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CHAPTER I 

 

MASS SPECTROMETRY OF POLYURETHANES 

 

1.1. Introduction 

 Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, 

commonly manufactured in the form of flexible and ridged foams, thermoplastics, thermosets, 

coatings, adhesives, sealants, and elastomers.
1
 In the 1930s, Otto Bayer and his co-workers at I.G. 

Farbenindustrie in Leverkusen, Germany developed PUs that were later used as a rubber 

alternative during World War II.
2
 Since PU’s creation, the resourcefulness of this material has 

increased due to its ability to undergo synthetic alteration, which enhances PUs societal footprint. 

PUs are commonly used for biomedical applications, construction, automotives, and textiles. In a 

PU network, the polymer backbone is comprised of hard and soft segments. PU hard segments 

include aromatic or aliphatic diisocyanates (-NCO) and soft segments consist of aliphatic polyols 

(-OH). Hard segments contain isocyanates, which are formed by reaction between toluene 

diamine (TDA) or methylene dianiline (MDA) with phosgene to produce toluene diisocyanate 

(TDI) or methylene diphenyl diisocyanate (MDI), respectively.
3
 Polyesters and polyethers are 

regularly used soft segment polyols which contribute to the polymer’s elasticity. The urethane 

(carbamate) moiety is the major repeat unit formed by random and/or block polyaddition between 

diisocyanates and polyols,
4
 as depicted in Figure 1.1. PUs can also have customizable 

applications, where they contain other groups such as aromatic compounds, esters, ethers, and 

ureas.
5,6

 They can also include additives such as flame retardants, pigments, cross-linkers, fillers, 

blowing agents, and surfactants which can enhance certain polymer properties.
7
 By increasing the 

structural and architectural complexity of this copolymer system, the demands for thorough 

characterization methods become necessary.  
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Figure 1.1. Polyurethane reaction scheme between polyol and diisocyanates to form a urethane 

group, highlighted in blue. 
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 Mass spectrometry is a powerful technique for identification and characterization of 

many biopolymers (e.g. proteins, oligonucleotides, carbohydrates, etc.), aiding in the sequential 

identification and chemical analysis of ionized molecules based on their mass to charge (m/z) 

ratio.
8,9

 Similar to biopolymer characterization, MS based strategies have been developed to 

investigate synthetic polymers complexity.
10

 In recent years, MS has become an indispensable 

tool for polymer analysis and often complements characterization data obtained through classical 

methods such as NMR, vibrational spectroscopy, size-exclusion chromatography (SEC), and 

liquid chromatography (LC).
10

 Although these classical methods have aided in the 

characterization of polymer systems, advanced analytical strategies such as MS-based techniques 

are needed to further elucidate polymer molecular structures. MS can be used for polymeric end-

group analysis, direct mass measurement, molecular weight distribution (MWD), sequential 

identification, and detection of impurities or additives.
11

  

 Soft ionization techniques such as electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI) are frequently used for polymer characterization.
11,12

 MALDI is 

used for direct desorption of ions, generating mostly singly charged species, which attenuates 

complexity observed when there are overlapping charge states.
12,13

 MALDI is relatively tolerant 

of contamination and salts, making high sensitivity and MS analysis accessible. ESI is typically 

considered a softer ionization technique compared to MALDI. For labile substances, ESI may be 

more appropriate for samples containing fragile end-groups, or supramolecular assemblies which 

are held together by noncovalent interactions. ESI is known for producing multiply charged 

species, therefore this ionization technique is useful for characterizing high mass species although 

the mass spectra may become more difficult for interpretation owing to complex spectra.
14,15

 

Another way to improve the characterization of complex polymer samples is through additional 

dimensions of separation combined with MS, such as LC-MS. LC-MS provides chromatographic 

separations prior to MS analysis that can aid in separating heterogeneous samples prior to MS 

characterization.
16,17
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 Another multidimensional technique is tandem mass spectrometry (MS/MS), which can 

be performed in combination with MALDI or ESI ionization. When conducting MS/MS 

experiments, collision-induced dissociation (CID) fragmentation studies provide structural 

information about a precursor ion, a precursor’s fragment ions, and fragmentation pathways at 

low and high activation energy.
18–20

 Although, MS and MS/MS techniques are useful for 

structural characterization, they are still limited when characterizing isomeric or isobaric species 

within a heterogeneous or polydisperse sample.   

 Ion mobility-mass spectrometry (IM-MS) is a gas-phase separation technique, 

comparable to gas chromatography (GC) or LC separation. While GC and LC methods separate 

molecules based on their volatility or polarity differences, IM-MS separates ions based on their 

size, shape, and charge.
21,22

 In IM, ions are subject to many low energy collisions with a neutral 

buffer gas providing a drag force proportional to surface area. Thus these ions are then separated 

by their effective gas-phase size and shape, and can be described by their collisional cross section 

(CCS).
23,24

 For example, IM-MS has been used to differentiate between linear and cyclic polymer 

topologies.
10,25–28

 IM-MS data are often supplemented with computational studies to gain further 

insight about a molecule’s gas-phase conformation.
29

 These studies are generally conducted in 

two steps: (1) computational sampling of conformational space and (2) theoretical determination 

of CCS values for the generated conformations. IM-MS and computational methods are useful for 

characterizing PU precursors; however when it comes to fragmentation studies of complex 

polymers, computational methods are essential for chemical and structural interpretation.
30–34

  

 This review primarily focuses on literature pertaining to the characterization of PU 

polymers using MS techniques, mainly MALDI, ESI, IM-MS, and computational strategies. More 

specifically, this review will highlight literature that has characterized either intact synthetic PU 

polymers or hard and soft segments used to make PUs. As illustrated in Figure 1.2, intact PUs to 

be reviewed include flexible and ridged foams, thermoplastics, thermosets, coatings, adhesives, 

sealants, and elastomers. Hard segments to be reviewed include aromatic isocyanates, methylene  
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Figure 1.2. Example of important PU types and their common hard and soft segments to be 

reviewed. 
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diphenyl diisocyanate ((MDI) 4,4’-MDI, and 2,4’-MDI) and toluene diisocyanate ((TDI) 2,4’-

TDI and 2,6’-TDI). Hard segment precursors, such as methylene dianiline (MDA) and toluene 

dianiline (TDA) will also be considered. Soft segments that will be reviewed include polyesters 

and polyethers. Our goal is to focus on recent literature characterizing intact PU networks and 

their precursors using MS. This review will emphasize PUs and their precursors that are of large 

scale industrial importance. 

 

1.2. Polyurethane Hard Segment Characterization 

1.2.1. Urethanes and Isocyanates 

 Given the urethane sequence -NH-C(O)-, isocyanates (-NCO) are essential for PU 

synthesis. Isocyanates can be di- or polyfunctional where two or more -NCO groups are 

represented per molecule. Isocyanates are electrophiles that react towards a variety of 

nucleophiles such as polyols (forming urethanes), amines (forming ureas), and water (producing 

CO2).
3
 Commonly used aromatic diisocyanates are TDI and MDI. TDI exists in the form of two 

isomers 2,4- and 2,6-TDI.
35

 MDI can exist as 2,4’- and 4,4’-MDI, or short chain polymeric MDI 

(pMDI). While still important, aliphatic diisocyanates are not as commonly used. These include 

hexamethylene diisocyanate (HDI), hydrogenated MDI (H12MDI), and isophorone diisocyanate 

(IPDI).
3
 In this review, aliphatic isocyanates will be mentioned in the context of a specific case 

study. 

 

1.2.2. MDI and TDI 

 MDI and TDI are used for various applications: MDI is used to make rigid foams, 

insulation, and automobiles and TDI is used to make flexible PU foams, coatings, adhesives, 

sealants, and elastomers. MDI is formed through the reaction between aniline and formaldehyde, 

using hydrochloric acid as a catalyst to produce a mixture of methylenedianiline (MDA) and 

multimeric MDA precursors.
3
 When MDA is treated with phosgene, the isocyanate is formed 
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making pMDI and mixtures of MDI isomers. To make TDI, toluene is reacted with nitric acid to 

produce diaminotoluene (TDA) isomers. Upon treatment with phosgene, the TDA isomers form 

into TDI isomers and multimers.
1
 Aromatic isocyanate derivatives such as 2,4’- and 4,4’-MDI, 

and 2,4- and 2,6-TDI  that have been characterized using MS-based techniques will be discussed 

below. 

 For investigating the urethane bond of a hard segment, Pasch and Maujana used MALDI-

MS to probe the PU urethane backbone. They highlighted how MS can be used to identify a 

polymer and its copolymer sequence, determine the end group functionality, determine MWD, 

and predict urethane fragmentation mechanisms.
36,37

 Mass et al. later investigated the urethane 

backbone and studied isocyanate fragment ions and their respective fragmentation pathways 

using CID experiments.
38

 The hard segments characterized were multimeric MDI-TDI 

copolymers, and multimer MDI and TDI homopolymers. These results indicated MDI-TDI 

copolymer fragmentation occurred at the single bonds near the carbonyl group, making it possible 

to determine fragmentation pathways. Figure 1.3 shows the MALDI-TOF mass spectrum of an 

MDI-TDI copolymer. The intense peaks alternating at mass increments of 148 (TDI) and 224 

(MDI) Da, were observed up to masses of about 1000 m/z. The peak at 609 m/z was assigned to 

an oligomer with two MDI and one TDI repeat units, the peak at 682 m/z was assigned to an 

oligomer with one MDI and three TDI repeat units and so on.
38

 

 Carr et al. also investigated MDIs using MALDI-MS.
39

 In this study, MALDI was used to 

monitor pMDI and MDI isomers treated with methanol, which produced stable urethanes. 

Warbuton et al. then investigated ways to characterize the derivatized PU isocyanate monomeric 

and prepolymeric species: MDI, HDI, 2,4-TDI and 2,6-TDI 40. Warbuton discovered that 

immediate derivatization prevented the decomposition of the isocyanates. Therefore, 

derivatization enhanced the detection and structural information gained about each precursor 

during MS/MS studies. Derivatizing agent 1-(2-methoxyphenyl) piperazine (1,2MP) was found to 

stabilize the monomeric and prepolymeric isocyanate mixtures.
40

 Vangronsveld and Mandel also  
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Figure 1.3. MALDI-TOF mass spectrum of the TDI-MDI sample. Mass distributions of 148 m/z 

and 224 m/z represent the addition of TDI and MDI respectively. Copyright 2009 Wiley. Used 

with permission from V. Mass, W. Schrepp, B. Von Vacano, H. Pasch, Sequence analysis of an 

isocyanate oligomer by MALDI-TOF mass spectrometry using collision induced dissociation, 

Macromolecular Chemistry and Physics.  
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investigated a LC-UV-MS/MS method to chromatographically separate, detect, and identify the 

derivatized isocyanate species. In Figure 1.4, LC was used for separations and MS/MS was used 

to characterize derivatized isocyanates: phenyl isocyanate (PI), 2,4’- and 4,4’-MDI, 2,4- and 2,6-

TDI, trimer pMDI isomers (TRI).
41

 Their chromatographic method showed separation between all 

targeted isocyanate compounds. 

  

1.2.3. MDA and TDA 

 MDA is a precursor used to synthesize MDI. Most formulations of industrial grade MDI 

are comprised of 2,4’-MDI and 4,4’-MDI isomers, or pMDI. This level of heterogeneity arises 

from structural isomers and multimeric species present within the MDA sample. In an in depth 

study, Hercules and coworkers structurally characterized pure MDA regioisomers and multimers 

using a variety of MS techniques (ESI, MALDI, MS/MS, IM-MS, and MS/MS) and interpreted 

the data with computational models.
32–34,42

 The MDA species investigated include 2-ring MDA: 

2,2’-MDA, 2,4’-MDA, and 4,4’-MDA, 3-ring MDA, and 4-ring MDA. For each precursor 

species, the preferred protonation site was determined both experimentally and computationally. 

This helped elucidate fragmentation pathways for each MDA species during the CID 

experiments. IM-MS data was interpreted using computational models to provide structural 

information regarding each MDA precursor and their protonation sites.
32–34

 ESI and MALDI 

ionization techniques were both investigated in the MDA study. In ESI, the [M+H]
+
 precursor 

was the only type observed for all MDA species.
32,33

 However, when each MDA species was 

characterized using MALDI, three unique precursors were formed: [M+H]
+
, [M

.
]

+
, and [M-H]

+
. 

When comparing ESI MS, MALDI MS, and MS/MS spectra from both ionization techniques, 

each precursor was found to have a unique fragmentation pathway.
34,42

 

Fewer studies have characterized TDA isomers in great detail. Wang et al. are among those to 

study TDA’s degradation pathway using a biodegradable polyester urea-urethane.
43

 In that study, 

the degradation of TDA from TDI-derived polyester urea-urethanes was investigated using a 
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Figure 1.4. Extracted ion chromatograms for the m/z 193 fragment ion for all 1‐2MP derivatives 

of isocyanates. LC separations showed good base peak resolution of derivatized isocyanates. 

Copyright 2003 Wiley. Used with permission from E. Vangronsveld, F. Mandel, Workplace 

monitoring of isocyanates using ion trap liquid chromatography/tandem mass spectrometry, 

Rapid Communications in Mass Spectrometry. 
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radioactive 
14

C label to enhance the TDA degradation pathway. The degradation products formed 

were separated using high performance liquid chromatography (HPLC) and structurally 

characterized by MS/MS fragmentation studies.
43

 In another study, TDA was determined to 

originate from unpolymerized TDI, or in the presence of water.
44

 When moisture was present, 

TDI was found to convert back into TDA.  

  

1.2.4.  Carbodiimides and Polymeric MDI  

 During PU production, the formation of side products from isomeric MDI and pMDI can 

be of great hindrance to a polymeric material. These side products can occur at any step when 

making PUs and lead to viscosity buildup or the formation of solids which can alter the 

manufacturing process.
3
 One modification to making MDI is the condensation reaction between 

isocyanate groups, which forms carbodiimides (CDI) and reversible uretonimines. The formation 

of CDI and uretonimines effectively breaks up the crystallinity and reduces the polymer viscosity. 

Using CDI-MDI materials is of increasing interest industrially, due to its ability to form into soft 

high resilient elastomers.
45

 In a recent study, the formation of CDI-TDI side products was 

characterized using MALDI TOF/TOF and CID experiments.
46

 To prepare the MALDI sample, a 

non-conventional evaporation-grinding method was utilized. The side products observed in CDI-

TDI sample were identified as urethane links, branched species, uretone imine branched CDIs, 

and urea allophanates. In another study, evaporation-grinding was also used to prepare a pMDI 

sample for MALDI ionization.
47

 In this study, side products were determined to form in the 

presence of catalysts, iron (II), and iron (III) chlorides. In the mass spectra, small quantities of 

CDIs were observed which indicated the presence of viscosity buildup. This results in catalyzed 

side reactions between iron catalysts and CDIs causing extensive branching to occur within the 

sample. 
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1.2.5. Hard Segment Reaction Monitoring 

 Reaction monitoring between polyols and isocyanates are important to understand 

polymerization reaction rates. There have been several studies which have monitored the 

reactivity of isocyanates with primary and secondary polyol hydroxyl groups. For example, 

studies discern that secondary hydroxyl groups have a lower reactivity compared to primary 

hydroxyl groups.
48–50

 In other studies, tri-functional polyol reactivity was studied, which found 

that hydroxyl reactivity decreases as the degree of substitution increases along the polyol soft 

segment.
51,52

 In a study by He et al., the step growth polymerization reaction between TDI and 

trifunctional trimethylolpropane (TMP) was monitored at various temperatures using ESI-MS.
53

 

They determined the optimal -NCO/-OH reaction ratios, temperature conditions, and 

stoichiometry of each isocyanate/polyol component within the TDI-TMP product. The steric 

hindrance of TMP’s chemical structure was observed to reduce side reactions during the step 

growth process, which yielded a more desirable urethane product. Ahn et al. investigated two 

different PU polyaddition reactions: TDI and water 54, and TDI and ethylene glycol (EG) 55, 

using MALDI TOF-MS. The quantitative changes in the mass composition of each polymer 

during the polymerization reaction were determined. Uncatalyzed reaction monitoring between 

2,4’-TDI and 4,4’-MDI with 1-butanol, 1,4-butanediol (BD), and diethylene glycol 

monomethylether was later performed by Nagy et al. using an HPLC-ESI-MS method 56. Nagy 

monitored the urethane reaction rate at different temperatures, to determine the rate constants for 

each alcohol and diisocyanate. First-order rate constants were determined between the polyol-

MDI reaction, (polypropylene glycol (PPG), polytetrahydrofuran (pTHF), poly(3-caprolactone)-

diol (PCLD), and polypropylene glycol glycerol triether (PPG-GL)) 57. Beldi et al. later 

monitored the changes within a polymer’s topology, the formation of linear and cyclic PU species 

using MALDI-MS 58. Krol and Pilch-Pitera used computational simulations with MS strategies 

to determine the step-by-step polyaddition reaction between 2,4- and 2,6-TDI with BD, 

polyethers, and polyesters 59. Computational modeling helped to interpret proposed structures 
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and provided an understanding of reaction compositions formed during different polymerization 

stages. 

 

1.3. Polyurethane Soft Segment Characterization  

1.3.1.  Polyols 

 There are two main types of polyurethane polyols: polyethers and polyesters. Both 

classes of polyols have elastic properties which relate to their unique range of industrial 

importance. Polyols used for PU synthesis typically consist of two or more -OH groups 1. 

Polyether urethanes are considered to be a harder urethane, having superior dynamic properties. 

Polyester urethanes are typically softer and known for their tensile strength. Types of polyether 

polyols used in PU production include polypropylene oxide (PPO) also called PPG, 

polytetramethylene oxide (PTMO) also known as polytetrahydrofurane (pTHF), and polyethylene 

glycol (PEG).
3
 Types of polyester polyols can be made from adipic acid and EGs (polyethylene 

adipate), or from butanediols and adipic acid known as polybutylene adipate (PBA). Additionally, 

copolyesters are often prepared from a mixture of glycols, adipic acid, and anhydrides.
60

 

 

1.3.2.  Polyethers 

There are many studies which have characterized polyethers using MS-based 

techniques,
61

 however a few studies will be highlighted in this section. Chattopadhyay et al. 

structurally investigated PPG and IPDI based PU prepolymers using MALDI-MS.
62

 In this study, 

they monitored the reaction between PPG and IPDI at different time intervals, to investigate 

mono-urethane transition into the di-urethane species. In another study led by Mehl et al., the 

degradation reaction between PU polyether (pTHF) and polyester (PBA) were also monitored by 

MALDI-MS.
5
 To selectively degrade pTHF they used ethanolamine, and to degrade PBA they 

used phenyl isocyanate due to the high reactivity of the ester. In this study, SEC was coupled to 
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MALDI to enhance accurate MW determination of each degraded ether-urethane and ester-

urethane species.  

IM is an emerging tool for separation and identification of synthetic polymers (linear, 

cyclic, star-shaped, etc.). Recently, IM-MS has been used to investigate polydisperse samples, 

allowing for the identification and characterization of unique CCS trends, charge-dependent 

conformations, and different polymer topology.
63,64

 IM-MS has been used to characterize the 

experimental and theoretical conformation of multicharged linear-chain PEGs,
65–68

 polylactic acid 

(PLA),
69

 polyethylene terephthalate (PET),
70

 PPG,
71

 polyethylene oxide (PEO),
72

 and 

polycaprolactone (PCL).
72,73

 Sodium cationized PLA was investigated using IM-MS to 

experimentally determine the three-dimensional structure of the multiply charged PLA adducts. 

Experimental and theoretical observations were recorded to investigate how the polymer size and 

number of charged adducts effect the folding of the PLA through cation coordination.
69

 Duez et 

al. used PLA and PEG polymers as reference calibrants for a home-made traveling wave IM-MS 

drift-tube. These polyethers were good calibrants due to the polymer ions covering a large mass 

range and a large CCS window.
74

 Previous studies have shown low-energy CID of PEG ionized 

with alkali metal cations to yield small fragment ions from hydrogen-rearrangement reactions. At 

high CID energies, 1,4-H2 elimination can be observed producing two types of unsaturated 

fragment ions along with a homolytic cleavage reaction at both ends of the polymer.
75

 Hilton et 

al. used IM-MS and IM-MS/MS to separate and differentiate between polyether oligomers with 

the same nominal molecular weights.
76

 For instance, isobaric mixtures of PEGs with the same 

nominal m/z ratio were structurally characterized and separated using IM-MS/MS. Larriba et al. 

in Figure 1.5, characterized the gas-phase structure of coulombically stretched PEG ions.
67

 

Higher charge state PEG ions were observed to form a “beads on a string” motif. In this study, 

structural transitions for the ionized singly charged PEG species were interpreted through 

molecular dynamic simulations. Cody and Fouquet, in a recent study, used paper spray ionization 
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Figure 1.5. Representation of transitional region of sphere equivalent diameters based on Z/z and 

m, respectively. MD simulations comparable to experimental values are included for several 

lengths of z = 4 ions. Not all the data points correspond to exact oligomer masses. Charge state 

trends and proposed structural molecular dynamic simulations are represented (A-E). Reprinted 

(adapted) with permission from C. Larriba, J. Fernandez De La Mora, The gas phase structure of 

coulombically stretched polyethylene glycol ions, J. Phys. Chem. B. 116 (2011) 593–598. 

Copyright 2012 American Chemical Society. 
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MALDI/TOF system to characterize 13 block and 2 random ethylene oxide and PPO copolymers 

and homopolymers using Kendrick mass defect.
77

 The Kendrick mass defect plots were used to 

estimate the percentage of the ethylene oxide and PPO in the copolymer materials. Girod et al. 

used MS/MS to characterize doubly charged PEO oligomers formed using ESI.
78

 Similarly, 

Tintaru et al. experimentally and theoretically studied PEO-poly(amidoamine) polymer using H
+
 

and Li
+
 cations.

79
 IM-MS and MS/MS were employed to elucidate unique charge state trends (+2 

and +4) of the adducted species. The experimental findings were coupled to molecular dynamics 

simulations to investigate conformational changes within different charge states. Other PEG 

studies probed low energy CID pathways using an assortment of monovalent cations (Li, Na, K, 

Rb, Cs) 
80–82

 and transition metal cations (Ag).
83

 In addition to gas-phase PEG folding, Ude et al. 

studied charge-induced unfolding of PEG species.
66

 Kokudo et al. performed IM-MS on PEGs as 

model polymers to obtain the dielectric constant of their doubly charged species.
84

 Proposed 

mechanistic pathways were used to determine the fragmentation reactions of radical cationic 

species.  

Over the years, there have been environmental concerns with producing polyethers for 

PU synthesis from petroleum sources. Therefore, researchers have investigated bio-renewable 

feedstocks to be used in place of petroleum based polyols. Li et al. performed LC-ESI-MS and 

MS/MS fragmentation experiments to detail an approach to the characterization of novel bio 

renewable polyols 85. 

 

1.3.3.  Polyesters 

Polyesters, known as polycondensation polymers, can be used for a variety of applications. In a 

study by Williams et al., MALDI-MS was used to characterize a series of aliphatic polyesters and 

their derivatives.
86

 The oligomeric peaks observed in the MS allowed for determination of each 

polymer repeat unit and the presence of cyclic species. Both the Mn and Mw values were 

determined by MS, and compared to consecutive NMR and GPC findings. GPC MW estimations 
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were found to be larger than those determined by MALDI. In another study by Williams et al., 

MALDI-MS was used to study discrete mass polybutylene glutarate (PBG) oligomers having 8, 

16, 32, and 64 degrees of polymerization.
87

 These PBG derivatives were used to optimize 

MALDI and GPC analysis of PU-PBA species due to structural similarities between PBG and 

PBA. In this study, they investigated the effect of the MALDI matrix, laser intensity, and detector 

saturation. Rizzarelli et al. later probed the fragmentation pathways of four PBA isomers at 

relatively high collision energies using MALDI-TOF/TOF CID.
88

 High collision energies were 

found not as useful as low collision energies for studying native chemical alterations. Gies et al. 

later demonstrated a method for characterizing PBA species at low fragmentation energies using 

MALDI-TOF/TOF CID.
89

 They were able to identify PBA fragment ions and unexpected side 

products from a complex mixture of melt polymerized PBA. Low energy fragmentation pathways 

were interpreted by computational models to verify the structure of the fragment ions. PBA 

oligomers were observed to undergo a number of low energy degradation pathways such as 1,5 

H-shift (preferred), 1,3 H-shift, remote hydrogen abstraction, and multiple combinations of these 

reactions.  

 To study polyester reaction kinetics, Pretorius et al. developed a model system to study 

the reaction between phthalic acid and PEG based polyesters.
90

 They monitored the reaction 

under different conditions to investigate the stages of polyesterification, MW, chemical 

composition, and end group analysis of these synthesized species using HPLC separations 

coupled to MALDI-TOFMS analysis. In related studies, Pretorius et al. investigated the same 

phthalic acid and PEG based polyesters using a combination of SEC, supercritical fluid 

chromatography (SFC), ESI-MS 
91

 and MALDI-MS.
92

 The polyester samples in these studies 

were fractionated by SEC, analyzed by SFC (to determine degree of polymerization), then 

characterized by MS to determine the presence of linear or cyclic species. For a polyvinyl acetate 

(PVA) system, Gigurere and Mayer modeled the fragmentation pathways of ionized PVA using 
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ESI-MS and MS/MS techniques to determine mechanistic dissociation reactions that could occur 

when PVA is used for PU adhesives or sealants in the textile industry.
93

  

 Polyester polyols are typically formed from diacids and glycols. Usually polyester 

polyols are more viscous, as well as more expensive, compared to polyether polyols. 

Biodegradable and biocompatible urethane-macromolecules are a growing field even within PU 

polyester production. The biodegradation of PLA urethane copolymers are investigated to 

determine the rate of biodegradation as PLA content increases.
94

 Borda et al. explored novel 

methods towards synthesizing biodegradable thermoplastic multiblock copolymers and 

characterizing this copolymer system using MALDI-TOFMS. In one study, linear-chain PUs 

were synthesized using PLA and 4,4’-MDI and TDI.
95

 In another study, Borda et al. synthesized 

PLA, PCL (poly(ε-caprolactone)), and PCL-PA copolymers using TDI as chain extender and 

PEG as the intrinsic plasticizer.
96

 They determined the chemical structure of each biodegradable 

PU polymer and the relative Mn using MALDI-TOFMS. In a study by Tang, telechelic hydroxyl-

terminated polyesters were synthesized using biodegradable monomers in the MW range of 700 – 

1,300 Da.
97

 Other biodegradable PU routes have been explored by Baez et al.,
98

 where the 

reaction between PCL diols was monitored using MALDI-MS to determine formation of the ring 

opening ester-urethanes-ureas. Osaka et al. showed a detailed ESI and MALDI method for 

characterizing linear and cyclic PLAs and their solvolysis products.
99

 Polyester urea-urethanes 

were synthesized with 
14

C labeled TDI and 
14

C labeled ethylene diamine chain extender to study 

cholesterol esterase.
43

 The PU degradation products were characterized to determine the presence 

of unreacted TDI. 

 

1.4. Polyurethane Material Characterization 

1.4.1. Diisocyanate and Polyol Characterization  

 PU complexity arises from the addition reaction between isomeric diisocyanates and 

heterogeneous mixtures of varying polyol lengths. These synthetic complications lead to the 
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formation of random, alternating, block, and graft copolymers. PU properties are greatly 

influenced by their structure, monomer functionality, hydroxyl group reactivity, polymerization 

temperature, and -NCO/-OH reaction ratio. Addressing PU complexity requires advanced 

analytical techniques such as MS to characterize the complexity of PU intact materials.
100,101

  

 The reaction between diisocyanates and polyols (polyesters and polyethers) is a key 

process for making various PU products. Nagy et al. used HPLC-MS to determine reaction 

kinetics between diisocyanates (MDI and 2,4-TDI) and polyols: 1-butanol, 1,4-butanediol (BD), 

and diethylene glycol monomethylether (DEGME).
56

 These results indicated that the first 

isocyanate group on MDI reacted 1.5 times faster with the polyols compared to the second 

isocyanate, however the para isocyanate on 2,4-TDI was determined to react with the polyols 

faster than the first isocyanate on MDI. Both MDI and 2,4-TDI isocyanates reacted in a similar 

manner. Ferrerira et al. also used HPLC-UV and HPLC-ESI-MS/MS techniques to extensively 

characterize free monomeric MDI found in PU foams.
102

 Ferrerira outlined the use of a new 

isocyanate derivatizing agent, N-benzylmethylamine (NBMA), which enhanced monomeric MDI 

solubility in the solvents routinely used for HPLC.  

 Diisocyanates and polyols are also known to react in the presence or absence of a 

catalyst; optimal reaction conditions have been previously studied.
103–105

 However, Nagy et al. 

extensively studied the reaction between MDI and several polyols: pTHF, PCLD and PPG 

glycerol triether (PPG_GL) to determine intermediates, reaction products, and the reactivity of 

the polyols hydroxyl groups.
57

 When, monitoring MDI and PPG_GL reaction using MALDI-MS, 

the formation of Bn, Cn, and Dn series appear, as shown in Figure 1.6. Series An in Figure 1.6 

represents the start of the reaction and series Dn represents the distribution at the end point of the 

reaction. As the reaction progresses, the appearance of additional series labelled Bn and Cn are 

noted, which correspond to mass shifts of 282 Da indicating the addition of MDI to the PPG_GL 

hydroxyl groups. In this study, rate constants of the forming intermediates and final products 

were determined. MALDI-MS was also useful for monitoring the formation of cyclics and other  
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Figure 1.6. MALDI-TOF MS spectra of the quenched reaction mixture obtained in the reaction 

of PPG_GL with MDI at 1, 600 and 1560 minutes. Experimental conditions: [MDI]o = 0.32 M, 

[PPG_GL]o = 0.01 M and T = 80 °C. By monitoring the MDI and PPG_GL reaction using 

MALDI-MS, the formation of Bn, Cn, and Dn series appeared, series An represents the start of the 

reaction. Reprinted (adapted) with permission from T. Nagy, B. Antal, A. Dekany-Adamoczky, J. 

Karger-Kocsis, M. Zsuga, S. Kéki, Uncatalyzed reactions of 4,4′-diphenylmethane-diisocyanate 

with polymer polyols as revealed by matrix-assisted laser desorption/ionization mass 

spectrometry, RSC Adv. 6 (2016) 47023–47032. Copyright 2016 Journal of Physics and 

Chemistry. 
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side products formed during the reaction.
58

 In a study led by Gies et al., a combination of 

MALDI, CID, and IM-MS experiments was used to study a polyester-based PU (Mn ~ 13,000 by 

GPC) prepared by melt polymerization; reactants were PBA and MDI, with BD as an extender.
106

 

Fragmentation studies were performed at relatively low collision energies to model pyrolysis 

reactions. Bond energy calculations were used to help to elucidate possible fragmentation 

pathways. The major species observed by MALDI were cyclic polyesters and PUs, linear 

polyesters (diol and acid terminated) and linear polyurethanes up to n ~ 20. PUs containing up to 

10 hard blocks were observed. CID for linear PUs identified two major fragmentation pathways, 

1,3 and 1,5 H-shift, the latter involving carbonyls both in the urethane group and in the polyester 

chain. Fragmentation of cyclics is a two-step process: (1) initial ring opening and (2) subsequent 

fragmentation. Both steps primarily involve 1,3 and 1,5 H-shift. IM-MS studies were performed 

to show the utility of this technique when characterizing complex polymeric mixtures. For 

example, it was shown that PU hard blocks capable of forming H-bonding were found to have a 

shorter drift times than hard blocks not capable of H-bonding.
106

 

  

1.4.2.1.  Flexible and Rigid Foams: Biodegradable Importance 

 PU foams are classified as flexible or rigid foams depending on their flexibility and 

density. PU foams are complex engineered materials which can have customizable temperature or 

humidity control and visco-elastic behavior. The flexibility, morphology, and microstructure of 

PU foams are based on the degree of cross-linking and the -NCO/-OH ratio.
3,107

  Flexible PU 

foams are known for their application as cushion materials, and rigid foams are known for their 

thermal stability and flame resistant properties. These foams are commonly made with PPO, 

however renewable alternatives for petrochemical polymer materials is a growing field.
108

 Bio-

based polyols, such as natural oils chemically modified to contain hydroxyl groups, are a new 

technique for integrating bio-based polyols in PU foam materials.
109

 For example, Basso et al. 

studied renewable polyol alternatives in flexible-elastic copolymerized PU tannin foams using 
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MALDI-MS.
110

 The fatty amines were reacted with pMDI and tannins to make PU foams with 

highly flexible and elastic properties. MS based techniques were used to characterize the 

chemical and sequential arrangement of the amines, isocyanates, and tannins integrated within the 

PU foam matrix. Another method for monitoring the coreaction between amines, isocyanates, and 

tannins was to monitor the MWav Gaussian distributions of the coreacted species obtained by 

MALDI. The Gaussian distributions, can help determine which coreaction and reaction 

conditions are preferred (amine-pMDI or tannin-pMDI), to form the urethane bridge and detect 

unreacted starting material.
111

 

 

1.4.2.2.  Flexible Foams 

 When characterizing intact flexible foams, selective extraction processes are needed to 

investigate the chemical composition. During foaming, hard segments undergo chain-growth, 

whereas in hydrolysis a step-growth process occurs which contributes to the formation of cyclic 

species.
107

 MALDI-MS is a common technique for PU foam reaction monitoring, hard segment 

distribution characterization, and detection of cyclic or hydrolysis products. In one study, the 

hydrolysis products of viscoelastic and conventional flexible foams were characterized using 

MALDI-MS.
112

 MALDI characterization revealed the presence of cyclic species, hard segment 

chains with urea repeat units, and PPO based polyols.
113

 The experimental hard segment length 

distributions were compared to theoretical Monte Carlo simulations. The simulations in this study 

agreed with the number-average degree of polymerization experimentally.
112

 In a study by Yontz 

et al., MALDI-MS was also used to investigate water-blown PU foams by monitoring the 

addition of water in the poly(urea-urethane) formulation.
114

 The water-blown PU foams were 

prepared with different hard segment lengths and at various temperatures. By using MS, they 

were able to determine the unique features related to each foams unique sample preparation 

method, the number of hard segment repeat units, and the formation of side products.  
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 Chromatographic techniques integrated with MS, such as LC-MS can increase the level 

of dimensional analysis for the characterization of aromatic amines (TDA/MDA). Marand, was 

among the first to develop an LC-MS method for foam hydrolysis extracts containing TDI/TDA 

compounds and other oligomeric species.
113

 Marand tested extraction solvents to observe 

hydrolysis products. He found that organic solutions altered the physical properties of the foams 

and alcohol solutions caused free isocyanates to react and form urethane side products. Mild acid 

solutions were found to stabilize extracted aromatic amines from intact flexible foams.
113

 More 

recently, Johnson et al. compared Marand’s LC-MS method to their hydrophilic interaction liquid 

chromatography (HILIC-MS) and MS/MS technique. In Johnson’s study, they focused on 

developing a separation method for HILIC-MS to distinguish TDA and MDA aromatic amines 

found in foam extracts. The free diamines required a derivatizing agent to prevent oxidation and 

both HILIC-MS/MS and Marands LC-MS method showed agreement for free amines detection in 

PU foams.
6
 

 

1.4.2.3. Rigid Foams 

 Rigid PU foams have not been extensively characterized using MS-based techniques. As 

such, there are only a few studies characterizing bio-based polyols that can be used to make rigid 

PU foams. In a recent study, MALDI-MS was used to monitor the cross linking between highly 

functional polyols that underwent epoxy ring opening reactions with glycerols to make a bio-

based polyester.
109

 In a related study, MALDI-MS was used to characterized unique resins 

derived from natural products (polyflavonoid tannins-furfuryl alcohols). The urethane formation 

between flavonoid monomers, glyoxals, and isocyanate was monitored to determine the 

functionality of this PU natural product starting material.
111

 

 

 

 



 24 

1.4.3. Thermoplastic Polyurethanes 

 Thermoplastic PUs (TPUs) have numerous applications due to their diverse physical 

properties and processability. TPUs are known to be flexible, elastic, have resistance to impact, 

abrasion, weather, and become melt-processable. TPU materials are suitable for applications in 

the automotive, clothing, sports equipment, furniture, biomedical, and construction industries.
115

 

Conventionally, TPUs are synthesized from polymeric isocyanates and polyols with or without 

chain extenders. Common polyols used in TPUs include polyesters and polyethers; however 

specialty polyols such as polycarbonate, polysiloxane and polyolefin diols can also be used.
116

 

Recently, non-conventional PUs such as non-isocyanate polyurethanes (NIPUs) have been 

developed. This novel type of PU can be prepared by ring opening reactions between bis-cyclic 

carbonates and diamines which enable the replacement of hazardous phosgene and isocyanates 

which are used in the conventional PU synthesis.
117,118

 NIPUs can also be made through a fully 

bio- and CO2-sourced synthesis. In a recent study, Poussard monitored the formation of NIPUs 

under supercritical conditions using ESI-MS.
119

 In another study, biodegradable TPU synthesis 

was monitored using MALDI-MS between TDI, PEG, and polylactic acid caprolactone to make a 

type of TPU multiblock polymer.
96

 Oleochemicals are a type of vegetable oil that can be used as a 

TPU building block. To model the use of oleochemical, oleic acid and undecyclenic acid 

derivatives were used to synthesize PUs through a polycondensation reaction. The formation of 

linear TPUs was monitored using MS-based techniques and further characterized to test for 

thermal stability.
120

 Due to environmental concerns, TPU chemical interaction with water is of 

interest. To study the water diffusion rate in TPUs, LC-MS was used to monitor water diffusion, 

and MS strategies can help elucidate structural cross-linking within the polymer back-bone.
121

  

 Due to the increasing application for TPU materials, studying decomposition reactions 

with respect to time and temperature can enhance synthetic strategies allowing for tailored 

polymeric design to match desired degradation patterns. One method used to study decomposition 

reactions and reaction products is pyrolysis.
3
 Pyrolyzate products are formed during the 
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decomposition process and can help to determine decomposition mechanisms and 

covalent/noncovalent chemical bond arrangement throughout a material. Lattimer was among the 

first to study TPU pyrolysis using MALDI-MS, to determine the structural properties pertaining 

to TPU and the pyrolysis conditions. Pyrolysis MS (Py-MS) is a method which heats PUs in a 

solid probe.
122

 This method allows for slow pyrolysis to be monitored with respect to time or 

temperature, forming various pyrolyzate products. Py-MS has shown that segmented TPUs 

decompose at different stages. Ravey and Pearce previously studied the decomposition of TDI 

and complex polyether (glycerol, PPO, and polypropylene ethylene oxide) based PU foams, to 

better understand decomposition reactions.
123

 Later, Lattimer et al. characterized segmented PU 

pyrolyzate products (MDI, BD, and PBA) using MALDI-MS. In their MALDI studies, higher 

mass pyrolyzate products were detected (800 – 10,000 Da species), elucidating pyrolysis 

mechanisms.
124

 More generally, MALDI-MS indicates that the degradation products followed 

two primary pathways: (1) dissociation of the urethane linkage to form isocyanato and hydroxyl 

end groups and (2) an ester exchange where cyclic pyrolyzate oligomers were produced.
122,124,125

 

In 2002, Lattimer further characterized PEG pyrolysis products at different temperatures using 

MALDI-MS. At low temperatures, pyrolyzate products were detected to undergo C-O bond 

cleavage, forming hydroxyl and ethyl ether end groups. When temperatures were increased, 

methyl ether and vinyl ether end groups became more abundant.
126

 They also studied thermal 

decomposition of pTHF pyrolyzates at low temperatures.
127

 Although MALDI-MS has been 

widely used to analyze pyrolyzate products from PPG, PEG, pTHF, PBA, and bisphenol A (BPA) 

polycarbonate, the disadvantage of this technique lies within the insolubility of some pyrolyzates 

which increase characterization complications.
126,128

 

 

1.4.4. Thermoset Polyurethanes 

 Thermoset PUs are materials that undergo a curing chemical reaction and transform from 

a liquid to a solid. During the reaction, the PU forms a cross-linked network causing the material 
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to solidify, which is irreversible. For example, shape memory foam is a type of thermoset PU that 

is manufactured for its desirable physical properties: amorphous, high crosslinking, and ultra-low 

density. Weems et al. performed an in-depth study on the degradation of porous shape memory 

foams. LC-MS techniques were used for absolute quantification and determination of degradation 

rate in biological materials.
129

 In another study, Dopico-García aimed to develop a robust HPLC-

UV-MS method for separation of curing agent polyamines (isophorone diamine (IPDA), TCD-

diamine, and triethylenetetramine (TETA)). The chromatographic separations were coupled to 

UV detection of the aromatic compounds, and MS strategies aided in the determination of the 

exact chemical structures of the curing agents.
130

 

 

1.4.5. Polyurethane Coatings  

 PU coatings have many consumer uses such as: inner surface coatings for metallic food 

or beverage containers, steel hydraulic structures to prevent corrosion, and automotive clear 

coats, primers, and sealers.
3,131

 The most common coatings are epoxy-resins which are based on 

BPA. Due to safety concerns related to BPA exposure, alternative coatings have been sought.
132

 

Polyester and thermoset polyester-polyurethane (PEPU) coatings are an alternative to epoxy-

based resins for metallic food containers. In PEPU coatings, polyisocyanates are used to facilitate 

the cross-linking of polymer networks. The high reactivity of the isocyanate moiety results in 

urethane linkages upon curing. Therefore the three-dimensional polymer network can reduce 

small molecule migration. Many studies have explored a variety of analytical MS-based 

techniques (ESI-MS, LC-MS, and MS/MS) to monitor small molecule migration in PU coated 

food containers. Driffield et al. released an LC-MS/MS method for testing residual IPDI trimers 

in experimental formulations of thermoset PEPU coatings in food containers. This method 

involved extraction of IPDI trimers from the coated panels, and derivatization of the extracted 

IPDI trimer with dibutylamine (DBA).
133

 The curing kinetics of the PEPU coating and unreactive 

analytes were monitored using chromatography based MS techniques. Bradley et al. identified 
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small molecule contaminants related to starting materials used in the formulation of coatings, 

reaction byproducts, and degradation products resulting from prolonged storage of the can. They 

used a variety of analytical techniques to detect volatile (GC-MS) and non-volatile substances 

(LC-MS).
134,135

 

 Recently, Omer et al. developed a method to predict non-intentionally added substances 

(NIAS) migrating from PEPU coatings.
136

 They constructed a database which predicted a 

combination of known monomers based on their exact monoisotopic masses. They used a global 

untargeted approach, coupling LC to a high resolution MS (LC-HRMS) to elucidate lacquer 

extract fingerprints. Both positive and negative ionization modes were tested where more intense 

signals related to NIAS were found in the positive mode compared to the negative mode, and the 

findings were consistent with other research groups.
135,137,138

 Omer’s confidence in peak 

identification was based on fragmentation patterns and chromatographic behavior of the lacquer 

samples tested.
136

 

 

1.4.6.  Polyurethane Adhesives 

 PU adhesives are known for their high performance and range of applications. PU 

adhesives have been characterized using MS-based techniques, for example, adhesive tape for 

immobilized inorganic materials 
139

 and wood adhesives for particleboard.
140

 PU adhesives are 

also used for preparing multilayered laminates to coat the inner lining of food containers. When 

the adhesive is not properly cured, the polymerization reaction can yield unpolymerized aromatic 

isocyanates, causing primary aromatic amines (PAA) when reacted with water. There are several 

methods to isolate and chemically analyze the degradation products of PAAs from PU adhesives, 

for example TDA isomers can undergo derivatization with pentafluoropropionic anhydride 

(PFPA) prior to LC-MS characterization.
140

 Marand et al. were among the first to implement this 

method of derivatization, showing the sensitivity for aromatic amines increased in TDI-based PU 

foams when derivatized prior to LC-MS analysis.
113
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 Adhesives are used to bond films together to form a laminate, for food storage. Lawson et 

al. investigated the migrants from a range of PU adhesives using MALDI-MS.
141

 Due to rising 

concern for PAAs in manufactured plastic laminates; these PU adhesives were tested to determine 

if the adhesive was fully cured prior to use.  Mortensen et al. developed an LC-MS/MS method to 

determine traces of 20 PAAs associated with PU adhesives.
142

 In another study, Aznar et al. 

quantitatively determined 22 PAAs using cation-exchange solid-phase extraction and LC-MS 

methods for characterization.
143

 Due to the relatively low detection limit of LC-MS, this method 

was advantageous for PAA detection in PU materials. Pezo et al. used a Q-TOFMS method for 

the identification and pattern recognition of PAAs in PU food packaging.
144

 In a recent study, a 

non-targeted MS approach was used for the characterization of unexpected chemicals and NIAS 

found in food packaging materials.
145

 They identified 26 potential migrants from the two 

packaging materials studied. Cyclic ester oligomers were found to migrate from the multilayer 

high barrier food contact material. Zhang et al. later completed an extensive study, performing a 

migration test on 537 commercial and/or developmental laminate samples.
146

 MS techniques such 

as electron ionization (EI-MS), chemical ionization (CI-MS), and LC-MS were used to identify 

56 short-chain cyclic oligoesters at both high and low concentration levels within the packaging 

material. 

  

1.4.7.  Encoded Polyurethanes 

 A new generation of high precision polymers is promising for a wide range of 

applications due to the synthetic ability to control radical polymerizations, stepwise syntheses, 

molecular structure and morphology. Development of polymeric material containing discrete 

encoded information and then recovering information by an MS sequencing technique is a 

growing field of research.
147–149

 Applying the encoding technique to PU materials will likely be 

increasingly utilized for the identification of counterfeit goods. In a recent study by Gunay et al., 

uniform sequence-coded PUs were synthesized by a chemoselective multistep-growth process 
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and sequenced using negative-mode MS/MS. The sequence-coded PUs are easily sequenced by 

MS due to their carboxylic acid deprotonation and predictable C-O carbamate fragmentation 

pathway.
150

 In a complementary study, sequence-coded PUs, that contain digitally encoded 

oligourethanes with two monomers defined by arbitrarily binary units, 0 and 1 bits, can be used as 

molecular barcodes and blended in low amounts with other polymeric materials. These sequence-

coded PUs were tested as anticounterfeiting tags for the labeling of methacrylate-based 

intraocular implants and were determined to be viable coding and labeling methods due to the 

ease of MS/MS identification by sequencing.
151

 

 

1.5. Other MS-Based Techniques for PU Characterization  

 PUs are produced through a wide range of diisocyanates and polyols to make flexible and 

rigid foams, TPUs, thermosets, coatings, adhesives, sealants, elastomers, and many commercial 

products. However, in this review mainly soft ionization sources such as ESI and MALDI have 

been reviewed. There are many useful MS ionization sources that are appropriate in PU 

characterization. Ion sources specific for liquid sample introduction include atmospheric pressure 

chemical ionization (APCI), atmospheric pressure photoionization (APPI), desorption 

electrospray ionization (DESI), and electrosonic spray ionization (ESSI).
152–158

 For solid analysis, 

atmospheric solid analysis probe (ASAP) is used, and for volatile samples GC is useful. A few 

studies have used alternative ionization sources to characterize PU samples. DESI and ESSI have 

previously been proven to provide accurate average MW and MWD of industrial polymers, both 

as solids and in solution.
156

 In a study by Bonnaire et al., PU films were analyzed on two 

instrumentation platforms: DESI-MS and ESI-MS. DESI-MS was found to generate mass spectral 

profiles of irradiated PU films with no sample preparation; when compared to conventional ESI-

MS methods, the same species were observed confirming DESI-MS as  a valid technique for PU 

film characterization.
154

 Lebeau et al. used ASAP-MS applications for the characterization of PU 

copolymer material. ASAP-MS was found to require no sample pretreatment. ASAP-MS was 
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able to differentiate between chemical structures within the PU, polyester and polyether 

monomers. ASAP-MS was easy for direct analysis of crude polymer samples.
155

 

 

1.6. Concluding Remarks  

 PUs are versatile materials contributing to a wide variety of societal and consumer 

applications. In this study, MS-based techniques used to characterize PU hard and soft segments, 

precursors, and intact PU materials have been extensively reviewed. The literature reviewed 

highlights a variety of techniques such as soft ionization sources ESI and MALDI, IM-MS, 

MS/MS, and computational methods for data interpretation. Additionally, this review highlights 

areas of PU research that are in need of further MS-based characterization studies. 
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CHAPTER II 

 

STRUCTURAL CHARACTERIZATION OF METHYLENEDIANILINE REGIOISOMERS BY 

ION MOBILITY-MASS SPECTROMETRY, TANDEM MASS SPECTROMETRY, AND 

COMPUTATIONAL STRATEGIES  

II. ELECTROSPRAY SPECTRA OF 3 RING AND 4 RING ISOMERS 

 

2.1. Introduction 

Methylenedianiline (MDA) is commonly used as the starting material in the production 

of methylene diphenylene diisocyanate (MDI), which is a major hard block component in 

polyurethanes. Industrial grade MDA is composed of 2-ring MDA and larger multimeric species 

which are formed by the reaction of aniline and formaldehyde and named according to the 

number of aniline rings present.
1,2

 Structural isomers reflecting attachment of additional anilines 

at different sites can exist in industrial grade MDA which contributes to heterogeneity in many 

polyurethane systems.
3
 Determining preferred protonation sites and location of aniline 

attachments for larger MDA multimers is of great interest in polymer chemistry, because isomeric 

characterization can contribute to an enhanced understanding of structure–property relationships 

of many commercially relevant MDI-based polyurethane (PU) systems.
4
  

In our previous work, purified 2-ring MDA regioisomers (4,4′-MDA, 2,4′-MDA, and 

2,2′-MDA) were structurally characterized using tandem mass spectrometry (MS/MS), ion 

mobility-mass spectrometry (IM-MS), and computational modeling.
5
 We observed that 

protonation can occur both on amine groups and on the aniline ring, which is consistent with 

previous findings.
6
 Depending on the location of the amine group in the 2-ring MDA species, 

gas-phase protonation on the amine can lead to low energy fragmentation pathways via a charge-

directed process.
7
 In the present study, we aim to characterize purified 3-ring and 4-ring MDA  
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Figure 2.1. Structures of 3-ring and 4-ring MDA (theoretical neutral molecule monoisotopic 

masses = 303.17 and 408.23 Da, respectively). (a) All para substitution; (b) one ortho 

substitution. Potential protonation sites are labeled with an asterisk. 
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multimeric regioisomers. Possible protonation sites on the 3-ring and 4-ring MDA species are 

illustrated in Figure 2.1. In Figure 2.1a, each aniline ring is attached with its amine group in the 

para position which represents the primary solution-phase conformation based on NMR studies 

(Supporting Information, Figure B.1 and B.2). Due to the location of the amine groups and 

bridging carbons, protonation in Figure 2.1a is possible only on the amine group and not the 

aniline ring. The structures shown in Figure 2.1b have one terminal aniline ring with its amine 

group attached in the ortho position (this structure is only representative of <5% of the NMR 

signals for both the 3-ring and 4-ring MDA). Thus, while it is possible for both 3-ring and 4-ring 

MDA species to have the last aniline ring attached with an amine group in the ortho position 

(Figure 1b), this isomer is not preferred. As a result, this manuscript will focus on the structures 

and protonation sites shown in Figure 1a. 

 A series of MS techniques are utilized in this study to structurally characterize these 

larger MDA multimers. MS/MS is used to map fragmentation pathways of the MDA multimers, 

while IM-MS provides broad insight into the gas-phase conformations of ionized MDA species.
8-

11
 Two IM-MS instruments are utilized in this study: a commercial traveling wave instrument 

which supports multiple stages of fragmentation and a commercial drift tube instrument which 

supports direct collisional cross section (CCS) measurements in a variety of drift gases. 

Computational strategies can then supplement these experimental approaches to provide 

enhanced structural interpretation. These combined techniques facilitate the separation and 

characterization of isomeric species that exist for 3-ring and 4-ring MDA. The structural 

characterization of these multimeric MDA species and their fragments provides a basis for 

characterization of industrial MDA and MDI mixtures. 

 

2.2. Experimental Methods 

2.2.1. Materials 

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
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 3-ring MDA and 4-ring MDA samples were provided by Dr. Stefan Wershofen, Bayer 

MaterialScience AG, 47812 Uerdingen, Germany. The authenticity of each sample was 

determined by 
1
H NMR, as provided in the Supporting Information (Figures B.1 and 

B.2). Tetralkylammonium salts and solvents were purchased from Sigma-Aldrich (St. Louis, 

MO). These included tetraalkylammonium bromides (TAA 1-8) and HPLC grade methanol. 

Water blended with 0.1% formic acid (optima grade) was obtained from Fisher Scientific. 

 

2.2.2. Instrumentation 

Traveling Wave ESI-IM-TOF/MS 

 Synapt G2 and G2-S (Waters Corporation, Milford, MA) mass spectrometers were used 

for acquiring MS, traveling wave (TW) IM-MS, and tandem MS/MS data. The MS/MS 

capabilities of these instruments enable fragmentation experiments to be conducted both before 

and after the IM region. Although collision cross section (CCS) values cannot be obtained 

directly from the kinetic theory of gases using TW IM-MS experimental drift time values, a 

relative CCS method that uses quaternary ammonium salts as CCS calibration standards was 

utilized to obtain CCS data from these instruments.
12

  

 Further experimental details can be found from our earlier study,
5
 but, briefly, the TWIM 

drift cell settings were as follows: TWIM pressure 3 mbar (2.25 Torr), electrodynamic wave 

height 35 V, wave velocity of 700 m/s, TOF resolution ca. 20,000 (m/Δm), 3.00 kV ESI capillary 

voltage, 80 °C source temperature, 150 °C desolvation temperature, 10 V sampling cone, 2 V 

(source offset) extraction cone, 20 L/h cone gas flow, 1 mL/min trap gas flow, and 90 mL/min 

IMS gas flow. Sodium formate clusters were used for TOFMS calibration. Collision-induced 

dissociation (CID) experiments were performed either prior to or following TWIM mobility 

separation (MS/IM-MS, and MS-IM/MS, respectively). Lab frame energies were converted to 

center-of-mass (COM) collision energies for MS/MS experiments to better represent the energy 

available for rearrangement and fragmentation.
13

 All samples were analyzed as positive ions 
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generated by ESI. MDA 3-ring and 4-ring polymer samples were dissolved at a concentration of 

0.1 mg/mL in 9:1 methanol:water, the latter containing 0.1% formic acid (v/v). A direct infusion 

flow rate of 6.00 μL/min was used for all samples. 

 

Drift-Tube ESI-IM-TOFMS 

 Drift tube ion mobility (DTIM) measurements using both N2 and He buffer gases were 

performed on a commercial ESI-IM-QTOF mass spectrometer (6560, Agilent Technologies, 

Santa Clara, CA) which was modified to support various drift gases. Details of this 

instrumentation are provided elsewhere.
14

 Briefly, the IM-MS consists of a 78 cm uniform-field 

drift tube coupled to a QTOF mass spectrometer (m/Δm ca. 40,000). The buffer gas was 

maintained at a pressure of ca. 4 Torr, and drift voltages were varied in order to correct for the 

non-IM flight time of ions through the interfacing ion optics. CCS values were calculated from 

drift times using the Mason-Schamp equation. Nitrogen-based CCS measurements were obtained 

for direct comparison with TWIM CCS measurements, while helium-based CCS values were 

measured for comparison with computational CCS calculations. MDA samples were analyzed at 

a concentration of 0.095 mg/mL in 9:1 methanol:water, the latter containing 0.1% formic acid 

(v/v). A direct infusion flow rate of 6.00 μL/min was used. 

 

2.2.3. Computational Methods 

 As IM provides a general picture of ion structure in the form of an orientationally 

averaged surface area (CCS), IM-MS results are often supplemented with computational studies 

to gain further insight into the gas phase conformations of the ion of interest. A more detailed 

description of the computational methods used here is included in our previous paper in this 

series.
5
 A simulated annealing protocol implemented in AMBER

15
 was used for conformational 

sampling with a separate simulation for each of the possible protonation sites on both the 3-ring 

(3 sites) and 4-ring (4 sites) MDA species. A combination of the projection approximation (He)  
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Figure 2.2. (a) Mass spectra of 3-ring and 4-ring MDA using direct infusion ESI-TOFMS. (b) 

Tandem mass spectra for 3-ring and 4-ring MDA parent ions ([M + H]
+
 = 304.18 Da and [M + 

H]
+
 = 409.24 Da, respectively). 
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and the trajectory method (N2) utilizing MOBCAL
16-18

 was then used to calculate theoretical CCS 

values for the generated conformations. The theoretical conformations were then aligned with the 

experimental CCS values to provide structural insight into the 3-ring and 4-ring MDA isomers. 

Alignment of theoretically generated conformations with experimental CCS values is shown in 

the Supporting Information, Figures B.3 and B.4. 

 

2.3. Results and Discussion 

2.3.1. Characterization by MS and Tandem MS 

 ESI spectra were obtained for the protonated 3-ring ([M + H
+
] = 304 Da) and 4-ring ([M 

+ H
+
] = 409 Da) MDA species and are shown in Figure 2.2a. In addition to the protonated 

precursor ions, significant peaks are observed at 211 and 106 Da for the 3-ring MDA species and 

peaks at 316, 211, and 106 Da are observed for the 4-ring MDA. These peaks correspond to 

fragments of the precursor ion and become more intense in the tandem mass spectra as shown in 

Figure 2.2b. Even before collision energy is applied to induce fragmentation, the peak at 211 Da 

for the 3-ring and 316 Da for the 4-ring MDA correspond to the base peaks of the spectra, 

signifying that the corresponding precursor ions are readily dissociated. It is also interesting to 

note that the mass difference of 93 Da between the precursor ion and its most abundant fragment 

present in the spectra is the same mass difference that was observed for the 2-ring MDA species 

between the 199 Da precursor ion and its major fragment at 106 Da, corresponding to the loss of 

a terminal neutral aniline. 

In addition to the fragment peaks, additional signals are observed at m/z 152.6 

and m/z 158.6, respectively, for both the 3-ring and 4-ring spectra. These masses correspond to 

doubly charged ions for the 3-ring and the 4-ring isomers based on isotope spacing. When these 

ions were mass selected and fragmented via an MS/MS experiment, singly charged ions at 

higher m/z values were produced further indicating that these peaks correspond to doubly charged 

species (Supporting Information, Figures B.5 and B.6). 

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig2
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig2
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#notes-3
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Figure 2.3. Collisionally activated CCS profiles of [M + H]
+
 ions for (a) 3-ring MDA and (b) 4-

ring MDA. Center of mass energies are shown. The inset relative percentages represent signal 

intensities compared to those without collisional activation. Vertical lines are added for visual 

alignment. Collision-induced dissociation curves monitoring the transition of precursor ions to 

fragment ions for (c) 3-ring MDA and for (d) 4-ring MDA. Center of mass collision energies 

(CE) are shown on the lower axis. (See text for details.) 
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The conversion from precursor ion to fragment ions was monitored as a function of 

applied collision energy for both the 3-ring and 4-ring MDA as shown in Figure 2.3. The IM-

MS/MS structural depletion of the precursor ion is shown in Figure 2.3a,b, and the breakdown 

curves for the fragment ions are shown in Figure 2.3c,d. These breakdown curves show the 

percentage of precursor ion to fragment conversion observed in the spectra at various collision 

energies and were obtained by taking the intensity of the indicated fragment ion and dividing by 

the intensity of its corresponding precursor ion. In Figure 2.3c, 3-ring MDA has two breakdown 

curves, representative of the 106 and 211 fragments. The precursor ion breaks down into the 211 

fragment at a significantly lower energy threshold than the 106 fragment. Figure 2.3d 

corresponds to 4-ring MDA, which has three curves, representative of the 106, 211, and 316 

fragments. Again the 316 and 211 fragments form at lower collision energies than the 106 

fragment. This observation is further discussed later in the manuscript in the context of IM and 

computational results. 

In our previous study involving 2-ring MDA, the 106 fragment formed readily when 

external amines were located ortho to the bridging carbon (2,2′-MDA and 2,4′-MDA) but not 

readily for the 4,4′-MDA. The observation that the 106 fragment requires higher collision energy 

than the other isomers to form from both the 3-ring and 4-ring MDA species suggests that the 

external amines are located in para positions to the bridging carbon in a similar manner as the 2-

ring 4,4′-MDA. The observation of the 106 fragment ion forming at higher collision energies 

further indicates that the structures shown in Figure 2.1a are accurate structural depictions of the 

3-ring and 4-ring isomers. However, when comparing Figure 2.3c,d with the 2-ring MDA 

breakdown curves from our previous study there is a notable difference between the 3-ring and 4-

ring isomers, relative to the 2-ring isomers. Specifically, the 2-ring isomers showed ~30% 

fragmentation at a center-of-mass (COM) of 4.0 eV, and the 4-ring isomer in this work shows 

essentially the same behavior in Figure 2.3d. On the other hand, the 3-ring isomer requires a 

collision energy of 5.8 eV to reach a similar 30% fragmentation yield. This indicates that there 

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
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must be a significant structural difference between the 3-ring and 4-ring isomers, making 

production of 106 Da ions a higher energy pathway in the 3-ring isomer system, vide infra. 

 

2.3.2. Structural Analysis Using IM-MS and Computational Methods 

Collision cross section (CCS) values were measured for the [M + H]
+
 ions using both 

TWIM and DTIM instrumentation and are provided in Table 2.1. The number of measurements 

for each CCS value is shown in parentheses. Slight differences were observed for the N2 CCS 

values between the two instrument platforms most likely reflecting the chemical mismatch of the 

TAA calibration standards used for TWIM CCS measurements. As discussed in our previous 

study, these differences likely reflect the exposure of the proton charge on the MDA molecules, 

which would result in stronger inelastic interactions with the N2 buffer gas, as compared to the 

charge-shielded tetraalkylammonium salts used for calibration. Of particular note is the second 

conformation observed in the mobility spectrum for 4-ring MDA using the TWIM (199.5 Å
2
) but 

not observed in the DTIM analysis. This is reflective of the gas phase stability of these ions; the 

temperature of the DTIM ion source (225 °C) probably causes thermal depletion of the more 

labile species, which is not depleted in the lower temperature TWIM ion source (80 °C). CCS 

values were also obtained in helium in order to provide better comparison with the theoretical 

CCS values calculated for the computationally generated conformations. Alignment of theoretical 

and experimental data in both helium and nitrogen drift gases is available in the Supporting 

Information, Figures B.3 and B.4. 

The TWIM, IM traces obtained in nitrogen shown in Figure 2.4a indicate two 

conformations for both the 3-ring and 4-ring MDA species. The larger CCS conformation 

observed for the 3-ring MDA species is much less abundant than the smaller CCS conformation, 

accounting for ~2%. For the 4-ring MDA, the larger CCS conformation is more abundant than 

the smaller CCS conformation, the latter accounting for ~8% of the intensity. The IM-MS/MS 

structural depletion study in Figure 2.3 shows the stability of these conformations at varying 

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#tbl1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#notes-3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#notes-3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
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collision energies. The mobility profiles were obtained at increasing collision energies to compare 

the depletion rates of the precursor ions. Only the smaller CCS 3-ring MDA conformation 

appears once collision energy is applied (Figure 2.3a) compared to the IM trace with no collision 

energy (Figure 2.4a). The two conformations for the 4-ring MDA are visible for all collision 

energies used. Figure 2.3b also shows that the larger CCS conformation of the 4-ring MDA 

decreases at a much faster rate (100% to 52% to 6%) than the smaller CCS conformation (100% 

to 73% to 43%) indicating that the species having the larger CCS conformation is less stable than 

species represented by the smaller CCS. Although we ascribe the rate of fragmentation to directly 

depend on the conformational state of the precursor, or directed thermodynamically, we cannot 

rule out minor influence arising from proton mobility. 

In order to facilitate direct comparison between the 3-ring and 4-ring MDA structures, the COM 

collision energies are considered. Using COM energies, the 1.2 eV in the middle panel for the 3-

ring MDA can be compared with the 1.3 eV in the bottom panel for the 4-ring MDA, showing 

that the 3-ring and smaller 4-ring MDA CCS conformations decrease at similar percentages 

(~50%) which suggests that the two have similar structural conformations. It is also worth noting 

that the depletion rates do not mimic those observed for the 4,4′, 2,2′, or 2,4′ 2-ring MDA isomers 

from our previous paper. This observation suggests two differences between the 2-ring MDA 

isomers and 3-ring and 4-ring MDA. First, from our earlier paper, the 4,4′-MDA 2-ring isomer 

has the same [M + H]
+
 intensity at 0.0 and 1.7 eV and decreased only to 46.2% at 4.2 eV. In this 

work the 3-ring isomer [M + H]
+
 intensity in Figure 2.3a is reduced to 13.2% at 1.7 eV, while the 

major 4-ring isomer peak shows only 6.1% at 1.3 eV in Figure 2.3b. This suggests that, although 

the 4,4′-MDA 2-ring, the 3-ring, and the 4-ring isomers all have terminal para-amino groups, 

different processes dominate fragmentation for the higher order multimers which are 

characterized by the m/z 211 and 106 fragments. Second, the behavior of the lower abundance 

peak in Figure 2.3b extrapolates to a value of about 25% intensity for the energy of 1.7 eV, a 

behavior comparable to that of the 2,2′- and 2,4′-MDA 2-ring isomers from our earlier study.  

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig3
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Figure 2.4. (a) CCS profiles for 3-ring MDA (top) and 4-ring MDA (bottom) extracted from 

TWIM data. (b) Conformational space plots for the possible protonation sites of 3-ring MDA 

(top) and 4-ring MDA (bottom) generated using computational conformational search methods. 

The theoretical nitrogen CCS is plotted against the relative energy for each conformation. 

Theoretical conformations for each protonation site are black, red, and blue, respectively, across 

the structure depicted in Figure 2.1 for the 3-ring MDA and black, red, cyan, and blue, 

respectively, across the structure for the 4-ring MDA. Insets of the conformations resulting from 

individual protonation species are shown in (c) and (d) to clarify the conformational clusters 

present on each plot. 
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These observations indicate that fragmentation of the 3-ring and 4-ring isomers must be 

dominated by the internal amine group(s), leading to lower energy pathways, vide infra. 

Computational modeling generates theoretical structures that can be aligned with the 

experimental data according to their CCS values. This gives insight into the conformations that 

were observed experimentally and why a difference in stability is observed. For both 3-ring and 

4-ring MDA, the structures shown in Figure 2.1a were modeled separately with an additional 

proton for each possible protonation site. This resulted in 3 unique starting structures for the 3-

ring MDA and 4 unique starting structures for the 4-ring MDA. The conformational space plots 

based on the molecular dynamics conformational space sampling simulations are shown in 

Figure 2.4b. The overlaid colors on the conformational space plots represent independently 

modeled protonation sites, with the color scheme following protonation on the amine nitrogen 

from left to right across the structures shown in Figure 2.1a. For the 3-ring MDA, the protonation 

sites are indicated in black, red, and blue, respectively, across the structure, and for the 4-ring 

MDA the protonation sites are indicated in black, red, cyan, and blue, respectively, across the 

structure. Figure 2.4c,d show the results from each independently modeled protonation site that 

are combined in Figure 2.4b. Conformation space plots for each protonation site for both helium 

and nitrogen exhibit similar distributions as seen in the Supporting Information, Figures B.3 

and B.4. The plots in Figure 2.4b show two distinct conformational clouds indicated with the 

black circles for both the 3-ring and 4-ring MDA, which agrees with the experimental bimodal 

IM traces in Figure 2.4a. 

 Figure 2.5 shows selected conformations based on root mean squared deviation (RMSD) 

clustering and alignment with experimental CCS values. Each conformation is labeled with its 

theoretical CCS value along with the percentage of conformations that the structure represents 

based on RMSD clustering analysis. Each conformation shown represents a different protonation 

site and thus a separately modeled set of conformations. The percentage indicates how 

representative the conformation shown is of the independently modeled protonation sites and  

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#notes-3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#notes-3
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
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Figure 2.5. RMSD clustering representatives from computational conformational sampling are 

shown for each of the protonation sites for the 3-ring MDA (a−c) and for the 4-ring MDA (d−i). 

Labeled bond distances are used to show the proximity of the additional proton to the terminal 

nitrogen or bridging carbon that would lead to a 1,5-hydrogen shift fragmentation. 
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therefore does not show relations between the conformations in Figure 2.5 since each of these 

protonated species was modeled separately. A comprehensive set of representative conformations 

that were generated for each protonation site can be found in the Supporting Information, 

Figures B.7–B.31. 

Conformations for the 3-ring MDA are shown in Figure 2.5a–c. The conformations in 

Figure 2.5a,b represent the smaller CCS conformational space cluster and are the result obtained 

when protonation occurs at the amines on the terminal rings. These conformations agree with 

experimental CCS helium values obtained on the DTIM instrument (Table 2.1) and are the most 

representative structures based on RMSD clustering analysis. The smaller CCS, and more stable 

conformation of the 3-ring MDA, reflects the structure in which the two external amine groups 

share the additional proton. Likewise, the conformation in Figure 2.5c is representative of 

protonation on the internal amine and aligns with the larger CCS conformational space cluster for 

the 3-ring MDA (Figure 2.4b). This conformation is a cluster representative structure but due to 

gas-phase stability does not have a corresponding experimental CCS value from the DTIM 

instrument. Given that the CCS value we observe experimentally for the 3-ring MDA aligns with 

the smaller CCS conformational cluster, we surmise that the larger experimental CCS value 

corresponds to the larger CCS conformational space cloud. The position of the proton on the 

internal amine is very similar to that of protonation on both the 2,2′ and 2,4′ 2-ring MDA species 

when protonation occurs on the ortho amine. It is also important to note that this additional 

proton on the amine is aligned in an energetically favorable position with the most basic region of 

the adjacent aniline ring. 

For the 4-ring MDA, two conformational clusters exist in Figure 2.4b with representative 

structures shown in Figure 2.5d–i. The conformations in Figure 2.5d,e are representative of the 

smaller CCS cluster, in agreement with Table 2.1, and represent conformations that are 

protonated on the external amines. Protonation at the periphery of the molecule form smaller CCS 

conformations, similar to the 3-ring MDA, that wrap around and share the proton between the 

https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#tbl1
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig4
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#fig5
https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01084#tbl1
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two external amine groups. The conformations in Figure 2.5f–i are representative of the larger 

CCS cluster, for which there are two possibilities. The first is shown in Figure 2.5f,g where 

protonation occurs on the external amines, similar to the conformations in Figure 2.5d,e, but here 

the conformation remains in an extended form rather than forming a cyclic species to share the 

proton. Figure 2.5h,i shows the other possibility where protonation occurs on one of the two 

internal amines. Again, this position of the proton on the internal amine is very similar to that of 

protonation on both the 2,2′ and 2,4′ 2-ring MDA species when protonated on the ortho amine. 

This similarity suggests the 3-ring and 4-ring MDA should fragment via a similar mechanism to 

that of the 2-ring MDA. 

There is an interesting difference in the IM intensities shown in Figure 2.3a,b for both the 3-ring 

and 4-ring MDA. As indicated above, the 3-ring MDA peak corresponding to the lower CCS 

structures (Figure 2.5a,b) is intense, whereas the lower CCS peak for the 4-ring MDA spectra 

(Figure 2.5d,e) is much lower in abundance. Also, the onset of the 106 Da fragment peak is 

accessed at higher collision energies for the 3-ring isomer, as seen in Figure 2.3c. These 

observations correlate well with the known behavior of macrocyclic structures. Specifically, there 

is an optimum size for the formation of large cyclic structures, the most stable in the range of 15 

atoms in the ring.
19

 The cyclic 3-ring MDA structures in Figure 2.5a,b have 16 atoms, while the 

cyclic 4-ring MDA structures in Figure 2.5d,e are composed of 20 atoms; and thus the former 

should be the more stable. Compatible with this, the noncyclic structures in Figure 2.5f,g are 

prominent for the 4-ring MDA but not for the 3-ring isomer. Because of the shared hydrogen in 

Figure 2.5a,b this stability is reflected in the higher fragmentation energy required for 

dissociation of the 3-ring MDA. A similar effect has been noted previously for hydrogen transfer 

reactions in the MS/MS fragmentation of aramids.
20
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Scheme 2.1. Proposed fragmentation pathways for 3-ring and 4-ring MDA structures. 
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2.3.3. Mechanism for Protonation and Fragmentation of MDA Isomers 

Based on the conformational observations from both IM and theoretical simulations and 

the results from tandem MS studies, fragmentation mechanisms can be suggested for both the 3-

ring and 4-ring MDA species. These mechanisms are shown in Scheme 2.1. For the 3-ring MDA, 

there are two fragments in the MS/MS spectra in Figure 2.2b at 106 and 211 Da compared to the 

2-ring MDA isomers in our previous manuscript which only yielded a single fragment at 106 Da. 

Scheme 2.1a shows how both of these fragments are formed from the 304 Da precursor ion. 

Here, the 106 Da fragment forms via an α-cleavage reaction of the 304 Da ion that also results in 

the loss of a neutral 198 Da fragment that mimics the 2,4′ 2-ring MDA. The conformation of the 

304 Da precursor ion for this reaction is shown in Figure 2.5a,b and has a theoretical He CCS of 

105.3 Å
2
which is very similar to the He experimental value in Table 2.1 of 105.5 Å

2
. As 

previously mentioned, the 15-member ring present in these conformations is energetically 

favorable and must therefore be opened before the α-cleavage reaction can occur. This explains 

why there is not significant formation of the 106 Da fragment in Figure 2.3c until ca. 4 eV. 

Figure 2.3c also shows that at 0 eV the 304 Da fragment is already converted to the 211 Da 

fragment over 70%, suggesting that this fragmentation pathway is readily accessible. This low 

energy 1,5 hydrogen shift mechanism was previously observed for the 2,2′ and 2,4′ 2-ring MDA 

isomers but not with protonation on an internal amine as shown here in Scheme 2.1a with the 3-

ring MDA. Although the larger 3-ring conformation shown in Figure 2.5c does not have a 

corresponding experimental He CCS value, this conformation is assigned to the 304 Da precursor 

ion for the 1,5 hydrogen shift fragmentation pathway due to the location of the additional proton 

near the most basic site on the adjacent aniline ring. This 1,5 hydrogen shift fragmentation results 

in loss of neutral aniline as well as the 211 Da fragment. 

 For the 4-ring MDA there are three fragments present in the MS/MS spectra in 

Figure 2.2b at 106, 211, and 316 Da. Scheme 2.1b shows how these three fragment ions are 

formed from the 409 Da precursor ion. Similar to the 3-ring MDA, the 106 Da fragment forms 
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via a high-energy α-cleavage reaction. Also similar to the 3-ring MDA, the 4-ring MDA forms a 

cyclic conformation as seen in Figure 2.5d,e with theoretical He CCS values of 133.1 and 132.7 

Å
2
, respectively. These conformations exhibit the best agreement with the experimental He CCS 

value of 132.7 Å
2
 in Table 2.1. At 20 atoms though, these cyclic structures are no longer as 

energetically favored as the 3-ring MDA, and therefore the extended conformations shown in 

Figure 2.5f,g are also possible. The proposed favorability of this extended conformation is 

further validated by the observation that significant production of the 106 Da fragment occurs at 

2.75 eV in Figure 2.3d compared to the 4 eV for the 3-ring MDA. Additionally, the larger CCS 

conformation for the 4-ring MDA is more abundant than the smaller CCS conformation in 

Figure 2.4a. Figure 2.3d also shows that the 409 Da precursor ion has converted to the 316 Da 

fragment at 94% at 0 eV. Similar to the 3-ring MDA, the low energy 1,5 hydrogen shift 

fragmentation mechanism is initiated by protonation on an internal amine, which is represented 

by the conformation in Figure 2.5h. This fragmentation reaction results in loss of neutral aniline 

as well as the 316 Da ion fragment. The 211 Da fragment of the 4-ring MDA also occurs via a 1,5 

hydrogen shift initiated by protonation on an internal amine, but instead of the protonated amine 

being located adjacent to an external aniline this internal amine is located directly in the middle of 

the 4-ring MDA structure with two 2-ring MDA units on each side as shown in the conformation 

in Figure 2.5i. In order for the fragmentation mechanism to occur, a larger portion of the 

structure must be orientated such that the additional proton is in proximity to the most basic site 

on the adjacent aniline ring. This explains why significant formation of the 211 Da fragment does 

not occur until 2.25 eV in Figure 2.3d. These fragmentation mechanisms observed for the 3-ring 

and 4-ring MDA, which mimic the α-cleavage and 1,5 hydrogen shift observed for the 2-ring 

MDA isomers, will serve as the basis for characterizing larger MDA sample mixtures possessing 

additional internal amines which can serve as possible protonation sites. 
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2.4. Conclusions 

 In this study, 3-ring and 4-ring MDA species have been characterized using an MS-based 

analytical approach. We conclude that the protonation sites for the 3-ring and 4-ring MDA 

regioisomers are only at the amine group. Additionally we determined that protonation on either 

external or internal amine groups greatly influences the gas-phase stability of these species. The 

use of MS/MS, IM-MS, and computational modeling allowed for the structural characterization 

of these gas-phase ions and further promotes the benefit of combining several different MS-based 

technologies for comprehensive characterization studies. 

 These larger MDA units are composed primarily of linking anilines with the amine group 

in the para position to the bridging carbon but do not maintain the gas-phase stability of the 4,4′-

MDA due to possible protonation on internal amine groups, leading to charge-directed 

fragmentation of the 3-ring and 4-ring MDA. A thorough understanding of the fragmentation 

mechanisms initiated by internally protonated amines for both the 3-ring and 4-ring MDA will 

greatly facilitate the interpretation of fragmentation spectra of the larger MDA units which are 

expected to dissociate via similar mechanisms. Further studies on larger MDA units will allow us 

to observe if this trend continues as chain length increases or if other, more stable attachment 

patterns form. Understanding that these chains fragment easily when protonated on internal 

amines will prove helpful when identifying the structures of precursor and fragment ions with 

MS. Tandem MS studies will provide fragmentation titration curves that can be compared to 

those for the 2-, 3-, and 4-ring MDA to determine if ions formed from the larger MDA units 

fragment via similar pathways. IM and theoretical simulations have been demonstrated to 

separate different protonation sites for the 2-, 3-, and 4-ring isomers and should help to identify 

different conformers in mixtures of larger MDA species, where the structural heterogeneity is 

more diverse. 
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CHAPTER III 

 

STRUCTURAL CHARACTERIZATION OF METHYLENEDIANILINE REGIOISOMERS BY 

ION MOBILITY AND MASS SPECTROMETRY: III. MALDI SPECTRA OF 2-RING 

ISOMERS 

 

 3.1 Introduction 

Previously, electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS) was 

used to characterize the MDA 2-ring regioisomers (i.e., 2,2’-MDA, 2,4’-MDA, and 4,4’-MDA) 

and larger multimeric species.
1,2

 These 2-ring MDA isomeric structures and their probable 

protonation sites are denoted with asterisks in Figure 3.1. The available protonation sites that 

played a critical role in our earlier manuscripts deserve repeating because they are critical for 

describing the gas-phase behavior of MDA. The 4,4’-MDA species can protonate only on para-

amino groups (p-NH2), whereas 2,2’-MDA can protonate at two locations: on ortho-amino groups 

(o-NH2) or on the ring para to the ortho-amino group. The 2,4’-MDA species has all three types 

of protonation sites. The stability of these ions was monitored in ESI by measuring the degree of 

fragmentation of the parent ion ([M+H]
+
 = 199 Da) to form the characteristic 106 Da fragment 

ion. 4,4’-MDA (double para-substituted) proved to be much more stable than either 2,2’-MDA 

(double ortho-substituted) or 2,4’-MDA (combined ortho- and para-substituted) isomers. These 

findings were supported experimentally by MS, MS/MS, IM-MS, and computational modeling. 

 In the present study, 2-ring MDA isomers were characterized using matrix assisted laser 

desorption/ionization (MALDI), a technique commonly used in MS analysis of polymers
3-6

 

including polyurethanes.
7,8

 The differences between ESI and MALDI are widely understood in 

the MS and analytical communities.
9,10

 Both are soft ionization sources (i.e., generally retaining 

structural integrity of the ion of interest), and frequently form the same parent ions. However, the 

laser-induced MALDI process can be more energetic, thus generating different precursor ions 
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Figure 3.1. MDA 2-ring isomers and 2,7-DAF. Neutral molecular masses (M) are shown along 

with those for [M+H]
+
 (2,7-DAF) and [M-H]

+
 (MDA) ions. Possible protonation sites are noted 

with an asterisk (*).  
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than those produced by ESI. We have observed the formation of two unique precursor ions [M-

H]
+
 = 197 Da and [M

.
]

+
 = 198 Da, and suggest that they result from the MALDI process in 

addition to the [M+H]
+
 = 199 Da species observed alone in ESI. MS/MS, IM-MS, and 

computational strategies were utilized to characterize these new precursor ion species. 

 

3.2 Experimental Section 

Materials 

Sample preparation and experimental parameters have been previously described in detail 

for ESI studies, but a few details will be mentioned here
1
. Methylenedianiline (MDA) 2-ring 

isomers (2,2’-MDA, 2,4’-MDA, and 4,4’-MDA) were provided by Dr. Stefan Wershofen (Bayer 

MaterialScience AG, 47812 Krefeld, Germany). Methanol and water with 0.1% formic acid were 

obtained from Fisher Scientific (Waltham, MA). Tetralkylammonium salts, α-cyano-4-

hydroxycinnamic acid (CHCA), alkali salts, and 2,7-diaminofluorene (2,7-DAF) were obtained 

from Sigma-Aldrich (St. Louis, MO). Samples were dissolved at a concentration of 1 mg/mL in 

9:1 methanol/water containing 0.1% formic acid (v/v). Each MDA isomer was combined in a 10:1 

matrix-to-analyte ratio and 2 to 3 layers of 0.5 μL of sample were spotted on a 100-well MALDI 

plate.  

 

Traveling Wave MALDI-IM-TOF/MS   

A traveling wave IM-MS (TWIM-MS, Synapt G2-S, Waters Corporation, Milford, MA) 

with interchangeable MALDI and ESI sources was used to acquire MS, IM-MS, and MS/MS data 

either before or after the IM region.
11

 Although collision cross section (CCS) values cannot be 

obtained directly from TWIM experimental drift time values, a relative CCS method that uses 

quaternary ammonium salts as CCS calibration standards was utilized to obtain CCS data from 

TWIM.
12-14
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 The MALDI source for the Synapt G2-S mass spectrometer features a frequency-tripled 

Nd:YAG laser which emits 355 nm at a 1 kHz pulse repetition rate. Laser attenuation ranged 

from 190 to 300 (arbitrary units), with 270 selected for all experiments unless otherwise noted. 

TOF calibration was performed using CHCA matrix cluster peaks. The TWIM drift cell settings 

were as follows: TWIM pressure 3 mbar nitrogen (2.25 Torr), electrodynamic wave height 35 V, 

wave velocity 700 m/s, TOF resolving power ca. 18,000 m/Δm at 200 m/z. Collision-induced 

dissociation (CID) experiments were performed using argon as the target gas. The mass resolving 

quadrupole was set to 18 resolving power for the MS/MS experiments. This provided the best 

separation of the three precursor ion species without significant signal loss. Experiments were 

conducted to evaluate the influence of the MALDI laser fluence and the resolving power of the 

MS/MS resolving quadrupole on the resulting intensities of the precursor ions and these results 

have been included in the Supplemental Information, Figure C.10. The results of these 

experiments demonstrate that the resolving quadrupole can efficiently separate the three precursor 

ions and that laser fluence does not affect the relative intensities of the three different ion forms. 

 

Computational Methods  

To gain more insight into the experimental results, both a molecular dynamics 

conformational sampling calculation and quantum mechanical bond energy calculations were 

performed. A detailed description of the methods used can be found in the Supporting 

Information as well as in previous manuscripts, but briefly, a simulated annealing calculation 

implemented in  AMBER
15

 was used to sample the conformational space of the [M-H]
+
, and 

[M+H]
+
 cations for the 2-ring MDA isomers. Corresponding theoretical CCS values were then 

obtained from MOBCAL
16-18

 and PSA
19-22

 to align the computationally generated structures with 

the experimental CCS measurements. Bond energy calculations were performed with 

Gaussian09
23

 using density functional theory (DFT) to calculate the energy of the geometry 

optimized precursor and each of the two fragment structures resulting from breaking the bond of 
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interest. The energies of the two fragments were summed and subtracted from the energy of the 

precursor structure resulting in the energy change of the reaction or relative bond energy of the 

broken bond. DFT/B3LYP/6-31G* level of theory was used for all calculations, which were 

performed in vacuo and in the ground state. 

 

3.3 Results and Discussion 

Differences Between ESI and MALDI Spectra for [M+H]
+
 

 MS/MS spectra acquired at a fixed collision energy of 25 eV laboratory frame for 

[M+H]
+
 MDA regioisomers are compared in Figure 3.2 for ESI and MALDI. The MS/MS 

spectra are shown for ESI on the left panels (Figure 3.2a-c) and for MALDI on the right panels 

(Figure 3.2d-f). The ESI and MALDI spectra for 4,4’-MDA (Figure 3.2a,d) are qualitatively 

identical in that 106 Da is the prominent fragment ion and additional low abundance peaks are 

observed at 182 and 165 Da in both spectra. In contrast, the ESI and MALDI spectra for 2,2’- and 

2,4’- MDA exhibit significant differences in the fragment ions observed. For 2,2’- and 2,4’-

MDA, the ESI MS/MS spectra (Figure 3.2b,c) exhibit a single major fragment ion peak at 106 

Da and, unlike 4,4’-MDA, no ion signals are observed at 199 Da. The 2,2’- and 2,4’-MDA 

MALDI spectra (Figure 3.2e,f) are significantly more complex than ESI, with fragment ions 

observed at 198, 182, 181, 180, and 106 Da. These differences observed for the [M+H]
+
 ion along 

with additional precursor ions indicate that these MDA regioisomers behave significantly 

differently when ionized by MALDI than with ESI. 

 

Characterization of 2-Ring MDA by MS and MS/MS 

Figure 3.3 shows the MALDI MS/MS spectra for the two additional precursor ions 

species ([M-H]
+
 and [M

.
]

+
) for the MDA isomers and corresponding MS/MS spectra for a 

standard 2,7-diaminofluorene (2,7-DAF). Results for 2,7-DAF are shown in parallel with the 

MDA regioisomers due to its known fluorene backbone structure which we hypothesize to be the  
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Figure 3.2. MS/MS spectra for the [M+H]
+
 isomer species for both (left) ESI and (right) MALDI. 

Results for 4,4’-MDA are shown in (a) and (d), for 2,2’-MDA in (b) and (e) and for 2,4’-MDA in 

(c) and (f). These spectra were obtained at 25 eV lab frame energy. 
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structure of the [M-H]
+
 species (Figure 3.1). It is important to note that the 2,7-DAF species 

shown in Figure 3.3a is the [M+H]
+
 species while the spectra shown in Figure 3.3b-d are the 

[M-H]
+
 species. All species shown in Figure 3.3e-h correspond to the [M

.
]

+
 species, but the 2,7-

DAF precursor in Figure 3.3e is 196 Da, whereas the MDA precursors in Figure 3.3f-h are 198 

Da. Additional MS and MS/MS spectra can be found in the Supporting Information (Figures 

C.1-C.9) including MS/MS of fragments that result from operating with high (350 arbitrary units) 

laser fluence. The MS/MS spectra in Figure 3.3 were acquired at 25 eV and show fragments in 

many of the same regions that were observed in Figure 3.1 for the [M+H]
+
 species. These 

fragment ions fall into four groups: 196-198 Da, 180-183 Da, 152-153 Da and 106 Da. The first 

group corresponds to a loss of one H-atom (1 Da) from the parent ion. The second fragment ion 

group represents nominal losses involving the loss of NH (15), NH2 (16), NH3, (17) or NH4 (18). 

The third group involves nominal losses of both amino groups and an additional carbon atom. 

The fourth group of fragment ions corresponds to formation of a 106 Da fragment that has been 

previously discussed in earlier manuscripts. These four fragment ion groups are observed for the 

[M+H]
+
, [M-H]

-
, and the [M

.
]

+
 isomer species, but at very different intensities. 

The MS/MS spectrum for 2,7-DAF in Figure 3.3a shows major fragment peaks at 196 

Da, 180 Da and 181 Da. The [M-H]
+
 MDA regioisomers all primarily form a 180 Da fragment in 

substantial amounts, but again the 4,4’-MDA is more stable in Figure 3.3b as significant 

depletion of the precursor ion occurs in Figure 3.3c,d at 25 eV for both the 2,2’-MDA and 2,4’-

MDA. Both 2,2’-MDA and 2,4’-MDA [M-H]
+ 

ions exhibit far less of the 181 Da ion than that of 

4,4’-MDA. The [M
.
]

+
 species form a combination of all the fragments previously mentioned for 

[M+H]
+
 and [M-H]

+
. The MS/MS spectra of the 196 Da peak for 2,7-DAF in Figure 3.3e has 

fragment peaks at 195 and 180 Da. The MS/MS spectra for the MDA isomers (Figure 3.3f-h) 

show an additional peak at 106 Da, along with some minor peaks. This suggests that while the 

[M-H]
+
 MDA ion behaves similarly to the 2,7-DAF [M+H]

+ 
ion, the [M

.
]

+
 species does not. As 

observed with the other ion forms, the [M
.
]

+
 of4,4’-MDA exhibits greater stability than either  
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Figure 3.3. MALDI MS/MS spectra for the (left) 197 Da precursor and (right) [M
.
]

+
 isomer 

species for MALDI. Results for 2,7-DAF are shown in (a) and (e), for 4,4’-MDA in (b) and (f), 

for 2,2’-MDA in (c) and (g) and for 2,4’-MDA in (d) and (h). These spectra were obtained at 25 

eV lab frame energy. 
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2,2’-MDA or 2,4’-MDA isomers as evidenced by a more prominent 198 Da precursor peak 

(Figure 3.3f). 2,2’-MDA forms a majority of a 180 Da fragment in Figure 3.3g and 2,4’-MDA 

forms primarily a 197 Da fragment and similar amounts of both the 180 and 181 Da fragments in 

Figure 3.3h. 4,4’-MDA produces significantly more of the 181 Da fragment than the other 

isomers, which suggests that preference for the 181 Da fragment arises from para amino 

substitution, and that the 180 Da fragment correlates predominantly with the ortho-amino group. 

The 106 Da fragment is also present in the [M
.
]

+
 MS/MS spectra, but not in the [M-H]

+
 MS/MS 

spectra. Because there are numerous fragment ions which originate from three different precursor 

ions for each of the three different MDA regioisomers, the methods used to interpret and organize 

the data will be introduced briefly before detailed discussions of relative fragment ion intensities 

and fragmentation pathways resume. 

While MS/MS spectra highlight the major fragment ions for each of these species, they offer only 

a snapshot of the numerous fragmentation experiments performed to better understand these 

different precursor ion species. MS/MS experiments were ramped from 0-50 eV for the three 

precursor ions for each of the MDA regioisomers in 5 eV increments and this energy correlation 

experiment (99 spectra) was performed in triplicate. Ion collision-energy curves corresponding to 

the change in percent relative ion current (%RIC) for the [M+H]
+
, [M-H]

+
, and [M

.
]

+
 ion forms of 

the MDA isomers are shown in Figures 3.4a-c for fragment ions exhibiting a %RIC of 20% or 

more along the 0-50 eV ramp. For clarity, the average %RIC of the three different isomers are 

shown here as solid traces, except the [M+H]
+
 ion of 4,4’-MDA which exhibits different behavior 

(discussed later) and is represented by a dashed line in Figure 3.4a. Individual curves for each 

isomer, along with error bars, are provided as Supporting Information (Figure C.10). Note that 

the percentage values projected on the y-axes of Figure 3.4 are relative to other ions which 

appear in the plot. Collision curves for all fragment ions present at %RIC values of 5% or more 

along the 0-50 eV ramp are included as Supporting Information (Figures C.11-C.15).  
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Figure 3.4. Collision induced dissociation curves monitoring the transition of precursor to 

fragment ions for (a) [M+H]
+
 ions, (b) [M-H]

+
 ions, and (c) [M

.
]

+
 ions. The different line weights 

represent the average of all three isomers (solid); the 4,4’-MDA isomer for the protonated species 

(dashed); and secondary fragments for the radical cation species (dotted).  Color coding is for 

precursor ions (black); the M-1 species (purple); the M-17 and M-18 species (teal); the M-45 and 

M-46 species (yellow); the M-93 species (gray); and the M-15 and M-16 species (cyan and navy). 

Bar graphs of %RIC at low collision energies are shown for (d) [M+H]
+
, (e) [M-H]

+
, and (f) [M

.
]

+
 

ion species. The bar colors correspond to 4,4’-MDA (blue); 2,2’-MDA (red); 2,4’-MDA (green); 

and 2,7-DAF (orange). 
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Figure 3.4d-f and Table 3.1 provide detailed %RIC data for the three precursor species, 

4,4’-MDA (blue), 2,4’-MDA (green), and 2,2’-MDA (red), averaged over 0, 5, and 10 eV. At 

these low collision energies, the six fragment ions of interest are: 198 Da ([M-1]
+
), 180-183 Da 

([M-18]
+
, [M-17]

+
, [M-16]

+
, and [M-15]

+
) and 106 Da ([M-93]

+
). These eight ions constitute 

greater than 95% of the total ion currents observed across all low energy spectra and thus 

participate in the primary fragmentation pathways for the MDA isomer system. A complete list of 

all fragment ions observed is provided as Supporting Information (Tables C.7-C.10), however, 

the fragment ions listed here will be the main focus of discussion. Statistical significance of each 

of these low energy measurements across the regioisomers was determined using an analysis of 

variance (ANOVA) and a t-test. Briefly, ANOVA allowed for comparison across the three 

regioisomers for each fragment to highlight when one regioisomer had a percent relative intensity 

that was significantly different from the other two. A detailed summary of the ANOVA and t-test 

analysis is provided as Supporting Information (Tables C.1-C.6).  

 When ANOVA testing indicates that the most abundant isomer in Table 3.1 behaves 

significantly differently than the other two isomers, yellow highlighting is used. Pink highlighting 

in Table 3.1 indicates that there is also a significant difference in fragment abundance between 

the other two isomers. For example, the mass 198 peak for [M+H]
+
  is significantly more intense 

for 2,4’-MDA than for the other two isomers (which were not statistically different from one 

another), and 2,2’-MDA exhibits the most intense peak at 181 Da, but the other two isomers are 

significantly different.  

[M+H]
+
 Species  

 As observed in Figure 3.2, the MALDI MS/MS spectra are significantly more complex 

than the ESI MS/MS spectra for the [M+H]
+
 ion of 2,2’-MDA and 2,4’-MDA. In contrast, the 

4,4’-MDA isomer exhibits qualitatively similar spectra from both ion sources, which is due in 
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Table 3.1. Percent relative ion current data for the major fragments from the [M+H]
+
, [M–H]

+
, 

and [M
.
]

+
 for the three 2-ring MDA isomers and 2,7-DAF. See text for details. 

 
 

 

 

 Fragment Ions for [M+H]
+ 

Isomer 106 180 
181 

M-18 

182 

M-17 

183 

M-16 
196 197 

198 

M-1 

2,2’-MDA 
7.1  

1.5% 

1.4  

0.6% 

21.7  

1.4% 

16.2  

1.4% 

10.4  

3.7% 

0.2  

0.1% 

1.4  

1.0% 

41.5  

3.1% 

2,4’-MDA 
5.3  

0.9% 

0.5  

0.3% 

6.7  

0.6% 

9.3  

1.2% 

15.4  

1.2% 

0.2  

0.1% 

2.0  

1.1% 

60.7  

2.6% 

4,4’-MDA 
27.1  

11.6% 

1.4  

0.9% 

3.9  

1.1% 

11.4  

3.1% 

10.9  

2.2% 

0.2  

0.2% 

2.8  

2.9% 

42.3  

11.9% 

 Fragment Ions for [M–H]
+ 

Isomer 106 
180 

M-17 

181 

M-16 

182 

M-15 
183 

196 

M-1 
197 198 

2,2’-MDA 
1.6  

0.3% 

89.3  

2.2% 

4.3  

1.2% 

1.6  

0.2% 

1.8  

0.7% 

1.4  

0.7% 
  

2,4’-MDA 
2.5  

0.8% 

70.6  

2.1% 

11.5  

0.6% 

6.8  

0.5% 

1.7  

0.4% 

6.8  

0.6% 
  

4,4’-MDA 
3.1  

1.7% 

51.4  

4.5% 

21.5  

5.8% 

10.1  

1.8% 

1.3  

0.8% 

12.6  

1.3% 
  

 Fragment Ions for [M
.
]

+ 

Isomer 106 
180 

M-18 

181 

M-17 

182 

M-16 

183 

M-15 
196 

197 

M-1 
198 

2,2’-MDA 
9.4  

1.6% 

17.5  

1.0% 

20.5  

2.3% 

9.5  

0.4% 

14.0  

1.7% 

0.2  

0.1% 

28.9  

2.1% 
 

2,4’-MDA 
8.1  

1.3% 

6.6  

0.3% 

11.9  

1.3% 

15.1  

0.9% 

6.4  

0.7% 

0.8  

0.2% 

51.2  

2.0% 
 

4,4’-MDA 
4.8  

0.7% 

3.3  

0.9% 

4.8  

1.1% 

19.5  

2.1% 

3.8  

2.7% 

0.8  

0.8% 

63.0  

3.1 % 
 

 Fragment Ions for 2,7-DAF
 

Standard 106 
180 

M-17 

181 

M-16 
182 183 

196 

M-1 
197 198 

[M+H]
+
 

0.0  

0.0% 

17.6  

7.0% 

18.4  

6.1% 

1.3  

1.5% 

0.1  

0.2% 

62.6  

8.7% 
  

[M
.
]

+
 

0.0  

0.1% 

95.1  

3.5% 

3.5  

3.3% 

1.0  

1.6% 

0.3  

0.5% 
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part to the higher stability of the 4,4’-MDA isomer, that allows it to behave similarly despite a 

slightly more energetic ionization source (MALDI). Another reason for the similarities is that the 

4,4’-MDA isomer can protonate only on para amino-groups, whereas the 2,2’-MDA and 2,4’-

MDA species have additional protonation sites on the ring and on the ortho amino-groups 

(Figure 3.1), giving rise to the differences in MS/MS spectra seen for ESI and MALDI. The role 

of charge localization towards directing fragmentation processes of relatively small organic ions 

is well-established.
24

  

In Figure 3.4a, the depletion of the 199 Da parent ion (black, dashed) and the correlated 

increase in the 106 Da peak (grey, dashed) are consistent with the previously observed behavior 

of 4,4’-MDA and is due to stability and limited protonation on only the para-amino group. The 

average %RIC curves for 2,2’-MDA and 2,4’-MDA in Figure 3.4a clearly indicate that the 198 

Da ion (purple) is derived directly from the 199 Da ion (black, solid) and that the 181 Da ion 

(teal) increases as both 199 and 198 Da ions decline. The 181 Da ion decreases in intensity as the 

153 Da ion increases, indicating that the 153 Da ion (yellow) is derived from the 181 Da ion. On 

the basis of the dissociation curves in Figure 3.4a it appears that the 181 Da peak is generated 

from both the 198 and 199 Da ions. Because there are two possible protonation sites available for 

ortho-substituted MDAs, multiple pathways could occur. Based on the evidence in Figure 3.4d 

and Table 3.1, 2,2’-MDA (red) forms the majority of both the 181 and 182 Da fragments 

corresponding to mass losses of M-18 and M-17. 2,4’-MDA (green) forms the majority of both 

the 183 and 198 Da fragments corresponding to mass losses of M-16 and M-1. The t-test also 

indicates that 2,2’-MDA and 2,4’-MDA produce significantly different percentages of the 106 Da 

ion and that 2,4’-MDA and 4,4’-MDA produce significantly different percentages of the 181 Da 

ion.  
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[M-H]
+
 Species   

 Collision energy curves in Figure 3.4b visualize the path that the [M-H]
+
 isomers follow 

from precursor to major fragment ions. With increasing collision energy, the 197 Da precursor 

ion (black) depletes to form the 180 Da ion (teal) which in turn depletes to form the 152 Da ion 

(yellow) above 30 eV. This observed two-step depletion is similar to [M+H]
+
 (Figure 3.4a), but 

here for [M-H]
+
 the 4,4’-MDA isomer behaves similarly to the other two MDA isomers (Figure 

3.4b averages the %RIC obtained from all three isomers).  

 Low energy pathways are also examined in Figure 3.4e for the MDA isomers and 2,7-

DAF (orange). Somewhat parallel trends are observed for 2,7-DAF and 4,4’-MDA in that both 

contribute to the majority of the 196 Da and 181 Da fragment ions. Figure 3.1 shows that these 

two species are more similar in structure, having both of their amino groups in either the para or 

meta positions (no ortho). The 2,2’-MDA and 2,4’-MDA isomers, which have similar protonation 

sites, namely an ortho amino group and a ring, both primarily form the 180 Da ion. In addition to 

the ANOVA testing, the t-test applied to the results in Table 3.1 indicate there are also significant 

differences between the two lesser peaks for the 196 Da, 182 Da, 181 Da, and 180 Da fragment 

ions. Based on the %RIC differences of the 196 Da fragment (2,7-DAF >> 4,4’-MDA > 2,4’-

MDA > 2,2’-MDA), it is likely this fragmentation mechanism prefers the para and meta amino 

groups over the ortho. This trend which is repeated for the 181 Da fragment also indicates that the 

181 Da fragment results from the 196 Da fragment rather than directly from the 197 Da 

precursor. In turn, the 180 Da fragment likely results directly from the 197 Da precursor, via 

neutral loss of NH3.  

 

[M
.
]

+
 Species  

 The [M
.
]

+ 
radical cation peak (198 Da) appears prominently in the MALDI spectra of all 

MDA isomers. The question naturally arises whether it is formed by direct ionization of the 

parent MDA oligomer or by H-atom loss from [M+H]
+
, or possibly by both mechanisms. Direct 
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ionization of aromatic molecules in MALDI, although not common, is well known.
10,25

 The 198 

Da radical cation peak lies between the 197 Da ([M-H]
+
) and 199 Da ([M+H]

+
) peaks, both of 

which typically show greater intensity in the parent ion spectra. Although interference of the 

neighboring precursor peaks does occur, our experiments with the resolving quadrupole suggest 

(Figure C.10) that the 198 Da peak can be mass-selected with at least 85% purity from the other 

two species.  

 Figure 3.4c displays the collision energy curves for [M
.
]

+
 which are qualitatively similar 

to those observed for the [M+H]
+
 precursor ions. The dotted lines indicate minor fragments not 

present at 20% but still worth noting for [M
.
]

+
 due to the more complex MS/MS spectra. Here, the 

[M
.
]

+
 precursor ion (198 Da, black) depletes to form directly the [M-1]

+
 (197 Da, purple) and [M-

16]
+
 (182 Da, navy) fragment ion species. The [M-17]

+
 (181 Da, cyan) and [M-18]

+
 (180 Da, teal) 

species appear to be formed from the [M-1]
+
 species, as their appearance coincides with the 

depletion of the 197 Da ion. The 180 Da ion then appears to deplete to form the 152 Da ion 

(yellow), which was also observed for the [M-H]
+
 ion of all MDA isomers. An analysis of the low 

energy fragmentation pathways (Figure 3.4f) indicates the formation of fragment ions at 197, 180 

to 183, and 106 Da. We also observe trends in both Figure 3.4f and Table 3.1 that those 

fragments favoring either 2,2’- or 4,4’-MDA also occur for 2,4’-MDA. This observation is 

consistent with the position of amino groups and availability of ring protonation playing a 

primary role in fragmentation preferences.      

 

Characterization by Ion Mobility-Mass Spectrometry and Computational Modeling 

IM-MS results also indicate that the [M-H]
+
 MDA species are similar to 2,7-DAF. The 

IM traces in Figure 3.5a-c are shown for the [M-H]
+ 

(red) and [M+H]
+
 (black) MDA species as 

well as the 2,7-DAF [M+H]
+
 (blue). For 2,2’-MDA (Figure 3.5b) and 2,4’- MDA (Figure 3.5c), 

the [M-H]
+ 

and [M+H]
+
 mobility traces overlap, but for 4,4’-MDA(Figure 3.5a) the [M-H]

+
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Figure 3.5. Ion mobility traces and computational modeling results for 2-ring MDA. [M+H]
+
 

results are shown in black, [M-H]
+
 results are shown in red, and 2,7-DAF results in blue. 
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species has a smaller CCS than the [M+H]
+
 species. The smaller CCS observed for the 4,4’-MDA 

[M-H]
+
 species in Figure 3.5a also closely aligns with the mobility trace for 2,7-DAF, further 

evidence of the fluorene backbone for the [M-H]
+
 MDA species. Computational modeling can 

provide some structural meaning to these observations. Theoretical results are shown in Figure 

3.5d-f for the three 2-ring isomers and 2,7-DAF. The conformations resulting from simulated 

annealing calculations are shown for the [M-H]
+ 

(red)
 
and [M+H]

+
 (black) MDA species as well 

as 2,7-DAF (blue). Figure 3.1 is a helpful reference for the number of protonation sites for each 

regioisomer since each of these is modeled separately: one for 4,4’-MDA, two for 2,2’-MDA, and 

three for 2,4’-MDA. Each simulated annealing calculations generate clusters of 3,000 unique 

structures, which in many cases overlap with one another. To avoid complete disappearance of 

these data points, shading has been utilized in Figures 3.5d-f for the various [M+H]
+
 protonation 

sites including the para (black), ortho (light grey), and ring (dark grey), as well as corresponding 

[M-H]
+
 charge sites for para (red), ortho (yellow), and ring (orange) locations. A separate 

conformational space plot is shown for each protonation site for each precursor species in the 

Supporting Information (Figures C.18-C.19). It is also important to note that while the 

magnitude of the predicted CCS is larger here than what is measured experimentally, the relative 

ordering of theoretical CCS values is in qualitative agreement with the experimental trends 

observed for IM-MS. The [M-H]
+
 conformations (red) of 4,4’-MDA, which has only a single 

protonation site at the para amine, are separated in CCS both theoretically (Figure 3.5d) and 

experimentally (Figure 3.5a) from the [M+H]
+
 ions (black). The 2,7-DAF and 4,4’-MDA [M-H]

+
 

conformational space plots and mobility traces also overlap. In contrast, two protonation sites are 

available for the 2,2’-MDA [M-H]
+
 and [M+H]

+
 on both the ortho amine and the ring. These 

protonation sites not only overlap with each other, but the [M-H]
+
 and [M+H]

+
 also overlap for 

both experimental (Figure 3.5b) and theoretical results (Figure 3.5e). The reduced 

conformational space of the [M-H]
+
 species becomes especially apparent in Figure 3.5e as the 

two protonation sites result in a very narrow CCS space (146.5–148.3 Å
2
) versus the [M+H]

+
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species which occupies a much wider CCS space (145.7–153.3 Å
2
). The distribution width in 

Figure 3.5b also suggests the slightly larger conformational flexibility of the [M+H]
+
 species. 

The 2,4’-MDA results are somewhat more complicated as there are now three possible 

protonation sites, but qualitatively, the deprotonated conformers (red, orange, and yellow) are all 

shifted to lower CCS than the protonated conformers (black, dark grey, and light grey) in Figure 

3.5f. The mobility traces in Figure 3.5c do show a very slight shift to a smaller CCS for the [M-

H]
+
 species. These protonation site assignments from computational results are supported by 

observations from the MS/MS experiments and will be further analyzed in the mechanistic 

discussions. 

The theoretical conformations (RMSD clustering) in Figure 3.5d-f provide a visual 

representation of the reduced flexibility for [M-H]
+
 regioisomers. While the [M-H]

+
 conformation 

for 2,2’-MDA and 2,4’-MDA would not be expected to decrease in CCS compared to their 

[M+H]
+
 forms, it would for the 4,4’-MDA because the external amines become more restricted 

with the central flourene motif. The fluorene ring structure for the [M-H]
+
 ion creates a much 

more compact structure for the 4,4’-MDA (Figure 3.5d) and slightly more compact structure for 

the 2,4’-MDA (Figure 3.5f) due to the middle fused ring restricting the flexibility of the central 

carbon bond, whereas the [M+H]
+
 ion has a more elongated structure and greater flexibility. The 

overall conformation of the 2,2’-MDA (Figure 3.5e) does not change significantly from the 

[M+H]
+
 ion due to the amine groups being centrally located on the structure. While the 

conformations of the 2,7-DAF and 4,4’-MDA [M-H]
+
 clearly reflect similarities (Figure 3.5d), 

the second, smaller mobility peak for the 2,7-DAF (Figure 3.5a) is difficult to assign to a second 

conformation as flexibility is clearly restricted due to the fluorene motif, but rather likely 

represents an impurity, possibly a positional isomer present in the analytical standard. Additional 

IM-MS, including ESI results for 2,7-DAF are provided as Supporting Information (Figures 

C.16-C.17), but an in-depth discussion on 2,7-DAF is outside the scope of the current 

manuscript. 
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Mechanisms for Fragmentation of MDA Isomers 

 In addition to the MS/MS and IM-MS data described earlier, bond energy calculations 

were performed for all the precursor ions listed in Table 3.1. The complete results are provided as 

Supporting Information (Figures C.20-C.22), but bond energies for the weakest bonds are 

included in Scheme 3.1. In general, the weakest bond (highlighted in green) in a molecule is 

shown to be either the protonated N-H or the protonated ring C-H, where appropriate. Typically, 

the methylene bridge C-H is the second weakest bond for all cases. The remaining fragmentation 

mechanism discussions will focus on the MDA species that produces the largest %RIC for each 

representative fragmentation ion.  

 
 
M-1 Fragmentation 

Scheme 3.1 summarizes M-1 fragmentation for the three MDA isomers and 2,7-DAF. 

Scheme 3.1a describes H-atom loss from species having a protonated amine group that is the 

weakest bond in all [M+H]
+
, [M-H]

+ 
and 2,7-DAF species. The dashed lines in the structures 

indicate that the reaction occurs for both [M+H]
+
 and [M-H]

+
 precursor species. Scheme 3.1b 

shows similar reactions for [M+H]
+
 and [M-H]

+
 precursor species having ring protonation. 

Fragmentation of the protonated ring C-H bond is the lowest energy pathway. Scheme 3.1c 

describes H-atom loss from the [M
.
]

+
 parent ion that does not have a protonated amine, the bridge 

C-H bond is the weakest bond for the three MDA regioisomers. Loss of the bridge hydrogen has 

different consequences than loss from an amine group in that the remaining charge is delocalized 

over the entire aromatic system. The two resulting structures shown in the scheme are Pauling-

type resonance structures for the 197 Da fragment ion. It is important to note that this 197 Da 

fragment ion, derived from the [M
.
]

+
 parent, is different from the 197 Da [M-H]

+
 parent ion which 

cannot be produced by a M-1 reaction.  
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Scheme 3.1. Fragmentation mechanisms for the M-1 mass loss when (a) an N-H bond from a 

protonated amine is broken, (b) a C-H bond from a protonated ring is broken, and (c) when a 

bridge C-H bond is broken. Selected bond energies are included for the MDA isomers. Green 

highlighting specifies the weakest bond. 
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M-16 Fragmentation  

 Scheme 3.2 summarizes the reactions involved in loss of 16 Da from the MDA and 2,7-

DAF parent ions. The most likely loss is NH2 from a charge-site reaction involving the protonated 

amine group. Scheme 3.2a indicates transfer of a protonated amine H-atom onto the aromatic 

ring along with charge transfer to the same ring. The same reaction occurs for 2,7-DAF. The 

driving force is fracture of an N-H bond and subsequent formation of an aromatic C-H bond. It 

costs about 60 kcal/mol to break the N-H bond and 140 kcal/mol to break the C-N bond for a 

protonated amine. About 120 kcal/mol is reclaimed by aromatic C-H formation, giving a net cost 

of about 80 kcal/mol for the reaction; this is very similar to the energy associated with M-1 loss. 

Loss of NH2 is not likely when protonation occurs on the ring, although it could shift into an 

amine protonated species by a tautomeric equilibrium reaction. Direct loss of an amine group 

from a [M
.
]

+
 parent ion via a simple C-N bond fracture is also not likely, given that the C-N bond 

energies for unprotonated amines are ~110 kcal/mol. Figure 3.4c indicates that the 182 Da 

fragment ion of [M
.
]

+ 
is formed directly from the parent ion, in parallel with the 197 Da fragment 

ion. Also, Table 3.1 indicates it is most prominent for the 4,4’- and 2,4’-MDA parent ions. 

Scheme 3.2b indicates this could be accomplished by a concerted reaction involving N-H transfer 

to the aromatic ring and bridge C-H loss. The 182 Da fragment has charge delocalization over the 

whole aromatic system, helping to drive the reaction. The distributions of %RIC intensities are 

quite similar for the 197 Da and 182 Da fragment ions of [M
.
]

+ 
(Figure 3.4f). Another reaction 

must also be considered for M-16, namely, loss of 16 Da from the 197 Da fragment of [M
.
]

+
 to 

form the 181 Da fragment, nominally this would be M-17 from the parent ion. The proposed M-

16 reaction for 2,2’-MDA is shown in Scheme 3.2c. This is based on collective evidence from 

Figure 3.4c which indicates that formation of the 181 Da fragment ion occurs from the 197 Da 

ion for [M
.
]

+
, and evidence from Table 3.1 which indicates that 181 Da formation is most 

prominent for the ortho-substituted oligomers.  
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Scheme 3.2. Fragmentation mechanisms for the M-16 mass loss when (a) an NH2 fragment is lost 

from a protonated amine group, (b) when an NH fragment and a bridge hydrogen are lost, and (c) 

when an ortho NH2 group is lost by hydrogen rearrangement. 
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M-17 Fragmentation  

 Scheme 3.3 summarizes fragmentation reactions involving loss of 17 Da, presumably as 

ammonia (NH3). For compounds containing a protonated ortho-amino group, this corresponds to 

transfer of a bridge H-atom to displace NH3 as shown in Scheme 3.3a for both [M+H]
+
 and [M-

H]
+
 parent ions. The specific reaction is shown for 2,2’-MDA. Lack of proximity of the 

protonated amino and bridge C-H groups in the 4,4’-isomers and 2,7-DAF, requires a different 

mechanism shown in Scheme 3.3b. The data in Table 3.1 for [M-H]
+
 indicate that this is the case 

based on the decreases of %RIC seen for the M-17 fragment ions from 2,2’-MDA > 2,4’-MDA > 

4,4’-MDA. However, both reactions (Scheme 3.3a,b) must be significant. This is the major 

fragmentation reaction for all [M-H]
+
 MDA oligomers, a 89 %RIC is seen for 2,2’-MDA. 

However, the 4,4’-oligomer shows a 51 %RIC, indicating a very significant influence of the more 

rigid [M-H]
+
 structure. The M-17 fragments corresponding to the three [M+H]

+
 oligomers are 

much less intense, averaging about 12 %RIC. The [M
.
]

+
 parent has no protonated amino group 

but still shows a significant M-17 loss, with a 20 %RIC for the 2,2’-oligomer as discussed above. 

However, the [M
.
]

+
 parent ion does show a nominal M-18 loss at 180 Da. Figure 3.4c indicates 

that the 197 Da peak is the precursor for the 180 Da ion of [M
.
]

+
, as was the case for the 181 Da 

ion in Scheme 3.2. Scheme 3.3c shows such a reaction for the 2,4’- oligomer, which forms the 

same mass as the [M-H]
+ 

parent (180 Da). Another reaction is also possible for the [M
.
]

+
 ion. 

Figure 3.4a indicates that the M-18 ion (181 Da) of [M+H]
+
 can be formed from the [M

.
]

+
 ion 

produced by the 199 Da parent ion. Also, Table 3.1 indicates that the 181 Da ion is most 

prominent for 2,2’-MDA. Based on this evidence, the 181 Da fragment ion is probably produced 

by a concerted reaction involving loss of an amino group and an amine H-atom as shown in 

Scheme 3.3d.     
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Scheme 3.3. Fragmentation mechanisms for the M-17 mass loss for (a) when an NH3 group is 

lost (b) when an NH2 group and bridge hydrogen are lost, (c) an NH group and two hydrogens are 

lost from a 197 fragment ion, and (d) loss of NH2 and an amine hydrogen from [M
.
]

+
 . 
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M-15 and Higher Energy Fragmentation  

 Two MDA species show M-15 losses, [M-H]
+
 (182 Da) and [M

.
]

+ 
(183 Da), which 

corresponds to a loss of NH. This can occur in a charge remote reaction involving transfer of an 

amine H-atom to the ring, as shown in Scheme 3.4a,b. The difference in N-H bond energies for 

protonated and unprotonated amine groups, 62.1 and 97.3 kcal/mol respectively, coupled with 

lack of charge transfer, make these H-atom reactions less likely than their protonated-amine 

counterparts. The 152 and 153 Da ions assume prominence in Figure 3.4a-c as the fragmentation 

energy is increased. The 152 Da ion is related to the [M-H]
+
 and [M

.
]

+
 parent ions and is formed 

from the 180 Da fragment, whereas the 153 Da ion is related to the [M+H]
+
 and originates from 

the 181 Da fragment. Both the 152 Da and 153 Da fragmentation reactions involve loss of the 

remaining amine nitrogen atom, a ring carbon atom, and hydrogens. Scheme 3.4c shows the 

reaction for the 180 Da fragment ion formed from [M-H]
+
. The net effect is converting a six-

member ring into a five-member fused ring, by separate loss of HCN and a H-atom. Another high 

energy fragmentation process, loss of 28 Da from the 181 Da fragment ion, is more challenging to 

assign a mechanism. While a structure equaling 153 Da could be imagined by replacing the 

bridge C-H group in the 152 Da structure with a nitrogen atom, how this might happen 

mechanistically is hard to reconcile. The structure shown in Scheme 3.4d for formation of the 

153 Da ion probably involves loss of HCN and a H-atom, similarly to the 152 Da mechanism 

(Scheme 3.4c). One hydrogen loss must be remote from the NH group. Bridge H-atom loss is 

shown in Scheme 3.4d because it is the weakest C-H bond in the molecule. However, it is noted 

here that other 153 Da structures are also possible.                 

 

3.4 Conclusions 

 In this study, 2-ring MDA isomers (2,2’-, 2,4’-, and 4,4’-MDA) have been characterized 

using a MALDI-TOF MS platform and a variety of other MS techniques. In previous work, we 
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Scheme 3.4. Fragmentation mechanisms for the M-15 mass loss for (a) loss of NH from [M-H]
+
 

and, (b) loss of NH from [M
.
]

+
; higher energy fragmentation for (c) loss of nominal H-C=N-H 

from a 180 fragment ion and (d) loss of nominal H-C=N-H from a 181 fragment ion.  
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concluded that [M+H]
+
 is the only parent ion formed in ESI, whereas in this current study, 

MALDI was observed to form three unique parent ions for all MDA isomers: [M+H]
+
, and two 

other ions formed by laser irradiation, [M
.
]

+
 and [M-H]

+
. Unique fragment ions observed for each 

of the respective precursor ions were explored and their origins were determined using energy-

resolved MS/MS studies. IM-MS provided further conformational distinctions between parent 

ions observed in the precursor region. 2,7-DAF confirmed the [M-H]
+
 proposed fluorene motif 

structure. Characterizing fragment ions associated with 2,7-DAF allowed for a greater 

understanding of how the [M-H]
+
 fragment ion forms from each of the three MDA regioisomers. 

Analytically, these findings provide important insight into the complex ion formation and 

associated fragmentation behavior for polymer precursors investigated using MALDI ionization 

methods.  It is anticipated that this work will help further the interpretation and development of 

MALDI-based polymer studies by MS, which remains a key MS technology for polymer 

characterization. 
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CHAPTER IV 

 

STRUCTURAL CHARACTERIZATION OF METHYLENEDIANILINE REGIOISOMERS BY 

ION MOBILITY-MASS SPECTROMETRY AND TANDEM MASS SPECTROMETRY: IV. 3-

RING AND 4-RING ISOMERS 

 

4.1 Introduction 

Polyurethane (PU) copolymers are one of the most versatile polymeric materials, 

commonly manufactured for use in rigid and flexible foams, coatings, adhesives, sealants, 

elastomers, membrane materials, laminates, fibers, and composites. Methylenedianiline (MDA) is 

a precursor to methylene bisphenyl diisocyanate (MDI), a major hard block component in the 

manufacturing of PUs. MDA is formed from the reaction between aniline and formaldehyde, 

generating the 2-ring MDA regioisomers 2,2’-MDA, 2,4’-MDA, and 4,4’-MDA, as well as larger 

multimeric species including 3-ring and 4-ring MDAs.
1,2   

In our previous work, 2-ring MDAs (2,2’-MDA, 2,4’-MDA, and 4,4’-MDA) were 

characterized using electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS)
1
 and 

matrix assisted laser desorption/ionization-ion mobility-mass spectrometry (MALDI-IM-MS),
3
 

two MS techniques commonly used to analyze PU polymers.
4-8

 In those studies, one unique 

parent ion ([M+H]
+
 = 199 Da) was observed for each isomer using ESI-MS; however, when 

studied by MALDI-MS we observed three distinct precursor ions, [M-H]
+
 = 197 Da and [M

.
]

+
 = 

198 Da, in addition to the [M+H]
+
 = 199 Da species.  

More recently, we used ESI-IM-MS to structurally characterize 3-ring and 4-ring MDAs 

by studying their preferred sites of protonation, gas phase stability, and fragmentation pathways.
2
 

In this present study, 3-ring and 4-ring MDAs were similarly characterized using MALDI-IM-MS 

and the results were compared to our previous ESI-IM-MS findings. In Figure 4.1, 3-ring and 4-

ring MDA parent species are illustrated with their respective protonation sites denoted with 
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Figure 4.1. MDA 3-ring and 4-ring [M+H]
+
, [M

.
]

+
, and [M-H]

+
 species. Asterisks (*) denote sites 

of possible protonation. 
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their respective protonation sites denoted with asterisks. Consistent with our 2-ring MDA study, 

we observed one unique parent ion formed during ESI for both 3-ring ([M+H]
+
 = 304 Da) and 4-

ring MDA ([M+H]
+
 = 409 Da). During the MALDI process we observe three parent ions; two of 

which are unique to the MALDI process for each 3-ring and 4-ring MDA: [M+H]
+
 = 304, 409 

Da, [M
.
]

+
 = 303, 408 Da, and [M-H]

+ 
= 302, 407 Da, respectively. The additional rings in these 

species provide greater flexibility and thus more complex consequences for the fragmentation 

patterns observed. The novelty of this work compares ESI and MALDI-MS ionization and the 

unique precursor species that arise from 3-ring and 4-ring MDA species. This work highlights the 

complexity when investigating fragmentation pathways of larger multimeric MDA species. The 

combination of IM-MS and MS/MS allow for unique structural characterization of the three 

precursor ions formed and their respective fragment ion pathways observed during the MALDI 

process.  

 

4.2 Experimental Section 

Materials 

Sample preparation and experimental details have been reported previously for 3-ring and 

4-ring MDA ESI studies
2
 and 2-ring MDA ESI and MALDI studies,

1,3
 but a few details will be 

mentioned here. Methylenedianiline (MDA) 3-ring and 4-ring samples were provided by Dr. 

Stefan Wershofen (Bayer MaterialScience AG, 47812 Uerdingen, Germany). Optima grade 

methanol and water with 0.1% formic acid were obtained from Fisher Scientific (Waltham, MA, 

USA). Tetralkylammonium salts, α-cyano-4-hydroxycinnamic acid (CHCA) and alkali salts were 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Samples were dissolved at a concentration 

of 1 mg/mL in 9:1 methanol/water containing 0.1% formic acid (v/v). Each MDA isomer was 

combined in a 10:1 CHCA matrix-to-analyte ratio and two or three layers of 0.5 μL of samples 

were spotted on a 100-well MALDI plate.  
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Traveling Wave MALDI-IM-TOF/MS 

A traveling wave IM-MS (TWIM-MS) Synapt G2-S (Waters Corporation, Milford, MA) 

was used for acquiring ESI and MALDI MS, MS/MS, and IM-MS data.
9
 Collision cross section 

(CCS) values cannot be obtained directly from TWIM experimental drift time values, therefore 

quaternary ammonium salts were used as CCS calibration standards to obtain CCS data from 

TWIM.
10-12

 

The Synapt G2-S mass spectrometer MALDI source has a frequency-tripled Nd:YAG 

laser which emits 355 nm at 1kHz pulse repetition rate. Laser attenuation ranged from 190-300 

(arbitrary units), with 270 selected for all experiments unless noted otherwise. CHCA matrix 

cluster peaks were used for TOF calibration. Further experimental details can be found from our 

earlier study
2
, but briefly the TWIM drift cell settings were as follows: TWIM pressure, 3 mbar 

nitrogen (2.25 Torr); electrodynamic wave height, 35 V; wave velocity, 700 m/s; TOF resolving 

power, ca. 18,000 m/Δm at 200 m/z. Collision-induced dissociation (CID) experiments were 

performed using argon gas. In our previous studies, experiments were conducted to evaluate the 

influence of the MALDI laser fluence and the resolving power of the MS/MS resolving 

quadrupole on the resulting precursor ion intensities. From those studies, the m/z resolving 

quadrupole was set to 18 resolving power for the MS/MS experiments providing the best 

separation of the three precursor ions, without significant loss of signal.
3
 To perform MS

3
 

experiments, the ion of interest is selected by the quadrupole and is fragmented in the “Trap” 

region located prior to the TWIM drift cell. The first generation of product ions are then separated 

by the TWIM and subjected to a second stage of CID in the “Transfer” region to produce 2
nd

 

generation and 1
st
 generation product ions (i.e., MS/IM/MS experiments). 

 

4.3 Results and Discussion 

Differences between ESI and MALDI Spectra for [M+H]
+
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The full ESI-MS and MALDI-MS spectra in Figure 4.2 were acquired for both 3-ring (Figure 

4.2a-b) and 4-ring MDA (Figure 4.2c-d), respectively. The ESI-MS and MALDI-MS spectra for 

the 3-ring and 4-ring MDA species are vastly different. Using ESI, we observed one precursor 

species [M+H]
+
 and additional characteristic peaks at 211 and 106 Da for the 3-ring (Figure 4.2a) 

and 316, 211, and 106 Da for 4-ring MDA (Figure 4.2c). In addition, peaks observed at 152.6 

m/z and 158.6 m/z correspond to the doubly charged 3-ring and 4-ring MDAs (Figure 4.2a,c). 

With MALDI we observe more complex mass spectra for both 3-ring and 4-ring MDA (Figure 

4.2b,d). Each of the three unique precursor ions is observed in the 3-ring and 4-ring MALDI 

spectra, similar to our previous study on 2-ring MDA regioisomers. In MALDI, we observe a 

characteristic peak at 211 Da for 3-ring MDA and CHCA matrix cluster peaks at 337, 335, 190, 

and 172 Da (Figure 4.2b). In addition, the MALDI spectra for 4-ring MDA show the [M+Na]
+
 

peak at 431 Da, characteristic peaks at 316 and 211 Da, and CHCA matrix cluster peaks at 379, 

335, 190, and 172 Da (Figure 4.2d). Precursor ions unique to 3-ring MDA include: [M+H]
+
 = 

304 Da, [M
.
]

+
 = 303 Da, and [M-H]

+
 = 302 Da (Figure 4.2b). In addition, precursor ions 

characteristic to the 4-ring MDA include: [M+H]
+
 = 409 Da, [M

.
]

+
 = 408 Da, and [M-H]

+
 = 407 

Da (Figure 4.2d). In MALDI, the 3-ring and 4-ring [M+H]
+
 precursor is the least abundant 

precursor ion compared to [M
.
]

+
 and [M-H]

+
 species (Figure 4.2b,d). In ESI, the 3-ring and 4-

ring [M+H]
+
 species and characteristic fragment peaks appear more stable than the [M+H]

+
 

precursor and fragment ions produced by the MALDI process. This difference observed for the 

[M+H]
+
 precursor indicates that these MDA multimers behave significantly differently when 

ionized by MALDI than by ESI. 

 

Characterization of 3-Ring and 4-Ring MDA by MS/MS 

Figure 4.3 details the MALDI MS/MS spectra for each precursor ion formed: 3-ring 

(Figure 4.3a-c) and 4-ring (Figure 4.3d-f) MDAs, [M+H]
+
, [M

.
]

+
, and [M-H]

+
. In the MS/MS 
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Figure 4.2. Comparison of ESI-MS and MALDI-MS of 3-ring (a-b) and 4-ring (c-d) MDA. 
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spectra, different collision energies were used to generate fragment ions for each precursor due to 

differing precursor stabilities. Figures D.1 and D.2 in Supporting Information compare all 

precursor species fragmented at 15 eV compared to 20 eV (laboratory frame). Due to an increase 

in the number of fragment ions observed for the [M+H]
+
 species for both 3-ring and 4-ring MDA, 

a 15 eV collision energy was used to characterize specific fragment ions derived from the [M+H]
+
 

precursor species, and 20 eV was used to characterize fragment ions derived from the [M
.
]

+
 and 

[M-H]
+
 species. The MS/MS spectra in Figure 4.3 show unique fragment ions for each 3-ring and 

4-ring precursor species: 15 eV was used for [M+H]
+
 (Figure 4.3a,d) and 20 eV was used for 

[M
.
]

+
 and [M-H]

+
 species (Figure 4.3b-c,e-f). Additional MS/MS spectra at various collision 

energies for both 3-ring and 4-ring MDA precursors can be found in Supporting Information 

(Figures D.3-D.4). Due to the numerous fragment ions formed uniquely for each precursor, this 

manuscript will focus on the interpretation of major low energy fragment ions formed by the 

MALDI process and will be introduced by schemes proposing fragment ion pathways and 

collision-induced dissociation ion breakdown curves (CID curves). Additional MS
3
 data found in 

Supporting Information (Figures D.5 and D.6) was also acquired and used to support the 

interpretation of unique fragment ion pathways. 

 It should be noted that there is a major difference between interpretation of the MALDI 

spectra of the 3-ring and 4-ring MDAs relative to the 2-ring MDAs from our previous work. This 

difference arises from the multiple amine groups in the 3-ring and 4-ring compounds. Not only do 

the amine groups have somewhat differing basicities, but their steric effects can vary 

significantly. These effects were observed to some extent in the ESI spectra of these compounds,
2
 

but the complexities in the MALDI spectra are more severe due to the larger MDA species and 

formation of three unique precursor ions in the MALDI process. The net result indicates that it is 

generally not possible to identify a unique structure for a given mass loss. Supporting 

Information Figures D.7 and D.8 address this problem in greater detail with an illustration 
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Figure 4.3. MALDI MS/MS spectra for (left) 3-ring MDA and (right) 4-ring MDA. Lab-frame 

energies are shown; corresponding energies are 15 eV for (a,d) and 20 eV for (b-c,e-f). Results 

for [M+H]
+
 are shown in (a,d), for [M

.
]

+
 in (b,e), and [M-H]

+
 in (c,f).  
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provided to highlight the complexity of these specific compounds. Therefore, specific structures 

described in the manuscript are tentative and may not be the only structures possible for a given 

fragment ion. 

 

Characterization by Ion Mobility-Mass Spectrometry  

The experimental IM spectra provided in Figure 4.4 are shown for the [M+H]
+
 (blue), 

[M
.
]

+
 (black), and [M-H]

+
 (red) ion forms of the 3-ring and 4-ring MDA precursor species. In 

Figure 4.4a, the TWIM spectrum obtained for the 3-ring species indicate a single distribution for 

each precursor, whereas in Figure 4.4b the 4-ring MDA species each exhibit two partially-

resolved structural populations, indicative of multiple gas-phase conformations. In our previous 

ESI studies, computational modeling was used to study the [M+H]
+
 3-ring and 4-ring MDA. 

Theoretical structures were generated to align with experimental CCS values. In those studies, the 

[M+H]
+
 3-ring MDA was shown to undergo the most favorable protonation on the internal amine, 

when compared to the external amines. In the ESI [M+H]
+
 4-ring MDA studies, two 

conformations were seen, which is similar to what is experimentally observed in the MALDI 

studies described here. These two conformational families were attributed to external amine 

protonation and internal amine protonation, respectively. Computational modeling in the ESI 

study suggests protonation on the external amines is more favored due to the 4-ring MDA species 

wrapping around the proton to share between the two external amine groups. As demonstrated in 

previous literature, IM-MS separations can differentiate between both aniline protomers 

coexisting in the gas-phase: N-protonated and ring protonated aniline.
13-14

 Similar to aniline 

studies, we can confirm that IM-MS techniques can aide in identifying multiple sites of 

protonation within 3-ring and 4-ring MDA precursor species.  

 In Figure 4.4a, the IM-MS results show 304 Da [M+H]
+
 and 303 Da [M

.
]

+
 species to 

have the same CCS (140.8 Å
2
). However, the 302 Da [M-H]

+
 species show a smaller CCS (139.2 

Å
2
); this difference in CCS for the 3-ring MDA can be attributed to the structural CCS (139.2  
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Figure 4.4. MALDI-IM-MS profiles for (a) 3-ring MDA and (b) 4-ring MDA. [M+H]
+
 results 

are shown in blue, [M
.
]

+
 results are shown in black, and [M-H]

+
 results are in red. 
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Å
2
); this difference in CCS for the 3-ring MDA can be attributed to the structural differences 

exhibited by the [M-H]
+
 bridged fluorene-backbone, as depicted in Figure 4.1. The 4-ring MDA 

precursors behave much differently than the 3-ring species. First, we notice two conformations 

present for each precursor, each conformation having different abundances. Next, the 409 Da 

[M+H]
+
 and 408 Da [M

.
]

+
 species each share the same CCS both for the larger conformation 

(158.3 Å
2
) and smaller conformation (164.1 Å

2
). The 407 Da [M-H]

+
 species is uniquely different 

from all of the 3-ring and 4-ring precursors. The 407 Da IM-MS trace shows two isomeric 

species; the less abundant isomer exhibits the smaller CCS (156.0 Å
2
), whereas the more 

abundant isomer has the larger CCS (164.2 Å
2
). When comparing the [M-H]

+
 species between 3-

ring and 4-ring MDAs, we notice that the 302 Da species has a smaller CCS, whereas the 407 Da 

species (more abundant isomer) has a larger CCS value. The differences observed between the 

precursors and 3-ring and 4-ring MDA can be attributed to either structural differences or 

multiple sites of protonation. Structural differences between 3-ring and 4-ring MDA include the 

addition of a bridged methyl-aniline and differences between [M+H]
+
 and [M-H]

+
 for each MDA 

multimer include the bridged fluorene backbone. Possible protonation sites on the 3-ring and 4-

ring MDAs are illustrated in Figure 4.1, differences include exterior or interior amine 

protonation. As seen in our previous 3-ring and 4-ring ESI studies, the MDA species must be 

oriented such that the additional proton is in proximity to the most basic site on the adjacent 

aniline ring to represent the most energetically favorable position. Curve resolution analysis for 

the 4-ring MDA precursors (Supporting Information D.9) and additional IM-MS data can be 

found in Supporting Information under Multiple Protonation Example.  

 

3-Ring MDA  

In the MS/MS spectrum for each 3-ring MDA precursor, Figure 4.3a-c shows major 

fragment peaks observed at low lab frame collision energies: [M+H]
+
 = 15 eV, [M

.
]

+
 = 20 eV, and 

[M-H]
+
 = 20 eV. The conversion from precursor ion to major fragment ion was monitored as a 
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function of applied collision energy as shown in Figure 4.5. Collision energy was ramped from 0 

to 50 eV for all unique precursor species in 5 eV increments and performed in triplicate. Figure 

4.5a,c,e monitors CID of major fragment ions having a percent relative ion current (%RIC) of 

20% or more, and Figure 4.5b,d,f illustrates %RIC of low abundance fragment ions formed in 

the range of 5-20% along the 0-50 eV ramp. All of the CID curves in Figure 4.5 represent %RIC 

values of 5% or more along the 0-50 eV ramp. Additional CID curves for minor fragment ions 

formed at 35 eV or higher are provided as Supporting Information (Figure D.10). Major 

fragment ions observed for each precursor species will be discussed in further detail. 

 

3-Ring MDA [M+H]
+
 Species (304 Da)  

In Figure 4.3a, the MS/MS spectrum highlights major fragment ions observed for the 

304 precursor species at 15 eV. The MS/MS spectrum shows the 304 Da species dissociating into 

four major fragment ions 303, 211, 209, and 198 Da, as seen in Scheme 4.1a and in the total 

percent ion current table found in Supporting Information Table D.3. These fragment ions are 

derived directly from the 304 Da species and each forms with an intensity greater than 5%. In 

Figure 4.5a-b, the [M+H]
+
 precursor depletes at 15 eV forming fragment ions 303 ([M-1]

+
), 211 

([M-93]
+
), 209 ([M-95]

+
), and 198 Da ([M-106]

+
); a dashed line is drawn for visual alignment of 

major and minor fragment ion formation at 15 eV. Major fragment ion 303 Da corresponds to the 

loss of one hydrogen, and the transfer of charge to the ring (8%, 15 eV). Major fragment ion 211 

Da forms from the loss of aniline (7%, 15 eV), from its parent species 304 Da. Fragment ion 209 

Da corresponds to the loss of aniline and two hydrogens; this fragment ion forms at higher 

collision energy (6%, 30 eV). In addition, mass 198 Da forms in high abundance due to the loss 

of methylene-aniline (30%, 15 eV). Scheme 4.1a outlines a proposed fragmentation pathway for 

each fragment ion (>5%) originating from the [M+H]
+
 304 Da species. As seen in Scheme 4.1a, 

minor fragment ions such as 210 ([M-93]
+
), 197 ([M-106]

+
), 181 ([M-17]

+
), and 180 Da ([M-

17]
+
) form by depletion of the major fragment ions at higher collision energy. Scheme 4.1a  
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Figure 4.5. Collision-induced dissociation curves monitoring the transition of 3-ring MDA 

precursor to fragment ions for (a-b) [M+H]
+
 ions, (c-d) [M

.
]

+
 ions, and (e-f) [M-H]

+
 ions. 

Fragment ions formed above 20% relative ion current are represented in (a,c,e); fragment ions 

formed between 0-20% relative ion current are represented in (b,d,f) for each precursor ion. 

Dashed lines for visual alignment are added for each precursor species: [M+H]
+
 dashed line 

represents 15 eV, precursor [M
.
]

+
 and [M-H]

+
 dashed line represents collision energy at 20 eV. 
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proposes that mass 303 Da can form two possible fragments ions: 210 Da and 197 Da. Mass 210 

Da is formed by the loss of aniline (10%, 25 eV) and ion 197 Da forms from the loss of 

methylene-aniline. In Figure 4.5a-b we observe the depletion of mass 198 Da leading to the 

formation of the 181 Da (25%, 40 eV) species, resulting from the loss of –NH2 and one hydrogen 

forming the fluorene-bridge. Similarly, minor fragment ion 180 Da (16%, 40 eV) results from the 

loss of –NH2 and one hydrogen forming the fluorene-bridge, from major fragment ion 197 Da.  

The MS
3
 data found in Supporting Information Figure D.5 is consistent with the proposed 

Scheme 4.1a outline. Additional possible structures of the proposed fragment ions derived from 

the 304 Da [M+H]
+
 are outlined in Supporting Information (Figure D.11). Proposed fragment 

ion pathways, CID curves, and intensity values for additional ions formed at 35 eV or higher are 

also described in Supporting Information (Figures D.10). 

 

3-Ring MDA [M
.
]

+
 Species (303 Da)  

When comparing the Figure 4.3b MS/MS spectrum of the [M
.
]

+
 species to Figure 4.3a 

[M+H]
+
 MS/MS spectrum, we observe an increase in ion stability. In Figure 4.5 precursor [M

.
]

+
 

requires additional collision energy to generate fragment ions compared to the [M+H]
+
 species. 

This increase in stability results from delocalization of charge for the 303 Da species. In Figure 

4.5c-d, fewer fragment ions are observed for the 303 Da [M
.
]

+
 species at 20 eV collision energy 

compared to Figure 4.5a-b (vertical dashed line is drawn for visual reference). Found in the 

Supporting Information, Table D.4 shows percent total ion current values of major and minor 

fragment ions formed from mass 303 Da depletion. In Scheme 4.1b, the major fragment ions 

observed to form directly from mass 303 Da are outlined: mass 302 ([M-1]
+
), mass 210 ([M-

93]
+
), and mass 197 ([M-106]

+
). At 25 eV, fragment ion 302 Da forms from the loss of one 

hydrogen (9%, 25 eV) and mass 197 Da results from the loss of methylene-aniline (42%, 25 eV). 

Fragment ion 210 Da forms at higher collision energy (10%, 30 eV), resulting from the loss of 

aniline. Several minor fragment ions are also observed from the depletion of these major 
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fragment ions: 209 ([M-93]
+
), 181 (M-29]

+
), 180 ([M-17]

+
), and 165 Da ([M-15]

+
). In Scheme 

4.1b, species 209 Da forms directly from mass 302 Da through an M-93 loss of aniline (16%, 35 

eV). At higher collision energy, mass 210 Da fragments into 181 Da due to loss of -NH and –CH2 

(9%, 45 eV). In Figure 4.5c, the depletion of 197 Da can be monitored to illustrate the formation 

of fragment ion 180 Da (30%, 50 eV, loss of –NH2 and one-hydrogen). Increasing fragmentation 

energy to 50eV causes mass 180 Da to form mass 165 Da (9%, loss of -NH2). Additional 

structures of the major and minor fragment ions formed from the 303 Da species can be found in 

Supporting Information Figure D.12.  

 

3-Ring MDA [M-H]
+
 Species (302 Da) 

The [M-H]
+
 species is the most stable precursor compared to [M+H]

+
 and [M

.
]

+
 (see 

Figure 4.5). The increase in stability is due to the fluorene-backbone, as seen in the 2-ring [M-

H]
+
 species versus the [M+H]

+
 species, discussed previously.

3
 In Figure 4.3c, the MS/MS 

spectrum shows three major fragment ions deriving from the 302 Da precursor ion at 20 eV: 285 

([M-17]
+
), 209 ([M-93]

+
), and 106 Da ([M-196]

+
). The dashed line in Figure 4.5e-f at 20 eV is 

drawn for visual alignment to illustrate fragment ions formed at %RIC above 5%. Here we 

observe the increased stability of the [M-H]
+
 precursor ion, higher collision energy is needed to 

form fragment ions. Total percent ion current values of major and minor fragment ions formed 

from the 302 Da species can be found in Supporting Information Table D.5. The formation of 

mass 285 Da corresponds to M-17, loss of ammonia (4%, 20 eV), this species is not one of the 

more intense fragment ions for the mass 302 Da precursor, but loss of –NH3 occurs prominently 

in the MALDI spectra for all species. In Scheme 4.1c the proposed fragment ion pathways are 

illustrated for the 302 Da precursor. The major fragment ion formed from the 302 Da precursor is 

an ion at mass 209 Da (36%, 20 eV), formally M-93 corresponding to loss of aniline; it can be 

assumed to come from charge-remote fragmentation (Supporting Information Figures D.7-

D.8). Fragment ion 106 Da has been consistently characterized for the MDA 2-ring, 3-ring, and 
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4-ring species. For the 3-ring MALDI MS/MS studies, mass 106 Da forms from a loss of 4,4’-

MDA and one hydrogen (5%, 30 eV). There are five additional minor fragment ions of interest, 

all formed at higher collision energies: 208 ([M-1]
+
), 193 ([M-16]

+
), 192 ([M-1]

+
), 180 ([M-29]

+
), 

and 165 Da ([M-28]
+
). Fragment ion 208 Da (16%, 35 eV) forms from 209 Da due to a loss of 

one hydrogen localizing the charge on the ring. Fragment ion 193 Da (18%, 30 eV) forms from a 

loss of –NH2 directly from fragment 209 Da. Furthermore, the 193 Da ion depletes into mass 192 

Da (8%, 30 eV) from loss of the bridge-hydrogen; in addition, higher collision energy causes 

mass 165 Da (30%, 50 eV) to form from the 193 Da species due to the loss of –CHN– from the 

protonated species. The 180 Da (26%, 50 eV) ion also forms at high collision energy and is 

formed from the 209 Da species from a loss of CH2=NH. Additional structures of the major and 

minor fragment ions formed from the 302 Da precursor can be found in the Supporting 

Information Figure D.13. 

 

4-Ring MDA 

The three 4-ring MDA precursors behave similarly to the 3-ring MDA. Here we observe 

[M+H]
+
 as the least stable precursor amongst [M

.
]

+
 and [M-H]

+
 species, forming more fragment 

ions at lower collision energy (Figure 4.3d-f); this is consistent with our previous 2-ring studies.
3
 

The MALDI MS/MS spectra for the 4-ring MDAs show major fragment ion peaks at low 

collision energy for each precursor species: [M+H]
+
, [M

.
]

+
, and [M-H]

+
. It is interesting to note 

that an increase in fragment ions is observed in Figure 4.3d for the [M+H]
+
 species (15 eV) 

compared to [M
.
]

+
 and [M-H]

+
 in Figure 4.3e-f (20 eV). In Figure 4.6, we monitor the depletion 

of each precursor species as a function of applied collision energy from 0 to 50 eV in 5 eV 

increments. Figure 4.6a,c,e shows CID breakdown curves for the major fragment ions having a 

%RIC of 20% or more, and Figure 4.6b,d,f illustrates the minor fragment ions (less than 20% 

RIC) formed along the 0-50 eV ramp. Major fragment ions to be discussed form in high  
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Figure 4.6. Collision-induced dissociation curves monitoring the transition of 4-ring MDA 

precursor to fragment ions for (a-b) [M+H]
+
 ions, (c-d) [M

.
]

+
 ions, and (e-f) [M-H]

+
 ions. 

Fragment ions formed above 20% relative ion current are represented in (a,c,e); fragment ions 

formed between 0-20% relative ion current are represented in (b,d,f) for each precursor ion. 

Dashed lines for visual alignment are added for each precursor species: [M+H]
+
 dashed line 

represents 15 eV, precursor [M
.
]

+
 and [M-H]

+
 dashed line represents collision energy at 20 eV. 
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abundance at collision energies below 35 eV, additional CID curves for fragment ions formed at 

35 eV or higher are provided as Supporting Information (Figure D.14). Total percent ion 

current tables are provided in the Supporting Information (Table D.6-D.8) for each precursor; 

these tables highlight fragment ion (%RIC) formation as CID energy is increased. The major 

fragment ions observed for each precursor species will be discussed in further detail.  

 

4-Ring MDA [M+H]
+
 Species (409 Da) 

The MS/MS spectrum in Figure 4.3d highlights the 409 Da [M+H]
+
 precursor forming three 

major fragment ions at low collision energy (15 eV): 316 Da ([M-93]
+
), 315 Da ([M-94]

+
), and 

303 Da ([M-106]
+
). In Figure 4.6a-b, the depletion of 409 Da species is monitored over a 0-50 

eV span at 5 eV increments, a dashed line is drawn for visual alignment. The three major 

fragment ions are observed to originate directly from the depletion of 409 Da. Proposed structures 

of these fragment ions are provided in Scheme 4.2a. The CID curves show that the most 

abundant fragment ion, mass 316 Da (37%, 15 eV), corresponds to the loss of aniline through 

charge-remote fragmentation. Based on the CID curves and Supporting Information Table D.6, 

mass 209 Da forms directly from the 316 Da species through M-107 loss of methylene-aniline 

and one hydrogen (15%, 35 eV). The second major fragment ion at mass 315 Da (15%, 30 eV) 

also forms from the 409 Da species due to the loss of aniline and one hydrogen. The third major 

fragment ion, mass 303 Da has the same structure as the 3-ring MDA [M
.
]

+
 species discussed 

above. The charge is delocalized on the ring, and the 303 Da (14%, 35 eV) fragment ion forms 

from the loss of a methylene-aniline. Additional fragmentation of mass 303 Da leads to the 

formation of a minor fragment ion, mass 210 Da (M-93, 14%, 35 eV), which represents the loss 

of aniline through charge remote fragmentation. Higher collision energy fragment ions formed 

from the [M+H]
+
 precursor can be found in Supporting Information Figure D.14.    
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Scheme 4.1. MDA 3-ring (a) [M+H]
+
, (b) [M

.
]

+
, and (c) [M-H]

+
 fragmentation pathways of 

major low energy fragment ions. Fragment ions identified through MS
3
 spectra are denoted, MS

3
. 
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4-Ring MDA [M
.
]

+
 Species (408 Da)  

 As observed in Figure 4.3e, the 408 Da species is more stable than the 409 Da precursor. 

The collision energy is increased to 20 eV for the [M
.
]

+
 species and only a few fragment ions are 

observed compared to the [M+H]
+
 spectrum. In Figure 4.6c-d, 408 Da is monitored across an 

increasing collision energy gradient, here the [M
.
]

+
 species reaches 50% depletion at 25 eV. 

Scheme 4.2b illustrates the two major fragment ions derived from the 408 Da species: mass 315 

Da ([M-93]
+
) and 302 Da ([M-106]

+
). Major fragment ion 315 Da initially forms due to loss of 

aniline (23%, 25 eV). This major fragment ion can further fragment into two minor fragment ions 

at higher collision energy: 314 Da ([M-1]
+
) and 106 ([M-209]

+
). Fragment 314 Da forms from the 

loss of one hydrogen at the bridge-carbon (16%, 45 eV), and fragment 106 Da (30%, 50eV) 

forms due to charge-remote fragmentation. MS
3
 data support 314 Da and 106 Da species 

originating from the 315 Da species, see Supporting Information Figure D.6. The third major 

fragment ion formed from the 408 Da precursor is mass 302 Da (11%, 30 eV); this species is 

formed from the loss of a methylene-aniline and the structure resembles 3-ring MDA with the 

loss of a hydrogen from the bridged methylene. Further depletion of the mass 302 Da species 

increases the formation of mass 209 Da (30%, 50 eV) through loss of aniline (M-93). Additional 

supporting data for 408 Da fragment ions can be found in the Supporting Information (Figures 

D.14 and Table D.7). 

 

4-Ring MDA [M-H]
+
 Species (407 Da) 

 The 407 Da [M-H]
+
 species is also more stable than the 409 Da [M+H]

+
 ion. In Figure 

4.3f the MS/MS spectrum at 20 eV shows few fragment ions and a strong 407 Da precursor peak 

at 62% relative intensity. Figure 4.6e-f illustrates the major and minor fragment ions formed 

above 5% as the collision energy was monitored from 0-50 eV. As the 407 Da precursor depletes, 

four major fragment ions are observed to derive directly from the [M-H]
+
 species. Scheme 4.2c  
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Scheme 4.2. MDA 4-ring (a) [M+H]
+
, (b) [M

.
]

+
, and (c) [M-H]

+
 fragmentation pathways of 

major low energy fragment ions. Fragment ions identified through MS
3
 spectra are denoted, MS

3
. 
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shows mass 314 Da ([M-93]
+
), 211 Da ([M-196]

+
), 209 Da ([M-198]

+
), and 106 Da ([M-301]

+
) all 

forming from the 407 Da [M-H]
+
 precursor. Fragment ion 314 Da (16%, 25 eV) is formed from 

the loss of aniline and then further depletes into minor fragment ion 297 Da ([M-17]
+
, 9%, 25 

eV), formed from the loss of an ammonia. Additionally, ions 211 Da (6%, 30 eV) and 209 Da 

(24%, 35 eV) are both formed by fragmentation at the center CH2, causing the loss of methylene-

dianiline. The difference in these fragment ion masses correspond to alternative structural 

rearrangement and loss of two hydrogens. The 106 Da fragment forms at high collision energy as 

seen in our previous studies;
2
 this ion forms in 37% abundance at 50 eV. Further exploration of 

high energy fragment ions formed due to 407 Da depletion can be found in Supporting 

Information (Figures D.14). A complete breakdown of fragment ion %RIC over 0-50 eV ramp 

can also be found in Supporting Information (Table D.8). 

 

4.4 Conclusions 

In this study, 3-ring and 4-ring MDA have been extensively characterized using MALDI-

MS, MALDI-IM-MS, and multi-stage fragmentation (MS/MS, MS
3
) techniques. The 

combination of MS/MS and IM-MS is demonstrated to be a successful tool in the structural 

characterization of these unique precursor species and their respective fragment ions. In previous 

work, we concluded that both the 3-ring and 4-ring MDA only form the [M+H]
+
 precursor in ESI, 

whereas in this current MALDI study we observe three unique precursor species as seen in the 2-

ring studies: [M+H]
+
, [M

.
]

+
, and [M-H]

+
. Here we observe both the 3-ring and 4-ring MDA 

forming these three unique precursor species. Using energy-resolved ion fragmentation studies, 

the [M+H]
+
 species was found to be the least stable of the three precursor ions. The [M

.
]

+
 and [M-

H]
+
 species were both more stable, generating fewer fragment ions at a higher collision energy. 

The IM spectra exhibited one narrow structural population for the 3-ring precursor species, 

whereas the 4-ring MDA precursors each had two unique conformational families present. IM-

MS separations can identify the presence of multiple protonation sites coexisting in the gas-phase. 
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Future studies will include the characterization of the 4-ring MDA IM-MS spectra. These 

findings provide insight into the complex nature of PU precursors and their unique fragmentation 

behavior. 
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CHAPTER V 

 

ALKALI METAL CATION ADDUCT EFFECT ON POLYBUTYLENE ADIPATE 

OLIGOMERS: ION MOBILITY-MASS SPECTROMETRY 

 

5.1 Introduction 

Polyurethanes (PUs) are one of the most versatile synthetic polymers and are well known 

for their applications in the automotive, construction, and medical industries. PUs are diblock 

copolymers composed of hard (urethane) and soft (aliphatic) segments which contribute to their 

diverse applications.
1
 Hard segments such as methylene bisphenol diisocyanate (MDI) are known 

for their ridged urethane backbone when reacted with soft segment diols such as polyesters. 

When synthesizing PU polymers, polydispersity inevitably adds a level of complexity to a 

polymer sample.
2
  

Mass spectrometry (MS) has become one of the most useful analytical techniques for 

accurate mass measurement and detailed end-group analysis of synthetic polymers.
3
 Coupling ion 

mobility (IM) separation to MS (IM-MS) can provide valuable information regarding the three-

dimensional structure of a polymer’s architectural motif. IM-MS is capable of differentiating 

isomeric species, such as linear and cyclic polymers,
4,5

 and can provide detailed characterization 

regarding ion size and mass. A molecule’s size and shape are described quantitatively by the gas-

phase collision cross section (CCS) derived from IM measurements.
6,7

 Additionally, tandem mass 

spectrometry (MS/MS) promotes the structural characterization of a polymer’s sequence. 

Coupling IM-MS to MS/MS provides multidimensional information that is useful for 

characterizing a polymer’s molecular sequence and configured arrangement.
8–11

 

Another useful strategy which can be combined with IM-MS characterization is cation 

coordination. IM-MS cation coordination has been successfully utilized for biopolymers to 

analyze DNA base pair arrangements,
12–14

 carbohydrates,
15,16

 and peptide sequences.
17

 Although 
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cation coordination for biopolymers has been extensively explored, applying cation coordination 

studies towards synthetic polymers using IM-MS is relatively new. Prior studies have noted that 

flexible poly(ethylene glycol) (PEG) oligomers encapsulate Cs
+
, coordinating up to 11 oxygen 

centers with the large Cs
+
 cation to form a near spherical shape.

18,19
 Other PEG studies have 

focused on low charge state polymer ions in order to characterize globular gas-phase geometries 

using both experimental and computational methods.
20

 Other polymer systems such as 

poly(methyl methacrylate) were found to coordinate with various metal ions via the oxygen 

atoms along the polymer backbone,
21

 whereas polystyrene was discovered to coordinate with 

cations via π stacking at its benzene groups, sandwiching the metal ions between the rings.
22

 

Several alkali ions were used to characterize poly(ethylene terephthalate) and the identity of the 

cation corresponded to the oligomer length.
23

 Other polymer studies have investigated the 

addition of metal ions and their effect on polymer topology
24–27

 and the stepwise folding 

process.
28

 More recent studies investigating polymer-cation coordination have progressed towards 

identification of unique three-dimensional structures; by studying these polymer-cation systems, 

the transition from an unfolded linear species to a folded globular conformation can be 

investigated.
29

 For a given charge state, oligomer chain lengths are observed to fold around the 

cation in a well-defined manner. As the degree of polymerization (DP) increases for a given 

polymer, the structural motif was observed to transition towards a globular arrangement.
30

 

Uniquely, charge-induced unfolding of polymers has also been investigated.
31

 

In the present study, a telechelic PBA standard (Mn = 2250), Figure 5.1, was investigated 

by probing the effects of various Group I monovalent cations (Li, Na, K, Rb, and Cs). IM-MS 

studies identified multiple charge state (z) trends for each cationized PBA oligomer. Unique 

transitional folding was noted for all charge state trends observed, including: +1, +2, and +3. 

Empirical CCS values as obtained from uniform electric field measurements are reported for each 

alkali metal-adducted PBA oligomer. An analysis of variance (ANOVA) on the measured CCS 

values was used to determine gas-phase structural differences (different molecular volume) and  
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Figure 5.1. Structure of telechelic polybutylene adipate (PBA). 
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structural similarities (same molecular volume) observed between each PBA-cation. IM-MS/MS 

was also utilized to study the unique fragmentation patterns associated with cation-oligomer 

species (DP = 1 and DP = 5). Here the mobility-resolved ion fragmentation results revealed the 

unique behavior of the Li
+
 and Na

+
 cation to undergo 1,5 H-shift and 1,3 H-shift fragmentation, 

compared to the larger cations K
+
, Rb

+
, and Cs

+
 which preferentially are lost upon increased 

activation energy. The combination of monovalent alkali metal cations, IM-MS, IM-MS/MS, and 

statistical strategies aided in the characterization of PBA’s gas-phase structural behavior.    

 

5.2. Materials and Methods  

Materials 

Optima LC-MS grade acetonitrile and water were purchased from Fisher Scientific 

(Waltham, MA). The PBA sample was provided by Bayer Material Science, with the number-

average molecular weight (Mn) determined by end-group analysis (Mn = 2250).
32

 MALDI analysis 

of this PBA sample determined Mn = 2155.
33

 Lithium chloride, sodium chloride, potassium 

chloride, rubidium chloride, and cesium chloride were purchased from Sigma-Aldrich (St. Louis, 

MO). The PBA sample was prepared at an initial concentration of 1 mg/mL and subsequently 

diluted to a final concentration of 10 μg/mL in acetonitrile. Group I monovalent cations were 

prepared at an initial concentration of 1 mg/mL in water. Then, metal cation solutions were 

diluted to 5 mM in 10 μg/mL of the PBA sample in acetonitrile.  

 

 Instrumentation 

All experiments were conducted on a commercially available drift tube IM-MS (6560-

IM-QTOF, Agilent Technologies, Santa Clara, CA, USA) as described previously.
34

 The IM stage 

of this instrument consists of a uniform field drift tube 78.1 cm in length, filled with nitrogen and 

operated with a static drift gas pressure of ca. 4 Torr and ~30 
o
C. All samples were directly 

infused via a syringe pump (Cole-Palmer, Vernon Hills, IL) at a 10 μL/min flow rate into a 
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thermally assisted ESI source (Agilent Jet Stream). The instrument was operated in the positive 

ion mode with 3.8 kV applied to the ion transfer capillary and 1.8 kV applied to the ion focusing 

nozzle. The sample nebulizer is maintained at ground potential. Source temperatures were kept 

relatively low (200 
o
C) to aid in ionization. Ion mobility parameters were adjusted to optimize the 

IM resolving power and utilize a gate width of 100 μs.
35

 

 

CCS Measurements  

Collision cross sections (CCS) were determined using a stepped field technique where the 

applied voltage across the drift tube was varied in 7 uniform increments from 1050 to 1650 V (7.0 

− 19.8 V/cm or 6 − 16 Td at 4 Torr) to determine the time ions reside outside the drift tube. The 

corrected drift times were then used to obtain CCS values based on the Mason-Schamp equation 

as described previously.
34,36

 

 

Targeted MS/MS 

For targeted MS/MS, all ions were analyzed by IM and then m/z species related to DP = 

1 and DP = 5 [M+Li]
+
, [M+Na]

+
, [M+K]

+
, [M+Rb]

+
, and [M+Cs]

+
 oligomer adducts were mass 

isolated for CID (IM-MS/MS). For IM, the trap fill time was set to 60,000 μs and 200 µs for trap 

release time. For CID, a stepped voltage ramp was used with increments of 10 V between 0 – 100 

V (laboratory frame). The IM-MS was tuned and mass calibrated using a commercially-available 

tuning mixture (ESI-L Tune Mix, Agilent). 

 

5.3. Results and Discussion 

5.3.1. IM-MS Characterization 

In this study, we monitored the evolution of cationized PBA for changes in CCS as a 

function of DP for three different charge states: +1, +2, and +3 ions. These charge states were 

generated by coordination of monovalent alkali cations (Li, Na, K, Rb, and Cs) onto the polymer 



 136 

chain, and labeled accordingly in Figure 5.2. Due to polydispersity within the PBA sample, each 

charge state trend represents a range of PBA DP coordination with alkali metal cations. The full 

ESI-MS spectra of each PBA-cationized sample can be found in Supporting Information 

(Figures E.1-E.2). By using ESI to characterize PBA, we observe multiply charged species, 

which are characteristic of this technique. The majority of species contained in this PBA polymer 

sample were telechelic oligomers with –OH end groups. Within this PBA sample, only a few low 

MW cyclics were detected as seen in Supporting Information (Figure E.1). 

Figure 5.2 contains a plot of the CCS as a function of the PBA DP, increasing in chain 

length from left to right. For charge state +1, we observe a mean constant increase in CCS as the 

PBA chain length increases for each cationized DP. To ensure that the IM profiles observed are 

unique to the PBA polymer sample alone and not to the instrument conditions, the IM-MS ion 

funnel trap RF voltage was increased in 20 V increments from 80 – 200 Vpp (Supporting 

Information Figure E.3). Varying the trap RF voltage in this manner can probe for low energy 

structural transitions (i.e. polymer unfolding that would otherwise go unnoticed).
37

 There were no 

changes to the PBA charge state trends in the IM profile, respective to varying the trap RF 

voltage. As observed similarly by Haler et al. for poly(ethoxyphosphate) and poly(ethylene oxide) 

polymers,
22

 CCS evolution for higher charge state species (greater than +1) are known to have a 

defined structural transition at a specific DP. The structural transition can be characterized by a 

visual change in a CCS IM plot, and is attributed to a collapse of the polymer’s gas-phase 

conformation to smaller CCS. The point of structural transition for this PBA system is observed 

at the beginning of the +2 and +3 charge state trend lines. This is where the polymer ion’s chain 

length exceeds the coulombic forces induced by the multiple cations. The PBA species are then 

observed to behave predictably with a near linear increase in CCS respective to the increase in the 

polymers length. When the polymer cationizes with two metal adducts (z = +2), a noticeable 

“tipping point” in CCS is observed between DP = 4 – 8. Here the polymer species is observed to 

begin transitional folding around the two cations contained in the PBA ion structure. A similar  
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Figure 5.2. IM-MS mobility plot of CCS versus degree of polymerization (DP) of cationized 

linear PBA oligomers (n) for different charge states (z = +1, +2, and +3). Cations used to ionize 

PBA are annotated by color (Li = green, Na = blue, K = red, Rb = purple, and Cs = yellow), 

where X is the number of cations ionizing PBAn. 
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region of structural folding is more dramatically observed for the higher +3 charge state trend 

line, where PBA coordinates with three cations. Here the tipping point in CCS is observed to 

reach its peak transition from DP = 7 – 14. This transition is characterized by a decrease in CCS 

between DP = 15 – 19 after which the CCS increases with polymer chain length in a linear trend 

for DP > 20. We hypothesize that this positive linear trend in CCS following the region of fold 

change indicates when the PBA chain wraps around the attached cations. 

It is expected that longer PBA oligomer chains can accommodate more cations than 

shorter chains and this bears out in the observations made in this study. For instance, singly 

charged PBA oligomers are first observed for DP = 1, doubly charged species are observed at DP 

= 4, and triply charged species begin to form at DP = 7. As the PBA chain length increases in 

size, the polymer’s ability to coordinate with additional cation species increases. The full IM-MS 

profile of each PBA-cation sample can be found in Supporting Information (Figure E.4). 

 

5.3.2. Structural Transition  

 Figure 5.3 shows plots of the first derivative of CCS (ΔCCS/ΔDP) for each PBA-cation 

at charge states +1, +2, and +3. Figure 5.3a illustrates that the point of change is indicated by a 

valley, where the data indicate that a structural transition in a polymer’s topology occurs 

respective to DP. The point at which ΔCCS converges to the smallest number represents the 

tipping point, that is, the point where the polymer chain wraps around the attached cations, 

previously referred to as “beads-on-a-string”.
29

 In Figure 5.3b-f, ΔCCS was calculated for each 

PBA’s cationized charge state trend and illustrated accordingly: +1 (dotted-line), +2 (dashed-

line), and +3 (solid-line). Blue dashed lines are drawn for visual alignment of the point of 

structural change represented by the negative apex for each charge state. Along the charge state 

+1 trend line, we observed minor transitional folding for PBA-Na, PBA-K, PBA-Rb, and PBA-Cs 

between DP = 2 - 3, (Figure 5.3c-f). However, PBA-Li species were not observed to undergo any 

fold change in the charge state +1 trend for DP = 2 – 3 (Figure 5.3b).  
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Figure 5.3. Plots of ΔCCS vs DP which assist in monitoring gas-phase structural trends. (a) 

Conceptual illustration of a polymer undergoing charge dependent structural transition as 

indicated by a well-defined negative apex. (b) Charge state trends observed for each cationized 

PBA DP include: z = +1 (dotted line), z = +2 (dashed line), and z = +3 (solid line). Blue dashed 

lines are drawn for visual alignment of transition. 
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In Figure 5.3b-f, the valleys indicate that significant structural changes occur for charge states +2 

and +3. Table 5.1 summarizes the region of significant structural change along the +2 and +3 

charge state trend lines as recorded for each cation: Li, Na, K, Rb, and Cs. The +2 charge state 

structural transition region occurs between DP = 6 – 10 for all five cations. However, the +3 

charge state structural transition region changes with respect to cation size. In Table 5.1, the +3 

charge state structural transitions for Li start at chain length DP = 11. As the cation size increases 

to Na and K, the region of structural transition starts at DP = 12. Similarly, the larger cations Rb 

and Cs undergo structural changes at a longer chain length of DP = 13. This pattern highlights the 

effect that cation size has on the polymer’s gas-phase structure. Although we observed these 

cation species to undergo structural change at different DP values, all cations were found to end 

their transitions at DP = 20. The structural transition region for Li spanned a range of 10 PBA 

DPs, Na and K spanned 9 PBA DPs, and Rb and Cs transitioned across only 8 PBA DP additions. 

Table 5.1 also shows the tipping points for each PBA-cation at charge states +2 and +3. The 

tipping point, or point of greatest change for charge state +2 was observed to be DP = 7 for all 

five cations. The tipping point for charge state +3 occurred at DP = 17 for all cation species. As 

stated above, we observed the PBA region of structural folding to be directly related to cation 

coordination and size. As a general observation, the smaller cations, such as Li, Na, and K were 

found to start transition folding at a shorter PBA chain length, compared to Rb and Cs.  

 

5.3. Ion Mobility Plots  

 IM distributions of PBA-cationized by Li (green), Na (blue), K (red), Rb (purple), and Cs 

(yellow) are shown in Figure 5.4 for DP = 1, 3, and 5 at charge state +1. The corresponding CCS 

means for each PBA species and their respective standard deviations are represented by error bars 

at the top of each mobility trace. The vertical dashed lines are drawn for visual alignment within 
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Table 5.1. Region of structural transition and tipping point as degree of polymerization (DP) 

increases for charge states +1, +2 and +3. 
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Figure 5.4. IM plots of PBA-cations having charge state +1 are shown above. Experimental CCS 

and their respective standard deviations are given for (a) DP= 1, (b) DP = 3, and (c) DP = 5. 

Cations are notated by color: Li = green, Na = blue, K = red, Rb = purple, and Cs = yellow. 

Dotted lines are drawn for visual alignment representing maximum and minimum CCS values. 
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Figure 5.4a-c and represent the maximum and minimum CCS values (means) observed 

for all five PBA-cation species. In Figure 5.4a, PBA-cation species (DP = 1) have a CCS range 

that spans approximately 18 Å
2
: PBA-Li = 163 + 0.4 Å

2
, PBA-Na = 166 + 0.3 Å

2
, PBA-K = 171 

+ 0.4 Å
2
, PBA-Rb = 172 + 0.8 Å

2
, and PBA-Cs = 174 + 0.5 Å

2
. As cation size increases from Li 

to Cs, we observed a corresponding increase in CCS for PBA-cation species known as a periodic 

trend. In Figure 5.4b, for a PBA chain length of DP = 3, the maximum and minimum CCS values 

are observed to span 8 Å
2
. It is interesting to note that for DP = 3, the CCS values are much closer 

to one another and do not follow a periodic trend. Here, PBA-Na has a smaller mean CCS than 

PBA-Li: PBA-Li = 249 + 0.3 Å
2
, PBA-Na = 247 + 0.4 Å

2
, PBA-K = 250 + 0.3 Å

2
, PBA-Rb = 

252 + 0.8 Å
2
, and PBA-Cs = 255 + 0.5 Å

2
. In Figure 5.4c, for chain length of DP = 5, the 

observed CCS range maximum and minimum values converge toward the same CCS, a 2 Å
2
 

range. This is within the scale of the standard deviation of the measurements, and there are no 

periodic trends that can be derived from these measurements. The corresponding PBA CCS 

values are: PBA-Li = 321 + 0.5 Å
2
, PBA-Na = 321 + 0.7 Å

2
, PBA-K = 322 + 0.4 Å

2
, PBA-Rb = 

323 + 0.8 Å
2
, and PBA-Cs = 322 + 0.5 Å

2
. Taken collectively, these observations indicate that as 

the PBA DP increases from DP = 1 to DP = 5, the PBA-cationized CCS values converge. This 

convergence in CCS is attributed to the polymer’s structural transition. As the polymer chain 

length increases, more ester functional groups become available for cation interaction allowing 

the polymer to more efficiently coordinate the cation(s). As the PBA chain increases from DP = 1 

to DP = 5, the peak width of the IM plot increases in size. A larger peak width could indicate 

either the presence multiple conformations or the existence of a conformational change during the 

IM separation. 

 

5.3.4. Statistical Analysis of Charge State +1, +2, and +3 

To better understand coordination similarities among PBA-cation DP groups, we 

performed single-factor analysis of variance (ANOVA) on CCS values obtained for each DP 
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along the various charge states. ANOVA was used to compare PBA-Li, PBA-Na, PBA-K, PBA-

Rb, and PBA-Cs species to one another. In Figure 5.4, the CCS values are compared against the 

same DP chain length, and as notated previously are observed to converge towards the same CCS 

as the DP chain length increases from DP = 1 to DP = 5. While converging of CCS values is 

clearly observed for charge state +1 in Figure 5.4, we investigated CCS trends within charge 

state +2 and +3 which are somewhat more difficult to interpret. In Figure 5.2, the DP chain 

lengths represent oligomers ranging from DP = 1 – 43 among the three charge states observed; 

each CCS value was measured in triplicate for all 5 metal ions, totaling 1,125 data points. In this 

situation, it is best to use statistical methodology to check for significant differences, and this 

present problem is well suited for single-factor ANOVA. ANOVA compares the variance 

between CCS values measured for each of the different metal ions variance (between) with the 

collective variance from the reproducibility in measurement of each metal cations CCS value 

(within). The F ratio of the variances, F = variance (between) / variance (within), is compared to 

the critical F value using the appropriate degrees of freedom in the two variables: 4 and 10, 

respectively. The results were compared to determine if they were significant at the 95% 

confidence level (α = 0.05); this confidence level is typically chosen for scientific experiments. 

The ANOVA results identified structural differences and similarities between the polymer 

topologies in the gas-phase that were not qualitatively evident. A detailed description and 

example of the ANOVA test conducted in this study can be found in Supporting Information 

(Figure E.5). 

In Table 5.2 for charge state +1 species, the CCS values for each PBA-cation measured 

between DP = 1 – 3 are determined to be significantly different. However, the CCS values for 

PBA-cations at DP = 4 – 11 are considered to be significantly the same at the 95% confidence 

level. This is consistent with the data of Figure 5.4. Raw data and detailed statistical analysis for 

charge state +1 trend can be found in Supporting Information (Figure E.6). For charge state +2, 

the CCS values for PBA-cation species  
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Table 5.2. Summary of ANOVA analysis on CCS measurements for charge states +1, +2, and 

+3. For charge state +1, all five cations are compared. For charge state +2, the PBA-Cs species 

was not detected beyond DP = 25. ANOVA results for charge state +3 data are shown for three 

separate comparisons (1) all 5 cations, (2) without-Li, and (3) without-Cs. For all ANOVA 

comparisons, significant differences in CCS means are represented in blue, and significant 

similarities in CCS means are represented in green for the 95% confidence level.  

 

 

 

 

 

 

 

 



 146 

between DP = 4 – 6 are significantly different, but significantly the same for DP = 7 – 22. Note, 

only charge state +2 PBA-Li, PBA-Na, and PBA-K species for DP = 4 were detected. Larger 

cations Rb and Cs were observed to cationize with PBA starting at DP = 5 chain length.  

In Figure 5.2, a folding region is observed for both the +2 and +3 charge states. When 

investigating the +3 charge state in detail, unique behavior was noted for the PBA-Li species 

during the structural transition region (described below). The +3 charge state trend is quite 

different from the other charge state trends. Here, all five of the PBA-cation species have 

significantly different CCS values for the metal cations between DP = 7 – 25. However, 

inspection indicated that the CCS values for Li +3 are typically smaller than the +3 CCS values 

for the other four metal cations. When the PBA-Li data are removed from the data set, the 

remaining PBA-cation (Na, K, Rb, and Cs) CCS values are considered to be significantly 

different for DP = 9 – 11, to be the same for DP = 12 – 13, different for DP = 14 – 16, and 

significantly the same for DP = 17 – 24, with one outlier at DP = 25. As the PBA chain length 

increases beyond DP = 25, PBA-Cs is not detected in the IM-MS spectra. Interestingly, given the 

odd behavior of Li for the +3 charge state structural transition region, here we observed 

significant similarities among PBA-cation (Li, Na, K, and Rb) species between DP = 26 – 29, and 

structural differences for DP = 30. The ANOVA test aided in differentiating the similarities and 

differences between PBA-cation CCS means and their gas-phase behavior. Raw data used for 

ANOVA test can be found in Supporting Information Figures E.7-E.12, for charge states +2 

and +3. 

 

5.3.5. Mass Targeted Experiments   

Previous MALDI-TOF/TOF CID studies explored cyclic and linear PBA low energy 

fragmentation mechanisms using Li and Na cations.
38

 In this study, we explored the unique 

fragmentation behavior of each alkali metal cation (Li, Na, K, Rb, and Cs) for DP = 1 and DP = 5 

in the +1 charge state. When characterizing DP = 1 species, informative fragment ions were 
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observed only for PBA-Li species as seen in Supporting Information Figure E.13, with unique 

fragment ion structures attributed to PBA-Li species outlined in Supporting Information Figure 

E.14. Here, at relatively low energy, PBA-Li is observed to produce fragment ions attributed to 

1,5 H-shift fragmentation. The small atomic radius of Li, aids in its ability to fit within the 

polyester pocket, stabilizing the charge on the fragment ion. When monitoring PBA-Na, PBA-K, 

PBA-Rb, and PBA-Cs for DP = 1, fragment ions were not observed. Instead each PBA-cationized 

species was observed to lose its respective cation as CID energy increased. IM-MS/MS 

fragmentation spectra for each PBA-cationized species for DP = 1 can be found in Supporting 

Information Figure E.13, E.15-E.16.  

When monitoring CID energy with respect to DP = 5, we observed unique fragment ions for both 

PBA-Li and PBA-Na species. Figure 5.5a illustrates 1,5 H-shift fragmentation, commonly 

referred to as a McLafferty Rearrangement mechanism, where fragment ions result from a single 

chain fracture. There are only two series of peaks that can be formed from the 1,5 H-shift of a 

symmetrical PBA precursor. Fragmentation occurs by hydrogen transfer from the diol chain to 

the ester carbonyl, but not from the acid segment. Both PBA-Li and PBA-Na species were 

observed to undergo 1,5 H-shift, promoting fragmentation at the C(O)O-CH2 bond generating 

butanol-carboxyl and butanol-butene species. Both sets of fragment ions from the 1,5 H-shift 

were observed in the MS/MS spectra, as seen in Supporting Information Figure E.17. 

Figure 5.5b illustrates the 1,3 H-shift, which was also observed for both PBA-Li and 

PBA-Na species. This hydrogen transfer reaction causes fragmentation at the C(O)-O bond 

producing two stable fragments: (1) diol terminus and (2) ketene end group. These results 

correspond to what has previously been reported regarding DP = 5 PBA-Li and PBA-Na species. 

Fragment ion series (i.e. PBA-Li: 297, 497, 697, etc. and PBA-Na: 213, 413, 613, etc.) associated 

with -OH terminus in the 1,3 H-shift pathway, are in low abundance for ESI-MS. In previous 

MALDI-MS studies, this 1,3 H-shift fragment ion series was observed at higher signal intensity,  
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Figure 5.5. Fragmentation reaction mechanisms and results for singly charged PBA DP = 5. (a) 

1,5 H-shift and (b) 1,3 H-shift produces two stable fragment ions. (c) IM-MS/MS spectrum for 

PBA-Li at 0, 30, and 60 V collision energies and (d) IM-MS/MS spectrum for PBA-Na at 0, 30, 

and 60 V collision energies. Respective fragment and precursor species are outlined.  
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this difference in peak intensity can most likely be attributed to ionization differences between the 

MALDI and ESI process.  

  Respective fragment ions (m/z) and their mechanistic pathways observed for both PBA-

Li and PBA-Na species can be found in Supporting Information Figure E.18. IM-MS/MS 

spectra of PBA-Li and PBA-Na are shown in Figure 5.5c-d. Fragment ion generation was 

monitored for each PBA-cationized species at CID energies 0 – 110 V in 10 V increments; see 

Supporting Information Figures E.19-E.20. In Figure 5.5c-d, CID spectra for 0 V, 30 V, and 

60 V have dotted lines drawn around fragment ions and precursor species. As similarly seen with 

DP = 1 PBA-Li species, there were no fragment ions detected for PBA-K, PBA-Rb, and PBA-Cs, 

these species preferentially lost their respective cation as CID energy increased. We observe both 

PBA-Li and PBA-Na species to undergo charge remote 1,5 H-shift and 1,3 H-shift fragmentation 

as CID energy increases. 

In this study, no unique fragment ions were observed for either Li or Na cationized PBA. 

However, Li did produce more intense fragment ion peaks relative to PBA-Na fragment ions. In 

addition to 1,5 H-shift and 1,3 H-shift fragment ions, other fragment ions are formed such as a di-

acid (carboxyl end groups), most likely formed by an intra-chain fragmentation mechanism. 

Moreover, this data is consistent with the previously reported MALDI-TOF/TOF CID studies.
38

  

 

5.4. Conclusions 

In this study, PBA (Mn = 2250) has been extensively characterized with monovalent 

alkali metal cations (Li, Na, K, Rb, and Cs) using IM-MS, IM-MS/MS, and statistical analysis. 

Unique charge state trend lines were observed for this polymer and it was concluded that these 

structural trends were native to the polymer and not specific to either the cationizing agents or 

instrumentation used in this study. Charge state +1, +2, and +3 trend lines increased in CCS 

respective to increasing PBA chain length. Regions of structural transitions representing gas-

phase polymer folding were more distinctly observed for charge states +2 and +3, although PBA-
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cations Na, K, Rb, and Cs were also observed to undergo structural transitions along the +1 

charge state trend line. The tipping point at which the gas-phase structural behavior begins to 

change was determined to be the same for each cation tested within the same charge state trend 

line. ANOVA statistical analysis aided in evaluating unique gas-phase behavior of the PBA-

cations. Significant differences and similarities between PBA-cation CCS means, were compared 

to characterize gas-phase behavior. Tandem IM-MS/MS revealed that PBA-Li and PBA-Na 

species preferentially promote charge remote fragmentation to produce 1,5 H-shift and 1,3 H-shift 

fragment ions at DP = 5. Other PBA-cation species (K, Rb, and Cs) preferentially lost their 

cationizing agent as CID energy increased yielding no structurally useful information.  

 

5.5. Future Directions 

 Probing PBA with monovalent cations (Li, Na, K, Rb, and Cs) revealed the unique 

behavior of this polymers increasing DP chain length in the gas-phase. Future studies using 

Group II divalent cations (Mg and Ca), may provide additional information on how the polyester 

back-bone interacts with a divalent system. There are limited IM-MS papers on the use of 

divalent cations to probe synthetic polymers gas-phase behavior. Comparing monovalent and 

divalent cation coordination with PBA is of interest to further investigate. Statistical tests such as 

ANOVA will be useful to compare these large data sets, and highlight the unique structural 

similarities and differences of the multi-charged cations. It is also of interest to further 

characterize the behavior of the PBA structural transition regions respective to a wide variety of 

charge states and cation sizes. Preliminary data of PBA-Mg and PBA-Ca systems reveal charge 

state trends increasing from z = +2, +4, +6 etc., as seen in Figure 5.6. Probing with divalent 

cations, may also be a useful technique for ionizing high molecular weight synthetic polymers 

using MS-based techniques. Cation-polymer complexes characterized by IM-MS methods can 

help elucidate the unique structural motif of a specific polymer system. 
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Figure 5.6. Ion mobility spectra of PBA (Mn = 2200) ionized by alkali monovalent cations. PBA 

samples were independently spiked with either formic acid or one cation of interest: (a) 

magnesium chloride and (b) calcium chloride. 
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CHAPTER VI 

 

STEPWISE ADDITION AND CHARACTERIZATION OF POLYURETHANE BLOCK 

COPOLYMERS 

 

6.1. Introduction 

 Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, 

commonly manufactured in the form of foams, thermoplastics, coatings, adhesives, sealants, and 

elastomers.
1
 PUs’ resourcefulness comes from their di-block copolymer system comprised of 

hard and soft segments. Soft segments commonly used in PU synthesis are known as polyester or 

polyether polyols, which contribute to PUs’ elasticity. Commonly used hard segments include 

aromatic isocyanates such as methylene bisphenyl diisocyanate (MDI), which contributes to PUs 

rigidity. The reaction between nucleophilic polyol hydroxyl groups and electrophilic isocyanates 

result in the formation of a urethane back-bone within a PU system.
2
 PUs are extremely complex 

materials, which can be challenging to characterize due to intrinsic polydispersity, cross-linking, 

and structural heterogeneity among the most purified samples.
3
 PUs can also form through 

random or block polyaddition. One major limitation towards characterizing PUs, is the ability to 

determine the exact sequential arrangement of a PU oligomer. Therefore, utilizing advanced 

analytical techniques may provide insight into the chemical make-up of di-block copolymer 

systems. In addition to using advanced analytical techniques, there is also a need for novel 

synthetic strategies to generate monodisperse PU oligomers with defined architectural 

arrangements.  

 Over the years, bio-polymers such as proteins and oligonucleotides have utilized a 

stepwise mono-addition method to synthetically control the synthesis of discrete oligomeric 

compounds. Similarly, this synthetic strategy to form discrete bio-polymers can also be used to 

create monodisperse synthetic polymers. The present study was inspired by the previous work of 
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Williams et al., where a series of discrete mass polybutylene glutarate (PBG) oligomers were 

synthesized using mono protecting group addition.
4
 In Williams’ study, these monodisperse PBG 

species were not only synthesized, but characterized using a variety of analytical techniques so 

that these PBG oligomers could be used as analytical standards in future studies. Williams used 

PBG as a model system to show how mono protecting group addition can generate pure 

polymeric oligomers with a defined monomeric arrangement. In this present study, mono-

disperse PU oligomers with a specific arrangement of soft and hard segments were synthesized 

using a similar mono protecting group addition method. In this study, hard segment MDI and 

telechelic polybutylene adipate (PBA) were used to generate symmetrical P(1,2) and P(1,4) 

monodisperse PU oligomers as seen in Figure 6.1a-b, respectively. PUs will be indicated in the 

text by “P” with the number of MDI and PBA groups in parentheses separated by a comma.  For 

example a PU having 1 MDI unit and 2 PBA units would be P(1,2).   

 The inspiration for synthesizing monodisperse PU oligomers, comes from the work of 

Gies et al., where PBA polyesters and PBA PUs where characterized.
5,6

 Gies used a combination 

of mass spectrometry (MS) based experiments to characterize a PU sample which contained a 

wide distribution of polydispersity. He performed fragmentation studies at relatively low collision 

energies on linear soft segment PUs such as the 830 Da (P(1,2)) and 1230 Da (P(1,4)) species that 

were observed in the spectrum. The 830 Da species, which was observed by Gies was composed 

of 2 soft segments (PBA) and 1 hard segment (MDI), and called P(1,2). However in this work, 

the 830 Da species was identified to contain two isomers: an asymmetrical and a symmetrical 

P(1,2) compound. This finding highlights the need for discrete mono-disperse PU oligomers to be 

synthesized, more specifically symmetrical and asymmetrical P(1,2) compounds. Furthermore, 

structural characterization of these discrete mass PUs may pose as analytical standards for 

polydisperse samples in the future.  

 MS is a powerful tool that can be used to identify and characterize synthetic polymers, 

their end-groups, direct mass measurement, molecular weight distribution, and detection of 
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Figure 6.1. Polybutylene adipate polyurethanes synthesized using stepwise addition (a) P(1,2) 

and (b) P(1,4). Soft segment (c) polybutylene adipate (PBA) has a repeat unit of 200 mass. Hard 

segment (d) methylene bisphenyl diisocyanate (MDI) has a repeat unit of 252 mass. 
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impurities or additives. However, MS is still a limited technique when used to fully characterize 

isomeric species within a polydisperse system.
7,8

 Analytical techniques such as ion mobility-mass 

spectrometry (IM-MS) are needed in tangent with MS studies to add a multidimensional approach 

for further insight into a molecule’s gas-phase size. IM-MS is a gas-phase separation technique 

where ions are separated by their shape, in addition to their mass and charge. In previous IM-MS 

studies, structural elucidation of polymeric samples containing cyclic and linear species,
9,10

 and 

isomeric
11–14

 species have been outlined. However, when it comes to detailed structural 

determination of a polydisperse sample, there is still a need for additional tools towards fully 

characterizing polymeric materials. 

 Currently, tandem mass spectrometry (MS/MS) is the leading method for deciphering the 

sequence of a synthetic polymer. MS/MS sequencing is a key technique to determine the 

architectural make-up within a polymeric chain.
15

 Similar to bio-polymers such as peptides, 

oligonucleotides, or carbohydrates, collision-induced dissociation (CID) studies can provide 

useful information about the chemical makeup of a synthetic polymer system. For instance, when 

the sequence of a polymer is unknown, CID studies can aid in structural elucidation of fragment 

ions, to help reveal the intact chemical makeup of the polymer system.
3
 

 In this study, IM-MS and MS/MS methods such as CID experiments will be incorporated 

to assist in characterizing the unique fragmentation pathways of mono discrete PU species. The 

goal of this research is to outline a new direction for sequencing ester-urethane derivatives. In this 

study, we have developed several synthetic routes towards creating mono disperse polyester PUs 

using a protecting group stepwise approach. The symmetrical P(1,2) and P(1,4) oligomers were 

synthesized and characterized using MS-based techniques. In future studies, the asymmetrical 

P(1,2) and P(1,4) compounds will be synthesized and their unique fragmentation pathways will 

be compared to the symmetrical compounds. The starting material used to generate the P(1,2) and 

P(1,4) compounds was also characterized, this includes telechelic PBA n = 1 and n = 2 species. 

Each species unique fragmentation pathways were probed using a variety of cations such as 
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monovalent Li
+
 and Na

+
, and transition metal Ag

+
. Similar to previous studies, alkali-metal ions 

and transition metal ions such as Li
+
, Na

+
, and Ag

+
 are known to take on an encapsulation motif 

around the metal ion and form a π-stacking configuration between phenyl rings.
16

 In this study, 

unique fragment ions associate with each cation-coordinated PBA or PU system was explored. 

We also probed for unique gas-phase cation-coordination through the use of IM drift plots.  

 

6.2. Material and Methods 

6.2.1. Mono-Addition Synthesis of P(1,2) and P(1,4) 

 The target products of this synthesis were discrete mass telechelic PBA oligomers 

containing 1 and 2 mass units, and P(1,2) and P(1,4) symmetrical PUs, as seen in Figure 6.1a-b. 

The telechelic PUs polymers contained a defined number of adipic acid, 1,4-butanediol, and MDI 

residues within the polymer chain. In Figure 6.1c, the PBA soft segment contains one adipic acid 

and one 1,4-butanediol to have the 200 mass repeat unit. In Figure 6.1d, the hard segment MDI 

has a mass of 252 Da.  

 To synthesize P(1,2) and P(1,4), synthetic control was accomplished through 

monoprotection of the 1,4-butanediol starting material, and cyclization of the adipic acid to make 

the adipic anhydride. In this experiment, trytl chloride was used to monoprotect 1,4-butanediol. 

Condensation reagents such as dicyclohexylcarbodiimide (DCC) with catalytic amounts of (N,N-

dimethylamino)pyridine (DMAP) were also used to form the ester bond. Detailed analysis of the 

mono-addition stepwise synthetic approach can be found in section 6.5. Synthetic Procedures. 

 

6.2.2. Instrument Conditions  

IM-MS Sample Preparation 

 Optima LC-MS grade acetonitrile, water, and formic acid was purchased from Fisher 

Scientific (Waltham, MA). Lithium chloride, sodium chloride, and silver nitrate were purchased 

from Sigma-Aldrich (St. Louis, MO).  The monodisperse PU samples were synthesized 
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specifically for this study. The telechelic PBA n = 1, n = 2, and PU P(1,2) and P(1,4) samples 

were prepared at an initial concentration of 1 mg/mL in acetonitrile. Cations were prepared at an 

initial concentration of 1 mg/mL in water. Then, metal cation solutions were diluted to 5 mM in 

10 μg/mL of the synthesized samples in acetonitrile. 

 

Instrumentation 

 All experiments were carried out in the positive ion mode using a commercially available 

Agilent 6560 (Agilent Technologies, Santa Clara, CA, USA) as previously described.
17

 The drift 

tube is 78.1 cm in length, filled with nitrogen for the drift gas pressure of ca. 4 Torr. In nitrogen, 

the collision gas pressure was approximately 4.00 Torr, ~30 
o
C. All samples were directly infused 

via a syringe pump (Cole-Palmer, Vernon Hills, IL) at 10 μL/min flow rate into a thermally 

assisted ESI (Agilent Jet Stream). The instrument was operated in the positive ion mode with 3.8 

kV applied to the ion transfer capillary and 1.8 kV applied to the ion focusing nozzle. Source 

temperatures were kept low (200 
o
C) to aid in ionization. Ion mobility parameters were adjusted 

to optimize the IM resolving power gate width of 100 μs.
18

 

 

CCS Measurements  

 Collisional cross sections were determined using a stepped field technique where the 

applied voltage across the drift tube was varied in 7 increments from 1050 to 1650 V (7.0−19.8 

V/cm or 6−16 Td at 4 Torr) to determine the time ions reside outside the drift cell. The corrected 

drift times were then used to obtain CCS values based on the Mason-Schamp equation as 

described previously.
17,19

 

 

Untargeted IM-MS/MS 

 For this method, all species ionized between 50-1700 m/z were introduced to a step 

voltage ramp set to increase collision energy (CE) at 5 and 10 CE increments: 0-50 CE and 0-100 
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CE. The IM-MS/MS trap fill time was set to 60000 µs, 200 µs for trap release time, and 20 K trap 

fill. The instrument was tuned using an Agilent tune mix and calibrated to correct for small mass 

drifts during acquisition. 

 

6.3. Results and Discussions 

6.3.1. Characterization of n = 1 Polybutylene Adipate by MS/MS 

 Figure 6.2 details the ESI MS/MS spectra for n = 1 cationized PBA; [M+Li]
+
 (Figure 

6.2a-b), [M+Na]
+
 (Figure 6.2c-d), and [M+Ag]

+
 (Figure 6.2e-f). In the MS/MS spectra, different 

collision energies were used to generate fragment ions for each cation coordinated precursor. In 

Figure 6.2, precursor species fragmented at 0 eV and 20 eV (laboratory frame) are compared. 

The MS/MS spectra in Figure 6.2 show the unique fragmentation behavior of each cation 

coordinated to PBA n = 1 species. At 0 eV, both [M+Li]
+
 and [M+Ag]

+
 were observed to form 

minor fragment ions, and the [M+Na]
+
 species appeared to be more stable and therefore did not 

generate as many fragment ions. However, when comparing the MS/MS spectra at 20 eV for all 

three cationized precursors, we observe an increase in fragment ions for the [M+Li]
+
 and 

[M+Ag]
+
 species, and a few fragment ions from the [M+Na]

+
 species. In Figure 6.3, the 

conversion from precursor ion to major fragment ions was monitored as a function of applied 

collision energy. Collision energy was ramped from 0 eV to 50 eV for all unique precursor 

species in 5 eV increments and performed in triplicate. The masses listed in Figure 6.3 are 

without the charge producing cation, and for comparison purposes. Figure 6.3a-c monitors the 

collision induced dissociation (CID) of major fragment ions formed having a percent relative ion 

current (%RIC) of 5% or more. Percent relative standard deviations (%RSD) are also plotted for 

each CID curve. 

 In Figure 6.2b, the MS/MS spectrum highlights major fragment ions observed for the 

[M+Li]
+
 = 297 Da species. The MS/MS spectrum shows the 297 Da species dissociating into 

three major fragment ions at low collision energies: 225, 153, and 135 Da species which 



 165 

 

 

 

 

 

 

 

 

Figure 6.2. ESI MS/MS spectra for n = 1 PBA at corresponding lab-frame energies of 0 eV for 

(a,c,e) and 20 eV for (b,d,f). Results for [M+Li]
 +

 are shown in (a-b), [M+Na]
 +

 in (c-d), and 

[M+Ag]
 +

 in (e-f). 
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correspond to the nominal fragment ion masses of 218, 146, and 128 Da, as seen in Figure 6.3a. 

In Figure 6.3a, a dotted line was drawn for visual alignment marking the point of low energy for 

the PBA n = 1 precursor (< 20 eV). In Figure 6.4, fragment ion pathways are illustrated, 

proposed fragment ion pathways are shown and their corresponding mechanisms. In Figure 6.3a, 

the 290 Da precursor was observed to deplete 100% at 30 eV. Low energy fragment ion 218 Da 

(29%, 15 eV) formed due to a 1,5 H-shift, generating the PBA n = 1 species having acid and 

hydroxyl end-groups (Figure 6.4). Fragment ion 146 Da (46%, 30 eV) is observed to form from a 

1,5 H-shift along the 218 Da species (2X 1,5 H-shift), producing the adipic acid (di-acid 

terminated) fragment ion. Fragment ion 128 Da was observed to form from the 218 Da species, 

through a combination reaction. Fragment ion 128 Da reaches its peak ion formation at 45 eV 

(46%) and forms due to a 1,3 H-shift along the 218 Da species, forming an =C=O end group. At 

higher CID energy, fragment ion 100 Da (41%, 50 eV) was observed to form from the 146 Da 

species, as seen in Figure 6.4.  

 In Figure 6.2d, the MS/MS spectrum highlights major fragment ions formed from the 

depletion of [M+Na]
+
 = 313 Da precursor at 20 eV. The MS/MS spectrum shows the 313 Da 

species having greater stability compared to [M+Li]
+
 and [M+Ag]

+
 species, dissociating into one 

major fragment ions at low CID energies. As seen in Figure 6.2d, fragment ions 241 Da 

corresponds to nominal masses 218 Da in Figure 6.3b. Fragment ion 218 Da (31%, 35 eV) is 

observed to form from the 1,5 H-shift, as seen in Figure 6.4. At high CID energies, the major 

fragment ion 128 Da (as seen for the [M+Li]
+
 species) was observed to form from the depletion 

of the 218 Da fragment ion (40 eV 100%), from a 1,3 H-shift pathway. The 128 Da species 

formed from a combination reaction (1,5 and 1,3 H-shift). The Na cation is known for having a 

larger atomic radius compared to Li, therefore it can be hypothesized that Li’s  

 

 

 



 167 

 

 

 

Figure 6.3. Collision-induced dissociation curves monitoring the unique transition of n = 1 PBA 

precursor to fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

 +
, and (c) 

[M+Ag]
+
. The dotted line is drawn at 20 eV for visual alignment of low energy fragment ions. 
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Figure 6.4. Fragmentation ion pathway monitoring the unique transition of n = 1 PBA precursor 

into fragment ions. 
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small atomic radius increases its ability to fit between the ester functional group, therefore 

promoting more fragment ions than Na.  

 The Ag cation has two major isotopes 
107

Ag (51%) and 
109

Ag (49%). The fragment ions 

observed contained the Ag isotopic distribution, therefore the CID curves represent the 

summation of both 
107

Ag and 
109

Ag isotopes for each fragment ion. The MS/MS spectrum may 

not have every isotopic peak notated; however both peaks were represented and accounted for in 

the calculations. The 
109

Ag isotope intensity appears higher than the 107 Da because of the two 

underlying 
13

C isotopes. The MS/MS spectrum in Figure 6.2f, highlights the major fragment ions 

formed from the depletion of the [M+Ag]
+
 precursor at 20 eV. Similar to [M+Li]

+
, the [M+Ag]

+
 

species was observed to generate numerous fragment ions at relatively low CID energies. In 

Figure 6.2f, major fragment ions 327, 255, 237, and 199 Da correspond to nominal masses 218, 

146, 128, and 90 Da as seen in Figure 6.3c. The 82 Da ion in Figure 6.3c was only observed in 

low intensity in the MS/MS spectra, as CID energy increased, fragment ion 82 Da became a more 

intense ion. In Figure 6.3c, the 290 Da species is observed to deplete at 25 eV, forming major 

fragment ion 218 Da (25%, 10 eV) from a 1,5 H-shift. Fragment ion 146 Da (30%, 20 eV) is also 

observed to form at low CID energies from the 218 Da species (2X 1,5 H-shift) as seen in Figure 

6.4. Major fragment ion 128 Da was also observed to form from the 218 Da species (combination 

reaction), due to a 1,3 H-shift (45%, 30 eV) forming both acid and =C=O end groups. Fragment 

ion 90 Da (22%, 30 eV) was only observed for the [M+Ag]
+
 precursor, corresponding fragment 

ion 200 Da was observed at weak intensities. The major fragment ion 82 Da (100%, 50 eV), is 

only observed at high CID energies and proposed to form from the depletion of the 128 Da 

species, as seen in Figure 6.4. The total percent ion current tables can be found in Table 6.1 for n 

= 1 PBA [M+Li]
+
, [M+Na]

+
, and [M+Ag]

+
 species.  

 For each of the cationized n = 1 species, the 1,5 H-shift reaction appeared to occur more 

frequent along the PBA chain compared to the 1,3 H-shift reaction. Fragment ion 200 Da from 

the 1,3 H-shift appeared in the MS/MS spectra for each cationized species, at a weak intensity. 
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The 1,5 H-shift fragment ion 218 Da appeared in all three cation spectra. The 218 Da fragment 

ion was observed to transition into many fragment ions observed at high CID energies (Figure 

6.4). The 218 Da species contributed to the observation of both (1) 2X 1,5 H-shift reactions 

forming the 146 Da ion, and (2) combination reaction forming the 128 Da ion from a 1,3 H-shift. 

  

6.3.2. Characterization of n = 2 Polybutylene Adipate by MS/MS 

 In Figure 6.5, the ESI MS/MS spectra highlight fragment ions generated for PBA n = 2 

species at 0 eV and 30 eV CID energies for [M+Li]
+
 (Figure 6.5a-b), [M+Na]

+
 (Figure 6.5c-d), 

and [M+Ag]
+
 (Figure 6.5e-f). Figure 6.6a-f monitors the CID of major fragment ions formed 

from the PBA n = 2 species forming at 5% RIC or more. The dashed line is drawn for visual 

alignment at 30 eV to represent low energy fragment ion formation. The PBA n = 2 species 

appears to be more stable than the PBA n = 1 species, requiring additional CID energies to 

generate fragment ions (i.g. n = 1 requires 20 eV, and n = 2 requires 30 eV). This increase in 

stability may also result from an increase in the degree of polymerization (DP) along the PBA 

chain. In Figure 6.6a-c full CID curves are represented for each cation coordinated to PBA n = 2, 

in Figure 6.6d-f ions of low abundance are highlighted between 30 – 0 %RIC. In Figure 6.5a,c,e 

all cationized PBA species are observed to be stable at 0 eV. When the collision energy increases 

to 30 eV, both [M+Li]
+
 and [M+Ag]

+
 species are observed to form many fragment ions (Figure 

6.5b,f). However, at 30 eV, the [M+Na]
+
 species appears to be more stable relative to Li or Ag, 

forming less fragment ions as CID energies increase (Figure 6.5.d). 

 In Figure 6.5b, the MS/MS spectrum highlights major fragment ions formed from the 

depletion of the [M+Li]
+
 = 497 Da species at 30 eV.  Major fragment ions that form at relatively 

low CID energies include: 425, 353, 297, 279, 225, 207, 153, and 135 Da species as seen in 

Figure 6.5b. The corresponding nominal masses of each ion is represented in the CID curves in 
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Table 6.1. Total percent ion currents observed for n = 1 polybutylene adipate, 290 Da: (a) 

[M+Li]
+
, (b) [M+Na]

+
, and (c) [M+Ag]

+
. Percent averages and %RSD are shown above for each 

ion.  
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Figure 6.5. ESI MS/MS spectra for n = 2 PBA at corresponding lab-frame energies of 0 eV for 

(a,c,e) and 30 eV for (b,d,f). Results for [M+Li]
+
 are shown in (a-b), [M+Na]

+ 
in (c-d), and 

[M+Ag]
+
 in (e-f). 
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Figure 6.6. Collision-induced dissociation (CID) curves monitoring the unique transition of n = 2 

PBA precursor to fragment ions when coordinated with cations (a,d) [M+Li]
+
, (b,e) [M+Na]

+
, and 

(c,f) [M+Ag]
+
. CID curves (a-c) monitor fragment ions formed from 0 – 100 %RIC, In CID 

curves (d-f), zoomed view of fragment ions formed between 0 – 30 %RIC are observed. The 

dotted line is drawn at 30 eV for visual alignment of low energy fragment ions. 
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Figure 6.6a,d, these include: 418, 346, 290, 272, 218, 200, 146, and 128 Da. In Figure 6.7, 

major fragment ions resulting from a 1,5 H-shift fragmentation mechanism include: 418 Da 

(22%, 30 eV) forming the PBA n = 2 species with acid and hydroxyl end groups, and 

corresponding fragment ion 72 Da which was only observed at relatively low abundance (< 1%). 

Fragment ions 218 Da (17%, 40 eV) and 272 Da (5%, 35 eV) species was also observed to form 

from a 1,5 H-shift as seen in Figure 6.7. Fragment ions formed from the 1,3 H-shift include 200 

Da (13%, 45 eV) and 290 Da (5%, 35 eV) as seen in Figure 6.7. The 1,3 H-shift fragmentation 

mechanism cleaves the bond between the –O-C(O)-, yielding hydroxyl and =C=O terminated 

fragment ion. However, 1,3 H-shift fragment ions 400 and 90 Da were not observed above 5% 

RIC. These fragment ions were only observed in the MS/MS spectra at low ion intensities. In 

Figure 6.7, fragment ions 346 and 146 Da were both observed to form from a 1,5 H-shift from 

the 418 and 218 Da, respectively. Fragment ions 346 Da (10%, 30 eV) and 146 Da (51%, 50 eV) 

are products of a high energy pathway and are considered to form from a 2X 1,5 H-shift pathway. 

The 128 Da fragment ion (27%, 50 eV) was also observed at high CID energy. The 128 Da 

species forms from a combination reaction from the 218 or 418 Da species first (1,5 H-shift), and 

then a 1,3 H-shift pathway. Additional CID depletion curves with %RSD can be can be found in 

Figure 6.8a,d. 

 In Figure 6.5d, the MS/MS spectrum highlights the smaller number of fragment ions 

formed from the depletion of the [M+Na]
+
 = 513 Da species at 30 eV. Major fragment ions that 

form at relatively low CID energies are the 441 and 295 Da species which correspond to nominal 

masses: 418 Da (13%, 30 eV) and 218 Da (1%, 30 eV). As seen in Figure 6.7, the 418 and 

218Da species are products of the 1,5 H-shift pathway, and form corresponding fragment ions 72 

and 272 Da, respectively. Additional fragment ions observed at higher CID energies include: 346 

Da (6%, 45 eV), 290 Da (5%, 40 eV), and 272 Da (7%, 45 eV). In Figure 6.6b,e the 272 Da 

species is observed at intensities above 5% RIC, however the 72 Da ion was only observed at 

relatively low ion intensity in the MS/MS spectra. Fragment ion 290 Da was the only ion  
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Figure 6.7. Fragmentation ion pathway monitoring the unique transition of n = 2 PBA precursor 

into fragment ions. 
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observed at 5% RIC to form from a 1,3 H-shift pathway. Corresponding 200 Da species was 

observed at low abundance. Also, PBA n = 2 precursor can also form the 400 and 90 Da species 

from a 1,3 H-shift, however these ions were not observed at high %RIC intensities. Fragment ion 

346 Da, as illustrated in Figure 6.7 was observed at high CID energies to form from the 418 Da 

species. Additional CID depletion curves with %RSD can be can be found in Figure 6.8b,e. 

 In Figure 6.5f, the MS/MS spectrum highlights the major fragment ions formed from 

depletion of the [M+Ag]
+
 precursor at 30 eV. Similar to [M+Li]

+
, the [M+Ag]

+
 species generated 

many fragment ions at relatively low collision energies. In Figure 6.6c,f, we observe many 

fragment ions that form below 30 eV. The fragment ions annotated in the MS/MS spectrum 

(Figure 6.5f) include: 527, 455, 399, 327, and 255 Da. The peak at 106.9 is from the Ag cation. 

Low abundant fragment ions also observed at 30 eV in the MS/MS spectra include: 237, 199, and 

181 Da, these fragment ions are observed at higher intensities as CID energies increase. In Figure 

6.6c,f, the [M+Ag]
+
 species was observed to deplete 100% by 40 eV. The nominal masses of each 

fragment ion are represented form above 10%RIC and include: 418, 346, 218, 146, 128, 88, and 

72 Da. Fragment ion 399 Da as observed in the MS/MS spectra forms at 6% intensity at 30 eV 

and is observed as a minor fragment ion in Table 6.4, as nominal mass 290 Da. Fragment ions 

observed to form froma 1,5 H-shift include: 418 (22%, 30 eV) and 218 (20%, 35 eV) Da species. 

Only the 418 Da corresponding 72 Da (10%, 50 eV) ion was observed at relatively high %RIC. 

The 218 Da corresponding 272 Da ion was only observed at relatively low abundance, as 

illustrated in Figure 6.7. Fragment ion 290 Da, observed in the MS/MS spectra and in Table 6.4 

forms from a 1,3 H-shift, corresponding 200 Da ion was also observed at low intensities (6%, 40 

eV). The 346 (11%, 30 eV) and 146 Da (24%, 50 eV) species, as seen in Figure 6.7, directly 

form from a 1,5 H-shift of the 418 and 218 Da species, respectively (2X 1,5 H-shift). Fragment 

ion 128 Da (40%, 50 eV) was observed to form from a combination reaction (1,5 and 1,3 H-shift) 

from the 418 and 218 Da species. The 88 Da (13%, 50 eV) species was uniquely observed to  
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Figure 6.8. Collision-induced dissociation (CID) curves monitoring the unique transition of n = 2 

PBA precursor to fragment ions when coordinated with cations (a,d) [M+Li]
+
, (b,e) [M+Na]

 +
, 

and (c,f) [M+Ag]
 +

. CID curves (a-c) monitor fragment ions formed from 0 – 100 %RIC, In CID 

curves (d-f), zoomed view of fragment ions  formed between 0 – 30 %RIC are observed. The 

dotted line is drawn at 30 eV for visual alignment of low energy fragment ions and with %RSD. 

 

 

 

 

\ 

 



 178 

formed for the [M+Ag]
+
 precursor, and is proposed to form from the 128 Da species at high CID 

energies. In Figure 6.7, proposed fragment ion structures and their respective pathway are 

illustrated. The total %RIC of PBA n = 2 precursor species can be found in Tables 6.2-6.4. 

 

6.3.3. Polybutylene Adipate Literature MS/MS Comparison  

 Gies et al., used MALDI-TOF/TOF CID to explore fragmentation reactions associated 

with PBA.
6
 In that study, a telechelic polydisperse PBA sample was characterized for both linear 

and cyclic PBA species, and fragmented using Li and Na cations. Unique low energy 

fragmentation pathways were documented. PBA oligomers were found to undergo a number of 

low energy degradation pathways: (1) 1,5 H-shift, (2) 1,3 H-shift, (3) remote hydrogen 

abstraction reactions, and (4) a combination of (1-3). In the present study, characterizing 

monodisperse PBA n = 1 and n = 2 species, we observed similar findings to those of Gies et al., 

however we did not observe hydrogen abstraction reactions. Fragmentation pathways of PBA n = 

1 and n = 2 species were monitored with respect to Li, Na, and Ag cation coordination. We 

observed the Na cation to generate a more stable precursor for the PBA species compared to Li or 

Ag coordination. With respect to fragmentation patterns, we observed both 1,5 and 1,3 H-shift 

fragmentation mechanism for all coordinated cation species. We also observed higher energy 

combination reactions which included both 1,5 and 1,3 H-shift mechanisms and 2X 1,5 H-shift 

reactions along the polyester backbone. Unique fragment ions were also observed for PBA cation 

coordinated precursors. Those fragment ions are low mass species, resulting in the fragmentation 

of the 146 Da and 126 Da species. 
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Table 6.2. Total percent ion currents observed for [M+Li]
+
 PBA n = 2. Percent averages and 

%RSD are shown above for each ion.  
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Table 6.3. Total percent ion currents observed for [M+Na]
+
 PBA n = 2. Percent averages and 

%RSD are shown above for each ion.  
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Table 6.4. Total percent ion currents observed for [M+Ag]
+
 PBA n = 2. Percent averages and 

%RSD are shown above for each ion.  
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6.3.4. Characterization of P(1,2) by MS/MS 

In this present study, we probed for unique fragmentation pathways for the P(1,2) species 

coordinated to Li
+
, Na

+
, and Ag

+
 cations. We monitored the formation of major and minor 

fragment ions with respect to increasing CID energies. Major fragment ions observed for the 

[M+Li]
+
, [M+Na]

+
, and [M+Ag]

+
 that formed above 10%RIC can be found in Figure 6.9. The 

dashed line is drawn for visual alignment at 50 eV to represent low energy fragment ion 

formation. Similar to the PBA n = 1 and n = 2 findings, the P(1,2) was also observed to undergo 

1,5 and 1,3 H-shift pathways along both the polyester and urethane chain. The findings discussed 

in this paper correlate strongly to the previous findings of Gies and Hercules,
5
 and will be 

discussed further in the sections to come. 

The ESI MS/MS spectra of P(1,2) coordinated to [M+Li]
+
 at different CID energies can 

be found in Figure 6.10. The [M+Li]
+
 MS/MS spectra at 0 eV (Figure 6.10a-b), 30 eV (Figure 

6.10c-d), and 50 eV (Figure 6.10e-f) shows both full (Figure 6.10a,c,e) MS/MS spectra and 

zoomed (Figure 6.10b,d,f) regions for each of these CID energies. Both major and minor 

fragment ions are annotated to show the unique polyester and urethane fragmentation pathways 

for P(1,2) coordinated to Li
+
. In Figure 6.9, major fragment ions that formed above 10%RIC 

include (nominal mass) 758, 218, 146, and 128 Da, which corresponds to 837, 765, 225, 153, and 

135 Da (mass with Li
+
 cation). In Figure 6.10, additional fragment ions are notated in the MS/MS 

spectra. These are considered to be minor fragment ions. These minor fragment ions were 

monitored with respect to increasing CID energies in Figure 6.11a. As an example, the P(1,2) 

[M+Li]
+
 species MS/MS spectra at 50 eV was enlarged in Figure 6.12a-d to highlight the unique 

major and minor fragment ions observed for this precursor. 

In Figure 6.9a, the depletion of the [M+Li]
+
 precursor species was monitored with 

respect to increasing CID energies. The 830 Da precursor was observed to deplete 100% by 70 

eV. Only one low energy fragment ion was observed to form under 50 eV and above 10% RIC. 

This was the 758 Da fragment ion (15%, 50 eV), which formed from the 1,5 H-shift along the 
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polyester chain as seen in Table 6.5. The corresponding 72 Da fragment ion was observed in 

relatively low abundance in the MS/MS spectrum. High energy fragment ions were also 

observed; these include: 218, 146, and 128 Da species. The 218 Da (12%, 70 eV) fragment ion 

can form from two pathways. The 218 Da species can form from a 1,5 H-shift around the ester 

functional group, forming the corresponding 72 Da fragment ion. The 218 Da species can also 

form from a 1,3 H-shift around the urethane group as seen in Table 6.5. The corresponding 642 

Da fragment species was only observed in relatively low abundance in Figure 6.12c. The 146 Da 

(52%, 90 eV) fragment ion as described in the PBA section, forms from a two 1,5 H-shift along 

the polyester chain. Additionally, major fragment ion 128 Da (37%, 100 eV) was also observed to 

form from both the 1,5 H-shift and the 1,3 H-shift along the polyester chain, due to high-energy 

fragmentation as seen in Table 6.5. The Li
+
 coordinated P(1,2) species was found to form many 

fragment ions as CID energies increased. Li is notoriously known to cause increased fragment ion 

formation. Due to Li’s small atomic radius, we propose that Li is coordinating with the ester 

functional groups along the soft segment chain, in addition to coordination with the hard segment 

phenyl rings. Additional total %RIC data can be found in Tables 6.6 for both major and minor 

fragment ions generated from the [M+Li]
+
 species. 
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Figure 6.9. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,2) precursor to fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, and 

(c) [M+Ag]
+
. The dotted line is drawn at 50 eV for visual alignment of low energy fragment ions. 
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Figure 6.10. ESI MS/MS spectra of the P(1,2) [M+Li]
+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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Figure 6.11. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,2) precursor to minor fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, 

and (c) [M+Ag]
+
. The dotted line is drawn at 50 eV for visual alignment of low energy fragment 

ions with %RSD. 
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Figure 6.12. ESI MS/MS spectra of the P(1,2) [M+Li]
+
 at 50 eV. Zoomed-in regions include: (a) 

150 – 300 m/z, (b) 300 – 500 m/z, (c) 500 – 700 m/z, and (d) 700 – 900 m/z. 
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Table 6.5. Provides mass lists for each cation coordinated to P(1,2) precursor and nominal 

masses as listed in CID curves. The fragmentation pathway and corresponding structure for each 

species is represented above. Only major fragment ions monitored in CID curves are represented 

above. 
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Table 6.6. Total percent ion currents observed for [M+Li]
+
  P(1,2). Percent averages and %RSD 

are shown above for each ion. 
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 The ESI MS/MS spectra of P(1,2) coordinated to [M+Na]
+
 at different CID energies can 

be found in Figure 6.13. The [M+Na]
+
 MS/MS spectra at 0 eV (Figure 6.13a-b), 30 eV (Figure 

6.13c-d), and 50 eV (Figure 6.13e-f) shows both full (Figure 6.13a,c,e) MS/MS spectra and 

zoomed (Figure 6.13b,d,f) regions for each of these CID energies. In Figure 6.9b, the depletion 

of the [M+Na]
+
 precursor was monitored with respect to increasing CID energies (0 – 110 eV). 

The CID curves for [M+Na]
+
 species show an increased stability in P(1,2) coordinated to Na 

cation, compared to Li and Ag cations. The P(1,2) species (830 Da) was observed to deplete 

100% by 80 eV, forming three major fragment ions: 758, 290, and 240 Da, which correspond to 

781, 313, and 263 Da (cation masses as seen in Figure 6.13). All ions that were observed to form 

above 10%RIC are considered major fragment ions.  

 In Figure 6.9b, major fragment ions 758, 290, and 240 Da were observed to start forming 

at low CID energies (< 50 eV), however these fragment ions formed in greatest abundance at high 

energies (> 50 eV). Fragment ion 758 Da (11%, 60 eV), as discussed previously forms from the 

1,5 H-shift; in the MS/MS spectra, the corresponding 72 Da fragment ion was observed to form at 

relatively low intensity. The next major fragment ion, 290 Da (12%, 80 eV) species forms from a 

1,3 H-shift around the urethane group yielding the n = 1 PBA chain. The corresponding 540 Da 

species was observed as a minor fragment ion observed in Table 6.5 and Figure 6.11b. The 540 

Da structure includes the MDI hard segment with an exposed isocyanate group and a urethane 

PBA n = 1 chain. The most interesting fragment ion formed in the [M+Na]
+
 spectra was the 240 

Da species as seen in Table 6.5. This fragment ion was observed to form at high energy only, and 

was uniquely observed only for the P(1,2) precursor coordinated to an Na alkali cation. The 240 

Da fragment ion forms at high activation energy (88%, 80 eV), and results in an NH group and  
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Figure 6.13. ESI MS/MS spectra of the P(1,2) [M+Na]
+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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Table 6.7. Total percent ion currents observed for [M+Na]
+
  P(1,2). Percent averages and %RSD 

are shown above for each ion. 
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carbamic acid around the hard segment. Carbamic acids are unstable end groups which can easily 

undergo loss of CO2 to form the amine. Additional total %RIC data can be found in Tables 6.7 

for both major and minor fragment ions generated from the [M+Na]
+
 species. 

 The ESI MS/MS spectra of P(1,2) coordinated to [M+Ag]
+
 at different CID energies can 

be found in Figure 6.14. The [M+Ag]
+
 MS/MS spectra at 0 eV (Figure 6.14a-b), 30 eV (Figure 

6.14c-d), and 50 eV (Figure 6.14e-f) shows both full (Figure 6.14a,c,e) MS/MS spectra and 

zoomed (Figure 6.14b,d,f) regions for each of these CID energies. In Figure 6.9.c, the depletion 

of the [M+Ag]
+
 precursor was monitored with respect to increasing CID energies. In the case 

where Ag is coordinated to P(1,2), there is an increase in fragment ions formed from the depletion 

of the 830 Da precursor. Here, the precursor species is observed to deplete to 100% completion at 

60 eV, therefore making this species the least stable of the three cationized P(1,2) species. At 

relatively low CID energies, two major fragment ions were observed to form: 758 and 490 Da 

species. The 758 Da (17%, 50 eV) species forms from the 1,5 H-shift and its corresponding 

fragment ion, 72 Da was only observed in low ion abundance in the MS/MS spectra. The other 

low energy fragment ion formed is the 490 Da species (12%, 30 eV) as seen in Table 6.5. This 

species is appears in relatively high intensities for the Ag
+
 species, and is also seen for the Li

+
 

species (Figure 6.12b as 497 Da). It appears that the 490 Da species forms from both a 

combination reaction between the 1,5 and 1,3 H-shift along the urethane and polyester chain, as 

seen in Table 6.5. Other major fragment ions observed at higher collision energies include: 540, 

468, 442, 314, 268, 218, and 90 Da species. The 442 Da (15%, 70 eV) formed due to high 

energies from a 1,5 H-shift around the urethane forming an amine and corresponding 318 Da 

fragment ion (observed in low abundance in MS/MS spectra). Additionally, the 442 Da (Figure 

6.14f) formed due to a 1,5 H-shift along the polyester backbone forming the corresponding 72 Da 

fragment ion, also observed at low ion intensities in MS/MS spectra. Fragment ion 218 Da (17%, 

70 eV) was also observed to form due to 1,5 H-shift along the polyester backbone, resulting in 

fragment ion 612 Da, also observed in low ion intensity in the MS/MS spectra (Figure 6.14f as 
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the 721 Da, cation mass included). The 540 Da (11%, 60 eV) fragment ion forms from the 1,3 H-

shift around the urethane bond (Table 6.5), resulting in the formation of the 290 Da species 

which was not observed in the MS/MS spectra. Fragment ion 268 Da (43%, 80 eV) formed due to 

a 1,3 H-shift around the PU hard segment, leaving isocyanate and carbamic acid end groups as 

seen in Table 6.5. Fragment ion 90 Da (85%, 100 eV) also forms from a 1,3 H-shift along the 

polyester chain. The corresponding 740 Da species was not observed as a minor fragment ion, 

however it was observed in low ion intensity in the MS/MS spectra. The 468 Da (11%, 70 eV) 

species uniquely forms from both a 1,3 H-shift around the urethane and a 1,5 H-shift around the 

polyester backbone. Fragment ion 314 Da (10%, 70 eV) is also formed at relatively high CID 

energies due to a combination reaction of 1,5 and 1,3 H-shift, forming the hard segment with an 

amine (-NH2) and a 1,3 H-shift fragmentation mechanism along the polyester chain (Table 6.5). 

Similar to the [M+Li]
+
 P(1,2) species, the Ag

+
 cation is observed to generate many fragment ions 

both along the polyester chain as well as around the urethane hard segment.  Additional total 

%RIC data of major and minor fragment ions can be found in Tables 6.8. In Figure 6.15, the 

major P(1,2) fragment ions CID curves with %RSD error bars can be found for each cation. 
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Figure 6.14. ESI MS/MS spectra of the P(1,2) [M+Ag]
+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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Table 6.8. Total percent ion currents observed for [M+Ag]
+
  P(1,2). Percent averages and %RSD 

are shown above for each ion. 
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Figure 6.15. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,2) precursor to major fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, 

and (c) [M+Ag]
+
. The dotted line is drawn at 50 eV for visual alignment of low energy fragment 

ions with %RSD. 
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6.3.5. Characterization of P(1,4) by MS/MS 

The P(1,4) species produced similar results to what was found in the P(1,2) studies. Here, 

P(1,4) has two polyester repeat units on each side of the hard segment urethane as seen in Figure 

6.1b. When probing the unique fragmentation pathways associated with this symmetrical P(1,4), 

we found that the P(1,4) was more stable than the symmetrical P(1,2) species. For instance, the 

P(1,4) precursor, irrespective of coordinated cation, appeared to deplete 100% by CID energies of 

100 – 110 eV compared to 60 – 80 eV as seen in the P(1,2) findings. In this present study, we 

probed for unique fragmentation pathways for the P(1,4) species coordinated to Li
+
, Na

+
, and Ag

+
 

cations. We monitored the formation of major and minor fragment ions with respect to increasing 

CID energies. Major fragment ions observed for the [M+Li]
+
, [M+Na]

+
, and [M+Ag]

+
 that 

formed above 10%RIC can be found in Figure 6.16a-c. The dashed line is drawn for visual 

alignment at 70 eV to represent low energy fragment ion formation.  

The ESI MS/MS spectra of P(1,4) coordinated to [M+Li]
+
 at different CID energies can 

be found in Figure 6.17. The [M+Li]
+
 MS/MS spectra at 0 eV (Figure 6.17a-b), 50 eV (Figure 

6.17c-d), and 70 eV (Figure 6.17e-f) shows both full (Figure 6.17a,c,e) MS/MS spectra and 

zoomed (Figure 6.17b,d,f) regions for each of these CID energies. Both major and minor 

fragment ions are annotated to show the unique polyester and urethane fragmentation pathways 

for P(1,4) coordinated to Li
+
. In Figure 6.16, major fragment ions that formed above 10%RIC 

include (nominal mass) 1158, 740, 418, 400, 346, 218, 200, 146, and 104 Da, which corresponds 

to1165, 747, 425, 407, 353, 225, 207, 153,and 111 Da (mass with Li
+
 cation). In Figure 6.17, 

additional fragment ions are notated in the MS/MS spectra. These are considered to be minor 

fragment ions, which were formed under 10%RIC, as seen  
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Figure 6.16. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,4) precursor to fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, and 

(c) [M+Ag]
+
. The dotted line is drawn at 70 eV for visual alignment of low energy fragment ions. 
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Figure 6.17. ESI MS/MS spectra of the P(1,4) [M+Li]

+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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in Figure 18a. As an example, the P(1,4) [M+Li]
+
 species MS/MS spectra at 70 eV was enlarged 

in Figure 6.19a-d to highlight the unique major and minor fragment ions observed for this 

precursor. 

 In Figure 6.16a, the depletion of the [M+Li]
+
 precursor species (1230 Da) was monitored 

with respect to increasing CID energies. The CID curves for the [M+Li]
+
 species show an 

increase in stability of the P(1,4) precursor with increasing CID energies. Here, the precursor is 

observed to deplete to 100% by 100 eV, therefore making this species more stable than the P(1,2) 

[M+Li]
+
 precursor. At relatively low collision energies, only the 1158 Da (9%, 70 eV) is 

observed to form. The 1158 Da fragment ion is the product of a 1,5 H-shift around the polyester 

chain, as seen in Table 6.9. The corresponding 72 Da species was observed at low ion intensit. 

All other fragment ions observed formed at high CID energies. High energy fragment ions 

observed include: 740, 418, 400, 346, 218, 200, 146, and 104 Da species (as seen in Figure 6.17 

and Figure 6.19). The 418 Da (12%, 90 eV) and 218 Da (12%, 110 eV) species both formed from 

a 1,5 H-shift around the polyester as seen previously for PBA n = 2 (Table 6.9). The 740 Da (8%, 

80 eV) species was observed to form from one 1,3 H-shift around the urethane hard segment, or 

two 1,3 H-shifts along the polyester chain, both 740 Da structures are illustrated in Table 6.9. As 

observed for PBA n = 2, both fragment ions 400 Da (5%, 100 eV) and 200 Da (20%, 110 eV) 

form from a 1,3 H-shift along the polyester chain. Likewise, fragment ions 346 Da (11%, 100 eV) 

and 146 Da (31%, 110 eV) species were also observed for PBA n = 2, and these fragment ions 

form from two 1,5 H-shifts along the polyester chain, leaving a di-acid product. The 104 Da (9%, 

110 eV) species was uniquely observed for the [M+Li]
+
 precursor species at high CID energies. 

Additional total %RIC data of major and minor fragment ions can be found in Tables 6.10. 
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Figure 6.18. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,4) precursor to minor fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, 

and (c) [M+Ag]
+
. The dotted line is drawn at 70 eV for visual alignment of low energy fragment 

ions with %RSD. 
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Figure 6.19. ESI MS/MS spectra of the P(1,4) [M+Li]
+
 at 70 eV. Zoomed-in regions include: (a) 

150 – 350 m/z, (b) 350 – 550 m/z, (c) 600 – 850 m/z, and (d) 900 – 1200 m/z. 
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Table 6.9. Provides mass lists for each cation coordinated to P(1,2) precursor and nominal 

masses as listed in CID curves. The fragmentation pathway and corresponding structure for each 

species is represented above. Only major fragment ions monitored in CID curves are represented 

above. 
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Table 6.10. Total percent ion currents observed for [M+Li]
+
  P(1,4). Percent averages and %RSD 

are shown above for each ion. 

 

0 10 20 30 40 50 60 70 80 90 100 110

1237 1230 100.0% 99.9% 99.7% 99.0% 97.4% 93.8% 82.6% 55.6% 22.8% 4.1% 0.0% 0.0%

0.0% 0.0% 0.0% 0.2% 0.1% 0.2% 0.3% 0.5% 0.4% 0.0% 0.0% 0.0%

1165 1158 0.0% 0.1% 0.1% 0.2% 0.7% 1.8% 5.0% 9.4% 8.8% 3.4% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.4% 0.4% 0.2% 0.0% 0.0%

1019 1012 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.8% 1.9% 2.5% 1.3% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.1% 0.0% 0.0%

965 958 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 1.0% 2.5% 3.7% 2.3% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.2% 0.1% 0.0% 0.0%

819 812 0.0% 0.0% 0.0% 0.0% 0.2% 0.5% 1.7% 4.2% 5.6% 3.6% 1.3% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%

765 758 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 1.1% 2.3% 2.8% 1.5% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.0% 0.1% 0.0% 0.0%

747 740 0.0% 0.0% 0.0% 0.1% 0.3% 0.6% 1.6% 4.4% 8.2% 7.6% 4.0% 1.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2% 0.1%

721 714 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.6% 2.2% 4.4% 3.8% 1.9% 0.0%

0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.3% 0.1% 0.0% 0.2% 0.0%

675 668 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 0.9% 2.1% 3.1% 2.3% 1.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.3% 0.0% 0.3%

649 642 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.9% 2.2% 2.9% 2.2% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0%

547 540 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.8% 2.6% 2.5% 1.6%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.2%

497 490 0.0% 0.0% 0.0% 0.0% 0.2% 0.2% 0.5% 1.6% 2.5% 2.6% 1.3% 0.5%

0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.4%

479 472 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 1.0% 2.6% 4.9% 5.1% 3.6% 1.4%

0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.3% 0.2% 0.1% 0.1% 0.1% 0.3%

425 418 0.0% 0.0% 0.0% 0.1% 0.3% 0.5% 1.3% 4.1% 9.2% 12.3% 10.1% 4.6%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.1% 0.2% 0.3% 0.2%

407 400 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 1.1% 2.8% 5.3% 5.6% 4.2%

0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2% 0.6%

353 346 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.4% 1.3% 4.3% 8.7% 11.5% 9.7%

0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.3% 0.3% 0.3%

279 272 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 3.3% 3.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3%

225 218 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 1.0% 2.6% 6.4% 10.3% 12.1%

0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.1% 0.3% 0.2% 0.4% 0.2%

207 200 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 1.0% 2.9% 7.8% 14.4% 20.6%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.3% 0.1% 0.3% 0.3% 0.5% 0.6%

153 146 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.5% 1.0% 2.8% 7.7% 18.1% 30.9%

0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.3% 0.3% 0.2% 0.4%

111 104 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 1.1% 3.1% 5.7% 7.4% 9.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.4% 0.3% 0.3% 0.7%

M+Li
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 The ESI MS/MS spectra of P(1,4) coordinated to [M+Na]
+
 at different CID energies can 

be found in Figure 6.20. The [M+Na]
+
 MS/MS spectra at 0 eV (Figure 6.20a-b), 50 eV (Figure 

6.20c-d), and 70 eV (Figure 6.20e-f) shows both full (Figure 6.20a,c,e) MS/MS spectra and 

zoomed (Figure 6.20b,d,f) regions for each of these CID energies. Both major and minor 

fragment ions are annotated to show the unique polyester and urethane fragmentation pathways 

for P(1,4) coordinated to Na
+
. In Figure 6.16, major fragment ions that formed above 10%RIC 

include (nominal mass) 1158, 812, 740, 714, 490, 472, 418, and 88 Da, which corresponds 

to1181, 835, 763, 737, 513, 495, 441, and 111 Da (mass with Na
+
 cation). In Figure 6.20, 

additional fragment ions are notated in the MS/MS spectra. These are considered to be minor 

fragment ions, which formed at %RIC under 10% as seen in Figure 6.18b. In Figure 6.16b, the 

depletion of the [M+Na]
+
 precursor species (1230 Da) was monitored with respect to increasing 

CID energies. The CID curves for the [M+Na]
+
 species show an increase in stability of the P(1,4) 

precursor with increasing CID energies. Here, the precursor is observed to deplete to 100% by 

110 eV, therefore making this species more stable than the P(1,2) [M+Na]
+
 and the P(1,4) 

[M+Li]
+
 and [M+Ag]

+
 precursors. At relatively high CID energies, fragment ions were only 

observed to form. Major fragment ions to be discussed include: 1158, 812, 740, 714, 490, 472, 

418, and 88 Da species. As mentioned above, the 1158 Da (7%, 80 eV) fragment ion formed from 

the 1,5 H-shift fragmentation mechanism along the polyester chain, as seen in Table 6.9. The 812 

Da fragment ion is unique to the Na and Ag precursors, we do not observed the 812 species for 

the Li precursor. The 812 Da (6.7%, 90 eV) fragment ion forms from a 1,5 H-shift along the 

polyester chain as seen in Table 6.9. Another fragment ion, such as 714 Da (12%, 100 eV) was 

also observed at high CID energies to form from an 1,5 H-shift around the urethane  
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Figure 6.20. ESI MS/MS spectra of the P(1,4) [M+Na]
+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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Table 6.11. Total percent ion currents observed for [M+Na]
+
  P(1,4). Percent averages and 

%RSD are shown above for each ion. 

0 10 20 30 40 50 60 70 80 90 100 110

1253 1230 100.0% 100.0% 99.8% 99.6% 99.0% 97.0% 91.5% 75.3% 46.6% 20.3% 5.8% 1.7%

0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.2% 0.7% 0.6% 1.2% 0.7% 0.5%

1181 1158 0.0% 0.0% 0.0% 0.1% 0.2% 0.6% 1.7% 4.1% 6.7% 6.2% 3.1% 0.9%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.2% 0.3% 0.4% 0.1% 0.8%

1035 1012 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.6% 1.6% 3.3% 3.9% 2.5% 1.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.6% 0.3%

981 958 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.6% 1.9% 3.7% 4.7% 3.8% 1.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4% 0.1%

963 940 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.6% 1.1% 1.5% 0.8%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.1% 0.7%

835 812 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 1.0% 2.9% 5.1% 6.7% 6.1% 3.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 0.0% 0.2% 0.5% 0.1%

781 758 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 0.9% 2.5% 3.7% 3.4% 2.3% 1.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.1% 0.3% 1.2%

763 740 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 1.3% 3.9% 8.7% 13.1% 13.6% 11.3%

0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.4% 0.2% 0.4% 1.3% 2.4%

737 714 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.6% 2.0% 6.1% 10.6% 12.5% 10.4%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.5% 0.3% 2.4%

691 668 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.8% 1.9% 3.3% 3.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 0.8%

665 642 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 1.0% 2.2% 3.7% 4.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.5% 0.4%

659 636 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%

638 615 0.0% 0.0% 0.1% 0.2% 0.2% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

563 540 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 1.2% 2.0% 2.1%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.7%

513 490 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.6% 1.6% 4.0% 6.1% 7.4% 6.7%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.3% 1.0% 0.7%

495 472 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 2.0% 4.0% 7.3% 10.1% 11.8%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.4% 0.8% 1.4%

441 418 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.4% 1.2% 3.9% 7.1% 11.0% 13.6%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.2% 0.5% 1.2% 0.8%

423 400 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 1.2% 2.3% 3.6%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 1.1%

369 346 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.9% 1.9% 2.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.4% 0.7%

295 272 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 1.2% 1.6%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.3% 0.8%

111 88 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.5% 1.7% 5.8% 19.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3% 0.2% 1.0%

M+Na
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(-NH2). The 472 Da (12%, 110 eV) species, as seen in Table 6.9 was also observed to form from 

a 1,5 H-shift along the polyester chain. The 418 Da (13%, 110 eV) fragment ion, as seen in the 

previous PBA n = 2 section, also formed from a 1,5 H-shift. The 740 Da (13%, 100 eV) fragment 

ion is unique. This species could have formed through two mechanistic pathways: (1) 1,3 H-shift 

around the urethane hard segment, yielding the corresponding 490 Da (7%, 100 eV) fragment ion, 

and (2) two 1,3 H-shifts along the polyester chain as seen in Table 6.9. Similarly, the 88 Da 

(19%, 110 eV) fragment ion is unique to the P(1,4) [M+Na]
+
 precursor and was observed to form 

at high CID energies due to a combination of 1,5 and 1,3 H-shifts along the polyester chain. 

Additional total %RIC data of major and minor fragment ions can be found in Tables 6.11. 

 In this section, we will discuss the unique behavior of the P(1,4) species coordinated to 

transition metal Ag
+
, as  [M+Ag]

+
 precursor. Here we observed similar fragment ions as seen for 

the [M+Li]
+
 species. The ESI MS/MS spectra of P(1,4) coordinated to [M+Ag]

+
 at different CID 

energies can be found in Figure 6.21. The [M+Ag]
+
 MS/MS spectra at 0 eV (Figure 6.21a-b), 50 

eV (Figure 6.21c-d), and 70 eV (Figure 6.21e-f) shows both full (Figure 6.21a,c,e) MS/MS 

spectra and zoomed (Figure 6.21b,d,f) regions for each of these CID energies. Both major and 

minor fragment ions are annotated to show the unique polyester and urethane fragmentation 

pathways for P(1,4) coordinated to Ag
+
. In Figure 6.16, major fragment ions that formed above 

10%RIC include (nominal mass) 1158, 812, 758, 740, 668, 642, 540, 472, 346, 268, 218, 200, 

and 146 Da, which corresponds 1265, 919, 865, 847, 775, 749, 647, 572, 453, 375, 325, 307, and 

253 Da (mass with 
107

Ag cation, as seen in Figure 6.21).  

 

 

 

 

 

 



 210 

 

 

 

Figure 6.21. ESI MS/MS spectra of the P(1,4) [M+Ag]
+
 at corresponding lab-frame energies of 0 

eV for (a-b), 30 eV (c-d), and 50 eV (e-d). Both full (a,c,e) MS/MS spectra and zoomed-in (b,d,f) 

regions are represented each lab-frame energy. Counts represent max intensities for precursor 

ions in each zoomed spectra. 
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 In Figure 6.16c, the depletion of the [M+Ag]
+
 precursor species was also monitored 

against increasing CID energies. The CID curves for the [M+Ag]
+
 species show an increase in PU 

stability from P(1,2) to P(1,4). However when comparing P(1,4) cations, the [M+Ag]
+
 species 

was observed to form more major fragment ions compared to the other cationized P(1,4) species. 

The [M+Ag]
+
 precursor was observed to deplete 100% at 100 eV. There were three major 

fragment ions that formed at the low CID region (< 70 eV), these include: 1158, 758, and 740 Da 

species (Figure 6.16c and Figure 6.21c-d). Low energy fragment ion 1158 Da (13%, 70 eV) 

forms from a 1,5 H-shift along the polyester chain as seen in Table 6.9. Fragment ion 740 Da 

(12%, 80 eV), as discussed above can form through two different pathways: (1) 1,3 H-shift along 

the urethane, or (2) two 1,3 H-shifts along the polyester chain. Uniquely, fragment ion 758 Da 

(5%, 70 eV) forms from both a 1,5 and 1,3 H-shift along the polyester chain (structure provided 

in Table 6.9). High energy fragment ions observed include: 812, 668, 642, 540, 472, 346, 270, 

218, 200, and 146 Da. Major high energy fragment ion 812 Da (6%, 80 eV) was observed to form 

from a 1,5 H-shift along the polyester chain. The 472 Da (6%, 100 eV) fragment ion, as 

previously observed for the [M+Na]
+
 precursor formed due to a 1,5 H-shift along the polyester 

chain. Fragment ions 346 Da (9%, 110 eV) and 146 Da (22%, 110 eV) species form from two 1,5 

H-shifts along the polyester chain leaving a di-acid product. Fragment ions 540 Da (6%, 90 eV) 

formed due to two 1,3 H-shifts, one around the urethane and the other along the polyester chain 

(Table 6.9). The 200 Da (20%, 110 eV) species was also observed, this fragment ion forms from 

a 1,3 H-shift along the polyester chain. Fragment ion 668 Da (6%, 90 eV) formed from both a 1,5 

H-shift and 1,3 H-shift fragmentation pathway yielding a product with both =C=O and acid end 

groups. Fragment ion 218 Da (17%, 110 eV) was observed to form due to a 1,5 and 1,3 H-shift 

along the polyester chain. Another high energy fragment ion, 268 Da (20%, 110 eV) formed 

uniquely for the [M+Ag]
+
 precursor, from both a 1,3 H-shift around the urethane yielding an 

isocyanate group, and a 1,5 H-shift forming carbamic acid. The carbamic acid is a very unstable 

fragment ion, and easily transitions into an amine due to the loss of CO2, as seen in Table 6.9. 
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The [M+Ag]
+
 precursor produced more major fragment ions from the polyester chain compared 

to Li and Na cations. Additional total %RIC data of major and minor fragment ions can be found 

in Tables 6.12.The full CID curves with %RSD error bars can be found in Figure 6.22. 

 

6.3.5. P(1,2) and P(1,4) MS/MS Literature Comparison  

 In previous work, Gies and Hercules studied a complex mixture composed of PBA based 

PUs using MALDI-TOF/TOF MS and IM-MS.
5
 In their work, CID fragmentation identifiers were 

used to characterize the unique fragmentation pathways associated with PUs. They predicted 

fragment ions series to distinguish the linear and cyclic architectures with the polydisperse 

sample as well as characterizing isomeric and isobaric structural differences. Two major 

fragmentation pathways were observed to form the predominant fragment ions observed for the 

polyester based urethanes. In their study, a series of P(1,2) and P(1,4) ester urethanes were 

fragmented to characterize unique degradation pathways associated with these species. These PU 

species were cationized with Na during all of the fragmentation studies. Gies found that these PU 

systems underwent (1) 1,5 H-shift, (2) 1,3 H-shift, (3) multiple 1,5 H-shift, (4) multiple 1,3 H-

shift, (5) combination of 1,5 and 1,3 H-shift, and (6) retro polymerization fragmentation 

mechanism. 

 In this current study, we characterized symmetrical P(1,2) and P(1,4) PBA ester 

urethanes using a combination of cations (Li
+
, Na

+
, and Ag

+
) to probe unique fragment ions. In 

this study, we investigated these PU species under both low and high CID energies. We observed 

similar findings to what Gies and Hercules reported. Each cation investigated in this study was 

observed to have unique fragment ions formed at both high and low CID energies. For instance, 

Na cation in this study was observed to be the most stable cation when coordinated with both 

P(1,2) and P(1,4). Both Li and Ag cations were observed to generate multiple fragment ions, 
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Table 6.12. Total percent ion currents observed for [M+Ag]
+
  P(1,4). Percent averages and 

%RSD are shown above for each ion. 

 

ion 0 10 20 30 40 50 60 70 80 90 100 110

1337 1230 100.00% 99.92% 99.78% 99.01% 96.77% 90.63% 75.96% 46.37% 16.74% 5.13% 0.00% 0.00%

0.00% 0.15% 0.19% 0.20% 0.72% 1.00% 1.02% 2.33% 1.52% 0.81% 0.00% 0.00%

1265 1158 0.00% 0.08% 0.22% 0.53% 1.72% 3.82% 7.71% 12.96% 8.98% 4.16% 0.00% 0.00%

0.00% 0.15% 0.19% 0.11% 0.77% 0.44% 0.63% 1.10% 0.64% 0.21% 0.00% 0.00%

1119 1012 0.00% 0.00% 0.00% 0.00% 0.00% 0.41% 1.32% 2.62% 3.12% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.27% 0.33% 0.02% 0.00% 0.00% 0.00%

1065 958 0.00% 0.00% 0.00% 0.00% 0.44% 0.66% 1.69% 3.91% 4.99% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.03% 0.10% 0.52% 0.77% 0.94% 0.00% 0.00% 0.00%

919 812 0.00% 0.00% 0.00% 0.00% 0.00% 0.63% 2.15% 5.27% 6.18% 4.96% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.12% 0.79% 0.64% 0.71% 0.00% 0.00%

865 758 0.00% 0.00% 0.00% 0.00% 0.00% 0.69% 2.00% 5.03% 5.37% 4.49% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 0.54% 0.40% 0.11% 0.29% 0.00% 0.00%

847 740 0.00% 0.00% 0.00% 0.46% 0.63% 1.29% 3.87% 8.41% 11.90% 10.74% 5.04% 0.00%

0.00% 0.00% 0.00% 0.11% 0.05% 0.18% 0.38% 0.70% 1.14% 0.09% 0.40% 0.00%

821 714 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.21% 2.30% 4.63% 4.97% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.35% 1.00% 0.82% 0.00% 0.00%

775 668 0.00% 0.00% 0.00% 0.00% 0.00% 0.52% 1.01% 2.13% 5.81% 6.13% 5.12% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.05% 0.44% 0.44% 0.69% 0.89% 0.00%

749 642 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.90% 2.04% 5.69% 6.27% 5.07% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.28% 1.32% 1.36% 0.62% 0.00%

647 540 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.98% 3.32% 6.49% 5.75% 3.22%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.33% 0.46% 0.83% 2.79%

597 490 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.53% 1.65% 3.73% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.46% 0.26% 0.15% 0.00% 0.00% 0.00%

579 472 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.67% 1.92% 3.80% 5.74% 6.13% 3.67%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.60% 0.24% 0.47% 0.79% 0.54% 3.18%

525 418 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.71% 2.87% 5.71% 7.10% 7.79% 1.67%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.41% 0.69% 1.24% 0.70% 2.90%

507 400 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.27% 0.54% 3.37% 6.25% 6.05% 3.99%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.46% 0.94% 0.64% 1.53% 1.59% 3.46%

453 346 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.57% 7.02% 7.40% 8.86%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.66% 1.30% 1.62% 2.36%

375 268 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.94% 20.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.14% 2.55%

325 218 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.10% 7.72% 16.11% 17.23%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.53% 0.78% 0.79% 5.00%

307 200 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.27% 12.58% 19.62%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 1.81% 6.56%

277 170 0.00% 0.00% 0.00% 0.00% 0.43% 1.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.08% 0.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

253 146 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.57% 13.01% 21.75%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.62% 2.13% 3.49%

M+Ag
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Figure 6.22. Collision-induced dissociation (CID) curves monitoring the unique transition of 

P(1,4) precursor to minor fragment ions when coordinated with cations (a) [M+Li]
+
, (b) [M+Na]

+
, 

and (c) [M+Ag]
+
. The dotted line is drawn at 70 eV for visual alignment of low energy fragment 

ions with %RSD. 
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which can be attributed to Li’s small atomic radius, and Ag’s strong affinity for aromatic systems. 

We observed all 6 fragmentation mechanisms between each precursor tested. In addition, we 

observed unique fragment ions that only occurred at high CID energies. For instance, the P(1,2) 

[M+Na]
+
 species was observed to generate fragment ion 240 Da. As observed in Table 6.5, the 

structure of the 240 Da species formed unique to the high CID energy and retro polymerization 

further reducing the isocyanate to an amine (NH2), and then –NH group. Cation coordination is a 

useful technique to probe unique fragment ions associated with PU systems. When characterizing 

asymmetrical compounds, we propose fragment ions to form from the 6 fragmentation 

mechanisms and even form from unique fragmentation pathways not currently observed.      

 

6.3.6. Characterization of PBA n = , n=2, P(1,2) and P(1,4) by IM-MS 

 The experimental IM spectra provided in Figure 6.23a-d are shown for the PBA n = 1, 

PBA n = 2, P(1,2), and P(1,4) species. Each species gas-phase CCS was monitored with respect 

to cation coordination between Li (green), Na (blue), and Ag (pink). In Figure 6.23a, a unique 

IM plot distribution is represented for each PBA n = 1 species coordinated to the different 

cations. In Figure 6.23e, the IM-MS results show PBA n = 1 [M+Li]
+
 species to have a smaller 

CCS (165.5 Å2
), compared to [M+Na]

+
 (168.6 Å2

) and [M+Ag]
+
 (170.9 Å2

). When the PBA chain 

elongates to n = 2 (Figure 6.23b), converging starts to occur. Here we observe PBA n = 2 species 

coordinated with Ag (211.0 Å2
) causing the polyester to elute out of the drift tube faster than PBA 

n = 2 coordinated with Na (211.7 Å2
). IM-MS results still showed the [M+Li]

+
 species having a 

smaller CCS (208.6 Å2
) compared to Na and Ag. The similarities in CCS for the [M+Na]

+
 and 

[M+Ag]
+
 species may result from similarities in the way the Na and Ag cation have coordinated 

with the PBA n = 2 species. In Figure 6.23c, the IM drift plots of the P(1,2) species showed a 

similar gas-phase shape between [M+Li]
+
 (272.1 Å2

) and [M+Na]
+
 (271.3 Å2

) coordination, 

however the [M+Ag]
+
 species resulted in a larger CCS (274.0 Å2

). When comparing the P(1,4) to 

the P(1,2) species (Figure 6.23c-d), we still observe similar gas-phase structural behavior when  
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Figure 6.23. IM-MS profiles for (a) n = 1 PBA, (b) n = 2 PBA, (c) P(1,2), (d) P(1,4), and (e) 

CCSav and %RSD. Results are shown in green for [M+Li]
+
, blue for [M+Na]

+
, and pink for 

[M+Ag]
+
. 
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the PU system has PBA n = 1 comparative to an elongated PBA chain of n = 2. For P(1,4), the 

[M+Li]
+
 species has the smallest CCS (317.6 Å2

), the [M+Na]
+
 species CCS is slightly larger than 

Li (318.1 Å2
), and [M+Ag]

+
 species has the largest CCS (320.5 Å2

). For the P(1,2), only the 

[M+Ag]
+
 species showed two conformers in IM. All other species monitored in this experiment 

exhibited one unique conformation.  

 

6.4. Conclusions 

 In this study, a series of PBA (n = 1 and n = 2) and symmetrical PU oligomers (P(1,2) 

and P(1,4)) were synthesized using a stepwise mono-addition approach and extensively 

characterized using a series of monovalent cations (Li
+
, Na

+
, and Ag

+
) using IM-MS/MS. Unique 

fragment ions were observed to form from each coordinated cation studied. Coordination of Na
+
 

was observed to produce fewer fragment ions compared to Li
+
 and Ag

+
 for PBA n = 1, n = 2, 

P(1,2), and P(1,4) species characterized. Another unique difference observed in this study, 

compared to previous literature findings resulted in the formation of carbamic acid end groups. In 

the previous work by Gies and Hercules studying polyester PU’s, they reported that carbamic 

acids were extremely unstable and they did not detect many fragment ions with this end group. 

Carbamic acid is known to rapidly decompose into the amine, resulting in the loss of CO2. In this 

present study, we observed several fragment ions forming with the carbamic acid end group, and 

in relatively high abundance. For instance, the [M+Na]
+
 P(1,2) compound transitioned into the 

240 Da fragment ion. These results differ from what was previously reported, and this could be 

the result in different ionization techniques. Previous studies utilized MALDI-MS/MS and we 

used ESI-MS/MS. It may be interesting to probe the unique carbamic acid fragment ions in future 

studies. Additionally, IM-MS experiments showed the unique coordination of Li
+
, Na

+
, and Ag

+
 

cation with the polyesters and polyester-urethane systems tested. Future work will include the 

synthesis and characterization of asymmetrical P(1,2) and P(1,4) compounds and computational 
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studies to characterize the unique coordination behavior of these cations with the PBA and PU 

systems. 

 

6.5. Synthetic Procedures 

6.5.1. Synthetic Protocol for PBA n = 1, n = 2, P(1,2), and P(1,4) 

We hypothesized that it may be possible to synthesize mono protected polybutylene adipate 

(PBA) monomers from a mono protected derivative of 1,4-butanediol (1) with adipic anhydride 

(2). The resultant intermediate mono functionalized acid (3) may be reacted with an excess of 

1,4-butane diol utilizing a DCC coupling resulting in the mono protected compound n = 1 (4) 

(Scheme 6.1) subsequent chain extension may be accomplished by reacting this monomer with 

adipic anhydride and 1,4-butane diol in a stepwise manner.  

 

 

Scheme 6.1. (i) DCM, EtN3; (ii) DCM, EtN3, DCC, 1,4-butanediol (25 equiv.). 

 

Our initial trials utilized 4-(benzyloxy)butan-1-ol (1a) which was reacted with adipic anhydride 

(2) resulting in (3a). We hoped to react this intermediate acid with butane diol to give (4a), which 

may be reacted with MDI and deprotected via catalytic hydrogenation to yield the desired product 

(5) (Scheme 6.2).  
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Scheme 6.2. (i) methylene chloride, pyridine, DMAP (cat), 0º to  18ºC 48hrs; (ii) DCC, DMAP, 

1,4-butane diol; (iii) (a) methylene chloride (4a) 2.2 equiv, MDI, triethylamine (cat), 24hrs, room 

temp, (b) Pd/C, H2, EtOH. 

 

Attempts to synthesize (3a) gave the desired compound however this was contaminated with the 

bis benzyl product (6) (Figure 6.1).  

 

Figure 6.1. Bis benzyl product. 

 

We were able to purify a sample of compound (6) by column chromatography, however a pure 

sample of the acid (3a) proved to be elusive. To determine if the reaction between MDI and the 

ester would work, we deprotected the intermediate (6) using catalytic hydrogenation yielding give 

deprotected butylene adipate (7) in a 52% yield. Reaction of 15 equivalents of (7) with MDI 

(Scheme 6.3) gave a crude sample of the MDI derivative (5). Compound (5) was purified by 

column chromatography on silica eluted with 95% DCM to 5% MeOH to give (5) in a 34% yield. 
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Scheme 6.3. (i) 10% Pd/C, H2, EtOH, 18 hours; (ii) MDI, CH2Cl2, Et3N 

 

Encouraged by these results we modified our synthetic route replacing the benzyl protecting 

group with a trityl group this gave pure acid (3b) in a 50% yield, reaction with DCC and excess 

1,4-butanediol gave a mixture of the desired product (4b) in a 60% yield plus a dimerized product 

(8) in a 20% yield (Figure 6.2). (8) and (4b) may be separated utilizing column chromatography 

eluted with a 50:50 mixture of EtoAc/hexanes. 

 

Figure 6.2. Mixture of desired product separated by column chromatography. (a) mono protected 

butanol adipate, (b) mono protected n = 1 PBA, (c) bis protected n = 2 PBA.  

 

We have reacted 4-hydroxybutyl (4-(trityloxy)butyl) adipate (4b) with MDI to give (9) in a 43% 

yield as shown in Scheme 6.4. Attempts to remove the trityl substituents using a biphasic system 
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composed of methylene chloride and concentrated hydrochloric acid gave mainly hydrolysis 

products and not the desired compound (5). 

 

Scheme 6.4. (i) CH2Cl2, Et3N, 18 hours;  

 

Compound (8) has been deprotected using a biphasic system of DCM and concentrated 

hydrochloric acid to give the bis ester (10) in a 90% yield. This was reacted with MDI in a 1:10 

mol equiv. giving (11) in a 10 % yield (Figure 6.3). 

 

Figure 6.3. (10) Deprotected n = 1 PBA and (11) symmetrical n = 1 PBA MDI derivative. 
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Mono-tritylated n = 2 ester (13) was synthesized using the same protocol as outlined in Scheme 

6.1. from the n = 1 ester (4b) by reacting it with adipic anhydride to give the intermediate acid 

(12) in a 58% yield followed by a DCC coupling with excess 1,4-butanediol giving the mono 

trityl protected n = 2 ester (13) in a 63% yield.  

 

Experimental 

4-(benzyloxy)butan-1-ol (1a)  

Potassium hydroxide (80g, 1.42mols) was added to a stirred solution of 1,4-butanediol (132ml). 

Potassium iodide (0.2g) and benzylchloride (42.53g, 0.34mols) were added in 4 portions over 1 

hour at ambient temperature. Then the reaction was stirred for 18 hours after which water (200ml) 

was added. The solution was extracted with diethyl ether (3x100ml). The combined ethereal 

extracts were dried over magnesium sulfate, filtered and evaporated. Then the product was 

purified by column chromatography on silica eluted with methylene chloride to give 29g of 4-

(benzyloxy)butan-1-ol (1a) in a 48% yield as a clear oil. 

 

4-(trityloxy)butan-1-ol (1b) 

1,4-Butane diol (156.08g) was added to methylene chloride (400ml) followed by triethylamine 

(100ml). The solution was cooled in an ice/acetone bath to 0ºC and trityl chloride (50g, 0.18mols) 

in methylene chloride (50ml) was added dropwise over 30 minutes with stirring. The solution was 

allowed to warm to ambient temperature and stirred for 18 hours. After which it was evaporated 

under reduced pressure and methylene chloride (200ml) was added. The organic solution was 

washed with deionized water (3 x 200ml) dried over magnesium sulfate filtered and evaporated 

under reduced pressure. Then 46g of 4-(trityloxy)butan-1-ol was obtained as a colorless solid in a 

77% yield by crystalizing the crude product from hexanes (100ml).  
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6-oxo-6-(4-(trityloxy)butoxy)hexanoic acid (3b) 

Adipic acid (3g, 0.021 mols) was added to a 50ml round bottomed flask equipped with a 

magnetic follower and acetic anhydride (12ml) was added. The solution was heated at reflux for 

18 hours after which it was evaporated to dryness under reduced pressure. The crude adipic 

anhydride (2) was dissolved in methylene chloride (120ml). This solution was stirred and cooled 

to 0ºC. After which pyridine (20ml) and dimethyl amino pyridine (80mg) were added followed 

by 4-(trityloxy)butan-1-ol (6.8g, 0.02mols). The solution was allowed to warm to ambient 

temperature and stirred for 48 hours. Then it was evaporated under reduced pressure and 

dissolved in methylene chloride (100ml). The organic solution was washed with a citric acid 

solution (100ml, 10% w.w. in deionized water), water (2 x 50ml) and dried over magnesium 

sulfate. After filtration the methylene chloride was removed under reduced pressure and 6-oxo-6-

(4-(trityloxy)butoxy)hexanoic acid (3b) was purified by column chromatography on silica eluted 

with methylene chloride 99% / methanol 1% to give 4.9g of (3b) in a 52% yield as a pale yellow 

oil. 

 

4-Hydroxybutyl (4-(trityloxy)butyl) adipate (4b) and O,O’-(butane-1,4-diyl)bis(4-

trityloxy)butyl) diadipate (8) 

6-oxo-6-(4-(trityloxy)butoxy)hexanoic acid (3b) (6.9g, 0.015mols) was dissolved in methylene 

chloride (70ml), 1,4-butane diol (31.44g, 0.35mols) and dimethyl amino pyridine (0.184g) were 

added and the solution was cooled with stirring to 0ºC. Then dicylohexylcarbodiimide (4.64g) 

was added. The solution was allowed to warm to ambient temperature and was stirred for 18 

hours. The resultant N,N’-dicylohexylurea was removed by filtration and the organic solution was 

washed with deionized water (2 x 100ml). After drying over magnesium sulfate filtering and 

evaporating under reduced pressure 4-hydroxybutyl (4-(trityloxy)butyl) adipate (4b) and O,O’-

(butane-1,4-diyl)bis(4-trityloxy)butyl) diadipate (8) were purified by column chromatography on 

silica eluted with a 50:50 mixture of EtOAc to hexanes. This gave 4.9g of 4-Hydroxybutyl (4-
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(trityloxy)butyl) adipate (4b) in a 60% yield as a pale yellow viscous oil and 3g of O,O’-(butane-

1,4-diyl)bis(4-trityloxy)butyl) diadipate (8) in a 20% yield as a pale yellow tar. 

 

Bis(4-(benzyloxy)butyl) adipate (6) 

Adipic acid (7g, 0.048 mols) was added to a 25ml round bottomed flask equipped with a 

magnetic follower. Then acetic anhydride (15ml) was added and the mixture was heated at reflux 

for 4 hours. After which the acetic anhydride was removed under reduced pressure and the crude 

adipic anhydride was dissolved in methylene chloride (50ml). Pyridine (11ml) and dimethyl 

amino pyridine (0.2g) were added to a 250ml flask equipped with a magnetic follower and cooled 

to 0ºC. Then 4-(benzyloxy)butan-1-ol (1a) (15.48g, 0.086 mols) dissolved in methylene chloride 

was added. The solution was stirred and allowed to warm to ambient temperature after which it 

was stirred for 18h and subsequently evaporated under reduced pressure column chromatography 

on silica eluted with hexanes / ethyl acetate 50:50 gave 0.9g of pure bis(4-(benzyloxy)butyl) 

adipate in a 4% yield as a colorless oil. 6-(4-(benzyloxy)butoxy)-6-oxohexanoic acid (3a) was 

also obtained from this column but was contaminated with (6) and other products. All attempts to 

purify (3a) failed.  

 

Bis (4-hydroxybutyl) adipate (7) 

Bn-B-A-B-Bn (1.5g) was added to RBF and stirred with 120 mL ethanol. Catalyst Pb/C (0.1g) 

was added to the RBF. The reaction was degassed and put under vacuum using an aspirator to 

remove all oxygen. Then the reaction was placed under H2(gas). The reaction was left overnight. 

Then using a frit and a celite pad, the excess Pd/C was filtered and concentrated down. Product 

was purified using column chromatography DCM/MeOH 95:5 and gave 0.5g of Bis (4-

hydroxybutyl) adipate (7). 
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Bis (4-hydroxybutyl) O,O’-(((((methylenebis(4,1-phenylene))bis(azanediyl))bis(carbonyl)) 

bis(oxy)bis(butane-1,4-diyl)) diadipate (5) 

Trt-B-A-B-M-B-A-B-Trt (2.2g) was added to RBF with 60mL of DCM. The reaction stirred for 

30min, then 10 drops of concentrated HCl was added to the reaction mixture. After 60 min, the 

reaction was stopped, concentrated down, and the product was determined to hydrolyze, yielding 

no desired product. This method proved that less concentrated acid is needed for the deprotection 

of the Trytl groups. 

 

O,O’-(((((methylenebis(4,1-phenylene))bis(azanediyl))bis(carbonyl))bis(oxy))bis(butane-4,1-

diyl))bis(4-(trityloxy)butyl)diadipate (9) 

Monoprotected n = 1 PBA ester (4b) was dissolved (0.1g) in 50mL DCM, then (0.5mol equiv.) of 

MDI was added to the reaction vessel and left to stir overnight. The product was washed and 

DCM, dried over MgSO4 and concentrated down. Column chromatography was used to purify 

the (9) using DCM / MeOH 95:5 mobile phase to isolate desired product. 

 

O,O’-(butane-1,4-di-diyl) bis (4-hydroxybutyl) diadipate (10) 

In a RBF, 1.2g of compound (8) was dissolved in 50mL of DCM, then a few drops of 

concentrated HCl was added and the reaction was left to stir for 30min. Then quenched and 

purified using column chromatography DCM / MeOH 99:1 to remove trytl protecting groups, 

leaving desired product (10). 

 

Bis(4-((6-(4-hydroxybutoxy)-6-oxohexanoyl)oxo)butyl) O,O’-(((((methylenebis(4,1-

phenylene))bis(azanediyl))bis(carbonyl))bis(oxo))bis(butane-4,1-diyl)) diadipate (11) 

Compound (10) (0.9g) was dissolved in 50mL of DCM and stirred in RBF. Using an addition 

funnel, MDI (1:10 mol equiv.) was dissolved in 20mL of DCM and was added over 2hrs to the 

reaction mixture. The reaction was left to run overnight and monitored using ESI-MS. On the 
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second day, and additional (1:10
 
mol equiv.) of MDI in 20mL of DCM was added again to the 

reaction vessel. The product was observed to form, mono selectively using the slow addition 

process of MDI. The product remained a mixture of compound (10) and product (11) and was not 

purified. 

 

8,13,20-trioxo-1,1,1-triphenyl-2,7,14,19-tetraoxopentacosan-25-oic acid (12) 

Acetic anhydride (6ml) was added to adipic acid (1.5g, 0.01mols) in a 25ml round bottomed flask 

equipped with a magnetic follower. This mixture was heated at reflux for 18 hours under nitrogen 

with stirring. Excess acetic anhydride was removed under reduced pressure and the crude adipic 

anhydride was dissolved in methylene chloride (50ml). Pyridine (10ml) and dimethylamino 

pyridine (0.05g) were added to the solution in a 250ml round bottomed flask equipped with a stir 

bar. The solution was stirred and cooled to 0º C and a solution of 4-Hydroxybutyl (4-

(trityloxy)butyl) adipate (4b) (5.2g, 0.0098 mols) in methylene chloride was added dropwise. 

Upon complete addition of 4b the solution was allowed to warm to ambient temperature and 

stirred at ambient temperature for 48 hours. Then the solvent was removed under reduced 

pressure and the residue was dissolved in methylene chloride (100ml). This solution was washed 

with a solution of citric acid (10% w.w. in water, 100ml) and deionized water (2 x 100ml). After 

which it was dried over magnesium sulfate, filtered and evaporated under reduced pressure. 

8,13,20-trioxo-1,1,1-triphenyl-2,7,14,19-tetraoxopentacosan-25-oic acid (12) was purified by 

column chromatography on silica eluted with methylene chloride / methanol 98:2. This gave 3.8g 

of pure (12) as an oil in a 58% yield. 
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6.5.2. Other Experimental Synthesis 

 

Synthesis of 4-((tert-butyldiphenylsilyl)oxy)butan-1-ol.  A suspension of (0.73g, 18mmol) 

sodium hydride (60% dispersed in mineral oil) in CH2Cl2 (55mL) stirred at 0
o
C for 30min. 1,4-

Butanediol (1.62mL, 17.7mmol) was added to the cold solution dropwise over 30min and left to 

react at 0
o
C for 2h. Tert-Butyl(chloro)diphenylsilane (4.59mL, 15.8mmol) was added to the 

reaction mixture and allowed to return to rt. After stirring overnight, the reaction mixture was 

neutralized with saturated ammonium chloride, extracted with EtOAc, and dried over MgSO4. 

The product was purified by column chromatography (17:3, Hexanes: EtOAc, Rf = 0.35) and 

isolated as a clear yellow viscous liquid (4.9 g, 94 %). 
1
H (CDCl3) δ 7.71 (dd, 4H), 7.42 (m, 6H), 

4.14 (q, 2H), 3.69 (dt, 2H), 1.68 (m, 4H), 1.09 (s, 9H); 
13

C (CDCl3) δ 135.5, 129.6, 127.6, 63.9, 

62.7, 31.7, 29.7, 29.2, 26.7; HESI-MS observed [M + H]
+
 = 329.10 m/z.  

 

Synthesis of bis(4-((tert-butyldiphenylsilyl)oxy)butyl) adipate. 

Adipic acid (1.52g, 10.42mmol) was added to a solution of EDC (3.23g, 20.79mmol), DMAP 

(0.39g, 3.19mmol) and Et3N (5.8mL, 79.00mmol) in CH2Cl2 (90mL). After 30min, 4-((tert-

butyldiphenylsilyl)oxy)butan-1-ol (7.2mL, 21.93mmol) was added. After stirring overnight, the 

reaction mixture was diluted CH2Cl2 and washed with brine. The organic layer was dried over 

MgSO4, filtered, and concentrated. Purification by column chromatography (7:3, Hexanes:EtoAc) 

yielded the product as a light yellow viscous liquid (2.5g, 32%). 
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Synthesis of bis(4-((tert-butyldiphenylsilyl)oxy)butyl) adipate. 

SOCl2 (15mL) was added to a solution of adipic acid in anhydrous toluene (10mL) at 65
o
C. After 

4 h the reaction mixture was cooled to rt. and concentrated. The crude product was reconstituted 

in anhydrous CH2Cl2 and cooled in an ice bath at 0
o
C. 4-((tert-butyldiphenylsilyl)oxy)butan-1-ol 

was added to this cold solution followed by the addition of Et3N dropwise over 30 min. During 

the addition of Et3N, a cloudy pink solution developed. The resulting mixture stirred at 0
o
C for 1 

h then returned to rt and left overnight.  

 

 

Synthesis of (4-bromobutoxy)(tert-butyl)diphenylsilane. 

N-bromosuccinimide (1.98g, 11.11mmol) was added to a solution of PPH3 (3.23g, 12.315mmol) 

and 4-((tert-butyldiphenylsilyl)oxy)butan-1-ol (3.87g, 11.79mmol) in CH2Cl2. After 2h, an 

additional 0.5eq of NBS and PPh3 was added to convert the remaining starting material into 

product. Upon completion, the reaction mixture was diluted with an equal amount of ether and 

filtered through a small silica funnel and concentrated. To eliminate excess PPh3 from the 

reaction, additional NBS was added till all PPh3 was turned into phosphotriphenyl oxide. 

Reaction mixture was purified as follows, and equal amount of ether to DCM was added, black 

precipitate was formed (NBS and PPh3=O). Product was filtered through a small silica funnel and 

concentrated down using the rotovap. 
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Selectively Half Protect 1,4-Butane-diol 

4-Trityloxybutan-1-ol. To a 0
o
C solution of 1,4-butanediol in CH2Cl2, Et3N was added dropwise 

and left to stir at 0
o
C. After 2 hours, TrCl was added and the solution was left to return to room 

temperature and stir overnight. To purify the reaction, the reaction was quenched with sodium 

bicarbonate (sat.), and then washed with DCM. The organic layer was dried over MgSO4 and 

concentrated down. Then a TLC was run at 100% DCM. There were 2 distinct spots Rf = 0.9 was 

the fully protected butanediol, the Rf = 0.3 spot was the ½ protected butanediol. Then a shot 

column was run in vacu with a short frit/silica pad. Fractions up to 1L were collected and 

concentrated down. Column was run on a short silica pad at 100% DCM solvent, fractions were 

collected till ½ protected butanol was recovered and concentrated down. 
1
H NMR (600MHz, 

CDCl3) δ 1.69 (m, 4H, CH2), δ 3.14 (t, 2H, CH2), δ 3.64 (t, 2H, CH2), δ 7.27 (m), and δ 7.45 (m). 

13
C NMR (CDCl3) δ 144.2 3C, δ 128.6 3C, δ 127.7 6C, δ 126.9 6C, δ 86.6 1C, δ 77.3 1C, δ 77.0 

1C, δ 76.7 1C, δ 53.4 1C, δ 29.9 1C, δ 26.5 1C. 

 

6.6. Future Directions 

 Due to the unique fragmentation patterns observed for both PBA n = 1, n = 2, P(1,2), and 

P(1,4) species, the future directions include the synthesis of the asymmetrical P(1,2) and P(1,4) 

compounds as seen in Figure 6.24.  Symmetrical P(1,2) and P(1,4) compounds synthesized in 

this study include Figure 6.24a,c. Asymmetrical P(1,2) and P(1,4) compounds to synthesize in 

future studies include Figure 6.24b,d-e. These sets of PU oligomers have a different structural 

arrangement regarding the placement of hard and soft segments, within the PU chain. Additional 
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studies include probing the asymmetrical compounds using monovalent Li
+
 and Na

+
, and 

transition metal Ag
+
. These studies will guide our understanding into the unique cation 

coordination between polyester and urethane functional groups. In the above study, lower and 

high CID energy fragment ions were extensively groups. In the above study, lower and high CID 

energy fragment ions were extensively characterized. The above analysis of PBA and PU species 

may act as a model system for how to characterize these asymmetrical compounds in the future. It 

will be interesting to observe the unique fragment ions formed when the hard segment is exposed 

on the terminal end compared to a centrally located placement along the PU chain. The specific 

placement of the MDI hard segment may result in an increase or decrease in fragment ion 

observed to form from the urethane functional group. Additional future studies include the 

detailed IM characterization of longer PBA chains respective to their coordination to Li
+
, Na

+
, 

and Ag
+
. A detailed study of the unique structural differences or similarities among these species 

will aid in the understanding of how these PU systems behave in the gas phase. These future 

studies are aimed towards the creation and characterization of these PU compounds to be used as 

analytical standards. Coupling computational models to the experimental IM studies will aid in 

predication of polymer behavior, and the which compounds are of interest to synthesize using the 

stepwise addition method.  
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Figure 6.24. Symmetrical and asymmetrical (a-b) P(1,2) and (c-e) P(1,4) oligomers to be 

synthesized using stepwise addition and further characterized using IM-MS and IM-MS/MS 

methods. 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER II 

 

B.1. NMR Spectroscopy of Purified MDA Isomers 

 NMR experiments were acquired using a 14.0 T Bruker magnet equipped with a Bruker 

AV-III console operating at 600.13 MHz. All spectra were acquired in 5 mm NMR tuber using a 

Bruker 5 mm TCI cryogenically cooled NMR probe. Chemical shifts were referenced internally 

to DMSO (2.49 ppm), which also served as the 
2
H lock solvents. For 1D NMR, typical 

experimental conditions included 32 K data points, 13 ppm sweep width, a recycled delay of 1.5 

seconds and 64 scans.  
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B.1. 
1
H NMR 3-Ring MDA 

 

 

 

 

 

 

Figure B.1. 
1
H NMR 3-Ring MDA. 
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B.2. 
1
H NMR 4-Ring MDA 

 

 

 

 

 

 

Figure B.2. 
1
H NMR of 4-Ring MDA 
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B.3. Conformational Space Plots 3-Ring MDA 

 

 
 

Figure B.3. Overlaid conformational space plots for the different protonation sites of 3-ring 

MDA. Plots are ordered to represent protonation from left to right across 3-ring MDA. 

Conformations from protonation on the amine on the first amine are shown in black, on the amine 

on the second amine in red and on the amine on the third ring in blue. These plots are zoomed in 

to show alignment with experimental CCS values from both (a) helium and (b) nitrogen. 

Experimental CCS ranges are indicated with the vertical gray bars. The vertical bars that align 

with the data are from the uniform field MS whereas the vertical bar in (b) that falls to the left of 

the plot represents the traveling wave MS. 
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B.4. Conformational Space Plots 4-Ring MDA 

 

                    
 

Figure B.4. Overlaid conformational space plots for the different protonation sites of 4-ring 

MDA. Plots are ordered to represent protonation from left to right across 4-ring MDA. 

Conformations from protonation on the amine on the first amine are shown in black, on the amine 

on the second ring in red and on the amine on the third ring in light blue, and on the amine on the 

fourth ring in blue. These plots are zoomed in to show alignment with experimental CCS values 

from both (a) helium and (b) nitrogen.  Experimental CCS ranges are indicated with the vertical 

gray bars.  The vertical bars that align with the data are from the uniform field MS whereas the 

vertical bar in (b) that falls to the left of the plot represents the traveling wave MS. 
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B.5. MS Doubly Charged Species 
 

 

 

 

 

 

 

 

 
 

Figure B.5. Mass spectra of the doubly charged peaks and their respective singly charged peaks 

for (a) the 3-ring MDA and (b) the 4-ring MDA.
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B.6. MS/MS Doubly Charged Fragment Ions 

 

 

 

 

 

 
 

Figure B.6. Tandem mass spectra of the 152.59 and 158.59 doubly charged fragment ions 

showing the higher m/z fragments that result from fragmenting the doubly charged species. 
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B.7. Conformational Space Plot 3-Ring MDA 

 

 

 

 

 

 

 
 

Figure B.7. Conformational space plot for the first ring amine protonated 3-Ring MDA.  The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.7-10. The 

conformations labeled in black fall within the experimental range, the conformations labeled in 

red are representative of conformations from the left conformational cloud, and the conformations 

labeled in blue are representative of conformations from the right conformational cloud. 
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B.8. Clustering Analysis 3-Ring MDA 

 

 

 

 
 

Figure B.8.  Clustering analysis of 3,000 conformations of the first ring amine protonated 3-ring 

MDA. In (i) the conformations that fall within the experimental CCS range are clustered, in (ii) 

the conformations in the left conformational cloud are clustered, and in (iii) the conformations in 

the right conformational cloud are clustered. Clustering is based on root mean square distance of 

atoms of superimposed structures. The vertical bars indicate the RMSD cutoff used to select the 

conformations for further analysis. 
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B.9. Conformational Structures 3-Ring MDA 

 

 

 

 

 

 

 

 

 

 
 

Figure B.9. Representative conformations from clustering analysis of the experimental range 

region of the first ring amine protonated 3-ring MDA generated from the simulated annealing 

calculation. Carbon atoms are shown in dark grey, hydrogen in light grey, and nitrogen in blue. 

Distances are labeled to show the proximity of the additional proton to other atoms in the 

molecule. The asterisk represents the structures shown in the manuscript. The theoretical CCS, 

relative energy, and percentage of conformations each of these represents from clustering are 

shown below each conformer. 
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B.10. Conformational Structures 3-Ring MDA 

 

 

 

 
 

Figure B.10. Representative conformations from clustering analysis of the two conformational 

space clouds (left cloud (f-j) and right cloud (k-o)) of the first ring amine protonated 3-ring MDA 

generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The theoretical CCS, relative energy, and 

percentage of conformations each of these represents from clustering are shown below each 

conformer.  
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B.11. Conformational Space Plot 3-Ring MD 

 

 

 

 

 

 

 

 

 
 

Figure B.11. Conformational space plot for the second ring amine protonated 3-ring MDA. The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.12-13.   
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B.12. Clustering Analysis 3-Ring MDA 

 

 

 

 

 

 

 

 

 

 

 
 

Figure B.12. Clustering analysis of 3,000 conformations of the second ring amine protonated 3-

ring MDA. Clustering is based on root mean square distance of atoms of superimposed structures. 

The vertical bar indicates the RMSD cutoff used to select the conformations for further analysis.  
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B.13. Conformational Structures 3-Ring MDA 

 

 

 

 

 

 

 

 

 

 
 

Figure B.13. Representative conformations from clustering analysis of the second ring amine 

protonated 3-ring MDA generated from an elevated temperate molecular dynamic protocol. 

Carbon atoms are shown in dark grey, hydrogen in light grey, and nitrogen in blue. The asterisk 

represents the structures shown in the paper. The number of conformations each of these 

represents from clustering is shown below the conformation. 
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B.14. Conformational Space Plot 3-Ring MDA 

 

 

 

 

 

 

 
 

Figure B.14. Conformational space plot for the third ring amine protonated 3-ring MDA.  The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.15-17. The 

conformations labeled in black fall within the experimental range, the conformations labeled in 

red are representative of conformations from the left conformational cloud, and the conformations 

labeled in blue are representative of conformations from the right conformational cloud. 
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B.15. Clustering Analysis 3-Ring MDA 

 

 

 

 

 

 
 

Figure B.15. Clustering analysis of 3,000 conformations of the third ring amine protonated 3-ring 

MDA. In (i) the conformations that fall within the experimental CCS range are clustered, in (ii) 

the conformations in the left conformational cloud are clustered, and in (iii) the conformations in 

the right conformational cloud are clustered. Clustering is based on root mean square distance of 

atoms of superimposed structures. The vertical bars indicate the RMSD cutoff used to select the 

conformations for further analysis. 
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B.16. Conformational Structures 3-Ring MDA 

 

 

 

 

 

 

 

 

 
 

Figure B.16. Representative conformations from clustering analysis of the experimental range 

region of the third ring amine protonated 3-ring MDA generated from the simulated annealing 

calculation. Carbon atoms are shown in dark grey, hydrogen in light grey, and nitrogen in blue. 

Distances are labeled to show the proximity of the additional proton to other atoms in the 

molecule. The asterisk represents the structures shown in the manuscript. The theoretical CCS, 

relative energy, and percentage of conformations each of these represents from clustering are 

shown below the conformation.  
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B.17. Conformational Structures 3-Ring MDA 

 

 

 

 
 

Figure B.17. Representative conformations from clustering analysis of the two conformational 

space clouds (left cloud (f-j) and right cloud (k-o)) of the third ring amine protonated 3-ring 

MDA generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The theoretical CCS, relative energy, and 

percentage of conformations each of these represents from clustering are shown below the 

conformation. 
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B.18. Conformational Space Plots 4-Ring MDA 

 

 

 

 

 

 

 
 

Figure B.18. Conformational space plot for the first ring amine protonated 4-ring MDA.  The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.19-21. The 

conformations labeled in black fall within the experimental range, the conformations labeled in 

red are representative of conformations from the left conformational cloud, and the conformations 

labeled in blue are representative of conformations from the right conformational cloud. 
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B.19. Clustering Analysis 4-Ring MDA 

 

 

 

 

 
 

Figure B.19. Clustering analysis of 3,000 conformations of the first ring amine protonated 4-ring 

MDA. In (i) the conformations that fall within the experimental CCS range are clustered, in (ii) 

the conformations in the left conformational cloud are clustered, and in (iii) the conformations in 

the right conformational cloud are clustered. Clustering is based on root mean square distance of 

atoms of superimposed structures. The vertical bars indicate the RMSD cutoff used to select the 

conformations for further analysis. 
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B.20. Conformational Structures 4-Ring MDA 

 

 

 

 

 

 

 

 
 

Figure B.20. Representative conformations from clustering analysis of the experimental range 

region of the first ring amine protonated 4-ring MDA generated from the simulated annealing 

calculation. Carbon atoms are shown in dark grey, hydrogen in light grey, and nitrogen in blue. 

Distances are labeled to show the proximity of the additional proton to other atoms in the 

molecule. The asterisk represents the structures shown in the manuscript. The theoretical CCS, 

relative energy, and percentage of conformations each of these represents from clustering are 

shown below the conformation. 
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B.19. Conformational Structures 4-Ring MDA 

 

 

 

 

 
 

Figure B.21. Representative conformations from clustering analysis of the two conformational 

space clouds (left cloud (f-j) and right cloud (k-o)) of the first ring amine protonated 4-ring MDA 

generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The asterisk represents the structure shown in 

the manuscript. The theoretical CCS, relative energy, and percentage of conformations each of 

these represents from clustering are shown below the conformation. 
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B.22. Conformational Space Plots 4-Ring MDA 

 

 

 

 

 

 

 

 

 
 

Figure B.22. Conformational space plot for the second ring amine protonated 4-ring MDA. The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.23-24. The 

conformations labeled in black fall within the experimental range and the conformations labeled 

in blue are representative of conformations from the whole conformational cloud. 



 259 

B.23. Clustering Analysis 4-Ring MDA 

 

 

 

 

 

 

 

 

 

 

 
 

Figure B.23.  Clustering analysis of 3,000 conformations of the second ring amine protonated 4-

ring MDA. In (i) the conformations that fall within the experimental CCS range are clustered and 

in (ii) all 3,000 of the conformations are clustered. Clustering is based on root mean square 

distance of atoms of superimposed structures. The vertical bar indicates the RMSD cutoff used to 

select the conformations (circled) for further analysis. The asterisk represents the structures 

shown in the paper. 
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B.24. Conformational Clustering 4-Ring MDA 

 

 

 

 

 
 

Figure B.24. Representative conformations from clustering analysis of the experimental range (a-

e) and the whole conformational space cloud (f-j) of the second ring amine protonated 4-ring 

MDA generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The asterisk represents the structure shown in 

the manuscript. The theoretical CCS, relative energy, and percentage of conformations each of 

these represents from clustering are shown below the conformation. 
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B.25. Conformational Space Plot 4-Ring MDA 

 

 

 

 

 

 

 

 

 

 
 

Figure B.25. Conformational space plot for the third ring amine protonated 4-ring MDA. The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.26-27. The 

conformations labeled in black fall within the experimental range and the conformations labeled 

in blue are representative of conformations from the whole conformational cloud. 
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B.26. Clustering Analysis 4-Ring MDA 

 

 

 

 

 

 

 

 

 

 

 
 

Figure B.26.  Clustering analysis of 3,000 conformations of the third ring amine protonated 4-

ring MDA. In (i) the conformations that fall within the experimental CCS range are clustered and 

in (ii) all 3,000 of the conformations are clustered. Clustering is based on root mean square 

distance of atoms of superimposed structures. The vertical bar indicates the RMSD cutoff (Å) 

used to select the conformations (circled) for further analysis. The asterisk represents the 

structures shown in the paper. 
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B.27. Conformational Structures 4-Ring MDA 

 

 

 

 

 

 
 

Figure B.27. Representative conformations from clustering analysis of the experimental range (a-

e) and the whole conformational space cloud (f-j) of the third ring amine protonated 4-ring MDA 

generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The asterisk represents the structure shown in 

the manuscript. The theoretical CCS, relative energy, and percentage of conformations each of 

these represents from clustering are shown below the conformation. 
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B.28. Conformational Space Plot 4-Ring MDA 

 

 

 

 

 

 

 

 
 

Figure B.28. Conformational space plot for the fourth ring amine protonated 4-ring MDA. The 

3,000 generated conformations are represented in grey; the clustering representative 

conformations are labeled with letters that correspond to the structures in Figures B.29-31. The 

conformations labeled in black fall within the experimental range, the conformations labeled in 

red are representative of conformations from the left conformational cloud, and the conformations 

labeled in blue are representative of conformations from the right conformational cloud. 
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B.29. Clustering Analysis 4-Ring MDA 

 

 

 

 

 

 
 

Figure B.29. Clustering analysis of 3,000 conformations of the fourth ring amine protonated 4-

ring MDA. In (i) the conformations that fall within the experimental CCS range are clustered, in 

(ii) the conformations in the left conformational cloud are clustered, and in (iii) the conformations 

in the right conformational cloud are clustered. Clustering is based on root mean square distance 

of atoms of superimposed structures. The vertical bars indicate the RMSD cutoff used to select 

the conformations for further analysis. 
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B.30. Conformational Structures 4-Ring MDA 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure B.30. Representative conformations from clustering analysis of the experimental range 

region of the fourth ring amine protonated 4-ring MDA generated from the simulated annealing 

calculation. Carbon atoms are shown in dark grey, hydrogen in light grey, and nitrogen in blue. 

Distances are labeled to show the proximity of the additional proton to other atoms in the 

molecule.  The asterisk represents the structures shown in the manuscript. The theoretical CCS, 

relative energy, and percentage of conformations each of these represents from clustering are 

shown below the conformation. 
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B.31. Conformational Structures 4-Ring MDA 

 

 

 

 

 

 
 

Figure B.31. Representative conformations from clustering analysis of the two conformational 

space clouds (left cloud (f-j) and right cloud (k-o)) of the first ring amine protonated 4-ring MDA 

generated from the simulated annealing calculation. Carbon atoms are shown in dark grey, 

hydrogen in light grey, and nitrogen in blue. Distances are labeled to show the proximity of the 

additional proton to other atoms in the molecule. The asterisk represents the structures shown in 

the manuscript. The theoretical CCS, relative energy, and percentage of conformations each of 

these represents from clustering are shown below the conformation. 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER III 

 

C.1. 4,4’-MDA MS
3
 Spectra 

 

 
 

Figure C.1. 4,4’-MDA [M + H]
+
 = 199 Da parent ion was mass selected then additional major 

fragment ions were mass selected to acquire MS
3
 data. (a) 195 Da, (b) 181 Da, (c) 180 Da, (d) 

165 Da, and (e) 152 Da.  
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C.2. 2,2’-MDA MS
3
 Spectra 

 

 

 

 

 

 
 

Figure C.2. 2,2’-MDA [M + H]
+
 = 199 Da parent ion was mass selected then additional major 

fragment ions were mass selected to acquire MS
3
 data. (a) 195 Da, (b) 181 Da, (c) 180 Da, (d) 

165 Da, and (e) 152 Da.  
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C.3. 2,4’-MDA MS
3
 Spectra 

 

 

 

 

 

 
 

Figure C.3. 2,4’-MDA [M + H]
+
 = 199 Da parent ion was mass selected then additional major 

fragment ions were mass selected to acquire MS
3
 data. (a) 195 Da, (b) 181 Da, (c) 180 Da, (d) 

165 Da, and (e) 152 Da.  
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C.4. 2,7’-DAF MS
3
 Spectra 

 

 

 

 

 
 

Figure C.4. 2,7-DAF’s [M + H]
+
 = 197 Da parent ion was mass selected then additional major 

fragment ions were mass selected to acquire MS
3
 data. (a) 196 Da = [M

.
]

+
, (b) 195 Da = [M - H]

+
, 

(c) 181 Da, (d) 180 Da, (e) 168 Da, and (f) 167 Da.  
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C.5. 4,4’-MDA ESI and MALDI Spectra 

 
 
 
 
 
 
 

 

 
 

Figure C.5. (Top) Mass spectra of 4,4’-MDA isomer using ESI-TOFMS. (Bottom) Mass spectra 

of 4,4’-MDA isomer using MALDI-TOFMS. (a) Full ESI mass spectrum and (b) full MALDI 

mass spectrum of 4,4’-MDA isomer. (c) 195 – 200 m/z ESI mass spectral region and (d) 195 – 

200 m/z MALDI mass spectral region of 4,4’-MDA isomer. Parent ions labeled as [M + H]
+
 = 

199 Da, [M
.
]

+
 = 198 Da, and [M - H]

+
 = 197 Da. Asterisk (*) notes CHCA matrix peaks. 
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C.6. 2,4’-MDA ESI and MALDI Spectra 

 

 

 

 

 

 

 
 
Figure C.6. (Top) Mass spectra of 2,4’-MDA isomer using ESI-TOFMS. (Bottom) Mass spectra 

of 2,4’-MDA isomer using MALDI-TOFMS. (a) Full ESI mass spectrum and (b) full MALDI 

mass spectrum of 2,4’-MDA isomer. (c) 195 – 200 m/z ESI mass spectral region and (d) 195 – 

200 m/z MALDI mass spectral region of 2,4’-MDA isomer. Parent ions labeled as [M + H]
+
 = 

199 Da, [M
.
]

+
 = 198 Da, and [M - H]

+
 = 197 Da. Asterisk (*) notes CHCA matrix peaks. 
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C.7. 2,2’-MDA ESI and MALDI Spectra 

 

 

 

 

 

 

 
 

Figure C.7. (Top) Mass spectra of 2,2’-MDA isomer using ESI-TOFMS. (Bottom) Mass spectra 

of 2,2’-MDA isomer using MALDI-TOFMS. (a) Full ESI mass spectrum and (b) full MALDI 

mass spectrum of 2,2’-MDA isomer. (c) 195 – 200 m/z ESI mass spectral region and (d) 195 – 

200 m/z MALDI mass spectral region of 2,2’-MDA isomer. Parent ions labeled as [M + H]
+
 = 

199 Da, [M
.
]

+
 = 198 Da, and [M - H]

+
 = 197 Da. Asterisk (*) notes CHCA matrix peaks. 
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C.8. 2,7-DAF ESI and MALDI Spectra 

 

 

 

 

 

 

 

 

 

 
 

Figure C.8. (Top) Mass spectra of 2,7-DAF using ESI-TOFMS. (Bottom) Mass spectra of 2,7-

DAF using MALDI-TOFMS. (a) Full ESI mass spectrum and (b) full MALDI mass spectrum of 

2,7-MDA isomer. (c) 194 – 199 m/z ESI mass spectral region and (d) 194 – 199 m/z MALDI 

mass spectral region of 2,7-MDA isomer. Parent ions labeled as [M + H]
+
 = 197 Da and [M

.
]

+
 = 

196 Da. 
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C.9. MS/MS MALDI Spectra 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure C.9. Tandem MALDI mass spectra of the three 2-Ring MDA [M - H]

+
 species and 2,7-

diaminofluorene. The [M
.
]

+
 ions mass selected and fragmented with 25 collision energy. Results 

are shown for (a) 4,4’-MDA, (b) 2,4’-MDA, (c) 2,2’-MDA, and (d) 2,7-DAF. 
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C.10. Analysis of Instrument Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure C.10. The effect of (a) laser energy and (b) resolving power of the resolving quadrupole 

are shown for the three MDA isomers. The color scheme for the ions is as follows: 4,4’-MDA 

(blue), 2,2’-MDA (red), and 2,4’-MDA (green). A dashed line is used for [M+H]
+
 ions, a dotted 

line for [M
.
]

+
 ions and a solid line for [M-H]

+
 ions. 
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Figure C.10.1 Analysis of Instrument Parameters  

 

Experiments were conducted in order to evaluate the influence of the MALDI laser 

fluence and the resolving power of the MS/MS resolving quadrupole on the resulting intensities 

of the precursor ions. Figure 3.2a traces the relative intensities of the three MDA precursor ions 

as laser fluence is increased from 190 to 300 arbitrary units. The MS results with no quadrupole 

selection are shown for 4,4’-MDA (blue traces), 2,4’-MDA (green traces), and 2,2’-MDA (red 

traces). Ion forms are depicted with different lines types and include the [M+H]
+ 

(dashed line), 

[M
.
]

+
 (dotted line), and the [M–H]

+
 ion (solid line). The average relative ion current across the 

laser fluence ramp were observed to be 72.2%, 63.2%, and 42.9% for 4,4’-, 2,4’-, and 2,2’-MDA 

for the [M-H]
+ 

species, respectively, and 10.9%, 3.6%, and 6.8% for the [M+H]
+ 

species. 

Regardless of laser power, [M-H]
+ 

species are preferentially formed over [M+H]
+ 

ions for all 

three isomers. The intensity of [M
.
]

+
 appears to increase with the presence of ortho amino groups, 

as relative ion currents of 16.8%, 33.2%, and 50.3% are obtained for 4,4’-, 2,4’-, and 2,2’-MDA, 

respectively. Collectively, these observations demonstrate that the laser fluence does not affect 

the relative intensities of these different ion forms. 

Figure 3.2b highlights the capability of the resolving quadrupole to isolate the precursor 

ions for MS/MS analysis. The bars indicate the percent intensity of the selected ion relative to the 

intensities of the other two ions, all of which are ±1 Da apart in nominal mass. The [M–H]
+
 and 

[M+H]
+
 ions can be isolated with typically greater than 90% efficiency from the other two 

precursor ion species. Although the [M
.
]

+ 
ion falls between the other two species, it can still be 

separated with about 85% efficiency. This indicates that the precursor ions can be separated with 

high efficiency. Therefore, the presence of m/z values corresponding to the other two precursor 

ions in MS/MS spectra predominantly results from parent ion fragmentation and not the inability 

of the quadrupole to resolve these ions. 

 

 

Figure C.10.2. ANOVA and t-test Details 

 

We conducted an analysis of variance (ANOVA) of the %RIC data for all fragment-ion 

peaks from a specific parent ion.  Using Table 3.2 (in the manuscript) as an example, ANOVA 

would test the significance of the differences among the three %RIC values (41.5, 60.7, 42.3) for 

the 198 mass peak derived from the [M+H]
+
 parent ion, shown at the top of Table 3.2.  Each 

ANOVA was done using a set of 27 measurements from the three MDA oligomers, allowing 26 

degrees of freedom for the statistical analysis (2 degrees between oligomers and 24 degrees for 

variance within the measurements), and a 99+ percent confidence level for a result to be 

considered as significant.  The fragment ions colored in yellow in Table 3.2 showed a significant 

difference by ANOVA. A detailed summary of ANOVA is given in Tables C.1, C.3, C.5 below. 

ANOVA testing can tell us that the largest and smallest values, 41.5 and 60.7 %RIC, are 

definitely different for the 198 peak of [M+H]
+
, but it does not say where the third value (42.3%) 

lies. In the case of the 198 peak for [M+H]
+ 

in Table 3.2, a simple t-test on the average values 

between the middle value %RIC and the value of its closer neighbor can provide more insight 

into the difference between 41.5 and 42.3 %RIC.  For a two-mean t-test there are 18 

measurements in an analysis data set and therefore 16 degrees of freedom, allowing an adequate 

analysis by the t-test at the 99+% confidence level.  There is no difference between 41.5 and 

42.3%.  The pairs of values for which the t-tests showed significant differences are colored pink 

in Table 3.2.  The t-test results are also shown in Tables 3.2, 3.4, 3.6 below. The results of 

ANOVA and t-tests identify the differences within each data set (fragment ion peak) and will be 

helpful in establishing differences in fragmentation mechanisms among the MDA oligomers. 
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Table C.1. ANOVA for MDA Fragments 

 

 

 

 

 

 

 

 

 

 

 
 

Table C.1. Statistical Analysis of MDA Fragmentation Reactions: [M + H]
+
 Fragmentation 
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Table C.2. The t-test of Means for MDA Fragments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table C.2. Analysis Using t-test of Means for [M + H]
+
 Fragmentation 
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Table C.3. Statistical Analysis of MDA Fragmentation Reactions: [M - H]
+
 Fragmentation 

 

 

 

 

 

 

 

 

 

 

 
 

Table C.3. Statistical Analysis of MDA Fragmentation Reactions: [M - H]
+
 Fragmentation 
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Table C.4. Analysis Using t-test of Means for [M-H]
+
 Fragmentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table C.4. Analysis Using t-test of Means for [M-H]
+
 Fragmentation 
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Table C.5. Statistical Analysis of MDA Fragmentation Reactions: [M
.
]

+
 Fragmentation 

 

 

 

 

 

 

 

 

 
 

Table C.5. Statistical Analysis of MDA Fragmentation Reactions: [M
.
]

+
 Fragmentation 
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Table C.6. Analysis Using t-test of Means for [M
.
]

+
 Fragmentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table C.6. Analysis Using t-test of Means for [M
.
]

+
 Fragmentation 
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Table C.7. Total percent ion current for the three 2,2’-MDA ion species. 

 

 

 
 

Table C.7. Total percent ion current for the three 2,2’-MDA ion species. 
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Table C.8. Total percent ion current for the three 2,4’-MDA ion species. 

 

 

 
 

Table C.8. Total percent ion current for the three 2,4’-MDA ion species. 
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Table C.9. Total percent ion current for the three 4,4’-MDA ion species. 

 

 
 

Table C.9. Total percent ion current for the three 4,4’-MDA ion species. 
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Table C.10. Total percent ion current for the two 2,7-DAF ion species. 

 

 
 

Table C.10. Total percent ion current for the two 2,7-DAF ion species. 
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Figure C.11. Percent Total Ion Current for Fragment Ions 

 

 

 

 

 
 

 

Figure C.11. Titration curves depicted in Figure 3.4 in the manuscript. Instead of averaging the 

three isomers together, they are shown separately here as a solid line for 4,4’-MDA, a dashed line 

for 2,4’-MDA and a dotted line for 2,2’-MDA. The precursor ion is represented with black lines, 

M-1 with purple lines, M-17,18 with teal, M-45,46 with yellow, and M-93 with grey. 
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Figure C.12. Percent Total Ion Current for Fragment Ions 

 

 

 

 

 

 
 

 

Figure C.12. Collision energy curves for a larger number of fragment ions for the [M+H]
+
 

species. Only results higher than 20% were adjusted to 100% for clarity for Figure 3.3 in the 

manuscript. 
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Figure C.13. Percent Total Ion Current for Fragment Ions 

 

 

 

 
 

 

 

Figure C.13. Collision energy curves for a larger number of fragment ions for the [M-H]
+
 

species. Only results higher than 25% were adjusted to 100% for clarity for Figure 3.3 in the 

manuscript. 
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Figure C.14. Percent Total Ion Current for Fragment Ions 

 

 

 

 

 

 
 

 

Figure C.14. Collision energy curves for a larger number of fragment ions for the [M
.
]

+
 species. 

Only results higher than 20% were adjusted to 100% for clarity for Figure 3.3 in the manuscript. 
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Figure C.15. Percent Total Ion Current for Fragment Ions 

 

 

 

 

 

 

 

 
 

 

Figure C.15. Titration curves for 2,7-DAF for both (a) the [M+H]+ species and (b) the [M
.
]

+
 

species. 
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Figure C.16. MALDI and ESI MS Spectra 

 

 

 

 

 
 

 

Figure C.16. Mass spectra for 2,7-DAF for both (a) MALDI and (b) ESI. Similar to the MDA 

isomers, 2,7-DAF preferably forms the [M+H]
+
 in ESI and [M

.
]

+
 and [M-H]

+
 in MALDI. 
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Figure C.17. 2,7-DAF IM-MS Traces 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure C.17. Ion mobility traces for 2,7-DAF are shown for the [M+H]
+
 species in (a) and (b) 

and for the [M
.
]

+
 species in (c) and (d). Results for MALDI are shown in (a) and (c) and for ESI 

in (b) and (d). Two conformations for the [M+H]
+
 species are observed as we saw in Figure 3.5 

in the manuscript, but the preference switches in ESI. 
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Computational Details (Figures C.18-C.23) 

 

Conformational Sampling with Molecular Dynamics 

 In order to gain more detailed structural insight from ion mobility – mass spectrometry 

(IM-MS) experiments, computational calculations are often performed. These calculations 

involve both a sampling of the conformational landscape of the molecule of interest and then a 

theoretical CCS calculation for each conformation generated. In this study, the [M+H]
+
 and [M-

H]
+
 forms of all three 2-ring MDA isomers, as well as the 2,7-DAF standard were first geometry 

optimized in Gaussian09 at the Hartree Fock level of theory. All possible protonation sites for 

each species were modeled including both para and ortho amine protonation as well as ring 

protonation (i.e. 3 for 2,4’-MDA, 2 for 2,2’-MDA, and 1 for 4,4’-MDA and 2,7-DAF). The 

optimized structure and electrostatic potential description of the molecules were then used in 

AMBER to perform a molecular dynamic simulation to sample the conformational space of the 

molecule. Specifically, a simulated annealing protocol was used for the MD simulation as the 

artificial heating of the molecules allows more conformational space to be sampled than a 

traditional MD simulation. Each simulation resulted in 3,000 unique conformations that were then 

submitted to MOBCAL to determine a theoretical CCSHe value for each conformation. PSA was 

used to determine theoretical CCSN2 values for a subset of conformations which were used to 

project the rest of the conformations from helium to nitrogen using a simple linear function. Each 

conformation is then represented in the scatter plots in Figure 3.5d-f in the main text and in 

Figures C.17-18 in the supporting information. 

 

Energy Change of the Reaction with Quantum Mechanical Calculations 

 Bond energies that are tabulated in Scheme 3.1 in the main text and in Figures C.19-22 

in the supporting information are based on density function theory (DFT) calculations performed 

in Gaussian09. In these calculations, the parent ion is first geometry optimized and the energy is 

calculated for the parent ion. The bond of interest is then broken via homolytic bond cleavage, 

resulting in two individual pieces that are determined to be of doublet multiplicity due to the free 

electron on each fragment. Note that one of the fragments will be positively charged and the other 

neutral depending on where the charge resided on the parent ion. A geometry optimization 

calculation is this performed on each fragment and the resulting energy of these two calculations 

is summed and then subtracted from the parent ion energy. This resulting energy change of the 

reaction then represents the relative bond energy of the broken bond. Frequency calculations were 

performed to ensure that both the precursor and fragment structures were optimized to energy 

minimums. DFT/B3LYP/6-31G* level of theory was used for all calculations, which were 

performed in vacuo and in the ground state 
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Figure C.18. Ion Mobility and Theoretical Modeling 

 

 

 

 
 

Figure C.18. Ion mobility and theoretical modeling results for 2,2’-MDA. IM traces for both [M-

H]
+
 (red, dashed line) and [M+H]

+
 (black, solid line) are shown in (a). Conformation space plots 

are shown for ortho protonation in (b) for [M-H]
+
 (yellow circles with red outlines) and in (c) for 

[M+H]
+ 

(light grey circles with black outlines). Conformational space plots for ring protonation 

are shown in (d) for [M-H]
+
 (orange triangles with red outlines) and (e) for [M+H]

+
 (dark grey 

triangles with black outlines). These plots are shown separately here for clarity as opposed to 

overlapping as is shown in the manuscript. 
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Figure C.19. Ion Mobility and Theoretical Modeling 

 

 

 

 
 

Figure C.19. Ion mobility and theoretical modeling results for 2,4’-MDA. IM traces for both [M-

H]
+
 (red, dashed line) and [M+H]

+
 (black, solid line) are shown in (a). Conformational space 

plots are shown for para protonation for (b) [M-H]
+
 (red diamonds) and (c) [M+H]

+
 (black 

diamonds). Plots for ortho protonation for (d) [M-H]
+
 (yellow circles with red outlines) and (e) 

[M+H]
+ 

(light grey circles with black outlines). Plots for ring protonation for (f) [M-H]
+
 (orange 

triangles with red outlines) and (g) [M+H]
+
 (dark grey triangles with black outlines). The plots 

are shown separately here for clarity of the different protonation sites and precursor species. 
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Figure C.20. Bond energies for [M+H]
+
 isomers.  
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Figure C.21. Bond energies for [M-H]
+
 isomers.  
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Figure C.22. Bond energies for 2,7-DAF 

 

 

 

 

 

 
 

Bond Bond Energy (kcal/mol) 

iCN 140.3 

iiCN 110.6 

iNH 51.0 

iiNH 98.0 

iCH 85.5 

iiCH 118.0 

iiiCH 118.3 

ivCH 119.4 

vCH 117.7 

viCH 119.1 

viiCH 118.9 
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Figure C.23. Bond energies for [M
.
]

+
 isomers. 

 

 

 

 

 
 

Triplet - Modelling the two pieces as a neutral doublet and a singly charged triplet assumes that 

the radical on the system was nowhere near where the bond is broken. 

 

Singlet - Modelling the two pieces as a neutral doublet and a singly charged singlet assumes that 

the radical on the system was on the atom where the bond is broken. 
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APPENDIX D 

 

SUPPORTING INFORMATION FOR CHAPTER IV 

 

D.1. MALDI MS/MS 10 eV 

 

 

 

 

 

 

 

 

 
 

Figure D.1. MALDI tandem mass spectra (MS/MS) of the 3-ring MDA (a) [M+H]
+

 = 304 Da, 

(b) [M
.

]
+

 = 303 Da, and (c) [M-H]
+

 = 302 Da and 4-ring MDA (d) [M+H]
+

 = 409 Da, (e) [M
.

]
+

 = 

408 Da, and (f) [M-H]
+

 = 407 Da at 10 eV. 
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D.2. MALDI MS/MS 15 eV 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure D.2. MALDI tandem mass spectra (MS/MS) of the 3-ring MDA (a) [M+H]
+
 = 304 Da, 

(b) [M
.
]

+
 = 303 Da, and (c) [M-H]

+
 = 302 Da and 4-ring MDA (d) [M+H]

+
 = 409 Da, (e) [M

.
]

+
 = 

408 Da, and (f) [M-H]
+
 = 407 Da at 15 eV. 
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D.3. MALDI MS/MS 20 eV 

 

 

 

 

 

 

 

 

 
 

Figure D.3. MALDI tandem mass spectra (MS/MS) of the 3-ring MDA (a) [M+H]
+
 = 304 Da, 

(b) [M
.
]

+
 = 303 Da, and (c) [M-H]

+
 = 302 Da and 4-ring MDA (d) [M+H]

+
 = 409 Da, (e) [M

.
]

+
 = 

408 Da, and (f) [M-H]
+
 = 407 Da at 20 eV. 
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D.4. MALDI MS/MS 30 eV 
 

 

 

 

 

 

 

 

 
 

Figure D.4. MALDI tandem mass spectra (MS/MS) of the 3-ring MDA (a) [M+H]
+
 = 304 Da, 

(b) [M
.
]

+
 = 303 Da, and (c) [M-H]

+
 = 302 Da and 4-ring MDA (d) [M+H]

+
 = 409 Da, (e) [M

.
]

+
 = 

408 Da, and (f) [M-H]
+
 = 407 Da at 30 eV. 
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D.5. 3-Ring MALDI MS
3 

 

 

 

 
 

Figure D.5. Multi-stage MS
3
 tandem IM-MS mass spectra (MS/IM/MS) of 3-ring MDA. The 3-

ring [M+H]
+
 = 304 Da parent ion was mass selected then additional major fragment ions were 

mass selected to acquire MS
3
 data. (a) 285 Da, (b) 210 Da, (c) 209 Da, (d) 197 Da, (e) 195 Da, 

(f) 193 Da, and (g) 165 Da. Proposed structures of observed fragment ions in spectra can be 

found in Figures D.11-D.13. 
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D.6. 4-Ring MALDI MS
3
 

 

 

 

 

 

 

 

 
 

Figure D.6. Multi-stage MS
3
 tandem IM-MS mass spectra (MS/IM/MS) of 4-ring MDA. The 4-

ring [M+H]
+
 = 409 Da parent ion was mass selected then additional major fragment ions were 

mass selected to acquire MS
3
 data. (a) 315 Da, (b) 314 Da, (c) 302 Da, (d) 297 Da, (e) 211 Da, 

and (f) 209 Da.  
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D.7. Multiple Protonation Example: Part 1 

          Because of multiple protonation sites in the 3-ring and 4-ring MDAs, it is possible to have 

multiple structures for both parent and fragment ions. The nature of this problem will be 

illustrated here for the mass 302 MDA 3-ring parent ions and some of their fragments, but it is 

common to all 3-ring and 4-ring species. The three isomeric 302 parent ions are shown below and 

are labeled “L”, “C”, and “R”, consistent with the location of the protonated amino group. The 

gas-phase basicities of the L and R amino groups are essentially the same, group C is somewhat 

less basic. Thus, protonation will form a mixture of the three parent ions. 

          The major fragment of the mass 302 parent is an ion at mass 209, formally M-93 

corresponding to loss of aniline. Assuming charge-remote fragmentation, structures L and C will 

produce two different ions as shown below. Allowing for proton transfer, structure R can produce 

either the L or C fragment. The important point being that fragmentation can produce two 

chemically different ions.  

 

D.7.1. Mass 302 3-Ring Ion Structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.7. Multiple Protonation Example (Part 1). 
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D.8. Multiple Protonation Example: Part 2 

 

 Also, these ions can be considered as a hybrid of two extreme structures, as shown 

below. The fragmentation reactions observed for the mass 302 parent indicate behavior consistent 

with both structures. Tautomers or resonance hybrid structures, take your pick. An extreme 

example is the mass 285 fragment ion from the M-H
+
 parent at mass 302. This corresponds to M-

17, loss of ammonia. It is not one of the more intense fragment ions for the mass 302 parent, but 

loss of ammonia figures very prominently in the MALDI spectra of the 2-ring MDA M-H
+
 ions, 

accounting for 51-89% total intensity. Six fragment ions are possible, depending on which amine 

group is lost and on which the residual charge remains. These are shown below in the order of 

loss of L, C and R amine groups. Needless to say, the problem of multiple possible fragment ions 

will only be greater for the 4-ring isomers. 

 

D.8.1. Multiple Protonation Example: Part 2 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure D.8. Multiple Protonation Example (Part 2). 
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D.9. IM-MS Curve Resolution 

 

 
Figure D.9. Estimated Gaussian curve resolution distribution of 4-ring MDA precursor species. 
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Table D.1. IM-MS 3-Ring Raw Data 

 

 

 

 

 

 

 

 
 

 

Table D.1. IM-MS data for each 3-ring MDA precursor trace.  
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Table D.2. IM-MS 4-Ring Raw Data 

 

 

 

 

 

 

 

 
 

 

Table D.2. IM-MS data for each 4-ring MDA precursor trace.  
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D.10. CID Curves 3-Ring 

 

 

 
 

Figure D.10. CID curves monitoring the transition of 3-ring MDA precursors (a) [M+H]
+
, (b) 

[M
.
]

+
, and (c) [M-H]

+
 to fragment ions. These fragment ions are generated in low abundance and 

at relatively high lab frame energies. 
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Table D.3. Total RIC% 304 Da 

 

 

 

 

 

 

 

 

 
 

Table D.3. Total percent ion currents observed for 3-ring 304 [M+H]
+
 and all associated product 

ion species.  

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

304
87.5% ± 

0.5%

76.2% ± 

0.5%

43.7% ± 

0.6%

18.5% ±  

2.1%

6.7% ± 

0.9%

1.3% ± 

0.8%

0.4% ±  

0.1%

0.2% ±  

0.0%

0.1% ±  

0.0%

0.1% ±  

0.0%

0.0% ±  

0.0%

303
5.1%  ±  

0.2%

4.8% ± 

0.2%

5.7% ± 

0.3%

8.0% ± 

0.1%

7.8% ± 

0.5%

5.0% ± 

0.1%

2.0% ± 

0.1%

0.7% ± 

0.1%

0.2% ± 

0.1%

0.1% ± 

0.1%

0.1% ± 

0.1%

211
2.3% ±   

0.3%

4.1% ± 

0.6%

6.1% ± 

0.7%

7.0% ± 

0.2%

6.2% ± 

0.8%

4.1% ± 

0.7%

2.2% ± 

0.1%

0.9% ± 

0.1%

0.5% ± 

0.2%

0.2% ± 

0.0%

0.1% ± 

0.0%

210
0.3% ±   

0.0%

0.8% ± 

0.0%

2.6% ± 

0.0%

5.8% ± 

0.6%

8.8% ± 

0.2%

10.1% ± 

0.3%

8.4% ± 

0.3%

5.0% ± 

0.2%

3.0% ± 

0.2%

1.8% ± 

0.2%

1.2% ± 

0.0%

209
0.1% ±   

0.0%

0.3% ± 

0.0%

1.0% ± 

0.1%

2.4% ± 

0.0%

4.4% ± 

0.1%

5.6% ± 

0.2%

5.8% ± 

0.3%

5.6% ± 

0.5%

4.8% ± 

0.7%

4.1% ± 

0.4%

3.0% ± 

0.2%

198
2.4% ±   

0.2%

7.7% ± 

0.2%

22.4% ± 

1.1%

29.3% ± 

1.1%

26.7% ± 

0.7%

19.8% ± 

1.4%

12.1% ± 

0.9%

6.1% ± 

0.2%

2.7% ± 

0.3%

1.0% ± 

0.1%

0.4% ± 

0.0%

197
1.7% ±   

0.1%

5.1% ± 

0.5%

14.9% ± 

0.6%

19.7% ± 

1.1%

18.1% ± 

0.9%

14.1% ± 

1.2%

9.7% ± 

0.6%

6.0% ± 

0.3%

3.4% ± 

0.1%

2.0% ± 

0.3%

1.1% ± 

0.2%

182
0.1% ±   

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.9% ± 

0.1%

2.5% ± 

0.1%

4.7% ± 

0.0%

7.0% ± 

0.2%

7.7% ± 

0.2%

7.3% ± 

0.4%

6.6% ± 

0.3%

5.9% ± 

0.6%

181
0.2% ±   

0.1%

0.3% ± 

0.0%

1.3% ± 

0.1%

3.2% ± 

0.3%

7.3% ± 

0.5%

13.8% ± 

0.6%

19.4% ± 

0.8%

24.3% ± 

0.5%

25.3% ± 

0.7%

25.0% ± 

0.5%

23.5% ± 

0.4%

180
0.1% ±   

0.0%

0.2% ± 

0.1%

0.7% ± 

0.1%

2.0% ± 

0.1%

4.4% ± 

0.2%

8.1% ± 

0.3%

12.3% ± 

0.6%

14.8% ± 

0.3%

16.4% ± 

0.8%

16.0% ± 

0.9%

15.2% ± 

0.5%

166
0.0% ±   

0.0%

0.0% ± 

0.1%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.9% ± 

0.1%

2.3% ± 

0.4%

4.6% ± 

0.5%

6.9% ± 

0.8%

8.5% ± 

1.2%

11.5% ± 

1.4%

12.9% ± 

1.3%

165
0.0% ±   

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.9% ± 

0.1%

1.9% ± 

0.2%

3.8% ± 

0.6%

5.6% ± 

0.6%

7.5% ± 

1.3%

9.4% ± 

0.9%

10.6% ± 

1.0%

152
0.0% ±   

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.2% ± 

0.0%

0.5% ± 

0.1%

1.3% ± 

0.1%

2.9% ± 

0.3%

5.6% ± 

0.2%

8.0% ± 

0.7%

12.2% ± 

0.8%

3-Ring [M+H]+
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D.11. 304 Da Structures 

 

 

 

 

 

 

 

Figure D.11. Possible 3-ring fragment ion structures derived from the 304 Da = [M+H]
+
 species. 
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Table D.4. Total RIC% 303 Da 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Table D.4. Total percent ion currents observed for 3-ring 303 [M
.
]

+
 and all associated product ion 

species.  

 

 

 

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

303
95.0% ± 

0.7%

93.2% ± 

0.6%

87.2% ± 

0.3%

65.2% ±  

3.9%

38.7% ± 

3.5%

20.5% ± 

1.8%

7.4% ±  

0.7%

1.9% ± 

0.0%

0.5% ±  

0.1%

0.1% ±  

0.1%

0.1% ±  

0.1%

302
1.2% ± 

0.2%

0.7% ± 

0.0%

1.1% ± 

0.1%

3.1% ± 

0.1%

6.2% ± 

0.4%

9.3% ± 

0.5%

8.1% ± 

0.2%

4.7% ± 

0.4%

2.0% ± 

0.5%

0.6% ± 

0.3%

0.1% ± 

0.0%

210
0.6% ± 

0.1%

0.4% ± 

0.1%

0.6% ± 

0.1%

1.7% ± 

0.0%

3.7% ± 

0.3%

7.0% ± 

0.2%

10.2% ± 

2.1%

6.9% ± 

0.3%

4.0% ± 

0.6%

1.5% ± 

0.2%

0.8% ± 

0.2%

209
0.3% ± 

0.1%

0.2% ± 

0.0%

0.4% ± 

0.2%

1.5% ± 

0.3%

4.2% ± 

0.3%

8.6% ± 

0.2%

14.6% ± 

1.3%

16.0% ± 

0.9%

14.9% ± 

0.9%

10.3% ± 

0.7%

6.2% ± 

0.6%

197
3.0% ± 

0.2%

2.7% ± 

0.5%

7.2% ± 

0.1%

23.2% ± 

3.6%

39.7% ± 

3.2%

42.4% ± 

1.0%

37.7% ± 

4.4%

30.0% ± 

1.3%

20.0% ± 

1.5%

10.5% ± 

0.3%

5.1% ± 

0.6%

181
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.8% ± 

0.1%

2.0% ± 

0.1%

4.5% ± 

0.1%

7.0% ± 

0.4%

8.5% ± 

0.9%

8.3% ± 

0.7%

180
0.1% ± 

0.1%

0.1% ± 

0.0%

0.2% ± 

0.1%

0.7% ± 

0.2%

1.8% ± 

0.2%

3.7% ± 

0.5%

7.8% ± 

0.8%

15.2% ± 

1.2%

22.1% ± 

1.2%

27.8% ± 

2.1%

30.6% ± 

0.8%

166
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.1%

1.1% ± 

0.1%

2.4% ± 

0.4%

4.3% ± 

0.5%

5.3% ± 

0.7%

6.7% ± 

0.7%

165
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.9% ± 

0.2%

2.2% ± 

0.4%

4.5% ± 

0.8%

6.9% ± 

0.4%

8.9% ± 

0.8%

152
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.1%

0.1% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.0%

0.5% ± 

0.1%

1.5% ± 

0.2%

2.8% ± 

0.3%

5.1% ± 

0.3%

3-Ring [M.]+
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D.12. 303 Da Structures 

 

 

 

 

 

 

 

 
 

 

Figure D.12. Possible 3-ring fragment ion structures derived from the 303 Da = [M
.
]

+
 species. 
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Table D.5. Total RIC% 302 Da 

 

 

 

 

 

 

 

 
 

 

Table D.5. Total percent ion currents observed for 3-ring 302 [M-H]
+
 and all associated product 

ion species.  

 

 

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

302
99.4% ± 

0.1%

98.2% ± 

0.2%

92.7% ± 

0.6%

71.8% ± 

0.2%

31.2% ± 

0.2%

6.7% ± 

0.4%

1.1% ± 

0.0%

0.2% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

285
0.0% ± 

0.0%

0.1% ± 

0.0%

0.5% ± 

0.0%

1.9% ± 

0.0%

3.9% ± 

0.1%

4.3% ± 

0.1%

3.2% ± 

0.1%

1.9% ± 

0.1%

1.0% ± 

0.0%

0.5% ± 

0.0%

0.2% ± 

0.0%

209
0.2% ± 

0.0%

0.4% ± 

0.0%

2.8% ± 

0.1%

16.0% ± 

0.2%

36.0% ± 

0.2%

30.9% ± 

0.2%

15.0% ± 

0.3%

5.5% ± 

0.1%

2.0% ± 

0.1%

0.9% ± 

0.0%

0.4% ± 

0.0%

208
0.0% ± 

0.0%

0.0% ± 

0.0%

0.2% ± 

0.0%

1.0% ± 

0.0%

4.7% ± 

0.1%

10.8% ± 

0.1%

15.6% ± 

0.2%

15.8% ± 

0.1%

12.1% ± 

0.0%

7.9% ± 

0.1%

4.7% ± 

0.2%

193
0.0% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.0%

1.3% ± 

0.0%

5.8% ± 

0.1%

13.0% ± 

0.2%

17.8% ± 

0.2%

17.2% ± 

0.1%

13.3% ± 

0.1%

9.2% ± 

0.2%

6.1% ± 

0.1%

192
0.0% ± 

0.0%

0.0% ± 

0.0%

0.2% ± 

0.0%

1.2% ± 

0.0%

4.6% ± 

0.1%

7.6% ± 

0.0%

7.9% ± 

0.1%

7.3% ± 

0.0%

7.3% ± 

0.1%

7.1% ± 

0.0%

6.6% ± 

0.1%

180
0.0% ± 

0.0%

0.0% ± 

0.0%

0.2% ± 

0.0%

0.6% ± 

0.0%

1.8% ± 

0.1%

4.8% ± 

0.1%

8.8% ± 

0.3%

13.4% ± 

0.1%

18.5% ± 

0.3%

22.9% ± 

0.2%

26.0% ± 

0.3%

167
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.6% ± 

0.0%

2.1% ± 

0.1%

4.8% ± 

0.0%

7.9% ± 

0.1%

10.6% ± 

0.1%

12.1% ± 

0.1%

12.4% ± 

0.0%

165
0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.6% ± 

0.0%

3.1% ± 

0.0%

8.7% ± 

0.1%

15.0% ± 

0.1%

20.7% ± 

0.3%

25.0% ± 

0.3%

28.0% ± 

0.6%

29.7% ± 

0.2%

152
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

0.8% ± 

0.0%

1.7% ± 

0.0%

3.3% ± 

0.0%

5.4% ± 

0.2%

8.5% ± 

0.1%

106
0.0% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.0%

1.3% ± 

0.0%

2.9% ± 

0.0%

4.3% ± 

0.1%

5.0% ± 

0.1%

5.2% ± 

0.3%

5.2% ± 

0.2%

4.8% ± 

0.3%

4.5% ± 

0.2%

3-Ring [M-H]+
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D.13. 302 Da Structures 

 

 

 

 

 
 

 

Figure D.13. Possible 3-ring fragment ion structures derived from the 302 Da = [M-H]
+
 species. 
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D.14. CID Curves 4-Ring 

 

 
 

 

Figure D.14. CID curves monitoring the transition of 4-ring MDA precursors (a) [M+H]
+
, (b) 

[M
.
]

+
, and (c) [M-H]

+
 to fragment ions. These fragment ions are generated in low abundance and 

at relatively high lab frame energies. 
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Table D.6. Total RIC% 409 Da 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table D.6. Total percent ion currents observed for 4-ring 409 [M+H]
+
 and all associated product 

ion species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

409
93.7% ± 

0.2%

85.3% ± 

0.6%

56.2% ± 

3.5%

27.6% ± 

6.6%

17.4% ± 

4.4%

9.9% ± 

2.2%

3.4% ± 

0.7%

0.7% ± 

0.1%

0.2% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

316
2.3% ± 

0.1%

8.4% ± 

0.9%

26.3% ± 

2.7%

37.3% ± 

4.5%

27.5% ± 

2.8%

13.9% ± 

0.7%

5.3% ± 

0.2%

1.8% ± 

0.2%

0.7% ± 

0.2%

0.3% ± 

0.0%

0.1% ± 

0.0%

315
0.7% ± 

0.1%

2.5% ± 

0.1%

8.0% ± 

0.7%

12.2% ± 

1.2%

13.0% ± 

0.9%

13.8% ± 

0.4%

14.9% ± 

0.2%

12.6% ± 

0.5%

7.8% ± 

0.9%

3.9% ± 

0.2%

1.5% ± 

0.1%

303
0.2% ± 

0.0%

0.7% ± 

0.1%

3.0% ± 

0.2%

7.5% ± 

0.6%

12.6% ± 

0.9%

14.4% ± 

1.1%

10.8% ± 

0.1%

5.5% ± 

0.1%

1.8% ± 

0.3%

0.5% ± 

0.0%

0.1% ± 

0.0%

210
0.1% ± 

0.0%

0.1% ± 

0.1%

0.7% ± 

0.1%

2.0% ± 

0.2%

5.2% ± 

0.1%

9.4% ± 

0.0%

13.1% ± 

0.1%

13.8% ± 

0.0%

10.9% ± 

0.7%

7.5% ± 

0.7%

4.5% ± 

0.4%

209
0.1% ± 

0.0%

0.1% ± 

0.0%

0.5% ± 

0.0%

1.9% ± 

0.2%

4.6% ± 

0.2%

8.8% ± 

0.3%

12.9% ± 

0.3%

14.8% ± 

0.1%

12.7% ± 

1.7%

11.2% ± 

1.2%

8.9% ± 

0.7%

194
0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.0%

0.7% ± 

0.1%

1.7% ± 

0.0%

4.0% ± 

0.1%

6.7% ± 

0.2%

10.0% ± 

0.6%

11.2% ± 

0.0%

11.5% ± 

0.2%

193
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.5% ± 

0.0%

1.4% ± 

0.0%

3.4% ± 

0.1%

6.2% ± 

0.2%

8.8% ± 

0.2%

10.4% ± 

0.1%

11.2% ± 

0.0%

106
0.0% ± 

0.0%

0.1% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.1%

1.1% ± 

0.2%

2.6% ± 

0.3%

4.4% ± 

0.4%

6.6% ± 

0.3%

10.1% ± 

3.1%

10.1% ± 

2.1%

10.1% ± 

1.6%

4-Ring [M+H]+
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Table D.7. Total RIC% 408 Da 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table D.7. Total percent ion currents observed for 4-ring 408 [M
.
]

+
 and all associated product ion 

species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

408
98.1% ± 

0.4%

96.4% ± 

0.3%

91.9% ± 

4.3%

76.4% ± 

1.5%

66.1% ± 

2.0%

58.2% ± 

2.6%

44.5% ± 

2.2%

31.4% ± 

2.6%

16.6% ± 

2.6%

5.7% ± 

0.5%

1.0% ± 

0.1%

315
1.6% ± 

0.3%

3.1% ± 

0.2%

6.4% ± 

4.7%

17.7% ± 

0.7%

20.9% ± 

0.2%

22.5% ± 

0.7%

21.8% ± 

0.7%

17.8% ± 

0.8%

10.6% ± 

2.3%

6.4% ± 

0.1%

3.1% ± 

0.1%

314
0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.0%

1.4% ± 

0.2%

3.9% ± 

0.5%

8.6% ± 

2.2%

12.2% ± 

1.0%

13.4% ± 

2.9%

16.2% ± 

1.7%

13.6% ± 

2.2%

302
0.2% ± 

0.1%

0.3% ± 

0.0%

1.1% ± 

0.3%

4.0% ± 

0.5%

8.2% ± 

1.2%

9.4% ± 

0.7%

10.5% ± 

1.6%

10.1% ± 

0.6%

8.1% ± 

1.5%

6.3% ± 

0.9%

2.9% ± 

0.5%

210
0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.1%

0.3% ± 

0.0%

0.6% ± 

0.1%

1.3% ± 

0.2%

3.9% ± 

0.6%

7.7% ± 

0.2%

10.2% ± 

1.8%

12.2% ± 

0.9%

10.2% ± 

0.9%

209
0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.1%

1.2% ± 

0.2%

2.8% ± 

0.4%

7.1% ± 

1.2%

12.9% ± 

0.1%

18.1% ± 

2.9%

26.5% ± 

0.1%

29.9% ± 

0.7%

180
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.1%

0.5% ± 

0.1%

1.2% ± 

0.3%

3.3% ± 

0.3%

7.1% ± 

0.9%

106
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.0%

0.5% ± 

0.0%

2.1% ± 

0.3%

5.9% ± 

0.2%

20.1% ± 

0.4%

21.0% ± 

0.8%

29.6% ± 

2.1%

4-Ring [M.]+
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Table D.8. Total RIC% 407 Da 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table D.8. Total percent ion currents observed for 4-ring 407 [M-H]
+
 and all associated product 

ion species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fragment Ion 0 CE 5 CE 10 CE 15 CE 20 CE 25 CE 30 CE 35 CE 40 CE 45 CE 50 CE

407
85.8% ± 

0.5%

85.8% ± 

1.0%

84.0% ± 

1.3%

78.0% ± 

0.8%

61.8% ± 

0.4%

37.5% ± 

0.7%

15.3% ± 

0.4%

3.5% ± 

0.0%

0.6% ± 

0.0%

0.1% ± 

0.0%

0.0% ± 

0.0%

314
0.2% ± 

0.0%

0.4% ± 

0.0%

1.4% ± 

0.0%

4.5% ± 

0.1%

10.9% ± 

0.2%

16.3% ± 

0.2%

14.7% ± 

0.0%

8.4% ± 

0.2%

3.8% ± 

0.1%

1.5% ± 

0.1%

0.5% ± 

0.1%

297
0.1% ± 

0.0%

0.1% ± 

0.0%

0.5% ± 

0.0%

2.3% ± 

0.1%

6.0% ± 

0.1%

8.6% ± 

0.2%

8.4% ± 

0.3%

7.1% ± 

0.0%

5.7% ± 

0.0%

4.3% ± 

0.1%

3.5% ± 

0.1%

211
0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

1.0% ± 

0.1%

2.7% ± 

0.0%

5.1% ± 

0.1%

6.4% ± 

0.1%

5.5% ± 

0.2%

3.2% ± 

0.0%

1.6% ± 

0.1%

0.7% ± 

0.0%

209
0.1% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

1.2% ± 

0.1%

4.8% ± 

0.1%

13.9% ± 

0.1%

23.7% ± 

0.4%

24.1% ± 

0.3%

17.2% ± 

0.0%

10.5% ± 

0.3%

6.0% ± 

0.2%

193
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.3% ± 

0.0%

1.1% ± 

0.0%

3.2% ± 

0.0%

7.4% ± 

0.1%

11.9% ± 

0.0%

15.0% ± 

0.1%

16.0% ± 

0.3%

180
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.2% ± 

0.0%

0.5% ± 

0.0%

1.5% ± 

0.0%

3.2% ± 

0.1%

5.6% ± 

0.0%

7.9% ± 

0.2%

10.2% ± 

0.3%

165
0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.0% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.0%

1.3% ± 

0.1%

3.5% ± 

0.1%

6.3% ± 

0.4%

9.3% ± 

0.5%

13.1% ± 

0.7%

106
0.0% ± 

0.0%

0.1% ± 

0.0%

0.1% ± 

0.0%

0.4% ± 

0.0%

1.8% ± 

0.0%

6.5% ± 

0.1%

15.8% ± 

0.5%

26.3% ± 

0.7%

33.3% ± 

0.3%

37.0% ± 

0.5%

37.1% ± 

0.9%

4-Ring [M-H]+
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APPENDIX E 

 

SUPPORTING INFORMATION FOR CHAPTER V 

 

E.1. MS Characterization of PBA 

 

 The full ESI-MS spectra of the investigated telechelic PBA (Mn = 2250 gmol
-1

) are 

illustrated in Figure E.1. Using ESI of PBA species, we observe characteristic peaks associated 

with the multiply charged species detected. For Figure E.1, the PBA sample was dissolved in 

ACN that contained 0.1% formic acid to aid in ionization. Here we identified adventitious Na and 

K metal ion adducts derived from the solution which subsequently cationize with PBA oligomers. 

Despite the fact that the spray solution containing formic acid is evaporated to yield an abundant 

source of protons, virtually no protonated [M+H]
+
 species were observed. As expected from 

scavenged alkali metal cations, Na adducted oligomers were found to be in greater abundance 

than the K adducted oligomers. The majority of the species contained in this polymer sample 

were telechelic PBA oligomers; therefore ion series annotated in Figure E.1 is attributed to 

oligomers with –OH end groups. Only small low MW cyclics were observed in the PBA sample: 

(pentagon) [M+Na]
+
 species observed at 423 (DP = 2), 623 (DP = 3), and 823 Da (DP = 4) 

(Figure E.1a). In Figure E.1b, singly and doubly charged PBA oligomers are observed, 

cationized by both Na and K, and a low abundance [M+K]
+
 adducted species is observed at 639 

Da (DP = 3).  

 

 In Figure E.1, linear PBA oligomers with differing charge-states are illustrated by 

shapes: singly charged (square), doubly charged (circle), and triply charged (star). The nature of 

the polyester backbone of PBA increases the ability for cationized multiply charged species. The 

unique cation adducted oligomers observed for singly charged species include: [M+Na]
+
 and 

[M+K]
+
. The doubly charged adducted oligomers observed included: [M+2Na]

2+
, [M+Na+K]

2+
, 

and [M+2K]
2+

. The triply charged adducted oligomers observed included: [M+3Na]
3+

, 

[M+2Na+K]
3+

, [M+Na+2K]
3+

, and [M+3K]
3+

. In Figure E.1b, singly and doubly charged PBA 

oligomers are observed to cationize with both Na and K ions. In Figure E.1c, an example of DP 

= 14 doubly charged adducts [M+2Na]
2+

, [M+Na+K]
2+

, and [M+2K]
2+

 are observed. These 

adducts are also observed for each doubly charged PBA oligomer throughout the mass spectra. 

From steric and coulombic shielding considerations, it is expected that longer oligomer chains 

can accommodate more cations than shorter chains. Singly charged oligomers are first observed 

for DP = 1, doubly charged species are observed to start at DP = 4, and triply charged species 

form starting at DP = 7. 
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E.1. MS Characterization of PBA (continued) 

 

 

 

 

 

 

 

 

 

 
 

 

Figure E.1. (a) Full ESI mass spectrum of polybutylene adipate (M
n 
= 2200). Oligomer units are 

notated by a number value located on top of mass spectrum peaks. The shape symbols located 

above mass spectrum peaks highlight charge-state trends observed for z = +1 cyclic (pentagon) 

species and linear z = +1 (square), z = +2 (circle), and z = +3 (star) species. ESI spectra of (b) 

doubly and (c) triply charged PBA adducts. 
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E.2. MS Spectra of Cationized PBA (Li, Na, K, Rb, and Cs) 

 

 

 
 

Figure E.2. ESI-MS spectra of cationized polybutylene adipate (M
n 
= 2200): (a) [M+Li]

+
, (b) 

[M+Na]
+
, (c) [M+K]

+
, (d) [M+Rb]

+
 and (e) [M+Cs]

+
. 

 

 

 

 



 328 

E.3. IM-MS Trap Voltage 

 

 

 
Figure E.3. A stepped ion funnel trap RF voltage experiment was performed using 20 V 

increments: (a) 80 Vpp, (b) 100 Vpp, (c) 120 Vpp, (d) 140 Vpp, (e) 160 Vpp, (f) 180 Vpp, and (g) 200 

Vpp. While signal intensity changes, the trap RF voltages do not affect the IM distributions and by 

proxy the measured CCS values. This observation indicates that the observed gas-phase structures 

are stable and resistant to collision-induced unfolding. 

 

 

 

 



 329 

 

E.4. IM-MS Spectra of Cationized PBA (Li, Na, K, Rb, and Cs) 

 

 

 

 

 

 

 

 

 

 
 

Figure E.4. Ion mobility spectra of PBA (M
n 
= 2200) ionized by alkali monovalent cations. PBA 

samples were independently spiked with either formic acid or one cation of interest: (a) PBA 

dissolved in ACN and ionized with 0.1% formic acid, (b) lithium chloride, (c) sodium chloride, 

(d) potassium chloride, (e) rubidium chloride, and (f) cesium chloride. 
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E.5. ANOVA Statistical Analysis (Example) 

 

 Single-factor analysis of variance (ANOVA) was used in the present study to 

quantitatively compare the differences in CCS values obtained for each PBA-cationized oligomer. 

Experiments were done in triplicate and compared for five groups of data: PBA-Li, PBA-Na, 

PBA-K, PBA-Rb, and PBA-Cs. The difference between an entire group’s CCS mean was 

compared to the mean CCS of all groups. The results of this calculation are expressed as the F 

ratio, which describes the variance between the cation groups relative to variance within the 

cation groups. If the probability value (p) from the ANOVA test is smaller than 95%, one can 

conclude that there are no statistically significant differences between groups. If the p value is 

greater than the 95% threshold, it can be concluded that the groups are significantly different. 

When PBA oligomers were concluded to be statistically the same, it was determined that the 

polymer ions must be structurally similar to one another. As seen in Figure E.6 (DP = 5), each 

cation group converges to the same CCS, therefore the architectural arrangement of DP = 5 

cationized with Li has a gas-phase structure that is similar to the same oligomer cationized to Na, 

K, Rb, or Cs at the 95% confidence level. Whereas in Figure E.5, each cation group shows 

significant differences among CCS means, which is interpreted as indicating that the molecular 

geometry of each PBA-cation is unique for the PBA DP = 1 oligomer ion. 

 

 Consider the example in Figure E.5. Here we compare the CCS values for DP = 1 

obtained for five groups: PBA-Li, PBA-Na, PBA-K, PBA-Rb, and PBA-Cs for three independent 

trials. The CCS Data Values (x) for all three trails are contained within lines 1-5. The sums of 

each cation’s three trials were calculated in line 6 (Si). The sum of line 6 was recorded in line 7 

as S = 2537.70. The sums listed in line 6 were then squared and recorded in line 8 (Si
2
). The sum 

of line 8 was then reported in line 9. Line 10 (S
2
) represents the sum in line 7 squared. In this 

experiment, there were 15 total data values (N) (line 11), with 3 sets of numbers (n) within each 

column (line 12). Therefore, there are 14 degrees of freedom (DoF) for the total data set N (line 

13) and 2 DoF within each column n (line 14). There are 4 DoF for comparison among the 5 

cations. The CCS Data Values (x) reported in lines 3-5 were squared and reported under Data 

Values Squared (x
2
) (lines 3-5). The sum of CCS squared was reported in line 6 under each PBA-

cation column. The sum of squared data values in line 6 were totaled in line 7 and recorded as 

429514.  

 

 Here we will use three mathematical identities to calculate the sums of squares. To 

determine the Total Sum of Squares (line 15), the sum squared in line 10 (6439921) divided by 

the total number of data values (line 11, 15) was subtracted from the sum of x
2
 (line 7, 429514). 

In Figure S5, numbers are color coded to guide from where the number value is derived. To 

calculate the sum of squares within the data, the sum of Si
2
 (line 9, 1288514) divided by the 

number of participants in each group (line 12, 3) was subtracted from the sum of x
2
 (line 7, 

429514). To determine the sum of squares between the cations, the sum of Si
2
 in each group (line 

9, 1288514) was divided by the number of independent trails (line 12, 3), this value was 

subtracted from S
2
 (line 10, 6439921) divided by the number of data sets (line 11, 15). The sum 

of squares between (line 19, 176.60), within (line 20, 9.33), and the total line 21 (185.93) are 

listed in the table. The degrees of freedom between and within the data sets are listed for the 

cation groups and replicates of data being compared. The F(critical 4/10) value (3.11) is reported 

from statistical chart for 95% confidence, for the respective to DoF. The variance in lines 19-20 

divides the sum of squares by the DoF, for both between and within source of variance data. To 

calculate F, the variance for between data is divided by the variance within data. The F value 

calculated is compared to F(critical) to determine significant differences or similarities observed 

for the data being compared. In this case, Figure E.5 represents DP = 1 had an F value of 47.47 

which is greater than the significance value for 95% confidence. Therefore the CCS values 
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compared in this data set are significantly different from one another. ANOVA results for DPs 

observed are summarized in Figures E.6-E.12.  

 

 

 

 

 

 

 

 
 

 

Figure E.5. ANOVA statistical analysis of CCS values obtained from all three experimental trials 

for charge state trend +1 PBA DP = 1 species. 
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E.6. Raw Data for Charge State +1 

 

Data for Charge State +1 

DP = 1 Li Na K Rb Cs 

Different 

163.65 166.64 170.96 173.15 174.21 

164.59 166.93 170.74 171.78 171.21 

163.04 166.67 169.80 170.85 173.48 

      DP = 2 Li Na K Rb Cs 

Different 

208.91 211.10 215.41 218.66 220.85 

207.25 210.04 214.75 216.86 219.20 

207.08 210.78 214.78 216.70 218.38 

      DP = 3 Li Na K Rb Cs 

Different 

250.11 247.92 251.17 253.36 256.61 

248.56 248.11 250.20 252.02 255.99 

248.53 247.30 249.78 251.83 253.78 

      DP = 4 Li Na K Rb Cs 

Same 

288.06 285.87 286.93 288.06 288.06 

286.86 288.82 287.75 288.20 289.58 

287.76 286.59 289.92 287.30 287.33 

      DP = 5 Li Na K Rb Cs 

Same 

322.76 320.57 322.76 322.76 322.76 

322.90 323.07 325.39 324.81 323.90 

323.84 323.09 327.90 324.37 324.39 

      DP = 6 Li Na K Rb Cs 

Same 

354.14 352.02 354.14 355.27 355.27 

355.63 355.24 357.54 358.07 356.90 

356.09 355.34 361.38 357.60 357.81 

      DP = 7 Li Na K Rb Cs 

Same 

382.34 382.34 386.12 383.40 385.59 

383.97 386.71 387.33 386.25 387.01 

385.41 385.14 390.78 387.15 387.85 

      DP = 8 Li Na K Rb Cs 

Same 

410.54 407.29 411.60 412.73 411.60 

411.15 411.81 413.13 416.27 415.14 

412.86 413.41 414.45 415.43 414.72 

      DP = 9 Li Na K Rb Cs 

Same 

435.48 434.36 435.48 437.61 438.73 

434.80 448.56 440.22 439.72 439.58 

439.70 439.89 440.94 441.49 440.49 

 

Figure E.6. Raw CCS data and results from ANOVA statistical analysis of +1 species. CCS 

values of all three experimental trials for charge state trend +1 PBA species are shown above (DP 

= 1 – 9). Significantly different CCS values among alkali metal cations (Li, Na, K, Rb, and Cs) 

are show in blue, significantly similar CCS values are illustrated in green. 
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E.7. Raw Data for Charge State +2 

 

 

 

Data for Charge State +2 

 
Li Na K Rb Cs 

DP = 5 398.82 398.82 407.71 414.40 423.29 

Different 
398.05 397.33 406.34 413.91 422.71 

397.46 398.28 406.17 413.52 420.59 

      
 

Li Na K Rb Cs 

DP = 6 427.80 432.31 434.49 441.19 447.88 

Different 
424.87 430.28 433.20 439.62 447.73 

425.99 431.78 434.22 439.82 445.73 

      
 

Li Na K Rb Cs 

DP = 7 450.21 459.09 461.28 463.60 465.79 

Same 
446.80 457.15 457.64 460.59 422.71 

447.06 458.20 458.39 460.01 460.74 

      
 

Li Na K Rb Cs 

DP = 8 463.60 470.30 476.99 476.99 479.18 

Same 
459.45 468.17 471.68 474.04 447.73 

459.27 468.31 471.79 474.01 473.26 

      
 

Li Na K Rb Cs 

DP = 9 481.37 483.69 490.39 492.57 494.76 

Same 
476.37 482.79 486.69 489.47 463.84 

477.17 481.92 485.42 488.50 488.25 

      
 

Li Na K Rb Cs 

DP = 10 501.46 503.78 508.15 510.47 514.85 

Same 
499.01 502.85 505.33 509.33 475.79 

499.28 502.80 505.45 508.13 508.48 

      
 

Li Na K Rb Cs 

DP = 11 526.05 526.05 530.56 532.75 534.94 

Same 
522.41 527.40 529.67 531.92 491.88 

523.60 525.85 527.90 530.86 531.74 

      
 

Li Na K Rb Cs 

DP = 12 548.33 548.33 552.84 555.03 557.35 

Same 
546.06 551.72 551.67 554.97 512.80 

547.52 548.05 551.10 553.55 554.57 

 

Figure E.7. Raw CCS data and results from ANOVA statistical analysis of +2 species. CCS 

values of all three experimental trials for charge state trend +2 PBA species are shown above (DP 

= 5 – 12). Significantly different CCS values among alkali metal cations (Li, Na, K, Rb, and Cs) 

are show in blue, significantly similar CCS values are illustrated in green. 
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E.8. Raw Data for Charge State +2 

 

 
Li Na K Rb Cs 

DP = 13 570.74 570.74 575.11 577.44 579.62 

Same 
567.08 575.00 575.49 578.59 534.86 

570.17 572.03 573.46 575.88 577.70 

      
 

Li Na K Rb Cs 

DP = 14 593.02 595.20 597.53 597.53 599.71 

Same 
589.39 595.69 597.96 600.54 558.26 

591.17 595.01 604.77 598.18 605.06 

      
 

Li Na K Rb Cs 

DP = 15 615.43 613.11 619.80 619.80 624.31 

Same 
611.18 617.30 619.85 622.63 579.93 

614.67 616.41 626.43 620.17 522.35 

      
 

Li Na K Rb Cs 

DP = 16 637.71 635.52 639.89 639.89 642.21 

Same 
632.59 639.40 639.82 642.12 600.58 

636.25 637.84 638.56 642.09 648.46 

      
 

Li Na K Rb Cs 

DP = 17 659.98 653.28 659.98 664.49 659.98 

Same 
655.87 656.52 662.60 664.34 622.98 

655.83 659.01 660.72 662.88 665.09 

      
 

Li Na K Rb Cs 

DP = 18 680.07 677.88 682.39 682.39 682.39 

Same 
677.22 677.80 681.52 684.87 640.03 

679.14 676.95 679.87 683.68 685.62 

      
 

Li Na K Rb Cs 

DP = 19 700.16 693.46 700.16 702.48 702.48 

Same 
696.77 697.63 700.22 701.67 661.07 

695.10 696.52 699.75 702.24 705.44 

      
 

Li Na K Rb Cs 

DP = 20 718.06 718.06 722.57 720.25 718.06 

Same 
715.30 718.05 720.49 720.51 679.62 

720.13 718.25 719.49 721.67 722.01 

      
 

Li Na K Rb Cs 

DP = 21 738.15 740.34 742.66 742.66 740.34 

Same 
734.36 735.11 739.86 740.45 701.75 

737.21 735.62 738.86 740.90 740.58 

      
 

Li Na K Rb Cs 

DP = 22 756.05 756.05 756.05 758.24 762.75 

Same 
751.00 754.70 755.19 757.91 719.14 

753.75 754.67 757.59 758.04 757.22 

      
 

Li Na K Rb Cs 

DP = 23 773.82 776.14 778.33 780.51 780.51 

Same 
771.68 771.98 775.85 775.25 734.03 

784.34 774.49 775.83 777.98 778.54 

 

Figure E.8. Raw CCS data and results from ANOVA statistical analysis of +2 species. CCS 

values of all three experimental trials for charge state trend +2 PBA species are shown above (DP 

= 13 – 23). Significantly different CCS values among alkali metal cations (Li, Na, K, Rb, and Cs) 

are show in blue, significantly similar CCS values are illustrated in green. 
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E.9. Raw Data for Charge State +3  

 

 

Data for Charge State +3 

 
Li Na K Rb Cs 

DP = 9 676.14 665.84 672.78 681.01 690.013 

Different 
679.69 669.83 674.60 682.93 694.65 

682.12 673.26 683.07 683.06 691.42 

      
 

Li Na K Rb Cs 

DP = 10 717.33 703.67 710.60 722.60 727.62 

Different 
719.80 710.62 712.90 720.43 731.57 

720.58 714.26 716.84 719.61 727.21 

      
 

Li Na K Rb Cs 

DP = 11 755.15 748.22 751.79 758.60 762.09 

Different 
755.25 752.70 752.26 757.16 765.41 

757.34 756.97 751.77 755.58 760.63 

      
 

Li Na K Rb Cs 

DP = 12 782.68 782.68 786.04 790.8 792.98 

Different 
779.88 788.51 786.02 788.73 793.58 

782.58 789.88 784.18 787.58 789.06 

      
 

Li Na K Rb Cs 

DP = 13 789.40 806.64 813.57 813.80 813.57 

Different 
788.55 812.62 811.43 813.04 814.66 

791.65 807.82 808.10 812.03 810.12 

      
 

Li Na K Rb Cs 

DP = 14 789.40 810.00 820.30 823.20 823.87 

Different 
786.30 814.62 818.12 821.95 824.28 

788.45 808.37 816.56 820.35 819.81 

      
 

Li Na K Rb Cs 

DP = 15 792.98 806.64 820.30 821.50 823.87 

Different 
788.98 810.38 815.14 821.72 823.55 

790.06 806.72 811.76 819.63 819.32 

      
 

Li Na K Rb Cs 

DP = 16 792.98 806.64 816.93 818.10 823.87 

Different 
787.13 809.92 810.79 817.87 819.20 

789.36 804.35 809.42 814.90 815.45 

 

Figure E.9. Raw CCS data and results from ANOVA statistical analysis of +3 species. CCS 

values of all three experimental trials for charge state trend +3 PBA species are shown above (DP 

= 9 – 16). Significantly different CCS values among alkali metal cations (Li, Na, K, Rb, and Cs) 

are show in blue, significantly similar CCS values are illustrated in green. 
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E.10. Raw Data for Charge State +3  

 

 

 
Li Na K Rb Cs 

DP = 17 782.68 799.70 803.27 803.30 810.00 

Different 
771.41 796.10 797.19 802.92 801.49 

776.47 792.24 795.63 799.89 799.66 

      
 

Li Na K Rb Cs 

DP = 18 765.45 779.11 786.04 781.40 786.04 

Different 
754.62 776.06 776.32 779.61 778.23 

759.37 772.24 773.49 777.54 776.00 

      
 

Li Na K Rb Cs 

DP = 19 765.45 768.81 775.75 774.30 779.11 

Different 
754.51 770.63 765.98 771.51 772.95 

759.40 765.53 766.40 770.15 769.83 

      
 

Li Na K Rb Cs 

DP = 20 772.38 775.75 782.68 781.20 786.04 

Different 
761.93 779.63 775.22 780.41 784.21 

767.74 773.06 772.41 777.99 778.19 

      
 

Li Na K Rb Cs 

DP = 21 786.04 792.98 796.34 793.80 803.27 

Different 
777.86 795.28 789.68 793.25 796.03 

783.97 786.40 786.87 791.53 800.57 

      
 

Li Na K Rb Cs 

DP = 22 803.27 803.27 810.00 809.80 810.00 

Different 
799.26 808.16 805.46 810.55 815.31 

799.31 802.75 817.72 807.89 816.42 

      
 

Li Na K Rb Cs 

DP = 23 816.93 820.30 820.30 827.30 830.59 

Different 
806.07 825.27 822.97 825.98 830.62 

817.81 818.97 827.90 824.88 826.55 

      
 

Li Na K Rb Cs 

n=24 837.53 834.16 844.46 845.00 840.89 

Different 
828.46 842.63 839.865 843.37 840.89 

835.16 836.02 837.46 842.35 840.89 

      
 

Li Na K Rb Cs 

DP = 25 854.76 854.76 861.48 862.80 861.48 

Different 
845.36 858.25 857.70 861.71 861.48 

853.91 853.07 856.77 859.72 861.48 

 

Figure E.10. Raw CCS data and results from ANOVA statistical analysis of +3 species. CCS 

values of all three experimental trials for charge state trend +3 PBA species are shown above (DP 

= 17 – 25). Significantly different CCS values among alkali metal cations (Li, Na, K, Rb, and Cs) 

are show in blue, significantly similar CCS values are illustrated in green. 
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E.11. Raw Data for Charge State +3 (without Li) 

 

 

 

 
Na K Rb Cs 

DP = 10 703.67 710.60 722.60 727.62 

Different 
710.62 712.90 720.43 731.57 

714.26 716.84 719.61 727.21 

     
 

Na K Rb Cs 

DP = 11 748.22 751.79 758.60 762.09 

Different 
752.70 752.26 757.16 765.41 

756.97 751.77 755.58 760.63 

     
 

Na K Rb Cs 

DP = 12 782.68 786.04 790.80 792.98 

Same 
788.51 786.02 788.73 793.58 

789.88 784.18 787.58 789.06 

     
 

Na K Rb Cs 

DP = 13 806.64 813.57 813.80 813.57 

Same 
812.62 811.43 813.04 814.66 

807.82 808.10 812.03 810.12 

     
 

Na K Rb Cs 

DP= 14 810.00 820.30 823.20 823.87 

Different 
814.62 818.12 821.95 824.28 

808.37 816.56 820.35 819.81 

     
 

Na K Rb Cs 

DP = 15 806.64 820.30 821.50 823.87 

Different 
810.38 815.14 821.72 823.55 

806.72 811.76 819.63 819.32 

     
 

Na K Rb Cs 

DP = 16 806.64 816.93 818.10 823.87 

Different 
809.92 810.79 817.87 819.20 

804.35 809.42 814.90 815.45 

     
 

Na K Rb Cs 

DP = 17 799.70 803.27 803.30 810.00 

Same 
796.10 797.19 802.92 801.49 

792.245 795.63 799.89 799.66 

 

Figure E.11. Raw CCS data and results from ANOVA statistical analysis of +3 species (without 

Lithium). CCS values of all three experimental trials for charge state trend +3 PBA species are 

shown above (DP = 9 – 16). Significantly different CCS values among alkali metal cations (Na, 

K, Rb, and Cs) are show in blue, significantly similar CCS values are illustrated in green. 
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E.12. Raw Data for Charge State +3 (without Li) 

 

 

 

 

 
Na K Rb Cs 

n=18 779.11 786.04 781.40 786.04 

Same 
776.06 776.32 779.61 778.23 

772.24 773.49 777.54 776.00 

     
 

Na K Rb Cs 

n=19 768.81 775.75 774.30 779.11 

Same 
770.63 765.98 771.51 772.95 

765.53 766.40 770.15 769.83 

     
 

Na K Rb Cs 

n=20 775.75 782.68 781.20 786.04 

Same 
779.63 775.22 780.41 784.21 

773.06 772.41 777.99 778.19 

     
 

Na K Rb Cs 

n=21 792.98 796.34 793.80 803.27 

Same 
795.28 789.68 793.25 796.03 

786.40 786.87 791.53 800.57 

     
 

Na K Rb Cs 

n=22 803.27 810.00 809.80 810.00 

Same 
808.16 805.46 810.55 815.31 

802.75 817.72 807.89 816.42 

     
 

Na K Rb Cs 

n=23 820.30 820.30 827.30 830.59 

Same 
825.27 822.97 825.98 830.62 

818.97 827.90 824.88 826.55 

     
 

Na K Rb Cs 

n=24 834.16 844.46 845.00 840.89 

Same 
842.63 839.86 843.37 840.89 

836.02 837.46 842.35 840.89 

     
 

Na K Rb Cs 

n=25 854.76 861.48 862.80 861.48 

Different 
858.25 857.70 861.71 861.48 

853.07 856.77 859.72 861.48 

 

Figure E.12. Raw CCS data and results from ANOVA statistical analysis of +3 species. CCS 

values of all three experimental trials for charge state trend +3 PBA species are shown above (DP 

= 17 – 25). Significantly different CCS values among alkali metal cations (Na, K, Rb, and Cs) are 

show in blue, significantly similar CCS values are illustrated in green. 
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E.13. IM-MS Plot of DP = 1 

 

 

 

 

 
Figure E.13. IM-MS spectra from tandem MS experiments conducted on DP = 1 [M+Li]

+
 

species. Each spectrum represents results observed from different CID collision energies from 0 

V (top panel) to 40 V (bottom panel). 
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E.14. Fragment Ion Structures for DP = 1 

 

 

 

 

 

 

 

 
 

Figure E.14. Possible fragment ion structures for DP = 1 [M+Li]
+
 species. In the above example, 

it is not implied that Li is covalently bonded to the “O or CO” groups. This illustration proposed 

the bonding of the Li cation to the fragment ion to allow the exact mass to be calculated. The 

exact mass represents the [M+Li]
+
 species, illustrated above. 
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E.15. IM-MS Plot of DP = 1 

 

 

 
 

Figure E.15. IM-MS spectra from tandem MS experiments conducted on DP = 1 (a) [M+Na]
+
 

and (b) [M+K]
+
 species. Each spectrum represents results observed from different CID collision 

energies from (a) 0 V – 30 V and (b) 0 V – 20 V. 
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E.16. IM-MS Plot of DP = 1 

 

 

 
 

Figure E.16. IM-MS spectra from tandem MS experiments conducted on DP = 1 (a) [M+Rb]
+
 

and (b) [M+Cs]
+
 species. Each spectrum represents results observed from different CID collision 

energies from (a) 0 V – 20 V and (b) 0 V – 40 V. 
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E.17. MS/MS Example of 1,5 H-shift and 1,3 H-shift 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure E.17. Tandem MS data of DP = 5 for (a) [M+Li]
+
 and (b) [M+Na]

+
species at 80 Vpp. An 

example of fragment ions that were observed to result from 1,5 H-shift and 1,3 H-shift are 

outlined.  
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E.18. Fragment Ion Table 

 

 

 

 

 

 

 

 

 
 

Figure E.18. Fragment ions (m/z) and their mechanistic pathways observed for both PBA-Li and 

PBA-Na are listed. 
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E.19. IM-MS Plot of DP = 5 

 

 

 

 

 
 

Figure E.19. IM-MS spectra from tandem MS experiments conducted on DP = 5 (a) [M+K]
+
 and 

(b) [M+Rb]
+
 species. Each spectrum represents results observed from different CID collision 

energies from (a) 0 V – 80 V and (b) 0 V – 70 V. 
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E.20. IM-MS Plot of DP = 5 

 

 

 

 

 

 

 

 
 

Figure E.20. IM-MS spectra from tandem MS experiments conducted on DP = 5 [M+Cs]
+
 

species. Each spectrum represents results observed from different CID collision energies from 0 

V – 50 V. 

 
 

 

 



 347 

CURRICULUM VITAE  

 

Tiffany M. Crescentini 

 

EDUCATION 
Vanderbilt University (2014-2019), Nashville TN 

Doctorate of Philosophy, Chemistry             
  Cumulative GPA   3.02/4.00 

 Chemistry GPA     3.13/4.00  
 

Waynesburg University (2010-2014), Waynesburg PA  

 B.S. Pre-Medical Chemistry, GPA 3.38/4.00 

          

SUMMARY 
I am a business woman in a chemists body – self-motivating, a problem-solver, proficient at leading in-and-

out of laboratory settings, a passionate teacher, I embrace and encourage tailoring communication to the 

listener, team player, and driven to help others succeed to reach their goals.  

 

RELEVANT EXPERIENCE 
Department of Chemistry – Vanderbilt University, Nashville TN   

Graduate Research Assistant (2014-Present) 

 Synthesis – protecting group stepwise synthesis for assembling specific polyester (polybutylene 

adipate) oligomers. Urethane synthesis experience with 4,4-MDI and short chain polyols. 

 Analytical Characterization – development of analytical methods for characterizing hard and soft 

segment PU starting material and short chain PU oligomers. MS techniques are used to investigate 

bond formation and fragmentation pathways.  

 

SyBBURE – Vanderbilt University, Nashville TN 

Summer Internship and Beyond (2013-2015) 

 Developed microfluidic systems that desalt samples for online MS characterization. 

 Characterized PDMS devices (organ-on-a-chip) for leaching of unreactive starting materials using 

various solvent systems. 

 Tested absorption parameters of drug compounds with varying chemical properties.  

 Experience with AutoCAD, COMSOL, microfabrication, photolithography 

 

Technical Skills  

 MS, IM-MS, IM-MS/MS ESI, MALDI, HPLC, GC, NMR (1D and 2D), FT-IR, UV-VIS, sample 

preparation, analytical method development, chromatography method development. 

 Mass spectrometer training – Thermo Q Exactive hybrid Quadrupole-Orbitrap MS, Agilent 6560 

IM-QTOF, Waters G2 Synapt 

 

Teaching Experience  

 General Chemistry I and II (2014-2015, 2018), Organic Chemistry I (2018), Analytical 

Chemistry (2016), Senior Capstone Independent Research Course (2017) 
 

LEADERSHIP EXPERIENCE 
 Salud Cooking School, Whole Foods, Prep-Team Lead Volunteer, 2014-Present 

 Rocky Mountain Independent Gymnastic Trampoline Camp, Assistant Coach 2015-2016 

 Cross Country and Track and Field Varsity Athlete 2010-2013, Waynesburg University, Team 

Captain 2012 (Cross Country) 

 NCAA DIII Regional Qualifier, Cross Country, Waynesburg University 2010-2012 

 Nike XC Midwest Regionals Woodridge High School 2009 

 



 348 

AWARDS AND FELLOWSHIPS 
 ASPIRE Module: Technology Commercialization, Technology Transfer - Vanderbilt University, 

2017 

 ASPIRE Module: Entrepreneurship and Intellectual Property - Vanderbilt University, 2017 

 CIRTL Evidence Based Teaching Workshop - Vanderbilt University, 2017 

 Certificate in College Teaching - Vanderbilt University, 2016 
 GAANN Fellowship - Vanderbilt University, 2014-2016 

 TELOS Leadership Conference - Waynesburg University, 2012 

 Leadership Scholar - Waynesburg University, 2010-2014 

 

JOURNAL PUBLICATION 
Crescentini T.M., May J.C., McLean J.M. and Hercules D.M., Polyurethane Hard and Soft Segments – 

Mass Spectrometry Review. 2019. (Manuscript in Preparation.) 

 

Crescentini T.M., May J.C., McLean J.M. and Hercules D.M., Alkali Metal Cation Adduct Effect on 

Polybutylene Adipate Oligomers: Ion Mobility-Mass Spectrometry. (Submitted Elsevier Polymer 2019). 

 

Tomlinson, I.D., Kovtun O., Crescentini T.M. and Rosenthal S.J. Biotinylated-Spiperone Ligands for 

Quantum Dot Labeling of the Dopamine D2 Receptor in Live Cell Cultures. (Submitted to Bioorganic & 

Medicinal Chemistry Letters, 2018). 

 

Crescentini, T.M.*, Stow, S.M.*, Forsythe, J.G., May, J.C., McLean, J.A. and Hercules, D.M. Structural 

Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry and Tandem 

Mass Spectrometry: IV. 3-Ring and 4-Ring Isomers. Analytical Chemistry, 2018. *Authors contributed 

equally. 

 

Stow, S.M.*, Crescentini, T.M.*, Forsythe, J.G., May, J.C., McLean, J.A. and Hercules, D.M. Structural 

Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass 

Spectrometry, and Computational Strategies. 3. MALDI Spectra of 2-Ring Isomers. Analytical 

Chemistry, 2017, 18, 9900-9910. *Authors contributed equally. 

 

Stow, S.M.*, Onifer, T.M.*, Forsythe, J.G.*, Nefzger, H., Kwiecien, N.W., May, J.C., McLean, J.A. and 

Hercules, D.M. Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass 

Spectrometry, Tandem Mass Spectrometry, and Computational Strategies. 2. Electrospray Spectra of 3-

Ring and 4-Ring Isomers. Analytical Chemistry, 2015, 12, 6288-6296. *Authors contributed equally. 

 

CONFERENCE PRESENTATIONS 
Tiffany M. Crescentini; Jody C. May; John A. McLean; David M. Hercules, Group I Metal Cation 

Adduct Effects on Polyester Oligomers: Ion Mobility – Mass Spectrometry, ASMS Conference San 

Diego CA (May 2018). POSTER 

 

Tiffany M. Crescentini, Multifaceted Approach to Characterizing Polyurethane Block Co-Polymers, 

Vanderbilt University Chemistry Forum Series Nashville, TN (March 2017). ORAL PRESENTATION  

 

Tiffany M. Crescentini; Sarah M. Stow; Robert W. Davis; Gary Sulikowski; David M. Hercules; John 

A. McLean, Single Oligomer Polyurethane Synthesis: Characterization by Ion Mobility-Mass 

Spectrometry and Computational Strategies, ASMS Conference San Antonio, TX (June 2016). POSTER 

 

Tiffany M. Crescentini; Sarah M. Stow; Jay Forsythe; David M. Hercules; John A. McLean, Structural 

Characterization of Isomeric Polymer Precursors by Electrospray Ion Mobility-Mass Spectrometry and 

Computational Strategies, ASMS Conference St Louis, MO (June 2015). POSTER 

 



 349 

Tiffany Onifer; Sarah Stow; Jay Forsythe; David Hercules; and John McLean, Structural 

Characterization of Polyurethane Precursors: Methylenedianiline Trimer and Tetramers, PITTCON 

Conference Chicago, IL (August 2014). POSTER 

 

 

AFFILIATIONS 

American Society for Mass Spectrometry (ASMS) – member since 2014 – present 

American Chemical Society (ACS) – member since 2010 – present 

Society of Analytical Chemists of Pittsburgh (SACP) – member since 2010 – present  


