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CHAPTER 1 

 

Introduction 

The prenatal environment is influenced by a number of factors; the most important of 

which being the maternal environment. There is a growing body of evidence suggesting that the 

maternal and intrauterine milieu, through the action of inflammatory mediators, hormones, and 

nutrient availability may permanently change the health of the fetus (Barker, 1995, 2004). This 

work will focus on two possible environmental stressors, both of which have the potential to 

influence fetal development and programming; gestational diabetes mellitus (GDM) and 

maternal immune activation (MIA). 

 Gestational diabetes mellitus is the most common metabolic disorder during pregnancy 

and causes considerable morbidity, mortality, and long-term complications for both mother and 

child ("Gestational diabetes mellitus," 2004; Monteiro, Norman, Rice, & Illanes, 2016). A major 

barrier to reducing the incidence and burden of GDM is a lack of clarity regarding the underlying 

pathophysiological mechanisms and environmental factors that contribute to these complications. 

Aberrant systemic inflammation is associated with a multitude of metabolic disorders, including 

GDM and maternal obesity (Gregor & Hotamisligil, 2011). Maternal immune activation (MIA), 

another prenatal insult, occurs as the result of an infection during pregnancy and activates that 

maternal immune system (Howerton & Bale, 2012). Several epidemiological as well as clinical 

studies have shown associations between infection and excessive inflammation during pregnancy 

and an increased risk for developing neurocognitive disorders such as autism and schizophrenia 

in offspring (Buka et al., 2001; M. Cannon, P. B. Jones, & R. M. Murray, 2002; Gardener, 

Spiegelman, & Buka, 2009). The aberrant inflammation caused by GDM and maternal obesity is 
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also gaining evidence as a possible cause for the same neurocognitive disorders (M. Cannon et 

al., 2002; Xiang et al., 2015). In order for progress to be made in the prevention and treatment of 

these disorders it is important to identify both the biological and environmental factors 

underlying disorder pathogenesis.  

The research put forth in this document will focus primarily on the interactions of 

metabolic stress and immune activation. More specifically the impact of GDM on placental 

structure, inflammation-associated risk factors during pregnancy, pathological alterations within 

the fetal brain and placenta as a result of inflammation, and how maternal inflammation 

influences placental cellular structure. The role of sexual dimorphism will also be addressed as it 

relates to the placental response to metabolic stress and maternal immune activation. 

 

The Placenta: Anatomy, function, and importance 

          The placenta is a transient, but complex organ, acting as the link between the mother and 

the developing fetus. This maternal-fetal structure acts as the interface between the uterine 

mucosa and the extraembryonic tissues of the developing fetus. It plays important roles 

throughout pregnancy, maintaining intrauterine homeostasis, mediating the selective exchange of 

nutrients, waste, gases, and other modulatory factors across the maternal/fetal interface (Lo & 

Frias, 2017). The placenta also orchestrates and maintains maternal/fetal immune tolerance and 

acts in an endocrine fashion by producing key modulatory hormones while separating the fetus 

from a possibly adverse or harmful maternal environment (Lo & Frias, 2017).  

The placenta is composed of both maternally and fetally-derived cells (Huppertz, 2008). 

The uterus and maternally-derived decidua contain large numbers of maternal leukocytes such as 

uterine natural killer cells, compromising roughly 30-40% of the total cells in the first trimester 
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decidua, macrophages, remaining stable at 10% to 15% of the total cells within the decidua 

throughout pregnancy, and dendritic cells all of which display a unique uterine and placental 

phenotype (Hunt, Petroff, & Burnett, 2000; Schumacher & Sharkey, 2018). The presence of 

these cells and their proper contextual phenotype is essential for successful implantation and a 

subsequent successful and healthy pregnancy. Maternal blood supplied from the spiral arteries 

and fetal blood coming in from the umbilical arteries exchange waste and nutrients within an 

area known as the labyrinth zone in mice or the chorionic villous in human.  Separating the 

maternal and fetal endothelial cells is a layer of trophoblast cells that function to control 

maternal-fetal exchange, to prevent the direct mixing of maternal and fetal blood circulations, 

and to coordinate maternal-fetal tolerance (Hsiao & Patterson, 2012). In order for proper 

placentation to occur increased vascular expansion is crucial. This is made possible through the 

invasion of fetal trophoblasts into the decidua and the expansion of maternal spiral arteries into 

the villous core. This vascular remodeling is orchestrated with the help of maternal leukocytes in 

order to ensure sufficient blood supply for the growing fetus. (Harris et al., 2010; Hazan et al., 

2010; Moffett & Loke, 2006).   

Although mouse and human pregnancies are similar in their hemochorial mode of 

placentation and the accumulation of uterine natural killer cells within the decidua during 

placentation, they differ in many ways. The obvious is that mouse pregnancies last 

approximately 20 days where as human gestation takes 9 months. Another significant difference 

is the architecture of the labyrinth zone and villous core of the placenta where fetal-maternal 

exchange occurs. Within the mouse placenta, the placental trophoblasts do not invade into the 

decidual arterioles as deeply and invasively as they do in the human placenta. In humans 

however, placental trophoblasts are much more intrusive and actually temporarily replace 
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maternal endothelial cells stretching all the way to the smooth muscle of the uterus creating a 

much more vascular environment (Erlebacher, 2013). These differences account for some of the 

differential conclusions when comparing mouse models of maternal-fetal outcomes to human 

outcomes. Despite these differences, the relationship between mouse and human studies can 

reveal promising insights in to pathophysiological mechanisms driving an array of human 

pregnancy complications.    

Maternal-fetal tolerance is essential to a successful pregnancy. Thus, a delicate balance of 

fetal immune tolerance, without overt maternal immunosuppression, is required for the survival 

of the developing fetus (T. Jansson & Powell, 2007). The maternal-fetal interface utilizes 

multiple unique mechanisms to ensure maternal tolerance to the developing fetus. The maternal 

decidua plays a seminal role in orchestrating systemic immunological tolerance of the 

developing embryo (Arck & Hecher, 2013). Some of the multiple mechanisms of tolerance 

include fetal trophoblast cell microchimerism, trophoblast shedding in order to desensitize 

maternal circulating cells to paternal alloantigens, limited MHC expression on trophoblasts, and 

dendritic cell entrapment which limits their migration from the decidua to the uterine lymph 

nodes (Aluvihare, Kallikourdis, & Betz, 2004; Erlebacher, 2013; Makhseed et al., 2001). Any 

significant disruption in fetal immune tolerance can cause fetal rejection and/or impaired 

placental function, which has devastating effects on pregnancy success. 

The placenta, although transient in nature, is a dynamic organ paramount to the 

interrelationship between mother and fetus. The studies presented in this work are important in 

order to expand our understanding of how environmental stressors such as maternal 

inflammation caused by infectious agents and GDM and metabolic stress affect placental health 
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therefore increasing our understanding of how these processes can be modified to improve fetal 

outcome.     

 

Placental macrophages 

Macrophages function as a first line of antimicrobial defense. As an abundant leukocyte 

population within the placenta, totaling ~20% of the total leukocytes within the decidua, 

macrophages play an important role at the maternal-fetal interface as initiators and targets of 

immune modulation (Erlebacher, 2013). Placental macrophages (PMs) consist of both fetally-

derived macrophages, known as Hofbauer cells (HBC), which are found in the villous core, and 

maternally-derived decidual macrophages, which reside in the maternal decidua.  HBCs have 

been characterized, in healthy pregnancies, as having an anti-inflammatory profile, characterized 

by high cell surface expression of the receptors CD163, CD209, and CD206 and increased 

secretion of IL-10 and transforming growth factor (TGF)-β (Gustafsson et al., 2008; Svensson et 

al., 2011; Z. Tang et al., 2011). Furthermore, the DNA methylation pattern of HBCs is consistent 

with an anti-inflammatory phenotype (S. Y. Kim et al., 2012). Placental macrophages are known 

to perform various functions including matrix remodeling during placental development, 

maintaining fetal tolerance, host defense, and the initiation of parturition (Erlebacher, 2013). The 

documented anti-inflammatory phenotype and importance of placental macrophages in 

maintaining immune tolerance suggest that these cells not only protect against infection, but also 

play a regulatory role within the placenta.  

Macrophages within the placenta and decidua play various pivotal roles during 

pregnancy; from conception, to implantation, to parturition. The importance of the macrophage 

begins at insemination. The introduction of seminal fluid into the uterus induces the production 
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of various cytokines and chemokines into the stromal compartment recruiting innate immune 

cells including macrophages, dendritic cells, and granulocytes (Schjenken, Glynn, Sharkey, & 

Robertson, 2015). The newly recruited macrophages allow for successful implantation by 

clearing away debris, infectious agents, and excess sperm that may have been introduced during 

insemination (De, Choudhuri, & Wood, 1991). It was recently shown that the ablation of 

CD11b+ macrophages in mice resulted in implantation failure stressing their importance in the 

successful origination of pregnancy (Care et al., 2013). Human decidual macrophages have been 

shown to localize in close proximity to invading trophoblasts early in pregnancy suggesting their 

potentially important role in successful invasion and placentation (Helige et al., 2014).  As 

pregnancy progresses, the macrophage takes on other roles such as  the secretion of 

immunosuppressive molecules and the presentation of reproductive antigens to T-cells 

contributing to maternal-fetal tolerance (Schumacher & Sharkey, 2018). Lastly, the initiation of 

parturition is partially induced by a macrophage phenotype switch from that of an anti-

inflammatory phenotype, which sustains pregnancy, to a pro-inflammatory phenotype 

characterized by the release of pro-inflammatory cytokines and mediators such as prostaglandin 

E2 (Nagamatsu & Schust, 2010). Numerous studies have concluded that macrophages play an 

important role throughout pregnancy from insemination through parturition.  

The varied, yet critical, functions that the macrophage displays within the context of the 

placenta make its understanding a difficult and overwhelming endeavor in the context of both 

healthy and diseased states. Yet, given the pleiotropic nature of macrophages in essentially all 

organ systems, they are a natural candidate to study for their importance in maintaining a healthy 

pregnancy and regulating the maternal-fetal interface. These studies highlight how 
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environmental stressors have the ability to influence basic macrophage function and phenotype 

in an already established pregnancy. 

 

Macrophages and their role in iron homeostasis 

Iron is critical for the function of many systems, including the immune system. 

Macrophages are involved in iron homeostasis and couple this iron cycling to activation status. 

Tissue resident macrophages are responsible for roughly 80% of the iron (Fe) availability within 

the body on a daily basis making them critical to iron homeostasis and availability (Andrews, 

2008). The role of the macrophage in Fe homeostasis is essential as mammals do not have the 

ability to secrete excess Fe in a regulated fashion. As a way to reduce high extracellular Fe levels 

macrophages sequester excess Fe. The sequestration of high levels of extracellular Fe can lead to 

phenotypic changes within the macrophage leading to the release of pro-inflammatory mediators 

(Cairo, Recalcati, Mantovani, & Locati, 2011). Macrophage polarization and inflammatory status 

are associated with differential expression patterns of genes related to Fe storage, uptake, and 

release. Pro-inflammatory macrophages increase expression of proteins associated with Fe 

storage while decreasing the expression of heme importers and Fe exporters. In contrast, anti-

inflammatory macrophages increase the expression of heme importers and Fe exporters in order 

to decrease the intracellular storage of Fe (Cairo et al., 2011).  

Iron-cycling in macrophages involves multiple proteins. Fe can enter the macrophage 

through multiple different mechanisms. Fe bound to transferrin is taken up into cells through the 

transferrin receptor (TfrC). Extracellular heme complexes with hemopexin in the plasma and is 

taken in through CD91. Hemoglobin bound to its plasma carrier haptoglobin is internalized 

through CD163. Within the endosome, heme-bound Fe is released through the action of heme-
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oxygenase 1 (Hmox1) then transported out of the endosome through Nramp1 and DMT1. Iron 

can be stored within the macrophage in the form of ferritin (Fth1 and Ftl) or can be exported 

through the iron exported ferroportin (Fpn).     

CD163 is a hemoglobin scavenger receptor exclusively expressed on macrophages. 

CD163 is a signal-inducing receptor that scavenges hemoglobin through the endocytosis of 

hemoglobin-haptoglobin (Hb:Hp) complexes (Kristiansen et al., 2001). The pro-inflammatory 

mediators IFN-γ, TNF-α, and Lipopolysaccharide (LPS), a gram negative bacterial cell wall 

component, suppress the expression of CD163 while IL-6 and IL-10 increase its expression 

(Buechler et al., 2000). The binding of the Hb:Hp complex to CD163 initiates a heme-

oxygenase-dependent anti-inflammatory signaling pathway eliciting IL-10 secretion initiating a 

positive feedback loop ultimately resulting in increased expression of CD163 and heme-

oxygenase-1 (Landis, Philippidis, Domin, Boyle, & Haskard, 2013; Philippidis et al., 2004). 

CD163 also exists in a soluble form (sCD163) (Etzerodt, Maniecki, Moller, Moller, & Moestrup, 

2010; Moller, Nielsen, Maniecki, Madsen, & Moestrup, 2010). sCD163 is a biomarker for a 

number of inflammation related diseases. Recent evidence has correlated elevated levels of 

sCD163 to such conditions as GDM (Bari et al., 2014). The role of macrophages in iron-cycling 

and homeostasis has been described within the liver, spleen, and adipose tissue; however, no 

such mechanism has been investigated in the placenta. The significance of how iron and iron 

storage within the placenta change in response to maternal stressors will be investigated in this 

work. 

Iron is transferred to the infant from maternal circulation by way of the placenta. It has 

been reported that the presence of maternal stressors, such as psychological stress, can influence 

the exchange of micronutrients across the placenta. It was reported that infants born to mothers 
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who suffered stress during pregnancy developed iron deficiency anemia soon after birth (Lubach 

& Coe, 2006). In rodent models, low levels of iron in neonates is associated with decreased 

numbers of macrophages, decreased natural killer cell activity, and an impairment in antibody 

formation all leading to increased susceptibility to neonatal infection (Hallquist, McNeil, 

Lockwood, & Sherman, 1992; Kochanowski & Sherman, 1985). Due to the importance of 

macrophages in iron cycling, storage, and availability and the evidence that this micronutrient is 

known to play a role in fetal outcomes, we investigated how maternal stress influences iron in 

the placenta. 

 

Developmental origins of health and disease 

The developmental origins of health and disease (DOHaD) framework posits that the 

gravid in utero environment influences the risk for non-communicable diseases (NCDs) for 

offspring throughout life (Eriksson, 2016). The fundamental belief of DOHaD is that hormonal, 

metabolic, inflammatory, as well as nutritional factors during specific and sensitive stages impact 

fetal health and development (Lucas AA 1994, Barker DJ 2004, Warner MJ 2010). In utero 

development sets the stage for the lifelong health of offspring. But sometimes stressors can 

adversely impact fetal development in such a way that the health of the offspring is put at risk. It 

is possible that this programming may be advantageous from an evolutionary stand point, but 

may also have long-term detrimental outcomes for society as a whole. By no means does the 

DOHaD framework rule out the role of genetics in the development of NCDs, but rather 

incorporates the idea that prenatal stressors can modify genetic susceptibility further enhancing 

or decreasing already programmed genetic predisposition. Many studies exploring the DOHaD 

framework have centered on neurocognitive outcomes in offspring, probably because brain 
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development seems to be very sensitive to the in utero environment. These two outcomes will be 

further introduced in the following sections.   

Strong associations have been identified between various stressors during pregnancy and 

the occurrence of NCDs, including cardiovascular disease, metabolic disorders (e.g., obesity and 

diabetes mellitus), and neurocognitive problems (Eriksson, 2016). In a study conducted in 

Scotland, maternal obesity during pregnancy was associated with the increased risk of premature 

death of the offspring in adulthood (Reynolds RM, 2013). An analysis of the Helsinki birth 

cohort study revealed compelling evidence that a high maternal body mass index (BMI) is 

associated with an increased risk of cancer, cardiovascular disease, and type-2 diabetes (T2D). 

Interestingly, the association with T2D was stronger in female offspring than male (Eriksson JG, 

2014). Evidence suggests that many commonly occurring diseases that have a substantial impact 

on society and long-term health appear to have some basis in the prenatal environment to which 

they were exposed.    

Studies are increasing in number and specificity to identify links between maternal 

morbidity during pregnancy and the risk for developing disease later in life. The studies 

presented in this work were developed under the DOHaD framework under the hypotheses that 

maternal inflammatory stressors during pregnancy influence fetal development.    

 

Maternal inflammation modifies the fetal environment and adverse outcome risk 

There are obvious sources of inflammation such as prenatal infection and autoimmune 

disease, and there are the more complex sterile forms of inflammatory states such as obesity and 

gestational diabetes (Berk et al., 2013). Many low- or middle-income countries are 

disproportionately affected by highly endemic infections such as tuberculosis, malaria, and HIV, 
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but are also challenged by GDM and obesity as societies transition from poor access to nutrition 

to a Western food culture (Popkin, Adair, & Ng, 2012). This is noteworthy because metabolic 

stressors such as these are associated, like some infections, with pro-inflammatory alterations 

within the placenta. The placenta functions in a protective manner as well, protecting the 

developing fetus from a possibly adverse maternal environment. For example, in cases of 

nutritional-deprivation, the placenta maintains fetal growth and development by sacrificing itself 

through autophagy in an attempt to save the fetus (Alwasel, 2010; Broad and Keverne, 2011). 

Placental adaptations to an adverse maternal environment are to increase the likelihood of 

offspring survival in the short-term, however, these adaptations can lead to adverse long-term 

effects. One possible long-term effect of these placental adaptations is the development of 

psychiatric disorders and developmental delays in the offspring.   

Psychiatric disorders affect a large portion of the world’s population (Kessler et al., 

2009). Psychiatric disorders are highly heritable. Schizophrenia has an estimated heritability of 

between 30 – 70% (Light et al., 2014; Sullivan, Kendler, & Neale, 2003; Wray & Gottesman, 

2012) and in the case of autism spectrum disorder (ASD), heritability estimates are around 50% 

(Sandin et al., 2014), thus making genetics a factor in disease incidence. Genetic factors, 

however, are insufficient in entirely explaining the incidence of psychiatric disorders. 

Excess inflammation leads to pathologic alterations contributing to psychiatric disorder 

development and progression later in life (Muller, 2014; Saetre et al., 2007). Both genetic and 

environmental risk factors contribute to an altered inflammatory state, working in tandem to 

influence the pathological basis for such psychiatric disorders (Horvath & Mirnics, 2014). 

Environment-associated risk factors modify genetic risk by altering brain development and 

function (Jaffee & Price, 2007; Klengel & Binder, 2015). Important neurodevelopmental stages, 
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such as in utero, are especially sensitive to environmental perturbations (M. H. Johnson, Jones, 

& Gliga, 2015; Meredith, 2015; Roth & Sweatt, 2011). Both schizophrenia and autism have been 

associated with numerous in utero disruptions, including prenatal infection (Atladóttir et al., 

2010; Buka et al., 2001), and gestational diabetes (M. Cannon et al., 2002; Gardener et al., 2009; 

Xiang et al., 2015). This latter fact raises an important question concerning the convergence of 

such metabolic and infectious stressors on neurocognitive development and long term outcomes 

in offspring.  

 

Fetal and placental sex modifies disease risk and pregnancy outcomes 

Because the predominant tissue-specific cell of the placenta, the trophoblast, is derived 

from the blastocyst and is genetically fetal, placental sex is biologically congruent with that of 

the fetus and may influence developmental origins of disease (Di Renzo, Picchiassi, Coata, 

Clerici, & Brillo, 2015; Rosenfeld, 2015; Sedlmeier et al., 2014). In fact, recent studies suggest 

that the placental transcriptome is largely driven by the fetal genome and that placental gene 

networks influence postnatal risk of multiple human diseases (Peng et al., 2017). Thus sexual 

dimorphism in DOHaD might reflect an influence of placental sex on fetal development. 

While the majority of investigations linking antenatal stress to adverse outcomes in 

offspring have focused on a single type of stress (such as metabolic stress or infection) (J. A. 

Goldstein, S. A. Norris, & D. M. Aronoff, 2017), real world experience demonstrates that human 

populations are routinely subjected to more than one fetal stressor at a time. For example, 

diabetes is often accompanied by obesity, collectively referred to as diabesity (Sims et al., 1973), 

a condition that has received significant attention for its impact on fetal development and 

developmental outcomes (Desoye & van Poppel, 2015; Tomar et al., 2015). In contrast, the co-
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occurrence of infectious diseases and metabolic stress has received little formal attention (J. A. 

Goldstein et al., 2017).  

 

Gestational diabetes  

One in ten pregnancies are complicated by glucose intolerance (DeSisto, Kim, & Sharma, 

2014; Perkins, Dunn, & Jagasia, 2007). GDM is the most common metabolic disorder during 

pregnancy with a mean prevalence in North America and the Caribbean of 7 %. It is defined as 

glucose intolerance newly diagnosed in the second or third trimester of pregnancy ("2. 

Classification and Diagnosis of Diabetes," 2017). GDM occurs as a result of a breakdown in 

normal glucose utilization during pregnancy. The placenta produces human chorionic 

somatomammotropin that inhibits peripheral uptake of glucose by the mother while stimulating 

the secretion of insulin by the fetus. In healthy pregnancies, some level of insulin resistance is 

required to preferentially transfer nutrients to the fetus, however, in cases of GDM, a lack of β-

cell hyperplasia leads to an exacerbated state of insulin resistance (Perkins et al., 2007). GDM 

not only affects levels of circulating glucose and insulin within the mother, but also circulating 

systemic inflammatory mediators. For example, circulating TNF-α levels are increased in 

patients with GDM when compared to healthy controls (Radaelli, Varastehpour, Catalano, & 

Hauguel-de Mouzon, 2003). Both placental and subcutaneous adipose tissue explants exhibited 

higher levels of TNF-α release when incubated in the presence of glucose (Coughlan, Oliva, 

Georgiou, Permezel, & Rice, 2001), suggesting that both the placenta and adipose tissue are 

responsible for increased secretion of TNF-α under high glucose conditions. 

Type 2 diabetes and GDM are often found in conjunction with maternal obesity (K. E. 

Martin, Grivell, Yelland, & Dodd, 2015; Whiteman et al., 2015). Both GDM and T2D are known 
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to increase the risk of complications such as macrosomia, hypoglycemia, hypocalcemia, and 

hyperinsulinemia from islet cell hyperplasia at birth (Frias, Frias, Frias, & Martinez-Frias, 2007; 

Perkins et al., 2007). Fetal hypoxia, fetal brain-iron deficiency, and respiratory distress syndrome 

can also occur as a result of diabetes during pregnancy due to the fact that the placenta shows 

signs of increased hypoxia and is unable to provide the increased oxygen delivery required for 

the increased metabolic functioning (Georgieff, 2006). GDM, T2D, and obesity are often 

accompanied by an increase in circulating levels of free-fatty acids (FFA) and characterized by 

low-grade inflammation endotoxemia (Catalano, 2002; Lappas, 2011; Winzer, 2004; Wolf, 

2004). Multiple studies have demonstrated that these FFA byproducts of diabesity constitute 

metabolic danger signals and have the ability to alter the activation status of the NLRP3 

inflammasome leading to changes in the inflammatory environment (L'Homme et al., 2013; 

Vandanmagsar et al., 2011; Wen et al., 2011; Y. Yan et al., 2013).In addition to the metabolic 

related consequences of GDM, this condition is also associated with the dysregulation of 

multiple inflammatory pathways (Abell, De Courten, Boyle, & Teede, 2015). Gestational 

diabetes has also been associated with increased leptin, IL-6, and TNF-α as well as decreased 

adiponectin (insulin-sensitizing adipokine) levels midgestation (Gao, Yang, & Zhao, 2008; 

Kautzky-Willer et al., 2001; Kinalski, Telejko, Kuzmicki, Kretowski, & Kinalska, 2005; Nergiz 

et al., 2014; Ortega-Senovilla et al., 2011; Park et al., 2013; Vitoratos et al., 2001). Similar to and 

sometimes in conjunction with maternal obesity, gestational diabetes leads to an increased 

production of reactive oxygen species by hyperglycemia-induced increased electron transport in 

mitochondria (Nishikawa et al., 2000). In addition, placenta from gestationally diabetic mothers 

exhibit gene expression patterns and DNA methylation consistent with a pro-inflammatory 

phenotype, highlighting the potential role for placental inflammation in negative fetal outcomes 
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(Enquobahrie, Williams, Qiu, Meller, & Sorensen, 2009; Rong et al., 2015). Taken together, 

gestational diabetes induces maternal and placental changes consistent with a shift to a pro-

inflammatory state and an increase in hypoxic conditions within the placenta. 

 

Gestational diabetes induces changes in placental characteristics 

In cases of GDM, evidence suggests that within the placenta the number of macrophages, 

CD68+CD14+ cells, increases compared to control groups (Yu et al., 2013). Diabetes during 

pregnancy has been shown to induce a pro-inflammatory phenotype in placental macrophages, as 

characterized by an increase in the expression of IL-1β and CCR7 and a decrease in the anti-

inflammatory markers CD163, CD209, and IL-10 (Sisino et al., 2013). Another recent study, 

however, concluded that HBCs maintain their anti-inflammatory phenotype even in the presence 

of GDM (Schliefsteiner et al., 2017). T-cell directed immunoregulation is skewed in patients 

with GDM, as evidenced by reduced development and suppressive capacity of regulatory CD4+ 

T cell (Treg) populations (Pendeloski et al., 2015). Thus, there is ample evidence suggesting that 

the presence of GDM influences phenotypic properties of the placenta, although some 

controversy regarding the impact of GDM on the inflammatory potential of placental 

macrophages and the overall inflammatory state of the placenta exists.  

Gestational diabetes is associated with increased levels of maternal serum ferritin. Serum 

ferritin is an iron containing protein that functions as an intracellular iron storage compound 

(Charlton, Jacobs, Torrance, & Bothwell, 1963). In cases of iron-overload, ferritin can be 

excreted from macrophages in an apo-form into serum (Cohen et al., 2010). Multiple studies 

have demonstrated that GDM is accompanied by an increase in serum ferritin levels (Afkhami-

Ardekani & Rashidi, 2009; Amiri et al., 2013; Chen, Scholl, & Stein, 2006). These findings 
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suggest that GDM may be accompanied by, or influenced by, an increase in intracellular iron 

levels within macrophages. 

Literature regarding iron supplementation during pregnancy and risk of GDM is unclear. 

Prospective cohort studies have been performed to determine if iron intake during pregnancy 

correlates with an increased incidence of GDM. The reports thus far have been conflicting and 

correlative at best. One study reported a 2-fold higher incidence of GDM, hypertension, and 

metabolic syndrome in iron-supplemented women compared to controls while a different study 

concluded that high iron intake increased the risk of GDM for only a small subset of individuals 

(Bo et al., 2009; Helin et al., 2012). Neither of the studies looked at iron supplementation 

throughout the course of pregnancy and results were mostly based upon patient surveys.  

Interestingly, one identifying characteristic of placental macrophages is the high 

expression of the anti-inflammatory marker CD163, which is a scavenger receptor known to be 

involved in the clearance of hemoglobin-haptoglobin complexes and iron uptake (Svensson et 

al., 2011). The role of CD163 in iron recycling and handling is especially of interest in GDM as 

iron-containing proteins, iron availability, and levels of CD163 differ between women with 

GDM and non-diabetic pregnancies (Afkhami-Ardekani & Rashidi, 2009; Amiri et al., 2013; Bo 

et al., 2009; Chen et al., 2006; Helin et al., 2012; Rawal et al., 2017). Women with GDM exhibit 

signs of elevated iron stores, as estimated by an increase in maternal serum, hepcidin, and ferritin 

levels (Amiri et al., 2013; Chen et al., 2006; Rawal et al., 2017); all of which have been shown to 

play a possible role in the development of GDM. Two independent studies have shown that 

antenatal iron supplementation, leading to increased levels of maternal iron, increased the risk of 

GDM and was also associated with glucose impairment and hypertension throughout gestation 

suggesting a link between imbalanced iron homeostasis and GDM (Bo et al., 2009; Helin et al., 
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2012). Although a relationship has been established between GDM and maternal iron levels, the 

causal nature of this interaction and the extent to which it influences placental health and fetal 

outcome has yet to be well established. 

 

Maternal obesity and GDM: their impact on placental biology and fetal development 

Maternal obesity, excessive gestational weight gain, and other maternal metabolic 

disorders have been shown to have a significant impact on the physiology of the offspring 

(Maftei et al., 2015; Olson, Strawderman, & Dennison, 2009; Stice, Yokum, Burger, Epstein, & 

Small, 2011). Obesity is characterized by a low-grade inflammatory state (Friis et al., 2013) and 

leads to adipocyte hyperplasia and an increased secretion of pro-inflammatory adipokines and 

cytokines. Consequently, macrophage and T lymphocyte populations in adipose tissue increase, 

gut permeability decreases, and the gut microbiome is altered (Castanon, Luheshi, & Laye, 

2015). Of these obesity related biological factors, many are known to mediate risk to the 

developing fetus including excessive nutrient availability (e.g. glucose), circulating hormones 

(e.g. insulin, leptin), and inflammatory cytokines (Rivera, Christiansen, & Sullivan, 2015). The 

placenta is not immune to the effects of maternal obesity and as a result shows significant 

reduction in vascular function (N. Jansson et al., 2013; Stewart et al., 2007). An increase in 

maternal BMI is also associated with placental phosphorylation of NFκB and increases IL-1β 

levels, suggesting changes in placental inflammatory potential (Aye et al., 2014; Martino et al., 

2016).  

Uncontrolled diabetes in conjunction with obesity leads to increased adiposity and 

hyperglycemia increasing signs of oxidative stress and systemic inflammation (Guest, Gao, 
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O'Connor, & Freund, 2007). When obese women become pregnant, the inflammatory burden 

further increases as made evident by increases in maternal C reactive protein, IL-6, IL-1β, and 

MCP-1 midgestation compared to non-obese pregnant women (Christian & Porter, 2014; Friis et 

al., 2013). In the context of predisposing factors, such as maternal obesity and an unhealthy diet, 

gestational diabetes often inevitably develops (K. E. Martin et al., 2015; Whiteman et al., 2015). 

Pregnancy itself induces an insulin resistant maternal state allowing for increased glucose 

availability for the fetus (Salzer, Tenenbaum-Gavish, & Hod, 2015). Increased maternal glucose 

and free fatty acid production to accommodate the developing fetus combined with heightened 

inflammation exacerbate an already heightened state of insulin resistance as a consequence of 

pregnancy (Shoelson, Lee, & Goldfine, 2006). Most pregnant females are able to compensate for 

this increase in insulin resistance with pancreatic beta cell hyperplasia, hypertrophy and 

increased insulin production, leading to a hyperinsulinemic, normoglycemic state (Pasek & 

Gannon, 2013). However, when the factors propagating insulin resistance cannot be overcome 

by maternal compensation, gestational diabetes often develops (Georgieff, 2006). For the 

developing fetus, this translates into increases in both inflammatory (e.g. cytokines) and 

metabolic (e.g. insulin, leptin, glucose, free fatty acids) factors that either act at the placenta or 

freely cross the placenta to disrupt normal development (Silverman, Rizzo, Cho, & Metzger, 

1998).  

 

Models of gestational diabetes 

There are numerous rodent models of gestational diabetes. Many utilize a drug-induced 

streptozotocin (STZ) model of diabetes both during gestation and in the absence of pregnancy. 

STZ destroys pancreatic beta cells therefore producing a type 1 diabetic-like phenotype (López-
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Soldado & Herrera, 2003). Although genetic models inhibiting maternal beta cell proliferation 

exist and are shown to produce a gestational diabetic phenotype, these mutations are rarely if 

ever found in gestationally diabetic women and were therefore not chosen to be utilized in our 

studies (Pasek & Gannon, 2013). Even though other animal models are often used and known to 

induce a state of maternal hyperglycemia, the high fat diet induction of gestational diabetes is the 

most clinically relevant model of gestational diabetes for our studies. 

It is well established that a high fat diet produces obesity in rodents. Most researchers 

utilize a 32% to 60% fat by calorie diet producing a steady increase in weight over time without 

overt nutritional deficiencies (Pasek & Gannon, 2013). As a result of this high fat diet, adult 

female offspring from high fat fed dams exhibit increases in inflammation characterized by 

increases in IL-1β and TNFα levels (Kang, Kurti, Fair, & Fryer, 2014). Adult offspring of 

gestationally diabetic mothers, females in particular, present with various phenotypes including 

increased weight, hyperinsulinemia, hyperglycemia, hypertension, and higher serum levels of 

triglycerides and C reactive protein (Elahi et al., 2009; Liang, Oest, & Prater, 2009; Plagemann 

et al., 1998). Increases in the expression and/or activity of cytokines and proteins related to 

hypoxic response and oxidative stress have also been reported (Chandna et al., 2015; Lian, 

Dheen, Liao, & Tay, 2004; Melo et al., 2014; X. Tang, Qin, Xie, & He, 2015; Wu et al., 2015). 

As a result of a maternal high fat diet, the placenta exhibited signs of hypoxia and inflammation 

(Jones et al., 2009; Li, Chen, & Li, 2013; Liang, DeCourcy, & Prater, 2010). 

Maternal obesity, even in the absence of diagnosed diabetes, is a state of metabolic 

dysfunction and exhibits signs of excessive inflammation, which contribute to insulin resistance, 

an increased risk for the development of diabetes, and further excessive inflammation (Abell et 

al., 2015). The ongoing presence of inflammation in association with the presence of metabolic 
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dysfunction induces a positive feedback in which the two conditions promote the presence and 

intensity of one another. Rodent models of obesity exhibit signs of hyperglycemia and 

hyperinsulinemia both of which are known to increase the risk of developing gestational diabetes 

(Gallou-Kabani et al., 2007; Rivera et al., 2015). This knowledge not only makes the use of a 

high-fat induced model of gestational diabetes an effective one, but a physiologically relevant 

one as well for studying its effects on placental and fetal development. 

 

Gestational diabetes influences fetal neurodevelopment 

 Although the link between gestational diabetes and neurocognitive disorders is not as 

well documented as with maternal immune activation, there is growing evidence indicating that 

diabetes and obesity during gestation negatively affect neurodevelopment. With regards to 

autism and maternal diabetes, a meta-analysis performed by Xu and colleagues found significant 

pooled odds ratios of 1.48 (95% CI: 1.25 – 1.75) and 1.72 (95% CI: 1.24-2.41) for 3 cohort and 9 

case-control studies, respectively (Xu, Jing, Bowers, Liu, & Bao, 2014). Furthermore, 

schizophrenia risk has been documented as increased with diabetes during gestation, with a 

meta-analysis by Mary Cannon finding a significant odds ratio of 7.76 (95% CI: 1.37 – 43.9) 

(Mary Cannon, Peter B. Jones, & Robin M. Murray, 2002; Van Lieshout & Voruganti, 2008). 

Similarly, a study of 1051 offspring from 315 Finnish families found a 1.66-fold increase risk for 

developing schizophrenia with gestational diabetes exposure (Wegelius et al., 2011). Although 

limited, a possible link between gestational diabetes and neurocognitive disorders has been 

established. In order to further evaluate the causative nature of this association and possible 

mechanisms involved further studies are necessary.  
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Maternal immune activation 

Inflammation when appropriate is protective, but aberrant inflammation is not. 

Inflammation during critical developmental time windows can produce long-lasting changes in 

both immune and brain function (Coe & Lubach, 2003; U. Meyer, Yee, & Feldon, 2007). Many 

different environmental stressors, including infections, gestational diabetes, obesity, and altered 

nutrition have the potential to influence critical stages of development (Berk et al., 2013; 

Fagundes, Glaser, & Kiecolt-Glaser, 2013). Perturbations within the intrauterine environment 

have the potential to induce long lasting and significant consequences on immune function. 

Infections traditionally pose a persistent threat to human reproductive health through direct fetal 

tissue damage (e.g., congenital Zika virus, cytomegalovirus or syphilis infections) or, indirectly 

via immune-mediated interference with normal fetal programming and/or other mechanisms such 

as epigenetics (Bobetsis et al., 2007). The later indirect cause can be referred to as maternal 

immune activation (MIA). MIA as might be provoked by viral infections that do not cross the 

placenta, such as influenza or medically-treated HIV, appears to impact the risk for NCDs in 

exposed offspring (Adams Waldorf & McAdams, 2013; Zager et al., 2015). Perhaps one of the 

most dramatic impacts maternal immune activation can have on pregnancy and fetal 

development is preterm birth and early pregnancy loss. Preterm birth can lead to a multitude of 

complications for the offspring including an increase in the occurrence of allergies and asthma 

(Fergusson, Crane, Beasley, & Horwood, 1997; Kent et al., 2016; Pekkanen, Xu, & Jarvelin, 

2001) 

MIA can be modeled in rodents through multiple different scenarios. The two most 

common include the use of polyinosinic:polycytidylic acid (poly(I:C)) and the administration of 

LPS during midgestation inducing immune activation between gestational day (GD) 6 and 14 in 
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rodents. Both LPS and poly(I:C) are associated with a pro-inflammatory phenotype in the 

offspring (Garay, Hsiao, Patterson, & McAllister, 2013; Mandal et al., 2013; Onore, Schwartzer, 

Careaga, Berman, & Ashwood, 2014). Poly(I:C) is a synthetic double stranded RNA (dsRNA) 

that activates an acute antiviral immune response. dsRNA is recognized by TLR3, leading to an 

innate immune response that includes NFκB activation and pro-inflammatory cytokine 

expression (Urs Meyer, 2014; U. Meyer & Feldon, 2012). As with viral infection, poly(I:C) 

induces acute fever, sickness behavior, and weight loss usually resolving within 1 to 2 days 

(Patterson, 2009). The administration of poly(I:C) produces an effective antiviral response 

stimulating maternal immune activation in the absence of live pathogens mimicking an in utero 

viral infection (U. Meyer, Feldon, Schedlowski, & Yee, 2006; U. Meyer et al., 2007) (U. Meyer 

& Feldon, 2012). The ability of poly(I:C) to produce a consistent viral-like maternal response 

makes it a valuable tool in maternal immune activation research.   

 

Viral infections and maternal immune activation are linked to psychiatric disorders 

Since many psychiatric disorders are thought to have developmental origins, much 

research has focused on the importance of prenatal and early postnatal inflammation-associated 

events. It has long been known that in utero infections can alter the fetal brain, ranging from 

mild anomalies to severe deficits. Multiple studies have demonstrated that active maternal 

infections such as herpes simplex virus, cytomegalovirus, rubella, and toxoplasmosis can lead to 

childhood intellectual disabilities and learning difficulties (Hagberg & Kyllerman, 1983; H. M. 

Meyer, Jr., 1969). Recent events make this association all the more important since the 

emergence of Zika virus as the newest viral threat to the developing fetus. The most frequently 

studied association between maternal infections and neurocognitive disorders is influenza 
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(O'Callaghan, Sham, Takei, Glover, & Murray, 1991; Simanek & Meier, 2015; Zerbo et al., 

2015). The earliest studies of in utero infection and psychiatric risk observed increases in 

schizophrenia diagnosis after influenza epidemics. Groups in Wales, England, and Finland 

reported increases in schizophrenia risk in those born a few months after the 1957 A2 influenza 

pandemic (Mednick, Machon, Huttunen, & Bonett, 1988; O'Callaghan et al., 1991). Study results 

investigating other influenza outbreaks and schizophrenia risk associations, however, show 

inconsistent results. Some studies find a relationship between second trimester infections and 

increased schizophrenia diagnosis (J. Adams et al., 1993; Barr, Mednick, & Munk-Jorgensen, 

1990; Kendell & Kemp, 1989; Kunugi et al., 1995; Limosin, Rouillon, Payan, Cohen, & Strub, 

2003; Sham et al., 1992; Takei, O'Callaghan, Sham, Glover, & Murray, 1993; Takei et al., 1994) 

while other groups find no association (Grech, Takei, & Murray, 1997; Kendell & Kemp, 1989; 

Mino, Oshima, Tsuda, & Okagami, 2000; Morgan et al., 1997; Susser, Lin, Brown, Lumey, & 

Erlenmeyer-Kimling, 1994; Takei, Murray, Sham, & O'Callaghan, 1995). Conflicting results 

have also been found for other infections during pregnancy such as diphtheria, pneumonia, 

measles, varicella, mumps, and poliovirus (Cahill, Chant, Welham, & McGrath, 2002; 

O'Callaghan et al., 1994; Suvisaari, Haukka, Tanskanen, Hovi, & Lonnqvist, 1999; Torrey, 1988; 

Watson, Kucala, Tilleskjor, & Jacobs, 1984).  

Comparable to schizophrenia, autism has been associated with maternal infections during 

pregnancy. Rubella and other viral pathogens such as cytomegalovirus as well as some bacterial 

infections in the second trimester have been associated with a diagnosis of autism in the 

offspring (Atladóttir et al., 2010; Chess, 1977; Libbey, Sweeten, McMahon, & Fujinami, 2005; 

Sweeten, Posey, & McDougle, 2004; Yamashita, Fujimoto, Nakajima, Isagai, & Matsuishi, 

2003; Zerbo et al., 2015). 
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Similar to viral infections, prenatal poly(I:C) has demonstrated molecular, structural, and 

behavioral abnormalities reminiscent of psychiatric disorder pathology in the offspring in rodent 

models (Winter et al., 2009). Prenatal poly(I:C) treatment also has effects on immune 

development which may play a role in the progression of neurodevelopmental disorders. After 

treatment, high levels of many inflammatory markers are increased in the fetal brain, including 

IL-1β, IL-13, and MCP-1 (Arrode-Bruses & Bruses, 2012). In addition to changes in the brain, 

offspring usually present with a generalized, systemic pro-inflammatory phenotype. MIA via 

poly(I:C) in a mouse induces immune changes that last long after the initial insult. These long-

lasting immune perturbations could potentially contribute to the dysfunction observed throughout 

the postnatal period in MIA offspring. 

 

Metabolic stress, inflammation, and inflammasomes 

A strong foundation of evidence exists linking metabolic disorders and inflammation. 

With recent discoveries suggesting that chronic inflammation plays an essential role in the 

pathogenesis of many metabolic driven diseases. Highly conserved across species both the 

immune and metabolic responses to a variety of stimuli are essential for survival. In order to 

maintain a physiologically homeostatic environment proper communication between these two 

essential pathways is vital. A hallmark of chronic inflammation is increased levels of circulating 

inflammatory markers such as cytokines and chemokines which have been implicated in 

promoting the progression of chronic inflammation in metabolic disease. As the incidence of 

gestational diabetes rises, it is important that we seek to understand the immunological and 

metabolic processes responsible for its progression and how these processes affect one another 
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within the context of disease. Understanding the cellular responses to such perturbations could 

lead to the development of new or repurposed therapeutic and preventative treatments. 

 

The NLRP3 Inflammasome 

Pattern recognition receptors (PRRs) were first characterized for their ability to recognize 

microbial signals and mediate host immune responses to microbial insults. It is becoming ever 

more apparent that the PRRs have the ability to not only recognize and respond to microbial 

insults, but to respond to various endogenous danger signals such as those that may arise as a 

consequence of metabolic disease. Several different families of PRRs have since been discovered 

including the primarily membrane-bound toll-like receptors (TLRs) and c-type lectin receptors 

(Takeuchi & Akira, 2010). Another important family of PRRs is the nucleotide-oligomerization 

domain-like receptors (NLRs). The NLRs encompass a large family of intracellular proteins that 

respond to microbial patterns as well as changes in cellular homeostasis. NLR family is 

evolutionarily conserved in both plants and animals, although unlike the TLRs which are found 

in Drosophila, NLRs are unique to higher eukaryotes (Ting & Davis, 2005).   

The NLR family of PRRs contains 22 members with broad ranging and often times 

divergent functions. The most extensively studied of the NLR sub-families are those proteins 

known to be involved in the formation of large multimeric complexes known as inflammasomes 

(Martinon, Burns, & Tschopp, 2002). The best characterized of these inflammasomes is that 

which is formed around NLRP3. Activation of the NLRP3 inflammasome induces 

oligomerization of NLRP3 leading to the recruitment of ASC (apoptosis-associated speck-like 

protein containing CARD), which in turn, forms large structures leading to the recruitment of 

pro-caspase-1. Autocatalytic cleavage of pro-caspase-1 into the p10 and p20 caspase-1 subunits 
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allows for the formation of active caspase-1 as the two subunits form hetero-tetramers which are 

then able to convert pro-IL-1β and pro-IL-18 into their bioactive secreted forms (C. A. Dinarello, 

2009; Wilson et al., 1994). The importance of IL-1β and its possible role in metabolic stress 

during pregnancy will be discussed further in the following sections.  

NLRP3 activation occurs in two steps. The strict regulation of inflammasome activation 

is important to restrict aberrant activation which may lead to possible damage of surrounding 

tissues through an unnecessary and excessive inflammatory response. Signal 1 is a priming step 

and is required for complete activation. This initial priming can be mediated through various 

pathways such as PRRs, cytokine receptors, or other factors known to activate NF-κB. This 

priming step is critical as it produces a pool of pro-IL-1β and increases NLRP3 to functional 

levels (Bauernfeind et al., 2009; Franchi, Eigenbrod, & Nunez, 2009). The second signal is the 

activating signal and can vary in nature from microbial signals, toxins, crystalline substances, 

and ATP released from dead or dying cells (Stutz, Golenbock, & Latz, 2009).  

The NLRP3 inflammasome is important in the context of metabolic disease as it has the 

ability to be activated by a number of different byproducts of metabolic disease resulting in a 

state of sterile inflammation (Agostini et al., 2004; Mariathasan et al., 2004; Meylan, Tschopp, & 

Karin, 2006; Miao et al., 2006). This is in contrast to other NLR inflammasomes such as 

NLRC4/NAIP and NLRP1 which have a more restricted repertoire of agonists (L. C. Hsu et al., 

2008; Newman et al., 2010). Due to this fact, the NLRP3 inflammasome is recognized as a 

sensor of metabolic dysregulation. For example, ER stress, as seen in patients with T2D, 

activates the NLRP3 inflammasome resulting in the release of IL-1β (Menu et al., 2012). In 

mice, studies inducing obesity through the administration of a high fat diet (HFD) have shown 

that expression of inflammasome components ASC, Caspase-1, and NLRP3 are elevated in 
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adipose tissue macrophages and isolated adipocytes, which can also produce IL-1β, further 

promoting obesity (Koenen et al., 2011; Stienstra, Tack, Kanneganti, Joosten, & Netea, 2012; 

Stienstra et al., 2011). Further evidence outlining the importance and possible role for the 

NLRP3 inflammasome in the context of metabolic stress will be outlined in later chapters.     

 

The importance of IL-1β 

The IL-1 family of cytokines are important regulators of inflammation. It has multiple 

functions including acting as a co-stimulatory molecule of T lymphocytes, inducing a humoral 

Th2 immune response, and promoting Th17 cell differentiation (Charles A. Dinarello, 2009; V. 

J. Johnson, Yucesoy, & Luster, 2005; Sutton, Brereton, Keogh, Mills, & Lavelle, 2006). IL-1 can 

also increase adhesion molecule expression on mesenchymal and endothelial cells, promote 

angiogenesis and tumor metastasis, and stimulate myeloid differentiation (Dinarello, 2007; 

Charles A. Dinarello, 2009; Voronov et al., 2003). The IL-1 family of cytokines includes the IL-

1α and IL-1β isoforms, IL-1 receptors 1 and 2, IL-1 receptor accessory protein, and IL-1 receptor 

antagonist. IL-1α is expressed constitutively in most cell types whereas IL-1β is mostly produced 

by immune cells (Berda-Haddad et al., 2011). Biological activity is controlled at both the 

transcriptional and post-translational levels of processing. IL-1β is produced in an inert pro-

peptide form that must be cleaved by enzymes such as caspase-1 or neutrophil serine proteases 

(Guma et al., 2009; Joosten et al., 2009). Upon binding of biologically active IL-1, the IL-1 

receptor heterodimerizes, interacts with IL-1 receptor accessory protein, and promotes pro-

inflammatory signaling through a myeloid differentiation factor 88 (MyD88)-dependent pathway 

to activate NF-κB and multiple stress-activated kinases such as JNK and ERK (Palomo, Dietrich, 

Martin, Palmer, & Gabay, 2015). The IL-1 receptor antagonist is usually released by the same 
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immune cells that release IL-1, dampening excess IL-1 signaling via competitive antagonism 

(Dripps, Brandhuber, Thompson, & Eisenberg, 1991; Schreuder et al., 1997). IL-1 receptor 2 is 

expressed on immune cells and other cytokine targets decreasing IL-1 signaling by acting as 

decoy receptor (Gabellec, Griffais, Fillion, & Haour, 1996; McMahan et al., 1991). IL-1 receptor 

2 expression is induced by anti-inflammatory factors whereas pro-inflammatory cytokines induce 

IL-1 receptor 1 expression (Colotta et al., 1993; P. Martin et al., 2013; Orlando et al., 1997).  

Interleukin-1β is a pro-inflammatory cytokine that is produced by activated monocytes 

and macrophages in response to stimuli acting as an important regulator of systemic 

inflammation. It is the primary cause of both chronic and acute inflammation in response to 

injury, infection, and other immunological challenges (Dinarello, 1998). As mentioned 

previously, IL-1β is produced in its inactive precursory form, pro-IL-1β p35, which requires 

cleavage into its active p17 form by IL-1β-converting enzyme, also known as caspase-1 (Cerretti 

et al., 1992; Thornberry et al., 1992).   

As an important regulator of inflammation, it is not surprising that IL-1β has been shown 

to play a role in metabolic disorders such as T2D and obesity. Both IL-1β and IL-18 have been 

shown to be risk factors for T2D (Spranger et al., 2003; Thorand et al., 2005). IL-1β has been 

linked to the possible development and progression of T2D through multiple mechanisms. 

Through increasing the expression of other inflammatory mediators, via IL-1R signaling, IL-1β 

can initiate the expression of IL-18 and IL-33 families of cytokines initiating a self-amplifying 

cytokine system (Arend, Palmer, & Gabay, 2008). IL-1β also induces cell stress pathways which 

have been linked to the progression of T2D (Cardozo et al., 2005; Verma & Datta, 2010). High 

glucose and high free fatty acid levels, as seen in T2D and often times obesity, have been shown 

to directly increase inflammatory responses and IL-1β production (Boni-Schnetzler et al., 2009). 
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Multiple studies have focused on the identification of endogenous and exogenous ligands 

responsible for activating the inflammasome in murine models of T2D.  Multiple danger 

associated molecular patters (DAMPs) including islet amyloid polypeptide and glucose itself 

have been associated with increased NLRP3 inflammasome activation in T2D to name just a few 

(Maedler et al., 2002; Masters et al., 2010).  

 

The role of Toll-like receptors in metabolic disease 

One of the most studied and best characterized of the PRR families is the TLR family. 

TLRs are responsible for sensing invading pathogens as well as endogenous DAMPs both 

extracellularly and within endosomes and lysosomes intracellularly (Akira, 2006). Ten different 

TLRs have been identified in humans while 12 have been identified in mice and are 

characterized by N-terminal leucine-rich repeats, a transmembrane region, and a cytoplasmic 

Toll/IL-1R homology (TIR) domain (Kawai & Akira, 2007). TLRs differ not only in their 

localization within the cell, but also in their ability to recognize specific molecular patterns 

whether exogenous in nature such as microbial components or endogenous in nature. Some of 

the relevant TLRs will be introduced in brief. TLR2, has the widest specificity, and senses 

various gram-positive as well as gram-negative bacterial and fungal components when in 

complex with other TLRs, TLR1/TLR2 or TLR6/TLR2, the heterodimer recognizes triacyl and 

dicyl lipoproteins (Aliprantis et al., 1999; Iwaki et al., 2002; Krutzik et al., 2003; Lien et al., 

1999; Opitz et al., 2001; Takeuchi et al., 2001; Yoshimura et al., 1999). When stimulated, TLR2 

induces pro-inflammatory cytokine production. TLR5 is highly expressed in the small intestine 

and recognizes flagellated bacteria. In response, dendritic cells induce differentiation of naïve T 

cells in to Th17 and Th1 cells (Uematsu et al., 2008). TLR3, TLR7, TLR8, and TLR9 all 
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recognize bacterial and viral nucleic acids as well as endogenous nucleic acids (Akira, 2006). 

The nature of the nucleic acid and the downstream effects vary depending on the TLR. TLR4, 

was the first human TLR to be identified, in complex with MD2, recognizes lipopolysaccharide 

(LPS) (Medzhitov, 2001; Poltorak et al., 1998) and is also involved in the recognition of viruses 

(Imai, 2008).  

TLR signaling can be divided into two main groups dependent upon the TIR domain-

containing adaptor molecules recruited to the TLR upon activation. The most common signaling 

pathway is through the adaptor protein MyD88 (Takeuchi et al., 2001). Upon pathogen 

associated molecular pattern (PAMP) recognition MyD88 is recruited to the TIR domain of the 

TLR initiating the subsequent kinase cascade that triggers the downstream activation of NF-κB 

and MAPK pathways resulting in an inflammatory response (Akira, 2003). TLR3 and TLR4, 

however, can signal in a MyD88 independent fashion through another adaptor protein, TRIF. 

TRIF, although also responsible for NF-κB activation, also phosphorylates IRF-3 resulting in an 

anti-viral response (Akira, 2003; Yamamoto et al., 2002). 

The ability to sense a bacterial or viral infection at the maternal fetal interface is essential 

to a successful and healthy pregnancy. In vivo models of bacterial infections during pregnancy in 

multiple animal models have shown that live or heat-killed bacterial products can trigger preterm 

birth (Elovitz, Wang, Chien, Rychlik, & Phillippe, 2003). PRRs, more specifically TLRs, have 

been implicated in the pathogenesis of infection-associated preterm birth (Ilievski, Lu, & Hirsch, 

2007; Wang & Hirsch, 2003). These PRRs are expressed throughout the immune system as well 

as on non-immune cells, especially within the pregnant uterus, thus increasing their capacity to 

initiate an inflammatory response. For example, amniotic epithelial cells possess TLR2 and 

TLR4 that recognize and respond to bacterial threats (K. M. Adams, Lucas, Kapur, & Stevens, 
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2007; Y. M. Kim et al., 2004). In cases of chorioamnionitis, infection of the fetal membranes, 

TLR4 expression is upregulated (Y. M. Kim et al., 2004). Within the decidua, term decidual 

immune cells express TLR2 and TLR4 (Y. M. Kim et al., 2004). Decidual stromal cells also 

express TLRs. Term decidua express all 10 at the transcript level (Krikun et al., 2007) while 

expression at the protein level is gestation dependent with TLR2 and TLR4 being exressed 

during the first trimester and all 10 show expression at term (Canavan & Simhan, 2007; Krikun 

et al., 2007). The TLRs with the decidua are active and mount an inflammatory response upon 

activation with their known ligands (Canavan & Simhan, 2007; Krikun et al., 2007; Simhan, 

Chiao, Mattison, & Caritis, 2008). The majority of research regarding pattern recognition in at 

the maternal fetal interface has focused on the placenta. Normal term placentae express all 10 

TLRs (Chuang & Ulevitch, 2000; Zarember & Godowski, 2002). Like within the decidua, the 

expression of these changes throughout gestation in a time dependent fashion. In first trimester 

placental tissues, villous cytotrophoblasts and extravillous trophoblasts express high levels of 

TLR2 and TLR4, however, the outermost syncytiotrophoblasts do not express any TLRs 

(Abrahams et al., 2004). These outer most fetal cells are in direct contact with maternal blood 

and the lack of TLR expression is more than likely a method of immune tolerance. This 

expression pattern continues into the second trimester (Rindsjo, Holmlund, Sverremark-Ekstrom, 

Papadogiannakis, & Scheynius, 2007).  By the time the pregnancy has reached the third 

trimester, TLR2 and TLR4 expression can be found in the villous cytotrophoblasts, extravillous 

trophoblasts, and the syncytiotrophoblasts (Holmlund et al., 2002; Kumazaki, Nakayama, 

Yanagihara, Suehara, & Wada, 2004; Rindsjo et al., 2007). This altered PRRs expression pattern 

may reflect the changes in placental function as gestation proceeds. TLR expression may be just 
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another way that the placenta orchestrates the delicate balance between tolerance of the fetal 

allograft and maintaining defense against pathogens.  

As is many aspects of the immune system, TLR expression and function is altered in 

response to systemic inflammation and metabolic stress. Although a link between TLR4 and 

metabolic stress has been established, little work specifically looking at gestational diabetes has 

been completed. A case-control study looking at 30 females with GDM and 32 healthy pregnant 

females reported that both TLR4 expression levels in peripheral blood monocytes and serum 

TNF-α levels were increased in females with GDM compared to controls (Xie, Jin, & Zhu, 

2014). Additionally they found a positive correlation between serum TNF-α levels and blood 

monocyte TLR4 expression in all females. This indicates that TLR4 expression may be involved 

in the pathogenesis of gestational diabetes although the causal relationship cannot be 

interrogated. In a model of diet-induced obesity in mice, similar results were found. Mice lacking 

TLR4 and wild-type mice were fed either a normal chow diet or a HFD for 8 weeks at which 

point their thoracic aorta was removed. Samples from wild-type mice on a HFD showed 

increased markers of vascular inflammation, NF-κB expression, and impaired insulin sensitivity 

compared to normal chow mice. The TLR4-/- mice, however, showed no signs of vascular 

inflammation or impaired insulin responsiveness as a result of HFD despite comparable body fat 

mass implicating a role for TLR4 in diet-induced vascular inflammation and insulin resistance 

(F. Kim et al., 2007). Using a diet-induced model of T2D, Lu, et al. reported that mice who 

received Rhodobacter sphaeroides lipopolysaccharide (rs-LPS), a TLR4 antagonist, had an 

attenuated presence of atherosclerotic lesions compared to non-rs-LPS treated mice. 

Furthermore, rs-LPS treated mice displayed a reduction in the number of infiltrating monocytes 

and macrophages into atherosclerotic lesions when present (Lu, Zhang, Li, Lopes-Virella, & 
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Huang, 2015). Together, these studies establish the basis for the possible role of TLR4 in the 

onset and progression of inflammation associated complications and progression as a result of 

metabolic stress in the form of obesity and diabetes.                        

 

Hypotheses 

This thesis provides an overview of how maternal inflammatory stress, in the form of 

metabolic stress induced by GDM and MIA, affects placental health and fetal outcomes thus 

possibly influencing the developmental origin of health and disease. Our central hypothesis is 

that maternal inflammation alters placental physiology thus increasing the risk of adverse fetal 

outcomes. We apply this hypothesis to both human and mouse studies and in multiple scenarios 

looking at both metabolic stresses alone and in combination with the additional stress of maternal 

immune activation to assess the combined effect on placental and fetal health. The combination 

of these two common and often co-occurring stressors has never been interrogated.  

Chapter 1 is an overview of the background information necessary for the understanding 

of where the field of maternal health is now regarding gestational diabetes and maternal immune 

activation. The now widely accepted viewpoint that the maternal environment during pregnancy 

can influence the health of the offspring, in both a negative and positive way, is also introduced. 

The work proposed and conducted in this thesis was developed under the framework of DOHaD 

to better understand how maternal immune stress during pregnancy affects not only maternal and 

placental health, but the long-term health of the offspring as well.     

Chapter 2 tested the hypothesis that women with gestational diabetes exhibited altered 

placental physiology and placental macrophage phenotypes. We utilized a newly developed 

research tool at Vanderbilt University known as Pathlink which allowed us to search deidentified 
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patient medical records linked to archived formalin-fixed paraffin embedded (FFPE) placental 

tissue blocks obtained from the same patients. Comparison of placentae from women with GDM 

and healthy controls uncovered that GDM is associated with altered placental histology and 

altered placental macrophage phenotypes as evidenced by the higher level of expression of 

CD163 on macrophage-like cells of the chorion and decidua suggesting an increase in anti-

inflammatory like macrophages. Increases in meconium-laden macrophages and greater iron 

stores within the placentae of women with GDM were noted and are consistent with reports that 

iron excess is associated with an increased risk for GDM. Overall, our results add to the growing 

amount of evidence that GDM has direct effects on placental structure. 

In Chapter 3, we developed and characterized a rodent model of diet-induced gestational 

diabetes. This model was then utilized to test the combined effect of GDM and MIA via 

poly(I:C), both of which are inflammation-inducing psychiatric disorder risk factors, on markers 

of maternal inflammation and fetal brain gene expression patterns. Work presented in chapter 4 

utilizes the same experimental premise as chapter 3 and assesses the placental gene expression 

patterns in the same mice after exposure to GDM, MIA, and the combination of the two 

stressors. For these studies, however, we were interested not only in how gene expression 

patterns change as a result of different sources of maternal inflammatory stress, but also the role 

of sexual dimorphism in influencing placental gene expression patterns.  

Chapter 5 takes a more mechanistic approach investigating how metabolic stress alters 

placental macrophage IL-1β production. Dyslipidemia is often a hallmark of metabolic stress. 

Excess circulating FFAs can act as extracellular danger signals leading to the activation of the 

inflammasome culminating in the characteristic increased production of IL-1β seen in many 
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metabolic disorders including gestational diabetes. A summary of these findings as well as future 

directions for the field will be included in chapter 6. 

 



 36 

CHAPTER 2 

 

GESTATIONAL DIABETES MELLITUS IS ASSOCIATED WITH INCREASED CD163 

EXPRESSION AND IRON STORAGE IN THE PLACENTA 

 

Theresa L. Barke, Jeffery A. Goldstein, Alexandra C. Sundermann, Arun P. Reddy, Jodell E. 

Linder, Hernan Correa, Digna R. Velez-Edwards, David M. Aronoff 

 

Introduction 

GDM significantly increases the risk of pregnancy complications, including fetal 

macrosomia, neonatal hypoglycemia and hypocalcemia, preeclampsia, premature labor, and 

Cesarean delivery ("2. Classification and Diagnosis of Diabetes," 2017). It also increases the risk 

of postpartum complications in mother and child including late onset diabetes and cardiovascular 

disease ("2. Classification and Diagnosis of Diabetes," 2017). A major barrier to reducing the 

complications of GDM is a lack of clarity regarding how this disease changes placental 

physiology, morphology, and overall the pathophysiological mechanisms contributing to the 

impact of the disease.   

Maternal hyperglycemia, as observed in GDM, alters placental morphometric 

characteristics, changes the structural integrity of syncytiotrophoblasts, and provokes major 

changes in placental gene expression related to chronic stress and inflammation (al-Okail & al-

Attas, 1994; Calderon et al., 2007; Radaelli et al., 2003). Some evidence also suggests that 

within the placenta of women with GDM, the number of CD68+CD14+ cells, macrophages, 

increases compared to control groups (Yu et al., 2013). Elevated biomarkers of systemic 
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maternal inflammation have been described in women with GDM, including an increase in 

circulating levels of interleukin (IL)-6, IL-8, IL-18 and C-reactive protein (CRP) in conjunction 

with decreased levels of IL-10 (Kuzmicki et al., 2008). Multiple studies have shown that in 

conjunction with an increase in maternal circulating inflammatory mediators, GDM is also 

associated with pro-inflammatory changes within the placenta (Hara Cde et al., 2016; Kuzmicki 

et al., 2008; Li et al., 2013; Radaelli et al., 2003). In particular, macrophages, the primary 

phagocyte in the healthy placenta, appear to be impacted by this endocrine disorder (Mrizak et 

al., 2014; Sisino et al., 2013; Yu et al., 2013).  

An identifying characteristic of placental macrophages is a high level of the anti-

inflammatory marker CD163, which is involved in the clearance of hemoglobin-haptoglobin 

complexes and iron uptake (Svensson et al., 2011). The role of CD163 in iron recycling and 

handling is especially of interest in GDM as iron-containing proteins, iron availability, and levels 

of CD163 differ between women with GDM and non-diabetic pregnancies (Afkhami-Ardekani 

& Rashidi, 2009; Amiri et al., 2013; Bo et al., 2009; Chen et al., 2006; Helin et al., 2012; Rawal 

et al., 2017). Circulating levels of hemoglobin and iron are higher in GDM patients compared to 

controls (Afkhami-Ardekani & Rashidi, 2009). Elevated iron stores, as estimated by increased 

maternal serum hepcidin and ferritin levels, may be involved with the development of GDM 

(Amiri et al., 2013; Chen et al., 2006; Rawal et al., 2017). Two independent studies have shown 

that antenatal iron supplementation, leading to increased levels of maternal iron, increased the 

risk of GDM and was associated with glucose impairment and hypertension throughout gestation 

suggesting a link between imbalanced iron homeostasis and GDM (Bo et al., 2009; Helin et al., 

2012).  



 38 

Given the relationships among GDM, placental macrophage activation and iron 

homeostasis, we sought to conduct a retrospective, case-control, study of archived human 

placental tissue from women with or without GDM to better define placental pathology, 

placental iron stores, and both macrophage density and CD163 expression in situ.  

 

Materials and Methods 

Study Design 

           This study was reviewed and approved by the Vanderbilt University Institutional Review 

Board (protocol #150498). This study was a retrospective conceptualized and completed in 

collaboration with the Vanderbilt Institute for Clinical and Translational Research (VICTR) at 

Vanderbilt University Medical Center. Placental tissue specimens were identified through the 

Synthetic Derivative (SD), a queryable, real-time, deidentified electronic medical record 

(EMR)(Roden et al., 2008). The SD allowed us to identify patient medical records that were 

linked to archived formalin-fixed paraffin embedded (FFPE) placental tissue blocks obtained 

from the same patients. Placentae had been sent for histopathological review at the discretion of 

the attending obstetrician. The SD was queried to identify possible cases of women with GDM as 

well as healthy controls who also had placental FFPE blocks available. The databases were 

searched for key words including GDM, abnormal glucose, and International Statistical 

Classification of Diseases and Related Health Problems (ICD) 9 codes suggesting GDM 

including, Personal History of Gestational Diabetes (V12.21), Diabetes Mellitus Complicating 

Pregnancy Childbirth or the Puerperium (648.0), Gestational Diabetes, Antepartum (648.83). To 

identify unaffected controls, we required the absence of these key words and codes.  
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Participants  

      Our initial query identified 1,292 possible GDM cases and 554 possible control cases 

(Figure 1). The number of participants in this study was limited to 25 patients with GDM and 25 

matched controls. The study design and sample distribution are outlined in Figure 1. From 

possible cases, we selected 25 cases, in which were able to confirm a diagnosis of GDM 

according to prespecified inclusion and exclusion criteria. Inclusion criteria included an 

abnormal oral glucose tolerance test (OGTT, defined below) and having access to a full FFPE 

placental cross-section, record of gestational age at birth, maternal age, and delivery method 

(Supplemental Table 1).The presence of GDM was established if the woman had at least 2 

values of the 100 g 3-hour OGTT above normal. Normal 100 g OGTT levels was defined as 95 

mg/dl at fasting, 180 mg/dl at 1 hour, 155 mg/dl at 2 hours, and 140 mg/dl at 3 hours. Women 

were excluded from the study if they were diagnosed with preeclampsia, had previously 

diagnosed diabetes, or had tested positive for illicit drug use. We also excluded women who had 

active signs of infection during pregnancy or at the time of delivery based on placental pathology 

notes and noted fetal abnormalities during pregnancy or at delivery. Controls were then matched 

to cases on the basis of gestational age at delivery, maternal age, and method of delivery.       
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Figure 1 Study design and sample distribution Workflow diagram depicting study design and 

distribution of investigated population including the numbers of patients included and excluded 

from the study. Our goal for this pilot study was to include 25 cases and controls. Once we 

confirmed the first 25 cases, we excluded the remaining 830 possible cases from review. 
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Data Collection 

Patient demographic information, vital statistics, and laboratory results including age, 

race/ethnicity, indication for delivery, body mass index (BMI), placental weight and volume, 

fasting glucose and 3-hr OGTT results, and maternal hematocrit were obtained through the SD. 

Not all patient records provided data on BMI or maternal hematocrit levels. We were able to 

collect data for calculating BMI for 27.2% of participants and maternal hematocrit for 86.3% of 

participants at time of delivery. Due to the nature of our study design, we could not recover all 

missing data points for these variables and have listed the missing number of data points where 

appropriate (Table 1).  
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Table 1 Characteristics of study participants by case status Cases and controls were matched 

by maternal age, gestational age, and indication for delivery. Maternal hematocrit (Hct) levels 

are from the day of delivery and were significantly higher in the case population compared to 

control with a p value of 0.02.  
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Immunohistochemistry and Pathological Analysis 

A total of 50 FFPE blocks were requested from Pathlink, the Vanderbilt Tissue Biobank 

which accrues patient samples and is linked to a de‐identified version of data extracted from an 

EMR system, in which all personal identifiers have been removed for analysis (Pulley, Clayton, 

Bernard, Roden, & Masys, 2010). FFPE blocks containing cross-sectional human placenta were 

sectioned and stained for analysis by the Translational Pathology Shared Resource (TPSR) at 

Vanderbilt University Medical Center. In some instances, full-thickness cross-sections 

containing the decidua, placental disc, and chorion, were unavailable. For these patients, pairs of 

blocks jointly forming a full-thickness cross section were obtained for analysis. Serial sections 

were prepared from the FFPE blocks and were stained with hematoxylin and eosin (H&E), 

Prussian blue, CD163 and CD68 at TPSR using standard protocols. Some requested samples 

were unavailable or in poor quality and thus were excluded from the study. While other samples, 

once cut from the FFPE blocks and stained, were missing sections of the decidua, chorion, or 

both. When this occurred, we excluded the corresponding tissue section in the matched sample. 

In total, 22 FFPE blocks from cases and 22 FFPE blocks from controls were available for 

analysis (Figure 1). 

All H&E-stained slides were reviewed by a pathologist blinded to GDM status and prior 

diagnostic findings using a custom data entry form. Amnion, villous disc, and decidual surface 

were systematically evaluated for multiple abnormalities including meconium laden 

macrophages, acute inflammation, infarcts, hydrops, villous maturity, and decidual and fetal 

vessel maturation. This allowed for uniformity and comparability in description. Histological 

findings were determined using standard clinical criteria. Representative images were captured 

under bright-field illumination with automated exposure. 
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Slide Imaging and Digital Quantification 

Slides were digitally scanned at 20X magnification using a Leica SCN400 Slide Scanner 

by the Digital Histology Shared Resource (DHSR) at Vanderbilt University. Digital analysis and 

quantification was performed using Leica Biosystems Digital analysis software. For 

quantification of CD68, CD163, and iron within placental tissue, digital annotations were made 

segregating the chorion and decidua from the remainder of the placental disc (villous core). 

Cellular staining and iron staining were quantified for the entire placental tissue and individually 

for the chorionic and decidual annotated sections. The whole specimen encompasses all tissue on 

the slide including chorion and decidua if present as well as the villous core. CD68 and CD163 

were quantified as the percentage of positively staining cells per total cells. Iron staining was 

quantified as the percentage of positively staining area of total tissue within the given region. 

When either the decidua or chorion was absent from a patient sample, the corresponding region 

was excluded from analysis for its matched control or case.  

 

Statistical Analysis 

Pearson’s X2 and two-sample t-tests were used to assess variation in categorical and 

continuous study participant characteristics, respectively. We used beta regression to predict the 

marginal effects of gestational diabetes for histological features that were measured as the 

proportion of cells with a given characteristic (proportion of cells to stain for CD68, CD163, and 

iron moderately, strongly, and overall). Beta regression accounts for a continuous outcome 

variable being bounded [0, 1], unlike linear regression. We used logistic regression to calculate 

the odds ratio (OR) of placental tissue from cases having abnormalities that were either present 

or absent as compared to controls. For histological characteristics with more than two levels, we 
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used polytomous regression to calculate ORs of the placental tissue from cases having the feature 

as compared to controls. We provide crude estimates and estimates adjusted for maternal 

hematocrit. In our supplemental analysis, we used linear regression to estimate the expected 

change in absorbance and intensity for CD68 and CD163 staining in cases compared to controls. 

 

Results 

Study Participant Characteristics 

Study participant characteristics and data gathered from the SD are summarized in Table 

1.  The average maternal age for controls was 27.0 while cases had an average maternal age of 

29.3 (S.D. for controls and cases were 5.5 and 5.8 respectively). Average gestational age at time 

of delivery for controls was 37.5 weeks and 37.2 for cases (S.D. for controls and cases were 2.1 

and 1.8 respectively). The retrospective nature of this study limited our ability to collect BMI 

information on all subjects. The pre-pregnancy BMI and 1st trimester BMI information collected 

did not reveal significant difference between controls and cases. Placental weight and placental 

volume did not differ between cases and matched controls. The 50g OGTT was elevated in cases 

compared to controls, as expected. All control subjects had a normal 50g OGTT, therefore 3-

hour OGTT was neither clinically indicated nor performed. Maternal hematocrit levels at 

delivery were significantly elevated in GDM women compared to controls at 35.3% versus 33% 

for controls (p=0.02). In light of hematocrit differences between cases and controls, and given 

the relationship between iron and hemoglobin, we adjusted analyses for differences in maternal 

hematocrit levels. 
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Table 2 Differences in histological characteristics by gestational diabetes status Histological 

characteristics were identified on H & E stained slides by a clinical pathologist blinded to 

gestational diabetes status.  



 47 

GDM placentae exhibit an increase in abnormal histology 

Meconium-laden macrophage levels within the amnion of GDM placentae were 

significantly higher at 36.4% compared to 4.6% of controls. Correspondingly, a greater 

percentage of GDM placentae showed amnion epithelial reactive changes suggestive of 

meconium exposure - 68.2% of GDM placentae versus 36.4% of controls (Table 2, Figure 

2).These differences remained statistically significant after adjustment for maternal hematocrit. 

GDM placentae exhibited abnormal villous size compared to controls with the GDM 

placentae showing signs of accelerated maturation for gestational age. When adjusted for 

maternal hematocrit levels however, the difference was no longer significant. The presence of 

calcifications was significantly increased in GDM placentae in the crude, but not adjusted 

analysis (Table 2).  
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Figure 2 Histological characteristics of placenta from women with GDM and healthy 

controls. Histological characteristics were identified on H & E stained slides by a clinical 

pathologist  blinded to gestational diabetes status. A) Image of normal amnion tissue from a 

control placenta (40x) B) Amnion displaying example of reactive changes suggestive of 

meconium in a placenta from a mother with GDM (40x) C) Black arrow indicating meconium-

laden macrophage and stripped arrow indicates reactive macrophage from GDM placenta (100x) 

D) Prussian blue staining black arrows indicate hemosideran-laden macrophages in GDM 

placenta (100x) E -H) Representative H & E images showing differing levels of villous 
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maturation in placental villi (40x). Normal villi from control, large villi from GDM, accelerated 

maturation villi from control, and hypermature villi from control respectively. 

 

CD163 and iron storage are increased in GDM placentae 

To examine the impact of GDM on placental macrophages and iron stores, we stained 

full placental cross-sections for CD68, CD163, and iron. The chorion of GDM placentae 

contained a significantly higher number of moderately stained CD163 positive cells compared to 

controls (Figure 3). The total number of positive cells as well as the total number of moderately 

staining CD163 positive cells was greater in the decidua of GDM placentae compared to 

controls. The higher expression of CD163 in the placentae of GDM mothers remained significant 

after adjustment for maternal hematocrit (Table 3).  

We examined the amount of iron storage within the placenta by Prussian blue staining. 

The difference in Prussian blue stained positive area was not significantly different in the chorion 

or decidual areas independently of the villous core (Table 3). However we observed a significant 

increase in iron positive area within the entire tissue, indicating that the increase in iron staining 

was localized to the fetally-derived villous core. The difference remained significant after 

adjustment for the maternal hematocrit levels.  
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Table 3 Differences in CD68, CD163, and iron staining by gestational diabetes status 

Histological characteristics were identified on H & E stained slides by a clinical pathologist 

blinded to gestational diabetes status.  
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Figure 3 Differences in CD68, CD163, and iron staining by gestational diabetes status. 

FFPE blocks of placental specimens from women with GDM and control were stained for A) 

CD68 B) CD163 C) Prussian blue staining for iron.  Slides were then digitally scanned and 

imaged for digital quantification purposes. Representative images were randomly captured at 

20x. 
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Discussion 

A growing body of evidence suggests and supports an association between GDM and 

altered histological and physiological characteristics within the placenta, an increase in maternal 

and placental inflammation, and an increase in maternal iron status (Afkhami-Ardekani & 

Rashidi, 2009; al-Okail & al-Attas, 1994; Amiri et al., 2013; Calderon et al., 2007; Chen et al., 

2006; Kuzmicki et al., 2008; Mrizak et al., 2014; Pendeloski et al., 2015; Radaelli et al., 2003; 

Rawal et al., 2017; Rudge et al., 2011; Schober et al., 2014; Sisino et al., 2013; Yu et al., 2013). 

In this study we used a novel approach to retrieve archived placental tissue linked to de-

identified patient records in order to investigate differences in placental histology, placental 

macrophage number, distribution, CD163 expression, and iron storage within the placenta in 

order to gain a better understanding of how GDM affects these placental characteristics. Indeed, 

we found an increase in abnormal placental histological characteristics, and increase in CD163 

expression, and an increase in iron storage within the placenta of women with GDM. The 

findings presented here shed light on specific pathological and cellular changes that occur within 

the placenta as a result of GDM. These changes may mediate the pre and postnatal complications 

associated with GDM and confirm the need to look further into the role of iron and iron 

supplementation during pregnancy in women at risk for GDM.  

 

GDM and Maternal Hematocrit 

Our study identified an association between GDM and an increase in maternal hematocrit 

level, which is consistent with reports in pregnant and non-pregnant persons with diabetes. 

Associations between hematocrit levels and diseases of insulin resistance and metabolic 

syndrome have been reported, however, associations vary depending on study design and 
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population (Barbieri et al., 2001; Capoglu, Unuvar, Bektas, Yilmaz, & Kaya, 2002; Nebeck et 

al., 2012; G. Wannamethee & Shaper, 1994; S. G. Wannamethee, Perry, & Shaper, 1996). Lao 

reported women with GDM have higher hemoglobin, red blood cell count, and hematocrit levels 

in the third trimester, but not earlier in gestation (Lao & Ho, 2002). Another study reported no 

increase in hematocrit levels during pregnancy in cases of GDM; however, they described an 

increase in maternal hemoglobin levels throughout the duration of pregnancy and have a high 

hemoglobin and hematocrit level at baseline (Tan, Chai, Ling, & Omar, 2011). Elevated 

hematocrit levels have been reported to be an independent risk factor for the development of 

T3D and impaired glucose tolerance (Capoglu et al., 2002). Hyperinsulinemia and insulin 

resistance are features of metabolic syndrome, type 2 diabetes, and GDM. Hematocrit levels 

increase as a result of increased erythropoiesis, which might explain the increase observed in 

GDM patients. Previous studies have provided evidence for a relationship between 

hyperinsulinemia and an increase in erythropoiesis (Barbieri et al., 2001). Insulin resistance is 

associated with increased levels of insulin-like growth factor-1, which may lead to an increase in 

erythropoiesis, hence increasing hematocrit levels within GDM patients. This phenomenon has 

been demonstrated previously in rats (Kurtz et al., 1988). In healthy individuals, an increase in 

hematocrit levels would suggest superior oxygen delivery throughout the body. Alternatively, it 

is possible that GDM causes worse oxygen delivery to the placenta and the combination of 

elevated hematocrit levels and accelerated villous maturation that we report here are 

compensatory responses to an increased need for oxygen within the placenta. Future studies are 

needed to confirm our findings and assess these possible mechanisms. 
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Placental Histopathological Changes in GDM 

The histopathological changes identified in the placentae of women with GDM were 

heterogeneous and varied in their severity. Our analysis discovered a significant increase in the 

presence of meconium-laden macrophages and epithelial changes presumed reactive to 

meconium within the amnion of GDM placentae. Meconium is fetal stool composed of bile acid, 

phospholipases, and other components. While the passage of meconium prior to 32 – 34 weeks is 

rare, 15 – 20 % of placentas are affected by the passage of meconium at delivery. The passage of 

meconium in utero may be indicative of fetal stress, typically hypoxic or ischemic stress, 

although not always present in cases of fetal stress. Although the exact implications of increased 

numbers of meconium-laden macrophages with the amnion are unknown, the uptake of 

meconium by alveolar macrophages has been shown to decrease macrophage phagocytosis and 

increase the release of TNF-α from macrophages (Craig, Lopez, Hoskin, & Markham, 2005; 

Lally, Mehall, Xue, & Thompson, 1999).  

Villi arborize and mature throughout gestation, with more mature villi showing a smaller 

cross section and peripheral capillaries (Khong et al., 2016). These changes can be expected to 

maximize surface area and thus oxygen diffusion. Villous maturation varies in pathologic 

circumstances – immature villi have been repeatedly reported in GDM, while precocious 

maturity has been reported in conditions with impaired maternal-fetal circulation (Daskalakis et 

al., 2008; Khong et al., 2016; Rudge et al., 2011). In clinical practice, as in this study, villous 

maturation is based on a gestalt impression, rather than systematic measurement. Perhaps 

surprisingly, this gestalt impression has been shown to correlate with maturation-based gene 

expression changes (Leavey et al., 2017). It is unclear why our results differ from previously 

reported studies in GDM. There are several minor methodologic differences; however the most 
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likely cause is the use of a retrospective case: control design with matching by maternal and 

gestational age in the present study as compared to the prospective cohort-based designs in other 

studies. As noted in the results, the difference in villous maturation was no longer apparent when 

controlling for hematocrit. This suggests a unifying mechanism wherein GDM impairs oxygen 

delivery to the placenta, thus inducing the compensatory responses of accelerated villous 

maturation and increased red cell mass. 

The presence of villous calcifications was elevated in GDM placentae compared to 

controls prior to adjustment for maternal hematocrit levels, with a fairly large effect size 

(unadjusted odds ratio of 4.67 (95% confidence intervals of 1.30-16.76, Table 2).  Calcifications 

are indicative of an aging placenta (Jeacock, 1963). The clinical significance of such 

calcifications is not well defined although calcification is likely due to an increase in available 

calcium and phosphate within the placenta (Jeacock, 1963). Prominent in late term and post-term 

placentae, they can occur in the absence of other placental pathologies, particularly in peripheral 

areas. However, the mineralization process through which calcifications occur may be 

accelerated in some disorders of pregnancy. The early appearance of calcifications may represent 

accelerated placental maturation and or senescence brought about as a result of fetal stress and 

maternal complications such as maternal hypertensive disorders (Quinlan, Cruz, Buhi, & Martin, 

1982). Quinlin and colleagues first noted that placentae from pregnancies complicated by 

diabetes develop calcifications earlier in gestation than non-complicated pregnancies and may 

represent early placental dysfunction (Quinlan et al., 1982). Although significance was lost after 

adjustment for maternal hematocrit, the effect size was 3.70 (95% confidence intervals of 0.86-

16.89), suggesting that the small samples size might have played a role in the lack of 

significance. A difference in placental calcifications indicates that GDM may influence nutrient 



 56 

availability within the placenta as well as leading to accelerated placental maturation and cellular 

senescence. The hypothesis that GDM may accelerate placental maturation is further 

strengthened by our reported finding that we observed an increase in villous maturation within 

the GDM cohort compared to control. The mechanism driving the accelerated maturation which 

could be linked to an increase in villous calcifications is yet to be defined.  

 

Placental Macrophages and GDM 

CD68 is a pan-macrophage marker found on monocytes and macrophages (Pulford, 

Sipos, Cordell, Stross, & Mason, 1990). We utilized this marker as way to localize and 

enumerate macrophages within the placenta. Our study identified no significant difference in the 

number or distribution of placental CD68+ cells between cases and controls. Another study 

which looked for CD68 expression levels within placental tissue of GDM and control patients 

found no significant difference in the levels of CD68 transcript levels (Abumaree et al., 2013). 

These findings contradict other reports where increases in the mRNA expression of CD68, in 

conjunction with increased expression levels of IL-6 and TNF- α, were observed in pregnancies 

complicated with GDM (Li et al., 2013). Mrizak et al also reported an increase in transcript 

levels of CD68 and CD14, both common human monocyte/macrophage markers, within placenta 

recovered from women with GDM (Schober et al., 2014). That study, however, only collected 

placentae from women diagnosed with GDM whose child was born with macrosomia. The 

presence of macrosomia as an inclusion criterion may have biased the results for more severe 

cases of GDM than we included. Other studies reported conflicting results regarding the level of 

CD68 mRNA in gene expression analysis studies. The discrepancies in results regarding the 

expression of CD68 mRNA or the enumeration of CD68+ stained cells via microscopy between 
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GDM and control placentae are not yet explained. The infiltration or expression of CD68 within 

placental tissue may depend on multiple factors, not just the presence or absence of GDM. The 

severity of insulin resistance, the amount of circulating inflammatory factors, and the degree to 

which glucose levels are controlled during pregnancy may all influence macrophage numbers 

and distribution within the placenta.     

 

 

Figure 4  Macrophage Iron metabolism is coupled to inflammatory status The expression of 

iron regulatory proteins such as CD163, a hemoglobin scavenger receptor, ferritin, an iron 

storage protein, and ferroportin, an iron export protein, are affected by the inflammatory status of 

the macrophage. High levels of intracellular iron stores in the form of ferritin and low levels of 

CD163 and ferroportin expression are characteristic of M1 or pro-inflammatory macrophages. 

This phenotype allows for the sequestration of iron from the extracellular environment. M2 or 

anti-inflammatory macrophages store less intracellular iron and increase expression of CD163 
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and ferroportin permitting for increased uptake and degradation of hemoglobin/haptoglobin 

(Hb/Hp) complexes and the recirculation of iron to the extracellular environment.  

 

A hemoglobin scavenger receptor that mediates the endocytosis of hemoglobin-

haptoglobin complexes, CD163, is exclusively expressed on macrophages and is often utilized as 

a marker for placental macrophages (Kristiansen et al., 2001; Z. Tang et al., 2011). We identified 

an increase in CD163+ cells within the decidua of GDM placentae and an increase in the amount 

of moderately stained CD163+ cells within the chorion. Expression of CD163 has been 

associated with an anti-inflammatory (M2) macrophage phenotype (Abumaree et al., 2013; Z. 

Tang et al., 2013). Anti-inflammatory mediators such as IL-10 promote the expression of CD163 

while pro-inflammatory mediators such as IFN-γ and TNF-α have been shown to decrease its 

expression (Buechler et al., 2000). CD163 also exists in soluble form, sCD163 (Etzerodt et al., 

2010). Similar to TNF-α, the ectodomain of CD163 is cleaved from the surface of macrophages 

in an inflammation-driven fashion (Etzerodt et al., 2014). Levels of circulating sCD163 increase 

in mothers with GDM in conjunction with increases in circulating TNF-α and IL-6 (Bari et al., 

2014). Placental tissue, as well as adipose tissue, from GDM mothers is a source of increased 

sCD163 circulating in maternal serum as described by placental and adipose tissue explant 

studies (Bari et al., 2014). GDM appears to not only increase the expression of CD163, but also 

increase levels of sCD163 in maternal serum. These findings are in agreement with previous 

findings of elevated sCD163 in GDM (Bari et al., 2014). The molecular mechanisms leading to 

the cleavage of CD163 from placental macrophages has yet to be elucidated in the case of GDM 

so future attention should be paid to discovering the mechanisms involved in this phenomenon. 
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Placental Iron Load Increases in GDM 

Placental iron load for the tissue as a whole was significantly increased in GDM. 

However, close examination of both the decidua and chorion independently revealed no 

difference, indicating that the increase in iron load within the placenta is found primarily within 

the fetally-derived villous tissue. The opposite was found to be true for the presence of CD163. 

CD163 showed significance within the chorion and decidua individually, but not the tissue as a 

whole. The villous core, the majority of the placental specimen, is primarily fetally-derived 

tissue, bathed in maternal blood, and acts as the site of exchange between maternal and fetal 

circulation. As this area is saturated in maternal blood, it makes sense that the villous core stores 

iron at a higher level than within the chorion or decidua. Iron enters and exits macrophages in 

many different forms through many different pathways, including CD163 (Donovan et al., 2005; 

Soe-Lin et al., 2009). If macrophage polarization is impacted in cases of GDM, the relative 

expression of CD163 as well as iron storages within the macrophage may be altered in response. 

As reviewed by Cairo, et al., macrophage iron metabolism is influenced by the local 

inflammatory environment (Cairo et al., 2011). If GDM influences the inflammatory 

environment, CD163 expression and iron storage within the placenta may be effected as well. 

Multiple other cell types within the placenta are involved in iron homeostasis. Our findings of 

increased iron stores within GDM placentae correspond with previously reported data indicating 

that women with GDM have a significantly increased iron stores, as measured by hemoglobin, 

ferritin, and transferrin saturation (Afkhami-Ardekani & Rashidi, 2009). The physiological 

mechanism driving the increase in stored iron and more information regarding the cells in which 

the iron is stored needs further investigation and may shed light onto the apparent link between 

GDM, iron, and possible mechanisms driving adverse phenotypes. 
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Study Limitations 

Our study has important limitations, which may reflect the retrospective nature of, and 

small number of subjects included in this study. Our pilot study was relatively small and 

designed to be inclusive of a large range of maternal ages and gestational ages while representing 

diverse ethnicities. This inclusivity may have introduced variability into our results. Future 

studies should be designed to account for variability due to gestational age, maternal age, and 

ethnicity.  The previously archived placental tissues included in this study were sent to pathology 

at the discretion of the obstetrician present at delivery. While there are recommended indications 

for placental examination, they are inconsistently followed. This could introduce difficult to 

measure confounders, since normal-appearing placentas from normal pregnancies are rarely sent 

for pathology. This study was likely underpowered to confirm a previously reported association 

between increased placental weight and GDM (Taricco, Radaelli, Nobile de Santis, & Cetin, 

2003). Although both placental weight and volume were higher in cases than in controls in our 

study, neither difference reached statistical significance. This may also reflect more aggressive 

treatment of GDM than in the time period when prior studies were conducted (Metzger et al., 

2008). Prepregnancy obesity is a risk factor for GDM but we did not have prepregnancy height 

and weight measurements on most of the subjects in this study. Although we matched our GDM 

samples to our controls for variables such as maternal age and gestational age at birth, 

differences in other patient characteristics might have introduced variability. Differences in some 

of our measured parameters may be evident in some subgroups for which this pilot study is 

undersized. The nature of FFPE placental tissue and the age of some of the blocks themselves 

did not allow us to gather quantifiable information on all sections of the placenta due to quality 

and loss of tissue.  
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Conclusion 

In conclusion, this study demonstrates that the presence of GDM influences 

multiple iron related parameters including an increase in maternal hematocrit levels, an increase 

in CD163 within the chorion and decidua, and an increase in iron stores within the fetally 

derived villous core. Our results also highlight GDM’s influence on multiple placental 

physiological parameters such as meconium-laden macrophages, placental villous size and 

maturation, and an increase in the presence of villous calcifications. Taken together, the 

alterations exhibited by the placenta in cases of GDM may provide insight into the role of the 

placenta in the complications associated with this common metabolic disorder of pregnancy. 

However, future studies are needed to further elucidate the role of placental iron and 

inflammation in the development, progression, and postnatal complications associated with 

GDM.  
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CHAPTER 3 

 

GESTATIONAL DIABETES MODIFIES MIA INDUCED GENE EXPRESSION IN THE 

FETAL BRAIN 

 

Theresa Barke, Kelli M. Money, Krassimira A. Garbett, Karoly Mirnics, and David M. Aronoff 

 

Introduction 

Genetics alone cannot explain the development of many psychiatric disorders. Maternal 

exposure to a wide array of pro-inflammatory environmental factors can increase the risk of 

certain developmental and psychiatric disorders. It is not necessary that the inflammatory 

conditions be excessive or chronic in nature in order for the risk of psychiatric disorders to 

increase (Berk et al., 2013; Derry, Padin, Kuo, Hughes, & Kiecolt-Glaser, 2015). Multiple 

studies have revealed that in utero stressors have the potential to induce adverse consequences on 

brain development and influence behavior (Hamlyn, Duhig, McGrath, & Scott, 2013; Patterson, 

2009; Rapoport, Giedd, & Gogtay, 2012). Most studies thus far have investigated the impact of a 

single environmental stressor and its influence on the development of psychiatric disorders. As a 

result of these individual studies, it has been shown that both maternal infection and gestational 

diabetes impact brain development and have been suggested to increase risk of developing 

psychiatric disorders later in life (Abell et al., 2015; Mandal et al., 2013; Urs Meyer, 2014; 

Patterson, 2011; Salbaum & Kappen, 2012; Torres-Espinola et al., 2015). Multiple studies have 

previously suggested that even low levels of chronic inflammation interact with environmental 

and genetic risk factors increasing the risk for psychiatric disorders (Maes et al., 2009; Michel, 
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Schmidt, & Mirnics, 2012; Patterson, 2009). Despite our current knowledge, it is currently 

unknown how maternal infection and gestational diabetes, two well established inflammation-

inducing psychiatric disorder risk factors, interact with one another to influence fetal brain 

development. In order to address this, we characterized models of poly(I:C) induced MIA and 

high fat diet induced gestational diabetes then assessed the changes in fetal brain gene expression 

as a result of MIA, high fat diet induced GDM, and the combination of the two.  

 

Materials and Methods 

 

Animal procedures 

 All animal procedures were approved by the Vanderbilt Animal Care and Use 

Committee. Mice were housed under standard laboratory conditions and allowed ad libitum 

access to food and water. Female and male C57Bl/6J mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME, USA). Control female mice were given standard chow throughout 

the experiment (5LOD, Lab Diet, St. Louis, MO, USA). In order to induce GDM, females 

received 60% calories by fat diet (58Y1, Test Diet, St. Louis, MO, USA) from 4 weeks of age 

until 10 weeks of age and continued throughout pregnancy. At 10 weeks of age, mice were 

mated overnight, and the presence of a vaginal plug the following morning marked gestational 

day 0.5 (GD0.5). Pregnant females were left undisturbed except for cage changes and weight 

measurements.  

 High fat diet and control fed females were randomly assigned to the saline or poly(I:C) 

treatment groups. At GD12.5, pregnant females were injected intraperitoneally with either sterile 

saline or 20 mg/kg poly(I:C) potassium salt (Sigma Aldrich, St. Louis, MO, USA) in sterile 
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saline creating 4 treatment groups: control fed saline (SAL), high fat fed saline (HFS), control 

fed poly(I:C) injected (MIA), and high fat fed poly(I:C) injected (HFM). Pregnant mice were 

then sacrificed at one of two time points; either 3 hours after injection at GD12.5 or 4 days post 

injection at GD16.5. Experimental design is outlined in Figure 5. Maternal serum was collected 

from each pregnant female and fetal brains were collected from all viable pups. Maternal serum 

was utilized for cytokine, adipokine, and non-fasting insulin measurements. Cytokine and 

adipokine levels were measured with the assistance of the Vanderbilt Hormone core via 

antibody-conjugated bead-based multiplex assays. Brains were flash frozen until RNA isolation 

was performed, and tail snips were taken from each embryo for sex genotyping. Each group at 

each time point (4 groups, 2 time points) contained 9 pregnant females with the exception of 

GD12.5 MIA which only contained 8 females, making a total of 71 females. 

 

Glucose tolerance testing and body composition analysis 

 A separate cohort of control fed and high fat fed females were bred and treated as 

described above for comparative glucose tolerance and body composition testing (n= 6 per 

group). At GD12.5, pregnant control fed and high fat fed females were fasted for 6 hours. Body 

composition was then measured via whole body NMR (Minispec Model mq7.5, Bruker 

Instruments) with the assistance of the Vanderbilt Mouse Metabolic Phenotyping Center. Blood 

samples utilized for glucose tolerance testing were obtained from tail snips. Fasting glucose and 

insulin samples were taken followed by intraperitoneal injection of 2g dextrose/kg body weight. 

Utilizing an Aviva Accu-Chek glucometer, blood glucose measurements were taken at 10, 20, 

30, 45, 60, 75, 90, and 120 minutes post-injection. Blood samples were collected for insulin 

measurement at 10, 30, 60, 90, and 120 minutes post-injection and were processed by the 
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Vanderbilt hormone core. Dams were sacrificed after all testing was complete to confirm 

pregnancy and gestational age. In order to evaluate the effects of the high fat diet alone on 

glucose parameters and body composition, one 10-12 week old non-pregnant control group (n=8) 

was utilized as the control for non-pregnant high fat females age 10 weeks (n=7) and age 12 

weeks (n=8).  

 

Sex genotyping 

 Sex genotyping was performed on each embryo. Digested tail snips from each embryo 

were utilized for sex determination. Forward (5’-CGCTGCCAAATTCTTTGG - 3’) and reverse 

(5’- TGAAGCTTTTGGCTTTGAG - 3’) primers for SmcXY locus were utilized (Jacobs, Fogg, 

Emeson, & Stanwood, 2009). Thermocycler conditions started with 93°C for 2 minutes; 

followed by 30 cycles of 93°C for 30 seconds, 58°C for 45 seconds, and 72°C for 45 seconds; 

and ended with 72°C for 10 minutes. Female embryos resulted in an upper band at 330 bp while 

male embryos had both an upper (330 bp) and a lower (290 bp) band.  

  

Antibody-conjugated bead-based analysis 

 Immediately after sacrifice, blood was collected directly from the heart via cardiac 

puncture. Approximately 0.5 to 1 mL of blood was collected from each pregnant dam and 

allowed to clot at room temperature for 30 minutes. The samples were spun at 8,000 rpm for 10 

minutes at 4°C. Supernatant was transferred to a new sterile tube and spun again at 8,000 rpm for 

10 minutes at 4°C in order to remove any residual red blood cells. The resulting supernatant, 

serum, was transferred to a new tube and stored at -80°C until antibody-conjugated bead-based 

analysis was performed. 
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 Luminex analysis utilizes a multiplexed assay, using x-map technology via the MagPix 

system. Luminex analysis was performed by the Vanderbilt hormone core 

(http://hormone.mc.vanderbilt.edu), which is funded in part by NIH grants (DK059637 and 

DK020593). The Luminex multiplex panels (EMD Millipore, Darmstadt, Germany) used for 

analysis of the maternal serum were the mouse metabolic hormone panel (insulin and leptin – 

Cat# MMHMAG-44K), mouse adiponectin (Cat # MADPNMAG-70K-01), and mouse 

cytokine/chemokine panel 14 plex (eotaxin, IFNγ, IL1α, IL1β, IL4, IL6, IL10, IL12p40, IL13, 

IL17, KC, MCP1, RANTES, and TNFα- Cat# MCYTOMAG-70K).  

 

RNA isolation and Nanostring gene expression analysis 

 The right hemisphere from each fetal brain, which included both the telencephalon and 

diencephalon, was utilized for RNA isolation. RNA was isolated according to the manufacturer’s 

protocol in 1 mL Trizol. Resulting samples then underwent a Qiagen RNeasy clean-up, by 

following the protocol provided by the manufacturer. RNA concentration was measured using a 

Thermo Scientific Nanodrop 2000. Equal amounts of RNA (1250 ng) from each fetal brain were 

combined to create 1 pooled sample per litter. The resulting pooled samples underwent another 

Qiagen RNeasy clean-up step to remove any remaining contaminants. To measure final 

concentration and purity (260/280 values above 2 and 260/230 values above 1.5) the Thermo 

Scientific Nanodrop 2000 was utilized. The Agilent 2100 Bioanalyzer was employed to ensure 

RNA integrity, with all RNA integrity numbers falling between 9.5 and 10. 

 150 ng of purified RNA from each pooled sample was used for Nanostring nCounter 

analysis (http://www.nanostring.com/applications/technology). Two panels, the mouse 

inflammation V2 panel- 254 genes- and a custom inflammation and neurodevelopment panel 

http://hormone.mc.vanderbilt.edu/
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containing 4 genes, were utilized to measure gene expression values. Nanostring multiplexed 

gene expression technology utilizes a digital color-coded reporter tag to identity and count 

expression of genes. RNA samples were hybridized with an identifying reporter probe as well as 

capture probes at 65°C for 24 hours. The hybridized samples were then placed in the Nanostring 

nCounter prep station where the complexes were aligned and immobilized in the nCounter 

cartridge then read on the Nanostring nCounter digital analyzer. The resulting raw counts were 

normalized to positive and negative spike in’s and the 5 included housekeeping genes (Cltc, 

Gapdh, Gusb, Hprt, and Tubb5). In order to reduce background noise, a baseline of 10 counts 

was set, and all counts below 10 were raised to 10 for analysis. Any results made statistically 

significant by this manipulation were excluded from the resulting analysis as being significant. 

Normalized counts were then log2 transformed for analysis. To investigate the effects of high fat 

diet or MIA alone, HFS and MIA were each compared to SAL. To investigate the effect of MIA 

in the context of high fat diet, HFM was compared to HFS. To uncover differences in the MIA 

induced changes in the context of high fat diet induced gestational diabetes compared to in the 

context of control diet, dMIA [each MIA log2(counts) – the average SAL log2(counts)] and 

dHFM [each HFM log2(counts) – the average HFS log2(counts)] was calculated and then 

compared.  

 

Statistical Approaches 

To investigate the effects of diet and treatment exposure on litter statistics, a two-way 

ANOVA with Bonferonni post hoc analysis was performed, with a p-value <0.05 considered 

significant. In all other instances, an unpaired student t-test with Welch’s correction was used to 

compare values between two groups, with a p-value <0.05 considered significant. With regards 
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to the gene expression data, criteria for significance included having a >10% change (>0.138 

ALR) in value and significance by an unpaired student t-test with Welch’s correction which was 

not artificially created if the baseline was raised.  

 

Results 

 

High fat diet and poly(I:C) treatment affect dam weight, but not litter statistics 

A total of 35 pregnant mice were used per GD12.5 and GD16.5 time point in our study; 9 

pregnant dams per SAL, HFS, and HFM group and 8 pregnant dams in the MIA group.  

Poly(I:C) treatment has been shown to cause a transient increase in cytokine production, 

accompanied by anorexia, fever, and sickness behaviors that usually resolves within the first 24-

48 hours. The poly(I:C) treatment in our study caused the dams to either lose weight or fail to 

gain weight compared to saline treated dams (SAL = 0.60 ± 0.33, MIA = -0.83 ± 0.34; GDM = 

1.33 ± 0.25, GDM+MIA = -0.67 ± 0.31), p<0.05. Neither the high-fat diet nor the poly(I:C) 

treatment altered the average number of embryos per litter, the number of resorptions, embryo 

size, or the male: female ratio (Supplemental Table 2).  
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Figure 5. Diet and treatment experimental design. Mice were received at 4 weeks of age and 

randomly stratified into either the high-fat diet group or normal chow diet. Mice remained on 

their assigned diet for 6 weeks until they were mated at 10 weeks of age. 12 days after mating at 

GD12.5, for mice in which pregnancy was confirmed by the presence of a vaginal plug, the dams 

were randomly injected with either poly (I:C) or saline creating four distinct treatment groups.  

 

High fat diet leads to GDM mid-gestation 

Although the high fat diet dams were on a 60% by calorie fat diet for 6 weeks prior to 

mating and throughout pregnancy, these mice were not obese compared the control diet fed mice. 

Weight differences between the high-fat diet group and the control fed group were not 

significantly different at GD0.5, however gained significance, across the entire cohort, at GD9.5 

(control diet = 24.6 g ± 0.3, high fat diet = 25.8 g ± 0.4, p<0.05) and GD12.5 time points (Figure 

6A). To demonstrate that the high-fat diet successfully produced a gestationally diabetic 
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phenotype, glucose tolerance testing was conducted on mice fed normal or high-fat diets. 

Compared to control diet fed dams, the high-fat fed dams had increased body weight and percent 

fat mass at GD12.5 (Figure 6 A/B). In addition, the high fat diet dams had both impaired fasting 

glucose and increased fasting insulin after a 6 hour fast (Figure 6 C/D). When challenged with 2 

g/kg dextrose after the 6 hour fast, high fat diet fed dams displayed significant glucose 

intolerance and exaggerated glucose-induced insulin secretion that remained high even at 2 hours 

post-injection (Figure 6 E/F/G).  

It was important to confirm whether or not the diabetic phenotype is truly gestation-

dependent. In order to test this, two separate cohorts of high-fat fed dams, age matched at GD0.5 

and GD12.5, were used to compare to our pregnant cohorts for selected assessments. Confirming 

that the diabetic phenotype is gestation dependent, high-fat fed dams at GD0.5 showed no 

significant differences in body weight, composition, fasting glucose, or fasting insulin 

(Supplemental Figure 1). High-fat fed dam at GD0.5, when challenged with 2 g/kg dextrose, 

did not show significant differences in blood glucose levels at any time point throughout the test 

(Supplemental Figure 1). This data suggests that the high-fat fed dams did not have a diabetic 

phenotype at conception. To test whether or not the diabetic phenotype is a result of being on the 

high-fat diet for the duration of the study, GD12.5 age-matched non-pregnant high-fat fed dams 

were assessed. The non-pregnant high-fat and control diet fed dams age-matched to the GD12.5 

cohort did not demonstrate a diabetic phenotype although they did show trends towards an 

impaired glucose tolerance and displayed an increase in weight gain (Supplemental Figure 2). It 

is likely that over time the high-fat diet would lead to glucose intolerance, however, the 

pregnancy induced increase in glucose production and insulin insensitivity is the likely the cause 

of the diabetic phenotype at an earlier time point (Abell et al., 2015; Gallou-Kabani et al., 2007).      
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Figure 6. High fat diet produces a diabetic phenotype midgestation. Body composition, 6 
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hour fasting glucose and insulin, and glucose tolerance measurements were performed on a 

cohort of high fat(HF) and control(CTR) fed GD12.5 pregnant dams (n=6 per group). (A) High 

fat fed dams (HF) showed significant increases in body weight at GD9.5 and GD12.5. (B) Whole 

body NMR at GD12.5 showed significant changes in % body mass in high fat dams with 

increased % fat mass and decreased % lean body mass. (C-D) 6 hour fasting blood glucose and 

serum insulin were both significantly increased in high fat dams. (E-G) After a 6 hour fast, dams 

were injected intraperitoneally with 2 g dextrose/kg body weight. High fat fed dams 

demonstrated a higher peak and prolonged increase in blood glucose with significant differences 

from control dams observable at 0 10, 20, 30, 60, and 75 minutes post-injection, which is 

supported by a significantly increased area under the curve. A significant heightened insulin 

response that was maintained up until the 2 hour end point was also observed in high fat dams. 

Error bars represent SEM. Significance of p<0.05 is indicated by * and determined by unpaired 

student t-test with Welch’s correction in all assays, n=6 dams per group. 

 

MIA produces an acute increase in maternal cytokines and chemokines 

In order to assess the immune response within pregnant dams as a result of poly(I:C) as 

well as differences between normal and GDM mice, a panel of common cytokines and 

chemokines were measured in maternal serum at the time of sacrifice either 3 hours post 

poly(I:C) or saline exposure at GD12.5 or 4 days post poly(I:C) or saline exposure at GD16.5. 3 

hours after either poly(I:C) or saline injection, MIA-exposed dams in both the control and GDM 

groups demonstrated increases in Eotaxin, IL-1β, IL-6, IL-10, IL-12p40, IL-17, KC, TNF-α, 

MCP1 (CCL2), and RANTES (CCL5) (Figure 7). A subset of the cytokines and chemokines 

interrogated either exceed the range of the assay, in the case of MCP1 and IL-6, or fell below the 
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level of detection. In these cases, the analyte was analyzed at either the lowest or the highest 

detectable value. Not surprisingly, by GD16.5, almost no serum factor changes with MIA were 

observed, suggesting that the single poly(I:C) injection effects were acute and had largely 

subsided (Supplemental Figure 3). 
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Figure 7. MIA increases maternal serum levels of chemokines and cytokines. Maternal 

serum collected 3 hours post injection on GD12.5 was analyzed for chemokine and cytokine 
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levels via antibody-conjugated bead-based multiplex assay. (A-J) Significant increases were 

observed with MIA in both the context of control diet and high fat diet in all shown but IL1β, 

which demonstrated a significant increase with MIA exposure only in the context of high fat diet 

induced gestational diabetes. Error bars represent SEM. Significance of p<0.05 is indicated by * 

and determined by unpaired student t-test with Welch’s correction in all assays. 

 

Maternal metabolic hormones are altered by both HFS and MIA 

Maternal serum levels of metabolic hormones were found to be altered by both high-fat 

saline, diet-induced gestational diabetes, and MIA at GD12.5. HFS mice were found to have 

decreased levels of circulating adiponectin. These levels were not found to be further altered by 

the addition of MIA in the context of high-fat diet induced gestational diabetes (Figure 8A). 

Non-fasting serum insulin levels trended toward an increase with HFS alone, but the 

combination of HFS and MIA exposure produced a significant increase in serum insulin levels 

not seen with MIA exposure alone (Figure 8B). Interestingly, the immune-activating, satiety-

inducing hormone leptin was significantly increased by HFS and increased even further by the 

combination of high-fat diet induced gestational diabetes and MIA exposure (Figure 8C). At 

GD16.5, reduced adiponectin and increased leptin levels were still observable in the high-fat diet 

induced gestational diabetes. Not previously seen at GD12.5, at GD16.5 we observed a 

significant increase in adiponectin levels induced by MIA in the context of gestational diabetes 

(Supplemental Figure 4). Although the effect of gestational diabetes on metabolic hormones 

remains consistent between GD12.5 to GD16.5, the combined effect of inflammatory and 

metabolic stress appears to evolve as the effect of MIA moves from the acute phase to the post-

acute phase. Taken together, the maternal serum metabolic hormone levels likely promote a pro-
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inflammatory phenotype in diet-induced gestational diabetes, which is intensified in combination 

with MIA. Thus, the combined stressors of GDM and MIA induce a pro-inflammatory profile as 

shown through the levels of cytokines, chemokines, and metabolic hormones. 

  

 

Figure 8. High fat diet induced gestational diabetes alters non-fasting levels of metabolic 

hormones. Maternal serum collected 3 hours post injection on GD12.5 was analyzed for non-

fasting adipokine and insulin levels via antibody-conjugated bead-based multiplex assay. (A) 

The anti-inflammatory metabolic hormone adiponectin is significantly decreased by high fat diet 

induced gestational diabetes, with a trend towards a decrease with MIA. (B) Non-fasting serum 

insulin levels are not quite significantly increased with high fat diet induced gestational diabetes 

alone, but MIA in the context of high fat diet does produce a significant increase. (C) The pro-

inflammatory satiety hormone leptin is significantly increased by high fat diet induced 

gestational diabetes. Leptin levels are also significantly increased by MIA in the context of high 

fat diet induced gestational diabetes. Error bars represent SEM. Significance of p<0.05 is 

indicated by * and determined by unpaired Student t-test with Welch’s correction in all assays. 

Serum was collected from dams whose embryos were utilized for Nanostring gene expression 

analysis (SAL n=9, MIA n=8, HFS n=9, HFM n=9). 
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Inflammation and development related gene expression in the embryonic brain is disrupted by 

HFS and MIA 

Both high fat diet-induced GDM (HFS) and MIA resulted in altered gene expression in 

the fetal brain at GD12.5, with brains being collected 3 hours after poly(I:C) treatment. We 

evaluated numerous genes with a predominant inflammation related function along with a small 

number of genes related to neurodevelopment as well as the major neuronal glucose transporters. 

When comparing gene expression changes significantly different between SAL and MIA, HFS, 

or HFS+MIA in a supervised hierarchical clustering analysis, each diet x treatment group 

aggregated together, demonstrating group-specific gene expression profiles (Figure 9, 

Supplemental table 3).  
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Figure 9. Both HFS and MIA alter gene expression at GD12.5. Genes that demonstrated a 

significant change in expression in either HFM, MIA, or HFS when compared to SAL (57 genes) 

were utilized for supervised hierarchical clustering analysis. Each diet x treatment group 

aggregates together, demonstrating distinct gene expression changes in each group. Significance 
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was determined by unpaired student t-test with Welch’s correction and p<0.05. Values are in 

Supplemental table 3. 

 

High-fat diet alone displayed significant differences in gene expression when compared 

to SAL. Neurodevelopmental genes involved in patterning (En1, En2) and cholinergic signaling 

(Chat) were repressed (Chiang et al., 1996; Sadler, Liu, & Augustine, 1995). A number of 

inflammation-related genes were also induced (e.g. Cls, Ccl8, Ifit3, Mx2) while others were 

repressed (e.g. Ccl21a, Ifi44, Tgfb2, Tgfb3), with these genes functioning in IFN/antiviral 

response, growth, cell cycle regulation, and apoptosis (Liu, Sanchez, & Cheng, 2011; McKinsey, 

Zhang, & Olson, 2002; H. Yanai et al., 2009). Moreover, GDM increased Vegfa expression, 

which is associated with a hypoxic environment (Figure 10, Supplemental Table 3) (Paschen, 

Gissel, Linden, Althausen, & Doutheil, 1998; Pearce, Butler, Abrassart, & Williams, 2011).  
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Figure 10. Gestational diabetes mellitus (GDM) and maternal immune activation (MIA) 

alter expression of neurodevelopmental and inflammatory genes at GD12.5. Venn diagrams 

denote the number of genes increased (A) or decreased (C) in diet induced gestational diabetes 

(GDM), MIA, or GDM + MIA when compared to control mice. The graphics represent gene 

counts increased (B) or decreased (D) in GDM and GDM + MIA, MIA and GDM + MIA or 

GDM, MIA, and GDM + MIA as indicated. (A and C) Significant changes in gene expression 

were determined by multiple t-tests, and genes with p<0.05, false discovery rate (FDR) <0.01 

were selected. (B and D) Tukey’s multiple comparisons two-way analysis of variance (ANOVA) 

was used to determine significance (**p<0.05) among the groups.   
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Diet-induced gestational diabetes potentiates MIA induced gene expression changes 

Three hours following injection, poly(I:C) treatment in the context of high-fat diet 

induced GDM produced marked induction of multiple inflammation and neurodevelopment 

genes (Figure 11). The combined treatment of HFS and MIA both induced (Foxg1, Gad1, Mbp, 

Vamp1) and repressed (En1, En2, Fgf8, Pax5) subsets of neurodevelopment genes involved in 

patterning, migration, and oligodendrocyte development (Danesin & Houart, 2012; Marin, 2013; 

Ohtsuka et al., 2013; Ozgen et al., 2014; Smith et al., 2011; Toma, Kumamoto, & Hanashima, 

2014; Walshe & Mason, 2003). A number of inflammation related genes were induced by the 

combination of the metabolic and inflammatory stress of MIA and diet-induced GDM and were 

largely involved in the antiviral/IFN response (Ifi44, Ifit1, Ifit2, Ifit3, Ifitm3, Irf1, Irf7, Maff, 

Mx2, Oasl1) and the generalized innate immune response (Ager, Ccl21a, Csf1, Il1r1), however, 

other genes known for their role in cell growth (Tgfb2) and apoptosis (Mef2d) were also induced 

(Barton & Medzhitov, 2003; Liu et al., 2011; McKinsey et al., 2002; X. Zhou et al., 2013). 

Contrastingly, the combination of diet-induced GDM and MIA (HFS+MIA) also led to the 

repression of a number of genes associated with the antiviral/IFN response (Irf3, Irf5), 

apoptosis/cell cycle regulation (Ddit3, Hmgb2, Ripk1, Tradd, Traf2), and cell growth (Pdgfa) 

(Demoulin & Essaghir, 2014; Liu et al., 2011; Spellman et al., 1998). Also repressed in the 

combined metabolic and inflammatory stress condition of HFS+MIA were genes critical for 

intracellular signaling pathways associated with both pro- and anti-inflammatory processes such 

as Creb1, Jun, and Nfe2l2 (Bryan, Olayanju, Goldring, & Park, 2013; Janeway & Medzhitov, 

2002). Furthermore, both the constitutively expressed GLUT1 and high affinity neuronal specific 

GLUT3 genes (Slc2a1, Slc2a3) as well as the hypoxia-associated genes Flt1 and Vegfa were 

induced in HFS+MIA compared to HFS alone. Despite the fact that several inflammation-related 
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genes were found to be repressed, many more genes responsible for encoding apoptosis-

regulating proteins and other innate immune response proteins were induced when MIA and diet-

induced GDM were combined. This data suggests that the combination of the two stressors 

further disrupts the complex metabolic and inflammatory environment of the developing fetal 

brain. This disruption is made evident by both unique and differentially altered transcript 

changes induced by MIA and/or diet-induced GDM (Figure 10). This interesting phenomenon is 

enhanced in changes in both dopamine neuronal differentiation pathways as well as multiple 

inflammation related pathways (Figure 12).  
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Figure 11. Maternal immune activation (MIA), gestational diabetes mellitus (GDM) and 

GDM+MIA produce unique transcriptional changes in the developing fetal brain. Genes 

significantly altered in either GDM (a), MIA (b), or GDM+MIA (c) compared with control were 

utilized for functional gene network diagrams. Predicted functional gene networks were 

generated with Genemania’s algorithm available within Cytoscape. For each condition in 
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comparison with control, genes significantly induced are shown in green, whereas genes 

significantly repressed are shown in red. Gray nodes represent additional genes strongly 

associated with the predicted network, with node size proportional to strength of association of 

gene within the network. Lines demonstrate functional association with line thickness indicating 

association strength. Significant genes were determined by one-way analysis of variance 

(ANOVA) with post hoc Bonferonni correction (P<0.05, false discovery rate (FDR) <0.01). 

(P<0.05, false discovery rate (FDR) <0.01). 

 

 

 

Figure 12. Differentially expressed transcripts in diet-induced GDM and maternal immune 

activation (GDM+MIA) condition at GD12.5. Gene ontology (GO) was performed using genes 

significantly altered in GDM+MIA when compared to control mice fed a normal diet and treated 

with saline. Clustering was performed using DAVID bioinformatics database analysis (p<0.05).  
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At GD16.5, smaller and fewer changes in relative gene expression were detected with 

MIA and GDM+MIA. This decreased level of change was as expected since the acute immune 

response induced by poly(I:C) exposure passes after 24 – 48 hours (Supplemental Figure 5, 

Supplemental Table 5). In contrast to the combined stress of MIA and diet-induced GDM, the 

effect produced by GDM alone is still occurring at GD16.5, we observed a similar number of 

gene expression changes produced by GDM alone at GD16.5 as was observed at GD12.5. The 

changes in fetal brain gene expression patterns that remain at GD16.5 include the induction of 

neurodevelopment genes (En2, Pax5) and both the repression (Ccr1, Cd163, Itgb2) and 

induction (Hras1, Ptger3) of inflammation genes. This data supports the hypothesis that GDM 

has continued effects on the fetal brain. All be it subtle, this evolving phenotype reflects ongoing 

changes in both neurodevelopment and the immune response in the brain of the developing fetus. 

 

Discussion 

There is abundant epidemiological evidence supporting an association between either 

GDM or infection-associated MIA and neurocognitive disabilities in offspring, including 

disorders such as autism and schizophrenia (Atladóttir et al., 2010; Brown et al., 2004; 

Krakowiak et al., 2012; Xiang et al., 2015). Despite these associations, the extent to which these 

two stressors interact with one another has not yet been closely assessed. The clinical relevance 

of the potential interactions between GDM and MIA are growing in developed countries such as 

the United States, where the incidence of GDM is increasing (DeSisto et al., 2014), and where 

infections continue to pose a persistent threat to pregnant mothers. In low- or middle-income 

countries this possible interaction may be even more important due to increasingly high rates of 
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infectious diseases and the recent and ever increasing shift from undernutrition to excess 

adiposity (J.A. Goldstein, S.A. Norris, & D.M. Aronoff, 2017).  

The work discussed in this chapter presents new evidence for a significant interaction 

between GDM and MIA in the developing fetal brain as well as their impact on maternal 

inflammation. We modeled two commonly occurring environmental stressors that can and often 

times occur during gestation, are known to induce inflammation, and have been associated with 

increased risk for psychiatric disorders later in life- GDM, as modeled in this study by the high 

fat diet induction of gestational diabetes (HFS) mice, and maternal infection, as modeled by MIA 

(Atladóttir et al., 2010; Brown et al., 2004; Gardener et al., 2009; Xiang et al., 2015; Yamashita 

et al., 2003). The combination of these two models demonstrates that 1) individually, both GDM 

and MIA produce a pro-inflammatory maternal state and alter inflammation-associated and 

neurodevelopmental embryonic gene expression, 2) the combination of GDM and MIA 

intensifies the maternal inflammatory state and produces a novel transcriptional phenotype, and 

3) these novel transcriptional changes are associated with pathways implicated in psychiatric 

disorders such as the dopamine neuron differentiation and innate immune response pathways. 

These findings provide insight into how multiple environmental stressors interact with one 

another and the impact they may have on increasing the risk for developing psychiatric disorders 

later in life. 

Consistent with previous reports (Liang et al., 2010), we found that administration of a 

high fat diet for 6 weeks prior to mating and throughout pregnancy successfully induced a GDM 

phenotype in mice. Although elevated maternal body mass index (BMI) is not necessary for the 

development of GDM, it is a strong predictor of the disorder (Whiteman et al., 2015). After 8 

weeks of consuming a high fat diet, mice showed a significant increase in weight independent of 
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pregnancy. Despite significant weight gain, non-pregnant mice did not show the same level of 

glucose intolerance and insulin insensitivity/resistance present in their pregnant counterparts, 

confirming that these phenomena were gestationally-dependent. 

The two environmental stressors we chose to study, GDM and MIA, are both known to 

induce a state of maternal inflammation. It is known that prolonged inflammation has the 

potential to produce a “primed” state, thus altering and potentially exacerbating the bodies 

response to any additional inflammatory stimuli that may occur (Abell et al., 2015; Leboyer, 

Oliveira, Tamouza, & Groc, 2016). Environmental stressors such as midgestation maternal 

infection, perinatal hypoxia, or early childhood trauma, are considered co-factors and are known 

to trigger this “primed” state (Maes et al., 2009; Millan et al., 2016).  

The maternal serum data discussed in this chapter supports a pro-inflammatory maternal 

state in the setting of MIA, in both the presence and absence of GDM. These results also confirm 

previous models of MIA in mice, where analogous transient increases in cytokine and chemokine 

levels were observed during the acute-phase response to poly(I:C) (Arrode-Bruses & Bruses, 

2012; Khan et al., 2014; Mandal et al., 2013). Most studies have reported very subtle or no 

increases in cytokines or chemokines in maternal serum between 1 – 8 days post injection, which 

is expected given the transitory maternal response to poly(I:C) (Arrode-Bruses & Bruses, 2012; 

Mandal et al., 2013; U. Meyer, Engler, Weber, Schedlowski, & Feldon, 2008). Our results 

further support the body of evidence that poly(I:C) administration at GD12.5 produces an acute, 

but strong increase in multiple cytokines and chemokines, including IL-6, that is no longer 

present 4 days post injection at GD16.5 in maternal serum. We speculate that this increase in 

pro-inflammatory cytokines within the maternal environment may be the driving force behind 

the changes in gene expression within the fetal brain.  
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In addition to markers of inflammation, we investigated the extent to which either GDM, 

MIA, or the combination of the two induced changes in metabolic hormone levels in the 

maternal serum. Increased serum leptin and insulin levels, as well as leptin and insulin 

insensitivity have been previously reported in adult mice fed a high fat diet (Gallou-Kabani et al., 

2007; Van Heek et al., 1997). In our studies however, non-fasting serum insulin levels were only 

significantly affected at GD12.5 and only with the combination of GDM and MIA. As the acute 

inflammatory period of the poly(I:C) induced MIA passed the levels were no longer significantly 

different at GD16.5; suggesting that MIA had a greater impact on circulating, non-fasting insulin 

levels then GDM. The significant increase in pro-inflammatory leptin levels in GDM was further 

increased when MIA was introduced at GD12.5. This increase dissipated by GD16.5, with only 

the combination of GDM+MIA still producing significant increases in leptin at this time point 

(Gallou-Kabani et al., 2007). Although the effects of GDM on metabolic hormones appeared to 

remain consistent between the GD12.5 and GD16.5 time points, the interaction between MIA 

and GDM appeared to evolve to a mostly normalized state. The observed alterations in insulin 

and leptin levels likely contributed to the pro-inflammatory phenotype seen in GDM, which was 

further exacerbated when combined with MIA. In summation, the combined effect of GDM and 

MIA resulted in a pro-inflammatory profile of cytokines, chemokines, and metabolic hormones 

in dams. 

The hypoxic response caused by both GDM and MIA was interesting. Most likely 

resulting as a consequence of the antiviral response mounted in response to poly(I:C), signs of 

hypoxia were detected in the MIA-exposed fetal brain. As for the increase in hypoxic markers in 

the GDM-exposed fetal brain, it is known that oxygen demand can increase with the heightened 

metabolic demand associated with maternal hyperglycemia (Bastian et al., 2015; Cerf et al., 
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2010). VEGF is known to increase under conditions of  hypoxia and has been shown to mediate 

the vascular remodeling that occurs with chronic hypoxia, which is likely the cause of the Vegfa 

and Flt1 induction observed within the fetal brains of our GDM and MIA models (Nilsson, 

Shibuya, & Wennstrom, 2004; Osada-Oka, Ikeda, Imaoka, Akiba, & Sato, 2008; Pearce et al., 

2011). This change aligns with microvascular and cerebral blood volume alterations that are 

theorized to increase risk for psychiatric disorders observed in patients with schizophrenia 

(Meier et al., 2013; Talati, Rane, Skinner, Gore, & Heckers, 2015). 

 We also set out to determine if GDM and MIA interact with one another in order to 

produce a novel phenotype. We found that MIA differentially affected inflammation and 

neurodevelopment associated gene expression when in combination with GDM, suggesting that 

GDM and MIA interacted with one another leading to an exacerbated transcriptional response 

within the fetal brain. The genes differentially regulated in the the comined treatment of GDM 

and MIA are multifunctional neurodevelopmental genes and include crucial patterning genes that 

are part of the neuronal fate differentiation of dopaminergic neurons found within the developing 

midbrain (Stoykova & Gruss, 1994). Partial or complete disruption of these factors has been 

linked to failed development and differentiation of dopaminergic neurons as well as midbrain 

degeneration with models that reach adulthood (Schwarz, Alvarez-Bolado, Urbanek, Busslinger, 

& Gruss, 1997; Simon, Bhatt, Gherbassi, Sgado, & Alberi, 2003; Sonnier et al., 2007). Our work 

suggests that dopaminergic disruption as a consequence of MIA, which is strongly tied to 

psychiatric dysfunction, can be exacerbated in combination with additional environmental 

factors, such as GDM. Although the most prominent response was observed in the MIA group at 

GD12.5, both the induction and repression of neurodevelopment and inflammation associated 

genes was observed in all treatment groups including GDM, MIA, and GDM+MIA. When the 
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effects of MIA were observed in the context of GDM, the fetal brain gene expression response at 

both time points was unique than that observed for the treatments individually, suggesting an 

interaction between these two inflammation-associated risk factors. It is clear that the effects of 

MIA on fetal brain gene expression are modified by GDM, indicating that high fat diet induced 

gestational diabetes, when it is accompanied by maternal infection, induces a novel phenotype 

worth further investigation. 

In summary, we have shown that the combined inflammatory interactions of GDM and 

MIA influence transcriptional responses within the developing mouse brain. It is important to 

note that neither GDM or MIA, either in alone or in combination, are specific to a particular 

outcome later in life, but they have been shown to predispose some to a variety of brain 

disorders, with diagnosis-specificity being genetic context dependent (Horvath & Mirnics, 2014). 

The effects of the co-occurrence of GDM and an infection during pregnancy are most likely 

depend on the genetic makeup of the mother, the developing fetus, or both. Ultimately, our data 

suggests that children born to mothers with GDM that have been exposed to mid-gestation 

infections/immune activation have an increased vulnerability to psychiatric disorders later in life. 

These findings should be further investigated and studied in a large-scale epidemiological study.  
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CHAPTER 4 

 

SEX MODIFIES PLACENTAL GENE EXPRESSION IN RESPONSE TO METABOLIC 

AND INFLAMMATORY STRESS 

 

Theresa L. Barke, Kelli M. Money, Liping Du, Ana Serezani, Maureen Gannon, Karoly Mirnics, 

David M. Aronoff 

 

Introduction 

Disruptions to normal immune homeostasis within the fetal-placental unit can disrupt 

neurodevelopment and predispose to psychiatric disorders (Van Lieshout & Voruganti, 2008). 

Metabolic stress (e.g., gestational diabetes mellitus (GDM) and obesity) and infections are 

common during pregnancy, both of which impact not only fetal development, but the lifelong 

health of offspring as well. Among the most prevalent maternal stressors are obesity (Brenseke, 

Prater, Bahamonde, & Gutierrez, 2013), gestational diabetes mellitus (GDM) (Breyer, 

Bagdassarian, Myers, & Breyer, 2001; Tomar et al., 2015; J. Yan & Yang, 2014)) and infection 

(Howerton & Bale, 2012; Monk, Georgieff, & Osterholm, 2013; Rupérez et al., 2017). How 

these comorbidities impact fetal development and long-term health outcomes for offspring 

remains an open question.  Another interesting unanswered question includes the observation 

that some DOHaD-associated health outcomes exhibit sexual dimorphism, meaning that male 

and female offspring are affected differently (Jeffrey S. Gilbert & Mark J. Nijland, 2008).  
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The placenta, a critical organ important for numerous physiological phenomenon, is also 

an important biological conduit that could mediate the non-genomic transmission of risk for 

NCDs across generations (Konkel, 2016; Peng et al., 2017). To advance our understanding of the 

extent to which metabolic and inflammatory stressors impact placental immune activation, we 

utilized a pregnant mouse model of GDM combined with an acute inflammatory MIA stress 

(Money et al., 2017). GDM was modeled using a high fat diet in female C57/BL6 mice prior to 

and during pregnancy (Money et al., 2017). The process of virus-induced immune activation was 

modeled using a mid-gestational challenge with the viral mimetic poly(I:C), a synthetic, double-

stranded RNA agonist of Toll-like receptor 3 (L. Shi, Fatemi, Sidwell, & Patterson, 2003; L. Shi, 

Tu, & Patterson, 2005). Placental gene expression for 248 genes involved in innate and adaptive 

immunity were evaluated because immune tolerance is important for fetal development 

(Trowsdale & Betz, 2006) and both metabolic and infectious stressors have been shown to alter 

the inflammatory state of the placenta (Altmae et al., 2017; E. L. Johnson & Chakraborty, 2016; 

Pantham, Aye, & Powell, 2015). This study design allowed us to test the tripartite hypothesis 

that (1) either metabolic stress or MIA alone can induce changes in inflammatory gene 

expression within the placenta, (2) these stressors can interact to influence gene expression when 

both are occurring in the same gestation and (3) the effects of these perturbations on gene 

expression is different depending on fetal/placental sex. 
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Materials and Methods 

 

Animal procedures 

Animal procedures were approved by the Vanderbilt Animal Care and Use Committee and 

conducted according to our previously detailed protocol (Money et al., 2017). Briefly, female 

and male C57Bl/6J mice were obtained from The Jackson Laboratory (Bar Harbor, ME, USA). 

Control fed mice received standard chow throughout the experiment (5LOD, Lab Diet, St. Louis, 

MO, USA) and to induce GDM, females received a 60% calories-by-fat diet (58Y1, Test Diet, 

St. Louis, MO, USA) from 4 weeks of age throughout pregnancy. These mice are referred to as 

GDM mice herein and were previously shown by our group to develop a GDM phenotype 

compared to normal diet-fed controls (Money et al., 2017). At 10 weeks of age, mice were 

mated, and the presence of a vaginal plug marked gestational day 0.5 (GD0.5) (Figure 13A). 

Pregnant females were left undisturbed except for cage changes at GD9.5 and weight 

measurements.  

 GDM and controls were assigned to receive a mid-gestational intraperitoneal injection 

with either saline (control) or poly(I:C) (MIA) as reported (Money et al., 2017), creating 4 

experimental groups: control fed saline (SAL or control), high fat fed saline (GDM), control fed 

poly(I:C) (MIA), and high fat fed poly(I:C) (GDM+MIA) (Money et al., 2017). GD12.5 was 

chosen as a mid-gestation timepoint in mice, at which point pregnant females were injected 

intraperitoneally with either sterile saline or 20 mg/kg poly(I:C) potassium salt (Sigma Aldrich, 

St. Louis, MO, USA) in sterile saline, based on the weight of poly(I:C) itself. Pregnant mice 

were sacrificed 3 hours after injection at GD12.5. Sex genotyping was performed for each 

embryo using a previously published protocol (Jacobs et al., 2009). Each of the 4 groups 
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contained 9 pregnant females with the exception of GD12.5 MIA, which contained 8 pregnant 

females, making a total of 35 females. 

 

Tissue collection  

 Immediately after sacrifice, the gravid uterus was removed followed by the removal of 

each individual fetal-placental unit. The amniotic sac was removed from the placenta, at which 

point the decidual tissue was separated and both flash frozen. In total, we collected 64 placentae 

from the saline treated group, 62 from the MIA group, 72 from the GDM group, and 67 from the 

combined MIA and GDM group. Twelve placentae (6 male, 6 female) were chosen for 

Nanostring® gene expression analysis from each experimental condition (except GDM group 

with 5 male, thus total 47 placentae), with 12 pregnant mice contributing 2 placentae each and 23 

pregnant mice contributing one single placenta. Tissues were obtained across 8-9 pregnant dams 

per experimental condition (Money et al., 2017). All pups were measured to have crown/rump 

lengths between 8 mm to 9 mm. It was not possible to choose samples that were evenly 

distributed between the right and left uterine horn, although, all efforts were made to remain as 

evenly distributed while concurrently maintaining an even male to female ratio.             

 

RNA isolation and Nanostring® transcriptional profiling 

           The entire placenta was utilized for RNA isolation. Tissue was dissociated using 

gentleMACS dissociator m-tubes in 1 mL TRIzol. RNA was isolated in TRIzol following 

manufacturer protocols (Invitrogen, Carlsbad, CA, USA). Samples then underwent a Qiagen 

RNeasy clean-up, following manufacturer’s instructions (Qiagen, Hilden, Germany). A Thermo 

Scientific Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA) was untilized to measure 
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RNA concentration and purity (260/280 values above 2 and 260/230 values above 1.5). Agilent 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was utilized to ensure RNA 

integrity, with all RNA integrity numbers falling between 9.5 and 10. 

          Purified RNA (150ng) from each placental sample was utilized for unblinded Nanostring 

nCounter gene expression analysis (http://www.nanostring.com/applications/technology) using 

the mouse inflammation V2-panel which included 248 inflammation-related mouse genes and 5 

internal reference controls to determine gene expression performed according to manufacturer’s 

instructions (Supplemental Table 6). 

 

Nanostring® gene expression analysis and data visualization 

The count data produced by the n-Counter Digital Analyzer were normalized to positive 

and negative spike-ins as well as 5 housekeeping genes (Cltc, Gapdh, Gusb, Hprt, and Tubb5) 

and used for gene expression analysis.  Principle Component Analysis (PCA) on the scaled gene 

expression data was performed and a 3-D plot using the first 3 components was generated using 

R package “rgl”.   To compare the gene expression level between different treatment and 

placenta gender groups, a linear regression with robust standard errors (Huber-White method to 

account for the pregnant mouse cluster) on the treatment groups, sex, and their interactions was 

fitted for each gene. Estimated effects and p values for different contrasts were reported and 

summarized. We considered each gene as an endpoint and adjustment top values was not 

applied. These statistical analyses were performed using R version 3.5.0 (https://www.R-

project.org).  
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Pathway Analysis 

PANTHER, Protein Analysis Through Evolutionary Relationships, classification system 

was utilized to classify and identify pathways perturbed in our experimental conditions based on 

gene expression data (Mi et al., 2017). All genes upregulated or down regulated within a 

particular treatment segregated based upon sex were uploaded into the PANTHER online 

analysis program and functional pathway classification analysis was performed to determine the 

pathways perturbed in our treatment groups.  

Pie charts represent the pathways involved in each treatment segregated by placental sex 

regardless of directionality of the expression change. Each pathway is color-coded so that each 

pathway is represented by the same color in all figures and are in order of abundance of genes in 

each pathway from the most genes to the fewest genes implicated in the pathway beginning with 

the miscellaneous category and moving clockwise around the circle. Miscellaneous represents 

the compilation of any pathway in which genes are differentially expressed between male and 

female that contains 3 or less implicated genes.  

 

Results 

 

Placental sex is associated with gene expression profiles in pregnant C57BL/6 mice in response 

to metabolic and inflammatory stress 

To model placental transcriptional responses to acute inflammatory stress and determine 

the extent to which such changes were modified, we quantified mRNA of 248 immune response 

genes on GD12.5, three hours following exposure to poly(I:C) or saline. The experimental 

groups were control (normal diet followed by saline injection on GD12.5), MIA (normal diet 
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followed by poly(I:C) injection on GD12.5), GDM (high fat diet followed by saline injection on 

GD12.5), or the combination of GDM+MIA (high fat diet followed by poly(I:C) injection on 

GD12.5). We visualized the data initially by a principal coordinate analysis (PCA) plot, in which 

each data point represents an individual placental tissue. The closer data points are to each other, 

the more closely related are the transcriptional responses. Transcriptional responses varied most 

dramatically between mice exposed to MIA versus saline, regardless of the presence of diet-

induced GDM (Figure 13B). However, the added stress of GDM disturbed gene expression, as 

evidenced by the widening gaps on the PCA plot between data points (transcriptional responses 

of individual placentae). When mice with GDM were subjected to immune activation (MIA), the 

data points did not cluster as tightly as the other experimental group, suggesting a more chaotic 

transcriptional response compared to the other experimental conditions (Figure 13B).  The 

potential impact of placental sex on transcriptional profiles was also observed from the plot, 

particularly among mice not exposed to poly(I:C).  

 

 

 



 98 

 

Figure 13. Visual comparison of gene expression profiles for male and female placentae 

exposed in utero  to gestational diabetes mellitus (GDM), maternal immune activation 

(MIA) or both GDM and MIA. Control animals received normal chow and saline injections. 

(A). Experimental timeline highlighting the treatment and sample collection conditions. (B). 

Principal component analysis (PCA) of transcription data of 248 endogenous mouse 

inflammation genes in mouse placenta. Each data point represents a single placental sample. 

Experimental groups as indicated, with small symbols for male and large symbols for female 

placental specimens. (C). Heat map displays row z-scores for the expression of genes for which 
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the response to metabolic or inflammatory stress was significantly influenced by placental sex. 

Heat map was generated under R version 3.5.1. 

 

From the regression analysis to test the interaction between sex of placenta and treatment, 

we selected a subset of genes that were statistically significantly perturbed by sex in response to 

GDM, MIA or both GDM+MIA when compared with control (normal diet, saline-injected) 

animals, and generated a heat map with hierarchical clustering on group using the average level 

of gene expression for each group (Figure 13C). Here, it is evident that the placental 

transcriptional profiles of this subset of genes within each of the experimental groups (including 

the normal control mice) differed based upon sex. Metabolic and inflammatory stress induced 

unique changes in gene transcription and the greatest distance was observed between mice 

exposed to GDM and those exposed to GDM+MIA. The heat map reveals that on average, 

mRNA expression within placental tissues exposed to GDM alone was generally lower (more 

blue) than the other experimental groups, while mice exposed to MIA in combination with GDM 

(MIA+GDM) exhibited the highest transcript levels (more red) (Figure 13C). A more detailed 

analysis of the impact of fetal/placental sex on gene transcriptional responses to inflammatory 

and/or metabolic stress is presented in the sections that follow.  

 

Placental sex influences gene expression in normal control mice  

Within the placentae from normal control pregnant dams (normal diet, saline injection), 

gene differential expression analysis revealed that 13 genes (5.2% of the 248 total number of 

genes) were statistically significantly (p value <0.05) differentially expressed comparing male to 

female tissues (C1ra, Ccl4, Ccl24, Cfl1, Cxcl2, Ddit3, Ifna1, Jun, Ptgs2, Rac1, Tlr5, Tlr6, Tlr8) 
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based on linear regression models. Eleven of these genes were more highly expressed in male 

placentae, and two (C1ra and Tlr5) more highly expressed in female placental tissues. The 

estimated mean differences for all 13 genes are displayed in Supplemental Table 8. The sex 

specific differences in gene expression patterns in normal diet saline treated mice indicate that 

even in the absence of any external or environmental stressors, the sex of the fetus influences 

gene expression patterns in the placenta.   

 

Placental sex influences placental gene expression in response to metabolic stress  

A comparison of inflammatory gene expression among placental tissues harvested from 

mice exposed to a high fat diet (GDM mice) and mice exposed to normal diet revealed that levels 

of 93 of 248 (37.5%) genes were statistically significantly different (Figure 14A). Of these 93 

genes, 36 were impacted by GDM with similar direction and scale in male and female placental 

tissues (11 induced and 25 repressed), while the significant changes in the expression of 40 

inflammatory genes (9 up-, 31 down-modulated) were limited to male tissues and 17 genes (8 

up-, 9 down-modulated) were significantly altered in female placentae. The identity and levels of 

changes for these genes are indicated in Supplemental Tables 9-12.   

Pathway analysis revealed male and female placentae exhibited perturbations in multiple 

shared pathways.  Perturbations in the Wnt signaling pathway and pathways governing 

cytoskeletal regulation by Rho GTPases were unique to male placentae exposed to GDM 

(Figure 14B). Female placentae saw unique differences within the Insulin/IGF/MAPK pathway 

(Figure 14C).  
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Figure 14. Sex-associated changes in gene expression in the placenta induced by diet-

induced gestational diabetes mellitus (GDM) compared to the saline treated, normal-diet 

controls. (A.) Number of genes whose expression levels were statistically-significantly impacted 

by GDM compared to control (p<0.05). Large black numbers indicate total number of genes 

altered regardless of directionality. Red numbers indicate number of genes whose expression 

levels increased due to GDM and blue numbers indicate the number of genes who expression 

levels decreased as a result of GDM. (B and C) Pathways perturbed in GDM irrespective of 

change in gene expression directionality. All pathways which contained ≤3 genes were grouped 

together in the miscellaneous category. Pathways listed in red bold print are unique to that sex. 

Data are displayed for male (B) and female (C) placentae separately. Number of genes included 
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in this figure were statistically-significantly impacted by the indicated treatment (p<0.05). See 

methods for detailed description. 

 

Placental sex influences gene expression in response to acute exposure to immune activation 

(MIA) 

Comparison of inflammatory gene expression among placental tissues harvested from 

mice exposed to a normal diet followed by poly(I:C) injection (MIA) with mice exposed only to 

a normal diet demonstrated male and female placentae tended to response differently to MIA 

exposure. Expression levels of 114 genes (of 248; 46%) showed statistically significant changes 

with MIA exposure (Figure 15A). Of these 114 genes, 52 were similarly impacted by MIA in 

male and female placental tissues (39 induced and 13 suppressed), while the significant changes 

in the expression of just 17 inflammatory genes (5 up-, 12 down-modulated) were limited to 

male tissues and 45 genes (33 up-, 12 down-modulated) were significantly altered in female 

placentae. The identity and level of change (induced, repressed) of all of these genes are 

indicated in (Supplemental Tables 13-16).  

Pathway analysis revealed that MIA induced significant changes in four pathways within 

female placentae that were not altered in male tissues: FAS signaling, Huntington disease 

pathway, insulin/IGF/MAPK pathway, and the apoptosis pathway. Although male and female 

placentae exhibited perturbations in multiple shared pathways there were no pathways unique to 

male placentae that were not also changed in female placentae as a result of maternal MIA 

exposure (Figure 15B and C).   

 

 



 103 

 

Figure 15. Sex-associated changes in gene expression in the placenta induced by maternal 

immune activation (MIA) compared to the saline treated, normal-diet controls. (A.) 

Number of genes whose expression levels were statistically-significantly impacted by MIA 

compared to control (p<0.05). Large black numbers indicate total number of genes altered 

regardless of directionality. Red numbers indicate number of genes whose expression levels 

increased due to MIA and blue numbers indicate the number of genes who expression levels 

decreased as a result of MIA. (B and C) Pathways perturbed in MIA irrespective of change in 

gene expression directionality. All pathways which contained ≤3 genes were grouped together in 

the miscellaneous category. Pathways listed in red bold print are unique to that sex. Data are 

displayed for male (B) and female (C) placentae separately. Number of genes included in this 
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figure were statistically-significantly impacted by the indicated treatment (p<0.05). See methods 

for detailed description. 

 

Placental sex influences gene expression in response to exposure of both GDM and MIA  

The impact of sex was next evaluated on inflammatory gene expression among placental 

tissues harvested from mice exposed to a high fat diet (GDM) and poly(I:C) injection (MIA) 

with mice exposed to a normal diet followed by saline injection. These analyses demonstrated 

response differences between male and female tissues as expected from the above results. 

Expression levels of 93 genes (of 248; 37.5%) showed statistically significantly alteration after 

GDM and MIA exposure (Figure 16A; Supplemental Tables 17- 20). Of these 93 genes, 74 

were similarly impacted by GDM+MIA in male and female placental tissues (57 induced and 17 

repressed), while the significant changes in the expression of 21 inflammatory genes (7 up-, 14 

down-modulated) were limited to male tissues and 28 genes (17 up-, 11 down-modulated) were 

significantly altered in female placentae.  

Gene pathway analysis revealed 2 pathways, P53 feedback pathway and Wnt signaling 

pathway, significantly altered and unique to male placentae in GDM+MIA-exposed dams. 

Female placentae exhibited perturbations in multiple shared pathways and 2 unique pathways, 

TGF-beta signaling and Insulin/IGF/MAPK pathways (Figure 16B and C).  
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Figure 16. Sex-associated changes in gene expression in the placenta induced by the 

combination of maternal immune activation and diet-induced gestational diabetes (GDM + 

MIA) compared to the saline treated, normal-diet controls. (A.) Number of genes whose 

expression levels were statistically-significantly impacted by the combination of GDM and MIA 

compared to control (p<0.05). Large black numbers indicate total number of genes altered 

regardless of directionality. Red numbers indicate number of genes whose expression levels 

increased due to GDM + MIA and blue numbers indicate the number of genes who expression 

levels decreased as a result of GDM + MIA. (B and C) Pathways perturbed in GDM + MIA 

irrespective of change in gene expression directionality. Pathways listed in red bold print are 
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unique to that sex. All pathways which contained ≤3 genes were grouped together in the 

miscellaneous category. Data are displayed for male (B) and female (C) placentae separately. 

Number of genes included in this figure were statistically-significantly impacted by the indicated 

treatment (p<0.05). See methods for detailed description. 

 

Discussion 

 Investigating the impact of maternal antenatal stress on the placenta provides an 

important opportunity to understand fetal origins of disease in offspring. Both antenatal 

metabolic stress and infection pose tremendous risks to fetal health and development, risks that 

might be transmitted through actions within the placenta. However, compared to other organs, 

the placenta is a relatively understudied tissue. The present study newly demonstrates two 

fundamental observations relevant to understanding how stressors impact placental 

immunobiology. First, both metabolic stress and immune activation, or the combination of the 

two, perturbs immune gene expression in the placenta. Second, such effects exhibit sexual 

dimorphism.  

 Because much of the placenta is fetally-derived, particularly the metabolically highly-

active trophoblast, its sex is largely fetal (Rosenfeld, 2015). This is reflected in the fact that male, 

rather than female, placentae can be more responsive to changes in the maternal environment, a 

circumstance referred to as sexual dimorphism (Bale, 2016; Clifton, 2005; Mueller & Bale, 

2008; Rosenfeld, 2015). 

 The premise of DOHaD has largely been accepted. A wealth of data supports the 

association between maternal stressors during pregnancy on health outcomes in offspring and has 

been linked to various causal mechanisms including epigenetic changes and damage to fetal 
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tissue (Gabory et al., 2012; D. W. Kim, Young, Grattan, & Jasoni, 2014; Reynolds, Vickers, 

Harrison, Segovia, & Gray, 2015). What has not been frequently studied is the co-occurrence of 

multiple stressors and their ability to converge on fetal development thereby influencing health 

outcomes for the next generation (J. A. Goldstein et al., 2017). Our group has recently 

demonstrated the unique impact of combined maternal stressors (GDM and MIA) on the fetal 

brain, supporting the importance of more realistic in utero investigations (Money et al., 2017). 

Equally important is that studies of these factors incorporate sex as a biological variable. Sex 

differences in the fetal origins of disease are frequently identified (Abuznait, Qosa, Busnena, El 

Sayed, & Kaddoumi, 2013; J. S. Gilbert & M. J. Nijland, 2008). Increasingly, the placenta is 

being viewed as a key mediator of DOHaD-related sexual dimorphism (Andres et al., 2015; 

Gabory, Roseboom, Moore, Moore, & Junien, 2013).  

At baseline we found that the transcription of some immune genes differed significantly 

between male and female placentae (Supplemental table 7). While only 13 genes were 

significantly differentially expressed between male and female tissues, it was interesting that 

several chemokines (Ccl4, Ccl24, Cxcl2), pathogen recognition receptors (Tlr5, Tlr6, Tlr8) and 

the prostaglandin-generating, inducible cyclooxygenase-2 (Ptgs2) were among these. The male-

specific increased expression of Ptgs2 is interesting given that prostaglandins are critically 

important in labor and sexual dimorphism has been observed in the incidence of preterm labor 

(Verburg et al., 2016). Also, cyclooxygenase inhibitors were shown to have sex-specific effects 

in mollifying the inflammatory effects of antenatal stress in the placenta and improving 

behavioral outcomes in male offspring in a mouse model of environmental psychological and 

physical stressors (Bronson & Bale, 2014). Similar to our data, but in humans, Sood and 

colleagues (Sood, Zehnder, Druzin, & Brown, 2006) examined gene expression patterns in 19 
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human placentas from successful full-term pregnancies using microarray analysis and found 

significant differences between male and female tissues within the villus parenchyma. In fact, 

genes expressed at higher levels in female placentae included immunoregulatory genes such as 

JAK1, IL2RB, Clusterin, LTBP, CXCL1, and IL1RL1 (Sood et al., 2006). A more recent study of 

late first trimester placentae from humans demonstrated sex differences in the transcriptome that 

included a set of 18 autosomal genes (Gonzalez et al., 2018).  

The TLR3 dsRNA ligand poly(I:C)  is commonly used to model viral infection 

(Reisinger et al., 2015), most notably to define the impact of MIA on fetal brain development 

and neurocognitive function in offspring (Money et al., 2017) (Reisinger et al., 2015). Notably, 

antenatal poly(I:C) exposure has been shown to differentially alter behaviors in male vs. female 

mouse offspring (Xuan & Hampson, 2014). To our knowledge, this is the first study that has 

examined changes in a large number of inflammatory genes within the placenta provoked by 

poly(I:C) in a sex-specific manner. The impact of this stress on placental inflammation has been 

studied before (E. Y. Hsiao & P. H. Patterson, 2011) but in a more limited way. Hsiao and 

Patterson conducted a study in C57BL/6 mice similar to ours, finding that inflammatory gene 

expression was markedly induced 3 hours following MIA induction (E. Y. Hsiao & P. H. 

Patterson, 2011). However that study examined a small number of prespecified inflammatory 

genes and did not examine sex-specific differences in placental gene expression.  

Pathway analysis in the MIA model demonstrated the most hits in inflammation related 

pathways such as TLR signaling, interleukin signaling, and cytokine and chemokine signaling in 

both male and female placentae. Similar to GDM, the female placentae exhibited a higher degree 

of differential regulation in the insulin/IGF/MAPK pathway, indicating that genes within this 

pathway may be important to the female response to inflammatory stress. Although few studies 
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have focused on this specifically, one study of 987 healthy singleton pregnancies found that 

cord-blood from females had increased concentrations of insulin-like-growth factors (IGF)-1 and 

IGFBP-3 compared to males, while males contained higher levels of growth hormones (Geary, 

Pringle, Rodeck, Kingdom, & Hindmarsh, 2003). The IGF axis has been reported to be 

differentially regulated in a sex-dependent manner in other inflammatory related diseases during 

pregnancy such as asthma (Clifton et al., 2010). The role for the IGF axis within the placenta has 

not been well established although its possible importance in the sex-dependent response to 

inflammatory insults should be investigated further.     

Both obesity during pregnancy and GDM are associated with chronic systemic 

inflammation and have been implicated in provoking placental inflammation (J. E. Hsu & Jones, 

2005; Pantham et al., 2015). Obesity’s impact on placental inflammation appears to affect male 

and female tissues differently (Leon-Garcia et al., 2016) and mice fed a high fat diet have been 

found to have divergent patterns of gene expression in male vs. female placentae (Gabory et al., 

2012). GDM has not, to our knowledge, been associated with sex differences in placental gene 

expression. Our results show sexual dimorphism in GDM induced inflammation-related gene 

expression changes within the placenta. Pathway analysis of the genes found to be differentially 

affected based on sex revealed two pathways more highly changed in males compared to 

females; the cytoskeletal regulation of Rho GTPase and the Wnt signaling pathways. The female 

placentae showed a higher degree of change in the Insulin/IGF/MAPK signaling pathway. 

Studies have interrogated the IGF axis as it relates to fetal development and outcomes in 

maternal asthma, however not in the context of GDM (Clifton, 2010). It is potentially important 

that the prior studies concluded that the IGF axis was regulated in a sex-dependent manner 

(Clifton et al., 2010). 
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A fascinating aspect of our study was the combined GDM and MIA stressors. A total of 

123 genes within the placenta were significantly changed compared to control in the combination 

of GDM and MIA and 74 of these genes were shared between male and female placentae. The 

insulin/IGF/MAPK pathway was more significantly changed in female placentae compared to 

male, similar to results from the GDM and MIA conditions alone. In addition to the 

insulin/IGF/MAPK pathway, the TGF-  signaling pathway was more significantly changed in 

female placentae. TGF-  has been implicated in supporting maternal-fetal immune tolerance 

(Alijotas-Reig, Llurba, & Gris, 2014) so disturbing its expression could have important 

consequences. Similar to what we observed in GDM alone, the Wnt signaling pathway was more 

significantly altered in male placentae. In addition, the p53 feedback loop pathway was more 

significantly altered in males. Alterations in the p53 feedback loop pathway have been 

implicated in increased levels of apoptosis within the placenta in the context of preeclampsia 

(Sharp et al., 2014). It will be important for future studies to establish how sex influences these 

pathways. 

Limitations of our study are important. Gene expression was assessed using a preselected 

set of 248 immune genes, which introduces bias and limits conclusions about many other 

functions of the placenta, such as nutrient transport or metabolism. Our GDM model was 

generated with a high fat diet, which itself could produce inflammation in the absence of diabetes 

(D. Zhou & Pan, 2015). We used this model because mice consistently exhibited enhanced 

glucose intolerance and hyperinsulinemia following a glucose challenge only while pregnant 

(Money et al., 2017). The use of poly(I:C) to provoke a systemic inflammatory response 

mimicking a viral infection during pregnancy has advantages, including the lack of live virus that 

might cross the placenta and a more consistent, controlled inflammatory response; however, a 
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viral mimetic lacks the complexities of host-pathogen interactions, thus limiting generalizability. 

The use of a mouse model is an important caveat, given differences between human and mouse 

placentae (Malassine, Frendo, & Evain-Brion, 2003). Another limitation is a lack of 

understanding of the exact mechanisms whereby these antenatal stressors, singly and in 

combination, impact gene expression. Whether through epigenetic or other modifications, such 

mechanisms await future studies to define. Despite these limitations, our work sheds new light 

on the convergence of stressors at the maternal-fetal interface that deserves ongoing attention. 

In summary, our work suggests that common antenatal stressors impact immune gene 

expression within the placenta and appear to interact. Placental sex can influence the relationship 

between stress and immune homeostasis, supporting a placental role in the sexual dimorphism 

observed in human clinical studies of DOHaD-related health outcomes in offspring. We strongly 

support that future studies continue to model multiple stressors and pay heed to sex-related 

effects.  
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CHAPTER 5 

 

METABOLIC STRESS AND IL-1β PRODUCTION BY THE PLACENTAL 

MACROPHAGE 

 

Theresa L. Barke, Lisa M. Rogers, David M. Aronoff 

 

Introduction 

IL-1β has long been known to exert metabolic effects, most notably being implicated in 

the progression of insulin resistance and obesity. The consequences of IL-1β signaling is context, 

time, and tissue dependent. For example, in the absence of acute inflammatory stimuli, IL-1β 

signaling is essential for maintaining adipose tissue homeostasis and normal body weight (Garcia 

et al., 2006; Matsuki, Horai, Sudo, & Iwakura, 2003; Somm et al., 2005). In the context of 

chronic inflammation, however, as in obesity and diabetes, IL-1β signaling largly corresponds 

with a pro-inflammatory phenotype and an increase in pathogenic inflammation (McGillicuddy 

et al., 2011; Miura et al., 2010; Nov et al., 2013; Stienstra et al., 2010). IL-1β plays such an 

important role in the pathogenesis of metabolic disease that its use as a drug target is actively 

being studied with promising results. Pharmaceutical intervention blocking IL-1 signaling in 

mouse models of T2D and atherosclerosis was effective and improved glycemia, β-cell function, 

and reduced inflammation releaving the T2D phenotype (Bhaskar et al., 2011; Ehses et al., 

2009). 

Differential effects of IL-1β can be seen impacting metabolic signaling in multiple 

different organs and cells types. It has been reported that IL-1β is a potent inhibitor of insulin 
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signaling in adipocytes as well as interfering with adipocyte differentiation (Lagathu et al., 2006; 

Stienstra et al., 2010). In models of non-alcholic fatty liver disease, IL-1 signaling induces 

lipogenesis leading to the detrimental accumulation of tiglycerides in the liver (Negrin et al., 

2014). Important in the context of diabetes and obesity, macrophage inflammasome activation in 

obese individuals within the pancrease leads to increased levels of IL-1β subsequently inducing 

β-cell dysfunction and death (Eguchi et al., 2012; Steer, Scarim, Chambers, & Corbett, 2006; 

Thomas, Darwiche, Corbett, & Kay, 2002). The tissue specific effects of IL-1 in the context of 

obesity and diabetes make it clear that not all tissues and their responses are created equal. While 

limited studies to date have interrogated the role of metabolic stress on the placental macrophage 

IL-1β pathway, unanswered questions still remain. It is important to study tissue and organ 

specific phenotypes in a clinically and contextually relevant manner. The studies put forth in this 

chapter were designed to shed light on the interraction between placental macrophage IL-1β 

expression and metabolic stress in the form of glucose and free-fatty acids (FFA).       

Type-2 diabetes was the first disease shown to involve the NLRP3 inflammasome in its 

pathogenesis and subsequent progression (R. Zhou, Tardivel, Thorens, Choi, & Tschopp, 2010). 

Obesity has been well establihed as a major risk factor for the development of T2D and insulin 

resistance explaining why T2D and GDM are often found in conjunction with maternal obesity 

(K. E. Martin et al., 2015; Whiteman et al., 2015). The loss of metabolic homeostasis in obese 

individuals results in an increase in the levels of glucose and fatty acids (FFA) in circulation and 

within organs (Donath & Shoelson, 2011). Although less research has focused on GDM 

compared with T2D and obesity, GDM has also been characterized by low-grade inflammation 

endotoxemia and elevated circulating FFA (Catalano, 2002; Lappas, 2011; Winzer, 2004; Wolf, 

2004). Multiple studies have demonstrated that these byproducts of diabesity constitue metabolic 
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danger signals with the ability to alter the activation status of the NLRP3 inflammasome 

(L'Homme et al., 2013; Vandanmagsar et al., 2011; Wen et al., 2011; Y. Yan et al., 2013). If 

these findings are correct, then it can be hypothesized that FFAs have the ability to offer both 

signals necessary for inflammasome activation by both priming and activating the inflammasome 

in the setting of diabetes and obesity.   

In humans, oleate (C18:1), palmitate (C16:0), and stearate (C10:0) make up roughly 80% 

of the circulating FFA at a ratio of 1.6:1.0:0.5 (Hagenfeldt, Wahren, Pernow, & Raf, 1972). As a 

consequence of diabetes and obesity, dyslipidemia increases the levels of these FFA in 

circulation making them available to act as ligands for inflammasome activation. Although the 

findings regarding how FFA may induce inflammasome activation are often times conflicting, 

the evidence that FFA play a role in IL-1β production and inflammasome activation is 

overwhelming. In a human monocyte cell line, THP-1 cells, palmitate treatment increased 

caspase activity in parallel with an increase in IL-1β release eventually leading to cell death 

(Pillon et al., 2016). Again in THP-1 cells, another group demonstrated that in the presence of 

high glucose, palmitate and stearate increased TLR2 and TLR4 expression, increased NF-κB 

activity, and increased the release of IL-1β and MCP-1 in a dose and time dependent manner. 

Futhermore, when they reported that the silencing of TLR2 and TLR4 significantly reduced NF-

κB activity and IL-1β and MCP-1 secretion in palmitate treated cells in the presence of high 

glucose (Dasu & Jialal, 2011). It has since been reported that palmitate directly activates TLR2 

inducing inflammasome-mediated IL-1β production in human monocytes (Snodgrass, Huang, 

Choi, Rutledge, & Hwang, 2013). These studies, as well as many others, demonstrate the ability 

for palmitate and potentially other FFA to induce IL-1β production in a TLR-dependent 
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inflammasome mediated fashion. These studies, however compelling, do not recapitulate the 

placental environment.  

How these extracellular danger signals in the form of FFA activate the inflammasome 

culminating in the characteristic increased production of IL-1β seen in metabolic disorders is a 

difficult question to answer. Again, tissue specificity is key. Evidence suggests that FFA and 

glucose may initiate the pro-inflammatory release of IL-1β in an inflammasome-dependent 

pathway through the activation of TLRs. Although relatively widely accepted to occur in many 

tissues, evidence from the placenta is lacking. TLR4 has been reported to play a role in the 

pathogenesis and inflammation associated with obesity and T2D through its interaction with FFA 

(F. Kim et al., 2007; Lu et al., 2015). Placental trophoblast cells produce increased levels of 

multiple pro-inflammatoy mediators in response to saturated fatty acids in a TLR4 dependent 

manner (Yang et al., 2015). TLR expression is altered in the diabetic state as evidenced by a 

study that determined that women with GDM have increased TLR4 expression levels on 

peripheral blood monocytes (Xie et al., 2014). TLR2 and TLR4 are the only TLRs whose 

expression is at high levels within the placenta as well as on placental macrophages throughout 

gestation (Abrahams, 2008) promting us to question the potential role of TLR activation in 

placental inflammation through the production of IL-1β as a consequence of FFA exposure. 

Taken together, the evidence introduced here, as well as evidence presented in the following 

chapter give precedence for our studies investigating the role of FFA- induced IL-1β production 

by placental macrophges. 
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Materials and Methods 

 

Animal procedures 

 Animal procedures were approved by the Vanderbilt Animal Care and Use Committee 

and conducted according to our previously detailed protocol (Money et al., 2017). Briefly, 

female and male C57Bl/6J mice were obtained from The Jackson Laboratory (Bar Harbor, ME, 

USA). Control fed mice received standard chow throughout the experiment (5LOD, Lab Diet, St. 

Louis, MO, USA) and to induce GDM, females received a 60% calories-by-fat diet (58Y1, Test 

Diet, St. Louis, MO, USA) from 4 weeks of age throughout pregnancy. These mice are referred 

to as GDM mice herein and were previously shown by our group to develop a GDM phenotype 

compared to normal diet-fed controls (Money et al., 2017). At 10 weeks of age, mice were 

mated, and the presence of a vaginal plug marked gestational day 0.5 (GD0.5) (Figure 13A). 

Pregnant females were left undisturbed except for cage changes at GD9.5 and weight 

measurements.  

GDM and controls were assigned to receive a mid-gestational intraperitoneal injection 

with either saline (control) or poly(I:C) (MIA) as reported (Money et al., 2017), creating 4 

experimental groups: control fed saline, high fat fed saline, control fed poly(I:C), and high fat fed 

poly(I:C) (Money et al., 2017). GD12.5 was chosen as a mid-gestation timepoint in mice, at 

which point pregnant females were injected intraperitoneally with either sterile saline or 20 

mg/kg poly(I:C) potassium salt (Sigma Aldrich, St. Louis, MO, USA) in sterile saline, based on 

the weight of poly(I:C) itself. Pregnant mice were sacrificed 3 hours after injection at GD12.5. 

Each of the 4 groups contained 9 pregnant females with the exception of GD12.5 MIA, which 

contained 8 pregnant females, making a total of 35 females.  
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Antibody-conjugated bead-based analysis 

 Immediately after sacrifice, amniotic fluid was removed from each intact amniotic sac 

and pooled together resulting in one representative amniotic fluid sample per pregnant dam.  

Approximately 0.5 to 1 mL of amniotic fluid was collected from each pregnant dam and kept at -

80°C until submitted for antibody-conjugated bead-based analysis. 

 Luminex analysis utilizes a multiplexed assay, using x-map technology via the MagPix 

system. The reactants are attached to the surfaces of tiny fluorescent microspheres. Each set of 

microspheres carries a unique biological reagent distinguishable by internal dye ratios. 

Identification of an analyte is based upon specific fluorescent emission spectra of the bead 

associated with the analyte. Two LEDs with high speed digital signal processors and computer 

algorithms distinguish which analyte is being carried on each microsphere while quantifying the 

reaction based on fluorescent reporters signals. This allows for analysis of multiple analytes from 

a single aliquot of sample. Luminex analysis was performed by the Vanderbilt hormone core 

(http://hormone.mc.vanderbilt.edu), which is funded in part by NIH grants (DK059637 and 

DK020593). The Luminex multiplex panels (EMD Millipore, Darmstadt, Germany) used for 

analysis of the maternal serum were mouse cytokine/chemokine panel 14 plex (eotaxin, IFNγ, 

IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-12p40, IL-13, IL-17, KC, MCP-1, RANTES, and TNF-α 

Cat# MCYTOMAG-70K).  

 

Cell isolation and stimulation  

Primary placental macrophages (PMs) were isolated from healthy donors undergoing 

term scheduled C-sections using a previously published protocol (Z. Tang et al., 2011). Briefly, 

placental tissue was enzymatically digested then subjected to various rounds of stepwise 

http://hormone.mc.vanderbilt.edu/
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filtrations followed by Percoll gradient to separate possible cells of interest. The resulting cells 

underwent CD14+ positive selection via magnetic sorting. In all cell experiments, freshly 

isolated cells were allowed to rest overnight in RPMI-1640 with 1% antibiotic and 10% FBS 

media then pretreated with a glucose free RPMI-1640 (#11879 Invitrogen) media for 1 hour prior 

to experimental exposure. Experimental exposures included a metabolic cocktail (MetaC) 

comprised of 30 mM glucose, 0.4 mM palmitate, and 10 nM human insulin for 4 or 24hr. 

Euglycemic conditions were 5mM glucose and acted as the control. PMs were also stimulated 

with 0.4 mM palmitate, 10 nM insulin, or 30 mM glucose (hyperglycemic condition) alone. For 

inhibition of caspase-1, PMs were exposed for 1hr prior to experimental conditions in glucose-

free RPMI to an irreversible caspase-1 inhibitor zYVAD-FMK (Millipore #218746) at a 

concentration of 10uM. 

 

ELISA 

Freshly isolated PMs were plated at a density of 3.5e6 PMs in 6 well dishes and allowed 

to rest overnight in RPMI with 1% antibiotic and 10% FBS. Prior to experimental treatment, 

cells were pretreated with a glucose free RPMI media for 1 hour. Experimental exposures 

included MetaC, 30 mM glucose, 0.4 mM palmitate, 10 nM human insulin, or 0.4 mM Oleate for 

either 4 or 24hrs. Supernatants were collected for ELISA analysis after 4 hours or 24 hours of 

exposure to the treatment conditions. IL-1β was measured using the Duo-set ELISA from R&D 

and caspase-1 was measured using Human Caspase-1/ICE Quantikine ELISA kit from R&D. 
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Immunofluorescence for NLRP3-ASC localization 

Freshly isolated PMs were plated at a density of 300,000 cells per chamber slide and 

allowed to rest overnight in RPMI with 1% antibiotic and 10% FBS. Prior to experimental 

treatment, cells were pretreated for 1 hour in glucose-free RPMI. Experimental exposures 

included a metabolic cocktail that simulates a state of diabesity which is comprised of 30 mM 

glucose, 10 nM human insulin, and 0.4 mM palmitate (MetaC), 5 mM glucose and 0.4 mM 

palmitate for 4 hrs. Immunofluorescence to interrogate NLRP3-ASC complex formation was 

completed using the Duolink In Situ PLA Kit from Sigma following manufacturer’s instructions, 

using Anti-ASC pAB (AL177) at 1:200 and anti-NLRP3 mAB (Cryo-2) at 1:200 (AdipoGen). 

 

Results and Future Directions 

Numerous studies have indicated that gestational diabetes and metabolic stress impact 

placental macrophage (PM) number, polarization, and expression patterns to adopt a more pro-

inflammatory phenotype (Altmae et al., 2017; Barke et al., 2018; Mrizak et al., 2014; Pantham et 

al., 2015; Yu et al., 2013).  Macrophages regulate inflammation in the context of many systems, 

tissues, and disease states and have the ability to control both local and systemic inflammation. 

While conducting our experiments outlined in chapter 3 and chapter 4 we discovered that within 

the amniotic fluid of mice fed a high-fat diet (exhibiting a phenotype consistant with GDM), 

there was a significant increase in the levels of IL-1β (Figure 17). The increase in IL-1β was 

present only in the context of  GDM and GDM+MIA, but not MIA alone. This increased level of 

IL-1β was also not observed in the maternal serum. Li, et al. described an increase in IL-1β 

levels in placental tissues harvested from mice fed a high-fat diet exhibiting signs consistent with 

GDM compared to healthy control mice (Li et al., 2013). In our studies we did not see an 
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increase in the levels of IL-1β in the maternal serum, but we did see an increase in the amniotic 

fluid in the GDM and GDM+MIA mice. Taken together with the data that placentae from GDM 

mice produce higher levels of IL-1β, we hypothesized that the increased levels of IL-1β originate 

from the placenta and more specifically macrophages as they are the predominant immune cell in 

the placenta throughout gestation and have been shown to have increased numbers within the 

placenta and produce high levels of IL-1β in the context of GDM (Sisino et al., 2013; Yu et al., 

2013).   

 

Figure 17. GDM and MIA alter cytokine, chemokine and metabolic hormone profiles 

within amniotic fluid at GD12.5 Amniotic fluid was collected via membrane puncture for all 

pups and pooled together for each individual dam. Amniotic fluid collected 3 hours post 

injection with either saline or 20mg/kg Poly I:C potassium salt on GD12.5 was analyzed for 

chemokine and cytokine levels via conjugated bead array multiplex assay. Significance indicated 

by letters with similar letters dictating no significance as determined by one-way ANOVA with 
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Tukey’s multiple comparisons post test in all assays. (n=9 except for Poly I:C treated non-HFD 

where n=8).  

 

Given the association between dyslipidemia and diabetes we interrogated the idea that 

FFAs can induce the increased expression and release of IL-1β from placental macrophages. At 

the cellular level, FFAs act as messengers with the ability to modulate a wide array of signaling 

transduction pathways (H. Shi et al., 2006). As thouroughly introduced earlier in this document, 

ample evidence suggests that FFAs, in the form of palmitate and stearate, have the ability to 

induce the production and subsequent release of IL-1β from multiple different cells and tissues. 

The ability of primary placental macrophages to produce increased levels of IL-1β in a FFA-

dependent manner has not been reported to date. Not only did we want to see if FFAs alone were 

enough to stimulate the cells to produce more IL-1β we also sought to induce a more GDM like 

environment with the use of a metabolic cocktail that more closely mimics the high glucose, high 

insulin, high FFA environment of the GDM patient. Media containing high levels of glucose, 

insulin, and palmitate, termed the metabolic cocktail (MetaC), was previously developed and 

utilized to induce a metabolically activated phenotype in adipose tissue macrophages (Kratz et 

al., 2014). When we treated freshly isolated PMs with MetaC we saw a significant increase in the 

amount of IL-1β secreated from the cells into the supernantants (Figure 18A). Similar to 

treatment with MetaC, palmitate alone increased the release of IL-1β from the cells. This 

increase was not seen when PMs were treated with insulin or glucose alone (Figure 18A). 
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Figure 18. Metabolic stress increases IL-1β and cleaved caspase-1 (p20) in placental 

macrophages. PMs were treated for 24 hours with 5 mM glucose, MetaC, palmitate, 30 mM 

glucose, or insulin alone. A) Levels of extracellular IL-1β from cell culture supernatants as 

measured by ELISA B) Levels of extracellular caspase-1 from supernatants as measured by 

ELISA 

 

Cleavage of pro- IL-1β  into its active secreted form requires caspase-1 (Wilson et al., 1994). In a 

similar pattern to IL-1β, we saw an increase in the amount of extracellular cleaved caspase-1 in 

the MetaC and palmitate treated PMs (Figure 18B). This increase was not seen after treatment 

with high glucose levels or insulin alone suggesting that the increase is as a result of palmitate 

activation of the PMs.  

IL-1β processing requires active caspase-1. Caspase-1 activation in turn requires 

assembly of the NLRP3 inflammasome. Activation of the NLRP3 infammasome, in this case 

through FFA activation, induces oligomerization of NLRP3 leading to the recruitment of ASC, 

which in turn, forms large structures leading to the recruitment of pro-caspase-1. Autocatalytic 
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cleavage of pro-caspase-1 into the p10 and p20 subunits allows for the formation of active 

caspase-1 as the two subunits form hetero-tetramers which are then able to convert pro-IL-1β 

into their bioactive secreted forms (C. A. Dinarello, 2009; Wilson et al., 1994). To interrogate if 

MetaC and its components lead to inflammasome assembly in PMs we performed 

immunoflourescence to visualize inflammasome assembly. In this assay, if ASC is in complex 

with NLRP3 it will flouresce red. PM stimulation with MetaC and palmitate show evidence of 

inflammasome formation as represented by the red specs within the cells. Quantification of the 

number of specs per cell indicates that both MetaC and palmitate induced inflammasome 

formation in PMs (Figure 19). 

 

 

 

Figure 19. Metabolic stress activates the NLRP3-ASC inflammasome in placental 

macrophages. PMs were treated for 4h with 5mM glucose, MetaC, or palmitate alone and ASC-

NLRP3 complex formation was quantified as indicated by specs per cell. 

 

Thus far, our studies have concluded that palmitate alone is capable of inducing IL-1β 

production and NLRP3 inflammasome assembly as evidenced by the formation of the NLRP3-

ASC complex in PMs. High levels of glucose and insulin are not, on their own, enough to 
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stimulate a similar response in IL-1β production. Concluding that in instances of metabolic stress 

such as diabetes, the increased levels of FFA could be the driver of IL-1β production in PMs. As 

for the receptor or receptors that mediate this interaction there are a multitude of possibilies. 

Many studies have shown that TLR2 and TLR4 may be possible receptors for FFAs and thus 

play a role in the production of IL-1β in PMs (J. Y. Lee & Hwang, 2006; Schaeffler et al., 2009; 

H. Shi et al., 2006). Given the fact that both TLR2 and TLR4 are rather ubiquitously expressed 

throughout the placenta, and on PMs, during all three trimesters these receptors are likely 

candidates. A recent study, however, has reported that TLR4 is not a receptor for saturated fatty 

acids although it does play a role in lipid-induced sterile inflammation through the action of 

altering macrophage metabolic programming (Lancaster et al., 2018). Even though evidence now 

shows that palmitate does not directly bind to and activate TLR4 in the classical sense, their 

findings confirming that palmitate does indeed induce a TLR4-dependent primig that alters 

cellular metabolism and gene expression gives precedence to the importance of this pathway and 

the need to further study this interaction in the context of PMs and inflammasome-dependent IL-

1β production.   
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Figure 20. Hypothetical model of palmitate-induced IL-1β production in human placental 

macrophages This model outlines what the studies outlined in this chapter have confirmed as 

indicated by solid black arrows. Unanswered questions that require further investigation are 

indicated by the dashed red arrows. 

 

Although preliminary studies investigating the role of palmitate in initiating the release of 

IL-1β from primary PMs have been completed, much work remains ongoing and many more 

questions need to be addressed (Figure 20).  The most important questions to answere next are 

represented in figure 22 by the red dotted arrows. First we need to address the question if indeed 

plamitate is inducing the release of IL-1β in an inflammasome/caspapse-1 dependent manner. In 

order to test this we would  block caspase-1 activity through the use of zYVAD-FMK, an 

irreversible caspase-1 inhibitor, and repeat the above experiments looking at IL-1β release 
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through ELISA and western blots. If IL-1β release is due to the activity of caspase-1, we would 

expect to see a decrease in the amount of extracellular IL-1β in supernatants and an increase in 

intracellular pro-IL-1β through western blot. Secondly, we will test whether the palmitate-

dependent induction of IL-1β release is dependent upon TLR4 in PMs. Similar sets of 

experiments as outlined previously using rs-LPS, a potent antagonist of TLR4, would be 

completed to test the cleavage and subsequent release of IL-1β through ELISA and western 

blots. The NLRP3/ASC complex assembly would also be interrogated after PM stimulation with 

palmitate in the presence of rs-LPS to test if TLR4 is necessary for palmitate-induced 

inflammasome assembly. Although preliminary in nature, these studies are essential to the 

understanding of the machanism by which IL-1β increases under metabolic stress.  

Taken together these studies will lay the ground work for future studies investigating the 

role of metabolic stress induced production of IL-1β in the placenta by PMs. This work is 

important to the understanding of how maternal inflammation and metabolic stress in the form of 

dyslipidemia can impact the fetus through placental mechanisms and could possibly be leveraged 

to decrease fetal responses to adverse maternal stimuli.       
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CHAPTER 6 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

The prenatal environment is widely recognized to play a vital role in the development of 

non-communicable diseases (NCD) later in life. The idea that many NDCs have their origins in 

prenatal life is the basis of the DOHaD paradigm. Exposure to prenatal insults such as metabolic 

stress, maternal immune activation, and infections have been associated with an increased risk 

for the development of neurocognitive disorders, such as autism and schizophrenia, as well as the 

increased risk of developing metabolic diseases such as coronary heart disease and T2D (Buka et 

al., 2001; Eriksson, Sandboge, Salonen, Kajantie, & Osmond, 2014; Gardener et al., 2009).  The 

mechanisms through which this prenatal programming occurs likely involves complex 

interactions between the maternal immune environment, the placenta, and the fetus and can be 

influenced by factors such as fetal sex and developmental stage during gestation (Bale, 2011; 

Dunn, Morgan, & Bale, 2011; Mao et al., 2010). Better understanding the mechanisms that drive 

the increased risk of NCDs in response to maternal stress is vital to developing new and effective 

intervention techniques.  

A major barrier to reducing the risks and complications associated with GDM is a lack of 

clarity regarding how this disease changes placental physiology, morphology, and the overall 

pathophysiological mechanisms within the placenta contributed to this disease. The placenta acts 

not only as a barrier between the mother and the developing fetus, but as a regulatory conduit 

through which all communication between mother and fetus occurs.  
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Given the relationship among GDM, placental macrophage activation and iron 

homeostasis, chapter 2 summarized a retrospective, case-control, study of archived human 

placental tissue from women with or without GDM to better define placental pathology, 

placental iron stores, and both macrophage density and CD163 expression in situ. We tested the 

hypothesis that women with gestational diabetes exhibited altered placental physiology and 

placental macrophage phenotypes.  

It had been reported previously that macrophage numbers were increased in placentae 

from women with GDM and that this increase in macrophage number was accompanied by an 

increase in pro-inflammatory cytokines (Yu et al., 2013). Their assessment did not factor in 

macrophage localization throughout the different placental regions. Our comparison of placentae 

from women with GDM and healthy controls did not find a significant difference in the number 

or localization of CD68+ cells in the placenta. We did however; find a significant difference in 

the expression of CD163 on macrophages within the chorion and decidual regions of the placenta 

indicating either a change in macrophage polarization phenotype, iron metabolic potential, or 

both. In conjunction with the increase in CD163+ cells, we reported a significant increase in the 

amount of iron in the placenta. This iron appeared to be localized to macrophages, but was also 

detectable within other cells in smaller amounts. High maternal iron has been linked to glucose 

metabolism disorders such as GMD and T2D (Afkhami-Ardekani & Rashidi, 2009; Barbieri et 

al., 2001; Choi et al., 2003; Rawal et al., 2017). As iron can be highly toxic to cells in high 

amounts, this increase in stored iron within the placenta may be one mechanism by which 

placental macrophages sequester and recycle iron in an attempt to reduce the transfer of iron to 

the fetus. Overall, our results add to the growing amount of evidence that GDM has direct effects 

on placental structure and macrophage phenotypes. 
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In chapter 3 and 4, we proposed that GDM modifies MIA-induced gene expression 

changes within the fetal brain and placenta. To interrogate this hypothesis, we studied the 

combined effect of two commonly occurring insults during pregnancy, GDM and maternal 

infection. We based these hypotheses on the following findings. First, both MIA and GDM 

increase inflammation (Abell et al., 2015; Deverman & Patterson, 2009). Secondly, both GDM 

and MIA have their peak influence on programming midgestation (Buka et al., 2001; Xiang et 

al., 2015). Third, both have been shown to alter cytokine levels that can cross the placenta 

(Elaine Y. Hsiao & Paul H. Patterson, 2011; Hsiao & Patterson, 2012; Li et al., 2013). And 

lastly, both GDM and MIA have been linked to increased occurrence of autism and 

schizophrenia (Atladóttir et al., 2010; Mary Cannon et al., 2002; B. K. Lee et al., 2015; Van 

Lieshout & Voruganti, 2008; Xiang et al., 2015). We chose to induce GDM through the 

administration of a high fat diet (Pasek & Gannon, 2013). In our model, the presence of impaired 

glucose tolerance, fasting glucose, and fasting insulin are consistent with a gestationally diabetic 

phenotype. To model maternal infection and induce MIA, we utilized the viral mimetic 

poly(I:C).   

To gain insight into the maternal inflammatory status of these models, we measured 

maternal serum cytokine, chemokine, adipokine, and insulin levels 3 hours after MIA exposure 

at GD12.5 and four days after exposure at GD16.5.  At GD12.5 the MIA-induced 

cytokine/chemokine profile was similar to what was observed in GDM, suggesting that GDM 

does not modify the cytokine/chemokine response to MIA. Although no changes reached 

significance with GDM alone, we did observe significantly increased leptin and decreased 

adiponectin levels. This metabolic profile is expected with a diabetic phenotype (Fasshauer, 

Blüher, & Stumvoll, 2014; Gallou-Kabani et al., 2007; Kautzky-Willer et al., 2001; Van Heek et 
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al., 1997; Vitoratos et al., 2001). Taken together, the maternal serum data supports that 1) MIA 

produces a transiently heightened inflammatory state 2) that GDM induces adipokine changes 

consistent with a diabetic phenotype 3) that MIA and GDM interact to produce an even higher 

increase in pro-inflammatory leptin levels. This demonstrates that our models of MIA and GDM 

are pro-inflammatory as well as provides novel insight into the interaction at the maternal level 

of MIA and GDM.  

We utilized these models to gain insight into gene expression changes within the fetal 

brain in order to better understand how MIA and GDM could impact neurodevelopmental 

pathways. Overall our results demonstrate that 1) GDM alters expression of IFN response, 

growth and cell cycle regulation, apoptosis, and fetal brain neuronal patterning genes in the brain 

2) MIA alters expression of genes both alone (antiviral/IFN response, lipid peroxidation, cell 

cycle regulation/apoptosis, cell growth, inflammation-associated intracellular signaling, hypoxia, 

and neuronal migration) and in the context of GDM (antiviral/IFN response, innate immune 

response, cell cycle regulation/apoptosis/growth, inflammation-associated intracellular signaling, 

neuronal patterning/migration/myelination, hypoxia, and glucose transport), 3) GDM modifies 

MIA gene expression in the fetal brain with a stronger induction of inflammation associated 

genes, and 4) the majority of gene expression changes are only present during the acute immune 

response at GD12.5.  

As mentioned earlier, fetal sex can also be a driver of NCD risk during development (Al-

Qaraghouli & Fang, 2017). To our knowledge, this study is the first of its kind to investigate the 

combined stressors of GDM and MIA from the standpoint of sexual dimorphism and placental 

gene expression. The data gathered will lay the groundwork for future studies to elucidate the 

mechanistic basis for sex-dependent risk for NCDs.  At baseline we found some genes to be 
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differentially expressed between male and female placentae. Interestingly several chemokines, 

pathogen recognition receptors, and the prostaglandin-generating, inducible cyclooxygenase-2 

(Ptgs2) were among these. The male-specific increased expression of Ptgs2 is interesting given 

that prostaglandins are critically important in labor and sexual dimorphism has been observed in 

the incidence of preterm labor (Verburg et al., 2016). Also, cyclooxygenase inhibitors were 

shown to have sex-specific effects in mollifying the inflammatory effects of antenatal stress in 

the placenta and improving behavioral outcomes in male offspring in a mouse model of 

environmental psychological and physical stressors (Bronson & Bale, 2014). Taken together, the 

role of cyclooxygenase should be reviewed more in depth for its sex-specific role in fetal 

outcomes independent of maternal inflammation. 

GDM induced a significant change in the expression of 37.5% of the genes interrogated. 

Of the genes that decreased in expression, 62% displayed sexual dimorphism and of those with 

increased expression 61% displayed differential expression in a sex-dependent manner. Our data 

is consistent with others who have reported that obesity impacts placental inflammation in a sex-

dependent manner (Leon-Garcia et al., 2016) and that mice fed a high fat diet have been found to 

have divergent patterns of gene expression in male vs. female placentae (Gabory et al., 2012). 

Males had upregulated expression of the cytoskeletal regulation of Rho GTPase and the Wnt 

signaling pathways while female placentae showed a higher degree of change in the 

Insulin/IGF/MAPK signaling pathway. Prior studies have concluded that the IGF axis was 

regulated in a sex-dependent manner (Clifton et al., 2010). Making this pathway one that 

deserves further interpretation in the context of maternal inflammation and placental function. 
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Mice exposed to MIA revealed significant changes in gene expression in 46% of the total 

genes interrogated. Of the genes with decreased expression levels, 65% displayed sexual 

dimorphism while only 49% of those with increased expression differed based upon sex. The 

pathways with the most perturbations were related to TLR signaling, interleukin signaling, and 

cytokine and chemokine signaling in both male and female placentae. Similar to GDM, the 

female placentae exhibited a higher degree of differential regulation in the insulin/IGF/MAPK 

pathway, indicating that genes within this pathway may be important to the female response to 

inflammatory stress. Although not interrogated in the context of GDM, the IGF axis has been 

reported to be differentially regulated in a sex-dependent manner in other inflammatory related 

diseases during pregnancy such as asthma (Clifton et al., 2010). The role for the IGF axis within 

the placenta has not been well established although its possible importance in the sex-dependent 

response to inflammatory insults should be investigated further.     

The most fascinating aspect of our study was the combination of GDM and MIA. The 

combined inflammatory stress of GDM and MIA reveals changes in 38% of the genes in our 

panel. Of the genes decreased in expression, 60% were regulated in a sex-dependent manner 

while only 30% of those genes increasing in expression displayed sexual dimorphism. Again, the 

insulin/IGF/MAPK pathway was more significantly changed in female placentae compared to 

male, stressing its possible importance in the placental response to maternal inflammatory stress. 

Although a more comprehensive study on the placental transcriptome is necessary to make any 

conclusions regarding the role of sexual dimorphism in the context of maternal inflammatory 

stress, these studies have laid the groundwork for studies to come. In summary, this work 

suggests that the common antenatal stressors of GDM and MIA impact immune gene expression 
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within the placenta and that when combined they appear to interact changing placental gene 

expression patterns in a sex-dependent manner. 

The underlying mechanism driving the increased risk of NDCs in the context of maternal 

inflammation is unknown, although multiple studies have described how metabolic stress in the 

form of dyslipidemia can influence inflammatory mediators (Robbins, Wen, & Ting, 2014). In 

chapter 5 we began to mechanistically test some of the observations described in earlier chapters. 

The increases in IL-1β seen in the amniotic fluid of GDM mice, but not in the maternal serum, 

lead us to hypothesize that the placenta may be the source of this pro-inflammatory cytokine. 

The role of the IL-1 family of cytokines has been well established in T2D (Banerjee & Saxena, 

2012) and studies have identified its dysregulation in cases of GDM (Lappas, 2014; S. Yanai et 

al., 2016). We established that primary PMs secrete increased levels of IL-1β in response to 

stimulation with palmitate, but not in response to levels of glucose and insulin physiologically 

relevant in diabetic states. This increase in IL-1β was accompanied by an increase in caspase-1 

release. Pro-caspase-1 is autocatalytically cleaved into its active form upon activation and 

assembly of the NLRP3 inflammasome (Wilson et al., 1994).  We were also able to show that 

inflammasome assembly was occurring in PMs as a consequence of palmitate exposure by 

NLRP3-ASC complex formation. Although much works needs to be done in order to fully 

understand the mechanisms through which palmitate is stimulating increased levels of IL-1β 

production by PMs we were able to establish that PMs are indeed able to produce IL-1β in 

response to palmitate and that this increase is accompanied by inflammasome assembly and 

increased levels of caspase-1.  

Altogether, this body of work concludes that maternal stress, either in the form of 

metabolic stress induced by GDM or immune stress as induced by maternal infection, affects 
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multiple aspects of development and maternal and fetal health in some cases in a sexual 

dimorphic manner. Defining the phenomenon that occur as a result of maternal inflammatory 

stress within the placenta and fetal brain will allow for more focused and insightful future 

questions regarding the underlying mechanisms to be interrogated. Ultimately these studies will 

help lead to a better understanding how maternal stressors influence the developmental origins of 

health and disease. 

 

Future directions 

 

Behavioral studies of GDM and MIA mice 

First and foremost, I believe that one of the most important studies that should be 

completed to round out the work presented in chapters 3 and 4 are behavioral studies of the 

offspring born to mothers who were exposed to our models of GDM, MIA, and the combination 

of the two. The research conducted by our collaborators and others defined the neurocognitive 

phenotypes in the offspring of MIA mice and pioneered our understanding of the topic leading us 

to form the hypotheses presented here. I feel like it is essential to move beyond just gene 

expression studies and look at real world phenotypes that are characteristic of autism and 

schizophrenia in mice. These behavioral studies would truly allow for us to see if the interactions 

between the two maternal stressors of GDM and MIA culminate in differential or synergistic 

behavioral phenotypes in the offspring. Once the baseline phenotypes were evaluated, we could 

expand our knowledge by repeating the entire set of experiments using inhibitors of or antibodies 

against particular mediators of interest such as IL-6 and IL-1β in order to gain mechanistic 

insight into the phenotypes of interest. 
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Use of live flu virus in conjunction with GDM 

Although widely used as a viral mimic, poly(I:C) is not a live virus. As mentioned in 

previous sections there are many advantages to using poly(I:C) over live viruses, however, live 

viruses may initiate phenotypes and interact in ways that you would not see given the use of a 

viral mimic. I would propose to repeat the experimental design outlined and utilized in chapters 3 

and 4 using live Influenza virus in the context of GDM. The use of live virus may initiate 

perturbations not otherwise seen and interact with cells in ways independent of its contact with 

the immune system. In conjunction with the use of live Influenza virus, I would also propose to 

use other viruses known to cause complications either during pregnancy or to the offspring as a 

result of maternal infection such as Cytomegalovirus. These experiments would allow us to 

identify virus specific outcomes in gene expression, maternal and fetal inflammation, and 

offspring behavioral studies.  

In conjunction with the use of live virus, I would propose to expand the gene expression 

panel to a more global and non-biased RNAseq platform. This way we could better monitor 

global changes in fetal brain and placental development as a consequence of infection and GDM. 

 

Explore sexual-dimorphism in neurobehavioral comorbidities in MIA and GDM 

Our study design outlined in chapter 3 did not make it possible for us to explore the role 

of sexual-dimorphism in fetal brain gene expression patterns. As evidence mounts suggesting 

that fetal and placental sex play a large part in conferring the risk of NCDs to the offspring as a 

result of maternal inflammatory insults I think it will be of the utmost importance to include fetal 

and placental sex as a variable in data analysis.  

The effect of paternal inflammatory status on fetal outcomes 



 136 

The developing fetus, and thus the placenta, is genetically influenced by both the mother 

and the father equally. The vast majority of studies that interrogate the DOHaD paradigm do so 

from the stand point of the mother and how the maternal environment influences fetal outcomes. 

Although limited in number, studies have shown that paternally derived factors also have the 

ability to influence pregnancy related outcomes and offspring health (Ding, Lambert, Aronoff, 

Osteen, & Bruner-Tran, 2018; Ding, Mokshagundam, Rinaudo, Osteen, & Bruner-Tran, 2018). It 

would be interesting to expose the paternal germ line to inflammatory insults such as MIA, live 

viral infections, and or GDM prior to mating in order to assess how the heightened inflammatory 

status of the father affects his progeny. Assessment of fetal brain gene expression patterns and 

placental gene expression patterns when compared to our data from maternal stimulation would 

allow for a direct comparison looking at the contribution of both parents to changes in fetal 

outcomes.  

 

The impact of GDM and MIA on the maternal, fetal gut, and placental microbiome  

Until recently the placenta was considered a sterile pathogen-free zone. Recent evidence 

has suggested otherwise. In fact, the placenta contains a distinct microbial signature (Aagaard et 

al., 2014). Furthermore, it has been reported that these distinct placental microbes begin to 

colonize the fetal gut shortly before birth (Collado, Rautava, Aakko, Isolauri, & Salminen, 

2016).  These fascinating findings lead me to my most exciting future direction which explores 

the impact of maternal inflammatory stress in the form of viral infection and GDM on the fetal 

gut and placental microbiome in a sex-dependent manner. This future direction even ties in our 

mechanistic studies presented in chapter 5 as it is known that inflammasomes are important 

regulators of the gut microbiome and gut homeostasis (Henao-Mejia et al., 2012). These sets of 
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experiments, although ambitious, would lead to a great deal of insight into the DOHaD paradigm 

while incorporating multiple different realms of biomedical research.         
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SUPPLEMENTAL INFORMATION 

 

Supplemental Table 1. Gestational diabetic case demographics 

25 placental samples from women diagnosed with GDM were chosen for this study. Displayed 

below is the case patient information gathered from the synthetic derivative electronic medical 

record. These cases were matched to controls based upon the information provided in this table.  

 

maternal age weeks gestation Race/Ethnicity delivery method 

39 37 2/7 Caucasian cesarean 

25 38 2/7 Caucasian cesarean 

19 38 5/7 African American cesarean 

28 36  Caucasian cesarean 

21 35 5/7 African American cesarean 

19 38 1/7 African American vaginal 

26 33 6/7 Caucasian vaginal 

34 39  Caucasian cesarean 

28 39 Caucasian cesarean 

28 35 3/7 Caucasian vaginal 

37 36 3/7 Caucasian vaginal 

38 39 Asian-pacific Vaginal 

33 36  Caucasian  Vaginal 

31 38  Caucasian Vaginal 

36 33  African American Vaginal 

31 39  Asian-pacific cesarean 

32 37  Unknown cesarean 

23 36.2  Caucasian cesarean 

28 36  Caucasian vaginal 

27 34  Caucasian cesarean 

29 39  African American cesarean 

31 34 1/7 other non-Hispanic vaginal 

32 39  Caucasian cesarean 
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41 39 Hispanic cesarean 

25 39 African American cesarean 

 

 

Supplemental Table 2. Litter statistics 

35 GD12.5 pregnant dams and 36 GD16.5 pregnant dams were sacrificed, and the embryos 

collected. Average litter size, average number of resorptions and mal-developed pups (runts, 

severe hemorrhage or hypoxia) per litter, average ratio of male:female embryos, and average 

embryo crown-rump length are listed with SEM in the table below. 

 

Diet Exposure 

GD 

age 

Number 

of litters 

litter 

size resorptions 

mal-

developed 

embryos 

male : 

female 

ratio 

Crown 

– rump 

length 

CTR SAL 12.5 9 7.0 ± 

0.4 

1.3 ± 0.7 0.2 ± 0.2 0.6 ± 0.1 8.6 ± 0.1 

CTR MIA 12.5 8 7.8 ± 

1.0 

1.6 ± 0.6 0.3 ± 0.3 0.6 ± 0.1 8.3 ± 0.1 

HF SAL 12.5 9 8.0 ± 

0.5  

1.1 ± 0.6 0.2 ± 0.2 0.5 ± 0.1 8.4 ± 0.1 

HF MIA 12.5 9 7.4 ± 

0.4 

2.0 ± 0.8 0.1 ± 0.1 0.5 ± 0.0 8.4 ± 0.1 

                  

CTR SAL 16.5 9 6.8 ± 

0.8 

1.8 ± 0.8 0.3 ± 0.2 0.5 ± 0.1 15.5 ± 

0.2 

CTR MIA 16.5 9 7.3 ± 

0.4 

1.4 ± 0.4 0.1 ± 0.1 0.6 ± 0.1 14.8 ± 

0.1 

HF SAL 16.5 9 7.8 ± 

0.6 

0.9 ± 0.3 0.1 ± 0.1 0.7 ± 0.1 15.1 ± 

0.2 

HF MIA 16.5 9 6.7 ± 

0.7 

2.4 ± 0.6 0.2 ± 0.2 0.6 ± 0.1 14.9 ± 

0.2 
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Supplemental Figure 1. High fat diet does not produce a diabetic phenotype at GD0.5. Body 

composition, 6 hour fasting glucose and insulin, and glucose tolerance measurements were 

performed on a cohort of high fat and control fed GD0.5 pregnant dams (n=8 per group). (A) 

High fat fed dams did not show significant increases in body weight. (B) Whole body NMR also 

did not show significant changes in % body mass. (C-D) Neither 6 hour fasting blood glucose or 

serum insulin were significantly altered in high fat dams. (E-F) After a 6 hour fast, dams were 

injected intraperitoneally with 2 g dextrose/kg body weight. No significant difference in blood 
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glucose between control and high fat dams was observable at 0 10, 20, 30, 60, and 75 minutes 

post-injection. Error bars represent SEM. Significance of p<0.05 is indicated by * and 

determined by unpaired student t-test with Welch’s correction in all assays, n=6 dams per group. 
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Supplemental Figure 2. 8 weeks of high fat diet produces increased body weight and a 

trend towards altered glucose tolerance. Body composition, 6 hour fasting glucose and insulin, 

and glucose tolerance measurements were performed on a cohort of high fat and control fed non-

pregnant dams (n=8 per group). The purpose of this experiment was to determine if the GD12.5 

high fat dams were glucose intolerant due to pregnancy + 8 weeks of high fat diet or if 8 weeks 

of high fat diet alone was sufficient to induce glucose intolerance. (A-B) High fat dams had a 

significantly increased body weight but not altered body composition. (C-D) Fasting glucose and 

insulin after a 6 hour fast were NOT impaired in HF dams, unlike that seen in the pregnant 

cohort. (E-F) When challenged with 2 g/kg dextrose after a 6 hour fast, HF dams show 

significant differences at two time points (45 and 60 minutes post-injection), and there is a strong 

trend although not significant of a significantly increased area under the curve (best measure of 

glucose intolerance). Error bars represent SEM. Significance of p<0.05 indicated by * and 

determined by unpaired student t-test, n=8 for HF and CTR. 
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Supplemental Figure 3. HFD and MIA do not alter cytokine or chemokine profiles within 

maternal serum at GD16.5 Maternal serum collected via cardiac puncture 4 days  post injection 

with either saline or 20mg/kg Poly I:C potassium salt on GD12.5 was analyzed for chemokine 

and cytokine levels via conjugated bead array multiplex assay. Error bars represent SEM. 

Significance indicated by letters with similar letters dictating no significance as determined by 

one-way ANOVA with Tukey’s multiple comparisons post-test in all assays. (n=9 except for 

Poly I:C treated non-HFD where n=8).  
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Supplemental Figure 4. High fat diet induced gestational diabetes and MIA continue to 

alter serum factor levels at GD16.5. Maternal serum collected at GD16.5- 4 days after 

poly(I:C) exposure- was analyzed for chemokine, cytokine, and metabolic hormone levels via 

Luminex multiplex assay. Only those serum factors that demonstrated a significant difference in 

at least one comparison (SAL vs. MIA, SAL vs. HFS, or HFS vs. HFM) are shown. (A) The only 

cytokine/chemokine significantly increased by MIA at GD16.5 was IL13, which actually was not 

significantly different at GD12.5. This was only observed in the control context and not in the 

context of high fat diet induced gestational diabetes. (B) The anti-inflammatory metabolic 

hormone adiponectin remained significantly decreased by high fat diet induced gestational 

diabetes at GD16.5, but was also increased by MIA in the context of high fat diet induced 

gestational diabetes, bringing the HFM group to a similar level as MIA and SAL. (C) The pro-

inflammatory satiety hormone leptin also remained significantly increased by high fat diet 

induced gestational diabetes, but the further increase by MIA only in the context of high fat diet 

induced gestational diabetes was no longer observable. Error bars represent SEM. Significance 

of p<0.05 is indicated by * and determined by unpaired student t-test with Welch’s correction in 

all assays. Serum was collected at GD16.5, four days after poly(I:C) exposure, from dams whose 

embryos were utilized for Nanostring gene expression analysis (SAL n=9, MIA n=9, HFS n=9, 

HFM n=9). 
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Supplemental Table 3. Both high fat diet and MIA alter gene expression at GD12.5. 

Genes listed demonstrated a significant change in expression in either HFM, MIA, or HFS when 

compared to SAL (57 genes). The log2(counts) values, which are listed with SEM, for each 

group was utilized for a supervised hierarchical clustering analysis shown in Figure 7. 

Significance was determined by unpaired student t-test with Welch’s correction and p<0.05 

(significant values are shaded).  

 

 SAL HFS MIA HFM 

Gene 

log2 

(counts) 

log2 

(counts) 

ALR 

(HFS-

SAL) p-value 

log2 

(counts) 

ALR 

(MIA-

SAL) p-value 

log2 

(counts) 

ALR 

(HFM-

SAL) p-value 

Ager 

7.21 ± 

0.11 

7.38 ± 

0.07 0.17  0.182 

7.41 ± 

0.04 0.21 0.088 

7.64 ± 

0.07 0.44 0.003 

Alox12 

4.37 ± 

0.08 

4.43 ± 

0.21 0.06 0.778 

4.89 ± 

0.12 0.52 0.003 

3.96 ± 

0.18 -0.42 

0.045, 

ns 

Bcl6 

4.89 ± 

0.13 

4.73 ± 

0.09 -0.16 0.302 

4.22 ± 

0.12 -0.67 0.001 

4.81 ± 

0.11 -0.08 0.637 

C1qb 

9.05 ± 

0.04 

8.99 ± 

0.05 -0.06 0.303 

8.97 ± 

0.05 -0.08 0.242 

8.91 ± 

0.05 -0.14 0.030 

Cd55 

6.90 ± 

0.12 

6.78 ± 

0.06 -0.13 0.342 

6.63 ± 

0.05 -0.27 0.049 

6.62 ± 

0.07 -0.29 0.051 

Creb1 

7.64 ± 

0.06 

7.66 ± 

0.06 0.02 0.793 

7.34 ± 

0.09 -0.30 0.014 

7.45 ± 

0.05 -0.19 0.025 

Cysltr1 

3.45 ± 

0.09 

3.50 ± 

0.13 0.06 0.718 

3.73 ± 

0.18 0.28 0.188 

3.90 ± 

0.17 0.45 0.030 

Dckl1 

12.19 ± 

0.09 

12.11 ± 

0.05 -0.08 0.45 

11.87 ± 

0.10 -0.32 0.024 

12.19 ± 

0.07 0.00 0.994 

Ddit3 

9.69 ± 

0.03 

9.84 ± 

0.05 0.14 0.017 

9.71 ± 

0.04 0.02 0.631 

9.69 ± 

0.05 0.00 0.988 

En1 3.97 ± 3.46 ± -0.51 0.049 3.92 ± -0.05 0.855 3.71 ± -0.27 0.360 
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0.23 0.06 0.21 0.19 

Flt1 

8.84 ± 

0.02 

8.92 ± 

0.03 0.08 0.051 

9.04 ± 

0.07 0.20 0.025 

9.24 ± 

0.05 0.41 0.000 

Foxg1 

10.75 ± 

0.03 

10.85 ± 

0.04 0.11 0.052 

10.83 ± 

0.08 0.09 0.311 

11.07 ± 

0.05 0.33 0.000 

Fxyd2 

7.09 ± 

0.06 

7.15 ± 

0.06 0.06 0.509 

6.83 ± 

0.10 -0.26 0.048 

7.07 ± 

0.06 -0.03 0.730 

Gabra2 

9.42 ± 

0.09 

9.30 ± 

0.04 -0.11 0.243 

9.01 ± 

0.13 -0.41 0.018 

9.26 ± 

0.07 -0.16 0.162 

Gad1 

9.74 ± 

0.09 

9.77 ± 

0.06 0.02 0.837 

9.64 ± 

0.10 -0.11 0.396 

10.07 ± 

0.06 0.33 0.006 

Gnaq 

12.67 ± 

0.04 

12.62 ± 

0.02 -0.05 0.295 

12.52 ± 

0.04 -0.15 0.028 

12.65 ± 

0.03 -0.02 0.722 

Hmgb2 

9.92 ± 

0.05 

10.11 ± 

0.04 0.19 0.009 

9.88 ± 

0.05 -0.03 0.636 

9.97 ± 

0.04 0.05 0.464 

Ifi44 

3.82 ± 

0.19 

3.54 ± 

0.12 -0.28 0.197 

4.94 ± 

0.35 1.12 0.017 

5.70 ± 

0.40 1.88 0.001 

Ifit1 

3.54 ± 

0.12 

3.47 ± 

0.09 -0.07 0.627 

4.61 ± 

0.34 1.07 0.017 

5.63 ± 

0.41 2.09 0.001 

Ifit2 

8.86 ± 

0.04 

8.81 ± 

0.05 -0.04 0.483 

8.95 ± 

0.04 0.09 0.074 

9.18 ± 

0.09 0.32 0.004 

Ifit3 

4.66 ± 

0.14 

4.93 ± 

0.16 0.27 0.197 

5.77 ± 

0.32 1.11 0.010 

6.79 ± 

0.38 2.13 0.000 

Ifitm3 

8.41 ± 

0.10 

8.15 ± 

0.05 -0.26 0.027 

8.54 ± 

0.13 0.13 0.410 

8.79 ± 

0.12 0.38 0.017 

Ifna1 

3.36 ± 

0.04 

3.86 ± 

0.20 0.51 0.026 

3.44 ± 

0.08 0.09 0.350 

3.54 ± 

0.13 0.18 0.191 

Il11 

3.32 ± 

0.00 

3.56 ± 

0.10 0.23 0.043 

3.35 ± 

0.03 0.03 0.374 

3.39 ± 

0.07 0.06 0.358 

Il18rap 3.79 ± 4.15 ± 0.36 0.102 4.02 ± 0.23 0.161 4.30 ± 0.51 0.002 
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0.10 0.19 0.12 0.11 

Irf1 

7.01 ± 

0.08 

7.01 ± 

0.07 0.00 0.973 

7.14 ± 

0.09 0.13 0.270 

7.28 ± 

0.10 0.27 0.040 

Irf5 

4.86 ± 

0.08 

4.82 ± 

0.07 -0.05 0.637 

4.92 ± 

0.11 0.06 0.685 

4.64 ± 

0.04 -0.22 0.019 

Irf7 

3.78 ± 

0.16 

3.64 ± 

0.13 -0.14 0.478 

4.62 ± 

0.36 0.84 0.060 

5.22 ± 

0.35 1.45 0.002 

Maff 

6.21 ± 

0.07 

6.21 ± 

0.11 0.00 0.985 

6.35 ± 

0.10 0.14 0.258 

6.69 ± 

0.07 0.48 0.000 

Map3k

5 

6.93 ± 

0.13 

6.76 ± 

0.07 -0.17 0.238 

6.58 ± 

0.08 -0.34 0.033 

6.61 ± 

0.08 -0.32 0.040 

Mapk1 

11.22 ± 

0.04 

11.26 ± 

0.04 0.04 0.416 

11.26 ± 

0.05 0.04 0.514 

11.37 ± 

0.04 0.15 0.009 

Mef2a 

9.38 ± 

0.07 

9.19 ± 

0.03 -0.19 0.027 

9.16 ± 

0.07 -0.23 0.031 

9.12 ± 

0.05 -0.26 0.007 

Mef2c_

Mm 

8.94 ± 

0.09 

8.76 ± 

0.04 -0.18 0.074 

8.71 ± 

0.03 -0.23 0.026 

8.87 ± 

0.05 -0.06 0.500 

Mx2 

4.29 ± 

0.17 

4.93 ± 

0.09 0.64 0.004 

5.54 ± 

0.21 1.25 0.000 

6.18 ± 

0.21 1.88 0.000 

Myc 

9.85 ± 

0.07 

9.72 ± 

0.03 -0.13 0.081 

9.53 ± 

0.09 -0.32 0.010 

9.72 ± 

0.05 -0.13 0.140 

Myd88 

7.52 ± 

0.06 

7.40 ± 

0.03 -0.12 0.097 

7.32 ± 

0.04 -0.20 0.016 

7.34 ± 

0.06 -0.19 0.043 

Ncam1 

13.75 ± 

0.08 

13.71 ± 

0.04 -0.05 0.603 

13.49 ± 

0.07 -0.26 0.020 

13.82 ± 

0.05 0.07 0.483 

Ncam2 

9.41 ± 

0.08 

9.37 ± 

0.02 -0.04 0.646 

9.17 ± 

0.09 -0.24 0.048 

9.46 ± 

0.06 0.06 0.560 

Nfe2l2 

10.52 ± 

0.04 

10.44 ± 

0.06 -0.08 0.238 

10.34 ± 

0.04 -0.18 0.006 

10.26 ± 

0.04 -0.26 0.000 

Nr3c1 8.80 ± 8.70 ± -0.10 0.261 8.63 ± -0.17 0.047 8.65 ± -0.15 0.073 
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0.07 0.06 0.03 0.04 

Oasl1 

3.32 ± 

0.00 

3.32 ± 

0.00 0.00 1.000 

4.39 ± 

0.34 1.07 0.016 

5.30 ± 

0.36 1.97 0.000 

Pdgfa 

9.60 ± 

0.09 

9.50 ± 

0.03 -0.09 0.299 

9.27 ± 

0.07 -0.33 0.010 

9.37 ± 

0.05 -0.23 0.026 

Ppp1r1

2b 

9.07 ± 

0.05 

9.08 ± 

0.04 0.01 0.877 

8.88 ± 

0.05 -0.19 0.016 

9.01 ± 

0.03 -0.06 0.255 

Ptgs1 

6.28 ± 

0.06 

6.07 ± 

0.07 -0.21 0.031 

6.16 ± 

0.07 -0.11 0.199 

6.15 ± 

0.09 -0.13 0.236 

Ripk1 

8.28 ± 

0.04 

8.25 ± 

0.05 -0.03 0.648 

8.07 ± 

0.06 -0.21 0.014 

8.06 ± 

0.04 -0.22 0.001 

Rock2 

9.88 ± 

0.04 

9.81 ± 

0.03 -0.07 0.180 

9.73 ± 

0.05 -0.15 0.026 

9.78 ± 

0.04 -0.10 0.077 

Shh 

10.71 ± 

0.07 

10.90 ± 

0.03 0.19 0.024 

10.88 ± 

0.09 0.17 0.143 

10.83 ± 

0.05 0.12 0.180 

Slc2a1 

11.23 ± 

0.02 

11.28 ± 

0.01 0.05 

0.040, 

ns 

11.37 ± 

0.06 0.14 0.046 

11.46 ± 

0.05 0.23 0.001 

Slc2a3 

9.61 ± 

0.04 

9.73 ± 

0.02 0.12 

0.021, 

ns 

9.70 ± 

0.06 0.10 0.201 

9.90 ± 

0.07 0.29 0.003 

Stat1 

9.31 ± 

0.03 

9.34 ± 

0.03 0.03 0.457 

9.43 ± 

0.05 0.12 

0.046, 

ns 

9.50 ± 

0.07 0.19 0.025 

Syt1 

9.55 ± 

0.09 

9.53 ± 

0.06 -0.02 0.864 

9.26 ± 

0.09 -0.29 0.025 

9.61 ± 

0.06 0.07 0.517 

Tcf4 

13.84 ± 

0.04 

13.75 ± 

0.03 -0.09 0.095 

13.65 ± 

0.07 -0.19 0.040 

13.80 ± 

0.04 -0.04 0.519 

Tgfb3 

8.24 ± 

0.17 

7.95 ± 

0.06 -0.29 0.119 

7.80 ± 

0.08 -0.45 0.028 

8.07 ± 

0.09 -0.18 0.349 

Tnfaip3 

7.33 ± 

0.06 

7.46 ± 

0.05 0.13 0.107 

7.29 ± 

0.09 -0.04 0.733 

7.58 ± 

0.09 0.25 0.036 

Traf2 9.62 ± 9.67 ± 0.05 0.326 9.46 ± -0.15 0.040 9.44 ± -0.18 0.008 
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0.03 0.04 0.06 0.05 

Vamp1 

7.78 ± 

0.08 

7.89 ± 

0.03 0.11 0.233 

7.81 ± 

0.08 0.03 0.765 

8.09 ± 

0.03 0.31 0.004 

Vegfa 

11.20 ± 

0.03 

11.42 ± 

0.04 0.22 0.000 

11.44 ± 

0.10 0.24 0.033 

11.69 ± 

0.07 0.49 0.000 

 

 

 

Supplemental Table 4. GDM and MIA alter gene expression at GD12.5. 

Genes listed demonstrated a significant change in expression in HFS, MIA, or HFS+MIA when 

compared to S. The difference of log2 (counts) between control and each treatment/diet group 

was utilized for Venn diagram in Figure 10. Significance was determined by multiple t-tests 

with FDR<0.01 and p<0.05.  

 

Genes induced in GD12.5 high-fat diet induced GDM 

 Difference Fold Change FDR p-value 

C1s 2.51 1.18 * 7.33E-09 

Ccl8 3.91 1.20 * 6.43E-12 

Hspb1 14.79 1.20 * 9.51E-21 

Ifit3 5.20 1.21 * 1.62E-14 

Il18rap 3.94 1.29 * 1.72E-12 

Masp2 4.26 1.26 * 2.13E-09 

Mx2 10.89 1.56 * 2.46E-20 

Tslp 2.89 1.19 * 2.27E-09 

Pax5 5.45 1.23 * 1.22E-15 

Vegfa 394.12 1.17 * 0.00E+00 

 

Genes repressed in GD12.5 high-fat diet induced GDM 

 Difference Fold Change FDR p-value 

Arg1 -12.04 0.70 * 2.42E-15 
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Ccl21a -42.76 0.84 * 9.51E-28 

Ccl7 -2.73 0.82 * 5.66E-10 

Ifi44 -2.52 0.82 * 1.90E-09 

Itgb2 -5.38 0.80 * 1.16E-12 

Nlrp3 -2.60 0.81 * 2.45E-13 

Oas1a -3.56 0.84 * 7.15E-10 

Pla2g4a -16.20 0.85 * 8.64E-24 

Ptger4 -3.37 0.78 * 4.14E-11 

Ptgfr -9.61 0.77 * 1.37E-16 

Tgfb2 -121.72 0.84 * 1.81E-38 

Tgfb3 -55.39 0.82 * 5.81E-32 

Twist2 -23.33 0.75 * 6.96E-18 

Chat -2.11 0.85 * 4.39E-10 

Cryab -6.48 0.75 * 1.35E-11 

En1 -4.70 0.70 * 5.39E-13 

En2 -2.63 0.81 * 2.06E-09 

Ifitm3 -55.76 0.84 * 1.52E-35 

 

Genes induced in GD12.5 MIA 

 Difference Fold Change FDR p-value 

Ager 22.62 1.15 * 4.95E-27 

Alox12 9.06 1.44 * 6.42E-20 

Ccl2 5.58 1.30 * 3.38E-13 

Ccl3 3.89 1.15 * 8.25E-13 

Ifi44 16.63 2.18 * 3.06E-17 

Ifit1 12.84 2.11 * 3.47E-16 

Ifit3 29.20 2.15 * 8.91E-22 

Il18rap 2.38 1.17 * 1.22E-10 

Irf7 10.85 1.79 * 1.44E-14 

Masp2 2.68 1.16 * 1.08E-05 
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Mx2 27.07 2.38 * 8.62E-23 

Oas1a 6.65 1.29 * 4.41E-13 

Vegfa 423.91 1.18 * 0.00E+00 

 

Genes repressed in GD12.5 MIA 

 Difference Fold Change FDR p-value 

Arg1 -10.47 0.74 * 2.66E-14 

Bcl6 -11.03 0.63 * 9.79E-20 

Ccl21a -60.27 0.77 * 7.00E-28 

Cd55 -20.79 0.83 * 1.21E-25 

Creb1 -37.13 0.81 * 5.81E-31 

Fxyd2 -22.69 0.83 * 4.33E-27 

Ifi27l2a -6.04 0.77 * 2.94E-12 

Il6ra -3.39 0.76 * 5.24E-12 

Map3k5 -25.65 0.79 * 3.62E-26 

Mef2b -2.85 0.80 * 6.19E-09 

Mmp9 -31.25 0.76 * 1.95E-24 

Myc -183.11 0.80 * 0.00E+00 

Nlrp3 -2.07 0.85 * 5.55E-10 

Pdgfa -156.80 0.80 * 0.00E+00 

Prkca -73.22 0.84 * 5.61E-34 

Ptger3 -13.07 0.79 * 1.91E-17 

Ptger4 -2.49 0.83 * 1.59E-07 

Ptgfr -11.97 0.71 * 3.76E-17 

Tgfb3 -80.95 0.73 * 3.37E-32 

Twist2 -15.91 0.83 * 3.74E-13 

Bdnf -8.10 0.82 * 2.49E-16 

Dckl1 -925.97 0.80 * 0.00E+00 

Drd1a -13.08 0.66 * 1.09E-16 

Drd2 -13.28 0.80 * 6.89E-22 
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En2 -2.09 0.85 * 2.20E-07 

Gabra2 -168.67 0.75 * 1.89E-38 

Ncam1 -2295.92 0.83 * 0.00E+00 

Ncam2 -102.90 0.85 * 3.46E-37 

Npy -112.55 0.80 * 4.26E-35 

Pax5 -3.85 0.84 * 1.83E-11 

Syt1 -135.50 0.82 * 1.33E-38 

 

Genes induced in GD12.5 GDM + MIA 

 Difference Fold Change FDR p-value 

Ager 52.37 1.35 * 4.54E-34 

C1s 4.71 1.33 * 1.16E-13 

Ccl2 7.23 1.39 * 5.01E-16 

Ccl8 3.32 1.17 * 5.39E-13 

Cysltr2 5.62 1.19 * 2.59E-15 

Flt1 148.59 1.32 * 0.00E+00 

Fos 5.07 1.16 * 2.71E-14 

Ifi44 37.87 3.68 * 3.95E-23 

Ifit1 37.87 4.26 * 2.26E-23 

Ifit2 115.49 1.25 * 0.00E+00 

Ifit3 85.49 4.38 * 1.97E-29 

Iigp1 3.43 1.30 * 3.06E-09 

Il18rap 5.84 1.42 * 1.01E-17 

Irf1 26.56 1.21 * 2.62E-29 

Irf7 23.66 2.72 * 7.09E-21 

Maff 28.93 1.39 * 2.46E-31 

Map3k9 19.09 1.21 * 2.09E-25 

Masp2 3.12 1.19 * 2.35E-07 

Mx2 52.75 3.69 * 6.72E-29 

Myl2 3.70 1.32 * 2.73E-07 
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Tlr2 4.92 1.23 * 3.51E-12 

Tlr5 3.60 1.30 * 2.44E-11 

Tnfaip3 30.35 1.19 * 5.03E-31 

Tslp 3.61 1.24 * 1.41E-11 

Foxg1 437.41 1.25 * 0.00E+00 

Gad1 220.45 1.26 * 0.00E+00 

Ifitm3 102.30 1.30 * 1.62E-37 

Slc2a1 415.71 1.17 * 0.00E+00 

Slc2a3 175.35 1.22 * 0.00E+00 

Vamp1 52.83 1.24 * 1.66E-36 

Vegfa 953.36 1.41 * 0.00E+00 

 

Genes repressed in GD12.5 GDM + MIA 

 Difference Fold Change FDR p-value 

Alox12 -5.17 0.75 * 4.61E-15 

Arg1 -17.33 0.57 * 2.06E-18 

Cd55 -21.52 0.82 * 3.81E-27 

Itgb2 -4.06 0.85 * 6.48E-13 

Map3k5 -24.12 0.80 * 1.45E-27 

Mef2a -111.62 0.83 * 0.00E+00 

Mef2b -2.32 0.84 * 1.29E-07 

Nfe2l2 -244.85 0.83 * 0.00E+00 

Tradd -8.93 0.84 * 5.59E-20 

En1 -2.64 0.83 * 6.64E-08 

En2 -2.60 0.81 * 4.53E-09 

Fgf8 -23.17 0.84 * 8.28E-27 

Pax5 -3.92 0.83 * 5.72E-12 
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Supplemental Figure 5. GDM and MIA exposure still show altered gene expression 

patterns at GD16.5. Venn diagrams representing the number of genes induced or repressed in 

GDM, MIA or GDM+MIA when compared to control mice fed a normal diet and treated with 

saline. Significant changes in gene expression were determined by multiple t tests, and genes 

with p<0.05, FDR<0.01 were selected. 
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Supplemental Table 5. GDM andMIA exposure continues to show altered gene expression 

patterns at GD16.5. Genes found to be significantly different between SAL and GDM, MIA, 

and GDM+MIA are shown. Significance was determined by multiple t-tests with FDR<0.01 and 

p<0.05. Although less prominent than at GD12.5, each condition continues to show significant 

differences in both inflammation and neurodevelopment gene expression. This demonstrates that 

MIA continues to alter gene expression patterns days after the immune stimulus has passed, and 

GDM continues to have an effect late gestation.  

 

Genes induced at GD16.5 in diet-induced GDM 

 Difference Fold Change FDR p-value 

C8b 12.10 1.50 * 9.83E-14 

Ccl22 4.99 1.20 * 4.23E-13 

Ccl8 2.39 1.20 * 2.82E-06 

Cd55 77.91 1.16 * 1.21E-34 

Hras1 23.34 1.18 * 1.12E-33 

Il1a 2.89 1.16 * 1.10E-06 

Maff 26.20 1.18 * 4.80E-28 

Max 400.42 1.16 * 0.00E+00 

Mef2b 3.84 1.22 * 1.33E-06 

Ptger3 25.02 1.15 * 4.38E-31 

En2 6.27 1.53 * 4.07E-09 

Pax5 13.62 1.96 * 5.60E-15 

 

Genes repressed at GD16.5 in diet-induced GDM 

 Difference Fold Change FDR p-value 

Ccl17 -8.92 0.58 * 4.15E-13 

Ccl7 -4.66 0.82 * 5.97E-07 

Ccr1 -5.29 0.75 * 4.58E-15 

Cd163 -10.69 0.79 * 5.05E-24 

Cfb -4.20 0.75 * 2.34E-10 

Csf1 -32.71 0.79 * 1.54E-24 

Ifi27l2a -8.81 0.83 * 1.37E-17 

Ifit1 -10.15 0.67 * 7.58E-14 

Irf7 -5.23 0.75 * 4.36E-12 

Itgb2 -12.64 0.68 * 4.91E-21 

Lta -2.09 0.84 * 2.11E-08 

Oasl1 -2.95 0.77 * 1.89E-10 

Tlr7 -3.07 0.82 * 5.02E-10 

Tlr9 -4.30 0.81 * 1.39E-14 

Fgf8 -4.81 0.75 * 4.69E-13 
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Genes induced at GD16.5 in MIA 

 Difference Fold Change FDR p-value 

C1ra 2.75 1.21 * 3.40E-08 

C2 6.13 1.16 * 9.01E-15 

C8b 6.20 1.26 * 8.60E-10 

Ccl17 5.84 1.28 * 2.17E-08 

Ccl22 6.71 1.27 * 2.59E-14 

Ccl7 21.32 1.82 * 6.42E-17 

Ccl8 4.24 1.36 * 7.80E-09 

Ccr2 8.82 1.47 * 2.38E-13 

Fasl 4.69 1.26 * 7.74E-11 

Ifi44 13.62 1.46 * 9.50E-19 

Il1a 5.84 1.32 * 1.33E-12 

Irf7 8.14 1.38 * 4.99E-15 

Ltb 3.36 1.16 * 2.59E-09 

Mef2b 16.73 1.94 * 4.37E-15 

Myl2 12.86 1.24 * 6.67E-18 

Nlrp3 3.57 1.16 * 1.53E-07 

Tlr2 6.50 1.26 * 1.13E-13 

Pax5 5.40 1.38 * 5.25E-11 

 

Genes repressed at GD16.5 in MIA 

 Difference Fold Change FDR p-value 

Cd163 -8.69 0.83 * 1.44E-19 

Cfb -3.53 0.79 * 2.06E-09 

Csf1 -29.35 0.82 * 6.66E-24 

Gngt1 -2.29 0.82 * 1.39E-07 

Itgb2 -6.00 0.85 * 1.81E-19 

Oasl1 -2.31 0.82 * 1.10E-08 

Chat -8.93 0.77 * 2.56E-19 

 

Genes induced at GD16.5 in diet-induced GDM+MIA 

 Difference Fold Change FDR p-value 

Alox5 3.08 1.23 * 2.66E-11 

C2 7.25 1.18 * 2.53E-16 

Ccl22 4.44 1.18 * 3.90E-12 

Masp1 504.87 1.17 * 0.00E+00 

Nlrp3 3.86 1.18 * 9.03E-08 

Tlr2 12.50 1.50 * 4.11E-19 

En2 3.00 1.25 * 1.78E-08 

Pax5 11.68 1.82 * 1.44E-15 
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Genes repressed at GD16.5 in diet-induced GDM+MIA 

 Difference Fold Change FDR p-value 

Arg1 -5.75 0.74 * 6.34E-13 

Ccl17 -10.47 0.51 * 1.07E-14 

Ccl24 -6.69 0.85 * 6.18E-19 

Ccr1 -4.97 0.77 * 4.46E-15 

Cd163 -12.32 0.76 * 1.39E-21 

Cfb -5.07 0.70 * 1.73E-11 

Csf1 -24.08 0.85 * 1.69E-22 

Fos -11.48 0.84 * 5.13E-23 

Hspb2 -2.68 0.83 * 6.09E-11 

Ifit1 -8.10 0.74 * 4.38E-11 

Iigp1 -5.23 0.83 * 1.26E-11 

Irf7 -4.19 0.80 * 1.81E-09 

Itgb2 -11.18 0.71 * 3.50E-20 

Oasl1 -2.73 0.79 * 6.52E-10 

Ptgs2 -2.07 0.84 * 1.20E-06 

Tlr5 -2.65 0.82 * 1.39E-08 

Tlr9 -4.48 0.80 * 2.78E-13 

Chat -9.62 0.76 * 7.39E-19 

 

 

Supplemental Table 6. Genes that are included in the Nanostring V2 Mouse Inflammation panel 

utilized in the placental gene expression analysis 

 

Gene Names Included in the Nanostring V2 Mouse Inflammation Panel 

C1s Ccl20 Cxcr4 Il10rb Ltb4r1 Nfatc3 Rock2 

C4a Ccl22 Cysltr1 Il11 Ltb4r2 Nfe2l2 Rps6ka5 

C7 Ccl24 Cysltr2 Il12a Ly96 Nfkb1 Shc1 

Ccl19 Ccl3 Daxx Il12b Maff Nlrp3 Smad7 

Ccl21a Ccl4 Ddit3 Il13 Mafg Nod1 Stat1 

Ccl8 Ccl5 Elk1 Il15 Mafk Nod2 Stat2 

Chi3l3 Ccl7 Fasl Il17a Map2k1 Nos2 Stat3 

Defa-rs1 Ccr1 Flt1 Il18 Map2k4 Nox1 Tbxa2r 

Ifit3 Ccr2 Fos Il18rap Map2k6 Nr3c1 Tcf4 

Ifna1 Ccr3 Fxyd2 Il1b Map3k1 Oas1a Tgfb1 

Il1a Ccr4 Gnaq Il1r1 Map3k5 Oas2 Tgfb2 
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Il22 Ccr7 Gnas Il1rap Map3k7 Oasl1 Tgfb3 

Rhoa Cd163 Gnb1 Il1rn Map3k9 Pdgfa Tgfbr1 

Ager Cd4 Gngt1 Il2 Mapk1 Pik3c2g Tlr1 

Alox12 Cd40 Gpr44 Il21 Mapk14 Pla2g4a Tlr2 

Alox15 Cd40lg Grb2 Il22ra2 Mapk3 Plcb1 Tlr3 

Alox5 Cd55 H2-Ea-ps Il23a Mapk8 Ppp1r12b Tlr4 

Areg Cd86 H2-Eb1 Il23r Mapkapk2 Prkca Tlr5 

Arg1 Cdc42 Hc Il3 Mapkapk5 Prkcb Tlr6 

Atf2 Cebpb Hdac4 Il4 Masp1 Ptger1 Tlr7 

Bcl2l1 Cfb Hif1a Il5 Masp2 Ptger2 Tlr8 

Bcl6 Cfd Hmgb1 Il6 Max Ptger3 Tlr9 

Birc2 Cfl1 Hmgb2 Il6ra Mbl2 Ptger4 Tnf 

C1qa Creb1 Hmgn1 Il7 Mef2a Ptgfr Tnfaip3 

C1qb Crp Hras1 Il9 Mef2b Ptgir Tnfsf14 

C1ra Csf1 Hsh2d Irf1 Mef2c_Mm Ptgs1 Tollip 

C2 Csf2 Hspb1 Irf3 Mef2d Ptgs2 Tradd 

C3 Csf3 Hspb2 Irf5 Mknk1 Ptk2 Traf2 

C3ar1 Cxcl1 Ifi27l2a Irf7 Mmp3 Rac1 Trem2 

C6 Cxcl10 Ifi44 Itgb2 Mmp9 Raf1 Tslp 

C8a Cxcl2 Ifit1 Jun Mrc1 Rapgef2 Twist2 

C8b Cxcl3 Ifit2 Keap1 Mx1 Rela Tyrobp 

C9 Cxcl5 Ifnb1 Kng1 Mx2 Relb   

Ccl11 Cxcl9 Ifng Limk1 Myc Retnla   

Ccl17 Cxcr1 Iigp1 Lta Myd88 Ripk1   

Ccl2 Cxcr2 Il10 Ltb Myl2 Ripk2   
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Supplemental Table 7. Pathways represented in PANTER analysis based upon the genes in 

the Nanostring V2 inflammation panel. All genes that were assessed for gene expression 

changes in the Nanostring V2 inflammation panel were put into the PANTER pathway analysis 

software. The pathways represented by the V2 panel and the number of genes in each of the 

pathways is noted in the below table. 

 

Annotated Pathways in V2 Mouse Inflammation Panel Number of 

Genes in 

Pathway 

Inflammation mediated by chemokine and cytokine signaling pathway (P00031) 52 

Gonadotropin-releasing hormone receptor pathway (P06664) 42 

CCKR signaling map (P06959) 33 

Angiogenesis (P00005) 27 

Toll receptor signaling pathway (P00054) 27 

Apoptosis signaling pathway (P00006) 25 

Interleukin signaling pathway (P00036) 24 

Ras Pathway (P04393) 22 

EGF receptor signaling pathway (P00018) 21 

PDGF signaling pathway (P00047) 20 

p38 MAPK pathway (P05918) 18 

VEGF signaling pathway (P00056) 17 

Integrin signalling pathway (P00034) 17 

FGF signaling pathway (P00021) 17 

T cell activation (P00053) 16 

Oxidative stress response (P00046) 15 

TGF-beta signaling pathway (P00052) 14 

B cell activation (P00010) 14 

Endothelin signaling pathway (P00019) 12 

Wnt signaling pathway (P00057) 10 

Angiotensin II-stimulated signaling through G proteins and beta-arrestin (P05911) 10 

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 

(P00032) 

9 

PI3 kinase pathway (P00048) 8 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway 7 
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(P00027) 

Alzheimer disease-amyloid secretase pathway (P00003) 6 

Interferon-gamma signaling pathway (P00035) 6 

FAS signaling pathway (P00020) 6 

5HT2 type receptor mediated signaling pathway (P04374) 6 

Parkinson disease (P00049) 5 

Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042) 5 

p53 pathway feedback loops 2 (P04398) 5 

Thyrotropin-releasing hormone receptor signaling pathway (P04394) 5 

Oxytocin receptor mediated signaling pathway (P04391) 5 

Huntington disease (P00029) 5 

Histamine H1 receptor mediated signaling pathway (P04385) 5 

Cytoskeletal regulation by Rho GTPase (P00016) 5 

Axon guidance mediated by netrin (P00009) 4 

JAK/STAT signaling pathway (P00038) 4 

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway 

(P00026) 

4 

Axon guidance mediated by Slit/Robo (P00008) 3 

p53 pathway (P00059) 3 

Enkephalin release (P05913) 3 

Cortocotropin releasing factor receptor signaling pathway (P04380) 3 

Axon guidance mediated by semaphorins (P00007) 2 

Alpha adrenergic receptor signaling pathway (P00002) 2 

Plasminogen activating cascade (P00050) 2 

Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043) 2 

Metabotropic glutamate receptor group I pathway (P00041) 2 

Metabotropic glutamate receptor group II pathway (P00040) 2 

Endogenous cannabinoid signaling (P05730) 2 

Hypoxia response via HIF activation (P00030) 2 

Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction 

(P00028) 

2 

Nicotine pharmacodynamics pathway (P06587) 2 

Dopamine receptor mediated signaling pathway (P05912) 2 

Histamine H2 receptor mediated signaling pathway (P04386) 2 

Beta3 adrenergic receptor signaling pathway (P04379) 2 

Beta2 adrenergic receptor signaling pathway (P04378) 2 
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Beta1 adrenergic receptor signaling pathway (P04377) 2 

5HT4 type receptor mediated signaling pathway (P04376) 2 

Toll pathway-drosophila (P06217) 1 

DPP signaling pathway (P06213) 1 

BMP/activin signaling pathway-drosophila (P06211) 1 

Activin beta signaling pathway (P06210) 1 

Alzheimer disease-presenilin pathway (P00004) 1 

Transcription regulation by bZIP transcription factor (P00055) 1 

GABA-B receptor II signaling (P05731) 1 

Metabotropic glutamate receptor group III pathway (P00039) 1 

Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 1 

2-arachidonoylglycerol biosynthesis (P05726) 1 

Opioid proopiomelanocortin pathway (P05917) 1 

Opioid prodynorphin pathway (P05916) 1 

Opioid proenkephalin pathway (P05915) 1 

Blood coagulation (P00011) 1 

5HT1 type receptor mediated signaling pathway (P04373) 1 

 

 

Supplemental Table 8. Placental immune genes differentially regulated by sex in the normal 

diet, saline control group 

 

Gene Name p value Effect Estimate 

C1ra 0.00742 -4.81 

Ccl24 0.02055 1.96 

Ccl4 0.01453 7.14 

Cfl1 0.00539 2095.12 

Cxcl2 0.02904 8.43 

Ddit3 0.01489 368.37 

Ifna1 0.0308 11.13 

Jun 0.00645 257.26 

Ptgs2 0.0433 151.79 

Rac1 0.03921 703.26 

Tlr5 0.04321 -44.74 
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Tlr6 0.0489 8.53 

Tlr8 0.00525 6.99 

 

 

Supplemental Table 9. Inflammatory genes significantly down-regulated in GDM male 

placentae compared to control (normal diet, saline-injected mice) 

 

Gene 

Name 

p value Effect 

Estimate 

Alox5 0.001926946 -42.54733333 

Arg1 0.004757934 -29.95466667 

Bcl2l1 0.00911303 -294.4806667 

Birc2 0.022424927 -86.65766667 

C1qa 5.42307E-06 -67.33933333 

C1qb 7.78421E-06 -87.36233333 

C2 0.034250549 -287.2493333 

Ccl17 0.045018675 -13.04566667 

Ccl5 0.024391854 -14.35166667 

Ccl8 0.001327809 -67.039 

Ccr2 0.001593047 -55.074 

Ccr7 0.000917256 -5.360666667 

Cd55 0.000180472 -2299.446667 

Cdc42 8.19668E-07 -3787.151333 

Chi3l3 0.002931513 -38.79766667 

Fasl 0.000834616 -36.11966667 

Fos 0.032260602 -737.5546667 

Gngt1 0.022292491 -16.52533333 

H2_Eb1 0.000448036 -60.784 

Hc 0.000424382 -43.80033333 

Ifi27l2a 0.000334374 -271.203 
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Ifit1 0.038105124 -186.4636667 

Ifit2 0.003321288 -422.8946667 

Ifit3 0.042938592 -237.8013333 

Iigp1 0.003083693 -127.727 

Il18 0.001186363 -12.35166667 

Il1rap 0.032796542 -98.54566667 

Il1rn 0.003423275 -8.426 

Il6ra 0.000600867 -940.8706667 

Irf1 0.00522281 -151.1853333 

Irf5 0.014295347 -16.592 

Ltb4r1 3.75591E-06 -15.95766667 

Ly96 0.000508472 -206.2116667 

Map3k7 0.014557956 -337.1053333 

Mapk1 0.013142938 -378.2956667 

Masp1 0.00409261 -1236.857 

Mef2a 0.000318597 -179.538 

Mx1 0.001411058 -242.3123333 

Oas2 0.000716271 -61.958 

Pla2g4a 0.04766698 -94.13366667 

Prkcb 0.01605893 -14.98533333 

Ptger2 0.00012342 -15.66466667 

Rac1 0.001496487 -1468.581 

Retnla 2.43648E-07 -18.823 

Ripk1 0.037597673 -51.07433333 

Rock2 0.001292389 -222.8103333 

Stat3 0.017098294 -624.4743333 

Tgfb1 0.000300543 -696.5766667 

Tgfb2 0.026228814 -480.876 

Tlr4 0.002427201 -452.5416667 

Tlr8 1.75227E-05 -10.84533333 

Tnfaip3 0.002507121 -76.42766667 

Tollip 0.013209681 -542.8513333 
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Trem2 0.000159557 -868.547 

Twist2 0.001434843 -49.602 

Tyrobp 0.000131002 -826.4123333 

 

Supplemental Table 10. Inflammatory genes significantly up-regulated in GDM male placentae 

compared to control (normal diet, saline-injected mice) 

Gene Name p value Effect Estimate 

Cxcl2 0.047137709 11.61766667 

Grb2 0.035753225 436.8726667 

Hdac4 0.000646108 485.1873333 

Hspb1 1.66271E-06 8406.071 

Il1r1 0.000860141 510.4433333 

Irf3 0.025725625 17.51666667 

Limk1 0.01536897 588.6323333 

Mafg 0.000571474 323.146 

Mafk 0.026932154 257.3866667 

Map2k6 0.009178745 209.9556667 

Map3k1 0.002014505 103.2533333 

Mapk14 0.000391098 433.9283333 

Mef2b 0.008633252 9.527666667 

Mef2d 0.041015838 262.925 

Myc 0.003347919 432.0903333 

Myd88 0.030464185 236.6826667 

Nfatc3 0.000848957 220.507 

Nos2 1.07767E-06 432.735 

Nr3c1 0.000140557 178.3166667 

Tgfb3 0.004105075 768.624 
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Supplemental Table 11. Inflammatory genes significantly down-regulated in GDM female 

placentae compared to control (normal diet, saline-injected mice) 

 

Gene Name p value Effect Estimate 

Alox5 0.002657516 -42.90666667 

Birc2 0.001678911 -103.39 

Ccl8 0.020947974 -40.58 

Ccr2 0.005000052 -49.24666667 

Cd40 0.002869934 -33.01166667 

Cd55 0.0086493 -1381.636667 

Cdc42 1.69164E-07 -3718.875 

Chi3l3 0.001457773 -37.78 

Fasl 0.011263235 -27.7 

Gngt1 0.000238865 -21.525 

Hc 0.000408656 -38.05333333 

Il10rb 0.006717435 -277.9683333 

Il12b 0.019578984 -3.125 

Il13 0.035996966 -1.623333333 

Il18 0.003353307 -17.66333333 

Il1rap 0.005261877 -59.72833333 

Il6ra 0.000753243 -658.4133333 

Irf1 0.01914598 -102.8866667 

Itgb2 0.02514249 -108.9133333 

Ly96 7.30122E-06 -211.9716667 

Map2k4 0.009317877 -459.2166667 

Map3k7 2.02865E-05 -486.6683333 

Mapk1 6.31208E-05 -357.5 

Mef2a 8.72661E-05 -145.555 

Ppp1r12b 0.04974014 -15.77166667 

Rac1 2.00025E-05 -1502.036667 

Rela 0.014490209 -113.105 

Rps6ka5 0.047803932 -25.605 
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Stat3 0.024819031 -455.045 

Tgfb1 0.001524355 -627.045 

Tnfaip3 0.016694721 -51.63 

Tollip 0.000831075 -542.7566667 

Trem2 6.08834E-05 -816.0333333 

Tyrobp 8.93488E-05 -670.7366667 

 

 

Supplemental Table 12. Inflammatory genes significantly up-regulated in GDM female 

placentae compared to control (normal diet, saline-injected mice) 

Gene Name p value Effect Estimate 

Ccl24 0.032027172 2.115 

Ccl3 0.024972918 17.865 

Csf3 0.003082224 6.7 

Cxcl2 0.004442088 17.14166667 

Daxx 0.019088553 61.27666667 

Gnas 0.017920168 1096.776667 

Grb2 0.012391565 422.545 

Hspb1 4.82945E-14 7136.168333 

Limk1 0.002211185 954.4483333 

Maff 0.001052794 606.1133333 

Mafg 0.048580393 123.6216667 

Mafk 0.036375918 164.645 

Mapk14 0.018899014 106.0633333 

Myc 0.026384777 398.9766667 

Myd88 0.013242547 156.0516667 

Nfatc3 0.032867819 88.93833333 

Nos2 1.32928E-05 299.8416667 

Tlr7 0.026354793 10.08666667 

Traf2 0.041488015 50.87333333 
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Supplemental Table 13. Inflammatory genes significantly down-regulated in MIA male 

placentae compared to control (normal diet, saline-injected mice) 

Gene Name p value Effect Estimate 

Alox5 0.028290457 -38.305 

C8a 0.037954604 -2.596666667 

Ccr2 8.32652E-10 -85.41666667 

Cd55 0.030422733 -1474.191667 

Cdc42 0.000218025 -2717.34 

Cfl1 0.002627437 -2944.211667 

Csf2 0.046893204 -0.476666667 

Cxcr1 0.040973271 -18.895 

Cxcr4 0.001597391 -59.555 

H2_Eb1 0.003301646 -48.40666667 

Hc 0.010176615 -32.42166667 

Hmgb1 0.00271586 -296.3283333 

Keap1 0.004597594 -74.84833333 

Ly96 0.004404948 -132.26 

Mapk14 0.018386112 -195.635 

Masp1 0.027012034 -910.0916667 

Mef2a 0.007008629 -145.815 

Pla2g4a 0.005003258 -113.5766667 

Ppp1r12b 0.025255939 -13.00833333 

Ptgs2 0.003698711 -310.4966667 

Rac1 0.019066249 -1034.328333 

Retnla 0.043272012 -10.215 

Tgfb1 0.009808497 -459.92 

Tlr8 0.007260952 -9.355 

Tollip 0.022370573 -416.54 
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Supplemental Table 14. Inflammatory genes significantly up-regulated in MIA male placentae 

compared to control (normal diet, saline-injected mice)  

 

Gene Name p value Effect Estimate 

Bcl6 4.92493E-05 48.58166667 

C1ra 0.026043722 6.55 

Ccl4 0.000222395 47.79 

Ccl5 3.23584E-05 137.82 

Cebpb 0.000136427 1197.366667 

Cxcl10 2.78515E-13 1869.075 

Cxcl9 6.06393E-05 87.38 

Daxx 9.92234E-10 1291.538333 

Grb2 0.015151275 617.8966667 

Hdac4 0.001243608 498.1866667 

Hsh2d 1.294E-10 79.58333333 

Ifi44 0.000867071 258.1933333 

Ifit1 4.68501E-12 1104.11 

Ifit2 3.06416E-05 739.365 

Ifit3 4.32565E-15 2338.716667 

Iigp1 1.93422E-20 1277.725 

Il15 7.86613E-05 26.085 

Il18rap 0.002163094 5.238333333 

Il1r1 0.015684705 591.06 

Il6 0.000384512 26.64166667 

Irf1 1.39681E-13 590.73 

Irf7 1.48353E-07 889.6433333 

Jun 0.001181313 765.3483333 

Limk1 0.00079421 1077.361667 

Maff 0.000899847 523.2583333 

Mafk 0.000723943 366.1666667 

Map2k1 0.001468616 1773.581667 

Map3k1 6.80898E-09 283.4466667 
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Mx1 0.007468486 230.75 

Mx2 9.37471E-20 1072.621667 

Myc 3.21305E-05 574.11 

Myd88 1.828E-08 1282.4 

Nod1 0.032530351 37.17833333 

Nod2 8.57939E-10 124.4866667 

Nos2 4.78772E-05 524.1266667 

Nr3c1 0.0032139 241.0616667 

Oas1a 2.36618E-05 2625.05 

Oasl1 3.03153E-09 441.2716667 

Ptk2 0.025180371 469.545 

Stat1 9.2138E-09 2480.65 

Stat2 8.56089E-09 2823.29 

Stat3 8.97837E-06 1434.323333 

Tlr3 5.9249E-06 97.89333333 

Tlr5 0.037040533 60.605 

 

 

Supplemental Table 15. Inflammatory genes significantly down-regulated in MIA female 

placentae compared to control (normal diet, saline-injected mice)  

Gene Name p value Effect Estimate 

Ccr2 4.51236E-05 -50.69833333 

Cdc42 4.16829E-05 -2518.83 

Cfl1 0.001907284 -2405.546667 

Cxcr1 0.026250746 -19.37333333 

Cxcr4 1.28666E-09 -105.0666667 

Gpr44 5.37534E-05 -195.49 

Hmgb1 0.000113252 -316.885 

Hmgb2 0.040267232 -6.491666667 

Hmgn1 0.006506691 -1159.956667 

Il10rb 0.001170154 -358.7816667 
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Keap1 0.03801625 -71.37666667 

Ly96 0.000453134 -123.9683333 

Map2k4 0.015424441 -289.9033333 

Map3k7 1.34679E-06 -396.7666667 

Mapk14 3.25408E-05 -285.7333333 

Mapk8 0.001910214 -157.0166667 

Mef2a 0.001033832 -128.03 

Mknk1 0.029765683 -38.68666667 

Ppp1r12b 0.000588804 -17.47 

Ptgfr 4.09749E-06 -42.45333333 

Rac1 9.16008E-06 -1154.17 

Rps6ka5 0.010006455 -25.52666667 

Tgfbr1 0.000179131 -402.1816667 

Tollip 7.45155E-06 -468.9783333 

Tradd 0.026831407 -31.47 

 

 

Supplemental Table 16. Inflammatory genes significantly up-regulated in MIA female 

placentae compared to control (normal diet, saline-injected mice)  

Gene Name p value Effect Estimate 

Alox12 0.003629169 21.16666667 

Bcl6 0.000687227 64.91166667 

C1ra 0.031070011 4.181666667 

Ccl11 0.045540276 3.43 

Ccl19 0.01878264 9.558333333 

Ccl2 0.004767201 211.14 

Ccl21a 0.014500722 10.62166667 

Ccl3 0.006851076 88.76 

Ccl4 4.56563E-06 79.74666667 

Ccl5 0.000280704 199.8266667 

Ccl7 0.015602657 38.92833333 
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Cd86 0.028374925 11.57666667 

Cebpb 4.50835E-08 1828.663333 

Csf1 2.69127E-06 578.1533333 

Csf3 0.007866434 60.34166667 

Cxcl1 0.03566611 143.4666667 

Cxcl10 8.16294E-08 2797.3 

Cxcl2 0.000320823 85.195 

Cxcl9 0.000284436 91.69166667 

Daxx 1.71012E-13 1066.87 

Defa_rs1 0.009160059 6.001666667 

Fos 5.09553E-05 1651.5 

Grb2 0.01408914 407.4666667 

Hif1a 0.026364669 984.345 

Hsh2d 3.49472E-08 58.605 

Ifi44 7.27311E-11 554.315 

Ifit1 1.08477E-06 1725.543333 

Ifit2 3.77589E-06 1447.66 

Ifit3 1.77799E-11 3384.315 

Ifnb1 0.035851348 5.513333333 

Iigp1 2.90761E-11 1857.776667 

Il10 0.038565405 0.38 

Il15 0.002444093 26.215 

Il18rap 0.015146386 7.27 

Il1a 9.63652E-07 30.25333333 

Il1rn 0.002115208 8.963333333 

Il23a 0.001772555 71.49666667 

Il23r 0.000578064 2.325 

Il6 0.001860776 58.6 

Irf1 1.12114E-05 952.8633333 

Irf5 0.001296574 25.09666667 

Irf7 2.06557E-07 882.9216667 

Jun 1.59424E-08 1433.095 
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Limk1 0.000462344 1533.311667 

Lta 0.004037424 2.671666667 

Ltb4r1 0.006243247 9.195 

Maff 0.000171343 900.065 

Mafk 0.01019094 202.5233333 

Map2k1 0.000355357 872.8083333 

Map3k1 4.27795E-07 455.6716667 

Mmp9 0.002644901 14.48 

Mx1 5.79395E-06 481.7316667 

Mx2 1.22494E-12 1181.58 

Myc 0.000656724 428.0033333 

Myd88 4.29751E-08 1026.875 

Nfkb1 0.009908969 254.0583333 

Nlrp3 0.032609536 6.735 

Nod1 1.77147E-05 116.9733333 

Nod2 3.87012E-13 128.31 

Nos2 0.007556955 292.5333333 

Oas1a 6.83764E-08 2171.593333 

Oas2 0.002815711 94.85833333 

Oasl1 7.27486E-09 771.2 

Relb 0.019019242 198.8083333 

Ripk2 0.005675255 46.44 

Stat1 5.06974E-09 2517.636667 

Stat2 8.65277E-09 2206.95 

Stat3 2.75973E-05 1638.223333 

Tlr2 0.000398621 32.04 

Tlr3 7.8327E-06 84.40833333 

Tlr7 0.000143085 13.16166667 

Tnfaip3 0.008358732 110.4916667 

Twist2 0.029954362 34.705 
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Supplemental Table 17. Inflammatory genes significantly down-regulated in GDM + MIA 

male placentae compared to control (normal diet, saline-injected mice) 

Gene Name p value Effect Estimate 

Alox5 0.009382917 -40.7 

C1qa 0.02583044 -44.125 

C8a 0.043156103 -2.525 

Ccr2 4.96434E-06 -69.925 

Ccr3 0.019303864 -4.325 

Cd4 0.006978826 -2.748333333 

Chi3l3 0.000233442 -45.94833333 

Cxcr1 7.47959E-06 -34.23666667 

Cxcr4 0.001819166 -55.275 

Ddit3 0.008834223 -472.5216667 

Elk1 0.018923354 -11.32 

Gngt1 0.015863006 -18.86666667 

Gpr44 0.035287198 -123.4816667 

Il12b 0.011832861 -3.893333333 

Il6ra 0.009179431 -781.9233333 

Keap1 0.034227363 -77.96833333 

Ltb4r1 0.000474657 -15.15833333 

Ltb4r2 0.031927157 -4.535 

Ly96 0.000442878 -186.6933333 

Mapk14 0.009402756 -180.24 

Nox1 0.001977326 -3.24 

Pik3c2g 0.000755689 -1.78 

Ppp1r12b 0.005513036 -16.04333333 

Prkcb 0.003412472 -19.85666667 

Ptgir 0.048415925 -5.196666667 

Retnla 0.000373759 -15.80333333 

Tbxa2r 6.05595E-06 -10.74833333 

Tollip 0.000477353 -668.345 
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Tradd 0.004108641 -45.54333333 

Trem2 0.038806055 -616.9483333 

Tyrobp 0.018122399 -619.5733333 

 

 

Supplemental Table 18. Inflammatory genes significantly up-regulated in GDM + MIA 

male placentae compared to control (normal diet, saline-injected mice)  

Gene Name p value Effect Estimate 

Bcl6 3.63744E-05 54.5 

C1ra 0.000238432 10.855 

Ccl2 3.09502E-06 548.4266667 

Ccl3 5.05631E-06 72.43333333 

Ccl4 1.22171E-05 66.69333333 

Ccl5 1.87953E-05 338.96 

Ccl7 0.004807987 89.98166667 

Cd86 0.049983817 11.22833333 

Cebpb 2.08105E-06 1347.821667 

Csf1 0.004412482 869.8666667 

Csf3 4.20971E-08 74.21833333 

Cxcl1 1.21847E-09 589.1683333 

Cxcl10 1.42746E-09 3830.006667 

Cxcl2 2.92157E-09 109 

Cxcl3 0.017252275 21.08 

Cxcl9 1.17372E-08 156.9933333 

Cysltr1 0.013820893 18.50333333 

Daxx 9.94678E-11 1556.9 

Grb2 0.00363946 946.8583333 

Hif1a 0.001636509 4285.185 

Hsh2d 4.95459E-09 68.22166667 

Hspb1 2.8863E-06 6599.301667 
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Ifi44 0.001850172 800.0316667 

Ifit1 5.6215E-05 2462.636667 

Ifit2 0.001212532 1793.168333 

Ifit3 9.47698E-06 4089.02 

Ifnb1 0.006433125 5.723333333 

Iigp1 4.75649E-06 2180.101667 

Il15 0.008892757 35.51833333 

Il1r1 0.00260618 873.5316667 

Il23a 0.006320893 73.015 

Il6 0.0004182 71.05166667 

Irf1 2.63843E-06 1176.798333 

Irf7 8.93603E-07 986.505 

Jun 8.39928E-09 1402.135 

Limk1 0.048149749 651.13 

Map2k1 2.88349E-06 2529.4 

Map3k1 0.000289534 219.0866667 

Mapkapk2 0.005794269 424.4483333 

Mx1 0.024350915 352.35 

Mx2 4.26271E-10 1248.198333 

Myc 1.03332E-05 925.3633333 

Myd88 3.01594E-07 1823.355 

Nfkb1 0.001913947 424.7266667 

Nod2 2.83017E-08 141.8533333 

Nos2 0.00022415 421.7916667 

Nr3c1 2.19463E-07 366.1683333 

Oas1a 4.268E-06 2743.151667 

Oasl1 0.000146218 948.275 

Plcb1 0.016734861 12.81 

Ptk2 0.025906364 488.845 

Rela 0.00412249 179.6783333 

Relb 1.34072E-05 529.145 

Ripk1 0.029750362 80.19166667 
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Ripk2 1.38362E-08 65.975 

Stat1 4.6516E-07 3307.063333 

Stat2 1.69532E-08 2403.615 

Stat3 8.23455E-08 1521.023333 

Tcf4 0.021048757 689.32 

Tgfb3 0.021186903 890.565 

Tlr2 0.000177751 29.75 

Tlr3 9.53174E-05 71.23833333 

Tnf 5.53161E-08 58.045 

Tnfaip3 0.014218011 109.585 

 

 

Supplemental Table 19. Inflammatory genes significantly down-regulated in GDM + MIA 

female placentae compared to control (normal diet, saline-injected mice)  

Gene Name p value Effect Estimate 

Alox5 0.003532975 -53.17666667 

Ccl17 0.017581283 -11.52333333 

Ccr2 8.06551E-06 -69.265 

Cd163 0.027758806 -3.298333333 

Cd55 0.005511445 -1650.815 

Chi3l3 0.000173896 -45.40666667 

Cxcr1 0.001137625 -26 

Cxcr4 2.67261E-07 -83.26 

Gngt1 0.001902236 -22.365 

Hc 0.003995914 -40.765 

Hmgb1 0.045130659 -146.8016667 

Il6ra 0.001627881 -766.1016667 

Itgb2 0.000939113 -180.1716667 

Ly96 6.95627E-07 -209.065 

Mapk14 0.002091425 -197.2833333 
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Mapk3 1.76091E-06 -274.6433333 

Ppp1r12b 0.008442819 -18.77 

Prkcb 0.003312925 -12.29666667 

Ptgfr 0.005900359 -36.83166667 

Ptgir 0.020011913 -4.73 

Retnla 0.003555347 -19.145 

Tgfb1 0.025148466 -482.03 

Tlr4 0.042272554 -308.44 

Tollip 1.77951E-06 -619.595 

Tradd 0.00267707 -60.4 

Trem2 0.000234666 -868.6833333 

Twist2 0.020610161 -25.87833333 

Tyrobp 0.00159687 -750.8666667 

 

 

Supplemental Table 20. Inflammatory genes significantly up-regulated in GDM +MIA 

female placentae compared to control (normal diet, saline-injected mice)  

Gene Name p value Effect Estimate 

Bcl6 0.000296618 79.42833333 

Ccl11 0.003942223 0.768333333 

Ccl19 2.49961E-05 11.61666667 

Ccl2 1.47849E-05 422.4566667 

Ccl20 6.60833E-05 10.46333333 

Ccl21a 0.033885906 7.008333333 

Ccl3 1.71476E-14 72.79666667 

Ccl4 1.57615E-08 67.32333333 

Ccl5 4.11082E-06 249.965 

Ccl7 0.029596889 56.15333333 

Ccr1 0.03131221 13.65166667 

Cd86 3.18647E-05 19.62833333 
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Cebpb 3.09099E-08 2308.996667 

Cfl1 0.00761819 4554.248333 

Csf1 3.78088E-07 1026.656667 

Csf3 0.001952187 63.56333333 

Cxcl1 3.24085E-08 402.095 

Cxcl10 3.14418E-09 3609.576667 

Cxcl2 5.42194E-07 75.845 

Cxcl3 0.00564542 29.68 

Cxcl5 0.005009756 3.613333333 

Cxcl9 4.30051E-07 166.4733333 

Cxcr2 0.040361123 356.345 

Daxx 3.419E-10 1616.273333 

Fos 5.8073E-05 817.76 

Gnas 0.026555136 1781.951667 

Grb2 0.004143636 818.1983333 

Hif1a 0.001850287 4110.808333 

Hsh2d 1.29079E-08 77.145 

Hspb1 1.22542E-06 6696.811667 

Ifi44 6.61454E-05 688.625 

Ifit1 8.13286E-07 2070.381667 

Ifit2 5.47057E-05 1478.818333 

Ifit3 9.51437E-08 3666.286667 

Ifnb1 0.01834975 5.208333333 

Iigp1 1.12885E-07 1918.485 

Il15 0.002451438 28.93333333 

Il1a 1.3243E-06 35.76333333 

Il1r1 6.27158E-05 1030.191667 

Il23a 0.012122437 44.78333333 

Il6 1.69472E-05 56.21166667 

Irf1 2.2915E-06 1047.678333 

Irf7 8.73794E-10 1192.223333 

Jun 9.67415E-07 1619.001667 
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Limk1 0.007448809 1141.67 

Maff 0.000192269 580.3583333 

Mafk 0.005232445 304.35 

Map2k1 5.39551E-09 2474.553333 

Map2k6 0.012109299 363.8366667 

Map3k1 1.87912E-06 276.655 

Mknk1 0.013391738 47.48 

Mx1 0.000230181 406.7433333 

Mx2 4.83749E-13 1173.906667 

Myc 7.11576E-06 803.48 

Myd88 5.40278E-08 1897.143333 

Nfkb1 0.000691407 403.2116667 

Nod2 1.23466E-09 127.3633333 

Nos2 0.000102455 511.6316667 

Nr3c1 0.004874238 288.035 

Oas1a 5.86408E-07 2834.136667 

Oasl1 4.08791E-06 769.0283333 

Ptk2 0.010638704 453.0783333 

Relb 8.05649E-06 424.87 

Ripk2 0.001923797 52.2 

Stat1 4.88281E-08 3156.975 

Stat2 2.11636E-09 2645.03 

Stat3 9.24011E-09 1509.233333 

Tcf4 0.019953409 521.7816667 

Tgfb3 0.011948836 1221.581667 

Tlr2 1.65059E-07 38.30333333 

Tlr3 0.000361793 95.76833333 

Tnf 3.20358E-06 46.49666667 

Traf2 0.004237746 84.115 

Tslp 0.0122762 21.62833333 
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