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CHAPTER I 

BACKGROUND AND RESEARCH GOALS 

Introduction 

 B lymphocytes serve an obvious and important function in the human 

immune system, producing antibodies and helping stave off infectious disease. B 

lymphocytes also drive the immune reaction by presenting antigen to cognate T 

cells and producing inflammatory cytokines. However, when a B cell is 

autoreactive, these functions can be turned against self and result in autoimmune 

disease. Rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and 

multiple sclerosis (MS) are just a few examples of systemic autoimmune 

diseases in which damaging autoantibody may cause havoc by targeting self-

molecules and activating the innate immune system (1). Autoreactive B cells are 

also uniquely capable of fueling T cell-driven organ specific autoimmunity, by 

binding autoantigens through specific membrane-bound antibody called the B 

cell receptor (BCR), processing them, and presenting to autoreactive T cells. In 

type 1 diabetes (T1D), T lymphocytes are responsible for the actual destruction 

of insulin-producing beta cells. However, mouse models have shown that B cells 

are necessary to present antigen to T cells and initiate disease (2-5). These 

autoimmune diseases result when there is a failure of immune tolerance, either 

because of leaky central tolerance or a loss of peripheral tolerance mechanisms 

such as anergy (6). 

 B cell tolerance, both central and peripheral, is governed by B cell 

signaling. One protein of particular interest is Bruton’s tyrosine kinase (BTK), as 
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mouse models have shown that BTK plays a unique role in the development of 

autoreactive B cells (7-9). Understanding the ways in which BCR signaling 

mediates tolerance, and how it governs the development and actions of 

autoreactive B lymphocytes, is crucial to inform the ways in which we treat 

autoimmune disease. The goal of this work is to further understanding of BTK’s 

role in development, survival, and function of autoreactive B lymphocytes.  

 

Autoreactive B cell development: An overview 

 

Generation of the B cell receptor  

In mammals, B cells develop in the fetal liver (10), fetal bone marrow (11), 

and adult bone marrow (12, 13). B cells are defined by several immunological 

markers, but most importantly each single B cell expresses a single specific 

BCR. A simplified model of B cell development in the bone marrow is shown in 

Figure 1.1. The discrete steps of B cell differentiation correlate with the formation 

of the BCR, which is generated through somatic rearrangement of the variable 

(V), diversity (D) and joining (J) gene segments, a process discovered by 

Susumu Tonegawa and Nobumichi Hozumi (14). The B cell lineage forms from 

hematopoietic stem cells, which are committed to becoming B cells when 

common lymphoid progenitors transition into pre-pro-B cells (15). Pre-pro B cells 

no longer retain the ability of multilineage differentiation, and instead upregulate 

B cell specific genes and become pro-B cells. During these stages, the heavy 

chain of the BCR (IgH) is rearranged. Two recombination activating genes  
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Figure 1.1: The majority of B cells develop in the bone marrow. B 
lymphocytes are committed to the B cell lineage upon transition to pre-pro B 
cells. In the pro-B cell stage, RAG1/2 is expressed and the heavy chain of the 
BCR rearranged. If successful, IgH pairs with the surrogate light chain. This pre-
BCR is expressed on the membrane and the B cell transitions into a large pre-B 
cell, downregulates RAG1/2, and undergoes proliferation. Large pre-B cells 
transition to the small pre-B cell stage, upregulate RAG1/2 and rearrange the 
light chain of the BCR. Finally, if the rearrangement of IgL is productive, the B 
cell expresses IgM and the B cell reaches the immature stage.   
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(RAGs), RAG1 and RAG2, are largely responsible for Ig recombination, and the 

loss of either of these proteins results in a block in both B and T cell development 

(16, 17). If recombination is successful, IgH is paired with the surrogate light 

chain (SLC), forming the pre-BCR. This serves as a signal to reduce RAG1/2 

expression and for chromatin remodeling to reduce accessibility of the IgH alleles 

(18-20). Pro-B cells then become large pre-B cells, proliferate, and transition into 

small pre-B cells that re-express RAG1/2. This initiates rearrangement of the 

BCR light chain (IgL). The IgH and IgL components form IgM and the pre-B cell 

transitions into an immature B cell (15, 21-23). The formation of a specific 

receptor is a highly regulated event that allows B cells to function in the adaptive 

immune system, and V(D)J rearrangement allows the formation of many 

receptors from a limited set of gene segments. However, the recombination itself 

is random and therefore, V(D)J rearrangement is a double-edged sword: it 

generates  autoreactive receptors (24).     

 

 Development and escape to the periphery 

 It is estimated that 70-80% of developing B cells in the bone marrow are 

autoreactive (25). Before these autoreactive B cells reach maturity, most are 

successfully removed through negative selection. Negative selection occurs 

when a B cell binds autoantigen during development, and is removed from the B 

cell repertoire by the processes of receptor editing or clonal deletion. However, 

some signal through the BCR is necessary, in a process termed “positive 

selection.” This is antigen-independent, low-level signaling that indicates that the 
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B cell has successfully rearranged its BCR. Therefore, the level of signaling is 

integral to B cell development, and a B cell must both successfully rearrange its 

IgH and IgL chains and survive developmental checkpoints that ensure that it is 

not autoreactive. There is some evidence that negative selection begins as early 

as at the pre-BCR stage. Keenan et al found that mice deficient in the surrogate 

light chain (SLC) exhibited more B cells with autoreactive IgH, leading to 

increased anti-nuclear antibodies in serum. This was attributed to the escape of 

pre-B cells from negative selection (26). However, there is also evidence that the 

pre-BCR itself is autoreactive, and this autoreactivity signals the successful 

rearrangement of IgH that allows a B cell to continue to mature (27-29). While the 

evidence of negative selection at the pre-BCR stage is conflicting, it is very clear 

that most negative selection occurs at the immature B cell stage. At this point, 

immature B cells are exposed to autoantigen in the microenvironment. They still 

maintain expression of RAG1/2, and if their receptor is autoreactive undergo a 

process called receptor editing. First, editing occurs at the Igκ locus, forming a 

new IgL, which pairs with IgH and forms a BCR with a new specificity. If 

recombination is unsuccessful or the B cell remains autoreactive, the Igκ locus is 

inverted or deleted and the Igλ locus is recombined (30-34). Receptor editing is 

an effective mechanism of central tolerance induction. However, even immature 

B cells that undergo receptor editing may remain autoreactive. If an autoreactive 

immature B cell fails to effectively rearrange its receptor and remains 

autoreactive, clonal deletion initiates by the mechanism of programmed cell 

death (35-37). Signaling through the BCR governs the process of central 
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tolerance. If the BCR is not successfully recombined, there is no signal and the B 

cell dies. However, if the cell is strongly autoreactive, it will be negatively 

selected. These processes of negative selection are highly effective, but 

autoreactive B cells still escape to the periphery, and there is evidence that this 

process is leakier in genetic backgrounds that favor autoimmune disease (38-

41).  

 

Mature autoreactive B cells and peripheral tolerance 

 After successful generation of the BCR, immature B cells egress from the 

bone marrow and travel to the periphery. Splenic B cell subsets, and their 

markers, are depicted in Figure 1.2. In the spleen, when B cells first arrive they 

are termed “transitional 1” (T1). They then become transitional 2 (T2). Both T1 

and T2 B cells express high levels of IgM, but T2 B cells upregulate IgD, 

complement receptor 2 (designated CD21) and the Fc epsilon RII (FCεRII, 

designated CD23), while T1 B cells remain negative for these markers (42-45). 

These two transitional subsets are the precursors to marginal zone (MZ) and 

follicular (FO) B cells, the fully mature B cell subsets. MZ B cells are named for 

their residence in the outer white pulp of the spleen, between the red pulp and 

the marginal sinus. They do not circulate, swiftly respond to blood borne 

pathogens, and express high levels of CD21, the complement receptor 2 (46). 

FO B cells form the bulk of mature naïve B cells. They reside in the spleen and 

lymph nodes in the B cell follicle, which is adjacent to the T cell zone. This allows 

activated T cells and FO B cells to interact during the immune reaction. In  
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Figure 1.2: B cell maturation in the spleen. After development and undergoing 
central tolerance mechanisms in the bone marrow, B cells egress to the spleen. 
There, transitional 1 and 2 B cells are the precursors to the mature B cell 
subsets. T2 B cells transition to follicular B cells, or to pre-marginal zone B cells 
that in turn become marginal zone B cells. Follicular B cells reside in the follicles 
in the spleen and lymph nodes, and may recirculate. Marginal zone B cells reside 
in the outer white pulp of the spleen, where they can quickly encounter blood-
borne antigen. Markers listed are for determination of B cell subsets by flow 
cytometry. 
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addition, FO B cells circulate through peripheral blood and the bone marrow (47). 

The specificity of the B cell, and thus the strength of signal through the BCR, is 

thought to determine the subset of the cell (48).  

When autoreactive B cells escape central tolerance in the bone marrow, to 

avoid autoimmunity they must be controlled by peripheral tolerance. The primary 

mechanism of peripheral tolerance is anergy, in which a B cell is exposed to 

antigen but is functionally unresponsive. In this state, the B lymphocyte fails to 

flux calcium, proliferate, or produce antibody in response to antigen. This was 

first studied in mice treated in utero or as neonates with fluorescein conjugated to 

human γ globulin. High doses resulted in a reduction in the number of 

fluorescein-binding B cells, but lower doses showed no reduction in cell number 

but the B cells that remained exhibited tolerance to the antigen. The autho rs 

referred to this induced tolerance as “anergy” (49). Anergy has also been studied 

extensively in the context of transgenic mice, in which already recombined IgH 

and/or IgL sequences are provided, resulting in a fixed BCR-specificity (50-53).  

One such study used mice expressing a transgenic BCR that recognized hen 

egg lysozyme (HEL). These “MD4” animals were bred to “ML5” animals, which 

express soluble HEL. In the MD4xML5 offspring, B cells exhibited normal 

development until they reached the spleen, where they are low in number. The 

surviving splenic anti-HEL B cells arrest and acquire an anergic phenotype. Anti-

HEL B cells from MD4xML5 mice failed to proliferate or produce antibody in 

response to HEL. B cells from these mice also exhibited poor responses to both 

T cell help and the innate stimulus of LPS. Finally, they found the anergy 
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phenotype was B cell-intrinsic, as there was no evidence of suppression from 

other splenic cells (50, 54). In contrast, if MD4 are bred to animals expressing 

membrane-bound HEL, B cell depletion is much more severe, resulting from a 

developmental block between immature and transitional B cells (55). The 

MD4xML5 model is only one method of studying anergic B cells. In the anti-

insulin transgenic model, which allows study of a physiologic autoantigen, B cells 

are anergic but reach the FO stage and also exhibit large marginal zones (51, 

53). This difference in B cell development may be due to the differing affinities of 

the autoreactive BCR for its antigen. ML5 transgenic B cells have an affinity for 

HEL of approximately 2 x 10-9 M, whereas anti-insulin B cells bind autologous 

rodent insulin at 1 x 10-7 M (50, 53, 56). This difference may allow anti-insulin B 

cells to reach mature subsets, while anti-HEL B cells do not. Additionally, avidity 

must play a role, as is shown by the fact that membrane-bound antigen induces 

clonal deletion (central tolerance) in the anti-HEL anergy model while soluble 

antigen induces anergy (peripheral tolerance). Low affinity or avidity for 

autoantigen is more likely to induce receptor editing or anergy, while high affinity 

or avidity favors deletion (57, 58). Throughout B cell development, the level of 

signaling through the BCR regulates autoreactive B cell survival and function. 

 

Failure of peripheral tolerance leads to autoimmune disease  

 If an autoreactive B cell escapes central tolerance, it will hopefully be 

controlled by peripheral tolerance. When peripheral tolerance fails, autoimmunity 

can become autoimmune disease. In some cases, autoreactive B cells can drive 
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disease even if they retain an anergic phenotype. This is accomplished through 

antigen presentation to cognate autoreactive T cells. In the non-obese diabetic 

(NOD) mouse model of T1D, B cells drive disease through precisely this 

mechanism (3-5). Anti-insulin transgenic B cells have been used to study antigen 

presentation in this model. Even though insulin-specific B cells remain anergic, 

and do not proliferate or produce antibody to insulin,  they remain able to 

efficiently present antigen to and activate cognate T cells (51). Anergy is not a 

requirement for autoreactive B cells to cause damage through antigen 

presentation. Antigen presentation by autoreactive B cells is also required to 

drive certain murine models of experimental autoimmune encephalomyelitis 

(EAE), a model for human MS, though it is not known if these autoreactive B 

cells are also anergic (59-61). Additionally, B cells that could not secrete antibody 

could still present antigen to T cells and drive disease in a transgenic model of 

lupus (62).     

 While in some cases autoreactive B cells maintain anergy and yet still 

present autoantigen to autoreactive T cells, in other cases tolerance is broken 

and autoreactive B cells begin to proliferate and produce antibody. In some 

cases, this loss of tolerance may be due to signaling through various TLRs (63, 

64) or perhaps through cognate interactions with T cells (65). After loss of 

tolerance, B cells may form germinal centers and there undergo affinity 

maturation and isotype switching. In non-autoreactive B cells, these functions are 

incredibly important to form highly-specific, effective immune responses. Affinity 

maturation occurs through the process of somatic hypermutation (SHM). In the 
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dark zone of the germinal center, B cells proliferate and insert mutations into the 

antibody variable region loci, leading to changes in affinity. Upon transit to the 

light zone, only the high affinity receptors are positively selected. B cells continue 

to cycle between the dark and light zones and undergo SHM, resulting in high 

affinity antibodies that are most effective against pathogens (66). Of course, 

when tolerance is broken and this process occurs in autoimmune disease, it can 

result in higher affinity antibodies to self. SHM results in higher affinity B cell 

clones to dsDNA in the MRL/lpr murine lupus model (67) and higher affinity anti-

peripherin B cells in the NOD model of T1D (68). There is also evidence of 

affinity maturation in human studies of patients with RA (69), MS (70-72), 

Sjogren’s syndrome (73, 74) and T1D (75).  

 Isotype switching is a second crucial process of B cell response to 

antigen. Naïve B cells express IgM and IgD concurrently. During the course of an 

immune response, B cells can switch the constant regions of their heavy chains, 

resulting in IgG+, IgA+, or IgE+ B cells. Which isotypes are formed depends on the 

nature and the route of the stimulating antigen (76). Isotype switching in 

autoimmunity drives disease by enabling activation of innate immune functions 

through FcγR signaling or the recruitment of complement. In RA, a diverse 

antibody repertoire is associated with increased disease severity. 

Undifferentiated arthritis patients with autoantibody responses consisting of IgM, 

IgG1, IgG3 and IgA anti-cyclic citrullinated peptide (anti-CCP) antibody are more 

likely to progress to RA than patients who do not (77). Diverse antibodies also 

predict radiographic damage risk and resistance to treatment with biologics (78-
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80). The importance of class-switched antibody to autoimmune disease is also 

clear in SLE, in which autoantibodies class switch to IgG and undergo SHM in 

order to mediate disease (81). Though central tolerance does effectively 

decrease autoreactive B cell specificities, and peripheral tolerance controls 

certain B cells that escape, when these mechanisms fail autoimmunity results.  

 

Endogenous autoreactive B cell subsets 

 Autoreactive B cells occur in normal mouse and human B cell repertoires. 

Examples of murine autoreactive endogenous B cells are listed in Figure 1.3. In 

mice, a possible population of endogenous anergic B cells was first described by 

Allman et al. Much like T2 B cells, the identified population was positive for the 

immaturity marker CD93 and for CD23, but exhibited low levels of surface IgM 

(43). First termed T3 B cells because of this phenotype, the field has shifted 

towards the designation of “anergic population 1” (An1), due to the fact that the 

cells exhibited classical hallmarks of anergy, such as functional silencing and low 

expression of IgM. An1 cells are enriched for autoreactive specificities, fail to 

mount immune responses, and have a short half-life compared to non-

autoreactive B cells (82, 83). A similar subset is evident in humans, and is 

increased in autoimmune disease (41, 84, 85).    

 A second autoreactive-prone, endogenous B cell subset further 

complicates the picture of autoreactive B cells. B cells that have thus far been 

discussed are, specifically, termed “B2” B cells. Another subset of B cells, B1 

cells, were first discovered in 1983 as a small subset of CD5+ B cells in the  
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Figure 1.3: Endogenous autoreactive B cell subsets in the mouse. 
Autoreactive-prone B cell subsets include the anergic population 1 (An1) that 
have low IgM expression and do not proliferate or produce antibody in response 
to stimulus. B1a and B1b cells are innate-like, autoreactive-prone B cells. Listed 
are the cell surface phenotype and sites of development for these autoreactive B 
cell populations.  
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spleen, and they were thought to be associated with autoimmunity (86). It is now 

known that two subsets of B1s exist, those that are CD5+ and those that are 

CD5-. CD5+ B1 cells are designated B1a, while CD5- B cells are designated B1b. 

B1 and B2 cells can develop from either fetal or adult tissues, but B1 cells 

develop primarily from the fetal tissues and bone marrow has preferential 

potential for development of B2 cells  (87). B1s express a limited BCR repertoire 

that is highly enriched for polyreactive receptors, meaning they may have a low 

level affinity for multiple antigens (88-90). They exhibit slow turnover and are self-

renewing (91). Most importantly, their polyreactive specificities allow them to 

recognize both pathogens and autoantigen (92). However, B1 cell may also have 

more specific binding, and interestingly, autoantibody-producing B1 cells may be 

positively selected during development. Wild-type mice are known to develop B1 

cells that bind to the autoantigen Thy-1. However, in mice lacking the Thy-1 

antigen (CD90), neither anti-Thy1 specific B1 cells nor antibody developed (93). 

Despite, or even because of, their autoreactivity, B1s serve important functions in 

the immune system. It is estimated that 80% of serum IgM is B1 derived (94). 

This IgM, called natural antibody, is a polyreactive IgM pool secreted by B1s in 

the spleen and the bone marrow (95, 96). The autoreactivity of natural IgM 

actually performs helpful functions, such as binding self-antigen produced by cell 

death and assisting in its clearance (97, 98). It also may enforce tolerance, and is 

known to be protective in mouse models of atherosclerosis (99-103). The 

polyreactive nature of natural IgM also serves as a barrier against pathogen 

replication before the adaptive immune response (92, 104-108) and enhances B2 
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cell-dependent IgG responses (104, 109). B1 cells can also rapidly respond to 

tissue injury and form a vital part of the immune response to polysaccharide 

antigens (105, 110-113).  Finally, B1s may also contribute to immunity through 

production of IL-10, a cytokine that is generally accepted as anti-inflammatory 

(114, 115). However,IL-10 may not always be a tolerogenic cytokine, as blocking 

IL-10 was protective in a mouse model of SLE and has been shown to drive 

autoantibody production in B cells from human SLE patients (116, 117). A CD5+ 

B cell subset has also been reported in humans, which also produces 

polyreactive IgM (118-121). However, it is clear that CD5 alone is not sufficient to 

identify human B cells, as it can be upregulated during activation (122-125). In 

one report, CD20, CD27, and CD43 expression has identified another 

polyreactive IgM-producing B cells, containing both CD5+ and CD5- subsets, in 

umbilical cord and adult peripheral blood (126-128). This poly-reactive, innate-

like B cell subset is conserved in mice and humans, and serves important 

immune functions. It shows that some autoreactivity may actually be conserved 

in B cells for a reason, so that B1 cells can develop and perform their necessary 

functions. B1 cell development is governed by BCR signal strength, much like 

other autoreactive B cell functions (129, 130). Yet again, we find that B cell 

signaling contributes to development and function. Of particular interest, for 

several reasons, is the signaling protein Bruton’s tyrosine kinase (BTK).  
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Bruton’s tyrosine kinase: A multi-functional protein of the immune system  

 

BTK in BCR signaling 

BTK is a member of the TEC family of non-receptor tyrosine kinases. It 

consists of five domains, made up of 659 amino acids (131). BTK functions in 

antigen-specific BCR signaling, as well as in signaling by CD40, various Toll-like 

receptors (TLRs), the Fcε receptor (FcεR) and the Fcγ receptor (FcγR) (132-

139). The most profound effects of BTK loss are exhibited in the B cell 

compartment, and the most studied role of BTK is its role in BCR signaling (140). 

The mature BCR consists of membrane-bound antibody, formed by V(D)J 

rearrangement, and the Igα/Igβ heterodimers that form the cytosolic signaling 

component. Each B cell expresses 2 X 105 identical BCRs. Antigen engagement 

by these BCRs instigates a signaling cascade resulting in B cell activation, which 

is summarized in Figure 1.4. When a naïve B cell encounters its antigen, 

immunoreceptor tyrosine-based activation motifs (ITAMs) on Igα and Igβ are 

phosphorylated by the SRC-family kinase LYN (141). Another SRC-family 

kinase, spleen tyrosine kinase (SYK), docks to the dually-phosphorylated ITAMs 

and activates through autophosphorylation (142). Concurrently, LYN 

phosphorylates ITAMs on CD19, a BCR coreceptor, enabling the binding and 

activation of phosphoinositide-3-kinase (PI3K) (143). PI3K in turn generates 

phosphatidylinositol 3,4,5-triphosphate (PIP3) from phosphatidylinositol 4,5-

bisphosphate (PIP2). PIP3 is a signaling mediator that recruits BTK to the 

membrane by the pleckstrin homology (PH) domain. At BTK’s N-terminus, the 
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PH domain binds to PIP3, localizing BTK from the cytoplasm to the cell 

membrane. This domain is critically important to BTK’s function. The xid mouse 

model, once known as the CBA/N, lacks the PH domain and exhibits a 

phenotype that is identical to the homozygous Btk knockout, which lacks the 

entire BTK protein (132, 140, 144-147).  Recruitment of BTK to the cell 

membrane allows docking through its SRC-homology 2 (SH2) domain to 

phosphorylated tyrosines on the adaptor protein B cell linker (BLNK), which in 

turn allows phosphorylation of Y551 on BTK by LYN and SYK (148-150). The 

SH2 domain of BTK allows its docking to BLNK; additionally, other proteins can 

dock to BTK through the SRC-homology 3 (SH3) domain. The SH3 domain 

enables BTK to function as an adaptor in addition to its function as a kinase (148, 

151-154). One function this adaptor allows is recruitment of phosphatidylinositol 

4-phosphate 4-kinase (PIP5K), which functions as a feedforward mechanism to 

facilitate BTK’s own activation (154). Finally, at the C-terminal domain of BTK is 

the kinase domain, which is responsible for the phosphorylation and activation of 

phospholipase-C-gamma-2 (PLCγ2) (155-157). PLCγ2 cleaves PIP2 into inositol 

1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (131, 158).  IP3 initiates calcium 

flux when it binds to its receptor on the endoplasmic reticulum (ER), initiating a 

cascade that results in downstream activation of the transcription factor nuclear 

factor of activated T cells (NFAT). The production of DAG activates protein 

kinase C β (PKCβ) and results in the eventual activation of nuclear factor kappa 

B (NFκB) and various mitogen-activated protein kinase (MAPK) pathways (134, 

135, 159, 160).    
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Figure 1.4: B cell receptor signaling and negative regulation. Antigen 
engagement of the BCR results in a phosphorylation cascade that activates the B 
lymphocyte. The receptor tyrosine kinase LYN phosphorylates Igαβ, CD19, and 
SYK. The phosphorylation of CD19 results in generation of PIP3, which in turn 
recruits BTK to the membrane. BTK can be phosphorylated by LYN or SYK, and 
its activation allows it to in turn phosphorylate and activate PLCγ2. PLCγ2 
generates the second messengers IP3 and DAG, resulting in calcium flux, 
activation of PKβ, and the eventual activation of transcription factors. This 
signaling cascade is negatively regulated by the phosphatases shown by red 
circles. SHP-1 is a phosphatase recruited to CD22, which is able to 
dephosphorylate tyrosines on Igα and BTK. SHIP-1 and PTEN both inhibit the 
generation of PIP3, therefore inhibiting the recruitment of BTK to the plasma 
membrane.  
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Negative regulation of BTK 

 BTK activation in B cells is regulated by various phosphatases. The 

localization of BTK at the plasma membrane can be inhibited by the action of two 

phosphatases, including phosphatase and tensin homologue (PTEN) and SH2 

domain-containing inositol-5-phosphatase-1 (SHIP-1). Both of these 

phosphatases catalyze the dephosphorylation of PIP3 into PIP2 (161, 162).  

However, it is important to note that PTEN generates PI(4,5)P2, which can feed 

back into the PI3K pathway, while SHIP-1 generates PI(3,4)P2, which cannot. 

This difference may affect the level and the durability of negative regulation by 

these enzymes. Another regulator of BTK is SH2 domain-containing 

phosphatase-1 (SHP-1), which is recruited through paired immunoglobulin-like 

receptor B (PIR-B) and sialic acid-binding Ig-like lectins such as CD22 and 

Siglec-G. SHP-1 is able to dephosphorylate tyrosines on BTK and other signaling 

mediators like Igα (163). Additionally, the activation of PKCβ by DAG is a 

feedback inhibitor of BTK, phosphorylating the S180 residue in BTK’s linker 

domain that negatively regulates BTK function (164). PTEN, SHIP-1, and SHP-1 

are all possible actors in the regulation of B cell anergy, which is discussed in 

more detail later in this chapter.  

 

BTK and B cell function: Clues from mouse models 

 In mice, the loss of early signaling mediators, such as SYK or Igμ, results 

in total B cell deficiency (165-167). BCR signaling is completely dependent upon 

these initiating signals. Without them the B cell cannot confirm that a B cell 
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receptor has been formed and the B cell is blocked in the early stages of B cell 

development. BTK seems to function differently, as an amplifier of signal rather 

than an on/off switch. There are some apparent differences between BTK-

sufficient and BTK-deficient B cells in murine bone marrow, though the total 

number and turnover kinetics of pre-B cells are unchanged (140, 146, 168). BTK-

deficient mice have significantly reduced Igλ light chain usage and a slight (three 

hour) delay in the emergence of IgL-positive B cells (153). In addition, BTK/TEC 

and BTK/BLNK double knockouts do show a block in the pro-B cell stage. This 

implies that BTK may have a role in pre-BCR signaling, but some redundancy is 

in place to allow for B cell development in the single BTK knockout (169, 170). 

BTK-deficient B cells show increased proliferative response to IL-7 in vitro, so it 

may be that any defects caused by BTK loss are offset by increased proliferation 

(152). 

 Despite the relatively normal B cell development in the bone marrow of 

Btk-deficient animals, there is a ~50% decrease in the total number of mature B 

cells (140). This is due to a developmental block at the T2 B cell stage (43, 45, 

140, 171). Concurrently, numbers of follicular B cells are reduced in the spleen. 

BTK is generally not considered to be of particular importance in MZ B cell 

development, though it may have a function in the selection of low-affinity BCRs 

to that compartment (172-175). It is important to note that BTK-negative B cells 

do have a selective disadvantage when in direct competition to BTK-positive B 

cells. Btk is an x-linked gene. In female mice that expressed an inserted LacZ 

reporter in place of BTK, BTK-deficient LacZ expressing B cells were almost 
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absent from the mature B cell compartments (146). These data point to a 

selective disadvantage of BTK-deficient B cells, and indeed, Btk+/- female mice 

are indistinguishable from WT in B cell function and in autoimmune disease 

(137).  

 

BTK-deficiency in humans: X-linked agammaglobulinemia  

Mutations in BTK also cause immunodeficiency in humans, in whom BTK 

loss causes a much more severe B cell depletion than seen in the murine 

phenotype. X-linked agammaglobulinemia (XLA) was first reported by Colonel 

Ogden C. Bruton in 1952 in a report describing a boy lacking humoral immune 

responses, which resulted in a high susceptibility to infection by encapsulated 

bacteria (176). XLA, which may be caused by over 600 different mutations in the 

BTK gene, results in a severe block at the pre-B cell stage of B cell development 

(177, 178). Patients have very low serum immunoglobulin levels; they have less 

than 1% of normal B cell numbers, and no plasma cells. The B cells that remain 

exhibit high levels of IgM (179), and are enriched for polyreactive, autoreactive-

prone BCRs (180). However, patients with XLA are not generally thought to 

develop autoimmune disease. There has been one report of T1D and a few 

reports of juvenile arthritis in XLA patients (181-183). One study has found a 

majority of XLA patients report inflammatory symptoms (184). However, these 

were not clearly diagnosed autoimmune disease, and these reports may be due 

to the abnormalities in the myeloid compartment that result from lack of BTK. 
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 The differences between the mouse and human phenotypes of BTK-

deficiency lead to the question- is it appropriate to study BTK function in the 

mouse model? An important point is that patients treated with BTK inhibitors 

have a full repertoire of mature B cells. Indeed, treatment with BTK inhibitors 

does not recapitulate the XLA-phenotype (185). This could be due to the fact that 

BTK inhibitors only target the kinase domain and do not affect the function of 

BTK as an adaptor, or it could be that mature B cells respond differently to losing 

BTK than developing B cells do. Mouse models allow in vivo evaluation of mature 

BTK-deficient B cells and detailed study of the role of BTK in autoreactive versus 

non-autoreactive B cells. 

 

 

BTK-mediated signaling and autoimmunity 

 The importance of BTK in autoreactive B cells has been shown in several 

ways. The transgenic overexpression of BTK in a mouse model leads to a SLE-

like disease, that is associated with spontaneous germinal center formation and 

autoantibody production (9). Another model in which BTK is constitutively 

activated results in spontaneous production of autoreactive IgM plasma cells 

(186). In contrast, lowering of BTK levels to 25% of normal decreases 

autoantibody production and the autoimmune syndrome that is produced in Lyn-

deficient mice (8). My lab has shown that the loss of BTK is protective in the 

NOD model of T1D, and in the anti-insulin transgenic model the loss of BTK 

results in a loss of 95% of anti-insulin B cells (137, 187). This block in anti-insulin 
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B cell development is much more severe than the block seen in non-autoreactive 

B cell development in either the B6 or NOD mouse models (137, 140), revealing 

that transgenic autoreactive B cells rely more on BTK for their development than 

non-autoreactive B cells. This also proves to be true in endogenous autoreactive 

subsets. Autoreactive-prone B1 cells and anergic An1 cells are both absent in 

Btknull models (43, 140, 187). The differential dependence of autoreactive B cells 

on BTK may be due to aberrant signaling.  

 

BCR signaling is dysregulated in autoreactive B cell populations.  

 Anergic B cells, including the MD4xML5 model and endogenous An1 cells, 

exhibit elevated intracellular free calcium and activation of ERK, a terminal 

kinase of the BCR activation pathway (188). In the Ars/A1 model of anergy, in 

which B cells express a transgenic low-affinity receptor for self-antigen, ITAMs on 

Igα/β are monophosphorylated. This conformation allows LYN to bind but not 

SYK, which results in activation of the inhibitory protein SHIP-1 and its adaptor 

Dok-1 (189). Indeed, the loss of SHIP-1 breaches tolerance in the same model 

(190), showing that SHIP-1 effectively mediates anergy in this specific model. 

This mechanism may be responsible for maintaining anergy in endogenous 

An1s, which show an increase in phosphorylation of Dok-1 (82). The anti-HEL 

MD5xML5 model of anergy exhibits increased levels of PTEN, though this is not 

seen in other models and may be due to the relatively high affinity of the 

transgenic BCR to its autoantigen (191). It is clear that negative signaling 

enforces anergy. 
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 In many ways, the B1 cell subset is similar to anergic B cells in terms of 

BCR signaling. B1s  have high levels of cytoplasmic free calcium, but are unable 

to flux more calcium in response to a BCR-stimulus (192). B1s do not proliferate 

in response to BCR-crosslinking, and exhibit high constitutive ERK 

phosphorylation (193-195). However, they do not seem to be negatively 

regulated by SHIP-1; rather, the sialic-acid binding protein Siglec-G has been 

identified as a strong negative regulator of BCR-induced calcium flux in B1as. 

This effect is most likely mediated through recruitment of SHP-1 (196). 

Interestingly, deletion of SHP-1 in the Ars/A1 model resulted in those B cells 

assuming a B1-like phenotype (190). It appears that though anergic autoreactive 

B cells and the B1 subset show signs of activation such as high resting calcium 

and ERK phosphorylation, these cells are kept in check by consistent negative 

regulation.  

 

BTK and antigen presentation 

 There is some evidence that BTK has a role in antigen presentation, which 

may influence disease protection seen in some autoimmune models. One study 

found that B cells from xid mice were less able to internalize anti-IgM, and 

subsequently reduced in the ability to present antigen to T cells. This deficiency 

was linked to BTK regulation of actin dynamics, though the mechanism was not 

completely clear (197). However, in a human study, dendritic cells from XLA 

patients were equally able to present antigen and activate T cells (198). This 

difference could be due to murine versus human differences or differences 
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between B cell and dendritic cell antigen presentation. In contrast, Btk-deficient B 

cells from the anti-insulin transgenic mouse model can efficiently internalize 

insulin, so the loss of BTK may not completely abrogate antigen presentation by 

autoreactive B cells (187). Alternatively, the internalization of non-crosslinking 

autoantigens may be regulated differently than internalization of a crosslinking 

antigen like anti-IgM. Possible regulation of antigen internalization and 

presentation is only one way in which BTK may regulate the immune response to 

autoantigen or pathogens.  

 

BTK-mediated signaling and the immune response 

 The loss of BTK results in signaling defects through the BCR, and also 

complete loss of B cell subsets such as B1s. It is predictable; therefore, that BTK 

plays a role in the immune response to antigen. The role of BTK in the immune 

response was first studied in the xid model. In those early studies it was 

established that the loss of BTK had differing effects depending on the type of 

immunization. Btk-deficiency results in an inability to respond to T cell-

independent type II antigens (140, 147, 199). We now know that this defect is 

most likely due, at least in part, to the lack of B1 cells in Btk-deficient mice, which 

are important for the response to these antigens (112, 113, 200). T-dependent 

antibody responses are also reduced after initial immunization (201); however, 

these responses can be somewhat recovered in the secondary response to 

boosting (140, 147, 199, 202). Pathogen responses, by definition more 

complicated than immunization with model antigen, can also be affected by the 
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loss of BTK. In particular, pathogens that require responses by B1 cells result in 

more severe disease in Btk-deficient models. Xid mice are more susceptible to 

various strains of Streptococcus pneumoniae (203). It is now clear that S. 

pneumoniae resolution requires B1 cell action (105). Btk-deficient mice cannot 

clear mouse adenovirus type 1 (MAV-1), a pathogen that requires T-cell 

independent immune function (204). In contrast, Btk-deficient mice can generate 

sufficient immune responses to traditionally T cell-dependent immunizations to 

protect them from subsequent challenge (205), and seem to respond effectively 

to certain infections such as Candida albicans (206).  However, in spite of the 

fact that BTK-deficient mice seem to partially overcome defects in T cell-

dependent immunity with sufficient stimulus, the loss of BTK is still protective 

against the development of SLE. Even though antigen, B cells, and T cells are all 

available, Btk-deficiency in SLE models has been shown to reduce anti-DNA 

autoantibodies and protect from disease (207-212). It may be that BTK loss 

impacts the available autoreactive B cell specificities, as is seen in the severe 

block in the development of anti-insulin B cells as compared to non-autoreactive 

B cells (187). It is also possible that BTK-deficiency more strongly inhibits the 

entry of autoreactive B cells into the germinal center, as compared to non-

autoreactive B cells.  A third possibility is that BTK-deficiency affects the innate 

immune cells that are responding to autoantibody. 
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BTK in innate cells and innate signaling 

 Macrophages, neutrophils, mast cells, and dendritic cells all express BTK 

(138, 213, 214). However, the role of BTK in these cells is less clear than its role 

in B lymphocytes. Arthritis models that have studied the role of BTK in innate 

immune cells have most often focused on FcγR mediated phagocytosis and 

cytokine production by macrophages, and mostly relied on BTK inhibition (138, 

215-219). However, many of these inhibitors are known to have off-target effects 

(138, 220, 221). Genetic deletion of BTK has pointed to some interesting effects 

in innate cells. In one report, Btk-deficient bone marrow derived dendritic cells 

(BMDCs) exhibited increased T cell stimulatory activity. This phenotype was 

linked to their reduced ability to secrete IL-10, resulting in increased levels of 

MHC class II and CD86 in response to lipopolysaccharide (LPS) stimulus (214). 

BTK loss may also affect neutrophils, though the literature conflicts. Btk-deficient 

neutrophils in mouse models have been reported to have decreased E-selectin 

mediated recruitment and decreased granules per cell (222, 223); however, 

human BTK-deficient neutrophils are shown to have either no loss of effector 

function (224) or even produce more reactive oxygen species (225). 

 Effects of BTK loss on innate immune cells are most likely due to its roles 

in innate signaling. Mast cells are reported to depend upon BTK for FCεR 

signaling (139).  BTK is involved in TLR signaling, and binds to TLRs 4, 6, 8 and 

9. It can also associate with MyD88 and MyD88 adaptor-like protein (MAL), key 

proteins involved in certain TLR signal transduction (226). Peripheral blood 

mononuclear cells (PBMCs) from humans with XLA were unable to produce 
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tumor necrosis factor alpha (TNFα) in response to the TLR4 agonist LPS, though 

IL-6 production was unaffected (227, 228). However, when monocytes from the 

XLA pateints were treated with macrophage-colony stimulating factor (M-CSF), 

TNF production was rescued. This was linked to an increase in the protein kinase 

TEC, which may be redundantly expressed in mature macrophages (227). There 

is evidence that BTK is important in TLR-signaling through phosphorylation of 

MAL (136, 229, 230). That there is a role for BTK in TLR signaling is clear, but 

the specifics and in which cells BTK is most important is an area that needs 

further study.    

 It is important to remember that BCR and innate signaling are not discrete 

pathways. BCR engagement and TLR engagement together can interact and 

bring together the innate and adaptive immune systems. This interaction can 

affect antigen presentation and the quality and duration of the B cell response 

(231). Antigen engagement by the BCR influences subcellular localization of 

TLRs (232), and the colocalization of TLR9 and the BCR with in the 

autophagosome is dependent on BTK (233). This interaction of innate receptor 

and BCR signaling perhaps explains the evidence that innate signaling can 

influence the loss of tolerance in autoreactive B cells (63, 64, 234).  

 

Research Goals 

 

 The purpose of this project is to define the contribution of BTK to the 

autoreactive B cell during its development, survival, and function. In Figure 1.5, I  
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Figure 1.5: BTK has multiple roles throughout the autoimmune process. 
Autoreactive B cells develop in the bone marrow and are culled by central 
tolerance. Some escape to the periphery, where they may either maintain or lose 
peripheral tolerance. The loss of tolerance results in a response to autoantigen, 
possible antigen presentation to autoreactive T cells, and the generation of a 
germinal center. Autoreactive B cells in germinal centers produce high affinity 
autoantibody, which can bind to autoantigens by the variable region and to innate 
cells by FcRs. Activated innate cells can then instigate inflammation and disease 
pathology. BTK is known to contribute to autoreactive B cell development (A), to 
BCR signaling (C) and to innate signaling (D). In addition, it is hypothesized that 
BTK may contribute to the survival of autoreactive B cells in peripheral organs 
(B) and in the transition to the germinal center (C).  
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summarize the stages of the autoreactive B cell “life cycle,” which has been 

extensively discussed in this chapter. To review, autoreactive B cells are 

estimated to form 70-80% of the developing B cells in the bone marrow (25). 

Most of these are culled by central tolerance mechanisms, such as receptor 

editing and clonal deletion, but some escape and reach maturity in the spleen 

(43, 82). These B cells must be controlled by peripheral tolerance mechanisms 

such as anergy. However, anergy can fail by allowing antigen presentation 

function, such as in the NOD model of T1D (51), or tolerance may be lost 

resulting in B cell proliferation and autoantibody production, as in autoimmune 

arthritis or lupus (6, 69). If an autoreactive B cell responds to autoantigen, it can 

be recruited into germinal centers with autoreactive T cells and undergo SHM 

and isotype switching. High-affinity, switched autoantibodies mediate disease by 

activating innate immune cells.  

BTK is known or hypothesized to contribute to this cycle of autoimmunity 

in several places, detailed in Figure 1.5 A-D. It is clear that BTK regulates the 

development of autoreactive B cells and their transition to the periphery (A) as 

An1, B1, and transgenic anti-insulin B cells are all impacted more by the loss of 

BTK during development than non-autoreactive B cells (7-9, 140, 187). A 

commonality of autoreactive B cells is their dysregulated signaling, so it follows 

that BTK may be more necessary to these cells than others. Because of this 

dysregulated signaling, autoreactive B cells may require BTK for survival as well 

as development (B), and my research uses the first models available to test this 

hypothesis. BTK is also known to affect receptor signaling, as can be expected 
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from its role as an adaptor and in activating PLCγ2, and may play a role in either 

the transition into the germinal center or the quality of the germinal center 

response (C). Finally, BTK is also expressed in innate cells (D), and its loss can 

impact signaling through TLRs and FcRs. This loss of signaling may result in 

reduced innate responses to autoantibody.  

 In chapter II of this thesis, I will detail my work studying BTK in 

autoimmune and immune-complex mediated arthritis. Autoimmune arthritis, 

which depends upon autoreactive B and T cells forming germinal centers, B cells 

producing antibody, and innate immune destruction of targeted tissue, will be 

compared to immune-complex mediated arthritis, a method which assesses 

innate immune function. This chapter furthers understanding of the role of BTK in 

autoreactive B cell development and in innate signaling as it contributes to 

arthritis.  

 Previous BTK-deficient models rely on total genetic knockout, meaning 

that BTK is absent from all stages of development, in all tissues. This has 

prevented study of the role of BTK in the survival and function of mature 

autoreactive B cell subsets. In chapter III, I will highlight work in which I used a 

novel inducible knockdown model of BTK, enabling me to assess the role of BTK 

in B cells that have reached maturity. These data, for the first time, detail the role 

of BTK in mature An1s, B1s and anti-insulin B cells. Chapter III will also use the 

inducible knockdown model in a study of a T-independent immunization, 

uncoupling the role of BTK in B cell development versus in response to 

immunization. Collectively, the work in this thesis provides critical knowledge on 
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cellular dependence upon BTK.  These data demonstrate how the role of BTK 

differs in each stage of the autoimmune process. 
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CHAPTER II 
 

THE ROLE OF BRUTON’S TYROSINE KINASE IN AUTOIMMUNE AND 
IMMUNE COMPLEX-MEDIATED ARTHRITIS  

 
Abstract 

 Autoreactive B cells drive autoimmune arthritis by producing harmful 

autoantibodies, which bind and activate innate receptors. B cell receptor (BCR) 

signaling regulates these autoreactive B cells, and is in part mediated by the 

signaling protein Bruton’s Tyrosine Kinase (BTK). BTK inhibition has been shown 

to be effective in prevention of both spontaneous autoimmune arthritis, which 

depends upon both the innate and adaptive immune systems, and in immune 

complex-mediated arthritis, which depends only on innate cells. However, these 

inhibitors are known to have off-target effects. In these studies, I have used 

genetic deletion of BTK to determine its role in the adaptive and innate immune 

responses that drive inflammatory arthritis. The loss of BTK was protective 

against the development of arthritis in K/BxN mice, which depend upon both 

adaptive and innate immunity. Btk-deficiency resulted in severely reduced B 

lymphocytes at every splenic developmental stage. Germinal center B cells were 

significantly reduced, with a subsequent loss of T follicular helper cells, despite 

the fact that BTK is not expressed in T cells. Autoantibody was severely 

decreased, while total IgG was only mildly affected, indicating a specific 

reduction in autoreactive B cells. However, Btk-deficiency was not protective in 

serum-transfer arthritis, which relies only on innate immunity. These data show 

that the contribution of BTK in disease protection is mainly due to its role in B cell 

signaling, rather than in innate immune cells.  
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Introduction 

 

 Bruton’s tyrosine kinase (BTK) is a signaling protein expressed in B cells, 

macrophages, neutrophils, mast cells, and dendritic cells (138, 213, 214). In B 

lymphocytes, BTK propagates signaling through the B cell receptor (BCR), toll-

like receptor 4 (TLR4) and CD40 (133-135, 137, 140, 160). In myeloid cells, BTK 

mediates signaling by various TLRs, Fcε receptor (FcεR), and Fcγ receptors 

(FcγR) (136, 138, 215). Importantly, there is increasing evidence that BTK plays 

a critical role in autoreactive B cell development and regulation. Autoreactive-

prone B cell subsets are more severely depleted in BTK-deficient mouse models 

than non-autoreactive B cell subsets. This includes innate-like, autoreactive 

prone B1 cells and anergic autoreactive An1 B cells, which are both absent in 

BTK-deficient mice (43, 140, 187). BTK-deficiency depleted mature anti-insulin B 

cells by 95% in a transgenic mouse model (187), compared to a 20% loss of 

normal B cells in the non-transgenic mouse (137). Transgenic BTK 

overexpression results in spontaneous germinal center and plasma cell 

generation. These reactions are autoreactive, and produce anti-nuclear antibody 

that causes autoimmune pathology (9). Similarly, the constitutive expression of 

BTK results in autoreactive IgM-producing plasma cells (186). Conversely, 

decreased levels of BTK result in increased B cell tolerance. Lowering BTK 

levels is enough to protect against the autoimmune disease produced in LYN-

deficient mice (8), and the loss of BTK is protective against the development of 

Type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model (137). In 
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this chapter, I study the role of BTK in another autoimmune disease, antibody-

mediated arthritis.  

 Autoimmune arthritis can result when autoreactive B cells and T cells 

interact, resulting in the production of damaging autoantibody. B cells also may 

contribute to pathogenesis by presenting antigen and producing inflammatory 

cytokines. The autoantibody produced can then bind to FcRs on innate effector 

cells such as macrophages, mast cells, neutrophils, and natural killer cells, 

resulting in activation and further inflammation. RA is characterized by 

inflammation of synovial tissue, cartilage erosion, and the eventual destruction of 

bone (235). Because of its roles in both B lymphocytes and innate immunity, BTK 

is a possible target for small molecule inhibition and treatment of this disease. 

However, only one early mechanistic study has been carried out using genetic 

models of BTK-deficiency (236). Other work has relied exclusively on BTK 

inhibitors (215-219, 237) and focused mostly on the role of BTK in innate cells 

such as macrophages. BTK inhibitors are known to have off-target effects, such 

as binding and inhibition of interleukin-2-inducible T cell kinase (ITK), affecting T 

cell function (220). Genetic deletion provides important insight into the 

mechanism of protection mediated specifically by the loss of BTK. To further 

study the role of BTK in autoreactive B lymphocytes, and to separate that role 

from its function in innate cells, I used the K/BxN model of autoimmune arthritis. 

 The K/BxN model enables study of innate and adaptive immune 

contributions to arthritis. K/BxN mice are generated from a cross between a KRN 

mouse, which expresses a transgenic T cell receptor (TCR), and a mouse 
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expressing MHC class II IAg7, characteristic of the NOD mouse strain. An MHC 

that is considered autoreactive-prone, IAg7 enables recognition of a peptide from 

glucose-6-phosphate isomerase (GPI) by the KRN TCR (238, 239). This 

interaction results in the production of anti-GPI autoantibodies and severe 

arthritis. The disease is more robust in males, and requires both innate and 

adaptive immunity (240-244). Importantly, K/BxN serum can be transferred into 

recipients, where it induces immune complex-mediated arthritis that bypasses 

adaptive immunity and relies only on myeloid immune cells (240, 245). This 

allows separation of BTK’s role in autoreactive B cells versus its function in 

innate immunity. I generated Btk-deficient K/BxN males and studied the 

progression of arthritis in comparison to Btk-sufficient littermate controls. I show 

that Btk-deficiency in the K/BxN model confers significant protection from 

spontaneous arthritis, results in a severe loss of mature B cells, more dramatic 

than seen in non-autoreactive models, and a subsequent loss of germinal center 

B cells and anti-GPI autoantibody. However, total IgG was only slightly reduced, 

again showing that autoreactive B cells may rely more on BTK than non-

autoreactive B cells. In contrast, BTK loss had no effect on the progression of 

immune complex-mediated arthritis.  

Materials and Methods 

Mice and Disease Studies 

KRN mice were provided by Christophe Benoist and Diane Mathis. Btk-deficient 

NOD mice were derived as previously described (137). Mice were bred and 

maintained under specific pathogen-free conditions. KRN males were bred to 
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Btk+/- NOD females, producing Btk-sufficient and Btk-deficient K/BxN males for 

spontaneous arthritis studies, assessed weekly for 5 weeks post weaning. For 

immune complex-mediated arthritis studies, serum from 8-9 week old arthritic 

Btk-sufficient K/BxN males was pooled and injected (200µL, intraperitoneal 

injection) to produce arthritis in male Btk-sufficient and Btk-deficient NOD mice. 

Mice were injected on days 0 and 2 and assessed for arthritis for two weeks. All 

studies are approved by the Vanderbilt University Animal Care and Use 

Committee.  

 

Arthritis Scoring 

The Chondrex mouse arthritis scoring system was used to assess arthritis 

progression in the K/BxN and serum-transfer models 

(https://www.chondrex.com/documents/ Mouse%20CIA.pdf). Briefly, each paw 

was scored on a scale of 0 to 4, with normal paws scored as 0 and maximally 

inflamed limbs scored as 4. Scores for all four paws were combined for a total 

possible arthritis score of 16. For paw thickness measure, hind foot pad paw 

thickness was measured by a Swiss Precision Instrument (SPI) dial gauge (13-

159-9).  

 

Flow Cytometry and Antibodies 

Single cell suspensions from spleens, popliteal lymph nodes (LN), and peritoneal 

cavity were obtained as previously described (137) and stained using 

fluorochrome or biotin-conjugated antibodies against B220 (RA3-6B2), IgM (µ-
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chain specific, Life Technologies), IgD (11-26c.2a), CD21 (76G), CD23 (B3B4), 

CD4 (RM4-5), CD8a (53-6.7), CD11b (M1/70), CD11c (HL3, BD Biosciences or 

N418, eBioscience), CD5 (53-7.3), CD19 (ID3), Fas (Jo2), BCL6 (K11291), GL7, 

CD44 (IM7, eBioscience), CXCR5 (2G8), PD1 (J43), ICOS (C398.4A, 

eBioscience), F4/80 (BM8, eBioscience), Ly6G (IA8), and/or CCR7 (4B12). 

Unless otherwise stated, antibodies are from BD Biosciences. Biotin-conjugated 

antibodies were secondarily stained with fluorochrome-conjugated streptavidin 

(BD Bioscience). Dead cells were excluded using 7 Aminoactinomycin D (BD 

Biosciences), fixable viability dye eFluor® 450 (eBioscience) or Alexa Fluor® 700 

Succinimidyl Ester (Life Technologies). Samples were read on a LSRII flow 

cytometer (BD Biosciences) and data analyzed using FlowJo (Tree Star) 

software.  

 

Bone Marrow-derived Macrophages 

Murine bone marrow cells harvested from femurs were differentiated in RPMI 

1640 media (Corning) with 10% FCS (Gibco), 1% antibiotic-antimycotic (Gibco), 

and 10ng/mL macrophage colony stimulating factor (R&D) for 7 days in non-TC 

treated polystyrene plates (Fisher). On day seven, attached macrophages were 

harvested, transferred to 96-well flat-bottom NUNC plates, allowed to adhere, 

then incubated without stimulus, with 1/20 K/BxN serum, or with 100ng/mL LPS 

(DIFCO Laboratories) overnight at 37° C. Supernatants were frozen for analysis.  
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ELISA 

Serum IgG (total) and anti-GPI IgG from 8-9 week old Btk-sufficient and Btk-

deficient K/BxN were measured. 96-well flat-bottom NUNC plates were coated 

with 1µg/mL recombinant mouse GPI (Cloud-Clone Corp) or 2µg/mL goat anti-

mouse Ig (Southern Biotech) in PBS overnight at 4ºC. Plates were blocked with 

1% BSA in PBS or 10% non-fat dry milk in PBS+0.5% Tween-20 (PBST). Diluted 

sera (1:3000 or 1:5000) were added to plates. IgG antibodies were detected 

using goat anti-mouse IgG-alkaline phosphatase (AP) (Southern Biotech). p-

Nitrophenyl Phosphate (PNPP) was added to the plate and O.D. read on a 

Microplate Autoreader (Bio-Tek Instruments) at 405nm. Mouse TNFα Ready-Set-

Go!® ELISAs (eBioscience) were performed on BMDM supernatants according 

to manufacturer’s protocol and O.D. read at 450nm.  

 

Histology  

Hind paws collected from 8-9 week old Btk-sufficient and Btk-deficient K/BxN 

mice were processed as previously described (246).  Four blinded observers 

scored histological samples for inflammation (0, normal; 1, minimal; 2, mild; 3, 

moderate; 4, severe), cartilage destruction and bone erosion (0, no 

destruction/erosion; 1, moderate 2, severe).  

 

Whole-body fluorescence imaging  

Fluorescence imaging was performed as previously described (247).  Cy5-PEG-

folate (Nanocs Inc., NY; excitation wavelength - 650 nm, emission - 670 nm) was 
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injected intravenously (500nmol/kg). Fluorescent imaging was performed after 4 

hours by a Pearl Impulse system (LI-COR, Lincoln, NE). Data were collected and 

analyzed using Pearl Impulse software (LI-COR). Whole-body fluorescence 

imaging was performed by Wei Han, Ph.D., of Vanderbilt University School of 

Medicine.   

 

Statistics 

Statistics were performed using GraphPad Prism version 6.00 for Windows, 

(GraphPad Software, La Jolla California USA). P-values for disease curves and 

FolRβ imaging were calculated using a two-way ANOVA. All other p-values were 

calculated by unpaired t tests with Welch’s correction or the Holm-Sidak method 

of multiple t tests, as appropriate.  

 

Results 

 

Loss of BTK protects against development of arthritis in K/BxN mice. 

To determine BTK contributions to arthritis development, Btk-deficiency 

was introduced to the K/BxN mouse model. Btk loss significantly protected 

against arthritis, as assessed by clinical score and paw thickness (Fig 2.1a,b). By 

5 weeks post-weaning, Btk-sufficient K/BxN had mean clinical scores of 15.7 

(±0.816), compared to Btk-deficient K/BxN scores of 9.75 (±2.49), (p<0.0001). 

Paw thickness averaged 3.03mm (±0.156) in Btk-sufficient K/BxNs and 2.33mm 

(±0.271) in Btk-deficient K/BxN (p<0.0001). H&E stained histologic sections from  
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Figure 2.1: Btk deficiency is protective against the development of 
autoimmune arthritis in K/BxN mice. A) and B) Btk-sufficient (circles, n=6) and 
Btk-deficient (squares, n=12) K/BxN mice were scored for arthritis for 5 weeks 
post weaning. Clinical scores (A) were assigned on a scale of 0-4 for each limb 
and pooled for a total possible score of 16. In addition, paw thickness (mm) was 
measured by caliper (B). Mean values are shown ± standard deviation. C) 
Representative H&E staining from right hind paws of WT NOD (left), Btk-
sufficient K/BxN (middle), and Btk-deficient K/BxN (right). 2X magnification (top), 
10X magnification (bottom). Arrows indicate areas of bone erosion, triangles 
indicate cartilage loss. D) Scoring of Btk-sufficient (circles, n=6) or –deficient 
(squares, n=5) for inflammation (top), cartilage loss (middle), and bone erosion 
(bottom). Inflammation was scored on a scale of 0 to 4, while cartilage loss and 
bone erosion were scored as 0 to 2. P values were calculated by a 2-way 
AVOVA with Sidak correction (A, B) **p≤0.01, ***p≤0.001, by unpaired T test with 
Welch’s correction (D).  
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right hind paws were assessed for inflammation, cartilage destruction, and bone 

erosion. Fig 2.1c shows a representative, non-arthritic NOD control (left), Btk-

sufficient K/BxN (middle), and Btk-deficient K/BxN (right). Fig 2.1d shows pooled 

scores of Btk-sufficient and –deficient K/BxNs. All three measures show 

significant differences between genotypes, with Btk-deficient K/BxNs exhibiting 

lower inflammation (Btk-sufficient 3.5±0.548, Btk-deficient 1.6±0.548, p=0.0003), 

no cartilage destruction (Btk-sufficient 1.5±0.548, Btk-deficient 0±0, p=0.0011), 

and little bone erosion (Btk-sufficient 1.5±0.548, Btk-deficient 0.2±0.447  

p=0.0019). These data demonstrate that lymphocytic infiltration and arthritic 

damage, and thus arthritis progression, is significantly reduced by BTK loss.  

 
Innate and adaptive immune cells are decreased in Btk-deficient K/BxNs.  

To determine the effect of Btk-deficiency on immune cell development and 

survival in K/BxN mice, we used flow cytometry to enumerate T and B 

lymphocytes, macrophages, neutrophils, and dendritic cells. Fig 2.2a shows 

representative flow plots of live-gated splenocytes from Btk-sufficient (left) and 

Btk-deficient (right) K/BxN, gated to CD4 and CD8 T cells (top) and IgM versus 

B220 B cells (bottom). In Fig 2.2b, the cell populations are quantified as percent 

of live lymphocytes (top) or total number of cells (bottom). The percentages of B 

cells were significantly decreased in Btk-deficient K/BxNs (37.8±4.44) compared 

to Btk-sufficient (47.9±6.32) (p=0.0098). Percentages of both CD4+ and CD8+ T 

cells were significantly increased in Btk-deficient K/BxNs (8.46±1.74, 4.65±1.03) 

compared to Btk-sufficient (6.12±1.08, 3.15±0.971) (p=0.0206, p=0.0271), 

reciprocal to the loss of large numbers of B cells (Btk-sufficient=7.18e6±2.37e6,  
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Figure 2.2: Immune cell numbers are decreased in the spleen of Btk-
deficient K/BxNs compared to Btk-sufficient controls. A) Representative flow 
plots for Btk-sufficient (left) and Btk-deficient (right) K/BxN, showing total T cells 
(top) and B cells (bottom). Cells are pre-gated on single live lymphocytes. T cells 
are gated as CD4+ and CD8+, while B cells are designated as B220+/IgM+. B) 
Quantification of T and B cell percentages of lymphocytes (top) and total cell 
number (bottom) in Btk-sufficient (circles, n=6) or –deficient (squares, n=6). C) 
Innate immune cells are shown by flow cytometry for a representative Btk-
sufficient (top) or –deficient (bottom) K/BxN. Cells were gated as single live 
mononuclear cells. CD11b+CD11c- cells were gated as F4/80+Ly6G- for 
macrophages or F4/80-Ly6G+ for neutrophils. CD11b+CD11c+ cells were 
designated myeloid dendritic cells (DCs) and plasmacytoid dendritic cells (pDCs) 
were designated as CD11b-CD11c+B220+. D) Quantification of percentages (top) 
or total numbers (bottom) of innate immune cells in Btk-sufficient (n=3-7) or Btk-
deficient (n=6-8) K/BxN. *p≤0.05, **p≤0.01, ***p≤0.001, as calculated by the 
Holm-Sidak method of multiple T tests. 
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Btk-deficient=1.86e6±8.50e5, p=0.0004). However, though T cells do not express 

BTK, T cells numbers were significantly reduced, (CD4+ Btk-

sufficient=1.26e6±4.44e5, Btk-deficient=5.39e5±2.34e5, p=0.0056; CD8+ Btk-

sufficient=6.19e5±1.75e5, Btk-deficient=2.94e5±1.23e5, p=0.0040), suggesting T 

cell expansion during arthritic progression in Btk-sufficient K/BxNs.  

 Innate cells were also quantified using CD11b, CD11c, F4/80, Ly6G, and 

B220 to identify macrophages, neutrophils, myeloid dendritic cells (DCs), and 

plasmacytoid dendritic cells (pDCs) (Fig 2.2c,d). Btk-deficient K/BxN mice had 

significantly increased percentages of neutrophils (Btk-sufficient=3.26±0.843, 

Btk-deficient=10.3±3.57) and macrophages (Btk-sufficient=2.15±0.491, Btk-

deficient=4.00±1.05) (p=0.0140, p=0.0258); however, absolute numbers were not 

significantly altered. Thus, the higher percentage again reflects the substantial 

loss in numbers of B cells. Myeloid dendritic cell numbers in the spleen were 

significantly decreased in Btk-deficient K/BxN, (Btk-sufficient=3.41e5±6.09e4, 

Btk-deficient=1.97e5±4.98e4 p=0.0064), as were plasmacytoid dendritic cells 

(Btk-sufficient=8.62e4±2.16e4, Btk-deficient=3.01e4±4.43e3 p<0.0001).  

  

Btk-deficiency reduces mature B cell subsets in K/BxN mice.  

Btk-deficiency results in a block in the late transitional (T2) stage of B cell 

development in NOD and C57Bl/6 mice (137, 248). To determine the 

developmental stage at which B cells are reduced in Btk-deficient K/BxN mice, 

we evaluated B cell subsets by expression of IgM, IgD, CD21, and CD23. Fig 

2.3a shows representative samples of Btk-sufficient (left) and Btk-deficient (right)  
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Figure 2.3: Btk-deficiency reduces mature B cell subsets in K/BxNs. A) 
Representative flow plots for Btk-sufficient (left) and Btk-deficient (right) K/BxN, 
showing gating scheme for B cell subsets. Cells are gated as single, live, B220+ 
lymphocytes. B) Quantification of B cell subsets in Btk-sufficient (circles, n=6) or 
–deficient (squares, n=6) K/BxN by percentage of total IgM+IgD+ B cells (left) and 
by total cell number (right). **p≤0.01, ***p≤0.001, as calculated by the Holm-
Sidak method of multiple T tests. 
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K/BxN B cells designated as early transitional (T1), late transitional (T2), follicular 

(FO), pre-marginal zone (PMZ), and marginal zone (MZ). Fig 2.3b shows 

quantification of B cell subsets by percentages (left) and total cell numbers 

(right). The percentages of T1 and T2 B cells are significantly higher in Btk-

deficient K/BxNs (37.1±6.30, 27.6±0.571) compared to Btk-sufficient K/BxN 

(10.7±3.75, 11.5±1.205) (p<0.0001, p<0.0001). A corresponding significant 

decrease in the percentage of FO cells (Btk-sufficient=37.3±6.65, Btk-

deficient=9.03±3.57, p<0.0001) points to a developmental block at T1 and T2 B 

cell stages. However, there is no increase in total T1 or T2 B cell numbers as 

seen in other Btk-deficient models, suggesting that B cells are lost at early and 

late transitional stages as well. Furthermore, the decrease in the number of FO 

(Btk-sufficient=2.71e6±1.27e6, Btk-deficient=1.85e5±1.69e5, p=0.0007), pre-MZ 

(Btk-sufficient=4.86e5±2.83e5, Btk-deficient=8.99e4±4.22e4, p=.0069) and MZ B 

cells (Btk-sufficient=6.47e5±1.50e5, Btk-deficient=4.67e4±1.73e4, p<0.0001) in 

Btk-deficient K/BxNs is severe, with substantially greater cell loss than is seen in 

Btk-deficient NOD or C57BL/6 mice, more typical of when BTK is removed from 

autoreactive B cells, as we have recently reported (187). Thus, B cells in K/BxN 

mice greatly rely on BTK-mediated signaling at all developmental stages. B1a B 

cells were also severely depleted, typical of Btk-deficient models (data not 

shown) (137, 140).  
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Figure 2.4: GC B cells and T follicular helper cells are decreased in Btk-
deficient K/BxNs. A) Representative flow plots of Btk-sufficient and –deficient 
K/BxN B220+CD19+ live splenocytes. IgMhiIgDlo gating was applied (not shown) 
and GL7+Fas+ cells (white) or GL7-Fas- controls (gray) evaluated for GC marker 
BCL6. GC B cells (GL7+Fas+IgMhiIgDloBCL6+) were quantified as percent of B 
cells, and total number in spleen (A, right panel) and popliteal LNs (B). C) 
Representative plots of splenic CD4+ live lymphocytes stained for Tfh markers 
PD-1 and CXCR5. Expression levels of BCL6, CD44 and ICOS in GC Tfh 
(PD1hiCXCR5hi) and Tfh (PD1+CXCR5+), shown as fold change over Btk-
sufficient K/BxN non-Tfh cells (middle panel). GC Tfh, Tfh and non-Tfh were 
quantified as percentage of CD4+ cells (top) or total cell number (bottom) for 
spleen (C, right) and popliteal LNs (D). Btk-sufficient, circles, n=6, Btk-deficient, 
squares, n=6. *p≤0.05, **p≤0.01, ***p≤0.001, calculated by unpaired T test with 
Welch’s correction (A, B), the Holm-Sidak method of multiple T tests (C right, D) 
or by a multi-way AVOVA with Sidak correction (C middle). 
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Germinal center B cells are decreased in spleens and popliteal lymph nodes of 

Btk-deficient K/BxNs. 

Formation of germinal centers (GCs) in spleen and draining lymph nodes 

is central to development of high-affinity anti-GPI IgG autoantibodies. GC 

formation was therefore assessed.  CD19+/B220+/IgM+/IgDlo live lymphocytes 

were defined as GC B cells using GL7, FAS, and BCL6 (Fig 2.4). Percentages of 

GC B cells in the spleens were significantly reduced in Btk-deficient K/BxN 

(0.1086±0.043) versus Btk-sufficient K/BxN (1.18±0.5524) (p=0.0051). This 

decreased percentage corresponded to dramatic reduction in cell number (Btk-

sufficient=1.69e5±1.46e5, Btk-deficient=3.63e3±1.68e3, p=0.0393). GC B cells 

were similarly reduced in draining popliteal LNs of Btk-deficient K/BxN 

(1.14±0.544, 4.73e3±5.44e3) compared to Btk-sufficient counterparts  

(1.83±0.273, 7.08e4±3.80e4) (p=0.026, p=0.0076). Thus, BTK contributions to 

autoimmune arthritis include development or expansion of GC B cells.  

 

Germinal center T follicular helper cells are decreased in spleens and popliteal 

lymph nodes of Btk-deficient K/BxN mice, while non-Tfh T cells are unchanged.  

Though T cells do not rely on BTK for cell signaling, we found that their 

numbers were decreased in Btk-deficient K/BxN mice (Fig 2.2). B cell 

interactions with T cells drive T follicular helper (Tfh) cell formation and 

maintenance at several checkpoints, both at the T-B zone and within GCs (249). 

We therefore assessed Tfh cells in this model. Fig 2.4c (left) shows 

representative flow plots of Btk-sufficient K/BxN (top) and Btk-deficient K/BxN 
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(bottom) splenocytes, gated on live, CD4+ lymphocytes. The Tfh markers PD-1 

and CXCR5 were used for initial analysis. The double negative population is 

defined as non-Tfh, PD-1midCXCR5+ as Tfh, and PD-1hiCXCR5+ cells as GC Tfh 

(250). These cell subsets were additionally characterized by their expression of 

Tfh markers BCL6, CD44, and ICOS. Expression levels were quantified by flow 

cytometry and shown in Fig 2.4c (middle) as fold change compared to the Btk-

sufficient K/BxN non-Tfh. BCL6 (top), the transcription factor that is associated 

with GC B and Tfh cells, was significantly increased in the GC Tfh compartment 

compared to non-Tfh cells. CD44 and ICOS were also significantly increased in 

both the Tfh and GC Tfh compartments, further confirming the cells’ 

classification. Fig 2.4c (right) shows each subset as a percentage of total CD4+ 

(top) or as number of total cells (bottom). Btk-deficient K/BxNs had increased 

percentage of non-Tfh cells (45.5±3.76) over Btk-sufficient K/BxN (32.8±8.76) 

(p=0.0087); however, the total number of non-Tfh cells was not significantly 

different. Therefore, the loss of Btk does not impact non-Tfh cells. The most 

dramatic phenotype was the GC Tfhs, decreased in both percentage and number 

in Btk-deficient K/BxNs (10.5±7.04, 9.91e4±6.41e4) compared to Btk-sufficient 

controls (27.7±11.3, 4.98e5±1.82e5) (p=0.0103, p=0.0005).  Popliteal LN Tfh 

were determined identically to splenocytes (Fig 2.4d), and also showed reduced 

GC Tfh cell numbers in Btk-deficient (1.22e4±5.22e3) versus Btk-sufficient 

K/BxNs (6.15e4±4.14e4) (p=0.0159). These data demonstrate that a defect in B 

cells, the loss of BTK, affects germinal center T cells in K/BxN arthritis.  
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Figure 2.5: Anti-GPI IgG is severely reduced in Btk-deficient K/BxN, while 
total IgG is largely preserved. Serum anti-GPI IgG (A) and total IgG (B) were 
quantified by ELISA. Btk-sufficient, circles, n=7-8; Btk-deficient, squares, n=7-9. 
*p≤0.05, ***p≤0.001, calculated by unpaired T test with Welch’s correction. 
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Figure 2.6: FolRβ imaging shows increased levels of activated 
macrophages in the paws of Btk-sufficient K/BxN compared to Btk-
deficient counterparts. (A) Representative images of a Btk-sufficient (top) and 
Btk-deficient (bottom) K/BxN at 1 week post weaning and 4 weeks post weaning. 
Fluorescence in the paws was measured for quantification. (B) Macrophage 
infiltration into the paw is measured by FolRβ imaging for Btk-sufficient (circles, 
n=3) and –deficient (squares, n=4) Mean shown ± SD. p=0.0143 between 
genotypes, as calculated by a 2-way AVOVA with Sidak correction. 
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Btk-deficiency reduces anti-GPI IgG more severely than total IgG. 

GCs are required for development of high affinity IgG antibodies, so loss 

of GC B and Tfh cells in Btk-deficient K/BxN indicates lack of support for 

production of anti-GPI autoantibodies. As GPI is an important autoantigen in both 

K/BxN and human rheumatoid arthritis (251), we next determined relative serum 

levels of anti-GPI autoantibody and found striking reduction in Btk-deficient 

K/BxN (Fig 2.5a, p=0.0004). In contrast, total IgG is only slightly decreased (Fig 

2.5b, p=0.0146), which may reflect the loss of autoantibodies.  

 

Btk-deficient K/BxN paws exhibit decreased macrophage infiltration.  

Innate cell contributions to arthritis are well known, so we next used 

whole-body fluorescent imaging to assess activated macrophage recruitment to 

inflamed synovia of K/BxN mice. This technique utilizes a fluorescent probe that 

binds folate receptor beta (FolRβ), an activation marker on macrophages, and 

allows sequential, noninvasive, evaluation of mice as arthritis develops (247). 

From weaning to 7 weeks of age, Btk-sufficient and Btk-deficient K/BxN mice 

were imaged and fluorescence in each paw measured. Fig 2.6a shows a 

representative Btk-sufficient and -deficient K/BxN mouse at 1 and 4 weeks post-

wean dates. Fig 2.6b shows fluorescence of Btk-sufficient and Btk-deficient 

combined paws from week 1 to week 4 post weaning. This method indicates that 

significantly more activated macrophages were recruited to the paws in Btk-

sufficient mice (p=0.0143).  
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Figure 2.7: Btk-deficiency is not protective in the serum-transfer model of 
arthritis. (A) Btk-sufficient (circles, n=7) and Btk-deficient (squares, n=7) NOD 
mice were IP injected twice (day 0 and 2) with 200μL of pooled K/BxN sera. 
Clinical scores over 12 days post-injection are shown. (B) FolRβ imaging was 
performed on Btk-sufficient (n=3) and –deficient (n=3) NOD mice on day 0, 2, 7 
and 10. Values are Mean ± SD. (C) Percentages (left) and total numbers (right) 
of Btk-sufficient (circles, n=3) and Btk-deficient (squares, n=3) age-matched male 
NOD. Cell subsets were gated as in Fig 2c. (D) Response of Btk-sufficient 
(circles, n=3) and Btk-deficient (squares, n=3) NOD BMDMs to incubation 
overnight with no stimulus, 1/20 K/BxN serum, or LPS. *p≤0.05, **p≤0.01, or as 
listed on graph, calculated by multi-way ANOVA with Sidak correction (A, D left), 
Holm-Sidak method of multiple T tests (C) or by unpaired T test with Welch’s 
correction (D, right). 
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Btk-deficiency is not protective against development of serum transfer arthritis.  

To directly determine contributions of innate cell intrinsic BTK-signaling to 

the development of arthritis, we bypassed adaptive immune requirements by 

transferring K/BxN serum into Btk-sufficient or Btk-deficient NOD mice. 

Assessment of recipients by clinical score showed that serum transfer arthritis 

(STA) was not reduced by Btk-deficiency, with Btk-sufficient NOD reaching a 

clinical score of 4.29±0.756 and –deficient NODs reaching 4.57±0.976 on day 6 

(genotype factor p=0.2671) (Fig 2.7a). In addition, FolRβ imaging of activated 

macrophages showed no difference between Btk-sufficient and –deficient 

recipient mice (p=0.5807), indicating that loss of macrophage-intrinsic BTK-

mediated signaling did not significantly affect activation and recruitment by 

transferred autoantibodies (Fig 2.7b). This finding contrasted previous studies 

showing that BTK-inhibitors prevent arthritis in serum transfer models, including 

one that used K/BxN serum (218, 219, 252). We therefore assessed the effects 

of BTK-deficiency on innate cell numbers and function in spleens from Btk-

sufficient and Btk-deficient NOD that served as recipients for these studies. Cell 

subsets were determined by flow cytometry, and quantified by percent (Fig 2.7c, 

left) and total cell number (Fig 2.7c, right). We found that the percentages and 

numbers of splenic neutrophils were significantly increased in Btk-deficient mice 

(p=0.0063, p=0.0211). Btk-deficiency also resulted in a significant increase in 

percentage of DCs (p=0.0061), and a trend of higher DC numbers (p=0.1540). In 

addition, Btk-deficient DCs expressed significantly more CD11b than –sufficient 

controls (data not shown). Macrophage numbers did not differ, so we explored 



55 
 

the effects of BTK-deficiency on their function by generating bone marrow-

derived macrophages (BMDMs) and testing their ability to produce TNFα in 

response to stimulation via FcγRs and TLR4. As shown in Fig 2.7d, Btk-deficient 

BMDMs treated with K/BxN serum were able to produce TNFα above baseline 

(unstimulated=7.103±3.737, stimulated=27.605±4.705, p=0.0297), although the 

amount of TNFα trended lower than that of Btk-sufficient BMDM (43.182±11.819, 

p=0.0992). In addition, both Btk-deficient and Btk-sufficient BMDMs responded 

robustly to LPS, and did not differ in their ability to produce large amounts of 

TNFα (Btk-sufficient=7838±176.5, Btk-deficient=6819±866.4, p=0.1744) (Fig 

2.7d, right), Thus, Btk-deficiency in this model increases neutrophil numbers and 

causes a slight trend downward in TNFα production by macrophages in response 

to K/BxN that is not sufficient to protect mice against STA. Importantly, these 

imaging studies also suggest that BTK-deficiency does not interfere significantly 

with the ability of activated macrophages to invade target tissues in response to 

autoantibodies.   

 

Discussion 

 

 BTK is a promising therapeutic target in autoimmune arthritis, but its 

mechanisms of action in this disease are not well-defined. My work presents the 

first detailed investigation of the role of BTK using genetic deletion in both 

spontaneous autoimmune and immune complex-mediated models of arthritis, 

and is summarized as a graphical abstract in Figure 2.8. These data demonstrate  
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Figure 2.8: Graphical abstract for the role of Bruton’s tyrosine kinase in 
autoimmune and immune complex-mediated arthritis.  
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that Btk-deficiency in the K/BxN model significantly inhibits development of 

spontaneous arthritis, which depends upon both innate and adaptive immunity 

(Fig 2.1). To understand the mechanisms responsible, I undertook a detailed 

study of immune cells in this model. K/BxN B cells are extremely sensitive to BTK 

loss, suffering a 74% reduction in numbers (Figures 2.2 and 2.3), and T cells 

show mild reductions, despite the fact that they do not express BTK (Figure 2.2). 

Dendritic cell numbers are also somewhat reduced, while other components of 

the innate system, particularly macrophages, are not (Fig 2.2). BTK-deficiency 

strongly inhibits GC development, with large reductions in GC B cells and milder 

effects on GC Tfh, resulting in loss of anti-GPI autoantibodies that initiate 

autoimmune arthritis (Fig 2.4). Therefore, BTK is clearly implicated as supporting 

adaptive immune drivers of autoimmune arthritis, possibly through its role in 

autoreactive B cell development.  

The effect of BTK-deficiency on B cells in this model is profound, much 

more so than in any previous study using non-transgenic B cells. BTK is a well-

defined cytosolic component of the signalosome that propagates signals from the 

BCR (140, 153, 160, 253-256). Btk-deficiency reduces B cell numbers by 50% in 

C57BL/6 mice and by 18% in NOD mice (137, 140). Therefore, the extreme 74% 

reduction in overall B cell numbers in Btk-deficient K/BxN is striking. Analysis of 

K/BxN B cell subsets shows increased percentages of transitional cells in Btk-

deficient mice, indicating a block at both T1 and T2 stages. While the T2 block is 

classically found in other models, the T1 block is usually far less pronounced 

(137, 140). Furthermore, unlike Btk-deficient C57BL/6 or NOD, B cells fail to 
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accumulate at blocked stages in Btk-deficient K/BxN. This suggests significant 

cell loss at transitional stages, with further loss at the mature FO stage, resulting 

in very low FO numbers. This pattern is similar to transgenic models of 

autoimmunity, including an anti-insulin B cell model we reported to have 95% 

reduction in the absence of BTK (187, 257). Equally striking is the profound 

reduction of the MZ compartment, which begins even at the pMZ stage. Though 

in most models the MZ develops independently of BTK, my lab recently 

published that NOD MZ B cells rely in part on BTK signals (175). Even in NOD 

mice, however, loss of BTK causes a block at the pMZ stage, with an increase in 

numbers, and only partial reduction of MZ B cells (137). Again, this unusual 

reliance of the MZ compartment in Btk-deficient K/BxN mice mirrors anti-insulin B 

cells (187). The only other endogenous B cells known to rely so heavily on BTK-

signaling are autoimmune-prone subsets such as B1a and anergic An1 (187). 

Further work is needed to determine the mechanism underlying this unusual 

pattern of B cell reduction in Btk-deficient K/BxN mice. 

Germinal centers are critical to immune responses. GC B cells are primary 

responders in infection or autoimmunity, proliferating, undergoing somatic 

hypermutation and class switch to IgG, and then transforming into antibody-

producing plasma cells. BTK is known to contribute to GC formation (9, 258), so 

reduction of GC B cells in Btk-deficient K/BxN is unsurprising. BTK is not present 

in T cells, and indeed, those that reached the Tfh and GC Tfh stages did not 

exhibit loss of activation marker or transcription factor expression, as shown by 

quantification of BCL6, CD44, and ICOS (Figure 2.4). However, GC Tfh and B 
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cells are reciprocally dependent. T-B interactions at multiple stages are 

necessary for Tfh development, including cognate interactions at the T-B border 

and non-cognate interactions that facilitate Tfh motility and follicular migration 

(249). Therefore we conclude that lack of available GC B cells in Btk-deficient 

mice removed cellular stimuli necessary for proper TfH development. GC failure 

in turn blocked development of anti-GPI autoantibodies (Figure 2.4), consistent 

with loss of autoantibodies in other Btk-deficient models (8, 137, 259). Anti-GPI 

antibody is preferentially targeted, as BTK-deficiency resulted in an 83% 

decrease in anti-GPI IgG, but only 16% in total IgG. This reflects similar findings 

in models of lupus and T1D, and further supports the conclusion that loss of BTK 

profoundly affects autoreactive B cells (8, 137, 210).  

In contrast to previous reports using pharmacologic inhibition (217-219), 

BTK-contributions to innate mediators of arthritis are not apparent in this 

genetically deficient model. While FolRβ imaging shows reduced synovial 

macrophage infiltration in the spontaneous model (Figure 2.5), this is likely 

secondary to reduced autoantibodies, since there is no difference in clinical score 

or FolRβ outcomes when autoantibodies are supplied exogenously in the serum 

transfer model (Figure 2.6). The most obvious way to interpret this difference in 

outcomes is to attribute the efficacy of BTK-inhibitors to off-target effects. Most 

recent studies regarding the role of BTK in autoimmune arthritis have focused on 

its role in FcγR stimulated phagocytosis and cytokine production by 

macrophages (138, 215-219, 260) and have relied solely on BTK inhibitors, 

rather than genetic deletion, to make their conclusions. However, kinase-specific 
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inhibition is difficult. For example, ibrutinib also binds many other kinases, 

including Tec, Jak3 and, importantly, the T cell signaling protein ITK, with known 

effects on T cell function (220). LFM-A13, used in well-cited macrophage studies, 

also interacts with Tec (138, 221). Our studies indicate that BTK-deficiency may 

blunt, but does not eliminate, macrophage inflammatory responses as measured 

by TNFα production by BMDCs in response to K/BxN serum autoantibodies 

(Figure 2.6D). The fact that macrophages also respond very dramatically to TLR4 

stimulation, regardless of BTK status, further supports the idea that BTK may 

play only a minor role in macrophage driven inflammation. My findings are the 

first to use BTK-deficiency, rather than a small molecular inhibitor, to study the 

role of this protein in innate cell contributions to arthritis, and demonstrate the 

need for further studies, which will be discussed in Chapter IV of this dissertation. 

Overall, macrophage and other innate cell numbers were mostly stable, 

with the exception of dendritic cells, which were decreased in Btk-deficient 

K/BxNs. This is not the case in Btk-deficient non-diabetic NODs (Figure 2.6C), 

suggesting that changes in dendritic cell numbers are not due to a developmental 

block. Rather, the ongoing immune reaction in Btk-sufficient K/BxN most likely 

drives expansion of DCs needed to facilitate antigen-presentation in the T cell 

zone. Alternatively, loss of BTK-signaling from innate receptors in DCs may 

contribute indirectly to failure of adaptive responses. Interestingly, previous 

studies using C57BL/6 mice have shown that Btk-deficient DCs have reduced IL-

10 production, and exhibit increased T cell stimulatory activity (261). Thus, the 

role of BTK in DC contributions to autoimmune arthritis requires additional 
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investigation, and would benefit from studies using DC-targeted deletion in the 

future. Of note, the increase in neutrophil numbers found in Btk-deficient NOD 

recipients of K/BxN serum do not necessarily reflect increased functional 

contributions to inflammation in that model. Btk-deficient neutrophils in xid and 

C57BL/6 mouse models showed decreased E-selectin mediated recruitment 

(222) and decreased granules per cell (223). Interestingly, this contrasts 

neutrophils from human XLA patients that have showed no defects in effector 

function (262), and even had increased production of reactive oxygen species 

(263). Future studies are necessary to resolve these conflicts in the literature.  

This work rigorously defines the contributions of BTK to autoimmune 

arthritis, using spontaneous and serum-transfer models to separate the function 

of BTK in B lymphocytes versus innate immune cells. It further supports the role 

of BTK in the development of autoreactive B cells and reveals that BTK may 

have both stimulatory and regulatory functions in the innate immune system. The 

findings support development of BTK-inhibitors for RA but demonstrate the need 

to more completely understand their effects on the immune system.  

 

This chapter is adapted from previously published work (264). 
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CHAPTER III 

THE ROLE OF BRUTON’S TYROSINE KINASE IN THE SURVIVAL AND 
FUNCTION OF AUTOREACTIVE B LYMPHOCYTES 

Abstract 

 Bruton’s tyrosine kinase (BTK) is a crucial regulator in the development of 

B cells, where it propagates signals from the B cell receptor (BCR). The innate-

like autoreactive-prone B1 compartment, endogenous autoreactive An1s, and 

transgenic anti-insulin B cells are all dependent upon BTK for their development, 

and are absent in Btk-deficient mice. However, the requirement for BTK at 

specific stages of development, survival and function has not been defined. A 

loxP-flanked Btk mouse model was developed and paired with tamoxifen-

inducible Cre-ERT2, for studies of the role of BTK in the survival and function of 

mature B lymphocytes. Surprisingly, tamoxifen-induced excision of BTK in 

mature mice did not eliminate, or even reduce, B1 cell populations, indicating that 

it is not required for their survival once development has occurred. B1 cells are 

important for early, T-independent responses to pathogens and for ongoing 

production of natural IgM. Natural IgM remained present in serum up to five 

weeks after BTK deletion, indicating that this crucial function of B1 cells is BTK-

independent. In contrast, BTK excision rendered mice unable to respond to T-

independent type II immunization, mirroring phenotype of Btknull mice that lack B1 

cells. Additionally, inducible BTK knockdown revealed that transgenic anti-insulin 

B cells do not rely on BTK for their survival or internalization of antigen. These 

findings have implications for the use of BTK-inhibitors currently in clinical trials 

for treatment of autoimmunity.  
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Introduction 

 

Bruton’s tyrosine kinase (BTK) is a tec-family kinase expressed in B 

lymphocytes and in innate immune cells. BTK plays a role in signaling through 

the B cell receptor (BCR), as well as through innate receptors such as the Fcγ 

receptor (FcγR) and various toll like receptors (TLRs) (133-135, 137, 140, 160). 

The role of BTK has been mostly studied in B lymphocytes, where it is known to 

support the development of innate-like B1 cells, the anergic autoreactive An1 

subset, and transgenic anti-insulin and anti-DNA B cells (140, 187, 265). The 

An1 and B1 cell subsets are endogenous autoreactive-prone B cells, while 

transgenic anti-insulin B cells allow the opportunity to study fixed autoreactive B 

cell specificity. Signaling through the B cell receptor (BCR) is regulated differently 

in autoreactive-prone B cells as compared to their non-autoreactive, naïve 

counterparts. B1 and An1 cells do not mobilize calcium or proliferate in response 

to BCR crosslinking, but have higher basal levels of cytoplasmic free calcium 

(188, 192, 193). These cells also exhibit constitutive ERK (extracellular signal-

related kinase) phosphorylation (194, 195). An1 cells and B1s show an increase 

in negative mediators of BCR signaling, implying that though positive signals like 

calcium levels and ERK phosphorylation are increased, these signals are 

controlled by negative regulation (82, 196). Less is known about BCR signaling in 

anti-insulin B cells, but their anergic phenotype and dependence on BTK leads to 

the conclusion that BCR signaling in this model may be dysregulated similarly to 

An1 B cells and other anergic models (53, 187).    
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Despite their similarities in BCR signaling, it is clear that An1 and B1 are 

discrete B cell subsets. An1 cells express CD23, which is the low affinity IgE 

receptor and a marker for B cell maturity, but also express the immaturity marker 

CD93 and low levels of surface IgM (43). They are continually generated from 

the bone marrow, and are short-lived (82, 83). In contrast, B1 cells are initially 

generated in fetal liver and found primarily in peritoneal and pleural cavities 

(266). They exhibit slow turnover, are self-renewing, and produce polyreactive 

natural IgM that is germline-configured to recognize bacterial antigens but can 

also cross-react with autoantigens (94). B1 cells quickly respond to antigen and 

are therefore well-suited for early, T-independent responses to infection (105, 

112). B1 cells are absent in BTK deficient mice, which also lack natural IgM (267) 

and are unable to respond to T-independent immunization due to the loss of this 

B cell population (268-270). Humans are reported to have B cell subsets that are 

similar to both An1 and B1 cells. An1s in humans are reported to be increased in 

autoimmune disease (41, 84). Polyreactive IgM-producing B cells similar to B1 

cells are found in umbilical cord and adult peripheral blood and characterized by 

expression of CD20, CD27, and CD43 (126-128). As BTK inhibition becomes a 

more common treatment for B cell lymphomas and a proposed target in 

autoimmune disease, more information is needed on the impact of BTK loss on 

the survival and function of mature B cell subsets.   

The reliance of autoreactive-prone subsets such as An1, B1 and anti-

insulin B cells upon BTK for development has been well studied, but the lack of 

an inducible knockout model has rendered BTK’s role in their survival and 
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function unclear. One study used an inhibitor to study BTK’s role in mature B cell 

subsets (271); however, this inhibitor also inhibits TEC and BMX and has a half-

life of only five hours. Discrete study of the specific role of BTK requires a genetic 

knock-down model. Our lab has developed the first Btkflox model, which we have 

paired with a tamoxifen-inducible Cre (CreERT2), achieving 95% knockdown of 

the protein. This model shows that BTK is not required for the survival of the B1 

subset or the production of natural IgM, but is required for their response to a T-

independent polysaccharide antigen. Additionally, the loss of BTK from mature 

anti-insulin B cells does not result in B cell loss and does not affect the ability to 

internalize antigen. In contrast, An1 B cells are swiftly lost after BTK knockdown, 

though this effect may be due to their short half-life. These data demonstrate that 

BTK has differing roles in autoreactive B cell development, survival, and function, 

and indicates that B1 and anti-insulin B cells undergo a positive selection step in 

development for which BTK is required.   

 

Materials and Methods 

 

Mice and Cre-ERT2 induction.  

Btkflox mice were developed in the lab of Wasif Khan (University of Miami, 

Department of Microbiology and Immunology). Cre-ERT2 mice were purchased 

from the Jackson Laboratory (B6.Cg-Tg(UBC-cre/ERT2)1Ejb/1J). Btknull B6 mice 

were generated as previously described (140). BCR transgenic mice express 

anti-insulin VDJH-125, targeted to JH loci, as described in (234), and a non-
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targeted Vκ125 described in (53). Mice were bred and maintained under specific 

pathogen free conditions. To induce Cre activation, mice were injected 

interperitoneally (I.P.) on days -2, -1, and 0 with 3mg of tamoxifen-free base 

(Sigma) in 200μL of safflower oil, or vehicle alone. All studies have been 

approved by the Vanderbilt University Institutional Animal Care and Use 

Committee.  

 

Flow cytometry and antibodies.  

Single-cell suspensions of spleen, bone marrow, and peritoneal cavity were 

obtained as previously described (137) and stained using fluorochrome or biotin-

conjugated antibodies against B220 (RA3-6B2), IgM (μ-chain, Life Technology), 

IgMb (AF6-78), IgD (11-26c.2a), CD5 (53-7.3), CD11b (M1/70), CD11c (HL3), 

F4/80 (BM8, eBioscience), Ly6G (IA8), CD19 (ID3), CD21 (7G6), CD23 (B3B4), 

CD93 (AA4.1), CD86 (GL1), CD44 (IM7), CD9 (KMC8), CD43 (S7) and/or CD138 

(281-2). Unless otherwise stated, antibodies were procured from BD 

Biosciences. Biotin-conjugated antibodies were secondarily stained with 

streptavidin-conjugated fluorochromes and dead cells were excluded using 

fixable viability dye 455UV or eFluor 450 (eBioscience) or Alexa Fluor 700-

conjugated succinimidyl ester (Life Technologies). For intracellular staining, cells 

were fixed using 1.6% paraformaldehyde (Electron Microscopy Sciences), then 

permeabilized with a solution of 0.05% Triton-X-100 (SigmaUltra) and stained 

with rabbit anti-mouse BTK (D3H5, Cell Signaling), followed by a fluorochrome-

conjugated anti-Rabbit IgG (F’ab2) secondary (Cell Signaling). Samples were 
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collected on an LSRII flow cytometer (BD Biosciences) and data analyzed using 

FlowJo software (TreeStar).  

 

B cell proliferation.  

Splenocytes were stained with CFSE (Life Technologies) or CellTrace Violet (Life 

Technologies) according to manufacturer’s instructions, and then cultured at 

1x106 cells/mL for three days in cRPMI alone, stimulated with 5μg/mL goat anti-

mouse IgM (μ-chain specific, Jackson Immunoresearch) or stimulated with 

1μg/mL lipopolysaccharide (LPS, Dibco). Following incubation, cells were 

harvested and analyzed by flow cytometry.  

 

Immunization studies.  

Five days after tamoxifen injections, mice were immunized I.P. with 50μg of 

TNP37-Ficoll (Biosearch Technologies) diluted in 200μL sterile PBS or mock-

immunized with PBS alone. Blood for serum Ab analysis was collected one day 

pre- and five days post-immunization. For TNP-Ficoll specific B cell analysis, 

cells were isolated from spleen or peritoneal lavage five days post-immunization 

and incubated with 20μg/mL of TNP65-Ficoll-Fluorescein in PBS containing 2% 

fetal calf serum, then subsequently stained for analysis by flow cytometry.   

 

ELISAs. 

 Serum anti-phosphoryl-choline (PC) IgM, anti-TNP-Ficoll IgM, and anti-TNP-

Ficoll IgG were measured. 96-well flat-bottom NUNC plates were coated with 
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1μg/mL of PC-BSA (Biosearch Technologies) or TNP37-Ficoll (Biosearch 

Technologies) in borate-buffered saline or carbonate buffer overnight at 4ºC. 

Plates were blocked with 1% BSA in PBS+0.05% Tween-20 (PBST). For anti-PC 

IgM ELISA, samples were serially diluted starting at 1:10. For anti-TNP IgM and 

IgG, samples were diluted at 1:5000. IgM and IgG antibodies were detected 

using goat anti-mouse IgM or IgG conjugated to alkaline phosphatase (AP) 

(Southern Biotech). p-Nitorphenyl phosphate (PNPP) was added and the plate 

read on a Microplate Autoreader (Bio-Tek Instruments) at O.D. 405nm. Plates 

were washed in between steps using PBST.   

 

BCR-internalization assay.  

Antigen internalization assay was performed as previously described (51). 

Briefly, freshly isolated splenocytes were incubated on ice for 30min with 

biotinylated insulin, and then washed to remove excess. Then, cells were 

incubated in complete RPMI (Gibco) for 0-30 minutes, at which point the reaction 

was stopped with cold buffer containing 0.1% azide. Cells were then stained with 

streptavidin-fluorochrome and appropriate antibodies, and the relative surface 

level of biotinylated insulin quantified by the division of mean fluorescent intensity 

(MFI) at each time point by the MFI at t=0.  

 

Statistical Analysis.  

Statistics were performed using GraphPad Prism version 6.00 for Windows, 

(GraphPad Software, La Jolla California USA). P-values were calculated using  
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Figure 3.1: Inducible knockdown of BTK in Btkflox/Cre-ERT2 is stably 
achieved in splenic B cells. (A) Representative flow plots for Btkflox (left), 
Btkflox/Cre-ERT2 (middle) and Btknull (right) showing splenic B cells five days after 
tamoxifen injections. Splenic B cells are designated as B220+IgM+.  Cells are pre-
gated as single live lymphocytes. (B, left) Representative histogram of B cell BTK 
expression five days after treatment. Shown are a representative Btkflox (black, 
solid), Cre-ERT2 (black, dashed), Btkflox/Cre-ERT2 (red), Btknull (blue), and isotype 
control (gray). (B, right) Percent Btk positive splenic B cells. Shown in white are 
Btkflox (solid, n=24), Cre-ERT2 (diagonal pattern, n=13), in light gray vehicle 
control (n=5), in gray Btkflox/Cre-ERT2 after five days (solid, n=13), two weeks 
(diagonal pattern, n=5), or five weeks (horizontal pattern, n=6) and in black, 
Btknull (n=15). (C) Unstimulated and response to 1μg/mL LPS (left) or 5μg/mL of 
anti-IgM are shown for live CD19+B220+ B cells of Btkflox (white, n=4), Btkflox/Cre-
ERT2 (gray, n=6), and Btknull (black, n=4), quantified by percent proliferating of 
CD19+B220+. *p<0.05, ***p<0.001 as calculated by one-way or two-way ANOVA 
compared to Btkflox. 
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one-way or two-way ANOVAs, or Kruskal-Wallice with Dunn’s multiple 

comparison test, as appropriate. 

 

Results 

 

Cre activation in mature Btkflox/Cre-ERT2 mice depletes BTK at all stages of B cell 

development.   

To determine the role of BTK in mature cells, I employed a novel LoxP-

flanked Btk (Btkflox) model in tandem with a tamoxifen-inducible Cre (Cre-ERT2). 

Induction of the Cre-ERT2 by administration of tamoxifen in Btkflox/Cre-ERT2 mice 

resulted in successful knockdown of BTK within five days (90.39%±4.9% splenic 

B cells were BTK-deficient, p<0.001, Figure 3.1B). This knockdown was stable, 

as B cells from tamoxifen-treated Btkflox/Cre-ERT2 mice remained BTK-deficient 

five weeks later (86.82%±5.96% BTK-negative B cells, p<0.001, Figure 3.1B).  

Analysis of bone marrow showed successful protein deletion begins at the 

earliest stages of B cell development (Figure 3.2A, 3.2B).  BTK was successfully 

knocked down in pre- and pro- (91.03%±12.68%, p<0.001) and immature B cells 

(88.79%±12.38%, p<0.001), as well as in mature recirculating B cells 

(89.20%±4.66%, p<0.001), and all bone marrow B cell subsets remained largely 

BTK-negative even up to five weeks after injection (Figure 3.2B). As expected, 

treated Btkflox/Cre-ERT2 mice also exhibited stable knockdown in macrophages 

and conventional dendritic cells in the spleen (Figure 3.3). These data 

demonstrate the efficacy and the stability of the inducible BTK knockdown. Of  
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Figure 3.2: Inducible knockdown of BTK in Btkflox/Cre-ERT2 is stably 
achieved in bone marrow B cells. (A) Representative flow plots for Btkflox (left), 
Btkflox/Cre-ERT2 (middle) and Btknull (right) showing bone marrow B cells, five 
days after tamoxifen injections. Pro/pre-B, immature, and mature recirculating 
bone marrow B cells are gated by expression of CD19, IgM, and CD23.  Cells 
are pre-gated as single live lymphocytes. (B, top) Representative histograms of B 
cell BTK expression five days after treatment. Shown are a representative Btkflox 

(black, solid), Cre-ERT2 (black, dashed), Btkflox/Cre-ERT2 (red), Btknull (blue), and 
isotype control (gray). (B, bottom) Percent BTK positive pro/pre B cells (B, left), 
immature B cells (B, middle) or mature recirculating B cells (B, right). Shown in 
white are Btkflox (solid, n=16), Cre-ERT2 (diagonal pattern, n=9), in light gray 
vehicle control (n=4), in gray Btkflox/Cre-ERT2 after five days (solid, n=8), two 
weeks (diagonal pattern, n=5), or five weeks (horizontal pattern, n=3) and in 
black, Btknull (n=11). ***p<0.001 as calculated by one-way or two-way ANOVA 
compared to Btkflox.  
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Figure 3.3: Inducible knockdown of BTK in Btkflox/Cre-ERT2 is stably 
achieved in splenic innate cells. (A) Representative flow plots for Btkflox (left), 
Btkflox/Cre-ERT2 (middle) and Btknull (right) showing splenic macrophages 
(CD11b+CD11c-F4/80+) , neutrophils (CD11b+CD11c-Ly6G+), and conventional 
dendritic cells (cDCs) (CD11b+CD11c+), five days after tamoxifen injections. 
Cells are pre-gated as single live cells. (B, top) Representative histograms of 
macrophage (left), neutrophil (middle) and cDC (right) BTK expression five days 
after treatment. Shown are a representative Btkflox (black, solid), Cre-ERT2 (black, 
dashed), Btkflox/Cre-ERT2 (red), Btknull (blue), and isotype control (gray). (B, 
bottom) Percent BTK positive macrophages (left) and cDCs (right). Shown in 
white are Btkflox (solid, n=18), and Cre-ERT2 (diagonal pattern, n=8), in light gray 
Btkflox/Cre-ERT2 vehicle controls (horizontal pattern, n=3), in gray Btkflox/Cre-ERT2  

after five days (solid, n=12), two weeks (diagonal pattern, n=5), or five weeks 
(horizontal pattern, n=3) and in black, Btknull (n=13). ***p<0.001 as calculated by 
one-way ANOVA compared to Btkflox.  
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note, one out of four vehicle treated female control mice did exhibit a BTK-

negative B cell population in the bone marrow, resulting in the appearance of a 

slight, but significant, loss of BTK in immature B cells (42.75%±12.36% BTK 

negative) (p=0.049). This mouse also exhibited a slight loss of BTK in pro- and 

pre- B cells, but the trend was less evident in the spleen. This confirms previous 

findings of others that endogenous estrogen can induce some degree of 

nonspecific activation in the CreERT2 system. 

 

Proliferation is decreased in splenic B cells after BTK knockdown.  

To confirm that loss of BTK results in a defective B cell response to 

stimuli, I harvested spleens from Btkflox, Btkflox/Cre-ERT2, and Btknull five days 

after tamoxifen injection and stimulated B cells with anti-IgM or LPS (Figure 

3.1C).  Btkflox/Cre-ERT2 B cells showed blunted proliferation after BTK deletion 

compared with Btkflox control B cells in response to LPS (17.95±3.39%  

proliferation vs. 43.68%±7.28% proliferation, p<0.001) or anti-IgM 

(20.49%±9.82% proliferation vs. 48.78%±13.34% proliferation, p<0.001). In fact, 

BTK knockdown was functionally equivalent to Btk-deficiency in Btknull B cells in 

response to LPS (27.95%±11.98% proliferation, p=0.14), though still slightly 

increased as compared to Btknull B cells in response to anti-IgM (7.77%±6.34% 

proliferation, p=0.04). These data confirm that BTK deletion after cellular 

maturation results in a functional defect in proliferation response to LPS and anti-

IgM that is similar to lifelong Btk-deficiency. 

 

 



74 
 

 

Figure 3.4: Induced BTK knockdown results in transitional 2 developmental 
block. (A) Representative flow plots for Btkflox (left), Btkflox/Cre-ERT2 (middle) and 
Btknull (right) splenic B cells, pre-gated as B220+IgM+ single live lymphocytes, five 
days after tamoxifen injection. Transitional 1 (T1), transitional 2 (T2), pre-
marginal zone (pMZ), marginal zone (MZ) and follicular (FO) B cell subsets are 
determined by expression of IgM, IgD, CD21 and CD23. (B-F) B cell subsets are 
quantified by percent of B220+IgM+ (top) and total cell number (bottom) for Btkflox 

(white, n=17), Btkflox/Cre-ERT2 5 days (gray, n=8), 2 weeks (diagonal pattern, 
n=5), or 5 weeks (horizontal pattern, n=6) post tamoxifen injection, or Btknull 

(black, n=12). *p<0.05, **p<0.01, ***p<0.001 as calculated by one-way ANOVA 
compared to Btkflox.  
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BTK knockdown results in immediate developmental block at the late transitional 

(T2) stage, but requires weeks to reduce the follicular compartment.  

It is well established that the conventional Btknull genetic mouse models 

have an increased percentage of B cells at the transitional 2 (T2) stage of 

development, with a concurrent loss of follicular (FO) B cells (132, 140). 

However, it is possible that deletion of BTK from fully mature B cells would lead 

to a different outcome. Therefore B cell subsets were assessed five days, two 

weeks, and five weeks after BTK knockdown. Transitional 1 (T1), T2, pre-

marginal zone (pMZ), marginal zone (MZ) and FO B cells were determined by 

expression of IgM, IgD, CD21, and CD23, as shown in Figure 3.4A. The most 

immediate effect of BTK knockdown was increased surface IgM expression in 

Btkflox/Cre-ERT2 five days post injection, leading to a significant increase in the 

percentage of T2 B cells (21.35%±5.25%) as compared to Btkflox controls  

(10.71%±2.78%) (p=0.001). This was accompanied by a reciprocal trend toward 

decreased FO B cell proportions, but did not reduce their numbers. The T2 

developmental block with concurrent loss of follicular B cells continued to emerge 

over the next five weeks, finally resulting in significantly decreased FO B cell 

numbers (2.64e6±2.07e6)  compared to Btkflox controls (9.20e6±5.13e6) 

(p<0.001). As in the Btknull B6 mouse, there were no changes in cell numbers of 

T1 (Figure 3.4B), pMZ (Figure 3.4D) or MZ B cells (Figure 3.4E). Interestingly, 

this model shows no immediate loss of FO B cells at the time of BTK knockdown.  

Rather, follicular B cell similarity to Btknull models emerges five weeks later, after 

B cell turnover has occurred. This shows for the first time that the phenotype  
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Figure 3.5: The autoreactive, anergic An1 B cell subset is depleted in 
Btkflox/Cre-ERT2 mice five days after tamoxifen treatment. (A) Representative 
flow plots for Btkflox (left), Btkflox/Cre-ERT2 (middle) and Btknull (right) spleen B 
cells, pre-gated as B220+IgM+ single live lymphocytes, five days after tamoxifen 
treatment. Anergic An1 B cells are determined by expression of AA4.1, IgM, and 
CD23. (B) An1 B cells are quantified by % of B220+IgM+ (top) and total cell 
number (bottom) for Btkflox  (circles, n=7), Btkflox/Cre-ERT2 5 days after tamoxifen 
injection (squares, n=8), or Btknull (triangles, n=5). *p<0.05 as calculated by 
Kruskal-Wallace with Dunn’s multiple comparison test.  
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seen in BTK-deficient B cells is due to developmental factors, and supports the 

idea that murine B cells require BTK to mature through the transitional stages, 

but is not required for survival of mature FO B cells. 

 

An1 B cells are depleted following BTK knockdown.  

An1 B cells are an anergic, autoreactive B cell subset (82) that my lab and 

others have found to be strikingly reduced in Btk-deficient mice (43, 187). Btkflox, 

Btkflox/Cre-ERT2, and Btknull An1 B cells were assessed in the spleen five days 

after tamoxifen treatment, by expression of B220, AA4.1, IgM, and CD23 (Figure 

3.5A). As shown in Figure 3.5B, An1 B cells in Btkflox/Cre-ERT2 animals were 

significantly decreased in both percentage (0.56%±0.10%) and number (8.67e4 

±3.29e4) as compared to Btkflox controls’ percentage (1.72%±0.437%)(p=0.012)  

and number (2.5e5±7.2e4)( p=0.036). An1 B cells are known to have a short life 

cycle (43). Therefore, it is unclear if this loss of cell numbers is due to a block in 

development or a reliance on BTK for An1 B cell survival. Regardless, these data 

show that An1 B cells are rapidly depleted following BTK knockdown.  

 

B1 cells in the peritoneal cavity do not require BTK for survival.  

The innate-like, autoreactive-prone B1 cell subset is known to be 

important for the production of natural IgM (94, 95) and response to 

polysaccharide antigens (105, 112, 113) and is absent in Btknull models (267). To 

determine if BTK is required for development or survival of the B1 cell subset, I 

induced BTK knockdown and assessed B1a and B1b cells in the peritoneal  
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Figure 3.6: The survival of B1a and B1b cells does not depend upon BTK. 
(A) Representative flow plots for Btkflox (left), Btkflox/Cre-ERT2 (middle) and Btknull 
(right) peritoneal cells, pre-gated as Ly6G-, single live lymphocytes. B1a, B1b, 
and B2 cells are determined by expression of IgM, CD5, B220, and CD11b. (B) 
Btk knockdown is reported as % Btk positive for B1a (top) and B1b (bottom) cells 
of genotypes Btkflox (white), Btkflox/Cre-ERT2 5 days (gray) or 5 weeks (horizontal 
pattern) after tamoxifen injection, or Btknull (black). (C-D) B1a (left) and B1b (right) 
cells of Btkflox (circles, n=9-10), Btkflox/Cre-ERT2 (squares, n=9-12) and Btknull 
(triangles, n=5-8), five days (C) or five weeks (D) post injection are quantified by 
% of IgM+ (top) and total cell number (bottom). *p<0.05, **p<0.01, ***p<0.001 as 
calculated by Kruskal-Wallace with Dunn’s multiple comparison test. 
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Figure 3.7: B1a cells are present in the spleen and bone marrow five weeks 
after BTK knockdown. (A, C) Representative gating strategy for Btkflox (left), 
Btkflox/Cre-ERT2 (middle) and Btknull (right) splenic (A) or bone marrow (C) B1a 
cells. Cells are gated as single live lymphocytes. Splenic B1a (A) are identified by 
expression of IgM and CD5, and by low B220 expression. Bone marrow B1a (C) 
are pre-gated as IgM+CD19+, then further identified by expression of CD43, CD9, 
and CD5. (B, D) B1a cells of Btkflox (circles, n=4), Btkflox/Cre-ERT2 (squares, n=4) 
and Btknull (triangles, n=3) are quantified by percent of IgM+ (top) or total cell 
number (bottom) in the spleen (B) and bone marrow (D) five weeks after 
tamoxifen injection. p values are calculated by Kruskal-Wallace with Dunn’s 
multiple comparison test.  
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lavage by expression of IgM, CD5, B220, and CD11b (Figure 3.6A). Knockdown 

was successful and stable up to five weeks after injections in both subsets 

(Figure 3.6B). Five days after tamoxifen treatment, B1a cell percentages were 

not significantly changed, forming 25.13%±5.68% of total IgM+ cells in treated 

Btkflox/Cre-ERT2, and 30.27%±9.58% in Btkflox controls (p=0.38). B1b cell 

percentages also remained unchanged, forming 13.91%±3.03% of IgM+ cells in 

Btkflox/Cre-ERT2, and 16.38%±5.61% in Btkflox controls (p=0.33) (Figure 3.6C). To 

determine if this effect persisted over time, I assessed B1a and B1b cells in the 

peritoneal lavage five weeks after injection (Figure 3.6D). Even at this later 

timepoint, Btkflox/Cre-ERT2 animals retained similar B1a cell numbers 

(3.57e4±1.87e4) in comparison to Btkflox controls (2.69e4±1.35e4) (p>0.999). 

B1b numbers were also maintained, as Btkflox/Cre-ERT2 lavages contained 

4.01e4±3.14e4 B1b cells and Btkflox control lavages contained 2.45e4±2.51e4 

(p>0.397). Though numbers of B1a and B1b cells were decreased at five weeks 

compared to five days after injection, this decrease was irrespective of genotype 

and most likely can be traced to the effects of the injection itself. These data 

show that B1a and B1b cells do not depend on the presence of BTK for survival, 

despite its crucial developmental contributions. 

 

B1 cells persist in the spleen and bone marrow after long-term BTK knockdown. 

 Though B1s are the major B cell subset present in the peritoneal cavity, it 

is B1as in the spleen and bone marrow that are theorized to produce the majority 

of natural IgM (95, 96). Therefore, I assessed splenic and bone marrow B1as five  
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Figure 3.8: Production of natural IgM is independent of BTK. (A) Anti-
phosphocholine (PC) IgM is measured by ELISA for Btkflox (black, n-7), 
Btkflox/Cre-ERT2 five days after treatment (red, solid line, n=4), Btkflox/Cre-ERT2 
five weeks after treatment (red, dashed line, n=3) and Btknull (blue, n=4). 
Statistics were performed using a 2-way ANOVA and listed in Table 3.1.  



82 
 

  Btkflox Btkflox/Cre-
ERT2 5 day 

Btkflox/Cre-
ERT2 5 week Btknull 

1:10 

Btkflox X NS NS <0.001 
Btkflox/Cre-
ERT2 5 day X X NS <0.001 

Btkflox/Cre-
ERT2 5 week X X X 0.0012 

1:20 

Btkflox X NS NS <0.001 
Btkflox/Cre-
ERT2 5 day X X NS 0.0031 

Btkflox/Cre-
ERT2 5 week X X X 0.0073 

1:50 

Btkflox X NS NS 0.0215 
Btkflox/Cre-
ERT2 5 day X X NS NS 

Btkflox/Cre-
ERT2 5 week X X X NS 

 
Table 3.1: Statistics for Figure 3.8.  
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weeks after BTK knockdown to determine if these crucial subsets were 

preserved after BTK loss. B1a cells in the spleen were identified by high 

expression of IgM, low expression of B220, and as CD5-positive (Figure 3.7A). 

B1a cells were not significantly reduced in number in Btkflox/Cre-ERT2 

(2.64e4±1.54e4) as compared to Btkflox controls (3.56e4±1.92e4) (p>0.999). B1a 

cells were also maintained in the bone marrow, where they were identified as 

IgM+CD19+, then by expression of CD43, CD9, and CD5, all reported to be 

markers of B1a cells in the bone marrow niche (Figure 3.7C) (95). Btkflox/Cre-

ERT2 maintained 2.17e3±1.17e3 B1a cells, as compared to Btkflox controls at 

3.26e3±1.54e3 (p=0.788). These data further confirm that B1a cells do not 

require BTK for survival, and indicate that these producers of natural IgM may 

continue to function.  

 

Anti-phosphoryl-choline antibody production is not decreased by loss of BTK.  

B1 cells are thought to be responsible for up to 80% of natural IgM (94). 

Some of these are germline-encoded to recognize phosphoryl-choline, and are 

present in serum even in germ-free conditions (272-274). To determine whether 

B1 cells require BTK to produce natural IgM, ELISA was used to measure anti-

phosphoryl-choline (anti-PC) antibodies in serum after BTK knockdown (Figure 

3.8). There was no significant difference between anti-PC antibody levels in 

Btkflox serum (1.840±0.469) and Btkflox/Cre-ERT2 five days (1.436±0.732) or five 

weeks (1.315±0.631) after injections (p=0.4041, p=0.5257). As expected anti-PC 

antibody levels in Btknull animals were nearly undetectable (0.102±0.038) due to  
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Figure 3.9: The response to T-independent type II immunization is reliant 
upon BTK. (A) Anti-TNP IgM (left) and IgG (right) is measured pre- and post-
immunization by ELISA for Btkflox (circles, n=7-8), Btkflox/Cre-ERT2 (squares, n=7) 
and Btknull (triangles, n=6) animals. (B) Representative flow plots of anti-TNP B 
cells, gated by expression of IgM and binding to TNP-Ficoll-FITC, then by 
expression of B220 and CD19. Cells are pre-gated as single live lymphocytes. 
Mock (left) and TNP-Ficoll (right) immunized are shown of Btkflox (top), Btkflox/Cre-
ERT2 (middle) and Btknull (bottom). (C) Representative expression of CD138 (left) 
and CD44 (right) on TNP-B220+CD19+ (black), TNP+B220+CD19+ (blue), and 
TNP+B220-CD19-  (red) from TNP-ficoll immunized Btkflox (top), Btkflox/Cre-ERT2 
(middle) and Btknull (bottom). Cells are pre-gated as IgM+. (D) Total splenic cell 
numbers of TNP+B220+CD19+ (left), and TNP+B220-CD19- (right) from mock or 
TNP-Ficoll immunized Btkflox (circles, n=7-8), Btkflox/Cre-ERT2 (squares, n=6-7) 
and Btknull (triangles, n=6). (E) Total cell numbers of IgM+TNP+ cells in the 
peritoneal lavage of mock and TNP-Ficoll immunized mice. *p<0.05, **p<0.01, 
***p<0.001 as calculated by two-way ANOVA.  
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their lack of B1 cells. As the half-life of IgM in serum is estimated at 2 days (275), 

the continued level of anti-PC IgM shows that B1 cells continue to produce 

natural IgM even after BTK loss.  

 

Mice have reduced responses to T-independent type II immunization after BTK 

deletion.  

Btknull mice have long been known to have deficient T-independent type II 

(TI-II) immunization responses (268-270). In part, this deficiency is due to a lack 

of B1 cells, known to be critical for TI-II responses (105, 113). In addition, the 

increased frequency of immature T2 and loss of FO B cells in the spleen could 

play a role in the response of Btknull animals to T-independent immunization. 

Therefore, I injected Btkflox, Btkflox/Cre-ERT2, and Btknull mice five days after BTK 

knockdown with a mock injection of PBS or a TNP-Ficoll immunization.  Figure 

3.9A shows anti-TNP IgM (left) and IgG (right) from serum before and after 

immunization. Though immunized Btkflox/Cre-ERT2 mice did exhibit a significant 

IgM response to TNP-Ficoll immunization, with an O.D. of 0.292±0.172 after 

immunization compared to an O.D. of 0.028±0.014 before immunization 

(p=0.037), this post-immunization response was significantly decreased  

compared to the response of Btkflox control mice, which reached an anti-TNP-

Ficoll IgM O.D. of 0.986±0.304 (p<0.001). In addition, the Btkflox/Cre-ERT2 mice 

did not produce anti-TNP-ficoll IgG (0.104±0.066) after immunization, as 

compared to pre-immune control sera (0.017±0.008) (p=0.4134). B1 cells are 

known to be important contributors in the response to TNP-Ficoll immunization 
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(113). After BTK knockdown, Btkflox/Cre-ERT2 mice have significantly reduced 

ability to produce anti-TNP-Ficoll IgM as compared to Btk-sufficient controls, and 

cannot produce significant anti-TNP-Ficoll IgG, data which points to a loss of 

function in B1 cells after BTK loss. 

To further characterize the TI-II immunization response, I used FITC 

conjugated TNP-Ficoll to track antigen specific B cells in the spleen and 

peritoneal lavage. Figure 3.9B shows representative Btkflox (top), Btkflox/Cre-ERT2 

(middle), and Btknull (bottom) splenic anti-TNP-Ficoll B cells in mock-immunized 

(left) or TNP-Ficoll immunized (right) animals. In immunized Btkflox controls, I 

observed two TNP-Ficoll-specific IgM+ populations, one of which was 

CD19+B220+ and the other CD19-B220-. The IgM+TNP-Ficoll+CD19-B220- also 

exhibited higher levels of CD138 and CD44 (Figure 3.9C), leading to the 

conclusion that this population is most likely expanding plasmablasts. These 

TNP-Ficoll-specific plasmablasts were significantly increased in number in the 

spleens of immunized Btkflox mice (6.71e4±3.84e4) compared to mock-

immunized controls (2.61e3±1.38e3) (p<0.001). This contrasts Btkflox/Cre-ERT2 

mice after BTK deletion, in which the number of TNP-Ficoll-specific plasmablasts 

was not significantly increased in TNP-Ficoll immunized mice (1.64e4±1.08e4) 

compared to mock-immunized controls (5.33e3±5.67e3) (p=0.9925). 

Furthermore, these numbers were significantly reduced compared to immunized 

Btkflox control mice (p<0.001), indicating that BTK contributes to development of 

antigen-specific plasmablasts.  Non-plasmablast anti-TNP-Ficoll B cells 

(IgM+TNP-Ficoll+CD19+B220+) (Figure 3.9D, left) were not different in mock- 
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Figure 3.10: Anti-insulin B cell survival and antigen internalization are 
independent of BTK. (A) Representative gating of anti-insulin B cells from 
transgenic Btkflox (left), Btkflox/Cre-ERT2 (middle) and Btknull (right) mice. Anti-
insulin B cells are identified by expression of B220 and IgM, and by binding to 
fluorescent insulin. Cells are pre-gated as single live lymphocytes. (B, left) 
Representative histograms of BTK expression in B cells from transgenic Cre-
ERT2 (black) and Btkflox/Cre-ERT2 (red), a non-transgenic Btknull (blue), and an 
isotype control (gray). (B, right) The percent of B cells that are BTK positive in 
transgenic Cre-ERT2 (white, n=4), Btkflox/Cre-ERT2 (gray, n=6) and Btknull (black, 
n=6) mice, five days after tamoxifen treatment. (C) Anti-insulin B cells are 
quantified by % of total lymphocytes (left) or total cell number (right) in transgenic 
Cre-ERT2 (circles, n=4), Btkflox/Cre-ERT2 (squares, n=6) and Btknull (triangles, 
n=6) mice. D) The surface level of insulin is shown for BTK-positive (black, n=4) 
or BTK-negative (gray, n=4) anti-insulin B cells after 5, 10, or 30 minutes at 37°C, 
in comparison to the level of binding at t=0. ***p<0.001 as calculated by one-way 
ANOVA (B), **p<0.01, as calculated by Kruskal-Wallace with Dunn’s multiple 
comparison test (C). 
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immunized Btkflox (1.04e5±3.08e4), Btkflox/Cre-ERT2 (1.19e5±4.55e4), and Btknull 

(7.59e5±1.50e4), and none of the genotypes showed significantly increased 

numbers of this subset after TNP-Ficoll immunization.  

I also assessed IgM+TNP-Ficoll+ cells in the peritoneal lavage to directly 

evaluate contributions by B1 cells (Figure 3.9E). After TNP-ficoll immunization, 

Btkflox controls had significantly higher numbers of IgM+TNP-Ficoll+ cells 

(4.80e3±1.17e3) than Btkflox/Cre-ERT2 (3.12e3±1.25e3) (p=0.011). IgM+TNP-

Ficoll+ cell number in TNP-immunized Btkflox/Cre-ERT2 (3.12e3±1.25e3) was not 

different from that of mock-immunized Btkflox/Cre-ERT2 (3.513e3±8.038e2) 

(p=0.9998). Due to the significantly decreased IgM response, a lack of  IgG 

responses, a loss of plasmablasts in the spleen, and a failure to increase 

numbers of TNP-specific B cells in the peritoneal lavage, I conclude that though 

B1 cells do not require BTK for their survival (Figure 3.6), BTK is required for TI-II 

responses by both B1 and B2 cells.  

 

Anti-insulin B cells do not require BTK for survival or internalization of antigen.  

 Autoreactive B cells are critically important to the pathogenesis of type 1 

diabetes, where they drive disease by presenting antigen and activating 

autoreactive T cells (3-5). The anti-insulin transgenic model, in which 95% of the 

B cells bind insulin, allows us to study fixed autoreactive BCR specificity. These 

anti-insulin B cells are known to present antigen and drive disease, even while 

remaining otherwise anergic (51). To determine if these B cells would be 

depleted by loss of BTK, I injected transgenic Btkflox, Btkflox/Cre-ERT2 and Btknull 
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animals with tamoxifen to knock down BTK. Five days after the last injection, I 

assessed the percentages and numbers of insulin-binding splenic B cells (Figure 

3.10). BTK knockdown was successful, as 87.92%±11.68% of B cells in 

Btkflox/Cre-ERT2 animals were BTK negative. There was no depletion of anti-

insulin B cells in Btkflox/Cre-ERT2 mice, despite the loss of BTK. B cell numbers 

were unchanged after BTK loss, with 1.35e7±5.16e6 anti-insulin B cells 

remaining in the Btkflox/Cre-ERT2 compared to 1.29e7±2.48e6 anti-insulin B cells 

in Btkflox mice (p>0.999). The Btkflox/Cre-ERT2 model did not recapitulate the 

conventional Btknull model, which exhibited a 94% decrease in anti-insulin B cell 

numbers (8.18e5±3.76e5) (p=0.009). In addition, I assessed if BTK-negative anti-

insulin B cells remain able to function by internalizing insulin. Figure 3.10D shows 

insulin internalization by both BTK-positive and BTK-negative B cells from 

Btkflox/Cre-ERT2 animals. BTK-negative B cells remained able to internalize 

antigen at the same rate as BTK-positive anti-insulin B cells. These data show 

that though anti-insulin B cell development is dependent upon BTK, mature anti-

insulin B cell survival is not. In addition, anti-insulin B cells that are BTK-negative 

remain able to internalize antigen.   

 

Discussion 

 

The phenotype of Btknull mice has been extensively reported, by our own 

and other’s work (132, 137, 140). It is well known that Btknull mice lack B cell 

subsets such as anergic An1s and B1s, and fail to respond to T-independent  
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Figure 3.11: Graphical abstract for the role of Bruton’s tyrosine kinase in 
the survival and function of autoreactive B lymphocytes.  
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antigens. In addition, BTK-deficiency in the transgenic anti-insulin model reduces 

B cell numbers by 95%. However, the lack of an inducible knockout has resulted 

in a gap in our understanding of how mature B cell subsets rely on BTK. As BTK 

inhibitors are considered for use in more human diseases, it is vital to understand 

these effects. In this chapter, I detail the first use of Btkflox/Cre-ERT2 inducible 

knockdown to study the effect of loss of BTK on the survival and function of 

mature B cell subsets. Figure 3.11 is a graphical abstract summarizing my 

findings.  

First, I established the efficacy of the Btkflox/Cre-ERT2 system (Figure 3.1, 

3.2, 3.3). Treatment of Btkflox/Cre-ERT2 with tamoxifen resulted in efficient 

knockdown in B cells at all subsets and developmental stages, as well as in 

splenic macrophages and dendritic cells. This knockdown was stable up to five 

weeks after injection. I then analyzed splenic B cell subsets to assess the effect 

of BTK knockdown on mature B cells (Figure 3.4). Btknull mice exhibit a block in 

transition from T2 to mature FO B cells (42, 140). T2 and FO B cells both 

express IgD, CD21, and CD23, and are differentiated by expression of IgM, 

which is high on T2 and lower on FO B cells. Because IgM surface expression is 

generally higher in the absence of BTK, it was possible that FO B cells would 

shift to a more T2-like appearance immediately. However, though there was an 

immediate increase in IgM after BTK loss, the treated Btkflox/Cre-ERT2 did not 

fully mimic the phenotype of Btknull mice until five weeks after knockdown, when 

cell turnover would essentially recapitulate a Btknull B cell repertoire. In contrast to 

this delay in developmental phenotype, the effect of Btk-excision immediately 
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results in loss of function related to cell signaling, as Btkflox/Cre-ERT2 B cells 

proliferated significantly less in response to LPS or anti-IgM stimulation within 

days of tamoxifen treatment (Figure 3.1C). Thus, this model reveals the split role 

of BTK in cellular development versus function in B cells, and shows that the 

impaired proliferation in B cells lacking BTK is not simply due to maturational 

defect.  

The lack of B1s in Btknull models correlates with a loss of natural IgM and 

deficient responses to T-independent immunization. However, the lack of a 

genetic knockdown model has prevented the study of BTK’s role in the survival 

and function of this important B cell subset. Surprisingly, I found normal numbers 

of BTK-negative B1a and B1b cells present in the peritoneal lavage of Btkflox/Cre-

ERT2 mice even five weeks after BTK knockdown (Figure 3.6). B1a cells in the 

spleen and bone marrow were also not reduced by BTK loss (Figure 3.7).These 

are the first data that show that B1a and B1b cells do not depend on the 

presence of BTK for survival, but instead require it for development.  

B1 cells, particularly those in the spleen and bone marrow, produce 

natural IgM. Natural IgM serves several important roles. These antibodies serve 

as a first defense against many pathogens, such as Streptococcus pneumoniae 

(105), Listeria monocytogenes (107), influenza virus (106, 109) and others (104, 

108). In addition, natural IgM contributes to tissue homeostasis through the 

binding of self-antigens (97, 98) and has been shown to be atheroprotective (99, 

100). It is known that Btknull mice lack natural IgM; however, this lack cannot be 

separated from their lack of B1 cells. In Figure 3.8, I have shown that the natural 
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antibody anti-phosphoryl-choline IgM remains present in Btkflox/Cre-ERT2 serum 

five days and even five weeks after BTK knockdown. The half-life of IgM in vivo 

is estimated at 2 days (275). Therefore, B1 B cells continue to produce natural 

anti-PC antibody even after the loss of BTK, contrasting its absence in Btknull 

controls. Thus, the production of natural IgM by B1 cells is independent of 

continued signaling through BTK. Small molecular BTK inhibitors are now in use 

for B cell lymphomas, and are currently in clinical trials for autoimmune disease. 

Therefore preservation of natural IgM, and its associated functions, in the 

absence of BTK is a clinically relevant finding that should prompt further study in 

patients who receive these drugs.  

Another role of B1 cells is in the initial response to infection. B1b cells are 

known to rapidly produce protective IgM in response to pathogens such as 

Borrelia hermsii (112, 276) and Streptococcus pneumoniae (105).  B1b, as well 

as B1a and marginal zone B2 cells are known to be the main contributors to T-

independent (TI) antibody production (200, 277-279). I immunized Btkflox/Cre-

ERT2 mice with TNP-Ficoll after BTK knockdown, to determine if the surviving B1 

cells could respond to a model TI-type II (TI-2) antigen (Figure 3.9). Both B1 cells 

in the peritoneal lavage and B2 cells in the spleen were unable to respond to 

antigen in vivo.  Btkflox/Cre-ERT2 animals exhibited significantly reduced anti-TNP 

IgM and very little anti-TNP IgG post immunization, compared to Btkflox controls. 

This finding shows that though mature B1 cells survive the loss of BTK, and 

retain their ability to produce natural IgM, they are unable to respond to TI-2 

immunization. These data could also have implications for the use of BTK 
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inhibitors in human disease, particularly in long term use. BTK inhibitors may 

decrease the efficacy of immunizations such as the pneumococcal conjugate 

vaccine (PCV13), which are particularly targeted towards adults 65 years or older 

(https://www.cdc.gov/vaccines/vpd-vac/pneumo/). This could be of particular 

importance in their proposed use for rheumatoid arthritis (RA), as the onset of RA 

is highest among adults in their sixties (280). 

Systemic autoimmune disorders like RA are mediated by autoantibody 

production by autoreactive B cell subsets. An1 B cells are an endogenous 

autoreactive B cell subset (82). A similar subset is present in humans and is 

increased in autoimmunity (41, 84). Our lab and others have found that the 

development of An1 B cells is dependent upon BTK (43, 187). Therefore, I 

assessed the An1 subset in Btkflox/Cre-ERT2 animals five days after BTK 

knockdown. An1 cells were swiftly depleted, and were significantly reduced after 

BTK loss (Figure 3.5). However, it remains unclear as to whether this is due to a 

survival defect or a loss at development, as An1 B cells are known to have a life 

cycle of only five days (43). Nevertheless, the swift depletion of this subset 

implies that short courses of BTK inhibition may impact similar autoreactive 

anergic populations in humans, without greatly impacting non-autoreactive B2 

subsets.  

Though An1s are an important B cell subset in both mice and humans (41, 

128), it is useful to study an autoreactive population with a fixed BCR specificity. 

Therefore, I used a transgenic mouse model, in which 95% of the B cells bind 

insulin, to determine the role of BTK in the survival of mature anti-insulin B cells. 
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Autoreactive B cells, particularly anti-insulin B cells, drive T1D by presenting 

antigen to autoreactive T cells (3-5, 281). Anti-insulin B cells are also drastically 

reduced in Btknull models. Therefore, one proposed strategy for the treatment of 

T1D is treatment with BTK inhibitors, with the goal of depleting anti-insulin B 

cells. However, in Figure 3.10, I show that anti-insulin B cell survival is 

independent of BTK. Also, BTK-negative anti-insulin B cells remain competent to 

internalize antigen. Therefore, the depletion of anti-insulin B cells by targeting 

BTK may take longer than originally expected and may be difficult to achieve. 

This data informs how we might attempt to use BTK inhibition in T1D in the 

future.  

This work is the first to use an inducible genetic knockdown of BTK to 

rigorously study its role in the survival and function of mature B cells. With rising 

use of BTK inhibitors, as well as the pursuit of more specific BTK inhibition, the 

basic mechanism of BTK’s role in mature B cell subsets will only become more 

important. The loss of BTK greatly impacts the ability to respond to 

polysaccharide antigens. However, these findings show that important immune 

functions, such as the production of natural IgM, are intact following the loss of 

BTK. In addition, An1 B cells are swiftly depleted after BTK loss, which may have 

implications for BTK inhibition as short-term therapy for autoimmune disorders.           
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The prevalence of B lymphocyte-mediated autoimmune diseases, and 

their negative impact upon those who suffer them, often results in the question: 

why do autoreactive B cells develop? Indeed, the fact that autoreactive B cells 

are evolutionarily conserved in mice and humans indicates that perhaps they are 

present for a reason or are simply an inevitable side effect of an immune system 

that is as balanced as possible. Some autoreactive subsets may serve an 

important purpose, such as the production of autoreactive natural IgM by fetal-

derived B1 cells, but autoreactivity in the B2 compartment often results in chronic 

autoimmunity. Autoimmunity results when tolerance mechanisms, both central 

and peripheral, are breached. As I have previously discussed, autoreactive B 

cells form the majority of developing B cells in the bone marrow, estimated at 70-

80% (25). Though most of these are deleted by central tolerance, some escape 

to the peripheral organs where peripheral tolerance mechanisms such as anergy 

are to hold them in check (43, 82). However, tolerance mechanisms can be 

leaky, allowing autoreactive B cells to present antigen to and activate 

autoreactive T cells, or can be broken, resulting in autoreactive B cell activation 

and production of autoantibody. These autoantibodies can then bind to 

autoantigen and activate innate immune cells through Fc receptors, resulting in 

destruction and disease.  
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 Understanding the regulation of these processes is critical to our 

understanding of autoimmune disease. One process that regulates each step of 

tolerance is that of B cell receptor (BCR) signaling. During B cell development, 

tonic signaling through the BCR must be strong enough to signal the successful 

rearrangement of the receptor. However, if signaling through the BCR is too 

strong, it indicates autoreactivity and initiates central tolerance mechanisms. In 

the periphery, mature B cells signal through the BCR in response to antigen, and 

lack of response to antigen is a key determinant of anergy. Finally, the strength 

of BCR signaling regulates the germinal center reaction and is theorized to 

determine which germinal center B (GCB) cells are selected to become memory 

B cells or plasma cells. The BCR signaling protein Bruton’s Tyrosine Kinase 

(BTK) is the specific focus of this research, as it affects B cell receptor signaling 

at every stage of the B cell life cycle, and also plays a role in the innate response 

to antibody. My research, detailed in this dissertation, has touched on the role of 

BTK in autoreactive B cells at every stage throughout this cycle.  

 

Differential contribution of BTK to development and survival of 

autoreactive B cells has implications for the treatment of autoimmunity.  

 

 Previous to my work, it was established that autoreactive B cells are more 

severely impacted by loss of BTK as compared to non-autoreactive B cells (43, 

140, 187). In Chapter II, I showed that Btk-deficient K/BxN mice exhibited a 

severe developmental block in the B cell compartment, resulting in a 74% 
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reduction of B cell numbers. This pattern of B cell depletion, with a block at 

transitional stage 1 (T1) and a loss of marginal zone and follicular B cells, is 

characteristic of the anti-insulin transgenic model. In addition, I documented 

severe depletion of autoreactive anti-GPI IgG, even while total IgG remained 

relatively intact. Therefore, I concluded that autoreactive B cells were 

successfully depleted at development in this model, which subsequently led to 

protection from spontaneous arthritis. The pronounced depletion of anti-GPI 

autoantibody, compared to the relatively small decrease in total IgG, indicates 

that autoreactive B cells are yet again more impacted by the loss of BTK than 

non-autoreactive B cells. 

 Before the development of an inducible knockdown model, it was 

impossible to separate the role of BTK in autoreactive B cell survival from its role 

in autoreactive B cell development. Autoreactive B cell populations are known to 

have dysregulated signaling compared to non-autoreactive B cells (188, 192), 

including increased positive signals such as high basal calcium levels, and 

increased negative signaling mediators such as SHIP-1 and Siglec-G (189, 196). 

Originally, I hypothesized that the loss of a positive signaling mediator, BTK, 

would result in increased negative signaling and a loss of mature B cells. I 

theorized that autoreactive B cells would depend upon BTK for not just 

development, but survival, and this dependence could be used to deplete 

autoreactive B cells and treat disease. However, in chapter III, I show that the 

autoreactive-prone B1 cell subset and anti-insulin transgenic B cells do not 

require BTK for survival. An1 B cells were swiftly depleted by BTK knockdown, 
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but that may be due to their short lifespan and dependence on BTK for new An1 

B cell development. The fact that autoreactive B cells require BTK to progress 

through development, but not to survive once they have reached maturity, 

suggests that autoreactive B cells must require BTK for a positive selective step 

during development. Additionally, this step is somehow less necessary for non-

autoreactive B cells.   

My findings may also have implications for the treatment of autoimmune 

arthritis with BTK inhibitors. The protection seen in the spontaneous arthritis 

model was due to the loss of mature naïve B cells, a loss that in turn decreased 

the number available to become GCB cells, resulting in decreased autoantibody. 

If autoreactive B cells in the K/BxN model are similar to B1 or anti-insulin B cells, 

and do not require BTK for their survival, their numbers may be unaffected by the 

loss of BTK after they have reached maturity. This is of particular importance, 

because if the relevant subsets remain, they may interact with T cells, overcome 

BTK-deficiency, and continue to produce autoantibody. It has long been known 

that Btk-deficient mice are able to respond to T-dependent immunization, though 

the response remains blunted (140, 147, 199). This serves as more evidence 

that it is a loss of autoreactive B cells that provides protection in the Btk-deficient 

K/BxN model. While it is possible that autoreactive B cells respond differently to 

T cell help, it is more likely that the autoreactive B cells are simply not present to 

interact with the T cells at all, resulting in a differing outcome as compared to T-

independent immunization. Therefore, if BTK knockdown does not result in 

autoreactive B cell depletion, protection from disease may be lost. Alternatively, if 
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anti-GPI B cells are located in the An1 compartment, they may be depleted only 

a few days after BTK loss. If this is the case, early enough intervention may 

result in disease protection.  

 

Future directions regarding differential contribution of BTK to 

development and survival of autoreactive B cells: 

 

Assessing BTK’s role in ongoing autoreactive immune reactions:  

 I have established that BTK supports autoreactive B cells during 

development, and the loss of BTK results in protection from autoimmune arthritis 

in the K/BxN model. However, it is yet to be determined if targeting BTK-

mediated signaling after the development of the mature B cell repertoire will 

ameliorate arthritis. BTK loss could prove effective in two possible ways. If anti-

GPI B cells are anergic and possess a short lifespan, similar to the An1 

compartment, I hypothesize that the loss of BTK will result in swift depletion and 

protection from disease. However, even if anti-GPI B cells persist, I hypothesize 

that BTK loss will disrupt antibody production after germinal center reactions are 

already underway. These hypotheses can be tested by applying the 

Btkflox/tamoxifen-inducible Cre system to K/BxN arthritis.  

 First, the dependence of anti-GPI B cells on BTK can be examined in the 

Btkflox/Cre-ERT2 K/BxN model. Anti-GPI B cells can be difficult to detect, but do 

expand during arthritis progression (282). Using a GPI-PE tetramer, specific anti-

GPI B cells can be assessed during early and late arthritis, and I can determine if 



101 
 

mature anti-GPI B cells require BTK. This method can also identify if anti-GPI B 

cells are located in the An1 compartment. If endogenous anti-GPI B cells are 

difficult to detect, their reliance upon BTK can be assessed in a transgenic model 

(283). The transgenic anti-GPI model features a higher-affinity BCR, generated 

by paired site-directed anti-GPI heavy and light chains, or lower-affinity BCRs 

that are generated by the pairing of the anti-GPI heavy chain with endogenous 

light chains. Analysis of this model would allow specific tracing of anti-GPI B 

cells, and the identification of their dependence upon BTK.  

The second way that BTK loss from the mature compartment could 

provide protection from arthritis is by the disruption of antibody production after 

germinal center reactions have already begun. It is unknown if BTK is necessary 

for the survival and continued propagation of GCB cells, memory B cells (Bmem), 

and plasma cells. We do have some clues on how exactly BTK may affect GCB, 

Bmem and plasma cells. First of all, BCR signaling is vitally important to the 

formation of the germinal center, and to the affinity maturation process. Affinity 

maturation works by ensuring that the highest affinity B cells are the cells that 

receive survival signals from T follicular helper (Tfh) cells and follicular dendritic 

cells (66). GC B cells acquire Tfh help by capturing antigen on their BCR and 

then processing and presenting it. A higher affinity B cell captures more antigen 

and has a higher density of peptide-MHC complexes on its surface, resulting in 

more Tfh help (284). Due to the importance of BCR signaling in this process, I 

hypothesize that BTK loss will decrease signaling through the BCR and disrupt 

affinity maturation, resulting in lower antibody affinity. In contrast, plasma cell 
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survival may be unaffected by the loss of BTK. Plasma cells downregulate the 

BCR and exhibit low expression of BTK (213). The relatively preserved IgG 

levels in Btk-deficient mice also point to the ability of plasma cells to form and 

survive even without BTK. In an autoantibody mediated disease, such as 

rheumatoid arthritis, autoreactive plasma cells may continue to produce 

damaging autoantibody even after BTK loss. These hypotheses can be tested by 

knocking down BTK after arthritis has already begun, and assessing GC B cells, 

plasma cells, and anti-GPI autoantibody.  

 

Identifying the role of BTK in non-autoreactive immune reactions:   

BTK inhibitors are targeted at aberrant immune reactions, such as B cell 

cancers and autoimmunity. However, these conditions do not occur in a vacuum, 

and it is important to understand the effect of BTK loss on immune responses to 

exogenous antigen. One tool to help answer this question is the use of T-

dependent immunization models. In addition, an immunization model has the 

advantage of allowing control over when the germinal center forms. Btkflox/Cre-

ERT2 animals can be tamoxifen-treated before or after initial immunization, or 

after boosting. This allows the assessment of BTK’s function in the initiation and 

survival of GCB cells and plasma cells. Furthermore, the use of a model antigen 

allows assessment of both the affinity of the resulting antibody and direct 

assessment of responding B cells through the use of fluorochrome-conjugated 

antigen. The use of an immunization model enables clear assessment of the role 

of BTK in GC B, Bmem, and plasma cells. It also informs us of the effect of BTK 
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inhibition on infection or vaccination, which are likely to occur during the course 

of treatment.  

 The use of the Btkflox/Cre-ERT2 model, applied to both autoimmunity and a 

model immunization, allows for the assessment of BTK’s role in both autoreactive 

and non-autoreactive immune reactions. Autoimmunity is treated after disease 

has already progressed, and any treatment targeting the immune system has the 

risk of resulting in immune-deficiency. Therefore, the best possible method of 

treatment would be to quickly deplete autoreactive B cells, hopefully before 

plasma cell formation, while leaving non-autoreactive B cells intact. If BTK 

inhibition cannot accomplish this, it may be necessary to pursue other avenues of 

treatment.  

 

BTK as a potential regulator of innate immunity. 

 

 My work with the serum-transfer model of arthritis in Chapter II represents 

the first use of a genetic model to study the contribution of BTK in innate 

mediated arthritis. Surprisingly, I found that the loss of BTK was not protective 

against serum-transfer arthritis. This data contrasts work done using BTK 

inhibitors, which focused primarily on the role of BTK in macrophages (215-219, 

237). My findings have several important implications. First of all, if treatment for 

autoimmune arthritis commences after autoantibody has formed, truly specific 

BTK inhibition may not be effective in reducing them. Plasma cells may continue 

to produce damaging antibody, and my data shows that the innate immune 
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system can still respond to that antibody and mediate immune destruction. 

Secondly, the contrast between my work using a genetic deletion model, and the 

field’s use of BTK inhibition highlights that it may be the off-target effects by BTK 

inhibitors that lead to protection from serum transfer arthritis. These previous 

studies used inhibitors such as ibrutinib. Ibrutinib is known to bind the T cell 

analogue of BTK, interleukin-2-inducible T cell kinase (ITK), as well as the 

tyrosine-protein kinase TEC, which is known to be important for both 

macrophage and mast cell function  (220). The revelation that it may be these 

effects, rather than binding to BTK, that mediates disease protection, is a 

question that deserves further study. It raises the possibility that perhaps specific 

inhibition of other kinases such as TEC and ITK should be sought after to treat 

autoimmune disease. My final conclusion from this data set is that it highlights 

how little we really know about the role of BTK in innate cells. The available data 

paints a picture of conflicting stimulatory and regulatory roles. Previous work has 

found that BTK-loss in dendritic cells may lead to an inflammatory, T cell 

stimulatory, phenotype (261), whereas data conflicts on BTK’s role in neutrophils. 

Neutrophils from human XLA patients are not defective in effector function (262) 

and may even produce increased reactive oxygen species (263), whereas Btk-

deficient neutrophils in mice were found to have decreased granules per cell and 

reduced E-selectin-mediated recruitment (222, 223). My work in the serum-

transfer model of arthritis does not indicate that innate cells are completely 

unimpaired by BTK loss, but that BTK loss was not enough to impact disease 
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progression. Exactly how BTK functions in innate immune cells, and how those 

functions impact arthritis, is an area that requires further work.  

 

Future directions regarding BTK as a potential regulator of innate 

immunity:  

 

BMX and TEC kinases as alternative targets in autoimmune arthritis:  

 If specific BTK inhibition proves ineffective in the treatment of autoimmune 

arthritis, it becomes necessary to seek other targets that may be more 

efficacious. Two possible candidates for inhibition are BMX and TEC, Tec-family 

kinases that function in innate immune cells. BMX is expressed in macrophages 

and neutrophils (285, 286), and TEC is expressed in macrophages, neutrophils, 

mast cells and T cells (287-289). Total genetic deletion of BMX has been shown 

to be effective against K/BxN serum transfer arthritis. However, when BMX was 

present, but its kinase function inactivated, serum transfer arthritis was the same 

as in BMX-competent mice (290). Therefore, a kinase-specific inhibitor would 

most likely prove ineffective for arthritis treatment. BMX, like BTK, may also 

function as an adaptor, and targeting its pleckstrin-homology or adaptor domains 

for inhibition could be protective in autoimmune arthritis. There has been no 

study of the role in TEC in autoimmune arthritis, but Btk-deficient macrophages 

exhibit an increase in TEC expression as they mature (227), and both BMX and 

TEC are theorized to compensate for the loss of BTK in myeloid cells (170). 

TEC-knockout mice have no obvious B cell phenotype (170) and should be used 
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in both K/BxN spontaneous and serum-transfer arthritis to determine if targeting 

TEC may be protective. The redundant functions of BTK, BMX, and TEC may 

mean that targeting only one will never be an effective disease treatment. 

However, we should collect as much detail from genetic models as possible, to 

inform us as to how to develop inhibitors and treat autoimmunity while preserving 

normal immune function.  

 

Cell-specific deletion of BTK will reveal its role in discrete immune subsets:  

 The Btkflox/Cre-ERT2 model is invaluable for its ability to knockdown BTK in 

mature cells. Btkflox is not only useful for the study of temporal deletion, of course, 

but can also be paired with a cell-specific Cre to study the role of BTK in specific 

immune subsets. Expressed under the CD11c promoter, Cre can be used to 

knockdown BTK in conventional dendritic cells. Under the LysM promotor, Cre 

can specifically knockout BTK in macrophages and granulocytes. While the 

serum-transfer model proved that BTK’s contribution to innate immunity was not 

enough to protect from arthritis, the use of cell-specific knockdown in tandem 

with the K/BxN model will provide important information on the roles of specific 

cells in this disease. There is evidence that BTK has both stimulatory and 

regulatory roles in the innate immune system, and cell-specific deletion of BTK 

will help determine which role BTK plays in specific cell subsets. Finally, while 

the use of the K/BxN spontaneous and serum transfer models does allow study 

of both innate and adaptive arms of the immune system, it bypasses a key 

player: dendritic cell antigen presentation to autoreactive T cells. Btk-deficient 
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dendritic cells have been reported to be more stimulatory to T cells, due to their 

inability to self-regulate with production of IL-10 (261). Btkflox/CD11c-Cre and the 

K/BxN model will determine if BTK supports antigen presentation by dendritic 

cells in autoimmune arthritis, and provide more information as to its role in this 

bridge between innate and adaptive immunity. 

 

The role of BTK in B1 cell function: novel stimuli vs established function: 

  

      I have established that the autoreactive-prone B1 cell subset and 

transgenic anti-insulin B cells do not require BTK for survival. However, though 

this fact alone is novel and implies that autoreactive B cells require BTK for a 

selection step during development, it was also critical to determine if these cells 

still perform their various functions. In chapter III, I determined that B1 cells 

continue to produce natural IgM, even after BTK loss, but are unable to respond 

to T-independent immunization.  

 Natural IgM has many important functions, including acting as an initial 

barrier to infections (104-109), contributing to tissue homeostasis (97, 98), and is 

atheroprotective (99, 100). B1 cells in the spleen and bone marrow produce the 

majority of natural IgM. Like plasma cells, they secrete antibody, are long-lived, 

and express CD43. However, in contrast to plasma cells, they retain high 

expression of the BCR and co-receptors such as CD19 (35). Like antibody 

production by plasma cells, natural IgM production by B1 cells may be enforced 

by a transcriptional program. I found that these cells persisted even after the loss 
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of BTK, and their continued production of natural IgM shows that this immune 

function may be preserved in BTK inhibitor-treated patients. Indeed, in clinical 

trials using the BTK inhibitor Ibrutinib for mantle cell lymphoma, chronic 

lymphocytic leukemia, or small lymphocytic lymphoma, patients exhibited no loss 

of serum IgM levels. In one of these studies, serum IgM levels actually increased 

(291-293). Of course, the immune system in leukemia or lymphoma is already 

dysregulated, but the fact that the use of a BTK inhibitor did not recapitulate the 

phenotype of XLA is both encouraging for their use and implies that my findings 

in the role of BTK in mature B cells may be applicable to humans. 

 Contrasting natural IgM production, immunization involves providing a new 

stimulus to which the B cell must respond. It has long been established that 

global BTK deletion in mouse models results in a lack of T-independent B cell 

responses. These mouse models completely lack B1 cells, though, and the 

inability to respond to antigen because of a lack of signal through the BCR could 

not be separated from the absence of any B cells able to respond. Because of 

my finding that mature B1 cells survive even after BTK loss, I was able to 

determine if these B cells could respond to T-independent antigen in the absence 

of BTK. The loss of BTK leads to reduced responses to T-independent type II 

immunization, as detailed in Chapter III. The inability of BTK-deficient B cells to 

respond to T-independent immunization may inform the use of BTK inhibitors in 

humans. The B1 cell response is important for certain immunizations and also 

the reaction to infections such as Streptococcus pneumoniae and Borrelia 

hermsii, so patients treated with BTK inhibitors may be especially at risk for these 
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diseases. These data, and my work on natural IgM, have produced clinically 

relevant data for the use of BTK inhibitors.  

 

Future directions regarding the role of BTK in B1 cell function: novel 

stimuli vs established function: 

 

Identification of BTK’s role in the development of B1 cells.   

 The work of this dissertation makes it clear that BTK plays a role in the 

development, but not survival, of B1 cells. However, the exact nature of that role 

remains unknown. B1 cells may undergo a positive selection step during 

development that relies on signaling through the BCR. The B1 cell subset is 

known to contain anti-Thy-1 B cells. These autoreactive B cells require binding to 

Thy-1 to develop, because mice lacking Thy-1 expression also lack anti-Thy-1 B1 

cells (93). It is possible that BTK mediates this positive selection step through its 

function in BCR signaling. A second possibility is that BTK mediates expression 

of developmental factors on which B1 cells rely. Interestingly, mice deficient in 

the atypical inhibitory protein IκBNS exhibit a similar phenotype to Btk-deficient 

animals, with a lack of B1a and B1b cells but relatively normal B2 cell numbers 

(294). It would be interesting to determine if overexpression of BTK rescued anti-

Thy-1 B cell numbers in Thy-1 knockout mice, or if induced expression of IκBNS 

would rescue B1 cell numbers in Btk-deficient models. If these methods fail, 

transcriptional profiling of neonatal B1 cells may provide clues to the 

developmental requirements of this critical cell subset. 
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BTK-independence of anti-insulin B cells is significant in treatment of Type 

1 Diabetes.  

 

 B1 cells are not the only autoreactive-prone B cells that lack a BTK 

requirement for their survival. Transgenic anti-insulin B cells are not depleted 

after BTK loss, and still internalize antigen even without BTK. The preservation of 

insulin internalization may have important consequences. This function and the 

survival of insulin-specific B cells indicate that targeting BTK to treat Type 1 

Diabetes (T1D) may be ineffective. BTK has been an exciting target in T1D 

research, because Btk-deficiency is protective in the non-obese diabetic (NOD) 

mouse model of T1D. This protection is most likely due to the depletion of anti-

insulin B cells, a conclusion which is supported by the finding that anti-insulin IgG 

is drastically reduced in this model while total IgG remains unchanged. If even a 

small number of anti-insulin B cells reach maturity, disease is restored. The 

provision of a transgenic anti-insulin heavy chain (HC) restored disease, because 

though Btk-deficiency greatly reduces anti-insulin B cells in the anti-insulin HC 

model, it does not eliminate them, and the remaining B cells can still instigate 

disease (137). Anti-insulin B cells drive T1D by presenting antigen to 

autoreactive T cells (3, 4). This fact, and my lab’s previous work, implies that Btk-

deficient anti-insulin B cells, if they are present, can still present antigen to and 

activate destructive autoreactive T cells. Therefore, my finding that mature anti-

insulin B cells are not depleted by BTK loss implies that BTK inhibitor treatment 

will not result in disease protection.  
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I have also shown that BTK-negative mature anti-insulin B cells remain 

competent to internalize antigen. This finding contrasts work by Song et al, who 

found that BTK was required for internalization of crosslinking anti-IgM by naïve 

B cells (197). This difference may be due to the difference in signaling between a 

crosslinking antigen like anti-IgM, and a non-crosslinking antigen such as insulin. 

BTK is reported to regulate actin remodeling, which is required for the 

internalization of a cross-linking stimulus (197, 295). In contrast, insulin 

internalization may be due to passive internalization of the BCR, which is 

independent of actin remodeling (296). Anti-insulin B cells are anergic, and B 

cells in the anti-HEL and the 3H9/Vκ8 models of anergy also rapidly internalize 

antigen, indicating that rapid internalization may be a feature of anergy (297, 

298). The exact mechanism by which these autoreactive B cells internalize 

antigen, and whether insulin-internalization can be inhibited, is an area that 

requires further study. These data will inform our approach on B cell targeting in 

the treatment of T1D.  

 

Future directions regarding BTK-independence of anti-insulin B cells 

is significant in treatment of Type 1 Diabetes:  

 

Turnover kinetics and antigen presentation of anti-insulin B cells:  

 My work on BTK and anti-insulin B cells raises certain immediate 

questions which must be answered. First of all, though what we currently know 

implies that anti-insulin B cells are able to present antigen and activate cognate T 
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cells, this fact has not yet been tested. In the conventional Btk-deficient anti-

insulin mouse model, anti-insulin B cells are few and those that remain are 

mostly found in the Transitional 1 compartment. Therefore, performing antigen 

presentation assays proved difficult. Use of the Btkflox/Cre-ERT2 model will allow 

the harvest of mature BTK-negative anti-insulin B cells, which will finally answer 

this important question. Secondly, it still may be possible to deplete anti-insulin B 

cells, as BTK-negative B cells turnover in the spleen. We would expect newly 

developing anti-insulin B cells to be blocked in development similarly to 

conventional Btk-deficient models. The kinetics of this turnover can be 

determined using long-term knockdown and BrdU labeling, and determine the 

duration that NOD mice in relevant disease studies must receive BTK inhibition 

to achieve protection.  

 

Development of multiple transgenic models for further study of anti-insulin B cell 

survival factors:  

 The current double-transgenic anti-insulin mouse model provides critical 

insight into the behavior of anti-insulin B cells. NOD mice do possess anti-insulin 

B cells, evidenced by the production of anti-insulin antibody during the disease 

process. However, anti-insulin B cells are rare, and difficult to identify and study 

in wild-type mice, so the use of a transgenic model is incredibly important. The 

double-transgenic is only one model of insulin-reactivity. In the HC-only 

transgenic model, the anti-insulin HC is paired with endogenous light chains. Of 

these light chains, two result in insulin-binding: Vκ4-74 and Vκ5-57-1 (299). The 
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development of transgenic models featuring the insulin-specific heavy chain and 

these separate light chains would provide increased insight into how anti-insulin 

B cells are regulated and what their contributions to disease may be. Anti-insulin 

B cells would be analyzed to identify their antigen presentation capacity, 

dependence upon BTK, and other survival factors, to inform how best to deplete 

autoreactive B cells in an autoimmune setting.     

  

Summary 

 The purpose of this project was to further define the role of BTK in the 

development, survival, and function of autoreactive B cells, and how those roles 

may impact autoimmune disease. I found that BTK regulated the development, 

but not survival, of various autoreactive B cell subsets, and that BTK impacted 

certain autoreactive B cell functions but not others. My work represents the first 

use of genetic deletion to identify the role of BTK in both spontaneous and 

serum-transfer arthritis, revealing that specific inhibition of BTK may be 

ineffective in treating autoimmune arthritis. More work remains, particularly on 

the role of BTK in germinal center B cells, in innate immune cells, and on the 

function of anti-insulin B cells in T1D.  
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