

DEVELOPING INTERACTIVE WEB APPLICATIONS FOR

MANAGEMENT OF ASTRONOMY DATA

By

Dan Burger

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2013

Nashville, Tennessee

Approved:

Professor Keivan G. Stassun

Associate Professor William H. Robinson

ii

DEDICATION

To Naomi, Arnold, Anat, Oded and Sarah

iii

ACKNOWLEDGEMENTS

 This year marks my seventeenth year of affiliation with Vanderbilt University: two years as a

graduate student, one year as a staff member, four years as an undergraduate student, and ten years of

taking piano lessons at the Blair School of Music. I am thankful that Vanderbilt has continued to

support me after all these years. I am grateful for all the experiences that I have had here, the

professors that have guided me and the friends that I have made along the way.

Four years ago, Prof. Keivan Stassun gave me a chance to work on a project for a summer

research program for undergraduates at Vanderbilt. He has supported me ever since, and I would like

to thank him in particular for his kind and generous support. I would like to acknowledge the various

members of the Stassun research group who have guided my research during this time and helped me

to organize and revise the ideas in my thesis, specifically Dr. William Robinson, Dr. Joshua Pepper,

Dr. Martin Paegert, Dr. Nathan DeLee, and Rob Siverd.

I would also like to acknowledge the various users of Filtergraph and the KELT voting

system who have provided valuable feedback, as well as financial support from a NASA ADAP grant

and from the Vanderbilt Initiative in Data-intensive Astrophysics (VIDA).

Finally, I would like to acknowledge my family: my parents, Naomi and Arnold Burger, my

sister, Anat Burger, my brother, Oded Burger, and my sister-in-law, Sarah Greenberg. Your support

and encouragement means a lot to me.

iv

TABLE OF CONTENTS

Page

DEDICATION ... ii

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES ... v

Chapter

I. INTRODUCTION .. 1

II. A VOTING SYSTEM TO SELECT EXOPLANET CANDIDATES FOR THE KELT

TRANSIT SURVEY ... 2

Introduction ... 2
The Problem .. 3
Function of the Voting System ... 4
Technical details ... 6
Future work ... 7

III. FILTERGRAPH: AN INTERACTIVE WEB APPLICATION FOR DATA

VISUALIZATION OF ASTRONOMY DATASETS .. 9

Introduction ... 9
Current capabilities and use .. 11

Administrative interface ... 13
Customization ... 14

Case studies... 14
Technical details of Filtergraph .. 17
Future Plans .. 19

REFERENCES .. 20

v

LIST OF FIGURES

Figure Page

Figure 1a-b. The index page for a KELT field where voting is in progress (1a, left).

Figure 1b (right) shows a close-up of the voting options and comment field provided for

each candidate. ... 5

Figure 2a-b. A page for a KELT candidate (2a, left). The voting for that candidate has

closed. Figure 2b (right) shows a close-up of the voting results for that candidate. 6

Figure 3. The database diagram for the KELT voting system. Tables starting with “auth”

are automatically generated by Web2py. The tables “auth_permission” and “auth_cas”

are also generated by Web2py but are not used. .. 6

Figure 4. A screenshot of a Filtergraph portal generated from KELT South data. This

portal is publically available at http://filtergraph.vanderbilt.edu/keltsouth/. 11

Figure 5. A screenshot of the administrative interface. ... 13

Figure 6a-b. By applying the settings on the left (Figure 6a) to the publically available

Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the Hertzsprung-Russell

diagram on the right (Figure 6b) can be generated. ... 15

Figure 7a-b. By applying the settings on the left (Figure 7a) to the publically available

Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the two-dimensional

histogram on the right (Figure 7b) can be generated. The image was generated at a size of

400x300 pixels. .. 16

Figure 8a-b. By applying the settings on the left (Figure 8a) to the publically available

Filtergraph portal at http://filtergraph.vanderbilt.edu/keltnorth, the three-dimensional

scatter plot on the right (Figure 8b) can be generated. The following advanced settings

were applied: X-axis reversed, Y-axis reversed, Z angle set to 60 and 165 degrees, font

size set to 8, image size set to 500x375 pixels, and color and z-axis labels set to the

truncated “Modal Size” and “Mean Size”, respectively. ... 16

vi

Figure 9. The database diagram for Filtergraph. Note that uploaded data is stored in the

file system and not in the database. Tables and columns that are not currently in use have

been omitted. .. 18

1

CHAPTER I

INTRODUCTION

 There is a major shift in astronomy research from direct observation by telescopes to massive

computerization of data. Most of it is driven by Moore’s Law, the adage laid out by Intel’s founder

Gordon Moore that states that the processing power of computers doubling between 18 months and

two years. As a result, modern telescopes are now able to capture large amounts of data. Such

examples of this are the Kepler telescope, the Large Scale Survey Telescope, Atacama Observatory,

and the Square Kilometer Array; the latter will produce one billion gigabytes of data per day when

fully operational. [1] [2] [3]

 With the large amounts of data produced comes the challenge of managing the data. Several

projects managed by Zooniverse distribute the raw data among Internet users who volunteer to sift

through the data in their spare time, a process known as crowdsourcing. This model has been adapted

to fields both in and out of astronomy. [1] In addition, the Virtual Observatory is a worldwide

consortium that makes raw data available to the astronomers who are able to manage the data. [4]

 This research has been borne out of research on transiting exoplanets. Unlike exoplanets

discovered through the radial velocity approach, transiting exoplanets are particularly useful because

we can obtain much more information about them, such as its dimensions, temperature and

atmosphere. [5] Two approaches for managing large-scale astronomy projects are described here. One

approach uses small-scale crowdsourcing to manage data. The other allows anyone to build interactive

data visualization portals from an uploaded set of collected data. These two approaches were

developed using the Python programming language and the Web2py web framework.

2

CHAPTER II

A VOTING SYSTEM TO SELECT EXOPLANET CANDIDATES FOR THE KELT TRANSIT

SURVEY

Introduction

The KELT (Kilodegree Extremely Little Telescope) project is a long-term photometric survey

of a large fraction of the sky, focusing on stars with 8 < V < 10. The KELT survey is measuring the

brightness of these stars to discover new exoplanets by identifying the periodic dimming of the stars

caused by the transits of planets whose orbits are aligned with our line of sight.

KELT consists of two near-identical robotic telescopes – KELT-North is operated by the

Ohio State University and is located at Winer Observatory in Sonoita, AZ [6], while KELT-South is

operated by Vanderbilt University and is located at the South Africa Astronomical Observatory in

Sutherland, South Africa [7]. The KELT science team consists of astronomers located at those two

institutions, as well as other institutions across the world.

The KELT-North and KELT-South telescopes operate through pre-programmed observing

scripts, gathering their data by repeatedly observing a set of predefined fields located across the sky,

and they transfer the raw data and calibration files back to Ohio State and Vanderbilt, respectively.

The data for each field on the sky are separated out, and the raw data are calibrated and reduced, field

by field. All stars in the fields observed are identified, their brightnesses measured, and the resulting

plots of each star’s brightness over time, called the star’s light curve, is saved.

A series of filters are then applied, based on information about each star that has been

observed, and only stars with suitable properties that will allow exoplanets to be detected are selected.

To the light curves of those stars we then apply an algorithm called box least square (BLS) which

searches each light curve for signs of small periodic dips in brightness indicative of a transiting planet.

That process produces, for each field, a ranked list of light curves according to the strength of the

signal uncovered by BLS, above some predefined cut in signal strength. Additional algorithms attempt

3

to screen out giant stars and to select stars within a suitable range of temperatures. For each field

analyzed, the final list of stars that pass that cut can be dozens to hundreds. The stars in that list are

referred to as “candidates”.

The Problem

At this point, we have exhausted the available tools for automatically selecting promising

candidates for transiting exoplanets. The reason is that there are a large number of both instrumental

systematics and astrophysical phenomena that can mimic the signal of a transiting exoplanet in a star’s

light curve. Further astronomical observations are required to confirm whether a candidate is in fact a

transiting exoplanet. Those observations require time and effort, and we therefore need a method for

determining the likelihood that each of the candidates is worth this additional investment.

Separating possible exoplanet signatures from the various false positives requires a holistic

evaluation of the properties of the candidate star, its light curve, and associated data. No existing

algorithm can make that evaluation, and we therefore require a mechanism to allow members of the

KELT team to make their own evaluations and judge the status of each star, and to then assemble

those separate judgments into a collective evaluation for the status of each star. Those collective

evaluations are then used as the basis for group discussions to narrow the list of hundreds of

candidates per field to 2-3 dozen that are then sent for further observations, which we call “selected

candidates”. The evaluations are based on an internal project website that assembles a wide range of

information and plots for each candidate.

Any solution for managing the evaluations of each team member needs to meet various

constraints. Since team members are spread out geographically, the voting system must be designed

for remote access among various operating systems. Furthermore, the voting system must be

integrated into the project’s workflow environment so that as team members make an evaluation for

each candidate, they can easily sift through the vast amounts of data collected for that candidate.

One solution would be to have each team member communicate their evaluations by e-mail.

While it is simple to implement initially, it results in more work for the team members in sending their

4

evaluations as well as the administrator for tabulating the results. Another solution would be to use an

“off-the-shelf” cloud-based polling service such as SurveyMonkey [8] or the forms feature in Google

Drive [9]. However, neither of these services can provide the flexibility or features needed for our

project.

In order for us to handle candidate evaluations smoothly, a custom web-based voting system

is needed. In this chapter we discuss a voting system for helping KELT team members accomplish

their goals.

Function of the Voting System

Access to the KELT voting pages is limited to KELT team members. Registered users of the

site have access to some basic administrative tools such as changing their user info and obtaining lost

passwords. Regular users are able vote for candidates and provide comments. There are two special

types of users. Administrative users have access to a section of the site where they can create new

voting sessions, stop a voting session in progress, add and delete other users, and modify information

about another user. Non-voting users can only view the results of a voting session. There is also a

guest user account category that only displays voting results.

Each field of KELT data is reduced separately, and contains between 60,000 and 140,000

stars with extracted light curves. After all the automated cuts, there are between approximately 50 and

500 candidates in need of individual evaluation by team members. A site administrator creates the

candidate pages that display all the relevant candidate information, combining the light curves and

data from the KELT survey with matched information from a variety of standard astronomical

catalogs, as well as public time-series photometry from the SuperWASP [10] and ASAS [11] surveys.

Each candidate has five associated pages: a main data page; a linked page showing various time series

variability statistics and plots; a linked page showing the associated SuperWASP data phased to

various periods; a linked page showing the associated ASAS data phased to various periods; and

finally a page showing stacked image stamps comparing in-transit vs. out-of-transit images, which we

5

call the residual flux plot (RFP) page. All the candidate pages are compiled in an index page showing

very short data summaries and a single lightcurve plot for each candidate, all on the same page.

The administrator sets the starting time and ending time of each voting session. During the

time period that voting is open, users can cast a vote for each candidate and add comments with each

vote. The choices for each candidate are: Potential Planet (PP), Eclipsing Binary (EB), Sinusoidal

Variation (SV), Spurious (X), Other non-planet (O), and Blend (B). Candidate votes and comments

can be revised at any time while voting is open for that field, although each user can only view their

own votes and comments until the voting session for that field is closed.

Comments are useful for allowing voters to take notes on each candidate, and for pointing out

especially relevant pieces of information on the candidate pages. There have been a few cases where a

majority of users cast votes for one option but discussions in the comments made it clear that the

candidate belonged in a different category

Once the voting is closed, all results and comments are visible to all users. Users do not see

what votes each other user made, only the compiled totals, but they can view the username of those

who added comments.

Figure 1a-b. The index page for a KELT field where voting is in progress (1a, left).

Figure 1b (right) shows a close-up of the voting options and comment field provided

for each candidate.

6

Figure 2a-b. A page for a KELT candidate (2a, left). The voting for that candidate

has closed. Figure 2b (right) shows a close-up of the voting results for that candidate.

Technical details

The KELT voting system was built using Web2py, a framework for developing web applications

using Python. Voting data and user information is stored in a MySQL database (see Figure 3), with

Web2py automatically generating tables for user data.

Figure 3. The database diagram for the KELT voting system. Tables starting with

“auth” are automatically generated by Web2py. The tables “auth_permission” and

“auth_cas” are also generated by Web2py but are not used.

7

When a user casts a vote in the system, the variable “question” contains the name of the

candidate and the variable “answer” is set to the choice made by the user. If this is the first vote, then

the active variable is set to true. If the vote gets changed, then the original vote is kept, but the active

variable is set to false. The new vote would then have an active variable set to true. When tabulating

the results, inactive votes are ignored as well as test votes cast using the author’s login.

Originally, all the KELT candidate pages were displayed in static files on a publicly

accessible server, with voting ballots and results inserted into the page using an HTML iframe tag.

However, each iframe tag conducts a request to the server. This means that a large index page with

268 candidates would perform 268 page load requests for candidate ballots or results; one for each

candidate displayed. To alleviate this problem, a quick loading system was added to the HTML pages.

The server would load the original index page file and modify the HTML code to add the voting

ballots or results. The modified page is then returned to the user. Quick loading index pages also

contain Javascript code that loads the images in a page when the user scrolls down, a technique known

as lazy loading [12].

All other pages with voting ballots or results continue to use iframe tags; however, these

pages are also modified by the server so that they can link to the newer quick voting pages. Handling

those pages through the voting server also protects the data from unauthorized access. Iframe tags

continue to be used for displaying the navigation bar at the top of the page.

Future work

One of the problems with the voting system is the need to make adaptations to the code every

time the format of the original HTML files change, even if these changes are small. More work is

needed to make the system more resilient to future updates to the original HTML files.

Although the quick loading pages are very specific to the KELT project, the HTML iframe

widgets can be adapted to similar projects both in and out of astronomy. The advantages of doing this

8

are to allow only registered users to vote, to allow users to add comments, and to set given times when

users can vote and when users can view the results.

9

CHAPTER III

FILTERGRAPH: AN INTERACTIVE WEB APPLICATION FOR DATA VISUALIZATION OF

ASTRONOMY DATASETS

Introduction

Increasingly in astronomy there is a need for performing quick-look inspection and

visualization of large datasets in order to easily ascertain the nature and content of the data, begin

identifying possibly meaningful structures or patterns in the data, and guide more computationally

costly deep-dive analyses of the data. For example, consider that the first products of a large survey

project is often a large database with many columns (representing the various measurable and/or

derived quantities) and with many rows (representing the individual objects of study); it is not

uncommon for such databases to include tens of columns and millions of rows.

To even begin visualizing such datasets---let alone perform basic analyses---can be a daunting

task. The researcher is faced with questions such as: What is the content and what does it look like?

Where are the “holes” in the data (missing or bad data) and are there systematics or biases of which to

be wary? What are the relationships among the variables in the dataset, and are they meaningful? Are

there interesting patterns that might be worthy of deeper investigation and analysis?

Indeed, the sheer size of such datasets and their multidimensionality is at the heart of what

makes their visualization so challenging. To identify potentially meaningful patterns often requires

“seeing” the data simultaneously across multiple dimensions and with appropriate “slices” through

multiple multidimensional spaces.

Arguably even more fundamental to the visualization challenge is what might be called the

high “potential barrier” that the user faces to even begin the visualization process. Certainly there exist

high-end tools for storing data in a database, plotting data, and so on. But for many researchers there is

from the first instance a very large overhead associated with using such tools: importing the data and

correctly specifying meta-data, keeping track of a large number of variable names, issuing and

10

scripting commands for plotting, plotting pairwise variables against one another over multiple

iterations, attempting to filter out bad data, re-rendering plots to restricted data ranges, attempting to

represent multiple variables at once, and so on. Faced with such high overhead in time and effort,

there is the temptation to either skip the crucial quick-look visualization step altogether, or else to

make very limited attempts at representing the data with simple plots based on preconceptions about

what should be meaningful to visualize.

We have developed Filtergraph as “Plotting 2.0”, an easy-to-use web-based solution to this

problem. The principal motivation for Filtergraph is to make the “activation energy” of beginning the

data visualization process as small as possible. Users can register to use the tool instantly, can

immediately upload datasets without the requirement of meta-data specification, and can thus begin

seeing their data in seconds. We have also sought to make Filtergraph intuitive (see sample in Figure

4). Plots involving 2, 3, 4, or 5 dimensions (3D + color + symbol size), as well as histograms, can be

generating with a single click, and variable name fields are pre-filled and auto-complete so that the

user does not need to remember the full content of the dataset in order to make plots. Mathematical

operations on individual variables---or indeed among variables---can be performed on the fly. (For

example, one can simply specify the x-axis of a plot as bmag-vmag.

And, true to its name, data can be easily filtered, for example by specifying data ranges

explicitly or by dragging over a region of interest on the screen, rotating a plot, and other similarly

intuitive gestural commands.

Importantly, Filtergraph is fast. There is nothing more frustrating or deterrent of the creative

visualization process than being faced with long lag times between subsequent plot renderings. If plots

do not update instantly, users will be more likely to avoid the penalty associated with trial and error

exploration. Filtergraph renders a plot of 1.5 million points in approximately one second, enabling and

encouraging natural, seamless interaction with and exploration of the data. The user can change

variables, attempt different mathematical operations, filter in and out, move back and forth between

different representational forms, over and over, in seconds and without cognitive interruption.

11

Finally, Filtergraph is designed to facilitate sharing. Any Filtergraph plot can be saved as a

graphics file in various formats. Filtered subsets of the data can also be saved as tables in various

formats. More importantly, each dataset is instantly set up as a sharable ``data portal"

(http://filtergraph.vanderbilt.edu/yourname) that can be provided to collaborators. Instead of sending

collaborators a copy of the raw data file, the user can easily provide a simple URL that contains the

data and the ability to instantly visualize it, thus greatly facilitating the collaboration process.

While there are data visualization services with similar interfaces, such as the Exoplanet Data

Explorer [13] and Gapminder [14], the data on these services is fixed. Filtergraph is unique because it

allows the user to visualize any given set of data.

Figure 4. A screenshot of a Filtergraph portal generated from KELT South data. This

portal is publically available at http://filtergraph.vanderbilt.edu/keltsouth/.

Current capabilities and use

Filtergraph is a free web-based service. By uploading a dataset to Filtergraph, the user is

presented with a portal that can be used to generate plots and tables based on the dataset. The portal

12

can be shared with others and provides interactive features such as zooming and obtaining information

about a point on the scatter plot.

Filtergraph currently supports visualization in three forms. A scatter plot consists of at least

two columns; one for the X-axis and one for the Y-axis (see Figure 4). Three optional axes may be set.

The color axis sets the color of each point based on a range of colors; currently higher values are

colored red, lower values are colored blue, and values in between are placed along the color spectrum.

Similarly, the size axis sets the size of each point with higher values receiving larger points and lower

values receiving smaller points. The Z-axis transforms the scatter plot into a three-dimensional plot

which can be viewed from different angles.

In addition to the scatter plot mode, the data can be plotted as a one-dimensional histogram or

two-dimensional heat map, each of which is split based on a set number of bins. The two-dimensional

heat map can be plotted as a three-dimensional surface that can be viewed from different angles.

Finally, Filtergraph can also return the data as a table based on a selected subset of rows and

columns in the dataset. This table can be sorted by a column in the table, ascending or descending.

The output table can be easily shared with others using ASCII and HTML formats. This is particularly

useful for target selection, for example.

Filtergraph currently accepts a number of file formats for uploaded datasets. Plain text ASCII

files are accepted as space separated, comma separated (CSV), tab separated (TSV), and fixed width

formats. In these cases, Filtergraph will automatically read the file to determine several of its

properties: which of these types are being uploaded, where the data begins in the file, whether or not

there is a header in the file, the number of columns that should be imported, and the format types for

each column. There is no need to include metadata in the file. In addition, Filtergraph accepts

Microsoft Excel, SQLite, VOTable, FITS, IPAC, and Numpy file types. Upon upload, Filtergraph

determines the structure of the dataset and populates all subsequent interfaces with the variable names

determined from the header row.

A Filtergraph portal consists of two parts, with the left sidebar being used to control the main

content (see Figure 4). Key components of the left sidebar include: the name and description of the

13

portal; the ability to switch between datasets on the portal, if more than one dataset is available; the

ability to apply criteria, or "filters", on the dataset; the ability to switch between the scatter plot,

histogram, and table modes; the ability to apply display settings; the ability to output the data to a file

(PNG, JPEG, GIF, Postscript, and PDF for graphs, HTML and ASCII for table data); and additional

instructions and status info for using the dataset.

Axes are changed using an editable drop-down box that can include the name of an axis or

advanced functions on one or more axes. The following advanced functions are supported: addition,

subtraction, multiplication, division, modulo, power, natural logarithm, base 10 logarithm, absolute

value, square root, exponential, pi, sine, cosine, tangent, and the hyperbolic and inverse versions of

sine, cosine, and tangent.

For scatter plots and histograms, the main content can be modified interactively. Clicking on

a point on the graph displays a popup window with all of the data for that particular point.

Additionally, clicking and dragging on the window allows the user to zoom in on a particular region

of the graph. A link is then provided to reset the zoom. Also, when the Z-axis is enabled for scatter

plots, the user can rotate the 3-D scatter plot.

Administrative interface

Figure 5. A screenshot of the administrative interface.

14

 Filtergraph also contains an administration interface (see Figure 5) for maintaining multiple

portals, each of which may contain one or more datasets. An administrator for a portal can change or

delete the portal and add, change or delete datasets associated with the portal. An administrator can

also select another user to co-administer the portal by sharing a random string of characters (an

“admin code”) that is associated with each portal.

Once a user registers for the site, he or she is asked to create a portal. To create a portal, the

user provides a name and URL and then uploads an initial dataset. This dataset is then inspected to

determine the data types for each column. At this point, the portal is ready for use; the user may

optionally provide default settings for the dataset as well as alternate names for each of its columns.

Filtergraph also provides many standard user administration features provided by the Web2py web

framework, such as changing profile information and obtaining lost usernames and passwords.

Customization

Some portals have been manually customized to display additional information on the popup

window that appears when clicking on a point. For instance, the SLoWPoKES portal

(http://filtergraph.vanderbilt.edu/slowpokes) displays information from the SDSS gri composite image

and the 2MASS H-band based on data from the given point. This is accomplished by interpreting

XML data from the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). Similarly,

another portal has been customized to generate a graph based on an IDL script. Thus, while the

Filtergraph application is being provided with a set of standard features, its construction from a

programming standpoint is sufficiently general to enable specific customization as needed.

Case studies

The original motivation for developing Filtergraph is to manage data coming from the KELT

South telescope, which is a fully robotic telescope operated by Vanderbilt University and the South

African Astronomical Observatory that searches for transiting exoplanets. KELT South generates a lot

15

of images, and analyzing even one of these images takes a significant amount of time. By using the

web portal for KELT South, we are able to select images for analysis effectively.

Filtergraph is finding broad use across many astronomical data visualization needs. Here we

use the Hipparcos dataset to illustrate a few representative case studies. A sample portal for Hipparcos

has been set up at http://filtergraph.vanderbilt.edu/hiptest. As a first example, we generate a

Hertzsprung-Russell diagram (see Figure 6):

Figure 6a-b. By applying the settings on the left (Figure 6a) to the publically

available Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the

Hertzsprung-Russell diagram on the right (Figure 6b) can be generated.

First, we ask to screen out all points where Plx, the parallax variable, is less than 0.01. This is

necessary so that all parallax data can be calculated using the logarithmic function presented in the Y-

axis. For clarity, any outlier points where BT-VT is less than -1 or greater than 3 are also removed,

where BT and VT are the B and T magnitudes from the Tycho catalog, respectively. The remaining

points are plotted based on the functions given for the X axis, Y axis, and color axis. The separation

between dwarf stars and giant stars is apparent.

Beyond two-dimensional scatter plots, Filtergraph can produce a much wider variety of

images. As an example, Figure 7 depicts a two-dimensional histogram produced using Hipparcos data,

16

with colors assigned to each square region of the image based on the density of data points in that

region. In Figure 8, we use KELT-North data to generate a three-dimensional scatter plot with color as

an additional axis. In the web interface, this three-dimensional display can be viewed from different

angles using links at the bottom of the page.

Figure 7a-b. By applying the settings on the left (Figure 7a) to the publically

available Filtergraph portal at http://filtergraph.vanderbilt.edu/hiptest, the two-

dimensional histogram on the right (Figure 7b) can be generated. The image was

generated at a size of 400x300 pixels.

Figure 8a-b. By applying the settings on the left (Figure 8a) to the publically

available Filtergraph portal at http://filtergraph.vanderbilt.edu/keltnorth, the three-

dimensional scatter plot on the right (Figure 8b) can be generated. The following

17

advanced settings were applied: X-axis reversed, Y-axis reversed, Z angle set to 60

and 165 degrees, font size set to 8, image size set to 500x375 pixels, and color and z-

axis labels set to the truncated “Modal Size” and “Mean Size”, respectively.

Technical details of Filtergraph

Filtergraph was written in Python and developed using the Web2py framework. Web2py is a

full-stack web framework that allows web applications to be written in Python and deployed easily.

Web2py was chosen for a variety of reasons. It can be deployed easily on any Windows, Macintosh or

Linux machine, and is compatible with Apache for public access to the web server. It also comes with

a secure and comprehensive administrative interface that can be used to edit the code, upload files,

examine database entries, and view errors that have occurred. [15]

A number of plugins and applications are used to support Filtergraph. On the server side, the

Numpy library for Python is used to store the data efficiently and perform functions quickly on the

data. [16] The server also invokes the Gnuplot application for producing graphs [17] and the

Graphicsmagick application for performing additional image manipulation [18]. On the client side, the

ImgAreaSelect library is used to allow users to zoom in on the graph. [19] The JQuery [20] and

JQueryUI [21] libraries are also used to enhance the browser experience. Other third-party Python

libraries used for processing data are ATpy [22], PyFITS [23], VO [24], and XLRD [25].

Filtergraph stores general information about each dataset in a MySQL database; the datasets

themselves are stored in the file system. There are six tables in the database defined by Filtergraph,

each of which store information about portals, datasets, administrators for each portal, headers

contained in each dataset, and user feedback. There are also a few tables that are automatically

generated by Web2py, the most important of which is “auth_user”, which stores user information. For

security purposes, passwords are encrypted in the system using the SHA-512 algorithm.

18

Figure 9. The database diagram for Filtergraph. Note that uploaded data is stored in

the file system and not in the database. Tables and columns that are not currently in

use have been omitted.

When a data file is uploaded to Filtergraph, the server performs an inspection on the file to

determine the type of data each column represents. The headers are stored in the database (see Figure

9) with the name of the header and its type. Depending on the type, the headers may also include the

minimum value, the maximum value, and its length (number of digits or characters). This information

is used to store the data as efficiently as possible. Once the portal is accessed for the first time, the

original data file is loaded and then stored as a binary file in a cache directory. Any subsequent loads

would come from the cache file.

An important need for Filtergraph is to generate images quickly for very large datasets up to

millions of rows. To optimize it for speed, Filtergraph uses an “embarrassingly parallel system” to

process the graph based on the MapReduce paradigm. [26] Once the data is loaded and processed

using Numpy, the instructions and binary data are distributed equally among one to N instances of

19

Gnuplot, where N is the number of cores in the system (eight at the time of this writing). This limit is

imposed because running more than N processes at a time would not create a time advantage. Each

instance of Gnuplot generates a PNG image containing its share of the data. The images are then

merged together using Graphicsmagick and converted to the desired file format. The server returns the

resulting image as well as information needed for the browser to support the zoom feature.

As the number of Gnuplot instances increases, it takes less time to generate the intermediate

images but it takes more time to merge these images together. Filtergraph determines how many

instances of Gnuplot to run by using equations to calculate how long it would take to generate the

graph under one instance, under two instances and so on. The number of instances that would take the

least time to generate the graph is then used. The equations are obtained using the Eureqa analytical

software package based on the times of graphs produced by Filtergraph under varying conditions. [27]

These equations are specific to our hardware setup, however in principle it should be possible to

implement into Filtergraph the ability to determine these equations for any server setup, such as

through a “benchmark” function to be added to the admin interface.

Since it is less practical to apply these procedures on Postscript and PDF files, generating

these graphs always uses one process of Gnuplot. The same is true for histograms, since they typically

do not require as much data to generate. For obtaining tables and point information, Gnuplot and

Graphicsmagick are bypassed entirely and the resulting data is returned directly to the browser.

Future Plans

Filtergraph currently has over 100 users in over 20 countries. We would like to see its use

expanded beyond astronomy to other academic and non-academic fields where data is being heavily

used. We also plan to add more features to Filtergraph such as improved statistical capabilities and the

ability for users to save the current settings of their portal for later use.

20

REFERENCES

[1] N. Sadasivam, "The astronomical data explosion," ScienceLine, 3 February 2013. [Online].

Available: http://scienceline.org/2013/02/the-astronomical-data-explosion/. [Accessed 5

March 2013].

[2] J. Marlow, "What to Do With 1,000,000,000,000,000,000 Bytes of Astronomical Data per

Day," Wired, 2 Apr 2012. [Online]. Available:

http://www.wired.com/wiredscience/2012/04/what-to-do-with-1000000000000000000-

bytes-of-astronomical-data-per-day/. [Accessed 5 March 2013].

[3] Kanellos, "Moore's Law to roll on for another decade," CNET, 10 February 2003. [Online].

Available: http://news.cnet.com/2100-1001-984051.html. [Accessed 20 March 2013].

[4] C. Cui, F. Dongwei, Z. Yongheng, K. Ajit, H. Boliang, C. Zihuang, L. Jian and N. Deoyani,

"Enhanced management of personal astronomical data with FITSManager," New Astronomy,

vol. 17, no. 2, p. February, 2012.

[5] S. Seager, R. Dotson and Lunar and Planetary Institute, Exoplanets, Houston: University of

Arizona Press, 2010.

[6] J. Pepper, R. W. Pogge, D. L. DePoy, J. L. Marshall, K. Z. Stanek, A. M. Stutz, S.

Poindexter, R. Siverd, T. P. O'Brien, M. Trueblood and P. Trueblood, "KELT-North:

Telescope," Publications of the Astronomy Society of the Pacific, vol. 119, no. 858, pp. 923-

925, 2007.

[7] J. Pepper, R. B. Kuhn, R. Siverd, D. James and K. Stassun, "The KELT-South Telescope,"

Publications of the Astronomical Society of the Pacific, vol. 124, no. 913, pp. 230-241, 2012.

[8] "SurveyMonkey," [Online]. Available: http://www.surveymonkey.com/. [Accessed 13

March 2013].

21

[9] "Google Drive Apps," Google, [Online]. Available:

https://www.google.com/intl/en_US/drive/start/apps.html. [Accessed 13 March 2013].

[10] D. L. Pollacco, I. Skillen, A. C. Cameron, D. J. Christian, C. Hellier, J. Irwin, T. A. Lister,

R. A. Street, R. G. West, D. Anderson, W. I. Clarkson, H. Deeg, B. Enoch, A. Evans, A.

Fitzsimmons, C. A. Haswell, S. Hodgkin, K. Horne, S. R. Kane, F. P. Keenan, P. F. L.

Maxted, A. J. Norton, J. Osborne, N. R. Parley, R. S. I. Ryans, B. Smalley, P. J. Wheatley

and D. M. Wilson, "The WASP Project and the SuperWASP Cameras," Publications of the

Astronomy Society of the Pacific, vol. 118, no. 848, pp. 1407-1418, 2006.

[11] G. Pojmanski, "The All Sky Automated Survey," ACTA ASTRONOMICA, vol. 47, pp. 467-

481, 1997.

[12] M. Tuupola, "Lazy Load Plugin for jQuery," [Online]. Available:

http://www.appelsiini.net/projects/lazyload. [Accessed 5 March 2013].

[13] J. Wright, G. Marcy, California Planet Survey Consortium and O. Fakhouri, "Exoplanet Data

Explorer," [Online]. Available: http://www.exoplanets.org/. [Accessed 20 March 2013].

[14] "Gapminder," Gapminder Foundation, [Online]. Available: http://www.gapminder.org.

[Accessed 20 March 2013].

[15] "web2py Web Framework," [Online]. Available:

http://www.web2py.com/examples/default/what. [Accessed 5 March 2013].

[16] "Numpy," [Online]. Available: http://www.numpy.org/. [Accessed 5 March 2013].

[17] "gnuplot homepage," [Online]. Available: http://www.gnuplot.info/. [Accessed 5 March

2013].

[18] "GraphicsMagick Image Processing System," [Online]. Available:

http://www.graphicsmagick.org/. [Accessed 5 March 2013].

[19] M. Wojciechowski, "imgAreaSelect," odyniec.net, [Online]. Available:

22

http://odyniec.net/projects/imgareaselect/. [Accessed 5 March 2013].

[20] "jQuery," [Online]. Available: http://jquery.com/. [Accessed 5 March 2013].

[21] "jQuery UI," [Online]. Available: http://jqueryui.com/. [Accessed 5 March 2013].

[22] E. Bressert and T. Robitaille, "ATpy - Astronomical Tables in Python," 2009. [Online].

Available: http://atpy.github.com/. [Accessed 5 March 2013].

[23] "PyFITS," Space Telescope Science Institute, [Online]. Available:

http://www.stsci.edu/institute/software_hardware/pyfits. [Accessed 5 March 2013].

[24] "astrolib," [Online]. Available: https://trac.assembla.com/astrolib. [Accessed 5 March 2013].

[25] J. Machin, "xlrd 0.9.0," Python Package Index, [Online]. Available:

https://pypi.python.org/pypi/xlrd. [Accessed 5 March 2013].

[26] I. Foster, "Parallel Algorithm Examples," Designing and Building Parallel Programs, 1995.

[Online]. Available: http://www.mcs.anl.gov/~itf/dbpp/text/node10.html. [Accessed 5 March

2013].

[27] "Eureqa," Cornell Creative Machines Lab, [Online]. Available:

http://creativemachines.cornell.edu/eureqa. [Accessed 5 March 2013].

