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CHAPTER I 

BACKGROUND AND RESEARCH OBJECTIVES 

Introduction  

The immune system is a complex network of cells spread throughout the body, spanning 

dozens of tissue types and locations. This network, functioning as individual cells and larger 

populations, protects the host from both external attack and internal mutiny of host cells that 

transform and become cancerous. T cells are a critical component of the immune response 

against cancer. Their generation, activation, and induction of effector function is an elegant, multi-

step cycle that requires numerous cellular and molecular components (1). The immune system 

plays a major role in melanoma pathogenesis and understanding the interaction of the immune 

system with melanoma cells has paved the way for tumor immunology. 

For decades, researchers have known that patients with melanoma generate an anti-

tumor T cell response, evidenced by the existence of melanoma-antigen specific CD8 and CD4 

T cells (2, 3). The presence of activated, memory T cells in the blood, lymph node, and tumors of 

patients with melanoma suggests that an anti-tumor T cell response has been generated, and yet 

tumors persist (4). This understanding that the human immune system mounted a response to 

the tumor resulted in the development of therapies, like vaccination and interleukins, designed to 

harness the immune system to better attack the tumor. However, these therapies resulted in 

meager response rates (5). In the early 1990’s, immune checkpoint molecule cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) was shown to attenuate T cell activity (6). The 

discovery of CTLA-4 and other immune checkpoints led to a new wave of melanoma therapeutics, 

known as immunotherapy. In 2011, a monoclonal antibody designed to block CTLA-4 became 

one of the first treatments to improve survival of late stage melanoma patients in decades (7). At 
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the beginning of this body of work, multiple monoclonal antibodies designed to block programmed 

cell death protein 1 (PD-1) was still in clinical trials (8). 

Despite the success of immunotherapy in melanoma, it is still not known why some 

patients respond while others do not. Additionally, it is not known how immunotherapy impacts 

the immune system, as a whole, since immune checkpoints feature prominently at multiple key 

steps in the immune cycle (1). Compounding these unanswered questions is the complex, 

temporal nature of the anti-tumor immune response. A complete understanding of a systemic 

immune response, like those required for the regression of a melanoma tumor, requires the ability 

to monitor not only individual cellular populations with various phenotypes and functional states, 

but also the immune network as a whole. Furthermore, traditional, reductionist approaches that 

focus on one cell type or one protein of interest over look cells of unusual or unexpected 

phenotype.  

High dimensional, systems immune monitoring is needed to fully understand the function 

and effects of immunotherapy. A high dimensional, single cell approach is needed in order to 

appropriately monitor and dissect the anti-cancer immune response. Recently, a new flow 

cytometry technique, known as mass cytometry, has been developed. Using monoclonal 

antibodies tagged with isotopically pure metals, mass cytometry allows for the simultaneous 

measurement of over 45 different parameters. This facilitates the characterization and 

quantification of numerous cell populations, phenotypes, and functional states within one sample 

(9). However, with this advance in bench science comes an unmet need for computational tools 

to analyze the resulting high dimensional data (10). Traditional bi-axial plots, used by 

immunologists for decades, become cumbersome and inefficient and fail to capture the complex 

multi-dimensional nature of mass cytometry data. 
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 The combination of mass cytometry, computational analysis, and primary patient samples 

is needed to understand the clinical impact of immunotherapy in melanoma patients. Thus, the 

goal of this work is to develop a systems immune monitoring approach in order to dissect the 

mechanisms of immunotherapy in patients with melanoma (Figure 1.1).  

 

 

T cell Development and Function 

Generation of the T cell receptor  

T cells are derived from multipotent hematopoietic stem cells (HSCs) which originate in 

the bone marrow. HSCs give rise multipotent progenitors (MPPs) before differentiating into 

common lymphoid progenitor (CLPs). CLPs that traffic from the bone marrow, through the 

bloodstream, to the thymus are poised to become T cells (11). Once in the thymus, CLPs interact 

with thymic epithelial cells, resulting in canonical Notch 1 signaling, committing these early thymic 

immigrant to the T cell lineage (12). Mature T cells are defined by expression of the T cell receptor 

Figure 1.1. Systems immune monitoring in cancer therapy. The goal of this work is dissect response 
to immunotherapy using high dimensional, single cell biology and novel computational tools. 1) 
Acquisition of high quality tissue samples pre- and post-treatment is a critical element of human immune 
monitoring.  Following processing into single cell suspension, and typically cryopreserved as aliquot.  2) 
Next, single cells must be detected using a quantitative technique. Critical to the analysis are software 
tools that cope with high dimensional data and provide human-readable single cell views.  3) Finally, 
statistical models are derived that correlate cell subsets and biomarkers with clinical outcomes.  This 
information can be used to develop new mechanistic models of cell to cell interactions and the impact of 
treatment on signaling networks within and between cells.   
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(TCR), a genetically rearranged antigen receptor composed of an α-chain and β-chain that binds 

to peptide fragments presented by major histocompatibility complex (MHC) molecules. The 

stages of T cell development correlate with the generation of the TCR, a process which involves 

somatic rearrangement of the variable (V), diversity (D), and joining (J) gene segments. In addition 

to lacking the TCR, the initial thymocytes lack expression of either T cell co-receptor CD4 or CD8 

and are thus termed double negative (DN) thymocytes (13). 

Thymocytes progress through four double negative stages, generating a functional TCR 

β-chain (14, 15). To generate a functional β-chain, thymocytes undergo recombination of the 

germline encoded V, D, and J segments by recombination activating genes (RAG) (16). If this β-

chain is functional, it is able to pair with an invariant pre-TCR α-chain and CD3 molecule which is 

a functional pre-TCR that can traffic to the cell surface and transmit signals (17). After generation 

of a functional pre-TCR, thymocytes now enter the double positive (DP) phase, so called because 

of their dual expression of both co-receptors CD4 and CD8 (15, 18). The main focus of the DP 

phase is rearrangement of the TCR α-chain and production of a mature TCR complex. Like the 

β-chain, the α-chain undergoes rearrangement of the V and J loci; however, unlike the β-chain, 

there is no D segment. Once an α-chain is produced, it is paired with a β-chain, forming a TCR. 

Low levels of the TCR are expressed on the surface of the thymocyte, along with both CD4 and 

CD8. Thymocytes are now entering an antigen-dependent phase of maturation (15). 

After producing a mature TCR, DP thymocytes migrate deeper into the thymus to undergo 

positive selection (19). A key feature of the TCR is the ability to recognize and bind to MHC 

containing a peptide fragment. Without this feature, T cells would not be able to identify and kill 

their targets. In order to survive positive selection, the TCR of DP thymocytes must bind, with 

appropriate strength, to MHC I or MHC II molecules (20). Thymocytes that bind too weakly or too 

strongly will die. It is during positive selection that DP thymocytes downregulate one co-receptor 

and become single positive (SP). If a survival signal is conferred through MHC I, the thymocyte 
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becomes CD8 single positive. Conversely, a survival signal given through MHC II results in CD4 

single positive thymocytes (19). 

 Mature T cells are a potent effector cell with a great killing capacity. In order to prevent 

massive organism-wide destruction, thymocytes undergo a rigorous selection process to prevent 

the release of self-antigen-specific T cells into the periphery. In order to prevent wide-spread 

autoimmunity, SP thymocytes must also undergo negative selection (20). Thymocytes that bind 

with a strong affinity to MHC:self-peptide complex expressed in the thymus die by undergoing 

apoptosis (19). The outcome of thymocyte development and selection is a repertoire of mature T 

cells that recognize self MHC but are tolerant of MHC molecules presenting self-antigen peptides. 

Critically, mature T cells now proliferate in response to a strong TCR stimulus, as opposed to the 

thymocytes for whom a strong TCR stimulus results in apoptosis. Mature T cells then leave the 

thymus and traffic through the blood stream to peripheral lymphoid organs like the spleen and 

lymph nodes. 

Antigen-specific T cell response  

Generation of an antigen-specific T cell response requires precise orchestration of multiple 

cell types across multiple anatomical sites (21) (Figure 1.2). Antigen must first be processed and 

presented by antigen presenting cells (APCs) that then traffic to lymphoid tissues. These APCs 

must then attract naïve T cells from the blood into the lymphoid tissue (22). Here APCs and T 

cells with cognate MHC:peptide and TCR, respectively, must interact through multiple cell surface 

proteins in an inflammatory environment (23). Once T cells are primed and activated they must 

traffic to the site of infection where they migrate into the tissue and locate cells expressing cognate 

MHC:peptide. After engaging the TCR, the effector functions of the T cells are released and the 

target cell is killed (21). 
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Mature, naïve T cells travel through the blood and lymphatic system, entering into the 

lymphoid tissues where they come into contact with professional APCs, like dendritic cells (DCs). 

Migration from the blood stream to lymphoid tissues is orchestrated through chemokines (22). 

Chemokines, or chemotactic cytokines, are proteins secreted by cells that direct the migration of 

nearby cells with the appropriate receptors (24, 25). For example, lymph node resident DCs 

secrete C-C motif ligand 19 (CCL19) which binds receptor C-C chemokine receptor type 7 

(CCR7), expressed by naïve T cells, attracting them to the lymph node (26, 27). Once T cells 

have migrated to the lymphoid tissue, they exit the blood stream and enter the tissue in a manner 

directed by cell:cell interactions (28). Selectins, like CD62L expressed on T cells binds to 

receptors on epithelial cells and initiate a signaling cascade that results in T cell extravasation 

into the lymphoid tissue (29).  

Once inside the lymphoid tissue, T cells use their TCRs to sample MHC:peptide 

complexes presented on the surface of APCs. Adhesion molecules like lymphocyte function-

associated antigen 1 (LFA-1) on T cells facilitate binding to APCs that express receptors, such as 

intracellular adhesion molecule 1 (ICAM-1) (30). This transient binding allows naïve T cells to 

sample a large number of MHC:peptide complexes as they travel through lymphoid organs. If a T 

cell recognizes its antigen, signaling through the TCR strengthens these transient binding 

interactions (31, 32). Those that do not come into contact with their cognate MHC:peptide 

complex travel through the tissue and reenter the blood stream. For those that come into contact 

with their antigen, multiple conditions must be met for productive priming and activation. The 

interaction of naïve T cells with mature, activated APCs in lymphoid organs is required for T cell 

activation and priming. T cells must receive three separate and distinct signals from their APC 

partner (33). The first of which is the signal sent through the TCR by the MHC:peptide complex. 

In addition to this signal, T cells must also receive a costimulation through tumor necrosis factor 

(TNF) family member, CD28 (34). B7 family members, expressed on activated APCs, bind to 
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CD28 on the surface of T cells and activate PI3K signaling (35). Importantly, upon activation, T 

cells upregulate CTLA-4 onto their surface. CTLA-4 binds with much higher affinity to B7 family 

members, out competing CD28 and preventing additional T cell activation (36). This makes 

already activated T cells less sensitive to antigens presented by APCs and limits the T cell 

response. The third and final signal required for productive T cell activation is provided in the form 

of cytokines (37, 38). If T cells receive all appropriate signals during activation, they undergo a 

period of rapid proliferation in the presence of IL-2 (39).   

Although most self-reactive T cells are abolished during selection in the thymus, some 

escape to the periphery (33). T cells that react to self-antigens in the periphery either undergo 

peripheral tolerance or escape, remaining self-reactive. Peripheral tolerance and subsequent 

anergy arise when naïve T cells encounter MHC:peptide but don’t receive a co-stimulation (40, 

41). Co-stimulation from APCs is stronger in peripheral, non-lymphoid tissues or when the APCs 

have yet to be activated (42). If this occurs, these T cells are clonally deleted through activation-

induced cell death or are rendered anergic. 

There is a wide range of effector T cells, each with an important role in human health. 

Broadly, effector T cells fall into one of two categories defined by expression of their co-receptor, 

CD8 or CD4 (33). Effector T cells expressing CD8 are known as cytotoxic T cells (CTLs). CTLs 

function by killing target cells, often those infected by an intracellular pathogen or cells that have 

transformed and become malignant. In order to kill their target, CTLs release toxins perforin and 

granzymes (43). As the name indicates, perforin creates pores on the target cell and allows for 

the passage of granzymes (44). Granzymes, serine proteases, initiate programmed cell death, or 

apoptosis, by activating the caspase cascades (45). In addition to secreting cytotoxic granules, 

CTLs can also induce apoptosis in their target through binding of surface protein FAS ligand 

(CD95L) to protein Fas on the target cell (46). 



8 

 

 

 

Figure 1.2. Generation, execution, and suppression of antigen specific T cell response. An antigen 
specific T cell response is needed for the clearance of external pathogens, like viruses and bacteria, and 
for transformed cells. The generation of immunity is a cyclical process with seven major stages. At each 
stage, factors promote a protective T cell response (green) or inhibit the immune response (red). Briefly, 
antigens are released from infected or transformed host cells (1), which are picked up and presented by 
antigen presenting cells (2). These antigen presenting cells traffic to the lymph node where they activate 
naïve T cells (3). After activation, T cell traffic through the blood and lymph following a chemical gradient 
(4) and enter into the area of inflammation (5). Once inside the inflamed tissue or tumor, T cells then 
recognize their target using their TCR (6) and exert their effector functions in order to promote cell death 
and begin the cycle again (7).            Adapted from Chen, et al. Immunity 2013 
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In contrast to CD8 T cells, CD4 T cells differentiate into a multitude of effector subsets 

depending on the cytokine milieu present during activation (33). Type 1 helper T cells (TH1 cells) 

are induced by IL-12 and IFNγ and go on to secrete IFNγ, activating macrophages to destroy 

intracellular pathogens (47, 48). The presence of IL-4 during activation results in generation TH2 

cells. This flavor of helper T cell produces anti-inflammatory cytokines like IL-4, are responsible 

for clearing parasitic infections, and are key players in the humoral immune response (47, 49). T 

follicular helper (TFH) cells are also crucial for strong humoral immune response. They are located 

in the B-cell follicles of lymph nodes and secrete IL-21 to activate B cells to produce 

immunoglobulins of the G subclass (IgG) (50). TH17, TH22, and TH9 cells are named after their 

effector cytokine (e.g. TH17 are so named because they secrete IL-17) and are responsible for 

neutrophil recruitment, mucosal immune response, and humoral immunity respectively (51-53). 

Finally, induced T regulatory (Treg) cells are marked by their expression of transcription factor 

FoxP3 and cell-surface proteins CD25 and CD4. Although highly heterogeneous, Tregs as a 

subpopulation of T cells are known to regulate the immune response, maintain tolerance, and 

prevent autoimmune disease (54). 

In order for effector T cells to exert their effector function, they must first recognize their 

target and convey this message through the TCR. The TCR, comprised of the alpha and beta 

chain discussed earlier, is not sufficient to transmit signal from the immune synapse to the nucleus 

(55). Instead, it is a part of the TCR complex, together with CD3γ, CD3δ, CD3ε, and intracellular 

signaling domains CD3ζ (56). The first requirement of TCR signaling is recognition of cognate 

MHC:peptide. Binding of the TCR to its MHC:peptide initiated phosphorylation of the 

immunoreceptor tyrosine-based activation motifs (ITAMs) in the CD3 accessory proteins (57). 

This signaling is initiated by binding of CD4 or CD8 binding to cognate MHC. Src family kinase 

LCK is constitutively associates with CD4/ CD8 and phosphorylate the CD3 complex (58). After 

phosphorylation of CD3, SYK family member, ZAP-70, associates with the phosphorylated CD3ζ 
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through its SH2 domains to carry on the signal (59). After recruitment to the CD3 complex, ZAP-

70 targets adaptor proteins LAT and SLP-76 (60, 61). SLP-76 binds adapter protein GADS and 

PLCγ to continue the phosphorylation cascade (62, 63). Complete activation of PLCγ in naïve T 

cells requires co-stimulation through CD28. Engagement of CD28 results in phosphorylation of 

Itk and subsequent activation of PLCγ (64). From here, the TCR signaling pathway splits into 

three arms, each resulting in the activation of unique transcription factors. In the RAS pathway, 

RAS is recruited by DAG where it is phorsphorylated by PKCθ and RAS, in turn, regulates the 

Map kinase (MAPK) pathway (65). The PKCθ pathway activates the NFkB signaling pathway (66). 

In the third arm, entry of calcium (Ca2+) activates transcription factor NFAT. Signaling through the 

TCR induces activated T cells to proliferate and exert effector functions (Figure 1.3). 

 

Figure 1.3 T cell Receptor Signaling and Inhibition by PD-1. Engagement of the TCR by MHC 

molecules results in a phosphorylation cascade. The binding of PD-1 to its ligands can recruit SHP-1, 

resulting in dephosphorylation of key signaling proteins in the TCR signaling cascade. 
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Chronic antigen stimulation and T cell exhaustion 

The complex development and activation of T cells, as described above, results in a host 

capable of defending itself against “non-self” entities, such as viruses and bacteria. During viral 

infection of an immune-competent host, the virus enters the host and begins to replicate, 

activating the innate immune system through various mechanisms, including (but not limited to) 

expression of pathogen-associated molecular patterns (PAMPs) and down regulation of MHC 

molecules (67). Dendritic cells in the lymph node present viral antigen on MHC II and MHC I to T 

cells. In the presence of appropriate co-stimulation, T cells with cognate TCR for the specific viral 

peptide being presented are activated, clonally expand, and produce effector cells. These effector 

cells secrete proteases and cytokines, capable of killing infected target cells (21). In acute 

infections, viral antigen is cleared and effector cells and inflammatory cytokines recede, returning 

the immune system to its pre-infection, homeostatic state (68). A successful immune response 

also generates long lived memory T cells, capable of persisting without the presence of antigen 

(69). However, not all viral infections are cleared by the immune system. Through a variety of 

immune evasion mechanisms (68, 70), some viruses persist in the host despite a mounted 

immune response. In this case, instead of antigen clearance, the host will experience continuous 

or intermittent antigen exposure. If left unchecked, continuous attack of infected host cells by 

antigen specific T cells would result in severe immunopathology. Resulting immunopathology can 

often be of greater detriment to the host than constant habitation by the virus itself (71). It thus 

becomes necessary for the host to downregulate the inflammatory immune response, reducing 

the ability of CTLs to proliferate and kill their target. This dampening of the immune response 

results in CTLs that are unable to exert effector function in response to chronic antigen stimulation 

and are thus termed “exhausted” (72). T cell exhaustion was first described in 1998 by Rafi 

Ahmed’s group, who showed silencing of suppression of CD8 T cell effector function in mice with 
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chronic lymphocytic choriomeningitis virus (LCMV) (73). It was later shown that chronic antigen 

stimulation is sufficient to induce CD8 T cell exhaustion in mice (74). 

There are several mechanisms by which the immune system regulates itself to prevent 

immunopathology during chronic viral infection, resulting in T cell exhaustion (Figure 1.2). 

Expression of inhibitory surface proteins, anti-inflammatory cytokines, regulatory immune cells, 

and altered antigen presentation by APCs all contribute to suppression of the antigen-specific T 

cell response. Expression of inhibitory surface proteins by T cells is perhaps the most well-known 

mechanism of immunoregulation. PD-1, is a key inhibitory protein that regulates T cell effector 

function, both preventing autoimmunity and promoting exhaustion (75). Mice lacking Pdcd1, the 

gene encoding PD-1, experience low levels of autoimmunity and those mice already predisposed 

to autoimmune disease see acclerated pathology (76, 77). Seminal work by Barber et al. showed 

that PD-1 was upregulated on T cells in mice during chronic LCMV infection and blockade of PD-

1 with antibodies rescued T cell effector function and enhanced viral control, suggesting that PD-

1 played a key role in T cell exhaustion (78). 

The expressin of PD-1 is tightly regulated. Only when T cells are activated through their 

antigen receptors is PD-1 expressed on their cell surface (79). PD-1 has two known ligands, PD-

L1 and PD-L2, expressed on both lymphoid and non-lymphoid cells (80, 81). The binding of PD-

1 to a ligand interfere with the TCR signaling, dampening effector functions usually initiated 

through antigen receptor signaling (75). Upon ligation, the intracellular tyrosine residues that are 

part of the immunoreceptor typrosine-based inhibitory- and switch- motifs (ITIM, ITSM) are 

phosphorylated. These phosphorylation events provide docking sites for two phosphatases, SH2-

domain containing tyrosine phosphatase 1 and 2 (SHP-1 and SHP-2) (82, 83). These 

phosphatases act by inhibiting phosphorylation of CD3ζ and ZAP70, as well as preventing 

activation of PI3K in response to CD28 costimulation (84, 85). It is also thought that PD-1 inhibits 

the RAS pathway, including downstream molecules ERK1 and EKR2 (86) (Figure 1.3). PD-1 isn’t 
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the only inhibitory receptor expressed by activated T cells. CTLA-4, lymphocyte activation gene 

3 protein (Lag3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), and B- and T-

lymphocyte attenuator (BTLA) are just a few of the many inhibitory molecules whose ligation 

dampens the effect of antigen-specific T cells. Each molecule has a unique mechanism of action 

and blockade of multiple pathways simultaneously results in a synergistic recovery of effector 

function (87-90). These inhibitory receptors, along with many others, are heterogenously 

expressed across cell subsets and within different tissue compartments, creating a complex 

environment of lymphocyte regulation (87). Although expansive, inhibitory receptors are not the 

only mechanism of T cell regulation in situations of chronic antigen stimulation. 

Extrinsic factors also contribute to T cell exhaustion. Small proteins, known as cytokines, 

are key factors in T cell exhaustion. Transforming growth factor beta (TGFβ) is a key 

immunoregulatory cytokine. It is produced primarily by certain subsets of T cells and 

macrophages, explored further in the next paragraph, and works by suppressing T cell activation 

and proliferation. Activated TGFβ binds to the TGFβ receptor, inducing a signaling cascade 

through the SMAD pathway, and resulting in SMAD proteins that translocate to the nucleus to 

regulate transcription and inhibit progression into the cell cycle (91, 92). Virus-specific CD8 T cells 

in mice with chronic LCMV displayed increased SMAD2 phosphorylation, pro-apoptotic protein 

Bim, and overall apoptosis. CD8 T cells from mice genetically engineered to have attenuated 

TGFβ signaling were increased in number and functionality compared to those from wild type 

mice (93). TGFβ has also been shown to induce immunosuppression of virus-specific CD8 T cells 

in humans with Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) (94, 95). 

Another cytokine responsible for regulating T cell effector function is interleukin 10 (IL-10). Like 

TGFβ, IL-10 is produced by subsets of monocytes and T cells (96). IL-10 signaling inhibits 

cytokine production and diminishes the ability of APCs to present antigen (97). Antibody blockade 

of IL-10 in mice results in enhanced T cell effector function and concominant viral control (98). As 
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mentioned previously, these inhibitory cytokines are largely produced by subsets of regulatory 

monocytes and T cells. These regulatory cells make up the third mechanism by which exhaustion 

is induced. 

Regulatory T cells (Tregs) are the most well known regulatory cell type. Tregs that control 

antigen-specific T cells are converted in the periphery from naïve CD4 T cells. Canonically, they 

express surface proteins CD4 and CD25 and transcription facter forkhead box p3 (FoxP3), 

although a subset of CD8 expressing CD25+FoxP3+ regulatory cells exist and regulate immune 

function (99, 100). Tregs act suppress activated, effector T cells through the secretion of inhibitory 

cytokines, consumption of growth factors, like IL-2, and induction of apoptosis or cell cycle arrest 

through cell-cell contact (101).  In human patients, suppression of virus-specific T cells by Tregs 

has been demonstrated in many chronic infections, including HIV and HCV (102-104). Cells of 

the myeloid lineage are also able to induce dysfunction in T cells during periods of chronice viral 

stimulation. Myeloid derived suppressor cells (MDSCs) are a heterogenous group of immature 

myeloid cells, first described in a model of mouse lung cancer (105). MDSCs found in humans 

are less well defined than those in mice, but generally classified as CD14+/-CD33+CD11b+HLA-

DRlo (106). Secretion of three key mediators by MDSCs results in the suppression of T cells. 

These three mediators include arginase-1, inducible nitric oxide synthase (iNOS), and reactive 

oxygen species (ROS) (106-108). While not a comprehensive list of regulatory cells or strategies, 

this section provides a brief glance at the complexity and depth of immune regulation both in 

health and in chronic antigen stimulation. 

Exhaustion is thought to be a hierarchical process, with the loss of effector functions 

occuring at different stages (109). The first phases of exhaustion usually include the loss of ability 

to proliferate rapidly, secrete IL-2 or kill the intended target (72). At intermediate stages, effector 

cells loose the ability to secrete other effector cytokines. Severe exhaustion is thought to occur 

when cells are no longer able to degranulate or secrete IFNγ. In the final and most extreme 
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versions of exhaustion, antigen-specific T cells are deleted from the repertoire (110-112). As T 

cells progress through exhaustion, they upregulate multliple, diverse inhibitory receptors, 

beginning with PD-1. Loss of effector function and subsequent exhaustion occurs for both CD8 

and CD4 antigen-specific T cells (109, 113, 114). Viral load increases with exhaustion and loss 

of effector function. While this loss of effector function and eventual deletion resembles both T 

cell anergy and senescence, exhausted T cells develop in different environments and have very 

different molecular profiles. The largest difference being the expression of PD-1 in exhausted T 

cells, but not in anergic or senescent cells (115). Unlike senescent T cells, it is possible to “rescue” 

exhausted T cells, restoring their effector function and ability to rapidly replicate. Exhaustion can 

be reversed by blocking the PD-1 pathway if CD8 T cells have not progressed too far through the 

exhaustion heirarchy (78, 116). 

While T cell exhaustion and dysfunction were first described in the context of chronic 

antigen stimulation during viral infection, these ideas were later used to understand the emerging 

field of tumor immunology. Chronic inflammation and immune evasion, including the induction of 

T cell exhaustion, are key characteristics of malignancies (117). With is high antigenic load and 

robust anti-tumor T cell response, melanoma has been at the forefront of tumor immunology and 

T cell exhaustion (118). In the following section, I will disucss the T cell response to tumors, T cell 

dysfunction in the tumor microenvironment, and development of immunotherapies with a focus 

on the role of melanoma.  

Melanoma and Tumor Immunity 

Immune surveillance in cancer 

In the early 20th century, Paul Ehrlich first postulated that the immune system might play 

a role in controlling cancer (119). It was decades before this hypothesis had any experimental 

backing, first gaining traction after a great increase in the understanding of the immune system 
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and the subsequent discovery of cancer antigens (120). These data provided the foundation for 

the original immune surveillance hypothesis, in which researchers once again considered that the 

immune system was responsible for surveilling and controlling the growth of malignant cells. 

However, confounding experiments and dissent of the community at large once again caused the 

immune surveillance hypothesis to fall out of favor (121). Definitive evidence for the roll of immune 

surveillance was published in 1998 and 2000 by Dr. Robert Schreiber’s group. Genetically 

engineered mice, insensitive to IFNγ developed tumors more rapidly and with greater frequency 

than their wildtype counterparts after treatment with carcinogenic chemicals (122). A few years 

later, the same group showed that both IFNγ and lymphocytes protect the host against 

development of cancer. In addition to this ground breaking finding, Shankaran, et al also showed 

that the process of tumor cell clearance by lymphocytes resulted in a selective pressure that lead 

to development of less immunogenic tumor cells. Tumor cells grown in immunocompetent mice 

were less able to establish and grow when transferred into naïve, wild type recipients as compared 

to those originally grown in immune deficient mice (123). This discovery shifted the 

immunosurveillance hypothesis, now suggesting that the immune system is responsible not only 

for the control and elimination, but also responsible for the escape and expansion of transformed 

cells. 

 To reflect this paradoxical role of the immune system in cancer development and 

progression, Schreiber’s group went on to establish a new immune surveillance hypothesis, which 

he called the immunoediting hypothesis. The immunoediting process is a sequential progression 

comprised of “elimination”, “equilibrium”, and “escape” phases (119). The first phase, elimination, 

describes complete immunological deletion of the transformed cells prior to pathology in the host. 

If all cancerous cells are killed, the immunoediting process ends here; however, cells that persist 

elimination go on to enter equilibrium. During this second phase, the immune system prevents 

pathological growth of and alters the immunogenicity of the cancer cells. Like the elimination 
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phase, the host is unaware of this phase as pathology does not occur. It is possible for this phase 

to last for the lifespan of the host, without proceeding to the escape phase. In the final phase, 

escape, tumor cells acquire the ability to circumvent the immune system, either through change 

in the tumor cells themselves or through suppression of the immune cells. It is during this phase 

that the host experiences pathology due to tumor outgrowth (124). To better understand the role 

of the immune system in cancer and the development of anti-cancer therapies, each phase will 

be discussed in more detail below.  

 Complete elimination of tumor cells and possible progression into the next two phases is 

a cyclical process, often referred to as the “cancer-immunity cycle” (1). First, transformed cells 

must be “seen” by the immune system as non-self. This can occur through expression of 

mutational antigens, testes antigens, over expression of cellular antigens, viral antigens, or 

differentiation antigens (125). In melanoma, tumor associated antigens are usually either testes 

antigens, like MAGE and NY-ESO-1, or differentiation antigens, such as gp100 and tyrosinase 

(126). Immature dendritic cells must encounter these antigenic cells in the presence of 

inflammatory stimuli, like the expression of damage associated molecular patterns (DAMPs) or 

IFNγ (127-129). Activated DCs must then travel to the lymph node where they present their 

antigen to naïve T cells for activation. For activation of T cells and elimination of the tumor, it is 

important that DCs are fully mature upon reaching the lymph node, expressing key co-stimulatory 

molecules like CD80 and CD86 (130). Once activated, the tumor antigen specific T cells must 

traffic through the lymphatic system or blood to stream to enter into the tumor (4, 131). Tumor 

antigen specific T cells now must recognize their MHC:peptide expressing target, using their TCR 

before exerting their effector functions in the same way that virally infected cells are recognized 

by effector T cells (1). If this cycle completes and all cancer cells are killed, the elimination phase 

is complete and the host remains pathology, and cancer free. In melanoma, as well as other 

cancers, there are much data to suggest that this cancer:immunity cycle results in the generation 
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of tumor antigen specific T cells and the elimination of cancer cells. Memory and effector tumor-

antigen specific T cells have been characterized in the blood and lymph nodes of human patients 

with melanoma and there have been multiple accounts of spontaneous regression of melanoma 

tumors (4, 132, 133). If tumor cells persist despite an immune response, the system progresses 

into the equilibrium phase.  

 During the equilibrium phase, tumor cells are kept from causing pathology by cells of the 

adaptive immune system. Clinical scenarios have often been used as support for the equilibrium 

phase of the immunoediting hypothesis. For example, two allograft, kidney transplant recipients 

were each diagnosed with metastatic melanoma two years after transplantation and subsequent 

immunosuppressive drugs. Investigators discovered that the kidney donor had been diagnosed 

with melanoma over a decade prior to her death and was considered cancer free at the time of 

donation (134). This suggests that the cancer was held in check, at equilibrium, by the original 

host’s immune system but was able to grow in the presence of immunosuppressive drugs. Later, 

mouse models provided more definitive and mechanistic evidence for the equilibrium state. 

Koebel, et al. treated mice with low doses of a carcinogen, inducing occult tumors. Mice remained 

untreated for over 200 days to ensure that the cancer was indeed occult before being treated with 

a control monoclonal antibody (mAbs) or anti-CD4/anti-CD8/anti-IFNγ mAbs to deplete the T cell 

response. Mice with depleted T cells quickly developed large tumors at the site of the previous 

carcinogen injection, while the mice receiving control mAb did not (135). While this phase of 

immunoediting can occur undetected for the duration of the host’s life, the constant immune 

pressure on genetically unstable cells can result in changes that allow the cancer cells to escape 

from immune control.  

  The third phase of the immunoediting hypothesis, escape, where their growth is no longer 

controled by immunological pressures. Cancer cells can escape immune control either through 

changing themselves to be less immunogenic or direct suppression of the immune cells (119). As 
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discussed in previous paragraphs, elimination of cancer cells requires the completion of a multi-

step cancer:immunity cycle. In the following paragraphs, I will elaborate on different immune 

evasion mechanisms present at each stage of the cancer:immunity cycle that promote tumor cell 

escape (Figure 1.2).  

Immune evasion and T cell dysfunction in the tumor microenvironment 

 In the first stage of the cancer:immunity cycle, tumor-associated antigens are picked up 

by local DCs (Figure 1.2, 1). A method that halts the cycle at its first stage is immunoselection of 

poorly immunogenic cancers during the equilibrium phase. Thus, cancer cells that do not generate 

a strong adaptive immune response are able to outlive strongly immunogenic cells (136). In order 

for a successful first stage of the cycle, DCs must encounter antigen in the proper context. Cells 

that die and release antigen following necrosis release DAMPs, along with antigen, activating the 

DC and causing maturation. However, if cancer cells die via apoptosis, no such danger signals 

accompany antigen release and the DCs become tolerogenic (129). Tolerogenic DCs are unable 

to properly activate CTLs in the lymph nodes, cutting the cancer:immunity cycle short. As in 

chronic viral infections, immunosuppressive cytokines like IL-10 can downregulate the ability of 

DCs to present antigen (97, 137) (Figure 1.2, 2). This is a mechanism by which tumors can induce 

tolerance in tumor-antigen specific T cells, thus rendering them nonresponsive.  

 Because the cancer:immunity cycle is, as its name suggests, cyclical, defects in the first 

stages intimately affect the following stages. For example, in mouse models of melanoma, β-

catenin signaling from the cancer cells blocks production of chemokine CCL4, preventing dendritic 

cells from entering the tumor microenvironment. Without DCs, there is no presentation of antigen 

to T cells in the lymph node, and thus naïve T cells are not primed and activated for killing their 

target (138). Even when DCs are recruited to the tumor microenvironment and are able to pick up 

tumor-antigen, the tumor microenvironment can induce expression of inhibitory ligands on their 
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surface. Vascular endothelial growth factor (VEGF) is able to induce expression of PD-L1 on the 

surface of APCs in the tumor microenvironment. This PD-L1 can then interact with PD-1, 

expressed on the surface of recently activated T cells, to inhibit proliferation or cytokine secretion 

(139). Similarly, recently activated T cells express CTLA-4 on their surface. CTLA-4 is able to 

outcompete CD28 for binding to CD80 and CD86, expressed on DCs, and through doing so, 

suppress T cell function (36). Antibody blockade of CTLA-4 enhances the priming of tumor-

specific T cells and can lead to tumor clearance in both mice and people (6, 7, 140) (Figure 1.2, 

3).  

 If tumor antigen-specific T cells are able to be activated and primed, they must then traffic 

to the site of the tumor. In an optimal immune response, the cells located at the tumor site will 

produce CCL3, CCL5, CCL20, and CXCL10 in order to recruit CD8 T cells (131). However, 

posttranslational modifications of chemokines, like proteolysis or nyosylation, can reduce their 

ability to recruit T cells to the tumor (141) (Figure 1.2, 4). Beyond migrating through the blood and 

lymphatic systems to reach the site of the tumor, the activated tumor-specific T cells must cross 

the vascular epithelium to reach their target. Entrance into the tumor, through the epithelium is a 

multistep process involving rolling and adhesion of the T cell to the epithelium. Molecules, like 

VEGF, can inhibit this process and prevent the T cells from entering into the tumor 

microenvironment (141, 142). Additionally, endothelium associated with the tumor 

microenvironment can express PD-L1 and PD-L2 which can suppress T cell activity (143) (Figure 

1.2, 5). 

 Once inside the tumor microenvironment, the activated tumor specific T cells must 

recognize their target. However, some tumor cells acquire the ability to downregulate MHC I, 

thereby becoming invisible to the T cells (144). Tumor cells also can have defects in the machinery 

needed to properly process and present antigen, preventing the formation or presentation of 

antigenic peptides in the MHC I groove (145). Additionally, selective pressure during the 
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equilibrium phase can result in an outcropping of tumor cells that don’t express antigens seen as 

“non-self” by the immune system (146) (Figure 1.2, 6). The final stage of the cancer:immunity 

cycle occurs when CTLs recognize their target and exert their effector function, eliminating the 

cancer cell. There are multiple mechanisms within the tumor microenvironment that allow tumor 

cells to evade killing by tumor specific T cells. Tumor cells express a variety of proteins on their 

surfaces, many of which are detrimental to T cell immunity (1). Molecules in the TNF family, like 

FAS-L can directly kill T cells who express cognate receptor, FAS (147). As in systems of chronic 

viral infection, expression of inhibitory receptor ligands by the target cell can result in suppression 

of T cell function. A wide variety of inhibitory receptors and their ligands are known to play a role 

in the tumor microenvironment, especially in melanoma. PD-1 and its ligands PD-L1 and –L2 are 

perhaps the most well-known inhibitory pathways. As discussed previously in this text, ligation of 

PD-1 results in dampening of the TCR signaling pathway and subsequent loss of effector function 

(148-150). Inhibitory molecules TIM-3, LAG-3, BTLA, TIGIT, and CTLA-4, among others, have all 

shown a role in cancer cell survival (151). Flow cytometry analysis of tumor infiltrating T cells has 

shown co-expression of multiple inhibitory receptors, highlighting the complexity of immune 

suppression in the tumor microenvironment (151-153). Secreted factors like TGFβ and IL-10 also 

contribute to poor T cell function, just as in chronic viral infection (154, 155). Similar to 

environments of chronic antigen stimulation, regulatory cells like MDSCs and Tregs play a crucial 

role in promoting tumor growth and survival by suppressing T cell effector function (Figure 1.2, 7) 

(156). 

Development and success of checkpoint blockade 

 Melanoma is a major human health problem with nearly 90,000 new cases and 10,000 

deaths each year in the USA alone. Despite the fact that advanced melanoma responds poorly 

to both chemotherapy and radiotherapy, these treatments remained the best options for patients 

for over 30 years. During this time, patients diagnosed with late stage melanoma had a median 
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survival of less than one year (157). With so many stages of the cancer:immunity cycle vulnerable 

to suppression by cancer cells, it’s not surprising that a multitude of anti-cancer drugs aimed at 

boosting the immune system have been developed. With a high mutational burden and extensive 

immune infiltrate into tumors, melanoma has been a model system for cancer immunotherapy. 

Additionally, it is the disease at the center of this thesis. For that reason, I will focus on the 

development of immune boosting therapies in the context of melanoma during the following 

section.  

 The Alkylating agent dacarbazine was approved for the treatment of metastatic melanoma 

in 1975. With dacarbazine, median survival ranged from 5-11 months, with an overall 1-year 

survival of 27% (158). Despite the dismal prognosis, this remained the only treatment option for 

nearly 30 years. In 1992, IL-2 was approved for use in melanoma (159). The goal of treatment 

with IL-2 was to stimulate the cytotoxic function of both CTLs and NK cells in the tumor 

microenvironment. Approximately 6% of patients treated with IL-2 had a complete response with 

16-20% of patients undergoing partial responses. Despite improved survival compared to 

dacarbazine and even complete cures for a small fraction of patients, IL-2 had to be administered 

in the hospital, under close supervision due to its high toxicity (5). Another cytokine used to treat 

melanoma is interferon alpha (IFNα). In addition to its anti-proliferative and apoptotic effects on 

melanoma cells, IFNα was intended to increase the immunogenicity of the tumor cells and 

increase clonal expansion of tumor-specific CD8 T cells (160-162). Response rates reached as 

high as 23% with IFNα (5). These cytokine therapies, along with others, were designed to bolster 

the cancer:immunity cycle at various stages, including antigen presentation and T cell activation. 

The small cohort of patients who responded robustly indicated that the immune system was 

indeed being strengthened, however that majority of the patients failed to respond. 

 A key step in generating anti-tumor immunity is the presentation of antigen by DCs. 

Melanoma is well known for expressing antigens recognized by the immune system, however 
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suboptimal antigen presentation has been observed (2). Vaccination to induce immune 

recognition of tumor cells was thus proposed as a possible anti-cancer therapy. A variety of 

vaccines were developed and tested in the context of melanoma. Rosenberg, et al treated 

melanoma patients with a vaccine derived from the gp100 melanoma associated antigen with 

resulting response rates over 40% (163). Using DC vaccines, Thurner, et al achieved objective 

responses in 6/11 patients with metastatic melanoma (164). Despite success by these physician 

scientists, the majority of patients treated with any of a large number of cancer vaccines did not 

show clinical response. Indeed, a lack of clinical response was often seen even in patients who 

developed high levels of tumor antigen-specific CD8 T cells (5, 165). Although cancer vaccines 

did not improve outcome for the majority of melanoma patients, they provided additional biological 

insight into the biology at the heart of the disease. Primarily, they revealed that even if anti-tumor 

T cells are appropriately generated, tumor regression does not occur.  

Adoptive transfer of lymphocytes is another key development in melanoma 

immunotherapy. Tumor reactive T cells were isolated from autologous tumors, expanded ex vivo, 

and then returned to the patient following lymphodepletion. In clinical trials, adoptive T cell transfer 

resulted in complete responses in 8% of patients and partial responses in 50% of patients (166). 

In addition to cancer vaccines, the Rosenberg group pioneered adoptive chimeric antigen 

receptor (CAR) T cell therapy for patients with melanoma. In these studies, T cells were 

engineered to express T cell receptors specific for tumor antigens. With partial response rates of 

13%, CAR T cell therapy did not perform as well as autologous T cells (167).  

In the final phase of the cancer:immunity cycle, tumor antigen specific T cells recognize 

and kill their intended target. Despite generation or adoptive transfer of activated, tumor-specific 

T cells, the majority of patients continued to see tumor progression. Inhibitory receptors and their 

ligands are major suppressive elements present at multiple stages of the cancer:immunity cycle. 

As mentioned earlier, inhibitory molecule CTLA-4, expressed on activated T cells, outcompetes 
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CD28 for binding with CD80 and CD86. This interaction suppresses T cell activity during periods 

of chronic antigen stimulation (36). Preclinical mouse models showed tumor clearance in mice 

treated with an antibody that blocked CTLA-4 from binding to CD80 and CD86 (6). This response 

was only seen in mice that had generated an anti-melanoma tumor response. However, by 

combining CTLA-4 blockade with granulocyte/macrophage colony-stimulating factor (GM-CSF), 

Allison and colleagues were able to rescue those mice with poorly immunogenic tumors (168). 

These preclinical findings launched the production and subsequent clinical trial of fully humanized 

monoclonal antibody designed to block CTLA-4, ipilimumab. Ipilimumab performed well 

throughout the phases of clinical testing and in the final, randomized, three-arm clinical trial, 

metastatic melanoma patients who were treated with ipilimumab had a survival increase of 3.5 

months beyond the group who did not receive the drug (7). In addition to increased survival, 18% 

of patients treated with ipiliumumab survived greater than 18%. This was more than 10% higher 

than those treated with the gp100 vaccine alone (7). Ipilumumab became the first drug to improve 

survival for patients with metastatic melanoma (151). A unique feature of CTLA-4 blockade, not 

seen in chemotherapy or small molecule inhibitors, was delayed response time. In many patients, 

response to ipilimumab took up to 6 months, far longer than the response time of weeks seen for 

patients treated with chemotherapy (151). The success of CTLA-4 blockade in melanoma patients 

has paved the way for other immunotherapies designed to block immune checkpoints. 

A key immune checkpoint in the anti-cancer immune response is PD-1. Discussed earlier, 

PD-1 is largely relegated to the peripheral tissues at the time of antigen-induced inflammation 

(169). When PD-1, expressed on the surface of T cells, is engaged by its ligands, T cells are 

suppressed and unable to exert their effector functions (80). Intratumoral, melanoma-specific T 

cells have been shown to express high levels of PD-1 and to be functionally impaired (149). 

Together with high expression of ligand PD-L1 on cancer cells, pre-clinical models have been 

tested for monoclonal antibody blockade of PD-1 (148, 170). As of 2012, antibodies designed to 
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block PD-1 were still undergoing clinical trial. Results appear promising with several patients 

experiencing tumor regression and significant increases in lymphocyte infiltration into metastatic 

tumors (171). Follow up studies show that the response is both durable and that side effects are 

remarkably low compared to treatment with ipilimumab (151).  

Systems Immune Monitoring 

The immune system is a complex network comprised of localized and specialized tissue 

sites connected by circulating immune cells. Traditional immunological techniques and 

approaches have provided a depth of knowledge within each compartment, but struggle to 

comprehensively dissect the network and its interactions as a whole. In addition to system-wide 

complexity, each cell subset is itself a “system within a system”, possessing its own hierarchies 

and heterogeneity. As cancer and immune system cells compete in a complex and continuously 

evolving cycle (1), understanding the complex rules governing anti-cancer immune responses 

poses a challenge.  Multiple subsets of immune cells are implicated as promoters or inhibitors of 

the anti-tumor immune responses (172, 173). To dissect and predict anti-cancer immune 

responses, it is crucial to not only monitor the cellular milieu of peripheral blood, tumor sites, and 

draining lymph nodes, but also to monitor the cell surface molecules responsible for cell:cell 

interactions, the deep immunophenotype of cell subsets of special interest, and intracellular 

signaling events including post translational protein modifications, proliferation, cytokine 

production, and other functional capabilities (Figure 1.4). 
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Figure 1.4. Focal single cell areas in systems cancer immunology. Mass cytometry and other 
multidimensional single cell tools can be focused to resolve key biomarkers and mechanisms at different 
layers of cellular interaction. Most commonly, mass cytometry is used to provide cytomic resolution, 
meaning that all the different cell types present in a tissue are quantified and phenotyped. As this can 
generally be achieved with 10 markers on a typical mass cytometry panel, this leaves at least 25 mass 
channels available for detection of cell interaction markers, immunophenotype, and intracellular signaling 
(174). As nearly any cellular property can now be quantified at the single cell level (175), multidimensional 
cytometry enables biomarkers with complex expression patterns that can vary with cell type and activation 
state – such as PD-L1 (176) – to be broadly monitored. Another advantage of cytomic approaches is that 
cells with unusual and unexpected phenotypes present in a patient’s tissue sample do not escape detection 
due to expert bias or overly focused analysis strategies. These advantages of mass cytometry address 
ongoing needs in cancer and immune biomarker development (177). 

 

Rationale and techniques 

Each step of the cancer-immunity cycle includes the potential for competition between 

effector and regulatory cells, and nearly every immune cell subset has been implicated in the anti-

cancer immune response (178). Dendritic cells presenting tumor antigen are required to activate 

a specific anti-cancer adaptive immune response (1, 179). Effectors like CD8+ and CD4+ T cells, 

NK cells, and tumor specific antibodies participate in direct killing of tumor cells (123, 180-182). 

Controlling these effectors are cells and signaling mechanisms that can check or attenuate 

immune responses, including regulatory and suppressive cells arising from the T cell (183), 

myeloid (184), and B cell lineages (185). These effector and regulatory cells are diverse in 

phenotype and variable in abundance (186). While some cell subsets comprise a substantial 

proportion of the total leukocyte pool (e.g. ~2-11% cytotoxic T cells), others, such as Tregs or 
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memory B cells, can contain critical information while comprising <5% of total leukocytes (187-

190). Although small in number, regulatory cell subsets can drastically impact the anti-tumor 

immune response. Thus, the ability of mass cytometry to characterize rare cells comprising as 

few as 1 in 10,000 cells is a key advantage for evaluating the state of a patient’s immune system 

(191).  

In addition to detecting rare cellular subsets, high dimensional single cell technologies are 

also capable of revealing cells with unusual or unexpected phenotypes. With single cell analysis, 

it is possible to not only resolve rare cell subsets or subtle changes in phenotype, but also to 

distinguish cancer cells from healthy non-hematopoietic cells, and immune cells (175, 192). Small 

phenotypic shifts, such as the slight downregulation of antigen receptors by activated T cells 

(193), may provide important information about the state of a patient’s immune system. At 

present, the effort is to track the status of cells and identify markers and mechanisms that indicate 

status can cell type, including “poised to attack cancer cells”, “in need of priming”, “held in check 

by regulation”, or “lacking key effector subsets”. Given sufficient examples, it may be possible to 

discern the signaling rules that govern cell identity and to use this information to precisely 

modulate the in vivo activity of target cell subsets.  

The behavior of effector immune cells is directly affected by the engagement of cell surface 

receptors. While some ligands are soluble, like many cytokines and chemokines, many are bound 

to the surface of APCs and even cancer cells themselves. A long list of cancer cell bound ligands 

are known to modulate and suppress the behavior of cytotoxic T cells within the tumor 

microenvironment (151). Although it is well known that cancer cells express molecules like PD-

L1 that modulate the immune response, the surface phenotype of cancer cells is less well 

characterized than immune cells. Including key markers of cancer cell type in immune 

classification panels makes it possible to localize biomarker and cytokine expression to cancer 
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and immune cells, which is especially important given how cancer cells aberrantly express 

molecules from outside their lineage of origin. 

Distinguishing “cancer” versus “healthy” cells and then attributing genotype and 

phenotype characteristics is especially critical when developing novel therapeutics expected to 

have selective activity on cancer cells. Analysis of non-cancer cells can provide information on 

off-target effects of therapeutics. For example, small molecule inhibitors have varied functional 

impacts across immune cell populations (9, 194). Preserving viability and effector function of 

healthy immune cells during cancer therapy is crucial for maintaining an effective anti-tumor 

response (195).  

Single-cell biology in clinical practice 

The immune system is constantly in flux with cells undergoing stimulation, suppression, 

expansion and death resulting in phenotypic changes (196). Static snapshots of tissue and tumor 

resident or peripheral immune cells provide a wealth of information about overall immune function 

and tumor immune response, although lack key information about dynamic changes. Serial 

acquisition of healthy donor peripheral blood revealed low intra-donor variability but high inter-

donor variability (197). With the combination of high, single-cell resolution and primary patient 

samples over the course of therapy, it is possible to create an in-depth picture of the immune 

network as therapy progresses. By connecting this detailed picture with the clinical outcome of 

the patients, it may be possible to 1) identify a marker that predicts whether patients will respond 

to therapy and 2) identify a specific cell type or group of cells that are responsible for successful 

therapy. 

Multidimensional flow cytometry has been a gold standard of single cell biology, both 

within basic research labs and the clinic. Flow cytometry is routinely used in the clinic for analysis 

and diagnosis of leukemia and lymphoma, identification of lymphocyte subsets in HIV infection, 
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monitoring solid organ transplantation matches, and detection of immunodeficiency. In traditional 

flow cytometry, single cell suspensions are stained with a cocktail of antibodies tagged with 

different fluorophores (198). Stained cells are then run through a flow cytometer in a single cell 

stream, passing by lasers that excite the fluorophores conjugated to the antibodies bound to the 

cell surface. The emissions of the excited fluorophores are then recorded by the machine’s 

detector (199).  

Like fluorescence flow cytometry, mass cytometry utilizes single cell suspensions stained 

with antibody cocktails. However, instead of fluorophores, antibodies used in mass cytometry are 

coupled to pure metal isotopes rarely found in nature. Stained single cells are atomized and 

ionized by argon plasma. The resulting ion clouds are then resolved and quantified by time-of-

flight mass spectrometry. Mass cytometry largely eliminates spectral overlap issues that can 

confound quantitative fluorescence cytometry and has been used to measure over 40 parameters 

simultaneously at the single cell level (200). The use of metal isotopes and inductively-coupled 

mass spectrometer (ICP-MS) allows for precise quantitation (201). The capacity to measure so 

many features per cell allows combined detection of surface proteins, intracellular phospho-

proteins, transcription factors, and functional markers, such as cleaved caspases, within a single 

panel. While monitoring of these features in live cells is not possible, by fixing cells at multiple 

times following stimulation, a kinetic analysis of specific populations within a heterogeneous 

sample is obtained (9, 192, 194).  

While mass cytometry is not the only quantitative, high-dimensional technique, it is 

especially effective for monitoring immune responses in patients undergoing immunotherapy. In 

particular, mass cytometry allows for high-dimensional, single cell analysis at a relatively high 

throughput of around 500 cells per second. Other multidimensional techniques may play a role in 

immune monitoring as well. Polychromatic fluorescence flow cytometry has contributed 

immensely to the field of tumor immunology and, unlike CyTOF, can be utilized for fluorescence 
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associated cell sorting (FACS). Multidimensional fluorescence and mass based imaging 

techniques can provide information about cellular positioning and cell-cell contacts (194, 202, 

203), but typically measure several orders of magnitude fewer cells per sample than either 

fluorescence or mass cytometry. These techniques make excellent use of widely-available 

formalin-fixed paraffin-embedded (FFPE) blocks of tumor tissue. Recent work indicates that fixed 

cells can be released for analysis by mass cytometry (204).  

In addition to protein, it is possible to measure RNA transcripts at the single cell level. 

Single cell RNA sequencing (scRNAseq) measures the transcriptome quantitatively at the single 

cell level (205). Despite the high dimensional, single-cell capabilities, scRNAseq typically 

measures only tens to hundreds of cells per sample and detection of transcripts can be 

confounded by issues including cell size, cell cycle changes, cell death, and allele dropout (206). 

Additionally, scRNAseq is restricted to measuring RNA transcripts and does not provide 

information about which genetic material is ultimately translated into protein or how these proteins 

are post-translationally modified. Quantitative PCR can also measure DNA, but is generally 

focused on hundreds of targets. Polychromatic fluorescence cytometry, imaging cytometry, 

scRNAseq, qPCR, and many other high dimensional technologies have produced great advances 

in the field of tumor immunology and will continue to play key roles in discoveries aimed to improve 

patient care. However, mass cytometry’s ability to measure surface protein expression, post-

translational modifications, transcription factors, and functional outcomes (e.g. cytokine 

production, apoptosis, cell cycle) for millions of cells at the single cell level (175) makes it uniquely 

adapted for monitoring immune responses in cancer patients undergoing immunotherapy.   

Machine learning for human immunology 

The increasing dimensionality of mass and fluorescence cytometry has dramatically 

increased the robustness and complexity of cytometry data (207). Analysis of data from a single 
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mass cytometry panel containing 30 antibodies would require hundreds of traditional, biaxial plots 

(174). The use of hundreds of biaxial plots to analyze high dimensional, single cell data is not only 

impractical, but also insufficient in its ability to characterize complex cellular phenotypes and 

overly reliant on prior knowledge of the cell of interest. Thus, the growing use of high-dimensional 

cytometry has necessitated the development of novel data analysis tools. These advances have 

ushered in an ‘information age’ of single cell biology (208) by providing researchers with access 

to machine learning tools for dimensionality reduction, clustering, and model building. Machine 

learning algorithms can be designed to learn and improve performance based on previous 

experience (209). Algorithms are needed to facilitate interpretation of highly complex, 

multidimensional data. 

Machine learning and computational analysis make it possible to analyze large data sets 

in a reasonable amount of time. The technological advances in flow cytometry have enabled the 

field to measure over 30 parameters simultaneously, either through mass cytometry or 

polychromatic fluorescence cytometry. Analysis via traditional biaxial gates would result in 

hundreds of biaxial gates, and these gates would still fail to show high-dimensional co-expression 

of measured proteins (174). Computational analysis tools like SPADE reduce multi-dimensional 

data into two dimensions while retaining high dimensional phenotype (210). This allows the user 

to comprehensively analyze co-expression of all measured proteins. In addition to 

comprehensively analyzing and displaying data, computational methods are able to reduce bias. 

Analyzing all the data allows for the identification of cells with unusual or novel phenotypes that 

might have been overlooked otherwise (208).  

Ultimately, it may be possible to bring cytomic profiling into the clinical setting such that a 

rapid assessment of cellular biomarkers could guide treatment. However, the current data 

analysis workflow remains driven by human experts and accounts for nearly half of the time spent 

going from sample to useful data. Expert driven manual analysis, the current gold standard, of 
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high dimensional data is much too time consuming for practical clinical use. Computational 

analysis tools are not only able to dramatically speed up analysis, but also reduce bias and 

facilitate the discovery of unexpected cell types or phenotypes. By using an unsupervised 

computational workflow (207), it is now possible to automatically analyze cellular populations, 

subsets, and single-cell phenotype for millions of cells within minutes of data collection. In time, 

computational tools are expected to play an increasing role in guiding diagnosis and treatment 

selection.  

Mass cytometry could play several potential roles in cancer therapy. First, identifying 

markers that predict response to immune checkpoint inhibitors is a major unmet need. Pre-

treatment or early-on-treatment peripheral blood or tumor biopsies could be profiled to identify 

immune cell subsets that correlate with response to treatment or even severe toxicities. Second, 

with the advent of immune therapy combinations, dissecting the individual and collective effects 

of each agent will be critical. For example, a combination partner with immune therapy that 

dampens cytotoxic T cell proliferation or signaling may compromise rather than enhance the anti-

tumor immune response. Mass cytometry could be used, therefore, in clinical trials or even in a 

high-throughput fashion to screen novel combinations. Particular cellular populations may herald 

durable responses, or conversely, impending relapses. Studies by our group and others are 

addressing these clinical challenges.  

A critical element is the acquisition of high quality samples of human tissue. As a field, 

there is a need for standardized procedures and consistent support for sample acquisition as part 

of clinical trials, especially early phase trials.  Still missing, however, are studies testing the impact 

of sample acquisition and preparation conditions on a wide number of endpoint assays and 

standard protocols for data quality assessment that include protocols for data analysis. This 

problem is especially significant in the realm of multi-center trials, where differences in capacity 

and experience among the centers leads to inconsistent practices that jeopardize data integrity. 
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However, publication and agreement on standards of practice can ameliorate these 

inconsistencies.  As mass cytometry and other single cell immune monitoring techniques become 

more widely adopted, it will be valuable for the field to further develop and implement standardized 

procedures for immune monitoring, from sample collection to cytometric protocols to data 

analysis.  

Research Objectives and Preface 

The purpose of this thesis is to dissect mechanisms of response to anti-cancer therapy in 

patients with melanoma using a systems immune monitoring strategy that characterizes and 

quantifies changes in the individual populations and immune system, as a whole. For those 

diagnosed with late stage melanoma, prognosis remains poor, with median survival ranging from 

6-9 months (211). Despite the presence of melanoma-specific T cells in the blood and tumor of 

patients with advanced disease, immune-mediated tumor rejection is rare (212). Recently, two 

therapies aimed at boosting T cell function have been FDA approved or begun clinical trials. 

Ipilimumab and pembrolizumab block immune checkpoint molecules CTLA-4 and PD-1 

respectively from binding their ligands. While both therapies have increased efficacy compared 

to chemotherapy, most patients ultimately relapse and die from their disease (213-215). There 

are currently no clinical biomarkers to predict which patients will respond to immunotherapy. 

Additionally, the effects of these immune checkpoint inhibitors on the systemic immune system 

are unclear. Understanding the mechanisms of response to immunotherapy is critical for 

improving treatment. The work described in this thesis describes the development of experimental 

and computational tools designed to dissect a systems biology response to therapy, over the 

course of time. When applied to clinical samples, this frame work reveals a novel population of T 

cells that lack CD4 and CD8 and are common across multiple types of human cancer.  

In Chapter II, I describe work performed with Katherine Vowell (nee Nicholas), Ph.D. to 

evaluate a new technology, mass cytometry, to best characterize and dissect the human immune 
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system under stimulated conditions. Mass cytometry is an antibody-based technology that 

provides the unprecedented ability to monitor dozens of proteins at the single cell level, without 

the limitations of spectral overlap seen in fluorescence flow cytometry. Our work revealed that a 

single, mass cytometry panel comparably reflected results from five fluorescence flow cytometry 

panels in the ability to quantify and characterized stimulated, human immune cells. Additionally, I 

found that high dimensional data combined with data analysis tool viSNE allowed for the 

quantification and characterization of stimulated T cells, lacking canonical T cell marker CD3. This 

work reveals the importance of high dimensional, single cell biology for identifying and tracking 

immune cells in the context of chronic stimulation, similar to that seen in the tumor 

microenvironment.  

In Chapter III, I summarize work done closely with Dr. Utpal Davé to characterize 

genomics and cytomics of T cell neoplasms. In this body of work, I use high-dimensional, single 

cell biology to characterize the phenotype and dissect signaling responses in a patient with T cell 

pro-lymphocytic leukemia (T-PLL) before and after treatment. Next generation sequencing was 

used to profile diverse T cell neoplasms from over 90 patients. One third of patients harbored 

mutations in the JAK-STAT pathway. Ruxolitinib, a JAK inhibitor, was used to treat an index 

patient. Mass cytometry and phospho-flow cytometry was used to characterize phenotype and 

signaling before and after therapy and revealed downregulation of phosphatase CD45, JAK 

pathway hyperactivation, and common-gamma chain cytokine hypersensitivity. This work 

provides compelling evidence for improved patient care and increased mechanistic understanding 

of anti-cancer therapy through the use of systems immune monitoring in the clinic. 

In Chapter IV, I detail my work applying systems immune monitoring to a case study of a 

melanoma patient receiving anti-PD-1 who develops myelodysplastic syndrome unexpectedly. By 

using mass cytometry, I was able to simultaneously track and characterize myelodysplastic blasts 

and non-blast immune cells. This patient had a slightly elevated frequency of PD-1+PD-L1- 
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myeloid cells prior to treatment and displayed an increase in activated (CD45RA+) non-blast 

myeloid cells as anti-PD-1 therapy progressed. Additionally, the large phenotypic shift of the 

peripheral blasts was effectively captured. This work builds on the clinical impact of high 

dimensional, systems immune monitoring shown in the previous chapter. Additionally, this work 

provides evidence for use of mass cytometry for identifying cells of unusual and unexpected 

phenotype while revealing a need for unbiased cell identification and tracking. 

In Chapter V, I describe my part in developing Marker Enrichment Modeling (MEM), a 

novel tool for quantifying cellular heterogeneity in human tissues. The MEM algorithm 

automatically calculates a label for cellular populations, providing a quantitative list of population-

specific features. Using this label, it is possible to directly compare cell population identity across 

experiments and even platforms. My role in this work was to generate a high-dimensional data 

set of clinical, human samples including peripheral blood, tonsil, and melanoma tumors. I then 

applied the MEM algorithm and similarity score, developed by Dr. Kirsten Diggins, to the CD4 T 

cell compartment of the human samples. MEM was able to identify key features of CD4 T cell 

subsets, like expression of CD45RO on memory cells. The similarity score, based only on MEM 

labels, was able to correctly cluster known CD4 populations from across patients and tissue types. 

This work provides a first step towards automated identification of cellular populations and leads 

the way for a data base of cell identity. 

In Chapter VI, I detail my work in dissecting systems immune response of melanoma 

patients receiving anti-PD-1 therapy and small molecular inhibitor therapy using an ensemble of 

tools I developed. This ensemble of tools includes Earth Mover’s Distance (EMD) combined with 

tSNE, a tool developed for mass cytometry during my time in graduate school, population 

quantification, and population characterization using MEM. Combining these tools revealed 

stability in the peripheral blood of melanoma patients receiving anti-PD-1 therapy, with the 

exception of a patient who developed myelodysplastic syndrome (described in Chapter IV). 
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Further analysis revealed a loss of detection of PD-1+ T cells in the periphery. These PD-1+ T 

cells were phenotypically distinct from PD-1+ T cells found in the tumor, specifically lacking 

activation markers but expressing trafficking proteins. In contrast to the stable immune system of 

patients receiving immunotherapy, the ensemble system analysis platform revealed plasticity in 

the T cell compartment of melanoma tumors receiving small molecular inhibitor therapy. An 

increased frequency of CD3+ CD4-CD8- (DN) T cells was seen in human melanoma tumors serially 

biopsied after MEK and BRAF inhibitor therapy. These DN T cells were phenotypically distinct 

from DN T cells from healthy tissue but similar to DN T cells found in glioblastoma and renal cell 

carcinoma. This work develops a novel, automated work flow for immunologists and clinicians 

using high dimensional technology to monitor patients undergoing therapy. When applied to a 

clinical scenario, the ensemble analysis process reveals a novel T cell, shared across cancers. 

In Chapter VII, I summarize my findings of systems immune monitoring in patients with 

melanoma and their significance. My future directions diverge into two paths--biological and 

computational. Biologically, I propose that future studies should focus on in-depth characterization 

of phenotype, function, and development of double negative T cells in healthy and malignant 

human tissue. This can primarily be accomplished through sequencing RNA, measuring 

intracellular effector molecules in response to stimulation, and developing ex vivo culture models 

to track development. Computationally, I will discuss the future of automated data analysis for the 

clinic and discuss the roll of machine learning in human health. 
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CHAPTER II 

 

MULTIPARAMETER ANALYSIS OF STIMULATED HUMAN PERIPHAL BLOOD 

MONONUCLEAR CELLS: A COMPARISON OF MASS AND FLUORESCENCE CYTOMETRY 

 

Authors: Katherine J. Nicholas, Allison R. Greenplate, David K. Flaherty, Brittany K. Matlock, 

Juan San Juan, Rita M. Smith, Jonathan M. Irish, Spyros A. Kalams  

 

This work is adapted from the manuscript published in Cytometry Part A 2016 (Nicholas, et al. 
2016). 
http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22799/full  
License 4275960274774, Issued January 25, 2018 

Introduction 

Fluorescence cytometry has driven forward our understanding of cell biology in human 

immune monitoring and disease studies for decades by quantitatively characterizing single cells 

based on cell surface and intracellular features (174, 175, 199, 216, 217).  Mass cytometry is a 

new quantitative single cell flow cytometry approach that employs antibodies conjugated to stable 

isotopes of metals and time of flight mass spectrometry as a detection technology (201, 218). Due 

to the precision of mass resolution, hundreds of features can theoretically be measured on each 

cell simultaneously using a mass cytometer. Recently mass cytometry has emerged as a powerful 

tool for high dimensional single cell analysis that has been used to characterize diverse 

populations of immune cells (9, 186, 200, 219-223). 

While several studies have highlighted the potential of mass cytometry for describing 

cellular subsets in great detail (9, 186, 200, 219-222), only a few of these studies have directly 

compared mass cytometry with traditional fluorescence cytometry for evaluating human cell 

populations (9, 174, 223, 224).  Furthermore, despite its promise, mass cytometry is still a 

http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22799/full


38 

 

relatively new technology, and extensive optimization of panel design, protocols, and analysis 

workflows will be required to acquire and appropriately analyze the vast amount of data generated 

(207, 225, 226).  Here a direct comparison of mass cytometry and traditional fluorescence 

cytometry is described in detail for human subjects. A panel of 20 well-established surface 

markers of lymphocytes was used to assess whether mass cytometry provided equivalent per-

marker and per-subset information on a one-to-one basis with traditional fluorescence cytometry.  

Unstimulated and stimulated human PBMC from six donors were analyzed with five established 

fluorescence cytometry panels in our laboratory and one newly optimized mass cytometry panel.  

The results of the two platforms were highly concordant, suggesting that mass and fluorescence 

cytometry will be complementary technologies used for characterizing the complex, dynamic 

cellular phenotypes that exemplify immune responses.    

 

Materials and Methods 

Cell isolation and culture 

Peripheral blood mononuclear cells (PBMC) from healthy donors (N = 6) were isolated 

using density gradient separation (Ficoll-Paque™ Plus, GE Healthcare, Piscataway, NJ, USA).  

PBMC were pelleted by low speed centrifugation (400 x g), resuspended in media composed of 

90% fetal bovine serum (Atlanta Biologicals, Norcross, GA, USA) containing 10% DMSO (Sigma-

Aldrich, St. Louis, MO, USA), frozen slowly in the vapor phase of liquid nitrogen in multiple 

cryotubes, and stored in liquid nitrogen, as previously described (227).   The Vanderbilt 

University's Institutional Review Board approved this study, and all individuals provided written 

informed consent.   

Individual PBMC cryotubes were thawed in 2 mL of warm phosphate buffered saline (PBS, 

Gibco, Life Technologies, Grand Island, NY, USA), pelleted by centrifugation (650 x g), divided 

for immediate ex vivo phenotyping or phenotyping following 16 hours of in vitro SEB (EMD 
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Millipore, Billerica, MA) stimulation, and then pelleted again before resuspension in room 

temperature PBS (ex vivo) or R10 media (in vitro) at 10 x 106 cells/mL.  R10 media contained 

RPMI 1640 Medium (Gibco), 2 mM L-glutamine (Gibco), 50 µg/mL penicillin (Gibco), 50 µg/mL 

streptomycin (Gibco), 10% FBS, and 10 mM HEPES buffer (Thermo Fisher Scientific, Waltham, 

MA, USA).  Cells for ex vivo staining were further divided among flow cytometry tubes (Falcon 

2052, BD-Biosciences, San Jose, CA) for fluorescence or mass cytometry staining, described 

below.  Cells for in vitro culture were stimulated by addition of SEB to achieve a final concentration 

of 1 µg/mL in 200uL of 10 x 106 cells/mL in 48-well flat bottom culture plates (Costar, Corning 

Incorporated, Corning, NY, USA).  After 16 hours of incubation at 37°C in a 5% CO2 incubator, 

cells were removed from the plate, washed twice in PBS, and stained as described below. 

Fluorescence cytometry  

For each healthy donor, 2 x 106 PBMC were stained in 200µL PBS.  PBMC were incubated 

first with a viability dye for 10 minutes (LIVE/DEAD Aqua, Life Technologies), washed once in 

PBS, and then stained with combinations of fluorescently-tagged antibodies (Table 2.1).  For ex 

vivo phenotyping, cells were stained with Panels 1-5 from Table 2.1 (for antibody information see 

Table S2.1).  For phenotyping following in vitro stimulation, cells were stained with Panels 3-5 

from Table 2.1 at 16 hours after addition of SEB.  After staining, all cells were washed twice in 

PBS and fixed with 2% paraformaldehyde (PFA, Electron Microscopy Services, Fort Washington, 

PA, USA) and refrigerated up to 24 hours until analysis on the Special Order Research Product 

(SORP) BD LSRFortessa (BD Biosciences, San Jose, CA) at the Vanderbilt Flow Cytometry 

Shared Resource.   

Mass Cytometry 

For each healthy donor, 2 x 106 PBMC were stained in 50 µL PBS.  PBMC were incubated 

first with a viability reagent (50 µM cisplatin, Enzo Life Sciences, Farmingdale, NY, USA) in 1 mL 

serum-free RPMI for 3 minutes.  Cisplatin was quenched by washing once with RPMI containing 
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10% FBS followed by two washes in PBS.   A master mix containing 21 antibody-metal conjugates 

(Table 2.2, Table S2.1) was added to each sample (50 µL total staining volume) and incubated 

at room temperature for 25 minutes.  Cells were then washed twice with PBS, fixed for 10 minutes  

Table 2.1 - Fluorescence cytometry instrument and antibody panel information 

Instrument characteristics Reagent panels 

Laser 
emission 

and 
output 
power 

Bandwidth 
transmitted 

to PMT 
Fluorochrome 1 2 3 4 5 

639nm        
(40mW) 

750 - 810 
APC-Cy7, 
APC-A750 

HLA-DR CD8 HLA-DR HLA-DR CD8 

663 - 677 APC   CD3 CD3 CD20 CD3 

488nm          
(50mW) 

505 - 550 FITC CD57 CD45RO CD25 CD27   

561nm        
(150mW) 

685 - 735 PE-Cy5.5   CD127       

600 - 620 PETR CD14    CD4
5RO 

750 - 810 PE-Cy7   CD38 CD38  

655 - 685 PE-Cy5   CD62L  CD4 

575 - 590 PE CD16 CD27 CD69 CD86 
CD4
0L 

404nm        
(100mW) 

430 - 470 
PB, BV421, 

V450 
CD3 CCR7 CD8   PD-1 

685 - 735 BV711 CD19   CD19  

595 - 620 BV605  CD4 CD4   

505 - 550 Aqua Live/dead Live/dead Live/dead Live/dead 
Live/
dead 

Five fluorescence cytometry panels were designed to measure PBMC populations with 21 parameters 
comparable to those measured in mass cytometry: 20 fluorophore-labeled antibodies and 1 viability 
marker. Panel 1: PBMC subsets; Panel 2: T cell memory subsets; Panel 3: T cell activation; Panel 4: B 
cell activation; Panel 5: T cell activation and exhaustion. 

with 1.6% PFA at room temperature, washed once with PBS, and then permeabilized at -20°C in 

1 mL 100% cold methanol for 20 minutes.  Following permeabilization, cells were washed at 800 

x g, stained with 250 nM Iridium intercalator (228) (Fluidigm/DVS Sciences, Sunnyvale, CA) for 

16 hours at 4°C, washed twice in PBS, washed once with ddH2O, and then re-suspended in 500 

µL ddH2O for mass cytometry analysis that day.  Cells were filtered immediately before injection 

into the mass cytometr using a 35µm nylon mesh cell-strainer cap (BD Biosciences). 
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Samples were analyzed using a CyTOF 1.0 (Fluidigm Sciences, Sunnyvale, CA) and 

CyTOF software version 5.1.615 (Fluidigm) at the Vanderbilt Flow Cytometry Shared Resource.  

Dual count calibration (on the “data”) and noise reduction (cell length 10-75, lower convolution 

threshold 10) were applied during acquisition.   

Data processing and statistical analysis 

All fluorescence and mass cytometry FCS files were uploaded and evaluated using 

Cytobank software and established methods (207, 229). Data were transformed to arcsinh scales 

with varying cofactors: mass cytometry cofactors ranged from 15 to 50 while fluorescence 

cytometry cofactors ranged from 150 to 3,000.  Software compensation was applied to all 

fluorescence cytometry FCS files.  For viSNE analysis in Figure 2-3, 150,000 total cells were 

analyzed and equal cell numbers were sampled from each FCS file.  8-parameter viSNE maps 

were created using the 8 antibodies listed in Panel 3 of Table 2.1.  GraphPad Prism software 

(GraphPad, La Jolla, CA, USA) was used to determine Spearman’s rank correlation coefficient 

rho (ρ) between fluorescence and mass cytometry values (Table 2.3).  

 

Results 

Fluorescence and mass cytometry panels to track T cell identity-panel design  

Five fluorescence cytometry panels currently in use in our laboratory were used to 

measure 20 well-established cell surface markers chosen to provide a systematic view of T cell 

activation after SEB stimulation (Table 2.1). Fluorochrome and antibody conjugates were chosen 

based upon current availability in the laboratory and their compatibility with the BD LSRFortessa 

at the Vanderbilt Flow Cytometry Shared Resource.   

A single mass cytometry panel was developed to measure the same set of 20 surface 

markers captured by the five fluorescence cytometry panels (Table 2.2).  While mass cytometry  
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avoids the severity of channel overlap that affects fluorescence cytometry, ‘crosstalk’ between 

channels exists.  Crosstalk leads to false signals and must be taken into consideration when 

designing a panel for mass cytometry and gating cellular populations.  The three sources of 

crosstalk result from variations in abundance sensitivity, isotope purity, and oxide formation 

(Fluidigm.com “Maxpar Panel Designer User Guide”).   These types of crosstalk can contribute to 

signal in the M±1 and M+16 masses from the dominant signal at mass M.  To minimize crosstalk 

Table 2.2 - Mass cytometry panel to identify PBMC populations 

  Target Metal Mass Cell type 

1 CD19* Neodymium (Nd) 142 B cells 

2 CD40L* Neodymium (Nd) 143 Activated T cells 

3 CD4  Neodymium (Nd) 145 T helper cells 

4 CD8*  Neodymium (Nd) 146 Cytotoxic T cells 

5 CD20* Samarium (Sm) 147 B cells 

6 CD38 Neodymium (Nd) 148 Activated lymphocytes 

7 CD62L  Europium (Eu) 153 Activated lymphocytes 

8 CD86* Gadolinium (Gd) 156 Activated lymphocytes 

9 CCR7* Terbium (Tb) 159 T cell memory subsets 

10 CD14* Gadolinium (Gd) 160 Monocytes 

11 CD69 Dysprosium (Dy) 162 Activated lymphocytes 

12 HLA-DR Dysprosium (Dy) 163 APCs; activated T cells 

13 CD45RO    Dysprosium (Dy) 164 T cell memory subsets 

14 CD16*  Holmium (Ho) 165 NK cells 

15 CD27* Erbium (Er) 167 T cell memory subsets 

16 CD25  Thulium (Tm) 169 Activated lymphocytes 

17 CD3  Erbium (Er) 170 T cells 

18  CD57* Ytterbium (Yb) 172 T cell memory subsets 

19 PD-1 Ytterbium (Yb) 174 Exhausted T cells 

20 CD127* Ytterbium (Yb) 176 T cell memory subsets 

21 CD45    Samarium (Sm) 154 White blood cells 

22 Nuc acid --Ir  Iridium (Ir) 191/193 DNA+ Cells 

23 Cisplatin Platinum 195 Viable cells 

One panel was used to measure 23 parameters using mass cytometry: 21 metal-
conjugated antibodies, 1 DNA marker, and 1 viability marker (cisplatin). Bolded 
antibodies were custom conjugated using MaxPar Metal Conjugation Kits. “Cell type” 
indicates the type of cell that was identified for correlative purposes with fluorescence 
cytometry data. Asterisks (*) denote when different clones were used in mass and 
fluorescence cytometry.  Bolded antibodies were custom conjugated to metals using 
purified antibodies from BioLegend and metal-labeling kits from Fluidigm. Markers 
#21-23 were not used in direct comparison to similar fluorescence parameters.  
Conjugates were chosen to minimize crosstalk. 
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within this panel, four of the 20 antibodies were custom conjugated to metals (Table 2.2, bolded).     

Single antibody titrations were performed for all fluorochrome-conjugated antibodies 

(FCAs) and metal-conjugated antibodies (MCAs) as needed. As an example, Figure S2.1 shows 

the titration of CD4-Nd145 and CD4-PETR (PE-Texas Red).  CD4-Nd145 was titrated from 0uL to 

0.5uL (recommended amount) with DNA intercalator to identify single cells for analysis (Figure 

S2.1A).  The mean mass intensity (MMI) of the CD4-Nd145+ population shifted from 6.63 to 264.48 

while the MMI of the CD4-Nd145- population stayed between -0.40 and -0.19 (Figure S2.1A and 

S2-1C).  The standard deviation of the CD4-Nd145- population was always below 1 (Figure S2.1A 

and S1C).  With increasing antibody concentrations the frequencies of the CD4-Nd145+ 

populations increased from 0.18% to 60.73% and stain index values increased from 11.78 to 

149.16 (Figure S2.1A and S2-1C).   

A single antibody titration was also performed with CD4-PETR from 0uL to 2uL and FSC 

and SSA properties were used to identify single cells for analysis (Figure S2.1B).  The mean 

fluorescence intensity (MFI) of the CD4-PETR+ population increased from 715.13 to 57736.25 

while the CD4-PETR- population shifted from 113.71 to 898.64 (Figure S2.1B and S2.1C).  The 

standard deviation of the CD4-PETR- population ranged Figure S2.1. Titration of anti-CD4 by 
mass and fluorescence cytometry. 
(A) PBMC were stained with Intercalator 
and different volumes of CD4-Nd145.  
CD4 staining on single cells (as 
identified in Figure 2.2B) is shown as 
detected by mass cytometry. (B) PBMC 
were stained only with CD4-PETR at 
indicated volumes.  Singlets (identified 
as in Figure 2.2A) were analyzed for 
CD4 expression using fluorescence 
cytometry.   (C) The mean mass 
intensity (MMI) and mean fluorescence 
intensity (MFI) of cells within CD4- or 
CD4+ gates are reported.  The standard 
deviation of CD4 intensity in the CD4- 
gate was also calculated (SD (-)).  Stain 
index was calculated using the following 

equation: 
𝑀𝐹𝐼(+)−𝑀𝐹𝐼(−)

2×𝑆𝐷
 (or MMI where 

appropriate).   
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between 100-1100 (Figure S2.1B and S2-1C).  The frequencies of CD4-PETR detected ranged 

from 0.56% to 55.42% and the stain index of CD4-PETR ranged from 2.92% up to 31.07% (Figure 

S2.1B and S2.1C).  The highest stain index was achieved at the 0.5uL concentration (Figure 

S2.1B and S2.1C).   

The remaining MCAs and FCAs were conjugated and titrated in a similar manner (Table 

2(1-2) and Table S2.1).  For fluorescence cytometry, single antibody titrations were performed
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Table 2.3 - Correlations of fluorescent and mass cytometry analysis of percent positive cells for proteins measured on healthy human PBMC 

   Spearman rank Pearson Frequency detected (fluorescent) Frequency detected (mass) 

Antibody Gated off of n 
ρ 

(rho) 
p r p Range 

Mean        
(ex vivo) 

Mean                
(+ SEB) 

Average 
MFI 

Range 
Mean           

(ex vivo) 
Mean                

(+ SEB) 
Average 

MMI 

CD57* Live CD16+ 6 1.00 0.003 0.99 <0.0001 16.15-58.52 33.28 n/a 10178 17.83-51.91 31.18 n/a 290 

CD27 Live CD3+ 6 1.00 0.003 1.00 <0.0001 53.14-89.51 75.05 n/a 13995 52.27-85.02 71.25 n/a 54 

CD45RO Live CD3+ 6 0.94 0.017 0.94 0.005 31.98-59.18 46.98 n/a 5811 30.71-64.83 48.64 n/a 861 

CD3 Singlets 12 0.92 <0.0001 0.92 <0.0001 24.36-74.87 62.24 39.28 5759 30.36-71.58 62.36 36.81 262 

CD62L  Live CD3+ 12 0.90 0.0002 0.93 <0.0001 32.79-79.58 48.60 55.24 18435 28.93-79.03 41.18 53.16 62 

HLA-DR Live CD20+ 12 0.88 0.0003 0.87 0.0002 31.22-98.89 72.74 97.59 20843 56.50-97.07 74.18 91.46 1225 

CD69 Live CD4+CD3+ 12 0.86 0.0006 0.95 <0.0001 0.15-38.46 1.51 29.84 2650 0.26-57.98 0.87 36.27 178 

PD-1 Singlets 12 0.85 0.008 0.72 0.007 6.1-19.16 9.39 13.72 1915 11.65-19.55 16.73 14.69 19 

CCR7* Live CD3+ 6 0.83 0.058 0.96 0.002 35.47-88.22 59.32 n/a 1946 34.41-80.48 59.12 n/a 72 

CD38 Live CD8+CD3+ 12 0.83 0.001 0.96 <0.0001 1.62-86.03 37.64 39.72 8987 3.62-57.63 24.89 22.67 37 

CD40L* Singlets 12 0.81 0.002 0.83 0.0008 0.01-33.58 0.52 18.47 1286 1.47-22.37 4.84 18.13 14 

CD25 Live CD4+CD3+ 12 0.80 0.003 0.92 <0.0001 5.21-30.94 8.58 22.72 1402 0.33-62.31 3.22 33.93 180 

CD20* Singlets 12 0.78 0.004 0.80 0.002 4.15-13.21 7.33 7.82 10756 2.54-11.8 6.91 7.29 145 

CD16* Singlets 6 0.77 0.100 0.67 0.14 4.31-16.92 11.22 n/a 10133 6.55-16.47 9.86 n/a 283 

CD86* Live CD19+ 12 0.76 0.006 0.97 <0.0001 1.87-88.30 3.20 77.48 21763 9.42-80.56 13.06 68.29 54 

CD19* Singlets 12 0.73 0.009 0.78 0.0030 4.07-12.24 6.66 7.46 7264 3.42-13.8 6.15 9.29 307 

CD4  Live CD3+ 12 0.72 0.01 0.74 0.006 51.40-90.09 75.31 73.92 3685 47.41-78.39 63.10 57.25 255 

CD8*  Live CD3+ 12 0.72 0.01 0.79 0.002 9.17-21.49 15.35 13.55 4467 4.28-16.23 16.73 12.85 485 

CD27* Live CD20+ 12 0.69 0.016 0.50 0.09 7.23-38.34 21.67 11.73 1607 5.51-27.04 18.17 11.44 26 

CD127* Live CD3+ 6 0.60 0.240 0.75 0.08 79.16-93.92 86.05 n/a 2130 33.90-61.20 50.81 n/a 8 

CD14* Singlets 6 0.43 0.420 0.23 0.66 2.23-17.69 10.51 n/a 16727 3.42-16.47 11.04 n/a 122 

Antibodies are listed in order of decreasing Spearman's rank correlation coefficient rho (ρ). Asterisks (*) denote when different clones were used in mass and fluorescent 
cytometry.   Bolded antibodies were custom conjugated to metals using purified antibodies from BioLegend and metal-labeling kits from Fluidigm. The starting population of 
cells was used to determine the percent positive of cells for each protein. N indicates the number of values used in the Spearman rank and Pearson analysis: N was 6 when 
only ex vivo data was used (antibodies solely used in Panel 1 or 2, Table 2.1); N was 12 when an ex vivo and in vitro value were used from each subject. 
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for all FCAs and final volumes were chosen based on stain index.  For markers not typically 

expressed on resting T cells (e.g. CD69), antibody titrations were performed on cells stimulated 

in vitro with SEB.  To optimally titrate antibodies in the mass cytometry panel, final concentrations 

were chosen based on the frequency of detected populations (considering their fluorescence 

counterparts), stain index, and crosstalk of each MCA into their M+1, M-1, and M+16 channels.  

For mass cytometry, custom conjugates were titrated in groups as they were created.  PBMC 

were then stained with the full mass cytometry panel (Table 2.2) at recommended volumes and 

adjustments were made as needed for each antibody.  Further titrations were done in groups that 

never included masses within 1 or 16 masses of each other.  As needed for antibodies with non-

bimodal distributions additional antibodies were included to determine optimal staining volumes.  

For example, final adjustments of PD-1 staining volumes were made after plotting PD-1 versus 

CD45RO on CD4+ T cells (Figure S2.2).   

 

 

 

 

 

 

 

 

 

Figure S2.2. Titration of anti-PD-1 by mass and fluorescence cytometry. (A) PD-1-Yb174 staining 
on single cells (as identified in Figure 2A). (B) PD-1-BV421 staining on singlets (as identified in Figure 
2.2B).  (C-D) Since CD45RO helps to gate PD-1+ cells, PBMC were stained with CD3, CD4, CD45RO, 
and various volumes of PD-1.  Optimal staining volumes of PD-1 were chosen based on staining 
patterns of PD-1 on CD4+ T cells (identified as in Figure 2.2A and 2.2B) using mass (C) and 
fluorescence (D) cytometry.  
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Values derived from fluorescence and mass cytometry were closely correlated   

Several factors were taken into consideration when setting gates on mass cytometry data 

to ensure that only true signal was being reported.  In the absence of background signal, the gate 

for a particular metal could theoretically be set at 100.  However, sources of background including 

nonspecific binding of antibodies and crosstalk from other channels require gates to be set at 

least at 101 since the abundance sensitivity for our instrument is 1% and the MMIs of the 

antibodies ranged up to 1000 (data not shown, Table 2.3).  To help determine where a gate should 

be set, mass minus one (MMO) controls can be used to ensure that only signal from a single 

antibody is being detected within a gate.  High-density antigens with bimodal staining patterns 

(MMIs between 102 and 103) did not require MMOs since the mass intensity of the signal was 

significantly beyond 101.   MMOs were especially important, however, when the MCA had a non-

bimodal staining pattern, was a dim antigen, and was at the M+1, M-1, or M+16 position of a MCA 

with an intense, abundant signal.   

Figure 2.1 illustrates how gates were set for such an antibody, CD25-Tm169, using a mass 

minus one (MMO) control.  The frequency of Tm169+ events when PBMC were only stained with 

DNA intercalator and CD4-Nd145 was 0.02% when the gate was set at 101 (dashed line gate) and 

0% when the gate was set at 22 (solid line gate) which represents the actual gate used to identify 

CD25+ cells (Figure 2.1A).  When PBMC were stained with the full mass cytometry panel (Table 

2.2) except CD25-Tm169 –an MMO control—the frequency of Tm169+ events when the gate was 

set at 101 was 2.63% (Figure 2.1B, dashed line gate).  This signal results from crosstalk into Tm169 

by the rest of the panel:  most likely M-1 crosstalk from CD3-Er170 and M+16 crosstalk from 

CD62L-Eu153.  When the gate was set at 22, however, the frequency of non-specific signal was 

reduced to 0.19% (Figure 2.1B, solid line gate).  This gate, which avoided analyzing artifact 

signals, was then used in the full panel to detect true CD25+ events (Figure 2.1C). 

Final decisions for gating took into consideration many factors including crosstalk, 
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fluorescence/mass counterpart staining, company and literature staining pattern data and 

frequencies, and staining patterns off of multiple cell populations (e.g. markers present on certain 

cell types and absent on others).  The staining pattern for CD27 illustrates how gates were set for 

antibodies that were not at the M±1 or M+16 position of another antibody.  Alternatively, the 

staining pattern for CD45RO-Dy164 illustrates gating when considering M+16 crosstalk from CD38-

Nd148 and M±1 crosstalk from HLA-DR-Dy163 and CD16-Ho165.  An MMO was not required here, 

however, since the antigen was highly-expressed and displayed a bimodal staining pattern.  This 

example further demonstrates the need for careful panel design. 

 

Identification of live single cells 

To directly compare mass and fluorescence cytometry, an equivalent starting population 

of live single cells was identified in healthy human PBMC (Figure 2.2).  In fluorescence cytometry 

(Figure 2.2A), forward and side light scatter signal properties were used to identify intact single 

cells and exclusion of the LIVE/DEAD Aqua dye identified live single cells.  In mass cytometry 

(Figure 2.2B), event length and intercalator uptake were used to identify intact single cells and 

Figure 2.1.  MMOs guided gating for CD25 expression on live single CD4+ T cells.  (A) PBMC 
were stained only with DNA intercalator and CD4-Nd145.  Single cells were analyzed for CD25 
expression. The gate with the dashed red line is set at 10, the same as in (B). The gate with the solid 
red line is set at 22, the same place as in (B-C) and Figure 2.2. (B) PBMC were stained with all the 
MCAs (Table 2.2) except CD25-Tm169 (termed a mass minus one (MMO) control). Gates are set the 
same as in (A), and frequencies inside each gate represent non-specific signal in the Tm169 channel. 
(C) PBMC were stained with all the MCAs (Table 2.2) with or without SEB stimulation (the same plots 
from Fig. 2-2 are shown).  
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exclusion of cisplatin (230) identified live single cells.  Although PBMC were stained with CD45-

Sm154 it was not included in analysis since we did not have a comparable marker fluorescently 

and correlations improved between the two technologies when identical phenotypic gating 

strategies were used.  After single cells were identified, live CD3+ cells and CD4+ and CD8+ T 

cells were gated by mass and fluorescence cytometry (Figure 2.2A-B).  Both mass and 

fluorescence cytometry measured comparable increases in CD25 expression following SEB 

stimulation (Figure 2.2C-D).   

Correlation between fluorescence and mass cytometry data 

Statistical correlation between fluorescence and mass cytometry was determined using 

Spearman’s rank (Table 2.3) for all 20 measured proteins.  Samples analyzed in parallel by mass 

and fluorescence cytometry included 12 populations of PBMC from 6 individual healthy donors 

under 2 conditions (unstimulated ex vivo and 16 hours after in vitro SEB stimulation). Frequencies 

of cellular populations identified by 20 MCAs and FCAs were directly compared using biaxial 

gating plots (as in Figure 2.2).  The frequency of each antibody was gated from the same starting 

population, which is indicated in the “gated on” column (Table 2.3).  The range of frequencies 

detected, mean frequencies of unstimulated and stimulated populations, and average intensity of 

each marker by fluorescence and mass cytometry is indicated (Table 2.3).   

Statistically significant correlations were observed for all 9 proteins detected using the 

same antibody clones (custom or commercially conjugated).  Eleven of the metal conjugated 

antibodies in the mass cytometry panel did not match the FCAs in our existing panels, (Table 2.3, 

asterisks) but 9 out of 11 of these antibodies still identified similar frequencies of populations by 

both technologies.   

CD14 and CD127 were the only two antibodies that did not provide consistent values 

between the two technologies.  We compared the two CD14 clones (Tük4-PETR and M5E2-FITC) 

using fluorescence cytometry and found that despite showing bimodal staining patterns they did 
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not detect similar frequencies of CD14+ singlets (N=6, p=0.36, rho=0.49).  When we compared 

the two CD127 clones using fluorescence cytometry (R34.34-PECy5.5 and A019D5-PECy7) we 

found they did in fact detect similar frequencies of CD127+ T cells.  Staining improved dramatically 

with a new lot of CD127-Yb176: the MMI increased from 8 to 65.  Comparison with six new subjects 

with truncated panels demonstrated the frequency of CD127+ T cells detected was highly 

correlative between the two technologies (N=6, p=0.002, r=0.96). These additional experiments 

suggest the two discrepancies we found in Table 2.3 were not due to differences in mass and 

fluorescence cytometry, but far more likely to be due to differences in the particular antibody 

clone, or particular lot of antibody used. 

Figure 2.2. Gating schemes for fluorescence and mass cytometry.  Plots show PBMC from a single 
healthy human donor. (A) Representative biaxial plots show the gating scheme for fluorescence flow 
cytometry.  Intact single cells were gated using forward and side scatter area and height properties.  
Single cells were then assessed for viability and expression of CD3.  This population was further gated 
as CD8+ and CD4+ T cells.  CD25 expression on CD4+ T cells was compared in PBMC from an individual 
healthy donor with or without SEB stimulation. (B) Representative biaxial plots show the gating scheme 
for mass cytometry.  Single cells were identified using event length and intercalator uptake and then 
gated and compared as for fluorescence cytometry. 
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viSNE identified similar frequencies of activated CD4+ T cell populations  

Large data sets resulting from mass cytometry have resulted in the development of new 

computational approaches to analyzing complex single cell data.  Having found a high degree of 

correlation between the two technologies, we next compared the ability of an unsupervised high-

dimensional analysis program, viSNE, to analyze data sets derived from both mass and 

fluorescence cytometry.  viSNE was developed for mass cytometry data and approximates high 

dimensional relationships using a two dimensional scatter plot, or map, where each dot represents 

a single cell (231).  To read a viSNE map, one can visually identify an ‘island’ of cells and then 

determine the cellular identity based on marker expression.   To determine whether viSNE could 

identify similar populations using mass and fluorescence cytometry data sets we chose to study 

frequencies of activated CD4+ T cells. The viSNE map in Figure 2.3 was generated with an equal 

number of cells from the FCS files of each healthy donor before and after stimulation.  The viSNE 

analysis was restricted to eight markers of T cell activation and analyzed FCS files stained either 

with Panel 3 (Table 2.1) or the identical eight markers in the mass cytometry panel (Table 2.2).  

While cells identified by mass cytometry were tagged with greater than eight antibodies, only the 

same eight antibodies from the fluorescence T cell activation panel were considered when 

creating the viSNE maps with mass cytometry data (Figure 2.3B).    

When applied to fluorescence and mass cytometry data, viSNE created similar maps that 

demonstrated patterns of T cell activation.  One fluorescence cytometry viSNE map (Figure 2.3A) 

and one mass cytometry viSNE map (Figure 2.3B) is each shown ten times highlighting the 

intensity of CD3, CD4, CD8, CD69 and CD25 on SEB stimulated (top rows) or unstimulated 

(bottom rows) PBMC.  A gate was drawn (black outline) to highlight the population of activated 

CD4+ T cells.  Cells within this island displayed characteristics of activated CD4+ T cells that 

included little or no CD3, no CD8, moderate CD4, and high expression of CD69 and CD25 (Figure 

2.3A-B).  The activated cells are not present in the unstimulated condition (Figure 2.3A-B) and 
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this is further highlighted both by the frequency and density of cells within the gate on the viSNE 

maps (Figure 2.3C). viSNE identified similar frequencies of activated CD4+ T cells analyzed by 

mass and fluorescence cytometry (p=0.007, ρ=0.74) and all subjects had cells that fell within this 

gate after stimulation (Figure 2.3D).  

 

Dimensionality reduction tools identify cells with non-canonical phenotype 

To determine whether tools other than viSNE would also effectively characterize activated 

T cells, a spanning-tree progression analysis of density-normalized events (SPADE) (210) 

analysis was performed (Figure 2.4) using the same population of cells as in the viSNE analysis. 

Figure 2.3.  viSNE identified activated T cells in 8-dimensional analysis of fluorescence and mass 
cytometry.  (A-B) viSNE plots show unstimulated and SEB stimulated PBMC compared according to 8 
proteins (Table 2.2, Panel 3) detected by fluorescence cytometry (A) or mass (B) cytometry.  For each 
cell, color indicates the intensity of the labeled protein on a rainbow heat scale (arcsinh scales).  
Activated CD4+ T cells (CD3lo/-CD4medCD8-CD69hiCD25hi) are outlined in black.  Maps from one 
representative donor are shown. (C) Maps displaying density of cells from the same donor by 
fluorescence and mass cytometry highlight the absence of activated cells in the unstimulated condition. 
(D) SEB induced T cell activation in all 6 individuals, with similar percentages measured by fluorescence 
and mass cytometry (Wilcoxen matched pairs t-tests p=n.s). 
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SPADE was applied to live CD45+ PBMC from 6 healthy donors and included both unstimulated 

and SEB stimulated cells (Figure 2.4).  While viSNE analysis showed individual cells, SPADE 

analysis clustered cells based on their similarity in high-dimensional space into various nodes 

(22). Clusters of cells identified by SPADE were based on expression of the 21 markers used in 

the SPADE analysis (Figure 2-4A).  Two different clusters of CD8+ T cells (termed P1 and P2, 

outlined in green and blue, respectively) and CD4+ T cells (P3 and P4, outlined in dark and light 

pink, respectively) were identified by SPADE (Figure 2-4A).  To determine whether these CD4+ 

and CD8+ T cell populations were similar to the cells we found in the viSNE islands, expression 

of CD3 and activation markers was evaluated (Figure 2-4B-C). Figure 5B shows evaluation of 

these cells for CD3 and the activation marker CD69.  These plots illustrate that populations P2 

and P4 on the SPADE plots displayed an activated phenotype with downregulated CD3 (Figure 

2-4B). Further, populations P1 and P3 had a resting phenotype with high expression of CD3.  In 

the unstimulated condition, the P2 population made up only 0.4% of total CD8+ T cells, whereas 

in the SEB stimulated condition, P2 comprised 32.7% of the CD8+ population.  Likewise, P4 made 

up 0.2% of CD4+ T cells in the unstimulated condition and 51.9% of CD4+ T cells in the SEB 

stimulated condition.  These results indicate that T cells with an activated phenotype were rare 

prior to stimulation and greatly expanded in the SEB stimulated condition.  A heat map of median 

expression of all 21 proteins along with CD45 showed that the identified cells also expressed 

activation markers in addition to CD69 and contained cells with various memory statuses (Figure 

2-4C). Thus, both SPADE and viSNE effectively identified T cells lacking the canonical marker, 

CD3, following SEB stimulation. 
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Figure 2.4. SPADE characterized T cells with down regulated CD3.   
(A) Live CD45+ PBMC were analyzed by the dimensionality reduction and clustering tool SPADE.  
Unstimulated (top) and SEB stimulated (bottom) cells from six healthy donors were grouped according 
to expression of 20 proteins (Table 2.1).  Circle size indicates the number of cells in each cluster and 
color indicates CD3 expression on the population of cells clustered in the circle (arcsinh scale).  
Populations of CD4+ and CD8+ formed distinct groups and were labeled P1-P4.  (B) Biaxial plots show 
the expression of CD3 and CD69 on cells from P1-P4 of the SPADE tree as well as all CD8+ or CD4+ T 
cells.  (C) A heatmap displays the median intensity of all 20 measured proteins for CD4+ and CD8+ T 
cell populations identified by SPADE. US = unstimulated.  Populations P1 (green) and P2 (blue) were 
CD8+ T cells with a resting or activated phenotype, respectively (arcsinh scale).  Populations P3 (dark 
pink) and P4 (light pink) were CD4+ T cells with a resting or activated phenotype, respectively.   
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Discussion 

 The ability to combine high-dimensional single cell biology with unsupervised analysis 

approaches is powering a new era of systems immunology.  Here, a high-dimensional mass 

cytometry panel was developed to track human T cell responses after in vitro stimulation with 

superantigen.  The frequencies of markers detected with 20 antibodies within the mass cytometry 

panel were compared on a one-to-one basis with antibodies from five fluorescence cytometry 

panels.  The resulting data indicate that mass and fluorescence cytometry data are highly 

comparable.  We also show that unsupervised viSNE analysis provides valuable insight into single 

cell data, regardless of the instrumentation used to collect that data. The 20 antibody T cell panel 

developed and validated in this study is expected to be particularly useful for detailed 

characterization of human T cell populations in a variety of settings such as longitudinal immune 

monitoring of viral infections, immune disorders, and cancer.   

 Mass cytometry has the potential to greatly expand the number of observable features on 

small populations of cells (191).  Recent studies achieved 38- and 44-parameter single cell 

analysis using mass cytometry (200, 219).  Alternatively, the number of measurable parameters 

using polychromatic fluorescence cytometry has increased to 20 and is growing still with the 

advent of new instruments and fluorochromes (232). We previously used multiparameter 

fluorescence flow cytometry with many of the same markers used in this study to evaluate the 

activation status of subpopulations of virus-specific T cells in memory compartments of peripheral 

blood (233-236) and cerebrospinal fluid (237, 238).   Here, we used previously established panels 

in our laboratory that focused on T cell memory and markers of immune activation to provide a 

detailed comparison of mass and fluorescence cytometry.   

 A high dimensional mass cytometry approach provided equivalent per-marker and per-

subset information when compared directly with traditional fluorescence cytometry (Figure 2-2, 

Table 2.3).  For example, the average difference in CD3+ cells detected by both technologies was 
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4.8% even though healthy variation before and after stimulation spanned a range of 25-75%.  The 

findings in this study align well with published comparisons of mass and fluorescence cytometry 

(9, 174, 224).  Other than expected differences due to using different antibody clones, the minor 

discrepancies observed between the two technologies (Table 2.3) likely resulted from differences 

in gating for ‘live single cells’.  Prior to viability gating, fluorescence cytometry employed forward 

and side scatter while mass cytometry employed DNA content and cell length (Figure 2.2).  

Overall, these results provide further support for the concordance between the two technologies.    

 We demonstrate that the high-dimensional visualization tool, viSNE, was still effective 

even in a ‘low-dimensional’ 8-parameter analysis. Amir and colleagues demonstrated previously 

that viSNE successfully identifies blood cell populations even when using non-canonical markers 

(231).  This ability to detect obscure or unexpected cells is one of the most powerful attributes of 

new unsupervised analysis programs (208).  In this study, viSNE identified activated CD4+ T cells 

based on their multidimensional phenotypes without requiring cells to express CD3.  Additionally, 

viSNE returned comparable results with mass and fluorescence cytometry data considering 8 

parameters, further strengthening the correlations of antibody detection between the two 

platforms.  Going forward, familiarity with these tools, and learning their strengths and 

weaknesses, is likely to become a core skill for immunologists, especially since they apply well to 

any type ‘event list’ format data, such as single cell cytometry data from flow and imaging 

instruments. 

 The dynamic, biological changes that characterize signaling responses can create 

analysis challenges for both humans and machines. An important aspect of this study was the 

resolution of T cell responses to SEB superantigen stimulation.  This type of study provides a 

model for studies where immune cells are stimulated in vivo by therapies or chronic inflammation 

and ex vivo in laboratory analysis.  Induced changes in protein markers typically considered ‘core 

identity markers’, such as CD3 downregulation on T cells, are common following leukocyte 
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activation.  Loss of ‘standard’ markers might complicate traditional analysis workflows that are 

dependent on univariate or bivariate gating.  Bivariate gating is particularly susceptible to this 

issue as lack of one marker can exclude a cell from further downstream analysis.  For example, 

one recent mass cytometry study of T cells stimulated by PMA/ionomycin or anti-CD3 focused on 

CD3+ cells and did not include CD3lo/- cells from biaxial and SPADE analysis (239).  Here, a 

multidimensional analysis strategy robustly identified cell populations, including CD3lo/- T cells, 

whose phenotype had shifted following stimulation (Figure 2-3, 4). In this case, results confirmed 

an expression pattern of activated T cells whose phenotype has been well understood for some 

time (193, 240-242). Similarly, a recent study used SPADE to determine the phenotype of human 

tonsillar T cells actively infected with varicella zoster virus (VZV) (222).  In that study, cells infected 

with VZV showed decreased expression of CD3 while other markers, such as PD-1 and CD69 

were increased. This study along with ours highlight the importance of analysis approaches that 

characterize all cells, even those with novel, unexpected, and poorly understood phenotypes 

(208).  Furthermore, our results indicated that high-dimensional analysis tools were valuable for 

both fluorescent and mass cytometry data analysis (Figure 2-3). 

 One disadvantage to mass cytometry is that the samples must be destroyed for analysis, 

so this technology is not suitable for cell sorting.  Hence, these should be viewed as 

complementary technologies. After identification of cell populations of interest with an extensive 

mass cytometry panel and high dimensional analysis with unsupervised algorithms, more focused 

fluorescence cytometry panels can be designed to sort cells for further analysis (226, 234, 235, 

243). For this approach to work, however, it will be necessary to have matched panels of 

antibodies that can reliably detect the same markers with each technology, and we demonstrate 

that this is feasible.   

 This combination of single-cell measurements and computational analysis 

provides a framework for systematic characterization of the complex, dynamic phenotypes that 
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exemplify immune responses.  The ability of viSNE and SPADE to detect shifts in populations as 

a result of stimulation suggests they will be indispensable analysis tools for going forward in 

detecting perturbations in protein expression in both health and disease.  This rigorous 

comparison of mass and fluorescence cytometry suggests that the technologies are highly 

comparable.  Traditional biaxial gating and an unsupervised high-dimensional analysis approach, 

viSNE, identified similar patterns of protein expression and frequencies of cellular populations in 

superantigen stimulated human blood.  These results demonstrate that multidimensional analysis 

using either platform will be particularly useful for the comprehensive characterization of cells, 

including cells with dynamic or unexpected cell phenotypes in health and disease. 
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Table S2.1 - Antibody-metal and antibody-fluorophore information 

Target Conjugate Clone Source 
Unitless 
Dilution 
Used 

Final 
Concentration 

(ng/mL) 

CD19 142Nd HIB19 DVS 1:100 12.5 
CD40L 143Nd 24-31 BioLegend 1:100 2000 
CD4 145Nd RPA-T4 DVS 1:100 20 
CD8a 146Nd RPA-T8 DVS 1:1000 2 
CD20 147Sm 2H7 DVS 1:100 30 
CD38 148Nd HIT2 BioLegend 1:100 4000 
CD62L 153Eu DREG-56 DVS 1:200 3.75 
CD45 154Sm HI30 DVS 1:2000 1.25 
CD86 156Gd IT2.2 DVS 1:200 1500 
CCR7 159Tb G043H7 DVS 1:200 25 
CD14 160Gd M5E2 DVS 1:67 30 
CD69 162Dy FN50 DVS 1:1000 2.5 

HLA-DR 163Dy L243 BioLegend 1:100 2000 
CD45RO 164Dy UCHL1 DVS 1:200 25 

CD16 165Ho 3G8 DVS 1:200 3.75 
CD27 167Er L128 DVS 1:50 15 
CD25 169Tm 2A3 DVS 1:400 1.5 
CD3 170Er UCHT1 DVS 1:133 5.625 
CD57 172Yb HCD57 DVS 1:400 1.875 
PD-1 174Yb EH12.2H7 BioLegend 1:100 1000 

CD127 176Yb A019D5 DVS 1:50 12 
Nucleic 

Acid 
191/193Ir n/a DVS 1:50 250nM 

Live/dead 195Pt n/a 
Enzo Life 
Sciences 

1:500 50uM 

CD19 BV711 SJ25C1 BD 1/40  300 
CD40L PE Trap1 BD 1/200 62.5 
CD4 BV605 RPA-T4 BD 1/100 500 
CD4 PECy5 RPA-T4 BD 1/200 15 
CD8 APCA750 3B5 Invitrogen 1/400 1000 
CD8 V450 RPA-T8 BD 1/200 250 
CD20 APC L27 BD 1/200 200 
CD38 PE-Cy7 HIT2 eBioScience 1/800 250 

CD62-L PE-Cy5 DREG-56 BD 1/100 60 

CD86 PE 
2331 (FUN-

1) 
BD 1/40  250 

CCR7 BV421 150503 BD 1/40  625 
CD14 PETR TüK4 Invitrogen 1/4000 25 
CD69 PE FN50 BD 1/100 30 

HLA-DR APCy7 L243 BioLegend 1/100 2000 
CD45RO FITC UCHL1 BD 1/20  2500 
CD45RO PETR UCHL1 Beckman Coulter 1/400 50 

CD16 PE B73.1 BD 1/2000 50 
CD27 PE M-T271 BD 1/40  625 
CD27 FITC M-T271 BD 1/400 1250 
CD25 FITC 2A3 BD 1/400 25 
CD3 PB UCHT1 BD 1/100 2000 
CD3 APC UCHT1 BioLegend 1/800 600 
CD57 FITC NK-1 BD 1/40  312.5 
PD-1 BV421 EH12.2H7 BioLegend 1/100 500 

CD127 PE-Cy5.5 R34.34 Beckman Coulter 1/400 1000 



60 

 

Viability V500 n/a Invitrogen 1/2000 proprietary 

Information for all staining reagents. Unitless dilutions were chosen based on the highest stain 
index (fluorescently) for each antibody determined by single antibody titrations.  Final 
concentrations were calculated using the concentration of each reagent (specific to Lot #) 
provided by each source.    
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Introduction 

 In Chapter II, I developed a mass cytometry panel that faithfully recapitulated 5 

fluorescence flow cytometry panels for a high-dimensional view of stimulated, human T cells. 

Combined with dimensionality reduction tools SPADE and viSNE, I was able to identify stimulated 

T cells, even though they had lost canonical marker of T cell identity, CD3. With experimental 

evidence that this work flow could capture stimulated T cells, I next wanted to test it in a clinical 

setting where T cells were stimulated in vivo.  To do this, mass cytometry, viSNE, and phospho-

flow were used to characterize the cellular phenotype and dissect mechanism of response of a T 

cell neoplasm to a small molecule inhibitor. 

T-cell neoplasms are known for their clinically aggressive behavior and for their high risk 

of relapse and resistance to conventional cytotoxic regimens. Adult patients with precursor 
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neoplasms such as acute T-cell lymphoblastic leukemia (T-ALL) or with mature neoplasms such 

as T-cell non-Hodgkin lymphoma (T-NHL) have 5-year 20-30% survival even after intensive multi-

agent chemotherapy (244-249). There are rare exceptions to these dismal outcomes such as 

children and adolescent T-ALL and anaplastic large cell lymphoma (ALCL) with unique gene 

rearrangements (i.e. ALK+ or DUSP22+) where 5-year survival rates are over 70-80% with similar 

chemotherapy regimens (248, 250, 251). However, relapsed disease is very challenging to cure. 

Clearly, novel therapeutic approaches are needed and the development of commercially available 

next generation sequencing has raised the possibility of genomically-directed therapy that may 

be applied to T-cell leukemias and lymphomas.  Genomic profiling has been performed on several 

histopathologic subtypes of T-cell leukemias and lymphomas to better characterize the molecular 

genetics (252-256). Interestingly, recent genomic profiling has discovered frequent aberrations 

within the JAK-STAT pathway in both precursor (T-ALL) and mature T-cell neoplasms (T-NHL) 

suggesting JAK kinase inhibition may be important therapeutically(257).  

Janus Kinases are encoded by 4 paralogous genes, JAK1-3 and TYK2. These tyrosine 

kinases are recruited to cytokine receptors where they transduce signals by phosphorylation of 

key substrates, most importantly, Signal Transducer and Activator of Transcription (STAT) 

proteins that bind DNA and regulate gene expression. JAK1 mutations have been found in 10% 

of childhood T-ALL (258). Our lab and others have found JAK3 mutations in cutaneous T-cell 

lymphoma (CTCL), adult T-cell leukemia/lymphoma (ATLL), T-cell prolymphocytic leukemia (T-

PLL), and NK/T-cell lymphoma (NKTL) (259-263). Analyses of human leukemia lines and mouse 

models show that JAK mutations are typically activating, causing constitutive signal transduction, 

which may be blocked by tyrosine kinase inhibitors. Two such ATP-competitive inhibitors have 

been approved by the U.S. FDA for human use. Ruxolitinb is approved for use in 

myeloproliferative neoplasms and tofacitinib is approved for rheumatoid arthritis (264, 265). 

In this study, we deployed a commercially available hybrid-capture/next generation 
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sequencing platform to characterize major recurrent oncogene and tumor suppressor aberrations 

in 91 T-cell neoplasms. This targeted approach found 33% of cases had JAK-STAT abnormalities 

including missense mutations in JAK1, JAK3, rearrangements in JAK2 and JAK3, and missense 

mutations and amplifications of STAT3 and STAT5. We analyzed an index case of T-cell 

prolymphocytic leukemia (T-PLL), a deadly mature T-cell neoplasm with both JAK1 and JAK3 

gain of function missense mutations (266). This patient’s T-PLL had progressed on multiple lines 

of chemotherapy but responded to ruxolitinib, a JAK1/2 inhibitor. The patient eventually relapsed 

due to clonal expansion of T-PLL cells with gain of function of JAK3 and downregulation of CD45. 

Our study is the first to demonstrate an in vivo response to ruxolitinib in a T-cell neoplasm, which 

underscores the importance of the IL2RG/JAK1/JAK3 cytokine pathway in the pathogenesis of T-

cell neoplasms, and supports inhibition of JAK enzymes as therapy. 

 

Materials and Methods 

Patient samples, processing, sequencing. Patient peripheral blood or bone marrow was banked 

after informed consent under a protocol approved by the Vanderbilt Institutional Review Board. 

Workflows have been described as the commercially available FoundationOne® and 

FoundationOne® Heme assays. DNA and RNA were extracted from fresh liquid specimens (blood 

or bone marrow aspirate).  Adaptor-ligated libraries were created from DNA and cDNA as 

described (267).  Libraries were sequenced on Illumina HiSeq2500 to >500x coverage depth for 

DNA and >3M unique pairs for cDNA.  DNA and RNA sequence data were processed using a 

customized analysis pipeline designed to accurately detect multiple classes of genomic 

alterations, specifically base substitutions, indels, focal gene amplifications, homozygous gene 

deletions, gene fusions, and genomic rearrangements (267).  

Gene expression. Our RNA-seq workflow has been previously described and is also detailed in 

the supplement (268). Whole RNA was prepared from T-PLL cells with Trizol (Invitrogen). Total 
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RNA quality was analyzed on a 2100 Bioanalyzer (Agilent); 200 ng of DNase-treated total RNA 

with a RNA integrity number greater than 7 was used to generate polyA-enriched mRNA libraries 

using TruSeq Stranded mRNA sample kits with indexed adaptors (Illumina). Library quality was 

assessed using the Bioanalyzer and libraries were quantitated using KAPA Library Quantification 

Kits (KAPA Biosystems). Pooled libraries were subjected to 50 bp single-end sequencing using 

manufacturer’s protocol (Illumina HiSeq2500). De-multiplexed Fastq files containing purity-filtered 

reads were generated with CASAVA software (Illumina). Construction of indexed bam files and 

alignment were done as described (268). Differential gene expression was analyzed using 3 

different statistical methods as described (269). 

Antibodies and staining. See supplemental Tables S3.1 and S3.2 for list of antibodies used in this 

study. Cell staining is described in supplement.  

 

 

Mass Cytometry and phospho-flow. Immediately prior to running on the mass cytometer, cells 

were resuspended at approximately 0.8x106 cells/mL in EQTM Four Element Calibration Beads 

(Fluidigm Sciences).  Calibration beads were used to correct signal fluctuation as previously 

described (270). All data were analyzed with Cytobank software (www.Cytobank.com). ViSNE 

analyses were performed as described (231). All surface markers were used to create the viSNE 

map with the exception of CD107a. Protein expression on the viSNE maps is shown with an 

arcsinh transformation. Stimulation and detection of phospho-protein signaling was performed as 

previously described (271). After staining, cells were washed twice in PBS and run on a 5-laser 

Table S3.1. List of select antibodies used in flow cytometry in this study. 

Antigen/Antibody Fluorescent conjugate Vendor Cat No. 
CD3/ UCHT1 PE-Cy7 BD Pharmingen 555333 
CD4/ RPA-T4 BV605 BD Horizon 562659 
CD45/ HI30 BV395 BD Horizon 563791 

P-STAT1/ KIKSI0803 eFluor 660 eBioscience 50-9008-41 
P-STAT5/ 47 PE BD Phosflow 612567 
P-STAT6/ 18/P-Stat6 PerCP-Cy5.5 BD Phosflow 561195 

http://www.cytobank.com/
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LSRII (Becton Dickinson). Data were analyzed with Cytobank software.  Median fluorescent 

intensities were arcsinh-transformed and fold change calculated by the table’s minimum value 

(272).  

 

Table S3.2. List of conjugated antibodies and their target antigens used in mass cytometry. 

Conjugate  Antigen Antibody clone Vendor Cat no. 

141Pr CCR6 (CD196)  G034E3 Fluidigm 3141003A 

142Nd CD19  HIB19 Fluidigm 3142001B 

143Nd CD117 (c-Kit) 104D2 Fluidigm 3143001B 

144Nd CCR5  NP-6G4 Fluidigm 3144007A 

145Nd CD4  RPA-T4 Fluidigm 3145001B 

146Nd CD8a  RPA-T8 Fluidigm 3146001B 

147Sm CD20  2H7 Fluidigm 3147001B 

148Nd CD34 581 Fluidigm 3148001B 

149Sm CCR4 (CD194)  205410 Fluidigm 3149003A 

150Nd CD43  84-3C1 Fluidigm 3150006B 

151Eu CD107a  H4A3 Fluidigm 3151002B 

152Sm TCRgd  11F2 Fluidigm 3152008B 

153Eu CD45RA  HI100 Fluidigm 3153001B 

154Sm CD45    HI30 Fluidigm 3154001B 

156Gd CXCR3 (CD183) G025H7 Fluidigm 3156004B 

158Gd CD33  WM53 Fluidigm 3158001B 

159Tb CCR7  G043H7 Fluidigm 3159003A 

160Gd CD14 M5E2 Fluidigm 3160001B 

162Dy CD69 FN50 Fluidigm 3162001B 

164Dy CD45RO    UCHL1 Fluidigm 3164007B 

165Ho CD16  3G8 Fluidigm 3165001B 

166Er CD44  BJ18 Fluidigm 3166001B 

167Er CD27  O323 Fluidigm 3167002B 

168Er         

169Tm CD25  2A3 Fluidigm 3169003B 

170Er CD3  SP34-2 Fluidigm 3170007B 

171Yb         

172Yb  CD57  HCD57 Fluidigm 3176019B 

174Yb HLA-DR  L243 Fluidigm 3174001B 

175Lu CXCR4    12G5 Fluidigm 3175001B 

176Yb CD127  A019D5 Fluidigm 3176004B 
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Briefly, samples were thawed and 2x106 were removed for immunophenotyping by mass 

cytometry and remainder of the sample was used for phospho-flow cytometry. Cells rested for 30 

minutes at 37 °C prior to stimulation. Cells were aliquoted into FACs tubes and allowed to rest for 

5 additional minutes. Signaling was activated by stimulation with 20 ng/mL (final concentration) 

of IL-2, IL-4, IL-7, IL-9, IL-21, or IFNγ for 15 minutes at 37 °C.  Signaling was stopped by fixation 

with the addition of a final concentration of 1.6% paraformaldehyde (Electron Microscopy 

Sciences) and incubation for 15 minutes at room temperature.  Cells were washed twice with 

PBS/1% BSA and permeabilized with >90% ice-cold methanol. Cells were rehydrated in PBS and 

washed once in PBS/1%BSA. Cells were stained with 50 μL PBS/1% BSA containing antibody 

cocktail for 30 minutes at room temperature (protected from light). See supplemental Table below 

for list of antibodies used in this study. 

Phosphatase enzyme assay and inhibitor studies. Frozen pre- and post-treatment T-PLL cells 

and Jurkat cells were lysed in hypotonic buffer and cytosol prepared as described (273). 

Ruxolitinib and tofacitinib were purchased from Selleck Chemicals and working solutions 

prepared in DMSO. T-PLL cells were plated in RPMI/10%FCS and treated with DMSO alone or 

varying concentrations of drug. Cell viability was quantified by CyQuant assay as described (260, 

273). Statistical analyses were performed with GraphPad Prism. 

Results 

Genomic profiling of T-cell leukemias and lymphomas 

We analyzed 91 cases of diverse T-cell leukemias and lymphomas for alterations in 405 

cancer-causing genes by comprehensive hybrid capture of genomic DNA followed by next 

generation sequencing. Based on WHO’s classification scheme, our cohort was comprised of 25 

precursor T-cell neoplasms (i.e. T-ALL, acute lymphoblastic leukemias) and 66 mature T-cell 

neoplasms: angioimmunoblastic lymphoma (AITL, n=8), anaplastic large cell lymphoma (ALCL, 
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n=7), cutaneous T-cell lymphoma (CTCL, n=14), peripheral T-cell lymphoma (PTCL, n=16), T-

cell large granular leukemia (T-LGL, n=11), T-cell prolymphocytic leukemia (T-PLL, n=7), and 

NK/T-cell lymphoma (NK/T, n=3). Our cohort showed a marked male predominance for both 

immature and mature T-cell neoplasm consistent with the epidemiology of these cancers (274, 

275). Samples were sequenced at a mean exon depth of 489x by Illumina HiSeq. As shown in 

Figure 3.1, the most common gene alterations were CDKN2A/B followed by TET2, NOTCH1, 

JAK3, TP53, STAT3, NRAS, DNMT3A, JAK1, RHOA, MLL2, and others.   

We compared the frequencies of gene alterations between immature (T-ALLs) and mature 

T-cell neoplasms. NOTCH1 (48% v. 3%, P=0.0001), FBXW7 (16% v. 1.5%, P=0.0191), and 

NRAS (24% v. 4.5%, P=0.0117) mutations were more frequent among T-ALL cases compared to 

mature T-cell neoplasms. STAT3 mutations (0 v. 18%, P=0.032) were more common in mature 

T-cell neoplasms; 31.8% (29/91) of our cases had alterations in the JAK-STAT pathway.  JAK3 

B 

Figure 3.1. Targeted next generation sequencing of T-cell neoplasms. A, bar graph shows the 
frequency of genetic aberrations (color coded) in 91 samples of T-cell leukemias or lymphomas. Y-axis 
shows percent of total samples. B, tile plot shows recurrent genetic aberrations in all 91 cases. Lines 
bracket immature T-cell neoplasms that are T-cell acute lymphoblastic leukemias (T-ALL). X-axis shows 
T-cell neoplasm subtype of each individual case: AITL: angioimmunoblastic T-cell lymphoma; ALCL: 
anaplastic large cell lymphoma; CTCL: cutaneous T-cell lymphoma; NKT: NK/T-cell lymphoma; PTCL: 
peripheral T-cell lymphoma; T-ALL; T-LGL: T-cell large granular leukemia; T-PLL: T-cell prolymphocytic 
leukemia. Y-axis shows genes with boxes colored red for substitution/Indels (insertions or deletions), green 
for gene amplifications, blue for homozygous deletion, purple for truncation, and yellow for gene fusion or 
rearrangement as noted in panel A. 
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was the most commonly mutated kinase in our cohort, involving 13% (12/91) of cases, followed 

by JAK1, which was mutated in 7.7% (7/91). We found 2 cases of JAK2 rearrangement (CTCL, 

T-ALL cases) and 5 cases of ABL1 rearrangements (1 CTCL, 1 T-PLL, 4 T-ALLs). JAK3 mutations 

were present in similar frequency in T-ALL compared to mature T-cell neoplasms (Fisher exact 

test, P=0.19) but were highly frequent in certain mature T-cell neoplasms such as T-PLL (5/7, 

71% cases). Interestingly, all 5 cases of T-PLL had the M511I JAK3 mutation; all of the JAK3 and 

JAK1 mutations were in the COSMIC database, frequently within the pseudokinase domains of 

the proteins (Figure 3.2)(276). We had previously identified JAK3 missense mutations in CTCL 

and ATL(259). Focal STAT3, STAT5A, and STAT5B amplifications were identified in 2 cases 

(CTCL and ALCL), in addition to missense mutations within the SH2 domains of STAT3 and 

STAT5B, such as STAT3 D661Y/V in T-LGL (Figure 3.2). STAT5 and STAT3 gene alterations 

were mutually exclusive with JAK1 or JAK3 mutations. PTCL6 had mutations in STAT3 and JAK1 

at 7% allele frequencies, respectively, and were likely separate clones. JAK1 and JAK3 mutations 

were observed in the same tumor in 5 

Figure 3.2. Frequent missense 
mutations in JAK1, JAK3, STAT5B, and 
STAT3. Schematic shows protein domain 
structures of JAK3, JAK1, STAT5B, and 
STAT3. Gray lines under the schematics 
show exon numbers above and amino acid 
numbers below; JAK3’s exons are not 
shown due to differential splicing. Missense 
mutations are denoted by red circles with 
codon changes as shown. For JAK 
proteins, FERM denotes the conserved 
domain named for its founding members 
(Band 4.2, Ezrin, Radixin, and Moesin); 
SH2 stands for Src Homology domain 2, 
JH2 denotes JAK Homology domain 2 
(also known as the pseudokinase domain), 
followed by JH1 for JAK Homology domain 
1, the functional kinase domain. For STAT 
proteins, STAT-int denotes STAT 
interaction domain, α, alpha-helical 
domain, DNA-binding domain, followed by 
SH2 or Src Homology domain 2.  
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cases but concordant mutations in the same cell could not be confirmed. JAK3 mutations were 

concordant with mutations in TP53 in 4 cases, NOTCH1 mutations in 4 cases, and CDKN2A 

deletion in 3 cases.   

Exceptional response of a JAK1 mutant T-cell prolymphocytic leukemia 

We evaluated a 62-year-old woman in our clinic with relapsed T-PLL. She presented with 

constitutional symptoms, splenomegaly, and leukemic blood counts that had risen over 

150,000/µl progressing through alemtuzumab, CHOP (cyclophosphamide, doxorubicin, 

vincristine, prednisone), romidepsin, and pralatrexate. The T-PLL cells were 

CD2+CD3+CD4+CD7+CD8-CD56-CD57- (Figure 3.3A), had clonal T-cell receptor rearrangement 

(data not shown), and infiltration of bone marrow (Figure 3.3B-E). We analyzed the T-PLL cells 

(90% of PBMC) by hybrid capture followed by next generation sequencing. As shown in Figure 

3.3F, the T-PLL cells had a JAK1 V658F mutation at 40% allele frequency and a JAK3 M511I 

mutation at 5%. Other notable mutations were in ATM and TP53 at allele frequencies of 92% and 

78%, respectively, suggesting loss of heterozygosity. Both JAK1 and JAK3 mutations had been 

described in hematologic malignancies and proven to be oncogenic in various assays (263, 276-

278). The clonal JAK1 mutation could be targeted by ruxolitinib, a kinase inhibitor with activity 

against JAK1/2(264). The patient was agreeable to this off-label therapy and started on 20 

milligrams twice daily; her peripheral count (90% T-PLL) declined from 142,000 to 85,000 within 

5 days. By 7 days her spleen, which was 4 cm below the costal margin prior to therapy, was no 

longer palpable. She experienced no adverse effects from ruxolitinib and her leukocyte count 

stabilized to ~60,000 for over 110 days. For the 100 days prior to ruxolitinib therapy, she required 

10 apheresis units of platelets and 7 units of packed red blood cells whereas on ruxolitinib therapy, 

she received 3 apheresis units of platelets and 2 units of PRBCs. Unfortunately, by day 116, her 

leukemic blood count increased to 116,000 and a bone marrow biopsy confirmed relapsed 

disease (Figure 3.3G).  The patient developed worsening thrombocytopenia that did not respond  
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Figure 3.3. A remarkable case of T-cell 

prolymphocytic leukemia (T-PLL) that 

responded to specific JAK1 inhibitor, 

ruxolitinib. A, dot plots show the 

immunophenotype of the patient’s T-PLL 

cells at presentation as analyzed by flow 

cytometry; T-PLL cells were interpreted as 

TdT- CD1- CD3+ CD5+ CD7+ CD4+. B, 

photomicrograph of patient’s peripheral 

blood smear. C, photomicrograph of the 

patient’s bone marrow biopsy showing 

marked hypercellularity. D, shows bone 

marrow aspirate with homogeneous cells. 

E, bone marrow aspirate at high power 

shows neoplastic cells with fine chromatin 

and prominent nucleoli. F, table shows 

Foundation One panel analysis of patient’s 

T-PLL cells before (pre-rx) and after (post-

rx) ruxolitinib treatment. Major gene 

mutations are shown with their MAF, major 

allele frequencies and the number of 

reads. For example, JAK1 V658F was 

present in the pre-ruxolitinib sample at 

40% supported by 772 reads. G, shows a 

plot of the total leukocytes for the patient; 

y-axis shows cells number (x103); gray 

brackets show the normal range of 

peripheral leukocyte number. X-axis 

shows time in days with some clinical 

features highlighted. Purple arrows time 

points of physical exams showing palpable 

spleen 4 cm below costal margin prior to 

ruxolitinib therapy, which was not palpable 

after treatment. Blue arrows show the time 

of first FoundationOne analysis, start of 

ruxolitinib therapy, and 

FoundationOneHeme panel analysis at 

relapse. H, shows bar graphs of patient’s 

T-PLL cells treated in vitro with varying 

concentrations of ruxolitinib (left panel) or 

tofacitinib (right panel) shown in molar, M. 

Y-axis shows cell viability; blue bars show 

pre-ruxolitinib and red bars show post-

ruxolitinib/relapse samples. Error bars are 

SEM of three independent experiments. 
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to cytotoxic chemotherapy, and succumbed to her disease. Acquired resistance to ruxolitinib and 

the pan-JAK inhibitor, tofacitinib, was cell-intrinsic since it was observed ex vivo. Pre-treatment 

T-PLL cells were more sensitive to ruxolitinib (IC50=3.85x10-8 M) and tofacitinib (IC50=8.64x10-8 

M) compared to post-treatment cells (IC50rux=4.21x10-7 M; IC50tof=2.86x10-6 M, P<0.0001) 

(Figure 3.3H). 

Genetic and immunophenotypic analysis of resistance to ruxolitinib therapy  

At relapse, the JAK3 M511I allele frequency had increased from 5% to 28%, whereas the 

allele frequency of JAK1 V658F had decreased from 40% to 18% in the T-PLL cells (Figure 3.3F). 

TP53, ATM, and other mutational frequencies did not change. We analyzed the pre- and post-

ruxolitinib T-PLL cells by RNA-seq where the steady state abundance of mutant mRNAs 

approximated the allele frequencies.  We analyzed the patient’s pre- and post-ruxolitinib/relapse 

T-PLL cells for 28 cell surface antigens by mass cytometry. We analyzed the multidimensional 

staining pattern by viSNE, an algorithm that maps cells on to a 2-dimensional plot (231). PBMCs 

from healthy donors stratified into distinct cell populations corresponding to specific lineages: 

CD4+/CD8+ T cells, NK cells, macrophages, and B cells (Figure 3.4A). Our patient’s T-PLL cells 

clustered into a unique island, comprised of 95.3% total peripheral cells with few non-malignant 

cell types (Figure 3.4A). The relapsed sample showed two distinct leukemic populations, one 

resembling the pre-ruxolitinib sample (46.1%) and a new island emerging with drug resistance 

(50.6%). CD45 protein expression was the major feature discriminating the two relapsed cell 

populations (Figure 3.4C-D). The CD45+ population resembled the pre-treatment cells except for 

reduced expression of CD127 (IL7R). The CD45lo/- population showed increased CD27 

(TNFRSF7), CD44 (H-CAM), CCR4, CCR7 and reduced CD43 (Leukosialin) in comparison to 

pre-treatment or post-treatment CD45+ cells (Figure 3.4C-D). CD45 is a receptor tyrosine 

phosphatase encoded by the PTPRC gene that negatively regulates JAK-STAT and T-cell 

receptor signaling (279, 280). CD45 downregulation coincident with clinical relapse on ruxolitinib 
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implied that it may be a mechanism for ruxolitinib resistance.   The JAK1 mutation was not 

Figure 3.4. CyTOF analysis shows marked change in immunophenotype of T-PLL cells after 
relapse from ruxolitinib. Peripheral blood samples from healthy donor and the T-PLL patient, pre-
ruxolitinib (Pre-tx) and at relapse (Post-Tx) were analyzed by mass cytometry after staining for 28 
cell surface markers. A, shows viSNE analysis performed on the data allowing grouping of peripheral 
leukocytes into distinct islands corresponding to cell lineages (see B); Iridium (DNA intercalator) 
positive events (Ir+) show those cells that were intact. C, shows the level of expression of 12 cell 
surface markers in the distinct islands. D, shows the same 12 markers but in the relapsed sample, 
post-ruxolitinib/relapse (Post-Tx). High dimensional, single-cell immunophenotype was measured 
using a 28-marker mass cytometry panel. A, viSNE map shows cell density for all Iridium-positive 
(nucleic DNA intercalator) cells from a healthy donor, pre-ruxolinitib T-PLL (Pre Tx, and post-
ruxolitinib/relapse relapse (Post Tx). (B) Cellular identity of each island was identified using 
expression of all 28 measured proteins.  Protein expression is shown on a common viSNE map for 
(C) pre-ruxolitinib T-PLL (Pre Tx) and (D) post-ruxolitinib/relapse relapse T-PLL (Post Tx). For (C-D) 
color indicates the intensity of the labeled protein on a rainbow heat scale (arcsinh scales). 
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detectable by Sanger sequencing but the JAK3 mutation was clonal and present in CD45hi, 

CD45int, and CD45- cells (Figure 3.5A-B). CD45RO and CD45RB were the mRNA isoforms 

expressed by the T-PLL cells (RNA-seq and FACS). Whole transcriptome analysis on pre-

treatment and post-treatment samples found that PTPRC mRNA abundance was significantly 

reduced in the relapsed sample by 1.95-fold (Figure 3.5D, p=3.18E-74), approximating the 50% 

reduction in protein levels observed by flow cytometry. JAK1, JAK2, and JAK3 mRNAs were also 

significantly downregulated (Figure 3.5D). JAK1 and JAK3 were probed by Western analysis of 

whole cell lysates and showed lower protein abundance in the relapsed sample compared to 

lysates before ruxolitinib treatment (Figure 3.5C).  

Next, we analyzed the tyrosine phosphatase activity in lysates prepared from T-PLL cells pre- 

and post-ruxolitinib/relapse therapy. Immunodepletion with specific antibody against CD45 

reduced total tyrosine phosphatase activity to 20-22% of normal, confirming that CD45 was the 

major enzyme contributing to this enzyme activity in T-PLL cells (Figure 3.5E). The specific activity 

of tyrosine phosphatase in pre-ruxolitinib lysates was 3.40 µmol/min/mg (95% CI: 3.10-3.70), 

which was decreased 54% to 1.85 µmol/min/mg (95% CI: 1.58-2.12) in the post-ruxolitinib/relapse 

sample (P<0.0001) (Figure 3.5F). Thus, the cellular phosphatase activity reflected the decreased 

CD45 protein levels which paralleled the decrease in PTPRC mRNA abundance. Interestingly, 

we found another T-PLL case with JAK3 M511I mutation that had downregulated CD45 at the 

time of relapse from CHOP chemotherapy.  

Enhanced phosphorylations downstream of JAK1/3 at relapse 

CD45 was previously shown to directly dephosphorylate JAK1 and JAK3 suggesting that 

its loss of function should show increased activity of JAK3 or JAK1. To analyze JAK activity, we 

probed the intracellular phosphorylation of key substrates in T-PLL cells pre- and post-

ruxolitinib/relapse treatment by flow cytometry. The percentage of T cells expressing basal levels  
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Figure 3.5. Clinical resistance correlates with downregulation of CD45 protein, mRNA, and 
phosphatase activity. A, flow cytometry dot plots show staining patterns of T-PLL cells pre- and post-
ruxolitinib/relapse for forward and side scatter (FSC, SSC), 7-aminoactinomycin D (7-AAD), and anti-
CD45. Three distinct populations were noted based on CD45 expression (A, B, C); cells were flow 
sorted, extracted for genomic DNA, subjected to PCR for relevant exons, and sequenced in panel B. 
C, shows Western blot analysis of pre-ruxolitinib and post-ruxolitinib/relapse/relapse T-PLL cells for 
total JAK1, JAK3, and AKT proteins. D, shows RNA-seq results for PTPRC, JAK2, JAK3, JAK1, and 
TYK2. Vertical line separate pre-ruxolitinib and post-ruxolitinib/relapse samples; both were analyzed in 
duplicate. Left panel shows RPKM for T-PLL, reads per kilobase of gene per million reads; right panel 
shows RPKM normalized to pre-ruxolitinib reads (set at 100%). E, bar graphs show measured in vitro 
phosphatase activity from cytosolic lysates prepared from T-PLL cells, before (dark gray) and after (light 
gray) ruxolitinib. Second set of assays were done after pull down with isotype control IgG/Protein A/G. 
Third set of assays were done after incubation with anti-CD45/Protein A/G; values were normalized to 
cytosolic lysates prior to immunodepletion (set at 100%); error bars show SEM from quadruplicates. F, 
graph shows a kinetic phosphatase assay of cytosolic lysates prepared from pre-ruxolitinib and post-
ruxolitinib/relapse T-PLL cells. X-axis shows varying concentrations of phosphatase substrate, 
DiFMUP, in micromolar; y-axis shows velocity of product formation in mRFU/min.  
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of p-STAT1 and p-STAT5 were increased in pre-ruxolitinib cells and in post-ruxolitinib/relapse 

cells compared to healthy T cells (22.72% and 21.24% v. 0.79%; 57.52% and 54.84% v. 2.21%) 

whereas no cells in any condition expressed basal phosphorylation of p-STAT6, which served as 

a control (Figure 3.6B). T-PLL cells with the lowest expression of CD45 had the highest proportion 

of p-STAT5+ cells at baseline prior to any stimulation (Figure 3.6C). To assess whether T-PLL 

cells had increased sensitivity to cytokine stimulation in addition to increased basal signaling, we 

stimulated each sample with 20 ng/mL cytokine for 15 minutes.  Signaling was quantified as 

previously described (272, 281), using median fluorescence intensity of per-cell phospho-protein 

to create a fold-change. Increased phosphorylation of STAT5 was seen after in vitro stimulation 

with IL-2, IL-4, IL-7, IL-21, and IFN-γ but not IL-9 in both pre- and post-ruxolitinib/relapse treated 

samples as compared to healthy T cells (Figure 3.6D). A comparison between pre- and post-

ruxolitinib/relapse T-PLL cells showed similar p-STAT5 levels at baseline and after stimulation by 

cytokines (Figure 3.6D). For example, IL-2-induced 1.49-fold change in p-STAT5 for pre-

ruxolitinib samples and 1.44 in post-ruxolitinib/relapse samples. To understand the effects of 

CD45 expression we gated on CD45hi, CD45lo, and CD45- post-ruxolitinib/relapse T-PLL cells and 

analyzed p-STAT5 and p-STAT6 basally and in response to stimuli. CD45hi had the lowest p-

STAT5 response to IL-2 (0.23), followed by CD45lo (0.61); and, CD45- (1.24) (Figure 3.6D); this 

pattern was seen for all common gamma chain cytokines in contrast to control, p-STAT6 (Figure 

3.6D-E).  In summary, T-PLL cells were hyper-responsive to common gamma chain cytokines 

and CD45 expression was negatively correlated with p-STAT5 at relapse. 
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Figure 3.6. T-PLL cells have constitutive phospho-STAT1 and phospho-STAT5. Intracellular 
signaling responses of PBMCs from healthy donor, and our T-PLL patient before (pre-Tx) and after 
(post-Tx) relapse from ruxolitinib treatment were monitored using phospho-flow cytometry. A, biaxial 
plots show expression of CD45 and CD3 on healthy donor and T-PLL samples. Blue gates indicate 
populations defined by expression of CD45 (hi, lo, and negative). CD3+ included peripheral T cells in 
health donor and all T-PLL cells. B, biaxial plots show basal p-STAT-1, p-STAT5, and p-STAT6 in CD3+ 
CD45hi cells. C, biaxial plot shows CD45 v. p-STAT5 and p-STAT6 at the time of relapse. Right panel 
shows bar graph of percent cells with p-STAT5 or p-STAT6 for cells expressing CD45hi, CD45lo, and 
CD45neg. D, graphs show p-STAT5 and p-STAT6 for health donor T cells, pre-Tx T-PLL, and post-Tx 
T-PLL unstimulated or after 15 minutes of cytokine stimulation at 20 ng/mL. E, similar graphs of cytokine 
stimulated p-STAT5 and p-STAT6 for post-Tx T-PLL cells gating on CD45hi, CD45lo, or CD45neg. 
Values are from median fluorescent intensities that were arcsinh transformed and expressed as fold 
change from the table’s minimum value. Graphs are shaded from black to yellow to reflect ratios from 
0-4, as shown by the scale. 
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Discussion  

In this study, we profiled diverse T-cell neoplasms by targeted next generation sequencing 

of the exomes from ~400 known tumor suppressors and oncogenes. Among oncogenic 

mutations, JAK-STAT (33%) alterations were the most common. Our cohort was comprised of 

cases submitted to Foundation Medicine due to relapsed or resistant disease, so the observed 

genetic alterations may be specific to advanced stage or therapeutic resistance. Nevertheless, 

our mutation frequencies for JAK3 (13% of cases) and for JAK1 (8.7%) were consistent with 

genomic profiling studies focused on specific disease subtypes T-ALL, ATLL, T-PLL, and CTCL 

(258-262) and less common in AITL and PTCL (282, 283). The JAK mutations in our study were 

mutually exclusive with STAT3 and STAT5 gene alterations, as expected since STAT3 and 

STAT5 proteins are downstream of IL2RG/JAK1/3-restricted cytokines. Interestingly, recent data 

in cell lines and mouse models suggest that JAK1 enzyme activity is required for mutant JAK3’s 

effects (284-286). However, as in the index case, the mutations were co-occurring but not present 

in the same cell since we never found allele frequencies approaching 50% for JAK1 and JAK3 

mutations in the same tumor. 

Most importantly, the JAK1 and JAK3 mutations were functionally significant since they 

induced constitutive phosphorylations of downstream STAT5 proteins. Phospho-STAT3 was not 

observed in the T-PLL cells (data not shown) even though it is an important downstream substrate 

in other T-cell neoplasms such as ALCL (287). Thus, signaling patterns downstream of JAK1/3 

may be unique to disease subtype. STAT1 and STAT5 phosphorylations in T-PLL could be 

inhibited by specific JAK inhibitors, ruxolitinib and tofacitinib (288). In the index case, treatment 

with ruxolitinib induced an impressive clinical response. These compelling data argue for 

oncogene dependence upon the JAK-STAT pathway in T-PLL, results that may extend to other 

T-cell neoplasms with JAK mutations. Furthermore, this oral drug worked where intensive 

parenteral therapies had failed to control the disease.  
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Our studies showed two cell-intrinsic mechanisms accounting for resistance to ruxolitinib: 

expansion of the mutant JAK3 T-PLL clone and downregulation of CD45. Ruxolitinib’s IC50 for 

JAK1 is 3.3 nM and for JAK2 is 2.8 nM in in vitro studies (289) ; its IC50 for JAK3 is 428 nM (289). 

This diminished potency against JAK3 probably accounted for the expansion of the mutant JAK3 

clone from 10% pre-ruxolitinib to 56% at relapse. The T-PLL cells showed cross-resistance to 

tofacitinib, which has nanomolar IC50 for JAK3 (290, 291). The downregulation of CD45 protein 

appears to be an additional resistance mechanism at relapse. Reduced CD45 proteins reduced 

the total tyrosine phosphatase activity in the T-PLL cells, which correlated with increased p-

STAT5. PTPRC mRNA abundance was decreased suggesting either enhanced mRNA 

degradation or transcriptional repression. The expression pattern of CD45 in a clonal T-PLL 

population resembles position effect variegation, an epigenetic phenomenon (292, 293). Since 

the primary leukemia samples were consumed, we were unable to directly transduce PTPRC 

cDNA to test if JAK inhibitor sensitivity could be restored. Thus, a cooperative genetic interaction 

between PTPRC loss of function and JAK3 M511I remains speculative. We observed an 

additional case of T-PLL with a clonal JAK3 M511I mutation that had similarly downregulated 

CD45 after relapse from CHOP chemotherapy, suggesting that downregulation of CD45 protein 

may play a role in chemotherapy resistance. Notably, Porcu et al discovered deletion, missense, 

and nonsense mutations in PTPRC in T-cell ALL, evidence that supports a tumor suppressor role 

for PTPRC in this disease (294). Furthermore, Porcu et al also showed concordant loss of function 

in PTPRC and gain of function in JAK1 or IL7R, suggesting that these two hits cooperate in T-

ALL pathogenesis. In fact, they described augmented P-STAT5 when PTPRC was knocked down 

by siRNA. Our studies on the index case are similar to these findings since we also observed an 

inverse correlation between CD45 levels and P-STAT5 albeit in T-cell PLL. Our studies do 

suggest that PTPRC may be a tumor suppressor in more mature T-cell neoplasms in addition to 

precursor T-ALL, and its loss of function may be an important resistance mechanism to ruxolitinib. 
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Finally, the data presented in this study support the design of larger phase I/II clinical trials testing 

ruxolitinib on its own or in combination with cytotoxic therapies in T-cell neoplasms. A basket 

design where patients with rare T-cell subtypes may be enrolled based on the presence of JAK1 

or JAK3 mutations may be most informative.   
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Introduction 

I was able to fully characterize T cells of unusual phenotype from ex vivo stimulation 

(Chapter II) and in vivo transformation (Chapter III). The work from Chapter III revealed the clinical 

impact of mass cytometry and high dimensional data analysis. Given the impact and functionality 

of this work flow both in the lab and in the clinic, I next decided to use it to dissect the impact of 

immunotherapy on both T cells and the immune system as a whole in patients with melanoma.  

Antibodies targeting the programmed cell death-1 (PD-1) receptor and its ligand (PD-L1) 

have demonstrated remarkable activity in a variety of solid tumor malignancies and Hodgkin 

disease (295-299). Agents such as nivolumab and pembrolizumab block this key immune 

checkpoint to generate effective CD8 T-cell mediated anti-tumor immune responses (1). Although 

generally well-tolerated, anti-PD-1/PD-L1 agents have also induced grade 3-4 immune-mediated 

adverse events (~5% of patients) (295, 297, 300).  The ability to monitor the immune system as 

a whole is needed in clinical settings where therapies are designed to alter the interaction between 

multiple cell types, such as the blockade of the PD-1/PD-L1 interaction.  Mass cytometry has 

emerged as an important platform for comprehensive and minimally biased immune profiling 

(208).  This approach has been applied effectively in the context of healthy human bone marrow, 
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blood, and tonsil tissue (9, 222, 223, 301).  An important element of high dimensional mass 

cytometry is the use of unsupervised computational data analysis tools that reveal and 

characterize cells with unusual phenotypes (207, 219, 231).  

To examine the effects of immune checkpoint inhibition on peripheral blood cell subsets, 

we performed serial blood acquisition in patients with advanced melanoma being treated with 

pembrolizumab. Multiplexed mass cytometry analysis of peripheral blood characterized the 

phenotypic evolution of all major immune cell and blast populations.  Here, we present a case 

report of a single patient from this study who experienced clinical emergence and progression of 

MDS while undergoing treatment with pembrolizumab.    

Materials, & Methods 

Subject 

The subject was consented to an IRB-approved research protocol to collect serial blood prior to 

treatment (baseline) and following pembrolizumab (at 3 weeks, 6 weeks, 12 weeks, and 24 

weeks).  Peripheral blood was obtained during regularly scheduled laboratory blood draws in 

accordance with the Declaration of Helsinki following protocols approved by Vanderbilt University 

Medical Center (VUMC) Institutional Review Board.   

PBMC preparation 

Peripheral blood mononuclear cells (PBMCs) were isolated from 20 mL of freshly drawn blood 

using sodium heparin anticoagulant and Ficoll-Paque PLUS (GE Healthcare Bio-sciences, 

Uppsala, Sweden) centrifugation.  Freshly isolated PBMCs were immediately cryopreserved in 

FBS (Life Technologies, Grand Island, NY, USA) containing 12% DMSO (Fischer Scientific, Fair 

Lawn, NJ, USA). 

Mass cytometry 
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Purified antibodies from Biolegend (San Diego, CA, USA) were labeled using MaxPar DN3 kits 

(Fluidigm Sciences, Toronto, Canada) and stored at 4°C in antibody stabilization buffer (Candor 

Bioscience GmbH, Wangen, Germany). PBMC were first incubated with a viability reagent (25 

μM cisplatin, Enzo Life Sciences, Farmingdale, NY, USA) as previously described (230). For 

staining, 2 x 106 cells were washed in PBS containing 1% BSA and stained in 50 µL PBS/1% BSA 

containing antibody cocktail. Cells were stained for 30 minutes at room temperature using 

antibodies listed (Supplementary Table 4.1). Cells were washed twice in PBS/1% BSA and then 

fixed with 1.6% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, PA, USA). Cells 

were washed once in PBS and permeabilized by resuspending in ice cold methanol. After 

incubating overnight at -20°C, cells were washed twice with PBS/1% BSA and stained with iridium 

DNA intercalator (Fluidigm Sciences,) for 30 minutes at room temperature. Finally, cells were 

washed twice with PBS and twice with diH2O before being resuspended in 1x EQ™ Four Element 

Calibration Beads (Fluidigm Sciences) and collected on a CyTOF 1.0 mass cytometer (Fluidigm 

Sciences) at the Vanderbilt Flow Cytometry Shared Resource. Events were normalized as 

previously described (270). 

Cytometry data analysis 

Analysis was performed on Cytobank using published techniques including viSNE (229, 231).  

Each file was pre-gated on CD45lo events. All CD45lo events were used and BTLA, CD69, HLA-

DR, CD45RO, CD44, CD27, CD3, CD45RA, CXCR3, CD33, CD16, PD-L1, CD4, CD8a, CD43, 

ICOS, CD20, CD38, CCR4, CD45, CCR7, CD25, CXCR5, CD57, PD-1, and CD56 were used to 

create the t-SNE axes of the viSNE map. 

Results 

Medical case report 
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A 72-year old female patient with a past medical history of breast cancer treated with 

mastectomy and chemotherapy (24 years prior) developed swelling in her thigh. CT scan showed 

a 2x4x3 cm complex, cystic mass in the soft tissues of the thigh. She underwent a resection that 

revealed melanoma with involved lateral margins. No primary site was identified, and she received 

2800 cGy via external beam therapy to the resection margin in the thigh (American Joint 

Committee on Cancer [AJCC] stage TxNxM1a). A surveillance PET-CT scan performed 18 

months later demonstrated multiple new pulmonary nodules, and she received ipilimumab 3mg/kg 

for four doses. Repeat CT scan showed disease progression in the lungs, and she was started 

on pembrolizumab 2mg/kg every 3 weeks (pembrolizumab expanded access program). Her initial 

surveillance scans in 3 months showed a mixed response in lung nodules but overall stable 

disease. Her subsequent CT scan 6 months into therapy showed disease progression, primarily 

in two lung nodules (Figure 4.1A). She underwent radiation to those nodules and has continued 

pembrolizumab.  

Figure 4.1. Clinical Imaging 
and Blood Counts. A) Pre-
therapy and post-therapy 
PET/CT scans are shown that 
highlight a lingular metastasis 
that increases in size during the 
course of therapy. B) Select 
peripheral blood counts and 
blast cells by manual differential 
are shown prior to and during 
therapy. The patient had a pre-
existing thrombocytopenia 
(green line) that worsened over 
time. After therapy initiation, 
blasts (yellow) are seen to 
increase as hemoglobin (Hgb, 
orange line) drops and white 
blood cells (blue line, same scale 
as Hgb) remain in the normal 
range.  
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Prior to starting pembrolizumab, the patient was noted to have mild thrombocytopenia 

(platelet count 95x109/L), which had been present but stable for the previous 18 months, and 

normal white blood cell count and hemoglobin. Her monocyte count was slightly elevated 

(1.27x109/L), but otherwise she had a normal differential. One month after starting 

pembrolizumab, she developed a clinically detectable but small circulating myeloid blast 

population on her CBC differential which remained at <1% for the next two months (Figure 4.1B). 

Blasts were not detected in her pre-treatment sample on her CBC differential, but were detected 

pre-treatment by CyTOF analysis (Figure 4.2). After treatment, her peripheral blast percentage 

rose to 4.4% and her platelets and hemoglobin fell to 72x109/L and 9.4g/dL, respectively, 

prompting a bone marrow biopsy. This revealed refractory anemia with excess blasts-2 (RAEB-

2) with 8.5% blasts. During this workup, her peripheral blast percentage ranged from 7-11% and 

she began decitabine treatment. Since initiating decitabine, she has felt well and her peripheral 

blast count has stabilized.   

High dimensional cytometry revealed peripheral blasts  

Samples of peripheral blood from prior to anti-PD-1 therapy, 3 weeks, 12, and 6 months following 

the initiation of therapy were analyzed by a 33-parameter mass cytometry panel. Major cell 

populations were revealed using traditional biaxial plots (Figure 4.2). As a subset of peripheral 

blood mononuclear cells (PBMCs), blasts ranged in abundance from 1.16% pre-therapy to 4.65% 

at six months after the start of treatment (Figure 4.2A and Figure 4.2C, left). In comparison to 

mature myeloid and monocyte cell populations, the majority of peripheral blasts expressed lower 

CD45 and CD33, higher CD38, and comparable HLA-DR (Figure 4.2B).  Four additional cell 

populations were monitored using mass cytometry over the course of anti-PD-1 therapy (Figure 

4.2C, right).  Myeloid cells (HLA-DRposCD19negCD3negCD16neg) increased over the course of anti- 
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Figure 4.2. Identification of peripheral blasts by mass cytometry in a melanoma patient undergoing anti-
PD-1 therapy.  A 33 parameter mass cytometry panel was used to immunophenotype peripheral blood from a 
melanoma patient over the course of anti-PD-1 therapy. A) Cells positive for nucleic acid intercalator, a marker 
of nuclear DNA, and low for CD45 were identified over the course of therapy, but not in a healthy donor. B) The 
majority of CD45lo events (blue gate) from the patient expressed intermediate levels of CD33 and high levels of 
both HLA-DR and CD38 compared to non-blasts, consistent with peripheral myeloblast phenotype. C) Peripheral 
blasts increased from 1.16% to 4.65% of all PBMC (left). The percentage of T (light blue), B (yellow), and NK 
(red) cells declined over the course of therapy while the percentage of myeloid cells (green) increased (right). 
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PD-1 therapy, while T cells (CD3posCD19neg), B cells (CD19posCD3neg), and NK cells 

(CD16posCD3negCD19negHLA-DRneg) decreased. 

Increased percent of PD-1 positive monocytes during therapy 

To determine which cells could be modulated by pembrolizumab, mass cytometry was used to 

monitor PD-1 protein expression on all major peripheral blood subsets.  In the blood of healthy 

donors, 1.8% ± 0.68% of HLA-DRposCD19negCD3negCD16neg myeloid lineage PBMCs expressed 

PD-1 (n=5).  In contrast, elevated levels PD-1pos myeloid cells were seen in all pre- and post-

treatment samples collected from the melanoma patient (Figure 4.3A). PD-1pos myeloid cells 

decreased over therapy from 4.04% pre-treatment to 2.81% at 6 months after the start of 

pembrolizumab. The percentage of PD-1pos CD4+ T cells in PBMC was high prior to therapy 

(4.93% in the patient prior to therapy vs 3.31% ± 1.28% in healthy donors, n=5).  However, by 

week 3 post therapy, the frequency of both PD-1pos CD8 and CD4 T cells in PBMC decreased 

below normal (1.94% and 2.29% respectively in patient 6 months after start of therapy vs 4.44% 

± 2.15% and 3.31% ± 1.28% respectively in healthy donors, n=5).  B cells, NK cells, and blasts 

were very rarely PD-1pos (Figure 4.3A, <2% PD-1pos at all observed times).   

Mass cytometry was also used to monitor expression of PD-L1, a key ligand for PD-1 and potential 

biomarker of anti-PD-1 treatment response (302).  PD-L1 expression was largely absent; no cell 

subset was observed to express PD-L1 on >1.5% of cells (data not shown).  Monocytes were the 

only peripheral cell subset to exhibit increased PD-1 expression and a large increase in activation 

marker CD45RA was seen on monocytes over the course of therapy (Figure 4.3B) (303). These 

results highlight monocytes as an important target population that could be activated by 

pembrolizumab. 
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Blast Phenotype Was Significantly Altered After Three Weeks of anti-PD-1 Therapy 

To assess phenotypic change of the blasts over the course of anti-PD-1 therapy, blast cells from 

each time point were gated based on immunophenotype and analyzed in a single viSNE plot 

(Figure 4.4A). viSNE approximates high dimensional relationships using a two dimensional (2D) 

scatter plot, or map, where each dot represents a single cell (231). Cells close together on a 

viSNE map are phenotypically similar across all parameters used to make the map. Gates were 

used to assess the percentage of cells in the densest regions of the viSNE map and the fold 

change in population frequency was compared over therapy (Figure 4.4B). Pre-therapy, blasts 

Figure 4.3. An increased percent of PD-1 positive monocytes was seen in the patient over the course of 
therapy.  A) The percentage of PD-1pos cells was determined for blasts, CD8 T cells, CD4 T cells, myeloid cells, 
NK cells, and B cells. For healthy, n=5.  B)  Biaxial plots show the increase of activated monocytes through dual 
expression of CD45RA and HLA-DR on non-lymphoid cells from a healthy donor and from the patient over the 
course of anti-PD-1 therapy. 
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fell mostly within population 1, defined by high expression of HLA-DR, CD33, CD38, CD43, and 

CD44 and intermediate expression of CD45RA. By 6 months post-start of therapy the cells had 

shifted phenotype and largely fell into population 7, defined by expression of CXCR3 in addition 

to the phenotypic characteristics of population 1. Each population was distinguished by key 

phenotypic differences (Figure 4.4C).Populations 3 and 5 were distinguished by a lack of HLA-

DR and CD33 expression along with high expression of the T cell costimulatory molecule CD28 

and the chemokine trafficking marker CXCR3, respectively.  Additionally, population 6 expressed 

both myeloid markers (HLA-DR and CD33) and neural cell adhesion molecule (NCAM/CD56), a 

marker expressed on NK and neural lineage cells, as well blasts in MDS and AML (304). 

 

  

Figure 4.4. Peripheral blast 
phenotype shifts dramatically 
over the course of anti-PD-1 
therapy. A) CD45lo events from 
the patient were gated and used 
to create a viSNE map. Blue 
gates identify major islands of 
cell density over all four time 
points. Each population denoted 
by the letter P followed by a 
number. B) Increase in cell 
density within each population 
(P, right) is shown as fold change 
over percentage of cells within 
sectors from the pre-therapy 
sample (left). C) A heatmap 
displays intensities of 28 
measured proteins for each 
population identified on the 
viSNE map. Intensity is shown as 
heat, calculated as a transformed 
ratio of medians by the table’s 
minimum. 
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Discussion  

We report here a case study of a patient who experienced progression of MDS while 

undergoing anti-PD-1 therapy for advanced melanoma.  Subclinical MDS was detected by mass 

cytometry prior to treatment and blasts became clinically apparent and progressed during 

treatment. Given the importance of the immune checkpoint inhibitor treatment class for melanoma 

and other malignancies and the unexpected nature of the emergence and progression of MDS, 

we described the clinical features and immune evolution of this case. As anti-PD-1 directed 

therapies are expected to be approved and tested in numerous malignancies, it is important to 

explore cellular response profiles of the immune system as a whole.  When paired with 

unsupervised computational analysis tools (231), mass cytometry provides a complete platform 

for immune monitoring that effectively addresses the heterogeneity and complexity of primary 

tissue biopsies by revealing and characterizing known and novel cell populations. 

In this case study, a population of myeloid peripheral blasts became apparent and was 

readily detected by both computational and human expert analysis. Both complete blood counts 

and mass cytometry were able to identify these cells, ranging from approximately 1% to 5% of 

PBMC. Of interest, while no peripheral blasts were identified prior to treatment on clinical analysis, 

a clear population was detected by mass cytometry. Lymphocytes decreased while myeloid cells 

increased, indicative of disrupted hematopoiesis. Additionally, mass cytometry effectively 

characterized PD-1 and PD-L1 expression on all major peripheral blood immune subsets. 

Phenotypes of immune cells and blasts were tracked over the course of therapy, revealing an 

increase in PD-1pos monocytes and the emergence of a CXCR3pos blast population, respectively. 

This phenotypic evolution of peripheral blasts may be shaped by the presence of anti-PD-1, or 

may simply reflect the natural history of MDS.   
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Peripheral blasts were largely negative for PD-1 and PD-L1 protein expression 

underscoring the premise that if anti-PD-1 is used to treat MDS or myeloid leukemia in the future, 

additional treatments may be needed to augment therapy in cases where a PD-L1 negative 

peripheral blast population is present (305).  Notably, the frequency of PD-1 positive T cells 

decreased following anti-PD-1 treatment, perhaps due to receptor occupation by pembrolizumab 

or their accumulation in tumors.  The presence of myeloid blasts may alter the outcome of immune 

checkpoint inhibitors for PD-1 expressing T cells. 

In this case, it is unclear whether pembrolizumab contributed to MDS progression. 

Increasingly, the role of the immune system in the development and progression of MDS is being 

elucidated. Recent data shows that inflammatory cytokines and Th17-cell subsets are 

predominant in low risk disease, but in high risk MDS (as in our patient) regulatory subsets begin 

to dominate, giving rise to an overall suppressive immune microenvironment (306, 307). 

Furthermore, myeloid-derived suppressor cells (MDSCs) and associated suppressive cytokines 

TGF- and IL-10 have been found at increased levels in MDS bone marrow and may promote 

progression of disease and suppress normal hematopoiesis through immune suppression and 

dysregulation (308). From these data, it is clear that multiple immune regulatory processes are 

involved in advanced MDS and rescue of exhausted T-cells through PD-1 blockade may only 

solve part of the problem. Perhaps inhibition of the MDSCs or cytokine responses could serve as 

a synergistic approach together with PD-1 blockade. 

  This patient is the second reported case of the development and progression of MDS while 

undergoing anti-PD-1 therapy (309). Interestingly, the other reported case occurred in a patient 

with Hodgkin lymphoma who had received multiple prior chemotherapies. Our patient had also 

received both chemotherapy and radiation therapy. Although MDS was likely precipitated by these 

other risk factors, anti-PD-1 may have contributed to disease progression in her case, and should 

be a consideration in other high-risk patients exposed to anti-PD-1 therapy.  



91 

 

This case study highlights both the complexity of immune monitoring in the context of 

cancer treatment and the power of high dimensional tools to provide a comprehensive and 

minimally biased view of dynamic cellular systems.  It is clear that high dimensional immune 

monitoring will be of significant value in cases where immune checkpoint inhibitors are used in 

the context of MDS, myeloid leukemia, or other myeloid bone marrow failure syndromes.  These 

results also underscore the critical need to characterize mechanisms of response to immune 

checkpoint inhibitors, as these mechanisms may depend greatly on the disease context in which 

they are applied.   
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Chapter V 

CHARACTERIZING CELL SUBSETS IN HETEROGENOUS TISSUES USING MARKER 

ENRICHMENT MODELING 

Authors:  K. E. Diggins, A. R. Greenplate, N. Leelatian, C. E. Wogsland, and J. M. Irish 

This work is adapted from a manuscript published in Nature Methods (Diggins, et al. 2017) 
 

Introduction 

Quantitative cytometry workflows have developed diverse approaches to grouping cells 

into populations and visualizing results in graphs that arrange populations based on phenotype 

(207, 310). Important features of populations are typically assumed to be those most highly or 

differentially expressed. This approach works well when feature variability is low and cells match 

established types, but computational analysis of single cell data routinely reveals novel cells with 

non-canonical phenotypes (219, 311, 312).  This is especially common in diseases where 

abnormal expression profiles and signaling responses distinguish clinically significant cell subsets 

(272, 313-316).  Existing statistical approaches can be used to characterize a population’s degree 

of difference from a reference, but may be limited to a normal distribution or may not account for 

intra- and inter-population variability in a single metric.   

 The MEM equation (Eq. 1) produces a signed value for each population feature by 

quantifying positive and negative, population-specific, contextual feature enrichment relative to a 

reference cell population (Supplementary Note 1).  



93 

 

MEM score = ,    (MAGPOP-MAGREF) <0  MEM = -MEM       

(Eq. 1)    

 In Eq. 1, POP denotes the population of interest, REF denotes the reference population 

to which POP will be compared, MAG is feature magnitude (here, median protein expression 

detected by mass or fluorescence flow cytometry), and IQR indicates the interquartile range.  A 

reference population (REF) is chosen based on a biological comparison of interest 

(Supplementary Figure 5.1).  MEM was designed to quantify enrichment, whereas other metrics 

used in cytometry, such as Kolmogorov-Smirnov (K-S)(317), area under the ROC curve 

(AUC)(318), and Earth Mover’s Distance (EMD) (319), capture other differences between 

frequency distributions.  In datasets including healthy human blood, bone marrow, and tonsil, 

murine tissues, and human tumors, MEM identified key proteins used by experts to distinguish 

rare and novel cell subsets.  

Results and Discussion   

Four cytometry studies, Dataset A (320), Dataset B(9), Dataset C(219), and Dataset D, collected 

as described by Leelatian and Doxie, et al.(321), were used to evaluate the ability of MEM to 

1|| 







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POP

REF
REFPOP

IQR

IQR
MAGMAG

Supplementary Figure 5.1. Examples 

of MEM reference population 

selection to capture different 

contexts. Alternative reference 

populations (REF) can be used to 

capture how features of the test 

population (POP) are enriched in 

different contexts. Reference 

comparisons include a) all non-

population cells in the sample or 

experiment (default), b) a population 

from another sample in the same study, 

c) a population from the same sample, d) 

multiple subsets of non-population cells 

from the same sample, e) a standard 

control population, and f) pairwise 

comparison between all populations in a 

sample.  
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identify biological features of expert and machine identified cell subsets.  For datasets A, B, and 

C, populations had been previously identified by experts and by computational tools including 

viSNE(231) and SPADE(210), which are used in mass cytometry for dimensionality reduction and 

cell clustering(207), respectively.   

Dataset A was mass cytometry data quantifying expression of 25 proteins on healthy 

human peripheral blood mononuclear cells (PBMC) (320).  This dataset was chosen for two 

reasons: 1) the 7 cell subsets present are well-established, phenotypically distinct populations 

that served as a gold standard of biological ‘truth’ and 2) the cells in each of the 7 subsets were 

characterized for 25 proteins that displayed varying homogeneous and heterogeneous 

expression patterns.  Populations were expert gated following viSNE analysis and each 

population was compared to the other cells in the sample (Figure 5.1).  MEM returned labels that 

matched prior expert analysis(320) and correctly assigned high positive enrichment values to 

canonical protein features of each subset (Figure 5.1b), including CD4 on CD4+ T cells (▲CD4+6 

CD3+5 ▼CD8a-4 CD16-3), IgM on IgM+ B cells (▲MHC II+8 IgM+6 CD19+5 ▼CD4-6 CD3-5), 

CD11c and MHC II on monocytes (▲CD11c+8 CD33+7 CD14+6 CD61+6 MHC II+4 CD44+3 

▼CD3-5 CD4-4), and CD16 on NK cells (▲CD16+9 CD56+2 CD11c+2 ▼CD4-7 CD3-4 CD44-

3).  Proteins that were not significantly enriched on any of the 7 subsets of mature human blood 

mononuclear cells were correctly assigned near-zero MEM scores (e.g. CD34 and CD117 

proteins expressed on hematopoietic stem cells, Figure 5.1b).  Similarly, proteins with little 

variability across cell subsets were assigned low, near-zero MEM scores, even for highly 

expressed proteins (e.g. CD45 on all subsets, CD45RA on non-T cells, Figure 5.1b).  

Incorporating information about feature variability allowed MEM to capture negative enrichment 

that was not reflected in magnitude difference (MAGDIFF). Highly enriched proteins were more 
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important to accurate population identification than proteins characterized by high median 

expression alone (Figure 5.1c; Supplementary Figure 5.2).   

To test the hypothesis that features with high MEM scores would be important for 

computational cluster formation, the 25 proteins measured in Dataset A (Figure 5.1b) were sorted 

in six ways: 1) high to low MEM score, 2) high to low median value, 3) high to low MAGDIFF, 4) 

high to low z-score, 5) high to low K-S statistic, and 6) randomly (Supplementary Table 3). Z-

score and K-S statistic values are shown in Supplementary Table 4. The proteins were then 

sequentially, cumulatively excluded from use in k-means clustering and f-measure was calculated 

to measure clustering accuracy (Figure 5.1c and Supplementary Figure 5.2). Random exclusion 

was performed 15 times and the average result is shown (Figure 5.1c). Clustering accuracy was 

Supplementary Figure 5.2. MEM highly scores markers that are important to clustering 

accuracy. Markers were sequentially and cumulatively excluded from k-means cluster analysis of 

Dataset A, from high to low, sorted based on 5 different statistics or scores (marker order shown in 

Supplementary Table 3): MEM, median, median difference (MAGDIFF), z-score, and Kolmogorov-

Smirnov (K-S) statistic. Clustering accuracy was quantified as the f-measure where true cluster identity 

was assumed to be the clusters formed by clustering on all 25 markers in the dataset. The moving 

average of the f-measure is shown. Error bars represent the standard error. The vertical red line 

indicates the number of excluded features at which the f-measure reached 0.75. 
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most impacted by excluding proteins based on MEM score. F-measure dropped to 0.75 after 

removing the proteins with the top 6 MEM scores, whereas a comparable F-measure decrease 

was only observed after removing the 14 highest markers based on MAGDIFF, the 13 highest 

markers based on z-score, and the 12 highest markers based on K-S statistic values 

Figure 5.1: Marker enrichment modeling (MEM) automatically labels human blood cell 
populations in Dataset A. a) Cells from normal human blood grouped into 7 canonical populations 
using viSNE analysis and expert review of 25D mass cytometry data.  b)  MEM labels computationally 
generated for each canonical cell subset. Heatmaps show protein enrichment values used to generate 
MEM labels and the median protein expression values for each protein on each cell subset.  Variability 
in protein expression across the 7 canonical cell populations is shown below to highlight proteins that 
were expressed homogeneously (low variability, e.g. CD45) and those that were expressed 
heterogeneously (high variability, e.g. CD8a, CD4). c) Graphs show decreasing f-measure (clustering 
accuracy) as markers were excluded from k-means cluster analysis based on high to low absolute MEM 
or median values, compared to random exclusion. 
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(Supplementary Figure 5.2). Removing markers based on median was not significantly different 

from removing markers randomly until the 15 markers with the highest median signal intensity 

were excluded (Supplementary Figure 5.2).   The same analysis was performed with viSNE in 

place of k-means clustering to visualize loss of population resolution (Supplementary Figure 5.3c). 

In this case, loss of accuracy was reflected in the viSNE map as a loss of separation between 

“islands” of cells. These results indicated that MEM enrichment scores captured markers that 

were important to cell identity better than traditional comparisons based solely on median protein 

expression.   

Dataset B was mass cytometry data quantifying expression of 31 proteins on healthy 

human bone marrow (9). Computational and expert analysis had previously identified 23 

populations of cells that were analyzed here by MEM (Supplementary Note 3).  For example, the 

cell subset labeled as HSCs was highly enriched for CD34 (CD34+6) and negatively enriched for 

CD45 (CD45-5). Dataset B also illustrated the general rule that MEM scores will approach median 

values as feature variability within populations decreases (Supplementary Figure 5.4).  MEM 

Supplementary Figure 5.4. MEM scores largely reflect median expression values for relatively 

homogenous populations. Heatmaps show median intensity of protein expression (left) and protein 

enrichment by MEM (right) for measured proteins in 28 populations characterized as relatively 

homogeneous for established cell types by expert analysis (rows). Each population was compared to 

the other 27 subsets for the MEM analysis. MEM scores approach median expression values in 

homogeneous populations because the contribution of variance approaches zero. 
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captured feature enrichment and heterogeneity better than median in diverse populations, as in 

Figure 5.1c.  

 Dataset C was mass cytometry data quantifying expression of 38 proteins on murine cells 

from eight tissues(219) (Supplementary Note 4).  In this dataset, “cluster 28” was a novel 

population identified as CD11bint NK cells.  The MEM label for cluster 28 within ILCs was 

▲CD11b+5 CD62L+3 ▼CD4-7 CD103-4 Terr119-3 (Supplementary Figure 5.5).  This MEM label 

captured the key feature of this novel innate lymphoid cell subset (CD11bint) and highlighted 

additional features that can be used to match this subset to cells identified by others (i.e., to 

cytotype the population).  These results indicate that MEM labels complement unbiased 

population discovery and effectively characterize cyto incognito(208) by providing unbiased 

descriptions that correctly capture key features of novel cell types.  

Supplementary Figure 5.5. Focused MEM analysis quantifies feature enrichment within 

phenotypically similar groups of cells. a-f) Focused MEM analysis on murine myeloid cell subsets. 

A MEM label for one population within each group is shown as an example. Groups were defined as 

the 6 major murine subgroups identified by t-SNE and DensVM by Becher et al. 
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 An important aspect of MEM is generation of machine-readable quantitative labels that 

can be used to register population identities across samples and studies.  A MEM label for a newly 

discovered population can be compared quantitatively against a reference set of established MEM 

labels or a MEM label reported in a paper.  To illustrate this idea, the pairwise, normalized root-

mean-squared distance (RMSD) of MEM scores was calculated as a measure of similarity 

between 80 populations of cells from 7 different studies including healthy CD4+ T cell and B cell 

(Figure 5.2).  Cells had highly similar MEM scores within each major cell type, regardless of 

platform (mass or fluorescence flow cytometry), study, or tissue source.  For example, T cells run 

on mass cytometry from different blood donors were 97% ± 1.3 similar to each other, 85% ± 1.9 

similar to T cells from blood run on fluorescence flow cytometry, and 87% ± 2.1 similar to T cells 

from tonsil run on mass cytometry (Figure 5.2, Supplementary Table 5).  However, these cells 

were 66.9% ± 13 similar to any B cell population.  In addition to differentiating between subsets 

that are well known to be different, MEM is also able to distinguish the subtle differences between 

subsets that are known to have similar phenotype by median expression. To test the ability of 

MEM to differentiate between these types of cell subsets, a similarity score was calculated for T 

effector memory (TEM), T central memory (TCM), naïve T cells, and T effector memory cells that 

express RA (TEMRA) (Figure 5.3). In this analysis, TCM and TEM formed a separate cluster, apart 

from naïve and TEMRA cells.  This indicates that MEM scores provide a way to communicate cell 

identity and to quantify similarities of cell types from the text label alone.   

 Dataset D included 52 populations of tumor infiltrating APCs, tumor infiltrating T cells, and 

non-immune malignant tumor cells identified in human glioma tumors (321).  To obtain these 

populations, each tumor was analyzed by viSNE and cell subsets were expert gated solely on t-

SNE cluster density.  To determine whether MEM could distinguish immune cell subsets from 

other tumor cell types with limited information, MEM scores were calculated using only 9 markers 

that were expected to be expressed on cancer cells (S100B, TUJ1, GFAP, Nestin, MET, 
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PDGFRα, EGFR, HLA-DR, and CD44, Figure 5.4a).  The 52 populations were grouped into 13 

major cell types based on MEM enrichment of 9 analyzed proteins, and these groups were 

interpreted as tumor infiltrating APCs (Figure 5.4b, blue), tumor infiltrating T cells (Figure 5.4b, 

green), or non-immune tumor cells (Figure 5.4b, red).  To confirm cell identity, four protein features 

that had been excluded from MEM analysis were assessed (Figure 5.4c, CD45, CD3, CD45RO, 

Figure 5.2. Hierarchical clustering based solely on MEM label groups T cells and B cells 

measured in diverse studies using different cytometry platforms. A) MEM label values were 

compared for each of 80 populations (CD4+ T cells and B cells) from 3 human tissues representing 6 

mass cytometry studies and 1 fluorescence flow cytometry study.  Populations are shown clustered 

according to MEM label percent similarity.  Tissue type, source study (numbered 1-7 and referenced in 

online methods), and individual sample IDs are indicated to the right. *indicates samples stimulated by 

bacterial superantigen Staphlococcus enterotoxin B (SEB). B) Representative MEM labels for CD4+ T 

cells (top) and B cells (bottom) from SEB-stimulated normal human blood (1.4, top, mass cytometry), 

normal human bone marrow (5, mass cytometry), normal human tonsil (2.5, mass cytometry), SEB-

stimulated normal human blood (1.4, bottom, fluorescence flow cytometry), and normal human blood 

(6.1, mass cytometry).  
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and CD64). CD45 and CD3 were used to confirm T cell identity and CD45 and CD64 were used 

to confirm APC identity. MEM correctly identified both immune cell subsets from all tumor types 

without using key immune lineage markers and without using healthy populations (e.g. APCs from 

blood or tonsil) to guide the clustering.  Thus, MEM labels distinguished populations of cells based 

on non-traditional features and in a disease context.  

MEM labels provided a quantitative language to objectively communicate characteristics 

of new and established cell types observed in complex tissue microenvironments.  Algorithmic 

comparison of MEM labels correctly identified 80 cell populations from 7 studies of 3 human 

tissues measured using different instrumentation and distinguished tumor-infiltrating immune cell 

subsets and malignant cell populations from human glioma tumors.  Following additional 

validation in other cell types, tissues, and instrumentation platforms, it may be possible for 

machines and humans to use MEM labels to learn and clearly communicate cell identity 

(cytotype).  Given widespread adoption and reporting, MEM labels could be used to communicate 

Figure 5.3. Hierarchical clustering based 

solely on MEM label groups T cell 

subsets characterized by mass cytometry. 

MEM label values were compared for each of 

36 populations from 2 human tissues, healthy 

donor peripheral blood and melanoma tumor.  

Populations are shown clustered according to 

MEM label percent similarity.  Tissue type, 

and individual population IDs are indicated to 

the left.  
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cytotypes in a manner analogous to cluster of differentiation (CD) naming of antigen targets of 

antibodies (322).  MEM can compare populations against a common reference (Supplementary 

Note 5) and guide feature selection for computational and experimental analysis.  MEM can also 

be used to monitor changes in tissues over time during treatment.  Deviation from a stable MEM 

score for peripheral blood cell subsets would be expected in the case of emerging malignant cells 

(315), and lack of change towards a healthy set of MEM scores for blood or bone marrow cell 

subsets might indicate a lack of response to chemotherapy for a leukemia patient.  MEM is 

expected to assist in machine learning applications by providing quantitative text descriptions of 

cytotype that can be algorithmically parsed and used to classify newly identified cell 

subpopulations.  

 

 

Figure 5.4. MEM correctly grouped immune and cancer cell populations from glioma tumors 
using nine proteins expressed on cancer cells in Dataset D. (A) A heatmap of MEM enrichment 
scores is shown for 52 populations of cells identified in tumors from 4 glioblastoma patients (G-08, G-
10, G-11, G22) in an unsupervised manner using viSNE.  (B) Each population was annotated for a 
cell type based on review of the MEM label and classified as tumor infiltrating APCs (blue), tumor 
infiltrating T cells (green), or non-immune tumor cells (red).  (C) A heatmap of median intensity values 
is shown for the 13 measured proteins from each of the 52 tumor cell populations.   
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Materials and Methods 

Data Availability Statement 

The normal human PBMC dataset (Figure 5.1) were generated by CyTOF analysis as 

described by Leelatian, et al.(320) and is available as an FCS file in Flow Repository 

(https://flowrepository.org/experiments/1043).  

The normal human bone marrow data set from Bendall and Simonds, et al(9) (Dataset B) 

was downloaded from Cytobank (229) as FCS files that included the cell population IDs defined 

by Bendall and Simonds, et al.(9) (https://reports.cytobank.org/1/v1).  MEM enrichment scores 

from Dataset B were compared to the authors’ analysis and prior studies of proteins marking stem 

cells, progenitor cells, and mature cells (323, 324) 

The murine myeloid CyTOF dataset from Becher, et al(219) (Dataset C, Supplementary 

Note 4) was downloaded from Cytobank as FCS files that contained gated cell events and cluster 

IDs as designated by automated analysis conducted by Becher et al(219). MEM enrichment 

scores from Dataset C were compared to the authors’ analysis and prior studies of neutrophils 

(325, 326). 

Datasets for Figure 2 were generated in 7 separate fluorescence and mass cytometry 

studies by 1) Nicholas et al. (327), 2) Polikowsky et al.(223), 3) Ferrell et al. (328), 4) Amir et 

al.(231), 5) Bendall and Simonds et al.(9), 6) Greenplate et al., previously unpublished data, and 

7) Leelatian et al (320). 

The phospho-flow AML data set generated by Irish et al.(313) (Supplementary Note 5-

Fig.2) was downloaded from Cytobank as FCS files. 
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The human GBM mass cytometry dataset (Figure 5.3) was generated and analyzed as 

described by Leelatian and Doxie et al.(321) and are available on Flow Repository as text files 

(https://flowrepository.org/experiments/1044/). 

Code Availability 

Software for generating MEM scores is available as Supplementary Software. 

CyTOF data pre-processing and analysis 

Data analysis was performed using the online analysis platform Cytobank(229) and the 

statistical programming environment R. Raw median intensity (MI) values were transformed to a 

hyperbolic arcsine scale. A cofactor of 15 was used for the PBMC dataset (Figure 5.1), and 5 was 

used for the normal human bone marrow data set and for the murine myeloid data set.  Single, 

intact cells were gated based on cell length (30-60) and nucleic acid intercalator (iridium). Major 

PBMC subsets were gated based on CD45 expression (leukocytes) and on canonical lineage 

marker expression to identify major blood cell subsets.  

FCS files were exported from Cytobank as FCS or tab-delimited text files that were parsed 

for expression intensity information using the R package flowCore (329). MEM was calculated 

using the arcsinh transformed MI values, as described above. Heatmaps were generated using 

the heatmap.2 function in the gplots R package(330). 

Fluorescence Phospho-Flow AML Data Analysis 

 Data were downloaded from Cytobank as FCS files and processed in R as described 

above. MFI values were transformed to a log normal scale. For each AML patient, a median value 

and an IQR value was calculated for each marker in the unstimulated condition and for the 

stimulated conditions. The unstimulated median values were subtracted from the stimulated 

median values, and likewise for the IQR values. MEM was then calculated by comparing each 



105 

 

patient’s subtracted median and IQR values to those of the other patients. This enabled a 

comparison of fold change signaling values rather than raw values. 

Marker Enrichment Modeling (MEM) 

MEM analysis begins after populations have been identified and aims to provide a simple 

way to compare findings from experts working with different platforms or performing analysis 

using different computational tools for population discovery (210, 331-334) and graphical 

visualization (9, 200, 313, 314, 335).  These tools have differing strengths that depend greatly on 

the structure of the datasets and controls, the biological goals of the study, and the quality of the 

existing knowledge in the field (207, 216, 310).   

MEM equation 

The MEM equation is implemented as an R package (Supplementary Software). Currently, MEM 

uses medians as the magnitude value; however, depending on the data type, mean may be a 

more appropriate magnitude statistic and mean could be substituted for median in the equation. 

Similarly, other statistics, such as variance, might be substituted for IQR.  The MEM equation was 

developed with the intention of capturing and quantifying population-specific feature enrichment 

in a simple equation that avoids over-fitting or unnecessary computation. The primary goal of this 

equation is to scale magnitude differences depending on distribution spread. While other 

distribution features such as skew or shape could be informative, incorporating only two pieces 

of information – magnitude and spread – into the equation captured enough information to be 

useful in quantifying both positive and negative population-specific feature enrichment. 

MEM output and score scaling 

The MEM R script outputs a heatmap of MEM values with a text label summary of feature 

enrichment as the population (row) names. The + or - value provided along with the marker name 
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is converted to a -10 to +10 scale and rounded to the nearest integer. As implemented here, the 

maximum of the scale was set using the highest absolute value MEM score observed across all 

markers and populations.  All values in the matrix are divided by this maximum value and 

multiplied by 10 to achieve the -10 to +10 scaling. After scaling, the original sign value is reapplied 

to each MEM score. Scaling the output this way is intended to generate MEM values and labels 

that are intuitive to human readers and to facilitate comparison of feature enrichment across 

experiments, samples, batches, time points, and data types.   

IQR Threshold 

Because MEM uses a ratio of IQR values, near zero values in the denominator, IQRPOP, 

will greatly increase MEM scores.  For each measurement type, it is important to identify a 

minimum significant IQR value so that small IQR values below the platform’s ability to distinguish 

signal from noise do not inappropriately increase MEM scores. To automatically determine a 

minimum threshold for IQRPOP, the algorithm here calculated the average of the IQR values that 

were associated with the lowest quartile of population and reference medians.  For the mass and 

fluorescence cytometry datasets used, the automatically calculated IQR threshold was on 

average 0.5 ± X and so the IQR threshold for all studies here was set to 0.5.   The default IQR 

threshold in the algorithm is also set to 0.5.  To have the IQR threshold re-calculated, investigators 

should specify the “auto” option for the IQR.thresh argument in the MEM function.  It is 

recommended that investigators applying MEM to datasets from different instruments or who are 

testing MEM for the first time determine whether a change in the IQR threshold is needed. 

Reference population selection 

MEM scores are contextual; a population’s MEM score depends on the reference population(s) 

to which it is compared. Selection of a reference population should be made deliberately 

depending on the biological question being addressed. When populations in a MEM analysis arise 
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from different experimental sources, it may be necessary in some cases to normalize 

measurements prior to MEM analysis to avoid artifacts from experimental variation. 

PBMC processing and mass cytometry  

 PBMC were isolated and cryopreserved as described by Greenplate, et al(312). PBMC 

were stained with metal conjugated antibodies and prepared for the mass cytometry as previously 

described (312).  The following antibodies were used in the staining panel: CD19-142, CCR5-

144, CD4-145, CD64-146, CD20-147, CCR4-149, CD43-150, CD14-151, TCRγδ-152, CD45RA-

153, CD45-154, CXCR3-156, CD33-158, CCR7-159, CD28-169, CD29-162, CD45RO-164, 

CD16-165, CD44-166, CD27-167, CD8-168, CD25-169, CD3-170, CD57-172, PD-L1-175, and 

CD56-176 (Fluidigm Sciences). In addition, the following purified antibodies from Biolegend were 

labeled using MaxPar DN3 kits (Fludigm Sciences), stored at 4°C in antibody stabilization buffer 

(Candor Bioscience GmbH) and used in the same panel: ICOS-141, TIM-143, CD38-148, CD32-

161, HLA-DR-163, CXCR5-171, and PD-1-174.  

Cell subpopulation MEM Score Similarity Calculations 

Comparison of CD4+ T cells to B cells in Figure 2 

In order to assess the robustness of MEM across tissue sample types, donors, experimental runs, 

and flow cytometry platforms (fluorescence and mass cytometry), MEM scores were calculated 

for cell subsets from 7 different experiments that included 3 healthy human bone marrow 

samples(9, 231, 328), 9 healthy human PBMC samples(320, 327), and 6 healthy human tonsil 

samples(223). MEM scores were calculated for each population using as the reference population 

a combination of hematopoietic stem cells gated as CD34+ CD38lo/- from two studies of healthy 

human bone marrow (9, 328).  Population similarity was calculated using root mean squared 

distance (RMSD) calculated on all population MEM scores in a pairwise fashion. MEM scores 

were calculated using all markers in common between each dataset and the HSC reference.   
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RMSD was calculated here as the square root of the average in squared distance between all 

MEM values in common for each pair of populations and then converted into percent maximum 

possible RMSD.  Given the -10 to 10 MEM scale, an RMSD of 20 was the maximum possible 

difference and corresponded to 0% similarity, whereas an RMSD of 0 between MEM labels 

indicated 100% similarity.  This approach emphasized differences in marker expression when 

comparing populations.  Calculated statistics for CD4+ T cell comparisons included average MEM 

value +/- standard deviation and p-value calculated using an unpaired, two-tailed Student’s t-test. 

Human Glioma and Normal Immune Cell MEM Analysis 

Glioblastoma data (G-08, G-10, G-11, and G-22) were collected following a published protocol 

(321). Cells were stained with isotope-tagged antibodies to detect surface and intracellular targets 

following established protocols (321, 336). MEM analysis of glioblastoma patient samples was 

performed with 9 markers (S100B, TUJ1, GFAP, Nestin, MET, PDGFRα, EGFR, HLA-DR, and 

CD44), using arcsinh transformation of original median intensity values with a cofactor of 5. Each 

cell subset was the POP, and the remaining cell subsets were the REF in the analysis. 

Z-score and K-S statistic calculations 

Z-score was calculated between POP and REF as (MEANpop-MEANref)/STDEVref for each 

marker. 

The K-S statistic(317, 337) was calculated comparing the distribution for each marker on POP 

and REF using the function ks.test() in R. 

F-measure Analysis 

PBMC populations were defined by expert human gating on canonical markers. For f-

measure analysis (Figure 5.1c and Supplementary Figure 5.2), the 25 measured markers from 

the CyTOF analysis of healthy PBMC were sorted based on absolute MEM scores, median 
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values, median difference, z-score, and K-S statistic (shown in Supplementary Figure 5.2), or 

randomly across all PBMC populations and the 25 measured proteins. The 5x25 matrix was 

converted into an ordered vector (length 25X5) and then sorted by absolute value. The first 

occurrence of each marker in the list was kept and subsequent occurrences of that marker in the 

list (i.e. that marker’s scores on other populations) were discarded. The order of markers excluded 

by MEM, median, median difference, z-score, and K-S statistic are shown in Supplementary Table 

3.  Markers were then sequentially, cumulatively excluded from k-means clustering of cells from 

high to low absolute for each statistic or score. F-measure was calculated as:  

Sensitivity = True Positives/ (True Positives + False Negatives) 

Specificity = True Negatives/ (True Negatives + False Positives) 

F-measure = 2*(sensitivity*specificity)/ (sensitivity + specificity) An F-measure was calculated for 

each round of clustering, where truth was the cell cluster ID resulting from clustering on all 25 

markers. The moving average of f-measure with an interval of 3 was calculated in Microsoft Excel. 

The F-measures for random marker exclusion are the average at each point of 15 different rounds 

of random marker exclusion from clustering.  
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COMPUTATIONAL IMMUNE MONITORING REVEALS ABNORMAL DOUBLE NEGATIVE T 
CELLS PRESENT ACROSS HUMAN TUMOR TYPES 

 

Authors: Allison R. Greenplate, Daniel D. McClanahan, Brian K. Oberholtzer, Deon B. Doxie, 
Caroline E. Roe, Kirsten E. Diggins, Nalin Leelatian, Megan L. Rasmussen, Mark C. Kelley, Vivian 
Gama, P. Brent Ferrell, Douglas B. Johnson, Jonathan M. Irish 

 

Introduction 

The immune system is a complex network of cells and tissue types, and it is increasingly 

important to simultaneously track cell subsets and understand the system as a whole. 

Longitudinal monitoring of changes in the immune system has provided insight into drug response 

and disease progression (301, 312, 338). Differences in response to perturbation can stratify 

clinical outcome (316, 339) and indicate mechanism of action (340). Challenges to the immune 

system, such as vaccination, infection, surgical intervention, or the emergence of a malignancy, 

can elicit detectable changes above the relatively stable basal state of each individual. 

Vaccination-induced immune remodeling has been shown to be acute and quickly followed by a 

return to the individual’s basal “steady state” signature (197, 341).  Cytomic approaches that can 

characterize all the cells in a system are an area of active development in immunology (207, 208, 

310). A common framework for data analysis will allow researchers using these cytomic 

approaches to compare and contrast immune systems from diverse research areas, including 

tumor immunology and treatment response (316, 342, 343), blood cancer (272, 313, 314, 328, 

344), bone marrow failure (312, 345), and human immune variation and autoimmunity (197, 216, 

301, 346, 347).   

https://www.ncbi.nlm.nih.gov/pubmed/?term=Johnson%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=26966176
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Across these studies, four dynamic elements stand out as key features of cellular systems: 

1) plasticity or stability of the system as a whole, 2) changes in abundance of known cell subsets, 

3) emergence of unexpected features on cell subsets, and 4) emergence of novel or unexpected 

cell types. The central goal here was to simultaneously employ distinct tools focused on these 

different data types as an ensemble and to organize this copious information into an automated 

"first pass" analysis that could be easily interpretable by an immunologist and that would highlight 

cell subsets for in-depth review. Systematically monitoring the cells of the immune system and 

their features is especially powered when serial samples from an individual can be used as 

comparison points. However, this approach generates vast amounts of data. Simultaneously 

tracking entire systems and the parts that comprise them can become overwhelming in the 

context of clinical research, where cells of interest can be rare (316, 342) and where the entire 

system can change quickly in unanticipated ways (312). Thus, in cytomic, system-level studies, 

the data analysis strategy is as important as the experiment design (207, 310, 316), and it is vital 

to track known reference populations and place new observations in the context of prior 

knowledge (335, 348). Tools exist for visualizing and gating (210, 231, 314, 334), supervised 

population and biomarker analysis (333, 349), and describing cell population identity (348) within 

high dimensional data sets. In contrast, there is a great need for automated analysis for the steps 

immediately after population identification (gating). Tools for cellular clustering are especially 

numerous, specific for each data type, and have been extensively addressed in prior work (350). 

The components selected for the ensemble toolkit here included the Earth Mover’s Distance 

algorithm (319), t-distributed stochastic neighbor embedding (t-SNE) (231), and Marker 

Enrichment Modeling (MEM) (348). The growth and success of high dimensional single cell 

technologies relies on ongoing development of data analysis tools needed to parse the large 

amounts of data and place results in context (310, 335, 348). It remains relatively rare for 

researchers to choose data analysis approaches that explicitly incorporate time or other changes.  
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To validate and challenge computational analysis tools it is valuable to explore 

immunology problems representing differing levels of prior knowledge, amounts of change, and 

abundances of target cell types. Here, the first challenge (Dataset 1) comprised data from 

melanoma patients undergoing anti-PD-1 therapy with pembrolizumab. Dataset 1 was chosen for 

the relevance of this therapeutic strategy and because the dataset includes an unusual case from 

a patient with a distinct, unexpected immune system trajectory (312). This example was chosen 

to include an important outlier case that should not be missed, but which is unusual enough that 

training datasets would not normally include an example of it. Dataset 2 comprised a previously 

published data set of peripheral blood from acute myeloid leukemia (AML) patients undergoing 

chemotherapy (328). Dataset 2 was chosen as an example of dynamic cellular populations 

shifting dramatically over therapy. This dataset was also included to represent the challenge of 

tracking and characterizing treatment-refractory leukemic blasts, which did not converge on a 

single phenotype and instead shifted into different phenotypic compartments, none of which 

matched the phenotype of healthy cells (328). Dataset 3 includes serial melanoma tumor biopsies 

from patients treated with dabrafenib, a BRAFV600 inhibitor (BRAFi), and trametinib, a MEK 

inhibitor (MEKi). A challenge of Dataset 3 is to apply multiple tools in a system that is relatively 

less well studied and includes a diverse set of individuals and mass cytometry panels. By 

providing both high level and detailed views of cellular systems changing over time in human 

patients, the ensemble approach revealed new knowledge about immune system interactions in 

these three study types with contrasting changes and challenges.   

Results 

Earth Mover’s Distance evaluated phenotypic plasticity in the peripheral immune system during 

therapy 
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To monitor the response of peripheral immune system to anti-PD-1 therapy (Dataset 1), 

blood was drawn from melanoma patients immediately prior to therapy, and 3 weeks, 12 weeks, 

and 6 months after the start of therapy. Mass cytometry was used to characterize peripheral blood 

mononuclear cells (PBMCs) from each patient at each time point (Tables S6.1 and S6.2). In order 

to monitor and quantify the phenotypic plasticity of the peripheral immune system as a whole, a 

workflow was developed in which the Earth Mover’s Distance (EMD) algorithm was used to 

quantify differences between viSNE maps (231, 319, 351). One viSNE map was created for eight 

patients analyzed at four clinical timepoints and eight healthy controls (Figure 6.1A, Table S6.1). 

EMD was then used to quantify the differences between each viSNE map and the numerical 

results were displayed in a heat map (Figure 6.1B). Low EMD scores indicated that the maps 

were similar, whereas larger EMD scores indicated divergent maps. To determine whether the 

peripheral immune systems of each patient remained stable or had increased phenotypic 

plasticity over the course of anti-PD-1 therapy, intra-patient EMD values were compared to inter-

patient EMD values. In 7 out of 8 melanoma patients receiving anti-PD-1 therapy, the intra-patient 

EMD score was lower than the inter-patient EMD score, indicating that each patient’s peripheral 

blood immune system was more similar to itself than to that of any of any other patient, regardless 

of any ongoing therapy response (Figure 6.1C). The exceptional patient, MB-009, did not conform 

to this pattern (median intra-patient EMD value ± standard deviation, 4.22±2.69 v median inter-

patient EMD value, 3.99±2.48). This patient was diagnosed with myeloid dysplastic syndrome 8 

months after starting anti-PD-1 therapy and was known to have an expansion of mature and 

blasting myeloid cells and a decrease in all other major cell types in the periphery (312).  For a 

detailed report of this patient, see Chapter IV. Thus, combining EMD and viSNE allowed for an 

automated approach to quantify stability and plasticity of a system over the course of therapy. 

Ensemble analysis revealed decreases in PD-1+ T cells during anti-PD-1 therapy 
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While viSNE and EMD provided a quantitative, first-glance at system stability, it is possible 

that shifts in abundance or phenotype of small, biologically relevant populations may be over-

looked. To avoid missing small but crucial cell subsets, the system was split into classical immune 

populations using traditional, biaxial gating (Figure S6.1). Twenty-eight cell populations were 

identified and the change in frequency of those populations, compared to the pre-therapy time 

point, was calculated (Figure 6.2A-B). Two populations showed significant changes in frequency. 

Figure 6.1. Earth Mover’s Distance quantifies phenotypic plasticity of the system over therapy 
and identifies outlier patient. Peripheral blood mononuclear cells (PBMC) from melanoma patients 
undergoing anti-PD-1 therapy and healthy donors were characterized by mass cytometry. Equal 
numbers of live events from each sample were run together on a viSNE map. (A) Representative live 
leukocyte viSNE plots are shown for three patients at all collection points during therapy. (B) EMD was 
calculated, pairwise, for all samples. Heat indicates magnitude of EMD value. (C) Median EMD was 
calculated for each patient from pairwise EMD between samples from that same patient (light grey), 
between that patient and all other pembrolizumab samples (white), and between that patient and all 
healthy donors (dark grey). N=6, 104, and 32 respectively (with exception of MB-007 where N=1, 52, 
and 16 respectively). *p<0.001, **p<0.0001. The whiskers of the boxplot extend to the most extreme 
data point which is no more than 1.5x the interquartile range from the box. “Self” represents intra-patient 
EMD values, “Mel” represents inter-patient EMD values, and “H” represents EMD values of indicated 
patient compared to healthy donor. 

 



115 

 

CD4+ PD-1+ and CD8+ PD-1+ T cells had a significant change in frequency [N=10, p <0.0001 (pre 

vs 3 weeks) and p =0.0011 (pre vs 12 weeks) for CD4+ PD-1+ T cells, and p = 0.00057 (pre vs 12 

weeks), for CD8+ PD-1+ T cells] over the course of therapy, both decreasing (Figure 6.2A-C). 

Increased frequencies of CD4+ T effector memory (TEM) cells at 6 months post therapy and 

activated CD4+ T cells at three weeks post therapy were also analyzed (Figure S6.2).  

Supplemental Figure 6.1. Identification of immune populations in the peripheral blood (Related 
to Figure 6.2). PBMC isolated from the peripheral blood of melanoma patients undergoing αPD-1 
therapy and healthy donors was analyzed by mass cytometry. Biaxial mass cytometry plots show the 
gating scheme for populations in the peripheral blood. Shown here are representative plots of the gating 
scheme with an example healthy donor. 
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Marker Enrichment Modeling identified signature features of PD-1+ T cells in tumor and blood 

The next step in the ensemble systems immune analysis pipeline was to automatically quantify 

enrichment of measured parameters and determine how those enriched parameters changed 

during treatment. MEM was used here to identify signature features of each population at each 

Figure 6.2. Frequency tracking of populations identifies a loss of detectable PD-1+ T cells. 
Established immune populations were manually gated and population frequencies were determined 
over the course of anti-PD-1 therapy. (A) Population frequencies at 3 weeks, 12 weeks, and 6 months 
post start of anti-PD-1 therapy were normalized to the pre therapy frequency. Each line represents a 
change in frequency for one population. Significantly changing populations, compared to pre-therapy, 
are shown in red. (B) Change in population frequency is shown for individual patients for each 
population median shown in (A). Each time point after the start of therapy was compared to the pre-
therapy time point using a two tailed, paired t-test. With a Bonferroni correction, significantly different 
populations had a p value < 0.0018. P values are indicated for populations with significant changes. (C) 
Boxplots of population frequency are shown for each significantly changing population (top) and for two 
populations that did not significantly change (bottom). P values were derived from an uncorrected, two 
tailed, paired t-test. *p<0.05, **p<0.01. See also Figures S1 and S2, Tables S1 and S2. 
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time point following established methods (348). MEM scores can range from +10 (maximum 

Supplemental Figure 6.2. Melanoma patient population frequency (Related to Figure 6.2). In the 
Pembrolizumab treated cohort, 10 individuals were samples prior to the start of treatment, with sample 
of peripheral blood at 3 weeks (3w), 12 weeks (12w), and 6 months (6m) post-start of therapy. The 
frequency of each population is plotted as a boxplot for melanoma patients over the course of therapy.  
Each population is labeled on the graph and the P value from an uncorrected, two tailed, paired t-test 
is shown. The whiskers of the boxplot extend to the most extreme data point which is no more than 1.5x 
the interquartile range from the box. 
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enrichment) through 0 (no enrichment) to -10 (maximum lack) and here are reported as the 

median +/- standard deviation in MEM value for the cell population. As expected, PD-1+ CD8 and 

CD4 T cells from pre-therapy samples were enriched for canonical identity makers CD3 and CD8 

and CD4, respectively (Figure 6.3A-B, top). To indicate changes in enrichment patterns, change 

in MEM score (∆MEM) was calculated by subtracting the median MEM score for each parameter 
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at the pre-therapy time point from the indicated time point after the start of therapy. After 3 weeks 

and 6 months of anti-PD-1 therapy, PD-1+ CD8 T cells lost enrichment, but not expression, for 

CD3 (∆MEM of -5;  median ± standard deviation, CD3 MMI 40.9±11 (3 weeks) and 48.3±14.1 (6 

months)) (Figure 6.3A, bottom, Figure 6.3C). This was not the case for PD-1+ CD4 T cells (Figure 

6.3B, bottom).  Given a loss of enrichment of the CD3 subunit of the T cell antigen receptor, a 

Figure 6.3. Marker enrichment modeling identifies signature features of populations over the 
course of therapy.  Tissue-specific MEM labels were created for each cell population, from each patient, 
at each time point. (A) Median MEM labels are shown for PD-1+ CD8 T cells at each time point during 
therapy (top).  ΔMEM labels were calculated by subtracting the median pre-therapy MEM scores from 
the median MEM scores at each time point. ΔMEM labels indicate the change in MEM value compared 
to pre-therapy (bottom). (B) Median MEM labels are shown for PD-1+ CD4 T cells at each time point 
during therapy (top). ΔMEM labels are shown for PD-1+ CD4 T cells from each time point during therapy 
(bottom). MEM values are represented as the median MEM value ± standard deviation. (C) Biaxial plots 
of CD3 and CD8 are shown for PD-1+ CD8 T cells from representative melanoma patients (MB-004) 
undergoing anti-PD-1 therapy (left). Density: PD-1+ CD8 T cells, Contour: live CD45+ cells.  Transformed 
(arcsinh5) CD3 median metal intensity (MMI) is shown for PD-1+ CD8 T cells at each time point during 
therapy [pre-therapy (0), n=10; 3 weeks (3w), n=10; 12 weeks (12w), n=7; 6 month (6m), n=8 healthy, 
n=8];. Healthy PBMC donor CD8 T B cells are shown for reference. See also Tables S1 and S2. 
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canonically expressed and enriched T cell marker, on these peripheral blood PD-1+ CD8 T cells, 

it was important to determine their novelty by comparing them to other subsets, including PD-1+ 

CD8 T cells from tumors or healthy donors. To assess the novelty of this population, MEM labels 

were created for PD-1+ CD4 and PD-1+  CD8 T cell gated from (1) blood from melanoma patients 

during anti-PD-1 therapy, (2) human melanoma tumors, (3) blood from healthy donors, and (4) 

tonsil or adenoid from healthy donors. Induced pluripotent stem cells, analyzed by mass 

cytometry, were used as a control cell reference for MEM calculations. Similarity in MEM labels 

was then compared using root-mean-square deviation (RMSD) (348) (Figure 6.4A-B). B cells 

gated from healthy donor blood and tonsil were also included for contrast because of their 

distinctly different enrichment profiles. As expected, these B cells clustered separately from the T 

cell populations. PD-1+ CD4 T cells from blood of healthy donors and melanoma patients receiving 

anti-PD-1 therapy clustered together, whereas PD-1+ CD4 T cells from melanoma tumors and 

healthy donor tonsils formed a different cluster (Figure 6.4A). Similarly, PD-1+ CD8 T cells from 

melanoma tumors clustered with those from healthy donor tonsils, while PD-1+ CD8 T cells from 

healthy donor blood and melanoma blood formed two, intermixed clusters. These results indicated 

PD-1+ T cells found in the blood were distinct from those found in the tumor or healthy tonsil. 

Median MEM labels, which display enrichment scores for each measured feature, are shown for 

each tissue’s PD-1+ T cell populations (Figure 6.4B). PD-1+ CD8 T cells from the blood of 

melanoma patients were enriched for CD43 protein expression and trafficking markers like CCR4 

and CXCR3 and specifically lacked activation markers CD38 and CD69, as compared to PD-1+ 

CD8 T cells in melanoma tumors (Figure 6.4C, left).  PD-1+ CD4 T cells were enriched for CD4 

(+3), as compared to their melanoma tumor counterparts. There was no difference in enrichment 
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between PD-1+ CD4 T cells in the peripheral blood of melanoma patients and healthy donors 

(Figure 6.4C, right). PD-1+ T cells from the blood of melanoma patients and healthy donors were 

therefore phenotypically similar. Thus, MEM, as part of this ensemble, automated quantitative 

comparisons of high-dimensional data from different tumor and donor types.    

Ensemble systems analysis revealed increased CD4 T cell frequency following chemotherapy in 

AML patients 

Figure 6.4. MEM reveals that PD-1+ T cells from blood differ from those in the tumor.  (A) MEM 
labels were compared for each of the 112 populations (PD-1+ CD4 and CD8 T cells and B cells) from 
three human tissues. Populations were defined using traditional biaxial gates as in Figure S1. Tissue 
type and source are indicated in the bottom left. (B) Median MEM labels are shown for PD-1+ CD4 and 
CD8 T cells from each tissue type. MEM values are shown ± standard deviation. (C) ΔMEM scores 
show the difference in median MEM scores between PD-1+ CD8 T cells (left) or PD-1+ CD4 T cells (right) 
in the peripheral blood and those found in the tumor or blood of healthy donors. See also Tables S1 
and S2. 
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The ensemble systems immune monitoring pipeline was applied to a previously published data 

set of peripheral blood from acute myeloid leukemia patients undergoing chemotherapy (Dataset 

2, (328)) in order to describe and dissect system wide changes. All peripheral blood mononuclear 

cells, including blasts and non-blasts, were identified using the gating scheme published by Ferrell 

et al. EMD on t-SNE revealed lack of intra-patient stability in 3 of 5 patients, as seen by no 

significant difference between intra- and inter-patient EMD values (Figure 6.5A, Figure S3). The 

remaining two patients showed intra-patient stability, most likely due to the presence of leukemic 

blasts throughout treatment. Fifteen populations were defined automatically using the SPADE 

algorithm to cluster on t-SNE axes (Figure 6.5B), as previously described (207, 334).  

Of the 15 populations identified, 7 showed significant changes in at some point during 

chemotherapy (Figure 6.5C). MEM was used to label the automatically identified populations 

(Figure 6.5D, Figure S4). Two populations of blasts were defined by HLA-DR enrichment and 

observed to decrease over the course of chemotherapy. In contrast, CD4- T cells and two subsets 

of CD4+ T cells were observed to expand following chemotherapy. Population 13 was enriched 

for CD4 (+5), CD7 (+4), and CD45 (+2) while specifically lacking expression of HLA-DR (-3) and 

CD123 (-2), indicating that this is likely a population of CD4 T cell. To assess whether population 

13 was similar to CD4 T cells of healthy donors, RMSD on MEM labels, created using 

hematopoietic stem cells as a common reference, was calculated, and published data from 

healthy donor CD4 T cells and B cells was used as prior knowledge (348).  Population 13 

clustered with CD4 T cells from healthy donors (Figure 6.5E). Taken together, these results 

suggest that chemotherapy allowed emergence of a non-malignant population of CD4 T cells.   
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Figure 6.5. Ensemble immune analysis and automated gating identifies loss of peripheral blasts 
and increase in non-malignant immune cells in AML patients undergoing chemotherapy. PBMCs 
from AML patients undergoing chemotherapy were characterized by mass cytometry. Equal numbers 
of live events from each sample were run together on a viSNE map. (A) EMD was calculated, pairwise, 
for all samples. Heat indicates magnitude of EMD value. (B) Populations were identified (right) by 
SPADE of cell density on t-SNE axes (left). (C) Frequency of populations identified in (B) was 
normalized to the pre therapy frequency and compared using a paired t test. Populations with time 
points that significantly change from pre-therapy are shown in red. (D) Boxplots are shown for each 
significantly changing populations. Each population is labeled with a MEM label and an expert given 
name derived from the MEM label. (E) MEM labels from Population 13 were compared with the 80 
populations (CD4 T cells and B cells) from Diggins, et al using RMSD. See also Figures S3 and S4.  
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Loss of activated T cells and expansion of CD4-CD8- T cells in tumors of melanoma patients 

treated with MEKi and BRAFi 

Samples from a cohort of melanoma patients with BRAFV600E mutations treated with targeted 

therapies dabrafenib and trametinib (n = 11) (Dataset 3), were characterized by mass cytometry 

and the data analyzed by the ensemble systems immune monitoring pipeline. Combining EMD 

and viSNE to quantify stability of the immune compartment showed that each patient remained 

more similar to itself than to other melanoma tumors or healthy tonsils over the course of therapy.  

However, EMD run on t-SNE axes created from analysis of T cells revealed that the T cell 

compartment did not have lower intra-patient EMD values, as compared to inter-patient EMD 

values (Figure 6.6A). Thus, significant immune plasticity followed therapy. Immune populations 

were defined using traditional biaxial gates and the change in frequency for those populations 

was calculated. After 4 weeks of treatment, there was a statistically significant change in 

frequency of 5 immune populations was observed.  One population of interest included 

unexpected double-negative T cells lacking expression of CD4 or CD8 (DN T cells) that comprised 

7.23±17.18% in pre-therapy tumors, 26.27±16.36% in tumors 4 weeks post-therapy, and 

3.57±1.52% of a healthy lymph node ((median ± standard deviation) Figure 6.6B, Figure S6.3, 

Figure S6.4).  Pre-therapy MEM labels showed that DN T cells were enriched for CD3 (+2), CD45 

(+2), CD45RO (+1), CD4 (+1), and CD28 (+1) but specifically lacked CD8 (-3) and CD45RA (-2) 

when compared to all cells found within the melanoma tumors.  ∆MEM scores indicated that, over 

the course of therapy, DN T cells became more enriched for CD45RO (+1) and CD44 (+1) but 

lost enrichment of CD69 (-1), CD43 (-1), CD27 (-1), and HLA-DR (-1) (Figure 6.6C). Given that T 

cells can down regulate expression of CD4 or CD8 if highly activated (352), DN T cells from 

melanoma tumors, glioblastoma (GBM), renal cell carcinoma (RCC), and healthy tonsils were  
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Figure 6.6. Ensemble immune analysis identifies expansion of CD8 and CD4 double negative T 
cells in tumors from patients treated with BRAF and MEK inhibitors. Single cell suspensions of 
melanoma tumor biopsies from before and after treatment with BRAF and MEK inhibitors were 
characterized by mass cytometry. (A) Equal numbers of live events (left) or T cells (right) from each 
sample were run together on a viSNE map. EMD was calculated, pairwise, for all samples. Boxplots 
show median, pairwise EMD values for listed comparisons.  Unpaired student t test. *p<0.05. **p<0.01, 
***p<0.001. (B) Change in population frequency is shown for individual patients for each significantly 
changing population. Each time point after the start of therapy was compared to the pre-therapy time 
point using a two tailed, paired t-test. *p<0.05. **p<0.01. (C) Median MEM labels are shown for double 
negative (DN) pre therapy and 4 weeks after therapy. A ΔMEM score shows the difference in median 
MEM scores DN T cells before and after the start of therapy. (D) MEM labels from tumor resident DN 
T cells were compared with SEB stimulated T cells from peripheral blood using RMSD. Median MEM 
scores for each tissue are shown on the right.  (E) Biaxial plots of all T cells from SEB stimulated PBMC 
(left) and activated T cells (CD69+, plots on right). (F) Biaxial plots of DN T cells from tumors of patients 
treated for 4 weeks with BRAFi and MEKi (left) and all T cells from (right). See also Figures S5 and 
S6, Tables S1 and S2. 
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compared to classical activated peripheral blood T cells stimulated through the T cell receptor by 

Staphylococcal enterotoxin B (SEB) (327) (Fig 6.6D). SEB stimulated T cells formed their own 

cluster, apart from all other DN T cells and shared 87.2% (±2.88%, n=78 comparisons) similarity 

with DN T cells from melanoma tumors. In contrast, DN T cells from melanoma, GBM, and RCC 

clustered together, with a similarity scores of 93.6% (±1.06%, n=78 comparisons). Of T cells 

Supplemental Figure 6.3. Change in frequency of populations identified by biaxial gating in 
melanoma patient tumors treated with MEKi and BRAFi (Related to Figure 6). Melanoma 
patients had a tumor biopsied before the start of therapy. For two weeks, patients were treated with 
a BRAFi and at the two week mark, a MEKi was added. At 4 weeks, the tumor was removed. Immune 
populations (31) were gated using biaxial plots.  Population frequencies at all time points of therapy 
were normalized to the pre chemotherapy frequency and compared using a student’s t test 
(uncorrected P value shown). The number of matched pairs of melanoma tumors shown in boxplots 
is shown to the left (or below) the population name. 
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activated by SEB, close to half were CD69+ (41.26±7.41%) and nearly all retained CD4 or CD8 

co-receptor expression (Figure 6.6E).  In contrast, DN T cells from post-treatment melanoma 

tumors contained fewer CD69+ cells (22.45±8.76%) (Figure 6.6F). Thus, DN T cells from 

melanoma, GBM, and RCC consisted of a phenotypically distinct population of DN T cells unlike 

any observed in healthy tissue.  Taken together, these data suggest that an unusual population 

of T cells emerged in tumors from melanoma patients treated with BRAFi and MEKi, and that this 

DN T cell population occurs in multiple types of tumors. 

Discussion 

 The manuscript describes an analysis suite designed to be a common starting point for 

immunologists tracking cells over time, provides three reference datasets for testing tools 

designed to discover and characterize cell subsets, and reveals unexpected cells in the context 

of cancer therapies.  While we expect the algorithms in the ensemble will change and improve 

over time, the four cellular properties identified should be considered essential features for 

immune monitoring with any single cell platform. This ensemble data analysis strategy was 

designed specifically for systems immune monitoring in longitudinal, clinical studies, but it could 

be applied for any system with change. For example, we envision adapting it to study experimental 

perturbations to map signaling networks and drug responses (194, 353). This ensemble approach 

was robust across multiple, contrasting studies in quantifying change and stability in immune 

system cells. Additionally, this approach provided a detailed analysis of the abundance and 

tractable quantitative phenotype of populations that comprised each system.  One of the most  
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striking findings was a population of CD4- CD8- DN T cells observed to have a common phenotype 

in three human tumor types, melanoma, renal cell carcinoma, and glioblastoma that had a 

phenotype distinct from that of resting CD4- CD8- DN and SEB activated T cells from healthy 

individuals.  This result is consistent with recent reports characterizing the striking phenotypic 

Supplemental Figure 6.4 Melanoma tumor population frequency before and after MEKi and 
BRAFi treatment (Related to Figure 6.6). The frequency of each population is plotted using boxplots. 
Uncorrected P values are shown for each time point compared to pre-therapy (paired, t-test).  The 
number of matched pairs of melanoma tumors shown in boxplots is shown to the left (or below) the 
population name. The whiskers of the boxplot extend to the most extreme data point which is no more 
than 1.5x the interquartile range from the box. 
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similarity of T cells infiltrating melanoma and colon cancer mouse tumor models (354) and 

provides new evidence that common changes to immune cell mechanisms are shared across 

human tumor types and play a role in response to targeted therapy.   

Overall, the peripheral immune system was remarkably stable in melanoma patients over 

the course of anti-PD-1 therapy, similar to the stability seen in healthy individuals over time (197, 

301). However, by combining viSNE with EMD, one patient was identified as having a highly 

plastic immune system. This patient was previously diagnosed with MDS as described in Chapter 

IV of this thesis (312). It may be common in cancer immune monitoring to observe outcomes that 

are, individually, rare (355). An analysis strategy must expect the unexpected and may struggle 

if tailored too closely to examples (356). Caveats exist for using EMD to quantify differences 

between viSNE maps. All samples must be embedded on the same viSNE map in order to be 

appropriately compared and precautions, like barcoding and bead normalization, must be taken 

to ensure that differences in viSNE maps are attributed to biological differences and not batch 

effects. Identification of cells into groups can be accomplished in whichever way is most 

appropriate to a system, or in multiple ways, prior to ensemble analysis (210, 314, 334, 350). 

Because the ensemble toolkit does not rely on known populations, it remains independent from 

methods of automated population identification (207, 350) and can be used to compare and 

communicate analysis results from teams relying on computational approaches, immunologists, 

and bioinformatics experts.   

The ensemble approach was especially adept at capturing shifts over time and was able 

to identify a shift in relative abundance of a subset of T lymphocytes, their phenotype and intra-

patient recovery of these phenotypes, all of which could have significant implications for 

maintenance of remission and clinical outcomes (357, 358). A human immune monitoring strategy 

using this ensemble toolkit might therefore provide new insight into the immune system’s 

interaction with leukemia remission and relapse.   
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 The ensemble toolkit was able to detect known biological occurrences, as well as identify 

novel potential mechanisms for further study. The ensemble toolkit detected an overall loss of 

PD-1+ T cells in the peripheral blood over the course of therapy. This has previously been 

described and attributed to receptor occupancy by the drug itself (295, 359). Previous work 

revealed an expanded population of Ki67+ CD4 T cells in the peripheral blood during 

immunotherapy (342, 343).  While our comparable study did not measure Ki67 in the blood and 

thus could not be compared directly, we did observe a trend towards increased activated CD4 T 

cells, as defined by expression of HLA-DR, at 3 weeks after the start of therapy and CD4 TEM cells 

at all time points after the start of therapy (Figure S6.2). In addition to capturing known clinical 

events, the ensemble tool kit identified a novel population of DN T cells present in unexpectedly 

high frequencies in melanoma tumors before and after treatment with BRAFi and MEKi as 

compared to healthy lymphoid tissue. Expanded DN T cell populations have previously been 

reported in metastatic lymph nodes of melanoma patients (360), however their deep phenotype 

or frequency in response to inhibitor therapy has not yet been described. Previous work has 

described the expansion of a regulatory CD3+ T cell population lacking both CD4 and CD8 after 

T cell receptor (TCR) and cytokine (361-364). Further, MEK inhibitors can support anti-tumor T 

cell function by blunting TCR-induced apoptosis (365). Therefore, it is possible that high 

frequencies of DN T cells after treatment with MEKi and BRAFi indicate an accumulation of T 

cells derived from tumor resident T cells, although additional mechanistic studies are required. 

 Overall, the melanoma tumor dataset (Dataset 3) highlights the complexity of tumor-

associated T cells in human malignancies and provides further evidence that phenotypically 

diverse populations of tumor resident T cells can be found across multiple, distinct tumor types 

(354). The data presented here will join a common immunology reference set (348, 366-368) that 

can be mined further to characterize and understand changes in immune and cancer cell 

populations diverse disease settings and build a reference of cellular identity.  
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Materials and Methods 

Study Design 

In the case of peripheral blood collected from melanoma patients receiving pembrolizumab, the 

purpose of the study was to identify biological characteristics of melanoma occurring prior to 

treatment and at different time points following therapy for patients being treated with immune 

based therapies. To be included in this study, patients met the following inclusion criteria: 1) 

pathologically proven diagnosis of melanoma, 2) 18 years of age or older, 3) treated with immune-

based therapies, and 4) willing to have several serial blood draws.  Patients not receiving immune-

based therapy or unwilling or unable to provide consent were not included.  There was no blinding 

or randomization process in this study.  Blood specimens were obtained from patients during the 

time of scheduled phlebotomy for routine clinical laboratory analysis. Peripheral blood draws were 

done on the day of therapy start and 21 days (±10 days), 84 days (±21 days), and 180 days (±21 

days) following initiation of therapy. 

In the case of tumors sampled sequentially from melanoma patients treated with targeted therapy, 

the objective was to identify biomarkers of response and resistance to B-RAF and MEK targeted 

therapy in melanoma.  Patients with advanced, operable BRAF mutation-positive melanoma will 

received GSK-2118436 (BRAF inhibitor) for two weeks, followed by the combination of GSK-

2118436 and GSK-1120212 (MEK inhibitor) for two weeks, followed by surgical resection of the 

disease. Tumor biopsies were obtained prior to start of therapy and 2 weeks after combined GSK-

2118436 and GSK-1120212 (369). To be included in this study, patients met the following 

inclusion criteria: 1) signed written, informed consent, 2) between the ages of 18 and 90, 3) 

patients with locally or regionally advanced melanoma being considered for resection of the 

lesion(s) for local-regional control and potential cure, 4) BRAF V-600 mutation positive by 

snapshot molecular analysis, 5) measurable disease, 6) all prior treatment related toxicities 
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CTCAE ≤ Grade 1 at the time of enrollment, 6) adequate baseline organ function, 8) women of 

childbearing potential with a negative serum pregnancy test within 14 days of first dose of study 

or men with female partner of childbearing potential must have had either had a prior vasectomy 

or agree to use effective contraception, and 9) able to swallow and retain oral medication. There 

was no blinding or randomization process in this study. 

Human Tissue Sample Collection and Preservation 

All human samples were obtained in accordance with the Declaration of Helsinki following 

protocols approved by Vanderbilt University Medical Center Institutional Review Board (IRB). The 

patient information for unpublished samples can be found in Supplemental Table 6.1. Healthy 

donor tonsil, adenoid, and blood were collected as “non-human subjects”, without gender or age 

information. Upon single cell isolation, all cells were cryopreserved in 88% fetal calf serum + 12% 

DMSO. Cells from human samples were collected and isolated as follows: 

Peripheral Blood 

Peripheral blood mononuclear cells (PBMCs) were collected, isolated, and cryopreserved from 

approximately 20 mL of freshly drawn blood as previously described (312). Briefly, peripheral 

blood was drawn into sodium heparin anticoagulant and PBMC were isolated by centrifugation 

after layering on top of a Ficoll-Paque PLUS (GE Healthcare Bio-Sciences) gradient. 

Solid Tissue.   

Melanoma tumors, glioblastoma tumors, and non-malignant human adenoid and tonsil tissue 

were resected from patients with consent and in accordance with the Declaration of Helsinki.  All 

solid tissue samples were dissociated into live, single cell suspension and samples were 

cryopreserved using a previously documented protocol (370, 371). Solid tissue samples were first 

manually dissociated using a scalpel. The minced tissue was then incubated in RPMI 1640 



133 

 

(Corning/Mediatech, Corning, NY) plus 10% FBS in a final concentration of 1 mg/mL collagenase 

II (Sigma Aldrich; Darmstadt, Germany) and 0.25 mg/mL DNase (Sigma Aldrich) for 1 hour in a 

37° C incubator with 5% CO2. Cells were then strained with a 70 μm and 40 μm prior to 

cryopreservation. 

Renal cell carcinoma samples were processed and stored as described by Siska, et al (372). 

Human Induced Pluripotent Stem Cells (iPCSs) 

Reprogramming of fibroblasts was induced by transduction with CytoTune Sendai virus (Life 

Technologies). All experiments were performed under the supervision of the Vanderbilt 

Institutional Human Pluripotent Cell Research Oversight (VIHPCRO) Committee. Induced 

pluripotent stem cells were grown in feeder-free conditions in plates coated with Matrigel (BD 

Biosciences) and maintained in mTESR1 media (Stem Cell Technologies) at 37°C with 5% CO2. 

Cells were checked daily for differentiation and were passaged every 3-4 days using Gentle 

dissociation solution (Stem Cell Technologies). iPSCs were treated with 0.5% EDTA prior to 

staining with mass cytometry antibody panel as described below.  

Mass Cytometry 

Thawed samples were first incubated with viability reagent, cisplatin (25 μmol/L, Enzo Life 

Sciences) (230). After incubation with viability reagent, cells were washed in PBS containing 1% 

BSA. Staining occurred in 50 μL PBS/1% BSA for 30 minutes at room temperature using the 

antibodies listed in Supplemental Table 6.2. Cells were then washed twice with PBS/1% BSA and 

fixed with a final concentration of 1.6% paraformaldehyde (PFA, Electron Microscopy Sciences). 

Cells were washed again, using PBS, and then resuspended in iced cold methanol to 

permeabalize. Cells were incubated at -20° C overnight before being washed twice in PBS and 

stained with iridium DNA intercalator (Fluidigm Sciences). Purified, carrier free antibodies were 

purchased from the listed provider and labeled with the listed metal using the protocol provided 
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by Fluidigm. Stained samples were collected at Vanderbilt University Flow Cytometry Shared 

Resource on a CyTOF 1.0 mass cytometer (Fluidigm Sciences). All events were normalized prior 

to analysis using Fluidigm normalization beads.   

CyTOF data preprocessing: Data (FCS files) were collected and stored in the online, analysis 

platform Cytobank (229).  Data analysis was performed in Cytobank and statistical programming 

environment R (version 3.4.0) via Rstudio. 

Earth Mover’s Distance:  The Earth Mover's Distance (EMD) was calculated between each pair 

of populations using the "transport" library for R (319, 351) (https://cran.r-

project.org/web/packages/transport/citation.html). Parent population (e.g. live CD45+ events) 

were gated in Cytobank, followed by the creation of a viSNE map in Cytobank. A viSNE analysis 

with two output dimensions was performed, equally sampling 5000 events per file, with 1000 

iterations, perplexity equal to 30, and theta equal to 0.5. The events with their viSNE axes were 

then downloaded from Cytobank, and the Earth Mover's Distance (EMD) was calculated between 

each pair of files using the "transport" library for R. The "wpp" object was used to represent each 

set of points in the two viSNE axes, and the "wasserstein" function was called on each pair of 

point sets to produce a distance matrix. Each point was assigned unit weight.  

Because calculating a matrix with the EMD between each set of 5000 events from the viSNE 

analysis is computationally expensive, four optimizations were performed.  (1) Each file was 

further downsampled to 1000 out of the original 5000 events per file in the viSNE analysis. Each 

event was still assigned unit weight, and each point set therefore still had an equal total mass of 

1000. (2) The "shortsimplex" method was used for the "wasserstein" function in the "transport" 

library, which accepted no other parameters besides the pair of weighted point sets (373).  (3) 

Each population was automatically assigned a zero EMD compared to itself, and EMD scores 

already computed across the diagonal were simply copied, since EMD is a metric. (4) The 

"parallel" library was used to parallelize the computation of each row of the matrix in addition to 

https://cran.r-project.org/web/packages/transport/citation.html
https://cran.r-project.org/web/packages/transport/citation.html
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the above, using the number of cores detected from the "detectCores" function in the "parallel" 

library.  

EMD values computed by ‘emdist’ were compiled in a CSV file and used to create a heatmap for 

visualization. Statistical comparisons of EMD values between groups were done in Excel using a 

Student’s t- test. CSV file and heatmap are each produced as an output. 

Change in population equation. The frequency of immune populations was determined in 

Cytobank and exported into CSV files prior to re-organization.  For Data Sets 1 and 3, populations 

were identified by traditional biaxial gating (Figure S6.1). For Data Set 2, populations were 

identified by first running a viSNE on nucleic acid expressing events from all patients at all time 

points and then running a SPADE on the tSNE axes (Figure 6.5B). Fifteen nodes (15) were 

identified with 5% down sampling. The following equation was used to determine the change in 

frequency for all data sets where FREQt is equal to the frequency of a population at a given time 

point and FREQpre is the frequency of that same population prior to the start of therapy. The 

addition of 0.01 to both the numerator and the denominator is to account for the appearance of 

new populations over the course of therapy. 

Change in frequency = ln((FREQt + 0.01)/( FREQpre + 0.01)) 

R was used to conduct a paired Student’s t- test to compare samples from the same patient at 

different time points of treatment. R script provided by Carr, et al was used to create boxplots in 

R (197).  In the case of Data Set 1, a Bonferroni correction was used for multiple hypothesis 

testing. 

MEM. MEM creates a quantitative label of cell identity for given populations (348). The MEM 

equation is implemented in R.  MEM labels were either created for indicated populations using 

the bulk, non-population as the reference (Figures 6.3, 6.5D, and 6.6C), using iPSCs stained and 

run on mass cytometry as the common reference (Figures 6.4 and 6.6D), or using hematopoietic 
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stem cells stained and run on mass cytometry as the common reference (Figure 6.5E) (348). 

Median MEM labels were created by taking the median MEM score of each marker for each 

population. Standard deviation is shown. ΔMEM scores are calculated by subtracting the MEM 

score of the pre-therapy sample from the MEM score of the indicated time point. 

Similarity of MEM labels. Root mean square deviation (RMSD) and hierarchical clustering were 

used to compare MEM labels, as previously described (348). The MEM vectors for each non-

reference population were calculated over phenotype channels which were shared across all non-

reference populations and the single reference population. Each MEM vector contained the 

population's MEM score, calculated for each of the common phenotype channels, in reference to 

the single reference population. The MEM RMSD between pairs of non-reference populations 

was then calculated using the Euclidean distance between these MEM vectors.  

Heatmaps representing population similarity were generated from each distance matrix using the 

"heatmap.2" function of the "gplots" library for R. The distance matrix was normalized by the 

maximum non-normalized distance d_max between any pair of populations, then multiplied by 

100, then subtracted from 100. The result was that zero entries in the original distance matrix 

would receive a similarity score of 100, while the pair of populations with greatest distance in the 

original distance matrix would receive a similarity score of 0. Thus, two populations with the exact 

same enrichment score would have 100% similarity (348). To compare populations, median 

RMSD scores were compared using a two-tailed, student’s T test.  

Code availability. Original data sets are provided as FCS files in Flow Repository and as Excel 

files. Software for calculating EMD and displaying it as a heat map is available as Supplementary 

Software. Software for generating MEM scores is available in the Supplementary Software of 

Diggins, et al (348) (http://mem.vueinnovations.com/). 

Data availability  
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Data Set 1 

Peripheral blood from melanoma patients treated with αPD-1 and healthy peripheral blood 

controls, is available as FCS files in Flow Repository. SNaPshot genotyping was done in the clinic 

on tumors resected from each patient. Forty-eight mutations in NRAS, BRAF, KIT, CTNNB1, and 

GNAQ were monitored (374). 

Data Set 2 

Peripheral blood from AML patients treated with chemotherapy, shown in Figure 6.5, was 

generated by CyTOF analysis as described by Ferrell, et al. (328) and is available as FCS files in 

Flow Repository (http://flowrepository.org/id/FR-FCM-ZZMC). Patient characteristics and 

treatment details are available in Ferrell, et al. 

Data Set 3 

Serially biopsied melanoma tumors from patients treated with BRAFi and MEKi were generated 

in separate mass cytometry experiments. Patients MP-034, MP-029, MP-031, MP-032, MP-055, 

and MP-059 were stained with the mass cytometry panel described in Supplemental Table 6.2. 

Patients MP-019, MP-023, MP-054, MP-052, and MP-062 were stained with the panel described 

by Doxie, et al (in preparation). FCS files are available in Flow Repository. SNaPshot genotyping 

was done as described above. 

Additional Data 

Data for Figure 6.4 were generated by us in separate mass cytometry studies characterizing 

untreated melanoma tumors, glioblastoma tumors, and non-malignant tonsil and adenoid.  FCS 

files are available in Flow Repository. Renal cell carcinoma tumors RC-29, RC-37, and RC-52 

were published by Siska et al (372) and SEB stimulated PBMC were published by Nicholas et al 

(327). 

http://flowrepository.org/id/FR-FCM-ZZMC
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Data sets used in the RMSD heatmap are described by Diggins, et al (348). 
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Supplementary Table 6.1. Patient Information for Blood and Tissue Donors, 

   Related to Figures 1-4, and 6 

 
Patient 

ID 
Timepoint Age Gender Malignancy 

Sample 
Type 

Tumor 
Site 

Genotype 
Prior 

Treatment 
Ongoing 

Treatment 
Citation 

MP-019 

Baseline 

43 M Melanoma Tumor 

Axillary 
LN 

BRAFV600E None 

Untreated 

Doxie, et 
al. 

Under 
review 

  

Week 4 
Axillary 
LN 

Dabrafenib + 
Trametinib 

MP-054 

Baseline 

62 M Melanoma Tumor 

Neck, 
Back 

BRAFV600E None 

Untreated 

Week 4 
Neck, 
Back 

Dabrafenib + 
Trametinib 

MP-023 

Baseline 

69 M Melanoma Tumor 

Cervical  
LN 

BRAFV600E None 

Untreated 

Week 4 
Cervical  
LN 

Dabrafenib + 
Trametinib 

MP-029 

Baseline 

41 F Melanoma Tumor 

Axillary 
LN 

BRAFV600E None 
Untreated 

Week 4 
Axillary 
LN 

Dabrafenib + 
Trametinib 

MP-031 

Baseline 
28 F Melanoma Tumor 

Axillary 
LN 

BRAFV600E None 
Untreated 

Week 4 
Axillary 
LN 

Untreated 

MP-032 
Baseline 

47 F Melanoma Tumor 

Chest 

BRAFV600E None 

Dabrafenib + 
Trametinib 

Week 4 Chest Untreated 

MP-034 

Baseline 

63 F Melanoma Tumor 

Groin, 
thigh 

BRAFV600E None 

Untreated 

Week 4 
Groin, 
thigh 

Dabrafenib + 
Trametinib 

MP-055 

Baseline 
53 F Melanoma Tumor 

Neck, 
scalp 

BRAFV600E None 
Untreated 

Week 4 
Neck, 
scalp 

Untreated 

MP-052 

Baseline 
37 M Melanoma Tumor 

LN, 
groin 

BRAFV600E None 

Dabrafenib + 
Trametinib 

Week 4 
LN, 
groin 

Untreated 

MP-059 
Baseline 

75 F Melanoma Tumor 

Thigh 

BRAFV600E None 

Dabrafenib + 
Trametinib 

Week 4 Thigh Untreated 

MP-062 
Baseline 

79 M Melanoma Tumor 

Neck, 
scalp 

BRAFV600E None 

Dabrafenib + 
Trametinib 

Week 4 
Neck, 
scalp 

Untreated 

MP-004 n/a 52 M Melanoma Tumor LN BRAFV600E None n/a 

MP-013 n/a 
69 M Melanoma Tumor Axillary 

LN 
WT None 

n/a n/a 

MP-015 n/a 
41 F Melanoma Tumor Cervical 

LN 
NRASQ61R Chemotherapy 

n/a 
n/a 

MP-039 n/a 37 M Melanoma Tumor LN NRASQ61R None n/a n/a 

MP-
049b 

n/a 
60 M Melanoma Tumor Small 

bowel 
NRASQ61R None 

n/a 
n/a 

MB-004 

Baseline 

70 M Melanoma PBMC 

n/a 

BRAFV600R 
 

Vemurafenib, 
Dabrafenib+ 

Trametinib 

None n/a 

Week 3 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-005 Baseline 66 M Melanoma PBMC n/a NF1 (FM) Ipilimumab None n/a 
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Week 3 n/a  Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-006 

Baseline 

59 M Melanoma PBMC 

n/a 

NRASQ61 

(FM) 
 

None 

None n/a 

Week 5 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-007 

Baseline 
77 M Melanoma PBMC 

n/a BRAFV600E 

(FM) 
 

Ipilimumab, 
Dabrafenib+ 

Trametinib 

None n/a 

Week 3 
n/a 

Pembrolizumab 
n/a 

MB-008 

Baseline 

49 F Melanoma PBMC 

n/a 

NRASQ61R 
 

Ipilimumab, 
Palbociclib+ 

Trametinib 

None n/a 

Week 3 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-009 

Baseline 

74 F Melanoma PBMC 

n/a TET2 
subclonal, 
TP53 
R110P, 
RB1 
splice 

Ipilimumab 

None n/a 

Week 3 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-010 

Baseline 

63 M Melanoma PBMC 

n/a 

BRAFL597 
(FM) 

Ipilimumab 

None n/a 

Week 3 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-012 

Baseline 

62 F Melanoma PBMC 

n/a 

NF1 (FM) Ipilimumab 

None n/a 

Week 3 n/a Pembrolizumab n/a 

Week 12 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-013 

Baseline 

75 M Melanoma PBMC 

n/a 
NF1, 

BRAFG593I 
(FM) 

Trametinib 

None n/a 

Week 6 n/a Pembrolizumab n/a 

Month 6 n/a Pembrolizumab n/a 

MB-041 
Baseline 

41 M Melanoma PBMC 
n/a 

BRAFV600E Ipilimumab 
None n/a 

Week 3 n/a Pembrolizumab n/a 

LC-04B n/a 65 n/a Glioblastoma Tumor Brain IDH wt Steroids n/a n/a 

LC-06B n/a 41 n/a Glioblastoma Tumor Brain IDH wt Steroids n/a n/a 

W-5 n/a 60 n/a Glioblastoma Tumor Brain IDH wt Steroids n/a n/a 

RC-29 n/a 
72 M Renal Cell 

Carcinoma 
Tumor Kidney n/a n/a n/a 

Siska, et 
al. (372) 

RC-37 n/a 
54 M Renal Cell 

Carcinoma 
Tumor Kidney n/a n/a n/a 

RC-52 n/a 
45 M Renal Cell 

Carcinoma 
Tumor Kidney n/a n/a n/a 

VUK006 n/a n/a n/a none PBMC n/a n/a n/a n/a 

Diggins, 
et al. 
(348) 

VUK007 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VUK008 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VUK026 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VU10 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VU11 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VU14 n/a n/a n/a none PBMC n/a n/a n/a n/a 
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VU17 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VU18 n/a n/a n/a none PBMC n/a n/a n/a n/a 

VU11A n/a n/a n/a none Adenoid n/a n/a n/a n/a n/a 

VU19T n/a n/a n/a none Tonsil  n/a n/a n/a n/a n/a 

Ad18 n/a n/a n/a none Adenoid n/a n/a n/a n/a n/a 

Ad19 n/a n/a n/a none Adenoid n/a n/a n/a n/a n/a 
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Supplementary Table 6.2.  Staining Panels for Mass Cytometry  

Metal Antibody 

Melanoma 

and iPSC GBM Clone Company 

103 
Rhodium 

(viability) 
 x 

n/a Fluidigm 

141 ICOS x x C398.43 Biolegend 

142 CD19 x x HIB19 Fluidigm 

143 TIM3 x x F38-2E2 Biolegend 

144 CCR5 x  NP-6G4 Fluidigm 

144 CD11b  x ICRF44 Fluidigm 

145 CD4 x x RPA-T4 Fluidigm 

146 CD64 x x 10.1 Fluidigm 

147 CD20 x x 2H7 Fluidigm 

148 CD38 x x HIT2 Biolegend 

149 CCR4 x x 205410 Fluidigm 

150 CD43 x x 84-3C1 Fluidigm 

151 CD14 x x M5E2 Fluidigm 

152 TCRγδ x x 11F2 Fluidigm 

153 CD45RA x x HI100 Fluidigm 

154 CD45 x x HI30 Fluidigm 

156 CXCR3 x x G025H7 Fluidigm 

158 CD33 x x WM53 Fluidigm 

159 CCR7 x x G034H7 Fluidigm 

160 CD28 x x CD28.2 Fluidigm 

161 CD32 x x RUO Biolegend 

162 CD69 x x FN50 Fluidigm 

163 HLA-DR x x L243 Biolegend 

164 CD45RO x x UCHL1 Fluidigm 

165 CD16 x x 3G8 Fluidigm 

166 CD44 x x BJ18 Fluidigm 

167 CD27 x x O323 Fluidigm 

168 CD8 x x SKI Fluidigm 

169 CD25 x x 2A3 Fluidigm 

170 CD3 x x SP34-2 Fluidigm 

171 CXCR5 x x J252D4 Biolegend 

172 CD57 x x HCD57 Fluidigm 

174 PD-1 x x EH12.2H7 Biolegend 

175 PD-L1 x x 29E.2A3 Fluidigm 

176 CD56 x x CMSSB Fluidigm 

Ir 

191/193 

Iridium 

intercalator x x n/a Fluidigm 

195 

Cisplatin 

(viability) x  n/a Fluidigm 
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Chapter VII 

CONCLUSIONS AND FUTURE DIRECTIONS 

Summary and Significance 

 The systems wide impact of immunotherapy is not well understood. Given the complex 

and temporal nature of the immune system, a single cell, systems immune monitoring approach 

is needed to understand the biological and clinical impact. In this thesis, I describe the 

development of a biological and computational approach for systems immune monitoring in 

clinical samples.  My work represents a foundation for analysis of and discovery within clinical 

data sets. When applied to a cohort of melanoma patients receiving anti-PD-1 therapy, the 

ensemble analysis approach automatically identified a unique case where a patient experienced 

bone barrow failure. Additionally, when applied to melanoma tumors sequentially biopsied during 

small molecule inhibitor therapy, this ensemble identified and described a novel T cell type that 

exists across human cancers, but not in healthy tissue. 

 In Chapter II (327), I worked with Dr. Katherine Vowell to develop a single, high 

dimensional, mass cytometry panel that faithfully recapitulates 5 flow cytometry panels in its ability 

to characterize activated T cells.  Mass and fluorescence cytometry are quantitative single cell 

flow cytometry approaches that are powerful tools for characterizing diverse tissues and cellular 

systems.  Here mass cytometry was directly compared with fluorescence cytometry by studying 

phenotypes of healthy human PBMC in the context of superantigen stimulation.  One mass 

cytometry panel and five fluorescence cytometry panels were used to measure 20 well-

established lymphocyte markers of memory and activation. Comparable frequencies of both 

common and rare cell subpopulations were observed with fluorescence and mass cytometry using 

biaxial gating. The unsupervised high-dimensional analysis tool viSNE was then used to analyze 

data sets generated from both mass and fluorescence cytometry. viSNE analysis effectively 
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characterized PBMC using eight features per cell and identified similar frequencies of activated 

CD4+ T cells with both technologies. These results suggest combinations of unsupervised 

analysis programs and extended multiparameter cytometry will be indispensable tools for 

detecting perturbations in protein expression in both health and disease.  

 In Chapter III (Greenplate, et al. accepted JCO Precision Oncology, November 2017), I 

apply the mass cytometry panel developed in Chapter II to a clinically relevant and long-studied 

disease case in order to better understand the systemic immune response to anti-cancer therapy. 

The promise of precision oncology is that identifying genomic and proteomic alterations will direct 

the rational use of molecularly targeted therapy. This approach is particularly applicable to 

neoplasms that are resistant to standard cytotoxic chemotherapy like T-cell leukemias and 

lymphomas. In this study, we tested the feasibility of targeted next generation sequencing in 

profiling diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated 

JAK1 and JAK3 in an index case. Using FoundationOne® and FoundationOne® Heme assays, 

we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. 

An index case of T-PLL is presented which was analyzed by targeted next generation sequencing. 

The index case of a patient with T-PLL with a clonal JAK1 V658F mutation that responded to 

ruxolitinib therapy. On relapse, an expanded clone harboring downregulation of the phosphatase, 

CD45, was identified using mass cytometry. We demonstrate the JAK missense mutations were 

activating and caused pathway hyperactivation and conferred cytokine hypersensitivity. The 

results underscore the utility of profiling cases resistant to standard regimens and support JAK 

enzymes as rational therapeutic targets for T-cell leukemias and lymphomas. 

 Given the success of systems immune monitoring with mass cytometry in leukemia 

patients, in Chapter IV (312), I move into dissecting systems wide immune response to anti-PD-

1 therapy in a melanoma patient. Antibodies aimed at blocking the interaction between PD-1 and 

its ligands have shown impressive efficacy in a variety of malignancies and are generally well 
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tolerated.  Research has focused intensely on T cells and their interaction with cells within 

melanoma tumors, while relatively little is understood about the systems immunology of the cells 

in the blood during checkpoint inhibitor therapy.  Longitudinal cytomic analysis using mass 

cytometry can characterize all the cells in a small sample of blood and has the potential to reveal 

key shifts in the cellular milieu occurring during treatment.  I reported a case of advanced 

melanoma in which mass cytometry detected abnormal myeloid cells resulting from 

myelodysplastic syndrome (MDS) in the blood following treatment with an anti-PD-1 agent.  

Myeloid blasts comprised <1% of peripheral blood mononuclear cells (PBMC) one month after 

the start of treatment.  By 6 months after starting therapy, myeloid blasts comprised 5% of PBMC 

and a bone marrow biopsy confirmed refractory anemia with excess blasts-2 (RAEB-2). 

Longitudinal mass cytometry immunophenotyping comprehensively characterized blast 

phenotype evolution and revealed elevated PD-1 expression on the surface of non-blast myeloid 

cells.  These findings highlight the clinical significance of cytomic monitoring, indicate that the 

myeloid compartment should be monitored during checkpoint inhibitor therapy, and emphasize 

the value of systems immunology in medicine.   

 With increased ability to monitor dozens of proteins simultaneously on a single cell comes 

the challenge of accurately assigning cellular identity. Proteins once thought to be lineage 

restricted now appear on a wide variety cells, confounding traditional naming practices. To solve 

this problem, Dr. Kirsten Diggins developed Marker Enrichment Modeling (MEM), an algorithm 

that objectively describes cells by quantifying contextual feature enrichment and reporting a 

human and machine-readable text label (348). MEM outperforms traditional metrics in describing 

immune and cancer cell subsets from fluorescence and mass cytometry.  MEM provides a 

quantitative language to communicate characteristics of new and established cytotypes observed 

in complex tissues. To this study, I contributed dozens of primary human samples characterized 
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by mass cytometry, data analysis of classical T cell subsets, and an immunologist’s view of cell 

identity. 

In Chapter VI (Greenplate, et al. under review January  2018), I use the tools, 

methodology, and philosophy developed in previous chapters to characterize and dissect the 

peripheral blood of melanoma patients treated with anti-PD-1 and sequential human, melanoma 

tumors treated with small molecule inhibitors. Advances in single cell biology have enabled 

measurements of >40 protein features on millions of immune cells within clinical samples. 

However, the data analysis steps following cell population identification are susceptible to bias, 

time-consuming, and challenging to compare across studies.  In Chapter VI, an ensemble of 

unsupervised tools was developed to evaluate four essential types of immune cell information, 

incorporate change over time, and address diverse immune monitoring challenges.  The four 

complementary properties characterized were: 1) systemic plasticity, 2) change in population 

abundance, 3) change in signature population features, and 4) novelty of cellular phenotype.  

Three systems immune monitoring studies were selected to challenge this ensemble approach.  

In serial biopsies of melanoma tumors undergoing targeted therapy, the ensemble approach 

revealed enrichment of double-negative (DN) T cells.  Melanoma tumor resident DN T cells were 

abnormal and phenotypically distinct from those found in non-malignant lymphoid tissues, but 

similar to those found in glioblastoma and renal cell carcinoma. Overall, ensemble systems 

immune monitoring provided a robust, quantitative view of change in both the system and cell 

subsets, allowed transparent review by human experts, and revealed abnormal immune cells 

present across multiple human tumor types.  

In summary, this thesis advances our understanding of cellular identity, systems immune 

monitoring, and the biology of immune response in melanoma patients receiving anti-cancer 

therapy. I showed that high dimensional, single cell techniques combined with advanced analysis 

tools were able to identify cell types that lacked canonical identity markers. Specifically, mass 
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cytometry and analysis tools viSNE and SPADE were able to group activated T cells lacking CD3 

with other T cells. These results open the door to identification of novel and unexpected cell types 

in heterogeneous, human samples. In fact, applying this panel and analysis, I was able to identify 

unexpected cell types in two different clinical settings, each with actionable medical treatment. In 

a patient with melanoma, the identification of immature myeloid blats led to the diagnosis of 

myelodysplastic syndrome and subsequent change in therapy. I was able to identify an increase 

in myeloid cells expressing PD-1 at the start of therapy and an increase of activated monocytes 

over the course of therapy. The implication here is multifaceted.  The first implication is that 

monitoring the immune system over time is far more powerful than a static view of only one time 

point. It was the change in the peripheral immune milieu that indicated the impact of therapy. The 

second implication is that immunotherapies, like anti-PD-1, can act on many cell types with 

unintended clinical consequences. Thus, it is critical to monitor multiple cell types and multiple 

time points. The discovery of unexpected and evolving cells over the course of therapy led to the 

development of a quantitative cell identity labeling method, incorporated into an ensemble of 

analysis tools.  I propose 4 key features that must be measured and quantified when executing 

systems immune monitoring. This is the first ensemble to include quantification of systems 

plasticity, subset abundance, and population phenotype and novelty. To quantify systems 

plasticity, I developed a novel method whereby Earth Mover’s Distance (EMD) is applied to the 

axes of a viSNE plot to quantify change and stability. This ensemble is the first step in automated 

systems immune monitoring in the clinic. It provides multiple views of the immune system and 

can be used to compare systems across platforms and institutions. When applied to my own 

systems immune monitoring projects, it revealed remarkable stability in the peripheral blood of 

melanoma patients receiving anti-PD-1 therapy. Importantly, it revealed an expansion of a novel 

cell type, T cells lacking CD4 and CD8, in melanoma tumors treated with small molecule inhibitors. 

These DN T cells were shown to be present across human cancers and phenotypically distinct 
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from healthy. These cells represent a new path towards understanding anti-tumor immunity and 

novel target of immunotherapy. 

Double negative T cells in human cancer 

 A major finding in this body of work is the discovery of T cells expressing CD3, but lacking 

CD4, CD8, and TCRγδ, termed double negative (DN) T cells. They were found to be expanded 

in the tumors of melanoma patients who received BRAF and MEK inhibitors and were also present 

in smaller numbers in renal cell carcinoma and glioblastoma tumors. DN T cells found in the 

tumors had a memory phenotype, expressing high levels of CD45RO and CD44, but lacking 

expression of CCR7 and CD45RA (Figure 6.6C). As part of the future directions, I propose a 

thorough investigation of the phenotype, function, and origin of these cells. Below, I will detail 

what is currently known about DN T cells in human health and disease followed by a hypothesis 

and experimental plan designed to dissect their function in human cancers. 

 As described in the thesis introduction, DN T cells are first seen during T cell development 

in the thymus, where they are first DN then DP before committing to a single positive expression 

of CD4 or CD8. It is generally thought that only SP T cells expressing either CD4 or CD8 leave 

the thymus, fully mature. However, it is also known that 1-4% of healthy, human PBMCs is 

composed of TCRαβ+ DN T cells (375).  Little is known about these DN T cells and whether they 

leave the thymus, having never expressed CD4 or CD8 or if they lose expression of their co-

receptor after having once expressed it. Studies in mice lend credence to the idea that TCRαβ+ 

DN T cells found in the periphery are primitive cells that escaped from the thymus during 

development (376, 377) or underwent a rare, alternative development track (378).  However, 

recent work with mouse and human cells suggests that DN T cells arise in the periphery from 

either CD4 or CD8 T cells after intense stimulation (362, 364, 379).  To address this question, 

Fischer, et al. performed QRT-PCR analysis on T cell receptor excision circles (TRECs) to assess 
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whether peripheral DN T cells from humans had the same intrathymic maturation pathway as 

CD4 and CD8 T cells. During V(D)J recombination during thymic development, extrachromosomal 

DNA excision products, known as TRECs, are generated. The products are not replicated along 

with nuclear DNA and are thus diluted as the cells divide (380). In 4 of their 7 donors, DN T cells 

had fewer TRECs, corresponding to 1-4 times more cell divisions than either CD4s or CD8s. This 

suggests that these cells are not thymic emigrants, but instead, T cell subsets that have expanded 

in the periphery (361).  There is no clear cut answer as to where DN T cells originate and it is 

likely that the origin of DN T cells differs depending on the physiological state of the host. The 

ability to definitely determine the origin of these cells is hampered by the lack of specific, defining 

surface markers, transcription factors, or mRNA that mark DN T cells specifically. 

 Little is known about the phenotype of TCRαβ DN T cells. They are “negatively” 

characterized, meaning they are characterized by the lack of certain markers. These T cells lack 

CD4 and CD8, differentiating them from SP TCRαβ DN T cells. They have polyclonal TCRs and 

lack expression of CD56, separating them from NK T cells (381).  Preliminary work in mice shows 

that these DN T cells are indeed TCRαβ+ and express CD44, CD69, and CD28 (364). My results 

using mass cytometry reveal similar results with expression of CD45RO and CD44 being the most 

distinguishing markers. However, given the novelty of this population, it’s possible that these cells 

express non-canonical T cell markers not commonly measure. In addition to their ill-defined 

function and phenotype in the healthy mouse and human, almost nothing is known about the role 

of DN T cells in human cancer. Given that human melanoma, glioblastoma, and renal cell 

carcinoma tumors are populated by these cells, understanding their development, phenotype, 

and function can significantly impact the understanding of tumor immunology and the treatment 

of cancer patients. 

 The function of DN T cells is also under debate, with some postulating that DN T cells are 

regulatory and another suggesting that they are effectors, able to kill target cells (382). Supporting 
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the notion that DN T cells are effectors, able to exert killing functions, is the high number of these 

cells found in the peripheral blood of patients with autoimmune disorders, like myasthenia gravis 

(MG) or systemic lupus erythematosus (SLE) (383, 384). DN T cells in SLE patients were shown 

to secrete high levels of IL-17, a pro-inflammatory cytokine (384). In healthy individuals, gene 

expression profiling of DN T cells from the peripheral blood show high levels of overlap with 

expression profiles of CD8 effector T cells.  High expression of inflammatory cytokines IL1b, IL8, 

and others were also seen (379). Strong evidence suggesting the killing power of DN T cells was 

recently shown when donor-derived DN T cells were able to effectively kill host AML cells in vitro 

and in a patient xenograft model (385). In support of a suppressor phenotype, in vitro studies 

have shown that DN T cells are able to suppress CD8 and CD4 T cells (386), B cells (387), and 

dendritic cells (388). This suppression is almost always cell contact mediated and is executed 

through granzyme/perforin or trogocytosis of MHC molecules by the DN T cells (386, 389, 390). 

As with the origin debate, it is likely that these cells have different functions depending on the 

setting. 

The wide range of functions of DN T cells and clinical implications in other diseases 

suggest that DN T cells represent an important, novel target in cancer immunotherapy. DN T cells 

may represent a new population of effector T cells able to kill tumor cells or they could join other 

regulatory cells, like MDSCs, as cells that suppress anti-tumor activities. Based on the known 

biology of DN T cells and the results obtained in Chapter VI, I hypothesize that DN T cells were 

CD4 expressing T cells that lost expression of their co-receptor through external stimulation and 

are suppressor cells. In the following paragraphs, I propose experiments to 1) characterize protein 

surface expression and transcriptomics of DN T cells, 2) dissect the function of tumor-resident 

DN T cells, and 3) dissect a mechanism through which DN T cells become abundant in tumors. 

 The first step to understanding the role of DN T cells in cancer patients is to better 

characterize their phenotype. This first step is similar to the work recently published on the 
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phenotypic characterization of MDSCs. Identifying a high dimensional phenotype in vitro better 

enabled tracking and identification in human patients with melanoma (391).  I propose that DN T 

cells from human cancer samples and healthy human tissue be characterized using mass 

cytometry. I have begun some of this work, using the mass cytometry panel developed in this 

thesis. This preliminary work shows that the DN T cells found in tumor and healthy tissue do not 

express the TCRγδ receptor (Figure 7.1-a-b).  Preliminary fluorescence flow experiments indicate 

that these cells do indeed express TCRαβ, however future mass cytometry panels should contain 

this antibody for confirmation.  In addition to lacking expression of TCRγδ, DN T cells from cancer 

patients are largely CD45RO positive, indicating a memory phenotype. They are also positive for 

CD44, CD43, CD69, and CCR5 (Figure 7.1-c-d). While these markers are positively expressed, 

they do not distinguish DN T cells from CD8 or CD4 T cells. Despite their activated, memory 

phenotype, DN T cells are much less likely to express PD-1 on their surface than CD8 T cells 

found in the same tumor (Figure 7.1-e). This is of interest because, as discussed extensively 

throughout this thesis, PD-1 expressing T cells are the target for multiple immunotherapies 

currently used in the clinic. The lack of PD-1 expression on these DN T cells indicates that they 

are poor targets for the drug and may represent an escape mechanism for the tumor. Further 

work will need to be done to characterize the inhibitory receptor expression on these cells. I 

propose that future mass cytometry panels contain key inhibitory markers like TIGIT, Lag3, and 

Tim-3. Additionally, future phenotypic analysis should look at expression of NK-associated 

proteins like NKG2D. If DN T cells are able to kill tumor cells, it could be through non-antigen 

specific mechanisms, similar to NK cells (392). Finally, I suggest that transcription factors T-bet, 

EOMES, and BCL-2 be included in order to properly assess proliferative potential and effector 

state (393).   

 The next step towards characterization of DN T cells that I propose is genetic profiling. 

While mass cytometry provides an extensive view of surface and internal proteins, it is unable to 
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characterize TCR clonality or mRNA transcript.  First, DN T cells from patient samples would need 

to be sorted to separate them from CD4 and CD8 T cells. I would use CD4, CD8, TCRαβ, and 

CD19 to produce 4 different aliquots; DN T cells (TCRαβ+CD4-CD8-CD19-), CD4 T cells 

(TCRαβ+CD4+CD8-CD19-), CD8 T cells (TCRαβ+CD4-CD8+CD19-), and negative control B cells  

(TCRαβ-CD4-CD8-CD19+). I propose two different techniques that can be used to assess whether 

or not the DN T cells consist of clonally amplified T cells. The first technique is described by 

Fischer,et al and involves TCR Vβ gene segment usage on the sorted cell populations (361).  If 

a large fraction of the cells used the same TCR Vβ gene segment, it would indicate clonality. CD4 

Figure 7.1: Double negative T cells across cancers have a memory phenotype with reduced 

levels of PD-1. Mass cytometry was used to characterize immune cells from melanoma, GBM, RCC, 

and healthy control tonsil/adenoid and peripheral blood. a) Bar graphs show the frequency of DN T cells 

that are TCRγδ+ (orange) or TCRγδ- (blue). Each bar represents an individual patient sample. Numbers 

indicate sample type. [1. melanoma tumor biopsy prior to therapy, N=11; 2. melanoma tumor biopsy 

after 4 weeks of treatment with BRAFi and 2 weeks of MEKi, N=6;  3. GBM, N=3; 4. RCC, N=3; 5. non-

malignant tonsil or adenoid, N=4; 6. healthy donor PBMC, N=8] b) Frequency of TCRγδ- DN T cells as 

a percentage of all T cells. c) Heatmaps show the median frequency of positive expression for each 

marker on the right. d) Pie charts show the median frequency of T cell memory populations (indicated 

in the legend). e) Biaxial plots show representative plots of PD-1 expression for each tumor type.  

Frequency of PD-1 expressing CD8+ and TCRγδ- DN T cells is shown (right). Student’s two-tailed, 

paired t-test. *p<0.05, **p<0.01 
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and CD8 T cells would make appropriate internal controls for clonality. B cells would act as a 

negative control. For a more in depth, single cell approach, the emulsion PCR based technology, 

like 10x Genomics, could be used to interrogate TCR clonality. If clonality is revealed in the DN T 

cells, it would indicate an antigen-specific response. It would suggest that a specific, antigen-

specific TCR was being triggered, resulting in clonal expansion. If this was the case, it would be 

critical to 1) assess for shared TCR sequences across cancers, suggesting a shared antigen and 

2) take steps to reconstruct the antigenic target. A lack of clonality would suggest a bystander 

effect of T cells trafficking into or resident in the tumor microenvironment. If this were the case, it 

would be imperative to dissect the tumor microenvironment for soluble or cell-bound factors that 

could attack DN T cells from the blood, induce DN T cell expansion, or induce downregulation of 

CD4 and CD8 on SP T cells. 

 The final step in characterization of DN T cells is gene expression profiling.  This step will 

provide a more comprehensive view of DN T cells and could provide insight as whether these 

cells are derived from CD4 of CD8 T cells. Work from Crispin, et al used microarray analysis to 

show that DN T cells from healthy individuals had a large overlap of gene expression with CD8, 

but not CD4, T cells (379). This could provide evidence that DN T cells seen in the tumor are 

producing transcript for CD4 or CD8, but are unable to translate it into protein, providing evidence 

of their origin. I, again, propose the use of single-cell transcript technology, like 10x genomics. 

Because it requires small amounts of DNA, it is better suited for use with clinical samples.  The 

single cell aspect of this technology would also reveal any heterogeneity within the DN T cell 

population. Based on the biaxial flow plots in Figure 6.6F, that show low expression of CD4 on T 

cells prior to therapy and low to no expression post-therapy, I hypothesize that these cells were 

once CD4 T cells that have been stimulated to lose CD4 expression. Because of this, I believe 

that gene expression profiling with reveal a large overlap in gene expression between intratumoral 

CD4 and DN T cells. The results of the gene expression profile will provide direction for functional 
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analysis and insights into the origin of these cells as transcripts for effector molecules, like 

cytokine, would also be measured. 

 I hypothesize that these tumor resident DN T cells are suppressor cells that negatively 

impact clinical outcome. I would use the results of the characterization assays to inform the next 

phase of experiments where I would determine the function of these DN T cells.  To determine 

whether DN T cells are killers or suppressors, I would first measure intracellular cytokines, 

granzyme B, and perforin levels after stimulation. To accomplish this, I would use plate bound 

antibodies against CD3 and CD28 to stimulate single cell mixtures from human tumors and tonsils 

for three hours in the presence of brefeldin A and/or monensin. I would then use a mass cytometry 

panel, focused on intracellular cytokines and effector molecules to measure the production of 

functional proteins. The specific cytokines chosen will be influenced by the results of the 

transcriptional analysis. For example, high levels of IL2 transcript would cause me to include IL-

2 in my mass cytometry panel. Using a fluorescence flow approach, it was shown that DN T cells 

from the blood of healthy humans can be induced to express IL-1, IL-10, and IL-8 (379).  This 

mixture of inflammatory, IL-1, and anti-inflammatory, IL-10, cytokines within the same cells 

indicates the complex nature of their biology and is evidence of the need for high dimensional 

analysis techniques. I hypothesize that DN T cells in tumors will produce anti-inflammatory 

cytokines, like IL-10, but also effector molecules like granzyme B and perforin.  

 Because it is likely that DN T cells could produce both suppressive and killing molecules 

after stimulation, it will be important to assess their ability to suppress target cells directly. To do 

this, I would perform an allogenic, 3-way mixed lymphocyte reaction (MLR) experiment. The goal 

is to assess the ability of DN T cells to suppress T cells proliferation in the presence of allogenic 

DCs.  To conduct this experiment, I would purify T cell from PBMCs using magnetic bead isolation. 

I would then derive DCs from allogenic PBMCs as previously described (391). These T cells and 

DCs would be cultured with sorted DN T cells from tumors, along with sorted CD8+ and 
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CD4+CD25+ T cells as negative and positive controls, respectively. The reaction would go on for 

5 days with proliferation measured by thymidine uptake.  If just the PBMC-derived T cells and 

DCs were mixed together, the recognition of foreign MHC by T cells would result in T cell 

proliferation. However, if the DN T cells were suppressor cells, their presence in the culture would 

reduce the PBMC-derived T cell proliferation. If the cells were suppressors, the next step would 

be to determine whether suppression is mediated by cell:cell contact or through soluble factors. 

To address this, the 3-way MLR would be conducted in a transwell plate where the DN T cells 

were either present with the PBMC-derived T cells and DCs or on the separated from them via a 

membrane that allows the passage of soluble proteins. I hypothesize that in the 3-way MLR, DN 

T cells would act as suppressors and that this suppressive behavior is cell contact dependent. 

 By increasing our depth of knowledge of the phenotype and function of these cells, it will 

be possible to target them to improve immunotherapy and patient outcome. For example, if the 

cells are indeed suppressive, the knowledge gained from the phenotypic characterization could 

produce a new target for mAb therapy designed to deplete these cells. If they are suppressive via 

soluble factors, drugs designed to block or inhibit the function of these soluble factors could be 

developed. If DN T cells in the tumor microenvironment are not suppressors, it will be critical to 

understand whether they are exhausted or still able to exert effector functions. Phenotypic 

profiling of inhibitory receptors like PD-1 and Tim-3, along with transcription factors T-bet and 

Eomes, will provide a clearer understanding of the functional state. If these cells are exhausted, 

it will be important to target expressed inhibitory receptors with antibody blockade. Because these 

cells were seen across human cancers, it is possible that proposed therapeutics could be tested 

against a wide range of diseases. 

Machine learning for human health 
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 The work done in this thesis combined investigation of clinical biology and the 

development of computational tools required to analyze the high dimensional data produced by 

large study cohorts that monitor patients over time. Since the start of my thesis research, the 

mass cytometry field and computational tools that accompany it have expanded greatly. Prior to 

2013, few mass cytometry studies were performed outside of Stanford University and Vanderbilt 

was the 17th institution to acquire a mass cytometer. Metal conjugated antibodies were limited 

and normalization beads were not commercially available. As mass cytometry became better 

understood and more broadly applied, computational tools raced to catch up. Of note, viSNE was 

not introduced to the immunology community until 2013 and at that time, the algorithm was only 

able to analyze 100,000 events (231). In only a few short years, mass cytometry has become a 

fixture in the immunologists’ toolkit.  Mass cytometry has revealed clinical correlates to drug 

response (343, 394) and begun to populate atlases of human and mouse cell identity (219, 366, 

395).  I have been a part of this advancement of mass cytometry and data analysis through my 

work developing mass cytometry for solid tumors (396, 397) and the development of tools 

designed to quantitatively provide cell identity (348). As the technology advances, so do the 

complexity of problems that can be addressed. Mass cytometry has now been adapted for 

imaging, resulting in quantitative, 30 parameter images that contain positional identity (398).  

Groups have been working towards simultaneous measurement of both protein and RNA in the 

same cell (399).  High-dimensional, single-cell technologies and their associated analysis 

platforms will continue to advance given additional time, funding, and effort. The impact of these 

single cell technologies is not simply in the database of information they generate, but how that 

database is harnessed to improve human health. 

 Machine learning algorithms designed to harness the data generated by mass cytometry 

and other high dimensional techniques have also drastically improved over the last few years. 

Tools like Phenograph (400), DensVM (219), ACCENSE (334), and CellCNN (349) have been 



157 

 

created to automatically subset cells into populations. MEM, described in Chapter V, produces a 

vector of information that can be used to compare cell subsets across platforms and research 

centers (348). The value of this vector was shown in Chapter VI where DN T cells were compared 

across different human tumors and tissues even though they did not share the same mass 

cytometry panels. This work provides the foundation for a data base of cell identity where users 

can compare their subset of interest to thousands of subsets generated and published on by 

researchers around the world. The idea of using both the spread and magnitude of the data to 

create an enrichment label applies not only to cells, but to patients and their data as well.  In and 

out of the hospital, humans are generating hundreds of thousands of data points from nutrition 

and walking steps logged into fitness devices to music listened to through streaming applications 

to data compiled in electronic medical records (401, 402). With all of this data on so many humans, 

high dimensional data analysis and machine learning is poised to revolutionize patient care and 

outcome in medical facilities. In Chapter IV, I describe the identification of a melanoma patient 

who develops MDS during treatment with anti-PD-1 therapy. This discovery was made after I 

poured over the mass cytometry data and clinicians poured over her medical charts for months. 

This human, expert driven analysis was time consuming and in Chapter VI I use EMD on the 

tSNE axes to identify this patient within a matter of seconds.  Its cases like these that are ripe for 

machine learning. As the technology progresses, it’s likely that mass cytometry will integrate into 

the clinic (Figure 7.2). I envision mass cytometry will be used to monitor the systemic immune 

response in patients receiving therapy. Algorithms designed to clusters cells, like FlowSOM (403), 

will segment cells into populations and MEM will be run with a common reference population to 

generate an enrichment label. That label could then be compared to a database of enrichment 

labels and given a similarity score to help diagnose and monitor the patient. In the case of my 

MDS patient, this work flow could have automatically identified a small population of cells with 

high degrees of similarity to MDS blasts. This would have informed the doctor and impacted her 
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therapy immediately, instead of within the 8 month time window in which the disease was actually 

caught. In addition to quickly monitoring and adjusting patient care regimens, the data generated 

in real time will be able to accelerate the scientific discovery process (Figure 7.2). 

 It’s highly unlikely that a single technology will revolution patient care. Instead, the sum of 

all useful technology creates an ecosystem of useful art, termed the technium, which pushes the 

world forward (404). The technium, populated by high dimensional, single cell technologies and 

their accompanying data analysis platforms is ever growing and poised to greatly impact medical 

care. 

 

 

 

 

 

 

 

 

 

Figure 7.2. Overview of clinical mass cytometry research. Clinical mass cytometry studies consist 
of multiple steps.  At the bedside, physicians determine study questions by choosing when to sample 
patients, which tissues to sample, and by identifying control groups.  In collaboration between the 
bedside and bench, patients are sampled over time and live single cells are isolated and viably 
cyropreserved.  At the Bench, researchers use cytomic technologies like mass cytometry and choose 
key cellular features to test biomarkers and test basic and translational research hypotheses.  After the 
Bench, computational biologists use combinations of machine learning tools, expert knowledge, and 
mathematical modeling to identify clinically and biologically relevant cell types and to characterize 
changes in tissues.  Between the bench and the bedside, systems approaches are used to integrate 
bench and clinical research information to reveal patient groups, stratify risk, and match treatments to 
cellular features observed in patient samples.    Diggins, et al. Under review 
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Introduction 

Analysis at the single cell level is crucial for characterizing cells within complex, 

heterogeneous populations (208). This chapter explores the history of single cell biology in the 

mononuclear phagocyte system and the contributions that new measurement and analysis tools 

have made to describe these cells. Mononuclear phagocytes represent a particular challenge due 

to the large number of phenotypes that these cells adopt after maturation and infiltration into 

tissues. The ability of fluorescent flow cytometry to interrogate individual cells has driven the 

modern era of immunology and revealed the details of the innate immune system. However, 

spectral overlap constrains the number of parameters that are routinely measured. Mass 

cytometry is a high dimensional, quantitative, single cell flow cytometry approach that uses time 

of flight mass spectrometry as a detection tool (9). By coupling antibodies to metal isotopes 

instead of fluorophores, mass cytometry using a Cytometry by Time of Flight (CyTOF) instrument 

circumvents limitations of fluorescent spectral overlap and endogenous cellular auto-fluorescence 

and enables simultaneous measurement of more than 35 cellular features. The quantitative, high-

throughput nature of mass cytometry has sparked a new era of comprehensive single cell biology 

studies of complex cellular systems (202, 405) . 

http://www.worldscientific.com/doi/abs/10.1142/9789814678735_0002
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The mononuclear phagocyte system 

Early observations 

From the start, phagocytes were described using light microscopy as cells that could engulf 

other particles, such as pathogens (Figure A.1). With the development of the cluster of 

differentiation system (406), great strides were made in tracking and characterizing 

heterogeneous populations of mononuclear phagocytes (407-409). A consensus emerged that 

monocytes could be divided into key subsets using surface markers, and three functional subsets 

were termed “classical”, “intermediate”, and “non-classical” based on contrasting expression of 

CD14 and CD16 (Figure A.1) (410, 411). However, these definitions were recognized as 

incomplete from the start, and much effort has been put into identifying additional markers of cell 

subsets. For example, CCR2 and Tie-2 have been associated with contrasting polarization roles 

in down- and up- regulating the inflammatory phenotype, respectively (412, 413). 

Phenotype and function vs. lineage identity 

In contrast with adaptive immune cells, mononuclear phagocytes are not defined by lineage-

restricted cell surface signaling complexes. Intracellular signaling and signals received do play 

crucial roles in polarization, but signaling receptors are not thought to specifically define monocyte 

or macrophage subsets. Many markers that are closely associated with myeloid cell function and 

identity are expressed on other cells, including CD14 on endothelial and epithelial cells (414) and 

HLA-DR on B cells, activated T cells, and cancer cells of diverse origins, including neural origin 

melanoma cells (415). The cells known as “mononuclear phagocytes” include monocytes, 

dendritic cells, and tissue resident macrophages (416). The main difference between this term 

and “myeloid cells” is the implication of lineage origin; some mononuclear phagocytes originate 

from outside the myeloid lineage (408). The apparent convergent development of mononuclear 

phagocytes from different lineages raises the fundamental question: are cell populations defined 

by lineage ancestry or by phenotype and function (416, 417)? 
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Complexity in biology and nomenclature: polarization subsets, M1 vs. M2, TAMs, and MDSCs 

Reference panels for blood monocyte evaluation include three core markers, HLA-DR, CD14, 

and CD16 (410, 418-420). Other commonly used markers include CD13, CD33, and CD11b, 

which have been proposed to decipher monocyte maturation and differentiation in bone marrow 

and blood (421). During infection, monocytes migrate through tissues where they can differentiate 

in dendritic cells or macrophages. 

Within tissues, CD68 and CD163 are frequently proposed to characterize macrophage 

types (422). These cell populations, which are involved in tissue homeostasis and host defense, 

were historically split into classically-activated or “M1” and alternatively-activated or “M2”. M1 

polarization occurs in response to IFNγ or LPS stimulation and is associated with an increase of 

inflammatory cytokines and tumoricidal capabilities.  In contrast, IL-4, IL-10, or IL-13 stimulation 

polarizes macrophages to an M2 associated with tissue repair, pro-angiogenesis, and a lack of 

effective tumor immunity.  In fact, these two types capture functions that are part of a wide 

spectrum of overlapping polarization states that depend largely on programming from external 

stimuli (422, 423). 

Tumor-associated myeloid cells can exhibit immunosuppressive properties mediated by 

soluble or membrane-bound factors such as TNF, IL-10 or CD163. The identification of the 

mechanisms responsible for the selective recruitment and acquisition of an immunosuppressive 

phenotype is the subject of intense research (424). Indeed, manipulating locally the immune 

microenvironment by blocking recruitment of precursors or altering the suppressor cells in situ 

may improve antitumor immune responses. One approach to this is to selectively reprogram 

macrophages to promote anti-tumor immunity (425). In most cancers, macrophages are the most 

abundant tumor-infiltrating immune cells. Tumor-associated macrophages (TAM) are 

immunosuppressive and often exhibit M2 characteristics that include expression of 

immunoregulatory molecules (e.g. B7-H4), an IL-12low IL-10high secretion profile, and the capacity 
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to inhibit effector T cell functions.  TAMs thus represent an attractive target for immunotherapies 

directed at the tumor microenvironment. An improved understanding of macrophage phenotype 

would greatly aid in selectively targeting functionally distinct macrophage subsets. 

Human myeloid derived suppressor cells (MDSCs) can also exhibit anti-tumor activity, but 

are distinct from TAMs in that they include myeloid cells other than macrophages and function in 

healthy regulatory contexts and diseases other than cancer.  MDSCs are generally divided into 

two groups: monocytic and granulocytic MDSCs (426, 427).  MDSCs suppress both innate and 

adaptive anti-tumor immunity through mechanisms including: Treg development, deprivation of 

essential amino acids, and release of oxidizing molecules(428). In cancer, MDSCs are recruited 

and activated by soluble factors secreted both by cancerous and host stromal cells within the 

tumor microenvironment (426, 428). MDSCs are a major contributor to immune dysfunction of 

patients with significant solid tumor burdens (426). The relationships between MDSCs observed 

in cancer and TAMs are not well understood, and it is not known to what extent cancers of the 

myeloid lineage depend on distinct properties of TAMs and MDSCs. 

While phenotypically distinct subsets of monocytes, macrophages, TAMs, and MDSCs have 

focused functional roles (429-432), it remains clear that the mononuclear phagocyte system is a 

broad continuum of phenotypes and that the classification systems are partially overlapping. 

Recently, mouse innate immune cells were comprehensively characterized using a 38-antibody 

mass cytometry panel (219). A comparable high dimensional mass cytometry and machine 

learning study of human mononuclear phagocytes could help to bring clarity to this system. 

Revisiting the mononuclear phagocyte system with high dimensional single cell analysis 

Mass cytometry and machine learning  

The ~5 to 10 fold increase in the number of per-cell features routinely measured in mass 

cytometry experiments has resulted in a massive increase in data complexity and revealed 

unexpected phenotypic patterns on well-studied cell populations. Traditionally, flow cytometry 
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data are analyzed manually using biaxial gates. This type of analysis is highly susceptible to bias 

and requires prior knowledge of phenotype – a major limitation in the setting of disease. 

Additionally, traditional biaxial gating is impractical, since a routine CyTOF experiment measuring 

32 features would produce 496 possible biaxial combinations that might still incompletely 

represent multidimensional phenotypic continuums. This problem has been extensively 

researched in the field of machine learning, where multidimensional analysis, clustering, and 

trajectory analysis are common themes (194, 219, 411, 433-436). Advances in computational 

biology have helped power high dimensional single cell biology and have provided researchers 

with powerful dimensionality reduction and cell classification tools. 

SPADE and viSNE are unsupervised tools that can reduce high-dimensional data to a 2D 

map. Spanning-tree progression analysis of density-normalized events (SPADE) and is an 

unsupervised machine learning tool that clusters cells into nodes based on selected features 

(407-409, 433). SPADE clusters cells into groups (represented by a circle) and organizes those 

groups into a hierarchy of related phenotypes (202, 410, 411, 434). Statistics are displayed for 

each group (412, 413, 433).  More recently, Amir and colleagues adapted the t-stochastic 

neighbor embedding (t-SNE) algorithm to create a tool called visualization of t-SNE (viSNE) (416, 

435).  viSNE software arranges single cells on a 2 dimensional ‘map’ based on their phenotypic 

similarity to each other in high-dimensional space, where ‘islands’ on the map are comprised of 

phenotypically similar cells (410, 418-420, 435). A heatmap where color represents protein 

expression on cells can be used to characterize the results of both viSNE and SPADE. Cellular 

abundance is represented by the size of the population in SPADE, whereas viSNE represents 

cellular abundance with a separate density map, comparable to that of a contour plot. Both of 

these tools analyze data in an unsupervised fashion, reducing individual bias and allowing for 

identification of cell populations with unusual or novel phenotypes (208, 421). The use of tools 
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like SPADE and viSNE in combination with mass cytometry has resulted in better characterization 

of many cell types, including the cells of the myeloid system (219, 422). 

Mass cytometry’s contributions to myeloid biology 

Recent papers have shed light on the myeloid compartment by using mass cytometry to 

characterize human and mice cell populations (194, 219, 429-432, 436). Bodenmiller et al. profiled 

the dynamic response and crosstalk among immune cells from 14 blood populations (194, 219). 

Altogether, on 14 non-overlapping PBMC subsets, 12 phosphorylated proteins were analyzed 

upon 12 different stimuli at 8 time points. This resulted in more than 18,000 conditions tested per 

sample. After 15 min of LPS stimulation, NFκB phosphorylation was activated on a subset of 

monocytes expressing CD14pos HLA-DRint. Of note, at 60 min of stimulation, STAT3 became 

phosphorylated in CD4high T-cells (which are not thought to be able to directly respond to LPS as 

they lack CD14 / TLR4), suggesting intercellular crosstalk (194, 426, 427). The same approach 

was applied to analyzed the clinical relevance of surgery-induced immune perturbations (426, 

428, 436). After surgery, a specific CD33pos CD11bpos CD14pos HLA-DRlow subset of monocyte 

was found expanded with differential phosphorylation of STAT4, CREB, and NFκB (426, 436). 

Interestingly, single cell network profiles were correlated with the patient’s clinical recovery (208, 

436). Thus, these concordant results show the potential of CyTOF to analyze a large number of 

subsets arising from a heterogeneous population such as myeloid cells, as well as analyze a time-

course response with a large number of conditions. 

Myeloid complexity also results from the tissue specialization of monocytes into various 

populations of macrophages (9, 437, 438). To decipher the mouse myeloid system across 

different tissues, Becher et al. used a 38-antibody panel associated with computational tools to 

build a framework of reference (Figure A.1) {Bendall, 2014 #415;Bendall, 2014 #415;Di Palma, 

2015 #414;Becher, 2014 #402}. By using an automated computational method for population 

identification, they observed known populations of tissue-resident macrophages. Strikingly, innate 
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immune cell subsets that were not expected to be well defined by their panel turned out to be 

phenotypically distinct, even though the markers were chosen specifically for myeloid cells. These 

results point out both an advantage of a high dimensional single cell approach and the fact that 

much of our knowledge of protein expression is based on focused analysis panels and gating that 

restricts the view to known, well-described cell populations. Altogether, these results highlight the 

potential benefits by using CyTOF for in depth studies on the mononuclear phagocyte system 

heterogeneity. 

Future Directions 

Over the past 100 years our knowledge of the mononuclear phagocyte system has expanded in 

tandem with improvements in measurement tools (Figure A.1).  Flow cytometry has recently made 

a leap forward due to the combination of machine learning tools and high dimensional mass 

cytometry. Critically, this advance may help to resolve the differences in the field around 

population identity, especially within the area of suppressor cell phenotypes that may represent 

different descriptions of a largely overlapping population base.  Alternatively, the increase in 

makers and sensitivity for rare cell populations defined by multiple markers may further fracture 

the identities of mononuclear phagocytes into more and more functionally distinct subsets. Either 

way, it seems we stand at the start of a new era where population identities within complex cellular 

systems can be automatically defined, quantified, and compared. 
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Fig. A.1: Macrophages through the ages: from microscopy to mass cytometry 

The first observations of mononuclear phagocytes were made by microscopy in 1908 and noted the 

presence of lysosomes and the engulfment and destruction of bacteria. In the 1940s, electron microscopy 

provided a clear view of macrophage shape and the pseudopods that seek extracellular particles and help 

direct macrophage movement. In 1983, the 3C10 antibody for CD14 and other myeloid lineage antibodies 

were developed. By 1989, CD14 had become standard in flow cytometry studies of mononuclear 

phagocytes, but multidimensional analysis was not yet widespread. At the start of the new millennium, 

multidimensional analysis was becoming mainstream and 2-laser cytometers capable of routine 4-

dimensional analysis were widespread. Multidimensional dimensional analysis revealed additional 

complexity within cells known to be mononuclear phagocytes, and terms like ‘classical’ CD14pos CD16neg 

cells, ‘intermediate’ CD14pos CD16pos cells, and ‘non-classical’ CD14neg CD16pos were developed based on 

apparent clusters in 2D flow cytometry. In 2011, mass cytometry characterized all human bone marrow 

cells with a single 32-antibody panel. Key to this work was the use of the unsupervised clustering tool 

SPADE, which infers a phenotypic tree of cell population clusters identified in high-dimensional data 34. In 

2014, mass cytometry measurements of eight mouse tissues using a 38-antibody panel developed for the 

myeloid system created a comprehensive reference map of the myeloid system. This study was also 

powered by unsupervised dimensionality reduction tools developed for machine learning, including t-SNE 

and ISOMAP. The 2011 and 2014 studies both relied on unsupervised tools that revealed cyto incognito – 

hidden cells with unexpected phenotypes that would have been overlooked in traditional analysis. 
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Abstract 

The monocyte phagocyte system (MPS) includes numerous monocyte, macrophage, and 

dendritic cell (DC) populations that are heterogeneous both phenotypically and functionally. In 

this study, we sought to characterize these diverse MPS phenotypes with mass cytometry 

(CyTOF). To identify a deep phenotype of monocytes, macrophages, and dendritic cells, a panel 

was designed to measure 38 identity-, activation-, and polarization- markers including CD14, 

CD16, HLA-DR, CD163, CD206, CD33, CD36, CD32, CD64, CD13, CD11b, CD11c, CD86, and 

CD274. MPS diversity was characterized for (1) circulating monocytes from healthy donors, (2) 

monocyte-derived macrophages further polarized in vitro (i.e. M-CSF, GM-CSF, IL-4, IL10, IFN, 

or LPS long-term stimulations), (3) monocyte-derived DCs, and (4) myeloid-derived suppressor 

cells (MDSCs), generated in vitro from bone marrow and/or peripheral blood. Known monocyte 

subsets were detected in peripheral blood to validate the panel and analysis pipeline. Then, by 

using various culture conditions and stimuli before CyTOF analysis, a multidimensional framework 

for the MPS compartment was constructed and registered against historical M1- or M2- 

macrophages, monocyte subsets, and DCs. Notably, MDSCs generated in vitro from bone 

http://onlinelibrary.wiley.com/doi/10.1189/jlb.5MA1116-457R/full
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marrow expressed more S100A9 than when generated from peripheral blood. Finally, to test the 

approach in vivo, peripheral blood from melanoma patients (n = 5) was characterized and 

observed to be enriched for MDSCs with a phenotype of CD14posHLA-DRlowS100A9high (3% 

of PBMC in healthy donors, 15.5% in melanoma patients, p < 0.02). In summary, mass cytometry 

comprehensively characterized phenotypes of human monocyte, MDSC, macrophage, and DC 

subpopulations in both in vitro models and patients. 

 

Introduction 

The monocyte phagocyte system (MPS) is a complex cellular compartment that includes 

phenotypically and functionally heterogeneous cells, including monocyte, macrophage, and 

dendritic cells (DC) populations {Guilliams, 2014 #529}. MPS cells belong to the innate immune 

system, whose activities can include infection defense, tissue homeostasis and controlling T cell 

immunity (439-441). Phenotypic definition of myeloid cells is variable because of the lack of 

consistency between markers first identified in mice and humans. For example, while 

macrophages and myeloid-derived suppressor cells (MDSCs) are typically defined as F4/80high 

and Gr1pos respectively in mice (442), in humans EMR1 (the human F4/80 homolog) is 

expressed on eosinophils instead of macrophages (443), and Gr1 has no human homolog (444). 

Furthermore, there are few unique marker of cell identity, as most of the markers of interest (e.g. 

CD14, CD11b, CD33, HLA-DR, CD64) are shared by various myeloid cells and none is lineage-

specific. Finally, myeloid cells, particularly monocytes and macrophages, are highly plastic with 

respect to phenotype and function and depend upon various surrounding signals for 

differentiation/polarization. In the context of cancer or sepsis, an altered myelopoiesis can give 

rise to suppressive myeloid cells with poor phagocytic activity (445). Overall, this complexity of 

phenotype is highlighted by the growing literature on monocyte, DC, or macrophage nomenclature 

{Bronte, 2016 #456;Guilliams, 2014 #529;Ancuta, 2015 #457;Ziegler-Heitbrock, 2010 
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#458;Murray, 2014 #459}. In particular, monocytes are classified in 4 phenotypic subsets 

(CD14posCD16neg, CD14posCD16pos, CD14dimCD16posSlanlow, and 

CD14dimCD16posSlanhigh) (411, 446), however, within these traditional phenotypes, additional 

functional subsets have been discovered, such as Tie2-expressing monocytes (TEMs), involved 

in angiogenesis, or monocytic-MDSCs, involved in T5 cell immune suppression (445, 447). 

Moreover, the paradigm of macrophage polarization has dramatically evolved in the last decade 

from a binary polarization (classically activated [M1, IFN- or LPS- driven] vs. alternatively-

activated [M2, IL4- or IL10- driven]) to a much more complicated landscape (448-450). Recently, 

Xue and colleagues assessed the transcriptional landscape of multiple activated human 

macrophage subpopulations generated by numerous in vitro stimuli (451). At least nine clusters 

were found to recapitulate macrophage polarization status, in particular an already described 

regulatory macrophage (M_TPP) associated with tumor necrosis factor (TNF), prostaglandin E2 

and TLR2-ligand stimuli (451-453). At the protein level, characterization of these heterogeneous 

cell types has been largely accomplished with "low resolution" approaches (e.g., morphological 

evaluation and immunohistochemistry), wherein only one or a few proteins were used to identify 

populations, as an example, CD68 and CD163 are frequently proposed to characterize 

macrophage types (422). High-resolution approaches such as mass cytometry (also known as 

cytometry by time-of-flight, or CyTOF) are valuable in order to better understand their diversity, 

function and identify potential targets for novel therapies {Engblom, 2016 #450;Ginhoux, 2016 

#463;Greenplate, 2016 #548}. CyTOF combined with high-dimensional analysis, in particular 

visualization of t-distributed stochastic neighbor embedding (viSNE), spanning-tree progression 

analysis of density-normalized events (SPADE), and marker enrichment modeling (MEM), are 

robust methods to identify numerous and novel subsets from heterogeneous populations (9, 210, 

231, 310, 348, 454). Indeed, several studies using CyTOF have explored the immune 

compartment including B-, T-, NK-, or myeloid cells either from peripheral blood or from tissues 
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(9, 200, 219, 220, 222, 316, 327, 455-460). In particular, Becher and colleagues developed a 

myeloid dedicated panel to characterize myeloid cells across eight mice tissues, which revealed 

previously unidentified populations in mice tissues using an unsupervised approach of CyTOF 

data (208, 456). We hypothesized that human MPS complexity would benefit from a high 

dimensional single cell approach {Irish, 2014 #209;Greenplate, 2016 #548;Roussel, 2016 #475}. 

Here, a single mass cytometry panel comprised of 38 antibodies was combined with high 

dimensional analysis methods with the aim of deciphering the human MPS compartment in 

primary samples including peripheral blood mononuclear cells (PBMCs) from healthy donors and 

from patients with melanoma. Results from primary cells were compared to observations from in 

vitro models of myeloid differentiation using human blood and bone marrow cells exposed to 

established polarizing inflammation factors. Unsupervised analysis tools, including viSNE, 

SPADE, and MEM, were used to create and describe a comprehensive reference framework for 

the MPS compartment and to characterize an abnormal abundance of MDSCs in the peripheral 

blood of melanoma patients. 

 

Materials and Methods 

Samples and mononuclear cells preparation 

Peripheral blood from healthy donors (HDs) or from melanoma patients was obtained in 

accordance with the Declaration of Helsinki following protocols approved by Vanderbilt University 

Medical Center (VUMC) Institutional Review Board. Bone marrow from HDs was obtained under 

French legal guidelines and fulfilled the requirements of the University Hospital of Rennes 

institutional ethics committee. Peripheral blood was drawn by venipuncture into heparinized 

tubes. Bone marrow was obtained by aspiration after sternotomy for cardiac surgery and cells 

were kept in sodium heparin bags. Mononuclear cells were isolated using Ficoll-Paque PLUS (GE 

Healthcare Bio-sciences, Uppsala, Sweden) centrifugation. Freshly isolated mononuclear cells 
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were immediately cryopreserved in FBS (Life Technologies, Grand Island, NY, USA) containing 

12% DMSO (Fischer Scientific, Fair Lawn, NJ, USA). For in vitro monocyte-derived cells 

experiments, buffy coats from HDs were obtained according to protocols accepted by the 

institutional review board at the university hospital from Rennes. After collection, monocytes were 

purified from PBMC by elutriation before cryopreservation (plate-forme DTC, CIC Biotherapie 

0503, Nantes, France). Monocytes represented more than 85% of the cells. 

 

In vitro culture and stimulation 

For in vitro differentiations, cells were cultured in 6-wells plates at 2x106 cells/mL in a humidified 

atmosphere at 37°C, 5% CO2 in RPMI 1640 (Mediatech Inc, Manassas, VA) enriched with FCS 

10% (Gibco, Life technologies) and supplemented with 1% PenStrep solution (Gibco, Life 

technologies). MDSCs were derived from 8 peripheral blood- or bone marrow- mononuclear cells. 

Cells were cultured for 4 days and activations were performed with GM-CSF (40 ng/mL; 

Peprotech, Rocky Hill, NJ) and G-CSF (40 ng/mL; Peprotech) and, for bone marrow cells, GM-

CSF and IL-6 (40 ng/mL; Peprotech) as previously described (461, 462). Immature DCs were 

generated from monocytes by GM-CSF and IL-4 (40 ng/mL; EMD Millipore, Billerica, MA) for 6 

days, media were changed at 3 days. Then for terminal differentiation, TNF (10 ng/mL; EMD 

Millipore) was added in culture for 2 days. Macrophage at baseline (M_b) was generated from 

monocytes by stimulation by M-CSF (50 ng/mL; Cell Signaling, Danvers, MA) for 3 days, as 

previously described [16]. Then M_b were further polarized during 3 days, by IL-4, IL-10 (10 

ng/mL; Peprotech), IL-6 (10 ng/mL; Peprotech), IFNg (10 ng/mL; Cell Signalling), LPS (10 ng/mL; 

Sigma-Aldrich, St Louis, MO), or TPP (TNF[10 ng/mL; EMD Millipore]; Pam3CSK4 [100 ng/mL; 

Invivogen, San Diego, CA]; prostaglandine E2 [1 g/mL, Sigma]). At the end of each condition 

culture, except for DCs, wells were treated with Accutase (Sigma Aldrich) prewarmed at 37°C, for 

30 sec, before collection, washing and staining. 
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Allogeneic three-way Mixed Lymphocyte Reaction assay 

Suppressive capacities of in vitro PBMC- and bone marrow- derived MDSCs were determined in 

an allogeneic three-way mixed lymphocyte reaction (MLR) assay. T cells were purified from 

PBMCs from a healthy donor using the Pan T Cell isolation kit (Miltenyi Biotec, Bergisch 

Gladbach, Germany). DCs and MDSCs were obtained by culture conditions described above. 

DCs were derived from PBMCs obtained from an allogeneic donor. MDSCs were obtained from 

3 donors for PBMCs and 2 for bone marrows. After 4 days of in vitro differentiation, 

CD14posCD33posCD11bposHLA-DRlow 

MDSC from bone marrow and monocytes were sorted using a FACS ARIA cell sorter 

 (BD Biosciences). For MLRs reaction, 1 x 105 T cells of one donor were seeded in culture media 

with 2,000 allogeneic DCs and different MDSC:T ratio (1:8, 1:4, 1:2). The MLR assays were 

carried out during 5 days in round-bottomed 96-well plates to ensure efficient DC/T cell contact. 

T cell proliferation was measured by thymidine uptaking (1 μCi/well) during the last 16 h. 

 

Antibodies, cell labeling and mass cytometry analysis 

Purified antibodies from Biolegend (San Diego, CA, USA) or Immunotech (Marseille, France) 

were labeled using MaxPar DN3 labeling kits (Fluidigm, San Francisco, CA), titrated and stored 

at 4°C in antibody stabilization buffer (Candor Bioscience GmbH, Wangen, Germany). Antibodies 

from Miltenyi Biotech (Bergisch Gladbach, Germany) or R&D systems (Minneapolis, MN) were 

labeled with FITC, PE or APC (Table S1). Antibodies metal-tagged were from Fluidigm. Cell 

labeling and mass cytometry analysis was performed as previously described {Greenplate, 2016 

#548;Ferrell, 2016 #331}. Briefly, cells were incubated with a viability reagent (cisplatin, 25 μM; 

Enzo Life Sciences, Farmingdale, NY, USA) as previously described (230). Then, 3x106 cells 

were washed in phosphate buffered saline (PBS, HyClone Laboratories, Logan, UT) containing 
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1% bovine serum albumin (BSA, Fisher Scientific, Fair Lawn, NJ) and stained in 50 μL PBS and 

BSA 1% containing antibody cocktail. Cells were stained for 30 minutes at room temperature 

using antibodies listed (Table S1). Cells were washed twice in PBS and BSA 1% and then fixed 

with 1.6% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, PA, USA). Cells were 

washed once in PBS and permeabilized by resuspending in ice cold methanol. After incubating 

overnight at - 20°C, cells were washed twice with PBS and BSA 1% and stained with iridium DNA 

intercalator (Fluidigm) for 20 minutes at room temperature. Finally, cells were washed twice with 

PBS and twice with diH2O before being resuspended in 1x EQTM Four Element Calibration 

Beads (Fluidigm) and collected on a CyTOF 1.0 mass cytometer (Fluidigm) at the Vanderbilt Flow 

Cytometry Shared Resource. Events were normalized as previously described (270). 

 

Data processing and analysis 

Data analysis was performed using the workflow already described (207). Raw median intensity 

values were transformed to a hyperbolic arcsine (arcsinh) scale with a cofactor of 5. Analysis was 

performed on Cytobank using published techniques including SPADE, viSNE and hierarchical 

clustering (229, 231). Each file was pre-gated on singlets and viable cells as defined by cisplatin 

and iridium gating. The analysis pipeline was as follows: after gating on nucleated cells 

(Iridiumpos), the labeling was assessed on biaxial plots on CD45pos cells. Then, a viSNE analysis 

was performed. On the viSNE map, B-, T-, and NK- cells were distinguished, and then the 

remaining cells were engulfed in a MPS gate, and were further clustered with SPADE. Heat maps 

were performed using the marker enrichment modeling (MEM) algorithm (348). 

 

Statistical analysis 

Statistical analyses were performed with GraphPad Prism 5.0 software (GraphPad Software, San 

Diego, CA, USA) using Wilcoxon or Mann-Whitney tests as appropriate. 
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Results 

CyTOF delineates four monocyte subsets in peripheral blood from HDs 

In order to recapitulate the diversity and heterogeneity of monocyte subsets, a CyTOF panel using 

38 parameters was designed (Table B.S1). Based on literature profiling, proteins in this panel 

were expected to be expressed at different levels for MPS cell types and associate with 

Figure B.1: CyTOF panel and workflow analysis delineates four monocyte subsets in peripheral 
blood. (A) Biaxial plots showing the expression of markers on IrposCD45pos PBMC measured by mass 
cytometry. A representative healthy donor is shown. An arcsinh scale (-5.0 to 104) with a cofactor of 5 
was used. (B) By mass cytometry analysis >100,000 IrposCD45pos cells were defined on a biaxial plot, 
before classification on a viSNE algorithm. MPS (>20,000 cells) was gated as remaining cells after the 
exclusion of B- (CD19pos), T- (CD3pos), and NK- (CD3negCD16posCD45RApos) lymphocytes and 
doublets. (C) Events in the MPS gate were then parsed with SPADE into 30 nodes using all clustering 
markers except CD19 and CD3. CD14pos-, CD16pos-, and Slanpos- SPADE groups were observed to 
match classical- (CD14posCD16neg), intermediate- (CD14posCD16pos), non-classical Slanlow- 
(CD14dimCD16posSlanlow), and non-classical Slanpos- (CD14dimCD16posSlanhigh) monocytes. A 
representative healthy donor is shown. % represents the frequency among PBMC. (D) On the 4 
monocyte subsets previously described in (B), heat maps showing the relative normalized transformed 
mean intensity for various markers tested by mass cytometry, for a representative healthy donor. 
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differentiation, polarization, and activation states. PBMCs from HDs were first tested and the MPS 

gate defined with the analysis pipeline (Figure B.1A, B).  

 

To characterize known and expected monocyte sub-populations in peripheral blood (i.e. classical, 

intermediate, and non-classical), the analysis was initially defined to seek 30 nodes representing 

populations of phenotypically distinct cells. In manual review of the features distinguishing the 

identified nodes, four groups were apparent. The four phenotypically similar groups of clusters 

aligned closely with canonical monocyte populations in peripheral blood, namely 

CD14posCD16neg, CD14posCD16pos, CD14dimCD16posSlanlow, and 

CD14dimCD16posSlanhigh. These subsets comprised 85%, 9%, 3%, and 3% of monocytes 

respectively, as expected (411) (Figure B.1C). Dendritic cell population SPADE nodes were 

recognized within the MPS gate as HLA-DRhighCD123high (pDC) or HLA-DRhighCD11chigh 

(cDC), whereas polynuclear basophils (Pnb) were recognized as HLA-DRlowCD123pos. Finally, 

the relative expression of additional markers across the monocyte subsets as obtained by mass 

cytometry was compared (Figure B.1D). Both Slanhigh and Slanlow subsets of non-classical 

monocytes expressed lower level of CD36, CD64, CCR2, and CD14, consistent with previously 

published data (411, 463). These observations confirmed that the panel design and analysis 

strategy captured well-established monocyte subtypes. 

 

DCs-, MDSCs- and macrophages- derived in vitro from monocyte are profiled by CyTOF 

Given that CD14 and CD16, the two central markers used to delineate monocyte subsets in the 

established nomenclature, show a continuous gradient of expression, we hypothesized that a 

high-dimensional approach would enhance the characterization of monocytic myeloid-derived 

suppressor cells (M-MDSC) and macrophage polarization subtypes. In vitro derived DCs, 

MDSCs, and macrophage subsets (M_b, M_LPS, M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP) 
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from peripheral blood monocytes were characterized as a comparison point for in vivo studies 

(Figure B.2A). In vitro subsets were derived according to best practices for characterizing myeloid 

cell 

Figure B.2: CyTOF profiles DCs-, MDSCs- and macrophages- derived in vitro from monocyte 
(A) Experimental procedure to derived DC, MDSC, and macrophage at baseline (M_b) or polarized 
under various stimuli (M_LPS, M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP [a cocktail including TNFα, 
PGE2, and Pam3]). Peripheral blood monocytes were obtained from blood donors and purified by 
elutriation. Expected cells from the stimuli condition are indicated on the right. Days of treatment 
(colored up-pointing triangle) or of collection (black down-pointing triangle) were specific to the culture 
condition. (B) After CyTOF analysis, cells were defined as IrposCD45pos. Then, a SPADE analysis 
with 200 nodes and downsampling at 10% was performed. Adjacent nodes with an increase in cells 
abundance and phenotypic similarity were labeled in red with the name of expected cells from the 
culture condition. Mo, DC, MDSC, M_b, M_LPS, M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP gates 
are positive for myeloid markers whereas T-, NK-, and B- gates expressed CD3, CD16/CD45RA, CD19, 
respectively. Nodes outside gates were considered as unclassified (C) Left- Cell abundance in gate 
(Mo, DC, MDSC, M_b, M_LPS, M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP) reported to MPS gate 
and related to each condition of stimulation. Right- Cell abundance in Mo, DC, MDSC, M_b, M_LPS, 
M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP gates (sum in MPS) and B-, T-, NK gate or unclassified, 
reported to intact cells (IrposCD45pos) and related to each condition of stimulation. Average 
percentage of 2 independent experiments. 
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polarization (448, 451, 462). After a SPADE analysis (Figure B.2B), variation of cell abundance 

under stimulation in each node was summarized (Figure B.2C). Before stimulation, monocytes  

 

comprised 98.6% of the MPS. Under appropriate stimulation, DC, MDSC, and M_b were 

increased from 0.1% to 76%, 87%, and 78%, respectively, in the MPS gate. After polarization, 

M_LPS, M_IFNg, M_IL4, M_IL10, M_IL6, and M_TPP were increased from less than 10% to 52%, 

66%, 56%, 80%, 40%, and 81%, respectively. Interestingly, some conditions polarized monocytes 

to more than just one main population. For instance, M-CSF + LPS increased the percentage of 

cells in the both LPS gate from (0.9% to 53%) and TPP gate (from 3.2% to 22%) (Figure B.2C). 

Finally, unclassified cells (i.e., those not included in any gate) were below 10% in all conditions. 

Of note, T cells were increased under IL-4, IFNor IL-6 treatments (from 4% in the control to 

approximately 22% after culture). 

 

MDSCs and polarized macrophages have specific phenotypes 

Next, the phenotype of cells types obtained after differentiation of monocytes and polarization of 

macrophages was examined. To broadly assess the modulation of protein expression, median 

expression was assessed for each population (Figure B.3A). Average transformed median 

expression was then calculated from nodes included in each gate identity (Figure B.3B). 

Monocytes (Mo) were distinguished by high expression of CD33, CD36, and CCR2 and low 

CD163 and CD274 expression. DCs were CD11chigh and HLA-DRhigh. M_b were CD14, CD206, 

and HLA-DR positive. Statistical differences between all conditions are summarized in. In 

particular, various polarized macrophages were compared to M_b (Figure B.3C). M_LPS was 

distinguished by high levels of CD13 and CD86 and low level of CD163 and CD206 (P < .01). 

M_IL4 was CD274high and CD64low (P<.01). M_TPP expressed CD14high and HL-DRlow (P < 

.001). M_IFNg was CD64high and CD86high (P < .001). M_IL10 was CD14high, CCR2high, and 
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CD163high (P < .01), of note CD163 was significantly more expressed in M_IL10 than in M_b (P 

< .01). Finally, M_IL6 was CD11chigh and CD33high (P < .05). Then, MDSCs were compared to 

monocytes (Mo), DCs, and M_b (Figure B.3C). MDSC showed higher expression of CD32, 

CD206, and CD13 (P < .05), and a lower expression of CD36, CD163, S100A9, CD33, and HLA-

DR (P < .05), when compared to monocytes. Compared to DC, MDSC expressed higher amounts 

of CD32, CD206, CD64, CCR2, CD14 (P < .05) and lower amounts of CD13, CD274,  
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CD33, and HLA-DR (P < .05). Finally, comparing MDSC to M_b, higher expression of CD64 and 

CCR2 was observed (P < .05) and lower expression of CD14, CD13, CD11c, CD36, CD163, 

S100A9, CD33, and HLA-DR was observed (P < .05). Peripheral blood derived MDSC were 

distinguished by the expected low expression of HLA-DR and by an unexpectedly low expression 

Figure B.3: MDSC and polarized macrophages derived in vitro have specific phenotypes 
(A) For Mo, DC, MDSC, M_b, M_LPS, M_IFNγ, M_IL4, M_IL10, M_IL6, and M_TPP gates, transformed 
median expression for each marker was averaged from all nodes included in the gate. After 
normalization, results are shown on heat map after hierarchical clustering. (B) Comparison of markers 
for each node (each dot represents a node). Box and Whisker plots with the 10-90 percentiles and the 
outliers are shown. Nodes from 2 or 3 different experiments are shown. (C) Left- Comparison of p-
values between MDSC and monocyte (Mo), dendritic cells (DC), and M_b and Right- comparison of 
various polarized macrophage (M_IFNg, M_LPS, M_IL4, M_IL10, M_IL6, M_TPP) to M_b. Rows and 
columns were arranged after hierarchical clustering (not shown). Only markers at least once statistically 
different are shown. Unpaired t-tests (parametric or nonparametric as appropriate after normality test) 
were performed. Yellow: non-significant (ns); Light to dark green: significantly underexpressed in MDSC 
or polarized macrophages; Orange to red: significantly overexpressed in MDSC or polarized 
macrophages. 
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of S100A9, in contrast to other peripheral blood mononuclear myeloid cell populations, with the 

exception of DCs. 

 

MDSCs derived from bone marrow are S100A9pos 

Published protocols have established methods to derive MDSC, including combining cytokines or 

culturing peripheral blood or bone marrow. We derived MDSCs from bone marrow to investigate 

their phenotype following the protocol published by Marigo and colleagues (461). As published, 

we cultured human bone marrow for 4 days with GM-CSF+G-CSF or GM-CSF+IL6 before CyTOF 

analysis (Figure B.4A). Median protein expression is shown on hierarchically clustered heatmaps 

(Figure B.4B). A first group of nodes (in green) was mainly CD11cpos, CD11bpos, CD36pos, 

CD14pos CD13pos, CD64pos, and HLA-DRpos but also CD274pos and CD86pos. These cells 

displayed heterogeneous expression of S100A9, in particular node #7 (S100A9low) was 

increased only with GM-CSF+G-CSF. One group of cells (in purple) displayed the expected 

MDSC phenotype (i.e. S100A9high, CD33pos, CD14pos and HLA-DRlow), in addition, these cells 

were also CD64pos, CD11bpos, CCR2pos, CD36pos, CD13pos, and CD32pos. Of note, node 

#24 was only increased under GM-CSF and G-CSF and was characterized by a very high 

expression of CD32. Finally, a third group of nodes was found (in orange) in which cells were 

CD123pos and HLA-DRpos, while CD14, CD11b, CD36, CD64, and S100A9 were not expressed; 

thus, these cells were labeled DC (Figure B.4B). The increase in abundance for these cells was 

assessed in 3 different human bone marrow samples. All three phenotypes (i.e. monocytes that 

were CD86pos and CD274pos, MDSC, and DC) were significantly increased after GM-CSF+G-

CSF or GM-CSF+IL6 culture when compared to the vehicle (Figure B.4C). No difference in cell 

frequency was found between both conditions (Figure B.4C). Finally, due to the phenotypic 

differences observed between MDSCs derived from PBMC and bone marrow, and to demonstrate 

their suppressive capabilities, an allogeneic three-way MLR assay was performed (Figure B.5). 
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MDSCs obtained were suppressive at ratio of 1:8, 1:4, and 1:2 when derived from bone marrows 

and 1:4 and 1:2 when derived from PBMCs (p<.05).  

Figure B.4: MDSCs obtained from bone marrow are S100A9pos (A) Human bone marrow was 
cultured for 4 days with GM-CSF+IL6 or GM-CSF+GCSF or with the vehicle. By mass cytometry 
analysis >100,000 IrposCD45pos cells were defined on a biaxial plot, before classification on a 
viSNE algorithm. MPS 35 (>20,000 cells) was gated as remaining cells after the exclusion of B- 
(CD19pos), T- (CD3pos), and NK- (CD3negCD16posCD45RApos) lymphocytes and doublets. 
Events in the MPS gate were then parsed with SPADE arbitrary restricted to 50 nodes using all 
clustering markers but CD19 and CD3. Then comparisons were made between each culture 
conditions and cells treated with vehicle. Nodes with a 2 fold increase in cell abundance (percentage 
FC>1) between GM-CSF+G-CSF and vehicle or between GM-CSF+IL6 were retained for further 
analysis (B) Transformed median expression for each markers was averaged from each nodes 
(percentage FC>1). After normalization, results are shown on heat map after hierarchical clustering. 
Left- Nodes with an increase in cell abundance after GM-CSF+G-CSF culture. Right- Nodes with an 
increase in cell abundance after GM-CSF+IL6 culture. #nodes ID; in red: nodes increased in only 
one condition. Rectangles in green, purple, or orange indicate various phenotype of interest. A 
representative experiment is shown. (C) Abundance of cells in the MPS gate for each phenotype of 
interest with or without GM-CSF+G-CSF or GM-CSF+IL6 (n = 4). *P<.05. 
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Mass cytometry identifies phenotypic MDSCs in the peripheral blood of melanoma patients 

The mass cytometry panel, unsupervised analysis approach, and myeloid cell definitions were 

finally evaluated in clinical samples. MDSCs have previously been reported to be increased in 

peripheral blood from solid tumor patients irrespective of the disease stage, including melanoma 

patients (464-468). Here, an abundance of cells with an MDSC phenotype including high S100A9 

protein expression were observed in the peripheral blood of melanoma patients (Figure B.6A). 

This cell type was significantly increased in 8 samples from 4 patients compared to HD, with 

abundance at 3% and 15.5% from the MPS gate, respectively (P = .019) (Figure B.6B). 

 

 

 

 

 

Figure B.5: MDSCs derived from PBMC or bone marrow are both suppressive. An allogeneic 
three-way MLR was performed on MDSCs derived from PBMCs or bone marrows. APCs and T-cells 
were cultured with no MDSCs and various ratios of MDSCs to T-cells (1:8, 1:4, and 1:2). The inhibition 
of 3H- thymidine incorporation was evaluated. Results are represented as percentage of inhibition 
where 100% is the condition without MDSCs. Replicates (3 to 5) wells were performed for each 
condition. *P<.05, indicates significant difference when compared to the condition without MDSCs. 



183 

 

 

Discussion 

The MPS compartment includes monocyte, DCs and macrophages, cells that are extremely 

heterogeneous in their phenotypes and functions. Recently, their nomenclature has been 

extensively revised and clarified {Guilliams, 2014 #529;Bronte, 2016 #456;Ziegler-Heitbrock, 

2010 #458;Murray, 2014 #459}. As there are no unique identity markers and an overlap in their 

phenotype, their definition at the protein level still debated. Here, we hypothesized that mass 

cytometry data parsed by high dimensional approaches such as SPADE, viSNE, and hierarchical 

clustering, will clarify at the protein level the human spectrum of the MPS compartment. To this 

Figure B.6: MDSC accumulated in melanoma patient peripheral blood revealed by mass 
cytometry (A) By mass cytometry analysis, >100,000 IrposCD45pos cells were defined on a biaxial 
plot before viSNE analysis. MPS cells (>20,000 cells) were gated as remaining cells after the exclusion 
of B- (CD19pos), T- (CD3pos), and NK- (CD3negCD16posCD45RApos) lymphocytes and doublets. 
Events in the MPS gate were then parsed with SPADE arbitrary restricted to 50 nodes using all 
clustering markers but CD19 and CD3. After normalization, transformed median expression for each 
markers and each node are shown on heat map after hierarchical clustering; in red: nodes increased 
with an increase of CD14pos S100A9pos cells. (B) Abundance of CD14pos S100A9pos cells in the 
MPS gate in PBMC from healthy donor (n=4) and melanoma patients (n=5). *P<.05. 
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aim, various in vitro culture conditions and peripheral blood from cancer patients were compared 

to build a reference data framework including 1) monocyte subsets and MDSCs, 2) DCs, and 3) 

macrophages under basal conditions or treated with various canonical polarization stimuli. To 

date, mass cytometry analyses have been performed on a limited number of myeloid populations. 

In human, peripheral blood, bone marrow, or tissues from HDs (9), inflammatory or septic patients 

(225, 316, 456, 469), or patients suffering from acute myeloid leukemia (AML) (314, 328, 344, 

470) have been analyzed for myeloid cells. Noteworthy, except in AML, panels employed, were 

not dedicated specifically for in deep analysis of the myeloid compartment. Markers used in these 

studies included mostly CD13, CD33, CD36, CD14, CD16, HLA-DR, CD11b, CD11c, and CD123. 

In a recent comprehensive panel dedicated to the monitoring of immunomodulatory therapies on 

PBMCs, CD14, CD15, HLA-DR, CD11c, CD36, CD16, CD169, CD123, CD303, Siglec-8, and 

CD1c were proposed to delineate neutrophils, monocytes, basophils, eosinophils, as well as DC 

subsets (471). In mice, more complete myeloid targeted panels have been published, in particular 

with the use of the specific myeloid markers F4/80, Ly6C, and Ly6G (219, 335). The panel was 

built by including 1) canonical markers from prior studies of the human MPS (472), 2) markers 

know to be modulated in specific monocyte subsets or macrophages polarization stages (viz. 

CCR2, CD163, CD206, CD32, and CD64), and 3) markers differentially expressed during 

monocyte/DC activation (viz. CD86, CD274, CD45RA). The panel was validated on PBMC in 

recognizing in HDs, the 4 already described monocytes subsets (CD14posCD16neg, 

CD14posCD16pos, CD14dimCD16posSlanlow, and CD14dimCD16posSlanhigh) (411, 446, 

448). Then, to explore the full spectrum of the MPS compartment, we took advantage of recent 

nomenclature papers (448), resource work refining the macrophage transcriptomic landscape 

(451), and studies on MDSCs (462)or on DCs (473, 474). In particular, Xue and colleagues 

described 9 different clusters of transcription networks (451). We decided to align as much as 

possible with these conditions and thus derived from monocyte, M_b, M_IL4, M_IL10, M_LPS, 
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M_IFN, M_IL6, and M_TPP, but also DCs and MDSCs given that their phenotypes are 

overlapping. Regarding macrophages, each stimulation condition gave rise to a specific 

phenotype of polarized macrophage (Figure B.2B, C). There was no or little overlap between 

M_IFNg and M_LPS (both previously known as M1) and M_IL4 an M_IL10 (both previously known 

as M2). M_TPP also represented a separate cluster of nodes. This was in agreement with 

previous findings at the transcriptomic level, where macrophages polarized by IL4, IL10, IFN, 

and LPS clustered separately based on RNA expression profiles (451). Novel patterns of 

phenotype within MPS were discovered and remarkable. CD32, CD14, CCR2, CD163, CD64, 

and CD33 were highly expressed in M_IL10. CD274 and CD86 were highly expressed, whereas 

CD14, CD32, and CD33 were expressed at low level in M_IL4 (Figure B.2B, C and S2). 

Surprisingly, phenotype pattern of M_LPS and M_IL4 were separated only by CD32 and CD33, 

more expressed in M_LPS, whereas CD274 was less express, and CD163 was not differently 

expressed. CD163 is considered as a key marker of tumor-associated macrophages (TAM) and 

sometimes by extension for the historical M2 macrophages, however a higher expression in 

M_IL10 than in M_IL4 has been shown (475). M_TPP expressed high levels of CD14 and CD13, 

whereas HLA-DR was expressed at low level and M_TPP were shown to be immuno-suppressive 

[16]. MDSCs were also clearly separated from M_b, DCs, and monocytes (Figure B.2B-C) by 

especially high levels of CD32, CD206, CD64, CCR2, and CD14 and low levels of CD33 and 

HLA-DR. MDSCs were also phenotypically different form M_IL4, M_IL10, and M_TPP, three 

polarized macrophages with anti-inflammatory functions, due to higher expression of CCR2 and 

CD206 and lower expression of CD13. Because HLA-DR expression is continuous across 

myeloid cells, M-MDSCs have been challenging to distinguish from monocytes in peripheral 

blood. Based on observations here, we propose using CD32, CD206, and S100A9 in addition to 

CD14 and HLA-DR (Figure B.3C). 
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Surprisingly, S100A9, a highly expressed protein marker of MDSCs (308, 445, 476, 477), 

was expressed at low levels in MDSCs generated from peripheral blood (Figure B.3B, C). Despite 

lower S100A9 than other MDSCs, peripheral blood derived MDSCs were functional and effective 

at suppressing T cell proliferation (Figure B.5). In previous works, human MDSCs were derived 

either from peripheral blood or from bone marrow (461, 462). Thus we hypothesized that MDSC 

derived from bone marrow would have a different phenotype. Monocytes, DCs, and MDSCs were 

increased in abundance when bone marrow were cultured with GM-CSF + G-CSF or with GMCSF 

+ IL6 (Figure B.4C). This observation has not been reported in published protocols to derive 

MDSCs and would have been difficult to identify without the single cell high-dimensional mass 

cytometry approach. In agreement, it has been shown recently that GM-CSF cultured murine 

bone marrow generated both macrophage and DC (474). We also found that MDSCs derived 

from human marrow expressed a more consistent phenotype, highly expressing S100A9, CD14, 

CD64, CD11b, CCR2, CD32 while remaining HLA-DRlow, making BM MDSCs an ideal, if less 

practical to obtain, reference point. Finally, this approach was employed to characterize clinical 

samples from melanoma patients because in this cancer high level of circulating MDSC have 

been described across grades (464, 468). MDSCs with the same phenotype as those derived 

from bone marrow were enriched in the blood of melanoma patients. 

In summary, a broad phenotypic analysis of the human MPS compartment characterizes know 

cell populations and brings increased clarity to the definitions of cell types including MDSC and 

polarized mononuclear phagocytes. In particular, the multidimensional approach at the protein 

level might constitute the first step of efforts in unifying transcriptomic to proteomic and functional 

approaches in a multi-OMICs era (478). It would be interesting to expand the panel in order to 

have a clear view of signaling pathways involved. Finally, this study also highlights the potential 

value of mass cytometry in system immune monitoring of the myeloid compartment for patients 

in clinical trials. 
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Table B.S1: Table of antibodies or parameters used for mass cytometry analysis 

Metal / 
Parameter 

Antibody / 
Compound 

Clone Company Custom 
conjugate (C) / 

Indirect staining 
(I) 

Description or cell target 

141Pr CD11b ICRF44 Biolegend C Antigen presenting cell 

142Nd CD19 HIB19 Fluidigm - B-lymphocyte 

143Nd CD366 Tim3 F38-2E2 Biolegend C T-cells, DC-, and monocyte 
subsets 

144Nd Slan-FITC / anti-
FITC 

DD-1 Miltenyi Biotech / 
Fluidigm 

I Monocyte subsets 

145Nd MerTK-PE / anti-
PE 

125518 R&D systems / 
Fluidigm 

I Macrophages 

146Nd CD64 10.1 Fluidigm - Monocyte subsets 

147Sm CD36 5-271 Biolegend C Monocyte subsets 

148Nd CD164 67D2 Biolegend C Monocyte subsets 

149Sm CCR2 K036C2 Biolegend C Chemokine receptor involved in 
monocyte migration 

150Nd CD43 84-3C1 Fluidigm - Myeloid subsets 

151Eu CD123 6H6 Fluidigm - Basophils, DC 

152Sm CD13 WM15 Fluidigm - Myeloid cells 

153Eu CD45RA HI100 Fluidigm - NK and monocyte subsets 

154Sm CD163 GHI/61 Fluidigm - Monocyte subsets 

155Gd CD27 L128 Fluidigm - T-lymphocyte subsets 

156Gd CD86 IT2.2 Fluidigm - Costimulatory molecule, B-, T- 
cells, DC 

158Gd CD33 WM53 Fluidigm - Myeloid cells 

159Tb CD11c Bu15 Fluidigm - DC, T- and NK-subsets 

160Gd CD14 M5E2 Fluidigm - Monocyte, Macrophages 

161Dy CD32 FUN-2 Biolegend C FCRII, myeloid-, B- cells 

162Dy S100A9-APC / 
anti-APC 

MRP-14 Biolegend / 
Fluidigm 

I Regulate neutrophil and 
macrophage recruitment 

163Dy HLA-DR L243 Biolegend C Antigen presenting cell 

164Dy CD206 3.29B1.10 Beckman Coulter C Mannose receptor, macrophages, 
immature DCs 

165Ho CD16 3G8 Fluidigm - NK and monocyte subsets 

166Er CD120a 80M2 Beckman Coulter C Tumor necrosis factor receptor 

167Er CCR7 G043H7 Fluidigm - Expressed on activated DCs 

168Er CD8 SK1 Fluidigm - T-lymphocyte subsets 

169Tm CD25 2A3 Fluidigm - IL-2 receptor, T-, B- cells and 
myeloid precursors 

170Er CD3 SP34-2 Fluidigm - T-lymphocyte 

171Yb CD68 Y1/82A Fluidigm - Macrophages 

172Yb CD9 SN4 C3-
3A2 

Fluidigm - Tetraspanin, expressed on 
monocytes subsets 

173Yb CD45 2D1 Biolegend C Pan-leukocyte 

174Yb CD279 EH12.2H7 Biolegend C PD-1: immunologic checkpoint 

175Yb CD274 29E.2A3 Fluidigm - PD-L1: immunologic checkpoint 

176Yb CD127 A019D5 Fluidigm - IL-7R 

191Ir Iridium - Fluidigm - DNA tag. Cell identifier 

193Ir Iridium - Fluidigm - DNA tag. Cell identifier 

195Pt Cisplatin - Enzo Life 
Sciences 

- Viability stain 

Cell length - - - - - 
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Abstract 

Anti-PD-1 therapy yields objective clinical responses in 30–40% of advanced melanoma patients. 

Since most patients do not respond, predictive biomarkers to guide treatment selection are 

needed. We hypothesize that MHC-I/II expression is required for tumor antigen presentation and 

may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find 

bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset 

of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using 

pathway analysis, we show that MHC-II+ cell lines demonstrate signatures of ‘PD-1 signaling’, 

‘allograft rejection’ and ‘T-cell receptor signaling’, among others. In two independent cohorts of 

anti-PD-1-treated melanoma patients, MHC-II positivity on tumor cells is associated with 

therapeutic response, progression-free and overall survival, as well as CD4+ and CD8+ tumor 

infiltrate. MHC-II+ tumors can be identified by melanoma-specific immunohistochemistry using 

commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection.  

Introduction 

Monoclonal antibodies blocking the programmed death-1 (PD-1) receptor or its ligand (PD-L1) 

relieve the suppression of anti-tumor immune responses in a variety of cancers. Durable 

https://www.nature.com/articles/ncomms10582
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remissions occur in sizable fractions of patients with melanoma (30–40%) (215, 295, 296, 300, 

479, 480), non-small cell lung cancer (15–20%) (295, 300, 481-483), renal cell carcinoma (20–

30%) (295, 300, 484), bladder urothelial carcinoma (30%) (485), Hodgkin’s lymphoma (80–90%) 

(309), and others including head and neck squamous-cell carcinoma and triple-negative breast 

cancer (171, 300, 486, 487). Accurate predictive markers of therapeutic efficacy are needed to 

optimize patient selection, improve treatment decision-making and minimize costs. To date, 

several candidate approaches have been identified in melanoma. These include tumor or immune 

cell expression of PD-L1 (295, 300), identification of neoantigens through next-generation 

sequencing techniques (488, 489) and T-cell receptor clonality profiling (490). While quite 

promising, these assays are technically challenging and require specialized tissue processing.  

Tumors evade immune surveillance by immune checkpoint expression (PD-L1 and 

others), immunosuppressive cytokine profiles, tolerogenic immune cell recruitment (regulatory T-

cells and others) and cancer-specific cell signaling (138, 491, 492). In addition, cancer cells can 

lose the ability to present tumor antigens, thus avoiding recognition by cytotoxic T cells and 

antigen presenting cells, thus avoiding recognition by cytotoxic T cells and antigen presenting 

cells (APCs) (493). Downregulation of major histocompatibility complex class-I and -II (MHC-I and 

MHC-II) has been linked to immune suppression, metastatic progression and a poor prognosis in 

numerous malignancies (493-497).  

Despite the established importance of tumor-specific antigen expression, the influence of 

MHC-I and MHC-II expression on response to new immune therapies, particularly anti-PD-

1/PDL1, has not been explored. Specifically, HLA-DR is frequently expressed on melanoma and 

has unclear functional and prognostic significance (498-500). We hypothesized that MHC-I and 

MHC-II expression, particularly HLA-DR, are required for anti-PD-1/PD-L1 activity and serve as 

technically and clinically feasible predictive biomarkers for therapeutic efficacy. In this study, we 

find that melanoma-specific expression of HLA-DR marks tumors with unique inflammatory 
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signals that are more responsive to PD-1-targeted therapy. On the basis of this, we propose use 

of tumor-specific HLA-DR expression as a potential biomarker of high likelihood of response to 

these agents in clinical trials. 

Results  

MHC-I and MHC-II expression in melanoma cell lines.  

On the basis of the known biological interactions of PD-1/PD-L1- signaling, antigen presentation 

by tumor or professional APCs is hypothesized to be a requirement for immune recognition of the 

malignant cell. MHC-I presents antigen to CD8+ cytotoxic T lymphocytes (CTL) and is ubiquitously 

expressed by most cells. Loss of MHC-I is typically thought to trigger natural-killer cell 

checkpoints, resulting in natural-killer cell-mediated cytotoxicity. In contrast, MHC-II, which 

presents antigen to CD4+ T-helper cells, is typically restricted to professional APCs such as 

dendritic cells and B cells. HLA-DR, the primary antigen-presenting molecule of the MHC-II 

pathway is expressed in some cancers, particularly in response to CTL-secreted interferon-

gamma (IFNγ). Some data suggest that non-immune cells, including cancer cells, can function as 

MHC-II+ APCs (501-503). Given the heterogeneity of the tumor milieu, we asked whether MHC-

I and II were expressed in in vitro cell line models of melanoma (rather than in resected melanoma 

tumors), where the contribution of stromal and infiltrating immune cells could be excluded.  

Using the Cancer Cell Line Encyclopedia (CCLE) melanoma panel of 60 cell lines, we 

determined that MHC-I mRNA expression (using HLA-A as the prototype) was ubiquitously high 

across almost all melanoma cell lines (Figure C.1a). In contrast, HLA-DRA, the prototype MHC-II 

molecule, demonstrated a strong bimodal distribution pattern, and appeared absent in ~50% of 

cell lines (Figure C.1a). The remaining cell lines demonstrated intermediate-to-high mRNA levels. 

When cell lines were factored according to HLA-DRA mRNA (using an arbitrary cutoff of 6 (RMA 

log2 signal intensity), there was a signature of 159 genes which were significantly altered (up or 
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downregulated, false-discovery rate (FDR) <1%) in HLA-DRA-expressing cells compared with 

Figure C.1: A unique subtype of melanoma expresses MHC-II. (a) Microarray data from 60 

melanoma cell lines in the CCLE48 were analysed for MHC-I (HLA-A/B/C and MHC-II (HLA-DRA) 

expression. Bars represent the mean±s.d. P value is the result of the Kolmogorov–Smirnov test 

comparing the distribution of MHC-I (HLA-A, HLA-B, HLA-C) expression with MHC-II expression (HLA-

DRA). *represents the cutoff for defining MHC-II(+). (b) Gene-expression data from HLA-DRA(+) cell 

lines (Clusters Ia/Ib) were compared with HLA-DRA( ) cell lines (Clusters II and III) by an FDR-corrected 

row t-test. An ad hoc heat map is shown at the top, highlighting classical MHC-II genes. (c) Normalized 

microarray data were analyzed by GSA47 using the curated Molecular Signatures Database, and the 

resulting gene set scores are presented as a hierarchical clustered heat map. 



192 

 

those cell lines lacking HLA-DRA mRNA (Figure C.1b). Clustering on these genes suggested four 

clusters of expression patterns, which we identified as clusters Ia and Ib (predominantly HLA-DR-

expressing) and clusters II and III (predominantly HLA-DR-negative). Gene set analysis (GSA) of 

the CCLE based on MHC-II classification yielded 27 gene sets with upregulated scores and 1 with 

a downregulated score at an FDR≤5% in the Ia/Ib subtype. Bioinformatics analysis of the enriched 

gene sets suggested that HLA-DRA-expressing cell lines harbored expression signatures of ‘PD-

1 signaling’, ‘T-cell receptor signaling’, ‘graft-versus-host disease’ and ‘allograft rejection’ (Figure 

C.1c). These findings suggested that there were tumor-cell autonomous signaling pathways 

driving MHC-II expression consistent with a pro-immune/ anti-tumor response. The presence of 

a high mutational burden and resulting neoantigens has been shown to predict response to PD-

L1 therapy in lung cancer (504). HLA-DR-expressing melanoma lines had a higher total 

nonsynonymous mutational load by targeted next-generation sequencing of 1,561 genes, 

although this was not statistically significant (Wilcoxon rank sum test P < 0.056). 

 Since mRNA expression does not imply functional protein expression, and because 

micro-environmental IFNγ is known to influence MHC-I, MHC-II and PD-L1 expression, we 

characterized representative cell lines from HLA-DRA-expressing (cluster Ia and Ib, Figure C.1b) 

and HLA-DRA-deficient (cluster II, Figure C.1b) subgroups by flow cytometry under basal and 

stimulated (IFNγ) conditions. Cell-surface expression mirrored mRNA-expression patterns; MHC-

I (HLA-A/B/C) expression was detected in all cell lines under both basal and stimulated conditions. 

However, the antibody utilized to assess MHC-I expression is reactive with all class-I alleles and 

haplotypes and specific class-I allele expression was not assessed in this study. In contrast, MHC-

II (HLA-DR) was present only on the intermediate/Ib (SKMEL5 and SKMEL28) and high/Ia cell 

lines (WM115 and A375; Figure C.2a–c). No significant increase in HLA-DR expression was 
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observed with either CHL-1 or HMCB even after 72 h of IFNγ treatment. Notably, the 

intermediate/Ib cell line SKMEL28 had a unique population (25%) of cells that was constitutively 

Figure C.2: Characterization of MHC-II(+) melanoma cell lines. Melanoma cell lines were treated 

with IFNγ for 24 h before collection and live-cell staining and flow cytometry analysis for MHC-I/HLA-

A/B/C (a), MHC-II/HLA-DR (b) and PD-L1 (c). Bars represent mean±s.e.m. for at least three 

experiments (d) Representative flow plots from c. (e) Western blot analysis of melanoma cell lines after 

24 or 48 h of IFNγ stimulation. (f) Phosphorylation of STAT1 (top row) and STAT5 (bottom row) in 

melanoma cell lines at 15 min after IFNγ stimulation. Histograms were colored according to the arcsinh 

transformed ratio or MFI medians relative to the table minimum value. 
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HLA-DR-expressing at baseline, and was potently induced by IFNγ (Figure C.2d). The high (Ia) 

WM115 cell line was essentially 100% positive for HLA-DR at both basal and stimulated 

conditions.  

Interestingly, PD-L1 expression was potently induced with stimulation in all cell lines, 

though the HLA-DR+ cell lines exhibited greater populations of cells that were PD-L1 positive in 

the absence of IFNγ (Figure C.2c,d). Consistent with this, STAT1 was robustly activated with IFNγ 

stimulation in all cell lines, whereas CIITA expression, a master regulator of MHC-II transcription, 

was only induced in HLA-DR+ Ia/Ib cells (Figure C.2e). Phospho-flow analysis demonstrated that 

while STAT1 was activated robustly with short-term (15 min) IFNγ stimulation, STAT5 was 

preferentially activated by IFNγ in MHC-II cell lines (Figure C.2f), consistent with the observations 

of others that STAT5 can contribute to resistance to interferon signaling and phenotypes (505). 

Together, these results suggest that there is a tumor-cell autonomous inflammatory signal present 

in a subset of melanomas that may predispose the tumor to enhanced MHC-II expression, antigen 

presentation (direct or cross presentation via exosomes (506)) to CD4 T-helper cells and immune 

recognition, coinciding with higher PD-L1 expression. Furthermore, these data suggest that 

STAT5 activation may contribute to suppression of this inflammatory signal. Thus, we reasoned 

that the HLA-DR-expressing subtype of melanoma can be unmasked to the immune system by 

therapeutic inhibition of the PD-1/PD-L1 axis.  

HLA-DR expression by genotype.  

HLA-DRA expression was specifically enriched in cell lines harboring NRAS mutations (Figure 

C.3a). Notably, studies by our group and others have suggested that patients harboring NRAS 

mutations experience improved response rates to PD-1 axis therapy and other immune therapies 

(507, 508). Although the biological basis of this correlation remains to be elucidated, these results 

were intriguing and compatible with our hypothesis. To test whether the same association could 
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be observed in clinical samples, we investigated MHC-

II/HLA-DR expression by IHC in a tissue microarray (TMA) 

of melanoma patient samples (n < 67) with known BRAF 

and NRAS genotypes who largely had not received 

immune therapy. Dual-color IHC was performed with HLA-

DR and SOX10 to distinguish tumor versus stromal expression of HLA-DR (Figure C.3b). We 

observed HLA-DR+ tumor expression in 20/67 (30%) evaluable samples. HLA-DR was expressed 

more frequently in the NRAS mutated cohort (43%, 6 of 14) than in BRAF-mutated (23%, 3 of 13) 

and BRAF/NRAS wild-type populations (28%, 11 of 39; Figure C.3c), but this was not statistically 

significant (χ2-test P < 0.47). Thus, NRAS genotype seems to trend with HLA-DR positivity, but 

this association does not appear to be a significant. A larger sample size would be needed to 

conclusively determine whether this association is apparent or absent in patients. Importantly, in 

this unselected population of patients, expression of HLA-DR was not associated with overall 

Figure C.3: MHC-II-positive 

melanoma cell lines associate 

with NRAS mutations. (a) HLA-

DRA mRNA expression in melanoma 

cell lines (n ¼ 60; one cell line lacked 

mRNA expression data) from the 

CCLE compared by genotype. P 

value (Po0.05) represents result of 

Tukey’s post hoc analysis comparing 

pan-WT with NRAS-mutant cell lines, 

following a significant ANOVA (P ¼ 

0.03) performed among all groups. 

Bars represent mean±s.e.m. (b) 

Representative IHC for HLA-DR 

(brown) and SOX10 (pink) in cases 

with isolated stromal positivity (top) 

and with tumor specific staining 

(bottom). Both HLA-DR and SOX10 

immunostaining is present in all four 

sections. Scale bar, 50 mm. (c) 

Analysis of HLA-DR IHC in a 

melanoma TMA (n ¼ 67 evaluable) 

by genotype. P value represents 

result of a w2-test. (d) Overall 

survival of patients (n ¼ 58 

evaluable) within the TMA by HLA-

DR status (left censored at time of 

diagnosis). The remaining patient 

samples were included from outside 

institutions and follow-up data were 

not available from those institutions. 

P value is the result of the log-rank 

test. 
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survival (log-rank P < 0.32), suggesting that HLA-DR expression may not be generally prognostic 

in advanced melanoma (Figure C.3d).  

HLA-DR expression in patients receiving anti-PD-1 or PD-L1.  

We previously observed that in a diverse collection of melanoma cell lines, patterns of HLA-DR 

expression were (i) constitutively high, (ii) heterogeneous, but inducible by IFNγ, or (iii) 

constitutively off. Similar patterns were observed in a cohort of unselected melanoma tumors, and 

thus we hypothesized that these patterns may be predictive of benefit to immunotherapy.  

To test this hypothesis, we used the patient-derived xenograft (PDX) models from the 

tumor resections of two melanoma patients who subsequently received anti-PD-1 therapy; patient 

1 (PT1; non-responder, 0% HLA-DR-positive, class II/III) and patient 2 (PT2; partial responder, 

heterogeneous 15% HLA-DR positive, class Ib; Figure C.4a). In PT2, the HLA-DR-staining pattern 

was clearly positive at the invasive interface, suggesting immunereactivity in this particular tumor, 

in contrast to other tumors identified in the TMA study which were MHC-II+ throughout the tumor. 

The resected tumors from PT1 and PT2 were serially transplanted to athymic nu/nu mice, which 

are highly deficient in functional T cells (509), ruling out a possible source of IFNγ (Figure C.4b). 

Immunohistochemistry analysis of both PDX models, grown in nude mice, demonstrated no 

detectable HLA-DR expression.  

However, when PDX tumors were freshly resected, sectioned and grown ex vivo as 

cultured tissue slices, in the presence or absence of IFNγ, only the PT2 PDX model (anti-PD-1 

responder) upregulated HLA-DR (Figure C.4d). Thus, HLA-DR may be a marker of IFNγ activity 

in the microenvironment of some (but not all) tumors. Furthermore, this experiment supports the 

notion that the IFNγ response varies significantly among melanomas, and demonstrates tumor 

autonomous features. Furthermore, these data suggest that HLA-DR expression in melanoma 
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cells may be a biomarker for tumors primed with activated T-cells and an appropriate IFNγ 

response to mediate sensitivity to PD-1/PD-L1 blockade. Importantly, however, these data do not 

rule out the existence of melanomas constitutively expressing HLA-DR in the absence of IFNγ 

stimulation, as is observed in a significant number of melanoma cell line models (Figure C.1).  

In order to determine whether MHC-II expression on melanoma tumors is associated with 

clinical response to PD-1/PD-L1-targeted therapy, we obtained archival pre-treatment biopsy or 

resection specimens from 30 patients treated with anti-PD-1 (nivolumab, pembrolizumab) or anti-

PD-L1 (MPDL3280A; n < 2). The median age was 56 years, the median number of prior therapies 

was 1, and 14 (47%) had failed ipilimumab (Table C.1). Twenty-three patients (77%) had stage 

IV M1c disease and 12 (40%) had elevated serum lactate dehydrogenase (LDH).  

We chose to differentiate MHC-II+ from MHC-II samples using a cutoff of 45% of tumor 

(SOX10+) membranes showing staining. Tumor HLA-DR staining strongly correlated with 

response to therapy. Among 14 patients with positive HLA-DR staining (45% estimation of positive 

tumor membranes in the entire tissue section), 11 patients (79%) had complete (n < 3) or partial 

(n < 8) response (Figure C.5a). Clinical activity was inferior in HLA-DR non-expressing 

Figure C.4: Ex vivo culture of tumors 

derived from anti-PD-1-responding 

and non-responding patients 

identifies heterogeneity in interferon 

response. (a) Patient tumor blocks 

stained for HLA-DR (brown) and 

SOX10 (pink) at low (scale bar, 500 

um) and high magnification (scale bar, 

200 mm); PT1: anti-PD-1 non-

responder and PT2: anti-PD-1 

responder. (b) Experimental schema. 

(c) Schema and images of PDX tissue 

sections (ex vivo organotypic culture). 

(d) Western blot analysis of tissue 

sections cultured in the presence or 

absence of IFNγ for 24–48 h. 
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melanomas; 6 of 16 patients (38%) 

responded to therapy (overall 

response rate 79 versus 38%, 

Fisher’s exact test P < 0.033). Clinical 

benefit (including mixed responses) 

was similarly superior in MHCII+ 

patients (Fisher’s exact test P < 

0.007). Importantly, this finding was 

confirmed in a second independent 

data set of 23 melanoma patients 

treated with anti-PD-1 therapy (single 

agent or concurrently with other 

immunotherapies). Of these 23 

additional patients, 6/8 (75%) of HLA-DR+ tumors responded (PR or CR), while only 4/15 (27%) 

HLA-DR- responded (Fisher’s exact test P < 0.025; Figure C.5b). Rapid objective clinical 

responses were observed in HLA-DR+ tumors, even in patients with other negative prognostic 

features, including a patient with bulky disease, elevated LDH, impaired functional status and 

failure of both ipilimumab and dabrafenib/trametinib, and a patient with a 410 cm liver mass and 

LDH4500 U l 1 following failure of interleukin-2 and ipilimumab (Figure C.5c). 

 We also compared progression-free survival (PFS) between patient groups in both data 

sets, when survival data were available. The median PFS was superior in the HLA-DR+ group 

(median not reached versus 3.2 months, log-rank P < 0.02; Figure C.5d). Overall survival was 

also superior for the HLA-DR+ cohort (median not reached versus 27.5 months, log-rank P < 

0.003; Figure C.5d). We excluded the three patients with mixed responses from the PFS analysis 

(given difficulties specifying time of clinical progression), but not the OS analysis. Importantly, 
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statistical significance or a trend toward significance was retained at other cut-points as well, 

including 1, 10 and 20% (PFS log-rank P < 0.01, P < 0.08 and P < 0.03, respectively, and OS log-

rank P < 0.002, P < 0.01 and P < 0.11, respectively). Notably, we did not observe an association 

with HLA-DR expression and response among 13 patients treated with ipilimumab alone, although 

the sample size is too small to make definitive conclusions. 

 

Figure C.5: MHC-II(+) melanomas have improved response rates and clinical benefit to PD-1/PD-

L1 inhibition. (a) HLA-DR positivity by IHC plotted versus response to PD-1/PD-L1-targeted therapy 

in the discovery set (n=30). Responders include partial and complete responders; non-responders 

include mixed responders and progressive disease patients. Mixed responders (n = 3) are noted by a 

red triangle. P value is the result of the Wilcoxon’s rank sum test. (b) HLA-DR positivity by IHC in the 

validation set (n = 23) plotted versus response to PD-1/PD-L1-targeted therapy. P value is the result of 

the Wilcoxon’s rank sum test (c) Representative images of scans from anti-PD-1 therapy-treated MHC-

II(+) patients (d) Progression-free survival (left) and overall survival (right) in anti-PD-1/PD-L1-treated 

patients, stratified by HLA-DR/MHC-II positivity (5% total tumor cells staining on entire tissue section 

used as cut point). Data from both the initial and validation cohorts were included, when available. P 

value is the result of the log-rank test. (e) Correlation matrix of IHC markers. P values for the Pearson’s 

correlation appear above the diagonal and correlation coefficients (r) appear below the diagonal. 
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MHC-II antibody specificity and concordance of assessment.  

To investigate the possibility of alternative MHC class II molecule expression, we performed IHC 

using a second monoclonal antibody targeting a common epitope to HLA-DR, -DP, -DQ and -DX 

(pan-MHC-II) on all samples. Results largely correlated with HLA-DR (Figure C.5e), supporting 

high specificity of the HLA-DR antibody. No additional cases were identified as MHC-II+ by use 

of the pan-MHC-II antibody. Pan-MHC-II positivity was also associated with objective clinical 

response (Mann–Whitney’s P < 0.02) as well as PFS and OS using a 5% cut-point (log-rank P < 

0.04 and P < 0.009, respectively). Concordance in HLA-DR positivity assessment between two 

independent blinded pathologists was 77%. After web-mediated discussion of the discordant 

cases, a final consensus was reached. 

Other clinical correlates.  

To investigate the impact of MHC-I expression on response to anti-PD-1/PD-L1, we 

performed HLA-A IHC on the same pre-treatment samples. As observed in melanoma cell line 

models, HLA-A expression was nearly ubiquitous across all tumors and expression level was not 

statistically associated with response to therapy. However, HLA-B and HLA-C protein expression 

were not assessed in this study. CD4+ and CD8+ T-cell infiltration was also assessed by IHC. 

CD4 was not statistically associated with therapy response, while a trend towards significance 

was detected with CD8 (Mann–Whitney’s P < 0.077), as has been previously described (490). 

The lack of statistical association in our study may be due to scoring method, as the invasive front 

of the tumor was not detectable in all biopsies or resection specimens. Thus, the total per cent 

positivity of CD8+ T cells invading into the tumor was calculated. Interestingly, the percentage of 

infiltrating CD4+ T cells were more strongly correlated with HLA-DR expression (Pearson’s r < 

0.63; P < 1 10 5), while CD8+ infiltrate was more weakly correlated (Pearson’s r < 0.48; P < 0.001; 

Figure C.5e). Although HLA-DR and CD4+ infiltrate are biologically connected, association of 
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HLA-DR with CD8 infiltrate may be suggestive evidence that enhanced CD4+ Th infiltrate could 

support the continued accumulation of CD8+ CTLs in the tumor microenvironment. In our cohort, 

PD-L1 immunostaining in the tumor compartment was rare, occurring in 4/24 (17%) tested 

patients and showed no correlation with response to PD-1/PD-L1-targeted therapy.  

Discussion  

Targeting the PD-1/PD-L1-signaling axis produces durable responses in a subset of 

melanoma patients. Although a genetic basis for clinical response to CTLA-4 inhibition in 

melanoma has recently been suggested (488), so far few studies have suggested a tumor-cell 

autonomous basis for response to PD-1/PD-L1 monoclonal antibodies. Herein, we have identified 

a unique inflammatory transcriptional signature in melanoma cell lines that can be identified by 

tumor cell-specific MHC-II/HLA-DR expression. Interestingly, heterogeneity in MHC-II expression 

among panels of melanoma lines has been previously noted (510). We hypothesize that MHC-II 

expression is either (i) a functional antigen-presenting molecule that can promote CD4 T-helper 

cell aid to the anti-tumor milieu or (ii) a non-functional marker of the inflammatory state of the cell 

or tumor milieu. The presence of heterogeneity among cell lines grown ex vivo argues against the 

latter. Yet another alternative hypothesis is that MHC-II Ta expression on melanoma cells could 

be instrumental in promoting Treg differentiation in a process that requires PD-1/PD-L1 

interaction; thus interruption of this signaling could be beneficial in MHC-II+ tumors. Although we 

did not assess different CD4 subsets (Th1, Th2, Th17, Treg), we nonetheless observed superior 

clinical outcomes with anti-PD-1/PD-L1 therapy in patients harboring melanomas with MHC-II 

expression.  

In a bioinformatics analysis of MHC-II expression in melanoma cell lines, which rules out 

contaminating stromal and immune contribution, we found a number of gene-expression 

pathways to be upregulated in melanoma cell lines expressing MHC-II (Figure C.1c). The majority 
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of these pathways suggested the presence of an inflammatory signature and reflected gene sets 

found to be upregulated in response to viral (WIELAND UP BY HBV INFECTION), parasitic 

infections (KEGG LEISHMANIA INFECTION) and autoimmune disease (KEGG GRAFT VERSUS 

HOST DISEASE, KEGG ALLOGRAFT REJECTION, KEGG ASTHMA and KEGG AUTOIMMUNE 

THYROID DISEASE). Biologically, these pathways reflected stimulation of T-cell receptors 

(REACTOME TCR SIGNALING and COSTIMULATION BY THE CD28 FAMILY) and B-cell 

activation (BIOCARTA BLYMPHOCYTE PATHWAY and KEGG INTESTINAL IMMUNE 

NETWORK FOR IGA PRODUCTION). Although several gene sets were statistically 

downregulated in MHC-II+ cell lines, visual inspection of the heatmap suggested that these 

associations were primarily driven by high expression of target genes in a subset of MHC-II- cell 

lines, specifically Cluster II (Figure C.1c).  

Although MHC-I is ubiquitously expressed in most cell types, MHC-II is typically restricted 

to the immune system, as the MHC-II pathway is thought to utilize extracellular antigens (released 

from apoptotic or necrotic cells and engulfed by professional APCs). However, tumor-specific 

MHC-II expression has been noted in a number of malignancies, including breast (496), colon 

(494) and melanoma (495). Experimentally, MHC-II+ epithelial cells can present antigen to 

CD4+T-helper cells (502) and enforced expression of MHC-II in tumor cells can promote anti-

tumor immunity and tumor rejection in vivo (503). Collectively these data support a role for 

aberrant HLA-DR/ MHC-II expressing tumors as being a uniquely immunogenic subtype (with the 

ability to stimulate CD4+T-helper cells) which may adapt by expressing PD-L1. Thus, although 

some MHC-II- tumors may express PD-L1, this alone may not permit anti-tumor immunity through 

PD-1/PD-L1 inhibition. In our study, HLA-DR expression strongly correlated with response to anti-

PD-1. Critically, other relevant variables also co-occurred with HLA-DR expression, demonstrated 

through in silico cell line analysis (GSA), flow cytometry of well characterized melanoma cell lines 

(PD-L1 expression and CIITA expression) and pre-treatment melanoma samples (CD4 and CD8 
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T-cell infiltration). Together, these data strongly argue that HLA-DR plays a causal or correlative 

role in anti-PD-1/PD-L1 responses. Interestingly, HLA-A expression did not statistically correlate 

with CD8 expression in our study (Figure C.5e). This could be due to more ubiquitous expression 

of HLA-A among the tumors, and it could be that the spectrum of MHC-I neo-antigen may be the 

rate-limiting step in this association. MHC-II expression on the tumor did correlate with CD4 

infiltrate, though the nature or composition of these CD4 þ cells is not yet understood (Th1, Th2, 

Th17 or Tregs). Furthermore, in this study, only HLA-A was assessed for MHC-I. Additional 

contributing effects of HLA-B and HLA-C as well as non-classical MHC-I proteins were not 

assessed in this study due to limitations in robust antibodies and amount of tissue available for 

analysis. 

Although our data point towards a functional role of MHC-II expression as contributing to 

sensitivity to PD-1/PD-L1 axis inhibition, it is important to note that some tumors responded to 

PD-1-targeted therapy, despite having no detectable MHC-II expression. There are several 

possible explanations for this observation: (i) that tumor sampling heterogeneity limited our ability 

to detect HLA-DR in the tumor and/or (ii) that these tumors may be similar to the Ib (interferon-

inducible) group and PD-1 inhibition in these patients may increase CD8 infiltration and local IFNγ 

secretion, inducing HLA-DR, which could be detected by an on-treatment assessment. Of course, 

this is hypothetical, and also assumes that HLA-DR is a functional biomarker, rather than a 

surrogate, which remains to be experimentally proven. Yet a third hypothesis would be that other 

inflammatory/antigenic factors mediated by MHC-I (such as mutational burden and neo-antigen 

presence) could be sufficiently high in some cases to circumvent or abrogate an MHC-II 

requirement. Nonetheless, the potential role of MHC-II as a surrogate biomarker for response 

cannot be overlooked. 

In order to demonstrate a functional role of MHC-II in promoting response to PD-1/PD-L1 

therapy, we overexpressed Ciita in B16/F0 melanoma cells to determine whether constitutive 
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tumor-cell MHC-II expression would enhance response to PDL1 mAB in vivo. Despite previous 

reports(506) of successful constitutive MHC-II (IA/IE) expression by lentivirus-mediated Ciita 

overexpression, we were unable to establish a stable population of MHC-II+ cells in culture, 

despite repeated rounds of selection and flow sorting. Expansion of the positive population in cell 

numbers sufficient for the experiment routinely caused the MHC-II+ population to degrade to ~1–

2% after 3–5 passages. The reason for this selection is presently unclear but is a matter of current 

investigation. Possible explanations are silencing of the lentiviral promoter or cell-mediated 

internalization of MHC-II. 

Nonetheless, we injected either control (LacZ-expressing) or Ciita/MHC-II+ B16 cells 

(ranging from 10 to 30% MHC-II þ at the time of injection) into the flank of C57/Bl6 mice and 

monitored tumor growth and survival with either IgG (isotype) control or anti-PD-L1 mAB, given 

twice weekly, beginning on day + 1 following tumor-cell challenge. The subgroup of Ciita þ B16 

melanoma cells with the highest degree of MHC-II positivity (30%) at the time of injection, treated 

with anti-PD-L1, had slower tumor formation and prolonged survival, although the effect was 

marginal. We believe the observed effect may not have been robust due to unstable expression 

and rapid selection of Ciita-transduced cells in vitro and in vivo. Interestingly, there appears to be 

an MHC-II+ dose–effect response to PD-L1 mAB (that is, 30% MHC-II+ responded better than 10 

or 20%). While these results are difficult to interpret due to difficulty in establishing a pure cell line, 

we believe they do support a potential functional role of MHC-II expression in immunotherapy 

response. 

Conflicting reports of stromal versus tumor PD-L1 staining, coupled with the lack of 

standardization, proprietary nature and the difficulties associated with PD-L1 as an IHC antigen 

have precluded the routine use of this marker in the clinic. In our study, a relatively low number 

of samples stained positively for PD-L1, despite appropriate positive controls (human placenta). 

The low proportion of samples with PD-L1 staining and lack of correlation of positivity with patient 
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benefit reinforce the problems of using PD-L1 as a clinical biomarker. In contrast, HLA-DR can 

be robustly identified on tumor cells through use of dual-color IHC using well-established 

commercially available antibodies. We propose that with additional validation, melanoma HLA-

DR expression may be a rapidly translatable biomarker for patient stratification of PD-1/PD-L1 

immunotherapy which can easily be performed in standard pathology laboratories at most 

institutions at low cost. This marker, if validated, could be envisioned to stratify patients towards 

anti-PD-1 monotherapy and away from the more toxic but potentially more clinically active 

combination of ipilimumab and nivolumab (511-513). Furthermore, understanding the biological 

basis for differential MHC-II expression among melanomas may identify agents that induce MHC-

II positivity and can be used in combination with PD-1/PD-L1-targeted therapy to enhance 

response rates. 

Methods  

Immunoblotting. Immunoblotting was performed as previously described (514, 515). Briefly, cells 

were washed in cold phosphate-buffered saline, collected and lysed in 1x RIPA buffer (50 mM 

Tris (pH 7.4), 1% NP-40, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.25% sodium deoxycholate, 5 

mM NaF, 5 mM Na3VO4, 10% glycerol, 1 M phenylmethyl-sulphonylfluoride and protease 

inhibitors) for 30 min on ice. Lysates were sonicated for 2–3 s to shear DNA and cleared by 

centrifugation at 13,200 r.p.m. for 15 min. Protein concentrations of the lysates were determined 

by BCA assay (Bio-Rad, Hercules, CA). Samples were separated by SDS-PAGE and transferred 

to nitrocellulose membrane. Membranes were blocked with 5% non-fat dry milk or 5% bovine 

serum albumin in tris-buffered saline with 0.1% Tween-20 for 1 h at room temperature and then 

incubated overnight at 4° C with the appropriate antibody as indicated. Following incubation with 

appropriate horseradish peroxidase-conjugated secondary antibodies, proteins were visualized 

using an enhanced chemiluminescence detection system. This study was performed using the 

following antibodies: p-STAT1 (Cell Signaling Technology, #7649, 1:5,000) STAT1 (Santa Cruz 
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Biotechnology, #SC592, 1:5,000), p-ERK1/2 (Cell Signaling Technology,#9101, 1:5,000), ERK1/2 

(Cell Signaling Technology #9102, 1:5,000), CIITA (Cell Signaling Technology #3793, 1:1,000) 

HLA-DR (Santa Cruz Biotechnology, sc-53319, 1:5,000). 

Standard flow cytometry. Flow cytometry was performed using the following antibodies: HLA-

DR/PE-Cy7 (Biolegend, clone L243, 1:20), CD274/PD-L1/APC (Biolegend, clone 29E.2A3, 1:200) 

and HLA-A/B/C –Alexa Fluor488 (1:100, Biolegend, clone W6/32) mouse MHC-II (I-A/I-E, 1:20, 

Biolegend, clone M5/114.15.2). DAPI was used as a viability dye. Samples were analyzed on an 

Aria III laser system (BD Biosciences). 

Phospho-flow cytometry. Melanoma cell lines were treated with Accutase (EMD Millipore, 

#SCR005) for 10 min at 37° C to dissociate them from the plate. Dissociated cell lines were rested 

at 37° C in a CO2 incubator for 30 min before stimulation. After resting, cells were stimulated by 

adding IFNγ (Cell Signaling Technology) at a final concentration of 100 ng ml 1. During signaling, 

cells were kept in a 37° C CO2 incubator. After 15 min of signaling, cells were fixed for 10 min at 

room temperature with a final concentration of 1.6% paraformaldehyde (Electron Microscopy 

Services). Cells were then pelleted, and permeabilized by resuspension in 2 ml of methanol and 

stored over night at -20° C. Flow cytometry was performed using the following antibodies: HLA-

DR/BV421 (BD Horizon, clone G46-6, 1:40), p-STAT5/PE-Cy7 pY694 (BD Phosflow, clone 47, 

1:10) and p-STAT1/PerCP-Cy5.5 pY701(BD Phosflow, clone 4A, 1:10). Samples were analyzed 

on a LSRII system (BD Biosciences).  

Immunohistochemistry. For HLA-DR (Santa Cruz Biotechnology (sc-53319), 1:1,000)/SOX10 

(LsBio (LS-C312170), 1:30), HLA-DR-DP-DQ-DX (Santa Cruz Biotechnology (sc-53302), 

1:1,000)/SOX10, HLA-A (Santa Cruz Biotechnology (sc-365485), 1:1,300)/SOX10 and PD-L1 

(Cell Signaling Technology #13684,1:500)/SOX10 dual IHC, tumor sections were stained 

overnight at 4° C with both antibodies. Antigen retrieval was performed using Citrate Buffer (pH6) 
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using a Biocare Decloaking Chamber. The visualization system utilized was MACH2 (Biocare) 

using DAB (Dako) and Warp Red (Biocare), and counterstained with hematoxylin. For CD4 and 

CD8 staining, slides were placed on a Leica Bond Max IHC stainer. All steps besides dehydration, 

clearing and coverslipping are performed on the Bond Max. Heat-induced antigen retrieval was 

performed on the Bond Max using their Epitope Retrieval 2 solution for 20 min. Slides were 

incubated with anti-CD4 (PA0427, Leica, Buffalo Grove, IL) or anti-CD8 (MS-457-R7, 

ThermoScientific, Kalamazoo, MI) for 1 h. The Bond Polymer Refine detection system was used 

for visualization. CD4 and CD8 were scored as per cent of infiltrating CD4(+) or CD8(+) cells in 

the tumor area. 

HLA-DR scoring determination. Two pathologists (M.V.E. and R.S.) who were unaware of clinical 

response data made independent visual estimations of the percentage of tumor membrane-

specific positivity for HLA-DR, in SOX10(+) nuclei areas, in the whole-tumor section focusing at 

the tumor hot spots. For all staining batches positive and negative controls (human tonsil; HLA-

DR is positive in germinal and non-germinal center cells and negative in squamous epithelial 

cells) were included and stained appropriately and reproducibly in all cases. Furthermore, nearly 

all cases had positive-staining stromal cells (presumably B-cells and macrophages) as an internal 

control. In concordant cases (both investigators scored as ‘negative’ (<5% of all tumor cells in the 

entire tissue section staining positive; that is, all analyzable fields of view) or ‘positive’ (≥5% of 

tumor cells in the entire tissue section staining positive; that is, all analyzable fields of view), the 

result was averaged. For discordant cases (that is, positive versus negative interpretation, or any 

concerns on evaluable nature of the specimen) the investigators reviewed the case together to 

reach a final conclusion or consensus. If no consensus could be agreed upon, the sample was 

listed as non-evaluable. 

CCLE analysis. Gene-expression data (Affymetrix hg133plus2) from the CCLE were downloaded 

from the Broad Institute (http://www.broadinstitute.org) and analyzed in R (http://www.r-
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project.org/)(516). RMA-normalized melanoma cell line data were collapsed to the gene level and 

filtered using the ‘genefilter’ package. Differentially expressed genes were identified using a t-test 

with a FDR correction (517). Hierarchical clustering was performed using 1-Spearman’s rank 

correlation and complete linkage. GSA was performed using the GSA package in R and the 

maxmean statistic (518). Gene sets in the molecular signatures database curated gene sets C2 

collection (version 3.0) were utilized for GSA. 

Cell and tumor culture. SKMEL28 and WM115 cell lines were obtained from Dr Kimberly Dahlman 

(Vanderbilt University), CHL-1 and HMCB melanoma cell lines were obtained from the laboratory 

of William Pao (Vanderbilt University). Cell line nature was not directly authenticated, but protein-

marker expression was consistent with published HLA-DRA mRNA expression patterns (CCLE). 

Cell lines were confirmed mycoplasma-free and cultured in DMEM containing 10% FBS. 

Stimulation with recombinant human IFNγ (R&D Systems) was performed at 100 ng ml-1. For PDX 

models and ex vivo organotypic culture, tumors were freshly resected and sectioned using an Alto 

tissue matrix sectioner (Roboz Surgical, Gaithersburg, MD). 

Patients. Patient samples and data were procured based on availability of tissue and were not 

collected according to a pre-specified power analysis. All patients provided informed written 

consent on IRB-approved protocols (Vanderbilt IRB #030220 and #100178). Tumor samples for 

the TMA and for the HLA-DR staining cohort were obtained from tumor biopsies or tumor 

resections obtained for clinical purposes. Samples were obtained within 2 years of start of anti-

PD-1/ PD-L1 therapy (nivolumab, pembrolizumab and MPDL3280a). Only patients with available 

tumor samples and evaluable responses were included. In cases where multiple tissues were 

available for the same patient, the evaluable sample collected closest to PD-1 therapy was used 

for scoring. Clinical characteristics and objective response data were obtained by retrospective 

review of the electronic medical record. All responses were investigator assessed, RECIST 
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defined responses or (in a single case) prolonged stable disease with clinical benefit lasting >3 

years.  

For the validation set, all patients were consented to an IRB-approved tissue banking 

protocol (for MGH patients as part of either Dana Farber Harvard Cancer Center protocols 02-

017 and 11-181). Samples were obtained before therapy with anti-PD-1/PD-L1 monoclonal 

antibodies for research (as opposed to clinical) purposes. A linked database was prospectively 

maintained and regularly updated with clinical characteristics, response to therapy, date of 

progression (if applicable) and date of death or last follow-up visit. 

Statistical analysis. The tests of hypotheses concerning between two groups comparisons were 

completed using either two-sample Student’s t-test or nonparametric Wilcoxon’s rank sum test for 

continuous variables of interest. The analysis of variance with Tukey’s multiple comparison 

adjustment was used for comparisons of more than two independent groups. Dichotomous data 

were compared using the χ2-test with the Yates correction or Fisher’s exact test when appropriate. 

The Kolmogorov–Smirnov test (KS-test) was used to determine if the distribution of the data sets 

differed significantly. For PFS analysis, the survival curves were estimated using the Kaplan–

Meier method with the log-rank test to examine the statistically significant differences between 

study groups. For gene analysis, the FDR-adjusted Student’s t-test was used to identify the 

‘winner genes’ then followed by the complete linkage cluster analysis based on 1-Spearman’s 

correlation. Statistical analyses were performed using R or GraphPad Prism. All P values reported 

were two-sided. 
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Abstract  

Background: Mass cytometry measures 36 or more markers per cell and is an appealing platform 

for comprehensive phenotyping of cells in human tissue and tumor biopsies.  While tissue 

disaggregation and fluorescence cytometry protocols were pioneered decades ago, it is not 

known whether established protocols will be effective for mass cytometry and maintain cancer 

and stromal cell diversity.   

Methods: Tissue preparation techniques were systematically compared for gliomas and 

melanomas, patient derived xenografts of small cell lung cancer, and tonsil tissue as a control. 

Enzymes assessed included DNase, HyQTase, TrypLE, collagenase (Col) II, Col IV, Col V, and 

Col XI. Fluorescence and mass cytometry were used to track cell subset abundance following 

different enzyme combinations and treatment times. 

Results: Mechanical disaggregation paired with enzymatic dissociation by Col II, Col IV, Col V, 

or Col XI plus DNase for 1 hour produced the highest yield of viable cells per gram of tissue.  

Longer dissociation times led to increasing cell death and disproportionate loss of cell subsets.  

Key markers for establishing cell identity included CD45, CD3, CD4, CD8, CD19, CD64, HLA-

http://onlinelibrary.wiley.com/doi/10.1002/cyto.b.21481/full
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DR, CD11c, CD56, CD44, GFAP, S100B, SOX2, nestin, vimentin, cytokeratin, and CD31.  Mass 

and fluorescence cytometry identified comparable frequencies of cancer cell subsets, leukocytes, 

and endothelial cells in glioma (R = 0.97), and tonsil (R = 0.98). 

Conclusions: This investigation establishes standard procedures for preparing viable single cell 

suspensions that preserve the cellular diversity of human tissue microenvironments.   

Introduction   

In preparing single cell suspensions of healthy and malignant tissue, a common goal is to preserve 

viability while maintaining cellular diversity and preserving rare subsets. Multidimensional 

cytometry is well suited to this challenge because it can simultaneously characterize known cell 

types and reveal novel cell subsets (175, 208). Mass cytometry uses antibodies to quantify 

features of individual cells in primary tissues (218, 320) and has been applied to characterize cell 

subsets in human bone marrow, blood, and germinal center tissues as well as diverse murine 

tissues (9, 231, 314).  However, mass cytometry remains relatively untested in the context of solid 

tumors.  Fluorescence flow cytometry and fluorescence activated cell sorting (FACS) have been 

used to prospectively isolate functionally distinct cell subsets and suggest that mass cytometry 

analysis could help to further characterize solid tumors (175).  A key goal of this study was to 

evaluate the suitability of different cell preparation techniques for mass cytometry and to develop 

standard procedures and quality controls that do not require measuring light scatter.  An additional 

goal was to use the multidimensionality of mass cytometry to characterize preservation of cellular 

diversity under different solid tumor cell preparation techniques.   

In this study, mechanical and enzymatic dissociation protocols were systematically tested on 

multiple types of fresh human solid tumors and tissues to develop an efficient, reliable method for 

dissociation and single-cell analysis by mass cytometry.  Human tonsils and lymphoma tumors 

reliably dissociate with mechanical force alone and we have previously established protocols for 
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their study by fluorescence cytometry (192, 272) and mass cytometry (223).  Preparation 

techniques for tissue samples derived from intraoperative resections of gliomas (grades II-IV), 

melanomas, and patient derived xenografts (PDX) of small cell lung cancer (SCLC) were 

compared.  As a control, the same techniques were applied to human tonsillar tissue.  The 

abundance of different cell types, such as leukocytes, endothelial cells, epithelial cells, fibroblasts, 

and cancer cell subsets, was tested under these conditions.  Established protein markers for 

expected cell types in tissues tested in this study were used in fluorescence cytometry (Table S1) 

and mass cytometry (Table S2, Table S4).  The common markers were selected so that both rare 

and abundant cell types could be compared between mass and fluorescence cytometry.  The 

additional markers in the mass cytometry panel provided a more comprehensive analysis of cell 

diversity.   

Six enzymes for cell separation were selected to compare in solid tumor preparation protocols for 

mass cytometry analysis: HyQTase, TrypLE, collagenase (Col) II, Col IV, Col V, and Col XI.  

Enzyme choice was based in part on prior use in several solid tumor types and preparation of 

single cell suspensions containing cancer cell and immune subsets for FACS (519-524).  DNase 

was also tested to determine its ability to enhance live cell yield from dissociation. Dissociation 

kinetics for enzyme combinations in distinct tissue types were also characterized. Finally, specific 

enzymes and dissociation duration times were selected based on optimal viable cell yield and 

representation of expected cell populations. 

Materials and Methods 

Tissue Sample Collection – All samples were obtained with patient consent, with Vanderbilt 

institutional review board (IRB) approval, in accordance with the Declaration of Helsinki, and were 

de-identified.  Gliomas were intraoperative specimens from WHO grade II, III, or IV tumors (IRB 

#131870), collected in sterile normal saline. Melanomas were cutaneous and lymph node 
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resections (IRB #030220), collected in MEM (Corning/Mediatech, Corning, NY) with 10% FBS + 

1X Pen/Strep (GE Healthcare, Pittsburgh, PA). Small-cell lung cancer (SCLC) patient derived 

xenograft (PDX) samples were obtained as a gift from the Rudin laboratory (LX-22, (525)) and 

propagated solely as patient-derived xenografts in female athymic nude mice (HSD:Athymic 

Nude-Foxn1nu/nu) obtained from Envigo with Vanderbilt institutional animal care and use 

committee (IACUC) approval. SCLC PDX were collected in RPMI 1640 (Corning/Mediatech, 

Corning, NY) plus 10% FBS+ 1X Pen/Strep. Glioma, melanoma, and SCLC PDX samples were 

transported at room temperature without delay to the laboratory and processing began within 30 

minutes of collection from patients. Human tonsillar tissue was obtained from routine 

tonsillectomies (IRB #121328), collected in RPMI 1640 (Corning/Mediatech, Corning, NY) plus 

10% FBS+ 1X Pen/Strep, transported on ice, and processed within 4 hours of collection. 

Mechanical and Enzymatic Dissociation – Sequential dissociation steps are described in detail in 

the main text. “Coarse mincing” indicates no additional mechanical dissociation of tissues (i.e. 

tissues were left as obtained intraoperatively). “Fine mincing” indicates additional mechanical 

dissociation using scalpels. Conventional mechanical dissociation of tonsils included fine mincing 

and immediate filtration of tissue through a 70 µm cell strainer without additional enzymatic 

dissociation, as previously established (192, 223, 272). Dissociation enzymes were obtained from 

Sigma Aldrich (Darmstadt, Germany) (collagenase II, IV, V, and XI), ThermoFisher (Waltham, 

MA) (TrypLE-Express), and GE Healthcare (PA) (HyQTase). Collagenases were used at 1 

mg/mL. HyQTase and TrypLE-Express were used at 1X according to the manufacturer’s 

recommendations. DNase I (Sigma Aldrich) was used at a final concentration of 0.25 mg/mL. For 

conditions involving collagenases and no enzyme, cells were resuspended in recommended 

media for specific tissue types prior to adding indicated enzymes (gliomas, 

DMEM/F12+Glutamax, (Gibco/Life Technologies, MA) with a defined hormone and salt mix (526) 

and 50 µg/mL gentamicin; melanomas, MEM with 10% FBS + 1X Pen/Strep; Tonsils and SCLC 
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PDXs, RPMI 1640 + 10% FBS + 1X Pen/Strep. For dissociation conditions with HyQTase or 

TrypLE, tissues were dissociated in working concentrations of enzymes (with or without DNase), 

without addition of cell culture media, according to the manufacturer’s recommendations. 

Enzymatic dissociations were performed in a 37C incubator with 5% CO2, with constant rocking 

on a nutating platform mixer at 18 rpm. Cells were then strained with 70 µm and 40 µm cell 

strainers prior to further analysis. 

Quantification of cell viability – Cell suspensions obtained from different dissociation protocols 

were resuspended in corresponding cell culture media at volumes proportional to initial tissue 

weight (1 mL per 100 mg of tissue). Viable cells were quantified using Trypan Blue staining, 

normalized to the initial tissue weight, and reported as millions of live cells per gram of tissue. 

Statistical testing – Enzyme conditions were compared as groups (horizontal lines) using a 

Student’s t-test. The relationship between cell subset abundance measured by fluorescence or 

mass cytometry was compared using Pearson’s correlation R and Spearman’s rank correlation ρ 

(rho). 

Cell line and cell culture – Jurkat cells were obtained from Utpal Dave at Vanderbilt, and were 

grown in RPMI 1640 + 10% FBS + 1X Pen/Strep as recommended. MeWo cells were obtained 

from Kimberly Dahlman and Jeffery Sosman with permission of Antoni Ribas (UCLA) and were 

grown in MEM + 10% FBS + 1X Pen/Strep, as recommended. 

Flow cytometry - Cell suspensions were evenly divided for parallel phenotyping with fluorescence 

and mass cytometry according to the protocols below.  Conditions were identical between mass 

and fluorescence cytometry with the exception of an additional staining step including saponin for 

mass cytometry analyses of glioma and melanoma that include SOX2.  This type of saponin step 

has been established to have no significant impact on subsequent mass cytometry staining (436). 
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Fluorescence flow cytometry – For fluorescence cytometry, live surface staining was performed 

for surface marker detection (Supplemental Table S1). After washing with PBS and pelleting twice 

(at 200 x g for 5 min each time), cells were fixed with 1.6% paraformaldehyde (Electron 

Microscopy Services, Fort Washington, PA) for 10 min at room temperature, washed with PBS 

(HyClone Laboratories, Logan, UT), pelleted at 800 × g, and permeabilized with 100% ice-cold 

methanol (Fisher Scientific, Waltham, MA) at −20°C overnight following established protocols 

(272, 527). Cells were washed twice with cell staining media composed of PBS plus 1% BSA 

(Fisher Scientific, Waltham, MA) and pelleted at 800 x g. For each comparison, cells were stained 

in 100 µL staining media for 30 minutes at room temperature. All antibodies are listed in 

Supplemental Tables. Note that some antibodies that detect cell surface antigens (CD45-BV786, 

CD44-PE, and CD31-PE-Cy7) were used after fixation and methanol permeabilization due to 

concerns for stabilization of fluorochromes after methanol exposure. After staining, cells were 

washed twice with PBS, pelleted at 800 x g, and resuspended in PBS for analysis on a 5-laser 

LSRII (BD Biosciences, San Jose, CA) at the Vanderbilt Flow Cytometry Shared Resource. 

Mass cytometry – Solid tissue cells obtained from the same dissociation conditions as those 

analyzed by fluorescence flow cytometry were stained live for cell surface markers, fixed, 

permeabilized, and washed as for fluorescence flow cytometry above and in concordance with 

established mass cytometry protocols (320). Permeabilization with 0.02% Saponin (Millipore, 

Darmstadt, Germany) in PBS was also included before methanol permeabilization of gliomas and 

melanomas as part of an optimized multi-step protocol that included detecting SOX2, which was 

not included in the fluorescence panel. Metal-tagged antibodies were used to stain cells in 100 

µL cell staining media for 30 minutes at room temperature (Supplemental Table S4). After 

staining, cells were washed once with PBS, once with deionized water, pelleted at 800 x g, and 

resuspended in deionized water containing normalization beads (Fluidigm). Standard bead-based 

normalization was used as previously described (270). Cells were collected on a CyTOF 1.0 at 
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the Vanderbilt Flow Cytometry Shared Resource. Original data were normalized with MATLAB 

normalization software prior to further analysis using Cytobank (229) and established mass 

cytometry analysis methods (207). viSNE analysis was performed using 60,000 cCasp3-HH3+ 

cells per sample. For glioma G-LC-15, the following markers were used for viSNE analysis: CD31, 

CD64, CD45RO, S100B, CD45, PDGFRα, SOX2, CD24, CD44, CD3, GFAP, αSMA, HLA-DR, 

and CD56. For tonsil T02-23, the following markers were used for viSNE analysis: CD4, IgD, 

CD16, CD45RO, CD45RA, CD45, CD27, CD86, CD33, CD11c, CD14, CD19, CD38, CD8, CD3, 

IgM, HLA-DR, and CD56. Samples of the same tissue type dissociated with different types of 

collagenase were analyzed simultaneously by viSNE. 

Histone H3 testing – Healthy peripheral blood mononuclear cells (PBMCs) were used as controls 

in testing histone H3 as a nucleated cell marker for multiple flow cytometry platforms. PBMCs 

were stained live for detection of cell surface markers (Supplemental Table S2).  After being 

washed twice with PBS, cells were then fixed with 1.6% paraformaldehyde and permeabilized 

with 100% ice-cold methanol for intracellular staining. Stained PBMCs were then evenly divided 

and half of the cells were stained with iridium at a final concentration of 0.25 µM in PBS for 15 

minutes at room temperature. Cells were then washed once with PBS, once with deionized water, 

pelleted at 800 x g, and resuspended in deionized water containing normalization beads. Cells 

were collected as described above. 

Results 

Tissue dissociation with collagenase and DNase improved live cell yield 

A matrix of dissociation conditions was tested to identify optimal protocols for multiple solid tumor 

types and tonsil controls (Figure D.1).  The mechanical dissociation protocol (see Materials and 

Methods) was first compared to fine mincing of tonsil tissue followed by a 2-hour enzymatic 

dissociation with combinations of collagenase and DNase.  For tonsils, a combination of fine 
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mincing, collagenase, and DNase resulted in superior live cell yield per gram of tissue compared 

to conventional dissociation methods (p < 0.05). Additionally, fine mincing of tonsils did not 

adversely affect cell viability when compared to coarse mincing (left as obtained intraoperatively). 

Since freshly resected tissues and tumors frequently differ in size, fine mincing was selected as 

an initial mechanical dissociation step for all tissue types.  To determine the optimal enzymes for 

disaggregation of human gliomas, seven different enzymatic conditions were tested for their ability 

to yield live, single cells (Figure D.1A, N = 3).  Intraoperative samples of gliomas were finely 

minced and incubated with a cocktail of DNase plus one enzyme (either HyQTase, TrypLE, Col 

II, Col IV,  
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Figure D.1 - Collagenase plus DNase treatment provides better yield of live cells from three 
human tissues than no enzyme, TrypLE, HyQTase, or collagenase treatment alone.  Graphs show 
millions of viable cells per gram yielded by different tissue preparation conditions following fine mincing 
for (A) gliomas, (B) melanomas, and (C) tonsil tissue.  In addition to DNase (closed symbols), 
preparation enzymes tested included no additional enzyme (No enz), recombinant trypsin TrypLE 
(Tryp), HyQTase (HyQ), and collagenase (Col) II, IV, V, or XI.  Average live cell yield is indicated for 
each condition by the thick horizontal line. Individual tissues or tumors are represented by different 
symbols.  Representative trypan blue stained images are depicted under each condition.  Scale bars = 
100 μm.  Symbols denote not significant (n.s.), p < 0.05 (♦), or p < 0.01 (♦♦).  N indicates number of 
separate individual sample donors tested under each condition for each tissue type. 
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Col V, or Col XI) or DNase alone for 2 hours at 37C, with continuous rocking. Increased live cell 

yield per gram of tissue was seen in conditions containing collagenase and DNase as compared 

to other conditions (p < 0.01). Additionally, DNase plus collagenase improved live cell yield for 

glioma compared to collagenase alone (p < 0.01).  No significant differences were observed in 

live cell yield per gram of glioma tissue between conditions using different types of collagenases 

plus DNase. 

The same matrix of conditions was tested on intraoperative samples of human melanomas 

(Figure D.1B, N = 3). As with glioma, no significant difference in live cell yield was observed 

between different types of collagenases, and viable cell yields were highest in conditions 

containing collagenases and DNase (p < 0.01). In freshly resected tonsils (Figure D.1C, N = 4), 

collagenases with DNase gave a higher live cell yield than either DNase alone (p < 0.05) or 

TrypLE plus DNase (p < 0.01). However, collagenases with DNase did not significantly differ from 

HyQTase with DNase, and addition of DNase did not result in higher or lower live cell yield, in 

tonsil dissociation. 

Enzymatic dissociation with collagenase and DNase for 1-2 hours provided superior live cell yields 

While incubation in enzyme solutions enhanced tissue disaggregation (Figure D.1), excessive 

incubation might adversely affect cell viability.  A dissociation time course was performed on 

intraoperative glioma specimens to determine the optimal time point for highest live single cell 

yield (Figure D.2A).  Gliomas were finely minced and incubated in collagenases plus DNase for 

30 minutes, 1 hour, 2 hours, 4 hours, or 6 hours (Figure D.2A, N = 3). Live cell yield per gram of 

glioma tissue significantly decreased after 4 hours of enzymatic dissociation with Col II, Col V, or 

Col XI plus DNase compared to earlier time points (Col II and Col XI, p < 0.001; Col V, p < 0.05), 

whereas it significantly decreased after 6 hours of dissociation with Col IV plus DNase (Figure 

D.2A, p < 0.001).  



220 

 

 

Dissociation kinetics of tonsils were also characterized for time points ranging from 15 minutes to 

24 hours (Figure D.2C). Finely minced tonsils dissociated with Col II plus DNase for 1-2 hours 

gave higher live cell yield when compared to earlier time points (p < 0.05) as well as later time 

points (p < 0.001). Similarly, viable cell yield decreased significantly after 1-2 hours when tonsils 

were dissociated with either Col IV or Col XI plus DNase (IV, p < 0.05; IX, p < 0.01). Live cell yield 

from the combination of Col V and DNase also decreased after 6 hours (p < 0.01). Live cell yield 

from intraoperative melanoma specimens and SCLC patient-derived xenografts (PDXs) did not 

Figure D.2 - Collagenase and DNase treatment for 1 or 2 hours provided better overall live cell 
yield than other times. (A) Gliomas (N = 3) were finely minced and treated for varying times with 
DNase and either Col II, Col IV, Col V, or Col XI.  Yield of live single cells (x106) per gram was quantified 
from Trypan blue images after 30 minutes (’), 1 hour (h), 2h, 4h, and 6h (filled symbols). Individual 
tissues or tumors are represented by different symbols. Grey circles mark average yield and are 
connected with dashed lines to indicate dissociation kinetics. Dissociation kinetics were similarly 
assessed for (B) melanomas (N = 3), (C) tonsil tissue (N = 4, except for 10h, 16h, 24h where N = 2), 
and (D) SCLC PDX tumors (N = 3) (D). Symbols denote not significant (n.s.), p < 0.05 (♦), p < 0.01 (♦♦), 
or p < 0.001 (♦♦♦). 
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significantly decrease after 6 hours of dissociation, regardless of the type of collagenase (Figure 

D.2B and 2D).  

Testing histone H3 as a nucleated cell marker compatible with mass and fluorescence cytometry  

An anti-Histone H3 (HH3) monoclonal antibody was next tested as a potential marker of nucleated 

cells that would function equivalently in fluorescence and mass cytometry. Jurkat T leukemia cells 

gated as intact cells were 98.9% positive for HH3 in fluorescence cytometry.  Similarly, when 

Jurkat cells were gated first as HH3+, they were observed to be >99.8% intact cells when gated 

using light scatter in fluorescence cytometry.  Peripheral blood mononuclear cells (PBMCs) were 

used to further test HH3 because PBMC have well-studied cell subsets that have been extensively 

characterized by both fluorescence and mass cytometry (194, 196, 320). PBMCs from a healthy 

donor were stained with a panel of 16 mass-tagged antibodies. Frequencies of known cell subsets 

identified by biaxial gating were closely correlated in the same mass cytometry dataset gated 

using HH3 or established iridium-based gating (Pearson correlation R = 1.00, Spearman rank of 

subset abundance rho (ρ) = 1.00), supporting the use of HH3 as nucleated cell marker across 

multiple flow cytometry platforms.  

Assessment of cell subset diversity in solid tumor following collagenase and DNase treatment 

Two- to seven-dimensional fluorescence flow cytometry has been used extensively to 

characterize presence and abundance of cell subsets in patient-derived tissues. Glioma cell 

subsets consistent with those documented in prior studies were present after a 1-hour dissociation 

with DNase plus Col II using fluorescence flow cytometry (Figure D.3A, Col II). In glioma sample 

G-RT-06, 55.4% of all events were identifiable as intact nucleated cells based on HH3 staining. 

CD45+ immune cells comprised 59.7% of live intact cells, which included CD3+ T cells (26.7%) as 

well as other immune cell types (71.8%). Presence of immune cell subsets was confirmed with 

immunohistochemistry (IHC) staining of formalin-fixed paraffin-embedded (FFPE) sections of the 
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same sample. Additionally, CD31+ endothelial cells were detected (5.1% of non-immune cells), 

as were cell subsets that differentially expressed CD56 (NCAM) and GFAP. The abundance of 

nucleated cells and other known cell subsets was similar between different collagenase types.  

Figure D.3 – Frequency of cell types in glioma, and tonsil tissue quantified by fluorescence and 
mass cytometry.  Biaxial plots show gating for established cell types in human tumors and tissues 
prepared using Col II plus DNase for 1 hour. Nucleated cells (HH3+) were identified. Immune cells 
(CD45+), T cells (CD45+ CD3+), APCs (CD45+ CD3- HLA-DR+), endothelial cells (CD31+ CD45-), and 
non-immune non-endothelial cells (CD45- CD31-) were also found. (A) In fluorescence cytometry 
analysis of glioma from an individual patient (G-RT-06), CD56 (NCAM) and GFAP expression are shown 
for CD45- CD31- cells. (B) A similar gating scheme was applied to mass cytometry data from G-RT-06.  
In tonsil tissue from donor T02-23, CD44 and HLA-DR are shown for CD45+ CD3- HLA-DR+ cells, for 
both fluorescence (C) and mass cytometry analysis (D). Frequency of terminal populations (dashed 
gates) was compared between fluorescence and mass cytometry in Table 1.   
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To determine if cells derived from dissociations using collagenase and DNase were suitable for 

mass cytometry analysis, cells obtained from intraoperative glioma resections (G-RT-06) were 

stained with 16 isotope-labelled antibodies (Table S4). Histone H3 was used to identify intact 

nucleated cells. A biaxial analysis sequence similar to that used for fluorescence flow cytometry 

analysis was used for comparison of subset abundance identified by these two cytometry 

platforms (Figure D.3B). A strong correlation of cell subset abundance between the two methods 

was observed and quantified (Table 1; Pearson’s R = 0.97, Spearman’s rank ρ = 0.93). Similar 

comparisons were performed in tonsils (Figure D.3D). Strong correlations of subset abundance 

between the two different cytometry platforms was also observed in tonsil (Table 1; Pearson’s R 

= 0.98, Spearman’s rank ρ = 0.90). 

Subsets of immune cells in tonsils were also identified by fluorescence flow cytometry, including 

CD3+ T cells, CD44+ antigen-presenting cells (APCs), CD44- APCs, and additional immune and 

non-immune cell types, as expected (Figure D.3C, Col II). Abundance of tonsil cell subsets was 

similar between dissociations using different collagenase types. Single cells obtained from 

resected melanomas (MP-04) and a melanoma cell line, MeWo, were analyzed by fluorescence 

flow cytometry and were observed to have intrinsic auto-fluorescence on some channels, whereas 

glioma and tonsil samples studied here showed no auto-fluorescence.  Mass cytometry was next 

used to study melanoma tumors. CD45+ immune subsets, including CD45+HLA-DR+ antigen-

presenting cells, CD45+CD3+ T cells (CD8+ and CD8-, and CD45RO+ memory and CD45RO- non-

memory), as well as CD31+ endothelial cells were identified in melanoma. Additionally, among 

the non-immune, non-endothelial cells, other cell subsets were identifiable by nestin, SOX2, 

CD44, HLA-ABC, vimentin, and cytokeratin.  

To characterize the effects of different types of collagenase on the presence of cell subsets, mass 

cytometry analysis of cells derived from glioma dissociation at one hour with DNase plus either 

Col II, Col IV, Col V, or Col XI was performed (Figure D.4). This time point was selected based 
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on its highest live cell yield across multiple tissue types, shown above. viSNE analysis (231) was 

used to compare cell subsets in the different dissociation conditions. Known cell subsets in 

gliomas were present in all conditions, including CD45+ immune cells (CD3+ T cells, and CD64+ 

microglia), CD45-CD31+ endothelial cells, GFAP+ glial cells, S100B+ astrocyte-like cells, and 

SOX2+ stem-like cells. Established cell subsets were also observed in tonsil specimens 

dissociated for one hour in all types of collagenase. As expected, the majority of cells were CD45+ 

immune cells. Additionally, known immune subsets, including CD3+CD4+ helper T cells, 

CD3+CD8+ cytotoxic T cells, CD19+IgD+ naïve B cells, and CD19+CD27+ memory B cells, were 

identified. These findings suggest that both mass cytometry and fluorescence cytometry identify 

key cell subsets in glioma and tonsil dissociated with collagenase plus DNase.   

Longer dissociation times led to disproportionate cell death and loss of cellular diversity 

Figure D.4 – Treatment of a glioma with different collagenases yielded comparable cell subset 
frequencies. viSNE plots show non-apoptotic nucleated cells (cCasp3-HH3+) from glioma G-LC-15 
obtained following 1-hour treatment with DNase plus either Col II, VI, V, or XI. Heat plots indicate cell 
density (first column) or expression of 8 proteins indicating cell type (CD45, CD3, CD64, CD31, GFAP, 
CD56, S100B, and SOX2). viSNE mapping was run together. Color-coded inserts next to the complete 
map highlight cell subsets (grey = CD45+CD3+ T cell, 0.9 ± 0.1%; red = CD45+CD64+ microglia, 3.9 ± 
1.0%; green = CD45-CD31+ endothelial cells, 0.7 ± 0.2%; fuchsia = SOX2+ stem-like cells, 1.2 ± 0.5%).  
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To determine if the abundance of cell subsets changed over time with enzymatic dissociation, 

time course dissociations of glioma sample, G-LC-15 (Figure D.5), and tonsil sample, T02-23  , 

with DNase plus Col II were performed. Cell subsets were identified using sequential biaxial 

analysis and given the indicated labels following expert review. Apoptotic cells, defined by high 

cCasp3 signal, were excluded from subsequent cell subset quantification (Figure D.5A). Within 

the population of HH3+ nucleated cells, marker analysis identified CD45+ immune cells and CD31+ 

endothelial cells. Known subsets of immune cells were present within the CD45+ population, 

including microglia (HLA-DR+CD64+), memory T cells (CD3+CD45RO+), and non-memory T cells 

(CD3+CD45RO-) (Figure D.5B). Within the CD45-CD31- population, pericytes (αSMA+) and 

Figure D.5 – Enzymatic treatment times longer than one hour differentially impact glioma tumor 
cell subsets. Biaxial plots and bar graphs quantify cell subsets measured in mass cytometry analysis 
of glioma G-LC-15 after varying treatment times with collagenase II and DNase.  (A) Gating for apoptotic 
cells (cCasp3+) and live immune cells (cCasp3-CD45+), endothelial cells (cCasp3-CD31+), and non-
immune, non-endothelial cells (cCasp3-CD45-CD31-). (B) Subsets of glioma tumor-infiltrating immune 
cells were identified, including microglia (HLA-DR+CD64+), CD45RO+ and CD45RO- subsets of CD3+ T 
cells, and other immune cells. (C) Pericytes (CD45-CD31-αSMA+), ependymal cells (CD45-CD31-

CD24+), SOX2+ stem-like cells (CD45-CD31-SOX2+), GFAP+ cells (CD45-CD31-GFAP+), and astrocyte-
like cells (CD45-CD31-S100B+) were quantified as subsets of G-LC-15. (D) Gating for cell types as in 
(A-C) was applied to mass cytometry analysis of cells from G-LC-15 treated with collagenase II plus 
DNase for 1, 2, 4, 6, 10, 16, or 24 hours. (E) Percentage of apoptotic cells as in (A) was measured for 
each dissociation time, as in (D). 
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ependymal cells (CD24+) were seen, as well as rare SOX2+ stem-like cells, GFAP+ glial cells, 

PDGFRα+ cells, and S100B+ astrocyte-like cells (Figure D.5C). Quantification of these cell 

subsets was performed in samples obtained from different dissociation durations to characterize 

maintenance and enrichment of cell subsets over time (Figure D.5D). Among immune cells, a 

decrease in microglia (after 1 hour) and memory T cells (after 4 hours) was noted, whereas the 

proportion of non-memory T cells appeared to remain constant over the full range of times tested. 

SOX2+ stem-like cells were most abundant after 1 hour of dissociation and decreased thereafter. 

Even though the proportion of SOX2+ stem-like cells increased at 24 hours after dissociation, the 

overall decrease in viable cells after 4-6 hours of glioma dissociation (Figure D.2A) suggested an 

overall loss in total viable stem-like cells at later time points. Additionally, the abundance of GFAP+ 

glial-like cells (known to be present in most gliomas) remained constant during the initial 10 hours 

of dissociation and showed a decrease after 16 hours. This suggested that longer dissociation 

depletes key cell subsets in glioma. Most of the nucleated, non-apoptotic cells that remained after 

24 hours of dissociation lacked expression of the key cell identity markers used in this study. 

Moreover, the abundance of cCasp3+ apoptotic events also increased over time (Figure D.5E). 

A similar time course strategy was applied to tonsil specimen dissociation. A decrease in 

the abundance of most immune cell subsets was observed at all time points greater than 1 hour 

of dissociation with Col II plus DNase. This decrease affected all T cell subsets, plasma 

cells/blasts, germinal center B cells, class-switched memory B cells, and unswitched memory B 

cells. Notably, abundance of naïve B cells remained constant during the initial 6 hours of 

dissociation and only decreased after 10 hours. CD27-IgD- B cells increased in abundance at time 

points extending to 6 hours, followed by a decrease at 10 hours. Dendritic cells were the only 

immune cell subsets that continued to increase in abundance at 24 hours of dissociation. As 

expected, longer dissociation times likewise led to an increase in apoptotic cells.  
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Discussion 

A common protocol of collagenase II plus DNase for 1 hour was identified as effective for 

preparing viable and mass cytometry compatible single cell suspensions of all tested human solid 

tumors and healthy tissues. Multiple types and combinations of enzymes and dissociation kinetics 

were compared in freshly resected patient-derived tissues and patient-derived xenografts.  

Unexpectedly, collagenase also resulted in greater viable cell yield from tonsils when compared 

to the conventional dissociation method (Figure D.1), indicating that the protocol for preparation 

of tonsil and lymphoma tumors could be further refined.  DNase clearly improved live cell yield 

from gliomas and melanomas and is strongly recommended for tissues where there may be 

ongoing cell death. Even though DNase was not observed to improve tonsil dissociation, DNase 

also did not adversely affect tonsil cell viability. Live cell yield from glioma dissociation began to 

decrease after 4-6 hours. However, live cell yields from melanoma and SCLC PDX were constant 

throughout the dissociation duration tested (6 hours) for all types of collagenase. In contrast, live 

cell yield from tonsils was maximal during the initial 2 hours of dissociation, except for collagenase 

V, which significantly decreased only after 6 hours.   

Critically, dissociation of tissue using combined collagenase and DNase preserved cellular 

diversity, as seen by mass cytometry and standard fluorescence flow cytometry (Figure D.3 and 

Figure D.4). At one hour after dissociation, known cell subsets were present as expected in each 

of the tested tissue types. These included immune cells in tonsil, infiltrating immune cells in glioma 

and melanoma, and tissue-specific cell subsets, such as cancer cell subsets, endothelial cells, 

glial cells, pericytes, and stem-like cells in gliomas. A difference in abundance of T cells observed 

between fluorescence and mass cytometry was determined to be due to use of different anti-CD3 

antibody clones, as has been previously reported (196, 199).  While immune cells and GFAP+ 

cells in glioma were confirmed with IHC stains and observed to be in relatively close agreement 

between IHC and flow cytometry, small tissue sections and sections that do not sample all tumor 
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regions may over- or under-represent cell subsets or overlook rare cells. The quantitative analysis 

of a large number of whole cells by multidimensional flow cytometry (105 to 107) provides a strong 

complement to the location information provided by imaging cytometry (454).  

Longer dissociation times led to increased cell death and disproportionate depletion of cell 

subsets in both gliomas and healthy tonsil.  Additionally, the abundance of glial/astrocyte-like 

cells, as well as rare stem-like cells in glioma, decreased over time. Even though the proportions 

of some cell subsets increased at later time points (endothelial cells, pericytes, SOX2+ stem-like 

cells in gliomas, and dendritic cells and CD27-IgD- B cells in tonsils), the significant increase in 

cell death over a long period of dissociation would result in an overall decrease in total yield of 

those cell types. Comparison of the results from gliomas, melanomas, SCLC xenografts, and 

tonsil tissue indicates that different tissues may be sensitive to prolonged enzymatic digestion. 

Dissociation conditions should be evaluated closely and carefully matched to tissue type and 

study goals. However, based on the results here, no more than 1 hour of dissociation is 

recommended unless the protocol is being optimized for a specific purpose. In future single-cell-

level studies of other complex solid tissues, it will be critical to identify conditions that efficiently 

generate single-cell suspensions while preserving rare subpopulations of interest. Additionally, 

cell viability stains such as Cisplatin can be included in future mass cytometry experiments that 

aim to test cell functions like signaling, proliferation, viability, or cytokine production (230). 
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