of these point mutants have a 

pronounced inhibitory effect on trafficking of pIgA in transcytosis assays, a critical 

Rab11a-directed pathway (4). While the FIP2(SARG) double mutant exhibited a 

somewhat lower level of inhibition compared to the single R413G mutant, all of the 

effects on the morphology of the recycling system were similar. This collapsed cisternal 

structure displayed differentiable characteristics compared with the previously 

characterized FIP2(ΔC2) mutant cell lines. While the FIP2(SARG) localization was a 

tighter, more junctionally-located tubular structure, the FIP2(ΔC2) localized in a donut 
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shape near the middle of the subapical region. Electron microscopy confirmed that these 

structures were tubular tangles and not multi-vesicular bodies. The altered shapes of these 

two inhibited recycling systems suggest that the mutants result in different levels of 

membrane retention within the recycling endosomes.  

FIP2(SARG) has effects on the plasma membrane recycling system that are 

separable from those of FIP2(ΔC2) (10) or myosin Vb tail (2), two previously 

characterized dominant negative Rab11a trafficking mutants. In direct comparison with 

FIP2(ΔC2), we noticed that the stages of the pathway affected appeared morphologically 

distinct. The ring shape of FIP2(ΔC2) is different from the tight cisternal tubules seen 

with FIP2(SARG). The stage of the pathway affected by these mutants was also 

distinguishable by the localization of the EEA1 positive early endosomes. Cells 

expressing FIP2(ΔC2) showed a redistribution of EEA1 positive early endosomes that 

was not apparent in FIP2(SARG) expressing cells, suggesting that these two mutants 

affect different aspects of the FIP2 pathway. The FIP2(ΔC2) mutant appears to alter a 

broader range of steps in the Rab11a pathway, while the FIP2(SARG) mutant may impact 

later events in the pathway. Nevertheless, it is important to note that both overexpressed 

FIP2(ΔC2) and FIP2 mutants carrying the R413G mutation appear to inhibit transcytosis 

by inhibiting passage of trafficking vesicles through the recycling system. Thus, IgAR 

containing vesicles accumulate in apposition with the tubular system containing Rab11a. 

This failure of membranes to move into and through the recycling system may reflect the 

general uncoupling of recycling system membranes from the cytoskeleton. Thus, 

treatment with either nocodazole or cytochalasin had no effect on the morphology of 

FIP2(SARG) or FIP2(ΔC2)-containing tubular cisternae. The inhibition of trafficking 
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therefore accrues either through blockade of trafficking into Rab11a-containing 

membranes or a sequestration of Rab11a and Rab11a-dependent effectors with the FIP2 

mutants. 

Analysis of the data presented here suggests that FIP2 is involved in multiple 

stages in passage through the Rab11a associated recycling system. The alteration of the 

early endosomes with the FIP2(ΔC2) mutant suggests that FIP2 may be involved in an 

early hand off stage. In contrast, the accumulation of GP135 with FIP2(SARG) but not 

with FIP2(ΔC2) suggests that some recycling cargoes may enter the recycling system at 

different points within the tubular recycling system. Multiple points of entry into the 

Rab11a/ FIP2 recycling system may be exploited depending upon the origin of the 

protein and possibly, its destination. This model supports a dynamic vision of the 

recycling system trafficking. The R413G mutant of FIP2 had a small but significant 

effect on apical recycling. While we have previously reported that cells over-expressing 

FIP2(ΔC2) showed a small decrease in apical recycling, in the present studies, using 

more quantitative methods here, we were unable to demonstrate a significant effect on 

apical recycling across the entire time of trafficking. However, it is important to note that 

the presence of IgAR in the apical recycling pathway in MDCK is an ectopic scenario 

and may not be analogous to all apical recycling pathways for endogenous cargoes. The 

FIP2(ΔC2) mutant can inhibit apical recycling of aquaporin-2 in collecting duct cells 

(30). Therefore, processing through apical recycling systems is likely cell and cargo 

dependent. 

The precise mechanism responsible for inhibition of transcytosis by FIP2(R413G) 

mutants remains unclear. The FIP2(R413G) and FIP2(SARG) mutants retain their ability 
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to bind Rab11a and myosin Vb, as assessed by yeast two hybrid analysis. EHD1 and 

EHD3 both previously regulate plasma membrane recycling and can interact with FIP2 

(26, 27, 31). However, FIP2 mutants can still alter the distribution of EHD1 and EHD3. 

We have found that both FIP2(ΔC2) and FIP2(SARG) are uncoupled from both the actin 

and microtubule cytoskeletal networks. Thus, disruption of microtubules or actin 

filaments did not alter the morphology of the collapsed recycling system. Given these 

findings it is tempting to speculate that FIP2(R413G) causes stabilization of protein 

complexes regulating apical recycling system trafficking. Similar inhibition of plasma 

membrane through stabilization of complexes was recently suggested for overexpression 

of a combination of cytLEK1 and SNAP25 (15). A number of studies including this work 

have suggested that trafficking through the recycling system may be regulated by 

multiple handoffs between regulatory complexes defining discrete subdomains within the 

plasma membrane recycling system (5). Thus stabilization of regulatory complexes may 

be a potent mechanism for inhibition of trafficking through the complex tubular recycling 

system.  
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Abstract 

The Rab11 Family Interacting Proteins (Rab11-FIPs) are hypothesized to mediate 

sequential interactions in the apical recycling and transcytotic pathways of polarized 

epithelial cells. Previous studies have suggested that Rab11-FIP proteins assemble into 

multi-protein complexes regulating plasma membrane recycling. We have utilized an 

approach combining immunoprecipitation of overexpressed EGFP-Rab11-FIP2 and 

EGFP-Rab11-FIP2 mutant proteins from stable MDCK cell lines followed by mass 

spectrometric analysis of isolated proteins to identify proteins complexed with Rab11-

FIP2. We analyzed protein complexes from cells expressing Rab11-FIP2 wild type as 

well as three mutant Rab11-FIP2 constructs, one of which causes a delay in the 

establishment of polarity while the other two serve as distinguishable dominant negative 

mutants in the transcytotic pathway. We identified over 400 potential components of 

Rab11-FIP2 complexes and have validated a subset of them here. We focused on the 

validation of proteins with clear putative relevance to trafficking: Rab5b, Rab10, epsinR, 

dynein, IQGAP1, clathrin heavy chain, and AP-1. This proteomic approach to analysis of 

proteins complexed with Rab11-FIP2 has led to new insights into the regulation of 

membrane recycling by multiprotein effector complexes. 
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Introduction 

Cells have evolved complex processes to maintain a functional dynamic 

equilibrium. One of the fundamental tasks of a cell is to interact with its environment. 

The cell must receive information such as nutrient status in order to ascertain whether to 

grow, divide, or maintain the status quo. Thus, they must accurately assess life-sustaining 

requirements such as insulin and oxygen availability exemplified by the activation of the 

GLUT4 receptor in response to insulin and the recycling of the transferrin receptor for 

oxygen transport. To respond accurately and relay these signals, the cell has evolved an 

intricate system for the regulation of receptor expression and activity at the plasma 

membrane. This pathway begins with the recognition of the stimulus, which initiates an 

appropriate downstream response. The movement of cellular proteins via vesicle 

structures between donor and target membranes along the cytoskeleton facilitates many 

of these interactions, thus allowing coordination and regulation in distinct domains of the 

cell.  

Over the past 10 years, a number of studies have led to the recognition that Rab11 

family members regulate the plasma membrane recycling system. Rab11a is apically 

oriented and localized in discrete epithelial cell populations (1). The polarized cell 

utilizes an elaborate endosomal structure involving progression through an early sorting 

endosome, recycling endosome, and apical recycling endosome (ARE) (2). Rab11a 

containing tubular membranes localize to the ARE near the centrosome beneath the 

apical membrane. The integrity and function of the ARE is dependent upon intact 
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microtubules; and destabilization of the microtubule cytoskeleton causes Rab11 positive 

vesicles to disperse, while stabilization causes aggregation of vesicles near tight junctions 

(3).  

Rab11 family members interact with a group of interacting proteins (Rab11-FIPs) 

discovered in the past five years: FIP1, FIP2, FIP3 (4), FIP4 (5), FIP5/pp75/Rip11 (6) 

and FIP1C/RCP (7). They each interact with Rab11 at their carboxyl-termini through 

predicted coiled-coil regions containing an amphipathic alpha helical Rab11 Binding 

Domain (RBD) (4, 8). Rab11a also interacts with the tail region of myosin Vb, which is 

essential for exit from the plasma membrane apical recycling system (9). The members of 

the Myosin V Family are unconventional myosins, which function in subcellular 

localization of organelles and intracellular transport (10). Thus, myosin Vb plays an 

essential role in Rab11a vesicle trafficking. Rab11-FIP2 also interacts with myosin Vb 

(11), suggesting the formation of a ternary complex between Rab11a, FIP2, and myosin 

Vb is a critical regulatory complex in plasma membrane recycling. In addition, FIP2 

suppresses EGFR uptake and binds alpha-adaptin which associates with clathrin coated 

pits (12), implying a critical role for FIP2 in early endosomal processing.  

We have recently reported the characterization of two dominant negative FIP2 

mutants, FIP2(ΔC2) and FIP2(SARG) (13). These two mutants allowed us to identify 

separable aspects of the roles of FIP2 in polarized MDCK cells. FIP2(ΔC2) caused a 

aggregation of the EEA1 positive early endosomal system, while FIP2(SARG) altered a 

later step in the recycling system pathway. In addition, we have recently identified a role 

for FIP2 in the establishment of polarity via phosphorylation by MARK2 on serine 227 

(14). These three roles for FIP2 suggested that additional functions for FIP2 have yet to 
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be elucidated. Therefore, we undertook an approach utilizing mass spectrometry to 

clarify the role of FIP2 in polarized epithelial cells. The FIP2(ΔC2) mutant has revealed 

the necessity of the C2 domain for numerous functional interactions. The FIP2(SARG) 

mutant interacts with proteins involved in late stages of recycling endosomes, but notably 

does not interact with many coat proteins. Finally, the wild type FIP2 protein revealed 

novel interactions with a number protein regulators of membrane trafficking.  

Methods 

Materials: Rabbit anti-Rab11a (VU57) antibodies were developed against the amino 

terminus of human Rab11a and were specific for Rab11a versus Rab11b and Rab25 (15). 

The other commercial antibodies used were goat anti-dynein (Santa Cruz), anti-GFP 

mouse monoclonal (8362-1 BD), anti-GFP rabbit AB290 (AbCam), anti-clathrin heavy 

chain (BD Transduction Labs), and anti-AP-1 (Sigma). In addition, we received anti-

EpsinR from Margaret Robinson (MRC Laboratory of Molecular Biology) and anti-

IQGAP1 from David Sacks (Harvard University). 

Vectors: Human Rab5b and Rab10 sequences were amplified from full length human 

ESTs with Pfu Polymerase (Stratagene) using sense primers with in-frame EcoRI sites 

and anti-sense primers with SalI sites. The resulting fragments were cloned into pEGFP-

C2 (Clontech) and mRFP-C2 (Clontech). 

Cell Culture: Doxycycline-inhibitable expression vectors and stable inducible cell lines 

were generated as previously described (14). Parental T23 MDCKs (16) as well as the 

stably transfected cell lines described previously (13, 14) were grown in D-MEM 
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supplemented with 10% fetal bovine serum (Gibco), penicillin-streptomycin, 2mM L-

glutamine, and 0.1 mM MEM non-essential amino acids (Gibco/BRL). Media for cell 

lines also contained 0.5mg/ml G418 sulfate (Cellgro), and 0.25ng/ml hygromycin 

(Invitrogen). In the stable cell lines, expression of the EGFP chimeras was inhibited with 

doxycycline (20ng /ml) (Calbiochem). To examine EGFP protein expression, cells were 

grown on 0.4 µm Transwell filters (Costar) without doxycycline in tetracycline screened 

fetal bovine serum (HyClone) media for 2-4 days. 

Immunoprecipitation for isolation of protein complexes: Anti-rabbit IgG Dynabeads 

(Dynal) were loaded with either 5 μl of anti-GFP antibody AB290 serum (AbCam) or 

control rabbit serum for two hours at 4°C. Beads were washed 3 times with TBS. The 

antibody was cross-linked to the beads using the manufacturer’s protocol with slight 

modifications. Briefly, beads were washed two times with 200 mM Triethaolamine 

(Sigma) followed by a 30 minute room temperature incubation with 20mM DMP in 200 

mM Triethaolamine. The beads were washed with 50mM Tris ph 7.5 followed by a five-

minute wash with 20 mM ethanolamine. The beads were washed three times with PBS. 

Lysate was diluted in PBS with protease inhibitors and phosphatase inhibitors and 

incubated with the beads overnight at 4°C. The beads were washed one time with PBS, 

one time with PBS supplemented with 0.1% CHAPS and then twice with PBS. The beads 

were eluted in 1% SDS buffer and proteins were run until the sample was fully contained 

in the 10% Bis-Tris Gels (NuPAGE, Invitrogen, Carlsbad, CA). Protein was visualized 

with colloidal Coommasie blue (GelCode Blue, Pierce) and the protein band was excised 

and prepared. The samples were analyzed by trypsin triple digestion and LC-MS-MS 

mass spectrometry. 
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Mass Spectrometry: LC-MS-MS analysis of the resulting peptides was performed using a 

ThermoFinnigan LTQ ion trap mass spectrometer equipped with a Thermo MicroAS 

autosampler and Thermo Surveyor HPLC pump, Nanospray source, and Xcalibur 1.4 

instrument control. The peptides were separated on a packed capillary tip, 100 μm x 11 

cm, with C18 resin (Jupiter C18, 5 micron, 300 angstrom, Phenomonex, Torrance, CA) 

using an inline solid phase extraction column that was 100μm x 6cm packed with the 

same C18 resin (using a frit generated with from liquid silicate Kasil 1 (17)) similar to 

that previously described (18), except the flow from the HPLC pump was split prior to 

the injection valve. The flow rate during the solid phase extraction phase of the gradient 

was 1 μL/min and during the separation phase was 700 nL/min. Mobile phase A was 

0.1% formic acid, mobile phase B was acetonitrile with 0.1% formic acid. A 95 min 

gradient was performed with a 15 min washing period (100 % A for the first 10 min 

followed by a gradient to 98% A at 15 min) to allow for solid phase extraction and 

removal of any residual salts. After the initial washing period, a 60 minute gradient was 

performed where the first 35 min was a slow, linear gradient from 98% A to 75 % A, 

followed by a faster gradient to 10 % A at 65 min and an isocratic phase at 10 % A to 75 

min. MS/MS scans were acquired using an isolation width of 2 m/z, an activation time of 

30 ms, and activation Q of 0.250 and 30% normalized collision energy using 1 microscan 

and maximum injection of 100 for each scan. The mass spectrometer was tuned prior to 

analysis using the synthetic peptide TpepK (AVAGKAGAR). Typical tune parameters 

were as follows: spray voltage of between 1.8 KV, a capillary temperature of 150ºC, a 

capillary voltage of 50V and tube lens 100V. The MS/MS spectra of the peptides were 

acquired using data-dependent scanning in which one full MS spectra, using a full mass 
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range of 400-2000 amu, was followed by 3 MS/MS spectra. Proteins were identified 

using a cluster version of the SEQUEST algorithm(Thermo Electron, San Jose, CA; (19) 

on a high speed, multiprocessor Linux cluster in the Advanced Computing Center for 

Research at Vanderbilt University, using the canine database from ENSEMBL.  The 

SEQUEST results were then run through Peptide and Protein Prophet of the Trans 

Proteomic Pipeline (20, 21); http://tools.proteomecenter.org/TPP.php) for the statistical 

analysis of the peptide and protein matches. 

Immunofluorescence: Staining for endogenous protein localization was done as 

previously described for Rab11a (14). Staining for dynein, IQGAP1, AP-1, and clathrin 

heavy chain was done as described (22). Briefly, cells were fixed in 70% ethanol for 20 

minutes, permeabilized with 0.25% Triton X-100 for 10 minutes, and blocked in 2% BSA 

in PBS for at least one hour. Primary antibody was added in 1% BSA in a humid chamber 

overnight. Cells were washed with PBS and then incubated with secondary antibody in 

1% BSA for 1 hour. Cells were washed and mounted.  

Results 

Utilization of immunoprecipated complexes from cell lines to identify proteins 
interacting with Rab11-FIP2. 

We recently published results showing that FIP2 is phosphorylated by MARK2 

and that this phosphorylation revealed a new role for FIP2 in the establishment of polarity 

(14). The involvement in polarity was an unexpected finding given that the FIPs were 

initially identified and characterized as participating in the Rab11 plasma membrane 

recycling system (4). Therefore, we sought to identify additional roles for FIP2 in 
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epithelial cells. We chose to utilize a technique combining immunoprecipitation and mass 

spectrometry. We utilized our previously characterized cells lines stably overexpressing 

FIP2 and FIP2 mutants (14). We gently lysed the cells in a buffer containing CHAPS to 

maintain any complexes associated with FIP2. The soluble lysate was incubated with 

Dynabeads crosslinked with anti-GFP antibodies to minimize contamination from the 

antibody in our analysis. The immunoprecipitated complexes were eluted in 1% SDS 

buffer with DTT and subsequently run approximately 1 cm into a 10% Bis-Tris NU-

PAGE gel to stack proteins together. We cut the GelCode Blue stained band of proteins 

from the gel and digested it with trypsin for mass spectrometric identifications of 

peptides. This method allowed a clean separation from the sample buffer and a 

concentration of the sample. We also found that an in-gel digest recovered substantially 

more peptides than a digest in-solution. A similar protocol was used for parental T23 

cells not expressing an EGFP construct to serve as a negative control for proteins that 

interacted non-specifically with the Dynabeads.  

The peptides were analyzed by shot-gun 1-dimensional reverse phase LC 

followed by tandem mass spectrometry on a linear ion trap LTQ instrument. Three 

replicate analysis of each cell line was performed. Peptide sequences were compared with 

the canine database available from Ensembl 

(http://www.ensembl.org/Canis_familiaris/index.html) to match the peptides to protein 

sequences. We then compared the proteins found in each of the conditions with each 

other and with the negative control to ascertain proteins found in a complex with FIP2. 

We considered hits to be a potential interacting partner if the protein was found in at least 

two out of three FIP2 runs with a Protein Prophet probability greater than 0.8, but not in 
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at least two out of three runs using T23 parental cells with the same probability. This 

approach has revealed a number of novel potential interactions not previously anticipated 

(Table 3).   

We chose to use this approach with four EGFP-Rab11-FIP2 over-expressing cell 

lines: FIP2 wild type, which identified 1079 peptides that met our criteria; FIP2(S227A), 

which identified 1897 peptides that met our criteria; FIP2(SARG), which identified 610 

peptides that met our criteria; and FIP2(ΔC2), which identified 446 peptides that met our 

criteria. We hoped that a comparison of wild type cells with the MARK2 phosphorylation 

mutant, FIP2(S227A), would lend further clarity to the role of this phosphorylation event. 

We utilized two dominant negative trafficking mutants of FIP2, FIP2(ΔC2) and 

FIP2(SARG) (13), to dissect further individual components in the FIP2 pathway. While 

each of the conditions pulled-down FIP2, one of the wild type runs pulled down one 

peptide unique to canine FIP2, indicating that overexpressed human FIP2 can dimerize 

with canine FIP2. Overall, we identified 473 potential proteins that may form complexes 

with FIP2. 
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Table 3: Proteins in Complex with EGFP-Rab11-FIP2 and its mutants 
A subset of proteins found by proteomics to be associated with the overexpressed EGFP-FIP2 
cell lines. WT indicates wild type FIP2. 27A refers to FIP2(S227A). SARG refers to FIP2(SARG). 
C2 refers to FIP2(ΔC2). Xs indicate the protein was found associated with FIP2 by proteomics in 
that cell line. 

Name WT 27A SARG C2 
Adapter-related protein complex 1 beta 1 subunit (Beta-adaptin 1) x x     
adaptor-related protein complex AP3 beta 1 subunit   x     
adipose differentiation-related protein x       
A-kinase anchor protein 13 isoform 2 x       
alpha-cop protein x x     
Ankyrin 3 (ANK-3) (Ankyrin G)   x     
Annexin A2    x x   
annexin VII isoform 2     x   
arsenate resistance protein 2   x     
beta prime cop    x     
beta-COP (coatomer protein complex, subunit beta)   x     
Clathrin heavy chain 1 (CLH-17) x x x x 
coatomer protein complex, subunit gamma 1 x x     
Coatomer zeta-1 subunit (Zeta-1 coat protein) (Zeta-1 COP)     x   
Dynein heavy chain, cytosolic x x   x 
Endoplasmin  (94 kDa glucose-regulated protein) (GRP94) x x x   
epsilon globin x       
epsilon isoform of 14-3-3 protein     x   
Epsin 4 x x     
General vesicular transport factor p115 (Transcytosis associated protein) 
(TAP) (Vesicle docking protein) x       
glyceraldehyde-3-phosphate dehydrogenase   x     
Host cell factor (HCF) (HCF-1)   x     
interleukin enhancer binding factor 2   x     
Interleukin enhancer-binding factor 3   x     
Keratin, type I cytoskeletal 12       x 
KIAA0586   x x   
Myosin-9 x x     
Na+/K+ ATPase 1 x x     
NDRG1 protein (N-myc downstream regulated gene 1 protein) 
(Differentiation-related gene 1 protein) (DRG1) x       
proliferation associated gene (pag)   x x   
Rab-10   x x   
RAB11 family interacting protein 2 x x x x 
Rab-5B   x x   
Rab-7   x x   
Ras GTPase-activating-like protein IQGAP1 (p195) x x     
Ras-GTPase-activating protein binding protein 2   x     
SAR1a gene homolog 2     x   
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Name WT 27A SARG C2 
Sec23a protein   x     
SFLQ611 x x x   
Spectrin beta chain, brain 1 (Spectrin, non-erythroid beta chain 1) (Beta-
II spectrin) (Fodrin beta chain)       x 
steroid dehydrogenase homolog   x     
SYNCRIP   x x   
taste receptor, type 1, member 2     x   
Thioredoxin domain containing protein 1   x     
Thyroid receptor interacting protein 11 x       
TIP120 protein x x     
Tubulin x x     
Tubulin alpha-4 chain x x     
tubulin, alpha 1 x x     
tubulin, beta 2 x x     
Ubiquitin   x x x 
UBIQUITIN ASSOCIATED 2 x x x   
ubiquitin associated protein 2 isoform 2 x x     
Valosin     x x 
vesicle amine transport protein 1 x x     
Vimentin x x x x 
Xpo1 x x     
YTH domain family protein 3 x   x   
ZO-1   x     

 

 

Novel interactions of FIP2 with proteins involved in general trafficking pathways 

Trafficking components were the most obvious pathway associated with a FIP2 complex, 

since Rab11-FIP proteins initially were identified as a component of the Rab11a 

trafficking pathway. Therefore, we expected to identify additional proteins related to 

trafficking in our approach. Interestingly, while we did identify Rab11a in three runs, it 

did not reach criteria for inclusion in our proteomic list. In confirmation of our 

hypothesis, we found that FIP2 was able to complex with a number of proteins involved 

in trafficking pathways including dynein, Rab10, Rab5b, EpsinR/Epsin4 and Ras 

GTPase-activating-like protein IQGAP1 (Table 3). Unfortunately, antibodies to these 

proteins are not easily available or have limited applications towards western blotting, 



 

116 

especially in canine cells. Consequently, we have chosen to utilize a strategy of 

identifying evidence for association of these proteins with the recycling system by using 

two FIP2 mutants that inhibit recycling system function. The first mutant, FIP2(SARG) 

has two point mutations at serine 229 and arginine 413. It causes a generalized inhibition 

of the Rab11a positive recycling pathway. The other mutant lacks the carboxy-terminal 

C2 domain, FIP2(ΔC2), and causes a block at an early stage of the pathway resulting in 

an accumulation of the early endosomal protein EEA1 near FIP2(ΔC2) containing 

membranes. 

The presence of dynein in a recycling system complex was not surprising because 

of the general importance of microtubules to the function of endocytic pathways. Dynein 

heavy chain is an extraordinarily large protein of more than 500 kDa and is not amenable 

to detection by western blot. Therefore, to confirm the association of dynein with the 

recycling system, we studied the localization of dynein in MDCK cells expressing the 

dominant negative FIP2(SARG) and FIP2(ΔC2) FIP2 trafficking mutants (Figure 30). 

Figure 30 demonstrates that both trafficking mutants cause accumulation of dynein in the 

collapsed tubular cisternae. In addition, the association was independent of Rab11a since 

a FIP2 chimera lacking the Rab11 Binding Domain (FIP2(Rab-)) also colocalized with 

dynein. The large size of the dynein heavy chain makes examination of direct association 

difficult in more conventional immunoprecipitation/immunoblot methodologies, thus 

demonstrating the utility of this approach in confirming protein association with the 

recycling system. 

We also identified an unexpected Rab protein, Rab10, as a potential component of 

the FIP2 complex. Rab10 was implicated recently in the basolateral early endosome to 
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common endosome sorting and transcytotic pathways (23). In the proteomic studies, 

Rab10 was immunoprecipitated from FIP2(S227A) and FIP2(SARG) over-expressing 

cell lines. To validate this association, we examined the distribution of over-expressed 

mRFP-Rab10 in the FIP2(ΔC2) and FIP2(SARG) expressing cell lines. The mRFP-

Rab10 accumulated with the FIP2(ΔC2) ring and FIP2(SARG) tubular cisternae (data not 

shown). In addition, when the FIP2(Rab-) mutant was overexpressed, Rab10 colocalized 

with the mutant at the plasma membrane of the cells (Error! Not a valid link.31), indicating 

that Rab10 associates in a complex with FIP2 that does not involve the Rab11 binding 

domain (data not shown). In support of this finding, we have utilized yeast two hybrid 

assays which did not show a direct interaction between Rab10 and FIP2, confirming that 

the Rab11 binding domain is not a general Rab protein binding domain (data not shown).  
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Figure 30: FIP2 mutants alter the localization of the microtubule motor protein 
dynein heavy chain 

MDCK-T23 cells stably expressing each of the mutants (FIP2(SARG), (ΔC2) and Rab-) were 
imaged by confocal microscopy. All three mutants localized with endogenous dynein. Images 
were taken with a 100x lens. Scale bars represent 5 μm. 
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Figure 31: FIP2 interacts in a complex with Rab10 

T23 cells stably expressing FIP2 wild type, FIP2(SARG) and FIP2(ΔC2) were transiently 
transfected with mRFP-Rab10 and imaged by confocal microscopy in the X-Y plane. The mRFP-
Rab10 showed a collapse towards the FIP2 containing cisternae in cells over-expressing 
FIP2(ΔC2) and FIP2(SARG) compared to endogenous localization which is similar to that seen 
with FIP2 wild type. Images were taken with a 100x lens with a 3X zoom. Scale bars represent 5 
μm. 
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FIP2(ΔC2) alters localization of additional early endosome proteins 

The mass spectrometric analysis revealed that FIP2 was complexed with two 

early endosomal proteins, EpsinR/Epsin 4 (EpsinR) and Rab5b. These results support our 

assertion that FIP2 mutants allow dissection of different parts of the FIP2 pathway (13). 

EpsinR is an adaptor protein used in retrograde trafficking (24). To evaluate these 

findings, we examined the distribution of EpsinR with FIP2. While FIP2(SARG) did not 

pull EpsinR into collapsed cisternae (Figure 32), an altered localization of endogenous 

EpsinR was apparent in the FIP2(ΔC2) stable cell line (Figure 32). EpsinR containing 

vesicles were clustered around the FIP2(ΔC2)-containing membranes. 

 
Figure 32: Differentiable interactions of FIP2 mutants in a complex with EpsinR 

T23 cells stably expressing FIP2 (SARG) and FIP2(ΔC2) were imaged by confocal microscopy in 
the X-Y plane. Cells were stained for EpsinR (in cy5, but pseudo colored red for ease in 
visualization). While the FIP2(SARG) mutant had no impact on EpsinR localization, FIP2(ΔC2) 
caused a partial collapse of the structure. All images are cropped from 100X. Scale bars are 10 
μm. 
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We also examined the association of FIP2 with Rab5b. Co-transfection of mRFP-

Rab5b into parental T23 cells or FIP2 overexpressing cell lines revealed a diffuse 

distribution of Rab5b consistent with localization on early endosomal structures. In cells 

expressing FIP2(ΔC2), Rab5b containing vesicles were more concentrated towards the 

nucleus but did not directly colocalize with FIP2. FIP2(SARG) expression did not alter 

the distribution of Rab5b containing membranes (Figure 33). Because the interaction with 

FIP2(ΔC2) was positive, we analyzed the localization of a more traditional early 

endosome protein, mRFP-Rab5a, in parental T23 cells and the FIP2(ΔC2) cell line. In 

marked contract to Rab5b (Figure 33), EpsinR (Figure 32) and EEA1 (13), Rab5a 

distribution is not altered by FIP2(ΔC2) expression (Figure 34). 
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Figure 33: Differentiable interactions of FIP2 mutants in a complex with mRFP-
Rab5b 

T23 cells stably expressing FIP2 wild type and each of the mutants (FIP2(SARG) and (ΔC2)) 
were transiently transfected with mRFP-Rab5b and imaged by confocal microscopy in the X-Y 
plane. The mRFP-Rab5b showed a collapse towards the FIP2 containing cisternae in cells over-
expressing FIP2(ΔC2) but not in cells overexpressing FIP2(SARG) or FIP2 wild type. Images 
were taken with a 100x lens with a 3X zoom. Scale bars represent 5 μm. 
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Figure 34: FIP2 does not alter the localization of Rab5a. 

Parent T23 and T23 cells stably expressing FIP2(ΔC2) were transiently transfected with mRFP-
Rab5a and imaged by confocal microscopy in the X-Y plane. Parent T23 cells were co-stained 
with 488-phalloidin and showed normal localization of mRFP-Rab5a. The mRFP-Rab5a did not 
show a collapse towards the FIP2 containing cisternae in cells over-expressing FIP2(ΔC2). 
Images were taken with a 100x lens with a 3X zoom. Scale bars represent 5 μm. 

We also found that Ras GTPase-activating-like protein IQGAP1 (IQGAP1) was 

in complex with FIP2. In MDCK cells expressing the dominant negative FIP2(ΔC2) 

mutant, but not in cells expressing the wild type protein, IQGAP1 containing membrane 

vesicles were accumulated in the perinuclear region (Figure 35). IQGAP1 localization 

was altered in the FIP2(ΔC2) cells in a similar manner to other early endosome-

associated proteins.  
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Figure 35: FIP2 and its mutants are in complex with IQGAP1 

T23 cells stably expressing FIP2 wild type and FIP2(ΔC2) were stained for endogenous IQGAP1 
(pseudo-colored red) and imaged by confocal microscopy in the X-Y plane. IQGAP1 showed a 
partial collapse towards the FIP2 containing cisternae in cells over-expressing FIP2(ΔC2) 
compared to endogenous localization akin to that seen with FIP2 wild type. Images were taken 
with a 100x lens with a 3X zoom. Scale bars represent 5 μm. 

Interactions of FIP2 with coat proteins 

Coat proteins were the third general type of protein revealed by this analysis. We 

have looked at two of these proteins: clathrin heavy chain and adaptor-related protein 

complex 1 (AP-1). Clathrin heavy chain was found by proteomics in each of the four 

overexpressing cell lines. Because clathrin heavy chain is expressed throughout the cell, 

we utilized our dominant negative mutants to enhance the visualization of a potential 

interaction. Both the FIP2(SARG) and FIP2(ΔC2) mutants elicited a partial accumulation 

of clathrin heavy chain into their collapsed structures (Figure 36). 
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Figure 36: FIP2 mutants cause accumulation of clathrin heavy chain into the 
collapsed structures 

T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were stained for endogenous clathrin 
heavy chain (pseudo-colored red) and imaged by confocal microscopy in the X-Y plane. Clathrin 
heavy chain showed a partial collapse towards the FIP2 containing cisternae in cells over-
expressing both mutants. Images were taken with a 100x lens with a 3X zoom. Scale bars 
represent 5 μm. 

Finally, we found that AP-1 associated with EGFP-FIP2 wild type and 

FIP2(S227A) overexpressed chimeras in our proteomics results. We evaluated this 

potential complex by immunofluorescence and found that AP-1 accumulated with 

FIP2(SARG), but not with FIP2(ΔC2) (Figure 37). Therefore, AP-1 appears to be in 

complex with FIP2 during a specific subset of FIP2’s functions or else requires the amino 

terminal C2 domain for interaction.  
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Figure 37: FIP2(SARG) causes a collapse of AP-1 

T23 cells stably expressing FIP2(SARG) and FIP2(ΔC2) were stained for endogenous AP-1 
(pseudo-colored red) and imaged by confocal microscopy in the X-Y plane. AP-1 showed a 
partial collapse towards the FIP2(SARG) containing cisternae but not the FIP2(ΔC2) structure 
in cells over-expressing the mutants. Images were taken with a 100x lens with a 3X zoom. Scale 
bars represent 5 μm. 

Discussion 

Rab11-FIP2 is a multifunctional regulator of multiple trafficking pathways. 

Recent investigations have implicated FIP2 in the regulation of early endocytosis, plasma 

membrane recycling and the establishment of polarity in epithelial cells. This range of 

functions suggests that FIP2 participates in multiple regulatory protein complexes. 

Therefore, we sought to ascertain unrecognized interactions of FIP2 with other proteins 

involved in trafficking within polarized epithelial cells. We utilized the available LC-

MS/MS technology combined with immunoprecipitation to elucidate novel interacting 
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proteins with FIP2 regulated pathways. We analyzed proteins associating with EGFP-

chimeras of wild type FIP2 as well as three mutant versions of FIP2 to maximize the 

identification of novel interactions by enhancing visualization of the recycling system.  

These studies have led to the identification of a number of previously unrecognized 

interactions of Rab11-FIP2 with components of the endocytic trafficking pathways. 

Since our overall goal was to identify novel regulators of endocytic trafficking, 

we have validated eight of the potential interacting proteins using a combination of 

immunofluorescence staining for colocalization and fluorescent-chimeric protein 

overexpression studies. This approached focused on validation of the functional 

association of these proteins with the endocytic pathway. Because we utilized polarized 

MDCK cells in our studies, we often found that available reagents did not work well in 

canine cells. The use of trafficking mutants as a provocative test therefore avoids the 

need for specific immunoreagents against putative proteins. We have previously 

characterized two dominant negative mutants of FIP2, FIP2(ΔC2) and FIP2(SARG), 

which both inhibit transcytotic trafficking. Importantly, while both cause tubulation and 

collapse of the Rab11a-containing recycling system, only FIP2(ΔC2) also causes a 

aggregation of EEA-1-containg early endosome vesicles in proximity to the collapsed 

recycling system tubular cisternae (13). These two patterns allowed functional dissection 

of the possible roles of putative FIP interaction proteins along particular aspects of the 

endocytic recycling pathway. Two patterns emerged from our analysis. One pattern 

included proteins directly associated with the recycling endosome as exemplified by 

dynein and Rab10. Both FIP2 mutants affected the distribution of these proteins. The 

other pattern highlighted a presumed association of FIP2 with early endosome 
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compartments as demonstrated by Rab5b and EpsinR. These proteins were found in 

vesicles aggregated around the EGFP-FIP2(ΔC) containing cisternae. 

Our approach sampled the entire gamut of protein complexes containing FIP2 in 

the overexpressing cell lines. Consequently, we have most likely missed potential 

interactions because of the size of the proteome. The use of multiple mutants, which can 

elucidate different aspects of FIP2 pathways, helped to ameliorate this concern. 

Therefore, even though some interactions were not seen in the mass spectrometry data 

sets, protein distribution was often altered by additional mutants. One of the caveats 

associated with proteomic approaches is the presence of false positives. Thus, we have 

used our results as a starting point to explore new roles for FIP2 and its associated 

proteins in endocytic trafficking.  

We treated each potential interacting protein as if it were a general FIP2 binding 

partner, and used the mutant FIP2 constructs to validate these complexes. Some mutants 

appear to have generated false positives. For example, FIP2(SARG) pulled down Rab5b, 

but did not appear either to alter the localization of or colocalize with Rab5b. However, 

we did find that Rab5b was altered in one of the other mutant lines, FIP2(ΔC2), thus 

validating our approach of treating each proteomically identified protein as a entry point 

into studying potential interactions, as opposed to absolute indicators of in situ 

complexes. Our strategy initially implicated 473 proteins in complex with the EGFP-FIP2 

chimeras. A logical assumption when examining complexes containing overexpressed 

proteins is that many proteins associated with biosynthetic pathways, endoplasmic 

reticulum function or chaperones would be identified.  Indeed the assembled list does 

contain a number of endoplasmic reticulum components and chaperones and we chosen 
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to segregate these as non-specific interactors based on a general lack of data to support 

any role of FIP2 in endoplasmic reticulum function. Instead, we have chosen to focus our 

efforts on vesicle trafficking proteins that may be particularly relevant to the function of 

FIP2 in trafficking.  

Proteins complexed with FIP2 throughout the FIP2 pathway 

One set of proteins revealed in our approach associated with recycling endosome 

membranes containing Rab11a and the EGFP-FIP2 mutants. Two proteins analyzed here 

fit this pattern: dynein and Rab10. Both proteins associated with the two previously 

characterized dominant negative FIP2 mutants, indicating that they interact throughout 

the FIP2 positive recycling endosome pathway. FIP2 may escort protein complexes from 

the plasma membrane to endosomes through retrograde movement by recruiting dynein 

heavy chain for movement along microtubules. We have previously shown that FIP2 and 

Rab11a interact with the motor protein myosin Vb (9). Overexpression of the tail region 

of myosin Vb lacking the motor domain blocks Rab11 mediated trafficking events. 

However, we have noted that treatment of MDCK cells with the microtubule-stabilizing 

drug taxol caused relocation of Rab11a-contatining recycling vesicles to the apical 

corners of polarized cells. Polarized MDCK cells treated with the microtubule 

depolymerizing drug nocodazole showed dispersal of the apical recycling endosome as 

marked by Rab11a (3). These two pieces of data strongly implicate the importance of the 

microtubule cytoskeleton and microtubule motors in addition to the actin motor myosin 

Vb in regulation of endocytosis and plasma membrane recycling. Thus, the accumulation 

of dynein within the recycling system inhibited by FIP2 mutants suggests a critical role 
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for dynein in the movement of membrane vesicles within the plasma membrane recycling 

system.  

Rab10 was recently identified as a component of the basolateral early and 

common endosomes in MDCK cells (23, 25). We have also recently described the 

presence of Rab10 on immunoisolated recycling vesicles from gastric parietal cells (15). 

Through the utilization of our dominant negative FIP2 mutants, we have seen that FIP2 

has a more pronounced effect on transcytosis than on apical recycling (13). Thus, we 

have uncovered a potential interaction to account for this influence on transcytosis: a 

handoff between a Rab10 positive common/sorting endosome and a Rab11a positive 

apical recycling endosome may require fully functional Rab11-FIP2. 

Early endosomal proteins complexed with FIP2(ΔC2) 

The interaction of Rab11-FIP2 with dynein and Rab10 seems to indicate a general 

recycling system function for FIP2, because these proteins interacted with both dominant 

negative FIP2 mutants. In contrast, the localization of the early endosome proteins 

Rab5b, Epsin R and IQGAP1 was only altered by the FIP2(ΔC2) mutant. This specificity 

in association suggests that these proteins are acting with early components of the FIP2 

pathway, likely before entry into a Rab11a-containing recycling system. 

These studies have identified an association of FIP2 with a number of regulators 

of early endocytosis or the transition from early endosomes to recycling endosomes. 

Rab5b is a Rab5 family member that interacts with EEA1 and localizes presumedly to 

early endosome, but has a different GTPase activating protein than Rab5a (26). Each of 

the Rab5 family members are phosphorylated by different kinases suggesting that they 

may be regulated differentially and thus important for different aspects of early 
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endosome-mediated trafficking (27). A subset of these validated proteins allowed further 

confirmation of the results from our previous study, which showed that a dominant 

negative FIP2 mutant altered the localization of the early endosome marker, EEA1 (13). 

Because these interactions were positive, we analyzed the localization of a more 

traditional early endosome protein, Rab5a in these cell lines. In marked contrast to Rab5b 

and EEA1, Rab5a does not collapse near the FIP2(ΔC2)-containing structure. To our 

knowledge, this is the first study to find a functional difference between Rab5b and 

Rab5a. The association of FIP2 in a complex with Rab5b suggests the existence of an 

endosomal subdomain distinct from classically characterized Rab5a-containing early 

endosomes. 

IQGAP1 localizes to adherens junctions in MDCK cells and is a putative 

downstream target of the Rho family small G proteins, Cdc42 and Rac (28). It is believed 

to be a Ras GAP by protein homology; however, direct evidence demonstrating IQGAP1 

as a GAP effector for Cdc42 or Rac has not been reported. In fact, the presence of 

IQGAP1 seems to inhibit intrinsic GTPase activity in Cdc42 and Rac (reviewed in (29)). 

IQGAP1 interacts with a variety of proteins in signaling cascades and was recently found 

in association with an apical microvilli border in syncytiotrophoblast cells (30). This 

report suggested that it exists in complex with Rab7. Interestingly, trafficking and 

replication of the Moloney murine leukemia virus matrix protein utilizes IQGAP1 (31). 

We now demonstrate that IQGAP1 is in complex with FIP2. This new interaction may 

help to link the Rab11 pathway with the Cdc42/Rac pathway. 

The alteration of Rab5b, EpsinR, and IQGAP1 localization with the FIP2(ΔC2) 

mutant but not the FIP2(SARG) mutant highlights the possibility that our proteomic 
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approach may have uncovered a novel dynamic compartment between the early and 

recycling endosomes that is not the traditional Rab4 positive sorting endosome. This 

compartment may be involved in the handoff between these two compartments mediated 

by FIP2. Alternatively, we may also have uncovered a separate early endosome pathway 

that utilized in different circumstances (i.e. distinct receptors or cargoes or a specific 

mode of internalization) than the Rab5a positive compartment. 

Coat proteins in complex with FIP2 

Our analysis also revealed coat proteins in association with FIP2. While a 

previous study has noted the interaction of FIP2 with alpha-adaptin (12), no study to date 

has shown an association with clathrin heavy chain. Clathrin heavy chain has previously 

been found on early endosomes and was implicated in early to late endosome trafficking 

(32). The presence of clathrin in a FIP2 complex lends credence to the growing 

hypothesis that FIP2 is involved in more aspects of cellular function than Rab11 positive 

apical recycling. Our approach found that AP-1 localized in a complex with 

FIP2(SARG). However, this association is not apparent in the FIP2(ΔC2) overexpressing 

cells. One of the controversies in studies of FIP2 is the function of the C2 domain. The 

McCaffrey lab has reported that this domain interacts with phosphatidylinositol-(3,4,5)-

trisphosphate (33). However, we (data not shown) and others have not been able to 

duplicate this result using liposome association methods. The absence of AP-1 

association with complexes containing FIP2(ΔC2) may suggest a more specific role for 

the C2 domain. Nevertheless, the exact role of FIP2 interaction with complexes 

containing coat proteins remains to be determined. 
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In summary, we have utilized the mass spectrometry technology to identify new, 

interesting and often unanticipated components of complexes with FIP2. This approach 

has proven useful in identifying new interactions relating to endocytic trafficking as well 

as additional interactions that remain uncharacterized. These results will lead to a broader 

understanding of Rab11-FIP2 as a multi-functional regulator of polarized epithelial cell 

function.  
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CHAPTER V 

 

 CONCLUSION AND FUTURE DIRECTIONS 

 
 

Rab11-FIP2 originally was identified as a member of the family of interacting 

proteins associated with Rab11a involved in transcytosis (Hales et al., 2001). Rab11-FIP2 

is unique in its ability to bind both GTP- and GDP-bound Rab11a; every other family 

member only binds GTP-bound Rab11a (Hales et al., 2001). Therefore, it was 

hypothesized that FIP2 plays a separable role from that of the other FIP proteins. In 

addition, further work determined that only Rab11-FIP2 binds to myosin Vb (Hales et al., 

2002), a motor protein involved in the Rab11a pathway (Lapierre et al., 2001). Thus, 

Rab11-FIP2 emerged as a critical multi-functional component of the Rab11a-positive 

apical recycling system. Our lab developed two dominant negative mutants to study this 

system in more detail, a Rab11-FIP2 construct lacking the amino-terminal C2 domain, 

Rab11-FIP2(ΔC2), and a truncated form of the motor protein lacking the motor domain, 

myosin Vb-tail. We and others have used these mutants to characterize receptor recycling 

of such diverse receptors as CXCR2 (Fan et al., 2004), protease-activated receptor 2 

(Roosterman et al., 2003), and the M4 muscarinic acetylcholine receptor (Volpicelli et 

al., 2002). The availability of these reagents has greatly enhanced the plasma membrane 

recycling field by allowing assays of cargo accumulation in the inhibited recycling 

system. 

The body of work presented here represents a significant advance in our 

understanding of the role of Rab11-FIP2 in polarized epithelial cells. It also allows for 
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the postulation of a number of additional questions for future work. First, we 

demonstrated that Rab11-FIP2 is phosphorylated by MARK2 on a novel consensus site. 

This phosphorylation event is necessary for the timely re-establishment of polarity, 

specifically for the proper localization of adherens junction proteins. The polarized 

epithelial cell is the only cell culture system that could have revealed this new role for 

Rab11-FIP2 in the involvement of Rab11-FIP2 in polarity. The specificity of this role in 

polarized cells suggests that trafficking complexes may be involved in regulating 

junctional establishment, instead of simply serving as a general conduit for all junctional 

proteins regardless of the external cell conditions (Figure 38). 

However, Rab11-FIP2 initially was described as a protein involved in the Rab11 

trafficking pathway. In our efforts to follow up on this initial role, we have characterized 

a new dominant negative mutant that has allowed us to dissect differentiable roles of 

Rab11-FIP2 in the transcytotic pathway. More specifically, a previously characterized 

Rab11-FIP2 mutant lacking the amino terminal C2 domain, Rab11-FIP2(ΔC2), alters the 

distribution of the EEA1-containing early endosome membranes while the point mutant 

Rab11-FIP2(SARG) does not. However, both mutants cause a significant decrease in 

transcytosis, the delivery of cargo from the basolateral membrane to the apical plasma 

membrane. The availability of these two Rab11-FIP2 mutants will allow future work to 

understand the role of Rab11-FIP2 more fully. Finally, we have identified a number of 

candidate proteins that may be in complex with Rab11-FIP2 through a proteomic 

approach. The characterization of these interactions and the role of Rab11-FIP2 in both 

established and novel pathways may provide insights into the interconnection of 

recycling pathways with other trafficking systems. Altogether, these three facets of work 
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regarding Rab11-FIP2 demonstrate the diversity and complexity of the role of Rab11-

FIP2 in polarized epithelial cells. 

 

 

Figure 38: Generalized Model of Trafficking Pathways in Polarized Cells 
Apical cargo is internalized via a Rab5a positive early endosome (EE). Basolateral cargo is 
internalized via a Rab10 positive basolateral early endosome (BEE). Both cargos are directed 
towards a common endosome (CE) or diverted to a Rab7 positive late endosome (LE). If the 
cargo is destined to the apical plasma membrane, it will be trafficked through a Rab11a positive 
apical recycling endosome (ARE). 

Future Directions for Rab11-FIP2’s Involvement in Polarity 

Our work has demonstrated that Rab11-FIP2 is phosphorylated by MARK2 and 

that this event is necessary for the timely reestablishment of polarity. In addition, our 

proteomics work revealed both ankyrin G and ZO-1 as potential members of Rab11-FIP2 

interacting complexes. The combination of these two results strongly suggests that the 
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involvement of Rab11-FIP2 in the establishment of polarity could be a critical regulatory 

component in the process. In addition, we have preliminary studies suggesting that the 

solubility of ZO-1 changes in cells expressing the Rab11-FIP2 phosphorylation mutant. 

Additional studies could confirm this alteration and attempt to understand more fully the 

impact of Rab11-FIP2 on tight junction proteins. We have preliminary evidence that 

Rab11-FIP2 is involved in apical membrane maintenance or establishment since 

expression of FIP2(ΔC2) causes a collapse of crumbs 3 (Figure 39) into the FIP2(ΔC2) 

containing compartment as well as the collapse of GP135 into the FIP2(SARG) 

compartment as shown in chapter 3. The involvement of Rab11-FIP2 with apically and 

junctionally targeted proteins may involve unique complexes that only have just been 

revealed through our proteomic analysis of interacting complexes. 

 

 
Figure 39: Rab11-FIP2 mutants cause a collapse of the apical protein crumbs 3 

T23 cells stably expressing FIP2 (SARG) and FIP2(ΔC2) were imaged by confocal microscopy in 
the X-Y plane. Cells were stained for crumbs 3 (pseudo-colored red). Both FIP2(SARG) and 
FIP2(ΔC2) mutants caused a partial collapse of the structure. All images are 100X. 
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One of the major issues confronted during the generation of this data was the lack 

of a FIP2 antibody. We tried to generate an antibody on three separate occasions and 

were not successful in isolating antibodies that specifically recognize Rab11-FIP2. We 

generated inducible stable siRNA cell lines that knock down Rab11-FIP2, but these 

studies were difficult to pursue because of our inability to stain for endogenous Rab11-

FIP2 to show that the expression level was decreased. We were able to show the knock-

down by measuring mRNA levels by RT-PCR, but the differences between PCR and 

immunofluorescence studies made it difficult to correlate these results. However, 

according to FlyBase, loss of the Drosophila melanogaster Rab11-FIP2 homolog is 

reported to be lethal, even in the recessive form (Grumbling and Strelets, 2006). Our 

preliminary data suggest that knocking down Rab11-FIP2 in MDCK cells also is lethal. 

However, the use of the tetracycline inducible system should allow siRNA expression 

levels to be modulated, allowing for the study of events prior to cell death. While knock-

down studies of Rab11-FIP2 have proven difficult thus far due to the lack of an antibody 

as well as the lethality of the knock-down, the lab is in the process of developing a new 

murine monoclonal Rab11-FIP2 antibody. If the generation of this antibody is successful, 

additional studies could be performed to examine the impact of the loss of Rab11-FIP2 

on the establishment of polarity. A lack of Rab11-FIP2 could either hamper the formation 

of junctional complexes all together, or accelerate their formation.  

Future Work Regarding Rab11-FIP2 in Novel Protein Complexes 

 We have found that Rab11-FIP2 complexes with two relatively unstudied Rab 

proteins, Rab5b and Rab10. The involvement of Rab11-FIP2 with additional Rabs allows 

the generation of a hypothesis suggesting that Rab11-FIP2 is involved in the hand-off of 
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cargo proteins between endosomal domains. Live cell imaging of cells actively 

trafficking fluorescently labeled ligand while expressing fluorescently tagged Rab11-

FIP2 with fluorescent chimeras of Rab5b, Rab10 or Rab11a would allow a more 

thorough analysis of this hand-off process. The movement and interaction of Rab11-FIP2 

between and with the distinct Rab-labeled endosomes would greatly further our 

knowledge of the mechanisms underlying trafficking events. The specific inhibition of 

transcytosis with our dominant negative mutants and not apical recycling (chapter 3) 

suggests that the specific routes of cargo may be determined by destination, origination, 

or some other as-yet-unknown factor. Rab10 colocalizes with both Rab5 near the 

basolateral membrane and Rab11 in the medial area of MDCK cells (Chen et al., 2006). 

The involvement of Rab11-FIP2 in a basolaterally located Rab10 complex supports the 

finding that transcytosis is influenced more heavily by alterations of Rab11-FIP2 than 

apical recycling. Perhaps Rab11-FIP2 is involved in coordinating a Rab10/Rab11a 

handoff that is necessary for either delivery of previously internalized junctional complex 

proteins (chapter 2) or generalized transcytotic trafficking (chapter 3) (Figure 40). 

 The formation of a complex between Rab10 and Rab11-FIP2 does not involve 

direct interaction between these two proteins as demonstrated by yeast-two hybrid assays 

nor does it require the Rab11 Binding Domain as shown by immunoprecipitation studies 

(chapter 4). These interesting findings raise the possibility that an adaptor protein is 

involved in bringing these two proteins together. It has already been shown that Rab11-

FIP2 can interact with both EHD1 and EHD3 (Naslavsky et al., 2006; Ducharme et al., 

2007). One of the EHD proteins may be the linker between Rab11-FIP2 and Rab10. 
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Alternatively, the association of Rab10 with Rab11-FIP2 may require a third component 

in order to form a ternary complex as we have seen with Rab11/Rab11-FIP2/myosin Vb.  

 

 

 

Figure 40: Model depicting Rab11-FIP2 escorting cargo throughout the entire 
transcytotic process from Rab10 internalization to the Rab11a recycling endosome. 
Following basolateral endocytosis to a Rab5 positive early endosome (EE), Rab10 may escort 
cargo to and/or through the common endosome (CE). If the cargo is undergoing transcytosis, it 
will move to a Rab11 positive apical recycling endosome (ARE). The finding that Rab11-FIP2 is 
in a complex with Rab5b and Rab10 suggests that it may accompany cargo throughout the entire 
transcytotic pathway culminating in the previously known interaction with Rab11. 

We have multiple lines of evidence to implicate Rab11-FIP2 in the hand-off 

between apical early endosomes and the Rab11a positive apical recycling endosome. We 

have found that the localization of the early endosomal proteins Rab5b, EpsinR (Chapter 
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4) and EEA1 (Chapter 3) is altered in cells stably expressing dominant negative Rab11-

FIP2(ΔC2). Interestingly, we have data demonstrating that the Rab11-FIP2(ΔC2) mutant 

does not affect Rab5a, the traditionally defined early endosomal Rab. Our work allows us 

to postulate that multiple “early endosome” systems may exist that are coordinated 

separately (Figure 41), which is supported by their phosphorylation by different kinases 

(Chiariello et al., 1999) and separable GAP activities (Callaghan et al., 1999).  

 

  
Figure 41: Model Depicting a New Early Endosomal Compartment 

In a model with separable early endosomes, cargo would be internalized in either a Rab5a 
positive early endosome (EE-1) or a Rab5b positive early endosome (EE-2). Rab11-FIP2 would 
then escort cargo from the EE-2 to the Rab11a positive apical recycling endosome (ARE). 

Alternatively, Rab5b could define an intermediary compartment between the Rab5a 

positive early endosome and the Rab11a apical recycling endosome (Figure 42). Rab11-

FIP2 may help to define a subset of trafficking complexes, which can be used to track, 

and gain insight into, the distinctions between the early endosomal systems. Live cell 

imaging of cells stably expressing EGFP-Rab11-FIP2 utilizing several cargoes with 
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different destinations would be a logical starting place to begin understanding the 

dynamics of this system.  

 

 

Figure 42: Model Depicting Sequential Early Endosomes 
In a model with sequential early endosomes, cargo would be internalized in a Rab5a positive 
early endosome (EE-1). It would be trafficked to a second early endosome (EE-2) marked by 
Rab5b. Rab11-FIP2 would then escort cargo from the EE-2 to the Rab11a positive apical 
recycling endosome (ARE). 

 Finally, it is possible that Rab5b marks the basolateral early endosome (BEE) and 

Rab5a marks the apical early endosome (AEE) (Figure 43). Our data showing that 

Rab11-FIP2 inhibits transcytosis but not apical recycling supports this hypothesis 

(chapter 3). The difference between the Rab5 family members is still unknown. Most 

work to date has focused on examining Rab5a (Bucci et al., 1994). Rab5a and Rab5b 

both interact with EEA1 (Callaghan et al., 1999) at the Rab5 positive BEEs and AEE 

(Wilson et al., 2000). Interestingly, these interactions are biochemically distinct. EEA1 at 

the BEE was disrupted by phosphoinositide 3 (PI-3) kinase depletion while the AEE 

population remained intact (Tuma et al., 2001). By postulating that Rab5b is at the BEE, 

our finding that the Rab11-FIP2(ΔC2) mutant alters EEA1 localization generates a 

hypothesis that the BEE EEA1 population is effected by this mutant. The report that the 
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C2 domain of Rab11-FIP2 may bind to phospholipids such as phosphatidylinositol-

(3,4,5)-trisphosphate (Lindsay and McCaffrey, 2004) may provide an additional 

functional connection with the EEA1-containing membranes. Thus, we can begin to 

ascertain the differences between the Rab5 family members as well as the AEE and BEE 

by following up on these observations. It would be beneficial to look at the colocalization 

of basolaterally-loaded cargo with Rab5b. If transcytotic studies show colocalization with 

Rab5b but apical recycling studies do not, this would greatly advance the field by 

defining these compartments. We have suggested that the block induced by Rab11-

FIP2(ΔC2) occurs prior to that by Rab11-FIP2(SARG). If the hypothesis that Rab5b is at 

the BEE is supported, that allows us to place Rab11-FIP2 in the pathway as early as the 

BEE. The finding that Rab11-FIP2 interacts with Rab10 would suggest that Rab11-FIP2 

is involved in coordinating events throughout the entire transcytotic pathway. 

Additionally, we could deplete PI-3K and look at the effect on Rab11-FIP2. If Rab11-

FIP2 is mis-localized, that would strongly implicate a connection between the PI-3K 

pathway known to be involved in BEE EEA1 localization with Rab11-FIP2 localization. 

If Rab11-FIP2 is shown to be involved specifically in the basolateral transcytotic 

pathway, we could then ascertain if this is a general function or one specific to Rab11-

FIP2. Most likely, the proposed involvement of Rab11-FIP2 throughout transcytosis 

would be specific to Rab11-FIP2. 
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Figure 43: Model depicting Rab5b at the basolateral early endosome 
This model shows Rab5b at the basolateral early endosome (BEE) and Rab5a at the AEE. In this 
model, Rab11-FIP2 would escort cargo from the Rab5b BEE through the CE and up to the ARE. 

 One of the main difficulties in the polarized trafficking field is that all trafficking 

assays in MDCK cells are done with exogenous cargo. This difficulty is exemplified by 

our first studies looking at wild type Rab11-FIP2 in MDCK cells (chapter 2). We 

struggled with the presence of two morphologically distinct populations of EGFP-Rab11-

FIP2 in each of the stable lines we made. We eventually discovered that the difference in 

populations was correlated with the presence or absence of the polymeric IgA receptor, 

which was stably expressed in the parent line, but had variable expression levels. Our 

proteomic results may have revealed endogenous cargos for the Rab11-FIP2 pathway 

(chapter 4, e.g. vesicle amine transport protein 1, probable G-protein coupled receptor 82 
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and thyroid receptor interacting protein 11). It will be critical to explore the localization 

of these receptors with and without ligand stimulation. If we can engineer fluorescently 

tagged cargo as well as antibodies specific to these receptors, it would advance the 

trafficking field tremendously. The lack of endogenous cargo is one of the biggest 

caveats in the use of MDCK cells in the trafficking field. With these reagents in hand, we 

also would be able to explore the hypothesis that Rab11-FIP2 is a continually present 

escort through the entire endocytotic/recycling process.  

 One of the most exciting findings of this work is the interaction of Rab11-FIP2 

with dynein. Little work has been done exploring the role of dynein-mediated trafficking 

in polarized MDCK cells. The presence of dynein in complex with Rab11-FIP2 allows 

the exploration of a myriad of previously un-testable hypotheses. The first of these 

involves the retrieval of Rab11a from its destination membrane back to the apical 

recycling endosome (ARE). Dynein may be involved in returning the complex back to 

the ARE (Figure 44A). Alternatively, dynein may be involved in the Rab10-positive 

basolateral endosome pathway (Figure 44B). Both of these hypotheses can be tested now 

that dynein has been identified as a component of the Rab11-FIP2 complex, which has 

known cargo. Ideally, a dynein truncation mutant akin to myosin Vb-tail would be 

generated and explored in this system. This truncation mutant could be used to assess 

trafficking of either pIgAR or one of the endogenous cargoes discussed above. However, 

a dynein mutant may have global effects that would preclude exploring its role 

specifically in Rab11-FIP2 mediated pathways. Additionally, protocols could be 

modified to allow immunoprecipitation of dynein from polarized cells allowing for a 

greater understanding of the complex. If the truncated dynein mutant can be cloned, it 
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would also be very beneficial to examine direct interactions between dynein and Rab11-

FIP2, Rab10, Rab11a, and the other FIP members via yeast-two hybrid assays. Currently, 

we do not have a handle on the hierarchy of complex formation. Parsing out this 

hierarchy would aid us in understanding the sequence of events involved in the Rab11-

FIP2 pathway. 

 

 
Figure 44: Model for Potential Roles of dynein in Rab11a trafficking 

A) Rab11a may complex with myosin Vb and FIP2 as it moves to the plasma membrane. It would 
then be retrieved using a dynein dependent mechanism. B) Rab10 may complex with dynein and 
FIP2 during basolateral early endocytosis. As cargo transcytoses through the cell, Rab10 would 
be exchanged for Rab11a. 



 

150 

The combination of the identification of new proteins in complex with Rab11-

FIP2 and the functional implications of our mutant work allows us to postulate a 

definitive role for Rab11-FIP2 (Figure 45). Rab11-FIP2 may accompany basolaterally-

internalized cargo throughout the entire transcytotic process from the Rab5b positive 

BEE through the Rab10 positive CE culminating in the Rab11 positive ARE. 

Phosphorylation of Rab11-FIP2 by MARK2 may allow cargo to exit the apical recycling 

pathway and instead be delivered directly to a forming junction. Thus, cells expressing 

the non-phosphorylatable Rab11-FIP2 had a delay in junctional establishment because 

junctional proteins were forced to continue through the apical recycling route before 

delivery to the lateral membrane. The phosphorylation event may instigate an early 

release of cargo from the pathway mediated by extracellular signals such as calcium 

concentrations. In essence, it provides an alternate emergency route when cells are in 

danger (Figure 45). 

The work presented here was initiated in order to investigate the hypothesis that 

Rab11-FIP2 is a critical regulator of plasma membrane recycling. We have provided 

ample data to support this hypothesis including information implicating Rab11-FIP2 in 

vesicle trafficking through the early endosomal system and the basolaterally originating 

transcytotic pathway. In the process of addressing this question, we have not only 

established an important role for Rab11-FIP2 in Rab11a mediated plasma membrane 

recycling, we have also uncovered additional roles for Rab11-FIP2 in other pathways. 
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Figure 45: Model denoting the role of Rab11-FIP2 in polarized epithelial cells. 
A postulated role of Rab11-FIP2 in polarized cells is presented. Rab11-FIP2 interacts with the 
Rab5b positive BEE. It then escorts the vesicle to the Rab10 positive CE. In normal conditions, 
Rab11-FIP2 and its associated vesicle continue to the Rab11 ARE. When the polarity of cells is 
altered, MARK2 phosphorylates Rab11-FIP2 allowing for an early release from the pathway. 
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