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CHAPTER I

INTRODUCTION

HISTORY AND CURRENT KNOWLEDGE OF THE NEUTRINO

1.1 Histories of Neutrino

The history of neutrinos, the knowledge of the thermal history of cosmological neutrinos

and the discovery of neutrino properties, is a proud one for physicists, experimental and

theoretical alike. Improvements in experimental techniques to study the universe and to

measure neutrino oscillations offer more and more details to assist our understanding of

neutrino properties. The analysis of data from the experiments, and the modeling of neutrino

mass beyond the Standard Model (SM) are unveiling new physics for this new millennium.

1.1.1 Brief Thermal History of Neutrino

The thermal history of neutrinos is a relative simple one. After the birth of the universe,

neutrinos are kept in equilibrium within the primordial plasma through reactions such as

ν + ν̄ ↔ e+ e+,

ν + e ↔ e+ ν.

About 1 second after the birth of the universe, when the temperature of the primordial

plasma falls below 1 MeV, the rate for the above reactions becomes less than the expansion

rate of the universe and the above reactions become too slow to keep neutrinos in equilibrium.

Thus, neutrinos decouple from the primordial plasma. The neutrino mass, which is less than

1 eV, is much smaller than the decoupling temperature. So, the neutrino mass will not alter

the decoupling temperature and the neutrino number density described in Reference [1] for

massless neutrinos.

After decoupling, the neutrinos remain relativistic and free-stream through the universe.

The free-streaming neutrinos will affect the power spectrum of the galaxy and the cosmic

microwave background measured by the experiments such as WMAP [2], 2dFGRS [3], and

SDSS [4].
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The free-streaming neutrino becomes non-relativistic when the temperature of the uni-

verse drops below the mass of neutrino. This is about 50 thousands years after the birth of

the universe. After the neutrino becomes non-relativistic, gravity begins to affect the distri-

bution of relic neutrinos. This may result the local clustering of relic neutrinos around large

cosmological structures. But detailed simulation revealed that the extent of the neutrino

clustering is not significant [5, 6, 7, 8]. So, the neutrino number density from the standard

cosmology will be used as the standard parameter.

To sum up, the mass of relic neutrinos will affect cosmic microwave power spectrum and

the galaxy, which offers the inference of neutrino mass to the corresponding experiments.

But, the tiny mass of relic neutrinos will not significantly affect their number density,

nν = n0
ν(1 + z)3 =

3

22
n0
γ(1 + z)3

per flavor and per active spin state. Where the n0
γ = 422 cm−3 is the current number density

of cosmic microwave photons obtained from

n0
γ =

2ζ(3)

π2
T 3,

where ζ(3) = 1.20 is the Riemann zeta function of 3. With the current cosmic microwave

background temperature T0 = 2.73 K, consequently n0
ν = 56 cm−3 is the current number

density of relic neutrinos per flavors. Thus, we expect a total neutrino density of 3×2×n0
ν =

336 cm−3.

1.1.2 Brief History of Neutrino Studies

The history of neutrino discovery is a proud one for the theoretical physicists, not only

because experimental verification followed theoretical prediction, but also because the dis-

covery of neutrino saved one of the most precious conservation laws, the conservation of the

energy.

Before the discovery of the neutrino, the observation of the continuous spectrum of the

electron observed in beta decay experiments had raised the doubt about the conservation

of energy, as the difference between the nucleon energy levels before and after the decay is

not in agreement with the energy carried away by the electron, the only observed lepton

2



in the beta decay at that time. In 1930, to rescue the energy conservation, Pauli proposed

in his letter to the attendees of a physics conference at Tübingen, Germany, that “neutral

particles” named “neutron” also participated in the beta decay process and carried away

the missing energy [9]. The neutron we know today was discovered later in 1932 [10], but

it is too heavy to be Pauli’s “neutron”. So, in 1933, Fermi renamed Pauli’s “neutron” to

neutrino, a name which hints that the particle is neutral with small or even zero mass.

Twenty-six years after the naming of the neutrino, the neutrino was first detected in a

nuclear reactor experiment by Cowan and Reines [11]. We now know this neutrino to be

the electron neutrino νe. Then in 1962, the second neutrino type, the muon neutrino νµ,

was observed by Dandy et al. [12]. The last known neutrino, the tau neutrino ντ , was not

directly observed until 2001 by the DONUT Collaboration [13].

The determination of the neutrino mass is a more difficult task than the detection of the

neutrino. Long before experiments could provide any valuable hints to the mass of neutrinos,

the minimal Standard Model (SM) of particle physics provided a guess of zero mass. This

“prediction” turned out to be not as successful as those of Pauli and Fermi. The first hint

of neutrino mass was offered by the solar neutrino experiment begun in 1968, in which

less than 1/3 of the theoretically predicted neutrino flux from the solar fusion cycles was

observed [14]. This mystery was later dubbed the Solar Neutrino Puzzle. The first strong

evidence for neutrino oscillation, thus neutrino mass, surfaced from the Super-Kamiokande

experiment in 1998, which offered compelling data to support the oscillation of atmospheric

muon neutrinos [15]. Earlier experiments, such as Kamiokande1, had noticed the existence

of an atmospheric neutrino-flavor “anomaly”. Since the Super-Kamiokande, more neutrino

oscillation experiments gathered data to support the oscillation of neutrinos.

1.2 Current Knowledge of Neutrino

During the past few years, many experiments have been carried out to study the prop-

erties of neutrinos, mainly the oscillation of neutrinos. The neutrino oscillation experi-

ments include the solar, atmospheric and reactor-generated neutrino oscillation experiments.

1The predecessor of Super-Kamiokande experiment
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Some of the successful solar neutrino oscillation experiments are Homestake [16], SNO [17],

GALLEX [18], GNO [19], and SAGE [20], while some of the successful atmospheric neutrino

oscillation experiments are Soudan2 [21] and MARCO [22]. The reactor neutrino oscillation

experiments include CDHS [23], Bugey [24], CHOOZ [25], and KamLAND [26]. The con-

troversial LSND [27] experiment uses a medium energy accelerator at Los Alamos National

Lab to produce focused π+ beams, whose decay produces neutrinos. The prestigious Super-

Kamiokande experiment [28] observed both the atmospheric neutrino oscillation [15] and the

solar neutrino oscillation [29]. In the ongoing K2K experiment [30], the Super-Kamiokande

detector is the target for the neutrinos generated at the KEK accelerator in Japan. In the

very near future, the two Fermi Lab experiments, MiniBooNE [31] and MINOS [32], will

study oscillations at short and long baselines, respectively.

In addition to the above neutrino oscillation experiments, astrophysical experiments are

also providing important information for properties of neutrinos. For example, WMAP [2],

2dFGRS [33], and SDSS [4] offered the best upper limit to the neutrino absolute mass. The

light element abundance measurement from the big bang neucleosynthesis (BBN) provides

the best astrophysical limit on the number of active flavor of neutrinos [34, 35].

Other experiments attempting to measure the absolute neutrino mass include the tritium

beta decay and the neutrinoless double beta decay (0νββ). In tritium beta decay experiment,

the neutrino mass will distort the endpoint of the electron spectrum. The upper limit of the

neutrino mass square from the tritium beta decay experiments is

m2
ν < 2.5 eV2,

while the best fit point to the data is a negative value [36]. This limit is more generous

than the upper limit from the astrophysical experiments. The next generation tritium beta

decay experiments, for example KATRIN [37], will be able to improve the limit down to the

0.3 eV2 range [38].

The 0νββ experiment is very sensitive to the effective Majorana neutrino mass mee

defined as

mee =

∣

∣

∣

∣

∣

∑

i

U2
eimi

∣

∣

∣

∣

∣

.

0νββ experiments offer the upper limit on the effective Majorana neutrino mass mee ≤
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0.55 eV [39]. But the result depends on the uncertain neutrino mixing matrix elements, and

consequently is subjected to large systematic error. Reference [40] and the followup [41] have

detailed reviews on the prospects of these two types of experiments.

The following is a summary of the neutrino properties gathered from the above experi-

ments as discussed in References [42], [43], [44], [45], and [46].

1. Neutrino Mass-Squared Difference And Mixing Angles

• Solar Neutrino Oscillation

The Large Mixing Angle (LMA) region allowed by the solar experiment data at

3σ corresponds to

2.6× 10−5 eV2 ≤ δm2
sol ≤ 3.3× 10−4 eV2

0.26 ≤ tan2 θsol ≤ 0.85.

The global best fit point locates at

δm2
sol = 6.6× 10−5 eV2

tan2 θsol = 0.46.

• Atmospheric Neutrino Oscillation

The global fit to the atmospheric neutrino oscillation data allows, at 3σ,

1.2× 10−3 eV2 ≤ δm2
atm ≤ 4.8× 10−3 eV2,

0.3 ≤ sin2 θatm ≤ 0.7.

The global best fit point occurs at

δm2
atm = 2.1× 10−3 eV2

sin2θatm = 0.49.

• LSND Neutrino Oscillation

The experiment data from the Liquid Scintillating Neutrino Detector (LSND)

allow, at 90% C.L.,

0.2 ≤ δm2
LSND ≤ 2 eV2

10−3 ≤ sin2(2θLSND) ≤ 3× 10−2
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2. Number of Neutrino Flavors

• Active Neutrinos

The light element abundance measurement from BBN limits the total number of

active neutrino flavors to be no more than 3 [34, 35].

• Sterile Neutrino

The three neutrino mass square differences of different orders, including the result

from LSND, hint at the existence of a fourth neutrino. As the BBN constraint

and the observed width of the Z0 particle do not allow the fourth neutrino to

participate in the weak interaction like the three active neutrinos, it is named

“sterile” neutrino. The existence of the sterile neutrino is still a topic of heated

debate.

3. Neutrino Absolute Mass

• Heaviest Neutrino Mass

The combination of the results from WMAP, 2dFGRS, and SDSS bounds the

total mass of all relic neutrinos to [47]

∑

mi ≤ 0.75 eV.

The total neutrino mass versus the heaviest neutrino m3 in three-neutrino model

is plotted in Fig. 1 [48]. It is allowed that at least one neutrino has mass of 0.24

eV’s. The value of 0.2 eV will be used as the heaviest neutrino mass for the

four-neutrino model in this work.

• Neutrino Mass Spectrum

There is currently not enough information to determine the neutrino mass spec-

trum because the signs of the neutrino mass-squared gaps have not be determined

by the neutrino oscillation experiments. Moreover, the details of the mass spec-

trum are model dependent as will be briefly discussed later.
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Figure 1: The Total Neutrino Mass versus The Heaviest Neutrino
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CHAPTER II

NEUTRINO MASS AND THE Z-BURST MODEL

2.1 The Original Z-Burst Model

The resonant annihilation of neutrinos from extremely high-energy neutrino cosmic rays

(EHEνCR) on the big-bang relic cosmic neutrinos in the cosmic neutrino background (CνB)

into Z-bosons (and vice versa), popularly known as Z-Burst Model, was originally proposed

as an attempt to directly measure the big-bang relic neutrinos [49, 50], which only becomes

possible with the recently proposed extremely-high energy cosmic ray detectors [51]. An even

more challenging puzzle is the observation of the cosmic rays with energy much higher than

the Greisen-Zatsepin-Kuzmin (GZK) cut-off energy, EGZK = 5 × 1019 eV [52, 53, 54]. The

nature and origin of these extremely-high energy cosmic rays (EHECR’s) are still an unsolved

mystery. Many models have been proposed to explain this controversial phenomena. Some

are within the conventional physics [55, 56], and others involve new physics [57, 58]. Yet,

the secondary particles in the Z-Burst process, which is caused by EHEνCR above the GZK

cut-off energy, is one of the models to offer plausible explanations of this phenomena [59].

Recent studies comparing different proposals to measure the neutrino mass recommended

the Z-Burst Model as one of the most promising ways to detect the CνB and measure the

absolute neutrino mass in the near future [60, 61]. The recently proposed extremely high-

energy cosmic ray observatories [62, 63, 64, 65] may offer enough statistics for the detailed

study of Z-Burst Model’s prediction in this decade.

The Z-Burst model was originally proposed in 1982 [49], with the matter dominated

flat cosmology model. The progress in the measurement of the cosmological parameters,

especially the recent results from WMAP experiment [66], depict a very different universe.

Noticeably the large value of cosmological constant, Λ, will change the evolution history of

the universe, thus introduces quite different signatures of the Z-Burst Model.

These new interests and new developments demand a revision of the original Z-Burst

Model, which was proposed nearly two decades ago when massless neutrinos were firmly
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planted in the Standard Model.

2.2 Improve The Z-Burst Model With New Cosmology Model

The original Z-Burst Model was proposed under the assumption of neutrino mass and

the matter dominated flat standard cosmology model. The former has been proved by the

neutrino oscillation experiments [15], while the latter was not as successful. Furthermore, the

absorption dip, the major signal of the Z-Burst Model in the neutrino cosmic ray spectrum is

very sensitive to the source density distribution of the EHEνCR. But the lack of information

on the origins of the EHEνCR prevents us from any knowledge of the distribution of the

sources.

The annihilation of a neutrino and a relic anti-neutrino has a resonance at the energy

Eres
Z =

M2
Z

2mν

= 4.16× 1021
(

1 eV

mν

)

eV, (1)

where MZ = 91.2 GeV [67] and mν is the mass of the neutrino.

Recent studies of the cosmological parameters, especially WMAP [66] and the more recent

SDSS [68] experiment, favor a flat universe with ΩM = 0.3, Ωk = 0, and ΩΛ = 0.7. With

this updated model of the universe and following the original work [49, 50], it is very easy to

find the transmission probability of a neutrino cosmic ray starting at redshift z and arriving

at earth with energy E0

P (E0, z) = Θ

(

1− E0

Eres
Z

)

Θ

(

(1 + z)
E0

Eres
Z

− 1

)

e−τ(E0), (2)

with

Θ(x) =











0, if x < 0

1, if x ≥ 0

(3)

and

τ(E0) =
2
√
2πGFn

0
ν

H0

(Eres
Z /E0)

3

√

ΩM(Eres
Z /E0)3 + Ωk(Eres

Z /E0)2 + ΩΛ

. (4)

Where GF = 1.17× 10−5 GeV−2 is the Fermi coupling constant, n0
ν is relic neutrino number

density at today, H0 = h× 100 km/s/Mpc is the present value of the Hubble constant, ΩM ,

Ωk and ΩΛ are the ratio of present matter, curvature, and cosmological constant density to
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the critical density. As mentioned earlier, the WMAP and SDSS experiments have provided

conclusive measurements for these parameters. The default values for these parameters will

be ΩM = 0.3, Ωk = 0, and ΩΛ = 0.7 [68, 66].

Eqn. 4 is the non-relativistic approximation discussed in the original work [49]. This is

still good approximation even though the neutrino mass is not as big as expected then. As

discussed earlier in Sect. 1.2, the heaviest neutrino will have a mass around 10−1 eV, which

is still significant larger than the momentum, around 0.7 meV, of the relic neutrinos. So at

least for the heaviest neutrinos, Eqn. 4 will still be very accurate.

2.3 Neutrino Cosmic Ray Spectroscopy

There is no credible information on the origins of the EHEνCR’s due to the lack of

observations of the EHECR’s. Several large EHECR detectors have been proposed recently.

These include the EUSO [62], IceCube [64], Pierre Auger Observatory [65], OWL [63]. The

future data from these experiment may offer enough neutrino events to study the Z-Burst

absorption dip. But as these experiments will only measure the observable spectrum of the

EHEνCR’s, it is necessary to have a look of all the contributing factors to the observable

neutrino cosmic ray spectroscopy.

2.3.1 Extremely High-Energy Neutrino Cosmic Ray Emission Spectrum

It is well known that the spectrum of cosmic rays follows a power law, with only slight

changes of the exponential coefficient at the knees [69, 70]. Thus, it is natural to propose

that the extremely high-energy neutrino cosmic ray spectrum of a single source also follows

this power law:

f(E, z) = E−α, (5)

where z is the redshift at the source. Replacing the initial energy of the neutrino cosmic

with the energy observed on earth, this becomes

f(E0, z) = (1 + z)−αE−α
0 . (6)

This spectrum, Eqn. 10, is in arbitrary units and is scale invariant.
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2.3.2 Source Distribution of Extremely High-Energy Neutrino Cosmic Rays

There is no enough information, from either experiments or theories, to determine the

source distribution of EHEνCR’s. But due to the important role that the source distribution

plays in the observable neutrino cosmic ray spectrum, models of the source distribution will

be proposed as guidelines for the future observation of the observable absorption spectrum.

The first model is a Gaussian distribution centered at z0 with standard deviation of σ.

Thus the source distribution can be described with

s′(z) = s0e
− (z−z0)2

2σ2 . (7)

The unit of this source distribution is number per comoving volume. If converted to the

physical volume, it becomes

s(z) =
s0

(1 + z)3
e−

(z−z0)2

2σ2 . (8)

This model is inspired by the observation of the galaxies and intergalactic matter clustering

at high redshift [71]. The galaxies and intergalactic matter clustering can be described as a

Gaussian distribution centered at z0 = 3.0 with dispersion σ = 0.25 [72]. Also, this Gaussian

distribution model can represent a whole class of source distributions, in which the neutrino

cosmic ray sources are located mainly around a center at a specified redshift and the density

decreases toward both lower and higher redshift. The contribution of the parameters in this

model will be studied in details in latter sections.

The second model is a Step-function distribution model, just a simple rectangle distri-

bution in the comoving coordinates, characterized by the two limits zmin and zmax. To ease

the comparison with the Gaussian distribution, the two limits zmin and zmax can be replaced

by the center of the source z0 = (zmin + zmax)/2 and the half-width of the source density

distribution w1/2 = (zmax − zmin)/2. The source distribution can be described as

s(z) =
1

(1 + z)3
Θ(z − z0 + w1/2)Θ(z0 + w1/2 − z). (9)

Again, the factor of (1 + z)−3 is coming from the conversion from comoving volume to the

physical volume. This model also represents a whole class of source distributions, in which

the the neutrino cosmic ray source density rarely changes at different redshift, except beyond

the two cutoff limits.
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The above two models will be used in the study of the EHEνCR spectroscopy in the

following sections. Other models of interest have been investigated [51]. Together, these

models of the source distribution of EHEνCR should span the possibilities for the Z-Burst

absorption dip.

2.3.3 Relative Observable Spectrum of Neutrino Cosmic Ray

With all the information discussed above, the observable EHEνCR spectrum on earth

can be calculated as following

F (E0) =

∫ ∞

0

s(z)

H(z)
f(E0, z)P (E0, z)dz, (10)

where

H(z) = H0

√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ.

Due to the complexity of the transmission probability, P (E0, z), there is no general

analytic solution for the observable spectrum F (E0). Numerical method will be used to

study the details of the observable spectrum F (E0).

The observable spectrum of the EHEνCR’s on earth will still be a power-law spectrum,

with an absorption dip starting at Eres
Z /(1 + zmax) and ending at Eres

Z , where zmax is the

maximum redshift of the EHEνCR sources. A typical power-law spectrum is shown in Fig. 2.

In this plot, the Z-Burst absorption dip is not very significant. One way to enhance the

absorption dip is to plot the ratio of the observable spectrum with absorption against the

observable spectrum without absorption of the neutrino cosmic ray, named Relative Observ-

able Spectrum (ROS). The same absorption dip as in Fig. 2, but in Relative Observable

Spectrum, is plotted again in Fig. 3. It is clear that this plot significantly enhances the

absorption dip’s visibility. Another reason to adopt the ROS is to compare the different

source density distributions and the different spectra of neutrino cosmic ray. By using the

ROS, there is no need to unify the source distributions and spectrum of neutrino cosmic

ray. The differences in the ROS will be strictly coming from the contribution of the different

source density distributions and the different spectra of the neutrino cosmic ray.

Some cautions have to be exercised when using the Relative Observable Spectrum to

analyze the EHEνCR’s data. First of all, the observable spectrum without absorption of the
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Figure 2: The Observable Spectrum of Neutrino Cosmic Ray

neutrino has to be deduced from the observed spectrum with the Z-Burst absorption dip.

This has to use parts of the spectrum outside of the Z-Burst absorption dip. It is possible

that there are also the “knee” structures like those in the cosmic ray spectrum at energy of

4 PeV and 400 PeV [69, 70]. In this case, the proper deduction of the observable spectrum

will be tricky and has to be exercised with caution. Second, the statistical error at the high

energy end will be much bigger than that at the low energy end of the Z-Burst absorption

dip. This is a natural result of the power-law spectrum, which presents significantly less flux

at the high energy end of the spectrum. This will reduce the significance of the absorption

dip at the high energy end, so this part of the absorption dip has to be handled carefully.

But the maximum of the Z-Burst absorption dip is usually located close to the low energy

end. Thus, the step-up statistical error wouldn’t downplay the role of the maximum in the

Z-Burst absorption dip very much.
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Figure 3: The Relative Observable Spectrum of Neutrino Cosmic Ray

2.4 Overview

The improved Z-Burst Model, with the new cosmology model and the reasonable models

for the source density distribution of the extremely high-energy neutrino cosmic rays, makes

is possible to study the Z-Burst absorption dip in the spectrum of the neutrino cosmic rays.

The definition of the Relative Observable Spectrum (ROS) in Eqn. 10 is helpful to enhance

the visibility of the Z-Burst absorption dip. It is extremely helpful in the study of the

contributions from different parameters in the Z-Burst Model. The numerical calculation

and the results of the relative observable spectrum of the extremely high-energy neutrino

cosmic rays will be presented in the following chapter, and the contributions from different

parameters will be studied in details.
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CHAPTER III

NUMERICAL CALCULATION AND RESULTS

OF THE Z-BURST ABSORPTION DIP

Using theoretical preparation of Relative Observable Spectrum of neutrino cosmic rays

to study the Z-Burst absorption dip in the previous chapter, numerical calculation can now

be carried out. We identify the major contributing parameters in the Z-Burst Model and the

major signatures of Z-Burst absorption dip in the Relative Observable Spectrum of neutrino

cosmic ray.

3.1 Overview of the Method and the Study

3.1.1 The Numerical Integration Method

Due to the complicated form of the transmission probability T of the neutrino cosmic ray

described in Eqn. 2, it is impossible to calculate the final absorption spectrum analytically.

So, numerical methods will be used to carry out the integration to achieve the final spectrum.

All the numerical integration is carried out by the NIntegrate function, with the default

setting, in Mathematica c© 5.0 [73]. The NIntegrate function utilizes the adaptive Gauss-

Kronrod method. The accuracy of this numerical integration method is sufficient for the

study in this work.

For the Gaussian source distribution, the numerical integration is carried out in the range

of redshift z = 0 ∼ 1000. The upper limit of z = 1000 is sufficiently larger than the center of

the Gaussian distribution. For the Step-function source distribution, the range of numerical

integration is finite over the range z = zmin ∼ zmax.

3.1.2 The Parameters of Z-Burst Model

In the calculation of the Relative Observable Spectrum of neutrino cosmic ray, there are

a total of seven parameters involved. Some parameterize cosmology, such as the mass energy
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fraction ΩM , the curvature energy fraction Ωk, the Hubble constant h, and the relic neutrino

number density n0, while others parameterize the properties of the neutrino cosmic ray

source distribution, such as the center of the neutrino cosmic ray source distribution z0, the

half-width of the source distribution w1/2 in the step-function case or the standard deviation

σ of the Gaussian source distribution, and the coefficient of the power-law spectrum α. The

different contributions of these parameters to the final results of the Relative Observable

Spectrum of neutrino cosmic ray will be investigated in next section. The default values of

these parameters, be used if not specified otherwise, are

ΩM = 0.3, Ωk = 0, h = 0.70,

z0 = 3, α = 1, n0 = 56 cm−3,

σ = 0.25 or w1/2 =
√
2 log 2σ = 0.29.

The Relative Observable Spectrum (ROS) with these standard parameters is plotted in

Fig. 4.

3.2 The Non-Contributing Parameters

The parameters, Ωk, ΩM , h, and α, have relatively less significant contributions to the

Relative Observable Spectrum of neutrino cosmic ray than the others. Uncertainties in their

values barely affect the Z-Burst absorption dip in the Relative Observable Spectrum. We

describe them now.

3.2.1 The Curvature Energy Fraction Ωk

The curvature energy fraction Ωk, the mass energy fraction ΩM and the cosmological

constant fraction ΩΛ are confined by the relationship ΩM + Ωk + ΩΛ = 1. So, they cannot

vary independently. In this study, only Ωk and ΩM will be explicit, while ΩΛ will be defined

by the above relation. Fig. 5 shows that the curvature energy fraction Ωk has a very small

contribution to the value of the transmission probability T of neutrino cosmic ray. So,

it will not have any significant contribution to the Z-Burst absorption dip in the Relative

Observable Spectrum of the neutrino cosmic ray. In recent years, the cosmological microwave

background experiment WMAP [2] and the galaxy power spectrum experiment SDSS [4] have
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Figure 4: The Standard ROS of Neutrino Cosmic Ray

provided surprisingly accurate measurements of the flatness of our universe. Based on their

results, Ωk = 0 will be used in all the numerical calculation of the Relative Observable

Spectrum.

3.2.2 The Mass Energy Fraction ΩM

The contribution of the mass energy fraction ΩM to the neutrino cosmic ray transmission

probability is shown in Fig. 6, and the contribution to the Relative Observable Spectrum

of neutrino cosmic ray with a Gaussian source distribution is shown in Fig. 7. From these

plots, it is obvious that ΩM will significantly affect the Z-Burst absorption dip. But due to

the relatively small uncertainty of the measured mass energy fraction density, ΩM = 0.3 [74]

will be fixed in the numerical calculation and won’t be treated as a contributing parameter.
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Figure 5: The Contribution of Ωk to Transmission Probability T

3.2.3 The Hubble Constant h

The contribution of the Hubble constant h to the neutrino cosmic ray transmission prob-

ability T is shown in Fig. 8, and the contribution to the Z-Burst absorption dip in the

Relative Observable Spectrum of the neutrino cosmic ray from a Gaussian source distribu-

tion is shown in Fig. 9. Just like the mass energy fraction ΩM , the Hubble constant’s value

does affect the Z-Burst absorption dip significantly. But due to the accurate measurement

of the value of the Hubble constant h [74], the small uncertainty of h will not play a big role

in the study of the Relative Observable Spectrum of neutrino cosmic ray.

3.2.4 Coefficient of the Power-Law Spectrum α

The coefficient of the power-law spectrum α plays a more complicated role to the Z-Burst

absorption dip in the Relative Observable Spectrum of neutrino cosmic ray. In Fig. 10,

the Relative Observable Spectra of neutrino cosmic ray with different power-law spectra
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Figure 6: The Contribution of ΩM in Transmission Probability T

coefficient α from the same Gaussian source distribution are shown. It is quite obvious that

the value of α doesn’t make much difference here. In fact, the maximum difference of the

Relative Observable Spectrum of neutrino cosmic ray between α = 1 and α = 3 is about

3%. But in our related work [51], it is shown that the value of α for a power-law source

distribution, extended over zmin = 0 to zmax À 1. This source distribution produces a

shallower absorption dip, in which the relative difference caused by the coefficient of the

power-law spectrum α is more significant. It is worth pointing out that the power-law

spectrum coefficient α only causes a difference of 3% in the depth of the absorption dips in

both works. So in conclusion, the coefficient of the power-law spectrum will play a more

significant role for an extended source distribution than for a localized source distribution.

In this work, α will be treated as a non-contributing parameter as only localized neutrino

cosmic ray source distributions will be studied.
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Figure 7: The Contribution of ΩM to the ROS of Neutrino Cosmic Ray

3.3 The Contributing Parameters

The major contributing parameters are the mass of neutrino mν , the relic neutrino num-

ber density n0, and the parameters describing the neutrino cosmic rays source distribution.

The detailed signatures of these parameters in the Z-Burst absorption dip in the Relative

Observable Spectrum of neutrino cosmic rays will be studied here.

3.3.1 The Mass of Neutrino

Determination of the absolute mass of neutrino is the major motivation in our study of

the Z-Burst absorption dip. So it is vital to be able to Two methods can be used to extract

the mass from the Z-Burst absorption dip in the Relative Observable Spectrum of neutrino

cosmic rays.

The first one is to use the high-energy “edge” of the Z-Burst absorption dip. Fig. 11

shows the Z-Burst absorption dip in the Relative Observable Spectrum of neutrino cosmic
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Figure 8: The Contribution of h to Transmission Probability T

rays resulting from a Gaussian source, for a neutrino of mass mν = 0.2 eV. The dip on the

higher energy end is the “edge” corresponding to the Z-Burst resonant energy Eres
Z in Eqn. 1.

The absolute neutrino mass is simply

mν =
M2

Z

2Eres
Z

.

But the fact that the “edge” is at the higher energy end reduces the practicality of this

method. As discussed in Section 2.3.3, the power-law spectrum of cosmic ray energies will

offer significantly less events at the higher energy end of the dip. This will reduce the

statistics of the “edge”. Also, the “edge” comes from the Z-Burst absorptions happening at

nearby volume with z ∼ 0. With the relic neutrino number density nν = n0
ν(1 + z)3, this

means small event number, thus the shallow edge. Eventually, with the improvement of the

total number of observed events, the “edge” will lead to the ultimate result for the absolute

mass of neutrino.

The second method is to get the neutrino absolute mass from the position of the maximum
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Figure 9: The Contribution of h to the ROS of Neutrino Cosmic Ray

of the Z-Burst absorption dip. Due to the depth of the absorption dip, nearly 20% in the case

of Fig. 11, the maximum is much easier to identify than the edge in the Relative Observable

Spectrum of neutrino cosmic ray with relatively few observed events. The maximum of the

Z-Burst absorption dip usually locates between 0.2Eres
Z to 0.7Eres

Z . The exact position is also

determined by the source distribution of the neutrino cosmic rays. It would be possible to

deduce the neutrino absolute mass within a order of magnitude of the neutrino absolute mass

without any further information about the neutrino cosmic ray source distribution. More

information of the neutrino cosmic ray source distribution will certainly help to improve the

accuracy. This method is model dependent and has to be used with caution to infer the

neutrino absolute mass.

Other helpful information that the Z-Burst absorption dip in the Relative Observable

Spectrum of neutrino cosmic rays can offer is the mass spectrum of the neutrino. Fig. 12

and Fig. 13 show the Relative Observable Spectra for equal fluxes of the three different
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Figure 10: The Contribution of α to the ROS of Neutrino Cosmic Ray

neutrinos. Fig. 12 shows the case of the well-separated neutrino mass spectrum, in which all

the masses are simply deduced from the measured solar, atmospheric and LSND mass square

differences. In this case, the absorption dips of the different masses are well separated. But,

the depths of the absorption dips are significantly reduced, about 1/3 of the neutrino flux with

single mass eigenstate. This is due to the fact that the cosmic rays of the other two neutrinos

will not be absorbed within the absorption dip of the third neutrino. This will significantly

increased the number of events required to identify the absorption dips. Another difficulty in

this case is the extremely high resonance energy for the light neutrinos. For neutrino mass of

a few 10−1 eV, the resonance energy is between 1021 to 1022 eV. This energy scale is within

the reach of the proposed extremely high-energy cosmic ray observatories [62, 63, 64, 65].

But for neutrino mass at much lighter scale, such as 10−3 eV, the resonant energy will be

above 1024 eV. There is likely much less flux, and more aggressive experiments are needed

to detect the Z-Burst absorption dip. These experiments are unlikely to exist in the next
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Figure 11: The ROS of Neutrino Cosmic Ray for neutrino mass mν = 0.2 eV

couple of decades.

Another case is the degenerate mass spectrum, shown in Fig. 13. In this case, the

measured solar and atmospheric mass gaps are small perturbations about a mean mass of a

few 10−1 eV. Nearly the same absorption dip as for a single neutrino flux results, but with a

slightly deformed “edge”. It would be impossible to resolve the structure of the edge here,

even if a considerable amount of events can be gathered. But the benefit of this degenerated

spectrum is that absorption dip is deep.

Comparing these two possible mass spectra of neutrino, the degenerate mass spectrum

will be more generous to the possible observation of the Z-Burst absorption dip. This hints

that one would not be able to determine the mass spectrum of the neutrinos by the Z-Burst

absorption dip alone. Ultimately, the neutrino oscillation experiments have to be used to

establish the neutrino mass spectrum.
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Figure 12: The ROS of Neutrino Cosmic Rays Composed of Equal Flux of Neutrinos with
mνj = 8.1× 10−3, 4.6× 10−2, 0.2 eV

3.3.2 Relic Neutrino Number Density n0

Another factor that will significantly affect the Z-Burst absorption dip is the relic neutrino

number density n0. The hot Big-Bang cosmology is very successful at predicting the relic

cosmic microwave background. It also leads to a very precise prediction for the number

density of relic neutrinos. Yet, there is still no observation to back up this prediction, unlike

the case of the cosmic microwave background.

Fig. 14 shows the relic neutrino number density n0 will significantly affect the depth

of the Z-Burst absorption dip. With this knowledge, it would be possible in principle to

calibrate the relic neutrino number density and check the prediction of the hot Big-Bang

cosmology.
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3.3.3 Source Distribution of Extremely High-Energy Neutrino Cosmic Rays

The source distribution of the extremely high-energy neutrino cosmic rays plays a vital

role in the determination of the Z-Burst absorption dip. The source distribution can be

described by the shape (Gaussian or step-function), the location, in redshift z, and the

width, also in redshift z, of the source distribution. These factors will be studied in detail

here.

The Shape of the Neutrino Cosmic Ray Source Distribution

The shape of the neutrino cosmic ray source distribution is determined by the evolution-

ary history of the source. Details of the shape depend highly on the model. In this section,

the effects on the Z-Burst absorption dip the two models of the source distribution discussed

in Section 2.3.2 will be compared. Another type of neutrino cosmic ray source distributions,

the extended source distributions, has also been studied in our related work ??.

The Gaussian distribution is characterized by the standard deviation σ about the mean.

Bigger standard deviation σ means a more extended distribution, while smaller standard
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Figure 14: The ROS of Neutrino Cosmic Ray for Different Relic Neutrino Number Density
n0

deviation σ means a more localized distribution. Similarly, the step-function distribution is

characterized by the half-width w1/2. The two distributions are comparable to each other

when the full width at half maximum (FWHM) of the Gaussian distribution 2
√
2 ln 2σ is the

same as the full width 2w1/2 = zmax − zmin of the step-function distribution. This leads to

near equivalence at

w1/2 = σ
√
2 ln 2.

The Relative Observable Spectra of neutrino cosmic ray from the Gaussian source distribu-

tion and the step-function source distribution are plotted in Fig. 15 with the near equivalence

as specified by the above equation.

From Fig. 15, it is obvious that the Z-Burst absorption dips of the two different source

distributions are very close to each other. So it is easy to conclude that the shape of the

source distribution doesn’t affect the absorption dip very much. The similar shapes of the Z-
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Figure 15: The ROS of Neutrino Cosmic Rays from Gaussian and Step-function Sources

Burst absorption dips from our related work with a different source distribution model [51]

also support this conclusion. This is a good news for the future studies of the Z-Burst

absorption dip, as the conclusions of these studies will be nearly model independent. This

is also the reason why the Gaussian distribution has been used and will be use to study the

contributions of the other parameters, including the location and the width of the source

distribution, to the Z-Burst absorption dip in this work.

The Location of the Extremely High-Energy Neutrino Cosmic Ray Source

The location of the extremely high-energy neutrino cosmic ray sources is vital informa-

tion. This information will reveal the era in which the extremely high-energy cosmic rays

are generated. It would also discriminate among the models of the extremely high-energy

neutrino sources. This section will study the effects that the location of the sources will have

on the Z-Burst absorption dip.
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Figure 16: The ROS of Neutrino Cosmic Rays from a Gaussian Distribution Centered at
z0 = 1, 2, 3.

Fig. 16 shows the Relative Observable Spectrum resulting from a Gaussian source distri-

bution with different mean values for z. From this figure, it is obvious that the further away

the sources are from earth, the lower is energy the maximum of the absorption dip. This is

due to the bigger redshift that the neutrino cosmic rays experienced. Also interesting, the

further away the source is, the deeper the absorption dip is. The enhanced depth of the

absorption dip is due to the higher physical density of the relic neutrino or anti-neutrino

at higher redshift. Thus the neutrino cosmic rays from higher redshift experienced more

absorption than the neutrino cosmic rays from a source at lower redshift.

As discussed in Section 3.3.1, the position of the maximum of the absorption dip can

be used to learn the absolute mass of the neutrino. But the fact that the position of the

maximum of the absorption dip also depends on the mean location of the neutrino cosmic

ray sources complicates the case. The fact that the neutrino cosmic ray’s direction will not

change during its journey from the source to earth mitigates the complications. With the
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help of associated observations, the redshift of the sources can be determined, thus fixing

the mean location of the sources. With the mean so determined, it would be straightforward

to find the absolute mass of the neutrinos from the position of the maximum of the Z-Burst

absorption dip. Even if the mean location of the neutrino cosmic ray sources is not available,

the absolute neutrino mass can still be estimated with accuracy up to one order of magnitude

around the real mass.

The Width of the Neutrino Cosmic Ray Source Distribution

The standard deviation σ of the Gaussian distribution parameterizes the localization of

the sources. Smaller σ corresponds to a more localized source distribution, while larger

σ means more a extended source distribution. With a sufficiently large σ, the Gaussian

distribution can even represent a nearly flat source distribution. How will the width of the

source distribution affect the Z-Burst absorption dip? This question will be answered in this

section.

The Z-Burst absorption dips from three Gaussian distributions, with σ = 0.25, 1, 2, are

shown in Fig. 17. It is clear that the more extended the sources are, the shallower the

Z-Burst absorption dip is. This is a natural result of the source location’s contributions

briefly discussed in the previous section. For an extended source distribution, there will be

relatively more sources at both lower redshift and higher redshift than a localized source

distribution. Based on the discussion in the previous section, the sources at higher redshift

will produce deeper absorption dips, while the sources at lower redshift produce shallower

absorption dips. But the maximum of the absorption dips from different redshifts are at

different energies. When combining these absorption dips together, all the absorption dips

will become shallower. The more sources at the lower redshift, the shallower the absorption

dip will become, even though there will also be more sources at higher redshift. This results

a shallower absorption dip for the extended source distribution than the localized source

distribution.
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Figure 17: The ROS of Neutrino Cosmic Rays from Gaussian Distributions with σ =
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3.4 Discussion and Conclusion

3.4.1 Neutrino Flavors

In the current study, both the relic neutrinos and the extremely high-energy cosmic ray

neutrinos are treated simply as pure mass eigenstate, except in Fig. 13. The main reason

for this simplification is that the relic neutrinos are in the decoherent mass eigenstates. So,

it is more straightforward and instructional to work in the mass eigenstates when studying

the resonant annihilation between the relic neutrinos and the extremely high-energy cosmic

ray neutrinos.

The neutrino flavors do introduce some intriguing questions because the neutrinos are

generated and will interact with other particles in flavor eigenstates. The first one of these

questions is the ratio of the different flavor eigenstates, thus the ratio of the different mass
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eigenstates, in both the relic neutrinos and the extremely high-energy cosmic rays. The

answer to this question is really model dependent and worth a full separated investigation of

its own. The second question is the effect of the neutrino oscillation on the detection of the

Z-Burst absorption of the extremely high-energy neutrino cosmic ray. The extremely high-

energy neutrino cosmic rays from cosmically distant sources will not become the decoherent

mass eigenstates, because the neutrino decoherence length is [51]

Ddecoherence = 0.5

(

h

0.7

)

( τΨ
3 m

) E2
22

δm2
−3

DH × 1020, (11)

where δm2
−3 ≡ δm2/10−3 eV2, E22 ≡ E/1022 eV, the Hubble distance DH ≡ c/H0 =

4.2(0.7/h) Gpc, and cτΨ is the natural length of the wavepacket. For neutrino cosmic ray

with energy 1022 eV, the decoherence will never happen. The effect of the oscillation to the

detection of the extremely high-energy neutrino cosmic rays depends on the details of the

detectors, and has to be studied regarding specified experiment. Some of these questions

have been addressed in a separated work [51], which is focused more on the detection of the

relic neutrinos.

3.4.2 Z-Burst Absorption Signatures

After studying the different parameters’ contributions to the Z-Burst absorption dip, it

is clear that the best case for detecting the Z-Burst absorption dip is that the neutrino mass

spectrum is degenerate and the extremely high-energy neutrino cosmic rays are from very

localized sources at large redshift. Also, the details of the shape of the source distribution

don’t affect the Z-Burst absorption dip significantly if the source distribution is relatively

localized. This makes the detection of the Z-Burst absorption dip fairly independent of the

dynamics that generates the extremely high-energy neutrino cosmic rays.

The “edge” of the Z-Burst absorption dip presents an ideal measurement to determine the

absolute mass of neutrino. But it is located at the higher energy end of the spectrum, which

will naturally have a much smaller event rate if the spectrum of cosmic ray is power-law

like. Another measurement to determine the absolute mass of neutrino is the position of the

maximum of the Z-Burst absorption dip. The position of the maximum is determined by the

combination of the absolute neutrino mass and the mean location of the source distribution
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Table 1: Expected Number of Neutrino Events Per Flavor
∑

α4 (Nνα +Nν̄α)

energy decade 1021∼22 eV 1022∼23 eV 1023∼24 eV

year 2008 2013 2008 2013 2008 2013

observ. limit 240 700 30 90 2 5

of the neutrino cosmic rays. The maximum of the Z-Burst absorption is usually locates

between 0.2Eres
Z to 0.7Eres

Z . The mean location of the source distribution can be obtained

with astrophysical observations. Even if this information is not available, it is possible to

estimate the absolute neutrino mass accurate up to an order of magnitude about the real

neutrino mass.

It is also possible to directly check the relic neutrino number density n0 predicted by the

hot Big-Bang cosmology. This approach might be the only possible method to directly verify

the prediction of the Big-Bang cosmology in this decade.

3.4.3 Experimental Aspects

The final amount of the observed neutrino cosmic ray events is determined by the observ-

able flux of the neutrino cosmic ray on earth. The current upper limits from the experiments,

such as RICE [75], GLUE [76], FORTE [77] and AGASA [52], is shown in Fig. 18. The ex-

pected improvement of the future experiments, including ANITA [78], Auger [65], EUSO [62]

and SalSA [79], is shown in Fig. 19. These plots are adopted from [51]. The improvement

of the future experiments is also summarized in Table. 1.

In the best case scenario for the Z-Burst absorption dip detection, the neutrinos have

degenerated mass spectrum with mass of a few 0.2 eV. This is the case for the Relative

Observable Spectrum in Fig. 13. The maximum of the Z-Burst absorption dip is located at

E ' 5.5 × 1021 eV. The depth of the Z-Burst absorption in dip Fig. 13 is about 20%. In

order to achieve a 3σ discovery, the required number of observed events at the maximum of

the Z-Burst absorption dip is

N ' (3/20%)2 = 225. (12)
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Figure 18: The Current Upper Limit of Neutrino Cosmic Ray Flux

Referring to Table 1, the Z-Burst absorption dip should be detected by the year of 2008.

If the heaviest neutrino mass turns out to be two order of magnitude smaller, as suggested

by the atmospheric mass gap, the maximum of the Z-Burst absorption dip will locate with

1022∼23 eV. It is still possible to detect the Z-burst absorption dip because the total expected

number for all neutrino flavors will be 3× 90 = 270 before the year of 2013. So there is still

hope to detect the Z-Burst absorption dip in the next decade.

In the worst case scenario, the neutrinos mass spectrum is well separated. This case is

plotted in Fig. 12 with the depth of the Z-Burst absorption dips as 6% and the maximum

located around 7× 1021 eV. This will require the number of observed neutrino events for 3σ
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Figure 19: The Improvement of The Future Experiments on Neutrino Cosmic Ray Flux

discovery to be N ' (3/6%)2 = 2500, which will be barely achievable after the year of 2013.

It will get much worse if the heaviest neutrino mass turns out to be much smaller than that

suggested by the LSND gap.

3.4.4 Conclusion

To conclude this chapter, in the best case scenario with degenerate mass spectrum, it

will be possible to detect the Z-Burst absorption dip and to determine the absolute mass

of neutrinos in this decade, even if the heaviest neutrino mass is only about 10−2 eV as
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suggested by the atmospheric mass gap. Together with knowledge of the origin of the

neutrino cosmic rays, more accurate neutrino mass measurement can be extracted from the

Z-Burst absorption dip in the Relative Observable Spectrum. But the full neutrino mass

spectrum cannot be established from the Z-Burst absorption dips, the more accurate neutrino

mass square differences from neutrino oscillation experiments are needed.

But for the worst case scenario with well separated neutrino mass spectrum, it will not

be possible to achieve a conclusive measurement within this decade, even if the heaviest

neutrino has mass of a few 10−1 eV as suggested by the LSND gap. In fact, it might be

totally out of our reach if the heaviest neutrino mass turns out to be much lighter.
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PART TWO

NEUTRINO OSCILLATION
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CHAPTER IV

2+2 NEUTRINO OSCILLATION AND SUM RULE

As learned from the previous chapters, the existence of relatively heavy neutrinos of

a few 10−1 eV’s is vital to the detection of Z-Burst absorption dip in this decade. The

upper limit of the total mass of the relic neutrinos from the recent observations [66, 68]

seems to allow the heaviest neutrino mass to be a few 10−1 eV’s. The strongest evidence

to support a 10−1 eV scale neutrino mass is the mass square difference from the combined

data analysis of the LSND and KARMEN experiments [80]. The results of the invisible

and leptonic width of Z boson determine that there are only 3 active neutrinos [81]. But

the inconsistency of the LSND mass gap with the solar and atmospheric mass gaps suggests

the existence of the fourth neutrino, which has to be a sterile neutrino.1 In this chapter,

the basics of neutrino oscillation and a specific model of four neutrino oscillation, the (2+2)

model, will be discussed. The claimed evidence against this model, especially the Sum Rule

of (2+2) model [83], will be investigated in the next chapter through numerical calculation.

A partially successful analytical approach is presented in Appendix A.

4.1 Basics of Neutrino Oscillation With Two Neutrino Oscillation

The fact that the neutrino flavor eigenstates are not the same as the neutrino mass

eigenstates determines that neutrino beam will oscillate among the flavors when traveling

through space. This oscillation can be well illustrated with a simple two neutrino oscillation

model.

In this two neutrino oscillation model, the mass eigenspace has two mass eigenvectors

|νj〉 with j = 1, 2 as its basis, while the flavor eigenspace has two flavor eigenvectors |να〉
with α as one of the two possible flavors, say µ and τ here. The transformation between

1An attempt [82] to accommodate the LSND result in a three neutrino model by selective exclusion of
some atmospheric data still includes a heavy neutrino mass of 0.2 eV.
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these two eigenspaces is described by the unitary transformation matrix

U(θ) =





cos θ − sin θ

sin θ cos θ



 . (13)

The three phases in a general 2× 2 unitary matrix have been absorbed in redefinition of the

ν fields. The transformation relationship can be formally written as

|νj〉 = Uαj|να〉.

When the neutrino beam is traveling in vacuum, the evolution of the beam, in the flavor

basis, can be described as

〈να|νf (t)〉 = 〈να|e−iHt|νf (0)〉

=
∑

j,k,β

〈να|νj〉〈νj|e−iHt|νk〉〈νk|νβ〉〈νβ|νf (0)〉. (14)

As the mass eigenstates |νj〉 are the eigenstates of the free space Hamiltonian H, thus

〈νj|H|νk〉 = Ejδj,k,

with this, Eqn. 14 becomes

〈να|νf (t)〉 =
∑

j,k,β

Uαje
−iEjtδj,kU

∗
j,β〈νβ|νf (0)〉

=
∑

j,β

e−iEjtUαjU
∗
jβ〈νβ|νf (0)〉, (15)

where Ej =
√

m2
j + p2 is the energy of the neutrino. For neutrino oscillation experiments,

the energy of the neutrino beam E ' pÀ mj. Thus Ej ' E +
m2

j

2E
. So Eqn. 15 becomes

〈να|νf (t)〉 =
∑

j,β

e−i(E+
m2
j

2E
)tUαjU

∗
jβ〈νβ|νf (0)〉. (16)

If the neutrino beam start with pure muon neutrinos νµ, this means 〈νµ|νf (0)〉 = 1 and

〈ντ |νf (0)〉 = 0. Thus

〈να|νf (t)〉 =
∑

j

e−i(E+
m2
j

2E
)tUαjU

∗
jµ.
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Putting the components of the transformation matrix of Eqn. 13 in to the above equation,

the probability to measure tau neutrinos at distance L = t is then

Pντ (L) = |〈ντ |νf (L)〉|2

=

∣

∣

∣

∣

−e−i(E+
m2

1
2E

)L sin θ cos θ + e−i(E+
m2

2
2E

)L cos θ sin θ

∣

∣

∣

∣

2

=

(

2− 2 cos

(

m2
2 −m2

1

2E
L

))

sin2 θ cos2 θ

= sin2
(m2

2 −m2
1)L

4E
sin2 2θ

= sin2
δm2

21L

4E
sin2 2θ. (17)

With the oscillation probability of Eqn. 17, it is easy to reach the following conclusions:

1. The Maximum Oscillation: The maximum probability to detect the other flavor neu-

trino in the neutrino beams is sin2 2θ when the beam starts with pure neutrinos of one

flavor. If the mixing angle θ is π
4
, it is possible to have full conversion from one flavor

to the other.

2. The Oscillation Length λ: The oscillation length λ is determine by setting the phase

of the oscillation term to π. This leads to

λ =
8πE

δm2
21

= 2.48

(

eV2

δm2
21

)(

E

GeV

)

km. (18)

These results will be very helpful to understand the more complicated oscillation of three or

four neutrinos.

4.2 Neutrino Oscillation Experiments

After neutrino oscillations were first confirmed by the Super-Kamiokande experiment in

1998 [15], three types of neutrino oscillation have been studied. These three types of neutrino

oscillation will be briefly discussed here.

4.2.1 Solar Neutrino Oscillation

Solar neutrinos are generated by the thermonuclear reactions inside the sun. The sun is

well described by the Standard Solar Model [84, 85, 86] in all aspects other than the observed
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neutrino flux. This discrepancy is the famous solar neutrino problem [87, 88] that started

the whole neutrino oscillation revolution. Among the thermonuclear chain reactions, the

main reactions which generate the solar neutrinos are

p+ p → 2H+ e+ + νe, (19)

p+ e− + p → 2H+ νe, (20)

8B → 8Be∗ + e+ + νe, (21)

7Be + e− → 7Li + νe. (22)

These reactions will only generate electron neutrinos νe, whose energy will fall into the range

of 0.1 to 15 MeV. Some of the solar neutrino experiments are able to detect the neutrinos with

energy above 0.2 MeV. The solar neutrino experiments fail to observe the electron neutrino

flux predicted by the Standard Solar Model. The deficiency in the electron neutrino flux can

be explained by electron neutrinos oscillating into, most probably, tau or muon neutrinos.

The solar neutrino oscillation is characterized by the solar mass gap δm2
sol and the solar

mixing angle θsol. In the parameter space described by these two parameters, only the

large mixing angle (LMA) solution is allowed by the experimental data including the recent

SNO and Kamland experiments [89]. The best fits to the solar neutrino experiment data in

Reference [90], [91], and [92] give

δm2
sol = 3.7× 10−5eV2, (23)

tan2 θsol = 0.37. (24)

4.2.2 Atmospheric Neutrino Oscillation

The atmospheric neutrinos are generated by the high energy cosmic rays bombarding the

atmospheric atoms. The most important neutrino producing reactions are the following

π± → µ± + νµ(ν̄µ),

µ± → e± + νe(ν̄e) + ν̄µ(νµ).

The measured energies of these muon and electron neutrinos are widely spread from 0.1

GeV up to 10 TeV. Unlike the solar neutrinos, the measured flux of muon neutrinos νµ doesn’t
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offer much helpful information as the original flux of the primary cosmic rays is poorly known.

But to a good approximation at low energies, twice as many muon neutrinos νµ as electron

neutrinos νe will be generated. Thus the flux ratio of muon neutrino νµ to electron neutrino

νe, defined as Rµ/e, should be 2. The observed ratio Rµ/e is only 0.65 [93]. This deficiency

is attributed to the muon neutrino νµ’s oscillation into the other flavor neutrinos, with tau

neutrinos as the top candidate [94]. The parameters for atmospheric neutrino oscillations

from the best fits to atmospheric and solar data [95, 96] are

δm2
atm = 2.4× 10−3eV2, (25)

tan2 θatm = 0.66. (26)

To achieve the above results, both Solar and Atmospheric neutrino oscillation data are

fitted with two neutrino model even there are really three ν’s are involved. This is because

the other mixing angle is θ31 ' 0, determined by CHOOZ experiment [97]. This is effectively

two neutrino oscillation.

4.2.3 Man-made Neutrino Oscillation Experiments

There are two sources for man-made neutrinos. The first is the accelerator, in which

the muon neutrinos are generated when accelerated protons hit matter targets. The energy

of these muon neutrinos will be a few 10 MeV. The LSND and KARMEN experiments are

designed to detect the appearance of the electron neutrinos in the muon neutrino beam.

Among these experiments, the LSND experiment offers a surprisingly big mass gap, which is

still the center of heated debates. The second source of the man-made neutrinos is the nuclear

reactors. The nuclear fission reactions in these reactors will generate electron anti-neutrinos

with energy at the MeV scale. The CHOOZ and KamLAND experiments are designed to

detect the disappearance of the electron anti-neutrinos, while the controversial LSND [27]

experiment uses a medium energy accelerator at Los Alamos National Lab to produce focused

π+ beams, whose decay produces neutrinos. The combined data of the LSND and the

KARMEN experiments determine the parameters of the LSND oscillation [80, 98, 99] as

δm2
LSND = 0.2 ∼ 1eV2,

sin2(2θLSND) = 10−2.
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4.3 Four-Neutrino Oscillation’s Parameters

The neutrino mass gaps from the solar, atmospheric, and LSND oscillation experiments

cannot be reconciled unless a fourth neutrino, the sterile neutrino νs, is introduced. This

forms the four-neutrino model. The parameters charactering four-neutrino oscillations are

discussed next.

4.3.1 Four-Neutrino Mass Spectra

The neutrino oscillation experiments can only measure the values, but not the signs, of the

mass square differences of the neutrinos. There are totally six possible neutrino mass spectra

with the same three neutrino mass square differences as shown schematically in Fig. 20.

Global analysis considering short baseline, solar, and atmospheric neutrinos concludes that

both the (3+1) and (2+2) schemes are only viable at very low confidence [100]. But the

follow-up works [101, 102], especially the most recent one [103], rule out the (2+2) scheme

and leave the (3+1) scheme marginally allowed. But in these global data fits, the two smallest

mixing angles are set to zero in order to reduce the number of parameters involved. The

contributions of these small mixing angles will be studied, and the possible viability of the

(2+2) scheme will be the main focus of the rest of this thesis. In the study of the viability

of (2+2) scheme, the normal (2+2) scheme will be used and conclusion will be the same for

the inversed (2+2) scheme. In the normal (2+2) scheme, the neutrino mass squares are

m2
2 = m2

1 + δm2
sol,

m2
3 = m2

1 + δm2
sol + δm2

LSND,

m2
4 = m2

1 + δm2
sol + δm2

LSND + δm2
atm. (27)

Mixing Angles

The four-flavor mixing of neutrinos is described by six mixing angles and three CP-

violating phases. The additional three phases for Majorana neutrinos will not be considered

as they don’t contribute to the oscillation probabilities. The mass bases are ordered as

{m4, m3, m2, m1} with m4 as the heaviest mass eigenstate, and the flavor bases are ordered

as {νµ, ντ , νs, νe} for our convenience. With this convention, the unitary transformation
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matrix that transforms the mass basis to the flavor basis, a product of the six rotation

transformation matrices with the six mixing angles, is

U = R23(θτs)R24(εµµ)R14(εµe)R13(εee)R34(θatm)R12(θsol). (28)

Here, θsol and θatm are the mixing angles dominantly responsible for solar and atmospheric

neutrino oscillations, and θτs is a possibly large angle parameter for the dominant mixing

of ντ and νs. The effects of the CP-violating phases are essentially to change the allowed

ranges of the three small mixing angles εµµ, εµe and εee from [0, π/2] to [−π/2, π/2]. So in

this work, the CP-violating phases will be replaced by allowing the values of the three small

mixing angles to have both the positive and negative signs. Also, the ordering of the six

rotation matrix is chosen so that it will be the same as that in Reference [100, 101, 102, 103]

when εµe and εee are set to zero. We do this to facilitate comparison to these prior works.

The values of the mixing angles are chosen as following:

1. Solar Neutrino Mixing Angle: θsol = 31o from Eqn. 24.

2. Atmospheric Neutrino Mixing Angle: θatm = 39o from Eqn. 26.

3. Mixing Angle for ντ and νs: θτs ∈ [0, π/2] as there is no knowledge of it from experi-

ments.

4. Three Small Mixing Angles: The allowed ranges of the three small mixing angles are

correlated. The short-baseline experimental data restricts their values to be in the

following range, as derived in [42]:

εµe ∈ [−0.1, 0.1],

εµµ ∈
[

−
√

0.12− ε2µe,
√

0.12− ε2µe

]

,

εee ∈
[

−
√

0.01− ε2µe,
√

0.01− ε2µe

]

.

4.4 Matter Effect in Neutrino Oscillation

For neutrinos traveling in the sun and in the earth, the neutrino oscillations will be

enhanced by matter through coherent forward scattering [104]. For specific oscillation and
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matter density parameters, this enhancement can produce a resonance behavior [105]. The

effects that the matter has on the neutrino oscillations is called the MSW matter effect,

after the three dominant players in the theoretical formulation of the resonance. The matter

can not only enhance but also depress the neutrino oscillations with certain combinations of

parameters. The MSW matter effect is described with the matter-induced potential A. In

the flavor basis, the matter-induced potential is

A =

√
2

2
GF

















−NX
n 0 0 0

0 −NX
n 0 0

0 0 0 0

0 0 0 2NX
e −NX

n

















, (29)

where GF = 1.17× 10−5GeV−2 is the Fermi coupling constant just like in Section ??, NX
n is

the number density of neutrons in the matter, and NX
e is the number density of electrons.

When all the small mixing angles ε’s are turned on, the MSW matter effect is very important

in the solar and atmospheric neutrino oscillations, due to solar matter and Earth matter,

respectively. But it will have minimal effect on the Sum Rule when all the small mixing

angles ε’s are set to zero. This contribution of the earth matter effect is studied numerically

in the next chapter and analytically in Appendix A.

4.5 Sum Rule and Product Rule of (2+2) Neutrino Model

The Sum Rule of the (2+2) neutrino model was introduced to rule out the (2+2)

model [83]. The essence of Sum Rule is that either solar neutrino oscillations or atmospheric

neutrino oscillations, or both, will produce sterile neutrinos with a significant probability.

When all the three small mixing angles ε’s are set to zero, the vacuum mixing matrix in

Eqn. 28 becomes

U = R23(θτs)R34(θatm)R12(θsol) = R23(θτs)U±, (30)
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with

U± =

















cos θatm sin θatm 0 0

− sin θatm cos θatm 0 0

0 0 cos θsol sin θsol

0 0 − sin θsol cos θsol

















. (31)

This simply means that 〈νe|ν3〉 = 〈νe|ν4〉 = 0, and 〈νµ|ν1〉 = 〈νµ|ν2〉 = 0. The neutrino

oscillation probabilities in this case can be denoted by

P4(να → νβ) ≡ A4(να → νβ) sin
2

(

δm2
4L

4E

)

, (32)

Here, 4 denotes the short baseline (SBL), long baseline (LBL)/atmospheric, or solar scale.

A4 is the amplitude of the CP-conserving oscillation at each δm2
4 scale. They are defined

as

ASBL(να → νβ) = −4
2

∑

j=1

4
∑

k=3

Rαj
βk,

ALBL(να → νβ) = −4Rα3
β4,

Asol(να → νβ) = −4Rα1
β2, (33)

with the CP-conserving coefficient Rαj
βk defined as the real part of (UαjU

∗
βjU

∗
αkUβk). Also for

the disappearance amplitude,

A4(νβ → ν 6β) =
∑

α6=β

A4(νβ → να) = 4
∑

4
|Uβj|2 |Uβk|2 , (34)

with
∑

4 denotes the sum over the appropriate mass states indicated explicitly in Eqn. 33.

From the above results, the non-zero oscillation amplitudes for νµ due to atmospheric-

scale oscillations are

Aatm(νµ → ντ ) = sin2(2θatm) cos
2 θτs,

Aatm(νµ → νs) = sin2(2θatm) sin
2 θτs,

Aatm(νµ → ν 6µ) = sin2(2θatm), (35)
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while the oscillation amplitudes for νe due to solar-scale oscillations are

Asol(νe → ντ ) = sin2(2θsol) sin
2 θτs,

Asol(νe → νs) = sin2(2θsol) cos
2 θτs,

Asol(νe → ν 6e) = sin2(2θsol). (36)

The oscillation amplitudes listed above will still be of the same form if the matter effects

are present. This is because the matrix of the matter-induced potential is diagonal in the

flavor basis. The extra matter-induced potential will only change the values of the angles

involved here.

When the earth matter is not present, the oscillation amplitudes for νµ due to the

atmospheric-scale oscillations can simply take the above values. The case with the earth

matter effect will be analyzed through numerical calculation in Chapter V and through

analytical study in the Appendix A.

But the oscillations the solar neutrinos are very different because the evolution of the

neutrinos from the center to the surface of the sun is dominated by matter effects. The

solar matter density is not constant, and so the matter-dependent mixing angles change

continuously as the neutrinos transit through the solar material. This will possibly affecting

non-adiabatic transitions among the mass eigenstates. But for the large mixing angle (LMA)

solution of interest in this work, the neutrinos propagate adiabatically from the center to

the surface of the sun. Moreover, solar neutrinos with energies above the solar resonance

associated with δm2
sol and below the atmospheric resonance associated with δm2

atm will evolve

adiabatically to emerge from the sun in a nearly pure |ν2〉 mass eigenstate. As discussed in

Reference [42], the solar resonance energy is ER
sol ≤ 4 MeV and the atmospheric resonance

energy is ER
atm ≥ 300 GeV. The solar neutrinos |ν¯〉 measure by the Super-Kamiokande and

SNO experiments are from the 8B decay chain, thus have energy within this energy range.

For the solar neutrinos measured by these experiments, the approximation |ν¯〉 ≡ |ν2〉 can
be used.

If all three small mixing angle ε’s are set to zero, from Eqn. 30, it is easy to get

|ν2〉 = cos θsol(sin θτs|ντ 〉+ cos θτs|νs〉)− sin θsol|νe〉. (37)
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From this equation, the oscillation amplitudes for solar neutrinos arriving at the earth in the

|ν¯〉 ≡ |νe〉 approximation are

Asol(ν¯ → ντ ) = cos2 θsol sin
2 θτs,

Asol(ν¯ → νs) = cos2 θsol cos
2 θτs,

Asol(ν¯ → ν 6e) = cos2 θsol. (38)

For solar neutrino oscillation, define the solar ratio as

Rsol =

[

P (ν¯ → νs)

P (ν¯ → ν 6e)

]

sol

, (39)

and for atmospheric neutrino oscillation, define the atmospheric ratio as

Ratm =

[

P (νµ → νs)

P (νµ → ν 6µ)

]

atm

. (40)

Thus, the zeroth order Sum Rule, when the small mixing angle ε’s are zero and no earth

matter effect is present, is

Rsol +Ratm =

[

P (ν¯ → νs)

P (ν¯ → ν 6e

]

sol

+

[

P (νµ → νs)

P (νµ → ν 6µ)

]

atm

= cos2 θτs + sin2 θτs = 1, (41)

and the Product Rule is achieved similarly by defining

R′sol =

[

P (ν¯ → νs)

P (ν¯ → ντ

]

sol

, (42)

R′atm =

[

P (νµ → νs)

P (νµ → ντ )

]

atm

, (43)

combining to yield

R′sol ×R′atm =

[

P (ν¯ → νs)

P (ν¯ → ντ )

]

sol

×
[

P (νµ → νs)

P (νµ → ντ )

]

atm

= cot2 θτs × tan2 θτs = 1. (44)

It is very important to realized that both the Sum Rule and the Product Rule are not

required by any underlying symmetry or principle. Rather, they are accidents of the block-

diagonal structure of Eqn. 30, when the small mixing angles ε’s and the earth matter effect

are ignored. It will be shown through the numerical calculation in the next chapter that

the small mixing angles ε’s and the earth matter effect can change the unitary result quite

significantly.
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4.6 Formalism of (2+2) Neutrino Oscillation in Matter

For neutrinos traveling in matter, the Hamiltonian in the flavor basis is

HF = U
M2

2E
U† + A, (45)

with

M2 =

















m2
4 0 0 0

0 m2
3 0 0

0 0 m2
2 0

0 0 0 m2
1

















=























m2
1 + δm2

LSND

+δm2
sol + δm2

atm

0 0 0

0 m2
1 + δm2

LSND + δm2
sol 0 0

0 0 m2
1 + δm2

sol 0

0 0 0 m2
1























(46)

A =

√
2

2
GF

















−NX
n 0 0 0

0 −NX
n 0 0

0 0 0 0

0 0 0 2NX
e −NX

n

















. (47)

Here, the X can be S standing for the solar matter, EM for the matter of earth mantle, or

EC for the core of the earth. As any constant in the Hamiltonian only causes a universal

phase shift in the wave function, the common factors m2
1 in the mass matrix M2 and −NX

n in

the matter-induced potential matrix A can be removed. Thus the matrices can be simplified
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as

M2 =

















δm2
LSND + δm2

sol + δm2
atm 0 0 0

0 δm2
LSND + δm2

sol 0 0

0 0 δm2
sol 0

0 0 0 0

















, (48)

A =

√
2

2
GF

















0 0 0 0

0 0 0 0

0 0 NX
n 0

0 0 0 2NX
e

















=
√
2GF

















0 0 0 0

0 0 0 0

0 0 NX
n

2
0

0 0 0 NX
e

















. (49)

When NX
e ' NX

n , which is true for both the earth and the sun, Eqn. 49 will become

A =

















0 0 0 0

0 0 0 0

0 0
√
2
2
GFN

X
e 0

0 0 0
√
2GFN

X
e

















. (50)

In order to study the details of a neutrino beam traveling through matter, the eigenvectors

|νX
k 〉 and the corresponding eigenvalues mX

k of this Hamiltonian H have to be found. The

transformation matrix or the mixing matrix between the eigenbasis in the matter |νX〉 and
the flavor basis |να〉 is UX . It can be composed of the normalized eigenvectors |νX

k 〉 in
the flavor basis. This transformation matrix will transform the flavor basis into the matter

eigenbasis as

|νX〉 = UX |να〉.. (51)

The evolution of a neutrino beam of initial state |ν0〉 through matter can be studied as

follows. First, the neutrino beam’s flavor state |ν0〉 can be decomposed into the eigenstates

of the Hamiltonian in the matter HX . In the diagonal basis of the neutrino will evolve, when

it propagates through the matter, as

|ν(L)〉 =
∑

k

e−imX
k L〈νX

k |ν0〉|νX
k 〉. (52)

Then the probability to detect neutrinos of flavor να will be

P (ν0 → α) = |〈να|ν(L)〉|2 . (53)
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Thus the solar ratio and the atmospheric ratio can be computed with these oscillation prob-

abilities with non-zero small mixing angles ε’s and the earth matter effect.

Both the Sum Rule and the Product Rule are exactly as the zeroth order Sum Rule

calculated in Section 4.5.when the three small mixing angles (ε’s) are zero and the earth

matter effect is not included. But when both the small mixing angles ε’s and the earth

matter effect are present, the Sum Rule can be significantly relaxed as shown in the next

chapter. Through the study of the Sum Rule and Product Rule of (2+2) neutrino model,

both numerically in the next chapter, the contributions of the small mixing angles ε’s to the

solar and atmospheric neutrino oscillations will studied and the viability of the (2+2) model

will be investigated. Appendix A contains an analytical study of the (2+2) Sum Rule of

simplified special cases.
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Figure 20: The Six Mass Spectra of 4 Neutrinos
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CHAPTER V

NUMERICAL CALCULATION AND RESULTS OF (2+2) SUM RULE

The small mixing angles ε’s are believed to make negligible contributions to the solar

and atmospheric neutrino oscillations. It has been proposed that the Sum Rule of the (2+2)

neutrino model, which is exact when all the small mixing angles ε’s are set to zero, rules out

the (2+2) neutrino model [83]. Based on similar belief, recent global fits to the experimental

data [100, 101, 102, 103] omit two of the smaller mixing angles, εµe and εee, and conclude that

the (2+2) model is highly disfavored. In this chapter, the Sum Rule of the (2+2) neutrino

model with all the small mixing angles ε’s and the earth matter effect will be calculated

through numerical method. The detailed contributions from these small mixing angles ε’s

will also be studied. We will find that the Sum Rule by itself is a poor prognosticator for the

fate of the (2+2) model. An analytical approach for a much simplified case will be presented

in Appendix A to study the matter effect when all small mixing angles ε’s are zero.

5.1 Numerical Calculation Procedure

The numerical calculation for the solar and the atmospheric neutrino oscillations will be

carried out with a Mathematica c© program. In this program, a number of random values

between 0 and π/2 will be chosen for the unrestricted mixing angle θτs. For each value of

θτs, a number of random values for the energy within a specified bin will be chosen. For each

value of the energy, the procedure described in the previous section will be carried out to

get the probabilities. All the probabilities for the energy points will be averaged to get the

overall probabilities of the specified energy bin. This method of using random points to get

the average is called Monte Carlo average method. The number of energy points chosen is

determined by the overall running time and the convergence of the averages. The details for

the solar and atmospheric neutrino oscillations are different due to the different energy and

different paths involved in the oscillation. These details will be described in the following

sections.
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5.1.1 Solar Neutrino Calculation

Electron neutrinos are generated at the center of the sun by thermonuclear reactions.

Then the neutrinos have to go through the dense solar matter and emerge at the surface of

the sun in a nearly pure |ν2〉 mass eigenstate. After this, the neutrinos will hardly oscillate

when traveling through the vacuum to reach the earth. When the neutrinos arrive at the

earth, after traveling through the solar matter and the distance between the sun and the

earth, the mass eigenstates are incoherent. Thus, the density operator of the decoherent

neutrinos is diagonal in the mass basis. In the operator notation, it is simply

ρ̂S
mass =

∑

j

∣

∣US
ej

∣

∣

2 |νj〉〈νj|. (54)

in the adiabatic approximation. Here, US is the mixing matrix described in Eqn. 51 in

the solar matter. Neutrinos emerging from the sun and observed on earth, we name solar

neutrinos |ν¯〉. Thus the probability to detect flavor β among the solar neutrinos will be

P (ν¯ → νβ) = 〈νβ|ρ̂S
mass|νβ〉 =

∑

j

∣

∣US
ej

∣

∣

2 |Uej|2 . (55)

Here, U is the mixing matrix in vacuum in Eqn. 28. The product of two classical probabilities,
∣

∣US
ej

∣

∣

2 |Uej|2, is a result of the decoherence of the neutrino beam. The probability to detect

non-electron neutrinos in the solar neutrino is just

P (ν¯ → ν 6e) = 1− P (ν¯ → νe).

The solar density varies exponentially. But as discussed in Section 4.5, the neutrinos

evolve adiabatically while traveling from the center to the surface of the sun. It is only

the matter density at the center, where they are produced, that enters
∣

∣US
ej

∣

∣

2
. This means

that the exponentially changing density of the solar material will not affect the neutrino

oscillation significantly. For the solar matter at the center, the electron number density is

NS
e = 6× 1025cm−3. The solar neutrino energy ranged from 5 MeV to 15 MeV is measured

by the Super-Kamiokande experiment. Within this energy range, we find that 10 energy

points are enough to achieve good results for the Monte Carlo average method.

So for each chosen value of the mixing angle θτs, 10 random values of energy will be

chosen within 5 MeV and 15 MeV. For each energy value, the probability to detect sterile
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neutrinos P (ν¯ → νs) and non-electron neutrinos P (ν¯ → ν 6e) will be calculated as described

above. Then the ten values of the probabilities will be averaged to get the overall probability

in this energy range. In this way the solar ratio Rsol, defined by Eqn. 39, can be calculated

for each value of mixing angle θτs.

5.1.2 Atmospheric Neutrino Calculation

The calculation for atmospheric neutrinos is more complicated than the solar neutrino

because of the higher energy with the atmospheric neutrinos, the more complicated path of

the neutrino beam and the more complicated structure of the earth.

Neutrino Beam Direction

The zenith θz angle of the neutrino beam is defined as the angle between the direction of

the neutrino beam and the earth radius pointing at the experiment site. In the atmospheric

neutrino experiment, the final measurement is really an average over a zenith angle bin

of certain size. So, the calculation of the neutrino oscillation probabilities has also to be

averaged over the zenith angle. In the current work, only the up-going neutrinos with zenith

angle between 0 to cos−1(0.8) = 36.9o will be considered because these neutrinos have the

longest base-line and so have enhanced oscillation probabilities, and are the best experimental

test of the sterile/active neutrino ratio in atmospheric data involves the matter effect.

The Structure of Earth

The structure of the earth can be simplified as a dense core, with radius RC = 3493 km,

surrounded by a less dense mantle. The radius of the earth is RE = 6371 km. The electron

number density in the core is NEC
e = 6NA cm−3, while the electron number density in the

mantle is NEM
e = 1.6NA cm−3. Here, NA = 6.02 × 1023 is the Avogadro’s Number. For

any neutrino beam with zenith angle θz < tan−1 RC

RE
' 33o, the neutrino beam will travel

through the mantle, the core, and the mantle again, as shown in Fig. 21. The distance that

the neutrino beam goes through the core is

2rEC = 2
√

R2
C − sin2 θzR2

E, (56)
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Figure 21: The Neutrino Beam Travel Through the Earth

while the distance the neutrino beam travels through one of the two segments of the mantle

is

rEM = RE cos θz − rEC . (57)

So, if the neutrino beam starts from one side of the earth in state |να〉, then it will come

out of the other side in state

|νF (θz)〉 =
∑

β,l,γ,k,σ,j

|νβ〉〈νβ|νEM
l 〉〈νEM

l |e−iHEM
l rEM |νEM

l 〉〈νEM
l |νγ〉

× 〈νγ|νEC
k 〉〈νEC

k |e−iHEC
k 2rEC |νEC

k 〉〈νEC
k |νσ〉

× 〈νσ|νEM
j 〉〈νEM

j |e−iHEM
j rEM |νEM

j 〉〈νEM
j |να〉. (58)

Here, the Greek indexes indicate the flavor basis, and the roman indexes mean the mass

basis.
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Making use of the transformation matrix of Eqn. 51, Eqn. 58 becomes

|νF (θz)〉 =
∑

β

UE
βα(θz)|νβ〉 (59)

with the overall unitary evolution matrix for the earth as

UE(θz) =
[

UEMe−iHEMrEMUEM †
] [

UECe−iHEC2rECUEC†
] [

UEMe−iHEMrEMUEM †
]

. (60)

Here, the propagation matrices e−iHXrX are diagonal, with elements determined by replacing

the Hamiltonian HX with its eigenvalues. These eigenvalues and the transformation matrices

are obtained by finding the eigenvalues and eigenvectors of the Hamiltonian HX in matter

as described in Section 4.6.

The above calculation is still valid if the neutrino beam does not travel through the core.

Setting the distance traveling through the core 2rEC = 0, the Eqn. 60 becomes

UE(θz) =
[

UEMe−iHEMrEMUEM †
] [

UECUEC†
] [

UEMe−iHEMrEMUEM †
]

=
[

UEMe−i2HEM rEMUEM †
]

. (61)

So as long as the distance through the mantle of the Earth rEM is correct, Eqn. 60 also

describes the situation where the neutrino beam travels only through the mantle of the

Earth.

Turning to the atmospheric neutrino oscillation, the probability of the muon neutrino to

oscillate into sterile neutrino |νs〉 is

P (νµ → νs) =
∣

∣〈νµ|UE|νs〉
∣

∣

2
=
∣

∣UE
sµ

∣

∣

2
, (62)

and the probability for the muon neutrino to oscillate into non-muon neutrino is

P (νµ → ν 6µ) = 1− P (νµ → νµ) = 1−
∣

∣UE
µµ

∣

∣

2
. (63)

The Fast Oscillation Due to the LSND Mass Gap

When the atmospheric neutrinos have energy ∼ 1 GeV, the neutrino oscillation length

due to the LSND mass gap, according to Eqn. 18, will be only a few km’s. The atmospheric
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neutrino oscillation calculation carried out in this work and in the Super-Kamiokande anal-

ysis includes energies from a few 10−1 GeV to a few hundreds GeV, and zenith angle θz

from 0 to 37o. The oscillation lengths L associated with δm2
LSND vary from 1.3× 104 km to

5.1× 103 km. These averaging procedures will simply average over a lot periods of the fast

oscillation due to the LSND mass gap. Of course, this fast oscillation could be handled by

averaging over the energy and the zenith angle. But it force more data points to be taken for

the Monte Carlo procedure to converge. In order to reduce the computation cost and time,

we set by hand the phases proportional to the LSND mass gap to zero. This is achieved by

using projectors to replace the propagation matrix in Eqn. 60, when it is used in Eqn. 62.

The projectors are

D =

















1 ei(m
X
1 −mX

2 )LX 0 0

e−i(mX
1 −mX

2 )LX 1 0 0

0 0 1 ei(m
X
3 −mX

4 )LX

0 0 e−i(mX
3 −mX

4 )LX 1

















, (64)

again, with X represents the core of the earth with EC and the mantle of the earth with

EM . For the mantle, LEM = rEM . But for the core LEC = 2rEC because the distance inside

the core is 2rEC .

The Range of Atmospheric Neutrino Energy

The atmospheric neutrinos produced by the energetic cosmic rays typically have energy

ranged from 0.5 GeV up to 500 GeV. In the Super-Kamiokande experiment, the muon

neutrinos νµ will interact with the rock below the detector and generate secondary muons,

while the electron neutrinos will generate electrons. The Super-Kamiokande detector is a

water Cerenkov detector, which can distinguish the muon-like events and the electron-like

events by the shape of the rings. The ratio of the muon neutrino flux to the electron

neutrino flux can be deduced from the number of the two types of events observed by the

Super-Kamiokande detector.

The Cerenkov detector cannot measure the energy of the muons. But when the parent

muon neutrinos have energy between 0.5 to 1.5 GeV, the trajectories of the secondary muons

will be fully contained within the Super-Kamiokande detector. For the parent muon neu-

59



trinos with energy between 1.5 to 30 GeV, the trajectories of the secondary muons will be

partially contained within the Super-Kamiokande detector, eg. the muon trajectory either

starts or ends in the detector. For the parent muon neutrinos with energy between 30 to 500

GeV, the trajectories of the secondary muons will go through the whole detector, eg. the

through-going events. Fig. 22 [106] shows the classification of the muon-like events in the

Super-Kamiokande detector.
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Figure 22: Classification of Super-Kamiokande Neutrino Events

Due to the energy dependence of the MSW matter effect, and the resonant behavior,

which can turn small vacuum angles into large matter angles, the small mixing angles ε’s

will definitely have dramatically different roles at different energies. Thus, the investigation

will be carried out for different energy bins, the contained energy bin 0.5 ∼ 1.5 GeV, the

partially contained energy bin 1.5 ∼ 30 GeV, the through-going energy bin 30 ∼ 500 GeV,

and the typical through-going energy bin 50 ∼ 150 GeV to study the energy-dependence of
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the small mixing angles’ effects.

Brief Walk-through of The Procedure

1. Randomly choose a value for θτs within [0, π/2]

2. With this θτs,

• Randomly choose 10 values for solar neutrino energy within 5 to 15 MeV.

For each energy, carry out the calculation described in Section 5.1.1 to get the

probabilities for P (ν¯ → νs) and P (ν¯ → ν 6e). Then average the 10 values of each

of the two probabilities, and form the solar ratio Rsol for this value of θτs.

• Randomly choose 50 values for energy within the specified atmospheric neutrino

energy bin.

For each energy value, randomly choose 10 values of zenith angle θz. For each

zenith angle, carry out the calculation for atmospheric neutrino oscillation de-

scribed in Section 5.1.2 to get the probabilities for P (νµ → νs) and P (νµ → ν 6µ)

for these 10 zenith angle. Then average the values of these 10 probabilities to

get the average probability for the energy value. After finish calculating all the

50 values of each of the energy values, average all these 50 probabilities to get

the final probabilities for P (νµ → νs) and P (νµ → ν 6µ) and form the atmospheric

ratio Ratm for this value of θτs.

3. Present Ratm versus Rsol as a scatter-plot to demonstrate the Sum Rule.

4. Repeat the steps above for as many times as needed.

5.1.3 The Exclusion Regions From Experiments

From published works fitting solar and atmospheric oscillation data with (2+2) model [95,

96], with small mixing angles ε’s ignored, the 90% C.L. and 99% C.L. value for the solar

ratio Rsol are 0.45 and 0.75, while the 90% C.L. and 99% C.L. for the atmospheric ratio
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Ratm are 0.17 and 0.26.1 The allowed values for the solar and atmospheric ratios Rsol and

Ratm are treated as Gaussian distributions centered at Rsol = 0 and Ratm = 0 (no νs). The

combination of these two Gaussian-distributed values generates an elliptical exclusion region,

described by
R2

atm

σ2
atm

+
Rsol

σ2
sol

= R2
C.L.. (65)

Putting in the numbers above, one finds for the 90% C.L. exclusion region, R90% = 2.15, and

for the 99% C.L. exclusion region, R99% = 3.03, with σatm = 0.0957 and σsol = 0.0734.

The 90% and 99% C.L. exclusion regions will be superimposed on the Sum Rule plot.

If the Sum Rule point lies inside the exclusion regions, its parameter set is viable. But if

the data point lies outside the exclusion regions, its parameter set is definitely not viable.

The 90% and 99% exclusion regions will act as visual guides to the Sum Rule plots in the

following sections.

5.2 Calculation Results

In this section, the results of my numerical calculations will be shown and briefly dis-

cussed. In every one of the plots shown, there are 4000 scatter-points, except for the zeroth

order Sum Rule and Product Rule plots which have 500 points. Each of these points corre-

sponds to a value of θτs, which is randomly chosen between 0 to π/2.

5.2.1 Zeroth Order Sum Rule

500 points for the zeroth order Sum Rule for neutrinos with energy bin 30 GeV to 500

GeV are shown in Fig. 23. Zeroth order Sum Rule means all the small mixing angles ε’s set

to zero. But the earth matter effect is turned on. These 500 data points are plotted against

the Sum Rule without matter effect, the blue solid line in Fig. 23. It is obvious that the

Sum Rule is nearly exact when all the small mixing angles ε’s are set to zero but with the

earth matter effect turned on. There is no data points inside the 90% exclusion region, and

1The data fitting work in [95, 96] are done with all ε’s set to zero. It is noted that the global fit with the
largest small mixing angles εµµ results expanded exclusion regions. But calculating the exclusion boxes with
non-zero ε’s is a formidable task beyond the scope of this work. So the conclusion from [95, 96] will still be
used here.
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Figure 23: Zeroth Order Sum Rule With Matter Effect

only the data points with Rsol ' 1 are inside the 99% exclusion region. From Eqn. 41 and

Eqn. 35, these points correspond to θτs ' π/2, thus with minimal probabilities to oscillation

into sterile neutrinos. Also from Fig. 23, it can be concluded that the small mixing angles

ε’s are essential to the relaxation of the Sum Rule. The presence of earth matter without

small mixing angles ε’s will not cause any obvious relaxation to the Sum Rule. This result

will also be investigated in the Appendix A to show the contribution of the earth matter

effect, and the slightly deviation of the data points from the zeroth order Sum Rule will be

explained.

5.2.2 Sum Rule With Small Mixing Angles and The Earth Matter Effect

In this section, the Sum Rule with all the small mixing angles non-zero and the earth

matter effect turned on will be studied. The numerical calculation results are plotted in

Fig. 24-27. Two plots are shown in each of these figures. The top one is calculated with the

earth matter effect, while the bottom one without the earth matter effect. In each plot of

these figures, there are 4000 scattered data points shown together with the 90% and 99%
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exclusion regions.

The data points in Fig. 24 are calculated for atmospheric neutrinos with energy between

0.5 to 1.5 GeV, the energy for contained events in Super-Kamiokande experiments. The

data points in Fig. 25 are with energy between 1.5 to 30 GeV, the partially contained events,

while that data points in Fig. 26 are with energy between 30 to 500 GeV, the through-going

events. The data points in Fig. 27 are calculated with the “typical” energy of through-going

events.

Based on the results plotted in the figures from Fig. 24 to Fig. 27, the relaxation of the

Sum Rule when the small mixing angles ε’s and the matter effect are included in the neutrino

oscillation is evident. At high energy, the Sum Rule can be significantly relaxed that a large

fraction of the allowed data points lie within the conservative 90% exclusion region caculated

with all ε’s are zero.

Comparing the top and the bottom plots in figures from Fig. 24 to Fig. 27, the relative

significance of the earth matter-effects for the atmospheric neutrino oscillation with the small

mixing angles ε’s is obvious. The earth matter-effects are not significant at low energies, but

become more important with increasing energy.

The relaxation of the Sum Rule is also energy dependent. A roughly diagonal band in

Fig. 24 and Fig. 25 turns into a butterfly pattern at high energy in Fig. 26 and FIG. 27.

This is the result of the energy-dependent matter effects on the oscillation amplitude and

length, and of the suppression occurring when oscillation lengths are large compared to

the Earth’s diameter. While for low energies, the zeroth order Sum Rule provides a good

approximation to the (2+2) model with non-zero small mixing angles ε’s. In this case,

Ratm ∼ sin2 θτs ∼ 1 − Rsol. But at high energies, the dependence on θτs is quite different.

As shown by the numerical calculations in this work, Ratm ∼ 0 and Rsol ∼ 0 can be achieved

simultaneously, especially at high energy. This means that the sterile neutrino can be hidden

from both the atmospheric neutrino oscillation through-going data and the solar neutrino

oscillation data.
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5.2.3 The Roles of the Individual Small Mixing Angles

Another question of special interest in this work is the different roles of the individual

small mixing angles ε’s. To answer this important question, the Sum Rule is calculated with

only one of the small mixing angles ε’s turned on and with the earth matter effect turn on.

The results are plotted in Fig. 28-31. In each one of these figures, the top plot is with only

εµµ as non-zero, the middle plot with only εµe as non-zero, while the bottom plot with only

εee non-zero. Same as the Sum Rule plots in the previous section, calculations are carried

out over different energy bins of interests, with Fig. 28 over the energy bin from 0.5 to 1.5

GeV, Fig. 29 over 1.5 to 30 GeV, Fig. 30 over 30 to 150 GeV, and Fig. 31 over 50 to 150

GeV.

Just like in the Sum Rule plots with all the small mixing angles ε’s are turned on, the

effects of the individual small mixing angles ε’s on the Sum Rule are energy dependent, and

become more significant at higher energy. By comparing the bottom plot with only εee 6= 0

against the other two plots in Fig. 28-31, it is obvious that the non-zero εee has minimal

effects on the Sum Rule both at low energies and high energies. So, the deviation from the

zeroth order Sum Rule is mainly caused by the non-zero values of the other two small mixing

angles, εµµ and εµe. Also from the comparison, εµµ has relatively big effects on the Sum

Rule than εµe, but the contribution from εµe is still too significant to ignore. This result is

especially interesting because εµe is set to zero in the global analysis [100, 101, 102, 103].

The εµe’s significant effects on the Sum Rule suggest that at least the small mixing angles

εµµ and εµe must be turned on in the global analysis of the neutrino oscillation data. This

casts some doubt on the recent claimed exclusions of the (2+2) neutrino model.
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Figure 24: The Sum Rule for 0.5 - 1.5 GeV
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Figure 25: The Sum Rule for 1.5 - 30 GeV
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Figure 26: The Sum Rule for 30 - 500 GeV
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Figure 27: The Sum Rule for 50 - 150 GeV
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Figure 28: Small Mixing Angles at 0.5 - 1.5
GeV
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Figure 29: Small Mixing Angles at 1.5 - 30
GeV
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Figure 30: Small Mixing Angles at 30 - 500
GeV
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Figure 31: Small Mixing Angles at 50 - 150
GeV
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5.2.4 Sum Rule for Anti-neutrinos

When all the small mixing angles ε’s are neglected, matter effects on the atmospheric

ratios are negligible, and so the neutrino and anti-neutrino contributions to the Sum Rule are

virtually identical. But with non-zero small mixing angles ε’s, the contributions of the matter

effects become significant and may be different for neutrinos and anti-neutrinos because the

sign of the matter potential is reversed for the anti-neutrino. Near a resonance of neutrinos,

the anti-neutrinos will not be in resonance, thus the earth matter will affect neutrinos and

anti-neutrinos quite differently. But well above a resonance, the earth matter will have the

same effect on neutrinos and anti-neutrinos. Whenever the earth matter effects for neutrinos

are evident, the same calculation will also be carried out for anti-neutrinos to determine

whether the matter effect is any different. For all the energy bins of interests here, the only

visible difference between the Sum Rule of neutrinos and anti-neutrinos happens for energy

from 1.5 to 30 GeV. The Sum Rule for anti-neutrino plot in this energy bin is shown in Fig. 33.

It is obvious that the the anti-neutrinos will not affect the conclusions drawn for the Sum

Rule of (2+2) neutrino model. This result hints that the matter induced neutrino oscillation

resonances are not playing very significant roles in the atmospheric neutrino oscillations.

5.2.5 Product Rule of (2+2) Neutrino Oscillation

The Product Rule of the (2+2) neutrino oscillation with energy from 50 to 150 GeV is

plotted in Fig. 33. The plot on the top is the zeroth order Product Rule, with zeroth meaning

all the small mixing angles ε’s are set to zero. The plot on the bottom is the Product Rule

with all the small mixing angles ε’s and the earth matter effect turned on. It is obvious that

the Product Rule is also relaxed significantly by the small mixing angles ε’s and the earth

matter effect.

5.3 Conclusions

In this chapter, numerical calculations of the Sum Rule of the (2+2) neutrino model are

performed with the three small mixing angles ε’s and the earth matter effect turned on. The

results show that the combination of the small mixing angles ε’s, especially two of the larger

angles εµµ and εµe, and the matter effect will cause significant relaxation from the Sum Rule.
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Figure 32: The Sum Rule of Anti-neutrinos of 1.5 - 30 GeV

Among the energy bins of interests, the deviation from the Sum Rule is most significant

for energy from 30 to 500 GeV, which corresponds to the range for the through-going events.

For the three mixing angles, the mixing angle εµµ has the most significant contribution

to the deviation from the Sum Rule. This justifies the practice of the global data fits

[100, 101, 102, 103] to include εµµ in part of their fitting of LSND data. But the other small

mixing angle εµe also has significant contribution to the deviation from the Sum Rule. In

certain energy bin, itself can cause enough deviation from the Sum Rule to generate data

points within the exclusion regions. The last one of the small mixing angles εee doesn’t have

much contribution to the deviation from the Sum Rule. It would not cause any problem

to omit εee in any future global data fitting work. The results here raises questions to the

conclusions from those global data fitting works, thus weakens the case that these global data

fitting works have against the (2+2) model. In order to rule out the (2+2) model completely,

global data fitting with both of the small mixing angles εµµ and εµe must be carried out.

The Product Rule of (2+2) model is also proposed, and the calculation shows that the

Product Rule can also be significantly relaxed when both the small mixing angles ε’s and
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the earth matter effect are present.
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Figure 33: The Product Rules of the (2+2) Model
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PART THREE

CONCLUSIONS AND FUTURE STUDY

76



CHAPTER VI

WHAT HAVE WE LEARNED

We have performed mainly numerical calculations of the Z-Burst mechanism in cosmic-

ray physics and the Sum Rule of the (2+2) neutrino model of particle physics. Viability

the (2+2) neutrino oscillation model, direct detection of the Big-Bang relic neutrino and

measurement of neutrino absolute mass are investigated. The conclusions based on these

numerical calculations are discussed in some detail here.

6.1 Viability of Sterile Neutrino and (2+2) Sum Rule

The existence of neutrino mass around 10−1 eV is vital for the observation of the Z-Burst

absorption dip in this decade. The upper limit of the total mass of relic neutrinos from the

WMAP and SDSS [68] allows a neutrino mass above 0.2 eV. The LSND mass gap is the

strongest evidence supporting such a mass.

The four-neutrino models and their associated sterile neutrino, required by the LSND

data, have been doubted because of recent poor fits to global data and because of a contra-

diction between data and the Sum Rule of the (2+2) model. In this work, the roles of the

three small mixing angles ε’s and the earth matter effect in the Sum Rule are studied. We

use mainly numerical calculations, but include analytic study in Appendix A. From these

studies, it is learned that at least two of these small mixing angles, namely εµµ and εµe, can

cause the Sum Rule to relax significantly. The third small mixing angle εee has much less

effect on the Sum Rule; thus it can be safely neglected in global data fitting. The relaxation

of the Sum Rule raises a question concerning assumptions used in the global data fitting.

In particular only one small mixing angle εµµ is included in the data fitting. With the other

small mixing angle εµe included, it might change (2+2) fits, as it changed the Sum Rule. In

short, the case against the (2+2) model is weakened by the significant relaxation of the Sum

Rule resulting from inclusion of the small mixing angles ε’s and the earth matter effect. Until

global data fitting with both small mixing angles εµµ and εµe is carried out, the (2+2) model
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cannot be ruled out. The four-neutrino model is still a viable solution to the solar, atmo-

spheric and LSND neutrino oscillations. The MiniBooNE experiment [31], already gathering

data, will give the final verdict on the validity of the LSND claim.

6.2 Detection of Relic Neutrino and the Neutrino Absolute Mass

The proposal to directly detect the relic neutrino through Z-Burst absorption dips was

suggested more than two decades ago [49]. But it has become feasible only recently, due

to the progressively larger extremely-high energy neutrino cosmic ray detectors, such as

AUGER [65], IceCube [64], ANITA [78], EUSO [62], OWL [63] and SalSA [79].

The detection of the Z-Burst absorption dip faces two difficulties. The first is the

extremely-high energy required by the Z-Burst resonance. Even for the heaviest neutrino

suggested by the LSND mass gap, and allowed by the WMAP and SDSS data, the cos-

mic neutrino beam has to have energy well above 1021 eV in order to achieve the resonant

energy of the Z-Burst. The observation of air shower events with energy above the Greisen-

Zatsepin-Kuzmin (GZK) cutoff of 5 × 1019 eV offers hope, if not evidence, of the existence

of neutrino cosmic rays energetic enough for the Z-Burst resonance. In fact, the solution of

the super-GZK cosmic ray puzzle might lie with the Z-Burst model [59].

The second difficulty faced by detection of the Z-Burst absorption dip is the flux of

extremely-high energy neutrino cosmic rays. Cosmic rays typically have a power-law spec-

trum, which decreases the flux decreased significantly at the very high-energy. This also is

probably true for neutrino cosmic rays. Experimental upper limits of extremely high-energy

cosmic ray flux from RICE [75], GLUE [76], FORTE [77], and Fly’s Eye and AGASA [107]

also restrict the possible neutrino flux. The proposed detectors mentioned earlier mitigate

this flux problem by making use of very large detector areas or volumes. For example, the

EUSO experiment will use part of the earth’s atmosphere as detecting media. As shown this

work, these experiments make it possible to establish the Relative Observable Spectrum of

neutrino cosmic rays, if Nature’s flux is not far below present experimental limits.

The observation of the Z-Burst absorption dip in the Relative Observable Spectrum of

the neutrino cosmic ray would be direct evidence for the relic neutrino. Measurement of the

Z-Burst absorption dip is also one of the most promising methods to measure the absolute
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mass of the heaviest neutrino. Either the high energy edge of the Z-Burst absorption dip or

the maximum of the absorption dip can be used to deduce the absolute mass of the heaviest

neutrino.

The feasibility of the inference of the absolute neutrino mass from the Z-Burst absorp-

tion dip also depends on the neutrino cosmic ray source distribution and the neutrino mass

spectrum. It is found that the best scenario for the Z-Burst absorption dip is the degenerate

mass spectrum with neutrino mass around 10−1 eV and with a very distant source distri-

bution localized around a large mean redshift. This situation produces the deepest Z-Burst

absorption dip, therefore offering the possibility to detect the Z-Burst absorption dip before

the year 2008. The worst case scenario is a well-separated neutrino mass spectrum with

very light masses and with a nearby source distribution spread about small mean redshift.

This situation will not only push the Z-Burst absorption dip to much higher energy, out of

the reach of the proposed detectors, but also produce a Z-Burst absorption dip with only

about 1/3 of the depth of the best case scenario. Even with the assumption of the 10−1 scale

neutrino mass, detection of the Z-Burst dip before the year of 2013 remains difficult. If a

much lighter neutrino mass is the choice of the nature, direct detection of the relic neutrino

and the measurement of the neutrino absolute mass through the Z-Burst absorption dip will

just remain a beautiful theoretical idea without proof.

On the other hand, the four-neutrino models, motivated by the LSND mass gap, support

the existence of heavy neutrinos with mass around 10−1 eV. This absolute mass is essential

for the detection of the Z-Burst absorption dip in the future experiments. Even if the four-

neutrino models will be ruled out by future experiments, the atmospheric mass gap still

suggests the neutrino absolute mass no less than 0.04 eV. Even with this lighter neutrino

mass, the detection of the Z-Burst absorption dip is quite possible in this decade, or during

the next decade in the worst case scenario.

6.3 Future Work on the Small Mixing Angles and the Z-Burst Model

It has been proven by this work that the Sum Rule of the (2+2) neutrino model can be

significantly relaxed when both the small mixing angles ε’s and the matter effect are present.

Also, it is believed that the inclusion of the small mixing angles, εµe and εµµ, in the global
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fitting to the experimental data will improve the viability of the (2+2) neutrino model. But

the details of the small mixing angles’ contributions are still not clear. These small mixing

angles might only change those neutrino oscillation channels which are sub-dominant, as

suggested in some recent criticisms [103]. On the other hand, it is also possible that these

small mixing angles make the (2+2) model more compatible with the current experiment

data. The only way to settle this controversy is to carry out a global fitting of the model to

experimental data, with the small mixing angles included.

As for the measurement of the Z-Burst absorption dip in the Relative Observable Spec-

trum of the neutrino cosmic rays, patience is required as we wait for the proposed detectors

to be built and to gather data. With sufficient running time, these detectors will be able

to either observe the Z-Burst absorption dip, or provide an upper limit to the heaviest neu-

trino mass. In the meantime, continued neutrino oscillation experiments will provide better

information on the spectrum of the neutrino mass, useful input for the Z-Burst absorption

dip calculations.

With the rapid developments in neutrino oscillation experiments and extremely-high

energy cosmic ray observatories, the neutrino mass spectrum should be fully identified in the

next decade.
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APPENDIX A

SMALL MIXING ANGLE εµe AND MATTER EFFECT

IN (2+2) NEUTRINO OSCILLATION

It has been shown in Fig. 31 that the small mixing angle εµe together with the earth

matter effect can produce data points that deviate very far away from the zeroth order Sum

Rule, especially the points with the solar ratio Rsol = 0 can also have a very small value of

the atmospheric ratio Ratm. In this section, an analytic study of the atmospheric ratio will

be attempted for the case with the other two small mixing angles set to zero, with energy

between 50 to 150 GeV, and with the earth matter effect included. The points around

Rsol = 0 with very small value of Ratm are the most interesting because they are allowed

by the exclusion regions from solar and atmospheric experiment data fittings. The analytic

study will focus on this region. In this region, θτs is close to the maximum value π/2, because

the solar ratio Rsol ' cos2 θτs. Through this analytic study, the nature of the contributions

of the small mixing angle εµe and the matter effect to the relaxation of the Sum Rule will

be revealed. The more general case, with the other two small mixing angles turned on, and

with other energy ranges, might be investigated in the future.

A.1 The Mixing Matrix and The Hamiltonian with Earth Matter

When the mass basis is ordered as {m4,m3,m2,m1} with m4 > m3 > m2 > m1 and the

flavor basis is ordered as {νµ, ντ , νs, νe}, the mixing matrix in vacuum, Eqn. 28, is

U = R23(θτs)R24(εµµ)R14(εµe)R13(εee)R34(θatm)R12(θsol) (A-1)
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The definition of the rotation matrices are

R12(θ) =

















1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

















, R13(θ) =

















1 0 0 0

0 cos θ 0 − sin θ

0 0 1 0

0 sin θ 0 cos θ

















,

R14(θ) =

















cos θ 0 0 − sin θ

0 1 0 0

0 0 1 0

cos θ 0 0 cos θ

















, R23(θ) =

















1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

















,

R24(θ) =

















cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 0

















, R34(θ) =

















cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

















.

In this analytic work, we consider only the case with εµµ = εee = 0 is of interested. Thus,

U = R23(θτs)R14(εµe)R34(θatm)R12(θsol). (A-2)

The Hamiltonian in flavor basis, as defined in Eqn. 45 is

HF = U
M2

2E
U† + A. (A-3)

A.1.1 Transform Into Proper Basis |νd〉
It will significantly simplify the analytic procedure to find the eigenstates of the Hamilto-

nian with matter if the mass-squared part of the Hamiltonian, Eqn. A-3, can be transformed

into a relative block-diagonal form. The new basis, in which the mass square part of the

Hamiltonian is in relative block-diagonal form, is called the proper basis. With this block-

diagonal structure, it is possible to carry out perturbation calculation on the Hamiltonian,

thus achieve analytic study to certain order of the small off diagonal terms. The transfor-
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mation matrix that transforms the flavor basis |να〉 into the proper basis |νd〉 is

UN = R14(εµe)
†R23(θτs)

†

=

















cos εµe 0 0 sin εµe

0 cos θτs sin θτs 0

0 − sin θτs cos θτs 0

− sin εµe 0 0 cos εµe

.

















(A-4)

The projection of the new proper basis |νd〉 on to the flavor basis |να〉 is

〈να|di〉 =















































cos εµe

0

0

sin εµe

















,

















0

cos θτs

sin θτs

0

















,

















0

− sin θτs

cos θτs

0

















,

















− sin εµe

0

0

cos εµe















































. (A-5)

In the proper basis, the mass-squared part of the Hamiltonian is relatively block-diagonal.

The full Hamiltonian is

〈di|H|dj〉 = 〈di|να〉HF 〈νβ|dj〉〈dj| = UN

(

U
M2

2E
U† + A

)

U†N

=

















Hatm
1 Hatm

3 0 0

Hatm
3 Hatm

2 0 0

0 0 Hsol
1 Hsol

3

0 0 Hsol
3 Hsol

2

















+

















HA
1 0 0 HA

6

0 HA
2 HA

5 0

0 HA
5 HA

3 0

HA
6 0 0 HA

4

















=

















Hatm
1 +HA

1 Hatm
3 0 HA

6

Hatm
3 Hatm

2 +HA
2 HA

5 0

0 HA
5 Hsol

1 +HA
3 Hsol

3

HA
6 0 Hsol

3 Hsol
2 +HA

4

















〈dj|, (A-6)
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with

Hatm
1 =

δm2
atm cos2 θatm + δm2

LSND + δm2
sol

2E
,

Hatm
2 =

δm2
atm sin2 θatm + δm2

LSND + δm2
sol

2E
,

Hatm
3 =

δm2
atm

4E
sin(2θatm), Hsol

1 =
δm2

sol

2E
cos2 θsol,

Hsol
2 =

δm2
sol

2E
sin2 θsol, Hsol

3 =
δm2

sol

4E
sin(2θsol),

HA
1 =
√
2NeGF sin2 εµe, HA

2 =

√
2

2
NeGF sin2 θτs,

HA
3 =

√
2

2
NeGF cos2 θτs, HA

4 =
√
2NeGF cos2 εµe,

HA
5 =

NeGF

2
√
2

sin(2θτs), HA
6 =

√
2

2
NeGF sin(2εµe).

The motivation for going to this proper basis is to transform the Hamiltonian with

matter effect into this relative simple structure, in which all the significant terms are within

the relative block-diagonal parts and the off diagonal elements are relative smaller than

the diagonal elements. In this form, the following discussions of the resonances and the

perturbation calculations can be carried out much easier.

A.2 Possible Resonances

Due to the fact that the LSND mass gap δm2
LSND is several orders bigger than the other

two mass gaps, there are only two possible resonances in this Hamiltonian.

A.2.1 Atmospheric Resonance

The first resonance involves only the atmospheric mass gap, so it is called the atmospheric

resonance. The atmospheric resonance happens between |d1〉 and |d2〉. For the atmospheric

resonance to happen, the two diagonal elements of the sub-block must become equal:

Hatm
1 +HA

1 = Hatm
2 +HA

2 , (A-7)

or √
2

2
NeGF (sin

2 θτs − 2 sin2 εµe) =
δm2

atm

2E
cos(2θatm). (A-8)
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Figure 34: Parameter Values Yielding The Atmospheric Resonance, for E = 100 GeV

This leads to

θτs = sin−1

√

2 sin2 εµe +
δm2

atm√
2ENeGF

cos(2θatm). (A-9)

As an example, for E = 100GeV and the other values take from Section 4.3, then the value

of θτs that causes the resonance is within the range of [0.10, 0.175], when the small mixing

angle εµe is allowed to take any value within the allowed range [0, 0.1]. We show this result

in Fig. 34.

These values correspond to the region around Rsol ' 1, when 0.10 ≤ θτs ≤ 0.175, in

Fig. 27, which are not of interest here. So this resonance will not be studied in details.

A.2.2 Solar Resonance

The other possible resonance is between |d3〉 and |d4〉. It will involve only the solar mass

gap. Thus it is called the solar resonance. The condition for this resonance to happen is

Hsol
1 +HA

3 = Hsol
2 +HA

4 , (A-10)

or √
2

2
NeGF (2 cos

2 εµe − cos2 θτs) =
δm2

sol

2E
cos(2θsol). (A-11)
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Figure 35: The Solar Resonance

This leads to

θτs = cos−1

√

2 cos2 εµe −
δm2

sol√
2ENeGF

cos(2θsol). (A-12)

With E = 100GeV as an example and the other values take from Section 4.3, the only

possible solution to this equation requires εµe > 0.78, as plotted in Fig. 35. This resonance

does not occur within the allowed range of εµe.

A.2.3 Resonances Are Not Essential

In the current study, only one of the small mixing angles εµe is allowed to be non-

zero. This non-zero small mixing angle εµe introduces two possible resonances. One is the

atmospheric resonance at θτs ∈ [0, 0.175], when the energy of the atmospheric neutrino is

100 GeV. The other one is the solar resonance at θτs ∈ [0.78, π/2] with the same energy. But

this solar resonance requires the small mixing angle εµe > 0.78, which is outside of the range

allowed by the neutrino oscillation experiments. These resonances are between pairs of the

proper basis |νd〉, not the flavor basis |να〉. But, the analysis of the resonances in the flavor

basis is similar. Looking back to the plot with only εµe non-zero in Fig. 31, it is obvious that
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the relaxation of the Sum Rule is not restricted to the region that Rsol ∼ 1, thus it is not

coming from the solar resonance. This conclusion is true at least for the data points with

large value of θτs, i.e. the data points with smaller values of Rsol.

If the other two small mixing angles are turned on, there may be more resonances, which

may enhance the relaxation of the Sum Rule of the (2+2) neutrino model. However, other

possible resonances will not be discussed here. Instead, we show that resonances are not

essential for the relaxation of the Sum Rule of the (2+2) neutrino model.

A.3 Approximations

To simplify the analytic calculation, it will be assumed that the neutrino beam travels

through earth with a uniform density given by the core. Also, only the up-going event with

θz = 0 will discussed, due to a reason to be revealed later in Section A.4.1. Thus, the

following values are chosen as typical:

δm2
sol = 3.65× 10−5 eV2, δm2

atm = 2.4× 10−3 eV2,

δm2
LSND = 1 eV2, θsol = tan−1

√
0.37 v 0.55 v 31.3o,

θatm = 0.68 v 5.7o, |εµe| ≤ 0.1,

NA = 6.02× 1023, RE = 6371 km,

Ne = Nn = NeEC = 6NA/cm
3, θτs À 0.17,

E ∼ 100 GeV.

With these typical values, all the elements of the Hamiltonian can be evaluated. They

are the following

Hatm
1 v 5.0× 10−12 eV, Hatm

2 v 5.0× 10−12 eV,

Hatm
3 v 5.9× 10−15 eV, Hsol

1 v 1.3× 10−16 eV,

Hsol
2 v 4.9× 10−17 eV, Hsol

3 v 8.1× 10−17 eV,

HA
1 v 4.8× 10−13 sin2 εµe eV, HA

2 v 2.4× 10−13 sin2 θτs eV,

HA
3 v 2.4× 10−13 cos2 θτs eV, HA

4 v 4.8× 10−13 cos2 εµe eV,

HA
5 v 1.2× 10−13 sin(2θτs) eV, HA

6 v 2.4× 10−13 sin(2εµe) eV.
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Especially, the typical values of the most interesting terms are

NeGF v 3.4× 10−13 eV,
δm2

sol

E
v 3.65× 10−16 eV,

δm2
atm

E
v 2.4× 10−14 eV,

δm2
LSND

E
v 10−11 eV.

These typical values will help to identify the small elements in the Hamiltonian with matter,

thus make it simple to carry out the perturbation calculation for the analytic study.

The Hamiltonian from Eqn. A-6 can be separated into two parts:

H0 =

















Hatm
1 +HA

1 Hatm
3 0 0

Hatm
3 Hatm

2 +HA
2 0 0

0 0 Hsol
1 +HA

3 Hsol
3

0 0 Hsol
3 Hsol

2 +HA
4

















, (A-13)

W =

















0 0 0 HA
6

0 0 HA
5 0

0 HA
5 0 0

HA
6 0 0 0

















. (A-14)

The W term can be treated as a small perturbation to H0 if the off diagonal elements in W

are much smaller than the difference between the corresponding diagonal elements in H0,

i.e. if

∣

∣Hatm
1 +HA

1 −Hsol
2 −HA

4

∣

∣ =
δm2

atm cos2 θatm+δm2
LSND+δm2

sol cos
2 θsol

2E
+
√
2NeGF cos(2εµe)

À HA
6 =

√
2
2
NeGF sin(2εµe), (A-15)

and

∣

∣Hatm
2 +HA

2 −Hsol
1 −HA

3

∣

∣ =
δm2

atm sin2 θatm+δm2
LSND+δm2

sol sin
2 θsol

2E
−
√
2
2
NeGF cos(2θτs)

À HA
5 = NeGF

2
√
2
sin(2θτs). (A-16)

We have verified with the numerical calculations that W can be totally discarded without

losing much accuracy for the sterile neutrino oscillation probability Pµ→s, but not for the

muon neutrino oscillation probability Pµ→µ.
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A.3.1 Approximate Solution for 2× 2 Matrix

For a 2× 2 matrix, such as





a c

c b



, the eigenvalues and corresponding unnormalized

eigenvectors are

a+ b−
√

(a− b)2 − 4c2

2
:





a−b−
√

(a−b)2−4c2
2c

1



 ,

a+ b+
√

(a− b)2 − 4c2

2
:





a−b+
√

(a−b)2−4c2
2c

1



 .

When |a− b| À c, and no matter which of a and b is bigger, the above eigensystem can

be approximated up to the order of c2, after normalization, as

a− c2

b− a
:





1− c2

2(b−a)2

− c
b−a



 ,

b+
c2

b− a
:





c
b−a

1− c2

2(b−a)2



 .

A.3.2 Atmospheric Block

For the atmospheric block in H0,

a =Hatm
1 +HA

1

=
δm2

atm cos2 θatm + δm2
LSND + δm2

sol

2E
+
√
2NeGF sin2 εµe

'δm2
LSND

2E
,

b =Hatm
2 +HA

2

=
δm2

atm sin2 θatm + δm2
LSND + δm2

sol

2E
+

√
2

2
NeGF sin2 θτs

'δm2
LSND

2E
,

b− a =
NeGF (sin

2 θτs − 2 sin2 εµe)√
2

− δm2
atm cos(2θatm)

2E
(A-17)

'NeGF (sin
2 θτs − 2 sin2 εµe)√

2
, (A-18)

c =Hatm
3 =

δm2
atm sin(2θatm)

4E
. (A-19)
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The approximation from Eqn. A-17 to Eqn. A-18 holds as long as sin2 θτs−2 sin2 εµe À 10−2,

i.e. θτs À 0.17. This lower limit on θτs also guarantee the approximation condition |a−b| À
c, and is consistent with our previous discussion at the end of Section A.2

So, the solutions for the atmospheric block are

E1 =
δm2

LSND

2E
: |E1〉 =





1− U 2
atm/2

−Uatm



 , (A-20)

E2 =
δm2

LSND

2E
: |E2〉 =





Uatm

1− U 2
atm/2



 , (A-21)

with

Uatm =
sin(2θatm)δm

2
atm

2
√
2ENeGF (sin

2 θτs − 2 sin2 εµe)
. (A-22)

Another relation we will use is

E2 − E1 ' b− a ' 1√
2
NeGF (sin

2 θτs − 2 sin2 εµe). (A-23)

(A-24)

A.3.3 Solar Block

For the solar block in H0,

a =Hsol
1 +HA

3 =
δm2

sol cos
2 θsol

2E
+

√
2

2
NeGF cos2 θτs

'
√
2

2
NeGF cos2 θτs, (A-25)

b =Hsol
2 +HA

4 =
δm2

sol sin
2 θsol

2E
+
√
2NeGF cos2 εµe

'
√
2NeGF cos2 εµe, (A-26)

b− a =
NeGF (2 cos

2 εµe − cos2 θτs)√
2

− δm2
sol cos(2θsol)

2E

'NeGF (2 cos
2 εµe − cos2 θτs)√
2

, (A-27)

c =Hsol
3 =

δm2
sol sin(2θsol)

4E
.

The approximation in Eqn. A-25 is valid as long as cos2 θτs À 10−3, i.e. π
2
−θτs À 0.03. The

approximation in Eqn. A-26 is always valid, as εµe < 0.1 from the experimental limit. The
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approximation in Eqn. A-27 is valid as long as 2 cos2 εµe − cos2 θτs À 10−4. As εµe < 0.1,

this is always true. So, the solutions for the solar block are

E3 =

√
2

2
NeGF cos2 θτs : |E3〉 =





1− U 2
sol/2

−Usol



 , (A-28)

E4 =
√
2NeGF cos2 εµe : |E4〉 =





Usol

1− U 2
sol/2



 , (A-29)

with

Usol =
sin(2θsol)δm

2
sol

2
√
2ENeGF (2 cos2 εµe − cos2 θτs)

. (A-30)

Other relations to be used are

E4 − E3 =
NeGF (2 cos

2 εµe − cos2 θτs)√
2

,

E1 − E3 ' E1 − E4 ' E2 − E3 ' E2 − E4 '
δm2

LSND

2E
.

A.3.4 Overall Transformation Matrix

Based on the eigensystems from the above calculations in Section A.3.3 and Section A.3.2,

it is very easy to construct the transformation matrix between the diagonalized basis |di〉
and the energy basis |Ei〉. The result is

Ued = 〈Ej|dm〉

=

















1− U 2
atm/2 −Uatm 0 0

Uatm 1− U 2
atm/2 0 0

0 0 1− U 2
sol/2 −Usol

0 0 Usol 1− U 2
sol/2

















.
(A-31)

So, the transformation matrix between the flavor basis |να〉 and the energy basis |Ei〉 is:

Uef = 〈Ei|dm〉〈dn|να〉 = UedUN

=

















(1− U 2
atm/2) cos εµe −Uatm cos θτs −Uatm sin θτs (1− U 2

atm/2) sin εµe

Uatm cos εµe (1− U 2
atm/2) cos θτs (1− U 2

atm/2) sin θτs Uatm sin εµe

Usol sin εµe −(1− U 2
sol/2) sin θτs (1− U 2

sol/2) cos θτs −Usol cos εµe

−(1− U 2
sol/2) sin εµe −Usol sin θτs Usol cos θτs (1− U 2

sol/2) cos εµe

















.

(A-32)
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A.3.5 Final State From Initial |νµ〉 Through Earth

From the above transformation matrix, Eqn. A-32, the initial state of the muon neutrino

in the energy basis is

〈Ei|νµ(0)〉 = Uef

















1

0

0

0

















=

















(1− U 2
atm/2) cos εµe

Uatm cos εµe

Usol sin εµe

−(1− U 2
sol/2) sin εµe

















. (A-33)

Thus the final state of the neutrino after traveling through the earth, with constant core

density, is

〈Ei|νµ(R)〉 =

















e−iE1R(1− U 2
atm/2) cos εµe

−e−iE2RUatm cos εµe

−e−iE3RUsol sin εµe

−e−iE4R(1− U 2
sol/2) sin εµe

















. (A-34)

Converting this back to the flavor basis, one gets

〈να|νµ(R)〉 = U †ef〈Ei|νµ(R)〉

=















































(1− U 2
atm/2)2 cos2 εµee

−iE1R − U 2
atm cos2 εµee

−iE2R

−U 2
sol sin

2 εµee
−iE3R + (1− U 2

sol/2)
2 sin2 εµee

−iE4R

· · ·

− (1− U 2
atm/2)Uatm sin θτs cos εµe(e

−iE1R − e−iE2R)

−(1− U 2
sol/2)Usol cos θτs sin εµe(e

−iE4R − e−iE3R)

· · ·















































.
(A-35)

Finally, the desired oscillation amplitudes are obtained:

Aµ = (1− U 2
atm/2)2 cos2 εµee

−iE1R − U 2
atm cos2 εµee

−iE2R

−U 2
sol sin

2 εµee
−iE3R + (1− U 2

sol/2)
2 sin2 εµee

−iE4R, (A-36)

As = −(1− U 2
atm/2)Uatm sin θτs cos εµe(e

−iE1R − e−iE2R)

−(1− U 2
sol/2)Usol cos θτs sin εµe(e

−iE4R − e−iE3R). (A-37)

92



A.4 Oscillation Probability From |νµ〉 to |νs〉
The neutrino oscillation probability from |νµ〉 to |νs〉 is

Pµ→s =As · A∗s
=
[

(1− U 2
atm/2)Uatm sin θτs cos εµe(e

−iE1R − e−iE2R)

+(1− U 2
sol/2)Usol cos θτs sin εµe(e

−iE4R − e−iE3R)
]

×
[

(1− U 2
atm/2)Uatm sin θτs cos εµe(e

iE1R − eiE2R)

+(1− U 2
sol/2)Usol cos θτs sin εµe(e

iE4R − eiE3R)
]

(A-38)

=2(1− U 2
atm/2)2U2

atm sin2 θτs cos
2 εµe [1− cos(E1 − E2)R]

+ 2(1− U 2
sol/2)

2U2
sol cos

2 θτs sin
2 εµe [1− cos(E4 − E3)R]

+
1

2
(1− U 2

sol/2)(1− U 2
atm/2)UsolUatm sin(2θτs) sin(2εµe)

× [cos(E1 − E4)R− cos(E1 − E3)R− cos(E2 − E4)R + cos(E2 − E3)R] . (A-39)

From Eqn. A-28, A-29, A-20 and A-21, one has

E4 − E1 ' E4 − E2 ' E3 − E1 ' E3 − E2 '
δm2

LSND

2E
.

So, the last term in Eqn. A-39 can be neglected, because fast oscillations related to
δm2

LSND

2E

vanish when average on energy and oscillation path. Also, any terms of order higher than

the second order of Usol and Uatm can be neglected. Thus, the probability of |νµ〉 oscillation
to |νs〉 is, to a good approximation,

Pµ→s = 4U 2
atm sin2 θτs cos

2 εµe sin
2 (E2 − E1)R

2
+ 4U 2

sol cos
2 θτs sin

2 εµe sin
2 (E4 − E3)R

2

=
sin2(2θatm)δm

4
atm sin2 θτs cos

2 εµe
2(ENeGF )2(sin

2 θτs − 2 sin2 εµe)2
sin2[

NeGFR

2
√
2

(sin2 θτs − 2 sin2 εµe)]

+
sin2(2θsol)δm

4
sol cos

2 θτs sin
2 εµe

2(ENeGF )2(2 cos2 εµe − cos2 θτs)2
sin2[

NeGFR

2
√
2

(2 cos2 εµe − cos2 θτs)]. (A-40)

A.4.1 Average Over Energy and Zenith Angle

There is a common factor of 1
(ENeGF )2

with the probabilities in Eqn. A-40. The average

over neutrino energy of this factor is given by

1

Emax − Emin

∫ Emax

Emin

1

E2
dE =

1

EmaxEmin

=
1

E2
eff

, (A-41)
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with Eeff =
√
EmaxEmin. For the typical through-going energy range from 50 to 150 GeV,

Eeff =
√
7500 = 87 GeV. In the following calculation, Eeff = 100 GeV will be used for

simplicity.

For the average over the zenith angle θz, or equivalently, the length through the earth R

in Eqn. A-40 is not so easy to handle. The angular range is from cos θz = 0 to cos θz = 0.8,

corresponding to lengths from R = 2RE = 12742 km to R = 1.6RE = 10194 km. This leads

to phase changes for the terms in Eqn. A-40 up to a maximum of

0.4NeGFRE = 4.4. (A-42)

A phase change of this scale is not large enough to be simply averaged out. So, a fixed

traveling length through earth, R = 2RE, will be used in the following discussion.

A.4.2 Approximation To the Order of ε2µe

As |εµe| ≤ 0.1, valid approximations are

sin εµe ' εµe,

cos εµe ' 1− x2/2. (A-43)

Also, as θτs À 0.17, it can be shown that

sin2[
NeGFR

2
√
2

(sin2 θτs − 2 sin2 εµe)] ' sin2[
NeGFR

2
√
2

sin2 θτs]

sin2[
NeGFR

2
√
2

(2 cos2 εµe − cos2 θτs)] ' sin2[
NeGFR

2
√
2

(2− cos2 θτs)] (A-44)

' sin2[
NeGFR

2
√
2

(2− cos2 θτs)] (A-45)

Putting these approximations into Eqn. A-40, and dropping any term of order higher than

ε2µe, one finds

Pµ→s =
sin2(2θatm)δm

4
atm sin2 θτs

(

1 + 4−sin2 θτs
sin2 θτs

ε2µe

)

2(ENeGF )2 sin
4 θτs

sin2[
NeGFR

2
√
2

sin2 θτs]

+
sin2(2θsol)δm

4
sol cos

2 θτsε
2
µe

2(ENeGF )2(1 + sin2 θτs)2
sin2[

NeGFR

2
√
2

(2− cos2 θτs)]

(A-46)
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Figure 36: The Approximate Analytical Pµ→s Compared with the Exact Numerical Result

Omitting terms of order ε2µe, this becomes

Pµ→s =
sin2(2θatm)δm

4
atm

2(ENeGF )2 sin
2 θτs

sin2[
NeGFR

2
√
2

sin2 θτs]. (A-47)

Fig. 36 shows the above result compared to the numerical results calculated with the

same parameter settings. From Fig. 36, it is obvious that the approximate analytical Pµ→s

is very close to the exact numerical result with the same parameter settings. Thus, the non-

zero εµe has very small effect on the sterile neutrino probability Pµ→s. Thus, the significant

relaxation from the zeroth order Sum Rule is really due to the effect of the small angles

on the muon neutrino probability Pµ→µ, thus the on muon neutrino to non-muon neutrino

probability, Pµ→6µ.

Another note worth mentioning here is the seemingly good agreement between the ap-

proximate result and the numerical result at small θτs in Fig. 36. As discussed in Section A.2,

an atmospheric resonance will happen around θτs ∼ 0.17. Thus the above approximate ap-

proach should be valid only for the region θτs À 0.17. So the near-perfect agreement with

the numerical result around θτs ∼ 0.17 must be purely good luck. The more valuable result

of this section is agreement within the region θτs À 0.17, the interesting region in this study
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Figure 37: The Approximate Analytical Pµ→µ Compared with Exact Numerical Result

because the most significant relaxation of the Sum Rule happens within this region.

A.5 Muon Neutrino Oscillation Probability

From Eqn. A-36, the muon neutrino survival probability is

Pµ→µ = Aµ · A∗µ
=

{

(1− U 2
atm/2)2 cos2 εµee

−iE1R − U 2
atm cos2 εµee

−iE2R

+ (1− U 2
sol/2)

2 sin2 εµee
−iE4R − U 2

sol sin
2 εµee

−iE3R
}

× C.C. (A-48)

Without any further approximation, Eqn. A-48 is plotted against the numerical results in

Fig. 37, with the same parameters as in Fig. 36. It is seen that the zeroth order perturbation

calculation for the Hamiltonian in matter here is not accurate enough for the muon neutrino

survival probability. In order to achieve acceptable accuracy, the first order perturbation

theory calculation has to be carried out. Nevertheless, some useful information can be

extract here, without going into the first order perturbation calculation, Eqn. A-48 is still
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accurate when εµe = 0. In this limit, Eqn. A-48 becomes

Pµ→µ =
{

(1− U 2
atm/2)2e−iE1R − U 2

atme−iE2R
}

× C.C. (A-49)

and

Uatm =
sin(2θatm)δm

2
atm

2
√
2ENeGF sin2 θτs

∼ 1.23× 10−8

sin2 θτs
, (A-50)

E2 − E1 =
1√
2
NeGF sin2 θτs.

This gives a muon neutrino survival probability

Pµ→µ = (1− U 2
atm/2)2 − U 4

atm − 2(1− U 2
atm/2)2U2

atm cos [(E2 − E1)R]

= 1− 2U 2
atm (1 + cos [(E2 − E1)R])

+ U 4
atm

(

5

2
+ cos [(E2 − E1)R]

)

− 1

2
U6

atm +
1

16
U8

atm

' 1− 4U 2
atm sin2

(

E2 − E1

2
R

)

+ U 4
atm

(

5

2
+ cos [(E2 − E1)R]

)

. (A-51)

In the last step, the terms with order higher than U 4
atm are dropped. Thus the non-muon

neutrino oscillation probability is

Pµ→6µ = 1− Pµ→µ

= 4U 2
atm sin2

(

E2 − E1

2
R

)

− U 4
atm

(

5

2
+ cos [(E2 − E1)R]

)

=
sin2(2θatm)δm

4
atm

2(ENeGF )2 sin
4 θτs

sin2
(

E2 − E1

2
R

)

− sin4(2θatm)δm
8
atm

64(ENeGF )4 sin
8 θτs

(

5

2
+ cos [(E2 − E1)R]

)

=
sin2(2θatm)δm

4
atm

2(ENeGF )2 sin
4 θτs

sin2
(

NeGFR

2
√
2

sin2 θτs

)

− sin4(2θatm)δm
8
atm

64(ENeGF )4 sin
8 θτs

(

5

2
+ cos

[

NeGFR√
2

sinθ
τs

])

. (A-52)

Ignoring the last term is ignored in Eqn. A-52 for the moment, the non-muon oscillation

probability is

Pµ→6µ =
sin2(2θatm)δm

4
atm

2ENeGF sin2 θτs
sin2

(

1

2
√
2
NeGF sin2 θτsR

)

. (A-53)

Combining this with Eqn. A-47, the zeroth order perturbation calculation result of atmo-

spheric ratio is

Ratm =
Pµ→s

Pµ→6µ
' sin2 θτs. (A-54)
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This is exactly the atmospheric ratio for the zeroth order Sum Rule without matter effect

discussed in Section 4.5. If the last term in Eqn.A-52 is not ignored, the value of Pµ→6µ will

be slightly smaller. Thus, the atmospheric ratio Ratm will be slightly bigger than the value

of the zeroth order Sum Rule without matter, as in Eqn.A-54. This is exactly the reason

why the zeroth order Sum Rule with matter, plotted in Fig.23, is slightly above the zeroth

order Sum Rule without matter.

A.6 Conclusion

Through the analytic study in this section, it is proved that the small mixing angle εµe can

introduce possible resonances into the oscillation when the matter effect is present. The same

will probably be true for the other two small mixing angle εµµ and εee. These resonances will

enhance the relaxation of the Sum Rule, but we find that they are not very significant. For

the case with εµe non-zero, the relaxation from the zeroth order Sum Rule is the significant

change of the muon neutrino oscillation probability caused by εµe. Non-zero εµe can make

the atmospheric ratio Ratm very small, thus can relax the Sum Rule significantly. The details

of the muon probability change caused by εµe are worth more detailed study in the future.

Also, through the analysis in this section, it is proved that the Sum Rule is still a very

good approximation when all the small mixing angles ε’s are sent to zero and the matter

effect is present. The presence of matter will cause the value Ratm to increase only slightly,

thus explaining the tiny difference between the zeroth order Sum Rule with matter and the

zeroth order Sum Rule without matter in Fig. 23.
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