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CHAPTER I 

 

INTRODUCTION 

 

1.1. Overview 

 Diffusion tensor imaging (DTI) is a relatively new MR technique to study the 

white matter structures of the brain non-invasively. White matter fiber bundles, as the 

information transfer pathway between cortical regions, play an important role in 

mediating cognitive functions. Reading ability is one of such cognitive function, which 

relies on the cooperation of extended brain regions. Recently, DTI has been used to study 

white matter properties related to reading abilities, and has become an important 

neurobiological tool to study the mechanisms of dyslexia. 

In this chapter, the following topics will be covered: (1) the basic principles of 

diffusion weighted MRI and DTI; (2) current opinions in reading and related DTI 

findings, challenges in the field and currently available HARDI techniques; and (3) goals 

and contributions of this dissertation. 
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1.2. Diffusion MRI 

 

1.2.1. Diffusion weighted magnetic resonance imaging 

 Diffusion refers to the random translational motion of particles driven by thermal 

energy. Biological systems are comprised of an abundance of water. Under the 

assumption of Brownian motion, the displacement of a particular water molecule and the 

time allowed for it to diffuse, ݐ, can be related through the Einstein’s formula, 

൏ ݎ ൐ൌ	√݊ݐܦ 

where ൏ ݎ ൐ is the root mean square displacement, ܦ is the diffusion coefficient, and 

݊ is determined by dimensionality (i.e., ݊ = 2 for one dimensional diffusion, 4 for two 

dimensions and 6 for three dimensions). In a biological sample, however, the measured 

diffusion coefficient is the ensemble average of all the water molecules within the voxel, 

so the averaged diffusivity along an arbitrary direction is named the apparent diffusivity, 

or apparent diffusion coefficient (ADC) to distinguish from the intrinsic diffusion 

coefficient from pure water. 

The extent of Brownian motion during a given time period, characterized by the 

ADC, can be measured by diffusion weighted imaging techniques. The Pulsed Gradient 

Spin Echo (PGSE) experiment makes the MR signal amplitude sensitive to diffusion 
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(Stejskal and Tanner, 1965) (Fig. 1.1): the intensity of the spin echo, ܵ, is attenuated with 

respect to the baseline signal without diffusion weighting, ܵ଴, via the relation, 

ܵ
ܵ଴
ൌ ݁ି௕஽ೌ೛೛	 

where ܦ௔௣௣ is the ADC, and ܾ ൌ ଶሺΔെߜଶܩଶߛ	
ఋ

ଷ
ሻ is the diffusion weighting factor, or 

b factor, which depends on the gyromagnetic ratio ߛ, the amplitude of the gradient pulse 

 and the time interval ∆ between the de-phasing and refocusing ,ߜ pulse duration ,ܩ

gradient pulses	.  

 

 

Figure 1.1. PGSE experiment diagram. A pair of identical diffusion sensitizing gradient 

pulses is applied along a prescribed direction before and after the 180o RF pulse. Spins 

are phase-encoded by their initial positions due to the first gradient pulse, and then 

allowed to diffuse freely for a time interval . After the 180o RF pulse, the second 

gradient pulse of the same amplitude G and duration  is aimed to cancel the position 

dependent phase if the spins remain stationary during the time interval  (Stejskal and 

Tanner, 1965). 

 

Another aspect of diffusion is directionality. In an isotropic medium, such as in 
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the CSF of the ventricular system (Basser and Pierpaoli, 1996), a water molecule has 

equal chance to be displaced along any direction. The measured ADCs are identical when 

the diffusion sensitizing gradient is applied in different directions. However, in other 

tissues like white matter fiber bundles, where axons are wrapped with low permeability 

myelin membranes and are normally coherently oriented, diffusion is direction-dependent: 

apparent diffusivities are higher along the axons’ orientation than perpendicular to them 

(Moseley, et al., 1990; Pierpaoli and Basser, 1996). In this case, the diffusion can no 

longer be characterized by a single scalar value of ADC, so a more complex model is 

needed to describe the anisotropic diffusion.   

 

1.2.2. The diffusion tensor  

 With the assumption of Gaussian diffusion, the displacements of water molecules 

can be represented by a diffusion tensor (Basser et al., 1994), a 3x3 symmetric matrix, i.e., 

ࡰ ൌ	 ቎
௫௫ܦ ௫௬ܦ ௫௭ܦ
௫௬ܦ ௬௬ܦ ௬௭ܦ
௫௭ܦ ௬௭ܦ ௭௭ܦ

቏ 

where the elements on the diagonals are the apparent diffusivities along the three 

orthogonal  axes of any arbitrary three dimensional coordinate system, and the off-

diagonal elements are the covariance between molecular displacements in orthogonal 
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directions.  

The eigenvalues of the tensor have physical meanings – the apparent diffusivities 

along the three primary axes of the diffusion tensor. The eigenvector corresponding to the 

largest eigenvalue, ߣଵ, is in the direction of primary (fastest) diffusion. The envelope of 

the tensor ellipsoid (Fig. 1.2) depicts the isosurface of the mean squared probability 

density function (PDF) of a spin’s molecular displacements.   

 

 

Figure 1.2. Ellipsoidal representation of the diffusion tensor. The envelope of the tensor 

ellipsoid depicts the iso-surface of the mean squared probability density function (PDF) 

of a spin’s molecular displacements. The axes of the ellipsoid are scaled by the 

eigenvalues of the diffusion tensor (Beaulieu, 2009). 

 

The diffusion tensor provides important information about the microscopic 

composition, structure and organization of the tissue under study. Fractional anisotropy 

(FA) (Basser and Pierpaoli, 1996; Beaulieu, 2002) is one of the most widely used scalar 

values derived from the eigenvalues of the diffusion tensor to quantify how much the 

diffusion envelope deviates from a sphere. For isotropic tissue samples, FA is close to 0, 
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while for very anisotropic samples, the corresponding diffusion tensor will be stretched 

towards poles that are oriented in the direction of the fiber bundle’s orientation, and the 

FA can be close to 1. More often than not, a decreased FA is related to tissue damage or 

diseased status (Beaulieu et al., 1996) (Fig. 1.3). In addition, the principal diffusion 

direction indicated by the eigenvector corresponding to the largest eigenvalue of the 

diffusion tensor is assumed to be consistent with the orientation of the underlying 

structure, which becomes the basis of DTI-tractography (Mori and van Zijl, 2002; Lori et 

al., 2002).   

 

 
Figure 1. 3. Illustration of FA indicative of structural damage. On the left is a cartoon 

illustration of reduced anisotropy due to damage in axons and myelin that result in a loss 

of directional barriers to water diffusion. On the right, electron micrographs are adapted 

from normal and degenerated frog sciatic nerve (Beaulieu et al., 1996).  
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1.2.3. High angular resolution diffusion imaging 

Despite the valuable information it can provide in white matter studies, DTI 

suffers from some fundamental limitations (Wiegell et al., 2000). Typical axon diameters 

range from less than 1 micron to more than 30 microns in the human brain, but the voxel 

size of a DTI acquisition for human studies on a modern MR scanner is usually 2-3 

millimeters. Consequently, voxels in the white matter contain many thousands of axons 

and some voxels contain more than one fiber bundle. In this case, the conventional 

second-order tensor model which is based on the assumption of Gaussian diffusion is not 

able to describe non-Gaussian diffusion adequately, and thus is not able to provide 

reliable estimates of the underlying principal orientation and diffusion anisotropy of each 

fiber component. 

In order to resolve complex white matter structure and address the problem of the 

partial volume effect, new imaging techniques and data reconstruction methods have 

been developed. High Angular Resolution Diffusion Imaging, or HARDI, (Tuch et al., 

2002; Alexandeer et al., 2002; Frank, 2001; Ozarslan and Mareci, 2003) is a set of these 

methods. 

To extract diffusion properties and reveal tissue micro-structural information from 

the HARDI signal, several different reconstruction schemes have been developed, 
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including the multiple tensor model (Tuch et al., 2002), generalized tensor model 

(Ozarslan and Mareci, 2003; Liu et al., 2004), spherical harmonic decomposition of the 

ADC profile (Alexander et al., 2002; Frank, 2002), spherical harmonic deconvolution 

(Tournier et al., 2004, 2008; Anderson, 2005), circular spectrum mapping (Zhan et al., 

2004), Diffusion Spectrum Imaging (DSI, Wedeen et al., 2005), Q-Ball Imaging (QBI, 

Tuch et al, 2003; Tuch 2004), iterative spherical deconvolution (Dell’ Acqua, et al., 2007, 

2010), combined hindered and restricted model of water diffusion (Assaf et al., 2005, 

2008), ensemble average propagator (EAP) (Descoteaux et al, 2009, 2011), etc. Although 

these techniques are capable of resolving multiple intra-voxel fiber directions, few of 

them provide information about the intrinsic diffusion properties of the fibers. Thus in 

cases where FA is altered, it is impossible to determine if the altered FA resulted from 

changes in the intrinsic diffusivity or fiber orientation. 

The CHARMED (Assaf et al., 2005) and the AxCaliber (Assaf et al., 2008) 

methods are one family of the few successful trials to estimate diffusive properties of 

individual fiber compartments. AxCaliber builds upon CHARMED, and provides axon 

diameter density estimates by assuming the axon density obeys a Gamma distribution. A 

restriction of AxCaliber is that it only applies to single fiber bundle. Another approach 

that models the displacements of water molecules due to diffusion is EAP. EAP provides 
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a description of the location of water molecules under multiple experimental conditions, 

i.e. different b values, in a probabilistic framework. It’s successful in revealing the basic 

physical process of diffusion directly, but lacks a straightforward biological interpretation 

in a tissue specimen. Both methods require measurement over a large range of b values, 

and the prohibitively long scanning time restricts their application to human studies. 

Among the HARDI methods that don’t measure diffusive properties of fiber 

bundles, spherical deconvolution is one of the most popular used to resolve 

organizational properties of white matter tissue using a spherical harmonic (SH) 

transformation. The basic idea is that the measured signal is the sum of contributions 

from all the individual fiber components within a voxel. In a single fiber bundle case, the 

amount of signal loss due to diffusion can be measured along different orientations, 

which is also called the single fiber response kernel. In a more complicated case, where 

the organization of multiple fiber bundles can be represented by a Fiber Orientation 

Distribution (FOD) function, the measured signal is the FOD function convolved with the 

corresponding single fiber response kernel. If the response kernels of all compartments 

are the same, once the response function is estimated, the fiber distribution can be 

reconstructed by deconvolution. Tournier et al. estimated the response function from a 

group of voxels with the highest FA in the whole dataset, and then calculated the ODF by 
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deconvolution (Tournier et al., 2004). In practice, there is a discrepancy between this 

assumed common response function and the real underlying tissue properties, which 

renders the algorithm vulnerable to “calibration” errors (Parker et al., 2012).  

 Instead of using a single response function for the whole brain, FORECAST 

(Anderson, 2005) estimates the response function for each voxel. The FORECAST model 

shows several advantages over the other methods that need to be mentioned. First, by 

expressing functions in SHs, the FORECAST model is computationally efficient, 

involving only linear matrix calculation, avoiding integration or interpolation. Second, 

FORECAST is capable of distinguishing two different causes of decreased FA, changes 

in fiber coherence and fiber intrinsic diffusivity to some extent. A drawback of 

FORECAST, however, is the assumption that all fiber compartments share common 

diffusivities. Therefore, it is difficult to determine which fiber bundle is responsible for 

the altered FA. 

 

1.2.4. MR tractography 

Tractography is the process of integrating voxelwise fiber orientations into a 

pathway that connects remote brain regions. It relies on the fundamental assumption, that 

the water diffusion is least restricted along the axes of axons, if the neural fibers are 
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coherently aligned along a common axis. Tractography algorithms can be local or global, 

deterministic or probabilistic, model based or model free; they can rely on simple (Mori 

et al., 1999) or complex (Parker and Alexander, 2003, 2005) representations of diffusion 

in white matter. This section briefly reviews DTI based fiber tracking techniques involved 

in this study, including streamline tractography and probabilistic tractography. 

The most intuitive and commonly used fiber tracking technique is streamline 

tractography (Mori et al., 1999). From the previous sections we know that on the voxel 

level, a principal diffusion direction can be estimated by DTI and is assumed to be 

collinear with the neuronal fiber bundle axis. By starting at an appropriate seed point (i.e., 

in the middle of a well-organized fiber bundle), a streamline representation of the bundle 

can be reconstructed by following local vector information on a step-by-step basis. Since 

fiber tracking is an integration process, the reconstruction accuracy is very susceptible to 

errors in local vector estimates. To limit false positives, the algorithm is stopped when the 

front of the streamline steps into a local area where the directional uncertainty is above a 

preset threshold. This directional uncertainty is often parametrized as hypo-intensity in 

FA maps, which may due to various causes such as low SNR, partial volume effects at 

boundaries of white matter and gray matter or at the intersection of multiple fiber bundles, 

etc. Another criterion for a streamline to stop is high curvature of a streamline, because it 
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is assumed that no sharp turns exist in deep white matter. The employment of spatial 

interpolation (Mori et al., 1999; Lazar and Alexander, 2003; Pajevic et al., 2002) can 

overcome, to some degree, the effects of noise in the local orientation estimates and 

improve the smoothness of reconstructed fiber tracts, but a simple streamline algorithm is 

still very vulnerable to error accumulation due to its deterministic nature. Probabilistic 

algorithms have been recently proposed to be more robust to regions with high 

uncertainty. These approaches repetitively sample from distributions of voxel-wise 

principal diffusion directions, each time computing a streamline through these sampled 

local estimates to generate a sample of the true streamline. By taking many such samples, 

the posterior distribution of the streamline or the connectivity distribution at a location 

can be built up (Behrens et al., 2007). Both deterministic and probabilistic tractography 

have been used to study the neuronal networks that support cognition and how changes in 

these networks relate to cognitive disorders.  

 

1.3. Opportunities and challenges of DTI in reading studies 

 

1.3.1. Current opinions in reading and related DTI findings 

Dyslexia is a developmental reading disorder that affects a significant number (5-
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17%) of individuals. It is characterized by deficits in phonological processing which 

consequently impede the development of adequate word recognition or decoding. These 

deficits are specific, and are present despite adequate instruction and intelligence (Lyon, 

1995; Shaywitz, 1998). While the behavioral characteristics of dyslexia are fairly well 

known, the neurobiological characteristics of this disorder are still under examination. 

Note that in the reading research literatures so far, the term of dyslexia have been used to 

refer to populations with slightly different behavioral characteristics. To clarify the 

definition of dyslexia, in this dissertation, we use the term dyslexia to refer to the child 

population who has lower reading skills and difficulties in word recognition. With the 

advent of neuroimaging, especially functional MRI (fMRI), over the last two decades in 

particular, studies have mapped the areas in the brain that are associated with good and 

poor reading. Converging findings reveal that proficient reading performance is 

associated with a coordinated left hemisphere network that involves temporo-parietal, 

occipitotemporal, inferior frontal and anterior perisylvian regions, including sensorimotor, 

premotor, pars opercularis and triangularis (Broca’s) areas (Heilman et al., 1996). 

Serving as the information transfer pathways for this complicated network are the 

white matter bundles. Normally, it takes approximately one fifth of a second for the brain 

to finish the whole process from seeing a string of letters, recognizing it as a language 
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notion, to recall its meaning (Tarkiainen et al., 2002). Since reading relies so much on 

information transfer between cortical regions, how white matter properties affect reading 

performance becomes a key in understanding how the brain functions to mediate reading 

behavior. 

Current research supports the hypothesis that white matter structure variations in 

individuals are behaviorally relevant and that they can be studied in vivo with DTI. In 

fact, differences in white matter have been shown in several studies comparing children 

with reading difficulty to normal readers (Beaulieu et al., 2005; Deutsch et al., 2005; 

Klingberg et al., 2000; Niogi and McCandliss, 2006), where significant differences in 

white matter integrity were reported in temporal-parietal regions. Lower FA in the left 

Corona Radiata (CR) / Superior Longitudinal Fasciculus (SLF) is consistently reported, 

and was considered to be relevant to poor reading performance. Although a precise 

prediction of functional and behavioral consequences of white matter changes is still hard 

to make, more and more evidence suggests that white matter properties such as 

myelination, packing density, and fiber coherence might affect behavior by modulating 

information transfer across brain networks. Specific for reading, how strongly the cortical 

regions within the Perisylvian territories are connected to each other appears to be 

associated with reading ability. 
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1.3.2. Mapping the visual word form area connectivity patterns 

As mentioned earlier, functional MRI (fMRI) studies have mapped the areas in 

the brain that are associated with good and poor reading. Regarding visual orthographic 

conversion, in particular, a region in the left ventral occipitotemporal region is 

reproducibly found to be selectively responsive of written strings relative to other 

categories such as line drawings. This region is known as the putative visual word form 

area (VWFA, Cohen, 2000). Evidence in support of the finding is seen in lesion studies 

(Epelbaum et al, 2008; Mandonnet et al., 2009), PET (Petersen et al., 1990; Price et al., 

1996), fMRI and ERP studies (Braet et al., 2012; Brem et al., 2006, 2009, 2010; Cohen et 

al., 2002), and the locations reported converge fairly well to the left occipitotemporal 

sulcus bordering the fusiform gyrus. 

Reading is a complex cognitive behavior, which requires the cooperation of a 

number of brain regions. On this view, despite the abundance of domain-specific findings 

within the VWFA, little is known about the role of VWFA in the network of reading 

related regions. Not until recently have researchers started to look into the structural 

aspects of the VWFA, aiming to explore its connections to other language related brain 

regions in normal German speaking children (Yeatman et al., 2012). The findings of this 
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study bring the field a step forward by answering the question: what physical connections 

are available for the VWFA to communicate with the rest of the brain? However, it is still 

unclear what feature(s) of the connections are crucial for word form recognition. Or as 

Dehaene and Cohen (Dehaene and Cohen, 2011) suggest as research direction for the 

field in the future, ‘can its connectivity pattern explain its specific role in written word 

recognition’? 

The network intrinsic to visual word form processing has not yet been established. 

However, the VWFA connectivity profile of each individual, estimated by DTI and 

tractography, can be analyzed together with the individual’s behavioral profiles. 

Specifically, a recent study (Saygin et al., 2012) has shown by combining DTI and fMRI 

data, the technique was precise enough to predict fMRI activation with structural 

connectivity estimated by probabilistic tractography in the fusiform face area (FFA, right 

fusiform gyrus, Kanwisher et al., 1997; Barton et al., 2002; Pitcher et al., 2007). 

Coincidentally, the putative VWFA, as reported in previous studies, is located in a 

contralateral homologous region as FFA. All these findings put together indicate that the 

VWFA connectivity profile might already contain enough information to differentiate 

between good and poor readers. The purpose of the current work was to examine VWF-

system structural connectivity patterns in children with and without reading difficulty. 
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1.3.3. Revealing thalamic connectivity related to reading 

 While the primary focus of neuroimaging work to date in dyslexia has been on 

cortical regions, more recently there has been an interest in subcortical regions. The 

thalamus acts as an information processing way station for the brain, relaying signals 

contributing to the regulation of arousal (Portas et al., 1998) and cognition (Johnson and 

Ojemann, 2000; Karussis et al., 2000). It is logical that there would be connections 

between the thalamus and reading related areas, and the activity of the output region is 

likely mediated by thalamic activity and/or thalamo-cortical connectivity. Previous 

studies have reported individual variability in functional (Díaz et al., 2012; Fiebach et al., 

2002; Hoeft et al., 2007; Preston et al., 2010; Price et al., 1994; Turkeltaub et al., 2002) 

and structural (e.g., Galaburda and Eidelberg, 1982) aspects of the thalamus that relate to 

differences in reading skills, suggesting linkages between the thalamus and reading 

ability. However, whether the thalamo-cortical connectivity is related to reading ability 

remains unclear. 

 DTI and tractography have made it possible to study the relationship between 

thalamo-cortical connectivity and reading ability. Good agreement has been shown 

between the thalamic subdivisions identified by connectivity estimated by DT-
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tractography and subdivisions defined by cytoarchitecture (Johansen-Berg, 2005). 

Furthermore, the tractography defined thalamo-cortical connectivity has been shown to 

be able to reveal structural alterations in patients, such as those with Alzheimer's disease 

(Zarei, 2010) and schizophrenia (Marenco, 2012). Another purpose of the current work 

was to investigate the potential relationship between thalamo-cortical connectivity and 

children’s reading ability, by the use of diffusion tractography. 

 

1.3.4. Challenges in reading studies 

Despite the success of DTI in finding abnormal FA in the CR/SLF area in 

individuals with reading difficulty, the interpretation of these findings remains ambiguous 

due to some of its fundamental limitations (Wiegell et al., 2000). Namely, in the region 

where CR and SLF cross, the typical voxel size of DW MRI scans is about (2~3 mm3), 

which may contain tissues from both fiber bundles. As a result, in order to study the 

integrity intrinsic to each fiber bundle, a model more complex than DTI is needed to 

better represent the white matter structures. 

As mentioned earlier, HARDI techniques were developed to represent crossing 

structures. These methods include Diffusion Spectrum Imaging (DSI, Wedeen et al., 

2005), Q-Ball Imaging (QBI, Tuch et al, 2003; Tuch 2004), spherical harmonic 
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deconvolution (Tournier et al., 2004, 2007, 2008), and iterative spherical deconvolution 

(Dell’ Acqua, et al., 2007, 2010). Although these techniques are capable of resolving 

multiple intra-voxel fiber directions, few of them provide information about the intrinsic 

diffusion properties of the fibers. Thus in cases where FA is altered, it is impossible to 

determine if the altered FA resulted from changes in the intrinsic diffusivity or fiber 

orientation. As mentioned earlier, AxCaliber (Assaf et al., 2008), which was built upon 

CHARMED (Assaf et al., 2005), provides axon diameter density estimates by assuming 

the axon diameter density obeys a Gamma distribution. However, the methods require 

measurement over a large range of q values (max. q = 89.4 mm-1, equivalent to b = 44000 

s/mm2 for CHARMED and max. q = 51.1 mm-1, equivalent to b = 15320 s/mm2 for 

AxCaliber), and the long scanning time (CHARMED 18 hours, AxCaliber 30 hours) 

restricts their applications to in vivo human studies. 

In summary, as partial volume averaging may take place in the CR/SLF area, it is 

difficult to determine the real cause of the decreased FA value: Do structural alterations 

occur in the CR, SLF, both or none? Is it different crossing angle or partial volume 

averaging between CR and SLF that makes the difference? Both DTI and currently 

available HARDI techniques are unable to provide a solution to answer these questions. 

In order to address the problem, new techniques need to be developed to provide more 
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detailed information. 

 

1.4. Goals and contributions of this dissertation 

 

1.4.1. Overall goal and specific aims 

The overall goal of this work is to investigate the neurocorrelates of reading in the 

brain. Within this scope, my work focuses on structural aspects of the reading circuits in 

the brain, which leads to three specific aims: (1) to map the cortical connectivity pattern 

in the VWFA to study contributions to visual word form recognition in the brain; (2) to 

investigate subcortical components in the reading system, such as the thalamus; and (3) to 

develop new MR techniques that have the potential to study the complex white matter 

structures implicated by the DTI findings. 

 

1.4.2. Contributions of this dissertation 

The main body of this dissertation is composed of three studies to address the 

three specific aims respectively. Chapter II examines the VWF-system connectivity 

pattern, and is the first study to examine the structural VWFA connectivity pattern in 

children ranging in reading ability. It provides a framework to analyze connectivity 
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patterns identified by DT-tractography with the flexibility of incorporating behavioral 

performance, opened a window for future exploration of the VWF-system, and can be 

useful for other neurobiological studies carried out in a similar manner. Chapter III 

examines thalamo-cortical connectivity as it relates to children’s reading ability. This 

work applies existing MR techniques to studying reading mechanisms and adds 

knowledge to the field by providing a missing piece of information about the potential 

roles of subcortical structures, specifically the thalamus, in mediating reading behavior. 

Chapter IV proposes a MR method aimed to provide more detailed neurobiological 

properties of the complex white matter structures in the language network. The multiple 

kernel spherical deconvolution (MKSD) model proposed in this study is able to address 

the partial volume problem, and estimate the intrinsic diffusion properties and fiber 

orientation distribution (FOD) of each individual fiber bundle in a voxel. The framework 

has the flexibility to fit into different experimental settings in terms of signal-to-noise 

ratio (SNR) and scan time, and was demonstrated to provide stable diffusivity estimates 

in in vivo experiments. 

 

REFERENCES 

1. Alexander, D.C., Barker, G.J., Arridge, S.R., 2002. Detection and modeling of 



 22

non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn 

Reson Med 48, 331-340. 

2. Anderson, A.W., 2005. Measurement of fiber orientation distributions using high 

angular resolution diffusion imaging. Magn Reson Med 54, 1194-1206. 

3. Assaf, Y., Basser, P.J., 2005. Composite hindered and restricted model of diffusion 

(CHARMED) MR imaging of the human brain. Neuroimage 27, 48-58. 

4. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J., 2008. AxCaliber: a 

method for measuring axon diameter distribution from diffusion MRI. Magn 

Reson Med 59, 1347-1354. 

5. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J., 2004. New modeling and 

experimental framework to characterize hindered and restricted water diffusion in 

brain white matter. Magn Reson Med 52, 965-978. 

6. Barton, J.J., Press, D.Z., Keenan, J.P., O'Connor, M., 2002. Lesions of the 

fusiform face area impair perception of facial configuration in prosopagnosia. 

Neurology 58, 71-78. 

7. Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor spectroscopy 

and imaging. Biophys J 66, 259-267. 

8. Basser, P.J., Pierpaoli, C., 1996. Microstructural and physiological features of 

tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111, 

209-219. 

9. Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous system 

- a technical review. NMR Biomed 15, 435-455. 

10. Beaulieu, C., 2009. The Biological Basis of Diffusion Anisotropy. In: Johansen-

Berg, H., Timothy, B. (Eds.), Diffusion MRI from quantitative measurement to in-

vivo neuroanatomy. Academic Press, 32 Jamestown Road, London NW1 7BY, 

UK 



 23

11. Beaulieu, C., Allen, P.S., 1996. An in vitro evaluation of the effects of local 

magnetic-susceptibility-induced gradients on anisotropic water diffusion in nerve. 

Magn Reson Med 36, 39-44. 

12. Beaulieu, C., Plewes, C., Paulson, L.A., Roy, D., Snook, L., Concha, L., Phillips, 

L., 2005. Imaging brain connectivity in children with diverse reading ability. 

Neuroimage 25, 1266-1271. 

13. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W., 2007. 

Probabilistic diffusion tractography with multiple fibre orientations: What can we 

gain? Neuroimage 34, 144-155. 

14. Braet, W., Wagemans, J., Op de Beeck, H.P., 2012. The visual word form area is 

organized according to orthography. Neuroimage 59, 2751-2759. 

15. Brem, S., Bach, S., Kucian, K., Guttorm, T.K., Martin, E., Lyytinen, H., Brandeis, 

D., Richardson, U., 2010. Brain sensitivity to print emerges when children learn 

letter-speech sound correspondences. Proc Natl Acad Sci U S A 107, 7939-7944. 

16. Brem, S., Bucher, K., Halder, P., Summers, P., Dietrich, T., Martin, E., Brandeis, 

D., 2006. Evidence for developmental changes in the visual word processing 

network beyond adolescence. Neuroimage 29, 822-837. 

17. Brem, S., Halder, P., Bucher, K., Summers, P., Martin, E., Brandeis, D., 2009. 

Tuning of the visual word processing system: distinct developmental ERP and 

fMRI effects. Hum Brain Mapp 30, 1833-1844. 

18. Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., 

Hénaff, M.A., Michel, F., 2000. The visual word form area: spatial and temporal 

characterization of an initial stage of reading in normal subjects and posterior 

split-brain patients. Brain 123 ( Pt 2), 291-307. 

19. Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., Dehaene, S., 2002. 

Language-specific tuning of visual cortex? Functional properties of the Visual 

Word Form Area. Brain 125, 1054-1069. 



 24

20. Dehaene, S., Cohen, L., 2011. The unique role of the visual word form area in 

reading. Trends Cogn Sci 15, 254-262. 

21. Dell'Acqua, F., Rizzo, G., Scifo, P., Clarke, R.A., Scotti, G., Fazio, F., 2007. A 

model-based deconvolution approach to solve fiber crossing in diffusion-weighted 

MR imaging. IEEE Trans Biomed Eng 54, 462-472. 

22. Dell'acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., Fazio, F., 

2010. A modified damped Richardson-Lucy algorithm to reduce isotropic 

background effects in spherical deconvolution. Neuroimage 49, 1446-1458. 

23. Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C., 2009. 

Diffusion propagator imaging: using Laplace's equation and multiple shell 

acquisitions to reconstruct the diffusion propagator. Inf Process Med Imaging 21, 

1-13. 

24. Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C., 2011. 

Multiple q-shell diffusion propagator imaging. Med Image Anal 15, 603-621. 

25. Deutsch, G.K., Dougherty, R.F., Bammer, R., Siok, W.T., Gabrieli, J.D., Wandell, 

B., 2005. Children's reading performance is correlated with white matter structure 

measured by diffusion tensor imaging. Cortex 41, 354-363. 

26. Díaz, B., Hintz, F., Kiebel, S.J., von Kriegstein, K., 2012. Dysfunction of the 

auditory thalamus in developmental dyslexia. Proc Natl Acad Sci U S A 109, 

13841-13846. 

27. Epelbaum, S., Pinel, P., Gaillard, R., Delmaire, C., Perrin, M., Dupont, S., 

Dehaene, S., Cohen, L., 2008. Pure alexia as a disconnection syndrome: new 

diffusion imaging evidence for an old concept. Cortex 44, 962-974. 

28. Fiebach, C.J., Friederici, A.D., Müller, K., von Cramon, D.Y., 2002. fMRI 

evidence for dual routes to the mental lexicon in visual word recognition. J Cogn 

Neurosci 14, 11-23. 

29. Frank, L.R., 2002. Characterization of anisotropy in high angular resolution 



 25

diffusion-weighted MRI. Magn Reson Med 47, 1083-1099. 

30. Galaburda, A.M., Eidelberg, D., 1982. Symmetry and asymmetry in the human 

posterior thalamus. II. Thalamic lesions in a case of developmental dyslexia. Arch 

Neurol 39, 333-336. 

31. Heilman, K.M., Voeller, K., Alexander, A.W., 1996. Developmental dyslexia: a 

motor-articulatory feedback hypothesis. Ann Neurol 39, 407-412. 

32. Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J.L., 

McMillon, G., Kolchugina, G., Black, J.M., Faizi, A., Deutsch, G.K., Siok, W.T., 

Reiss, A.L., Whitfield-Gabrieli, S., Gabrieli, J.D., 2007. Functional and 

morphometric brain dissociation between dyslexia and reading ability. Proc Natl 

Acad Sci U S A 104, 4234-4239. 

33. Johansen-Berg, H., Behrens, T.E., Sillery, E., Ciccarelli, O., Thompson, A.J., 

Smith, S.M., Matthews, P.M., 2005. Functional-anatomical validation and 

individual variation of diffusion tractography-based segmentation of the human 

thalamus. Cereb Cortex 15, 31-39. 

34. Johnson, M.D., Ojemann, G.A., 2000. The role of the human thalamus in 

language and memory: evidence from electrophysiological studies. Brain Cogn 42, 

218-230. 

35. Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: a 

module in human extrastriate cortex specialized for face perception. J Neurosci 17, 

4302-4311. 

36. Karussis, D., Leker, R.R., Abramsky, O., 2000. Cognitive dysfunction following 

thalamic stroke: a study of 16 cases and review of the literature. J Neurol Sci 172, 

25-29. 

37. Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J.D., Moseley, M.E., 

Poldrack, R.A., 2000. Microstructure of temporo-parietal white matter as a basis 

for reading ability: evidence from diffusion tensor magnetic resonance imaging. 

Neuron 25, 493-500. 



 26

38. Lazar, M., Alexander, A.L., 2003. An error analysis of white matter tractography 

methods: synthetic diffusion tensor field simulations. Neuroimage 20, 1140-1153. 

39. Liu, C., Bammer, R., Acar, B., Moseley, M.E., 2004. Characterizing non-Gaussian 

diffusion by using generalized diffusion tensors. Magn Reson Med 51, 924-937. 

40. Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., Guillory, R.K., 

Conturo, T.E., 2002. Diffusion tensor fiber tracking of human brain connectivity: 

aquisition methods, reliability analysis and biological results. NMR Biomed 15, 

494-515. 

41. Lyon, G.R., 1995. Toward a definition of dyslexia. Annals of Dyslexia 45, 3-27. 

42. Marenco, S., Stein, J.L., Savostyanova, A.A., Sambataro, F., Tan, H.Y., Goldman, 

A.L., Verchinski, B.A., Barnett, A.S., Dickinson, D., Apud, J.A., Callicott, J.H., 

Meyer-Lindenberg, A., Weinberger, D.R., 2012. Investigation of anatomical 

thalamo-cortical connectivity and FMRI activation in schizophrenia. 

Neuropsychopharmacology 37, 499-507. 

43. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C., 1999. Three-dimensional 

tracking of axonal projections in the brain by magnetic resonance imaging. Ann 

Neurol 45, 265-269. 

44. Mori, S., van Zijl, P.C., 2002. Fiber tracking: principles and strategies - a 

technical review. NMR Biomed 15, 468-480. 

45. Moseley, M.E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H.S., 

Wendland, M.F., Tsuruda, J., Norman, D., 1990. Diffusion-weighted MR imaging 

of anisotropic water diffusion in cat central nervous system. Radiology 176, 439-

445. 

46. Niogi, S.N., McCandliss, B.D., 2006. Left lateralized white matter microstructure 

accounts for individual differences in reading ability and disability. 

Neuropsychologia 44, 2178-2188. 

47. Ozarslan, E., Mareci, T.H., 2003. Generalized diffusion tensor imaging and 



 27

analytical relationships between diffusion tensor imaging and high angular 

resolution diffusion imaging. Magn Reson Med 50, 955-965. 

48. Pajevic, S., Aldroubi, A., Basser, P.J., 2002. A continuous tensor field 

approximation of discrete DT-MRI data for extracting microstructural and 

architectural features of tissue. J Magn Reson 154, 85-100. 

49. Parker, G.D., Marshall, D., Rosin, P.L., Drage, N., Richmond, S., Jones, D.K., 

2012. A pitfall in the reconstruction of fibre ODFs using spherical deconvolution 

of diffusion MRI data. Neuroimage 65C, 433-448. 

50. Parker, G.J., Alexander, D.C., 2003. Probabilistic Monte Carlo based mapping of 

cerebral connections utilising whole-brain crossing fibre information. Inf Process 

Med Imaging 18, 684-695. 

51. Parker, G.J., Alexander, D.C., 2005. Probabilistic anatomical connectivity derived 

from the microscopic persistent angular structure of cerebral tissue. Philos Trans 

R Soc Lond B Biol Sci 360, 893-902. 

52. Petersen, S.E., Fox, P.T., Snyder, A.Z., Raichle, M.E., 1990. Activation of 

extrastriate and frontal cortical areas by visual words and word-like stimuli. 

Science 249, 1041-1044. 

53. Pierpaoli, C., Basser, P.J., 1996. Toward a quantitative assessment of diffusion 

anisotropy. Magn Reson Med 36, 893-906. 

54. Pitcher, D., Walsh, V., Yovel, G., Duchaine, B., 2007. TMS evidence for the 

involvement of the right occipital face area in early face processing. Curr Biol 17, 

1568-1573. 

55. Portas, C.M., Rees, G., Howseman, A.M., Josephs, O., Turner, R., Frith, C.D., 

1998. A specific role for the thalamus in mediating the interaction of attention and 

arousal in humans. J Neurosci 18, 8979-8989. 

56. Preston, J.L., Frost, S.J., Mencl, W.E., Fulbright, R.K., Landi, N., Grigorenko, E., 

Jacobsen, L., Pugh, K.R., 2010. Early and late talkers: school-age language, 



 28

literacy and neurolinguistic differences. Brain 133, 2185-2195. 

57. Price, C.J., Wise, R.J., Frackowiak, R.S., 1996. Demonstrating the implicit 

processing of visually presented words and pseudowords. Cereb Cortex 6, 62-70. 

58. Price, C.J., Wise, R.J., Watson, J.D., Patterson, K., Howard, D., Frackowiak, R.S., 

1994. Brain activity during reading. The effects of exposure duration and task. 

Brain 117 ( Pt 6), 1255-1269. 

59. Saygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D., Saxe, 

R.R., 2012. Anatomical connectivity patterns predict face selectivity in the 

fusiform gyrus. Nat Neurosci 15, 321-327. 

60. Shaywitz, S.E., 1998. Dyslexia. N Engl J Med 338, 307-312. 

61. Stejskal, E.O., Tanner, J.E., 1965. Spin Diffusion Measurements: Spin Echoes in 

the Presence of a Time‐Dependent Field Gradient. J. Chem. Phys. 42, 5. 

62. Tarkiainen, A., Cornelissen, P.L., Salmelin, R., 2002. Dynamics of visual feature 

analysis and object-level processing in face versus letter-string perception. Brain 

125, 1125-1136. 

63. Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of the 

fibre orientation distribution in diffusion MRI: non-negativity constrained super-

resolved spherical deconvolution. Neuroimage 35, 1459-1472. 

64. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A., 2004. Direct estimation 

of the fiber orientation density function from diffusion-weighted MRI data using 

spherical deconvolution. Neuroimage 23, 1176-1185. 

65. Tournier, J.D., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P., 2008. 

Resolving crossing fibres using constrained spherical deconvolution: validation 

using diffusion-weighted imaging phantom data. Neuroimage 42, 617-625. 

66. Tuch, D.S., 2004. Q-ball imaging. Magn Reson Med 52, 1358-1372. 



 29

67. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J., 

2002. High angular resolution diffusion imaging reveals intravoxel white matter 

fiber heterogeneity. Magn Reson Med 48, 577-582. 

68. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J., 2003. Diffusion MRI of 

complex neural architecture. Neuron 40, 885-895. 

69. Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A., 2002. Meta-analysis of 

the functional neuroanatomy of single-word reading: method and validation. 

Neuroimage 16, 765-780. 

70. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M., 2005. 

Mapping complex tissue architecture with diffusion spectrum magnetic resonance 

imaging. Magn Reson Med 54, 1377-1386. 

71. Wiegell, M.R., Larsson, H.B., Wedeen, V.J., 2000. Fiber crossing in human brain 

depicted with diffusion tensor MR imaging. Radiology 217, 897-903. 

72. Yeatman, J.D., Rauschecker, A.M., Wandell, B.A., 2012. Anatomy of the visual 

word form area: Adjacent cortical circuits and long-range white matter 

connections. Brain Lang. 

73. Zarei, M., Patenaude, B., Damoiseaux, J., Morgese, C., Smith, S., Matthews, P.M., 

Barkhof, F., Rombouts, S.A., Sanz-Arigita, E., Jenkinson, M., 2010. Combining 

shape and connectivity analysis: an MRI study of thalamic degeneration in 

Alzheimer's disease. Neuroimage 49, 1-8. 

74. Zhan, W., Stein, E.A., Yang, Y., 2004. Mapping the orientation of intravoxel 

crossing fibers based on the phase information of diffusion circular spectrum. 

Neuroimage 23, 1358-1369. 



 30

CHAPTER II 

 

THE STRUCTURAL CONNECTIVITY PATTERNS OF THE VISUAL WORD 

FORM AREA AND CHILDREN'S READING ABILITY 

 

2.1. Introduction 

 A significant number (5-17%) of individuals are affected by dyslexia, a 

developmental reading disorder characterized by difficulty recognizing and decoding 

words, or with phonological to orthographic conversions despite adequate instruction and 

intelligence (Fletcher et al., 1998; Lyon, 1995; Shaywitz, 1998). While the behavioral 

characteristics of dyslexia are fairly well understood, the exploration of the underpinning 

neural mechanisms is still ongoing.  

With the advent of neuroimaging techniques, especially functional MRI (fMRI), 

studies have mapped the areas in the brain that are associated with good and poor reading. 

Regarding visual orthographic conversion, in particular, a region in the left ventral 

occipitotemporal/fusiform region, known as the putative visual word form area (VWFA, 

Cohen et al., 2000; Petersen et al., 1988), is reproducibly found to be selectively 

responsive to written strings relative to other categories such as line drawings and is 
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thought to be important for fast and efficient word recognition (McCandliss et al., 2003). 

In contrast to this ventral word reading system, a dorsal route has been proposed as 

important for orthographic-to-phonological conversions (Pugh et al., 2000). Evidence in 

support of the ventral word reading system is seen in lesion studies (Epelbaum et al., 

2008; Mandonnet et al., 2009), PET (Petersen et al., 1990; Price et al., 1996), fMRI and 

ERP studies (Braet et al., 2012; Brem et al., 2010; Brem et al., 2006; Brem et al., 2009; 

Cohen et al., 2002; Nestor et al., 2012; Rauschecker et al., 2011).  

Despite the abundance in domain-specific findings within the VWFA, little is 

known about the role of the VWFA in terms of its structural connectivity to other reading 

related regions. While Diffusion Tensor Imaging (DTI) has been utilized in numerous 

neuroimaging studies to successfully relate brain connectivity patterns to its functions 

(Behrens et al., 2003a; Behrens et al., 2003b; Johansen-Berg et al., 2005; Marenco et al., 

2012; Menke et al., 2010; Saygin et al., 2012; Zarei et al., 2010), fewer researchers have 

explored the structural aspects of occipitotemporal/fusiform regions using deterministic 

DT-tractography. Very recent studies have examined anatomical connections of the 

VWFA in an adult epilepsy patient (Epelbaum et al., 2008) and typically developed 

children (Yeatman et al., 2012), which reveal that peri-VWFA regions have connections 

to occipital cortex through the inferior longitudinal fasciculus and vertical occipital 
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fasciculus, and to perisylvian language areas through the arcuate fasciculus. Other studies 

have mapped regions homologous to the putative VWFA using analyses combining DTI 

and fMRI. Specifically, Saygin et al. (Saygin et al., 2012) showed by using probabilistic 

tractography that structural connectivity patterns can predict face selectivity revealed by 

fMRI in the fusiform face area (FFA; right fusiform gyrus, Barton et al., 2002; Kanwisher 

et al., 1997; Pitcher et al., 2007), suggesting that linking brain structure and function is 

feasible in the fusiform regions. Therefore, overall, the combined VWFA and FFA DTI 

literature suggest that the VWFA connectivity profile of each individual, estimated by 

DT-tractography, may reveal important neurobiological information related to reading 

development, and therefore that VWFA connectivity profiles may be able to differentiate 

between good and poor readers. 

Here we examine, for the first time, VWF-system connectivity patterns along a 

posterior-anterior gradient as well as compare these connectivity patterns between 

children with reading disabilities (RD) and typically developing children (TD).  In order 

to obtain a fine grained understanding of VWFA connectivity, five consecutive spherical 

regions of interest (ROI) were defined within the ventral occipitotemporal region, which 

was based upon the functional neuroimaging literature (Brem et al., 2009). These ROIs 

progressed along a posterior to anterior gradient along the putative VWFA (Fig. 2.1).  
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Within each ROI, we examined connectivity patterns to various cortical regions (Fig. 2.2).  

Based upon the previous literature, we had several hypotheses, including: (1) we would 

find different VWFA-cortical connectivity patterns across the five ROIs; (2) we would 

find different VWFA-cortical connectivity patterns for children with reading disabilities 

(RD) versus those who were typically developing readers (TD); and finally, (3) the group 

differences would be differences in relative emphasis of connectivity to more basic visual 

areas versus those putatively involved in the fast and effective ventral pathway for word 

recognition. 

 

Figure 2.1. Illustration of five ROIs in the VWF-system. The five ROIs progress along a 

posterior to anterior gradient, each with a radius of 6 mm. The brightest ROI was 

numbered 1, and the 3rd ROI in the middle represents the putative VWFA. 
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Figure 2.2. Schematic method design. We bear two questions in mind: (a) whether there 

is a group difference in connectivity pattern; and (b) if so, what is the feature pattern that 

best differentiates between groups. To answer question (a), we performed a distance-

based permutation test, where correlation coefficient was computed pair-wisely to 

estimate similarity. Distance, or dissimilarity, was calculated as one minus similarity. The 

triangular matrix yielded a single value of pseudo-F statistic that estimates how well 

group membership explains the distances between individuals. Then group membership 

was permuted to build a pseudo-F distribution and determine statistical significance. If a 

significant difference was found, a linear regression of group membership onto 

connectivity profiles was performed to compute cortical contributions to group difference 

(b). 
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2.2. Methods  

 

2.2.1. Participants 

 A total of 50 children participated in this study, and 4 were excluded due to 

imaging artifacts. All of these children are right handed, and 20 were female. Before 

entering the study, parents of children were administered an informal screening measure 

over the phone to ensure that participants met the study’s inclusionary criteria: 1) native 

English speakers, 2) normal hearing and vision, 3) no history of major psychiatric illness, 

4) no traumatic brain injury/epilepsy, and 5) no contraindication to the MRI. Each parent 

gave written consent while a separate written assent was obtained from each child at the 

start of the study, with procedures carried out in accordance with the university’s 

Institutional Review Board. During their visit, participants were given a comprehensive 

battery of psychoeducational and academic achievement measures. Each individual 

received the Wechsler Intelligence Scale for Children-III (WISC-III; Wechsler, 1991) to 

determine eligibility based upon FSIQ criteria. Eligible participants completed a battery 

of standardized tests to determine reading ability (RD or TD). The behavioral 

measurement battery consisted of the following standardized measures of intellectual and 

academic achievement: the Test of Silent Contextual Reading Fluency (TOSCRF-Form A; 
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Hammill et al., 2006);  Phonological Decoding Efficiency (PDE) and Sight Word 

Efficiency (SWE) from the Test of Word Reading Efficiency (TOWRE; Torgesen et al, 

1997); and Word Attack (WA), Word Identification (Word ID), and Passage 

Comprehension (PC) subtests from the Woodcock Johnson –III (WJ-III; Woodcock, 2001; 

Woodcock et al., 2003).  

Participants met criteria for RD if they had a standard score at or below the 25th 

percentile on the Basic Reading Composite (BR) on the WJ-III, which consists of the 

Word ID and WA measures. Participants met criteria to be TD by having a standard score 

at or above the 37th percentile on the BR. Of the eligible participants, 17 met criteria for 

RD and 24 met criteria for TD.  

The two groups of children were not significantly different in age, gender or non-

verbal IQ. Multivariate ANOVA (MANOVA) showed their behavioral profiles related to 

reading and language skills were significantly different (F[1, 26] = 6.257, p < 0.001, (ηp
2 

= 0.684)). There were no significant difference in there behavioral profiles otherwise. See 

Table 2.1 for detailed demographic and behavioral profiles. 
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Table 2. 1. Demographic and neuropsychological profiles of each group (mean ± 

S.E.M.) 

 TD RD p ηp
2 

 Demographic and General Intelligence Measures   

Gender 9F / 8M 11F / 13M   

Age 11.5 ± 0.7 12.1 ± 0.6 0.54 0.011 

WISC VCI 107.1 ± 3.4 97.2 ± 2.8 0.03 0.130 

WISC PRI 100.5 ± 3.8 101.7 ± 3.2 0.81 0.002 

 Standardized Word-level and Language Measures   

TOSCRF 94.2 ± 3.0 82.6 ± 2.5 0.005 0.210 

TOWRE PDE 98.5 ± 2.9 80.1 ± 2.5 < 0.001 0.401 

TOWRE SWE 100.5 ± 3.1 82.6 ± 2.6 < 0.001 0.364 

WJ LWID 104.2 ± 2.4 82.3 ± 2.0 < 0.001 0.591 

WJ WA 102.2 ± 2.0 88.1 ± 1.7 < 0.001 0.452 

WJ PC 101.3 ± 3.3 85.2 ± 2.8 < 0.001 0.289 

Abbreviations: SEM = Standard Error of the Mean; WISC = Wechsler Intelligence Scale 

for Children; VCI = Verbal Comprehension Index; PRI = Perceptual Reasoning Index; 

TOSCRF = Test of Silent Contextual Reading Fluency (Form A); TOWRE = Test of 

Word Reading Efficiency; PDE = Phonological Decoding Efficiency; SWE = Sight Word 

Efficiency; WJ = Woodcock Johnson (from WRMT-R/NU); LWID = Letter Word 

Identification; WA = Word Attack; PC = Passage Comprehension.  

ηp
2 is the partial eta squared as a measure of effect size.  

 

2.2.2. MRI procedures 

Data Acqusition   Diffusion-weighted images were acquired on a 3.0-T Philips 

MR scanner using a single shot echo planar imaging sequence, SENSE factor 2.5, 60- x 

2.2-mm thick axial slices, field of view 212 x 212 mm2, acquired in 96 x 96 matrices, 

interpolated to 256 x 256, yielding 0.828 x 0.828 x 2.2 mm3 voxel size. Diffusion 

weighting was isotropically distributed along 32 directions with maximum b-value of 700 
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s/mm2. A structural scan was acquired for each participant using a magnetization-

prepared rapid acquisition gradient-echo (MPRAGE) pulse sequence (TR/TE = 8.0/3.7 

ms, flip angle = 8o, SENSE factor = 2, voxel size 1 x 1 x 1 mm3). 

Data Processing   The MR data were processed using Freesurfer and FSL. The 

T1-weighted images were used to perform brain parcellations using Freesurfer (Fischl et 

al., 2002; Fischl et al., 2004). On each side of the brain, the cortex was segmented into 34 

non-overlapping regions (Desikan et al., 2006). The non-diffusion-weighted images were 

registered to T1-weighted images by 12 degrees of freedom affine registration in FSL 

(Jenkinson et al., 2002; Jenkinson and Smith, 2001), and then the transformation was 

inverted and applied to the parcellated T1-weighted images. Head motion and eddy 

current artifacts were corrected by linearly registering diffusion-weighted images to the 

non-diffusion-weighted image. The imaging data and each step of processing were 

visually checked to ensure the absence of motion artifact or parcellation/registration 

failure. Probabilistic fiber tracking was performed from each of the five spherical ROIs to 

the remaining cortex, comprised of 68 parcels. Briefly, the five ROIs were designed to 

cover the putative VWFA in the left fusiform gyrus, each had a radius of 6 mm, and were 

located along an anterior-posterior axes (Brem et al., 2009) (Fig. 2.1). The MNI 

coordinates of ROI centers were: ROI1 (-42, -80, -14), ROI2 (-42, -68, -16), ROI3 (-42, -
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54, -17), ROI4 (-42, -42, -18), and ROI5 (-42, -30, -20). Specifically, ROI3 represented 

the putative VWFA as described previously (Cohen et al., 2000). 10,000 samples were 

initiated for probabilistic fiber tracking in each seed voxel, and the CSF region was 

excluded for streamlines to pass through. For each of the five ROIs, the number of 

streamlines found by the fiber tracking algorithm to connect to the 68 target cortical 

parcels was calculated. 

 

2.2.3. Connectivity pattern analysis 

Distance Matrix and Permutation Test The distance-based permutation test, a 

non-parametric multivariate analysis for group difference detection (Reiss et al., 2010), 

was performed. The test started by measuring the similarity between each pair of 

participants. Similarity was represented by the linear correlation coefficient ݎ௜௝ ൌ

,൫ܿ௜ݎݎ݋ܿ ௝ܿ൯, 1 ൑ ݅, ݆ ൑ ܰ, ݅ ് ݆ , where ܿ௜ , an 1 ൈ ݊௣௔௥௖  vector, where ݊௣௔௥௖  was the 

total number of cortical parcels, was the connectivity profile for the ݅௧௛ subject, and ܰ 

was the total number of subjects in all groups. An ܰ ൈ ܰ lower triangular matrix of 

distance ܦ was created, where each element, ݀௜,௝ ൌ 1 െ  ௜௝, represents the dissimilarityݎ

or distance between subjects, ranging from 0 for being coherently varying, to 2 for being 

negatively coherent, and 1 represents being purely unrelated. A pseudo-F statistic was 
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computed to estimate how well group membership explains the distances between 

participants (Shehzad et al., 2011). Then the group membership was shuffled 15,000 

times to build up a permutation distribution. Significance level p was calculated as the 

percentage of random permutations which yielded a pseudo-F statistic greater than the 

real group membership did. A critical value of p = 0.05 was used to determine statistical 

significance. 

Pattern Difference Identification First, the connectivity profiles were normalized 

by the total fiber counts, so that for each subject, the percentages of fiber counts 

originating from one particular ROI connecting to all cortical parcels sum up to 100%. 

Principal component analysis (PCA) was then performed on the total connectivity profile 

ܰ an ,ܥ ൈ ݊௣௔௥௖ matrix, and the minimum number of components accounting for >90% 

of total variance in the dataset, ݊௉஼, was determined. The scores corresponding to these 

components, ܺ , in an ܰ ൈ ݊௉஼   matrix, were used as predictor variables, and group 

membership, ܻ, in an ܰ ൈ 1 vector, as response matrix, i.e., ௜ܻ ൌ 1, for 1 ൑ ݅ ൑ ்ܰ஽; 

௜ܻ ൌ 0, for ்ܰ஽ ൅ 1 ൑ ݅ ൑ ܰ, ܰ ൌ ்ܰ஽ ൅ ோܰ஽, where  ்ܰ஽ and ோܰ஽ were the number 

of participants in TD group and RD group, respectively. The linear regression coefficients 

௉஼, an ݊௉஼-dimensional vector, was a linear combination of ݊௉஼ߚ  principal components 

that best differentiate between groups, which was then translated to a connectivity profile 
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space, or ߚ ൌ ܥܲ ∗ ௉஼ߚ , where ߚ was an  ݊௉஼ ൈ 1  vector, and ܲܥ  was a ܰ ൈ ݊௉஼ 

matrix comprised of the first  ݊௖௢௠௣ principal components. Additionally, a 2-tailed two 

sample T-test on ෠ܻ  was performed, where ෠ܻ ൌ ܻ ൅  .ݏ݈ܽݑ݀݅ݏ݁ݎ

 

2.3. Results  

 

2.3.1. Comparison across five ROIs 

To estimate similarity between ROIs across participants, a distance matrix was 

computed, in which TD and RD groups were combined (Fig. 2.3). Hot color represents 

greater between-subject distance, and cold color represents higher degree of similarity. To 

investigate whether differences in connectivity patterns existed between the five ROIs, a 

pair-wise contrast permutation test was performed. Results from this analysis showed that 

statistically significant differences existed between many of the ROIs, except between 

ROI3 and ROI4 (Table 2.2).  
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Figure 2.3. Distance matrix across subjects and ROIs. Subjects of TD and RD groups 

were combined to compute the distance matrix across the five ROIs. The pairwise 

correlation coefficient was computed to estimate similarity in the connectivity profile 

between participants or between ROIs. Distance, or dissimilarity, was calculated as one 

minus similarity, which ranges from 0 for being coherently varying to 2 for being 

negatively coherent, and 1 represents being purely unrelated. The triangular subdivisions 

noted by the dashed lines near the diagonal border reflected how individuals’ connectivity 

profiles for the same ROI were different from each other, and the square subdivisions 

reflected how individuals’ connectivity profiles of one particular ROI was different from 

all participants’ connectivity profiles of another ROI. 
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Table 2. 2. Distance-based permutation test between ROIs 

Pairwise pseudo-F 

Pairwise p value 
ROI1 ROI2 ROI3 ROI4 ROI5 

ROI1  24.6 59.1 63.6 58.3 

ROI2 <0.001  24.7 32.2 30.7 

ROI3 <0.001 <0.001  1.7 4.8 

ROI4 <0.001 <0.001 0.11  2.9 

ROI5 <0.001 <0.001 <0.001 0.009  

A total of 15,000 permutations were computed, and p was calculated as the percentage of 

random permutations which yielded a pseudo-F statistic greater than the real group 

membership did. The pair-wise pseudo-F statistics are listed in the upper triangular 

portion of the table, and the p values are listed in the lower triangular portion. 

 

To further explore the factor(s) driving these differences, a pairwise comparison 

was calculated in which ROI locations were linearly regressed on each ROI’s 

connectivity profile. Findings demonstrated that occipital connections progressively 

decreased along an anterior to posterior gradient. From ROI1 to ROI3, the ratio of 

connections to inferior temporal and fusiform was found to increase; from ROI3 to ROI5, 

ratio of connections to fusiform started to decrease, and a higher portion of connections 

to medial areas was found, such as para-hippocampus and entorhinal regions (Fig. 2.4, 

Table 2.3). No significant difference was found between ROI4 and ROI3; therefore, ROI4 

was not included in this comparison. 
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Figure 2. 4. Cortical contributions to connectivity pattern difference between consecutive 

ROIs. A linear regression of ROI membership (1 for anterior, 0 for posterior) onto 

connectivity profiles was performed, and regression coefficients, ߚ, are displayed in 

color to show contributions from each cortical parcel that best described the contrast, i.e., 

hot colors represent cortical parcels that had a higher connection ratio to the anterior ROI 

than the posterior one, and vice versa. To better reveal the color distribution, ߚ shown 

here was rescaled to a range of -1 to 1. 

 

 



 45

Table 2. 3. Cortical contributions to differentiating between consecutive ROIs 

Cortical parcels coefficient Cortical parcels coefficient 

ROI2 > ROI1  ROI1 > ROI2 

L inferiortemporal              0.9753  L lateraloccipital                ‐1.5124 

L fusiform                          0.4803  L lingual                            ‐0.0706 

L middletemporal                0.0833  L superiorparietal              ‐0.0088 

L inferiorparietal                0.0306  L isthmuscingulate            ‐0.0025 

L superiortemporal            0.0090     

L supramarginal                  0.0066     

L parahippocampal            0.0043     

L rostralmiddlefrontal        0.0026     

L cuneus                            0.0020     

R precuneus                        0.0014     

L postcentral                      0.0013   

ROI3 > ROI2  ROI2 > ROI3 

L inferiortemporal              2.0295  L lateraloccipital                ‐1.8226 

L fusiform                          0.1384  L lingual                            ‐0.1576 

L supramarginal                  0.0053  L inferiorparietal                ‐0.0694 

L bankssts                          0.0033  L parahippocampal            ‐0.0433 

    L middletemporal              ‐0.0369 

    L superiorparietal              ‐0.0136 

    L superiortemporal            ‐0.0120 

    L isthmuscingulate            ‐0.0047 

    L insula                              ‐0.0035 

    R superiorparietal              ‐0.0027 

    R isthmuscingulate            ‐0.0019 

    R lateraloccipital                ‐0.0017 

    R precuneus                      ‐0.0017 

    L pericalcarine                    ‐0.0014 

ROI5 > ROI3  ROI3 > ROI5 

L parahippocampal            4.4607  L lateraloccipital                ‐3.9450 

L entorhinal                        2.5366  L fusiform                          ‐2.3820 

L lingual                              0.6277  L inferiortemporal              ‐1.0386 

L temporalpole                  0.2485  L inferiorparietal                ‐0.7419 

L pericalcarine                    0.1901  L superiortemporal            ‐0.1779 
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L middletemporal                0.1828  L insula                              ‐0.1042 

L bankssts                          0.0863  L lateralorbitofrontal          ‐0.0126 

L cuneus                            0.0156  R superiorparietal              ‐0.0045 

L superiorparietal                0.0128  L precentral                        ‐0.0029 

R lingual                              0.0114  L transversetemporal        ‐0.0020 

L precuneus                        0.0093   

L supramarginal                  0.0070   

L isthmuscingulate              0.0054   

R precuneus                        0.0052   

R isthmuscingulate              0.0040   

L parsopercularis                0.0037   

L postcentral                      0.0027   

L parstriangularis                0.0018   

L frontalpole                      0.0016   

L parsorbitalis                    0.0014   

Positive predictors are listed on the left, and negative predictors were on the right.

 

2.3.2. Group differences in connectivity patterns 

For each ROI, we performed a distance-based permutation test to explore 

whether the VWFA connectivity pattern differed between TD (N = 17) compared to RD 

groups (N = 24, see Table 2.4 for demographic and behavioral data). Statistically 

significant differences were found between groups in ROI3 (Table 2.5), the putative 

center of the VWFA, (pseudo-F[1,39] = 1.167, and p = 0.027) and ROI2, (pseudo-F[1,39] 

= 1.153, and p = 0.028). We performed two sample t tests contrasting the group 

connectivity profiles within ROI2 and ROI3. Results showed greater between-group than 

within-group distances (ROI2: t = -1.434, p = 0.152; ROI3: t = -2.381, p = 0.0175), 
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indicating that the connectivity profile of a particular TD subject was more similar to the 

profile of other TD participants than RD participants. These findings suggest 

differentiation between the TD and RD groups with regards to their respective 

connectivity profile features. 

 

Table 2. 4. Permutation test for connectivity pattern 

 pseudo-Fa p(pr > pseudo-F)b 

ROI1 1.01 0.323 

ROI2* 1.15 0.028 

ROI3* 1.17 0.027 

ROI4 0.96 0.834 

ROI5 0.96 0.740 

a. Similar to a standard F statistic, a greater pseudo-F value represents greater between 

group variance, see method session for more details.  

b. A total number of 15,000 permutations were computed, and p was calculated as 

percentage (pr) of random permutations which yielded a pseudo-F statistic greater than 

the real group membership did. 

* p < 0.05. 

 

2.3.3. Characterization of the group differences in connectivity patterns 

A multiple linear regression of group membership on connectivity profiles was 

computed to identify the feature of the connectivity pattern that best differentiate groups 

(Figure 2.5 and Table 2.5). In ROI3, the VWFA, the RD group compared to the TD group 

had weaker connections to left fusiform gyrus and more connections to left lateral 
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occipital cortex. In ROI2, RD group had fewer connections to both left fusiform gyrus 

and left inferior temporal gyrus, and more connections to left lateral occipital cortex. The 

outcome of the regression model showed significant group difference in ROI2 (t = 2.97, p 

= 0.005) and ROI3 (t = 2.59, p = 0.014). The same approach could not replicate 

significant group difference for other ROIs, which was consistent with the results of the 

non-parametric permutation test. 
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Table 2. 5. The connectivity pattern characteristic of group difference 

Cortical parcels coefficient Cortical parcels coefficient 

ROI2 

TD > RD  RD > TD 

L fusiform                                0.9524  L lateraloccipital                ‐1.2782 

L inferiortemporal                  0.5261  L lingual                              ‐0.0789 

L supramarginal                      0.0034  L inferiorparietal                ‐0.0547 

L insula                                    0.0025  L parahippocampal            ‐0.0410 

L rostralmiddlefrontal              0.0019  L middletemporal              ‐0.0209 

L lateralorbitofrontal              0.0017  L superiorparietal              ‐0.0065 

L postcentral                            0.0013  L isthmuscingulate              ‐0.0033 

    R superiorparietal              ‐0.0024 

    L pericalcarine                    ‐0.0017 

    R lateraloccipital                ‐0.0017 

    R isthmuscingulate            ‐0.0014 

ROI3 

TD > RD  RD > TD 

L fusiform                                1.5761  L lateraloccipital                ‐0.9997 

L parahippocampal                  0.0475  L middletemporal              ‐0.3221 

L entorhinal                            0.0243  L inferiortemporal              ‐0.1631 

L insula                                    0.0030  L inferiorparietal                ‐0.1030 

L cuneus                                  0.0023  L superiortemporal            ‐0.0331 

L medialorbitofrontal              0.0016  L lingual                              ‐0.0168 

L lateralorbitofrontal              0.0014  L superiorparietal              ‐0.0085 

L temporalpole                        0.0012  L supramarginal                  ‐0.0050 

    L postcentral                      ‐0.0031 

  L pericalcarine                    ‐0.0021 

Predictors positively contributing to TD group were listed on the left. 
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Figure 2. 5. Cortical contributions to the pattern feature and outcome of the model. A 

linear regression of ROI membership (1 for TD, 0 for RD) onto connectivity profiles was 

performed, and regression coefficients, ߚ, were displayed in colors to show contributions 

from each cortical parcel that best described the group difference, i.e., cortical parcels 

that had a higher connection ratio in TD than RD were labeled with hot colors, and vice 

versa. A two-tailed T-test was performed on the model outcomes, which showed 

significant difference between groups. The same approach was also performed on other 

ROIs, but could not tell group difference significantly. 

 

 

2.4. Discussion and conclusion 

The current study examined the VWF-system structural connectivity patterns in 

children ranging in reading ability. Across all children, we found evidence that is 
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consistent with fMRI VWFA findings. Specifically, we demonstrated that progressing 

along a posterior to anterior gradient, the connectivity pattern varied significantly, namely 

that decreasing connectivity to visual areas (lateral occipital lobe) was observed moving 

from the posterior to anterior ROIs; in contrast, increasing connectivity to classic word 

recognition areas (e.g., fusiform and supramarginal gyri) was observed moving from 

posterior to anterior ROIs.  Furthermore, when group differences were examined, we 

found evidence of a relationship between structural connectivity patterns related to the 

children’s reading ability.  In particular, results showed that in the central VWFA ROIs, 

differences in connectivity patterns were revealed, such that TD showed more 

connectivity to fusiform regions, whereas RD had more connections to visual areas. 

The five ROIs utilized in this study included the VWFA and adjacent regions of 

the VWF-system, where a posterior-anterior progression of increased specialized 

response to print has been found in children (Brem et al., 2009; van der Mark et al., 2009) 

and in adolescents and adults (Brem et al., 2006; Brem et al., 2009; Vinckier et al., 2007). 

Previous studies have demonstrated that more anterior regions in the VWF-system are 

engaged in increasingly multimodal and semantic computations, whereas posterior 

regions are more responsible for perception of the visual aspect of print, including false-

fonts (Cohen et al., 2004; Cohen et al., 2002). Because these seed ROIs used in the 
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current study have been shown by fMRI to have distinct functions, which therefore 

presumably would be linked to distinct cortical areas, we hypothesized that networks 

comprising these sub-systems, i.e., white matter connectivity patterns, would be 

differentiable from each other. Consistent with our expectations, from ROI1 (the most 

posterior ROI) to ROI3 (the putative VWFA), we found that the connectivity pattern in 

the consecutive ROIs progressively changed from heavily connected to visual cortex to 

favoring regions responsible for VWF recognition in the left inferior-temporal region 

(McCandliss et al., 2003).  A somewhat unexpected finding was that towards the 

anterior tip of the VWF-system, ROI5 (the most anterior ROI) differed from ROI3 by 

favoring entorhinal and parahippocampal regions instead of the fusiform gyrus. 

Entorhinal cortex and parahippocampal areas are an important part of neural circuitry for 

establishing long-term memory and are related to recognition memory, particularly 

automated recognition memory (Murray and Richmond, 2001; Squire and Zola-Morgan, 

1991). Therefore, the finding of a higher connection ratio to these regions in the anterior 

portion of the VWF-system may reflect the mechanism readers use for rapid memory-

based retrieval of word meaning. Indeed, fMRI findings show that activation anteriorly in 

the VWF-system is correlated with reading speed, regardless of age (Brem et al., 2006).  

Fluent reading requires efficient and well-tuned left hemisphere circuitry, and 
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therefore difficulties with reading have long been hypothesized to be reflective of 

inefficiencies in cortical connections; such suppositions date as far back as the initial 

studies of pure alexia, the original  “disconnection syndrome” (Charcot, 1890; Dejerine, 

1892; Kussmaul, 1877). In the first study examining the anatomical connections of 

VWFA, Epelbaum and colleagues (Epelbaum et al., 2008) used DT-tractography to map 

connectivity of the VWFA in an adult epilepsy patient before and after surgery.  Before 

surgery, the patient was a proficient reader, and DT-tractography showed that the VWFA 

(identified by fMRI) was linked to the occipital lobe and to supramarginal gyrus through 

the inferior longitudinal (ILF) and arcuate fasciculi (AF), respectively.  During surgery a 

small part of the VWFA was removed.  Post-surgery, preservation of the AF was 

observed, but degeneration of the ILF was revealed; in conjunction with these findings, 

pure alexia with letter-by-letter reading developed in the patient. This case study provided 

sound evidence that the connection between VWFA and occipital cortex plays a key role 

in visual word form conversion, and that disruption to connections can result in reading 

difficulty.  Consistent with the long- standing hypotheses regarding inefficient 

connectivity being related to reading difficulty, our results showed that differences 

between TD and RD in structural connectivity patterns were found in regions crucial for 

visual spatial processing (Kanwisher and Wojciulik, 2000) (ROI2) and relay of visual 
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stimuli to specific linguistic networks (van der Mark et al., 2011) (ROI3). More 

specifically, in the ROIs central to the VWFA (ROI2 and ROI3), feature cortical 

connectivity patterns yielded group differences in lateral occipital gyrus, left fusiform and 

inferior temporal gyrus. For both ROI2 and ROI3, the lateral occipital cortex connectivity 

was found to be a negative predictor for reading ability, which was coupled with left 

fusiform as a positive predictor, i.e., in TD, VWFA had a stronger tendency to connect to 

local fusiform gyrus, while in RD, a larger portion of white matter tracts were dedicated 

for communication with brain regions that support visual perception.  In contrast to 

ROI2 and ROI3, no differences were found in the VWFA ROI thought to be mainly 

responsible for lower level processing (ROI1), or for those that have been found to be 

responsible for modality independent lexical-semantic processing (ROI4 and ROI5, Lau 

et al., 2008; Vigneau et al., 2006).   

Overall, our results showed that the VWF-system for both RD and TD were 

comprised of connectivity to regions important for visual word form recognition, for 

example, occipital cortex and fusiform gyrus. Nevertheless, the relative load on cortical 

regions for children with RD was different from TD, with RD showing greater 

preferential connectivity to more basic visual processing areas, while TD showed 

preferential connectivity to areas that putatively play a role in integrating meaning and 
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form, i.e., the left fusiform gyrus, which is thought to relate visual stimuli to the linguistic 

specific network (van der Mark et al., 2011). A higher connection ratio of occipital cortex 

in RD could be interpreted as reflecting deficient connections to critical regions involved 

in distinguishing verbal from non-verbal forms, which thus give rise to difficulty with 

reading, and is therefore indicative of a relatively lower dedication in RD of connections 

supporting the processing of word forms. Nevertheless, it is important to mention that 

while differences were found between TD and RD, these differences are relative 

differences, reflecting preferential connectivity patterns; overall, across both groups, 

connections were evident in fusiform regions, suggesting that while the circuitry in RD 

may be different, it may not be wholly disrupted.  Indeed, it has been suggested that the 

linguistic system in RD is poorly tuned, but not completely disrupted (Pugh et al., 2008).  

In closing, in previous eras, there could only be speculation of the existence of a 

visual word-form system either in ventral occipital temporal cortex (Kinsbourne and 

Warrington, 1963) or in temporal parietal cortex (Warrington and Shallice, 1980) because 

of the limited neurobiological techniques available. With the advent of fMRI and DTI, 

modern techniques are now precise enough to predict brain functions with structural 

information alone (Saygin et al., 2012) and numerous fMRI studies have reliably found 

that the left ventral occipitotemporal/fusiform region is selectively responsive of written 
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strings relative to other categories.  Among the pioneers initiating the investigation of 

the VWFA using fMRI (Cohen et al., 2000), Dehaene and Cohen recently asked (Dehaene 

and Cohen, 2011): “what are the precise connections of the VWFA? Can its connectivity 

pattern explain its specific role in written word recognition?” The findings of the current 

study contribute towards answering these questions, and provide a foundation for further 

explorations of connectivity patterns in the VWFA, especially patterns that may be less 

than optimal in RD. 
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CHAPTER III 

 

THALAMOCORTICAL CONNECTIVITY: WHAT CAN DIFFUSION 

TRACTOGRAPHY TELL US ABOUT READING DIFFICULTIES IN CHILDREN? 

 

3.1. Introduction 

 Dyslexia is a developmental reading disorder that affects a significant number (5-

17%) of individuals, and is characterized by deficits in phonological processing which 

consequently impede the development of adequate word recognition/decoding. These 

deficits are specific, and are present despite adequate instruction and intelligence (Lyon, 

1995; Shaywitz, 1998). While the behavioral characteristics of dyslexia are fairly well 

known, the neurobiological characteristics of this disorder are still under examination.  

However, with the advent of neuroimaging, especially functional MRI (fMRI), over the 

last two decades, studies have mapped the areas in the brain that are associated with good 

and poor reading. Converging findings reveal that proficient reading performance is 

associated with a coordinated left hemisphere network that involves temporo-parietal, 

occipitotemporal, inferior frontal and anterior perisylvian regions, including sensorimotor, 

premotor, pars opercularis and triangularis (Broca’s) areas (Heilman et al., 1995). 
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Conversely, in those who demonstrate impaired performance (dyslexia), the homologous 

right hemisphere regions are recruited, with underactivation seen in particular in left 

fusiform gyrus (Richlan et al., 2011).  

In addition to differences in functional activation, the strength of connectivity 

between these regions may also influence reading skill.  Accurate and fluent reading 

requires a synthesis of information between cortical processing regions via white matter 

tracks connecting these regions. For this reason, in order to understand more about 

dyslexia, structural neuroimaging studies have been employed to map white matter 

microstructure through the use of Diffusion Tensor Imaging (DTI).  Consistent with 

findings from functional imaging studies, white matter microstructural anomalies have 

been reported in regions such as left inferior frontal gyrus, left temporo-parietal region, 

left insula, and left fusiform (Davis et al., 2010; Niogi and McCandliss, 2006; Rimrodt et 

al., 2010). These findings suggest that the characteristics of white matter pathways 

between distant cortical regions are potentially an important aspect of the neurobiology of 

dyslexia. 

While the primary focus of neuroimaging work to date in dyslexia has been on 

cortical regions, more recently there has been an interest in subcortical regions. In 

particular, previous studies have reported individual variability in functional (Díaz et al., 
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2012; Fiebach et al., 2002; Hoeft et al., 2007; Preston et al., 2010; Price et al., 1994; 

Turkeltaub et al., 2002;) and structural (e.g., Galaburda and Eidelberg, 1982) aspects of 

the thalamus that relate to differences in reading skills. That there is thalamic 

involvement in dyslexia is not surprising because the thalamus acts as an information 

processing way station for the brain, relaying signals contributing to the regulation of 

arousal (Portas et al., 1998) and cognition (Johnson and Ojemann, 2000; Karussis et al., 

2000). It is therefore logical that the cortical regions implicated in dyslexia may be due to 

anomalous thalamo-cortical connectivity. Nevertheless, despite the thalamus’ central 

“relay station” role, and functional imaging studies showing thalamic anomalies in 

dyslexia, to date no in vivo study has examined whether thalamo-cortical structural 

connectivity is related to reading ability. This may be because it is technically complex to 

capture thalamo-cortical connectivity, given the small size of the white matter tracts 

within the thalamus. However, studies have shown that agreement exists between 

thalamic subdivisions identified by cytoarchitecture and those identified by diffusion 

tractography connectivity measures (Behrens et al., 2003a; Johansen-Berg et al., 2005). 

In fact, tractography defined thalamo-cortical connectivity has revealed structural 

alterations in a number of disorders, such as Alzheimer's disease (Zarei et al., 2010) and 

schizophrenia (Marenco et al., 2012), suggesting that examination of thalamo-cortical 
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connectivity is feasible.  

In this chapter we examine the connectivity between the thalamus and cortical 

regions that have been implicated in dyslexia. Establishing whether white matter 

anomalies are present in pathways from such a critical subcortical region of the brain may 

shed light on subcortical-cortical interactions in dyslexia, and where anomalies may exist. 

Given the lack of previous studies in dyslexia examining potential connectivity 

differences between those with dyslexia and typically developing readers, our hypotheses 

were necessarily general; however, given the differences in functional activation in the 

thalamus between typically developing and dyslexic groups, and the cytoarchitectural 

findings, we expected that we would find differences in connectivity between the 

thalamus and cortical regions. While specificity of these regions was difficult to pinpoint, 

in the one previous connectivity study (Davis et al., 2010), we showed differences in 

thalamo-cortical connectivity between responders and non-responders to reading 

intervention. Therefore, we expected thalamo-cortical differences between groups in the 

standard language-related regions near the perisylvian cortex, such as the occipito-

temporal cortex (OTC) and the temporo-parietal cortex (TPC). We also expected to find 

group differences in connectivity between the thalamus and areas within the anterior 

perisylvian region, including sensorimotor cortex. Activation in this area during word 
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recognition tasks (Zatorre et al. 1992) may reflect the underlying association between 

speech sound articulations and reading (Heilman et al., 1995). 

 

3.2. Methods 

 

3.2.1. Participants 

 A total of 50 children participated in this study, and 4 children were excluded due 

to imaging artifacts. All of these children are right handed, 20 were female. Before 

entering the study, parents of children were administered an informal screening measure 

over the phone to ensure that participants met the study’s inclusion criteria: 1) native 

English speakers, 2) normal hearing and vision, 3) no history of major psychiatric illness, 

4) no traumatic brain injury/epilepsy, and 5) no contraindication to MRI. Each parent 

gave written consent while a separate written assent was obtained from each child at the 

start of the study, with procedures carried out in accordance with the university’s 

Institutional Review Board. During their visit, participants were given a comprehensive 

battery of psychoeducational and academic achievement measures. Each individual 

received the Wechsler Intelligence Scale for Children-III (WISC-III; Wechsler, 1991) to 

determine eligibility based upon FSIQ criteria. Eligible participants completed a battery 
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of standardized tests to determine reading ability (RD or TD). The battery consisted of 

the following standardized measures of intellectual and academic achievement: Rapid 

Naming subtest from the Comprehensive Test of Phonological Processing (CTOPP; 

Wagner et al., 1999); the Test of Silent Contextual Reading Fluency (TOSCRF-Form A; 

Hammill et al., 2006);  Phonological Decoding Efficiency (PDE) and Sight Word 

Efficiency (SWE) from the Test of Word Reading Efficiency (TOWRE; Torgesen et al, 

1997); Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) subsets 

from Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV; Wechsler, 

2003); Spelling and Fundamental Literacy Index (FLI) subsets from the Word 

Identification and Spelling Test (WIST; Wilson and Felton, 2004); and Word Attack (WA), 

Word Identification (Word ID), and Passage Comprehension (PC) subtests from the 

Woodcock Johnson –III (WJ-III; Woodcock, 2001; Woodcock et al., 2003). 

Participants met criteria for RD if they had a standard score at or below the 25th 

percentile on the Basic Reading Composite (BR) on the WJ-III, which consists of the 

Word ID and WA measures. Participants met criteria to be TD by having a standard score 

at or above the 40th percentile on the BR. Of the eligible participants, 23 met criteria for 

RD and 21 met criteria for TD.  

The two groups of children were not significantly different in age, gender or non-
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verbal IQ. Multivariate ANOVA (MANOVA) showed their behavioral profiles related to 

reading and language skills were significantly different, and there were no significant 

difference in there behavioral profiles otherwise. See Table 3.1 for detailed demographic 

and behavioral profiles.  

 

3.2.2. MRI procedures 

MR Data Acquisition High resolution T1 weighted images and Diffusion 

Weighted (DW) images were acquired on a Philips 3T MR scanner. The T1 images had a 

FOV of 256 x 200 x 256 mm3, and isotropic voxel size of 1 mm3. The DW scan was 

comprised of image volumes with diffusion weighting along 32 gradient directions 

evenly distributed on a unit sphere, b = 700 s/mm2. The data were initially acquired in 96 

× 96 matrices with a FOV of 212 × 212 × 143 mm3, and then interpolated into 256 x 256 

matrices, yielding 0.828 × 0.828 × 2.2mm3 voxel sizes. 

Image Processing Image analysis was performed in Freesurfer and FSL. T1-

weighted images were used for brain parcellation using Freesurfer. Briefly, this 

automated process includes motion correction, brain tissue extraction (Ségonne et al., 

2004), white and grey matter segmentation (Fischl et al., 2002, 2004), intensity 

normalization (Sled et al, 1998), tessellation of the gray/white matter boundary, 
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automated topology correction (Fischl et al., 2001; Ségonne et al., 2007), and surface 

deformation (Dale and Sereno, 1993; Dale et al., 1999; Fischl and Dale, 2000). On each 

side of the brain, the cortex was segmented into 9 non-overlapping regions (Fig. 3.1) 

from the original Freesurfer parcellations (Desikan et al, 2006). The non-diffusion-

weighted images were registered to T1-weighted images by 12 degrees of freedom affine 

registrations (Jenkinson and Smith, 2001; Jenkinson et al., 2002), and then the 

transformation was inverted and applied to the parcellated T1 images. Head motion and 

eddy current artifacts were corrected by linearly registering diffusion-weighted images to 

the non-diffusion-weighted image. The imaging data and each step of processing were 

visually checked to ensure the absence of motion artifact or parcellation/registration 

failure. 
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Figure 3. 1. Cortical ROIs in one TD subject. The subdivisions of the cortex used in the 

analysis are shown for the left hemisphere in a lateral (top) and medial (bottom) view 

with color labels for reference. Bilateral ROIs were used in the analysis, whereas 

unilateral ROIs are shown here for visualization. The cortex was segmented into nine 

non-overlapping regions with the original Freesurfer parcellations (Desikan et al, 2006): 

lateral temporal cortex (LTC: transverse temporal cortex, superior temporal gyrus, banks 

of the superior temporal sulcus, inferior temporal gyrus, middle temporal gyrus, temporal 

pole), sensorimotor cortex (SMC: precentral gyrus, caudal middle frontal gyrus, post-

central gyrus, paracentral lobule), insula cortex (Ins: insula cortex), medial temporal 

cortex (MTC: entorhinal cortex, parahippocampal gyrus, fusiform gyrus), occipital cortex 

(OCC: pericalcarine cortex, lingual gyrus, lateral occipital cortex, cuneus cortex), 

orbitofrontal cortex (OFC: pars orbitalis, medial orbitofrontal cortex, lateral orbitofrontal 

cortex), lateral prefrontal cortex (LPFC: pars triangularis, frontal pole, rostral middle 

frontal gyrus, pars opercularis), parietal cortex (PC: inferior parietal cortex, 

supramarginal gyrus, precuneus cortex, posterior cingulate cortex, isthmus cingulate, 

superior parietal cortex), and medial prefrontal cortex (MPFC: caudal anterior cingulate, 

rostral anterior cingulate, superior frontal gyrus). 

 

DTI Analysis Diffusion tensor image analysis was performed using the FDT tool 

(Behrens et al., 2003b). The probabilistic diffusion parameters were modeled with up to 2 
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fiber compartments (Behrens et al., 2007), and probabilistic tractography (ProbTrackX1) 

was performed between thalami and the segmented cortical target regions. In each 

thalamic voxel, 25,000 samples were drawn. Ventricles were avoided for fiber tracking. 

For each voxel in the thalamus, the number of samples reaching each of the target regions 

was counted, and the connection ratio to a specific cortical region was calculated as the 

ratio of the number of samples reaching this cortical region versus the total number of 

samples reaching any of the cortical regions. 

Thalamo-cortical Connectivity For each ROI in the cortex, the thalamo-cortical 

connectivity was calculated as the average connection ratio in the ipsi-lateral thalamus. 

Thalamic voxels with zero connection densities were excluded from the connectivity 

calculation. The thalamo-cortical connectivity was then compared between groups. 

Additionally, correlations between connectivity indices and behavioral scores were 

examined. Considering that the connectivities of homologous structures on both sides 

were not completely independent measurements, repeated measures ANOVAs (R-

ANOVAs) were performed between thalamo-cortical connectivity in both hemispheres 

and behavioral scores. Effects of age and gender on findings were also examined. Finally, 

it is important to note that because the connection density was calculated as the ratio of 

                                                 
1 http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html 
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the number of fibers reaching one ROI versus reaching all ipsi-lateral ROIs, the relative 

size of an ROI could exert an impact on the calculated connectivity quantities. To control 

for this potential confound, the effects of relative ROI sizes were also examined in the R-

ANOVA analyses. In addition, the absolute cortex and ROI volumes were also compared 

between groups. 

 

3.3. Results 

 

3.3.1. Demographic and neuropsychological data 

 Demographic variables were compared between groups using multivariate 

ANOVA (MANOVA). The two groups of children had similar characteristics in age 

(F[1,35] = 0.19, p = 0.67, (ηp
2 = 0.005)) and gender (Table 3.1). As expected, children 

with dyslexia had significantly lower reading test scores compared with TD children 

(Table 3.2, all p<0.001). 
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Table 3. 1. Demographic and neuropsychological profile of each group (mean ± SEM) 

 TD RD p 

 Demographic and General Intelligence Measures  

Gender 10 F, 11 M 10 F, 13 M  

Age 11.9 ± 0.7 12.3 ± 0.7 0.67 

WISC VCI 106.2 ± 2.9 98.7 ± 2.8 0.07 

WISC PRI 101.3 ± 3.6 98.5 ± 3.5 0.58 

 Standardized Word-level and Language Measures  

CTOPP RaN 103.6 ± 3.3 82.1 ± 3.2 < 0.001 

TOSCRF 95.9 ± 2.5 80.9 ± 2.4 < 0.001 

TOWRE PDE 102.3 ± 2.6 79.5 ± 2.5 < 0.001 

TOWRE SWE 102.5 ± 2.6 82.3 ± 2.5 < 0.001 

TOWRE TotWRE 102.9 ± 2.9 77.0 ± 2.7 < 0.001 

WIST Spell 101.8 ± 3.3 70.7 ± 3.1 < 0.001 

WIST FLI 101.5 ± 3.5 66.6 ± 3.3 < 0.001 

WJ LWID 105.2 ± 2.2 82.8 ± 2.1 < 0.001 

WJ WA 103.9 ± 2.0 87.4 ± 1.9 < 0.001 

WJ PC 100.8 ± 2.8 85.3 ± 2.7 < 0.001 

WJ BRS 105.1 ± 2.0 84.7 ± 1.9 < 0.001 

WISC = Wechsler Intelligence Scale for Children; VCI = Verbal Comprehension Index; 

PRI = Perceptual Reasoning Index; CTOPP = Comprehensive Test of Phonological 

Processing; RaN = Rapid Naming; TOSCRF = Test of Silent Contextual Reading Fluency 

(Form A); TOWRE = Test of Word Reading Efficiency; PDE = Phonological Decoding 

Efficiency; SWE = Sight Word Efficiency; TotWRE = Total Word Reading Efficiency; 

WIST = Word Identification and Spelling Test; Spell = Spelling; FLI = Fundamental 

Literacy Index; WJ = Woodcock Johnson; LWID = Letter Word Identification(from 

WRMT-R/NU); WA = Word Attack (from WRMT-R/NU); PC = Passage Comprehension 

(from WRMT-R/NU); BRS = Basic Reading Score (from WRMT-R/NU). 

 

3.3.2. Volumetric data 

 On each side of the brain, the cortex was segmented into 9 non-overlapping 

regions (Fig. 3.1). The R-ANOVA was performed to compare the sizes of brain regions 
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between groups. No significant statistical difference was observed between the TD group 

and the RD group in total cortex volume or volumes of each ROI (Tables 3.2, 3.3). The 

relative size of the SMC was found to be greater in RD than TD (F[1, 41] = 4.134, p = 

0.049, (ηp
2 = 0.092)) when considering left and right sides together in a repeated GLM 

measurement. The relative size of insula cortex on the right side was found to be greater 

for the TD group than the group with RD (t = 2.339, p = 0.02, (ηp
2 = 0.118)) in a repeated 

GLM measurement, but this category difference became insignificant when performing a 

regular GLM analysis on each side separately (left side: F[1, 42] = 0.61, p = 0.44, (ηp
2 = 

0.014); right side: F[1, 42] = 3.8, p = 0.06, (ηp
2 = 0.083)). No significant statistical 

difference was observed in terms of relative ROI size for the rest of the regions. All 

statistics reported were calculated in SPSS and controlled for age. 
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Table 3. 2. Group comparison of brain region sizes (cm3) 

 Total Left Right 

 mean ± SEM 
p 

mean ± SEM 
p 

mean ± SEM 
p 

 TD RD TD RD TD RD 

OFCa 17.2 ± 0.5 17.5 ± 0.5 0.67 17.3 ± 0.5 17.3 ± 0.5 0.94 17.2 ± 0.6 17.8 ± 0.6 0.48 

MPFC 27.5 ± 0.8 27.7 ± 0.7 0.89 27.4 ± 0.8 27.5 ± 0.8 0.91 27.6 ± 0.8 27.8 ± 0.7 0.87 

LPFC 27.9 ± 0.7 28.2 ± 0.7 0.80 26.8 ± 0.8 27.4 ± 0.7 0.59 29.1 ± 0.8 29.0 ± 0.7 0.96 

SMC 33.6 ± 0.9 35.0 ± 0.9 0.31 33.6 ± 0.9 34.9 ± 0.9 0.28 33.7 ± 1.0 35.0 ± 0.9 0.35 

PC 59.0 ± 2.0 58.6 ± 2.0 0.88 58.7 ± 2.0 58.5 ± 2.0 0.94 59.2 ± 2.0 58.7 ± 2.0 0.83 

MTC 14.6 ± 0.5 14.4 ± 0.5 0.84 15.0 ± 0.5 14.7 ± 0.4 0.66 14.2 ± 0.6 14.2 ± 0.5 1.00 

LTC 44.7 ± 1.0 44.1 ± 1.0 0.76 45.5 ± 1.0 44.5 ± 1.0 0.62 43.9 ± 2.0 43.6 ± 2.0 0.92 

OCC 25.5 ± 0.7 25.4 ± 0.6 0.93 25.0 ± 0.6 25.2 ± 0.6 0.89 25.9 ± 0.7 25.7 ± 0.7 0.77 

Ins 7.2 ± 0.2 6.9 ± 0.2 0.16 7.3 ± 0.2 7.0 ± 0.2 0.39 7.2 ± 0.2 6.7 ± 0.2 0.07 

Thalb 7.1 ± 0.2 7.3 ± 0.1 0.47 7.1 ± 0.2 7.3 ± 0.1 0.43 7.2 ± 0.2 7.3 ± 0.1 0.52 

a. The abbreviations in this and following tables are consistent with Figure 1. 

b. Thal = Thalamus. 
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Table 3. 3. Group comparison of ROI relative sizesa (%) 

 Total Left Right 

 mean ± SEM 
p 

mean ± SEM 
p 

mean ± SEM 
p 

 TD RD TD RD TD RD 

OFC 6.7 ± 0.1 6.8 ± 0.1 0.33 6.7 ± 0.1 6.7 ± 0.1 0.88 6.6 ± 0.1 6.9 ± 0.1 0.15 

MPFC 10.7 ± 0.1 10.7 ± 0.1 0.70 10.7 ± 0.2 10.7 ± 0.1 0.81 10.7 ± 0.1 10.8 ± 0.1 0.65 

LPFC 10.9 ± 0.1 10.9 ± 0.1 0.67 10.4 ± 0.2 10.7 ± 0.2 0.37 11.3 ± 0.1 11.2 ± 0.1 0.80 

SMC 13.1 ± 0.2 13.6 ± 0.2 0.049* 13.1 ± 0.2 13.6 ± 0.2 0.08 13.1 ± 0.2 13.6 ± 0.2 0.07 

PC 22.9 ± 0.2 22.7 ± 0.2 0.49 22.9 ± 0.3 22.7 ± 0.3 0.63 22.9 ± 0.2 22.7 ± 0.2 0.41 

MTC 5.7 ± 0.2 5.6 ± 0.1 0.76 5.9 ± 0.1 5.7 ± 0.1 0.54 5.5 ± 0.2 5.5 ± 0.2 0.99 

LTC 17.4 ± 0.3 17.0 ± 0.3 0.38 17.7 ± 0.3 17.2 ± 0.3 0.24 17.0 ± 0.3 16.8 ± 0.3 0.65 

OCC 9.9 ± 0.2 9.9 ± 0.2 0.91 9.8 ± 0.2 9.8 ± 0.2 0.88 10.1 ± 0.2 10 ± 0.2 0.71 

Ins 2.8 ± 0.1 2.7 ± 0.0 0.05 2.8 ± 0.1 2.7 ± 0.0 0.25 2.8 ± 0.1 2.6 ± 0.1 0.02* 

Thal 6.7 ± 0.1 6.8 ± 0.1 0.33 6.7 ± 0.1 6.7 ± 0.1 0.88 6.6 ± 0.1 6.9 ± 0.1 0.15 

a. The relative size was calculated as the ratio of individual ROI size versus the total volume of the ipsi-lateral cortical regions. 

* p<0.05 
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3.3.3. Thalamo-cortical connectivity 

 Three regions were revealed to have significant thalamo-cortical connectivity 

differences between groups (Table 3.4): 1) the orbital frontal cortex (OFC), 2) the insula 

(Ins), and 3) the sensorimotor cortex (SMC).  For the left OFC, the TD group showed 

greater connectivity to the thalamus than RD (t = 2.245, p = 0.03, (ηp
2 = 0.109)). For the 

right Ins, the TD group showed greater connectivity to the thalamus than RD (t = 2.032, p 

= 0.049, (ηp
2 = 0.091)).  Additionally, greater connectivity between left SMC and the 

thalamus was found in the RD group as compared to TD (t = -2.578, p = 0.014, (ηp
2 = 

0.140)). On the right side, the same trend was found, although it did not reach the level of 

statistical significance. As a result, if left and right sides are considered together, the RD 

group showed significantly greater thalamo-SMC connectivity than the TD group (F[1, 

41] = 7.88, p = 0.008, (ηp
2 = 0.161)). 
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Table 3. 4. Group comparison of thalamo-cortical connectivitya (%) 

 Total Left Right 

 mean ± SEM 
p 

mean ± SEM 
p 

mean ± SEM 
p 

 TD RD TD RD TD RD 

OFC 15.9 ± 1.9 11.2 ± 1.9 0.09 16.2 ± 1.9 10.3 ± 1.8 0.03* 15.7 ± 2.5 12.0 ± 2.4 0.30 

MPFC 17.5 ± 1.3 18.2 ± 1.2 0.71 16.0 ± 1.4 16.7 ± 1.3 0.71 19.1 ± 1.7 19.7 ± 1.7 0.79 

LPFC 21.9 ± 1.4 24.6 ± 1.4 0.16 20.8 ± 1.9 22.6 ± 1.9 0.50 22.9 ± 2.0 26.7 ± 1.9 0.19 

SMC 17.0 ± 1.1 21.4 ± 1.1 0.01* 18.8 ± 1.6 24.7 ± 1.6 0.01* 15.2 ± 1.1 18.2 ± 1.1 0.07 

PC 17.8 ± 1.3 17.7 ± 1.2 0.97 19.2 ± 1.5 17.9 ± 1.4 0.53 16.3 ± 1.5 17.4 ± 1.5 0.59 

MTC 6.1 ± 0.8 6.6 ± 0.8 0.66 6.9 ± 1.0 6.8 ± 1.0 0.96 5.3 ± 0.9 6.4 ± 0.9 0.40 

LTC 6.8 ± 0.9 7.9 ± 0.9 0.42 6.6 ± 1.0 7.2 ± 0.9 0.69 7.1 ± 1.5 8.6 ± 1.4 0.45 

OCC 3.9 ± 0.6 3.7 ± 0.6 0.89 4.6 ± 0.8 4.4 ± 0.8 0.88 3.1 ± 0.6 3.1 ± 0.6 0.95 

Ins 4.2 ± 0.7 3.2 ± 0.6 0.26 3.2 ± 0.8 3.7 ± 0.7 0.64 5.3 ± 0.9 2.6 ± 0.9 0.049* 

a. For each voxel in the thalamus, the number of samples reaching each target region was counted, and the connection density to a 

specific cortical region is calculated as the ratio of the number of samples reaching this cortical region versus the total number of 

samples reaching any of the cortical regions. For each ROI in the cortex, the thalamo-cortical connectivity was calculated as the 

average connection density in the ipsi-lateral thalamus. 

* p<0.05 
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 Since the precentral and postcentral cortices in the sensorimotor territory have 

distinct brain functions, the statistics, including group comparison and correlation 

analyses, were also performed on thalamic connectivity with precentral and postcenteral 

cortices separately. The results showed a great commonality between pre- and post-

central cortices, and were largely consistent with the results of sensorimotor cortex. 

In summary, no group difference was found for brain volume or absolute ROI 

sizes. The relative ROI size for SMC was greater in RD than TD in a repeated GLM 

measurement when considering left and right sides together. The relative size of insula 

cortex on the right side was found to be greater for the TD group than the group with RD 

in a repeated GLM measurement, but this difference became insignificant when 

performing a GLM analysis on each side separately. The thalamo-insula connectivity on 

the right side was found to be greater in the TD group, thalamo-OFC connectivity on the 

left side was greater in TD, and the thalamo-SMC connectivity on the left side and both 

sides considered together were greater in the RD group. 

 

3.4. Discussion and conclusion 

 This study used diffusion tractography to examine the association between 

thalamo-cortical connectivity and children’s reading ability. Given the thalamus’ central 
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role in neural function, we hypothesized that we would see thalamo-cortical connectivity 

differences in reading related regions between groups of good and poor readers. Results 

showed no differences in OTC or TPC; however, we did find group differences in the 

anterior perisylvian region. Specifically, the most prominent group differences were 

found in sensorimotor cortex (SMC), particularly on the left side, with RD showing 

greater thalamic-SMC connectivity than TD; SMC also showed greater relative SMC 

gray matter volume in RD. Additional findings showed greater left orbital frontal cortex 

(OFC) and right insula (Ins) thalamic connectivity in TD. 

 The central findings of abnormal thalamic and SMC connectivity suggests a 

thalamo-cortical role in reading that until now has not been a central focus in 

neuroimaging studies of RD, although a role of sensori-motor function in reading 

development has long been hypothesized (Heilman et al., 1995).  More specifically, 

acquiring phonological representations and connections to orthographic forms (most 

often occurring within the context of writing) is thought to engage thalamo-SMC 

connections. These connections would be most critical in the early phases of reading 

acquisition, and would presumably be less relied upon with increased reading proficiency.  

From this standpoint, the greater thalamo-SMC connectivity in RD as compared to TD 

may reflect a prolonged multisensory engagement phase in developing reading skills for 
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the children with RD. During development, pruning of gray matter is a central part of 

maturation. Indeed, the process of cortical brain maturation begins first in dorsal parietal 

cortices, particularly the primary sensorimotor areas, and then spreads rostrally over the 

frontal cortex and caudally and laterally over the parietal, occipital, and finally the 

temporal cortex (Gogtay et al., 2004). This finding, in combination with the greater 

connectivity of SMC may suggest a less mature subcortical-SMC system in children with 

RD. Indeed, there is evidence that an early motor delay is associated with later language 

development and a delay in acquiring fluent reading skill (Viholainen et al., 2006). 

Although this finding was obtained from a younger population ranging from 2-5 years 

old, the delay in reading skills acquisition could cascade to the adolescent stage, due to a 

deficiency in an integrated neural system. Specifically, when a child first comes to read, 

his/her neural basis for linguistics, such as visual and motor processes, has already been 

well-established, yet these systems are not integrated in a way that supports reading. In 

response to the demands of learning to read on extant circuits for mapping print to sounds, 

novel functional connections also form between circuits (Schlaggar and McCandliss, 

2007), as seen in the case of multisensory integration studies of letter and letter-sounds 

(Van Atteveldt et al. 2004). Also, previous literature has reported a pattern of strong 

recruitment of extrastriate regions in young readers when performing word generation 
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tasks, which gradually diminishes with age (Brown et al. 2005; Schlaggar et al. 2002). 

This could reflect migration of core brain regions in the circuits to deal with new 

cognitive demands in response to learning and practicing, or in other words, a reflection 

of increased automaticity. 

 In contrast to the SMC findings, both Ins and OFC showed greater thalamic 

connectivity for TD as compared to RD. These regions have far less specificity than SMC, 

supporting a variety of different cognitive processes.  The insula plays an integrative role 

in mediating cognitive brain functions. Previous studies have shown that insula 

contributes to multi-modal processes, including motion (all motor tasks, such as 

movement of face, mouth and tongue, irrespective of side) and language (semantic, 

syntactic, phonological, orthographic decisions and listening to language; Kurth et al., 

2010). All these findings may suggest that the insula could be a more domain general 

component of the neural network that supports phonological decoding skills, i.e., insula is 

not necessarily particularly selective to serve the language network alone, but it may play 

a role therein. Alternatively, given its integrative role, the insula may simply serve as a 

way-station between regions performing domain specific tasks. Similarly, the OFC is 

known for higher level cognitive functions, and therefore may also play an integrative or 

supervisory role (Elliott et al., 2000; Hampshire and Owen, 2006) in coordinating 



 83

subcortical-cortical regions.  Our findings therefore support the supposition that the TD 

group shows more well developed connectivity patterns between multi-function cortical 

areas, whereas the RD group shows more thalamic connections in basic sensory-motor 

systems. 

 In summary, our findings suggest that RD subjects have substantially greater 

connectivity between thalamus and SMC, coupled with greater gray matter volumes in 

SMC.  In contrast, the TD group showed greater thalamo-cortical connectivity to regions 

that subserve multiple cognitive functions. These findings present one possible intriguing 

interpretation: that during normal reading development, there is an initial reliance on 

sensorimotor cortex for developing phonemic representations and orthographic forms; 

however, with maturation and pruning of SMC, and developing efficiency in reading 

networks, connectivity for typically developing readers migrate away from primary 

motor/sensorimotor regions to tertiary cortical regions. Clearly, longitudinal studies and 

innovative experimental designs will be needed to disentangle these hypotheses, but the 

current study offers insights and future directions for studying the areas of abnormality in 

subcortical-cortical connectivity patterns in RD. 

 It is important to mention that the current study used the whole insula as a 

cortical target region, yet the anterior insula and posterior insula have been reported to 
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have distinct functions (Kurth et al., 2010; Menon and Uddin, 2010). Therefore, it would 

be fruitful for future connectivity studies to divide the insula according to its functional 

differentiations, and also do more fine grained division of other cortical regions. While 

we did not find differences when dividing SMC into smaller regions, it is possible that 

more advanced fiber tracking algorithms would reveal differences between various parts 

of SMC. 

 The current study examined, for the first time, the in vivo relationship between 

thalamo-cortical connectivity and children’s reading ability. The results suggest that the 

thalamus may play a key role in reading behavior by mediating the functions of task 

specific cortical regions; such findings lay the foundation for future studies to investigate 

further anomalies in the development of thalamo-cortical connectivity in RD.  

 This study shows that DTI and DT-based tractography can provide useful 

evidence of the role of the thalamus in mediating reading behavior among children with 

and without reading difficulties. Similar approaches might be useful in the study of 

subcortical structures in neurodegenerative disorders. 
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CHAPTER IV 

 

MULTIPLE KERNEL SPHERICAL DECONVOLUTION  

 

4.1. Introduction 

 Diffusion Weighted Imaging (DWI) (LeBihan et al., 1986) is an MR technique to 

characterize tissue microstructure in vivo, based upon the fact that the diffusion of water 

molecules is restricted by cellular membranes. Diffusion Tensor Imaging (DTI) (Basser et 

al., 1994) has become the most widely used tool to study the white matter structures of 

the brain non-invasively in clinical and experimental neurobiological research. By fitting 

the DW signal to a tensor model and identifying the primary diffusion direction of spins, 

DTI can reveal the orientation of major white matter fiber bundles (Basser et al., 2000). 

Parameters derived from DTI, such as mean diffusivity (MD) and fractional anisotropy 

(FA), have been demonstrated to provide valuable information on white matter 

microstructures in numerous neurobiological studies (Klingberg et al., 2000; Niogi ad 

McCandliss, 2006; Rimrodt et al., 2010). However, one of the fundamental drawbacks of 

DTI is the assumption of Gaussion diffusion, which limits its efficacy in brain regions 

where multiple white matter fiber bundles coexist. Given that the voxel size of a DTI 
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acquisition for human studies on a modern MR scanner is usually 2-3 mm and the typical 

axon diameter ranges from less than 1 micron to more than 30 microns in the human 

brain, the majority of voxels in the territories of brain white matter contain multiple fiber 

populations (Behrens et al., 2007; Jeurissen et al., 2012). 

To address complex white matter structures, such as the coexistence of multiple 

fiber orientations, high angular resolution diffusion imaging (HARDI) methods have been 

developed. For example, diffusion spectrum imaging (DSI) (Wedeen et al., 2005), 

persistent angular structure MRI (PAS-MRI) (Jansons and Alexander, 2003), Q-ball 

Imaging (QBI) (Tuch 2004), and spherical deconvolution (SD) (Tournier et al., 2004) 

have all be proposed to overcome the limitations of DT-MRI. Diffusion Spectrum 

Imaging (DSI) and Persistent Angular Structure (PAS) are based on the Fourier 

transformation relationship between MR signals in q-space and protons’ diffusion 

propagator function that reflects intra-voxel complex white matter structure. While DSI 

requires multiple q-shells be evaluated, PAS is feasible for single q-shell data. The 

acquisition time for DSI and computation time for PAS prohibit them from being widely 

used. Being a variation of DSI, QBI allows the orientation distribution function (ODF) to 

be evaluated from data acquired at a single b-value, by the use of the Funk–Radon 

Transform (FRT) of the diffusion weighted signal as an approximation to the ODF, which 
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describes the probability for a spin to diffuse in a given direction. Based on point spread 

function theory, the SD approach assumes the measured signal in a DW MR experiment 

is the fiber orientation distribution (FOD) function convolved with a response kernel. SD 

is applicable to DW MR measurements with a single b-value, and the FOD functions 

show sharper peaks than the ODF derived from QBI, and therefore reveals white matter 

structures more clearly. 

The FODs can be estimated through spherical harmonic (SH) transformation 

directly (Tournier et al., 2004; Anderson, 2005), or obtained via a damped Richard-Lucy 

like algorithm iteratively (Dell'acqua et al., 2007, 2010). Both approaches require a priori 

knowledge of a response kernel, i.e., the DW signal profile of a single-fiber population. 

In most situations, the response kernel is axially symmetric about the fiber axis, and the 

most commonly used model for the response kernel is the diffusion tensor. Clearly, the 

response kernel contains information that is characteristic of structural properties of nerve 

tissues, and may provide valuable information for neurobiological studies to explore for 

neural biomarkers. The deconvolution approaches generally rely on a priori knowledge 

of the response kernel, and thus do not provide an estimate of this property. The 

FORECAST model incorporates the response kernel as an unknown parameter and 

provides estimates of a common radial diffusivity that is shared by all fiber populations in 
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a single voxel. While this approach provides more information than standard SD, the 

assumption that different fiber populations share the same response kernel is not likely to 

be true. Hence, the interpretation of radial diffusivity estimates obtained from 

FORECAST is difficult.  

With single shell DW data, it has been demonstrated that accurate fitting for 

multiple tensors in the general case is impossible (Scherrer et al., 2010). The difficulty 

rests in differentiating between isotropic components of the signal. Since the isotropic 

components do not show orientation dependence, one shell of DW data will yield a series 

of solutions, where contrast from volume fractions and diffusivities can compensate for 

each other. In this work, we propose a new MR method based on DW measurements, 

acquired at a few different b-values, which can resolve orientations of concurrently 

present multiple fiber populations and provide estimates of the diffusion properties 

intrinsic to each single-fiber population. We demonstrate that this framework is feasible 

for in vivo studies in terms of experimental settings. It is expected that the new method 

relaxes the “calibration” issues in SD FOD reconstruction (Parker et al., 2012).  
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4.2. Methods 

 

4.2.1. Theory 

4.2.1.1. Diffusion weight NMR signal and response kernel 

In the DW experiment, the measured NMR signal has an exponential relationship 

with the diffusion tensor, ࡰ, and the diffusion weighting matrix,	࢈,  

 ܵሺ࢈ሻ ൌ ܵ଴݁൫ି௧௥
ሺ࢈ሻ∙࢘೅࢘ࡰ൯ [1]

where ܵ଴ is the corresponding signal with no diffusion weighting, ݎݐሺ࢈ሻ is the trace of 

the ࢈ matrix, ࢘ is a unit vector along the direction of the diffusion weighting gradient, 

and ࡰ is the diffusion tensor. Under the assumption of short ramp time of gradients, the 

elements in the ࢈ matrix can be written as 

 ܾ௜௝ ൌ ௝ݎ௜ݎ ∙ ଶሺΔߜଶܩଶߛ െ
ߜ
3
ሻ [2]

where ߛ  is the gyromagnetic ratio of hydrogen, ܩ  and ߜ  are the amplitude and 

duration of the diffusion weighting gradient pulses respectively, and Δ is the time 

between their rising edges.  

In the situation of single fiber population, and assuming diffusion is symmetric 

about the axis of the fiber bundle, the corresponding diffusion tensor can be written in the 

form   
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ܦ  ൌ ቎
ୄߣ 0 0
0 ୄߣ 0
0 0 ∥ߣ

቏ [3]

where ߣ∥ denotes the diffusivity parallel to the axis of fiber bundle, called parallel 

diffusivity, and ୄߣ denotes the diffusivity perpendicular to the fiber axis, called radial 

diffusivity. This is the simplest representation of a single-fiber response kernel. The 

diffusion measured along an arbitrary direction ܦሺߙ, ,ߙ ሻ, whereߚ  are the azimuthal ߚ

and polar angles respectively, can be calculated according to the tensor by 

 

,ߙሺܦ ሻߚ ൌ ሾsin ߚ cos ܽ sin ߚ sin ܽ cos ሿߚ ቎
ୄߣ 0 0
0 ୄߣ 0
0 0 ∥ߣ

቏ ൥
sin ߚ cos ܽ
sin ߚ sin ܽ
cos ߚ

൩ 

ൌ sinଶ ߚ ⋅ ୄߣ ൅ cosଶ ߚ ⋅ ∥ߣ ൌ ୄߣ ൅ cosଶ ߚ ⋅ ሺߣ∥ െ ሻୄߣ

ൌ ୄߣ ൅ 3 cosଶ ߚ ⋅ ൫̅ߣ െ  ൯ୄߣ

[4]

where ߣ	ഥ ൌ ሺߣ∥ ൅   .ሻ/3 is the mean diffusivityୄߣ2

In the presence of multiple fiber populations, the measured NMR signal has 

contributions from all compartments weighted by the volume fraction of each, or 

 ܵሺݎݐሺ࢈ሻ, ሻ࢘ ൌ ܵ଴෍ ௜݂݁ି௧௥ሺ࢈ሻ⋅ሺఒ఼೔ାଷୡ୭ୱ
మ ఉ೔∙ሺఒഥ೔ିఒ఼೔ሻሻ

ே೑

௜ୀଵ

 [5]

where ݅  denotes the ݅ th fiber compartment, ௙ܰ  is the total number of fiber 

compartments present, and ௜݂ is the volume fraction of the ݅th fiber compartment. In 

other words, the diffusion weighted signal measured in a DW NMR experiment depends 
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on angles between fiber axes and the direction of diffusion weighting gradient, the radial 

diffusivity and the difference between the mean diffusivity and radial diffusivity of each 

fiber compartments.  

The representation of equation [5] can be generalized to arbitrary angular 

distributions of fibers: 

 

ܵሺݎݐሺ࢈ሻ, ,ߠ ߮ሻ

ൌ ܵ଴ ⋅෍න න ௜ܲሺߠᇱ, ߮ᇱሻ݁ି௧௥ሺ࢈ሻ⋅ሺఒ఼೔ାଷ ୡ୭ୱ
మ ఉೃೃᇲ೔∙ሺఒ

ഥ೔ିఒ఼೔ሻሻ sin ᇱߠ ᇱߠ݀
గ

଴
݀߮ᇱ

ଶగ

଴

ே೑

௜ୀଵ

 

[6] 

where ߠ, ߮ are the polar and azimuthal angles of the diffusion weighting gradient 

direction ܴ  respectively, ߠᇱ, ߮ᇱ  are the polar and azimuthal angles of fiber axis 

direction ܴᇱ respectively, ௜ܲሺߠᇱ, ߮ᇱሻ  is the FOD function of the ݅ th single-fiber 

compartment, and ߚோோᇲ௜ is the angle between ܴ and ܴᇱ. According to point spread 

function theory, ܵሺߠ, ߮ሻ is the convolution of ௜ܲሺߠᇱ, ߮ᇱሻ with the corresponding kernel 

݁ି௧௥ሺ࢈ሻ⋅ሺఒ఼೔ାଷୡ୭ୱ
మ ఉ೔∙ሺఒഥ೔ିఒ఼೔ሻሻ summed over all the fiber populations.  

4.2.1.2. Spherical harmonics and orientation estimates 

Any continuous function defined on a sphere, ܨሺߠ, ߮ሻ, can be expanded in 

spherical harmonics by 

,ߠሺܨ  ߮ሻ ൌ ෍ ෍ ௟݂௠ ௟ܻ௠ሺߠ, ߮ሻ

௟

௠ୀି௟

ஶ

௟ୀ଴

 [7]
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where ௟ܻ௠ሺߠ, ߮ሻ is the spherical harmonic of order ݈ and degree ݉ evaluated at polar 

and azimuthal angles of (ߠ, ߮), and its coefficients ௟݂,௠ can be calculated by 

 ௟݂,௠ ൌ න න ௟ܻ௠
∗ ሺߠ, ߮ሻܨሺߠ, ߮ሻ sin ߠ ߠ݀

గ

଴
݀߮

ଶగ

଴
 [8]

As shown in Figure 4.1, the spherical harmonic basis with even order ݈ ൐ 0 and degree 

݉ ൌ 0 has a bipolar shape. For any axially symmetric real functions ܨሺߠ, ߮ሻ, if the axis 

of ܨሺߠ, ߮ሻ  is aligned with the primary (z) axis of the spherical harmonics, the 

corresponding SH coefficients bear a few characteristics: (1) ௟݂,ି௠ ൌ ሺെ1ሻ௠ ∙ ሺ ௟݂,௠ሻ∗; (2) 

௟݂,௠  = 0 for ݉ ് 0 ; and (3) ௟݂,௠  = 0 for ݈ ൌ ݏݎ݁݃݁ݐ݊݅	݀݀݋ , if ܨሺߠ, ߮ሻ  is also 

symmetric about the origin. These mathematical characteristics of the spherical harmonic 

transformation provide an opportunity to decompose the NMR signal contributions from 

multiple differently oriented fiber populations. Specifically, again, the mixture signal is 

the summation of contributions from each population, which written in the SH space 

reads 

௟࢙  ൌ෍ࢃ௟ሺߠ௜, ߮௜ሻ ∗ ௟,௜࢙

ே೑

௜ୀଵ

 [9] 

where ࢙௟  is a column vector containing the SH coefficients of the mixture signal 

evaluated for order ݈  and degree ݉ ൌ	െ݈, െ݈ ൅ 1… , ݈ , similarly, ࢙௟,௜  is a column 

vector containing the SH coefficients of the signal contribution from the ݅th single-fiber 
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population, and ࢃ௟ሺߠ௜, ߮௜ሻ is the Wigner matrix of order ݈, which rotates the single-

fiber coefficients from the coordinate system oriented along the single-fiber axis at 

ሺߠ௜, ߮௜ሻ to the coordinates defined by the gradient set.  

Figure 4. 1. Spherical harmonic basis functions of terms corresponding to ݈ up to 4. Red 

represents positive amplitudes, while blue represents negative amplitudes. The terms, 

whose ݈ ൌ even integers, ݉ ൌ 0, can be used to represent any axially symmetric real 

functions defined on a sphere. For example, the 0th order term is the spherical harmonic 

with zero variation, and thus represents the isotropic component of the measured signal; 

the non-zero order terms have bipolar shapes, and can be used to represent the anisotropy 

in diffusion weighted MR signals.  

 

To identify the orientation of axes corresponding to multiple fiber populations, 

denote the aggregation of fiber orientations by ષ, i.e.,  

 ષ ൌ ቀߠଵ, ߮ଵ, … , ,௜ߠ ߮௜, … , ,ே೑ߠ ߮ே೑ቁ [10]
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consider the fitting problem below: 

 ષ ൌ argminሼฮ ሚܵሺߠ, ߮ሻ െ ܵሺߠ, ߮ሻฮሽ [11]

where ܵሺߠ, ߮ሻ is the measured signal, and ሚܵሺߠ, ߮ሻ is the model predicted signal, which 

can be written as 

 ሚܵሺߠ, ߮ሻ ൌ ෍ ෍ ௟௠ݏ ௟ܻ௠ሺߠ, ߮ሻ
௟

௠ୀି௟

ஶ

௟ୀ଴

 [12]

or, 

෨ࡿ  ൌ ࢅ ∗ [13] ࢙

where ࡿ෨  is a vector containing the spherical harmonic approximation of the measured 

diffusion weighted NMR signals, ࢙ is a vector containing SH coefficients ݏ௟௠, and ࢅ is 

the design matrix of the linear regression problem 

 

ࢅ

ൌ 	

ۏ
ێ
ێ
ێ
ێ
ۍ ଴ܻ,଴ሺߠଵ, ߮ଵሻ ଵܻ,ିଵሺߠଵ, ߮ଵሻ ଵܻ,଴ሺߠଵ, ߮ଵሻ … ௟ܻ೘ೌೣ,௟೘ೌೣ

ሺߠଵ, ߮ଵሻ

଴ܻ,଴ሺߠଶ, ߮ଶሻ ଵܻ,ିଵሺߠଶ, ߮ଶሻ ଵܻ,଴ሺߠଶ, ߮ଶሻ

଴ܻ,଴ሺߠଷ, ߮ଷሻ ⋮ ⋱
⋮ ⋮ ⋮

…
…
⋱

⋮
⋮
⋮

଴ܻ,଴ሺߠ௠, ߮௠ሻ ଵܻ,ିଵሺߠ௠, ߮௠ሻ ଵܻ,଴ሺߠ௠, ߮௠ሻ … ௟ܻ೘ೌೣ,௟೘ೌೣ
ሺߠ௠, ߮௠ሻے

ۑ
ۑ
ۑ
ۑ
ې

 

[14]

Each row in ࢅ corresponds to one diffusion weighting direction (ߠ௜, ߮௜ ), and each 

column corresponds to one term of the spherical harmonics (݈, ݉). Substituting equation 

[9] into equation [13], yields 
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෨ࡿ ൌ ଴࡭ ⋅ ଴଴ݏ ൅ ଵ࡭ ∗ ൞

ଵ,ଵ࢙
ଵ,ଶ࢙
⋮

ଵ,ே೑࢙

ൢ ൅ ⋯	൅ ௟೘ೌೣ࡭
∗ ൞

௟೘ೌೣ,ଵ࢙
௟೘ೌೣ,ଶ࢙

⋮
௟೘ೌೣ,ே೑࢙

ൢ

ൌ ࡭ ∗

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

଴଴ݏ

൞

ଵ,ଵ࢙
ଵ,ଶ࢙
⋮

ଵ,ே೑࢙

ൢ

⋮

൞

௟೘ೌೣ,ଵ࢙
௟೘ೌೣ,ଶ࢙

⋮
௟೘ೌೣ,ே೑࢙

ൢ

ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

 

[15]

 

௟࡭ ൌ

ۏ
ێ
ێ
ۍ ௟ܻ,ି௟ሺߠଵ, ߮ଵሻ … ௟ܻ,௟ሺߠଵ, ߮ଵሻ

௟ܻ,ି௟ሺߠଶ, ߮ଶሻ … ௟ܻ,௟ሺߠଶ, ߮ଶሻ
⋮ ⋱ ⋮

௟ܻ,ି௟ሺߠ௠, ߮௠ሻ … ௟ܻ,௟ሺߠ௠, ߮௠ሻے
ۑ
ۑ
ې

∗ ቂࢃ௟ሺߠଵ, ߮ଵሻ … ௟ࢃ ቀߠே೑, ߮ே೑ቁቃ 

[16]

࡭  ൌ ሾ࡭଴ … ௟࡭ …  ௟ౣ౗౮ሿ࡭ [17]

wherein, the Wigner matrix acts as a rotation operator on the spherical harmonic 

coefficients. Assuming that the NMR signal profile, or response kernel, of a single-fiber 

population is symmetric about the fiber axis, the signal coefficients in a coordinate 

system aligned with the axis will satisfy  

௟௠,௜ݏ  ൌ 0, ݎ݋݂ ݉ ് 0 [18]

Additionally, assuming that diffusion along any particular direction does not show 

polarity,  

௟௠,௜ݏ  ൌ 0, ݎ݋݂ ݈ ൌ ݀݀݋ ,ݏݎ݁݃݁ݐ݊݅ ݈݈ܽ ݅, ݈݈ܽ ݉ [19]
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Then the equation [15] reduces to  

 

෨ࡿ ൌ ଴࡭ ⋅ ଴଴ݏ ൅ ଶ࡭ ∗ ൞

ଶ,ଵ࢙
ଶ,ଶ࢙
⋮

ଶ,ே೑࢙

ൢ ൅ ⋯	൅ ௟೘ೌೣ࡭
∗ ൞

௟೘ೌೣ,ଵ࢙
௟೘ೌೣ,ଶ࢙

⋮
௟೘ೌೣ,ே೑࢙

ൢ

ൌ ࡭ ∗

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

଴଴ݏ

൞

ଶ,ଵ࢙
ଶ,ଶ࢙
⋮

ଶ,ே೑࢙

ൢ

⋮

൞

௟೘ೌೣ,ଵ࢙
௟೘ೌೣ,ଶ࢙

⋮
௟೘ೌೣ,ே೑࢙

ൢ

ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

 

[20]

௟,௜࢙  ൌ ൣ0, 0, … , ,௟଴,௜ݏ 0, … , 0൧
்
, ݈ ൌ ݊݁ݒ݁ [21] ݏݎ݁݃݁ݐ݊݅

࡭  ൌ 	 ሾ࡭଴ ଶ࡭ … ,௟ౣ౗౮ሿ࡭ ݈୫ୟ୶ ൌ ݊݁ݒ݁  ݏݎ݁݃݁ݐ݊݅ [22]

By solving for the orientations of fiber axes, ષ, the anisotropic components of the 

mixture NMR signal are decomposed into their single-fiber constituents. 

4.2.1.3. Diffusivity estimates 

Generally, it is challenging to perform tensor fitting (and hence derive the 

diffusivities of individual fiber populations) without separating the isotropic signal 

components pertaining to each tensor. However, it is even more challenging to 

decompose isotropic signal components without a priori knowledge of diffusivities, 

because isotropic signal contributions from different fiber populations are not 

distinguishable by orientation as anisotropic terms are. That becomes a major bottleneck 
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in algorithmic design, and makes the goal of estimating intrinsic diffusivities of multiple 

fiber populations extremely difficult to achieve.  

By taking the spherical harmonic transformation of spherical functions (i.e., the 

NMR signal, response kernel and FOD function), the SH coefficients obtained can be 

considered a spectrum of the spherical variation in the particular function. Instead of 

using full spectra (i.e., all order terms), the fit for the response kernel becomes feasible by 

using partial spectra of the spherical functions (݈ ൐ 0). 

For the case of a single-fiber, the SH transformation of equation [6] simplifies to  

௟௠,௜ݏ  ൌ ܵ଴ ⋅ ܿ௟,௜ ⋅  ௟௠,௜݌ [23]

where  ݏ௟௠,௜ is the SH coefficient of the measured signal ܵሺݎݐሺ࢈ሻ, ,ߠ ߮ሻ corresponding 

to order ݈ and degree ݉, ܿ௟,௜ is the SH coefficient of the response kernel of the ݅th fiber 

(and is a function of ݎݐሺ࢈ሻ, ୄߣ௜ and ̅ߣ௜), and ݌௟௠,௜ is the SH coefficient of the FOD 

function for the ݅th fiber population (Anderson 2005). As shown above, ݏ௟௠,௜	ሺ݈ ൐ 0ሻ 

can be obtained by solving for ષ. Substituting different values of ݈ and ݎݐሺ࢈ሻ into 

equation [23] gives rise to a set of equations, with ୄߣ௜, ̅ߣ௜ and ݌௟௠,௜ being unknowns. 

For example, if the number of ݎݐሺ࢈ሻ values, denoted by ௕ܰ, is 3, and ݈௠௔௫ is set to 6, 

this will give rise to ௕ܰ ∗
௟೘ೌೣ

ଶ
ൌ 9 equations and 2 ൅

௟೘ೌೣ

ଶ
ൌ 5 unknowns (ignoring the 

isotropic l=0 terms, for the moment). While the experimental setting could be flexible, as 
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long as the number of equations is greater than (or equal to) the number of unknowns, the 

set of equations can be solved, resulting in a set of diffusivity estimates intrinsic to the ݅th 

fiber population.  

4.2.1.4. Fiber orientation distribution functions 

The last step remaining to be completed is determining the FOD functions. The 

anisotropic components of the FOD are obtained together with the diffusivity estimates in 

the last step. The major goal of this step is to decompose the isotropic components to 

their respective fiber components. 

 The isotropic components of the signal do not have orientation dependence. The 

only contrast comes from the slight discrepancy in how the signal loss changes with 

respect to the b factor. To quantify the isotropic signal contributions from different single-

fiber populations, we take the SH transformation of equation [6] again, and evaluate it for 

݈ ൌ 0. 

଴଴ݏ  ൌ ܵ଴ ⋅෍ሺܿ଴,௜ ⋅ ଴଴,௜ሻ݌

ே೑

௜ୀଵ

  [24]

In equation [24], ݏ଴଴ can be directly obtained by taking the SH transformation of the 

measured signal, ܿ଴,௜ is a known value given the diffusivity estimates from last section. 

Thus  ݌଴଴,௜  is the only unknown parameter. Additionally, ݌଴଴,௜  is proportional to 



 105

volume fraction of the ݅th fiber population, ௜݂, through the relation (Anderson, 2005): 

଴଴,௜݌  ൌ
1

ߨ4√
௜݂   [25]

Thus, 

 ෍ ௜݂

ே೑

௜ୀଵ

൅ ௜݂௦௢ ൌ 1  [26]

 Obviously, the number of b values used in the experiments sets an upper limit on 

the number of fiber bundles that can be identified. For example, the experimental setting 

of ௕ܰ ൌ 3 gives rise to ௕ܰ ൌ 3 equations (i.e., equation [24] for each b value), which 

can afford the degrees of freedom necessary to solve for the volume fractions of up to 3 

different fiber bundles. The volume fraction of an isotropic compartment, ௜݂௦௢, can be 

solved through equation [26] by assuming a priori knowledge of the diffusion coefficient. 

Depending on the needs of specific study, the MR acquisition can be adjusted to provide 

the desired information, namely, the degrees of freedom could be traded for scanning 

time. 

4.2.1.5. Variations of the model 

The model described above has the flexibility to be modified to fit the goals of a 

particular experiment. Given the practical trade-off between scanning time and the 

amount of information that can be drawn from the dataset, the signal to noise ratio (SNR) 
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in the acquired data may vary. In this section, we discuss how fitting for diffusivity and 

FOD simultaneously can affect the degrees of freedom in model fitting. We show how the 

number of unknown model parameters can be reduced in order to increase reliability at 

limited SNR. We also demonstrate how to incorporate extra parameters to provide a more 

precise description of complex tissue microstructure. 

(a). Fitting for diffusivity and FOD simultaneously 

Equations [23-26] use the anisotropic part of the signal corresponding to 

individual fiber populations to fit for the diffusivity and FOD separately. Alternatively, 

the diffusive and FOD parameters can be all included in a full model containing both 

anisotropic and isotropic components of the signal. Specifically, summing the signal 

contributions from all fiber populations gives 

 ሼݏ௟௠ሽ ൌ ෍ࢃ௟ሺߠ௜, ߮௜ሻ ∗ ൛ݏ௟௠,௜ൟ

ே೑

௜ୀଵ

  [27]

Substituing equation [23] into [27] yields 

 ሼݏ௟௠ሽ ൌ ܵ଴ ⋅෍ܿ௟,௜ ⋅ ,௜ߠ௟ሺࢃ ߮௜ሻ ∗ ൛݌௟௠,௜ൟ

ே೑

௜ୀଵ

  [28]

where ݏ௟௠ is the coefficient obtained by taking the SH transformation of the measured 

signal directly, ࢃ௟ሺߠ௜, ߮௜ሻ is the Wigner matrix corresponding to the ith fiber population. 

For all ݈ ൐ 0, equation [28] contains anisotropic components only, while for ݈ ൌ 0, 
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equation [27] should contain the contribution from the pure isotropic compartment in the 

voxel, which is written, 

଴଴ݏ  ൌ ሺܵ଴ ⋅෍ܿ଴,௜ ⋅
௜݂

ߨ4√

ே೑

௜ୀଵ

ሻ ൅ ܵ଴݁
ሺି௧௥ሺ࢈ሻ∙஽೔ೞ೚ሻ ௜݂௦௢

ߨ4√
	  [29]

where ܦ௜௦௢  and ௜݂௦௢  are the diffusivity and volume fraction of the isotropic 

compartment respectively.  

The benefit of constructing the full model is increasing the degrees of freedom – 

the goodness of fit can be evaluated with the spherical harmonic coefficients of the 

measurements directly versus being evaluated with the ݉ ൌ 0 terms corresponding to a 

single fiber bundle. For example, consider the case of three fiber populations, that is, 

௙ܰ ൌ 3, ௕ܰ ൌ 3, and ݈௠௔௫ ൌ 6. Fitting the anisotropic signal components gives rise to 

௕ܰ ∗
௟೘ೌೣ

ଶ
ൌ 9  equations for each fiber bundle. There are ௙ܰ ൌ 3  separate sets of 

equations like this, and equation [24] can be evaluated once at each b value. As of 

unknowns, each fiber bundle yields 3 ൅
௟೘ೌೣ

ଶ
ൌ 6 unknowns corresponding to mean 

diffusivity, intrinsic FA, volume fraction and FOD coefficients for ݈ ൌ 2, 4, 6 . In 

summary, putting ௙ܰ  fiber bundles together yields ௙ܰ ൈ ௕ܰ ൈ
௟೘ೌೣ

ଶ
൅ ௕ܰ ൌ 30 

equations and ௙ܰ ൈ 6 ൌ 18 unknowns. Now consider the larger model with an isotropic 

component of signals: taking the spherical harmonic transformation on both sides of 
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equation [6] gives rise to ௕ܰ ∙ ∑ ሺ݈ ൅ 1ሻ௟೘ೌೣ
௟ୀ଴ ൌ 48	ሺ݈௠௔௫ ൌ  ሻ equations inݎ݁݃݁ݐ݊݅	݊݁ݒ݁

total, and the number of unknowns will be the same, i.e., ௙ܰ ൈ 6 ൌ 18 in total. With 

different ௙ܰ, the number of known and unknown parameters are listed in Table 1. The 

main difference is the isotropic constituents of the signal. If the isotropic constituents of 

different fiber bundles are modeled, in contrast to fitting with anisotropic components 

only, we can evaluate the model with the measured signal directly.  

Generally, increasing the degrees of freedom of the fitting problem will yield 

more stable results. On the other hand, including more unknown parameters elevates the 

complexity of the nonlinear search problem, which may increase computational cost and 

be detrimental to stability. Overall, the optimal approach depends on specific conditions, 

such as the number of shells, maximum order for SH fitting, each fiber population’s 

intrinsic response kernel, and SNR. 

(b). Simplifying the model: assuming the FOD is a Dirac delta function 

Assuming axons are coherently aligned along the axis of the fiber bundle (i.e., 

there is no orientation spreading around the axis) is equivalent to treating the FOD as a 

spherical Dirac delta function. In the case of multiple, crossing fibers, each fiber would 

be represented by a delta function FOD with peak orientation aligned with the axis of that 

fiber and peak amplitude representing the volume fraction. With this additional 



 109

assumption, the ratio between the ݌௟଴ with different ݈ is fixed, and the amplitudes are 

determined by the volume fraction of that particular fiber bundle in the voxel. 

Treating the FOD as a spherical Dirac delta function is equivalent to fitting for 

multiple tensors. The benefit compared to allowing for axial splay (i.e., axon divergence) 

is that the number of parameters in each individual FOD representation decreases from 4 

݈ ௟଴ corresponding to݌) ൌ 0, 2, 4, 6) to 1 (the volume fraction of that fiber bundle). This 

helps to maintain the stability of the algorithm when the actual SNR in the data is low. 

The cost is that the splay will be reflected in the FA estimate, i.e., it will lead to 

underestimation of FA to account for axial splay (fiber divergence). The resulting total 

number of unknown parameters to fit was listed in Table 4.1. 

(c). Model for more precision: fanning in single-fiber populations 

There are situations in the brain where a fiber bundle splays in a planar manner, 

either branching or fanning. Since the ݉ = 0 terms are axially symmetric, we need to 

consider including more terms in the representation of FOD in this case. As shown in the 

example in Figure 4.2, the amplitude modulation in each SH basis function is the 

combination of a sine-wave in the azimuthal angle (corresponding to degree ݉) and a 

Legendre polynomial in the polar angle (corresponding to order ݈). More examples of SH 

basis functions can be found in Figure 4.1. Obviously, we need azimuthal modulation 
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with period of ߨ to describe planar splaying, or in other words, we need ݉ ൌ 2 terms 

in the FOD representations. 

sin 2߮ ସܲ
ଶሺcos ሻߠ ൌ

25
2
ሺ7 cosଶ ߠ െ 1ሻ sinଶ ,ߠସܻ,ଶሺ ߠ ߮ሻ 

Figure 4. 2. A demonstration of the angular variation in spherical harmonics. The left 

image shows the azimuthal dependence with the corresponding sine-wave (degree ݉ = 

2 in this example) while the center image displays the dependence on polar angle given 

by a Legendre polynomial (order ݈ = 4 in this example). Combining both yields the right 

picture of the spherical harmonic basis function (Schönefeld, 2005). 

 

Figure 4.3 illustrates how the ݉=2 terms can model fiber fanning with any 

arbitrary phase. Take ݏ௟௠, ݈ ൌ 2, ݉ ൌ 	െ2, for example, the real part and imaginary 

parts of SH(2,-2) are orthogonal bases to each other, the relative ratio of real and 

imaginary parts of the coefficients determines the phase, and the absolute value of the 

complex coefficient determines the amplitudes of the peaks. Altogether, SH(2,-2) can 

characterize the phase and degree of fanning in FOD. 
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Figure 4. 3. Illustration of the SH representation of fanning at arbitrary phase angle. In 

the left are variations of SH(2,-2), whose primary axes are pointing out of the page. Red 

color represents positive peaks, and blue represents negative peaks. Peaks in the real and 

imaginary parts are 45 degrees apart, which is 1 period/4. A combination of two SH(2,-2) 

terms determines the net amplitude and phase of the angular variation. With an isotropic 

component added (right panel), the net function stretches out along the direction of 

positive peaks of SH(2,-2), and is damped in along the direction of negative peaks. 

 

Hence, adding m = +/-2 terms allows for a more flexible FOD model to 

differentiate axially symmetric (including axial splay and FA) from the non-axially 

symmetric fiber orientation distributions. The resulting total number of unknown 

parameters in the fit was listed in Table 4.1. 
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Table 4. 1. Number of known and unknown parameters in response kernel fitting 

௙ܰ total unknowns Number of equations Actual known/unknown in fitting

  Assuming FOD is Dirac delta function 

  Anisotropic only Full model Anisotropic only Full model 

1 3 12 48 9/3 48/3 

2 6 21 48 9/3 48/6 

3 9 30 48 9/3 48/9 

  Allowing axially symmetric splay 

  Anisotropic only Full model Anisotropic only Full model 

1 6 12 48 9/6 48/6 

2 12 21 48 9/6 48/12 

3 18 30 48 9/6 48/18 

  Allowing axially symmetric splay and planar branching 

  Anisotropic only Full model Anisotropic only Full model 

1 10 21 48 18/10 48/10 

2 20 39 48 18/10 48/20 

3 30 57 48 18/10 48/30 

Numbers are listed for ௕ܰ = 3. 

 

4.2.2. Monte Carlo simulation 

A Monte Carlo simulation was run to test for the variability of parameters 

estimated by the algorithm. A number of factors may exert an effect on the robustness of 

estimates, including the number of directions in the b matrix, SNR, crossing angles, 

number of fibers, mean diffusivity and intrinsic FAs. Different values for these variables 

were used to simulate the noise-free “truth” with Rician noise added. The values used for 

various variables are listed in Table 4.2. Three hundred iterations of Monte Carlo 

simulations were run for each combination of the values listed for all variable names.  
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Table 4. 2. Monte Carlo simulations of orientation and diffusivity estimates 

Varying parameters for orientation estimates 

Variable name values 

nDirs [33, 51, 70, 92] 

SNR [30, 50, 100, 200] 

Crossing angle [60o, 90o](2 fibers); 72o/90o/90o (3 fibers) 

Volume fractions 0.5/0.5 (2 fibers); 0.35/0.35/0.3 (3 fibers) 

Mean diffusivity of all fibers 0.75 x 10-3 mm2/s 

Radial / mean diffusivity of all fibers 0.5 

Varying parameters for diffusivity estimates 

Variable name values 

nDirs 70 

SNR [30, 50, 100, 120, 150, 200, 500] 

Crossing angle [60o, 90o](2 fibers); 72o/90o/90o(3 fibers) 

Volume fractions 0.5/0.5 (2 fibers); 0.35/0.35/0.3 (3 fibers) 

Mean diffusivity of fiber 1 (and 3) 0.75 x 10-3 mm2/s 

Mean diffusivity of fiber 2 [0.75, 0.65, 0.55, 0.45] x 10-3 mm2/s 

Radial / mean diffusivity of fiber 1 (and 3) 0.5 

Radial / mean diffusivity of fiber 2 [0.2, 0.35, 0.5, 0.65]* 

*The ratios of radial to mean diffusivity = [0.2, 0.35, 0.5, 0.65] are equivalent to FA = 

[0.9177, 0.8288, 0.7071, 0.5433] 

 

4.2.3. In-vivo experiments 

4.2.3.1. Data acquisition 

In this study, diffusion weighted (DW) data were acquired along 70 directions 

evenly distributed on a sphere. Three shells of DW data were collected using a 3T Philips 

scanner with 32 channel head coil and b factor = 1000, 2000, 3000 s/mm2. For each shell, 
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seven non-diffusion weighted images were collected for averaging, TR/TE = 10,000/63 

ms, SENSE factor = 2. The scan time for each shell is about 13 minutes, which leads to a 

total scan time of 40 minutes for the diffusion measurement. The acquisition matrix was 

9696, and the voxel size was 2.5 2.5 2.5 mm3.  

4.2.3.2. Image processing 

 Eddy current artifacts were corrected by registering the DW images to the non-

DW image with an affine registration tool in the PRIDE toolset (Netsch and van 

Muiswinkel, et al., 2004. Image data from three separate scans (corresponding to the 

three different b values) were co-registered. The DTI FA maps were calculated in FSL 

(Jenkinson et al., 2003) using the FDT tool. The maps were then nonlinearly registered to 

the ICBM FA template using FNIRT (also part of the FSL package). The white matter 

atlas aligned with the ICBM template was then warped inversely to be aligned with the 

non-DW images in each individual’s native space. These white matter masks were used 

for seed regions for fiber tracking. 

 The iterative spherical deconvolution (iSD, Dell’Acqua et al., 2007) algorithm 

was run on the data from each voxel in the brain. A watershed algorithm was used to 

detect peaks in the FOD resolved by the iSD method. When defining separate peaks: (a) 

if the crossing angle between two peaks was ≤35o, they were combined to produce one 

 
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peak; (b) if the magnitude ratio of a small peak to the largest peak is less than 1/8, the 

small peak is ignored, and its contribution to the FOD is combined into the large peak(s). 

The results of these analyses will be used as initial conditions for the nonlinear search in 

orientation estimates as the first step of the MKSD analysis. The implications of these 

threshold values are discussed below. 

4.2.3.3. Fiber tracking  

 A deterministic fiber tracking algorithm was implemented in MATLAB. Seed 

points were evenly distributed in the seed regions, including the superior longitudinal 

fasciculus, corona radiata, and corpus callosum. Tracking began at each seed point, 

iteratively stepping along pathways. At each step, the local fiber orientation was 

trilinearly interpolated between surrounding voxels. MKSD fiber orientations more than 

30 degrees from the current marching direction were reckoned as not belonging to the 

same anatomical fiber pathway, and were neglected from the interpolation. For voxels 

containing multiple fiber orientations, only the FOD peak yielding lowest curvature was 

selected. Fiber components with volume fractions below threshold (less than 1/8 of the 

total volume) were not included in the interpolation. Stopping criteria include: stepping 

into CSF or gray matter, turning sharply (>45o), or reaching the threshold of maximum 

length (16cm). 
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4.2.4. Confidence estimation using the residual bootstrap 

To estimate the reproducibility of the in-vivo results, we performed a residual 

bootstrap (Jeurissen et al., 2011) analysis to examine the variation range in the parameter 

estimates. Specifically, let ࢿ be the noise vector, then 

ࡿ  ൌ ෨ࡿ ൅ [30] ࢿ

Where ࡿ is the measured DW signal vector, and ࡿ෨ , as described in equation [20], is the 

model predicted signal. Through the relation in equation [20], the spherical harmonic 

coefficients of signal contributions coming from each individual fiber population can be 

estimated using least-squares minimization:  

 

෥࢛  ൌ ሺ࡭ࢀ࡭ሻିଵࢀ࡭ ∗ [31] ࡿ

where ࢛෥ ≜

ە
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 [32]

Given [20] and [31], the model predicted signal ࡿ෨  can be calculated as 

෨ࡿ  ൌ ࡴ ∗ [33] ࡿ
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with ࡴ ൌ ࢀ࡭ሻିଵ࡭ࢀ࡭ሺ࡭  [34]

which is called the “hat-matrix”. The resulting residual vector is given as 

෤ࢿ  ൌ ࡿ െ ෨ࡿ  [35]

Then the raw residuals are corrected for leverage (Davison and Hinkley, 1999) 

̃࢏ߝ 
࢓ ൌ

̃࢏ߝ
ඥ1 െ ݄௜௜

 [36]

where ݄௜௜ is the ith diagonal entry in the hat matrix ࡴ in equation [34]. Next, the values 

from ࢿ෤ were randomly chosen with replacement to form a new set of bootstrapped 

residuals ࢿ෤∗. Finally, the bootstrapped residuals were added back to the signal fit, to 

create a synthetic set of DW signal: 

∗෨ࡿ  ൌ ෨ࡿ ൅ ෤∗ [37]ࢿ

We can then recalculate the fiber orientations using ࡿ෨∗, get an updated ࡭ in equation [31] 

hence updated hat matrix ࡴ in equation [34], and iterate the process to build up a 

bootstrapped distribution of parameter estimates. 

4.2.5. Reliability examination using the leave m out resampling algorithm 

An alternative approach to estimate the reliability of the MKSD model is through 

the leave m out resampling (LMOR) approach. The original delete-one resampling 

method, or Jackknife, was introduced by Quenouille (1949) and Tukey (1958). It is 

widely used to sample the distribution and estimate the bias and variance of a statistic. It 
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can be generalized to ‘delete-m’ Jackknife. See Shao and Tu (1995) for Jackknife 

methods in more detail. 

Inspired by the idea of ‘delete-m’ Jackknife, in this work, we used the LMOR 

approach to sample the distribution of estimated MKSD model parameters. Briefly, for 

each voxel, N observations were acquired, according to N diffusion weighting directions. 

The real estimate was obtained with all N data points. To sample the distribution of 

variance in model estimates, a subsample comprised of (N-m) observations was drawn 

from the original sample a total of n times. Each subsample was then passed to the 

MKSD analysis, yielding one sample of the distribution of model estimates. The sampled 

model estimates, together with the real estimate, could be assessed quantitatively then to 

judge the performance of the MKSD model in this particular voxel, i.e., whether the 

variance of model parameter estimates is below a preset threshold. 

 

4.3. Results 

 

4.3.1. Monte-Carlo simulation 

4.3.1.1. Fiber orientation estimates 

Two fibers crossing at 60 degrees (in the left panel) and at 90 degrees (in the right 
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panel) are shown in Figure 4.4. The result of each individual iteration is marked by a dot 

in the polar diagrams. The cross sign in black on top of individual dots marks the true 

value to simulate the noise-free signal. The distribution of fiber orientation estimates in 

polar and azimuthal angles was illustrated in rose histograms and bar histograms, 

respectively. Red color denotes information pertaining to the 1st fiber, and blue pertains to 

the 2nd fiber. As SNR and crossing angle increase, the estimates were increasingly robust. 

Similarly, as the number of directions increases, the estimates were increasingly robust, 

as shown in Figure 4.5. 
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Figure 4. 4. Monte Carlo simulation of orientation estimates with different SNR and 

crossing angle. In the left panel, the crossing angle between the two fibers is 60 degrees; 

in the right panel, the crossing angle is 90 degrees. Each individual iteration was marked 

by a dot on the polar plot. The cross sign in black marked the true value to simulate the 

noise-free signal. The distribution of fiber orientation estimates in polar and azimuthal 

angles are illustrated in rose histograms and bar histograms, respectively. Red denotes 

information pertaining to the 1st fiber, and blue pertains to the 2nd fiber. The number of 

measurement directions was 70. 
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Figure 4. 5. Monte Carlo simulation of orientation estimates with different numbers of 

directions. In the left panel, the crossing angle between the two fibers is 60 degrees; in 

the right panel, the crossing angle is 90 degrees. Each individual iteration was marked by 

a dot on the polar plot. The cross sign in black marked the true value to simulate the 

noise-free signal. The distribution of fiber orientation estimates in polar and azimuthal 

angles are illustrated in rose histograms and bar histograms, respectively. Red denotes 

information pertaining to the 1st fiber, and blue pertains to the 2nd fiber. SNR was 50. 
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Across all different settings of SNR, number of directions, and crossing angles, 

the variability of the orientation estimates are summarized in Figure 4.6. The angular 

error was calculated as the angular difference between the calculated estimates and the 

true values used for signal generation. The variability of angular error was also estimated, 

calculated by the standard deviation of the angular errors across 300 iterations of Monte 

Carlo simulation. As expected, either increasing the number of diffusion weighting 

directions in the DW measurement or increasing the signal to noise ratio will help to 

decrease the estimation error and improve stability. It was also shown that the accuracy 

and reliability also depended on the crossing geometries. For example, it was more 

challenging to resolve more complex structures (3 fibers vs. 2 fibers), and fiber bundles 

whose axes were less far apart (60o vs. 90o). 
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Figure 4. 6. Angular error in orientation estimates with various acquisition schemes and 

levels of SNR. Both the mean angular error and variability decreases as SNR increases. 

As the number of diffusion weighting directions increases, the variability decreases. The 

mean angular error was marked with the solid line, error bars denote the standard 

deviation. Different acquisition schemes were marked with different colors. 

 

 

4.3.1.2. Diffusivity estimates 

(a). Treating the FOD as a Dirac delta function 

 The simplest MKSD model treats the FOD of each individual fiber bundle as an 

ideal Dirac delta function. The Monte Carlo simulation results for this case are listed in 

Figures 4.7-4.8. As SNR increases, the variability decreases. There is not an obvious 

effect of intrinsic mean diffusivity on the variability.  
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Figure 4. 7. Monte Carlo simulation of FA estimates for a Dirac delta FOD. In the left 

panel, the crossing angle between the two fibers is 60 degrees; in the right panel, the 

crossing angle is 90 degrees. The true values used to simulate the noise-free signal are 

marked with a green dashed line, and the mean value of the estimates are marked with 

red. 

 

The variability of FA estimates with different combinations of crossing angle, 

mean diffusivity, FA and SNR were summed up in Figure 4.8. The standard deviation 

across all iterations of Monte Carlo simulation decreases as SNR increases. In addition, 

when other conditions are identical, high intrinsic FA leads to high robustness to noise. 

No bias was observed. 
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Figure 4. 8. FA estimates for treating the FOD is a Dirac delta function. Different settings 

were listed including various combinations of crossing angle, mean diffusivity, FA, and 

SNR. The mean values are joined by solid lines and the standard deviations across all 

iterations are marked with error bars. Different SNRs are labeled with different colors. 

 

 

 (b). Allowing for axially symmetric splay in the FOD 

 Similar to the previous case, if allowing for axially symmetric splays in the 
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FODs, as SNR increases, the variability in FA estimates decreases (Figure 4.9). The 

distributions are slightly more skewed when the intrinsic mean diffusivity is lower. 

Figure 4. 9. Monte Carlo simulation of FA estimates allowing for axially symmetric 

splay in the FOD. In the left panel, the crossing angle between the two fibers is 60 

degrees; in the right panel, the crossing angle is 90 degrees. The true values used to 

simulate the noise-free signal is marked with a green dashed line and the mean value of 

the estimates is marked with red. 

 

 The variability of FA estimates with different combinations of crossing angle, 

mean diffusivity, FA and SNR are summarized in Figure 4.10.  
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Figure 4. 10. FA estimates allowing for axially symmetric splay in the FOD. Different 

settings were listed including various combinations of crossing angle, mean diffusivity, 

FA, and SNR. The mean values are joined by solid lines and the standard deviations 

across all iterations are marked with error bars. Different SNRs are labeled with different 

colors. 

 

(c). Allowing for planar fanning 

 Planar fanning was simulated as a group of discrete fiber axes in a vertical plane. 

The angle between each pair of consecutive fiber axes is 0.1o. As the fanning increases, 
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i.e., the outmost fiber axis from the positive z-axis increases from 5o to 20o (Figure 4.10), 

the FOD became narrower in the y direction. Note that the width in the y direction does 

not reflect fanning, rather it is due to the truncation of higher order terms (in this 

exemplary demonstration, the maximum order ݈௠௔௫ = 6). For example, the narrowing in 

y direction from 5o splay to 10o splay originates from normalization – the area under the 

FOD has to be 1, so as it gets wider in x, it must get narrower in y. 

 
Figure 4. 11. Fanning in the FOD. Planar fanning in the FOD was simulated with a group 

of discrete fiber axes in the vertical plane (illustrated in blue). The angle between 

consecutive fiber axes is 0.1o, maximum fanning angles ranges from 5o to 20o. These 

discrete fiber orientations were used to generate noise-free DW signals according to the 

tensor relationship, and each orientation had the same volume fraction. The estimated 

FOD was rendered as surface plot in red, both front and top views are shown. The 

corresponding splaying fiber axes used for simulating the signal are shown on the right in 

blue. 
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When two fiber bundles cross, each with planar fanning, (Figure 4.12), the 

obtained FODs are squeezed in the direction perpendicular to the fanning plane. 

Figure 4. 12. Crossing fiber bundles with planar fanning. The obtained FODs were 

squeezed in the direction perpendicular to the fanning plane. The estimated FOD was 

rendered as a surface plot in red, both front and top views are shown. The corresponding 

splaying fiber axes used for simulating the signal are shown on the right in blue. The 

upper fiber simulates fanning in the x-z plane, and the fanning of the lower fiber bundle 

is in x-y plane. 
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The results of Monte Carlo simulation are shown in Figures 4.13. 

Figure 4. 13. Monte Carlo simulation of FA estimates for fanning fiber bundles. In the 

left panel, the signal was generated with a single fiber bundle with planar branching of 

different angles; in the right panel, two fiber bundles were aligned perpendicular to each 

other, as shown in Figure 4.11. The true values used to simulate the noise-free signal are 

marked with green dashed line and the mean values of the estimates are marked with red. 

 

Similar to the results shown in Figures 4.8 and 4.10, in both single bundle and 

crossing cases, the variability of FA estimates decreases as SNR and true FA increase 

(Figure 4.14).  
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Figure 4. 14. FA estimates allowing for planar fanning in the FOD. Different parameter 

settings are shown including various combinations of crossing angle, degree of fanning 

and SNR. The mean values are joined by solid lines and the standard deviations across all 

iterations are marked with error bars. Different SNRs were labeled with different colors. 

Mean diffusivity was 0.75×10-3 mm2/s. 

 

4.3.2. In-vivo experiments 

4.3.2.1. Multiple Kernel Spherical Deconvolution Fractional Anisotropy 

 The goals of MKSD analysis is to resolve crossing fibers and provide an estimate 

of the intrinsic FA in each fiber. Results are shown for one healthy adult participant in 

Figure 4.15c. Three crossing fiber bundles in the left hemisphere, namely the superior 

longitudinal fasciculus (SLF), corona radiata (CR) and callosal fibers (CF) were 

identified. The FA value intrinsic to each fiber bundle was rendered on the streamlines 
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(Figure 4.15 a-b). Considering the SNR in this dataset (SNR ~ 40) and the previous 

Monte Carlo simulation results, the whole brain MKSD analysis assumes the FOD of 

individual fiber bundles to be Dirac delta functions. For each vertex on the streamline, 

trilinear interpolation was performed among neighboring voxels which contain a fiber 

peak of the anatomic structure that current streamline belongs to (angular deviation ≤30°). 
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Figure 4. 15. The FA intrinsic to specific fiber bundles. Three fiber bundles were 

identified (c), and the FA of each fiber bundle, estimated by MKSD, was rendered on the 

streamlines (a, b). 

 

4.3.2.2. Consistency with DTI FA 

 To test whether the FA estimates obtained from MKSD analysis are consistent 

with DTI analysis results, the cerebral peduncle was selected as region of interest, since 

this portion of the cortical spinal tract exhibits a high degree of fiber coherence. The 
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JHU-ICBM white matter atlas was used to identify voxels inside the cerebral peduncles. 

A simple linear correlation was performed between DTI FA and MKSD FA among voxels 

within bilateral cerebral peduncles where only one fiber peak was identified by iterative 

spherical deconvolution. On both sides of the brain, the MKSD FA was significantly 

correlated with the MKSD FA (R2>0.94, p<0.0001).  
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Figure 4. 16. FA estimates by DTI and MKSD. In the upper panel, the FA estimated by 

MKSD and DTI is shown on a sagittal view of the left cortical spinal tract. In the lower 

panel, the correlation between DTI FA and MKSD FA in the cerebral peduncle (rendered 

in transparent gray) is shown for each side separately. Note the high correlation of FA 

values between methods in coherent fibers. 

 

4.3.2.3. Confidence estimated by residual bootstrap 

 The bootstrap results for six consecutive voxels in the SLF (interdigitating with 

CF) are shown in Figure 4.17, which demonstrates spatially smooth FA values that are 
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larger than those of the partial volume averaged single tensor model (shown in blue) in 

the right panel.  

 

Figure 4. 17. MKSD FODs and stability of the estimates. Six consecutive voxels in the 

SLF (interdigitating with CF) demonstrate higher FA values than estimated from the 

partial volume averaged single tensor model (shown in blue) in the right panel. DTI 

tensors and FODs pertaining to CF (red) and the SLF (green) are also shown. Transparent 

gray surfaces around the FODs show the mean plus three times the standard deviation 

over bootstrap trials. 

 

4.3.2.3. Cross-talk between fiber compartments 

 The individual iterations of the bootstrap corresponding to the voxels shown in 
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Figure 4.17 are plotted in Figure 4.18. This shows that the errors in FA estimates of one 

fiber compartment are correlated with the errors in FA estimates of the other fiber 

compartment, i.e., cross-talk exists when separating signal to individual fiber 

compartments.  

Figure 4. 18. Scatter plot of individual iterations of the bootstrap. The six scatter plots 

correspond to the six voxels shown in the bootstrap results (Figure 4.17), which were 

displayed on their left. Each blue dot corresponds to one iteration of the bootstrap 

sampling, and the pink cross marks the estimates from the original data. 

 

4.3.2.4. Reliability examination using the LMOR approach 

 Another approach to estimate the reliability of FA estimates is through Jackknife-

like resampling, or leave-m-out resampling (LMOR). This method was used to evaluate 



 138

reproducibility in an ROI in the left hemisphere where the SLF and CR cross (Figure 

4.19a).  

Figure 4. 19. Evaluation of reliability using the LMOR method. An ROI in the left 

hemisphere was selected where the SLF and CR cross (a). 30 iterations of resampling 

were performed with 10 randomly drawn data points left out to establish a sampled 

distribution of fiber orientation and FA estimates. The peaks of these LMOR samples 

were then assigned to CR or SLF(b). Also plotted in each voxel in gray is a histogram of 

the FA estimates across LMOR samples corresponding to the CR or SLF. 
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For each voxel in the ROI, 30 iterations of resampling were performed with 10 

randomly drawn data points left out to establish a sampled distribution of fiber 

orientation and FA estimates. To calculate the standard deviation of FA corresponding to 

each fiber bundle separately, the multiple peaks of LMOR samples were assigned to CR 

or SLF (Figure 4.19b). The histogram of FA estimates across LMOR samples were 

plotted in each voxel with the full range from 0 to 1. A standard deviation for each voxel 

was calculated for the CR and SLF separately, and the distribution of standard deviations 

(STDs) across all the voxels in the ROI is shown in Figure 4.19c. 

4.3.2.5. Impact of small crossing angles 

 When crossing angles are too small to resolve individual fiber bundles (e.g., two 

fiber bundles crossing at <30o), the fibers are modeled as one loose fiber bundle. In this 

case, FA estimates are reflections of the loose (divergent) fiber bundle and thus should be 

interpreted with caution. For example, if the DW acquisition with b = 2000 s/mm2 was 

used to determine number of peaks in the FOD, then a horizontal band of relatively low 

FA values was found on a group of inferior-superior running fibers (putatively in left CR).  

These values were not consistent with the FA in neighboring voxels along the fibers 

(Figure 4.20). On the other hand, if the DW acquisition with b = 3000 s/mm2 was used to 

determine number of peaks in the FOD, the number of peaks has a smoother spatial 
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distribution, and the resulting FA estimates show a higher degree of smoothness along 

fibers as well. Generally, the resolving power at b = 3000 s/mm2 is better than at lower b 

values (as can be seen by comparing the number of peaks detected in the top panels of 

Figure 4.20). The improved results based on b = 3000 s/mm2 peak detection suggest that 

the dip in FA along the fibers is an artifact of unresolved peaks in the FOD, which appear 

as a single divergent peak with anomalously low FA.  
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Figure 4. 20. Impact of small crossing angles on FA estimation. A single shell (i.e., b 

value) of DW data was used to identify number of peaks in each voxel using the iterative 

spherical deconvolution algorithm (Dell’Acqua at al., 2007) with b = 2000 s/mm2 and b = 

3000 s/mm2 respectively (upper panel). The corresponding FA estimates are shown in the 

lower panel. Comparison of the top and bottom panels shows that an underestimation in 

the number of peaks will yield underestimation in FA, i.e., the lower FA reflects a 

divergent fiber bundle comprised of two or more fiber bundles crossing at a small angle 

between. 

  

A follow up analysis showed that the horizontal blue band found in the MKSD 

FA rendered on superior-inferior oriented fibers shown on the lower left of Figure 4.20 
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originates from interdigitating callosal fibers (Figure 4.21).  

 

Figure 4. 21. Impact of small crossing angles between the CR and callosal fibers on FA 

estimation. An ROI on a lateral plane was selected to run Jackknife analysis using the 

LMOR approach. For each iteration out of 50 in total, ten data points corresponding to 

ten DW directions were left out, and the rest of the data points were included for FOD 

peak identification and FA estimation. With b = 2000 s/mm2 data, crossing bundles with 

small angles were more likely to be modeled as one fiber bundle with lowered FA; while 

with b = 3000 s/mm2 data, crossings were more likely to be detected and the FA estimates 

were more consistent with the neighborhood. The black arrow points to a voxel where the 

peaks aligned with CR and callosal fibers cannot be identified with b = 2000 s/mm2 data, 

but can be reliably identified with b = 3000 s/mm2 data. 

 

As shown in Figure 4.21, the callosal fibers projecting laterally and superiorly 
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into the cortex form a continuous fanning in the coronal plain, and consequently the 

crossing angles between CR and callosal fibers range from 0o (i.e., joining to form one 

bundle) to 90o (i.e., laterally projecting callosal fibers and perpendicular CR fibers). 

When the crossing angle decreased gradually to reach the threshold at which the crossing 

can no longer be identified, the two bundles were reckoned as one fiber bundle; yet, the 

crossing angle was large enough to be reflected as the lowered FA value. As the crossing 

angle decreased further, for example, the two fiber bundles form one large bundle 

running in parallel, the FA reflected the property of this large fiber bundle, and the 

contribution from crossing diminished. 

 

4.4. Discussion and conclusion 

In this work, the MKSD method is proposed as a way to resolve crossing fiber 

bundles and estimate their intrinsic diffusivity properties. We showed that the MKSD 

framework has the flexibility to decrease or increase model parameters depending on the 

tradeoff in practice between scanning time and the amount of information/precision 

desired for specific research questions. The effects of various factors, including SNR, 

intrinsic diffusivities, and geometry of complex white matter structures were studied 

through Monte Carlo simulation. We also demonstrated with in vivo data that the MKSD 
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approach can provide reasonable FA estimates along anatomically well-defined white 

matter structures.  

In the Monte Carlo simulation of FA estimates, as SNR increases, the variability 

of FA estimates decreases for all MKSD models. No obvious effect of intrinsic mean 

diffusivity on the variability was observed. In addition, when other conditions are 

identical, higher intrinsic FA leads to greater robustness to noise.  

By allowing for axially symmetric splay, the number of degrees of freedom 

decreases by 4 and 6 for the 2-fiber and 3-fiber cases, respectively. As a result, the 

observed variation in FA estimates increases. At SNR=50, the bias in FA towards 

underestimation might be due to the forced restriction in the nonlinear search algorithm. 

For example, the higher limit for FA was set to 1. As a result, the right tail of the 

distribution was squeezed, which lead to a skewed distribution towards the left. 

It was demonstrated that intrinsic FA could be estimated by MKSD with fanning 

or splaying crossing fiber bundles. It is worth noting that fanning in the FOD tends to 

yield underestimated FA. This might be a reflection of cross-talk (i.e., covariance) 

between the FOD geometry and intrinsic fiber anisotropy. For example, in the noise-free 

situation, signal contrast from DW measurements with different b values provides a way 

to differentiate (a) high intrinsic FA with fiber splay and (b) low intrinsic FA with no fiber 
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splay. However, when noise is present, FA could be confounded with coherence of axonal 

fiber axes (i.e., in the tensor model, any axonal splay/fanning is reflected in lower FA). In 

this particular case, when the maximum order ݈௠௔௫ = 6 is used, as shown in Figure 4.10-

4.11, the planar fanning is not well represented with up to 6th order terms, or in other 

words, there is limited contrast resulting from planar fanning. However, the effect on the 

FOD perpendicular to the fanning plane was decreased width, which if misinterpreted as 

axial coherence, would result in underestimated intrinsic FA. 

For the in vivo examination, we found good agreement between FA estimated 

from the DTI and MKSD methods in regions where only one fiber bundle is present. It is 

worth noting that at lower FA (FA<0.5), the MKSD FA was higher than DTI FA; however, 

the discrepancy diminished at higher FA (FA~0.8). It is likely that at lower FA, the DTI 

FA is underestimated due to partial volume effects with isotropically diffusing tissues, 

while MKSD analysis models the isotropic compartment. At higher FA, however, the 

high FA itself is a sign of less partial volume averaging, and thus the two estimates 

coincide better. 

We also observed cross-talk (covariance) between FA estimates of co-existing 

fiber bundles in the bootstrap analysis. The MKSD analysis relies on identification of 

contributions from each fiber bundle. The cross-talk might be due to errors in this 
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separation of signal contributions. For example, an overestimated FA for one fiber bundle 

due to noise will likely coincide with an underestimated isotropic contribution from this 

fiber bundle. Assuming the total isotropic signal contribution is divided between two 

fiber compartments, the other fiber bundle will be assigned with more than the true value, 

which favors an underestimated anisotropy estimate.  

Another limitation of MKSD is vulnerability to errors in peak number estimates. 

At lower crossing angles (i.e., <30o), where crossing could not be identified by the 

preprocessing algorithm, the FA estimates obtained from MKSD analysis should be 

interpreted with caution. 

In summary, the MKSD method can provide intrinsic FA estimates of crossing 

fiber bundles. In regions with a single fiber bundle, MKSD gives results consistent with 

the tensor model; in regions with crossing fibers, MKSD can provide more information to 

complement conventional HARDI methods, which focus on fiber orientation. Methods 

that resolve crossing fibers and provide robust estimates of the fibers’ intrinsic diffusion 

properties may become important tools in neurobiological studies of brain injury, 

developmental disabilities, as well as normal brain development and aging. 
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CHAPTER V 

 

CONCLUSION  

 

The work discussed in this dissertation centered on an improved assessment of 

the reading network in the brain using Diffusion Weighted (DW) MRI. 

We first carried out two studies which used Diffusion Tensor (DT) tractography 

to examine brain connectivity and its association with children’s reading ability: one 

focuses on the putative visual word form area (VWFA) and its connectivity pattern with 

the rest of the cortical brain, the other focuses on the thalamus and its connectivity with 

the cortical brain. In the VWFA study, it was found that the architecture of the VWFA 

connectivity is fundamentally different between TD and RD groups, with TD showing 

greater connectivity to linguistic regions than RD, and RD showing greater connectivity 

to visual regions than TD. The central finding of the thalamus study revealed that 

children with RD have significantly higher thalamo-sensorimotor connectivity, which 

suggested that sensorimotor function is over-relied upon in children with RD.  

In both studies, the RD group was found to be over-connected with the brain 

regions engaged in lower level information processing as compared to the TD group, i.e., 
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visual perception for the VWFA study, and somatosensory and motor cortex for the 

thalamus study. These results indicate that association areas in the brain, which are 

responsible for integrating sensory information into a coherent model to support abstract 

thinking and language, such as inferior temporal, fusiform, orbitofrontal regions etc., 

comprise an important part of the network that underpins proficient reading in children. 

In spite of the abundant information that brain connectivity analysis can provide, 

it is not a direct measure of the physical properties of the connecting white matter fiber 

bundles. Diffusion Tensor Imaging (DTI) can provide a direct quantitative description of 

such properties, but DTI suffers from some fundamental limitations, especially when 

multiple fiber bundles are present in a single voxel. To address the partial volume effects, 

the third study focused on developing a new MR method to resolve the crossing between 

different fiber bundles and at the same time provide estimates of diffusion properties 

intrinsic to each fiber bundle. Both the Monte Carlo simulation and in vivo experimental 

results have demonstrated that the Multiple Kernel Spherical Deconvolution (MKSD) 

approach can estimate the FA of different fiber bundles in a voxel. These results 

demonstrated the potential of MKSD in assessment of the reading network, which is 

comprised of complex white matter structures, in terms of identification of the real 

neurocorrelates of behavioral performance.  
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Currently, the challenge for MKSD to be widely applied to reading and other 

neurobiological research areas is the long scanning time, i.e., approximately 40 minutes 

in total, especially if the population of interest is young children. To decrease the 

scanning time, accelerated imaging techniques may provide an opportunity. Actually, 

some accelerating techniques have already been demonstrated to be effective in reducing 

acquisition time for diffusion imaging, such as simultaneous multi-slice echo planar 

imaging (Feinberg et al., 2010; Feinberg and Setsompop, 2013; Setsompop et al., 2012), 

and compressed sensing (Landman et al., 2010, 2012). With the maturation of these 

techniques, we hope that the MKSD approach will finally find its significance in reading 

and similar neurobiological studies. 
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APPENDIX A 

 

LIST OF PROGRAMS USED  

 

The purpose of this appendix is to provide a description of the MATLAB scripts 

that were written for data analysis related to the project discussed in Chapter IV of this 

dissertation 
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Figure A. 1. Flow chart of list of programs used. The names of the MATLAB functions 

are listed in blue, and were categorized into preprocessing, analyzing and visualization 

categories. 

 


