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CHAPTER I 

 

INTRODUCTION 

 

 In order for a cell to undergo proliferation, DNA must be faithfully 

replicated each cell cycle.  DNA is packaged tightly and neatly with histones into 

chromatin in order to fit into the nucleus of a cell.  Chromatin modifications play 

important roles in crucial cell processes such as DNA replication, DNA repair, 

and transcription.  Chromatin modifications can regulate recruitment of chromatin 

remodeling factors or chromatin modifiers, recruitment of DNA replication 

machinery, and transcription.  Due to the important role that chromatin 

modifications play in these crucial cell processes, it is logical that aberrations in 

chromatin modifiers can have detrimental effects on cells, such as the 

development of cancer and disease.   

 

Chromatin 

 

Nucleosome Structure 

 Over a meter of DNA is condensed into the nucleus of each cell.  This is 

accomplished by compacting the DNA into condensed chromatin fibers.  The 

nucleosome is the basic building block of chromatin.  Each nucleosome is 

composed of 147 base pairs of DNA that is wrapped around a core histone 

octamer.  Each histone octamer is made up of two copies of histones H2A, H2B, 
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H3, and H4 [1-4] (Figure 1).  The N-terminal histone tail of the core histone 

octamer is unstructured while the rest of the core histone is globular [4, 5].  

Linker DNA, or short DNA segments, link nucleosomes together and these linked 

nucleosomes undergo short-range interactions with other neighboring 

nucleosomes to form chromatin fibers [4-6].  These fibers then interact with other 

chromatin fibers and compact into condensed chromatin.  Chromatin can be 

divided into two major states, either heterochromatin or euchromatin.  

Heterochromatin is highly condensed and thought of as in a “closed” state, which 

is associated with transcriptional repression [1].  Euchromatin is in a relaxed, 

more open state and corresponds to regions of active transcription [1].  Histone 

modifications alter chromatin structure and switch the chromatin between these 

open and closed states. 

 

Histone Modifications 

 Histone modifications occur predominantly on the N-terminal tails of 

histones and to a lesser extent on the globular regions of histones [1, 3, 5].  

These modifications are regulated in a dynamic fashion and are added and 

removed by specific enzymes.  These modifications appear to alter chromatin 

structure by affecting non-covalent interactions between and within nucleosomes 

to condense or unravel the chromatin.  Also, proteins with specialized domains 

can recognize certain histone modifications and bind to these sites to then recruit 

additional proteins and chromatin modifying enzymes.  These specialized domain  
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Figure 1. Structure of a nucleosome. DNA (purple and gray strands) is wrapped around 
an octamer of histones H2A (green ribbons), H2B (orange ribbons), H3 (red ribbons), 
and H4 (blue ribbons).  The N-terminal tails are shown protruding out of the nucleosome 
core. (PDB 1KX5)  



4 
 

proteins are referred to as chromatin “readers” that bind specific histone 

modifications [6-8].  One example of “reader” proteins are those proteins that 

possess bromodomains, such as the BET (bromodomain and extra-terminal) 

family of proteins (BRD2, 3, 4, and BRDT) that specifically recognize singly or 

multiply acetylated histones and are associated with processes such as 

transcriptional activation and transcriptional elongation [9, 10].  There are also 

proteins known as “writers” and “erasers” [6].  Histone writers can be the histone 

acetyltransferases that add acetyl groups to lysines and histone erasers can be 

histone deacetylases that remove these acetyl groups, thus affecting processes 

such as DNA replication, repair, and transcription.  These histone modifications 

can also serve to block recruitment or binding of proteins to a particular site.  

There are at least 16 different classes of histone modifications (shown in Table 1-

modified from [1]).   

The most well studied histone modifications are phosphorylation, 

methylation, acetylation and ubiquitylation.  Histone phosphorylation can occur 

on serine, threonine, and tyrosine residues and can alter the charge of the 

nucleosome, thus altering the structure of chromatin.  Phosphorylation plays a 

role in many processes such as replication, transcription, apoptosis, and repair 

[1, 3].  While methylation can occur on lysine, arginine, and histidine, the best 

studied of these modifications is lysine methylation, which can be associated with 

active/euchromatic regions (H3K4, H3K36, and H3K79) or 

repressed/heterochromatic regions (H3K9, H3K27, and H4K20) [1, 3].    
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Table 1. Histone Modification Classes 
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In addition, lysine residues can be either mono-, di-, or tri- methylated, which can 

have varying degrees of function because of the different methylation states.  For 

example, repression is normally associated with tri-methylation.  Often during the 

switch from transcriptional activation to repression, a lysine residue that is 

acetylated during activation is then deacetylated and replaced by a methyl group 

to silence the gene.  Ubiquitylation is a very large modification that targets lysines 

on histones H2A and H2B.  This modification can serve as an active (H2BK120) 

or repressive (H2AK119) transcription mark [1, 3].  Sumoylation is also a large 

modification and occurs on all four core histones [3].  Specific sites on H2A, H2B, 

and H4 are sumoylated and appear to repress transcription in yeast [3].  

Acetylation (more specifically, deacetylation) is a focus of this dissertation and is 

described in more detail below. 

 

Acetylation 

 Lysine residues primarily occur in the basic N-terminal tails of histones but 

can also occur in the core domains of histones (such as H3K56ac).  The 

presence of these positively charged residues in the core attracts the negatively 

charged nucleosome cores, thus causing the chromatin to maintain a tight 

conformation.  Acetylation of these lysine residues neutralizes the positive 

charge of the tails and causes the chromatin to loosen through disruption of 

electrostatic interactions between nucleosomes.  This open chromatin state 

allows for recruitment of transcription factors or other proteins to promote gene 

transcription.   
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 Histone acetyltransferases (HATs) are the enzymes that transfer an acetyl 

group from coenzyme A to the lysine residues.  HATs can also target non-histone 

substrates, but histone acetylation will be discussed here.  Most HATs are 

components of multisubunit complexes and these complexes contain subunits 

that regulate HAT activity such as by targeting HAT activity to specific 

chromosomal regions or regulating the substrate specificity of HATs [11-13].  

Three of the main families of HATs are the GNAT (Gcn5 N acetyltransferases), 

MYST (MOZ YBF2/SAS3-SAS2-TIP60), and CBP/p300 (CREB-binding protein) 

families [11, 14, 15].  These families contain different HAT complexes that are 

composed of different protein subunits but can contain the same HAT for the 

catalytic activity of the complex.  Many HATs are unable to acetylate nucleosome 

histones when the HAT is alone i.e. not in complex [11].  However, when in 

complex the HAT is able to acetylate nucleosome histones and specific subunits 

of the complexes are required for targeting the HAT to the specific histones [11].  

For example, yeast Gcn5 (general control nonderepressible 5) cannot acetylate 

nucleosome histones unless it is present in either the ADA or SAGA complex.  

These two complexes contain two common subunits, Ada2 and Ada3, which are 

required for the association and acetylation of nucleosomal histones [11, 16].  

 The multisubunit HAT complexes also affect the substrate specificity of 

HATs.  For example, the GNAT family has specificity primarily toward the lysine 

residues on histones H3, H4, and H2B while the MYST family displays specificity 

for histone H3, H4, and H2A [11-13].  As mentioned, HATs are associated with 

active transcription, however they are also implicated in other processes such as 



8 
 

DNA replication and repair.  For example, HAT activity can allow for the 

enhanced retention of ATP-dependent chromatin remodeling complexes during 

replication or repair by acetylating lysines for that recruit or retain these 

remodeling factors [17].  This would allow for sustained or further chromatin 

remodeling that allows additional replication or repair machinery to access DNA.   

 Due to the importance of acetylation and HAT activity in many major cell 

processes, a balance between acetylation (activation) and deacetylation 

(repression), needs to be maintained.  The enzymes that aid in maintaining this 

balance and remove acetyl group from lysines are the histone deacetylases 

(HDACs). 

 

Histone Deacetylases 

 

Classification of HDACs 

HDACs target both histone and non-histone substrates, but histone 

deacetylation will be the focus of this dissertation.  HDACs remove the 

acetylation present on the ε-amino group of lysine residues on histones.  This 

deacetylation, then allows for other modifications such as methylation, 

ubiquitylation, or sumoylation to occur on the amino group, thus affecting 

transcriptional regulation.  

There are currently 18 human HDACs that are classified into 4 different 

classes (with one class being subdivided into two subclasses) based on their 

sequence similarities to each other and to yeast HDACs, subcellular localization, 



9 
 

tissue specific expression, and domain organization.  The mammalian HDACs 

are also classified based on their homology to 3 yeast proteins, Rpd3, Hda1, and 

Sir2.  Rpd3 was first identified in genetic screens for transcriptional repressors 

and later the deacetylase function of Rpd3 was determined along with the 

identification of another yeast deacetylase enzyme, Hda1, through purification 

and analysis of the HDA and HDB yeast HDAC complexes [18, 19].   

The SIR (silent information regulator) gene was discovered many years 

ago through studies that examined mating type interconversion in yeast [20].  

The expression of genes necessary for mating and sporulation are controlled by 

the mating type loci in yeast and mutations in the mating type loci can regulate 

the expression of genes [20, 21]. The SIR gene was found to suppress, or 

silence, the mating and sporulation defects in mutations in the mating type loci 

[20].  There were four SIR genes isolated in yeast (SIR1, 2, 3, and 4) but SIR2 

was the only gene that is highly conserved from archaea to humans [22].   

Sir2 was originally identified from a genomic library in 1985 by 

complementation of sir mutations [21]. The Sir2 family of proteins are responsible 

for repressing transcription at telomeres, mating-type loci, and ribosomal DNA 

and regulating longevity in yeast [6, 23, 24].  However, the mechanism by which 

they repressed transcription was unclear until research in 2000 used 

NAD/nicotinamide exchange reactions to test whether these enzymes could 

cleave the glycosidic bond in NAD to generate nicotinamide and ADP-ribose [23].  

They found that Sir2 proteins could cleave this bond but only if acetylated lysines 

were present [23] .  Histone deacetylase experiments then revealed that these 



10 
 

proteins could also catalyze histone deacetylation but this reaction absolutely 

required NAD [23].  Thus, these proteins were histone deacetylases that were 

unlike the previously characterized zinc-dependent Rpd3/Hda1 HDACs. Each 

class of HDACs is discussed below in more detail.   

 

Class I 

 Class I includes HDACs 1, 2, 3, and 8 and these HDACs are homologous 

to yeast Rpd3 (reduced potassium dependency 3) [25-27].  The class I HDACs 

are ubiquitously expressed and predominantly localized to the nucleus.  They are 

between 350 and 500 amino acids in length.  Class I HDACs require Zn2+ to 

mediate the release of acetate and form a free lysine [28].  The zinc ion is 

chelated by side chains of histidine and aspartic acid in the catalytic center of the 

HDAC structure [29].  These HDACs do not bind directly to DNA but instead are 

usually the catalytic components of multiprotein corepressor complexes.  HDAC8 

is the only class I HDAC that does not require a multiprotein complex for its 

function. 

 HDACs 1 and 2 share 82% identity with each other and are the most 

similar of all the class I HDACs (Figure 2) [30-32].   Not only do they share 

homologous catalytic domains, they also share homology in their C terminal 

domains.  HDACs 1 and 2 have similar functions and can interact with each 

other.  They are also found in the same multiprotein complexes, containing Sin3 

(Swi independent 3), Mi2/NuRD (nucleosome remodeling and deacetylase), and 

CoREST (corepressor of repressor element 1 silencing transcription) [29, 33, 34].   
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Figure 2. Class I HDACs are classified based on sequence conservation and contain a 
highly conserved catalytic domain.  The catalytic domain is shown in green and identity 
percentages are based on similarity to HDAC1.  
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Sin3 and many of the subunits that make up Sin3 complexes are conserved from 

fungi to mammals [29].  There are two Sin3 homologs in mammals, Sin3A and 

Sin3B.  The Sin3A complex is composed of HDAC1 and 2 as the catalytic 

components as well as 9 other subunits including the histone binding proteins, 

RbAp46 and RbAp48 [33, 35].  The Sin3A complex interacts with many DNA 

sequence-specific transcription factors and adapter proteins that target the 

complex to specific regions of DNA for repression activity [35].  The Sin3A 

complex is involved in repression by nuclear hormone receptors when the 

receptor is not bound by ligand. 

 The Mi-2/NuRD complex contains HDAC1 and 2, RbAp46, RbAp48, and 

other subunits including MBD2 (methyl CpG-binding domain-2) and Mi-2 [29, 36, 

37].  Besides the histone deacetylation properties of the complex, Mi-2 is 

responsible for ATPase activity of the complex, which plays a role in nucleosome 

mobilization and condensation [37].  MBD2 allows this complex to be recruited 

for DNA methylation-dependent gene silencing [29] and associate with 

methylated DNA binding proteins.   

 The CoREST complex is referred to as a neuronal corepressor complex 

and along with HDAC 1 and 2 contains other proteins such as LSD1 (a H3K4 

demethylase).  By being in complex together, HDAC1/2 and LSD1 are able to 

stimulate each other’s activities.  The histone demethylation stimulates 

deacetylation of nucleosomes, which in turn is required for optimal demethylation 

[29].   
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 HDAC3 was identified in 1997 using an expressed sequence tag (EST) 

database search looking for DNA and protein sequences that had high homology 

with HDACs 1 and 2 in a fetal liver library [31].  HDAC3 is 428 amino acids in 

length and has a molecular weight of 49 kDa.  HDAC3 shares 53% and 52% 

identity, respectively, with HDAC1 and HDAC2 [30-32]  (Figure 2).  The class I 

HDACs also contain a highly conserved central catalytic domain [31, 32] that is 

58% identical between HDAC1 and HDAC3.  The C-terminal tail of HDAC3 

differs from any other HDAC and the last 30 amino acids of the C-terminal tail is 

required for the deacetylase activity of HDAC3 [32, 38].  HDAC3 forms a 

separate complex with the nuclear corepressor proteins, NCoR (nuclear 

corepressor) or SMRT (silencing mediator of retinoic and thyroid receptors).  

HDAC3 requires the interaction with NCoR or SMRT for activity while the 

NCoR/SMRT complex requires HDAC3 for deacetylase activity and 

transcriptional repression.  NCoR and SMRT are highly related to one another in 

function and sequence.  These two proteins were first identified based on their 

roles in repressing transcription involving retinoic acid receptors, retinoid X 

receptors, thyroid hormone receptors, etc [39].  NCoR and SMRT both have the 

conserved deacetylase activation domain (DAD) that interacts with HDAC3 and a 

SANT (Swi3/Ada2/NCoR/TFIIIB) domain that is necessary and sufficient for 

interacting with and activating HDAC3 [40].   

In 2012, HDAC3 was crystallized with the DAD from the human SMRT 

[40].  The crystal structure of HDAC3 revealed that upon binding HDAC3, the 

DAD undergoes extensive conformational changes where the DAD no longer 
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forms part of the core of the SMRT structure but lies along the surface of HDAC3 

[40].  A second surprise was that between HDAC3 and DAD-SMRT, there was 

an essential inositol tetraphosphate molecule, Ins(1,4,5,6)P4) or IP4.  This IP4 

molecule acts as “intermolecular glue” holding the proteins together [40].  The 

discovery of the structure of HDAC3 provides critical information about how 

HDAC3 and its corepressor complexes interact and may provide new insights 

into therapeutics involving HDAC3 in disease. 

 To study the function of individual HDACs, mouse models harboring 

deletions of the class I HDACs have been generated.  Deletion of Hdac1 led to 

embryonic lethality by embryonic day 10.5 thus establishing a vital role for 

HDAC1 in embryogenesis [41-43].  Hdac1-null embryonic stem cells showed a 

proliferation defect associated with an increase in the cell cycle inhibitors p21 

and p27 [41-43].  An increase in Hdac2 and Hdac3 levels were observed but only 

Hdac2 could partially compensate for the loss of Hdac1 [41, 42].  Hdac2 deletion 

did not lead to embryonic lethality but caused perinatal lethality with many of the 

mice dying by three weeks after birth.  The cause of death of these mice was 

cardiac malformations where there was thickening of the ventricle walls of the 

heart due to increased proliferation [44].  Global Hdac8 deletion also led to 

perinatal lethality due to skull instability [45], suggesting a vital role for Hdac8 in 

skull patterning.   

 Hdac3 deletion caused embryonic lethality before embryonic day 7.5 

proving that HDAC3 is vital for normal embryonic development [46] .  To 

elucidate why these mice were dying, conditional HDAC3-/- mouse embryonic 
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fibroblasts (MEFs) were harvested, and studies revealed that these MEFs had 

increases in apoptosis, cell cycle delay, and S phase associated-DNA damage 

[46].  Deletion of HDAC3 in MEFs also resulted in increases in histone H4K5, 

H4K12, and H4K16 acetylation levels with a modest increase in histone H3 

K9/K14 acetylation in Hdac3-null MEFs [46].   

To study HDAC3 function in adult animals, a liver-specific deletion of 

HDAC3 using Cre recombinase under the control of the albumin promoter (Alb-

Cre) was made [43].  These mice were viable but developed liver hypertrophy, 

disrupted metabolism, and elevated levels of histone H4K5ac and H4K12ac with 

modest increases in H3K9ac [43, 47].  Further analysis of these mice revealed a 

decrease in heterochromatin and alteration of chromatin structure and a 

requirement for HDAC3 in genomic stability [47].  As mentioned, S phase 

associated DNA damage was observed in HDAC3 null cells [46].  Analysis of 

HDAC3 null livers recapitulated the DNA damage and genomic instability seen in 

HDAC3 null MEFs along with defects in DNA repair [47] (Figure 3).  Long term 

observation of these Hdac3-/-:Alb-Cre mice found that these mice developed 

hepatocellular carcinoma [47].   

Another HDAC3 conditional mouse model developed was the 

HDAC3:Vav-Cre mouse that allowed for the study of HDAC3 in hematopoiesis 

[48].  These mice had hypocellular bone marrow, anemia, a dramatic loss of 

lymphoid cells, decreased stem and progenitor cell proliferation, and DNA 

replication defects [48] (Figure 4).  These studies suggest that long-term 

inactivation of HDAC3 could lead to detrimental effects on normal cells but that  
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Figure 3. DNA repair is impaired in Hdac3-null livers. Hdac3-null hepatocytes are 
defective in DNA repair. Mice were irradiated with a 3 Gy dose of IR, and frozen sections 
of livers collected immediately or 1 or 6 hr later were prepared for immunofluorescence 
analysis of ɣH2AX and 53BP1. Arrows indicate Hdac3-null nuclei with 53BP1 foci. The 
scale bar represents 20 mm. Figure from [47].  
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Figure 4.  Hdac3-null stem cells show defects in DNA replication. DNA fiber labeling with 
IdU (green) and CldU (red) was used to assess DNA replication fork progression in 
LSK/Flt3- cells from control and Hdac3-/- bone marrow. Graphical representation of the 
length of replication tracks taken from 100 DNA fibers is shown in the graph. Figure from 
[48]  
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shorter term inactivation may provide a window of opportunity to target only 

proliferating cells (S phase dependent DNA damage and defects in DNA 

replication) and leave the normal, non-cycling cells alone.   

 

Class IIa and IIb 

 The class II HDACs are subdivided into class IIa and class IIb based on 

sequence homology and organization of domains.  Figure 5 shows the two 

subclasses and they are described below.  All of the class II HDACs share 

homology with the yeast Hda1 enzyme and like the class I HDACs, require Zn2+ 

for enzymatic activity [29, 49, 50].  However, interestingly, these HDACs often 

require HDAC3 for their activity.   

 Class IIa consists of HDACs 4, 5, 7, and 9.  These enzymes share a 

highly conserved C terminal domain (homologous to Hda1) and an N terminal 

domain that is not similar to other proteins [29, 49, 50] (Figure 5).  They are also 

approximately twice the size of the class I HDACs (about 1000 amino acids in 

length) due to this elongated N terminal region that is required for coregulator 

binding.  Class IIa HDACs also differ from class I HDACs, in that class IIa 

members are expressed in a more tissue-specific manner instead of being 

ubiquitously expressed [29, 49, 50].  HDACs 4, 5, and 9 have the highest 

expression in heart, skeletal muscle, and brain while HDAC7 has high expression 

in heart, lung, thymus and skeletal muscle [29, 49, 50].   

 The four members of class IIa were thought to have redundant or partially 

redundant functions in the tissues in which they are expressed, but deletion in  
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Figure 5. The class II HDACs are subdivided into class IIa and class IIb based on 
sequence homology and organization of domains.  Class IIa share a highly conserved C 
terminal domain while the class IIb HDACs have duplicated catalytic domains.  Both 
catalytic domains are functional in HDAC6 while only the first domain is functional in 
HDAC10.  
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mice showed that these HDACs have separate functions from one another.  

Deletion of either HDAC5 or HDAC9 resulted in viable mice but these mice 

displayed cardiac hypertrophy induced by stress [51].  HDAC4-/- mice were also 

viable but had increased chondrocyte hypertrophy during bone development [52].  

HDAC7 deletion resulted in the most severe phenotype with embryonic lethality 

observed by embryonic day 11 due to a weakened vascular structure [53].   

 The class IIa HDACs are able to regulate many processes due to their 

interactions with many different transcription factors.  Class IIa HDACs are able 

to shuttle between the nucleus and cytoplasm through phosphorylation and 

interaction with the 14-3-3 proteins [49, 50].  Each of the class IIa HDACs 

possess nuclear export signals (NES) to export them from the nucleus and a 

nuclear localization signal (NLS) to import them into the nucleus [49].  

Phosphorylation of the class II family members by CaMK (calcium/calmodulin-

dependent kinase) results in a conformational change of the HDACs and the 

exposure of the NES, thus exporting the HDAC from the nucleus [54].  The 14-3-

3 chaperone proteins bind to the class IIa HDACs to keep the HDACs in the 

cytoplasm by covering the NLS [55, 56].  This shuttling between the nucleus and 

cytoplasm is important for transcription factors that interact with the class IIa 

HDACs.   When the class II HDACs are shuttled out of the nucleus, they are 

unable to bind to their substrates and activating complexes, thus they are unable 

to repress transcription.  For example, a major transcription factor that interacts 

with the class IIa HDACs is myocyte enhancer factor 2, or MEF2.  MEF2 plays a 

major transcriptional role in myogenesis, neuronal cells, and negative selection of 
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developing thymocytes [49, 50, 57, 58].  Also, aberrant MEF2 expression has 

been linked to coronary heart disease and T cell lymphoma [50].  MEF2 requires 

the nuclear localization and binding of class IIa HDACs through a conserved 

binding region for MEF2 in the N terminal domain of the HDACs to repress 

transcription [49, 55, 57].  When both MEF2 and the HDACs are phosphorylated, 

MEF2 is released from the HDACs and MEF2 can then interact with 

transcriptional coactivators [49, 55, 57]. 

 The class IIb HDACs include HDAC6 and HDAC10.  This class differs 

from the class IIa HDACs in their domains, localization pattern, and tissue 

specificity.  Class IIb is characterized by duplicated HDAC domains [49] (Figure 

5).  HDAC6 contains two tandem deacetylase domains and both are functional.  

Only the first domain in HDAC10 has a catalytically active site [49].  The leucine-

rich C terminal domain of HDAC10 is homologous to the second domain of 

HDAC6 but lacks an active pocket site for enzymatic activity [49, 50].  Both 

HDACs are primarily localized to the cytoplasm but HDAC10 can shuttle to the 

nucleus.  Like the class IIa HDACs, HDAC6 and HDAC10 have tissue specific 

expression but the tissues they are expressed in differ from those that express 

class IIa family members.  HDAC6 is expressed in liver, kidney, pancreas, and 

heart, while HDAC10 is expressed in liver, kidney, and spleen [29, 49, 50].  

HDAC10 does not have deacetylase activity in vivo but does have the ability to 

repress transcription when present in the nucleus and tethered to a promoter [29, 

49, 50].  The activity of HDAC6 is confined to the cytoplasm where it localizes 
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with the microtubule network [49].  HDAC6 functions as a specific deacetylase of 

tubulin and plays a role in cell motility and structure.        

 

Class III 

 The class III HDACs were originally identified in yeast as Silent 

Information Regulators (SIR), also known as sirtuins [20, 21] and have very little 

conservation to the class I, II, or IV family members.  The SIR complex is 

responsible for repressing transcription at telomeres, mating-type loci, and 

ribosomal DNA in yeast [20, 22-24].  Unlike the class I and II HDACs, the class III 

enzymes require NAD+ (nicotinamide adenine dinucleotide) instead of Zn2+ for 

activity [23, 59]  Another unique feature is that class III can also transfer an ADP-

ribose moiety to amino acids [23, 59].  When an acetyl lysine is deacetylated, a 

NAD+ molecule is cleaved producing nicotinamide and O-acetyl-ADP ribose.  

SIR2 is highly conserved from archaea to humans and has 7 homologs in 

human, SIRT 1-7 [22].   

The sirtuins have been linked to many age-related and metabolic diseases 

such as cardiovascular disease, type II diabetes, cancer, and neurodegeneration 

[22, 60].  They also affect lifespan in yeast with SIR2 mutants exhibiting an 

approximately 50% shorter lifespan than controls.  Each of the 7 mammalian 

SIRT family members have been deleted in mice.  Most of these mouse models 

produced viable mice but had different phenotypes based on which sirtuin was 

deleted.  SIRT1 deletion had a severe phenotype with some SIRT1-/- mice being 

born but at much lower ratios than expected and most of these mice died within a 



23 
 

few months.  Interestingly, SIRT1-/- mice did not open their eyelids for many 

weeks after normal controls opened their eyes and when these mice did open 

their eyes, the eyes were generally misshapen [22, 61].  These mice were much 

smaller and usually died due to abnormal heart development and cardiac 

defects.  SIRT7 deletion also resulted in cardiac defects and decreased life span 

[22].  In SIRT7-/- mice, there was an increase in the levels of apoptosis in cardiac 

tissue through hyperacetylation of p53 [62].  SIRT6-/- mice were born but died 

within a month due severe metabolism defects and increased thymocyte 

apoptosis.  These mice had very little adipose tissue and very low to no blood 

glucose levels [22, 63].  Deletion of SIRT3 or SIRT4 caused less severe 

phenotypes.  SIRT3-/- and SIRT4-/- mice were viable but had defects in 

metabolism that increased reactive oxygen species that correlated with increases 

in cancer and aging [22, 64, 65].  There was an increase in mitochondrial 

acetylation specifically in the enzyme, glutamate dehydrogenase [64, 65].  This 

led to disruptions in insulin signaling.  Deletion of SIRT2 and SIRT5 produced 

viable mice with no observed phenotypes [22, 64].   

 

Class IV 

 The only member of class IV is HDAC11.  HDAC11 displays similarity to 

both the class I and class II HDAC family members, which is why it was given a 

class of its own.  HDAC11 is more similar in size and exhibits nuclear localization 

like the class 1 HDACs, but is expressed in a more tissue specific manner like 

the class II HDACs.  HDAC11 is expressed in brain, heart, kidney, and skeletal 
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muscle [66].  There is little known about the function of HDAC11; however, it is 

evolutionarily conserved, suggesting a fundamental role for HDAC11 in various 

organisms. 

 

HDACs in Disease 

 As stated in the beginning of this introduction regulation of chromatin and 

transcription is crucial for normal development and life.  Histone deacetylation by 

HDACs plays a major role in maintaining a balance between open and closed 

chromatin and access to DNA.  HDACs are tightly regulated by their recruitment 

and interaction with multiprotein complexes that are required for HDAC 

enzymatic activity, and deregulation of these proteins and processes can cause 

catastrophic effects as seen in the knockout mouse models described above.  

However, increased activation of HDACs has been linked to many types of 

diseases and inhibition of HDACs is gaining use in the clinics.  Cancer is the 

main disease that involves inappropriate recruitment and function of HDACs, but 

other diseases such as neurodegenerative disorders, heart disease, muscular 

dystrophy, and spinal muscular atrophy have shown increased activation of 

HDACs [29, 67, 68].  Many of the cancers that are the most affected by 

inappropriate recruitment and function of HDACs are blood cancers such as 

promyelocytic leukemia, acute myeloid leukemia, and acute lymphoblastic 

leukemia, however, solid tumor cancers such as glioblastomas, breast, cervical, 

and GI cancers have been associated with HDAC deregulation [69-73].   
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 For example, in acute myeloid leukemia HDAC3 is inappropriately 

recruited by a fusion protein consisting of a translocation between the co-

repressor MTG8 (myeloid translocation gene 8) and the hematopoietic 

transcription factor, AML1 (acute myeloid leukemia 1).  This inappropriate 

recruitment results in unregulated repression of AML1 target genes and the 

development of AML [73, 74].  One cancer that has shown tremendous 

improvement with treatment involving histone deacetylase inhibitors is cutaneous 

T cell lymphoma. 

 

Cutaneous T cell lymphoma 

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of non-

Hodgkin’s lymphoma that is characterized by an initial accumulation of malignant, 

mature T cells in the skin [75-77].  The incidence of CTCL is 6.4 per million 

persons with the highest incidence being in males and African Americans [76]. 

Generally, CTCL incidence increases with age and is confined to adults but 

certain types of childhood and adolescent CTCLs have been seen.  Early-stage 

CTCL is generally confined to the skin resulting in an indolent nature and good 

prognosis.  However, advanced or refractory disease has skin, peripheral blood 

and lymph node involvement, is aggressive, and has shortened survival [75-77].  

The most common types of CTCL are mycosis fungoides and Sézary syndrome, 

followed by the CD30+ lymphoproliferative disorders.  Together, these types of 

CTCL make up 95% of CTCL cases [78].   
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Mycosis Fungoides and Sézary Syndrome 

 Mycosis fungoides (MF) and Sézary syndrome (SS) make up 

approximately two-thirds of CTCL.  MF normally has an indolent, stable course 

that can persist for many years.  The malignant T cells in MF are primarily 

localized in the skin as patches or plaques that vary in size, shape, color, and 

distribute in a bathing suit type pattern [75, 76, 78].  Sometimes these plaques or 

patches can progress to tumors with deeper infiltration of malignant cells into the 

skin.  Patients that are diagnosed with early stage MF can have a normal life 

expectancy.    

SS is thought of as the leukemic version of CTCL due to not only skin 

infiltration by malignant T cells, but also circulating malignant T cells in the 

peripheral blood and lymph node involvement.  In SS there is a high number of 

malignant T cells in the peripheral blood that have cerebriform 

(grooved/lobulated) nuclei, termed Sézary cells [78, 79].  SS is characterized by 

erythroderma (covering approximately 80% of the patient’s skin), 

lymphadenopathy, and thickening of the skin [79]. Patients generally have high 

morbidity with SS due to intense itching and discomfort.  The prognosis of SS is 

usually poor with the 5-year survival rate of 24% and a median survival of 3 years 

[78, 79].   

 Originally, MF and SS were thought to be the same disease but at 

different stages of progression.  However, MF and SS arise from different cell 

origins [76, 80], which is consistent with different clinical behaviors and disease 

courses.  There are approximately 2x as many T cells in the skin as there are in 
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the peripheral blood and when a naïve T cell is activated by an antigen, this cell 

differentiates into either an effector memory cells or a central memory T cell that 

have different patterns of migration due to their different expression levels of 

homing addressins, chemokines, and chemokine receptors [76, 80, 81].  Effector 

memory (TEM) T cells are skin resident T cells and express chemokine receptors 

(CCR4, CCR6, and CCR10) that are required for T-cell migration into the skin 

[76, 80, 81].  Central memory (TCM) T cells express CCR7 and L-selectin that are 

necessary for homing to the lymph nodes and circulation in the blood [76, 80-82].  

T cells that were isolated from MF patient skin lesion were found not to express 

CCR7 or L-selectin but did express high levels of CCR4 and CLA (skin homing 

addressin) suggesting a TEM phenotype [76, 82].  SS patient cells show a TCM 

phenotype by expressing high levels of CCR7 and L-selectin for homing to lymph 

nodes and peripheral blood [76, 80-82].   

  

CD30+ Lymphoproliferative Disorders 

 After MF and SS, CD30+ lymphoproliferative disorders are the next most 

common type of CTCL.  The prognosis of this type of CTCL is generally good 

with patients having a normal life expectancy compared to age and sex matched 

control populations [83, 84].  These CTCL types express high levels of the cell 

surface receptor, CD30.  CD30, or tumor necrosis factor death receptor member 

8, expression is absent on normal cells and is only found on activated T and B 

cells, usually more commonly in T cell lymphomas [83, 84].  CD30 expression is 
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generally associated with a better outcome and can lead to increased Fas 

signaling, triggering apoptosis [83, 84].   

Two of the most common types of CD30+ lymphoproliferative disorders 

are lymphomatoid papulosis (LyP) and cutaneous anaplastic large cell lymphoma 

(cALCL).  LyP is confined to the skin and characterized by chronic, recurrent and 

self-regressing red papules and nodules that can occur singly, but usually in 

clusters, and normally form on the trunk and limbs of patients [83].  These 

papules can be small pinpoint sizes or can grow larger into papulonodules.  

Papules can become necrotic and normally regress within 3-12 weeks, possibly 

leaving scars.  The duration of the cycle of recurrent and regressing disease can 

last several months to years after the initial onset.  In CALCL, the skin 

manifestations are larger and more tumor-like in appearance.  These tumors tend 

to present solitarily and not in clusters.  Like LyP, CALCL tumors may ulcerate 

and regress and overall the prognosis is favorable [83].     

 

Complications of CTCL 

 A major complication of CTCL is increased risk and susceptibility to 

secondary malignancies and infections.  A large majority of CTCL patients die 

due to infection complications and not due to tumor burden [76].  The skin lesions 

on CTCL patients can become necrotic and ulcerated, disrupting the normal 

protective skin barrier.  This allows an increased chance of invasion of pathogens 

and infection.    Advanced-stage CTCL patients are unable to fight off infections 
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like early-stage and uninfected individuals due to a compromised immune 

system.   

The most important risk factor for infections (both cutaneous and 

systemic) is advanced disease [85].  Advanced stage disease is characterized by 

the expansion of malignant CD4+ T cells and a decrease in normal, reactive 

CD8+ cytotoxic T cells and non-malignant T helper 1 (Th1) cells [86].  A 

decreased number of CD8+ T cells and Th1 cells corresponds to a decreased 

survival rate due to decreased cell mediated immunity.  CD8+ T cells and Th1 

cells control malignant T cells to a certain degree by cytotoxicity and secreting 

cytokines such as interferon α directed towards the malignant T cells that 

express tumor associated antigens.  The decreased number of normal blood T 

cells in erythrodermic patients (SS patients) has been compared to patients with 

advanced AIDS (acquired immunodeficiency syndrome) where AIDS patients 

usually have very low numbers of circulating normal T cells [87].  With the 

expansion of these malignant T cells, there is also a skewing toward T helper 2 

(Th2) cell cytokine expression (IL-5, IL-10, IL-13, and IL-17) corresponding to 

immune deregulation, increased susceptibility to infection, impaired anti-tumor 

immunity, and increased tumor cell proliferation due to Th2 cytokines 

suppressing T cell mediated immunity [86].   

In early stage disease, Th1 cytokines are more highly expressed (IL-2, IL-

4, and IFNɣ) that aid in anti-tumor immune response and cell mediated immunity 

[86].   As disease progresses, Th2 cytokines are highly expressed, and as this 

change in immune function occurs, the body does not recognize and properly 
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respond to tumor antigens, thus losing this anti-tumor response and ability to 

fight the malignant T cell expansion contributing to the immune failure.  Some 

current therapies are aimed towards increasing the Th1 response and increase 

host immunity. 

 

Treatments in CTCL 

 Besides an allogeneic stem cell transplant, there is no cure for MF and SS 

CTCL.  However, there are different types of treatments for both early and late 

stage disease.  Early stage or limited disease (MF, CD30+ disorders) with few or 

infrequent lesions can be treated with a “watch and wait” approach or skin 

directed therapies.  These therapies can include topical bexarotene, nitrogen 

mustard (an alkylating agent), and corticosteroids [75, 77].  If lesions are 

recurrent and cover a large amount of the skin, then skin treatments can also be 

combined with low dose oral methotrexate and phototherapy.  Psoralen plus 

ultraviolet A (PUVA) is highly effective.  Upon photoactivation, psoralen, which 

accumulates in lymphocytes, will form DNA adducts [75].  The complete 

response rate exceeds 90% in limited disease.   

 Another possible treatment is to deliver electrons to the skin surface using 

Total Skin Electron Beam Therapy, TSEBT.  TSEBT is effective due to malignant 

T cells being radiosensitive [75].  Advanced, systemic, or refractory disease, 

such as SS, has a more aggressive treatment course involving combinations of 

skin directed therapies as well as systemic therapies.  Some of these systemic 

therapies include oral bexarotene, oral methotrexate or pralatrexate, histone 
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deacetylase inhibitors (HDIs) (such as Vorinostat and Romidepsin) (discussed in 

detail below), immunomodulatory cytokines (such as interferon α that maintains a 

Th1 skewing and enhance the host anti-tumor immunity) or cytotoxic 

chemotherapy.  Chemotherapy is delayed as long as possible to try and limit 

toxicity and keep from further diminishing the quality of life of patients.  Data 

involving Bexarotene, ATRA, and Methotrexate will be discussed in Chapter III 

and are discussed in more detail below. 

 

ATRA and Bexarotene 

 All trans retinoic acid (ATRA) and Bexarotene are retinoids that are able to 

bind and activate retinoid receptors.  Retinoids are derivatives of vitamin A and 

belong to the steroid hormone family.  They are regulators of many processes 

including metabolism, differentiation, apoptosis, proliferation, and hematopoiesis 

[88].  Retinoids are able to regulate these processes through interaction with the 

above mentioned retinoid receptors.  There are two families of retinoid receptors, 

the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs).  These 

receptors are ligand activated and can bind to DNA.  RARs have two 

endogenous ligands, ATRA and 9 cis retinoic acid (9 cis RA), while RXRs are 

activated by 9 cis RA [88].  Bexarotene is the first synthetic retinoid for the RXRs 

(highly selective for RXRs), resulting in Bexarotene being termed a “rexinoid” and 

was approved in 1999 for treatment in CTCL [78, 88].  Bexarotene has had 

success in CTCL treatment as both a topical gel used in early stage disease and 

orally in late stage disease.   
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Even though retinoids that activate RARs have been used in treatment 

(like ATRA, Isotretinoin, Etretinate, and Acitretin) they have not seen the same 

success as Bexarotene due to modest and short response rates.  Rapid 

metabolism of retinoids causes insufficient levels of drug in target tissues. 

Bexarotene has had longer and better response rates than the RAR drugs due to 

its binding to RXRs instead of RARs.  The ability to bind the RXRs allows 

Bexarotene to cause different biological functions than the RAR ligands.  Upon 

ligand binding and activation of the retinoid receptors, the RARs and RXRs form 

heterodimers and together they bind specific DNA sequence RAREs, or retinoic 

acid response elements leading to gene activation through interaction with 

coactivators [88].  In the absence of ligands, the RAR/RXR heterodimers can 

interact with corepressors such as NCOR/SMRT and HDAC3 resulting 

transcriptional repression [88].  A unique feature of the RXRs is that not only can 

they heterodimerize with RARs, they can also homodimerize and then these 

homodimers can form heterodimers with over 20 other nuclear receptors [88].  

These nuclear receptors include thyroid hormone receptors, vitamin D receptors, 

etc.  This unique feature of the RXRs is thought to contribute to Bexarotene’s 

success in CTCL treatment.   

 Bexarotene causes a G1 arrest and apoptosis with activation of caspase 3 

and PARP cleavage in CTCL cells [89].  A key feature of retinoid treatment, 

including Bexarotene, is that this treatment is not immunosuppressive and may 

even boost immune function in patients, which is helpful due to the 

immunosuppressive nature of CTCL and increased susceptibility of infection.  
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Bexarotene may downregulate Th2 cytokines by suppressing CCR4 expression 

among malignant T cells, resulting in increased immune function.  For refractory 

CTCL patients, Bexarotene can be given at a dose of 300mg/m2 with response 

rates of approximately 30-40% and a duration of 3-17 months [78].  Some of the 

major side effects of Bexarotene treatment that have to be closely monitored 

during treatment are hypertriglyceridemia and central hypothyroidism [78].  

During treatment, patients are sometimes put on cholesterol lowering drugs to 

help with the hypertriglyceridemia.    

 

Methotrexate 

 Methotrexate is an antifolate used at low doses in recurrent early stage 

CTCL and at higher doses and in combination with other treatments in advanced 

CTCL.  Methotrexate inhibits de novo purine and pyrimidine synthesis through 

competitive inhibition of dihydrofolate reductase and inhibition of AICAR 

(aminoimidazole carboxamide ribonucleotide) transformylase [90-92].  By 

inhibiting dihydrofolate reductase, the reduction of folate cofactors is prevented, 

resulting in a loss of the tetrahydrofolate essential for purine and pyrimidine 

synthesis [90-92].  Methotrexate is cell cycle specific and only active in S phase.  

By depleting the levels of activated folate, this disrupts cell replication and leads 

to cell cycle arrest [90-92].  Adverse effects of Methotrexate treatment include 

nausea, fatigue, hepatotoxicity, and reproductive toxicity.  Pralatrexate is a new 

antifolate that is targeted towards the reduced folate carrier in cancer cells, which 
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in cancer cells is overexpressed resulting in accumulation of the drug, thus 

resulting in a more potent antifolate drug [90-92].    

 

Histone Deacetylase Inhibitors 

 Many cancers involve the inappropriate recruitment and function of 

HDACs.  Two HDIs that have shown tremendous efficacy in CTCL treatment are 

Vorinostat and Romidepsin [75, 93-95].  These HDIs will be described in brief 

here but will be described in more detail in the next section.  Vorinostat, or 

suberoylanilide hydroxamic acid (SAHA), was the first HDI that was FDA 

approved (2006) for treatment in CTCL and is used in refractory/relapsed 

patients.  Vorinostat inhibits the class I and class II HDACs. Vorinostat is orally 

available and is usually given at 400mg per day [93].  Some of the side effects 

that can occur during treatment include fatigue, nausea, and thrombocytopenia 

[93]. 

 Romidepsin, also known as Depsipeptide, is a class I and HDAC6 inhibitor 

and was FDA approved in 2009 for the treatment of CTCL patients that had 

undergone and failed one prior systemic treatment (refractory disease)[95].  

Romidepsin is only available intravenously and is usually given on days 1, 8, and 

15 of a 28 day cycle at 14mg/m2.  In clinical trials, the average overall response 

rate was 34%.  Side effects of Romidepsin treatment that can limit treatment 

duration and success include cardiac toxicity, thrombocytopenia, anemia, and GI 

toxicities [95].  
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Histone Deacetylase Inhibitors 

 

Classes of HDIs  

 Shortly after the isolation and characterization of histone deacetylation, 

naturally occurring histone deacetylase inhibitors (HDIs) were discovered.  

However, when the first natural HDI, n-butyrate, was found to cause increased 

acetylation in cells (described below), HDACs had not been isolated yet and the 

exact mechanism of histone acetylation caused by n-butyrate, was not known. N-

butyrate would later be classified as the first HDI when HDACs were discovered 

12 years later.   Along with naturally occurring HDIs, synthetic HDIs have been 

made to decrease toxicity issues and target specific HDACs.  HDIs are classified 

based on structure and differ in the concentration with which activity is seen, 

specificity, and toxicity.   Some of the major classes of HDIs are described below 

and the structures can be seen in Figure 6 (Modified from [96, 97] and Sigma 

Aldrich). 

   

Aliphatic Acids 

The aliphatic acids (or short-chain fatty acids) include n-butyrate and 

valproic acid (VPA).  They are the smallest and simplest types of HDIs with 

activity seen at millimolar concentrations.  As mentioned, n-butyrate was one of 

the first HDIs discovered and is a naturally occurring bacterial byproduct in fiber 

fermentation.  n-butyrate treatment of HeLa, neuroblastoma, and other cell types 

caused morphological changes and decreases in cell proliferation, both of which  
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Figure 6. Histone deacetylase inhibitors.  
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were irreversible [98-100].  Treatment with n-butyrate in HeLa and Friend 

erythroleukemia cells also caused rapid accumulation of histone acetylation on 

histone H4 [98-100].  In both of these cell lines, when n-butyrate was removed 

from the cell culture medium and the cells are cultured in fresh medium, the 

acetylation levels returned to normal levels seen in control cells, proving that this 

acetylation increase due to n-butyrate was reversible  [98].  Another impressive 

finding was that n-butyrate could induce differentiation in Friend erythroleukemia 

cells, which normally have a block in differentiation.  Valproic acid differs from n-

butyrate in that VPA is a synthetic compound.  VPA was first used as an anti-

convulsant in epilepsy and bipolar disorder treatment but in 2001 was found to 

relieve HDAC-dependent repression and cause hyperacetylation, thus identifying 

it as an HDI [101].  n-butyrate and VPA both work by inhibiting the class I and 

class II HDACs and studies of these aliphatic acids have provided important 

information on HDAC function.  However, as mentioned, n-butyrate and VPA are 

active at millimolar concentrations due to their weak binding to HDAC binding 

pockets [102].  This requirement of high concentrations of drug makes the 

aliphatic acids the least effective class of HDIs resulting in the desire to find more 

potent HDIs. 

 

Hydroxamates  

 Approximately 10 years after the discovery of n-butyrate as a HDI, the 

anti-fungal compound, trichostatin A (TSA), was found to induce differentiation of 

Friend cells and could inhibit cell cycle progression in rat fibroblasts [103].  TSA 
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treatment was then shown to cause increased histone acetylation accumulation 

in a TSA-sensitive cell line and was determined to be a potent HDI [104].  TSA 

has activity in the nanomolar concentration range but has undesirable toxic side 

effects.  A synthetic hydroxamate compound was made in 1996 using the hybrid 

polar compound, hexamethylenebisacetamide (HMBA), as a model.  This new 

compound was called suberoylanilide hydroxamic acid (SAHA) and upon its 

development, was a potent inducer of differentiation of murine erythroleukemia 

(MEL) cells [105, 106].  It was not until two years later that SAHA was found to 

be a histone deacetylase inhibitor and cause increased acetylation levels of 

histones[106].  SAHA is also known as Vorinostat in the clinics, and inhibits both 

the class I and class II HDACs using micromolar concentrations.  As mentioned 

in the CTCL section of this introduction, SAHA has had great success in cancer 

treatment, specifically CTCL and was FDA approved in 2006 for treatment in 

CTCL. 

 

Cyclic Peptides 

The other HDI approved for treatment in CTCL, Depsipeptide (also known 

as Romidepsin or FK-228), belongs to the cyclic peptides class of HDIs.  

Depsipeptide is a naturally occurring compound that was isolated from the 

fermentation broth of Chromabacterium violaceum during a screen to identify 

compounds that could selectively reverse the phenotype in Ras transformed cells 

[95]. Depsipeptide was shown to be lipophilic and contain a noncystine disulfide 

linkage.  During circulation in the serum, Depsipeptide remains inactive until it 
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penetrates the membrane of a tumor cell and is converted to its active, reduced 

form (redFK) by intracellular antioxidants [95].  Depsipeptide works in the 

nanomolar concentration range leading to potent HDAC inhibition of class I 

HDACs and HDAC6.  It is thought that one of the sulfhydryl groups in the redFK 

form of Depsipeptide interacts with the zinc ions in the active site of the zinc 

dependent HDACs [95].  One downfall of Depsipeptide, as well as SAHA, is that 

since these HDIs inhibit multiple HDACs, they may be inhibiting targets that are 

not integral to CTCL survival and progression resulting in adverse toxicities in 

patients (see CTCL section).  Additionally, the roles of HDACs in tumorigenesis 

and the mechanisms by which HDAC inhibition is effective against cancer remain 

unclear. Therefore, selective inhibition of HDACs may decrease side effects by 

inhibiting only one or two HDACs at a time and allow for further elucidation of the 

roles of individual HDACs in cancer.  This led to the synthesis of selective HDIs 

known as the pimelic diphenylamides and N-(o-amino-phenyl) carboxamide. 

 

Pimelic diphenylamides and the N-(o-amino-phenyl) carboxamides 

 The benzamide family of HDIs (reviewed in [107, 108]) includes such 

drugs as MS-275 that cause anti-proliferative effects in both cell culture and 

xenografts nude mouse models of 7 different human tumor lines, including 

human leukemia, colorectal, lung, ovary, pancreatic, oral, and gastric cancer 

[109]  and is more isoform-specific in its HDAC inhibition (HDAC1/2 being the 

most inhibited).  However, even though this HDI was more selective, it lacked the 

potency of other HDIs.  Recently, a family of benzamide-based HDIs was 
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identified as possessing class I specific inhibition and less toxicity when 

compared to the hydroxamates [110-112].  These HDIs are known as the pimelic 

diphenylamides.  It is not known how these HDIs bind to HDACs or how they are 

inhibiting HDAC activity.  Compound 106 was one of the first pimelic 

diphenylamides and exhibited inhibition of HDACs 1, 2, and 3 through tight 

binding with inhibition of HDAC3 be the greatest [110].  Through kinetic studies, 

this class of HDIs was found to be slow on/ slow off inhibitors unlike the fast 

on/fast off hydroxamates.  This slow on/slow off inhibition results in prolonged 

increases in acetylation and HDAC inhibition.  A derivative of compound 106, 

RGFP136, was used to study Frataxin upregulation in Friedreich’s ataxia cells 

and long term memory formation by examining the role of HDAC3 specifically 

[96].   

Most recently, a new HDAC3 selective inhibitor has been identified and is 

also a derivative of the pimelic diphenylamide family.  It is an N-(o-amino-phenyl) 

carboxamide HDI known as RGFP966 and exhibits the greatest inhibition of 

HDAC3 with an IC50 of 0.08µM in in vitro substrate assays, and importantly, 

inhibition of other HDACs by RGFP966 was not seen at concentrations up to 

15μM [97].  This class of HDIs provides a new approach to studying the 

individual role of HDACs in cancer.  The focus of Chapter III will be the effects of 

this new HDI, RGFP966 in CTCL cells and elucidation of the mechanism of 

action of this inhibitor.  Chapter IV will then explore the effects of some of the 

other pimelic diphenylamides that possess different selectivities towards the 

class I HDACs. 
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Mechanisms of Cell Killing of HDIs 

 Although HDIs have been extensively studied and some have been FDA 

approved for treatment in cancer, it is unclear of the exact mechanism of action 

of these inhibitors.  SAHA and Depsipeptide, for example, can induce cell cycle 

arrest, apoptosis, and decreased proliferation in cancer cells [113-115] .  SAHA 

also causes increases in ROS production and may have anti-angiogenic 

properties as well [116, 117].  Studies with Depsipeptide revealed that nude mice 

xenografted with lymphoma cells had prolonged life when treated with 

Depsipeptide, suggesting decreased cancer burden in these mice [118].  A key 

beneficial feature of many of the HDIs is their ability to kill rapidly proliferating 

tumor cells but leave the non-malignant quiescent cells unharmed [113, 114, 

119-121].  Deletion of HDAC3, as well as HDAC1/2, leads to DNA damage and 

apoptosis is cycling cells but not in non-proliferating cells [46, 47, 122].  This 

suggests that mechanisms other than altered transcription may account for the 

anti-cancer activity of these HDIs, both selective and broad inhibitors.  In 

particular, the S-phase dependent cell killing suggests possible effects of HDAC 

inhibition on DNA replication. 

 

HDACs in Replication and Chromatin Condensation 

 Proper DNA replication and reorganization of chromatin is critical for 

normal development.  During each round of the cell cycle, DNA and histones 

need to be synthesized and packaged correctly into chromatin.  During 

replication, chromatin is remodeled ahead of the fork so that DNA replication 
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machinery can gain access to the DNA and then chromatin is reassembled 

behind the fork [2, 123].  The newly synthesized histones are acetylated at 

histone H4K5 and H4K12 and histone H3K56 and these marks may influence 

chromatin structure after incorporation or help in certain assembly steps [2].    

For proper chromatin maturation, these lysine residues need to be deacetylated 

to allow compaction of the chromatin.  Failure to compact newly produced 

chromatin may lead to defects in replication fork progression, DNA damage, or 

DNA replication.   

 HDACs are usually thought of exclusively as transcriptional repressors.  

However, as discussed above, HDACs are crucial for normal cell cycle 

progression and deletion of these HDACs can lead to disruption of cell 

proliferation, S phase associated DNA damage and DNA replication defects, thus 

providing evidence that HDACs are important in other functions.  Indeed, HDACs 

1 and 2 regulate deacetylation of histones deposited on newly synthesized DNA 

during S phase and are enriched at replication forks [47, 124, 125] through 

association with histone chaperones like RbAp48 and CAF1 [25, 33, 126, 127].  

Also, as discussed earlier HDAC3 targets the histone deposition marks H4K5ac 

and H4K12ac.  Loss of HDAC3 activity using siRNA or gene deletion showed a 

requirement for HDAC3 for proper DNA replication fork progression [48, 128]. 

However, these methods do not allow examination of the acute effects of HDAC 

inhibition on DNA replication. 
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Scope of dissertation 

 Given the fundamental roles of histone deacetylases (HDACs) in the 

regulation of DNA repair, replication, transcription and chromatin structure, it is 

understandable that therapies targeting HDACs are being studied as anti-cancer 

agents.  However, even though some HDIs have been FDA approved for 

treatment in cancer, it is unclear how exactly these HDIs work.  Also, many of the 

HDIs being tested in clinics are broad spectrum HDIs and inhibit multiple HDACs 

at one time.  This may lead to unnecessary side effects due to the inhibition of 

non-integral targets.  A new class of selective HDIs has been developed and is 

the focus of Chapter III of this dissertation.  Chapter III aims to determine the 

effects and the mechanism of action of a first in class HDAC3 selective inhibitor 

in CTCL cells.  Chapter IV is a discussion of two other HDIs that have different 

HDAC selectivities than the HDAC3 selective inhibitor and Chapter V is a 

summary and discussion of this work. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell culture 

 HH (CD30+ lymphoproliferative disorder) cells (ATCC) were cultured in RPMI 

supplemented with 10% heat inactivated fetal bovine serum (FBS), 50 U/ml 

penicillin, 50μg/ml streptomycin, and 2mM L-glutamine.  Hut78 (Sézary 

Syndrome) cells (ATCC) were cultured in Iscove’s Modified Dulbecco’s Medium 

(IMDM) supplemented with 20% heat inactivated FBS, 50 U/ml penicillin, 50μg/ml 

streptomycin, and 4mM L-glutamine.  Cells were maintained between 2x105 – 

1x106 cells/mL. 

 

Antibodies 

The following antibodies were purchased from Abcam: Histone H4 [EP10000Y] 

(acetyl K5) (ab51997), Histone H3 (acetyl K27) (ab4729), HDAC 1 (ab19845), 

HDAC 2 [Y461] (ab32117), HDAC 3 (ab16047) and Histone H2B (ab1790).  

Histone H3 [96C10] (3638S) and Histone H4 [L64C1] (2935S) were used as 

loading controls and purchased from Cell Signaling. Anti-acetyl histone H3 (or 

H3K9K14ac) (06-599) and Anti-phospho-Histone H2A.X (Ser 139) clone JBW301 

(05-636) were purchased from Millipore. Histone H3 (acetyl K56) (2134-1) was 

purchased from Epitomics, and anti-actin (A2066) was purchased from Sigma 

Aldrich.  PCNA [FL261] was purchased from Santa Cruz (SC7907). 
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Histone deacetylase inhibitors (HDIs) and CTCL therapeutic drugs 

  Depsipeptide (aka Romidepsin, FK228, Depsi) was kindly provided by Celgene.  

The HDIs RGFP233, RGFP136, and RGFP966 were synthesized and kindly 

given to us by Repligen Corporation.  These compounds are analogs of 

previously published compounds [96] but have different HDAC inhibition 

selectivity [96, 97, 110, 111]. In purified enzyme assays, RGFP966, 233, and 136 

had the following HDAC inhibition IC50 values for HDAC1, HDAC2, and HDAC3: 

RGFP966: >15, >15, 0.08µM; RGFP233: 0.034, 0.059, 3.33µM; and RGFP136: 

5.2, 3.0, 0.4µM. Bexarotene (SML0282), Methotrexate (M8407), and ATRA 

(R2625) were purchased from Sigma Aldrich. 

 

Protein preparation and western blot analysis 

For preparation of whole cell protein lysates, cell pellets were washed with PBS 

and then sonicated in radioimmunoprecipitation assay (RIPA) buffer containing 

protease inhibitors (Roche) and phosphatase inhibitors (Roche).  For preparation 

of liver lysates, livers were minced in RIPA buffer with protease inhibitors with a 

razor blade and then homogenized using a dounce homogenizer.  Samples were 

sonicated and then cleared by centrifugation. Then samples were diluted 1:2 in 

Laemmli’s sample buffer (Bio-Rad) and subjected to 13% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis.  Western blot analyses were 

performed using primary antibodies listed above and for histone modification or 

ɣH2ax westerns, fluorophore conjugated secondary antibodies and the Odyssey 

system (LiCor) were used.  For the iPOND experiment, a HRP secondary 
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antibody and Western Lightning Plus enhanced chemiluminescence substrate 

(PerkinElmer, NEL103001EA) was used. 

 For protein separation, soluble chromatin obtained from HeLa cells was 

fractionated using a Superose 6 10/300 GL (GE Healthcare) gel filtration column. 

Fractions (0.5ml) were collected, concentrated using trichloroacetic acid 

precipitation, and analyzed by western blotting using the antibodies indicated in 

Figure 15. Molecular weight standards were added to the sample as controls. 

Their elution fractions are indicated at top of the figure. 

 

Growth curves 

  Alamar blue was purchased from Invitrogen (DAL1100). Cells were counted and 

split into T25 (Corning) flasks at 2x105 cells/mL.  Cells were then treated with 

DMSO or HDIs once at hour 0. 100μl aliquots were taken in triplicate from each 

flask at 0hr, 24 hrs, 48 hrs, and 72 hrs after treatment, distributed into a flat 

bottom 96-well plate, and 10μl of alamar blue added to each well.  After a 4 hr 

incubation, fluorescence was measured using the Biotek Synergy MX Microplate 

Reader.  For the dual treatment curves, the same protocol was followed except 

ATRA was re-administered at 48hrs after the initial treatment.  

 

Annexin V staining 

 Annexin V analysis of HH and Hut78 cells was performed using annexin V-

fluorescein isothiocyanate (annexin V-FITC) apoptosis detection kit I (BD 

Pharmingen - 556547) per the manufacturer’s instructions.  Briefly, cells were 
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treated with DMSO, Depsi, or HDIs for 24 hrs, pelleted, washed with PBS, and 

counted.  Cells were then resuspended in annexin V binding buffer, labeled with 

annexin V-FITC and propidium iodide (PI), and then analyzed by flow cytometry 

using the 5-laser BD LSRII instrument in the Vanderbilt Flow Cytometry Core.  

Here propidium iodide (PI) is used as a vital dye. 

 

BrdU staining 

 Cell cycle status was analyzed using the FITC Mouse Anti-BrdU set (BD 

Pharmingen-556028).  Cells were treated with DMSO, Depsi, or HDIs for 24 hrs 

and then BrdU (20μM final concentration) was added to each flask one and a half 

hours before harvesting.  The cells were then pelleted, washed with PBS, and 

counted.  1x106 cells per sample were pelleted, resuspended in 200μl cold PBS 

and 5mls of cold 100% ethanol, covered with foil, and stored at 4˚C overnight.  

The next day cells were pelleted, resuspended in 1mL 2N HCl supplemented 

with 0.5mg/mL pepsin, and then incubated for exactly 30 mins at 37˚C.  Samples 

were then neutralized with 3mL 0.1M Sodium Tetraborate (pH 8.5) and pelleted 

for 7mins.  Then samples were washed 1x with 1mL of PBS + 0.5% BSA, 

pelleted, washed 1x with PBS + 0.5% BSA + 0.5% Tween 20, and pelleted again. 

Samples were then resuspended in FITC-Conjugated anti-BrdU and incubated 

for 45 mins at room temperature in the dark.  Samples were washed one more 

with PBS + 0.5% BSA + 0.5% Tween 20 and resuspended in 400μL of PBS.  

Propidium iodide and RNase A were added to each sample and then analyzed 
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by flow cytometry using the 5-laser BD LSRII instrument in the Vanderbilt Flow 

Cytometry Core.  

 

iPOND 

 Analysis of proteins associated with DNA replication forks was performed using 

the iPOND (isolated proteins on nascent DNA) method described previously 

[129]. Briefly, Hut78 cells were pulsed with EdU for 15 mins followed by either no 

thymidine chase or a 60 minute thymidine chase. The protein-DNA complexes 

were then crosslinked with 1% (wt/vol) formaldehyde, nascent DNA was 

conjugated to biotin using click chemistry, and then protein-DNA complexes were 

purified using Streptavidin beads. The eluted proteins were then analyzed using 

western blot analysis. A no click reaction sample (No Clk) that did not include 

biotin azide was used as a negative control. 0.1% input samples were included 

for positive controls of each protein analyzed. PCNA served as a positive control 

for a replication fork associated protein and H2B served as a loading control and 

positive control for a chromatin associated protein.  

 

DNA fiber labeling 

 DNA fiber labeling analysis was used to assess DNA replication fork progression 

[130] in Hut78 cells treated with DMSO, 10nM Depsipeptide or 10μM 966.  For 

experiments where DMSO or HDIs were added prior to labeling, DMSO or HDIs 

were added 5 mins or 4 hrs prior to the addition of IdU (green).  Following a 20 

min IdU pulse (20μM final concentration), cells were washed and drug re-
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administered along with 100μM CldU for 20 mins. Cells were then washed with 

equilibrated HBSS, resuspended in cold PBS at 1x106 cells/ml, and mixed with 

non-labeled cells for better spreading results (20μL labeled cells + 60μL non-

labeled cells). 2μL of cell suspension and 10μL of spreading buffer (0.5% SDS, 

200mM Tris-HCl ph 7.4, 50mM EDTA) was added to each slide, let sit for 6 mins 

at RT and then tilted to 15 degrees to allow the DNA to run slowly down the slide.  

5 slides were made for each sample.  Slides were then air dried for at least 

40mins, fixed in 3:1 methanol:acetic acid for 2 mins, air dried again for 20 mins, 

and then stored at 4˚C overnight.  

 The next day, slides were submerged in 2.5M HCl for 30mins, rinsed 3x in 

PBS and then incubated in 10% goat serum/0.1%Triton in PBS for 1 hr.  Then 

slides were incubated in the dark for 1 hr in rat monoclonal anti-CldU (Accurate 

Chemical OBT0030G) and mouse anti-IdU (Becton Dickinson 347580) diluted 

1/100 in 10% goat serum/0.1% Triton in PBS.  Slides were then rinsed 3x in PBS 

and incubated 30 min with secondary antibodies (Invitrogen Alexa Fluor 568 goat 

anti-rat-IgG A-11077 and Alexa Fluor 488 goat anti-mouse-IgG A-11029) in 10% 

goat serum/0.1% Triton in PBS in the dark.  Slides were then rinsed 3x in PBS, 

air dried in the dark, mounted with 110μL of Prolong Gold with no Dapi 

(Invitrogen P36930) using whole slide coverslips, let dry overnight at RT and then 

stored at 4˚C.  Samples were imaged at 1000x and 100 fibers were measured for 

each sample.  

 Fork velocity was determined by the total length of fibers (IdU plus CldU) 

divided by 40 min. The above listed protocol was followed for all experiments 
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except for changes in the labeling scheme as listed below: For experiments 

where DMSO or HDIs were added after labeling with IdU followed by CldU, cells 

were labeled with IdU for 20mins followed by 20 mins of CldU, washed, and then 

either immediately treated with DMSO or HDIs for 25 mins or incubated in fresh 

medium for 4hrs and then treated with DMSO or HDIs for 25 mins.  Fork Velocity 

was determined by the total length of fibers (IdU plus CldU) divided by 40 min 

pulse or by the length of either the IdU label or CldU label divided by 20 min 

pulse. 
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CHAPTER III 

 

INHIBITION OF HISTONE DEACETYLASE 3 CAUSES REPLICATION 

STRESS IN CUTANEOUS T CELL LYMPHOMA 

 

Background and Significance 

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of non-

Hodgkin’s lymphoma that is characterized by accumulation of malignant T cells in 

the skin [75-77].  The most common subtypes of CTCL are mycosis fungoides, 

Sézary Syndrome, and the CD30+ lymphoproliferative disorders, comprising 95% 

of CTCL [76-78, 131].  Histone deacetylase (HDAC) inhibitors have become an 

important treatment option for CTCL that progresses to the more aggressive 

stages of disease.  Histone deacetylases are likely to serve as valuable 

therapeutic targets as they contribute to genomic stability and cell cycle control 

through their fundamental roles in cell proliferation including the regulation of 

DNA repair, replication, transcription, and chromatin structure.  In fact, due to 

their success in the treatment of CTCL, HDACs are now being explored as 

therapeutic targets for multiple cancers [132-135].  

Two histone deacetylase inhibitors (HDIs), SAHA (Vorinostat) and 

Depsipeptide (Romidepsin), are FDA approved for the treatment of refractory 

CTCL [75, 77, 93, 94, 136].  Both of these compounds inhibit multiple HDACs 

with SAHA inhibiting class I and II HDACs while Depsipeptide inhibits the class I 

HDACs and HDAC6 [94, 136, 137].  However, since these HDIs inhibit multiple 



52 
 

HDACs, they may be inhibiting targets that are not integral to CTCL survival and 

progression, thereby causing unnecessary side effects.  Treatment with SAHA or 

Depsipeptide is less toxic than standard chemotherapy but can be associated 

with negative impacts on quality of life [77, 93, 137].  Adverse effects of SAHA 

and Depsipeptide include nausea, fatigue, gastrointestinal and cardiac toxicity, 

and hematologic impairment [77, 93, 137]. Additionally, the roles of HDACs in 

tumorigenesis and the mechanisms by which HDAC inhibition is effective against 

cancer remain unclear. Therefore, selective inhibition of HDACs may decrease 

side effects by inhibiting only one or two HDACs at a time and allow for further 

elucidation of the roles of individual HDACs in cancer. 

 An important target of these HDIs is histone deacetylase 3, or HDAC3.  

HDAC3 (a class I HDAC) is involved in the regulation of chromatin structure and 

gene expression, which controls DNA repair, metabolism, and even 

tumorigenesis [43, 46, 47, 138, 139].  While HDACs are often thought of 

exclusively as transcriptional repressors, mouse embryonic fibroblasts (MEFs) 

lacking HDAC3 displayed S phase dependent DNA damage accumulation, 

deregulation of transcription, and apoptosis [46]. Due to this role in DNA damage, 

selective HDAC3 inhibition could potentially target the rapidly proliferating tumor 

cells while not harming the surrounding quiescent, non-malignant cells [113-115, 

119-121].  

 HDACs are classified based on sequence conservation.  The Class I 

HDACs 1 and 2 share 82% identity while these HDACs share 53% and 52% 

identity, respectively, with HDAC3 [30-32].  The class I HDACs also contain a 



53 
 

highly conserved central catalytic domain [31, 32] that is 58% identical between 

HDAC1 and HDAC3. Given the high level of homology between the class I 

HDACs, it is understandable why a selective inhibitor would be difficult to identify.  

However, a new class of inhibitors, N-(o-aminophenyl) carboxamides, can show 

10-fold or higher selectivity for HDAC3, over HDACs 1 and 2 [[97] and Vincent 

Jacques, Repligen, unpublished data]. This family of inhibitors includes 

RGFP966 [96, 97, 110, 111], which has an IC50 of 0.08μM in in vitro substrate 

assays and inhibition of other HDACs by RGFP966 was not seen at 

concentrations up to 15μM [97]. Therefore, we set out to determine the effects of 

selective HDAC3 inhibition using RGFP966 on cancer cell growth.  

 In this chapter, CTCL cell lines were treated with a selective HDAC3 

inhibitor and it was found that these cells exhibited sensitivity to selective HDAC3 

inhibition as demonstrated by decreased cell growth and increased apoptosis.  

These cells also had increased DNA damage upon HDAC3 inhibition and did not 

progress normally through the cell cycle due to impaired S phase progression. 

Consistently, DNA fiber labeling assays demonstrated that inhibition of HDAC3 

caused a 50% reduction in DNA replication fork velocity.  Through isolation of 

proteins on nascent DNA (iPOND), we determined that HDAC3 is associated 

with chromatin and present at and around DNA replication forks.  Thus, HDAC3 

inhibition caused replication stress in CTCL cells, and selective inhibition of 

HDAC3 through novel inhibitors may be useful in the treatment of CTCL. 
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Results 

 

Selectivity of novel histone deacetylase inhibitors 

The development of selective class I HDAC inhibitors has been 

challenging due to the conservation of the deacetylase domains of HDACs1-3, 

yet recently some selectivity has been achieved [96, 97, 110, 112]. To further 

assess the action of these inhibitors, we sought a histone mark that separates 

the functions of HDAC1/2 from HDAC3.  Deletion of Hdac3 caused increases in 

the acetylation of H4K5, H4K8, H4K12, H4K16, H3K9K14, and H3K27 [47], 

which are also targeted by Hdac1/2 [125].  However, we noted that Hdac3 

deletion did not cause the accumulation of the modification recognized by the 

rabbit monoclonal antibody to H3K56ac (Figure 7A).  While this antibody can also 

cross react with H3K9ac [140], anti-H3K9ac signal did increase in Hdac3-/- cells, 

suggesting that under the conditions used here we did not detect H3K56ac 

(Figure 7A; note that all samples were run on the same gel, but we removed 

intervening lanes for side by side comparison of WT and Hdac3-/- samples).  In 

contrast, inhibitors of class I HDACs (SAHA, Trichostatin A and sodium butyrate 

(NaB)), caused a more dramatic accumulation of H3K56ac than nicotinamide, 

which impairs the Sirtuins (Figure 7B).  Therefore, we used siRNAs directed to 

Hdac1 and Hdac2 and found that co-suppression of the expression of both 

enzymes was necessary to cause H3K56ac to accumulate, suggesting that both  
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Figure 7. HDIs show selective inhibition of HDACs in CTCL cell lines.  Western blot 
analysis.  (A)Whole cell lysates from Wild-type (WT) and Hdac3-null livers. (B) Upper 
Panel: NIH 3T3 cells following treatment with various HDIs (indicated above each lane). 
Lower panel: NIH 3T3 cells treated with either Trichostatin A (TSA) (1μM), sodium 
butyrate (NaB) (5mM), or increasing concentrations of nicotinamide (mM). (C) Whole cell 
lysates prepared from cells that were transfected with either non-targeting siRNAs (NT) 
or siRNAs directed to the indicated Hdacs. (D & E) (D) HH or (E) Hut78 cell lines treated 
with DMSO, 10 nM Depsipeptide (Depsi), 10 μM 233, 10 μM 136, or 10 μM 966. Cells 
were treated for 24 hrs and then harvested for protein isolation. Samples were run on 
the same gel and probed on the same membrane. Intervening lanes (represented by a 
black bar) were removed for side by side comparison of DMSO and Depsipeptide. 
Histones H3 and H4 were used as loading controls. 
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of these enzymes can target this mark, but that Hdac3 fails to deacetylate this 

residue (Figure 7C). 

Given that H3K56ac separates the action of HDAC1/2 from HDAC3, we 

tested selective HDAC1/2 (RGFP233) and HDAC3 selective inhibitors (RGFP136 

and RGFP966) for specificity. RGFP233 (233) showed 100- and 50-fold 

selectivity respectively towards HDAC1 and HDAC2 over HDAC3, and RGFP136 

(136) and RGFP966 (966) were 10- and >100-fold respectively more selective for 

HDAC3 in in vitro deacetylase assays [Vincent Jacques, Repligen unpublished 

data]. Treatment of two CTCL cell lines, HH and Hut78, with the HDAC3-

selective inhibitors 966 and 136, for 24 hours prior to western blot analysis 

resulted in increased acetylation at H3K9/K14, H3K27, and H4K5, but not 

H3K56ac (even at 10μM, Figure 7D and E).  In contrast, Depsipeptide, an 

inhibitor of the class I HDACs (HDACs 1, 2, 3, and 8) [136, 137], caused the 

robust accumulation of all of the histone acetylation marks tested, whereas the 

HDAC1/2-selective inhibitor, 233, caused a less robust accumulation of these 

same marks. Using the Odyssey imaging system, we measured the fluorescence 

(integrated intensity units) of each band and found that 966 and 136 were 8-fold 

selective for HDAC3 inhibition by these criteria, even when used at relatively high 

levels (Figure 7D and E), confirming the in vitro data that 136 and 966 are 

selective for HDAC3 inhibition [Vincent Jacques, Repligen unpublished data].  

Importantly, 966 was determined to have no inhibition of other HDACs at 

concentrations up to 15 μM in in vitro assays [97], which is consistent with our 

finding of only modest increases in H3K56ac at 10 μM. 
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HH and Hut78 CTCL cell lines show sensitivity to novel, selective HDIs and 

additive effects with CTCL clinical drugs 

 To determine how treatment with selective HDIs affects CTCL cell lines, 

we first performed cell proliferation assays using alamar blue to measure cell 

growth and viability in the presence of different HDIs.  HH and Hut78 cells were 

treated at hour 0 with either DMSO, Depsipeptide, 233, or 966 and then analyzed 

at hours 0, 24, 48, and 72 for changes in cell proliferation as measured by 

changes in alamar blue-dependent fluorescence. Both cell lines were sensitive to 

treatment with 10 μM 233 or 966, as demonstrated by decreases in cell growth 

over time (Figure 8A).  However, Hut78 cells exhibited a greater sensitivity to 

these HDIs than HH cells.  Both cell lines were sensitive to Depsipeptide, while 

unaffected by the DMSO control.  Dose curves were performed on each cell line 

to determine the optimal dose for dual treatment with drugs that are used or have 

been used to treat CTCL (Figure 8B). Cells were treated with varying 

concentrations of 233, 136, or 966 at hour 0 and again analyzed using alamar 

blue cell viability assays. CTCL cells showed dramatic sensitivity to 233 at each 

concentration, with Hut78 cells again exhibiting heightened sensitivity when 

compared to HH cells (Figure 9A). Treatment of cells with 136 had only modest 

effects on cell growth when compared to 966 treatment (Figure 9B and Figure 

8B) in both cell lines.  Through discussion with Repligen, we discovered that the 

IC50 for 136 was 8 times less potent than 966.  Thus, we discontinued the 

analysis of 136 in subsequent experiments and focused on the inhibition of 

Hdac3 using 966.   
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Figure 8. CTCL cell lines are sensitive to pan and selective HDIs. (A) Growth curves of 
HDI treated HH cells (left) or Hut78 cells (right). Cells were treated once with DMSO, 10 
nM Depsipeptide (Depsi), 10 μM 233, or 10 μM 966 at hour 0. Untreated cells and 
DMSO treated cells were used as controls. Cell growth was assessed at 0, 24, 48, and 
72 hours after treatment. (B) Dose curves of 966 treated HH cells (left) and Hut78 cells 
(right). The experiment was performed in the same manner as (A) except that the cells 
treated were treated once with 2 μM, 5 μM, or 10 μM of 966 at hour 0. For both (A) and 
(B), representative curves are shown from experiments performed in triplicate that are 
consistent with other biological replicates. Statistical analysis was performed using a 
two-tail paired T-test and comparing the HDI treated cells to DMSO treated cells 
resulting in the following p values:  (A) HH cells (left), Depsi: p=0.0008, 233: p=0.004, 
and 966: p=0.006.  For the Hut78 cells (right), Depsi: p=0.002, 233: p=0.006, and 966: 
p=0.006. (B) HH cells (left), Depsi: p=0.0008, 966 2 μM: p=0.02, 966 5 μM: p=0.01, and 
966 10 μM: p=0.006.  For the Hut78 cells (right), Depsi: p=0.002, 966 2 μM: p=0.03, 966 
5 μM: p=0.01, and 966 10 μM: p=0.006. 
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Figure 9.  CTCL cell lines exhibit sensitivity to multiple concentrations of 233 and high 
dose 136. Dose curves of HH cells (left) or Hut78 cells (right) treated with 10 µM 233 (A) 
or 966 (B). Cells were treated once with DMSO, 10 nM Depsipeptide (Depsi), or different 
concentrations of either 233 or 136 at hour 0. Untreated cells and DMSO treated cells 
were used as controls. Cell growth was assessed at 0, 24, 48, and 72 hours after 
treatment using alamar blue. For both (A) and (B), representative curves are shown from 
experiments performed in triplicate that are consistent with other biological replicates.    
P values:  (A) HH cells (left), Depsi: p=0.0008, 233 2 μM: p=0.005, 233 5 μM: p=0.005, 
and 233 10 μM: p=0.004.  For the Hut78 cells (right), Depsi: p=0.002, 233 2 μM: p=0.01, 
233 5 μM: p=0.005, and 233 10 μM: p=0.006. (B) HH cells (left), Depsi: p=0.001, 136 1 
μM: p=0.1, 136 5 μM: p=0.1, and 136 10 μM: p=0.006.  For the Hut78 cells (right), 
Depsi: p=0.001, 136 1 μM: p=0.08, 136 5 μM: p=0.02, and 136 10 μM: p=0.005. 
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A number of therapies are currently used for the treatment of CTCL and given 

that single agent therapy is rarely beneficial, we tested Bexarotene (highly 

selective retinoid x receptor agonist), Methotrexate (inhibitor of dihydrofolate 

reductase), or ATRA (All Trans Retinoic Acid, a retinoic acid receptor agonist) 

[75, 88, 91, 141] for cooperative cell killing with 966. A dose of 2μM for 966 was 

selected for dual treatment experiments so that we could assess additive or 

synergistic effects when 966 was combined with these drugs. Dose curves for 

Bexarotene, Methotrexate, and ATRA were performed and concentrations near 

the IC50
 were chosen (Figure 10).  Both HH and Hut78 cells exhibited increased 

sensitivity to dual treatment of 966 plus Bexarotene (Figure 11A), while only 

Hut78 cells showed increased sensitivity to 966 plus Methotrexate or ATRA 

(Figure 11B and C).  

 

CTCL cell lines undergo apoptosis, have increased DNA damage, and 

exhibit cell cycle defects 

We next determined whether the decreased cell growth seen when HH 

and Hut78 cells were treated with selective HDIs (Figures 8 and 9) was due to 

increased apoptosis.  Flow cytometry analysis using Annexin V and propidium 

iodide (PI) was performed on HH and Hut78 cells that had been treated for 24 

hours with DMSO, 10 nM Depsipeptide, 10 μM 233, or 10 μM 966.  HH and 

Hut78 cells displayed significant increases in Annexin V levels following 

treatment with HDIs, with Hut78 cells exhibiting the highest Annexin V levels 

(Figure 12A and Figure 12B).  Therefore, these cells undergo apoptosis when  
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Figure 10. Dose curves for Bexarotene, Methotrexate, and ATRA reveal optimal 
concentrations for combination treatments. (A) Bexarotene (B) Methotrexate (C) ATRA 
treated HH cells or Hut78 cells.  Cells were treated at hour 0 with DMSO, 10 nM 
Depsipeptide, or varying concentrations of Bexarotene, Methotrexate, or ATRA.  
Untreated cells and DMSO treated cells were used as controls. (A) HH cells were 
treated with 10, 20, or 50 μM of Bexarotene. Hut78 cells were treated with 50, 75, or 100 
μM of Bexarotene. (B) DMSO and a solution containing Na2CO3 served as vehicle 
controls. (C) ATRA was re-dosed at 48 hr after treatment. For (A-C), representative 
curves are shown from experiments performed in triplicate that are consistent with other 
biological replicates. P values:  (A) HH cells (left), Depsi: p=0.0007, Bexarotene 10 μM: 
p=0.001, Bexarotene 20 μM: p=0.004, and Bexarotene 50 μM: p=0.001. For the Hut78 
cells (right), Depsi: p=0.002, Bexarotene 50 μM: p=0.8, Bexarotene 75 μM: p=0.1, and 
Bexarotene 100 μM: p=0.04. (B) HH cells (left), Depsi: p=0.001, Methotrexate 0.1 μM: 
p=0.007, Methotrexate 1 μM: p=0.01, Methotrexate 10 μM: p=0.01, and Methotrexate 
100 μM: p=0.006. For the Hut78 cells (right) Depsi: p=0.001, Methotrexate 0.1 μM: 
p=0.005, Methotrexate 1 μM: p=0.006, Methotrexate 10 μM: p=0.004, and Methotrexate 
100 μM: p=0.004. (C) HH cells (left), Depsi: p=0.001, ATRA 500 nM: p=0.008, ATRA 1 
μM: p=0.002, and ATRA 2 μM: p=0.003. For the Hut78 cells (right) Depsi: p=0.001, 
ATRA 500 nM: p=0.02, ATRA 1 μM: p=0.005, and ATRA 2 μM: p=0.006. 
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Figure 11. Dual treatment with RGFP966 and CTCL drugs has an additive effect on cell 
growth. HH cells or Hut78 cells were treated once at hour 0 with DMSO, 10 nM 
Depsipeptide, 2 μM 966, or a combination of 2 μM 966 and either Bexarotene, 
Methotrexate, or ATRA. (A) HH cells (left) or Hut78 cells (right) were treated with 20 μM 
or 75 μM Bexarotene alone or in combination with 966. (B) Treatment with 0.1 μM 
Methotrexate alone or in combination with 966. DMSO and 1 M Na2CO3 served as 
vehicle controls. (C) Treatment with 2 μM ATRA alone or in combination with 966. ATRA 
was re-dosed at 48 hours after treatment. For (A-C), representative curves shown 
performed in triplicate and consistent with other biological replicates. P values: (A) HH 
cells, Depsi: p=0.0008, 966: p=0.003, Bexarotene: p=0.003, and 966 + Bexarotene: 
p=0.002.  Hut78 cells, Depsi: p=0.001, 966: p=0.08, Bexarotene: p=0.01, and 966 + 
Bexarotene: p=0.009. (B) HH cells, Depsi: p=0.0008, 966: p=0.003, Methotrexate: 
p=0.003, and 966 + Methotrexate: p=0.003. Hut78 cells Depsi: p=0.001, 966: p=0.01, 
Methotrexate: p=0.01, and 966 + Methotrexate: p=0.004. (C) HH cells, Depsi: p=0.0008, 
966: p=0.003, ATRA: p=0.002, and 966 + ATRA: p=0.0007. Hut78 cells Depsi: p=0.001, 
966: p=0.01, ATRA: p=0.02, and 966 + ATRA: p=0.004. 
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treated with HDIs. In both cell lines, Depsipeptide treatment resulted in the 

greatest cell killing, followed by 233 and 966. This trend may reflect the fact that  

Depsipeptide inhibits all three class I HDACs, 233 inhibits two HDACs, and 966 

selectively inhibits a single HDAC.  

Deletion of Hdac3 caused increased DNA damage and cell cycle delays in 

an S phase dependent manner in fibroblasts [46].  To determine if the apoptosis 

occurring in Hut78 and HH cells when cells were treated with HDIs was 

associated with increased DNA damage, we treated cells for 8 hours with DMSO, 

Depsipeptide, 233 or 966 and performed western blot analysis using anti-ɣH2aX, 

which is localized to sites of DNA double-strand breaks [142]. Both cell lines 

showed approximately a 2.4-fold increase in the amount of ɣH2aX in samples 

treated with 966, indicative of an increase in DNA damage when HDAC3 was 

inhibited in CTCL cells (Figure 12C and Figure 12D). Treatment with 

Depsipeptide or 233 also caused increased ɣH2aX levels in both cell lines, with 

Depsipeptide being the most robust. When HH and Hut78 cells were treated with 

DMSO, Depsipeptide, 233, or 966 for 24 hours and pulsed with BrdU for 90 min 

before harvest, Hut78 cells treated with HDIs exhibited decreased BrdU 

incorporation, and also an increase in cells that were present in S phase but 

were not incorporating BrdU (Figure 13A-C and Figure 14A-C).  These S phase 

cells that did not incorporate BrdU represent cells that have not completed DNA 

replication and are arrested in the S phase, suggesting that HDI treatment 

caused replication stress in CTCL cell lines. 
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Figure 12. An HDAC3 selective inhibitor triggers apoptosis associated with increased 
DNA damage. (A) Hut78 and (B) HH cells were treated with DMSO, 10 nM 
Depsipeptide, 10 μM 233, or 10 μM 966 for 24 hr and apoptosis assessed by Annexin V 
staining and flow cytometry.  Cells were also labeled with propidium iodide to assess 
DNA content. Untreated (UT) and DMSO treated cells were used as controls. Shown is a 
representative graph from an experiment performed in duplicate that is consistent with 
other biological replicates. Statistical analysis for both was performed using a two-tail T-
test and resulting in the following p-values: (A) Depsi: p=0.0002, 233: p=0.003, and 966: 
p=0.0003. (B) Depsi: p=0.02, 233: p=0.01, and 966: p=0.06. (C &D) Western blot 
analysis of ɣH2aX levels in (C) Hut78 or (D) HH cells treated with DMSO, 10 nM Depsi, 
10 μM 233, or 10 μM 966 for 8 hrs. Untreated and DMSO treated cells were used as 
controls. Samples were run on the same gel and probed on the same membrane. 
Intervening lanes (represented by a black bar) were removed for side by side 
comparison of DMSO and Depsipeptide.   
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Figure 13.  An HDAC3 selective inhibitor triggers cell cycle defects.  (A) Cell cycle status 
was analyzed using BrdU incorporation and propidium iodide to assess DNA content by 
flow cytometry. Hut78 cells were treated with DMSO, 10 nM Depsipeptide, 10 μM 233, or 
10 μM 966 for 24 hr and pulsed for an hour and a half with BrdU prior to cell harvest and 
analysis. Shown are representative flow cytometry plots performed in duplicate that is 
consistent with other biological replicates. (B) Graphical representation of BrdU 
incorporation from the experiment described in (A). (C) Graphical representation of the 
percent of S phase cells that did not incorporate BrdU (shown by box in (A)). Statistical 
analysis was performed using a two-tail T-test resulting in the following p-values: (B) 
Depsi: p=0.003, 233: p=0.01, and 966: p=0.08. (C) Depsi: p=0.003, 233: p=0.003, and 
966: p=0.004. 
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Figure 14.  HDIs increased cell cycle defects in HH cells. (A) Cell cycle status was 
analyzed using BrdU/PI and flow cytometry. HH cells were treated with DMSO, 10nM 
Depsipeptide, 10 μM 233, or 10 μM 966 for 24 hr and pulsed for an hour and a half with 
BrdU prior to cell harvest and analysis. Shown are representative flow cytometry plots 
from an experiment performed in duplicate that is consistent with other biological 
replicates. (B) Graphical representation of BrdU incorporation from the experiment 
described in (A). (C) Graphical representation of the percent of S phase cells that did not 
incorporate BrdU (shown by box in panel (A)). Statistical analysis was performed using a 
two-tail T-test and comparing the HDI treated cells to the DMSO treated cells resulting in 
the following p-values: (B) Depsi: p=0.002, 233: p=0.05, and 966: p=0.3. (C) Depsi: 
p=0.03, 233: p=0.07, and 966: p=0.8. 
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Inhibition of Hdac3 leads to DNA replication defects 

HDACs 1 and 2 regulate deacetylation of histones deposited on newly 

synthesized DNA during S phase and are enriched at replication forks [47, 124, 

125] through association with histone chaperones like RbAp48 and CAF1 [25, 

33, 126, 127].  Like HDAC1 and 2, HDAC3 also targets histone deposition marks 

([47] and Figure 7), and yeast two-hybrid studies show that HDAC3 can also bind 

to RbAp48 [143].  Therefore, we tested whether HDAC3 could associate with 

RbAp48 in mammalian cells.  Immunoprecipitation analysis of endogenous 

HDAC3 and RbAp48 from HeLa cells detected an association, suggesting that 

HDAC3 could be bound to histone chaperones on chromatin (Figure 15A).  To 

extend this analysis, we used gel filtration to determine the sizes of native 

HDAC3-containing complexes.  HDAC3 co-eluted with a portion of the RbAp48, 

but not PCNA, which marks DNA replication complexes (Figure 15B). 

The gel filtration analysis suggested that HDAC3 might be associated with 

histone deposition machinery, yet not directly bound to the DNA replication 

machinery. Therefore, isolation of proteins on nascent DNA (iPOND) was used to 

further probe HDAC3 localization to DNA replication forks.  A similar analysis in 

HEK293T cells suggested that, not only were HDAC1 and HDAC2 present at 

DNA replication forks, but HDAC3 was also detected [124].  To test whether 

HDAC3 was also present at replication forks in CTCL cells, Hut78 cells were 

pulsed for 15 minutes with EdU (5-Ethynyl-2'-deoxyuridine) only or pulsed with 

EdU for 15 minutes followed by a 60 minute thymidine chase.  After the labeling, 

cells were cross-linked, and the nascent DNA with EdU incorporated was  
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Figure 15. Hdac3 co-purifies with the histone chaperone, RbAp48, in mammalian cells. 
(A) Immunoprecipitation analysis of endogenous HDAC3 and RbAp48 from HeLa cells. 
Two different HDAC3 antibodies were used and labeled (A) or (B) and rabbit IgG was 
included as a negative control. (B) Gel Filtration analysis of HDAC3 containing protein 
complexes.  Nuclear lysates were separated using a Superose 6 gel filtration column 
and the elution profile of the indicated proteins determined by western blot analysis.  The 
elution of size markers is shown at the top of the blots. 
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conjugated to biotin using click chemistry.  The newly synthesized DNA and the 

DNA-protein complexes were then purified using streptavidin beads.  Proteins 

that move with the replication fork such as HDAC1 and PCNA [124, 129] were 

enriched immediately after EdU labeling (lanes labeled “0”, Figure 16) and then 

decreased with the thymidine chase.  By contrast, western blot analysis showed 

that HDAC3 was bound to chromatin at and around replication forks, but like 

H2B, its levels did not significantly drop after the 60 minute chase, suggesting 

that it did not travel with replication forks (Figure 16).  

Although HDAC3 did not appear to move with replication forks using 

iPOND, loss of HDAC3 activity using siRNA or gene deletion showed a 

requirement for this deacetylase for optimal DNA replication fork velocity 

[[128],Summers,unpublished data].  A major advantage of small molecules is that 

they allow the analysis of HDAC function in short timeframes that cannot be 

replicated by genetic methods. We started by assessing the minimal time 

required to achieve HDAC3 inhibition using 966. Hut78 cells were treated with 

DMSO, Depsipeptide, or 966 for 30 min, 1 hr, 2 hr, and 4 hr and western blot 

analysis for H4K5ac was used as a measure of HDAC3 inhibition (Figure 17). In 

purified enzyme assays, 966 is a slow on/slow off inhibitor when used at 

nanomolar concentrations, where full potency was observed within approximately 

2 hr. Treatment with 10 μM 966 for 30 min did not significantly increase H4K5 

acetylation levels, but by 1 hr a noticeable increase in H4K5 acetylation was 

apparent, and by 4 hr a dramatic accumulation of H4K5 acetylation was 

observed (Figure 17) suggesting full inhibition within 4 hr. This suggests that  
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Figure 16. iPOND analysis reveals HDAC3 association with replication forks in Hut78 
CTCL cells. Hut78 cells were pulsed for 15 minutes with EdU followed by either no 
thymidine chase or a 60 minute thymidine chase. The protein-DNA complexes were then 
cross-linked, nascent DNA was conjugated to biotin using click chemistry, and then 
protein-DNA complexes were purified using Streptavidin beads. The eluted proteins 
were then analyzed using western blot analysis. A no click reaction sample (No Clk) that 
did not include biotin azide was used as a negative control. 0.1% input samples were 
included for positive controls of each protein analyzed. PCNA served as a positive 
control for a replication fork bound protein and H2B served as a loading control and 
positive control for a chromatin bound protein.  

 

Figure 17. HDAC3-regulated histone acetylation is very dynamic but no global effects on 
histone acetylation seen within 30 min of 966 treatment.  Western blot analysis of Hut78 
cells treated with DMSO or 10 nM Depsipeptide (Depsi) for 4 hrs, or 10 μM 966 for 30 
min, 1 hr, 2 hr, and 4 hr. 
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HDAC3-regulated histone acetylation is very dynamic with changes in histone 

acetylation detectable by western blot occurring within hours of treatment, but 

within 30 min of Hdac3 inhibition by 966 there were not global effects on histone 

acetylation. 

 Next, DNA fiber labeling analysis was used to visualize individual DNA 

fibers by sequential labeling of cells with IdU and CldU followed by 

immunofluorescence to detect the incorporation of these analogs [130] in strands 

of DNA to measure replication fork velocity. Treatment with Depsi or 966 for 4 hrs 

prior to labeling with IdU followed by CldU resulted in a shortening of the average 

length of fiber tracks (examples of fibers are shown on the right), which 

corresponds to slower replication fork progression than the DMSO control (Figure 

18).  To ensure that changes in chromatin structure did not affect fiber track 

length after replication fork progression, which would interfere with accurate 

measurement of DNA fibers, Hut78 cells were labeled with IdU followed by CldU, 

washed and then were either immediately treated with DMSO or HDIs for 25 min 

or incubated in fresh medium for 4hr and then treated with DMSO or HDIs for 25 

min.  Neither of these experiments showed significant changes in fiber track 

length or fork velocity (Figure 19), confirming that the effects on replication seen 

with inhibition of HDAC3 are not due to shortening of fiber track lengths due to 

global changes in chromatin structure.   

 Finally, to determine if this replication defect was due to a localized effect, 

we treated Hut78 cells for 5 min with either Depsi or 966 before labeling with IdU 

followed by CldU.  Remarkably, even treatment within this short timeframe  
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Figure 18. HDAC3 selective inhibitor causes defects in DNA replication with treatment 
4hr prior to labeling with IdU and CldU.  DNA fiber labeling analysis was used to assess 
DNA replication fork progression in Hut78 cells treated with DMSO, 10 nM Depsipeptide 
(left) or 10 μM 966 (right) for 4 hr prior to labeling with 20 mins of IdU (green) followed by 
20 min of CldU (red). Graphical representation of fork velocity as determined by total 
length of fibers (IdU plus CldU) divided by 40 min pulse is shown. Representative fibers 
are shown. 100 fibers were measured for each sample. Statistical analysis was 
performed using Mann-Whitney test and standard deviations were calculated. HDI 
treated cells were compared to DMSO treated cells resulting in the following p-values: 
Depsi: p<0.0001; 966: p<0.0001. The average velocities for Depsi and 966 were greater 
than 3 standard deviations of the DMSO average velocity.  
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Figure 19. HDAC3 selective inhibitor does not affect replication after replication fork 
progression.  DNA fiber labeling analysis of Hut78 cells treated with DMSO, 10 nM 
Depsipeptide (left) or 10 μM 966 (right) (A) immediately after or (B) 4 hrs after labeling 
cells with IdU followed by CldU.  Graphical representation of fork velocity for either the 
IdU label or CldU label is shown. Fork velocity was determined by the length of either the 
IdU label or CldU label divided by 20 min pulse for (A) or the total length of fibers divided 
by 40 min pulse for (B). Representative fibers are shown. 100 fibers were measured for 
each sample. Statistical analysis was performed using Mann-Whitney test and standard 
deviations (SD) were calculated.  P-values: (A) Depsi IdU (green): p=0.1, Depsi CldU 
(red): p=0.1; 966 IdU (green): p=0.0011; 966 CldU (red): p=0.01. Average velocities for 
IdU and CldU in Depsi treated cells were within 1 and 2 SD respectively of the DMSO 
average velocity. Average velocities for IdU and CldU in 966 treated cells were within 2 
SD of the DMSO average velocity.  (B) Depsi: p=0.5 and 966: p=0.4. The average 
velocities for both Depsi and 966 were within 1 SD of the average velocity for DMSO. 
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caused a shortening of DNA fiber track lengths and slower fork velocity (Figure 

20).  These data suggest that treatment with a HDAC3 selective inhibitor has 

localized effects on replication at or nearby the replication fork since global 

changes in H4K5ac were not seen within 30 min of treatment with 966 (Figure 

17). 

 

Discussion 

 Cutaneous T cell lymphoma (CTCL) diagnosed during early stage disease 

generally has an indolent course and good outcome [75-78, 131].  However, late 

stage, refractory, or aggressive CTCL (such as Sézary Syndrome) has a 

shortened survival expectancy [75-78, 131]. Two histone deacetylase inhibitors, 

SAHA and Depsipeptide, have been FDA approved for the treatment of late 

stage or refractory CTCL [75, 77, 93, 94, 136].  However, since these HDIs target 

multiple HDACs, it is unknown which of these HDACs must truly be inhibited to 

achieve the anti-tumor effects observed upon HDI treatment.  Furthermore, it is 

likely that the unnecessary inhibition of other HDACs contributes to the side 

effects seen with HDI treatment (such as nausea, fatigue, and GI, cardiac and 

hematologic toxicities). By using selective HDIs, the efficacy of individual HDAC 

targeting can be assessed and side effects may be lessened, resulting in 

improved quality of life for patients undergoing treatment.  Here, we show that 

the inhibition of HDAC1/2 or HDAC3 through the use of novel, selective 

inhibitors, caused decreased cell growth of the CTCL cell lines, HH and Hut78 by  
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Figure 20. HDAC3 selective inhibitor rapidly causes defects in DNA replication.  DNA 
fiber labeling analysis of Hut78 cells treated with DMSO, 10 nM Depsipeptide (left) or 10 
μM 966 (right) for 5 mins prior to labeling with 20 mins of IdU (green) followed by 20 min 
of CldU (red). Graphical representation of fork velocity as determined by total length of 
fibers (IdU plus CldU) divided by 40 min pulse is shown.  Representative fibers are 
shown. 100 fibers were measured for each sample. Statistical analysis was performed 
using Mann-Whitney test and standard deviations were calculated. P-values: Depsi: 
p<0.0001; 966: p<0.0001. The average velocities for Depsi and 966 were greater than 3 
standard deviations of the DMSO average velocity. 
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triggering apoptosis (Figure 8).  While it appears that inhibition of all three of 

these HDACs was more efficacious (e.g., Depsipeptide worked very well), more 

potent selective inhibitors may yield better results, or the lower toxicity may allow 

more intensive or longer-term treatments.  Ultimately, having HDAC1/2 versus 

HDAC3 selective inhibitors will provide flexibility in defining the best schedules 

and combinations of these compounds to maximize the therapeutic benefit in the 

treatment of CTCL.   

 Mechanistically, the apoptosis observed was associated with the 

accumulation of DNA damage in HDI treated cells (Figure 12).  BrdU-labeling 

studies showed decreased BrdU incorporation with pan HDAC inhibitors, 

inhibitors of HDAC1/2 and the HDAC3 selective inhibitors (Figure 13).  These 

studies also revealed a significant increase in cells that did not incorporate BrdU, 

but showed increased DNA content, consistent with an S-phase arrest following 

HDI treatment, suggesting that the DNA damage was due to defects in DNA 

replication.  This prompted an analysis of DNA replication fork velocity using 

DNA fiber labeling assays, which showed that Depsipeptide treatment and 

treatment with the Hdac3 selective inhibitor resulted in inefficient or slowed DNA 

replication (Figure 18-20).   By examining DNA replication shortly after adding the 

HDIs, we were able to show that this is a very early event, occurring within the 

first hour of HDI treatment.  These data suggest that HDI therapy first affects 

DNA replication (Figure 20), which would provide a therapeutic window by 

targeting the cycling cancer cells, and leaving normal, non-cycling cells intact.   
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 The rapid effects of 966 on DNA replication suggest an important role for 

HDAC3 in DNA replication. In addition, by inhibiting HDAC3 at various times 

before DNA fiber labeling, we were able to narrow the possible mechanisms by 

which this might occur to localized effects at or around the DNA replication fork, 

as it took greater than 30 min before global changes in histone acetylation were 

observed (Figure 17).  However, these studies cannot discriminate whether this 

is due to a local chromatin effect or whether HDAC3 directly targets the DNA 

replication machinery.  For instance, chromatin in and around the DNA 

replication fork must be in an open configuration, which is more accessible to 

HDAC3 than nucleosomes in mature chromatin.  Because the histones in newly 

placed nucleosomes are acetylated prior to deposition, inhibition of HDAC3 could 

cause the accumulation of acetylation of these histones within minutes of HDI 

treatment, whereas global accumulation of H4K5ac takes an hour or more 

(Figure 17).  Alternatively, components of the DNA replication machinery may be 

regulated by acetylation and deacetylation and HDAC3 could play a regulatory 

role.  One argument against this is that HDAC3 did not co-elute with PCNA in 

size exclusion chromatography (Figure 15) or move with the DNA replication fork 

in iPOND purifications (Figure 16).  Thus, at this point in time, the evidence best 

supports a localized effect on chromatin at the replication fork. 

 Although endogenous HDAC3 can associate with histone chaperones 

such as RbAp48 (Figure 15), its role in deacetylation of newly formed 

nucleosomes is largely based on genetic, siRNA and chemical inhibition studies 

([46, 47] and Figure 7). These studies indicate that HDAC3 targets the same 
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histone deposition marks that HDAC1/2 deacetylate and that HDAC3 is required 

at replication forks (Figure 16-20).  Historically, HDAC1/2 were biochemically 

linked to histone deposition [47, 125].  These enzymes form nearly stoichiometric 

complexes with the histone deposition machinery and are thought to be the major 

enzymes responsible for the deacetylation of new nucleosomes.  Moreover, 

siRNA or genetic impairment of HDAC1 is compensated by higher expression of 

HDAC2 (e.g., Figure 7C), whereas deletion of Hdac3 is not compensated for by 

higher expression of other class 1 Hdacs.  Thus, we conclude that HDAC3 plays 

a distinct role from HDAC1 and HDAC2 during chromatin maturation (Figure 16) 

and that targeting HDAC3 with small molecule inhibitors will provide additional 

therapeutic impact in the treatment of CTCL and other cancers.  

 Currently, SAHA and Depsipeptide are approved as single agents to treat 

refractory CTCL [75, 77, 93, 94, 136]. However, combinatorial treatment is 

almost always more beneficial than single agent therapy, so we tested HDAC3 

inhibitors with other drugs currently used for CTCL.  The combination of 966 and 

either bexarotene, methotrexate, or ATRA led to further reductions in cell growth 

than either agent alone in Hut78 cells (Figure 11), but these effects were 

additive, not synergistic.  Nevertheless, these combinations did not negate the 

responses of these drugs, suggesting that these compounds could be used 

together in the clinic. Our studies show that individual HDACs can be targeted 

and that these inhibitors may be useful in the treatment of CTCL by rapidly 

targeting DNA replication. While the first effects of these compounds may be at 

replication forks (which provides a therapeutic window), within only 4 hr these 
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drugs also affected global histone acetylation, which indicates that HDAC3 plays 

a dynamic role in the regulation of histone acetylation and chromatin structure. 

Thus, these compounds may target multiple fundamental events in the cell cycle 

to trigger apoptosis in cycling tumor cells that would be beneficial in combination 

with current therapies for CTCL.    
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CHAPTER IV 

 

SELECTIVE INHIBITION OF HISTONE DEACETYLASES 1 AND 2 OR 

HISTONE DEACETYLASES 1-3 CAUSES DEFECTS IN REPLICATION AND 

CELL DEATH 

 

Background and Significance 

 For normal development, a cell must efficiently replicate its DNA in each 

cell cycle.  This involves the disruption and reassembly of chromatin during each 

round of DNA replication.  One important step of reassembly is the deacetylation 

of histones to allow for tight compaction of chromatin and reestablishment of 

proper chromatin structure [2, 3, 5, 123].  Inhibition of this deacetylation in yeast 

and mammalian cells has led to severe defects in chromatin stability and 

disruption of the cell cycle [3, 144].  However, it is unclear which individual 

HDACs are involved in DNA replication and chromatin condensation.   HDACs 

play important roles in the modulation of chromatin accessibility during vital cell 

processes such as transcription, DNA replication and repair.  However, the 

individual roles of each of the HDACs in these processes remain unclear.  

Selective inhibitors allow for elucidation of the roles of one or two HDACs at a 

time and could potentially lead to customized treatments by targeting only the 

necessary HDACs during treatment instead of treating with broad inhibitors that 

target multiple HDACs.  This customized treatment would potentially reduce 

unnecessary side effects and provide for multiple avenues to avoid the 



81 
 

development of drug resistance.  In Chapter III, inhibition of HDAC3 resulted in 

decreased cell growth associated with apoptosis, cell cycle arrest, and DNA 

replication defects.  DNA replication fork velocity was significantly slowed when 

HDAC3 was inhibited in CTCL cells, even following short treatment times, 

suggesting that HDAC3 is essential for proper DNA replication.  However, the 

role of HDACs 1 and 2 in replication remains to be answered.  HDACs 1 and 2 

are known to associate with certain replication or chromatin condensation factors 

[25, 33, 126, 127, 145], but it is unclear what happens to DNA replication when 

these HDACs are inhibited by HDIs.  HDACs 1 and 2 are enriched at replication 

forks [124]  through association with histone chaperones like RbAp48 and CAF1 

[25, 33, 126, 127].  HDAC 1 also associates with PCNA (proliferating cell nuclear 

antigen), a loading platform for multiple proteins during DNA replication and 

repair, and through this association with PCNA, HDAC1 may play a role in the 

deacetylation required to compact chromatin after DNA replication [145].  

Treatment with TSA (trichostatin A) inhibited the deacetylase activity of 

PCNA/HDAC1 [145].  However, TSA inhibits multiple class I HDACs and does 

not exclude the possibility that other class I HDACs also bind PCNA and play a 

role in this deacetylation.   

 Here, two other inhibitors are tested for their function during DNA 

replication.  The inhibitor RGFP233, an inhibitor of HDACs 1 and 2, was 

introduced in Chapter III and also showed decreased cell growth associated with 

apoptosis and cell cycle arrest.  However, at that time its effect in DNA replication 

was not assessed.  The inhibitor RGFP963 is expected to inhibit HDACs 1, 2, 
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and 3 and is introduced here.  In this chapter, RGFP963 will be tested in several 

assays to determine its effects on cell growth and during DNA replication.   

 

Results 

 

Selective inhibition of HDACs caused increases in acetylation 

 HDACs 1, 2, and 3 share a high degree of homology in their conserved 

deacetylase domains with HDACs 1 and 3 being 58% identical.  This can pose 

challenges in designing selective inhibitors, however, progress has been made 

as demonstrated in Chapter III and [96, 97, 110, 111].  To begin examination of 

the new inhibitor RGFP963 (also known here as 963), the selectivity of this 

inhibitor needed to be confirmed.  Changes in specific histone modifications can 

be used to determine the selectivity of HDIs (as established in Chapter III).  

Deletion or inhibition of HDAC3 caused increases in acetylation of residues such 

as H4K5, H4K16, H4K12, H3K27 and modest increases in H3K9K14 ([47] and 

Figure 7).  HDACs 1 and 2 deacetylate these residues but in addition, 

deacetylate H3K56.  This allows the use of antibodies against H3K56 to be used 

to distinguish an HDAC1 and 2 selective inhibitor from an HDAC3 selective 

inhibitor.  To determine the selectivity of 963, HH and Hut78 CTCL cells were 

treated with DMSO, 10 nM Depsipeptide, 10 μM 963, 10 μM 233, or 10 μM 966 

for 24 hrs.  Depsipeptide, 233 and 966 were all included to serve as positive 

controls and full analysis of 233 and 966 can be seen in Chapter III.  Western 

blot analysis was performed to examine changes in histone acetylation with 
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Figure 21. 963 shows selective inhibition of HDACs 1-3 in CTCL cell lines. (A & B) 
Western blot analysis of (A) HH or (B) Hut78 cell lines treated with DMSO, 10 nM 
Depsipeptide (Depsi), 10 µM 963, 10 μM 233, or 10 μM 966. Cells were treated for 24 
hrs and then harvested for protein isolation. Histones H3 and H4 were used as loading 
controls. 
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treatment of the above listed HDIs (Figure 21).  Treatment with 963 caused 

robust accumulations in acetylation of each histone mark tested including the 

HDAC1/2 specific histone mark, H3K56ac.  Also, if the levels of H4K5ac are 

compared between 963 treated or 233 or 966 treated samples, there appears to 

be an additive amount of H4K5ac in the 963 treated samples, suggesting that 

963 inhibits all 3 HDACs.  However, the levels of H4K5ac were not quite as 

robust in 963 samples as in Depsipeptide. Correspondence with Repligen 

Corporation revealed that indeed 963 inhibits HDACs 1, 2, and 3 in in vitro 

substrate assays with comparable IC50 values, confirming that 963 inhibits 

HDACs 1, 2, and 3 with similar potencies.    

 

HDI 963 caused dramatic decreased cell growth in CTCL cells 

 Next, the effect of 963 treatment on cell growth was determined.  Due to 

the sensitivity seen in the clinic of CTCL to HDIs, HH and Hut78 cells were again 

used in these experiments.  Cell proliferation assays using alamar blue to 

measure cell growth and viability in the presence of 963 were performed.  HH 

and Hut78 cells were treated at hour 0 with either DMSO, 10 nM Depsipeptide, or 

varying concentrations of 963 and then analyzed at hours 0, 24, 48, and 72 for 

changes in cell proliferation as measured by changes in alamar blue-dependent 

fluorescence.  Both cell lines were extremely sensitive to all concentrations of 

963 as demonstrated by a dramatic decrease in cell growth over a 72 hour time 

period (Figure 22).  Both cell lines were sensitive to Depsipeptide, while 

unaffected by the DMSO control.  2 µM 963 in comparison to treatment with 10  
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Figure 22. CTCL cell lines are sensitive to 963 treatment. Growth curves of HDI treated 
HH cells (left) or Hut78 cells (right). Cells were treated once with DMSO, 10 nM 
Depsipeptide (Depsi), 2 μM 963, 5 µM 963, or 10 μM 963 at hour 0. Untreated cells and 
DMSO treated cells were used as controls. Cell growth was assessed at 0, 24, 48, and 
72 hours after treatment.  Representative curves are shown from experiments performed 
in triplicate that are consistent with other biological replicates.   
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µM 233 or 966 (Figure 8 Chapter 3), was more potent, supporting that 963 

inhibits HDACs 1, 2, and 3 versus either HDAC1/2 or HDAC3 alone.   

 

Treatment with 963 caused increased apoptosis levels and cell cycle 

defects in CTCL cell lines 

 Next, to determine whether the decreased cell growth seen when HH and 

Hut78 cells were treated with selective and pan HDIs (Figure 22) was due to 

increased apoptosis, flow cytometry analysis using Annexin V versus propidium 

iodide (PI) was performed.  HH and Hut78 cells were treated for 24 hrs with 

DMSO, 10 nM Depsipeptide, 10 µM 233, 10µM 966, or 10µM 963.  HH and 

Hut78 cells both displayed increases in Annexin V levels following treatment with 

each HDI but not with DMSO (Figure 23).  Hut78 cells displayed the greatest 

increase in Annexin V levels.  These data confirm that CTCL cells underwent 

apoptosis when treated with these HDIs.  Accordingly, there was a correlation 

between apoptosis levels and the number of HDACs inhibited.  Depsipeptide had 

the highest apoptosis levels followed by 963, 233, and then 966 correlating very 

well with the inhibition of different numbers of HDACs at a time (Depsi inhibits the 

greatest number of HDACs and 966 inhibits a single HDAC).   

 In Chapter III, inhibition of HDAC3 caused cell cycle defects.  To examine 

whether 963 causes these same defects, flow cytometry analysis of BrdU levels 

and cell cycle was performed.  HH and Hut78 cells were treated with DMSO, 10 

nM Depsipeptide, 10 µM 963, 10 µM 233, or 10 µM 966 for 24 hours and then 

pulsed with BrdU for 90 mins before harvest.  Depsipeptide, 233, and 966 were  



87 
 

Figure 23.  Selective inhibition of HDACs 1-3 triggers increased apoptosis in CTCL cells. 
(A) Hut78 and (B) HH cells were treated with DMSO, 10 nM Depsipeptide, 10 µM 963, 
10 μM 233, or 10 μM 966 for 24 hr and apoptosis assessed by Annexin V staining and 
flow cytometry.  Cells were also labeled with propidium iodide to assess DNA content. 
Untreated (UT) and DMSO treated cells were used as controls. Shown is a 
representative graph from an experiment performed in duplicate that is consistent with 
other biological replicates.  



88 
 

used as positive controls and comparisons for BrdU levels with inhibitors that 

target different numbers of HDACs while DMSO served as the negative control.  

Hut78 and HH cells both exhibited decreased BrdU incorporation upon treatment 

with 963 and also an increase in cells that were present in S phase but not 

actively incorporating BrdU (Figures 24 and 25).  These S phase cells represent 

cells that are arrested in S phase, indicative of incomplete DNA replication.  

Again, a trend correlating to the number of HDACs inhibited was observed when 

comparing each inhibitor treatment.   

 

Hut78 cells exhibited DNA damage and DNA replication defects with an 

HDAC1/2 selective inhibitor and an HDAC 1, 2, and 3 inhibitor 

 Deletion or inhibition of HDAC3 caused increased DNA damage in 

fibroblasts and CTCL cells (Figure 12 Chapter III and [46, 47]).  To determine if 

963 treatment caused a similar accumulation of DNA damage, Hut78 cells were 

treated with DMSO, 10 nM Depsipeptide, or 10 µM 963 for 8 hours and then 

western blot analysis using anti-ɣH2aX was performed.  ɣH2aX is localized to 

sites of DNA double strand breaks and allows for the level of DNA damage to be 

assessed [142, 146].  Treatment with 963 caused increased ɣH2aX levels 

approximately 4.7 fold more than untreated or DMSO treated cells.  This is 

indicative of an increase in DNA damage when all 3 HDACs are inhibited.  This 

correlates nicely with the levels of DNA damage seen in Chapter III (Figure 12) 

which showed that both 233 and 966 treatment led to an approximate 2.4 fold 

increase in ɣH2aX  
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Figure 24.  An HDACs 1-3 selective inhibitor triggers increased cell cycle defects in 
Hut78 cells.  (A) Cell cycle status was analyzed using BrdU incorporation and propidium 
iodide to assess DNA content by flow cytometry. Hut78 cells were treated with DMSO, 
10 nM Depsipeptide, 10 µM 963, 10 μM 233, or 10 μM 966 for 24 hr and pulsed for an 
hour and a half with BrdU prior to cell harvest and analysis. Shown are representative 
flow cytometry plots performed in duplicate that is consistent with other biological 
replicates. (B) Graphical representation of BrdU incorporation from the experiment 
described in (A). (C) Graphical representation of the percent of S phase cells that did not 
incorporate BrdU (shown by box in (A)).  
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Figure 25.  HH cells have increased cell cycle defects when treated with an HDACs 1-3 
selective inhibitor.  (A) Cell cycle status was analyzed using BrdU incorporation and 
propidium iodide to assess DNA content by flow cytometry. HH cells were treated with 
DMSO, 10 nM Depsipeptide, 10 µM 963, 10 μM 233, or 10 μM 966 for 24 hr and pulsed 
for an hour and a half with BrdU prior to cell harvest and analysis. Shown are 
representative flow cytometry plots performed in duplicate that is consistent with other 
biological replicates. (B) Graphical representation of BrdU incorporation from the 
experiment described in (A). (C) Graphical representation of the percent of S phase cells 
that did not incorporate BrdU (shown by box in (A)).  
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levels while Depsipeptide led to an 8.5 fold increase.  Again this exhibits the 

stepwise trend of inhibiting different numbers of HDACs.  

The observed DNA damage and S-phase arrest suggest that treatment 

with 963 disrupts replication.  HDACs 1, 2, and 3 are present at and near 

replication forks and deletion or inhibition of HDAC3 causes decreased 

replication fork velocity indicative of DNA replication defects (Figure 18-20 

Chapter III and [48, 124, 128]).  Due to the fact that selective HDAC3 inhibition 

caused DNA replication defects, this raises the question of whether or not HDAC 

1/2 inhibition would cause similar DNA replication defects.  It would be expected 

that inhibition of HDAC 1/2 would cause DNA replication defects due to their 

presence at replication forks, the fact that HDACs 1 and 2 regulate deacetylation 

of histones deposited on newly synthesized DNA after replication, and given their 

association with histone chaperones (RbAp48 and CAF1) and replication fork 

factors (PCNA).   

The use of these HDIs allow for the analysis of HDAC function in short 

time frames that cannot be replicated by genetic deletions in mice or siRNA.  

DNA fiber labeling assays were performed to determine the effects of these 

inhibitors on DNA replication fork velocity and replication.  Replication fork 

velocity can be measure by DNA fiber labeling, which allows for the visualization 

of individual DNA fibers by sequential labeling of cells with IdU and CldU followed 

by immunofluorescence to detect incorporation of these thymidine analogs into 

DNA.  Hut78 cells were treated with DMSO, 10 nM Depsipeptide, 10 µM 233, or 

10 µM 966 for 1 hour before labeling with IdU followed by CldU.  DMSO was  
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Figure 26. 963 treatment causes increased DNA damage in Hut78 cells.  Western blot 
analysis of ɣH2aX levels in Hut78 cells treated with DMSO, 10 nM Depsi, or 10 μM 963 
for 8 hrs. Untreated and DMSO treated cells were used as controls. Samples were run 
on the same gel and probed on the same membrane. Intervening lanes (represented by 
a black bar) were removed for side by side comparison of DMSO, Depsipeptide, and 
963.   



93 
 

used as a negative control and all HDI treatments were compared to DMSO.  

Depsipeptide and 966 were included for direct comparison at 1 hr before 

labeling.  Treatment with all HDIs resulted in shortening of the average length of 

fiber tracks, which corresponds to slower replication fork progression than DMSO 

(Figure 27).  This suggests that HDACs 1 and 2 play a role at or near the 

replication fork.   

Next, to determine whether combined inhibition of HDACs 1, 2, and 3 

using 963 would cause additive DNA replication defects, we treated Hut78 cells 

for 1 hr with 963 before labeling with IdU (as described above).  963 treatment 

also caused decreases in fiber track length but did not show an additive effect 

(Figure 27).  Possibly the fiber labeling assay is just not sensitive enough to 

detect an additive effect. Another possibility for not seeing an additive effect 

could be due to differences in IC50 values for the different inhibitors such that 

these selective inhibitors may be suppressing the activity of specific HDACs to 

varying degrees.  However, this data with 233 and 963 provide evidence that 

these inhibitors (and 966 from this experiment and Chapter III) act by inhibiting 

proper DNA replication and suggest that selective inhibitors could be developed 

for treatment regimens.     

 

Discussion 

 Proper DNA replication and chromatin condensation are required for 

normal cell proliferation.  Furthermore, replication stress has been associated 

with the accumulation of DNA damage and reduced cell viability.  HDACs are  
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Figure 27. HDACs 1/2 and HDACs 1-3 inhibitors cause defects in DNA replication.  DNA 
fiber labeling analysis was used to assess DNA replication fork progression in Hut78 
cells treated with DMSO, 10 nM Depsipeptide (top left), 10 μM 966 (top right), 10 µM 
233 (bottom left), or 10 µM 963 (bottom right) for 1 hr prior to labeling with 20 mins of 
IdU (green) followed by 20 min of CldU (red). Graphical representation of fork velocity as 
determined by total length of fibers (IdU plus CldU) divided by 40 min pulse is shown. 
100 fibers were measured for each sample.  
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present at and near replication forks, associated with key histone chaperones 

and replication machinery components.  Furthermore, deletion or inhibition of 

HDAC3 causes DNA replication defects [48, 128].  However, it is unclear whether 

short-term inhibition of other HDACs causes similar replication stress.  The 

development of selective HDIs allows for the elucidation of the roles of individual 

HDACs in important cellular processes such as DNA replication and chromatin 

condensation.  In this chapter, a new inhibitor, 963, was introduced that 

selectivity targets HDACs 1, 2, and 3.  A second inhibitor, 233, was first 

introduced in Chapter III but is examined here along with 963 for their potential 

effects on DNA replication.  963 treatment in CTCL cells caused dramatic 

decreases in cell growth and viability by triggering apoptosis (Figure 22-23).  

Additionally, the number of HDACs inhibited correlated with increased death (e.g. 

Depsipeptide which targets 5 HDACs causing the most death and 966 which 

inhibits a single HDAC causing less).  963 showed comparable decreases in cell 

growth to that of Depsipeptide, albeit at higher concentrations used.  This 

suggests the possibility, though, that an HDAC 1-3 selective inhibitor could be 

further developed for more comparable dosage levels and be used in treatment.  

This would allow for fewer HDACs to be targeted and possibly decrease toxicity 

associated with HDI treatment.  Having multiple selective inhibitors allows for the 

customization of treatments such that different combinations of HDACs can be 

inhibited, possibly increasing the efficacy of treatment while decreasing toxicity. 

 Mechanistically, 963 treatment led to apoptosis that was associated with 

cell cycle defects (Figure 24-25) and increased DNA damage (Figure 26).  Cell 
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cycle analysis showed decreased BrdU incorporation levels and a significant 

increase in the number of S phase cells that did not incorporate BrdU, suggesting 

an S phase arrest with 963 treatment.  The cell cycle arrest plus DNA damage 

accumulation suggests DNA replication defects.  DNA fiber labeling assays were 

performed to examine DNA replication fork velocity in 233 or 963 treated cells.  

Treatment with either of these inhibitors resulted in slowed DNA replication fork 

velocity indicative of DNA replication defects in HDI treated cells.   

 The results of the iPOND experiment and fiber labeling assays in Chapter 

III along with the fiber labeling assays in this chapter, suggest that HDACs 1/2 

and HDAC3 play separate roles in DNA replication.  HDAC3 inhibition led to DNA 

replication defects that could not be compensated by HDACs 1 and 2 while 

HDACs 1/2 inhibition could not be compensated by HDAC3.  HDAC1 interacts 

with PCNA and appears to move with the replication fork while HDAC3 does not 

(Figure 16 iPOND).  It is possible that HDAC1 or 1 and 2 associate with the fork 

and PCNA to deacetylate replication fork machinery, while HDAC3 plays a role in 

regulating localized chromatin at the replication fork.  Further studies will need to 

be performed to try and determine whether these thoughts are true.   

 Surprisingly, while the inhibition of multiple HDACs by 963 appeared to 

have an additive effect on overall cell viability, this same additive effect was not 

observed with regards to replication fork velocity.  As mentioned this may be due 

to differences in IC50 values for the different HDIs leading to different levels of 

inhibition of different HDACs.  However, the DNA fiber labeling experiments 

executed in this chapter were performed with a short treatment of HDIs (1 hr) 
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while the apoptosis and cell cycle experiments were performed after 24 hr of HDI 

treatment.  For example, it is possible that, the additive cell death seen with 

longer 963 treatment (24 hr) involves other mechanisms in addition to DNA 

replication that is killing the cells.  DNA replication may be the first target of these 

HDIs (short treatments) that is then followed by compounding effects through 

other HDAC mediated mechanisms such as DNA repair defects or deregulated 

transcription (longer treatments).   

HDACs 1, 2, and 3 have been linked to efficient DNA repair [47, 122].  For 

example, HDAC3 deletion in MEFs and hepatocytes led to impaired DNA repair 

with these cells not repairing the DNA damage and maintaining high levels of 

DNA damage caused by irradiation or DNA damaging agents [46, 47].  Over the 

course of a 24 hr treatment, possibly defects in DNA replication cause increased 

DNA damage and due to defects in DNA repair, these cells are unable to repair 

the damage and ultimately die.  In cells that are treated with, for example, 233 

(HDACs 1/2 are inhibited), HDAC3 may be able to compensate partially for the 

loss of HDACs 1/2 resulting in the repair of some of the damage associated with 

HDI treatment while if these cells were treated with 963, all three HDACs would 

be inhibited, DNA repair would be further disrupted, and an additive effect of cell 

death would be observed.  This could explain why treatment with 963 in the cell 

death experiments would show an additive effect but short treatments as in the 

DNA fiber labeling experiments, which only measure the initial effects on DNA 

replication would not show an additive effect.  Also, HDACs are traditionally 

transcriptional regulators thus in addition to DNA replication defects, 
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transcriptional effects (such as increases in the cell cycle inhibitor, p21) are likely 

to be seen after increased treatment time, again resulting in additive effects.  

Studies to determine the effects of these individual inhibitors on DNA repair and 

transcription would be helpful in answering the above theories. 

  Overall, this chapter provides more evidence that HDIs work through 

impairing proper DNA replication in cancer cells.  It is reassuring that two classes 

of HDIs (Depsipeptide – cyclic peptides and 963, 233, and 966 – pimelic 

diphenylamides/ N-(o-amino-phenyl) carboxamides) behave very similarly with 

regards to their proposed mechanisms of action.  This suggests an opportunity to 

target rapidly dividing cancer cells with HDIs while not harming the quiescent 

normal cells and provide new combinations of therapy in cancer treatment. 
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CHAPTER V 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 Histone deacetylases are required for normal development and function in 

crucial cell processes such as DNA replication, DNA repair, transcription, and 

even tumorigenesis.  It is not surprising then that these proteins are being 

targeted as therapeutics for certain diseases.  Currently, two HDIs are FDA 

approved for the treatment of refractory CTCL [75, 77, 93, 94, 136].  These 

inhibitors have shown great success in CTCL treatment but do have adverse 

effects such as nausea, fatigue, gastrointestinal and cardiac toxicity, and 

hematologic impairment [77, 93, 137] associated with them and, until this 

dissertation, the mechanism of action of these inhibitors was not known.  Also, 

these HDIs inhibit multiple HDACs, possibly leading to unnecessary side effects.  

The development of selective HDIs would not only allow for the elucidation of the 

roles of individual HDACs in cell processes but also could potentially be used in 

the clinics to customize treatments and allow for combinatorial use with multiple 

HDIs or other cancer drugs.  A class of selective inhibitors, the pimelic 

diphenylamides/ N-(o-amino-phenyl) carboxamides, that target individual 

members of the class I HDACs has been developed [96, 97, 110-112] and was 

the focus of this dissertation.  Examination of these inhibitors using DNA fiber 
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labeling experiments (Figures 18-20,27) led to a better understanding of the 

mechanism of action of HDIs and their effects in cancer.  

 Changes in histone acetylation marks were analyzed using western blot 

analysis to determine the specificity of two selective inhibitors, 233 (HDAC 1/2 

selective inhibitor) and 966 (HDAC3 selective inhibitor).  Treatment with 966 

caused accumulation of H4K5ac, H3K27ac, and modest increases in 

H3K9K14ac but not H3K56ac (a histone mark that is specific for HDACs 1 and 2 

activity).  On the other hand, treatment with 233 caused increases in all of the 

histone modification marks including H3K56ac.  These data support that 966 is a 

HDAC3 selective inhibitor while 233 inhibits HDACs 1 and 2.  Treatment with 

varying concentrations of either 233 or 966 in CTCL cell lines led to decreased 

cell growth.  Further analysis of these HDI treated cells using flow cytometry 

(Annexin V and BrdU) and western blot analysis (to examine ɣH2aX levels) 

determined that the decrease in cell growth was associated with increased 

apoptosis, DNA damage, and cell cycle defects.  HDI treated cells exhibited 

increased numbers of S phase cells that were not incorporating BrdU, suggesting 

that these cells did not complete DNA replication and were arrested in S phase. 

 To begin to elucidate a possible role of HDAC3 in DNA replication, the 

association of HDAC3 with histone chaperones was tested.  HDAC3 was found 

to associate with the histone chaperone RbAp48 through immunoprecipitation 

and gel filtration assays, suggesting that HDACs3 may be associated with 

histone deposition machinery.  HDAC3 was present at and around DNA 

replication forks using iPOND analysis.  However, HDAC3 did not appear to 
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move with the replication fork machinery.  Even though HDAC3 did not move 

with the fork, loss of HDAC3 using genetic and siRNA methods caused DNA 

replication defects determined by shorter DNA fiber length and slowed DNA 

replication fork velocity [48, 128].  The selective HDAC3 inhibitor was then tested 

at various time points in DNA fiber labeling experiments to determine whether 

HDAC3 was essential for DNA replication and whether any effects observed 

were due to a global chromatin effect or an effect localized at or near the 

replication fork.  Global changes in histone acetylation were not observed until 

after 1 hr of treatment with 966 with a dramatic increase in acetylation by 4 hrs, 

as determined through western blot analysis of histone modification marks.  

Inhibition of HDAC3 led to a significant decrease in DNA fiber length and 

replication fork velocity even at short treatment times (5 min).  This suggested 

that HDAC3 is essential for DNA replication and caused localized effects at or 

around the replication fork.  However, this did not differentiate between whether 

HDAC3 affected the local chromatin around the replication fork or if HDAC3 

directly deacetylated a component of the replication machinery.   

 Due to the high degree of heterogeneity of cancers, it is often beneficial to 

treat patients with multiple types of drugs.  Some of the common treatments in 

CTCL therapies are Bexarotene (rexinoid), ATRA (retinoid), and Methotrexate 

(anti-folate).  966 was combined with each of these drugs and observed for 

combinatorial effects in CTCL cell lines.  In Hut78 cells, combination of 966 with 

each of these drugs individually resulted in additive decreased cell growth.  

However, in HH cells, an additive effect was only seen with the combination of 
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966 and Bexarotene.  The additive effects seen in these cells suggest that these 

inhibitors could be combined with other CTCL drugs for possible benefits in 

treatment.       

 Treatment with an HDAC 1, 2, and 3 inhibitor also caused increased 

acetylation levels of specific histone marks, H4K5ac, H3K9K14ac, H3K27ac, and 

H3K56ac, and decreased cell growth that was associated with apoptosis, DNA 

damage, and cell cycle arrest.  Given the effects of HDAC3 inhibition on DNA 

replication and the roles of HDAC 1/2 in DNA replication, HDAC 1/2 and HDAC 

1-3 selective inhibitors were tested for their effects on DNA replication.  

Treatment with either of these inhibitors caused significant decreases in fiber 

lengths and fork velocity. 

 The data presented in this dissertation, strongly suggest that the 

mechanism of action of HDIs is to first target DNA replication.  There are multiple 

possibilities for the DNA replication defects that were seen in this dissertation 

and multiple functions of HDACs near and at the replication fork.  One possibility 

for the DNA replication defects observed is that HDACs function in front of the 

fork to regulate the amount of acetylation on histones and maintain some 

organized structure to the chromatin and DNA (Figure 28).  If, for example, 

HDAC3 is inhibited, then there may be an accumulation of acetylation causing 

the chromatin to unpack too loosely and the DNA may be under wound causing 

alternative DNA structures, which may cause the DNA to “tangle” in front of the 

fork [147, 148].  This would not allow the replication machinery to move through  
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Figure 28.  Model of HDAC function that affects replication in front of the replication fork. 
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the DNA as efficiently, thus causing slowed or stalled DNA replication.  Also 

many proteins bind to supercoiled DNA rather than relaxed DNA so 

hyperacetylation may inhibit replication proteins from binding DNA [147, 148].   

 Another possibility is that HDACs may function to deacetylate replication 

machinery components directly at the fork (Figure 29) to allow for recruitment of 

other factors or affect the activity of a specific protein.  HDACs 1 and 2 regulate 

the deacetylation of histones during histone deposition after DNA replication, and 

accumulation of acetylation behind the fork with treatment of an HDI could cause 

inefficient packaging of chromatin and DNA replication defects (Figure 30).  

Based on our DNA fiber labeling experiments that involved adding an HDAC3 

selective inhibitor at different times during the assays and the iPOND data 

(Figures 16-20,27), we hypothesize that HDAC3 functions in front of the fork and 

plays a role in regulating local chromatin around the replication fork and does not 

directly function at the replication fork.  However, more studies will need to be 

performed. 

Future work to determine the exact roles of these HDACs in DNA 

replication will require a more in depth look at replication fork machinery and 

acetylated chromatin around the fork.  It would be interesting to perform 

additional iPOND experiments with these selective inhibitors to examine changes 

in acetylation at and around the fork of histone modification marks when each 

HDAC is inhibited.  Also, one could examine the changes in known acetylated 

replication machinery proteins using iPOND and these inhibitors to determine  
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Figure 29.  Model of HDAC function that affects replication directly at the replication fork.  
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Figure 30.  Model of HDAC function that affects replication behind the replication fork.  
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whether any of these HDACs directly deacetylate replication proteins and 

possibly affect DNA replication in this way.  Also, to potentially discover new 

targets of HDAC activity around the replication fork or in general, a SILAC mass 

spectrometry analysis could be performed with an acetyl lysine antibody in cells 

that were treated with and without these selective inhibitors to determine 

changes in acetylated proteins with treatment.   

 Selective HDIs need to be further tested in in vivo models to determine 

their potential in treating cancers or other diseases.  Studies of long term 

memory and neurodegenerative disease have shown promising results with 

these selective HDIs and little to no toxicity in mice [96, 110, 111].   It would be 

interesting to study xenograft models where nude mice were injected with CTCL 

cell lines and then treated with the different selective HDIs to determine if these 

HDIs caused decreased tumor burden and/or increased survival.  Monitoring 

these mice for different levels of toxicities with different HDIs or combinations of 

HDIs would be helpful to determine if it would be feasible for clinical trials in 

patients after further development of these drugs. 

 Selective inhibitors allow for the combination of different HDIs at varying 

doses to possibly achieve the same or better efficacy than pan-HDIs but with 

fewer side effects.  For example, an HDAC 1/2 selective inhibitor could be 

combined with an HDAC3 selective inhibitor at the IC50 dose (instead of a 

maximal dose) and tested for comparable decreases in growth to a pan- or 

HDAC 1-3 inhibitor.  For example, the combination of 233 and 966 resulted in  
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Figure 31.  Combined treatment of 233 and 966 results in decreased cell growth 
comparable to 963 treatment. Growth curves of HDI treated Hut78 cells. Cells were 
treated once with DMSO, 10 nM Depsipeptide, 1 μM 233,  5 μM 966, 5 µM 963 or a 
combination of 1 µM233 plus 5 µM 966 at hour 0. Untreated cells and DMSO treated 
cells were used as controls. Cell growth was assessed at 0, 24, 48, and 72 hours after 
treatment. Experiment was performed in triplicate.   



109 
 

decreased growth comparable to 963 (Figure 31), suggesting that the 

combination of selective HDIs may be feasible in treatment plans. 

It would also be of interest to test the effects of sequential administration of these 

selective HDIs to determine whether treatment with one HDI could potentially 

sensitize the cells to treatment with another HDI.  For example, treating cells with 

a lower dose of 233 for a given time (possibly 12-24hrs) and then treating the 

cells with a low dose of 966 might result in a more dramatic effect than 

administering these HDIs together, due to increased sensitization from the first 

HDI treatment.  It may be possible to treat cells with one HDI at a low dose to 

cause DNA replication defects or DNA damage and then treat cells with a second 

low dose HDI to cause dramatic accumulation of DNA damage and inhibit any 

functional DNA repair pathways thus causing increased cell death. 

 Overall, new, more targeted therapies are needed for treatment of cancer.  

Due to the many roles of HDACs and the proven success of HDIs in the 

treatment of CTCL, they are attractive targets for further therapeutic 

development.  However, understanding the mechanisms of action of these HDIs 

is important for treatment strategies, dosages, and combinatorial studies.  The 

work in this dissertation provided mechanistic information for the action of 

selective and pan histone deacetylase inhibitors and provided support for the 

further development of these inhibitors.   
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