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CHAPTER 1 

 INTRODUCTION 
	
  
	
  

Volcanic eruptions, if large enough, can have a dramatic effect on the climate and 

the aviation industry, as highly explosive eruptions can emit large amounts of ash and 

SO2 into the troposphere and stratosphere.  Through the release of volcanic ash and SO2, 

eruptions can act to cool Earth’s climate (Kravitz, 2011), increase marine primary 

production (Langmann, 2014), disrupt precipitation patterns (Oman et al., 2006), and can 

have many other climate impacts, as discussed in Chapters 2.1-2.5. Climate effects of 

these eruptions are highly dependent on the location of the eruption (Schneider et al., 

2009). For example, high-latitude eruptions can decrease the temperature gradient 

between Asia and Europe (Oman et al., 2006), whereas tropical eruptions have a winter 

warming effect over Northern Hemisphere continents (Robock et al., 1992). Volcanic ash 

can also have a significant impact on the aviation industry, as ash can lead to jet engine 

failure if injected into the aircraft (Sears et al., 2013), discussed in further detail in 

Chapter 2.6.    

Due to these climate and aviation impacts, the knowledge of the location of volcanic 

ash following an eruption is imperative. This study aimed to explore the accuracy and 

reliability of using satellite observations to detect both ash-rich and SO2-rich volcanic 

clouds using the Moderate Resolution Imaging Spectrometer (MODIS), an instrument 

on-board NASA’s Terra and Aqua satellites, as discussed in Chapter 3. This thesis 

outlines chosen study areas in Chapter 3.2, remote sensing methods used to locate 

volcanic ash and SO2-rich ash in MODIS observations in Chapter 3.3, modeling methods 

used to determine ash concentrations in Chapter 3.4, back-propagation neural networks in 
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Chapter 3.5, and the specific neural network training used for this study in Chapter 3.6. 

Optimal thresholds for detecting ash are discussed in Chapter 4.1. These thresholds were 

used to differentiate ash and SO2-rich ash from ambient features, as detailed in Chapters 

4.2. The results of this study can be found in Chapter 5.  
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CHAPTER 2 

 IMPACTS OF ERUPTIONS 
 

2.1 Climate effects of volcanic ash 

Although climate effects of eruptions have been mostly attributed to sulfate 

aerosols, recent research has attempted to quantify climate effects attributable to ash 

(Langmann, 2014; Flanner et al., 2014) (Figure 1).  

 

 

 

 

 

 

 

 

 

Figure 1: Diagram from Langmann, 2014, depicting the transport processes of dust (yellow) and 
volcanic ash (gray), radiative effects, cloud processes, deposition, and ocean fertilization. 

	
  
	
  
Volcanic ash acts to reduce the amount of incoming solar radiation, thus modifying 

Earth’s surface temperature (Langmann, 2013). Ash, in addition to sulfate aerosols, 

provides a source of cloud condensation nuclei and ice nuclei, increasing the number of 

cloud droplets (Langmann, 2014; Langmann, 2013; Twomey, 1977). An increase in 

cloud droplets, or the first indirect effect, modifies cloud lifetime and precipitation 

processes, otherwise known as at the second indirect effect (Langmann, 2014; Langmann, 
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2013; Albrecht, 1989). Atmospheric CO2 concentrations can be reduced following 

volcanic eruptions through ocean fertilization: Ash serves as a source of iron to the 

ocean, increasing marine primary production, leading to a build-up of organic carbon 

(Langmann, 2014; Langmann, 2013; Achterberg et al., 2013). Radiative forcing 

associated with ash is largely dependent on the reflective properties of the surface it is 

over (Flanner et al., 2014). Following the eruption of Ejyafjallajokull in 2010, a positive 

radiative forcing, or an increase in Earth’s energy budget, was found when ash was 

deposited onto snow and ice (Flanner et al., 2014). In addition to modification to 

radiative forcing, ash can result in surface darkening, snow melt, and snow insulation 

(when the ash deposit is thick) (Flanner et al., 2014). Although sulfate aerosols provide a 

larger contribution to negative radiative forcing, sulfate concentrations can vary from 

large to small with each eruption. During Ejyafjallajokull, little SO2 was injected into the 

atmosphere, and thus long-wave positive radiative forcing was much larger than long-

wave forcing associated with sulfate (Flanner et al., 2014.) 

 

2. 2 Climate effects of sulfate aerosols 

In order to have a significant climate effect, sulfate aerosols must be injected into 

the stratosphere because they will be rapidly removed due to precipitation if only injected 

into the troposphere (Francis and Oppenheimer, 2004). Sulfate aerosols, formed after SO2 

oxidizes to H2S04 by homogeneous nucleation/condensation onto other aerosols (Vernier 

et al., 2011), increase Earth’s albedo by scattering shortwave radiation (Figure 1). This 

results in the primary effect of large volcanic eruptions: surface and tropospheric cooling 

and stratospheric warming (Kravitz, 2011).	
  If only injected into the troposphere, sulfate 
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aerosols will have a lifetime of 1-3 weeks due to precipitation. Once injected into the 

stratosphere their lifetime increases to 1-3 years, resulting in reduction of direct solar flux 

at the surface and net cooling. Net heating is observed in the stratosphere due to the 

absorption of infrared radiation by sulfate aerosol. Other effects of sulfate aerosols are 

ozone depletion and more downward infrared flux (Robock, 2000).  

Due to synoptic-scale weather systems, radiation-gain differences and global 

atmospheric circulation patterns, climate implications of volcanoes will depend on where 

and when they erupt. When injected at high latitudes, sulfate aerosols have a lifetime of 

one year or less due to subsidence over the poles (Oman et al., 2005). If injected at low-

latitudes, sulfate aerosols will have a longer lifetime: 1-3 years (Kravitz, 2011). Both 

tropical and high-latitude eruptions lead to continental cooling during summer, enhanced 

cooling over regions already characterized by sea-ice during the winter in the Northern 

Hemisphere, and a decrease in global precipitation (Schneider et al., 2009). 

 

2.3 Seasonal effects of low-latitude eruptions 

Climate models indicate the primary effects of large tropical eruptions to be 

winter warming over the Northern Hemisphere continents (Robock et al., 1992) and a 

positive Arctic Oscillation (Kravitz, 2011), a phase characterized by low pressure over 

the Arctic and high pressure over the mid-latitudes. A strengthening of the Polar Vortex, 

a result of an increased temperature gradient between the Equator and the poles following 

stratospheric warming, forces a positive Arctic Oscillation and keeps cold air locked at 

the poles. Following the tropical eruption of Pinatubo in 1991, ozone levels were reduced 

by 6-8%, winter warming was observed in 1993, summer cooling was observed in 1993, 
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a decrease in solar flux, the amount of radiation not being scattered (NOAA), was 

observed, and an increase in diffuse flux, the amount of radiation reaching the surface 

that has been scattered (NOAA), was observed (Francis and Oppenheimer, 2004). 

 

2.4 Seasonal effects of high-latitude eruptions 

Although tropical eruptions are thought to have a more significant climate impact 

than high-latitude eruptions, a large enough high-latitude eruption, erupting at the right 

time of year with significant SO2, could 

have a dramatic effect on climate, 

especially with regard to monsoonal 

regions. Following high-latitude eruptions, 

a reduced temperature gradient between 

Asia and Europe leads to the weakening of 

the Indian and African monsoons (Oman 

et al., 2006), and thus significant warming 

is seen over the Sahel of Africa and the 

southern portion of the Arabian Peninsula 

and India due to a decrease in cloud cover 

and soil moisture (Graf, 1992). This 

combination of increased temperature and 

decreased cloud cover would enhance 

evaporation and thus reduction of river 

flows (Oman et al., 2006). For example, a reduction in the flow of the Nile has been 

Figure 2: Reduction in Nile river levels as a result 
of precipitation reduction following three high-
latitude volcanic eruptions (Oman et al., 2006): 
Top: Katmai, 1912; Middle: Laki, 1783-1784; 
Bottom: Eldgjá, 939 
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observed following high-latitude eruptions, such as Laki in Iceland in 1783- 1784, 

Katmai in 1912, and Eldgjá in 939 (Figure 2)  (Oman et al., 2006). 

 

2.5 Long-term effects of eruptions 

In addition to the direct, seasonal effects of high and low-latitude eruptions, there 

are also positive feedbacks, or developments that enhance changes already occurring, that 

may lead to long-term climate change. In addition to winter warming of Northern 

Hemisphere continents, tropical eruptions also result in cooling of high-latitudes in the 

Northern Hemisphere, suggesting that there are multiple positive feedbacks in regions 

characterized by ice and snow with regard to further cooling (Schneider et al., 2009). The 

response to tropical eruptions is enhanced by advancing sea ice and lower sea surface 

temperatures, associated with a stronger temperature gradient between the Equator and 

poles at the surface. During Northern Hemisphere winter, the Arctic then cools much 

more quickly than the tropics, suggesting that volcanism might play a part in long-term 

climate change (Schneider et al., 2009).  

 

2.6 Aviation threats 

In addition to human health impacts, such as eye irritation and respiratory stress 

(Langmann, 2013), volcanic ash poses a serious threat to the aviation industry. Ash can 

melt onto the jet engine turbine and lead to failure if it enters the engine, as the melting 

point of ash is around 1100 K while jet engines operate at about 1400 K (Sears et al., 

2013). In addition to engine damage, volcanic ash can also damage cockpit windows and 

other airplane surfaces through sandblasting, clog the pitot-static system, and be ingested 
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into the air conditioning and cooling systems (Pavolonis et al., 2013; International Civil 

Aviation Organization (ICAO), 2007). Due to these physical damage effects of volcanic 

ash, the presence of ash in the atmosphere can significantly effect the economy of the 

aviation industry. For example, the eruption of Eyjafjallajokull in Iceland in 2010 

resulted in over 100,000 canceled flights (Pavolonis et al., 2013; International Civil 

Aviation Organization (ICAO), 2007). Just fewer than 100 aircraft have been damaged 

due to interaction with volcanic ash within 30 years (1970-2000) (Sears et al., 2013).  

 

2.7 Trajectories of ash and SO2 

The location of ash and SO2 following an eruption is important due to the 

resulting climate effects and aviation threats. However, ash and SO2 often follow 

different trajectories due to their different densities and the presence of shear, or the 

change in wind speed and direction with height, and atmospheric lifetime (Carn et al., 

2002; Sears et al., 2013; Schneider et al., 1999; Prata et al., 2007; Rose et al., 2000; 

Thomas et al., 2011). When this happens, SO2 cannot reliably be used as a proxy for ash. 

Sears et al. [2013] found that sometimes only 10% of ash was missed when using SO2 as 

a proxy for ash, but other times that over 80% was missed. They go on to discuss that 

although not always highly accurate, using SO2 to determine the location of volcanic ash 

is useful. 
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CHAPTER 3 

 METHODS 
 

3.1 Summary  

To determine if volcanic ash could be automatically detected within MODIS 

observations, MODIS data was obtained for seven eruptive events (Table 1) and band 

differencing was performed to distinguish ash and SO2-rich ash from ambient clouds and 

surface features. Ash concentrations were determined using HYSPLIT for the same 

eruptive events. The accuracy of using a neural network to detect volcanic ash was 

explored by training a back-propagation neural network with band differences 

representing ash, SO2, and surface features as input and ash concentrations as output.  

 

3.2 Study areas 

Seven eruptive events with similar plume heights and explosivity were chosen 

(Table 1). These eruptions all had a Volcanic Explosivity Index (VEI) of 3 or 4 and 

plume heights between 12 and 30 km (Global Volcanism Program; hereafter referred to 

as GVP). The VEI is on a scale of 0 to 8, where an increase of one indicates an increase 

in magnitude by a factor of 10, and is a function of volume of erupted material, eruption 

column height, and duration (Newhall et al., 1982). These eruptive events were chosen 

because they had similar eruptive column heights, allowing their trajectories to be 

compared.  
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Volcano Date of Eruption Location Plume Height 

(km) 

VEI 

Kasatochi 08/07/2008 52.177°N, 175.508°W ~19 4 

Okmok 07/12/2008 53.43°N, 168.13°W ~15 4 

Grímsvötn 05/21/2011 64.42°N, 17.33°W ~20 4 

Chaitén 05/06/2008 42.833°S, 72.646°W ~30 4 

Puyehue-Cordón Caulle 06/04/2011 40.59°S, 72.117°W ~12 3 

 

 
Kelut 04/13/2014 7.93°S, 112.31°E ~17 4 

 Sangeang Api 05/30/2014 8.20°S, 119.07°E ~15 3 

  
Table 1:  Seven volcanic eruptions and their corresponding time, location, plume height (km), 
and explosivity.  

 
 
 Kasatochi, a stratovolcano located in the Aleutian Islands (Sigurdsson, 2000), 

began erupting on August 7, 2008, with three distinct pulses. The third pulse, beginning 

at 0435 UTC, August 8, 2008, was the largest of the three, with a plume height of 19 km 

(Pavolonis, personal comm.), and continued for 14 hours (Prata et al., 2010). This pulse 

released the most ash of the three pulses (Fee et al., 2010), and released around 1.7 Tg of 

SO2 (Corradini et al., 2010), the highest amount observed since the eruption of Hudson in 

1991 (Fee et al., 2010).  

 Another volcano located in the Aleutian Islands, the basaltic shield volcano 

Okmok, erupted at 1943 UTC on July 12, 2008 (Fee et al., 2010), with a plume height 

near 15 km (GVP). This phreatomagmatic eruption, or one characterized by high water 

content (Fee et al., 2010), released 0.1 Tg of SO2 (Prata et al., 2010).  

 The eruption of Grímsvötn, a basaltic caldera (Sigurdsson, 2000) lying below the 

Vatnajökull icecap in Iceland (GVP), began erupting around 1900 UTC, May 21, 2011 
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(Petersen et al., 2012). The plume quickly reached 20 km (GVP), but decreased strength 

soon afterwards and the plume fell to 10 km within 24 hours (Petersen et al., 2012).  

 Chaitén, a rhyolitic caldera in southern Chile, began erupting on May 2, 2008 

(Lara, 2009). This eruptive event continued for months, but on May 6, 2008, 12:32 UTC, 

produced the second Plinian column of the event with a plume height of over 20 km 

(Lara, 2009; GVP). This eruption is especially interesting as it was the first rhyolitic 

eruption during the satellite era (Lara, 2009). This eruption was not associated with high 

SO2 emissions (Lara, 2009; Carn et al., 2009). 

 Also in Chile, Puyehue-Cordón Caulle, a volcanic complex, began erupting from 

a fissure on June 4, 2011 (GVP; Klüser et al., 2012; Sigurdsson, 2000). This basaltic-to-

rhyolitic eruption continued for several months (Diaz et al., 2014), but initially sent ash 

12 km into the atmosphere (GVP; Klüser et al., 2012). Within ten days, Puyehue’s ash 

cloud had circled the globe (Klüser et al., 2012). 

 On February 13, 2014, 15:50 UTC, Kelut, a stratovolcano located in Java, began 

erupting. This eruption sent volcanic ash to altitudes of 17 km, continued for 3-4 days, 

and resulted in 40 canceled flights and multiple rerouted flights (GVP; Kristiansen et al., 

2015). Kelut is estimated to have injected a total of 0.74 Tg of ash into the atmosphere, 

and 0.38 Tg of that ash into the stratosphere (Kristiansen et al., 2015).  

 Sangeang Api, a volcanic complex in the Lesser Sunda Islands (Sigurdsson, 

2000), began erupting on May 30, 2014, 8:55 UTC (GVP). This trachybasaltic-to-

trachyandesitic complex emitted ash up to 15.2 km and resulted in canceled flights from 

the Darwin International Airport (GVP).  
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3.3 Remote sensing 

Aerosols exhibit varying transmittance in the 8-10 and 10-12 µm ranges, regions 

where the atmosphere is nearly transparent (Ackerman, 1997) (Figure 3). Because 

MODIS channels 29, 31, and 32 cover this spectral range, MODIS images were obtained 

and band combinations were derived to determine areas of ash and SO2 in each eruptive 

column. Sulfur dioxide is very absorptive in 7.3 and 8.6 µm channels (Prata et al., 2007). 

However, the 7.3 µm channel is not as sensitive to the total SO2 column as the 8.6 µm 

channel because the 7.3 µm channel lies within a band that is also sensitive to water 

vapor (Sears et al., 2013) (Figure 3). 

	
  

Figure 3: (A) Spectral response for MODIS channels 28, 29, 30, 31, and 32; (B) Ash transmission spectra; 
(C) Ice transmission spectra; (D) Strength of SO2 absorption in channels 7.3 µm versus 8.6 µm; (E) Sulfate, 
water droplets transmission spectra; (F) Transmission spectra of the atmosphere. Figure adapted from 
Watson et al., 2004.  
 

 

Band differencing was used to locate both ash and SO2 in the atmosphere following a 

volcanic eruption. Ash is characterized by a negative brightness temperature difference 
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between 11 and 12 µm (Ackerman et al., 2008) (Figure 3). The brightness temperature is 

the equivalent blackbody temperature required to emit the same radiance observed by the 

satellite instruments in a particular channel (Bennartz, 2015). Ice is characterized by a 

positive brightness temperature difference between 11 and 12 µm because ice exhibits a 

lower brightness temperature at 12 µm (Watson et al., 2004). Band differencing was also 

used to determine ice loading within the volcanic clouds, as ice can affect the signal of 

ash and SO2 within the cloud, leading to a misrepresentative loading of ash and SO2 

(Watson et al., 2004). Following methods similar to Ackerman et al. [2008], band 31 (11 

µm) was subtracted from band 32 (12 µm) to create a positive brightness temperature 

difference representing ash. Because SO2 absorbs strongly in the 8.6 µm channel but not 

in the 11 µm channel, band 29 (8.6 µm) was subtracted from band 31 (11 µm) to create a 

positive brightness temperature difference representing SO2 (Figure 3). Visible images 

were also created for each case by combining band 1 (620-670 nm), band 4 (545-565 

nm), and band 3 (459-479 nm) (Figure 4).  
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Figure 4: RGBs were created using MODIS bands 32-31, 31-29, and 31, for following eruptions 
and times: (A) Kasatochi, August 8, 2008, 2305Z; (C) Okmok, July 12, 2008, 2330Z; (E) 
Grímsvötn, May 23, 2011, 1400Z; (G) Chaitén, May 6, 2008, 1505Z; (I) Puyehue-Cordón Caulle, 
June 6, 2011, 1840Z; (K) Kelut, February 14, 2014, 0335Z; (M) Sangeang Api, May 31, 2014, 
0235; Visible images were created for the same times to the right of their corresponding RGB 
using MODIS bands 1, 4, and 3: (B), (D), (F), (H), (J), (L), (N). Ash will appear brown in these 
images and meteorological clouds appear white. 

 

Previous research determining locations and loadings of SO2 and ash has used one 

or a combination of the following satellite instruments: Total Ozone Mapping 

Spectrometer (TOMS), Moderate Resolution Imaging Spectrometer (MODIS), 

Atmospheric Infrared Sounder (AIRS), Spinning Enhanced Visible and Infrared Imager 

(SEVIRI), Ozone Monitoring Instrument (OMI), and the Advanced Very High 

Resolution Radiometer (AVHRR) (Ackerman, 1997; Carn et al., 2009; Carn et al., 2010; 

Feltz et al., 2006; Prata et al., 2007; Prata et al., 2010; Theys et al., 2013; Pavolonis, 

2014; Pavolonis et al., 2006). 
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3.4 HYSPLIT 

After band combinations are used to differentiate between ambient clouds, surface 

features, ash, and SO2, ash concentrations are determined using the Hybrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) Model for Volcanic Ash for the 

same archived eruptions (Draxler and Rolph, 2003).  

The NOAA/Air Resources Laboratory HYSPLIT model can be used specifically 

for archived volcanic eruptions to determine the transport, dispersion, and ash 

concentrations of the volcanic plume. For this particular study, National Centers for 

Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 

Reanalysis meteorological data was used. Reanalysis data is composed of atmospheric 

analysis reproduced using historical data (1948-current) (Kalnay et al., 1996). 

The following source term parameters were specified for each eruption (Appendix 

A): eruption starting time (UTC), latitude and longitude of volcano, ash column top, ash 

column bottom, eruption duration, and ash quantity. The ash column top was chosen to 

be the maximum plume height, as reported in the literature and weekly reports via GVP. 

The ash column bottom was always the volcano’s summit height, and HYSPLIT evenly 

distributes emissions vertically between the top and bottom column heights (Draxler and 

Rolph, 2003). Eruption durations were chosen based on the nature of the eruption: single 

puff versus continuous release. Eruption ash quantities were chosen from published 

literature (Appendix A) unless unknown. When unknown, USGS Eruption Source 

Parameters, assignments of column height, duration, mass eruption rate, volume, and 

percentage of fine ash based on eruption type, were used for ash quantities (Mastin et al., 

2009).  
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The following runtime parameters were also specified for each eruption 

(Appendix A): total duration, sampling type, average period/snapshot interval, 

concentration grid resolution (decimal degrees), concentration grid domain size (decimal 

degrees), top of layer, and bottom of layer. Simulations were run for either 24 or 48 

hours, depending on the eruption. The sampling type and interval were chosen to be 

snapshot and three hours, respectively, for each eruption, resulting in output at a 3-hour 

interval.  As HYSPLIT determines concentrations within a 3-dimensional latitude-

longitude grid, the concentration grid resolution is the horizontal resolution and the 

concentration domain size is synonymous with horizontal dimensions. As noted in 

Appendix A, these grid and domain sizes are all “-1,” which tells HYSPLIT to 

automatically calculate these sizes based on the total runtime (Draxler and Rolph, 2003).  

The simulation of the Chaitén eruption, which was run for 24 hours, had a resolution of 

0.2 degrees, while all other eruptions, which were run for 48 hours, had resolutions of 0.4 

degrees. To calculate the vertical layer-average concentration, HYSPLIT was given the 

upper and lower limits of atmospheric layer, with the lower limit set to mean sea level 

and the upper limit to 30 km for all eruptions except Chaitén, which had an ash column 

height very close to this upper limit. Because of this, Chaitén’s upper limit was chosen to 

be 32 km, the most HYSPLIT could handle without crashing.   

The following deposition/ashfall parameters were used: wet deposition of particle, 

in cloud and below cloud; the option to sum deposition over total run time; ash bulk 

density; and the option to specify output units. The wet deposition parameters were kept 

as default: In-cloud kept at 3.2E+05 liters/liters; Below-cloud was kept at 5.0E-05 liters-1. 

Deposition was set to the sum over the entire run for each eruption. Ash bulk density and 
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deposition output units were both kept at default: 2.5 g/cm3 and mass/area, respectively. 

Concentrations were output in kg/m3 (Figure 5). These concentrations were converted to 

grams and integrated over the concentration layer height of 30 km or 32 km, depending 

on the eruption, resulting in units of g/m2. 
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Figure 5: Ash concentrations (kg/m3) were obtained via HYSPLIT for the following eruptions 
and times: (A) Kasatochi, August 9, 2008, 0100Z; (B) Okmok, July 12, 2008, 2300Z; (C) 
Grímsvötn, May 23, 2011, 1300Z; (D) Chaitén, May 6, 2008, 1500Z; (E) Puyehue-Cordón 
Caulle, June 6, 2011, 1800Z; (F) Kelut, February 14, 2014, 0400Z; (G) Sangeang Api, May 31, 
2014, 0300Z 
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3.5 Description of back-propagation neural network  

 A neural network, or a structure that mathematically identifies relationships 

between given inputs and outputs (Hsu et al., 1995), is made up of neurons, which consist 

of input signals, a set of weights, activation levels, and threshold functions (Luger and 

Stubblefield, 1998). Neural networks have varying topologies, learning algorithms, and 

encoding schemes (Luger and Stubblefield, 1998). This particular study used a back-

propagation learning algorithm for a multi-layer neural network, which propagates error 

backwards starting from the output layer through the hidden layers, which connect the 

input and output layers (Luger and Stubblefield, 1998).  

 In this multi-layer network, neurons, which are connected in layers, pass their 

activations only to the following layer. Since this can result in widespread error, a back-

propagation learning algorithm is used to determine the weight distribution that results in 

the least amount of error (Luger and Stubblefield, 1998). The amount of error is easily 

determined for the output nodes, as it is just the difference between the desired and 

observed output values (Equation 1): 

 d! − O!     (1) 

However, it is more difficult to determine the amount of error within hidden layers 

(Luger and Stubblefield, 1998). A logistic function, or activation function, is used 

because it has a sigmoid shape, is continuous, and because it can determine the nodes 

with the most error (Equation 2):  

 f net =
1

1+   𝑒!!∗!"#
   (2) 

where  
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 net =   Σ𝑤!𝑥! (3) 

and 𝑥! represents the input on line i, 𝑤! represents the weight on line i, and λ is a 

parameter used to adjust the curve of the sigmoid (Luger and Stubblefield, 1998).  

Back-propagation uses a gradient descent approach to determine the direction on an error 

surface where the error is most rapidly reduced. The error surface represents cumulative 

error as a function the neural network weights (Luger and Stubblefield, 1998). To 

determine the weight adjustments for back-propagation training (the kth weight of the ith 

node), the following formulae are used (Equations 4-5):  

 Δw!" =   −c d! − O! ∗ O! 1− O! x!"   (4) 

is used for output layer nodes, and  

 Δw!" =   −c ∗ O! 1− O! Σ(−delta! ∗w!")x!" (5) 

is used for hidden layer nodes, where j represents the nodes in the following layer 

affected by i’s signals and where 

 
delta! =   

δError
δnet!

  = d! − O! ∗ O!  (1− O!) 
(6) 

The weight adjustments for output layer nodes (Equation 4) are determined by first 

considering the mean squared network error, then taking the partial derivative of total 

error with respect to each output unit, followed by considering the partial derivative of 

the error at each node with respect to the weight at that particular node, and finally by 

taking the partial derivative of the actual output with respect to each weight (Luger and 

Stubblefield, 1998). To compute the weight adjustments for the hidden layer nodes 

(Equation 5), only one hidden layer is initially assumed and a single node’s contribution 

to the total network error is analyzed. The contributions are summed across all nodes on 

the output layer, and the contribution of the kth input weight on node i to the network 
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error is determined by first taking the partial derivative of the total network error with 

respect to the node i’s output on the hidden layer. This is used to analyze the sensitivity 

of the total network error on the output layer to the updated weights on hidden node i 

(Luger and Stubblefield, 1998).  Both Equations 4 and 5 are negative because the weight 

changes must be in the direction of the negative gradient, according to the minimization 

of error (Luger and Stubblefield, 1998). This process is repeated throughout the hidden 

layers.  

 

3.6 Neural network training 

Two back-propagation neural networks were used to determine whether or not ash 

or SO2-rich ash was present in a given MODIS pixel. From 120 MODIS granules, 14 

cases were chosen where HYSPLIT output was well aligned with satellite observations 

(Appendix B). Three masks were applied to each granule to create a selection of pixels 

Figure 6: HYSPLIT output 
was overlaid onto MODIS 
granules for cases where 
MODIS and HYSPLIT were 
well aligned to select regions 
of interest. These regions of 
interest were used as masks to 
select only those areas of ash, 
no ash, SO2-rich ash, and no 
SO2-rich ash where HYSPLIT 
and MODIS were in 
agreement.  
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containing only ash, a selection containing only SO2-rich ash, and a selection containing 

all other situations where ash was not present (Figure 6).  The neural network created to 

differentiate between ash and no ash is referred to as the “red” neural network, and the 

network created to differentiate between SO2-rich ash and no SO2-rich ash is referred to 

as the “yellow” neural network.  Both networks were trained using inputs obtained via 

the following band combinations: 12-11-µm brightness temperature difference, 11-8.6-

µm brightness temperature difference, 11-7.3-µm brightness temperature difference, and 

11-µm brightness temperature. Using the ash concentrations determined via HYSPLIT, 

two sets of flags were created to differentiate between ash (1) and no ash (0), and SO2-

rich ash (1) and no SO2-rich ash (0). As validation, the neural networks used these flag as 

outputs. In Table 2, an excerpt from the training dataset used in the “red” neural network, 

the first column contains the 12-11-µm brightness temperature differences, the second 

column contains the 11-8.6-µm brightness temperature differences, the third column 

contains only the 11-µm brightness temperatures, the fourth contains the 11-7.4-µm 

brightness temperature difference, and the fifth column contains the previously 

mentioned flag to differentiate between ash and no ash.  
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12-11-µm 
(K) 

11-8.6-µm 
(K) 11-µm (K) 

11-7.3-µm 
(K) 

Ash (1)/No Ash 
(0) 

2.3 -0.49 266.18 10.17 1 
-0.66 -3.66 227.18 -0.92 0 
-2.07 2.52 294.54 40.65 0 
-0.29 -1.63 268.84 16.79 1 
-0.65 2.27 295.42 25.66 0 
0.25 -1.7 245.36 0.08 1 

-0.06 1.74 279.41 22.48 0 
2.19 -0.09 273.01 16.06 1 
-1.1 0.65 278.21 25.77 0 
1.9 -0.74 273.77 16.32 1 

-0.95 -0.67 256.09 7.33 0 
3.71 -1.13 262.54 6.71 1 
1.42 -0.92 272.21 16.39 1 

-0.19 2.07 282.69 25.64 0 
0.69 1.44 276.53 22.07 1 
0.46 -4.07 215.62 -5.36 1 
-1.3 -1.23 247.54 6.87 0 
0.23 -0.84 242.49 -0.02 1 
0.08 2.22 282.03 21.32 0 

Table 2: An excerpt from the training dataset used in the “red” neural network. Columns 1-4 
represent the neural network input and column 5 is representative of the output. 

  

The back-propagation neural network settings used in this study are recorded in 

Appendix C. Most settings were kept at default, which include the number of repetitions, 

subset size of the train data, percentage of used test data, shift size of subset size, 

threshold options, the number of hidden neurons, the option to add noise to the data, and 

other options described below. The number of repetitions was set to 100, 10% of the 

training data was used, and 100% of the test data was used for both networks. The shift 

size, which allows the train subset to be shifted over the train dataset by a factor, was 

kept default, or to 5%. The threshold settings were kept at default: If the correlation 

coefficient associated with the training dataset was larger than the threshold, the window 

size was increased by 1%; If there was no modification, the window was set to shift after 
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each cycle. Correlation threshold was set to 96% and the “no modification” threshold was 

set to 0.0005%, which are both default settings. The number of hidden neurons was set to 

25 for both the “red” and “yellow” networks. The gamma option, which defines the 

learning parameter, was set to 0, which makes the learning parameter equal to 100, or 1. 

Alpha was set to 4 to make the acceleration parameter equal to 0.4.  The temperature, 

which controls the steepness of the sigmoid, was set to 10. No noise was added to the 

data. Dr. René Preusker, Institute for Space Sciences, Free University of Berlin, 

Germany, created the software used in this study for the training of this particular neural 

network.  
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CHAPTER 4 

 RESULTS 
 

4.1 Optimal Thresholds 

The neural network output was compared to the test dataset output for both the 

yellow and red networks. A Heidke skill score (HSS), a scoring method for measuring 

success where a perfect score is equal to one, was calculated for all possible ash/no ash 

and SO2-rich ash/no SO2-rich ash thresholds to determine optimal thresholds (Figure 7).  

 

 

Figure 7: (A) Optimal 
threshold for ash 
retrieval determined to 
be 0.48 with Heidke 
skill score of 0.81; (B) 
Optimal threshold for 
SO2-rich ash retrieval 
determined to be 0.47 
with Heidke skill score 
of 0.98. 
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The optimal thresholds for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, 

respectively. The yellow neural network was found to a higher Heidke Skill score than 

the red neural network, and thus less error (Table 3-4).  

 

Table 3: (Red) Red neural network (ash-detection) output was compared the test dataset output to 
measure success.       

Table 4: (Yellow) Yellow neural network (SO2-rich ash detection) output was compared the test 
dataset output to measure success.     

  

Of all data containing volcanic ash, 93% of pixels are correctly identified and 7% are 

incorrectly flagged (Table 3). Out of the all data containing SO2-rich ash, almost 100% 

are correctly identified (Table 4).  

 
 
4.2 Neural Network Output  

 Using the optimal thresholds determined by the Heidke skill score test, MODIS 

granules for the specified eruptions were fed to the neural network to create new images 

locating areas of ash, no ash, SO2-rich ash, and no SO2-rich ash (Figure 8).  
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M N 

Figure 8: “Red” neural network output for the following eruptions and times: (A) Kasatochi, 
August 8, 2008, 2305Z; (C) Okmok, July 12, 2008, 2330Z; (E) Grímsvötn, May 23, 2011, 1400Z; 
(G) Chaitén, May 6, 2008, 1505Z; (I) Puyehue-Cordón Caulle, June 6, 2011, 1840Z; (K) Kelut, 
February 14, 2014, 0335Z; (M) Sangeang Api, May 31, 2014, 0235; “Yellow” neural network 
output images are located to the right of their corresponding “red” neural network output images:  
(B), (D), (F), (H), (J), (L), (N). 

	
  
	
  

Referring back to the corresponding RGBs in Figure 4, the neural network output 

in Figure 8 differentiates the pink/red areas, representing ash in the RGBs, from the 

ambient environment and SO2, and also differentiates the bright yellow, representing SO2-

rich ash in the RGBs, from the ambient environment and ash. Figures 8-A and 8-B 

correspond to Figures 4-A and 4-B, the eruption of Kasatochi in 2008. This particular 

volcanic cloud, 2 km thick, was located over a dense meteorological cloud system 

(Corradini et al., 2010).  In the RGB, Figure 4-A, created using MODIS infrared bands, 

there is a significant SO2-rich ash signal. Although this eruption was characterized by the 

highest SO2 release since Hudson in 1991 (Lara, 2009), volcanic ash can reduce the 

radiance for all channels in the thermal infrared spectral range, leading to an 

overestimation of SO2 (Corradini et al., 2009). In addition, when ash and SO2 are 
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collocated or when SO2 is located above ash, ash will appear bright yellow in RGBs 

created using the band combinations in Figure 3. This is due to the strong SO2 absorption 

in 8.6 µm combined with the lack of absorption in 11 and 12 µm (Pavolonis, 2014).   

Figures 8-C and 8-D correspond to Figures 4-C and 4-D, the eruption of Okmok, 

the second Aleutian Islands eruption analyzed in this particular study. This eruption is 

unique because it was phreatomagmatic, or characterized by high water content (GVP) 

This eruption incorporated ground water and water inside the caldera (GVP). The RGB in 

Figure 4-C is not characterized by the bright red/pink signature usually observed for ash, 

although a 15 km plume is reported (GVP) and an ash signature is clear in the visible 

image, Figure 4-D. When high amounts of water are incorporated into ash clouds, they 

lose their ash signature and begin to appear more like meteorological clouds than ash 

clouds (Prata, 2009), which explains why the neural network is not discerning the 

volcanic cloud in this particular case. There is also no SO2-rich ash detected because a 

SO2 signature is not present with this eruption at this time.  

The eruption of Grímsvötn, 2011, depicted in Figures 8-E, 8-F, 4-E, and 4-F, 

occurred about 43 hours prior to the image in the figures. Two days earlier, ash at lower 

altitudes was observed to drift to the south while ash at higher altitudes drifted east 

(GVP). The next day, May 22, most ash drifted south and southwest (GVP). An ash 

signature is seen to the south of the volcano in both the RGB (Figure 4-E) and the visible 

image (Figure 4-F). An SO2 signal is not observed in the RGB (Figure 4-E).  The neural 

network detects ash in the correct location with little overestimation (Figure 8-E), and 

also does not place any SO2 in the atmosphere at this particular time (Figure 8-F).  
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Chaitén, the first of two mid-latitude eruption analyzed in this study, is 

represented in Figures 8-G, 8-H, 4-G, and 4-H. Four days before this particular image 

was captured by MODIS, Chaitén erupted with a 21 km plume which drifted to the 

southeast, east, west, and northeast (GVP). A second eruption occurred on May 6, 2008, 

12:32 UTC, about 2.5 hours prior to this image.  At first glance, it would appear that the 

neural network is greatly overestimating ash east of the volcano. However, there are no 

high meteorological clouds in this region, as seen in Figure 4-H, and previous eruptions 

from days earlier contributed a significant portion of ash to the atmosphere. It is likely 

that the neural network is detecting low level ash from previous eruptions to the east of 

the volcano (Figure 8-G). A strong signal is also observed to the east-northeast of the 

volcano, likely from the previous plinian column erupting from this volcano on May 2, 

2008 (Figure 8-G). The neural network detected little SO2 (Figure 8-H), as this particular 

eruption was not characterized by high SO2 emissions (Lara, 2009, Carn et al., 2009).  

Figures 8-I, 8-J, 4-I, and 4-J depict the volcanic cloud resulting from Puyehue-

Cordón Caulle about 48 hours after the initial eruption. On June 4, 2011, ash located at 5 

km drifted to the south while ash at 10 km drifted west and east (GVP). On this same day 

gas was observed drifting west while ash drifted east-southeast (GVP). Ash was again 

observed drifting east-southeast on June 5, 2011. Winds shifted on June 6, 2011, and ash 

drifted to the east-northeast while a previous volcanic cloud continued east-southeast 

over the ocean (GVP).  The neural network detects both faint and strong ash signatures in 

Figure 8-I, while not overestimated in the presence of high meteorological clouds to the 

west of the volcano. The neural network distinguishes the SO2-rich cloud from the 

ambient atmosphere with clear boundaries and little overestimation (Figure 8-J).  
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Neural network output for the eruption of Kelut is shown in Figures 8-K and 8-L, 

which correspond to the RGB and visible image in Figures 4-K and 4-L, respectively. 

This particular image was captured by MODIS about 3 hours after the initial eruption. 

The 17 km plume was observed drifting northeast, northwest, and west. Upon analysis of 

the RGB (Figure 4-K), it is difficult to differentiate the ash cloud from surrounding 

meteorological clouds. As this volcano is located in the tropics, characterized by high 

atmospheric water vapor, this is not surprising. Kristiansen et al. [2015] found this 

volcanic cloud difficult to detect within the first several hours of eruption due to the 

thickness of the ash cloud combined with the high amounts of ice coating within 

meteorological clouds. However, the SO2 signal is easily distinguishable from the 

ambient environment in both the RGB (Figure 4-K) and the neural network output 

(Figure 8-L).  

Figures 8-M, 8-N, 4-M, and 4-N depict the volcanic cloud that erupted from 

Sangeang Api about 18 hours after the initial eruption. The initial plume was observed 

drifting west at 3 km altitude and east-southeast at 15.2 km altitude (GVP). A bright pink 

ash signal is observed to the east-southeast in the RGB, and the same signal is observed 

as brown in the visible image (Figure 4-M, 4-N), collaborating weekly reports (GVP). 

However, a pink signal is also observed over West Australia. This is most likely dust 

from the deserts of Australia, as dust has similar radiative properties to volcanic ash.  No 

SO2 signal is observed in the RGB (Figure 4-M). The neural network distinguishes ash 

from the ambient environment, but overestimates in the presence of dust (Figure 8-M). 

The neural network correctly places no SO2 signal in this particular observation (8-N).   
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CHAPTER 5 

 DISCUSSION 
 

 In this study a neural network-based algorithm was developed to detect volcanic 

ash and SO2-rich ash using MODIS observations. However, the neural network shows 

significantly less accuracy when the volcanic cloud is characterized by high water or ice 

content or when surrounded by water or ice-rich meteorological clouds. As water, ice, 

and water vapor can act to mask the ash signal, the accuracy of ash retrievals is highly 

dependent on the amount for water vapor in the atmosphere (Watson et al., 2004). 

Because of this, the neural network is likely to have a higher accuracy in dry 

atmospheres. High, ice-rich meteorological clouds that are observed to lead to significant 

ash overestimation are present in Figures 4-A and 4-K. In addition to water vapor 

adjusting the amounts of ash detected, SO2 can also mask a volcanic ash signal, as 

mentioned in the previous section (Pavolonis, 2014). In the event that SO2 and ash are 

collocated, or when SO2 is located above ash, it is helpful to use visible images (MODIS 

bands 1, 4, 3) to determine if an ash signal is present in the visible image in the same 

location as the SO2 signal in the RGB. This method, however, cannot be used at night. 

Ash is also overestimated in the presence of high dust concentrations, as seen in Figure 4-

M, as dust over West Australia is incorrectly classified as ash. Overestimations that have 

not yet been mentioned are located on the edges of the MODIS swath, which occur likely 

due to unfavorable satellite observation angles. This overestimation has not been 

corrected in this particular network, but will be addressed in the next trained network.   
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 In order to train the network, HYSPLIT was treated to be representative of reality. 

This may not always be accurate, especially for eruptions characterized by multiple 

eruptive pulses. One of the limitations of HYSPLIT is that it can only be used with one 

eruptive pulse or one continuous ash release. Chaitén, which was characterized by two 

significant eruptive pulses four days apart, was one case where HYSPLIT and MODIS 

were not well aligned. The second pulse was analyzed in this study, but low level ash was 

still present in the atmosphere from the previous eruption. HYSPLIT had no way of 

knowing this, which could lead to missed ash within the training of the neural network. 

Another limitation of this study is the lack of knowledge about erupted ash quantity from 

some events. When unknown, USGS parameters were used, which could lead to 

significant errors within HYSPLIT and thus the training of the neural network.  

The location of volcanic ash in the atmosphere is crucial information for the 

aviation industry, as volcanic ash can heavily damage jet engines and other parts of 

aircraft, as discussed in Section 2.6. This particular study can be used to automatically 

detect ash in MODIS observations, providing critical information to the aviation industry. 

However, this study does not yet provide information about the concentration of ash in 

each pixel or the altitude of the ash. Currently, this study only provides confirmation of 

the presence of ash and/or SO2-rich ash within a 30 km vertical column.  

Future work will include determining the accuracy of training an additional neural 

network to detect not only whether or not ash is present, but also ash concentration and 

ash cloud altitude.  
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APPENDIX 
	
  
A. HYSPLIT Parameters 

 
Kasatochi  

• Meteorological Data: Reanalysis (global, 1948-present) 
• Volcano: Kasatochi: Aleutian Islands 
• Use USGS-assigned Eruption Source Parameters (ESP)? No 
• GDAS1 Meteorological File: RP200808.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Deposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 08/08/2008, hour 4 
• Source Latitude: 52.177 
• Source Longitude: -175.5 
• Ash column top: 19 km (Pavolonis, personal communication) 
• Ash column bottom: 313 m (summit) 
• Eruption duration:1 hour  
• Eruption ash quantity: 1 Tg (1,000,000,000 kg) (Pavolonis, personal 

communication) 
• Total duration: 48 hours 
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 
• Concentration Grid Resolution (decimal degrees): -1 
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 m 
• Bottom of layer: 0 m 
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: mass/area 
• Concentration output units: kg/cubic m 
• Plot projection: default 
• Plot resolution: 96 
• Zoom factor: 70 
• US county borders?: No  
• Google Earth output of contours?: No  
• PS file?: Yes  
• Create PDF file of graphics?: Yes  
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Okmok  

• Meteorological Data: Reanalysis (global, 1948-present) 
• Volcano: Okmok: Aleutian Islands 
• Use USGS-assigned Eruption Source Parameters (ESP)? No  
• GDAS1 Meteorological File: RP200807.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Deposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 07/12/2008, hour 20 
• Source Latitude: 53.43 
• Source Longitude: -168.13 
• Ash column top: 15000 m (GVP)  
• Ash column bottom: 1072 m (summit)  
• Eruption duration: 1 hour  
• Eruption ash quantity: 0.07 Tg (Prata et al., 2010)  
• Total duration: 48 hours  
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 
• Concentration Grid Resolution (decimal degrees): -1  
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 
• Bottom of layer: 0  
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: mass/area 
• Concentration output units: kg/cubic m 
• Plot projection: Default 
• Plot resolution: 96 
• Zoom factor: 70 
• US county borders?: No  
• Google Earth output of contours?: No  
• PS file?: Yes 
• Create PDF file of graphics?: Yes  

 
 
Grímsvötn  

• Meteorological Data: Reanalysis (global, 1948-present)  
• Volcano: Grimsvotn: Iceland-NE 
• Use USGS-assigned Eruption Source Parameters (ESP)?  No  
• GDAS1 Meteorological File: RP201105.gbl 
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• Input units: meters 
• Number of concentration layers: 1 
• Desposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 05/21/2011, Hour 19 
• Source Lat: 64.43 
• Source Long: -17.33 
• Ash column top: 20000 m 
• Ash column bottom: 1724 m (summit) 
• Eruption duration: 24 hours (Moxnes et al., 2014) 
• Eruption ash quantity: 0.4 Tg (400,000,000 kg) (Moxnes et al., 2014) 
• Total duration: 48 hours 
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 hours  
• Concentration Grid Resolution (decimal degrees): -1 
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 m 
• Bottom of layer: 0  
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: /area 
• Concentration output units : kg/cubic m 
• Plot projection: Default 
• Plot resolution: 96 
• Zoom factor: 70  
• US county borders?: No  
• Google Earth output of contours?: No 
• PS file?: Yes  
• Create PDF file of graphics?: Yes  

 
 
Chaitén 

• Meteorological Data:  Reanalysis (global, 1948-present)  
• Volcano: Chaiten: Chile-S 
• Use USGS-assigned Eruption Source Parameters (ESP)? No  
• GDAS1 Meteorological File: RP200805.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Deposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
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• Other HYSPLIT options: No  
• Start time (UTC): 05/06/2008, Hour 12 
• Source Latitude: -42.83 
• Source Longitude: -72.646 
• Ash column top: 30000 m (GVP) 
• Ash column bottom: 1121 m (summit height) 
• Eruption duration: 1 hour 
• Eruption ash quantity: 0.2 Tg (200,000,000 kg) (Durant et al., 2012) 
• Total duration: 24 hours 
• Sampling type: Snapshot  
• Average period/Snapshot interval: 3 hours  
• Concentration Grid Resolution (decimal degrees): -1 
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 32000 m 
• Bottom of layer: 0  
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: mass/area 
• Concentration output units: kg/cubic meter 
• Plot projection: Default 
• Plot resolution: 96 dpi 
• Zoom factor: 70 
• US county borders?: No 
• Google Earth output of contours?: no  
• PS file?: yes 
• Create PDF file of graphics?: yes  

 
 
Puyehue-Cordón Caulle 

• Meteorological Data: Reanalysis (global, 1948-present) 
• Volcano: Puyehue Cordon Caulle: Chile-C 
• Use USGS-assigned Eruption Source Parameters (ESP)? No 
• GDAS1 Meteorological File: RP201106.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Deposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 06/04/2011, Hour 18 
• Source Latitude: -40.56 
• Source Longitude: -72.117 
• Ash column top: 12000 m (GVP) 
• Ash column bottom: 2236 m (summit) 



	
   45	
  

• Eruption duration: 48 hours 
• Eruption ash quantity: 17280000000 kg (USGS ESP)  
• Total duration: 48 hours 
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 hours  
• Concentration Grid Resolution (decimal degrees): -1 
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 m 
• Bottom of layer: 0 m 
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: mass/area 
• Concentration output units: kg/cubic m 
• Plot projection: Default  
• Plot resolution: 96 
• Zoom factor: 70  
• US county borders?: No  
• Google Earth output of contours?: No  
• PS file?: Yes  
• Create PDF file of graphics?: Yes 

 
 
Kelut 

• Meteorological Data: Reanalysis (global, 1948-present)  
• Volcano: Kelut: Java  
• Use USGS-assigned Eruption Source Parameters (ESP)?  No  
• GDAS1 Meteorological File: RP201402.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Deposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 02/13/2014, Hour 16 
• Source Latitude: -7.93 
• Source Longitude: 112.308 
• Ash column top: 17000 m (GVP) 
• Ash column bottom: 1730 m (summit)  
• Eruption duration: 1 hour 
• Eruption ash quantity: 17280000000 kg (USGS ESP) 
• Total duration: 48 hours  
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 hours  
• Concentration Grid Resolution (decimal degrees): -1 
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• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 m 
• Bottom of layer: 0  
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: /area 
• Concentration output units : kg/cubic m 
• Plot projection: Default 
• Plot resolution: 96 
• Zoom factor:70  
• US county borders?: No  
• Google Earth output of contours?: No  
• PS file?: yes  
• Create PDF file of graphics?: yes  

 
Sangeang Api 

• Meteorological Data: Reanalysis (global, 1948-present)  
• Volcano:  Sangeang Api: Lesser Sunda Islands 
• Use USGS-assigned Eruption Source Parameters (ESP)?  No  
• GDAS1 Meteorological File: RP201405.gbl 
• Input units: meters 
• Number of concentration layers: 1 
• Desposition/Ashfall: Yes 
• Option to change particle size distribution: No  
• Use non-uniform vertical ash distribution: No  
• Calculate eruption rate from eruption height: No  
• Other HYSPLIT options: No  
• Start time (UTC): 05/30/2014, Hour 9 
• Source Lat: -8.2 
• Source Long: 119.07 
• Ash column top: 15200 m (GVP)  
• Ash column bottom: 1948 m (summit)  
• Eruption duration: 1 hour 
• Eruption ash quantity: 864000000 kg (USGS ESP) 
• Total duration: 48 hours  
• Sampling type: Snapshot 
• Average period/Snapshot interval: 3 hours  
• Concentration Grid Resolution (decimal degrees): -1 
• Concentration grid domain size (decimal degrees): -1, -1 
• Top of layer: 30000 m 
• Bottom of layer: 0  
• Wet del of particle: 3.2E+05, 5.0E-05 
• Sum deposition over total run time? Yes 
• Ash bulk density? 2.5 grams/cubic cm 
• Deposition/Ashfall Output units: /area 
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• Concentration output units : kg/cubic m 
• Plot projection: Default 
• Plot resolution: 96 
• Zoom factor:70  
• US county borders?: No  
• Google Earth output of contours?: NO  
• PS file?: yes  
• Create PDF file of graphics?: yes  
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B. Neural Network Training Dataset 

VOLCANO OVERPASS (UTC) 
yyyy-mm-ddThh:mm:ss 

SATELLITE HYSPLIT TIME 
 

Kasatochi 
  

2008-08-08T13:40:00 Aqua 
 

2008-08-08T13:00:00 

Kasatochi 
 

2008-08-08T23:05:00 Terra 2008-08-08T22:00:00 

Kasatochi 
 

2008-08-09T12:45:00 Aqua 2008-08-09T13:00:00 

Kasatochi 
 

2008-08-09T22:10:00 Terra 
 

2008-08-09T22:00:00 

Kasatochi 2008-08-09T23:55:00 Aqua 2008-08-09T22:00:00 

Puyehue-Cordón Caulle 2011-06-05T05:55:00 Aqua 2011-06-05T06:00:00 

Puyehue-Cordón Caulle 2011-06-05T17:55:00 Aqua 2011-06-05T18:00:00 

Puyehue-Cordón Caulle 2011-06-06T03:20:00 Terra 2011-06-06T03:00:00 

Puyehue-Cordón Caulle 2011-06-06T05:00:00 Aqua 2011-06-06T06:00:00 

Puyehue-Cordón Caulle 2011-06-06T14:25:00 Terra 2011-06-06T15:00:00 

Puyehue-Cordón Caulle 2011-06-06T18:40:00 Aqua 2011-06-06T18:00:00 

Sangeang Api 2014-05-30T14:05:00 Terra 2014-05-30T15:00:00 

Sangeang Api 2014-05-30T17:10:00 Aqua 2014-05-30T18:00:00 

Sangeang Api 2014-05-31T02:35:00 Terra 2014-05-31T03:00:00 
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C. Neural Network Settings 

“Red”	
  Neural	
  Network	
  Settings:	
  
• Number of repetitions: 100 
• Size of used subset in % of train data: 10 
• Percentage of used test data: 100 
• Shift step in % of subset size: 5 
• If_Threshold_Increase_Subset selected 
• If_No_Modification_Shift_Subset selected 
• Corr_threshold, transformed_data selected 
• Threshold of correlation: 96 
• Threshold of no_modification (%): 0.0005 
• Number of hidden neurons: 25 
• Gamma: 0 
• Alpha: 4 
• Temperature: 10  
• I.-BIAS selected 
• H.-BIAS selected 
• No_Weight_Decay selected 
• QCK selected 
 

“Yellow”	
  Neural	
  Network	
  Settings:	
  
• Number of repetitions: 100 
• Size of used subset in % of train data: 10 
• Percentage of used test data: 100 
• Shift step in % of subset size: 5 
• If_Threshold_Increase_Subset selected 
• If_No_Modification_Shift_Subset selected 
• Corr_threshold, transformed_data selected 
• Threshold of correlation: 96 
• Threshold of no_modification (%): 0.0005 
• Number of hidden neurons: 25 
• Gamma: 0 
• Alpha: 4 
• Temperature: 10  
• I.-BIAS selected 
• H.-BIAS selected 
• No_Weight_Decay selected 
• QCK selected 
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