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Chapter 1

Introduction

This dissertation presents new results in certain areas of structural graph theory. In par-

ticular, we analyse induced subgraphs called fans, and use their properties to prove struc-

tural theorems for classes of minor-free graphs. In Chapter 1, we present some definitions

and known results. Chapter 2 is comprised of our investigation into fans. In Chapters 3

and 4 we prove our main results: respectively, a complete characterisation of the class of 3-

connected K1,1,4-minor-free graphs, and a Hamiltonicity result for the class of 3-connected

planar K1,1,5-minor-free graphs. Finally, Chapter 5 offers some ideas for continued research

based on this work.

1.1 Concepts and Definitions

We begin by reviewing some relevant definitions and terminology.

Throughout this paper, we shall assume that we are considering only simple graphs,

that is, graphs with no multiple edges and no loops.

A graph is said to be planar if it can be embedded in the plane such that any two edges

meet only at a vertex; that is, edges do not cross. A graph that is not a complete graph

is said to be k-connected if any vertex cut (set of vertices whose removal disconnects the

graph) has size at least k. A complete graph Kn does not have any vertex cuts, so we define

Kn to be k-connected for any k ≤ n−1, but not k-connected for any k ≥ n.

A walk in a graph G is a sequence of vertices v0,v1, ...vn such that (vi,vi+1) represents

an edge in G, for 0≤ i≤ n−1. The vertices in the sequence do not necessarily have to be

distinct. A trail in G is a walk in which no edge is repeated (so any two given vertices can

appear consecutively in the sequence at most once). A path in G is a walk in which no edges

and no vertices are repeated; that is, a vertex appears at most once in the sequence. Given
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a path P in a graph G, and two vertices u,v on P, we denote the subpath of P beginning

at u and ending at v by P[u,v]. The same path minus the vertices u and v is denoted by

P(u,v). We denote by P[u,v) the subpath of P beginning at u and ending at the vertex

directly preceding v. The subpath P(u,v] is defined analogously. For a path P with an

assigned direction, we denote by P[−,u] the subpath of P beginning at the start vertex of P

and ending at u. Similarly, we denote by P[u,−] the subpath of P beginning at u and ending

at the last vertex of P. We use P−1 to denote the reverse of the path P (i.e., the same path

but with the opposite direction assigned). Given two paths P and Q where the end vertex

of P is the start vertex of Q, we denote the concatenation of the two paths P and Q by PQ.

A walk that has the property v0 = vn, but that does not repeat edges and repeats no

vertices other than the initial (final) vertex, is called a cycle. For any graph G, the circum-

ference of G is defined to be the length of a longest cycle in G. If a graph on n vertices has

circumference n, then there is a cycle containing every vertex in G. A cycle of this type is

called a Hamilton cycle, and the graph G is said to be Hamiltonian.

Graphs that are Hamiltonian are of particular interest. A Hamilton cycle provides a

certain notion of efficient traversability - a way to ‘visit’ each vertex in the graph without

retracing any steps. One well-known application of Hamiltonicity is the Travelling Sales-

man Problem: given n cities, what is the shortest route a travelling salesman can take so as

to visit each city once and return to the original city?

There are many sufficient conditions for graphs to be Hamiltonian. We concern our-

selves mainly with Hamiltonicity results given connectivity and planarity conditions, and

later, forbidden minor restrictions.

1.2 Hamiltonicity in Planar Graphs with Connectivity Restrictions

Here we present some known results regarding Hamiltonicity for classes of planar

graphs with certain connectivity conditions.

Our first theorem was proved by Whitney in 1931, and specifically talks about 4-
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connected planar triangulations. A triangulation is a graph with an embedding in which

every face is a triangle. Planar triangulations are maximal planar graphs, in that the addi-

tion of any any edge between existing vertices would violate planarity.

Theorem 1.1 (Whitney, [24]). Every 4-connected planar triangulation G is Hamiltonian.

Whitney’s result was eventually improved by Tutte in 1956 to include all 4-connected

planar graphs.

Theorem 1.2 (Tutte, [18]). Every 4-connected planar graph is Hamiltonian.

Tutte’s result was strengthened in 1983 by Thomassen. This theorem refers to Hamilton

paths, which are simply paths of length n in a graph on n vertices.

Theorem 1.3 (Thomassen, [17]). Let G be a 4-connected planar graph. Then for every

pair of distinct vertices x and y in G, there is a Hamilton path beginning at x and ending at

y (that is, G is Hamilton-connected).

We have now seen that all 4-connected planar graphs are Hamiltonian (in fact they are

Hamilton-connected, an even stronger property). This may lead us to wonder whether we

can weaken the connectivity restriction and still achieve Hamiltonicity. Unfortunately, it

turns out that 3-connectivity and planarity are not sufficient conditions for Hamiltonicity;

consider for example the Herschel graph, shown in Figure 1.1. It is both 3-connected and

planar, however it does not admit a Hamilton cycle. As shown by the black and white ver-

tices in the figure, the Herschel graph is bipartite (that is, there is a partition of the vertices

into two nonempty parts such that the only edges in the graph have their end vertices in

different parts). Therefore any Hamilton cycle would have to alternate white and black

vertices. However, there are 5 white vertices and 6 black vertices; therefore there can be

no such cycle and so the graph is not Hamiltonian. Coxeter [4] knew of this graph in 1948,

and it was later shown by Barnette and Jucovič [1] and Dillencourt [5] that the Herschel

graph is in fact the smallest example of a 3-connected planar graph that is not Hamiltonian.
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Figure 1.1: The Herschel graph

Figure 1.2: Triangulation of the Herschel graph

If we add 9 edges to the Herschel graph, we obtain a 3-connected planar triangulation

that is not Hamiltonian (see Figure 1.2). Therefore, 3-connectedness is not even a suffi-

cient condition for planar triangulations to be Hamiltonian. Whitney [24] claimed that the

triangulation shown in Figure 1.2 was known to C.N. Reynolds in 1931. In fact this is the

smallest 3-connected planar triangulation that is not Hamiltonian, again as was later proved

in [1] and [5].

It was conjectured by Tait in 1880 [16] that 3-connected planar cubic graphs (that is,

every vertex has degree 3) are Hamiltonian; however this conjecture was disproved in 1946

by Tutte [19], who found a counterexample (shown in Figure 1.3). Since then, infinite

families of counterexamples to Tait’s conjecture have been found.
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Figure 1.3: Tutte’s 3-connected, cubic, planar, non-Hamiltonian graph

We have seen that it cannot be guaranteed that 3-connected planar graphs are Hamilto-

nian, even when we require that they are triangulations or that they are cubic. We turn our

attention now to a type of graph substructure called a graph minor, and classes of graphs

obtained by forbidding certain minors. As we shall see, such classes often lend themselves

to characterisation, and sometimes to Hamiltonicity results.

1.3 Graph Minors

Given a graph G and a graph H, we say that H is a minor of G, or G has an H minor,

if there is a subgraph of G to which we can apply a sequence of edge contractions and

deletions to obtain a graph isomorphic to H. A graph minor is therefore in a sense a

generalisation of a subgraph or a subdivision.

One way to view an H minor in a graph G is to associate a set of vertices Vi in G with

each vertex vi in H, such that the sets Vi are mutually disjoint, and whenever the edge viv j
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is present in H, there is some edge in G with one end vertex in Vi and the other in Vj. We

also require that the graph induced on each set Vi in G is connected. This type of model

is known as an edge-based model for a minor, and the vertex sets Vi are called branch

sets. Another model, called a path-based model, for a minor allows for internally disjoint

paths between the branch sets, instead of just edges. If G has an H minor, then it can be

formed using either an edge-based model or a path-based model. We will mainly use the

path-based model for a minor.

It turns out that a lot of useful classes of graphs can be characterised in part by forbidden

or excluded minors. As an example, we have the well-known characterisation of planar

graphs due to Wagner:

Theorem 1.4 (Wagner, [22]). A graph G is planar if and only it is K5- and K3,3-minor-free.

We recall that K5 is the complete graph on 5 vertices and K3,3 is the complete bipartite

graph with both parts of size 3.

There is a special version of Wagner’s Theorem (Theorem 1.4) for 3-connected graphs.

It says that to determine whether a 3-connected graph (other than K5) is planar, we need

only check for K3,3 minors, instead of both K3,3 and K5 minors.

Lemma 1.5 (Hall [11], Wagner [23]). With the exception of K5, any 3-connected graph is

planar if and only if it does not contain K3,3 as a minor.

Theorem 1.4 actually demonstrates a very specific instance of a larger result, originally

known as Wagner’s Conjecture and later proved as the Robertson-Seymour Theorem [15].

Wagner conjectured in [21] that every minor-closed class of graphs (that is, every class of

graphs that is closed under taking minors) can be characterised by excluding only finitely

many minors. The original statement of the Robertson-Seymour Theorem is given below.

Theorem 1.6 (Robertson and Seymour, [15]). Let Gi (i = 1,2, ...) be a countable sequence

of graphs. Then there exist j > i≥ 1 such that Gi is isomorphic to a minor of G j.
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What the Robertson-Seymour Theorem really says is that minor relation on the set

of finite graphs is a well-quasi-order. In particular, any class of graphs has finitely many

minimal elements under the minor relation. This then readily implies Wagner’s Conjecture.

Observe that planar graphs are a minor-closed class of graphs, hence Theorem 1.4 is

indeed an example of this type of forbidden minor characterisation. We give some further

examples of minor-closed classes of graphs.

Example 1.7. The class of all forests (that is, acyclic graphs) is clearly minor-closed, and

can be characterised by the forbidden minor K3, since a cycle of any length has a K3 minor.

Example 1.8. A graph G is called outerplanar if G has a planar embedding with the prop-

erty that all vertices lie on the boundary of the outer face. Deleting and contracting edges

does not change this property, therefore the class of outerplanar graphs is minor-closed.

The set of all outerplanar graphs is characterised by the forbidden minors K4 and K2,3.

Given Wagner’s Theorem, the proof of this fact is reasonably straightforward and so we

present it here. The proof given is due to [13].

Proof. Suppose G is outerplanar, and consider an embedding of G in the plane such that

all its vertices lie on the boundary of one face. Add a vertex v in this face and make it

adjacent to all the vertices of G, thereby creating a new graph G′. Since G was planar and

our addition of v did not violate planarity, G′ is a planar graph. By Wagner’s Theorem, G′

cannot contain a K5 or K3,3 minor. This implies that G did not originally contain a K4 or a

K2,3 minor.

Now suppose G is a graph that contains no K4 or K2,3 minor. Add a new vertex v

adjacent to all vertices of G to create a new graph G′. If G′ contains a K5 or K3,3 minor, then

G would have contained either a K4 or a K2,3 minor, which is a contradiction. Therefore

G′ contains no K5 minor and no K3,3 minor and so is planar by Wagner’s Theorem. Take a

planar embedding of G′. Since all the vertices of G are adjacent to v in G′, we can delete

v to get an embedding of G′− v = G in which all vertices of G lie on the boundary of the

same face. Therefore G is an outerplanar graph.
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v1 v2 v9

Figure 1.4: The graph G9,4,3

We turn our attention now to graphs excluding a specific type of graph as a minor; in

particular, we concern ourselves with K2,t-minor-free graphs.

First consider K2,3-minor-free graphs. Since K2,3 is 2-connected, all graphs that are

not 2-connected are K2,3-minor-free. However, graphs that are both 2-connected and K2,3-

minor-free have a nice characterisation. The only 2-connected, K2,3-minor-free graph that

is not also K4-minor-free is K4 itself, therefore by our characterisation of outerplanar graphs

(Example 1.8) all 2-connected K2,3-minor-free graphs are either outerplanar or K4.

Now let us look at K2,4-minor-free graphs. In 2014, Ellingham et al. [8] gave a complete

characterisation of K2,4-minor-free graphs in terms of structure. They first defined a class

of graphs G(+)
n,r,s: for n ≥ 3 and r,s ∈ {0,1, ...,n− 3}, the graph Gn,r,s is defined to be the

graph consisting of a spanning path v1v2...vn and edges v1vn−i for 1 ≤ i ≤ r and vnv1+ j

for 1 ≤ j ≤ s. An example is shown in Figure 1.4. The graph G+
n,r,s is defined to be the

graph Gn,r,s+v1vn. Now let G̃ be the class of graphs isomorphic to a graph in the collection

below:

{G+
n,1,n−3,G

+
n,n−3,1 : n≥ 4}∪{G(+)

n,r,s : n≥ 5,r,s ∈ {2,3, ...,n−3},r+ s = n−1 or n−2}.

Then they have the following result:

Theorem 1.9 (Ellingham et al., [8]). Let G be a 3-connected graph. Then G is K2,4-minor-

free if and only if G ∈ G̃ or G is isomorphic to one of nine small exceptions.

They then characterised 2-connected K2,4-minor-free graphs in terms of outerplanar

graphs and the 3-connected K2,4-minor-free graphs from above, and went on to characterise

all K2,4-minor-free graphs as exactly those graphs whose blocks (maximal 2-connected
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subgraphs) each fit their characterisation of 2-connected K2,4-minor-free graphs.

A rough structural characterisation of K2,t-minor-free graphs in general is given by Ding

in [6]. In the 3-connected case, he proves that for any t ≥ 2, all (3-connected) K2,t-minor-

free graphs can be obtained from a set of graphs on at most n(t) vertices by adding certain

structures, of arbitrary size, called fans and strips. However, n(t) is a very large number,

and we do not know exactly which base graphs these fans and strips can be added to. Some

corollaries of the main result in Ding’s paper are presented below.

Theorem 1.10 (Ding, [6]). Let t be a positive integer and let G be a K2,t-minor-free graph.

1. If G is 3-connected with minimum degree at least six, then the size of G is bounded.

2. If G is 4-connected, then the maximum degree of G is bounded.

This dissertation’s main results, presented in Chapters 3 and 4, provide details for spe-

cific cases of Ding’s rough characterisation. We look at classes of 3-connected K1,1,t-minor-

free graphs, and use explicitly-found fans to prove results about the graphs. Observe that

K1,1,t is a minor of K2,t+1, so Ding’s general description applies to our graphs.

In 2011, Chudnovsky, Reed and Seymour proved a result on the maximum number of

edges a K2,t-minor-free graph can have. This result was previously proved by Myers [14]

for t ≥ 1029, but Chudnovsky, Reed and Seymour proved it for all t ≥ 2.

Theorem 1.11 (Chudnovsky, Reed and Seymour, [3]). Let t ≥ 2, and let G be a graph with

n≥ 1 vertices and with no K2,t minor. Then

|E(G)| ≤ 1
2
(t +1)(n−1).

In particular, this implies that for t ≥ 2, any graph G on n vertices with more than

1
2(t +1)(n−1) edges must have a K2,t minor.
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1.4 Minors and Hamiltonicity

Now that we have explored some results concerning Hamiltonicity, and some results

concerning graph minors, we look at results involving both. We first present a result

concerning Hamiltonicity of 3-connected planar triangulations in relation to the Herschel

graph. Recall that the Herschel graph is a minimal example of a non-Hamiltonian 3-

connected planar graph, and a triangulation of the Herschel graph is a minimal example

of a non-Hamiltonian 3-connected planar triangulation.

Theorem 1.12 (Ding and Marshall,[7]). Let G be a non-Hamiltonian 3-connected planar

triangulation. Then G contains the Herschel graph as a minor.

We also present some theorems regarding the Hamiltonicity of certain classes of K2,t-

minor-free graphs.

First we look at graphs with no K2,3-minors. If a graph is not 2-connected we cannot

have a Hamilton cycle, so we consider only 2-connected K2,3-minor-free graphs. Recall

that we characterised all 2-connected K2,3-minor-free graphs as being either outerplanar

or K4. In the former case, the boundary cycle of an outerplanar embedding is a Hamilton

cycle. The graph K4 is also Hamiltonian, therefore all 2-connected K2,3-minor-free graphs

are Hamiltonian.

The natural next class of graphs to consider is the class of K2,4-minor-free graphs. The

hamiltonicity of such graphs was investigated by Ellingham et al. in their paper character-

ising all K2,4-minor-free graphs [8], some results from which we have already seen. They

proved the following result:

Theorem 1.13 (Ellingham et al., [8]). (i) Every 3-connected K2,4-minor-free graph is

Hamiltonian.

(ii) There are 2-connected K2,4-minor-free planar graphs that have no spanning closed

trail and hence no Hamilton cycle.
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Figure 1.5: The Petersen Graph

(iii) However, every 2-connected K2,4-minor-free graph has a Hamilton path.

Now we know that 3-connected K2,4-minor-free graphs are Hamiltonian, we look at

3-connected K2,5-minor-free graphs. It turns out that these are not in general Hamiltonian.

One counterexample to this is the Petersen graph shown in Figure 1.5. It is 3-connected

and K2,5-minor-free, but admits no Hamilton cycle.

In fact, there are infinitely many non-Hamiltonian 3-connected K2,5-minor-free graphs,

as was recently found by J. Zachary Gaslowitz (personal communication).

The non-Hamiltonian 3-connected K2,5-minor-free graphs discussed all have one thing

in common: they are nonplanar. However, if we go back to considering 3-connected planar

graphs, along with the K2,5-minor-free restriction, we do get Hamiltonicity. This result was

found by Ellingham et al. [9]:

Theorem 1.14 (Ellingham et al., [9]). Let G be a 3-connected planar K2,5-minor-free graph.

Then G is Hamiltonian.

The remainder of this dissertation is dedicated to proving new results, influenced by

and building on the results presented in this chapter.
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Chapter 2

Fans

In this chapter we define a type of induced subgraph called a fan, and show how certain

operations on these fans preserve some useful graph properties.

Definition 2.1. We call an induced subgraph in G on vertices r,v1,v2, ...,vk (k ≥ 1) a k-

fan, or a fan of size k, if v1v2...vk is a path, r is adjacent to every vertex vi on the path,

degG(r) ≥ 4, and degG(vi) = 3 for 1 ≤ i ≤ k. We call the vertex r the rivet vertex of the

fan, and the vertices vi the outer vertices of the fan. An edge on the path v1v2...vk is called

a collapsible edge. When the size of a k-fan in a graph is not relevant, we shall simply say

that the graph has a fan, and take this to mean a k-fan for some k ≥ 1. We will say that a

fan is nontrivial if k ≥ 2.

Given this definition of a fan, we now define some operations on fans that will prove

useful in induction arguments.

Definition 2.2. For a graph G with a nontrivial fan, we refer to contracting any collapsible

edge of the fan as collapsing the fan.

Remark 2.3. Given a graph G with a k-fan, the graph obtained by contracting a collapsible

edge in the fan is independent (up to isomorphism) of the choice of collapsible edge. In

r

v1

v2
v3 v4 v5 v6

v7

Figure 2.1: A 7-fan

12



particular, we get the graph obtained from G by replacing the k-fan with a (k− 1)-fan.

Because the choice of collapsible edge is irrelevant, collapsing a fan is well-defined as an

operation.

Definition 2.4. Given a graph G with a fan, we define an expansion of an outer vertex of

the fan to be the operation consisting of splitting the vertex in the following way. Fix an

outer vertex v. We know v is adjacent to the rivet vertex r, and to exactly two other vertices,

say u and w. We split v into the two adjacent vertices v1 and v2, such that both v1 and v2

are adjacent to r, v1 is adjacent to u and v2 is adjacent to w. The only neighbours of v1 and

v2 are those specified.

Remark 2.5. Given a graph G with a k-fan, the graph obtained by expanding any outer

vertex of the fan is independent (up to isomorphism) of the choice of outer vertex. In

particular, we get the graph obtained from G by replacing the k-fan with a (k + 1)-fan.

Because the choice of outer vertex to expand is irrelevant, we may refer to such an operation

simply as expanding the fan.

Remark 2.6. Collapsing and expanding fans are inverse operations. In particular, given

a graph G with a nontrivial k-fan, if we collapse the k-fan and then expand the resulting

(k− 1)-fan, we recover G. If we first expand the k-fan and then collapse the resulting

(k+1)-fan, we again recover G.

We now examine certain graph properties that are preserved by one or both of the fan

operations described above.

Lemma 2.7. Let G be a non-Hamiltonian graph with a nontrivial fan, and let e be a col-

lapsible edge of the fan. Then G/e is non-Hamiltonian.

Proof. In G, let r be the rivet vertex of the fan, and let u1 and u2 be the end vertices of e.

Let w1 be the remaining neighbour of u1 and w2 be the remaining neighbour of u2. Let u

be the vertex in G/e that u1 and u2 are contracted to. Now suppose by way of contradiction

that G/e is Hamiltonian with Hamilton cycle C. If u’s neighbours on C are w1 and w2,
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then the cycle formed in G by replacing w1uw2 in C by w1u1u2w2 is Hamiltonian in G, a

contradiction. If u’s neighbours on C are w1 and r, then the cycle formed in G by replacing

w1ur in C by w1u1u2r is Hamiltonian in G. The case where u’s neighbours on C are w2

and r is symmetric to the previous case. Therefore if G/e is Hamiltonian, G must also be

Hamiltonian.

Lemma 2.8. If G is a 3-connected graph with a nontrivial fan, then every collapsible edge

in the fan is a 3-contractible edge in G.

Proof. Let G be a 3-connected graph with a nontrivial fan, and let e be a collapsible edge

in the fan, with end vertices u and v. Let r be the rivet vertex of the fan. Since degG(r)≥ 4

(from the definition of a fan), |V (G)| ≥ 5 and |V (G/e)| ≥ 4. Suppose that G/e is not 3-

connected. Then G/e has some 2-cut, since |V (G/e)| ≥ 4. Since the 2-cut in G/e cannot

also be a 2-cut in G, the vertex that u and v are contracted to is part of the 2-cut. Then u and

v must be part of some 3-cut in G, along with some other vertex w. Since G is 3-connected,

the cutset {u,v,w} is minimal. First we show that w 6= r. To see this, suppose by way of

contradiction that w = r. Since the cutset is minimal, u,v, and r must each have a neighbour

in every component of G\{u,v,r}. However, u and v both have degree 3 in G and therefore

each have only one other neighbour outside the cutset. Therefore {u,v,r} is not a 3-cut and

so w 6= r.

Now consider the components of G \ {u,v,w}. Since r is not in the cut set, it lies in

some component C1. All of r’s neighbours that are not in {u,v,w} must also lie in C1.

Note that by definition of a fan, degG(r) ≥ 4 and so r has at least one neighbour not in

{u,v,w}, therefore |C1| ≥ 2. Now since the cut set {u,v,w} is minimal, each of u,v,w has

a neighbour in every component of G \ {u,v,w}. Since u and v are degree three vertices,

they each have only one neighbour other than each other and r, therefore there is only one

other component (call it C2), which contains the remaining neighbours of u and v. But now

{w,r} must be a cut set in G, since deletion of w and r separates u and v from C1 \ {r},

which is nonempty. This contradicts G’s 3-connectivity.
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Therefore if G is 3-connected, so is G/e.

The following is a general result for k-connected graphs, which implies a nice corollary

for fans in 3-connected graphs. The case where k = 3 for the lemma below was proved by

Tutte in [20].

Lemma 2.9. Let G be a k-connected graph, and let v be a vertex in G. Let G′ be a graph

obtained by splitting v into two adjacent vertices v1 and v2, such that each of v1 and v2 has

degree at least k. Then G′ is also k-connected.

Proof. Let G, G′, v, v1 and v2 be as described in the statement of the lemma. Suppose by

way of contradiction that G′ is not k-connected. Then G′ has some cutset S with |S| ≤ k−1.

We observe that v1 and v2 cannot lie in different components of G\S, since there is an edge

between them. Consider the case that both v1 and v2 are in the same component of G′ \S.

Then if we contract the edge between v1 and v2 to recover G, the set S is still a cutset in

G, contradicting that G is k-connected. Next consider the case that both v1 and v2 are in S.

Then again, when we contract the edge between them to recover G, the set S∪{v}\{v1,v2}

is a cutset in G, and it has size at most k−2, a contradiction. Therefore it must be the case

that of the vertices v1,v2, one of them is in S and one of them is in G \ S. Without loss of

generality, assume that v1 is in S and v2 is in a component C of G \ S. Let us contract the

edge between v1 and v2 to recover G. We claim that this still gives us S∪{v}\{v1,v2} as a

cutset in G. To see this, recall that in G′, v2 has degree at least k. Since |S| ≤ k−1, v2 must

have had at least one neighbour not in S. This neighbour must have been in C, since G′ \S

was disconnected. Therefore C \{v2} is nonempty, and it follows that after the contraction

of v1 and v2 to v, C\{v2} is still disconnected from the rest of the graph by S∪{v}\{v1,v2},

which has cardinality at most k− 2. Since all cases result in a contradiction, G′ must be

k-connected.

Corollary 2.10. If G is a 3-connected graph with a fan, then the graph obtained by ex-

panding the fan is also 3-connected.
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Our final result on fans concerns minors. Specifically, we prove that for certain graphs

M, expanding a large enough fan in a graph preserves the M-minor-free property.

Lemma 2.11. Let G be a graph with a k-fan F for some k ≥ 5, and let M be a complete

multipartite graph on at least six vertices, such that M has no degree one vertices (i.e., M

is not K1,t for any t). Then if G has an M minor, so does the graph obtained from G by

collapsing F.

Proof. Let G be as described in the statement of the lemma, let r be the rivet vertex of

F , and let v,w,x,y,z be consecutive outer vertices of F . Suppose that G has an M minor.

Consider branch sets corresponding to an edge-based model of M (i.e., the paths between

branch sets are just edges). Since G is connected, we may assume that every vertex lies in

one of the branch sets. Now, if any two consecutive vertices in {v,w,x,y,z} lie in the same

branch set, we may collapse the edge between those two vertices and preserve the minor,

and we are done.

Therefore assume that of the five vertices v,w,x,y,z, no two consecutive ones are in the

same branch set. We may also assume that none of w,x,y is in the same branch set as r. To

see this, suppose for example x were in the same branch set as r. Then we could move x

from its current branch set to w’s branch set without destroying the minor (since r is also

adjacent to both of x’s other neighbours). This gives the case already addressed above. A

similar argument applies to the cases where w or y is in the same branch set as r. Therefore

we may assume that none of w,x,y is in the same branch set as any of its neighbours. This

implies that each of these three vertices entirely comprises its branch set.

Now consider M. Let xM be the vertex in M corresponding to the branch set {x} in

G, and let wM,yM be defined analogously. Let X be the part (maximal independent set) of

M containing xM. If wM and yM are also in X , then x has at most one neighbour whose

branch set corresponds to a vertex in M \X , contradicting degM(xM) > 1. Therefore wM

and yM cannot both be in X . Without loss of generality, assume that yM is in part Y , where

Y 6= X . Now since M is a complete multipartite graph, and xM and yM are in different parts,
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every vertex in M is adjacent to either xM or yM. However, |NG(x)∩NG(y)|= 5. Therefore

|V (M)| ≤ 5. Since we assumed M had at least six vertices, this is a contradiction.
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Chapter 3

A Characterisation of 3-connected, K1,1,4-minor-free Graphs

Recall that in Chapter 1, we discussed the characterisation of 3-connected K2,4-minor-

free graphs found by Ellingham et al. [8]. In this section, we present a complete charac-

terisation of a superset of 3-connected K2,4-minor-free graphs; namely, 3-connected K1,1,4-

minor-free graphs. Observe that K1,1,4 is K2,4 plus an edge, therefore the set of graphs

obtained by forbidding K2,4 as a minor is contained in the set of graphs obtained by forbid-

ding K1,1,4 as a minor.

For our characterisation, we first define a family of graphs G, the members of which

we will show to be both 3-connected and K1,1,4-minor-free. We then prove that for n≥ 13,

any 3-connected K1,1,4-minor-free graph on n vertices is in our family G. The 3-connected

K1,1,4-minor-free graphs on fewer than 13 vertices are treated separately. Finally, we use

our characterisation to prove some Hamiltonicity, planarity, and counting results.

3.1 The Family

Our family G is comprised of three subfamilies. The first of these subfamilies is denoted

by F , and its members are formed by attaching two fans to any of the ten base graphs Fi,

1≤ i≤ 10, shown in Figure 3.2 below. Specifically, for any of these ten base graphs and for

any two non-negative integers j and k, we add vertices to the base graph in the following

Figure 3.1: The graphs K2,4 (left) and K1,1,4 (right)
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way. For the non-negative integer j, Let new vertices x0,x1, ...,x j−1 form a path in that

order, and in addition let each vertex xi be adjacent to z0. Also let x j−1 be adjacent to z1.

We attach k vertices in a similar way: let y0,y1, ...,yk−1 be vertices that form a path in that

order, let each yi be adjacent to z3, and let yk−1 be adjacent to z4. Finally, let us add an

edge between x0 and y0. If j = 0, then we define x0 := z1 and so the added edge is between

z1 and y0. Similarly, if k = 0, then define y0 := z4 and the added edge is between x0 and

z4. Observe that the vertices z1 and z4 each have degree two in every base graph Fi, so in

general they will have degree three in the final graph. Notice that as long as j ≥ 2, we have

deg(z0) ≥ 4 and the graph induced on the vertices {x0,x1, ...,x j−1,z1,z0} is a ( j+ 1)-fan,

with rivet vertex z0. Similarly, as long as k≥ 2, we have deg(z3)≥ 4 and the graph induced

on the vertices {y0,y1, ...yk−1,z4,z3} is a (k+1)-fan with rivet vertex z3.

With some exceptions (described below), we include any graph formed this way in our

family F . In addition, for any such graph G, the graph obtained from G by adding an edge

between x0 and z3 is also included in our family. Note that if we add this edge, then x0 is no

longer considered an outer fan vertex, as it has degree four. This means that the ( j+1)-fan

becomes a j-fan (with the exception of the case where j = 0, in which case the addition of

the optional edge x0z3 destroys the fan). An example of a member of F is shown in Figure

3.3.

The aforementioned exceptions to inclusion in the family F are the cases in which the

graph resulting from adding these j- and k-fans is not 3-connected, since we wish F to be

a family of 3-connected graphs. These exceptions are those graphs that have a vertex of

degree two, which occur in two situations: (1) when the degree of z0 in the base graph is

two and j = 0, or (2) when the degree of z3 in the base graph is two, k = 0, and the edge

x0z3 is not present. Graphs that fall into one of these categories are excluded from F .

We observe that for a graph in F , there are at most eight vertices that are not the outer

vertex of a fan riveted at z0 or z3. These vertices are z0,z2,z3,z5,x0 (if j = 1 or the edge

x0z3 is present), z1 (if j = 1) and y0,z4 (if k = 1). Note that the only situation in which
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either of z1,z4 may not be outer fan vertices is when one of z0 or z3 has degree less than

four, meaning it does not fit the definition of a rivet vertex, and so there is no fan riveted at

that vertex. If we have both fans, there are at most six vertices that are not outer vertices

of a fan. For any graph in F , consider the maximal extensions of the two fans described

above, riveted at z0 and z3 respectively. By maximal extension, we mean the largest fan

containing our described fan as a subfan. The graph shown in Figure 3.3 is an example of a

graph where the maximal extension of one of the fans is strictly larger than the original fan.

In this graph, the maximal extension of the fan riveted at z0 includes z2, while the original

fan did not. For any graph in F , if the maximal extension of either fan has size at least

five, we refer to the extension as a main fan (the graph may have zero, one or two main

fans). Observe that if there are two main fans, they must be vertex disjoint, since they have

distinct rivet vertices and outer vertices are forced to have degree three, implying that no

outer vertex can belong to both fans.

The next subfamily we define is H. The graphs in H are constructed using the twelve

base graphs Hi, 1 ≤ i ≤ 12, shown in Figure 2. For any of the twelve base graphs, we add

the j vertices and k vertices to the the graph in the same way as for F (including adding

the edge x0y0), except that we require j = 1 (however, k is still free to be any non-negative

integer). Again with some exceptions, any graph G formed in this way is a member of our

family H, as is G+ x0z3. The exceptions are when the graph formed is not 3-connected,

which happens in three different situations: (1) the degree of z3 in the base graph is two,

k = 0, and the edge x0z3 is absent, (2) the degree of z3 in the base graph is one, k = 1, and

the edge x0z3 is absent, or (3) the degree of z3 in the base graph is one and k = 0. Any graph

falling into one of these categories is excluded from H. An example of a graph belonging

toH is shown in Figure 3.5.

For a graph in H, we consider its fans. Since j = 1, we can have a 2-fan riveted at z0,

as long as z1 has degree two in the base graph and is adjacent to z0, the edge x0z3 is absent,

and the degree of z0 in the base graph is at least three. However, it may be possible that
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Figure 3.2: The ten base graphs used to construct F
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Figure 3.3: An example of a graph in F , formed by attaching a 5-fan and a 4-fan to the
base graph F4. The optional edge x0z3 is shown as a dashed line.

none of these conditions hold and there is no fan riveted at z0. There are also situations

where we have a 1-fan riveted at z0. However, since no base graph Hi has both z0z1 and

z0z2 as edges and also z2 of degree three, there is never a fan of size three or more riveted

at z0. If k ≥ 3, then we definitely have a k-fan riveted at z3, with outer vertices y0, ...yk−1

(k = 2 is not sufficient for a fan here, since we have a base graph in which deg(z3) = 1).

Observe that for any graph in H, there are at most nine vertices that are not outer vertices

of a fan riveted at z3; namely, zi, 0 ≤ i ≤ 5, x0, y0 and y1 (if k ≤ 2). For any graph in H,

if the maximal extension of the fan induced on y0, ...,yk−1 and z3 has size at least five, we

define it to be the main fan of the graph. A graph inH can have at most one main fan.

For a given n≥ 4, we define the wheel graph Wn to be the graph consisting of a cycle of

length n−1, and a ‘centre’ vertex that is adjacent to all vertices on the cycle. We defineW

to be the family consisting of all wheel graphs Wn for n≥ 4. For any such wheel graph Wn,

we let the centre vertex be denoted by w and the outer vertices denoted by v1,v2, ...,vn−1.

For n ≥ 5, all outer vertices have degree exactly three, and the centre vertex w has degree

at least four. Therefore any wheel graph on at least five vertices has an (n−1)-fan riveted

at w. In fact, such a graph has n− 1 different (n− 1)-fans riveted at w, distinguished by

the choice of start vertex for the path through the outer fan vertices, although all such fans
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Figure 3.4: The twelve base graphs used to constructH
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Figure 3.5: An example of a graph inH, formed by attaching the required 1-fan and a 4-fan
to the base graph H5. The optional edge x0z3 is shown as a dashed line.
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w

Figure 3.6: The wheel on seven vertices (W7)

have the same vertex set. We wish to define a main fan for the graphs Wn where n ≥ 6

(if n < 6 we cannot have a fan of size at least five). Since each of the n− 1 fans has the

same vertex set (V (Wn)) and they are all equivalent up to a relabelling of the outer vertices,

we may refer to any (n− 1)-fan of Wn as a main fan of Wn. Observe that expanding any

(n− 1)-fan of Wn results in the graph Wn+1 and contracting any (n− 1)-fan of Wn results

in the graph Wn−1, so our choice of particular main fan is irrelevant. One wheel graph is

shown in Figure 3.

We now combine these three families, by letting G := F ∪H∪W . We also define

Gn := {G ∈ G : |V (G)| = n} for all n ≥ 4 (there are no graphs in G with fewer than four

vertices).

We now make some observations on the fans of graphs in G, which will prove useful
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for our characterisation.

Remark 3.1. For any graph in G with a main fan, expanding or collapsing a main fan gives

a graph that is also in G, and the expanded or contracted fan is a main fan of the new graph,

provided it still has size at least five. In particular, expanding or collapsing a main fan of

a graph in F built on base graph Fi yields a graph in F with base graph Fi, expanding or

collapsing a main fan of a graph inH built on base graph H j yields a graph inH with base

graph H j, and expanding or collapsing a main fan of a graph in W yields a graph in W .

These are immediate consequences of the construction of the families.

Remark 3.2. Let G be a graph in Gn. Then G has either a fan of size at least n−9, or two

fans whose sizes sum to at least n−6. In particular, if n ≥ 12, G has a fan of size at least

dn−6
2 e.

Remark 3.3. For any graph G in G, the only vertices that can have degree more than four

are z0,z3 (if G is in F or H) or w (if G is inW). Additionally, each of these three vertices

has at most four neighbours that are not outer vertices of our described fan riveted at that

vertex. In particular, this implies that any maximal fan of size at least five is necessarily a

main fan in the graph.

Lemma 3.4. For n≥ 10, the base graphs Fi, 1≤ i≤ 10 and H j, 1≤ j ≤ 12, are a minimal

set of base graphs, in that we do not obtain all of the n-vertex graphs in F ∪H from any

proper subset of them. Additionally, the wheel graph on n vertices, Wn, is not isomorphic

to any graph in F orH.

Proof. We verified the statement of the lemma for 10 ≤ n ≤ 14 by computer, leaving out

one base graph at a time, followed by the wheel graph Wn, and comparing the list of graphs

generated by the remaining base graphs with Gn (generated previously). Fix some m≥ 15,

and assume the statement holds for all n with 10≤ n < m. Let G be a graph in Gm. Suppose

that G can be constructed using two distinct base graphs, B1 and B2. By Remarks 3.2 and

3.3, G has a fan of size at least five, which is necessarily a main fan. Let us collapse the

25



main fan to obtain a graph G′ in Gm−1. By Remark 3.1, G′ is also built on both B1 and

B2. Therefore if there exists some base graph B such that every graph in Gm generated by

B can also be generated by some other base graph, the same base graph B is unnecessary

for generating Gm−1. This contradicts our inductive hypothesis. Similarly, if G is built

on some base graph B1 and G is also isomorphic to the wheel graph Wm, then collapsing

a main fan of G gives us a graph G′′ in Gm−1 that is both built on B1 and isomorphic to

Wm−1, by Remark 3.1. This is also a contradiction of our inductive hypothesis. Therefore

by induction, the statement of the lemma holds for n≥ 15.

Remark 3.5. Although the set of base graphs is minimal for generating Gn, n ≥ 10, this

does not imply that we do not generate some duplicate graphs. For example, for any of

the symmetric F base graphs (namely, F1,F3,F4,F5,F7,F8), the graph obtained by adding

attaching j vertices to z0 and k vertices to z3 is isomorphic to the graph obtained by adding

k vertices to z0 and j vertices to z3 (as long as the optional edge x0z3 is absent).

Remark 3.6. Every graph in G has a vertex of degree three: in every graph in F , the vertex

z4 must have degree three, by construction. For every base graph Hi, either z1 or z4 has

degree two in the base graph and therefore degree three in any graph constructed from that

base graph. For a graph in W , every vertex except the centre vertex has degree three. In

particular, this implies that no graph in G is 4-connected.

3.2 Computer Results

The induction arguments used in our main result rely on knowing all 3-connected K1,1,4-

minor-free graphs on up to 18 vertices. These graphs were computer-generated for us by

J. Zachary Gaslowitz (personal communication). What follows is a description of how the

graphs were generated and a summary of our findings. For convenience, we will denote the

set of all 3-connected K1,1,4-minor-free graphs on n vertices by Zn, and the overall set of

all 3-connected K1,1,4-minor-free graphs by Z .
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To justify that the process used to generate our graphs does in fact give us all of the

3-connected, K1,1,4-minor-free on up to 18 vertices, we will need the lemma below.

Lemma 3.7 (Tutte, [20]). Every 3-connected graph other than K4 has a 3-contractible

edge; that is, an edge e such that G/e is 3-connected.

Lemma 3.7 implies that any 3-connected graph G on n+ 1 vertices can be obtained

from a 3-connected graph G′ on n vertices by ‘uncontracting’ a 3-contractible edge, i.e.,

splitting some vertex in G in a way that preserves 3-connectivity. By Lemma 2.9, splitting a

vertex such that the two adjacent vertices resulting from the split have degree at least three

is equivalent to splitting the vertex in a way that preserves 3-connectivity.

This lemma then implies that given Zn, we can generate Zn+1.

From the definition of k-connectivity, we know that K4 is the only 3-connected graph

on four vertices. K4 is also trivially K1,1,4-minor-free. Therefore starting with Z4 = {K4},

it was possible to inductively generate Zn+1, for all n with 4≤ n≤ 17. The process used is

described below.

1. For each graph G inZn, and for each vertex v in G, take every possible graph obtained

by splitting v into two adjacent vertices v1 and v2 where deg(v1)≥ 3 and deg(v2)≥ 3,

and v1 and v2 have fewer than four mutual neighbours.

2. Remove duplicates from the resultant set of graphs.

3. Remove graphs with a K1,1,4 minor.

In the first step, we discard the graphs where v1 and v2 have a least four mutual neigh-

bours, since this gives an immediate K1,1,4 minor (in fact, it gives K1,1,4 as a subgraph).

In Step (2) of the process, the nauty graph automorphism package was used [12].

Duplicate graphs were removed by passing the list generated in Step (1) into the labelg

feature of nauty. This gives every graph the canonical label of its isomorphism class,

which allows us easily sort the list and remove any repeated graphs. The final step filters
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n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|Zn| 1 3 1 33 61 81 90 88 100 110 122 133 145 156 168

Table 3.1: The counts for the generated graphs Zn

out graphs that have a K1,1,4 minor. This filtering was done using a graph minor testing

program written by J. Zachary Gaslowitz [10]. The number of graphs generated for each n,

4≤ n≤ 18, is shown in Table 3.1.

Given this set of graphs, we can prove some results that will serve as base cases in later

induction arguments.

Using a basic depth first search algorithm to find Hamilton cycles in the graphs in Zn

for n≤ 12, we found the following.

Lemma 3.8. The only 3-connected K1,1,4-minor-free graph on at most twelve vertices that

is not Hamiltonian is K3,4.

Using the labelg feature of nauty [12] to label graphs in our family with the canonical

label of their isomorphism classes, we compared the graphs generated on n vertices with

our family of graphs Gn for n≤ 18 and have the following result.

Lemma 3.9. For n = 4 and 13≤ n≤ 18, Zn is exactly equal to Gn. For 5≤ n≤ 12, Gn is

properly contained in Zn.

For 5≤ n≤ 12, Zn \Gn is nonempty. All graphs in Z \G are shown in Figures 3.7, 3.8,

3.9, and 3.10, grouped first by connectivity and then by planarity. The planarity of these

graphs was found using the planarg tool of the nauty package [12]. The tool planarg

takes a list of graphs as input and outputs those graphs that are planar.

There are exactly three 4-connected K1,1,4-minor-free graphs on at most 18 vertices that

are not in G; namely, K5, the octahedron (K2,2,2) and C7. Observe that with one exception,

every other graph on at most 18 vertices inZ \G has a vertex of degree three, automatically

precluding 4-connectivity. The exception is a 4-regular graph on seven vertices, C4 ∪C3;
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however, we are able to easily find a cutset of size three in this graph. Since all graphs in G

are 3-connected but not 4-connected (Remark 3.6), the three graphs shown in Figures 3.7

and 3.8 are the only 4-connected K1,1,4-minor-free graphs on at most 18 vertices.

Figure 3.7: The octahedron, K2,2,2 (the planar 4-connected K1,1,4-minor-free graph)

Figure 3.8: The graphs K5 and C7 (the nonplanar 4-connected K1,1,4-minor-free graphs)

Passing the graphs in G on at most 14 vertices through the planarg tool of nauty, we

also found the following.

Theorem 3.10. For n ≤ 14, a graph in Gn is nonplanar if and only if it is built on one of

the base graphs F1,F2,F3 or Hi,1≤ i≤ 10.

3.3 The Characterisation

To prove that for n≥ 13, Gn consists exactly of the 3-connected K1,1,4-minor-free graphs

on n vertices, we will argue by induction.

Lemma 3.11. For all n≥ 13, every graph in Gn is 3-connected and K1,1,4-minor-free.

Proof. From Lemma 3.9, we know that the statement of the theorem holds for n = 13 and

n = 14. Let us fix some m > 14 and assume the statement holds for all n < m. Consider a

graph G in Gm. By Remark 3.2, G has a k-fan for some k ≥ 5, which is necessarily a main
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Figure 3.9: The planar 3-connected K1,1,4-minor-free graphs not in G
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Figure 3.9: The planar 3-connected K1,1,4-minor-free graphs not in G

fan. Let us collapse one such fan in G to obtain a graph G′ with a (k−1)-fan. By Remark

3.1, we know that G′ is in Gm−1, so by the inductive hypothesis G′ is 3-connected and

K1,1,4-minor-free. Now we may expand the (k− 1)-fan to recover G from G′. However,

by Corollary 2.10 and Lemma 2.11, we know that this fan expansion preserves both 3-

connectivity and the K1,1,4-minor-free property. Therefore G is 3-connected and K1,1,4-

minor-free. By induction, we have that every graph in Gn, for n ≥ 13, is 3-connected and

K1,1,4-minor-free.

Theorem 3.12. For all n≥ 13, the set of 3-connected K1,1,4-minor-free graphs on n vertices

is exactly equal to Gn.

Proof. By Lemma 3.11, for n≥ 13, all graphs in Gn are 3-connected and K1,1,4-minor-free.

Therefore it remains only to show that every 3-connected K1,1,4-minor-free graph on at

least 13 vertices is a member of G.

We know from the previous lemma that the statement of the theorem is true for 13 ≤

n≤ 17. To prove the theorem inductively, fix some m > 17 and assume the statement of the

theorem holds for all n where 13 ≤ n < m. Now let G be a 3-connected K1,1,4-minor-free
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Figure 3.10: The nonplanar 3-connected K1,1,4-minor-free graphs not in G
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Figure 3.10: The nonplanar 3-connected K1,1,4-minor-free graphs not in G

graph on m vertices.

First we show that G has a nontrivial fan. Since G is 3-connected, it has a 3-contractible

edge e by Lemma 3.7. Let us contract this edge to a vertex v and call the resultant graph G′.

Since contracting edges does not create any new minors, G′ is a 3-connected K1,1,4-minor-

free graph on m− 1 vertices. By our inductive hypothesis, G′ ∈ Gm−1. Then Remark 3.2

implies that G′ has some p-fan for p≥ 6, which is necessarily a main fan. Let this p-fan be

riveted at a vertex r. If v is not part of this fan, or adjacent to any outer vertices of the fan,
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then the fan also exists in G, and we are done.

If v is not part of the fan, but is adjacent to an outer vertex of the fan, then it can only be

adjacent to one or both of the end vertices of the outer path, as all other outer fan vertices

have all of their neighbours in the fan. Then uncontracting v to recover G could increase

the degree of these end vertices of the outer path in the fan. However, this still leaves a fan

of size at least p−2 in G, and since p−2≥ 4, this is a nontrivial fan.

So suppose that v is in the fan. First consider the case that v is an outer vertex of the

fan. Since the fan is at least a 6-fan, there exist two adjacent outer vertices of the fan, x

and y, such that neither x nor y is v or is adjacent to v. This implies that uncontracting v to

recover G leaves the 2-fan formed by x,y and r intact, and so G has a fan.

Finally, consider the case that v = r, the rivet vertex of the fan in G′. If G′ has another

fan of size at least four that is disjoint from our p-fan, then uncontracting v leaves at least

the internal portion of this fan intact, giving a nontrivial fan in G. So assume that our

p-fan is the only fan in G′ of size at least four. By Remark 3.2, this implies that p ≥ 8.

Now, let r1 and r2 be the vertices in G that were contracted to r. Let w1,w2, ...,w7,w8 be

eight consecutive outer vertices (occurring in that order) of the fan in G′. Now consider

these vertices in G. Suppose that two consecutive wi vertices are both adjacent to r1 in

G but not r2, or vice versa. Then this implies we have at least a 2-fan in G. To see this,

suppose that two consecutive wi vertices are adjacent to (without loss of generality) r1 but

not r2. If degG(r1) ≥ 4, then the two consecutive wi vertices and r1 make up a 2-fan in

G. If degG(r1) = 3, then r1’s only neighbours in G are r2 and the two consecutive wi, so

all other wi vertices are adjacent to r2 and not r1. In particular, this means that there are

two consecutive such vertices, which together with r2 form a 2-fan in G. Therefore let

us assume that no two consecutive wi vertices are both adjacent to r1 but not r2, or vice

versa. This means that for every pair of consecutive wi vertices, at least one of them is

adjacent to r1 and at least one is adjacent to r2. However, this allows us to construct a K1,1,4

minor. If the graph K1,1,4 has vertex set {a,b,c1,c2,c3,c4} and edges {ab,aci,bci,1≤ i≤
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4}, then an edge-based model of a K1,1,4 minor in G can be described by the branch sets

(A = {r1},B = {r2},Ci = {w2i−1,w2i},1 ≤ i ≤ 4), where each branch set corresponds to

the vertex of K1,1,4 with its same label in lower case. Since this is a contradiction, we must

conclude that G has a nontrivial fan.

Now, let q be the largest integer such that G has a q-fan, and consider one such q-

fan, which we shall call F . We know from above that q ≥ 2, which means that F has a

collapsible edge. Let us collapse such an edge to obtain a graph which we shall call G′′.

Since collapsible edges are 3-contractible, G′′ is in Gm−1 by our inductive hypothesis. The

fan that we collapsed is now a (q− 1)-fan in G′′; call it F ′. We note that G′′’s largest fan

is either a (q−1)-fan or a q-fan. If G′′ had any larger fans, these would have existed in G,

contradicting our choice of F . Since m−1≥ 17, and G′′ ∈ Gm−1, G′′ has at least a 6-fan by

Remark 3.2. This implies that q−1≥ 5.

Since q−1≥ 5, Remark 3.3 implies that F ′ is a main fan of G′′. Therefore expanding

F ′ yields a graph in G (Remark 3.1). Therefore, we have that G is in G.

This completes the characterisation of 3-connected K1,1,4-minor-free graphs. Given

this characterisation and our results on fans, we are able to prove some properties for these

graphs.

Corollary 3.13. There are exactly three 4-connected K1,1,4-minor-free graphs; namely K5,

the octahedron (K2,2,2) and C7 (shown in Figures 3.7 and 3.8).

Proof. We know that these graphs are the only 4-connected K1,1,4-minor-free graphs on at

most 18 vertices, and that no graph in G is 4-connected (Remark 3.6). Our characterisation

implies that there are no 4-connected K1,1,4-minor-free graphs on more than 12 vertices.

Theorem 3.14. With the exception of K3,4, every 3-connected K1,1,4-minor-free graph is

Hamiltonian.
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Proof. Recall that Lemma 3.8 tells us that the only non-Hamiltonian 3-connected K1,1,4-

minor-free graph on at most 12 vertices is K3,4. In particular, every 3-connected K1,1,4-

minor-free graph on exactly 12 vertices is Hamiltonian. For some m ≥ 13, assume that

all 3-connected K1,1,4-minor-free graphs on fewer than m vertices are Hamiltonian, and

let G be a 3-connected K1,1,4-minor-free graph on m vertices. By Theorem 3.12, G is in

G. By Remark 3.2, G has a nontrivial fan. Let us collapse one such fan to obtain a 3-

connected K1,1,4-minor-free graph G′ on m− 1 vertices. By our inductive hypothesis, G′

is Hamiltonian. Now we may re-expand the collapsed fan to recover G. By Lemma 2.7,

expanding the fan preserves Hamiltonicity. Therefore G is Hamiltonian. By induction, all

3-connected K1,1,4-minor-free graphs on at least 13 vertices are Hamiltonian.

Theorem 3.15. A graph in G is nonplanar if and only if it is built on one of the base graphs

F1,F2,F3 or Hi,1≤ i≤ 10.

Proof. Recall that Lemma 3.10 gives us that the statement of the theorem holds for all

members of G on at most 14 vertices.

Now fix some m > 14 and assume that the statement of the theorem holds for all mem-

bers of G on fewer than m vertices. Let G ∈ G be a graph on m vertices. By Remark 3.2,

one of G’s main fans is a k-fan for some k ≥ 5. Let G′ be the graph obtained from G by

collapsing an edge in this main fan. We claim that G is nonplanar if and only if G′ is non-

planar. To prove this, suppose first that G is nonplanar. Recall that since we are working

with 3-connected graphs, Lemma 1.5 implies G must have a K3,3 minor. Then Lemma 2.11

implies that G′ also has a K3,3 minor and thus is nonplanar. To prove the converse, suppose

that G′ is nonplanar. Then it must have a K3,3 minor. Splitting vertices does not destroy

minors, therefore expanding the main fan in G′ to recover G preserves the K3,3 minor and

so G is also nonplanar. Therefore we have proved that G is nonplanar if and only if G′ is

nonplanar.

By our inductive hypothesis, G′ is nonplanar if and only if it is built on one of the base

graphs F1,F2,F3 or Hi,1≤ i≤ 10. By Remark 3.1, we know that expanding a main fan of
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G′ gives a graph corresponding to the same base graph as G′. Since we collapsed a main fan

in G to get G′, the collapsed fan is a main fan in G′ (this is also a consequence of Remark

3.1), and re-expanding the fan to recover G preserves the base graph. Since G is nonplanar

if and only if G′ is nonplanar, and G′ is nonplanar if and only if it is built on one of the base

graphs F1,F2,F3 or Hi,1 ≤ i ≤ 10, this implies that G is nonplanar if and only if its base

graph is one of F1,F2,F3 or Hi,1≤ i≤ 10. Then by induction, the theorem is proved for all

graphs in G.

Corollary 3.16. The set of nonplanar 3-connected K1,1,4-minor-free graphs is exactly those

graphs built on one of the base graphs F1,F2,F3 or Hi,1≤ i≤ 10, and the graphs shown in

Figure 3.8 and 3.10.

Lemma 3.17. For k ≥ 5 and n≥ 2k+7, the number of graphs in Gn with a maximal k-fan

is equal to the number of graphs in Gn+1 with a maximal k-fan.

Proof. First note that since k≥ 5, any maximal k-fan in a graph in Gn is necessarily a main

fan, by Remark 3.3. Also note that any graph G in Gn with a maximal k-fan must have

another main fan of size at least k+1, by Remark 3.2. Since k+1≥ 6, Remark 3.3 implies

that this second fan is also a main fan. Now let us define a bijection between the graphs

with a maximal k-fan in Gn and the graphs with a maximal k-fan in Gn+1. For any graph

G with a maximal k-fan in Gn, we can expand its larger main fan and get a graph in Gn+1

which retains the maximal k-fan as the other main fan. Similarly, for a graph G′ with a

maximal k-fan in Gn+1, we can collapse its larger main fan (which has size at least k+ 2)

and get a graph in Gn with the other main fan still a maximal k-fan. Since n≥ 2k+7, the fan

we are performing operations on always has size strictly greater than five, therefore these

operations are well-defined. The expansion and contraction operations are also inverses of

each other by Remark 2.6, therefore we have the required bijection.

Theorem 3.18. For n≥ 13, there are exactly
⌊

23n
2

⌋
−39 distinct graphs in Gn.
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Proof. First we look at Gn for n ≥ 15. By Remark 3.2 G ∈ Gn has at least one main fan

(necessarily of size five or more). Let us define a map φn : Gn→Gn+2 for all n ≥ 15. The

image of G under this map will depend on whether G has one main fan or two. If G has

two main fans, we define φ(G) to be the graph obtained by expanding each of these two

fans in G. If G has a unique main fan we define φ(G) to be the graph obtained from G by

expanding this fan twice. Each of these operations increases the number of vertices by two,

and by Remark 3.1 G is closed under expansion and contraction of main fans, therefore in

both cases φ(G) is in Gn+2. Observe that performing the first operation results in a graph

with two main fans each of size at least six, and performing the second operation results in

a graph with one main fan of size at least seven, and no other fans with size greater than

four. Therefore any graph in φ(Gn) is mapped to by only one of the operations, and we

uniquely recover G from φ(G) by contracting the fan(s). Therefore φ is injective.

Next we consider Gn+2 \φ(Gn). For any graph G′ in Gn+2 with either two main fans of

size at least six, or one main fan with size at least seven and no other fans of size greater

than four, we can perform contraction operations mentioned above to obtain the pre-image

φ−1(G′) in Gn. Therefore any such graph G′ is in φ(Gn). Furthermore, we know that φ only

maps to graphs with either two main fans of size at least six, or one main fan of size at least

seven and no other fans of size greater than four. Therefore the graphs in Gn+2 \φ(Gn) are

exactly those graphs that satisfy neither of these conditions. Since n+ 2 ≥ 17, any graph

in Gn+2 that has only one main fan must have its main fan of size at least eight; therefore

there are no graphs in Gn+2 that have only one main fan whose size is six. Therefore the

graphs in Gn+2 \φ(Gn) are exactly those graphs with a maximal 5-fan.

The rest of the proof proceeds by induction. From Table 3.1, we know that the statement

of the theorem holds for 13≤ n≤ 18. So fix some m≥ 19, assume the statement holds for

all n < m, and consider Gm. From above, we know that Gm consists of the disjoint union of

φ(Gm−2) and the set of graphs in Gm with a maximal 5-fan. We also know that the number

of graphs in Gm with a maximal 5-fan is the same as the number of graphs in Gm−2 with a
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maximal 5-fan, by Lemma 3.17. Furthermore, the number of graphs with a maximal 5-fan

in Gm−2 is exactly |Gm−2 \φ(Gm−4)|. Therefore,

|Gm|= |Gm−2|+ |Gm−2 \φ(Gm−4)|

= |Gm−2|+ |Gm−2|− |Gm−4|

=

⌊
23(m−2)

2

⌋
−39+

⌊
23(m−2)

2

⌋
−39−

(⌊
23(m−4)

2

⌋
−39

)
(inductive hypothesis)

=


23(m−2)− 23(m−4)

2
−39, for m even

23(m−2)−1− 23(m−4)−1
2

−39, for m odd

=


23m

2
−39, for m even

23m−1
2

−39, for m odd

=

⌊
23m

2

⌋
−39.

Therefore the statement of the theorem holds for Gm. By induction, the theorem is

proved.

39



Chapter 4

Hamiltonicity of 3-connected Planar K1,1,5-minor-free Graphs

This chapter presents a new Hamiltonicity result for the class of 3-connected planar

K1,1,5-minor-free graphs. Recall Theorem 1.14, proved by Ellingham et al. in [9], which

states that all 3-connected planar K2,5-minor-free graphs are Hamiltonian. Our result is a

strengthening of this theorem. Specifically, we prove that every 3-connected planar K1,1,5-

minor-free graph is Hamiltonian, with one exception; namely, the Herschel graph.

4.1 Computer Results

Similarly to Chapter 3, our main argument relies on knowing all of the 3-connected

planar K1,1,5-minor-free graphs on up to 16 vertices. Again, these small graphs were gen-

erated for us by J. Zachary Gaslowitz (personal communication), using almost the same

process as was used to generate the 3-connected K1,1,4-minor-free graphs. One difference

is filtering for K3,3 minors, since we are concerned specifically with planar graphs. Note

that by Lemma 1.5, filtering for K3,3 minors is enough to guarantee planarity, since we are

only looking at 3-connected graphs. Let Hn denote the set of 3-connected planar K1,1,5-

minor-free graphs on n vertices. We know that K4 is the only 3-connected graph on four

Figure 4.1: The graph K1,1,5
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vertices, and it is also planar and trivially K1,1,5-minor-free; therefore, H4 = {K4}. The

process for generatingHn+1 givenHn, for 4≤ n≤ 15, is described below.

1. For each graph G in Hn, and for each vertex v in G, take every possible graph ob-

tained by splitting v into two adjacent vertices v1 and v2 where deg(v1) ≥ 3 and

deg(v2)≥ 3, and v1 and v2 have fewer than five mutual neighbours.

2. Remove duplicates from the resultant set of graphs.

3. Remove graphs with a K1,1,5 minor or K3,3 minor.

In the first step, we discount the graphs where v1 and v2 have a least five mutual neigh-

bours, since this gives an immediate K1,1,5 minor (in fact, it gives K1,1,5 as a subgraph).

In Step (2) of the process, duplicate graphs were removed by passing the list generated

in Step (1) into the labelg feature of nauty [12] and deleting graphs with repeated labels.

The final step filters out graphs that have a K1,1,5 minor or a K3,3 minor. This filtering

was done using the graph minor testing program written by J. Zachary Gaslowitz [10].

Given the graphs generated for us by J. Zachary Gaslowitz, we used a basic depth first

search algorithm to find Hamilton cycles in the graphs in Hn for n ≤ 16, and found the

following.

Lemma 4.1. With the exception of the Herschel graph, every 3-connected planar K1,1,5-

minor-free graph on at most 16 vertices is Hamiltonian.

Recall that the Herschel graph is a bipartite graph on eleven vertices. It is shown in

Figure 4.2.

We were able to independently verify Lemma 4.1 using computer results obtained by

Gordon Royle (personal communication). He generated all of the non-Hamiltonian 3-

connected planar K2,6-minor-free graphs on up to 16 vertices (the process used to do so

is described below). Since K1,1,5 is a minor of K2,6, these graphs automatically include

all non-Hamiltonian 3-connected planar K1,1,5-minor-free graphs. He also then separated
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out the minimally 3-connected graphs from this list (meaning removal of any edge destroys

3-connectivity). We ran each of the minimally 3-connected graphs through J. Zachary

Gaslowitz’s minor tester to check for K1,1,5 minors. All of the graphs had a K1,1,5 minor,

with the exception of the only minimally 3-connected graph on 11 vertices; namely, the

Herschel graph. Since adding edges to a graph does not destroy any minors, this implies

that all non-Hamiltonian 3-connected planar K2,6-minor-free graphs on at least 12 and at

most 16 vertices have a K1,1,5 minor. Since the Herschel graph did not have a K1,1,5 minor,

we additionally checked all other non-Hamiltonian 3-connected (not minimally) planar K2,6

minor-free graphs on 11 vertices. For all such graphs we found a K1,1,5-minor; therefore,

the Herschel graph is the only non-Hamiltonian 3-connected planar K2,6-minor-free graph

that is also K1,1,5-minor-free. Thus, Lemma 4.1 has been verified twice.

We give a description of the process used by Gordon Royle to generate the non-Hamiltonian

3-connected planar K2,6-minor-free graphs on up to 16 vertices. A program plantri [2],

written by Gunnar Brinkman and Brendan McKay, is used. The purpose of the program

plantri is to generate 3-connected planar triangulations, but it has a mode for generating

3-connected planar graphs.

1. With plantri, all 3-connected, planar graphs on up to 16 vertices are generated.

2. Using a basic Hamiltonicity checker, all Hamiltonian graphs from this list are filtered

out.

3. Each graph in the list is tested for a K2,6 minor by contracting sequences of edges to

obtain an eight vertex graph, in every possible inequivalent way. These eight vertex

graphs are then compared to an existing list of the eight vertex graphs with K2,6

minors. The graphs that have a K2,6 minor are removed from the list. This gives all

non-Hamiltonian, 3-connected, planar, K2,6-minor-free graphs on up to 16 vertices.

4. To obtain the minimally 3-connected graphs, edges are in turn deleted from each

graph and the resultant graph is checked for 3-connectivity. If a graph is no longer

42



Figure 4.2: The Herschel graph

3-connected after the deletion of any edge, then it is minimally 3-connected.

4.2 Main Result

The statement of our main theorem is given below.

Theorem 4.2. With the exception of the Herschel graph, every 3-connected planar K1,1,5-

minor-free graph is Hamiltonian.

To prove this theorem, we need only consider graphs that are 3-connected planar and

K1,1,5-minor-free but not K2,5-minor-free, since we already know that the 3-connected pla-

nar K2,5-minor-free graphs are Hamiltonian, by Theorem 1.14. To this end, we consider

a certain type of K2,5 structure that must exist in a 3-connected planar K1,1,5-minor-free

graph that is not also K2,5-minor-free, and prove a sequence of lemmas that gradually re-

strict what the graph looks like in relation to this structure. Eventually, we show that if

our graph has enough vertices, it has a nontrivial fan, or a similar structure known as a

contractible triangle, allowing us to prove our main theorem by induction.

Throughout this chapter, we will be finding contradictions in the form of K1,1,5 minors,

so we shall set up some notation to describe these minors. Let the graph K1,1,5 have vertex

set {a1,a2,b1,b2,b3,b4,b5} and edge set {a1a2}∪ {aib j,1 ≤ i ≤ 2,1 ≤ j ≤ 4}. First we

claim that for a path-based model of a K1,1,5 minor in a graph G, we may assume that the

branch sets corresponding to the vertices bi are themselves single vertices in G. To see this,
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let Si be the branch set corresponding to vertex bi, and let R1 and R2 be the branch sets

corresponding to a1 and a2 respectively. Then consider the path from R1 to Si, and the path

from Si to R2. Suppose that the former path ends at vertex u in Si and u and the latter ends

at v in Si (we assume that these paths are minimal in that they each have only one vertex in

Si). Then since Si is connected, there is a uv path lying entirely in Si. The concatenation of

our R1− Si path, the uv path, and our Si−R2 path is a path from R1 to R2, with length at

least two. We can then replace the branch set Si with the set consisting of any vertex on the

interior of this path. This remains a valid path-based model of a K1,1,5 minor.

Therefore, assuming that the branch set corresponding to each vertex bi in K1,1,5 is just

a single vertex, we will usually describe a path-based model of a K1,1,5 minor in a graph G

with the sets R1, R2, and S, where R1 is the branch set corresponding to a1, R2 is the branch

set corresponding to R2, and S = {si, : 1 ≤ i ≤ 5} is the set of five vertices respectively

corresponding to the branch sets of the vertices bi, for 1 ≤ i ≤ 5. Occasionally it will be

convenient to let a branch set Si consist of more than one vertex. In this case we may let

S :=∪5
i=1Si. The paths joining the branch sets will usually be apparent, but will be specified

when necessary.

We define a K2,5 outline to be a structure in a graph G that consists of the following.

There are two disjoint connected induced subgraphs, called the base graphs of the outline,

which are denoted by B1 and B2 respectively. Additionally, there are five internally disjoint

paths of length at least two, each with one end vertex in B1 and the other end vertex in B2.

None of the internal vertices of these paths are allowed to lie in B1 or B2. The five paths are

called the arcs of the structure, and are denoted by Ai, i = 1,2, ...,5. We impose a direction

on these arcs, and say that they start in B1 and end in B2. If a and b are vertices on an arc

Ai, such that a precedes b on the arc, we will denote the segment (subpath) of Ai between a

and b as Ai[a,b]. We denote the segment of Ai between the start vertex of Ai and an internal

vertex a of Ai by Ai[−,a], and the segment of Ai between a and the end vertex of Ai by

Ai[a,−].
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Figure 4.3: The K2,5 outline H

Consider a graph G that is 3-connected planar and K1,1,5-minor-free but not K2,5-minor-

free. Then G has a K2,5 minor, which we describe by sets R1,R2,S as explained above. The

presence of this K2,5 minor guarantees that G contains a K2,5 outline; for example we may

take B1 and B2 to be the graphs induced by the vertices in R1 and R2 respectively, and each

arc Ai to be the path consisting of the path from R1 to si followed by the path from si to R2,

for i = 1,2, ...,5.

Now, over all K2,5 outlines in G, fix one that first minimises the total number of vertices

in the two base graphs, and then maximises the number of vertices internal to the five arcs.

We will denote this structure by H. Vertices that are part of a base graph we will call base

vertices, and vertices that are internal to an arc we will call arc vertices (the end vertices of

the arcs are base vertices). A depiction of H is shown in Figure 4.3.

It will prove useful in later arguments to have some specified arc vertices. For each arc

Ai, we will denote the second vertex on Ai (equivalently, the first arc vertex on Ai) by ti.

We now prove a series of lemmas that gradually restrict the structure of H, leading

eventually to the main result that if G has enough vertices, it must contain a nontrivial fan.

4.2.1 Basic Structure of the Outline

Lemma 4.3. Each base graph has a spanning path, and each end vertex of a spanning path

is an end vertex of at least two arcs.
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Proof. Without loss of generality, we will prove the lemma for B1. Take a spanning tree

of B1. Consider the leaves of the spanning tree. If a leaf is not the end vertex of any arc,

we may simply remove it from B1, resulting in a structure with a smaller number of base

vertices, contradicting our choice of H. If a leaf v is the end vertex of only one arc, we

may extend the arc by a vertex, moving the leaf vertex from B1 to the interior of the arc, so

that the arc now ends at a base neighbour of v. This decreases the number of base vertices

and increases the number of arc vertices, also contradicting our choice of H. Therefore

each leaf vertex of a spanning tree of the base graph is the end vertex of at least two arcs.

In particular, this implies that the spanning tree has at most two leaves, and is therefore a

spanning path.

Lemma 4.4. Each base graph is an induced path.

Proof. Again, without loss of generality, we will prove the claim for B1. Fix a spanning

path P of B1, and suppose there is an edge between two vertices u and v in B1 that are not

adjacent on P. If w is the end vertex of P closest to u, and z is the end vertex of P closest

to v (note that we may have w = u or z = v), then define B′1 := P[w,u]∪ uv∪P[v,z]. Then

|B′1| < |B1|, since any vertices in P(u,v) are not included in B′1 (and P(u,v) is nonempty

since u and v were not adjacent on P). Also, B′1 contains both end vertices of P, meaning

it contains the B1 end vertices of at least four out of five arcs. If B′1 contains the B1 end

vertices of all five arcs, then we may replace B1 in H by B′1, giving an outline with fewer

base vertices and therefore contradicting our choice of H. If B′1 contains only four out of

the five arc end vertices, then one arc, Ai, has an end vertex in P(u,v). We may extend this

arc along P to end instead at v, which keeps it still internally disjoint from the other four

arcs. Call this new extended arc A′i. Then by replacing B1 with B′1 and Ai with A′i, we have a

new outline with fewer base vertices and more arc vertices, again contradicting our choice

of H. Therefore B1 is an induced path.

Now that we know B1 and B2 are induced paths, we will name their end vertices. Let w
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and z be the end vertices of B1, and let x and y be the end vertices of B2. We will assume a

direction for each of B1 and B2, letting B1 start at w and end at z, and B2 start at x and end

at y. We may also refer to B1 and B2 as base paths, instead of the more general base graph.

In the proof of the following lemmas, we will be finding contradictions in the form of

K1,1,5 minors. We will describe these minors explicitly in terms of their branch sets, and

also present visual representations of many of them. In doing so, we will usually make the

assumption that the arcs labelled A1 and A2 are incident with z in B1, and the arcs labelled

A4 and A5 are incident with w in B1 (as long as this does not destroy generality). We

make the disclaimer that these visual representations of the minors in G may not always

be completely general, as the exact structure of the graph and the outline H has not yet

been determined. For example, we will sometimes depict the K1,1,5 minor in a graph G′

that is itself a minor of G, having contracted some paths to single vertices to make it easier

to show the minor. These representations are intended for clarification only, and explicit

information about the minors should be taken from the branch set descriptions in the text.

Lemma 4.5. Each arc is an induced path.

Proof. Fix an arc A. Suppose there is an edge between two vertices a,b on A that is not part

of the arc itself. Then there is some vertex c between a and b on A, and we have a K1,1,5

minor with R1 =V (B1∪A[−,a]), R1 =V (B2∪A[b,−]), S = {c, t2, t3, t4, t5}. This minor is

shown in Figure 4.4.

Remark 4.6. There can be no edges between B1 and B2, since that would give an immediate

K1,1,5 minor, similar to the one above.

Lemma 4.7. The only arc vertices that are adjacent to any base vertices are those that are

‘penultimate’ on the arc; that is, they are either the second vertex on the arc or the second

to last vertex on the arc. In particular, only the second vertex on an arc (a ti vertex) can be

adjacent to any B1 vertices, and only the second to last vertex on an arc can be adjacent

to any B2 vertices. Furthermore, for each base graph there is at most one penultimate arc
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vertex that is adjacent to any base vertex other than its arc’s endpoint, and each end vertex

of the base graph is incident with at least two arcs that have no other edges to the base

graph.

Proof. Suppose that there is an arc vertex a that is not a penultimate arc vertex, and that is

adjacent to a base vertex in B1. Then this gives us the K1,1,5 minor with R1 =V (B1),R2 =

V (B2∪A[a,−]) and S = {t1, t2, t3, t4, t5}, shown in Figure 4.5. Therefore only penultimate

arc vertices can be adjacent to base vertices.

B1 B2t3

t2

t1
a

t4

t5

Figure 4.5
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Next we consider which penultimate arc vertices can be adjacent to multiple base ver-

tices. Without loss of generality, let us consider the base vertices in B1. We know that w is

the end vertex of at least two arcs. If it is the end of exactly two arcs, we claim that neither

of the B1-adjacent penultimate vertices of these two arcs can be adjacent to any vertices

in B1 other than w. To see this claim, suppose by way of contradiction that a penultimate

vertex of one of these two arcs, call it a, is adjacent to some vertex v in B1 \{w}. Then we

can modify the arc, replacing the edge aw with the edge av. This keeps the arc internally

disjoint from the other four arcs, and does not change the number of base vertices or the

number of arc vertices. But now w is the end of vertex of only one arc, and so we can

shift w from the base graph to the arc, thereby decreasing the number of base vertices and

increasing the number of arc vertices. This gives a contradiction. Therefore if w is the end

vertex of exactly two arcs, neither of the penultimate vertices of those arcs are adjacent to

any other vertices in B1.

Now consider the case that w is the end vertex of exactly three arcs. Suppose that one

of them has a w-adjacent penultimate vertex a that is also adjacent to some vertex v in

B1 \ {w}. Then we may modify the arc, replacing the edge aw with the edge av, which

does not change the number of base vertices or arc vertices. In this new modified outline,

w is the end point of only two arcs, and so the previous argument implies that neither of

these arcs has a penultimate vertex adjacent to any other vertices in B1.

If w is the end vertex of more than three arcs, then B1 = {w}, as each end vertex of B1

must be the end vertex of at least two arcs, and there are only five arcs in total.

Therefore the only case in which a penultimate arc vertex whose arc ends at an end

vertex w of B1 can be adjacent to a B1 vertex other than w is if w is the end vertex of three

arcs, and in this case only one of w’s penultimate neighbours may be adjacent to such a

vertex. Since this situation requires that w be the end vertex of three arcs, the other end

vertex of B1 must be the end vertex of exactly two arcs, and any internal vertices of B1

are not end vertices of any arcs, therefore no other penultimate arc vertices are adjacent to
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multiple B1 vertices.

If there is an arc that ends at an internal vertex u of B1, then the penultimate vertex of

the arc ending at u may be adjacent to vertices in B1 \{u}. However, in this situation, none

of the penultimate vertices of the other four arcs may be adjacent to multiple vertices in B1,

since of the remaining four arcs, two must end at w and two at z.

In particular, this proves that each of w and z is the exclusive B1 neighbour of at least

two arcs.

4.2.2 G\H

We now consider the structure of the graph G outside of H. We will use G\H to mean

the graph obtained from G by deleting all vertices in V (H).

Lemma 4.8. Let C be a component of G\H, and let c1,c2, ...cn denote the end vertices in

H of the edges between C and H. Then c1,c2, ...,cn all lie in one base graph - either B1 or

B2.

Proof. Let C be as described. We observe that by 3-connectivity, C has at least three edges

to H, so n≥ 3. Let v be a vertex in C and consider three internally disjoint paths from v to

three distinct vertices in H, without loss of generality c1, c2 and c3.

First suppose that one of c1,c2,c3 vertex is a base vertex and another is an arc vertex

(without loss of generality say c1 lies in R1 and c2 lies on arc A1). Then we get a K1,1,5 minor

(shown in Figure 4.6), with R1 = V (B1),R2 = V (B2 ∪A1[c2,−]), and S = {v, t2, t3, t4, t5}.

We get a similar minor if c1 lies in B1 and c2 lies in B2, or if both c1 and c2 lie on the same

arc.

If all three of c1,c2,c3 lie on different arcs, we get a K3,3 minor, contradicting planarity.

If K3,3 is described by V (K3,3) = {p1, p2, p3,q1,q2,q3} and E(K3,3) = {piq j,1≤ i, j ≤ 3},

then the K3,3 minor in G is described by the branch sets (for a path-based model) P1 =

V (B1),P2 =V (B2),P3 = {v},Q1 = {c1},Q2 = {c2},Q3 = {c3}, where each branch set cor-

responds to the vertex in K3,3 with its lower case label. This K3,3 minor in G is shown in
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Figure 4.7.

Therefore all vertices c1,c2, ...cn lie in one base graph.

Without loss of generality, assume that the vertices c1,c2, ...,cn occur in that order along

B1.

Lemma 4.9. If C is a component of G\H with points of attachment c1,c2, ...,cn along B1

in that order, then there is an edge from an arc vertex to a vertex in B1(c1,cn).

Proof. Let C be as described, and suppose by way of contradiction that no arc vertex has

a neighbour in B1(c1,cn). By 3-connectivity, there must be a path from B1(c1,cn) to H \

B1[c1,cn] that does not use c1 or cn (since n≥ 3, B1(c1,cn) is nonempty). We may assume

that no internal vertices of the path lie in B1(c1,cn) or H, since we can always take a subpath

with this property (in general, we shall assume that for subgraphs or sets of vertices D and

E, a ‘path from D to E’ means a path with no internal vertices in either D or E). This

path cannot be an edge, since there are no edges from B1(c1,cn) to any arc vertices by
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assumption, there are no edges between B1 vertices that do not lie on the B1 path, and there

are no edges between B1 and B2. Therefore the path passes through some vertex u in G\H.

Also note that u is not in C, since all of C’s points of attachment to H lie in B1[c1,cn]. Since

u is in some component of G\H, and it has one point of attachment in B1, all of its points of

attachment are in B1, by Lemma 4.8. This implies that the path out of B1(c1,cn) to the rest

of H ends in B1 \B1[c1,cn] (and hence B1 \B1[c1,cn] is nonempty). Let us assume without

loss of generality that the path ends in B1[w,c1). Now since no arc vertices have neighbours

in B1(c1,cn), one component of B1 \B1(c1,cn), i.e., B1[w,c1] or B1[cn,z], contains the end

vertices of three arcs, and we get one of two K1,1,5 minors; this is a contradiction. For the

construction of our minors, let v be a vertex in C with two internally disjoint paths ending

at c1 and cn respectively. For the case that B1[w,c1] contains the end vertices of three arcs,

say A3,A4,A5, the K1,1,5 minor is given by R1 =V (B1[w,c1]), R2 =V (B2∪A1∪B1(c1,z]),

and S = {v,u, t3, t4, t5}. This minor is shown in Figure 4.8. In the case that B1[cn,z] contains

the end vertices of three arcs, say A1,A2,A3, the K1,1,5 minor is given by R1 =V (B1(c1,z]),

R2 =V (B2∪A5∪B1[w,c1]), and S = {v,u, t1, t2, t3}. This minor is shown in Figure 4.9.
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Lemma 4.10. Any component C of G\H has exactly three points of attachment in H, and

they occur consecutively along a base path.

Proof. Let C be a component of G\H with points of attachment c1,c2, ...,cn in that order

along B1. By the above result, we know that there is an edge from an arc vertex a (we

may assume A1,A2 end at w, a is on A3, and A4,A5 end at z) to some vertex u in B1(c1,cn).

Now if either B1(c1,u) or B1(u,cn) is nonempty, we get a K1,1,5 minor. Since the two cases

are symmetric, we may assume without loss of generality that B1(c1,u) is nonempty, and

contains a vertex r. Then the K1,1,5 minor is given by R1 = V (B1[w,c1]∪B1[cn,z]∪C),

R2 =V (B2∪A3)∪{u}, and S = {r, t1, t2, t4, t5}. See Figure 4.10. So there must be only one
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vertex in B1(c1,cn), meaning that n = 3 and c1,c2,c3 are consecutive on B1.

B1[w,c1]

r

u

B1[cn,z]

B2

t2

t1

t4

t5

C

Figure 4.10

The results in the remainder of this section are concerned with a component C of G\H,

which we assume (without loss of generality) has its neighbours in B1 By Lemma 4.9, we

know there is some arc Ai with ti adjacent to an internal vertex of B1 (specifically, c2 for the

component C). We will assume for the rest of the section that the arc adjacent to an internal

vertex of B1 is A3. Recall that there can be only one such arc, by Lemma 4.7. Then A1,A2

can be assumed to have start vertex z, and A4,A5 can be assumed to have start vertex w.

Lemma 4.11. Let C be a component of G \H, with points of attachment c1,c2,c3 in that

order along a base path of H. Then the vertices V (C)∪{c2} induce a k-fan, with rivet

vertex c2, and k = |V (C)|.

Proof. Let v be a vertex of C. By 3-connectivity, there are three internally disjoint paths

from v to (without loss of generality) B1, ending at the distinct vertices c1,c2,c3 respec-

tively. Observe that any such paths lie in the subgraph of G induced by V (C)∪{c1,c2,c3}.

Let P1,P2,P3 be three such paths (with Pi ending at ci for i = 1,2,3) such that the total

number of vertices on the paths is minimised. This implies that each Pi is in fact an induced

path: if there were any edge between two vertices on a path Pi that did not lie on the path

itself, we could use that edge to construct a shorter path.
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We claim that the path P2 is in fact just the edge vc2. To see this claim, suppose by way

of contradiction that P2 has some internal vertex. By 3-connectivity there has to be a path

from some internal vertex u on P2 to P1∪P3 that does not pass through v or c2. This path

also lies entirely in the subgraph induced by V (C)∪{c1,c2,c3}. Without loss of generality,

suppose the path ends on P1. Then we have a K1,1,5 minor, given by R1 = V (B1[c2,z]),

R2 =V (B2∪A5∪B[w,c1]∪P1(v,c1]), and S = {v,u, t1, t2, t3}. This minor is shown in Figure

4.11.

B1[w,c1]

c2

B1[c3,z]

B2
t3

t2

t1

v u

P1

P3

Figure 4.11

Therefore P2 is just the edge vc2. Additionally, there are no edges or paths between

P1 \ {v} and P3 \ {v} whose internal vertices are all in G \H. If there were such a path,

call it Q, we would obtain the K1,1,5 given by R1 = V (B1[w,c1]∪P1(v,c1]∪P3(v,c3]∪Q),

R2 =V (B2∪A3)∪{c2}, and S = {v, t1, t2, t4, t5}, shown in Figure 4.12.

We now claim that there are no other vertices in C other than those on P1,P2,P3. To

see this, suppose by way of contradiction there is some vertex u in C that does not lie

on any of P1,P2,P3. Then u must have three internally disjoint paths to distinct vertices

(which we shall call points of attachment) on P1∪P2∪P3, by 3-connectivity. Since there

are no such paths between vertices of P1 \{v} and vertices of P3 \{v}, u cannot have points

of attachment on both P1 \ {v} and P3 \ {v}. Therefore u either has all three points of

attachment on one of P1 and P3, or has two points of attachment on one of P1 or P3 and
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the third point is c2 (observe that c2 is the only vertex on P2 other than v, and v is also

part of P1 and P3). In the former case, assume without loss of generality that u has all

points of attachment on P1, and denote the points of attachment respectively by r1,r2,r3,

with r1 closest to v and r3 closest to c1. Then a K1,1,5 minor is given by R1 =V (B1[w,c2]∪

P1[r3,c1]),R2 =V (B2∪A1∪B1[c3,z]∪P3) and S = {u,r, t3, t4, t5} (see Figure 4.13). In the

latter case, assume without loss of generality that u has two points of attachment on P3. We

will these two vertices r1 and r2, where r1 is closest to v and r2 is closest to c3 (note that

we could have r1 = v or r2 = c3). Then a K1,1,5 minor (shown in Figure 4.14) is given by

R1 =V (B1[w,c2]),R2 =V (B2∪A1∪B1[c3,z]∪P3[r2,c]) and S = {u,v, t3, t4, t5}.

Therefore there are no vertices in C that do not lie on one of P1,P2,P3. Also, since P2

is just the edge vc2, and there are no edges along either P1 or P3 or between P1 \ {v} and

P3 \{v}, C is in fact just the induced path P−1
1 (c1,v]P3[v,c3). All that remains to be shown

in order to prove that that V (C)∪{c2} induces a fan with rivet vertex c2, is that every vertex

in V (C) is adjacent to c2 and the degree of c2 is greater than four. However, we proved that

v is adjacent to c2, and v was an arbitrary vertex of C. Therefore every vertex in C must be

adjacent to c2. In addition, c2 is adjacent to c1,c3 and t3, so c2 must have degree at least

four.
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Therefore the vertices V (C)∪{c2} induce a k-fan with rivet vertex c2, and k = |V (C)|.

Corollary 4.12. If a component of G\H has at least two vertices, then G has a nontrivial

fan.

Lemma 4.13. A component of G\H cannot have only one vertex.

Proof. Suppose that we have a component C of G \H such that C has only one vertex, v.

Without loss of generality, assume that v has its neighbours c1,c2,c3 on B1, occurring in

that order. We know that c2 must have an edge to an arc vertex, t3. Now we may replace arc

A3 by A′3 := vc2A3[t3,−], and B1 by B′1 := B1[w,c1]vB1[c3,z]. This results in a K2,5 outline

H ′ with the same number of total base vertices, but one more arc vertex; a contradiction.

Therefore C cannot consist of a single vertex.

Corollary 4.14. If G\H is nonempty, then G has a nontrivial fan.

4.2.3 Edges Between Arcs

Now consider the arcs. Since there are no edges between two vertices on an arc that are

not adjacent on the arc (Lemma 4.5), each arc vertex (with the exception of possibly two
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penultimate arc vertices that may have edges to base vertices) has an edge to another arc.

By planarity, any vertex on an arc can only have an edge to either one of its neighbouring

arcs. For the arguments that follow, we assume a certain numbering of the arcs. Given a

planar embedding of G, consider the graph obtained by contracting each of B1 and B2 to a

single vertex. Then label the arcs consecutively in clockwise order around the contracted B1

vertex. This necessarily implies that the arcs are labelled consecutively in an anticlockwise

order around the contracted B2 vertex. We now lift this numbering of the arcs to the original

graph.

Lemma 4.15. If an arc vertex a on Ai has an edge to arc vertex b on A j, then either Ai has

length two, A j has length two, or a and b are both penultimate on their respective arcs and

are both adjacent to B1 or both to B2.

Proof. Suppose that none of these three situations are happen. Then a has an arc neighbour

to one side of the edge ab and b has an arc neighbour on the other side. This results in a

K1,1,5 minor. To construct an example of such a minor, let us assume that a lies on A3, b

lies on A2, a has arc neighbour c directly following it on A3, and b has arc neighbour d

directly preceding it on A2. Then the K1,1,5 minor is given by R1 =V (B1∪A3[−,a]),R2 =

V (B2∪A2[b,−]), and S = {c,d, t1, t4, t5}. This minor is shown in Figure 4.15.
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Corollary 4.16. If an arc vertex a on arc Ai is not penultimate on its arc, and has an edge

to arc vertex b on arc A j, then A j has length two.

Lemma 4.17. If an arc of G has at least four arc vertices, then G has a nontrivial fan.

Proof. Suppose that G has an arc (without loss of generality, A3) with at least four arc

vertices. Let a1,a2,a3,a4 be the first four arc vertices of the arc, occurring in that order

(i.e., a1 = t1). First we show that if a1 is adjacent to more than one vertex in B1, we have a

nontrivial fan. To see this, suppose that a1 is adjacent to two base vertices, u and v in B1.

Now consider the neighbours of a2 and a3. By 3-connectivity, they must both have a third

neighbour not on their arc. We know that neither a2 nor a3 is adjacent to a base vertex since

they are not penultimate on their arc, therefore they must have edges to neighbouring arcs,

A2 or A4. Suppose that both a2 and a3 have edges only to one of the neighbouring arcs,

say A2. Then by Corollary 4.16, A2 has length two and only one internal vertex, say b, and

the vertices b,a2,a3 form a fan riveted at b with collapsible edge a2a3. Therefore suppose

that a2 and a3 have edges to different arcs - without loss of generality, a2 to vertex b on A2

and a3 to vertex c on A4. We also know that a4 has a third neighbour. Since a4 may be a

penultimate arc vertex, this third edge may be to a B2 vertex, or it may be to A2 or A4. If

a4 has an edge to A4, we get a K1,1,5 minor (Figure 4.16). The minor is explicitly described

59



by R1 =V (B1∪A4[−,c]), R2 =V (B2∪A2[b,−])∪{a2}, and S = {t1,a1,a3,a4, t5}.
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b

t1

c

t5

Figure 4.16

Therefore the third neighbour of a4 is either on A2 (i.e., is b) or B2. Neither of these

possibilities immediately gives a K1,1,5 minor, so consider the arcs A1 and A5. Each of these

arcs has at least one internal vertex, say d on A1 and e on A5. If a4 does not have multiple

neighbours in B2, then either d or e may have another B2 vertex as its third neighbour, but

at least one of d and e must have an edge to another arc. Therefore we have at least one of

the following edges: an edge from e to an arc vertex on A4 (i.e., c), an edge from d to an arc

vertex on A2 (i.e., b), or an edge between arc vertices on A1 and A5 respectively. If either

of the first two edges exists, we get a K1,1,5 minor. The two situations are symmetric, so we

need only construct one minor explicitly. Let us assume we have the edge from e to an arc

vertex on A4.This gives the minor described by R1 = {a2,a3,c}, R2 =V (B2∪A1∪B1[v,z]),

and S = {w,a1,a4,b,e}. A depiction of this minor is given in Figure 4.17.

Therefore we must have an edge between arc vertices on A1 and A5, which we may

assume is between d and e. But now either of the two possibilities for a4’s third neigh-

bour (b or another B2 vertex) gives a K1,1,5 minor. First consider the case that a4’s third

neighbour is b. To describe the K1,1,5 minor present in this situation, we have R1 =

V (B1[w,u]∪A5[−,e]∪A4[−,c])∪{a3} and R2 = V (B1[v,z]∪A2[−,b]). It is simplest for

this minor to allow S1 to consist of multiple vertices, although we have until now been

using the convention that each Si branch set consists of a single vertex. We let S1 =V (B2)
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and S2,S3,S4,S5 be the usual single-vertex branch sets consisting of the vertices d,a1,a2,a4

respectively. See Figure 4.18.

Next we construct the K1,1,5 minor obtained if a4’s third neighbour is another B2 vertex,

instead of b. Let a4’s neighbours in B2 be g and h, where g is closest to x and h is closest

to y. We know that out of A1,A2,A4,A5, two arcs end at x in B2 and two arcs end at y in

B2. Given that A1 and A2 start at z in B1 and A4 and A5 start at w in B1, we may assume

that A1 ends at x in B2. We claim that this implies that A2 also ends at x in B2. To see this,

suppose not. Then A2 ends at y, and one of A4, A5 ends at x; we may assume A4 ends at x.

To construct the contradictory minor, we do not use any of the internal information of arcs

A1,A2,A4,A5, therefore assuming A4 ends at x does not lose us generality. Now we have

a K3,3 minor, contradicting planarity. The K3,3, minor is described by the branch sets P1 =

{a1}, P2 =V (B2[x,g]), P3 =V (B2[h,y]), Q1 = {a4}, Q2 =V (B1[w,u]) and Q3 =V (B1[v,z]),

and is shown in Figure 4.19. Therefore A1 and A2 both end at x in B2, and A4 and A5 both

end at y in B2. Now we may finally construct the K1,1,5 minor for this case. The minor
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is described by R1 =V (B1[v,z]∪A2[−,b])∪{a2,a3}, R2 =V (B1[w,u]∪A5∪B2[h,y]), and

S = {a1,a4,d,c,x} (see Figure 4.20).
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c
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Figure 4.18

So if a1 is adjacent to more than one B1 vertex, we have either a nontrivial fan or a

contradiction in the form of a K1,1,5 minor.

So assume that we have an arc, A3, with at least four arc vertices, a1,a2,a3,a4 such that

neither penultimate vertex on our arc is adjacent to multiple vertices on a base path. Then

each of a1,a2,a3,a4 is adjacent to a neighbouring arc (either A2 or A4). If two consecutive

vertices in {a1,a2,a3,a4} both only have an edge to one of the arcs, say A2, then A2 has

only one internal vertex, say b, and the two consecutive a vertices form a nontrivial fan

with b as the rivet. So assume that any two consecutive vertices in {a1,a2,a3,a4} have

edges to different arcs. In particular, we know that a1 and a2 have edges to different arcs.

Suppose a1 has an edge to vertex b on A2 and a2 has an edge to vertex c on A4. Now, if a3

only has an edge to A4, then a2 must have edges to both A2 and A4, and we get a K1,1,5 mi-

nor described by R1 =V (B1∪A4[−,c]), R2 =V (B2∪A2[b,−]), and S = {t1,a1,a2,a3, t5},
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shown in Figure 4.21.

So a3 has an edge to A2 (i.e., to b). Now if a4 has an edge to A4, we get a K1,1,5 minor

almost identical to the one found above (replace S3 = {a2} with S3 = {a2,a3} and replace

S4 = {a3} with S4 = {a4}). If a4 only has an edge to A2, then a3 has edges to both A2 and

A4, and we again get a similar minor to the one above.

Therefore if we have four arc vertices along any one arc, we must have a nontrivial

fan.

Lemma 4.18. If G has more than ten total arc vertices, then G has a nontrivial fan.

Proof. We know that no single arc of G can have four or more arc vertices without resulting

in a nontrivial fan. Therefore assume we have no arcs with four or more arc vertices. We

also know that if an arc has three arc vertices, then the middle arc vertex must have an edge

to a neighbouring arc with length two, by Corollary 4.16. Therefore any arc with three arc

vertices must have a neighbouring arc with one arc vertex. This implies that we can have

at most three arcs with three arc vertices.
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Suppose we have exactly three arcs with three arc vertices each. Then each of these

three arcs must have a neighbouring arc with only one arc vertex, so the remaining two arcs

must have one arc vertex each. Let us assume that A1,A3,A5 each have three arc vertices

(they cannot all occur consecutively since each must have a length two neighbouring arc)

and A2 and A4 each have one arc vertex. Let A1’s arc vertices be a1,a2,a3, A2’s be b, A3’s

be c1,c2,c3, A4’s be d, and A5’s be e1,e2,e3. Then we know that we must have the edges

a2b and e2d (these are the only possible non arc edges out of a2 and e2). We must also have

either c2b or c2d. If we have both edges, we get a K1,1,5 minor, shown in Figure 4.22 and

described by R1 = V (B1∪A5∪B2), R2 = {a2,b,c2} and S = {a1,a3,c1,c3,d}. Therefore

we only have one of the edges c2b or c2d. Since the cases are symmetric, we may assume

we have c2d.

We will refer to edges between arc vertices on distinct arcs as jumps, and say that these

two vertices jump to each other. Consider edges incident with a1. Since a2 jumps only to

b, if a1 also has b as its only non-arc neighbour we have an induced fan on a1,a2,b with b
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as the rivet vertex and a1a2 a collapsible edge. Therefore assume a1 has a non-arc edge to

somewhere other than b. It can jump to arc A5 or to another base vertex of B1. If a1 jumps

to arc A5, then it can only jump to e1 (a jump to e2 or e3 would give a minor, by Lemma

4.15). Similarly, e1 must have an edge to a vertex other than d and its arc neighbours, which

can be either another base vertex of B1, or a1. Since e1 and a1 cannot both be adjacent to

multiple base vertices, the edge e1a1 must exist.

Now consider edges incident with c1. Since c2’s only non-arc edge is to d, if c1 only has

a non-arc edge to d we have an induced fan on c1,c2,d with rivet vertex d and collapsible

edge c1c2. Therefore assume c1 has a neighbour other than d. This neighbour can only be

b, or an additional base vertex. If c1 has an edge to b, we get a K1,1,5 minor. Again, for the

construction of this minor it is simplest to allow S1 =V (B1), instead of just a single vertex.

We then have the remaining sets given by R1 = {a2,b,c1,c2}, R2 = V (B2)∪{e1,e2,e3},

and S\S1 = {a1,a3,c3,d}. See Figure 4.23.

Therefore c1 does not have an edge to b, and so c1 must be adjacent to multiple base
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vertices in B1, say u and v, where u is closest to w and v is closest to z. However, this

also gives a K1,1,5 minor, with R1 = {e1,e2,d,c2}, R2 = V (B2 ∪ A2 ∪ B1[v,z]), and S =

{a1,c1,c3,e3,w}. See Figure 4.24.

Therefore if we have three arcs each with three arc vertices, we have a nontrivial fan.

Suppose we have exactly two arcs each with three arc vertices. At least one of the

remaining arcs must have only one arc vertex. We assume exactly one arc has one arc

vertex and the other two have two arc vertices each, otherwise we have at most ten total arc

vertices. The arc with one arc vertex must lie in between the arcs with three arc vertices,

so the order of the arcs (up to symmetry) is uniquely determined. Let us say that A1 has

two arc vertices, a1 and a2, A2 has two arc vertices, b1 and b2, A3 has three arc vertices,

c1,c2,c3, A4 has one arc vertex, d, and A5 has three arc vertices e1,e2,e3. We know we must

have the edges e2d and c2d, and these are the only possible non-arc edges incident with e2

and c2 respectively. Now consider edges incident with c1. If c1’s only non-arc neighbour is

d, then c1,c2,d induce a fan with rivet vertex d and collapsible edge c1c2. So c1 has some
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other neighbour - either an additional base vertex, or a vertex on A2 (which must be b1 by

Lemma 4.15). Suppose that c1 is adjacent to two base vertices u and v in B1, and consider

the neighbours of e1. Similarly to c1, e1 has a neighbour that is either an additional base

vertex or a1. However, since c1 is adjacent to multiple base vertices, e1 cannot be adjacent

to multiple base vertices, so e1 must have an edge to a1. Then we get a K1,1,5 minor, given

by R1 = {c2,d,e2}, R2 =V (B1[v,z]∪A1∪B2), and S = {w,c1,c3,e1,e3} (see Figure 4.25).

Therefore c1 is not adjacent to multiple base vertices, so it is adjacent to b1 on A2. Since

c1, c3, e1 and e3 are all symmetric, none of them can be adjacent to multiple base vertices,

therefore the edges c3b2 and e3a2 are also forced. But this creates a K1,1,5 minor. Again,

for simplicity we set S1 = V (B2), instead of just a single vertex, R1 = V (B1)∪{a1,a2},

R2 = {b2,c2,c3,d,e2}, and S\S1 = {b1,c1,e1,e3}. This minor is shown by Figure 4.26.

Therefore we have at most one arc with three arc vertices. This forces a neighbouring

arc to have at most one arc vertex (by Lemma 4.15), and the three remaining arcs must each

have at most two arc vertices. This gives at most ten total arc vertices.
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4.2.4 Proof of Main Result

Lemma 4.19. If G has more than 18 vertices, then G has a nontrivial fan.

Proof. Suppose that G does not have a nontrivial fan. Then by Corollary 4.14, G = H.

Consider the base graphs, B1 and B2. The internal vertices of each base path must each

have a neighbour other than their path neighbours, by 3-connectivity. Since there are no

components outside H, all of the internal vertices in the same base path must be adjacent

to the same penultimate arc vertex a, and they therefore all have degree exactly three. If

a base path has at least five vertices, then it has at least three internal base vertices, which

form a 3-fan with a as the rivet vertex; a contradiction. Therefore each base path can have

size at most four, and G has at most eight base vertices. We observe that a base path with

size exactly four is not enough to guarantee a fan, since a might then have degree only three

and cannot act as the rivet vertex.

From above, we know that if G does not have a nontrivial fan, then G can have at most
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ten arc vertices. Since G = H, the only vertices in G are either base vertices or arc vertices,

so G has at most 18 vertices in total.

To reduce the order of the graphs in the base case of our forthcoming induction argu-

ment, we define a new type of subgraph that proves useful for Hamiltonicity.

Definition 4.20. Let a,b,c all be vertices of degree three that induce a triangle (3-cycle) in

a graph G. If G is 3-connected and |V (G)| ≥ 5, then this triangle is said be a contractible

triangle in G. Contracting the vertices a,b,c to a single vertex t is referred to as contracting

the triangle. Observe that each of a,b and c have exactly one neighbour outside the triangle

in G, and each of these neighbours must be distinct; if for example a and b have a common

neighbour d outside the triangle, then {d,c} is a cutset in G, contradicting that G is 3-

connected. Therefore t has degree exactly three in the graph obtained by contracting the

triangle.
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Lemma 4.21. If G is a 3-connected graph with a contractible triangle formed by the ver-

tices a,b,c, then the graph obtained from G by contracting this triangle is also 3-connected.

Proof. Let G,a,b,c be as described in the statement of the lemma. Let G′ be the graph

obtained by contracting the contractible triangle. Denote the vertex that the triangle is

contracted to by t, and let t’s three neighbours in G′ be denoted by d,e, f . Assume these

vertices are neighbours of a,b,c respectively in G. Suppose that G′ is not 3-connected.

Consider some minimal cutset S in G′. We must have |S| ≤ 2. If t is not in S, then S is also

a cutset in G, a contradiction. Therefore t must be a vertex of S.

We claim that there is some component C of G′ \S that contains only one of d,e, f . To

see this, first observe that not all of d,e, f can be in one component of G′ \ S, since then

S \ {t} would still be a cutset in G′, contradicting minimality. Now suppose that one of

d,e, f (without loss of generality, d) is also in S, so that S = {t,d}. Then e and f are in

different components of G′ \ S, and it follows that e and f are in different components of

G \ {b,d}. In particular, {b,d} is a 2-cut in G, a contradiction. Therefore none of d,e, f
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are in S, and they are not all in the same component of G′ \S, so some component contains

only one of the three vertices. Let us assume that a component C of G′ \ S contains d but

neither of e and f . But then S\{t}∪{a} is a 2-cut in G; again a contradiction.

Lemma 4.22. If G is a non-Hamiltonian, 3-connected graph with a contractible triangle,

then the graph obtained from G by contracting this triangle is also non-Hamiltonian.

Proof. Let G be as described, and let the vertices comprising its contractible triangle be a,b

and c. Let G′ be the graph obtained by contracting this triangle to a single vertex t. Suppose

that G′ is Hamiltonian, and let C′ be a Hamilton cycle in G′. Consider t’s neighbours in G′.

We know that t has exactly three neighbours; call them d,e, f , and assume these vertices are

respectively neighbours of a,b,c in G. Since all of d,e, f are symmetric, we may assume

without loss of generality that d directly precedes t on C′, and e directly follows t on C′.

Then replacing the segment dte of C′ in G′ with the path dacbe in G yields a Hamilton

cycle in G, a contradiction.

Lemma 4.23. If G has 17 or 18 vertices, then G has either a nontrivial fan, or a con-

tractible triangle.

Proof. Suppose that G has either 17 or 18 vertices, and G does not have a nontrivial fan.

Then by Corollary 4.14 and Lemma 4.18, G = H and G has at most ten arc vertices. There-

fore G must have at least seven base vertices. In particular, one of G’s base paths, without

loss of generality B1, has size at least four, and thus at least two internal vertices. As in

the proof of Lemma 4.19, we must have all internal vertices of B1 adjacent to the same

penultimate arc vertex a. Since we have assumed G has no nontrivial fan, B1 must have

exactly two internal arc vertices in B1, and a must have degree three (otherwise the internal

base path vertices would form a nontrivial fan with a as the rivet). But then the two internal

vertices of B1, together with a, form a contractible triangle.

We are finally in a position to prove our main result.
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Proof of Theorem 4.2. By Lemma 4.1, we know that the statement of the theorem holds

for 3-connected planar K1,1,5-minor-free graphs on at most 16 vertices. Let us fix some

m > 16 and assume the statement holds for all 3-connected planar K1,1,5-minor-free graphs

on fewer than m vertices. Let G be a 3-connected planar K1,1,5-minor-free graph on m

vertices. By Lemma 4.23, we know that G has either a nontrivial fan or a contractible

triangle.

First consider the case that G has a nontrivial fan. Then we may collapse the fan to

obtain a graph G′ on m− 1 vertices. By Lemma 2.8, G′ is still 3-connected. Since con-

tracting edges does not create any minors, G′ is also K1,1,5-minor-free and planar. By our

inductive hypothesis, G′ is Hamiltonian. Now expanding the fan to recover G preserves

Hamiltonicity, by Lemma 2.7. Therefore G is Hamltonian.

Now consider the case that G has a contractible triangle. Let us contract this triangle to

obtain a graph G′′ on m−2 vertices. By Lemma 4.21, G′′ is 3-connected, and again since

contracting edges does not create minors, G′′ remains K1,1,5-minor-free and planar. By the

inductive hypothesis, G′′ is Hamiltonian. Then Lemma 4.22 implies that G is Hamiltonian.

Both cases result in G being Hamiltonian, therefore by induction our result is proved.
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Chapter 5

Future directions

There are several avenues for further research based on the results presented in this

dissertation.

As mentioned in Chapter 1, there exists an infinite family of nonplanar 3-connected

K2,5-minor-free graphs that are not Hamiltonian. Characterising all non-Hamiltonian 3-

connected K2,5-minor-free graphs would be an interesting project.

Another way forward would be extending the characterisation of 3-connected K1,1,4-

minor-free graphs in Chapter 3 to all K1,1,4-minor-free graphs, without connectivity re-

strictions. Furthermore, we would like to find the orientable and nonorientable genus of

the 2-connected and 3-connected nonplanar K1,1,4-minor-free graphs. We suspect that these

may all be toroidal and projective-planar.

We also propose a strengthening of our Hamiltonicity result for 3-connected planar

K1,1,5-minor-free graphs given in Chapter 4. In particular, we would like to characterise the

non-Hamiltonian 3-connected planar K2,6-minor-free graphs. Clearly not all 3-connected,

planar, K2,6-minor-free graphs are Hamiltonian, since we have the Herschel graph as an ex-

ample of a non-Hamiltonian 3-connected, planar, K1,1,5-minor-free graph, and any K1,1,5-

minor-free graph is automatically K2,6-minor-free. In fact, we have many counterexamples

to Hamiltonicity for 3-connected, planar, K2,6-minor-free graphs. Gordon Royle’s com-

puter results discussed in Section 4.1 give the following:

Lemma 5.1. There are exactly 206 non-Hamiltonian, 3-connected, planar, K2,6-minor-free

graphs on fewer than 16 vertices.

Taking it even further, Ellingham et al [9] constructed an infinite family of 3-connected,

planar, K2,6-minor-free graphs that are not Hamiltonian, all closely related to the Herschel

graph. This family is described by Figure 5.1. In the figure, dashed edges represent edges
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Figure 5.1: Non-Hamiltonian, 3-connected, planar, K2,6-minor-free graphs.

that may be either absent or present, each combination giving one of 40 graphs after allow-

ing for symmetries. They also conjectured that every 3-connected, planar, K2,6-minor-free

graph on at least 16 vertices is a member of this family.

Conjecture 5.2. For each n ≥ 16, the 3-connected planar K2,6-minor-free graphs on n

vertices that are not Hamiltonian are exactly those graphs described by Figure 5.1. There

are exactly 40 such graphs for each n.

We believe that this conjecture might be proved using methods similar to those used for

the 3-connected planar K1,1,5-minor-free case. Specifically, one may be able to consider

those graphs that are 3-connected, planar, and K2,6-minor-free but not K2,5-minor-free or
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not K1,1,5-minor-free, and gradually restrict the structure of a K2,5 or K1,1,5 outline, ulti-

mately proving that if such a graph has enough vertices, it has a fan. The possible flaw with

this approach, however, is that it appears the threshold number of vertices to have a fan

might be significantly higher than the K1,1,5-minor-free case. This means that the number

of graphs to be checked by computer for the base case of the induction argument could be

infeasibly large. Further investigation is needed.
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