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CHAPTER I 

 

INTRODUCTION 

 

 There is a major shift in astronomy research from direct observation by telescopes to massive 

computerization of data. Most of it is driven by Moore’s Law, the adage laid out by Intel’s founder 

Gordon Moore that states that the processing power of computers doubling between 18 months and 

two years. As a result, modern telescopes are now able to capture large amounts of data. Such 

examples of this are the Kepler telescope, the Large Scale Survey Telescope, Atacama Observatory, 

and the Square Kilometer Array; the latter will produce one billion gigabytes of data per day when 

fully operational. [1] [2] [3] 

 With the large amounts of data produced comes the challenge of managing the data. Several 

projects managed by Zooniverse distribute the raw data among Internet users who volunteer to sift 

through the data in their spare time, a process known as crowdsourcing. This model has been adapted 

to fields both in and out of astronomy. [1] In addition, the Virtual Observatory is a worldwide 

consortium that makes raw data available to the astronomers who are able to manage the data. [4] 

 This research has been borne out of research on transiting exoplanets. Unlike exoplanets 

discovered through the radial velocity approach, transiting exoplanets are particularly useful because 

we can obtain much more information about them, such as its dimensions, temperature and 

atmosphere. [5] Two approaches for managing large-scale astronomy projects are described here. One 

approach uses small-scale crowdsourcing to manage data. The other allows anyone to build interactive 

data visualization portals from an uploaded set of collected data. These two approaches were 

developed using the Python programming language and the Web2py web framework. 
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CHAPTER II 

 

A VOTING SYSTEM TO SELECT EXOPLANET CANDIDATES FOR THE KELT TRANSIT 

SURVEY 

 

Introduction 

The KELT (Kilodegree Extremely Little Telescope) project is a long-term photometric survey 

of a large fraction of the sky, focusing on stars with 8 < V < 10. The KELT survey is measuring the 

brightness of these stars to discover new exoplanets by identifying the periodic dimming of the stars 

caused by the transits of planets whose orbits are aligned with our line of sight. 

KELT consists of two near-identical robotic telescopes – KELT-North is operated by the 

Ohio State University and is located at Winer Observatory in Sonoita, AZ [6], while KELT-South is 

operated by Vanderbilt University and is located at the South Africa Astronomical Observatory in 

Sutherland, South Africa [7].  The KELT science team consists of astronomers located at those two 

institutions, as well as other institutions across the world. 

The KELT-North and KELT-South telescopes operate through pre-programmed observing 

scripts, gathering their data by repeatedly observing a set of predefined fields located across the sky, 

and they transfer the raw data and calibration files back to Ohio State and Vanderbilt, respectively.  

The data for each field on the sky are separated out, and the raw data are calibrated and reduced, field 

by field. All stars in the fields observed are identified, their brightnesses measured, and the resulting 

plots of each star’s brightness over time, called the star’s light curve, is saved. 

A series of filters are then applied, based on information about each star that has been 

observed, and only stars with suitable properties that will allow exoplanets to be detected are selected.  

To the light curves of those stars we then apply an algorithm called box least square (BLS) which 

searches each light curve for signs of small periodic dips in brightness indicative of a transiting planet.  

That process produces, for each field, a ranked list of light curves according to the strength of the 

signal uncovered by BLS, above some predefined cut in signal strength. Additional algorithms attempt 
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to screen out giant stars and to select stars within a suitable range of temperatures.  For each field 

analyzed, the final list of stars that pass that cut can be dozens to hundreds.  The stars in that list are 

referred to as “candidates”. 

 

The Problem 

At this point, we have exhausted the available tools for automatically selecting promising 

candidates for transiting exoplanets.  The reason is that there are a large number of both instrumental 

systematics and astrophysical phenomena that can mimic the signal of a transiting exoplanet in a star’s 

light curve.  Further astronomical observations are required to confirm whether a candidate is in fact a 

transiting exoplanet.  Those observations require time and effort, and we therefore need a method for 

determining the likelihood that each of the candidates is worth this additional investment. 

Separating possible exoplanet signatures from the various false positives requires a holistic 

evaluation of the properties of the candidate star, its light curve, and associated data.  No existing 

algorithm can make that evaluation, and we therefore require a mechanism to allow members of the 

KELT team to make their own evaluations and judge the status of each star, and to then assemble 

those separate judgments into a collective evaluation for the status of each star.  Those collective 

evaluations are then used as the basis for group discussions to narrow the list of hundreds of 

candidates per field to 2-3 dozen that are then sent for further observations, which we call “selected 

candidates”.  The evaluations are based on an internal project website that assembles a wide range of 

information and plots for each candidate.  

Any solution for managing the evaluations of each team member needs to meet various 

constraints. Since team members are spread out geographically, the voting system must be designed 

for remote access among various operating systems. Furthermore, the voting system must be 

integrated into the project’s workflow environment so that as team members make an evaluation for 

each candidate, they can easily sift through the vast amounts of data collected for that candidate. 

One solution would be to have each team member communicate their evaluations by e-mail. 

While it is simple to implement initially, it results in more work for the team members in sending their 
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evaluations as well as the administrator for tabulating the results. Another solution would be to use an 

“off-the-shelf” cloud-based polling service such as SurveyMonkey [8] or the forms feature in Google 

Drive [9]. However, neither of these services can provide the flexibility or features needed for our 

project.  

In order for us to handle candidate evaluations smoothly, a custom web-based voting system 

is needed. In this chapter we discuss a voting system for helping KELT team members accomplish 

their goals. 

 

Function of the Voting System 

Access to the KELT voting pages is limited to KELT team members. Registered users of the 

site have access to some basic administrative tools such as changing their user info and obtaining lost 

passwords.   Regular users are able vote for candidates and provide comments.  There are two special 

types of users. Administrative users have access to a section of the site where they can create new 

voting sessions, stop a voting session in progress, add and delete other users, and modify information 

about another user. Non-voting users can only view the results of a voting session. There is also a 

guest user account category that only displays voting results. 

Each field of KELT data is reduced separately, and contains between 60,000 and 140,000 

stars with extracted light curves.  After all the automated cuts, there are between approximately 50 and 

500 candidates in need of individual evaluation by team members.  A site administrator creates the 

candidate pages that display all the relevant candidate information, combining the light curves and 

data from the KELT survey with matched information from a variety of standard astronomical 

catalogs, as well as public time-series photometry from the SuperWASP [10] and ASAS [11] surveys.  

Each candidate has five associated pages: a main data page; a linked page showing various time series 

variability statistics and plots; a linked page showing the associated SuperWASP data phased to 

various periods; a linked page showing the associated ASAS data phased to various periods; and 

finally a page showing stacked image stamps comparing in-transit vs. out-of-transit images, which we 
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call the residual flux plot (RFP) page.  All the candidate pages are compiled in an index page showing 

very short data summaries and a single lightcurve plot for each candidate, all on the same page. 

The administrator sets the starting time and ending time of each voting session. During the 

time period that voting is open, users can cast a vote for each candidate and add comments with each 

vote. The choices for each candidate are: Potential Planet (PP), Eclipsing Binary (EB), Sinusoidal 

Variation (SV), Spurious (X), Other non-planet (O), and Blend (B). Candidate votes and comments 

can be revised at any time while voting is open for that field, although each user can only view their 

own votes and comments until the voting session for that field is closed. 

Comments are useful for allowing voters to take notes on each candidate, and for pointing out 

especially relevant pieces of information on the candidate pages. There have been a few cases where a 

majority of users cast votes for one option but discussions in the comments made it clear that the 

candidate belonged in a different category 

Once the voting is closed, all results and comments are visible to all users.  Users do not see 

what votes each other user made, only the compiled totals, but they can view the username of those 

who added comments. 

 

Figure 1a-b. The index page for a KELT field where voting is in progress (1a, left). 

Figure 1b (right) shows a close-up of the voting options and comment field provided 

for each candidate. 
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Figure 2a-b. A page for a KELT candidate (2a, left). The voting for that candidate 

has closed. Figure 2b (right) shows a close-up of the voting results for that candidate. 

 

Technical details 

The KELT voting system was built using Web2py, a framework for developing web applications 

using Python. Voting data and user information is stored in a MySQL database (see Figure 3), with 

Web2py automatically generating tables for user data. 

  

  

Figure 3. The database diagram for the KELT voting system. Tables starting with 

“auth” are automatically generated by Web2py. The tables “auth_permission” and 

“auth_cas” are also generated by Web2py but are not used. 
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When a user casts a vote in the system, the variable “question” contains the name of the 

candidate and the variable “answer” is set to the choice made by the user. If this is the first vote, then 

the active variable is set to true. If the vote gets changed, then the original vote is kept, but the active 

variable is set to false. The new vote would then have an active variable set to true. When tabulating 

the results, inactive votes are ignored as well as test votes cast using the author’s login. 

Originally, all the KELT candidate pages were displayed in static files on a publicly 

accessible server, with voting ballots and results inserted into the page using an HTML iframe tag. 

However, each iframe tag conducts a request to the server. This means that a large index page with 

268 candidates would perform 268 page load requests for candidate ballots or results; one for each 

candidate displayed. To alleviate this problem, a quick loading system was added to the HTML pages. 

The server would load the original index page file and modify the HTML code to add the voting 

ballots or results. The modified page is then returned to the user. Quick loading index pages also 

contain Javascript code that loads the images in a page when the user scrolls down, a technique known 

as lazy loading [12].  

All other pages with voting ballots or results continue to use iframe tags; however, these 

pages are also modified by the server so that they can link to the newer quick voting pages. Handling 

those pages through the voting server also protects the data from unauthorized access. Iframe tags 

continue to be used for displaying the navigation bar at the top of the page. 

 

Future work 

One of the problems with the voting system is the need to make adaptations to the code every 

time the format of the original HTML files change, even if these changes are small. More work is 

needed to make the system more resilient to future updates to the original HTML files. 

Although the quick loading pages are very specific to the KELT project, the HTML iframe 

widgets can be adapted to similar projects both in and out of astronomy. The advantages of doing this 
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are to allow only registered users to vote, to allow users to add comments, and to set given times when 

users can vote and when users can view the results. 
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CHAPTER III 

 

FILTERGRAPH: AN INTERACTIVE WEB APPLICATION FOR DATA VISUALIZATION OF 

ASTRONOMY DATASETS 

 

Introduction 

Increasingly in astronomy there is a need for performing quick-look inspection and 

visualization of large datasets in order to easily ascertain the nature and content of the data, begin 

identifying possibly meaningful structures or patterns in the data, and guide more computationally 

costly deep-dive analyses of the data. For example, consider that the first products of a large survey 

project is often a large database with many columns (representing the various measurable and/or 

derived quantities) and with many rows (representing the individual objects of study); it is not 

uncommon for such databases to include tens of columns and millions of rows.  

To even begin visualizing such datasets---let alone perform basic analyses---can be a daunting 

task. The researcher is faced with questions such as: What is the content and what does it look like? 

Where are the “holes” in the data (missing or bad data) and are there systematics or biases of which to 

be wary? What are the relationships among the variables in the dataset, and are they meaningful? Are 

there interesting patterns that might be worthy of deeper investigation and analysis? 

Indeed, the sheer size of such datasets and their multidimensionality is at the heart of what 

makes their visualization so challenging. To identify potentially meaningful patterns often requires 

“seeing” the data simultaneously across multiple dimensions and with appropriate “slices” through 

multiple multidimensional spaces. 

Arguably even more fundamental to the visualization challenge is what might be called the 

high “potential barrier” that the user faces to even begin the visualization process. Certainly there exist 

high-end tools for storing data in a database, plotting data, and so on. But for many researchers there is 

from the first instance a very large overhead associated with using such tools: importing the data and 

correctly specifying meta-data, keeping track of a large number of variable names, issuing and 
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scripting commands for plotting, plotting pairwise variables against one another over multiple 

iterations, attempting to filter out bad data, re-rendering plots to restricted data ranges, attempting to 

represent multiple variables at once, and so on. Faced with such high overhead in time and effort, 

there is the temptation to either skip the crucial quick-look visualization step altogether, or else to 

make very limited attempts at representing the data with simple plots based on preconceptions about 

what should be meaningful to visualize. 

We have developed Filtergraph as “Plotting 2.0”, an easy-to-use web-based solution to this 

problem. The principal motivation for Filtergraph is to make the “activation energy” of beginning the 

data visualization process as small as possible. Users can register to use the tool instantly, can 

immediately upload datasets without the requirement of meta-data specification, and can thus begin 

seeing their data in seconds. We have also sought to make Filtergraph intuitive (see sample in Figure 

4). Plots involving 2, 3, 4, or 5 dimensions (3D + color + symbol size), as well as histograms, can be 

generating with a single click, and variable name fields are pre-filled and auto-complete so that the 

user does not need to remember the full content of the dataset in order to make plots. Mathematical 

operations on individual variables---or indeed among variables---can be performed on the fly. (For 

example, one can simply specify the x-axis of a plot as bmag-vmag. 

And, true to its name, data can be easily filtered, for example by specifying data ranges 

explicitly or by dragging over a region of interest on the screen, rotating a plot, and other similarly 

intuitive gestural commands. 

Importantly, Filtergraph is fast. There is nothing more frustrating or deterrent of the creative 

visualization process than being faced with long lag times between subsequent plot renderings. If plots 

do not update instantly, users will be more likely to avoid the penalty associated with trial and error 

exploration. Filtergraph renders a plot of 1.5 million points in approximately one second, enabling and 

encouraging natural, seamless interaction with and exploration of the data. The user can change 

variables, attempt different mathematical operations, filter in and out, move back and forth between 

different representational forms, over and over, in seconds and without cognitive interruption. 
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Finally, Filtergraph is designed to facilitate sharing. Any Filtergraph plot can be saved as a 

graphics file in various formats. Filtered subsets of the data can also be saved as tables in various 

formats. More importantly, each dataset is instantly set up as a sharable ``data portal" 

(http://filtergraph.vanderbilt.edu/yourname) that can be provided to collaborators. Instead of sending 

collaborators a copy of the raw data file, the user can easily provide a simple URL that contains the 

data and the ability to instantly visualize it, thus greatly facilitating the collaboration process. 

While there are data visualization services with similar interfaces, such as the Exoplanet Data 

Explorer [13] and Gapminder [14], the data on these services is fixed. Filtergraph is unique because it 

allows the user to visualize any given set of data. 

 

 

Figure 4. A screenshot of a Filtergraph portal generated from KELT South data. This 

portal is publically available at http://filtergraph.vanderbilt.edu/keltsouth/. 

 

Current capabilities and use 

Filtergraph is a free web-based service. By uploading a dataset to Filtergraph, the user is 

presented with a portal that can be used to generate plots and tables based on the dataset. The portal 
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can be shared with others and provides interactive features such as zooming and obtaining information 

about a point on the scatter plot.  

Filtergraph currently supports visualization in three forms. A scatter plot consists of at least 

two columns; one for the X-axis and one for the Y-axis (see Figure 4). Three optional axes may be set. 

The color axis sets the color of each point based on a range of colors; currently higher values are 

colored red, lower values are colored blue, and values in between are placed along the color spectrum. 

Similarly, the size axis sets the size of each point with higher values receiving larger points and lower 

values receiving smaller points. The Z-axis transforms the scatter plot into a three-dimensional plot 

which can be viewed from different angles.  

In addition to the scatter plot mode, the data can be plotted as a one-dimensional histogram or 

two-dimensional heat map, each of which is split based on a set number of bins. The two-dimensional 

heat map can be plotted as a three-dimensional surface that can be viewed from different angles.  

Finally, Filtergraph can also return the data as a table based on a selected subset of rows and 

columns in the dataset. This table can be sorted by a column in the table, ascending or descending. 

The output table can be easily shared with others using ASCII and HTML formats. This is particularly 

useful for target selection, for example. 

Filtergraph currently accepts a number of file formats for uploaded datasets. Plain text ASCII 

files are accepted as space separated, comma separated (CSV), tab separated (TSV), and fixed width 

formats. In these cases, Filtergraph will automatically read the file to determine several of its 

properties: which of these types are being uploaded, where the data begins in the file, whether or not 

there is a header in the file, the number of columns that should be imported, and the format types for 

each column. There is no need to include metadata in the file. In addition, Filtergraph accepts 

Microsoft Excel, SQLite, VOTable, FITS, IPAC, and Numpy file types. Upon upload, Filtergraph 

determines the structure of the dataset and populates all subsequent interfaces with the variable names 

determined from the header row. 

A Filtergraph portal consists of two parts, with the left sidebar being used to control the main 

content (see Figure 4). Key components of the left sidebar include: the name and description of the 
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portal; the ability to switch between datasets on the portal, if more than one dataset is available; the 

ability to apply criteria, or "filters", on the dataset; the ability to switch between the scatter plot, 

histogram, and table modes; the ability to apply display settings; the ability to output the data to a file 

(PNG, JPEG, GIF, Postscript, and PDF for graphs, HTML and ASCII for table data); and additional 

instructions and status info for using the dataset. 

Axes are changed using an editable drop-down box that can include the name of an axis or 

advanced functions on one or more axes. The following advanced functions are supported: addition, 

subtraction, multiplication, division, modulo, power, natural logarithm, base 10 logarithm, absolute 

value, square root, exponential, pi, sine, cosine, tangent, and the hyperbolic and inverse versions of 

sine, cosine, and tangent. 

For scatter plots and histograms, the main content can be modified interactively. Clicking on 

a point on the graph displays a popup window with all of the data for that particular point. 

Additionally, clicking and dragging on the window allows the user to zoom in on a particular region 

of the graph. A link is then provided to reset the zoom. Also, when the Z-axis is enabled for scatter 

plots, the user can rotate the 3-D scatter plot. 

 

Administrative interface 

  

Figure 5. A screenshot of the administrative interface. 
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 Filtergraph also contains an administration interface (see Figure 5) for maintaining multiple 

portals, each of which may contain one or more datasets. An administrator for a portal can change or 

delete the portal and add, change or delete datasets associated with the portal. An administrator can 

also select another user to co-administer the portal by sharing a random string of characters (an 

“admin code”) that is associated with each portal. 

Once a user registers for the site, he or she is asked to create a portal. To create a portal, the 

user provides a name and URL and then uploads an initial dataset. This dataset is then inspected to 

determine the data types for each column. At this point, the portal is ready for use; the user may 

optionally provide default settings for the dataset as well as alternate names for each of its columns. 

Filtergraph also provides many standard user administration features provided by the Web2py web 

framework, such as changing profile information and obtaining lost usernames and passwords. 

 

Customization 

Some portals have been manually customized to display additional information on the popup 

window that appears when clicking on a point. For instance, the SLoWPoKES portal 

(http://filtergraph.vanderbilt.edu/slowpokes) displays information from the SDSS gri composite image 

and the 2MASS H-band based on data from the given point. This is accomplished by interpreting 

XML data from the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). Similarly, 

another portal has been customized to generate a graph based on an IDL script. Thus, while the 

Filtergraph application is being provided with a set of standard features, its construction from a 

programming standpoint is sufficiently general to enable specific customization as needed. 

 

Case studies 

The original motivation for developing Filtergraph is to manage data coming from the KELT 

South telescope, which is a fully robotic telescope operated by Vanderbilt University and the South 

African Astronomical Observatory that searches for transiting exoplanets. KELT South generates a lot 
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of images, and analyzing even one of these images takes a significant amount of time. By using the 

web portal for KELT South, we are able to select images for analysis effectively.  

Filtergraph is finding broad use across many astronomical data visualization needs. Here we 

use the Hipparcos dataset to illustrate a few representative case studies. A sample portal for Hipparcos 

has been set up at http://filtergraph.vanderbilt.edu/hiptest. As a first example, we generate a 

Hertzsprung-Russell diagram (see Figure 6): 

  

Figure 6a-b. By applying the settings on the left (Figure 6a) to the publically 

available Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the 

Hertzsprung-Russell diagram on the right (Figure 6b) can be generated. 

 

First, we ask to screen out all points where Plx, the parallax variable, is less than 0.01. This is 

necessary so that all parallax data can be calculated using the logarithmic function presented in the Y-

axis. For clarity, any outlier points where BT-VT is less than -1 or greater than 3 are also removed, 

where BT and VT are the B and T magnitudes from the Tycho catalog, respectively. The remaining 

points are plotted based on the functions given for the X axis, Y axis, and color axis. The separation 

between dwarf stars and giant stars is apparent. 

Beyond two-dimensional scatter plots, Filtergraph can produce a much wider variety of 

images. As an example, Figure 7 depicts a two-dimensional histogram produced using Hipparcos data, 
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with colors assigned to each square region of the image based on the density of data points in that 

region. In Figure 8, we use KELT-North data to generate a three-dimensional scatter plot with color as 

an additional axis. In the web interface, this three-dimensional display can be viewed from different 

angles using links at the bottom of the page. 

 

   

Figure 7a-b. By applying the settings on the left (Figure 7a) to the publically 

available Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the two-

dimensional histogram on the right (Figure 7b) can be generated. The image was 

generated at a size of 400x300 pixels. 

 

 

Figure 8a-b. By applying the settings on the left (Figure 8a) to the publically 

available Filtergraph portal at http://filtergraph.vanderbilt.edu/keltnorth, the three-

dimensional scatter plot on the right (Figure 8b) can be generated. The following 
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advanced settings were applied: X-axis reversed, Y-axis reversed, Z angle set to 60 

and 165 degrees, font size set to 8, image size set to 500x375 pixels, and color and z-

axis labels set to the truncated “Modal Size” and “Mean Size”, respectively. 

 

Technical details of Filtergraph 

Filtergraph was written in Python and developed using the Web2py framework. Web2py is a 

full-stack web framework that allows web applications to be written in Python and deployed easily. 

Web2py was chosen for a variety of reasons. It can be deployed easily on any Windows, Macintosh or 

Linux machine, and is compatible with Apache for public access to the web server. It also comes with 

a secure and comprehensive administrative interface that can be used to edit the code, upload files, 

examine database entries, and view errors that have occurred. [15] 

A number of plugins and applications are used to support Filtergraph. On the server side, the 

Numpy library for Python is used to store the data efficiently and perform functions quickly on the 

data. [16] The server also invokes the Gnuplot application for producing graphs [17] and the 

Graphicsmagick application for performing additional image manipulation [18]. On the client side, the 

ImgAreaSelect library is used to allow users to zoom in on the graph. [19] The JQuery [20] and 

JQueryUI [21] libraries are also used to enhance the browser experience. Other third-party Python 

libraries used for processing data are ATpy [22], PyFITS [23], VO [24], and XLRD [25]. 

Filtergraph stores general information about each dataset in a MySQL database; the datasets 

themselves are stored in the file system. There are six tables in the database defined by Filtergraph, 

each of which store information about portals, datasets, administrators for each portal, headers 

contained in each dataset, and user feedback. There are also a few tables that are automatically 

generated by Web2py, the most important of which is “auth_user”, which stores user information. For 

security purposes, passwords are encrypted in the system using the SHA-512 algorithm. 
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Figure 9. The database diagram for Filtergraph. Note that uploaded data is stored in 

the file system and not in the database. Tables and columns that are not currently in 

use have been omitted. 

 

When a data file is uploaded to Filtergraph, the server performs an inspection on the file to 

determine the type of data each column represents. The headers are stored in the database (see Figure 

9) with the name of the header and its type. Depending on the type, the headers may also include the 

minimum value, the maximum value, and its length (number of digits or characters). This information 

is used to store the data as efficiently as possible. Once the portal is accessed for the first time, the 

original data file is loaded and then stored as a binary file in a cache directory. Any subsequent loads 

would come from the cache file. 

An important need for Filtergraph is to generate images quickly for very large datasets up to 

millions of rows. To optimize it for speed, Filtergraph uses an “embarrassingly parallel system” to 

process the graph based on the MapReduce paradigm. [26] Once the data is loaded and processed 

using Numpy, the instructions and binary data are distributed equally among one to N instances of 



19 

 

Gnuplot, where N is the number of cores in the system (eight at the time of this writing).  This limit is 

imposed because running more than N processes at a time would not create a time advantage. Each 

instance of Gnuplot generates a PNG image containing its share of the data. The images are then 

merged together using Graphicsmagick and converted to the desired file format. The server returns the 

resulting image as well as information needed for the browser to support the zoom feature. 

As the number of Gnuplot instances increases, it takes less time to generate the intermediate 

images but it takes more time to merge these images together. Filtergraph determines how many 

instances of Gnuplot to run by using equations to calculate how long it would take to generate the 

graph under one instance, under two instances and so on. The number of instances that would take the 

least time to generate the graph is then used. The equations are obtained using the Eureqa analytical 

software package based on the times of graphs produced by Filtergraph under varying conditions. [27] 

These equations are specific to our hardware setup, however in principle it should be possible to 

implement into Filtergraph the ability to determine these equations for any server setup, such as 

through a “benchmark” function to be added to the admin interface. 

Since it is less practical to apply these procedures on Postscript and PDF files, generating 

these graphs always uses one process of Gnuplot. The same is true for histograms, since they typically 

do not require as much data to generate. For obtaining tables and point information, Gnuplot and 

Graphicsmagick are bypassed entirely and the resulting data is returned directly to the browser. 

 

Future Plans 

Filtergraph currently has over 100 users in over 20 countries. We would like to see its use 

expanded beyond astronomy to other academic and non-academic fields where data is being heavily 

used. We also plan to add more features to Filtergraph such as improved statistical capabilities and the 

ability for users to save the current settings of their portal for later use. 
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