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CHAPTER I

INTRODUCTION

In his proof of the Polynomial Growth Theorem, Gromov associated to each group G, with polynomial

growth, a locally compact metric space and an action of a finite index subgroup of G on the space. The

associated space was the Gromov-Hausdorff limit of the sequence of spaces
{
(G,distn)

}
where distn is a

fixed word metric on G rescaled by 1
n and is called on an asymptotic cone of G [25]. However, this limit only

makes sense when the sequence is uniformly locally compact, as is the case for a sequence of rescaled copies

of a group with polynomial growth, and the limit is locally compact. A more general definition was given

by van der Dries and Wilkie which involved the use of an ultrafilter but had the convenience of working for

any sequence of metric spaces [52].

In Asymptotic invariants of infinite groups, Gromov [27, Section 5.F] observed a connection between

the homotopic properties of the asymptotic cones of a finitely generated group and algorithmic properties

of the group: if all asymptotic cones of a finitely generated group are simply connected, then the group

is finitely presented, its Dehn function is bounded by a polynomial (hence its word problem is in NP) and

its isodiametric function is linear. An analogous result for higher homotopy groups was proved by Riley

[47]. The converse statement does not hold: there are finitely presented groups with non-simply connected

asymptotic cones and polynomial Dehn functions [3], [48], and even with polynomial Dehn functions and

linear isodiametric functions [39]. A partial converse statement was proved by Papasoglu [44]: a group with

quadratic Dehn function has all asymptotic cones simply connected (for groups with subquadratic Dehn

functions, i.e. hyperbolic groups, the statement was previously proved by Gromov [26]: all asymptotic

cones in that case are R-trees). An example of Thomas and Velickovic [51] shows that a finitely generated

group can have one asymptotic cone which is a tree (and hence simply connected) while another has non-

trivial π1. Thomas and Velickovic’s example can be modified to obtain a finitely generated group with one

asymptotic cone which is an R-tree and one asymptotic cone which is not locally simply connected [12].

Thus finitely generated groups can have asymptotic cones which are not locally bi-lipschitz.

Gromov asked what were the possible isomorphism types of fundamental groups for asymptotic cones

of finitely generated groups [27]. In particular, he asked whether the following dichotomy is true: the

fundamental group of an asymptotic cone of a finitely generated group is always either trivial or of order

continuum. One motivation for this question was that asymptotic cones of nilpotent groups are simply

connected (Pansu, [43]), the same is true for hyperbolic groups since all cones in that case are R-trees, but

asymptotic cones of many solvable non-nilpotent groups (say, the Baumslag-Solitar group BS(2,1) or Sol)

contain π1-embedded Hawaiian earrings which seems to be a common property of many groups [7],[12].

Answering Gromov’s question about fundamental groups of asymptotic cones, Erschler and Osin showed

that every countable group is a subgroup of the fundamental group of an asymptotic cone of a finitely gen-

erated group [21]. Druţu and Sapir proved that, moreover, for every countable group C, there exists an

asymptotic cone of a finitely generated group G whose fundamental group is the free product of uncount-

ably many copies of C [18]. (Note that for finitely presented groups G, analogs of the results of Erschler-Osin

1



and Druţu-Sapir are still unknown.)

It turned out that Gromov’s dichotomy is false: there exists an asymptotic cone of a finitely generated

group whose fundamental group is Z since the cone is homeomorphic to the direct product of a tree and

a circle [38]. Cornulier and Tessera have produced additional counter examples by showing that solvable

groups can have asymptotic cones with finite non-trivial fundamental groups [13].

If a group is finitely presented and one asymptotic cone is an R-tree, then the group is hyperbolic, so

all asymptotic cones are simply connected (it essentially follows from Gromov’s version of the Cartan-

Hadamard theorem for hyperbolic groups, see the appendix of [38]). Nevertheless in [41], a finitely pre-

sented group (a multiple HNN extension of a free group) with both simply connected and non-simply con-

nected asymptotic cones was constructed.

I.1 Main results and methods

A group all of whose asymptotic cones are simply connected will be called a prairie group. We previously

noted that all asymptotic cones of hyperbolic groups and nilpotent groups are simply connected. Hence

they are prairie groups. Papasoglu showed that groups with quadratic Dehn function are prairie groups

[44]. A group is constricted if all of its asymptotic cones have (global) cut-points and wide if none of its

asymptotic cones have cut-points. We show that for constricted groups Gromov’s dichotomy does hold and

that a modified version of Gromov’s dichotomy holds for groups which are not wide.

Theorem A (Corollary III.1.23). Let G be a finitely generated group.

If G is constricted, then the fundamental group of an asymptotic cone of G is either trivial or contains

an uncountably generated free subgroup.

If G is not wide, then G has an asymptotic cone whose fundamental group is trivial or contains an

uncountably generated free subgroup.

If an asymptotic cone of a group contains a cut-point, then it is tree-graded with respect to subsets called

pieces which are maximal subsets without their own cut-points. For a definition of tree-graded spaces,

see [18]. A naive attempt to prove Theorem A is to say that if the fundamental group is non-trivial then

some piece contains an essential loop. However, the one-point wedge of two contractible spaces can have

uncountable fundamental group (see the remark following Proposition III.2.9). Hence, it is possible that all

pieces have trivial fundamental group while the asymptotic cone itself has non-trivial fundamental group.

As an initial step to circumvent this difficulty, we show the following proposition which is the main

ingredient in the proof of Proposition C.

Proposition B. [Proposition III.1.19] Suppose that X is an unbounded homogeneous geodesic metric

space and Ci is a sequence of finite point sets from Conω
(
X ,e,d

)
. Then limω

e Ci embeds isometrically

into Conω
(
X ,e,d

)
.

A stronger version of this statement is proved, assuming the Continuum Hypothesis, in [42]. It is also

related to work of Sisto in [49] and is the main ingredient in the proof of the following proposition.
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Proposition C. [Lemma III.1.20] Suppose that G is a non-virtually cyclic finitely generated group. If

Conω
(
G,d

)
has a cut-point, then every maximal transversal tree in Conω

(
G,d

)
is a universal R-tree.

A tree T ⊂ X is transversal in X , if the connected components of T\{t} are contained in distinct con-

nected components of X\{t} for every t ∈ T . This maximal transversal tree is then used to find an un-

countable set of points such that any two points are separated by a cut-point. Homogeneity together with

this uncountable set of points, allows us to show that any essential loop has uncountable many translates

such that any two are separated by a cut-point. These translates serve as generators for a subgroup of the

fundamental group which is an uncountable product of cyclic groups.

In the process, we also obtained the following result which is interesting in its own right.

Proposition D (Proposition III.1.12). Let X be a homogeneous geodesic metric space. Every asymptotic

cone of X is one-ended if and only if X is wide if and only if no asymptotic cone of X has a local cut-point.

By extending these methods to unbounded sets, we were able to show that Gromov’s dichotomy holds

for HNN-extensions and amalgamated products with nicely embedded associated subgroups.

Theorem E (Theorem III.2.16). Suppose that G is an HNN-extension or amalgamated product where the

associated subgroups are proper, quasi-isometrically embedded, prairie groups. Then every asymptotic cone

of G is either simply connected or has uncountable fundamental group.

Another weaker version of Gromov’s dichotomy holds for multiple HNN extensions of free groups:

Theorem F (Theorem III.3.16). If G is a multiple HNN extensions of a free group, then every asymptotic

cone of G is simply connected or G has an asymptotic cone with uncountable fundamental group.

Multiple HNN extensions of free groups can have unusual asymptotic properties. Olshanskii and Sapir

constructed a multiple HNN extension of a free group which has π1-non-equivalent asymptotic cones [41]

and another one which has all cones not simply connected and n2 log(n) Dehn function [39]. Conner and

Kent gives prove that the cones from this last example actually have uncountable fundamental group [12]. As

noted earlier, Burillo in [7] showed that Baumslag-Solitar groups can have π1-embedded Hawaiian earring

groups.

When Gromov’s dichotomy was formulated, examples of groups with several non-homeomorphic (or

moreover π1-non-equivalent) asymptotic cones were not known. Now we know that a finitely generated

group can have uncountably many pairwise π1-non-equivalent asymptotic cones [18] (or much more pair-

wise non-homeomorphic cones, if the Continuum Hypothesis is assumed false [33]).

In [27], Gromov defined a loop division property and outlined a proof that a metric space has the loop

division property if and only if all of its asymptotic cones are simply connected. Papasoglu presented a proof

of the only if direction in [44]. Druţu gave a proof of the if direction in [16]. A version of the loop division

property which guarantees that a particular asymptotic cone is simply connected was presented and used by

Olshanskii and Sapir in [41]. We will define an analogue to Gromov’s loop division property (ε-coarsely

loop divisible) which we will use to understand the local topological structure of asymptotic cones. Coarse

loop divisibly also allows us to understand some general algebraic properties of the fundamental group of

an asymptotic cone.
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Theorem G. Let G be a finitely generated group and fix a pair
(
ω,d

)
.

1) If G is uniformly ε-coarsely loop divisible, then Conω
(
G,d

)
is uniformly locally simply connected and

G has an asymptotic cone which is simply connected.

2) If Conω
(
G,d

)
is semi-locally simply connected, then G is ε-coarsely loop divisible.

3) If a finitely generated G is not ε-coarsely divisible with respect to
(
ω,d

)
for any ε > 0, then the funda-

mental group of Conω
(
G,d

)
is uncountable, not free, and not simple.

These theorems hold for all complete homogenous geodesic metric spaces. In Section IV.1.1, we give a

necessary condition for every asymptotic cone of a complete homogenous geodesic metric space to satisfy

the conditions of part 3 of Theorem G. It turns out that many important groups such as SL3(Z) and other

groups that have previously appeared in the literature related to asymptotic cones satisfy this condition, see

Section IV.2.

I.2 Further plans

Papasoglu (see Proposition IV.1.7) showed that if one requires G to be uniformly ε-coarsely loop divisible

with respect to
(
ω,d

)
for every ε > 0, then one obtains that Conω

(
G,d

)
is actually simply connected. How-

ever; it is not clear if uniformly coarsely divisible is actually a necessary condition. Hence, the following

questions are open.

Let G be a finitely generated group.

Question 1. If Conω
(
G,d

)
is locally simply connected, is G uniformly ε-coarsely loop divisible?

Question 2. If Conω
(
G,d

)
is simply connected, is G uniformly ε-coarsely loop divisible for every ε?

Remark IV.1.11 gives examples of metric spaces which are not asymptotic cones where the answer to

both of these question is no. There are no known examples of finitely generated groups which are coarsely

loop divisible but not uniformly coarsely loop divisible which leaves the following question open.

Question 3. Are uniformly coarsely loop divisible and coarsely loop divisible equivalent conditions for

finitely generated groups?

A positive answer to Question 3 would imply a positive answer to Question 1 and show that “locally

simply connected” and “semi-locally simply connected” are equivalent properties for asymptotic cones of

finitely generated groups.

Proposition IV.2.6 shows that a finitely generated group can have cones which are not locally isometric.

Question 4. Can a finitely presented group have non-locally isometric asymptotic cones?

Riley showed that if all the asymptotic cones of a finitely generated group G are n-connected, then G

has an EilenbergMacLane space with finite k-skeleton (G is of type Fn+1) [47]. His proof uses an analogue

to Gromov’s loop division property for higher order spheres. Brady, Bridson, Forester and Shankar have

studied possible higher order Dehn functions of the from xα [1], [2].
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Question 5. Do results analogous to Theorem G hold for higher homotopy groups?

Question 6. Does Gromov’s dichotomy hold for the higher homotopy groups, i.e. is πn
(
Conω

(
G,d

))
always

trivial or uncountable for finitely generated groups G?

5



CHAPTER II

PRELIMINARIES

II.1 Conventions

When τ is a path in a metric space, we will use |τ| to denote its arc length. Then | · | maps the set of paths

into the extended real line and is finite for rectifiable paths and +∞ for non-rectifiable paths. We will assume

that rectifiable paths are parameterized proportional to arc length.

II.2 Geometric structure of groups

Definition II.2.1 (Group presentation). A group G is generated by a subset S, if each element of G is equal

to a finite product of elements from S∪S−1 where S−1 = {s−1 | s ∈ S}. We will write G = 〈S〉. Let u,v be

two words in the alphabet S∪S−1. We will write u≡ v when u and v coincide letter by letter and u =G v if

u and v are equal in G.

We will say that 〈S |R 〉 is a presentation for G if G is generated by S and whenever u =G v then uv−1 is

in the normal closure of R.

Definition II.2.2 (Geometry of a group). Given a presentation 〈S |R 〉 of G we can define a metric on G. For

each element of G, let

|g|S = min
{

k | g =G sε1
i1 · · ·s

εk
ik where εi ∈ {−1,1} and si j ∈ S

}
.

Let dists(g,h) = |g−1h|S. One can easily check that this defines a metric on G which we will refer to as

a word metric on G.

Remark II.2.3. This metric clearly depends on S. For example: If G = Z and S = {1}, then distS is the

Euclidean metric on Z and if S = Z then dS(g,h) either 0 or 1. However, for finitely generated groups word

metrics corresponding to finite generating sets are invariant in the following sense.

Definition II.2.4. A function f : (X ,distX)→ (Y,distY ) between metric spaces is a quasi-isometry if there

exists (λ ,C) such that

1) 1
λ

distX(x,x′)−C ≤ distY
(

f (x), f (x′)
)
≤ λ distX(x,x′)+C and

2) for every y ∈ Y there exists and x ∈ X such that disty
(
y, f (x)

)
≤C

Lemma II.2.5. If S and T are finite generating sets for a group G, then (G,distS) is quasi-isometric to

(G,distT ).

Proof. Let λ = max
{
|s|T , |t|S | s ∈ S, t ∈ T

}
. Let f : (G,distS)→ (G,distT ) be the identity map and fix

g,h ∈ G. Choose sε1
i1 , · · · ,s

εk
ik ∈ S∪S−1 such that g−1h =G sε1

i1 · · ·s
εk
ik and |g−1h|S = k = distS(g,h). Similarly,

choose tδ1
i1 , · · · , t

δl
il ∈ T ∪T−1 such that g−1h =G tδ1

i1 · · · t
δl
il and |g−1h|T = l = distT (g,h).

6



Then uε1
i1 · · ·u

εk
ik =G g−1h =G vδ1

i1 · · ·v
δk
il where ui j is a word in T ∪T−1 and vi j is a word in S∪ S−1 such

that ui j =G si j ,vi j =G ti j and |ui j |T , |vi j |S ≤ λ . Hence k ≤ λ l and l ≤ λk which completes the proof with

C = 0.

Definition II.2.6 (Cayley Graph and Cayley Complex). Given a group G with presentation 〈S |R 〉, the

presentation complex K(S,R) is the CW complex with a single vertex, a 1-cell for each element of S, and

2-cells corresponding to elements of R such that π1
(
K(S,R)

)
= G. In general, we will consider K(S,R) as a

labeled CW complex by labeling each 1-cell of K(S,R) with a letter from S such that the attaching map of

the 2-cell corresponding to an element r ∈ R is the edge path determined by the spelling of r. Let K̃(S,R) be

the universal cover of K(S,R).

We will give an explicit construction for K̃(S,R). Let K̃(1)(S,R) be considered as a oriented graph with

vertices labeled by elements of G and oriented edges labeled by pairs (g,s) where g ∈ G and s ∈ S with

the convention that the edge (g,s) has initial vertex g and terminal vertex gs. The inverse edge for (g,s) is

formally (gs,s−1). Since K̃(1)(S,R) doesn’t depend on R and to maintain standard notation, we will generally

denote K̃(1)(S,R) by Γ(G,S) and call it the Cayley graph of G (with respect to the generating set S). We will

endow Γ(G,S) with the edge metric. Notice this metric restricted to the vertex set, which is labeled by G,

agrees with the word metric distS on G. Since distS was left-invariant, G acts isometrically on Γ(G,S) by

h · x = hx for x a vertex of Γ(G,S) and h · (x,s) = (hx,s) for an edge (x,s).

To complete the construction of K̃(S,R), we attach a 2-cell Dg,r for each g∈G and r∈R via the edge path

(g1,s
ε1
1 )(g2,s

ε2
2 ) · · ·(gn,sεn

n ) where r ≡ sε1
1 sε2

2 · · ·sεn
n for εi =±1, g1 = g, and gi+1 = gis

εi
i for i = 1, · · · ,n−1.

The Cayley complex Γ2(G,S,R) is the CW complex obtained from K̃(S,R) by identifying all faces which

correspond to the pairs {g,r},{gs,r}, · · ·{gsm−1,r} where r ≡ sm and s is not a proper power in the free

group on S.

Definition II.2.7 (van Kampen diagrams). Let ∆ be a finite, oriented, connected, simply connected, planar

2-complex endowed with a labeling function Lab : E(∆)→ S∪S−1 where E(∆) denotes the set of oriented

edges of ∆, such that Lab(e−1) = Lab(e)−1.

Given a 2-cell π of a diagram ∆, we denote by ∂π , ∂∆ the boundary of π , ∆ respectively. The labels

of ∂π ,∂∆ are defined up to a cyclic permutation by traversing the loops ∂π ,∂∆ in the clockwise direction

and will be denoted by Lab(π), Lab(∆) respectively. We will say that ∆ is a van Kampen diagram over a

presentation 〈S |R 〉; if every 2-cell in ∆ is labeled by a cyclic permutation of r±1 for some r ∈ R. Unless

otherwise noted, we will always consider van Kampen diagrams as metric spaces with the edge metric.

In general, we will use Lab to represent the function from the set of edge paths in a labeled oriented

CW complex to the set of words in the alphabet obtained by reading the label of a path.

At times it will be convenient to refer to diagrams on surfaces possible with boundary which are not

planar or not simply connected. A diagram is circular if the underlying complex is homeomorphic to a planar

disk, spherical if the underlying complex is homeomorphic to a 2-sphere, and annular if the underlying

complex is homeomorphic to a planar annulus.
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We will use θ to denote the canonical map taking a van Kampen diagram into the Cayley complex

which restricts to a label preserving map on the 1-skeleton of the diagram. Explicitly, let ∆ be a van Kampen

diagram with a distinguished vertex o and go a vertex of Γ(G,S). For v a vertex of ∆, let θ(v) = g0wv

where wv is the label of any path in ∆ from o to v. Whenever ∆ is a simply connected diagram, this map is

independent of the choice of wv and extends to a map on all of ∆ as follows. For e an edge of ∆ labeled by s

with initial vertex v, let θ(e) = (θ(v),s) where
(
θ(v),s

)
is the edge in Γ(G,S) with initial vertex θ(v) and

labeled by s. For π a 2-cell of ∆, we may choose a vertex v on ∂π such that Lab(π)≡ r±1 with this choose

of base point. Then θ(π) = Dθ(v),r±1 where Dθ(v),r±1 is the two cell in Γ2(G,S) with boundary, read from

θ(v), labeled by r±1. The map θ is unique up to our choice of g0 and o.

Definition II.2.8 (Isoperimetric functions). Suppose that 〈S |R 〉 is a finite presentation for a group G. Let

Area(∆) denote the number of R-cells in a van Kampen diagram ∆. If w is a word in S∪S−1, then Area(w) =

min{Area(∆) | Lab(∂∆)≡ w}. If γ is a loop in Γ(G,S), then Area(γ) = Area(Lab(γ)).
An isoperimetric function for the presentation 〈S |R 〉 of G is a non-decreasing function δ : N→ [0,∞)

such that δ (|∂∆|)≥ Area(Lab(∂∆)) for all van Kampen diagrams ∆ over 〈S |R 〉.
Two non-decreasing functions f ,g : N→ [0,∞) are equivalent, if there exists constants B,C > 0 such

that f (n)≤ Bg(Bn+B)+Bn+B and g(n)≤C f (Cn+C)+Cn+C.

Up to this equivalence, the Dehn function of a finitely presented group G is independent of the finite

presentation. Hence, we will call a minimal isoperimetric function for a presentation 〈S |R 〉 of G a Dehn

function for G.

Definition II.2.9 (Ultrafilters). Let I be a set. We will use P(I) to denote the power set of I. An ultrafilter

on I is a non-trivial finitely additive probability measure ω defined on P(I) which takes values in {0,1},
i.e.

1. ω(A) ∈ {0,1} for A ∈P(I)

2. ω(X) = 1, and

3. ω
(
tk

i=1Ai
)
= ∑

k
i=1 ω(Ai) for pairwise disjoint Ai in P(I).

An ultrafiler is principal if ω
(
{i}
)
= 1 for any i ∈ I. A ultrafilter is non-principal if ω

(
{i}
)
= 0 for all

i ∈ I.

We will only consider non-principal ultrafilters on N and generally refer to them as simply ultrafilters.

Definition II.2.10 (Ultralimits of real numbers). Let ω be an ultrafilter on N and cn be a sequence of real

numbers. The sequence cn is bounded ω-almost surely or ω-bounded, if there exists a number M such that

ω
(
{n | |cn|< M}

)
= 1.

Lemma II.2.11. If cn is ω-bounded, then there exists a unique number, which we will denote by limω cn,

such that ω
(
{n | |cn− limωcn|< ε}

)
= 1 for every ε > 0.
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Proof. Choose M ∈ N such that ω
(
{n | |cn|< M}

)
= 1.

Let Ai =
{( k

i ,
k+1

i

]
| k ∈ {−Mi,−Mi+1, · · · ,Mi−1}

}
. Since Ai is a finite collection of disjoint sets;

for each i, there exists an interval Ai ∈Ai such that ω
(
{n | cn ∈ Ai}

)
= 1.

Let Ai be the topological closure of Ai. Notice ω
( ⋂

i∈J
{n | cn ∈ Ai}

)
= 1 for any finite set J. Thus

⋂
i∈J

Ai

is non-empty for any finite set J which implies, since each Ai is compact, that
∞⋂

i=1
Ai is non-empty. Since

diam(Ai) converges to 0,
∞⋂

i=1
Ai = c for a unique c ∈ [−M,M] and ω

(
{n | |cn− c| < ε}

)
= 1 for every

ε > 0.

If cn is a sequence numbers which is not ω-bounded, then ω
(
{n | |cn| > M}

)
= 1 for every M. If

ω
(
{n | cn > M}

)
= 1, we will say that cn diverges ω-almost surely or is ω-divergent and let limω cn = ∞.

Lemma II.2.12. Ultralimits satisfy the same properties as standard limits, i.e. if limωcn, limωbn both exist

then

1. limω
(
cn±bn

)
= limωcn± limωbn;

2. limω
(
cnbn

)
= limωcnlimωbn;

3. limω
(
cn/bn

)
= limωcn/limωbn, if limωbn 6= 0; and

4. limω
(
ccn
)
= climωcn, for c ∈ R.

The proof are exactly that same as for standard limits.

Definition II.2.13 (Asymptotic cones). Let (Xn,distn) be a sequence of metric spaces and ω an ultrafilter

on N. Consider a sequence of points e = (en) such that en ∈ Xn called an observation sequence.

Given two elements x̃ = (xn), ỹ = (yn) ∈ ∏Xn, set dist(x̃, ỹ) = lim ω distn(xn,yn). We will say x̃ ∼ ỹ, if

dist(x̃, ỹ) = 0. This defines an equivalence relation on ∏Xn.

The ultralimit of Xn relative to the observation sequence e is

lim ω
e Xn =

{
x̃ = (xn) ∈∏Xn | dist(x̃,e)< ∞

}
/∼ .

Now consider an ω-divergent sequence of numbers d = (dn) called a scaling sequence and a metric

space (X ,dist).

The asymptotic cone of X with respect to e, d, and ω is

Conω
(
X ,e,d

)
= lim ω

e
(
X ,dist/dn

)
where dist/dn is the metric on X scaled by 1

dn
.

Suppose that {Xn} is a sequence of subsets of a metric space (X ,dist). At times it will be convenient to

talk about the subset of Conω
(
X ,e,d

)
with representatives in ∏Xn. When it is clear from the text, we will

denote this subset by limω Xn instead of, the more precise, limω
e (Xn,dist/dn). When used in this context, we

will not require that en be an element of Xn.
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Observation II.2.14. Conω
(
Z,(1),(dn)

)
= R

Proof. Fix an ultrafilter ω and a scaling sequence d = (dn). Define a map ϕ : R→ Conω
(
Z,(1),(dn)

)
by

ϕ(x) = (xdn). Notice that ϕ is well-defined since dist
(
(0),ϕ(x)

)
= lim ω

|0− xdn|
dn

= |x|< ∞. Then

dist
(
ϕ(x),ϕ(y)

)
= lim ω |xdn− ydn|

dn
= |x− y|.

Hence ϕ is an isometric embedding of R into Conω
(
Z,(1),(dn)

)
.

It only remains to show that ϕ is surjective. Suppose that x̃ = (xn) ∈ Conω
(
Z,(1),(dn)

)
. Then

{ xn

dn

}
is

ω-bounded. Thus there exist x ∈R such that limω
xn

dn
= x. Hence dist

(
x̃,ϕ(x)

)
= limω

|xdn− xn|
dn

= 0 which

completes the proof.

Lemma II.2.15. Conω
(
X ,e,d

)
is a complete metric space. If X is geodesic, then Conω

(
X ,e,d

)
is also

geodesic.

Proof. Let x̃i = (xi
n) be a Cauchy sequence in Conω

(
X ,e,d

)
and

Ci =
{

n |
∣∣dist(x j

n,xi
n)

dn
−dist(x̃ j, x̃i)

∣∣≤ 1
2i for all j ≤ i

}
.

Then Ci is ω-large. Let Dn = {i | n ∈Ci and i ≤ n} and mn = maxDn, if Dn is non-empty and mn = 1

otherwise. Notice that limω mn = ∞ (for the details, see the corresponding claim in the proof of Proposition

III.1.2).

Let Bk = {n |mn > k} which is ω-large. Notice that by construction n ∈Cmn .

Claim 1. ỹ = (xmn
n ) is a well-defined point in Conω

(
X ,e,d

)
and x̃i converges to ỹ

Proof. Since x̃i is a cauchy sequence, there exists a C such that dist(e, x̃i),dist(x̃1, x̃i)<C for all i. Then for

n ∈ B1,
dist(xmn

n ,en)

dn
≤ dist(xmn

n ,x1
n)

dn
+

dist(x1
n,en)

dn
≤ dist(x̃mn , x̃1)+

1
2mn

+
dist(x1

n,en)

dn
.

Taking the ω-limit of both sides, we see that dist(e, ỹ)≤ 2C.

Fix ε > 0 and N such that dist(x̃i, x̃ j) ≤
ε

2
for i, j ≥ N. For j ≥ N and n ∈ B j ∩

{
N,N + 1, · · ·

}
∩
{

n |
1

2mn ≤ ε

2

}
,

dist(xmn
n ,x j

n)

dn
≤ dist(x̃mn , x̃ j)+

1
2mn
≤ ε.

Since B j ∩
{

N,N +1, · · ·
}
∩
{

n | 1
2mn ≤ ε

2

}
is ω-large, taking the ω-limit we obtain dist(ỹ, x̃ j)≤ ε for all

j ≥ N.

This finishes the proof that Conω
(
X ,e,d

)
is complete.
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Suppose x̃, ỹ ∈ Conω
(
X ,e,d

)
. Choose xn,yn ∈ X such that x̃ = (xn) and ỹ = (yn). Let ln =

dist(xn,yn)

dn
and γn : [0, lndn]→ X be a geodesic from xn to yn. Then limω ln = l = dist(x̃, ỹ). Let l′n = max{l, ln} and

define γn : [0, l′ndn]→ X by γ ′n(t) = γn(t) for t ≤ ln and γ ′n(tdn) = γn(lndn). Then l′n still ω-converges to l.

Define γn : [0, l]→ Conω
(
X ,e,d

)
by γ(t) =

(
γ ′n(tdn)

)
.

Suppose that t < l. Then on an ω-large set tdn < lndn which implies that γ ′n(tdn) = γn(tdn). If 0 ≤ s <

t < 1, then

dist
(
γ(s),γ(t)

)
= lim ω

dist
(
γ ′n(sdn),γ

′
n(tdn)

)
dn

= lim ω
dist
(
γn(sdn),γn(tdn)

)
dn

= lim ω |sdn− tdn|
dn

= |s− t|.

If 0≤ s < l, then

dist
(
γ(s),γ(l)

)
= lim ω

dist
(
γ ′n(sdn),γ

′
n(ldn)

)
dn

=


lim ω

dist
(
γn(sdn),γn(ldn)

)
dn

if ln > l ω−almostsurely

lim ω
dist
(
γn(sdn),γn(lndn)

)
dn

if ln ≤ l ω−almostsurely

=


lim ω

|sdn− ldn|
dn

if ln > l ω−almostsurely

lim ω
|sdn− lndn|

dn
if ln ≤ l ω−almostsurely

= |s− l|.

Thus γ is a geodesic. Notice that dist(γn(lndn),γ
′
n(ldn) ≤ |ln− l|dn. Hence γ(l) = ỹ and γ is a geodesic

from x̃ to ỹ.

Lemma II.2.16. If X is a homogeneous metric space, then the isometry type of Conω
(
X ,e,d

)
is independent

of e.

Proof. Fix two sequence en,e′n in X . Since X is homogeneous there exists an isometry ϕn : X → X such that

ϕn(en) = e′n.

Let ϕ : Conω
(
X ,e,d

)
→ Conω

(
X ,e,(dn)

)
by ϕ

(
(xn)

)
=
(
ϕn(xn)

)
. Then for any pair of points x,y, we

have dist
(
ϕn(x),ϕn(y)

)
= dist(x,y). This implies that ϕ is well-defined surjective isometry

Since the cone is independent of the observation sequence for homogenous spaces, we will frequently

denote the asymptotic cone simply by Conω
(
X ,d

)
when X is homogenous.
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CHAPTER III

GROMOV’S DICHOTOMY

III.1 Wide groups and ends of asymptotic cones

The proof of the following lemma is the same as the proof that an asymptotic cone of a geodesic metric

space is geodesic.

Lemma III.1.1. Let ω be an ultrafilter on N and d = (dn) a scaling sequence. Suppose that {γn} is a

sequence of loops parameterized by arc length in a geodesic metric space (X ,dist) such that |γn| = O(dn).

Then γ(t) =
(
γn(t)

)
is a continuous map of S1 into Conω

(
X ,e,d

)
.

The converse also holds.

Proposition III.1.2. Let X be a geodesic metric space. For every path γ in Conω
(
X ,e,d

)
, there exist paths

γn in X such that γ(t) =
(
γn(t)

)
.

Recall that there exists geodesics in a cone which are not limits of geodesics. However, here we do not

put any restraints on the paths γn (the proof shows that γn can be chosen to be a 2mn-gon where mn is an

ω-divergent sequence).

Proof. Suppose that γ : [0,1]→ Conω
(
X ,e,d

)
is a path. Let ξ be a modulus of continuity for γ (see Defi-

nition III.2.6).

For each diadic rational r, fix a representative
(
an(r)

)
of γ(r). Let Ai =

{
0, 1

2i , · · · , 2i−1
2i ,1

}
and

Ci =
{

n
∣∣ dist

(
γ(r),γ(s)

)
− 1

i
≤

dist
(
an(r),an(s)

)
dn

≤ dist
(
γ(r),γ(s)

)
+

1
i

for all s,r ∈ Ai

}
.

Then Ci is ω-large, since |Ai| is finite and
(
an(r)

)
is a representative of γ(r). As well, Ci ⊂Ci−1 ⊂ ·· · ⊂

C1 is nested.

Let Dn = {i | n ∈Ci and i≤ n} and mn = maxDn, if Dn is non-empty and mn = 1 otherwise.

Claim. limω mn = ∞.

Proof of Claim. Suppose that mn was bounded by L on some ω-large set C. Fix n0 ∈C∩{2L,2L+1,2L+

2, · · ·}∩C2L (the intersection is non-empty since all three are ω-large). Then n0 ∈C2L and 2L ≤ n0. This

implies that 2L ∈ Dn0 . Hence mn0 ≥ 2L which contradicts our assumption that mn was bounded by L on C

since n0 ∈C.

By the above argument ω
(
{n | mn ≤ L}

)
= 0. Hence ω

(
{n | mn > L}

)
= 1. Since this holds for every

L, the claim is proved.

Define γn : [0,1]→ X by
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γn(r) = an(r) for r ∈ Amn

and extend γn geodesically.

We can then define γ ′(t) =
(
γn(t)

)
.

Let Bk = {n | mn > k} which is ω-large by the claim. Fix t0 in the diadic rationales and n0 such that

t0 ∈ An0 . Then for all n ∈ Bn0 , t0 ∈ Amn . This implies that γn(t0) = an(t0) for n ∈ Bn0 . Since Bn0 is ω-large,

γ ′(t0) =
(
γn(t0)

)
=
(
an(t0)

)
= γ(t0). Hence γ ′(t) = γ(t) on the diadic rationales.

Notice by our choice of mn, we have n ∈Cmn if mn 6= 1. Thus for n ∈ B1 and r,s ∈ Amn , we have

dist
(
γ(r),γ(s)

)
− 1

mn
≤

dist
(
γn(r),γn(s)

)
dn

≤ dist
(
γ(r),γ(s)

)
+

1
mn

.

Fix x,y∈ [0,1]. Choose r1
x ,r

2
x ,r

1
y ,r

2
y ∈Amn such that x∈ [r1

x ,r
2
x ], y∈ [r1

y ,r
2
y ] and d(r1

x ,r
2
x)= d(r1

y ,r
2
y)=

1
2mn .

Then for n ∈ B1, γn
∣∣
[r1

x ,r2
x ]

, γn
∣∣
[r1

y ,r2
y ]

are geodesics of length at most dn

[
ξ

(
1

2mn

)
+ 1

mn

]
. Thus

dist
(
γn(x),γn(r1

x)
)
,dist

(
γn(r1

y),γn(y)
)
≤ dn

[
ξ

( 1
2mn

)
+

1
mn

]
.

Then combining this with the triangle inequality, we obtain

dist
(
γn(x),γn(y)

)
≤ dist

(
γn(x),γn(r1

x)
)
+dist

(
γn(r1

x),γn(r1
y)
)
+dist

(
γn(r1

y),γn(y)
)

≤ dn

[
ξ

( 1
2mn

)
+

1
mn

]
+dn

[
ξ
(
dist(r1

x ,r
1
y)
)
+

1
mn

]
+dn

[
ξ

( 1
2mn

)
+

1
mn

]
= 2dnξ

( 1
2mn

)
+

3dn

mn
+dnξ

(
dist(x,y)+

2
2mn

)
Then

dist
(
γ
′(x),γ ′(y)

)
≤ lim

n
ω

dist
(
γn(x),γn(y)

)
dn

≤ lim
n

ω2ξ

( 1
2mn

)
+

3
mn

+ξ

(
d(x,y)+

2
2mn

)
= ξ

(
d(x,y)

)
which implies that γ ′ is continuous. (Note that we used that fact that ξ was a continuous modulus of

continuity.) Hence γ(t) = γ ′(t) for all t.

Proposition III.1.3. Let X be a simply connected geodesic metric space which has a linear isodiamet-

ric function. Suppose that h : D→ Conω
(
X ,e,d

)
is a continuous map of the unit disc. Then there exist

continuous maps hn : D→ X such that γ(t) =
(
γn(t)

)
.

The proof is very similar to that of Proposition III.1.2. However, we present it here to illustrate how to

modify the proof of Proposition III.1.2 for discs of higher dimension.
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Proof. For simplicity of notation, we will assume D= [0,1]2. Fix M such that every loop of length at most

n bounds a disc of diameter at most Mn.

Suppose that h : [0,1]2→ Conω
(
X ,e,d

)
is a continuous map and let ξ be a modulus of continuity for h.

For each diadic rational pair~r = (r,s), fix a representative
(
an(~r)

)
of h(~r). Let

Ai =
{
~r = (r,s) | r,s ∈ {0, 1

2i , · · · ,
2i−1

2i ,1}
}
.

We can consider Ai as the vertices of a cellular decomposition of D into squares with side length 1
2i and

denote the j-skeleton of this decomposition by A( j)
i for j = 1,2.

Ci =
{

n
∣∣ dist

(
h(~r),h(~s)

)
− 1

i
≤

dist
(
an(~r),an(~s)

)
dn

≤ dist
(
h(~r),h(~s)

)
+

1
i

for all~r,~s ∈ Ai

}
.

Then Ci is ω-large, since |Ai| is finite and
(
an(~r)

)
is a representative of h(~r). As well, Ci ⊂Ci−1 ⊂ ·· · ⊂

C1 is nested.

Let Dn = {i | n ∈Ci and i≤ n} and mn = maxDn, if Dn is non-empty and mn = 1 otherwise.

Claim 1. limω mn = ∞.

Proof of Claim 1. The proof is the identical to that of Claim 1 from the previous proposition.

Define hn : A(1)
mn → X by

hn(~r) = an(~r) for~r ∈ Amn

and extend fn geodesically to all of A(1)
mn . Let e be a 2-cell of Amn . Then |hn(∂e)| is at most 4diam(hn(∂e))

and we can extend hn to D by mapping each 2-cell e of Amn to a disc of diameter at most 4M diam(hn(∂e)).

We can now define h′ : D→ Conω
(
X ,e,d

)
by h′(~t) =

(
hn(~t)

)
for all~t ∈ D.

Let Bk = {n |mn > k} which is ω-large by the claim. Fix a diadic rational pair~r0 = (r0,s0) and n0 such

that~r0 ∈ An0 . Then for all n ∈ Bn0 , ~r0 ∈ Amn . This implies that hn(~r0) = an(~r0) for n ∈ Bn0 . Since Bn0 is

ω-large, h′(~r0) =
(
hn(~r0)

)
=
(
an(~r0)

)
= h(~r0). Hence h′(~r) = h(~r) for any diadic pair~r = (r,s).

Notice by our choice of mn, we have n ∈Cmn if mn 6= 1. Thus for n ∈ B1 and~r,~s ∈ Amn , we have

dist
(
h(~r),h(~s)

)
− 1

mn
≤

dist
(
hn(~r),hn(~s)

)
dn

≤ dist
(
h(~r),h(~s)

)
+

1
mn

. (III.1)

Fix~x1,~x2 ∈D. Choose 2-cells e1,e2 of Amn such that~xi ∈ ei for i = 1,2. As well, choose a vertex~ri of ei

for i = 1,2.

Then for n ∈ B1, diam(hn(ei)) ≤ 4M diam(hn(∂ei)). Since hn(∂ei) is a geodesic 4-gon, diam(hn(∂ei))

is at most twice the maximum distance between adjacent vertices. This with equation (III.1) implies that

diam(hn(ei))≤ dnM8
[
ξ

( 1
2mn

)
+

1
mn

]
.
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Thus for i = 1,2 we have

dist
(
hn(~xi),hn(~ri)

)
≤ dnM8

[
ξ

( 1
2mn

)
+

1
mn

]
.

Then combining this with the triangle inequality, we obtain

dist
(
hn(~x1),hn(~x2)

)
≤ dist

(
hn(~x1),hn(~r1)

)
+dist

(
hn(~r1),hn(~r2)

)
+dist

(
hn(~r2),hn(~x2)

)
≤ dnM8

[
ξ

( 1
2mn

)
+

1
mn

]
+dn

[
ξ
(
dist(~r1,~r2)

)
+

1
mn

]
+dnM8

[
ξ

( 1
2mn

)
+

1
mn

]
= 16dnMξ

( 1
2mn

)
+

dn(16M+1)
mn

+dnξ

(
dist(~x1,~x2)+

2
2mn

)
Then

dist
(
h′(~x1),h′(~x2)

)
≤ lim

n
ω

dist
(
hn(x1),hn(~x2)

)
dn

≤ lim
n

ω16Mξ

( 1
2mn

)
+

(16M+1)
mn

+ξ

(
dist(~x1,~x2)+

2
2mn

)
= ξ

(
d(~x1,~x2)

)
which implies that h′ is continuous. (Note that we used that fact that ξ was a continuous modulus of

continuity.) Hence h(~x) = h′(~x) for all~x ∈ D.

We will use Ns(B) to represent the s-neighborhood of B.

Lemma III.1.4. Let X be a homogeneous geodesic metric space. For any pair (ω,d), the non-empty com-

ponents of Conω
(
X ,e,d

)
\
{
(xn)

}
are unbounded for all (xn) ∈ Conω

(
X ,e,d

)
.

Proof. The lemma is trivial if X is bounded.

Claim. Every asymptotic cone of an unbounded homogeneous geodesic metric space contains a bi-infinite

geodesic.

Proof of Claim. Since X is unbounded and geodesic, there exist a geodesic γn : [−ndn,ndn]→ X every n. By

homogeneity, we may assume that γn(0) = en. We can extend γn to all of R by γn(t) = γn(ndn) for t ≥ ndn

and γn(t) = γn(−ndn) for t ≤−ndn. Define γ : R→ Conω
(
X ,e,d

)
by γ(t) =

(
γn(tdn)

)
. Then

dist
(
γ(s),γ(t)

)
= lim ω

distn
(
γn(sdn),γn(sdn)

)
dn

= lim ω |sdn− tdn|
dn

= |s− t|

which completes the proof.

Since Conω
(
X ,e,d

)
is also homogeneous, it contains a bi-infinite geodesic through every point. Suppose

that A is a non-empty connected component of Conω
(
X ,e,d

)
\{x} for some x ∈ Conω

(
X ,e,d

)
. Let a ∈ A.
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Then there exists a bi-infinite geodesic α : R→ Conω
(
X ,e,d

)
such α(0) = a. Only one of α

(
(−∞,0]

)
,

α
(
[0,∞)

)
can intersect x. Hence A must contain an unbounded ray.

This lemma also follows from [17, Lemma 3.12].

Lemma III.1.5. Let Bn be a sequence of uniformly bounded subsets of a geodesic metric space X and

κ : N→ R be a sublinear function. If X\Nk(dn)(Bn) has more than one unbounded connected component;

then, for en ∈ Bn, Conω
(
X ,e,d

)
\ limω

e Bn has more than one unbounded connected component.

Proof. Let {Un,1, · · · ,Un,in} be the set of unbounded connected components of X\Nk(dn)(Bn). Let B =

limω
e Bn, Z = limω

e Un,sn , and Y = limω
e Un,tn where sn, tn are distinct elements of {1, · · · , in} ω-almost surely.

Since Bn is uniformly bounded and Un,i is unbounded, both Y\B and Z\B are nonempty and hence un-

bounded.

Suppose that x ∈ Z ∩Y . Then x = (zn) = (yn) where zn ∈Un,sn and yn ∈Un,tn . Since Un,sn and Un,tn are

in distinct connected components of X\Nk(dn)(Bn), every path originating in Un,sn and terminating in Un,tn

passes through Nk(dn)(Bn). By considering a geodesic from zn to yn, we can find b′n ∈Nk(dn)(Bn) such that

dist(zn,b′n)+ dist(b′n,yn) = dist(zn,yn) which implies that x = (b′n). As well, there exists bn ∈ Bn such that

dist(bn,b′n)≤ κ(dn). Hence x = (b′n) = (bn).

Thus Z∩Y ⊂ B and the components of Z\B,Y\B are unbounded components of Conω
(
X ,e,d

)
\B.

At times it will be convenient to consider separating sets which are unbounded.

Lemma III.1.6. Let (Bn,en) be a sequence of pointed subsets of a geodesic metric space X, ω an ultrafilter,

and d = (dn) an ω-divergent sequence. Suppose that a = (an),b = (bn) ∈ Conω
(
X ,e,d

)
are points such

that there exists a sublinear function κ : N→R such that an,bn are in distinct components of X\Nκ(dn)(Bn)

ω-almost surely.

Then limω
e Bn separates Conω

(
X ,e,d

)
into at least two connected components and a, b are in distinct

components of Conω
(
X ,e,d

)
\ limω

e Bn.

The proof is the same as for bounded sets; the only difference is that we are not able to conclude that the

components are unbounded since we cannot apply Lemma III.1.4.

Definition III.1.7. Let X be a connected, locally connected topological space. A point x ∈ X is a local

cut-point if there exists an open connected neighborhood U of x such that U\{x} has at least two connected

components. A point x ∈ X is a global cut-point if X\{x} has at least two connected components. X is wide

if none of its asymptotic cones has a global cut-point. X is unconstricted if one of its asymptotic cones has

no global cut-points. X is constricted if all of its asymptotic cones have global cut-points.

Let B1 ⊂ B2 ⊂ ·· · be an ascending sequence of bounded sets in a metric space X such that every set of

bounded diameter is eventually contained in Bn for some n. This implies that ∪nBn = X .

Two descending sequences U1 ⊃U2 ⊃ ·· · and V1 ⊃V2 ⊃ ·· · of subsets of X are equivalent if for every

n there exists integers m,k such that Vm ⊂Un and Uk ⊂Vn.
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An end of X is a descending sequence U1 ⊃U2 ⊃ ·· · where Ui is an unbounded component of X\Bi. It

can be shown that up to the given equivalence on descending sequences of subsets of X the set of ends of X

does not depend on {Bn}.
A metric space X is one-ended, if X\B has a unique unbounded connected component for every bounded

subset B of X .

We will use the following definition and lemma from [17].

Definition III.1.8. Let X be a geodesic metric space, and let 0 < δ < 1 and γ ≥ 0. Let a,b,c ∈ X with

dist
(
c,{a,b}

)
= r > 0, where dist(c,{a,b}) is the minimum of dist(c,a) and dist(c,b). Define divγ(a,b,c;δ )

as the infimum of the lengths of paths a,b that avoid the ball B(c,δ r− γ) (note that by definition a ball of

non-positive radius is empty). If no such path exists, take divγ(a,b,c;δ ) = ∞.

Lemma III.1.9 ([17, Lemma 3.14]). Let X be a geodesic metric space. Let ω be any ultrafilter and d = (dn)

be an ω-divergent sequence. Let a = (an),b = (bn),c = (cn) ∈ Conω
(
X ,e,d

)
. Let r = dist

(
c,{a,b}

)
. The

following conditions are equivalent for any 0≤ δ < 1.

(i) The closed ball B(c,δ ) in Conω
(
X ,e,d

)
separates a from b.

(ii) For every δ ′ > δ and every (some) γ ≥ 0 the limit limω divγ (an,bn,cn; δ ′
r )

dn
is ∞.

The following proposition is immediate, as it holds for all homogeneous geodesic metric spaces, see

[22].

Proposition III.1.10. An asymptotic cone of a finitely generated group can have 0,1,2 or uncountable many

ends.

Lemma III.1.11. Let X be a homogenous geodesic metric space. If Conω
(
X ,e,d

)
has a local cut-point,

then there exists a cone of X with a global cut-point.

Proof. Suppose that Conω
(
X ,e,d

)
has a local cut-point. By homogeneity, x̃ = (xn) is a local cut-point.

Suppose that U is an open connnected neighborhood of x̃ such that U\{x̃} has two components.

Claim. There exists an ε > 0 such that x̃ separates every ball about x̃ with radius at most ε .

Let Bε be the ball in Conω
(
X ,e,d

)
about x̃ of radius ε .

Fix ε > 0 such that Bε is a subset of U . Let u,v be elements of U which are in different components of

U\{x̃}. Any path in U from u to v passes through x̃. (Since Conω
(
X ,e,d

)
is locally path connected and U is

open and connected, U is path connected.) Hence, we can find a path f : [0,1]→U such that f−1(x̃) = {1
2}

and f (0), f (1) are in different components of U\{x̃}. This implies that the inclusion map from Bε ′\{x̃} to

U\{x̃} is not contain in a single component for any ε ′ ≤ ε . Thus Bε ′\{x̃} is also not connected for any

ε ′ ≤ ε which completes the proof of the claim.

We can now consider the cones Xω
k = Conω

(
X ,(en),(

dn
k )
)
. It is easy to see that x̃ is a cut-point of the

ball of radius kε in Xk. Hence, limω Xk has a global cut point and by [18, Corollary 3.24] limω Xk is again an

asymptotic cone of X .
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Proposition III.1.12. Let X be a homogeneous geodesic metric space. Every asymptotic cone of X is one-

ended if and only if X is wide if and only if no asymptotic cone of X has a local cut-point.

Proof. X is wide if and only if no asymptotic cone of X has a local cut-point follows immediately from the

previous lemma. Thus we need only prove that every asymptotic cone of X is one-ended if and only if X is

wide.

The only if direction of this equivalence is trivial. We must show that if no asymptotic cone of X has a

cut-point, then every asymptotic cone of X is one-ended. Suppose that no asymptotic cone of X has a cut-

point but Conω
(
X ,e,d

)
is not one-ended for some choice of ω,e,d. Hence, there exists a bounded subset B̃

of Conω
(
X ,e,d

)
such that Conω

(
X ,e,d

)
\B̃ has at least two unbounded components. By homogeneity, we

may assume that x̃ = (xn) ∈ B̃.

By Lemma III.1.5, Ỹ =Conω
(
Conω

(
X ,e,d

)
,(x̃),(n)

)
\ limω B has more than one connected component.

Since B̃ is bounded, limω B̃ is a point in Ỹ which separates. Thus it is a cut-point of Ỹ . Ỹ is again an

asymptotic cone of X [18, Corollary 3.24]. This contradicts the hypothesis that no cone of X has a cut-point.

In [17, Theorem 1.4]; Drutu, Mozes, and Sapir show that certain semisimple Lie groups (namely those

specified in the theorem below) are wide. Hence, we can apply Proposition III.1.12 to obtain the following

result.

Theorem III.1.13. Let Γ be an irreducible lattice in a semisimple Lie group of R-rank 2. Suppose that Γ is

either of Q-rank 1 or is of the form SLn(OS ) where n≥ 3, S is a finite set of valuations of a number field

K including all infinite valuations, and OS is the corresponding ring of S -integers. Then every asymptotic

cone of Γ is one-ended.

Proposition III.1.12 together with [18, Corollary 6.13] give us the following.

Theorem III.1.14. Let G be a finitely generated non-virtually cyclic group satisfying a law. Then all asymp-

totic cones of G are one-ended.

The following proposition is a well know. We present it here only for comparison with Proposition

III.1.16.

Proposition III.1.15. Let G be a finitely generated group. The following are equivalent:

a) G is finite.

b) G has an asymptotic cone which is a point.

c) G has an asymptotic cone with 0 ends.

Proof. If G is an infinite finitely generated group, then Γ(G,S) contains a bi-infinite geodesic for every finite

generating set S. Thus Conω
(
G,d

)
contains a bi-infinite geodesic for every infinite group G. If G is finite

then Γ(G,S) is bounded for every generating set S and Conω
(
G,d

)
is a point for every pair

(
ω,d

)
. Thus (a)
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and (b) ar equivalent. Clearly, (b) implies (c). If Conω
(
G,d

)
has 0 ends for some pair

(
ω,d

)
, then it doesn’t

contain a bi-infinite geodesic. Hence (c) implies (a).

Proposition III.1.16. Let G be a finitely generated group. The following are equivalent:

a) G is infinite and virtually cyclic.

b) G has an asymptotic cone which is a line.

c) G has an asymptotic cone with exactly 2 ends.

Proof. If G is infinite and virtually cyclic, then Conω
(
G,d

)
is a line for every pair

(
ω,d

)
. Thus (a) implies

(b). The implication (b)⇒ (a) is Corollary 6.2 in [18]; as well, it also follows from [46], since a line has

finite Minkowski dimension.

Thus we need only show that if Conω
(
G,d

)
has exactly two ends for some pair

(
ω,d

)
than G has an

asymptotic cone which is a line.

Suppose that Conω
(
G,d

)
\Bρ(x0) has exactly two unbounded components for some ρ > 0 and x0 ∈

Conω
(
G,d

)
. For each i, let Ui and Vi be the two unbounded components of Conω

(
G,d

)
\Biρ(x0). We may

assume that we have chosen Ui,Vi such that Ui ⊃Ui+1 and Vi ⊃ Vi+1 for all i. Fix xi ∈Ui and x−i ∈ Vi such

that dist(x0,x±i) = iρ for all i ∈ N.

Define a path α : R→ Conω
(
G,d

)
by α(i) = xi, for i ∈ Z, and for every i ∈ Z extend α to [i, i+1] by

sending the interval to a geodesic joining its endpoints.

Claim 1. α is a quasi-geodesic with constants depending only on ρ and Conω
(
G,d

)
is contained in the

2ρ-neighborhood of the image of α .

Notice that Claim 1 implies that G has an asymptotic cone which is a line since any asymptotic cone of

Conω
(
G,d

)
is a line and an asymptotic cone of G.

Let α
−
i = α

(
(−∞, i− 4]

)
, α

+
i = α

(
[i+ 4,∞)

)
and Yi = Conω

(
G,d

)
\Bρ(xi) for all i. By homogeneity,

Yi has exactly 2 unbounded connected components

Subclaim 1.1. For all i, j ∈ Z, dist(xi,x j)≥
∣∣ j− i

∣∣ρ−2ρ and hence α
±
i ⊂ Yi.

Proof of Subclaim 1.1. If i, j have the same sign then by applying the triangle inequality to a geodesic tri-

angle with vertices x0,xi,x j, we obtain dist(xi,x j)≥ | j− i|ρ .

Suppose that i ≤ 0 ≤ j. By construction, every geodesic from xi to x j passes within ρ of x0. Fix

a geodesic from xi to x j and let x′0 be a point on the geodesic such that dist(x0,x′0) ≤ ρ . Then −iρ =

dist(xi,x0)≤ dist(xi,x′0)+ρ and jρ = dist(x0,x j)≤ dist(x′0,x j)+ρ which gives us that ( j−i)ρ ≤ dist(xi,x′0)+

dist(x′0,x j) + 2ρ = dist(xi,x j) + 2ρ . Thus dist(xi,x j) ≥ | j− i|ρ − 2ρ . If j ∈ (∞, i− 4]∪ [i+ 4,∞), then

dist(xi,x j)≥ 2ρ . Since every point on α
±
i is with in ρ of some x j for j ∈ (∞, i−4]∪ [i+4,∞); α

±
i ⊂Yi.

Subclaim 1.2. α
+
i ,α−i are contained in distinct unbounded components of Yi for all i.
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Proof of Subclaim 1.2. We will show the subclaim for i≥ 0. The other case is similiar. Let U,V be the two

disjoint unbounded components of Yi. By way of contradiction, we will assume that α
±
i are both contained

in U . Choose g̃∈∏G such that g̃ ·x0 = xi. For each j≥ 1, let β
−
j =α

(
(−∞,−2 j−4]

)
, β

+
j =α

(
[2 j+4,∞)

)
.

Since g̃ acts by isometries on Conω
(
G,d

)
, we obtain that Yi = g̃ ·Y0 and g̃ ·β±j are in distinct unbounded

components of Yi for any j ≥ 1.

Fix j ≥ i. Since α
−
i ,α+

i are contained in the same connected component of Yi and g̃ · β−j , g̃ · β
+
j are

contained in distinct connected components of Yi, one of g̃ ·β±j is contained in V . Suppose that g̃ ·β+
j ⊂V .

(Again the other case is similar.) Notice that β
±
j ⊂ α

±
i which implies that β

−
j ∪β

+
j ⊂U .

By Subclaim 1.1, dist(xi, g̃ ·β±j )≥ (2 j+4)ρ−2ρ which implies that dist(x0, g̃ ·β±j )≥ ( j+2)ρ . Thus

g̃ ·β±j ⊂ Conω
(
G,d

)
\B( j+1)ρ(x0). Again by Subclaim 1.1, β

±
j ⊂ Conω

(
G,d

)
\B( j+1)ρ(x0). By construc-

tion Bρ(x0),Bρ(xi) ⊂ B( j+1)ρ(x0) which implies that each of the three unbounded sets β
±
j , g̃ ·β

+
j must be

contained in a distinct connected component of Conω
(
G,d

)
\B( j+1)ρ(x0). Since this holds for any j ≥ i,

Conω
(
G,d

)
must have at least 3 ends which contradicts our assumption that Conω

(
G,d

)
has exactly 2

ends.

Proof of Claim 1. If i, j ∈ Z have different signs, then dist(xi,x j)≤ dist(xi,x0)+dist(x j,x0) = |i|ρ + | j|ρ =

|i− j|ρ
For 4 ≤ i ≤ j− 4, any geodesic from x0 to x j is passes within ρ of xi by Subclaim 1.2. Hence, we

may find a point x′i on a geodesic from x0 to x j such that dist(xi,x′i) ≤ ρ . Then iρ ≤ dist(x0,x′i)+ ρ and

dist(xi,x j) ≤ dist(x′i,x j)+ρ which implies that dist(xi,x j) ≤ ( j− i)ρ + 2ρ = | j− i|ρ + 2ρ . Similarly, we

can obtain the inequality dist(xi,x j)≤ | j− i|ρ +2ρ for j+4≤ i≤−4. It follows that α is a quasi-geodesic.

Suppose that there exists x ∈ Conω
(
G,d

)
such that dist(x, imα) ≥ 2ρ . Conω

(
G,d

)
\Bρ(x) has two

unbounded components one of which contains imα . As in the proof of Subclaim 1.2, this would imply that

Conω
(
G,d

)
would have at least three ends.

Thus any asymptotic cone of Conω
(
G,d

)
is a line and also an asymptotic cone of G which completes

the proof of the proposition.

Lemma III.1.17. Suppose that X is an unbounded homogeneous geodesic metric space and T is a vertex

homogeneous three valence tree with fixed edge length ρ . If Conω
(
X ,e,d

)
has more than two ends and a

global cut-point, then there exists an isometry f : T → Conω
(
X ,e,d

)
such that the components of T\{v}

map to distinct components of Conω
(
X ,e,d

)
\
{

f (v)
}

for every vertex v of T .

Proof. Fix ρ > 0. Let T be a vertex homogeneous 3-valence tree with fix edge length ρ . We will now build

an isometry f : T → Conω
(
X ,e,d

)
such that the three components of T\{v} map into distinct components

of Conω
(
X ,e,d

)
\
{

f (v)
}

for every vertex v of T . Fix a vertex v0 of T .

Let Ti be a sequence of connected subtrees of T such that v0 = T1; Ti ⊂ Ti+1; ∪iTi = T ; and Ti+1 has

exactly one vertex not contained in Ti. This implies that Ti+1 can be obtained from Ti be adding exactly one

edge and one vertex.

Let f (v0) = x0 for some x0 ∈Conω
(
X ,e,d

)
. By induction, assume that we have defined f on Ti such that

f |Ti is an isometry and f maps the components of Ti\{v} to distinct components of Conω
(
X ,e,d

)
\{ f (v)}

20



for each vertex v of Ti. Let e be the edge of T which is added to Ti to obtain Ti+1. Then e has exactly

one vertex e− in Ti and one vertex e+ in Ti+1\Ti. Notice that Ti has valence 1 or 2 at e−. This implies that

Ti\{e−} and hence f
(
Ti\{e−}

)
has at most 2 components. Let C be a component of Conω

(
X ,e,d

)
\{ f (e−)}

which is disjoint from f
(
Ti\{e−}

)
. Since all components are unbounded, we may choose a point x ∈C such

that dist
(
x, f (e−)

)
= ρ . Let f (e+) = x and f (e) be a geodesic from f (e−) to f (e+). It is immediate that the

components of Ti+1\{v} map to distinct components of Conω
(
X ,e,d

)
\{ f (v)} for all vertices v in Ti+1. It

only remains to show that f restricted to Ti+1 is still an isometry. This follows trivially from the fact that if

x,y are in distinct components of Conω
(
X ,e,d

)
\{z}, then dist(x,y) = dist(x,z)+dist(z,y).

This defines a map f : T→Conω
(
X ,e,d

)
. Since any two points lie in some Ti, f is an isometry. We must

show that the separation condition is preserved in the limit. Suppose that v is a vertex of T and Ti contains

the 2ρ-neighborhood of v. By construction, f takes the components of Ti\{v} into distinct components of

Conω
(
X ,e,d

)
\{ f (v)}. Notice that each component of T\{v} intersects a component of Ti\{v} nontrivially

which implies that the separation condition still holds.

Corollary III.1.18. In addition, f can be chosen such that f (t) =
(

fn(t)
)

for all t ∈ T where fn : T → X

takes edges of T to geodesics in X.

Proof. We will show how to modify the proof of Lemma III.1.17. Using the notation from above, we will

inductively defining f , fn simultaneously. Suppose that f , fn are defined as desired on Ti. When choosing

x ∈C we will also fix a representative (xn) of x. Let fn(e+) = xn which implies that f (e+) =
(

fn(e+)
)
= x.

Let fn map e to any geodesic from fn(e−) to fn(e+) which implies that f (e) =
(

fn(e)
)

is a geodesic from

f (e−) to f (e+). The rest of the proof remains unchanged.

Proposition III.1.19. Suppose that X is an unbounded homogeneous geodesic metric space and Ci is a

sequence of finite point sets from Conω
(
X ,e,d

)
. Then limω

e Ci embeds isometrically into Conω
(
X ,e,d

)
. In

addition; if Ci is nested, then the canonical copy of Ci in limω
e Ci is mapped to Ci.

This proposition was previously shown under the Continuum Hypothesis by Osin and Sapir and for

groups by Sisto [49].

Proof. Let ιi : Ci→ Conω
(
X ,e,d

)
be the inclusion induced map. Fix a representative for each element of

C = ∪iCi. We can now define a double indexed sequence of maps ι i
n : Ci → X by letting ι i

n(c) be the n-th

coordinate of our chosen representative for c ∈C. Thus, if the Ci are nested and c ∈Ci; then ι
j

n(c) = ι i
n(c)

for all j ≥ i. Hence, c =
(
ιki
n (c)

)
for any sequence ki. This will imply that the map defined below takes the

canonical copy of Ci in limω Ci to Ci. Let

Ai =
{

n
∣∣ dist(c,c′)− 1

i
≤

dist
(
ι

j
n(c), ι

j
n(c′)

)
dn

≤ dist(c,c′)+
1
i

for all c,c′ ∈C j where j ≤ i
}
.

Since
∣∣⋃

j≤i
C j

∣∣∣ is finite and ι j is an isometry for every j, Ai is ω-large. Let mn = max{i | n∈ Ai and i≤ n},

if this set is non-empty and mn = 1 otherwise. Suppose that mn was bounded by L on some ω-large set A.
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Then A2L ∩A ⊂ {1, · · · ,2L− 1}, which is a contradiction since ω(A2L) = ω(A) = 1 and ω
(
{1, · · · ,2L−

1}
)
= 0. Thus limω mn = ∞.

Define ι̃ : limω
e Ci→ Conω

(
X ,e,d

)
by ι̃

(
(cn)

)
=
(
ιmn
n (cn)

)
.

Claim: ι̃ is a well-defined isometric embedding of limω
e Cn into Conω

(
X ,e,d

)
.

Fix c,c′ ∈ limω Cn. We may choose representatives cn,c′n ∈ Cn such that c = (cn) and c = (c′n). By

construction, dist(cn,c′n)− 1
mn
≤ dist

(
ιmn
n (cn),ι

mn
n (c′n)

)
dn

≤ dist(cn,c′n)+
1

mn
for all n such that mn 6= 1. Since mn is

ω-divergent, this set is ω-large and

dist(c,c′) = lim ω

[
dist(cn,c′n)−

1
mn

]
≤ lim ω

[dist
(
ιmn
n (cn), ι

mn
n (c′n)

)
dn

]
≤ lim ω

[
dist(cn,c′n)+

1
mn

]
= dist(c,c′).

Thus ι̃ is independent of the chosen representative and is an isometry.

We can now use Lemma III.1.17 to prove that R-trees can also be transversally embedded into cones

with cut-points.

Lemma III.1.20. Suppose that X is a unbounded homogeneous geodesic metric space and T is a universal

R-tree with continuum branching at every point. If Conω
(
X ,e,d

)
has more than two ends and a global

cut-point, then there exists an isometry f : T → Conω
(
X ,e,d

)
such that the components of T\{v} map to

distinct components of Conω
(
X ,e,d

)
\
{

f (v)
}

for every v in T .

Proof. Let Ti be a three valence tree with edge length 1
2i such that Ti ⊂ Ti+1 for all i ∈N and t0 a fixed vertex

in T1. We will assume that Ti is endowed with the edge metric. We will use [v,w] to denote the geodesic from

v to w in Ti and (v,w) = [v,w]\{v,w}. If v,w ∈ Ti∩Tj, then [v,w] is independent of whether the geodesic is

taken in Ti or in Tj.

By Lemma III.1.17, there exist isometries fi : Ti→Conω
(
X ,e,d

)
which satisfy the separation condition

of Lemma III.1.17. By homogeneity, we may assume fi(t0) = f j(t0) for all i, j. By Corollary III.1.18, there

exists a sequence of maps f i
n : Ti → X such that fi(t) =

(
f i
n(t)
)

for all t ∈ Ti. We will also require that

f i
n(t0) = f j

n (t0) for all i, j.

Let Vi be the vertices of the ball of radius i about t0 in Ti. Then
∣∣ fi(Vi)

∣∣ is finite set and Proposition III.1.19

implies limω
e fi(Vi) embeds isometrically. While limω

e fi(Vi) is a universal R-tree, we must still guarantee

that the embedding preserves the separation property. To do this we will show how to modify the proof of

Proposition III.1.19 so as to guarantee that the embedding preserves the desired separation property. Let

Ai =
{

n
∣∣ dist(v,w)− 1

i
≤

dist
(

f j
n (v), f j

n (w)
)

dn
≤ dist(v,w)+

1
i

for all v,w ∈Vj where j ≤ i
}
.

For r = dist
(

f j
n (v0),{ f j

n (v1), f j
n (v2)}

)
and v0,v1,v2 ∈ Tj such that v0 separates v1 from v2 in Tj, let
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ρ i
n( j,v0,v1,v2) = div1

(
f j
n (v1), f j

n (v2), f j
n (v0); 1

ir

)
. Let

Bi = {n | ρ i
n( j,v0,v1,v2)> idn | j ≤ i; v0,v1,v2 ∈Vj; and v0 ∈ (v1,v2)}.

As before Ai is ω-large for each i.

Claim: Bi is an ω-large set.

For each j and each triple v0,v1,v2 ∈Vj such that v0 ∈ (v1,v2), we have that

lim ω
div1

(
f j
n (v1), f j

n (v2), f j
n (v0); 1

2ir

)
dn

= ∞

by Lemma III.1.9 where r = dist
(

f j(v0),{ f j(v1), f j(v2)}
)
. Thus

div1

(
f j
n (v1), f

j
n (v2), f

j
n (v0); 1

irn

)
dn

> i on an ω-large

set where rn = dist
(

f j
n (v0),{ f j

n (v1), f j
n (v2)}

)
. Since Vj is finite, Bi is the finite intersection of ω-large sets

which completes the proof of the claim.

Let mn = max{i | n ∈ Bi ∩Ai and i ≤ n}, if the intersection is non-empty for some i ≤ n and mn = 1

otherwise.

Define t̃ = (t0) and f̃ : limω

t̃ Ti→ Conω
(
X ,e,d

)
by f̃ (t) =

(
f mn
n (t)

)
.

Notice that limω

t̃ Ti = limω

t̃ Vi and f̃
(
(to)
)
= fi(t0) for all i. As in the proof of Proposition III.1.19,

limω mn = ∞ and f̃ is a well-defined isometric embedding of limω Ti into Conω
(
X ,e,d

)
.

All that remains is to show that f̃ satisfies the desired separation condition. Suppose that v0,v1,v2 are

points on limω

t̃ Ti such that v1,v2 are in different components of limω

t̃ Ti\{v0}. Then there exist representa-

tives (v0
n),(v

1
n),(v

2
n) of v1,v2,v3 respectively such that v1

n,v
2
n are in distinct components of Tn\{v0

n} ω-almost

surely. Thus
div1

(
f j
n (v1

n), f j
n (v1

n), f j
n (v0

n);
1

mnrn

)
dn

> mn

on an ω-large set where rn = dist
(

f j
n (v0),{ f j

n (v1), f j
n (v2)}

)
and j ≤ mn.

Lemma III.1.9 implies that f̃ (v1), f̃ (v2) are in distinct components of Conω
(
X ,e,d

)
\{ f̃ (v0)} which

completes the proof.

Proposition III.1.21. Let G be a finitely generated group. If Conω
(
G,d

)
has a global cut-point, then

Conω
(
G,d

)
is simply connected or has uncountable fundamental group.

Proof. We may assume that G is not virtually cyclic, since the theorem is trivial in that case. Then G

has an asymptotic cone Conω
(
G,d

)
with a global cut-point and more than two ends. By Lemma III.1.20,

Conω
(
G,d

)
contains an isometrically embedded universal R-tree T such that the components of T\{v}map

to distinct components of Conω
(
G,d

)
\
{

f (v)
}

where f is the isometric embedding of T into Conω
(
G,d

)
.

Suppose that γ : S1→Conω
(
G,d

)
is an essential loop and fix x0 ∈ f (T ) which we may assume is a base

point of γ . Let ρ = 2diam(γ) and S = {x ∈ f (T ) | dist(x,x0) = ρ}. Then S has cardinality continuum and

dist(x,y) = 2ρ for all x,y ∈ S. For x ∈ S, choose gx ∈ ∏G such that gx · x0 = x. Let Sγ = {gx · γ | x ∈ S}
which is an uncountable set of essential loops in Conω

(
G,d

)
.
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Claim: No two loops from Sγ are homotopic.

Suppose that gx · γ is homotopic gy · γ . Then there exists a continuous map h : A→ Conω
(
G,d

)
of a

planar annulus which takes one boundary component to gx ·γ and the other to gy ·γ . Since dist(gx ·γ,x0)> 0,

gx ·γ and gy ·γ are in distinct components of Conω
(
G,d

)
\{x0}. Thus h−1

(
{x0}

)
separates the two boundary

components of the annulus A. Then there exists a single component C of h−1
(
{x0}

)
which separates the

boundary components of A. This is a consequence of the Phragmén-Bower properties (see [31]). We can

then modify h by mapping the component of the plane bounded by C to x0. This is a null homotopy of gx · γ
which contradicts our choice of γ and completes the proof of the claim and theorem.

Corollary III.1.22. Let G be a finitely generated group. If Conω
(
G,d

)
has a global cut-point, then

Conω
(
G,d

)
is simply connected or its fundamental group contains an uncountably generated free subgroup.

Proof. Suppose that we have constructed f : T → Conω
(
G,d

)
, γ , S = {x ∈ f (T ) | dist(x,x0) = ρ}, and

Sγ = {gx · γ | x ∈ S} as in the proof of Proposition III.1.21. Let px : [0,1]→ f (T ) be the unique geodesic in

f (T ) from x0 to x ∈ S.

Then S′γ = {x = px ∗gx · γ ∗ px | x ∈ S} is a set of loops based at x0
(

where px(t) = px(1− t)
)
.

Claim: S′γ generates a free product of cyclic groups.

Suppose that xn1
1 ∗ · · · ∗ xnk

k is a null homotopic loop in Conω
(
G,d

)
where xi 6= xi+1, x1 6= xk and xni

i is

an essential loop. Then there exists h : D→ Conω
(
G,d

)
a map from the unit disc in the plane such that

h(∂D) is a parameterization of the curve xn1
1 ∗ · · · ∗xnk

k . Let C be the closure of the connected component of

h−1
(
Conω

(
G,d

)
\{x0}

)
containing the subpath p of ∂D2 which maps to xn1

1 . By construction, ∂D∩C = p

and h(∂C\{p}) = x0. Define h′ : D→ Conω
(
G,d

)
by h′(y) = h(y) for y ∈C and h′(y) = x0 for y 6∈C. Then

h′ is continuous and xn1
1 is null homotopic which contradicts our choice of xn1

1 . This completes the proof of

the claim.

While the subgroup generated by S′γ may not by a free group (γ might have finite order in the fundamental

group), it is the free product of cyclic groups. Thus it is easy to find an uncountably generated free subgroup.

Corollary III.1.23. Let G be a finitely generated group. If G is constricted, then every asymptotic cone of

G is simply connected or has uncountable fundamental group. If G is not wide, then G has an asymptotic

cone which is simply connected or has uncountable fundamental group.

III.2 Groups with quasi-isometrically embedded subgroups

Definition III.2.1. A group is a prairie group if all of its asymptotic cones are simply connected.

Lemma III.2.2. The following groups are prairie groups.

1. Nilpotent groups;

2. Hyperbolic groups; and
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3. Groups with quadratic Dehn functions

(a) SLn(Z) for n≥ 5,

(b) Thompsons group F,

(c) Mapping class groups,

(d) CAT (0) groups,

(e) Automatic groups,

(f) Baumslag-Solitar groups BSpp, and many many others.

Proof. In [43], Pansu shows that nilpotent groups have a unique asymptotic cone which is homeomorphic

to Rn for some n. Gromov showed that non-elementary hyperbolic groups have cones which are isometric

to a universal R-tree with uncountable branching at every point. Papasolgu in [44] showed that if a group

has a quadratic Dehn function then all of its asymptotic cones are simply connected.

Young showed that SLn(Z) for n≥ 5 has a quadratic Dehn function [53]. Guba showed that Thopson’s

group F h as a quadratic Dehn function [28]. Mosher showed that the mapping class groups are automatic

[34]. It is shown in Metric spaces of non-positive curvature that CAT (0) groups have quadratic Dehn

functions [6] and in Word processing in groups that automatic groups have quadratic Dehn functions [20].

It is a straight forward exercise using van Kampen diagrams to show that BSpp has a quadratic Dehn

function.

Remark III.2.3. In [12], the author with Greg Conner note that such groups are uniformly locally simply

connected; specifically, every loop of length r bounds a disc of diameter at most Kr where K only depends

on the group. However, the discs are not necessarily Lipschitz.

Lemma III.2.4. There exists a finitely presented prairie group such that all of its asymptotic cones have

uncountable Lipschitz fundamental group.

Proof. The discrete Heisenberg group 〈x,y,z | z = [x,y], [x,z] = [y,z] = 1 〉 is a nilpotent group and hence a

prairie group. In fact every asymptotic cone is homeomorphic to R3. However, it is shown in [15, Theorem

4.10] that the Lipschitz fundamental group of the real Heisenberg group isn’t countable generated.

The key to Proposition III.1.21 was that the homotopy between the two loops passed through a cut-point

so we could “cut” the homotopy off to build a null homotopy for one of the loops. We will show that the

same idea holds if the separating set is a highly connected set instead of a point. To do this we will require

the following well known covering lemma for open sets in the plane. We provide a proof for completeness

and to fix notation.

Lemma III.2.5. Every bounded open set U of R2 is the union of a null sequence of diadic squares with

disjoint interiors. In addition, the squares can be chosen such that if Ai is the union of squares with side

length at least 1
2i , then U\Ai ⊂N √

2
2i−1

(∂U).
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Proof. Let Qi be a sequence of partitions of the plane with the Euclidean metric into closed square discs

with side length 1
2i such that Qi refines Qi−1. Qi can be chosen to be the set of squares with vertices{

( j
2i ,

k
2i ),(

j+1
2i ,

k
2i ),(

j+1
2i ,

k+1
2i ),( j

2i ,
k+1
2i ) | j,k ∈ Z

}
.

Let D0 be the maximal subset of Q0 such that A0 ⊂U where A0 =
⋃

s∈D0

s. Then U\A0 ⊂N √
2

2−1
(∂U).

We will inductively define Di and Ai as follows. Let Di be the maximal subset of Qi such that
⋃

s∈Di

s ⊂

U\Ai−1 where U\Ai−1 is the closure of U\Ai−1. Let Ai =
( ⋃

s∈Di

s
)
∪Ai−1. We immediately have U\Ai ⊂

N √
2

2i−1
(∂U). Then

∞⋃
i=1

Ai =U .

Definition III.2.6. Let ξ : R+ → R+ ∪ {∞} be a continuous function which vanishes at 0. Then ξ is a

modulus of continuity for g : (X ,distX)→ (Y,distY ), if distY
(
g(x),g(y)

)
≤ ξ

(
distX(x,y)

)
for all x,y ∈ X .

Let (X ,dist) be a path connected metric space and ζ : R+→ R+∪{∞} be an increasing function. We

will say that ζ is a modulus of path-connectivity for (X ,dist); if every pair of points x,y ∈ X there exists a

path α from x to y such that diam(α)≤ ζ
(
dist(x,y)

)
. If X is geodesic than the identity function is a modulus

of path-connectivity for (X ,dist).

Remark III.2.7. Let g : (X ,distX)→ (Y,distY ) be a continuous function on a compact metric space X . Then

ξ (r) = sup
{

distY
(
g(x),g(y)

)
| distX(x,y) ≤ r

}
is a modulus of continuity which is finite for every r. If ξ ′

is another modulus of continuity for g, then ξ ′(r)≥ ξ (r).

Let (X ,dist) be a path connected space. Then there exists a modulus of path-connectivity for X which

vanishes at 0 if and only if X is uniformly locally path connected.

Lemma III.2.8. Suppose that X is a metric space containing a closed, simply connected, uniformly locally

path connected and uniformly locally simply connected subset E. If h : A→ X is a continuous map from

a planar annulus such that h−1(E) separates the boundary components of A, then h takes the boundary

components of A to null homotopic loops in X.

Proof. Let A = {(x,y) ∈R2 | 1
4 ≤ x2 +y2 ≤ 1} and D be the unit disc in the plane. It is enough to show that

the outer boundary of A maps to a null homotopic loop. Since h−1(E) separates the boundary components

of A, a component C of h−1(E) separates the boundaries components of A. This follows from the Phragmén-

Brouwer properties, see[31]. Let U be the component of D\C which contains the circle of radius 1
2 . Thus

∂U ⊂ A and h(∂U)⊂ E. Let ξ be a modulus of continuity for h.

We can decompose U as a null sequence of diadic squares with disjoint interiors, as in Lemma III.2.5.

As before, let Ai be the union of squares with side length at least 1
2i which are contained in U and Di the set

of squares in Ai of side length 1
2i . Then

∞⋃
i=1

Di induces a cellular structure on U . We will use U (i) to denote

the i-skeleton of this cellular structure on U . Note this implies that a side of a square in Di is not necessarily

an edge but is an edge path.

We will now define a continuous map g : D→ X such that g|D\U = h. If the boundary of U is a loop,

then this is obvious. However, the boundary does not have to be a loop. It can be very complicated (consider

the Warsaw circle).
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Let ι : U→ ∂U be a closest point projection map (which in general will be discontinuous), i.e. any map

such that dist(x, ι(x))≤ dist(x,z) for all z′ ∈ ∂U . For every x ∈U (0), let g(x) = h(ι(x)).

Claim. If x ∈U (0)\Ai and y ∈ ∂U, then dist
(
g(x),g(y)

)
≤ ξ

(
dist(x,y)+

√
2

2i−1

)
.

If x ∈U (0)\Ai and y ∈ ∂U , then dist
(
x, ι(x)

)
≤
√

2
2i−1 . Thus dist

(
ι(x),y

)
≤ dist(x,y)+

√
2

2i−1 and the claim

follows.

We now wish to extend g continuously to D\U ∪U (1). Let ζ : R+→ R+∪{∞} be a modulus of path-

connectivity of X which vanishes at 0. Then there exists a η > 0 such that ζ (t)< ∞ for all t < η . Suppose

that e is an edge of U (1) with vertices x,y such that dist
(
g(x),g(y)

)
< η . Then there exists a path αx,y

in X from g(x) to g(y) such that diam(αx,y) ≤ ζ
(

dist(g(x),g(y)
)
. We may extend g by sending e to αx,y.

Repeating this for all sufficiently short edges of U (1) and sending the other edges to any path between their

end points, we can extend g to D\U ∪U (1).

Claim. g : D\U ∪U (1)→ X is continuous.

Suppose that xn is a sequence of points in U (1) such that xn → x0. If x0 6∈ ∂U , then xn is eventually

contained in Ai for some i and g(xn)→ g(x0) by the Pasting Lemma for continuous functions (see [35]).

If x0 ∈ ∂U , then we can choose x′n such that xn,x′n are contained in a single edge of D(1) and x′n ∈U (0).

As well we may assume that, xn is contained in a sufficiently short edge (so as to assume the length condition

holds on the edge). Since xn converges to ∂U , for every i there exists an Ni such that xn ∈U (1)\Ai for all

n > Ni. Then dist(xn,x′n) ≤ 1
2i for all n > Ni. Thus dist

(
g(xn),g(x′n)

)
≤ ζ

(
ξ ( 1

2i )
)

for all n > Ni. As well,

dist(xn,x′n)≤ 1
2i for all n > Ni implies that x′n converges to x0.

Then

dist(g(x0),g(xn))≤ dist(g(x0),g(x′n))+dist(g(x′n),g(xn))

≤ ξ
(
dist(x0,x′n)+

√
2/2i−1)+ζ

(
ξ (1/2i)

)
for all n≥ Ni. Thus g|D\U∪U (1) is continuous which completes the second claim.

Let εi = max
s∈Di
{diam(g(∂ s))} which is necessarily finite for all i. Since g|D\U∪U (1) is continuous, εi

converges to 0. Since E is simply connected and uniformly locally simply connected, there exists δi such

that for every s ∈ Di g(∂ s) bounds a disc with diameter at most δi where δi→ 0 as i→ ∞.

Fix i > 0 and s ∈ Di. Then we can extend g to all of s by extended g|∂ s to a disc with diameter at most

δi.

By doing this process for all s ∈
⋃

i≥0 Di, we can extend g to all of D. Repeating the argument from the

second claim and using the fact that δi→ 0, we can see that this extension is continuous.

An interesting related proposition is the following van Kampen type result for fundamental groups.

Proposition III.2.9. Suppose that X =U ∪V is a connected metric space and U ∩V is a non-empty, closed,

simply connected, uniformly locally path connected and uniformly locally simply connected. Then for x0 ∈
U ∩V , π1(V,x0)∗π1(U,x0) canonically embeds into π1(X ,x0).
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The homomorphism will not necessarily be a surjection. In fact, π1(X ,x0)\
(
π1(V,x0) ∗π1(U,x0)

)
will

often be uncountable, if both U and V are not locally simply connected at x0.

The Griffith space is the wedge of two contractible spaces which has uncountable fundamental group

[24]. The point is that free products only allow for finite products of loops but if the loops are getting small,

the fundamental group allows for infinite products. For a rigorous definition of infinite products and further

information on this type of phenomenon, see [9], [10].

Proof of Proposition III.2.9. Suppose that fi : (I,0,1)→ (V,x0,x0) and g j : (I,0,1)→ (U,x0,x0) are essen-

tial loops such that the loop f1 ∗g1 ∗ · · · ∗ fn ∗gn is null homotopic in X . Let h : D→ X be a null homotopy

and C a component of h−1(V ) containing the portion of ∂D which maps to f1. Since U ∩V is path connected

and locally path connected, we can define a map h′ : C∪∂D→V such that h′|C = h and h′(∂D\C)⊂U ∩V .

Then, as in Lemma III.2.8, h′ can be extended to a null homotopy of f1 which contradicts the assumption

that f1 was an essential loop.

We will use Olshanskiy’s definitions from [36] for a 0-refinement of a van Kampen diagram, 0-edges

and 0-cells, a cancelable pair in a van Kampen diagram, a copy of a cell under 0-refining, and reduced

diagrams. Our definitions of M-bands, medians, and boundary paths of M-bands will follow that of [40].

Definition III.2.10 (M-bands). Let M⊂ S∪{1}where 1 is the empty word is S∪S−1 and ∆ be a van Kampen

diagram over 〈S |R 〉. An M-edge is an edge in ∆ or Γ(G,S) labeled by an element of M. An M-band T is

a sequence of cells π1, ...,πn in a van Kampen diagram over 〈S |R 〉 such that

(i) every two consecutive cells πi and πi+1 in this sequence have a common M-edge ei and

(ii) every cell πi, i = 1, ...,n has exactly two M-edges, ei−1 and ei.

Consider lines l(πi,ei) and l(πi,ei−1) connecting a point inside the cell πi with midpoints of the M-edges

of πi. The broken line formed by the lines l(π1,e), · · · , l(πi,ei), l(πi,ei−1), · · · , l(πn,en) is called the median

of the band T and will be denoted by m(T ). It connects the midpoints of each M-edge and lies inside the

union of πi. We say that an M-band is an M-annulus, if π1 and πn share an M-edge. If T is an M-annulus,

then the edges e1 and en coincide and m(T ) is a simple closed curve. An M-band T will be reduced if no

two consecutive cells are inverse images of each other.

Each cell πi of an M-band T can be viewed as an oriented 4-gon with edges ei−1,pi, ei, qi where ei−1,ei

are M-edges of πi; pi begins at the initial vertex of ei−1 and ends at the initial vertex of ei; and qi begins at the

terminal vertex of ei−1 and ends at the terminal vertex of ei. Then p1 p2 · · · pn and q1q2 · · ·qn edge paths in ∆

which we will refer to as the combinatorial boundary paths of T and denote by topc(T ), botc(T ) respec-

tively. However, the combinatorial boundary paths can have backtracking in the diagram. The (topological)

boundary paths of T are subpaths of topc(T ) and botc(T ) obtained by removing all maximal subpaths

consisting entirely of backtracking and will be denoted by top(T ) and bot(T ) respectively. While a topo-

logical boundary path has no backtracking, its label is not necessarily freely reduced. It is also possible that

one of top(T ) and bot(T ) is empty.
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Let T be a M-annulus in a circular diagram ∆. T is a minimal M-annuli, if there are no M-annuli

contained in the bounded component of R2\m(T ) where ∆ is considered as a subset of R2. T is said to

be a maximal M-annulus in ∆ if it is not contained in the bounded component of R2\m(T ′) for any other

M-annulus T ′ in ∆. For a more complete description of M-bands and their boundaries see [40].

Definition III.2.11. Let Ge be an HNN extension of a group 〈A |R′ 〉 with finitely generated associated

subgroups. Then Ge has a presentation

〈A, t |R′∪{ut
i = vi}k

i=1 〉

where {u1, ...,uk},{v1, ...,vk} are generating sets for the associated subgroups He = 〈ui〉,Ke = 〈vi〉.
Let Ga be an amalgamated product of groups 〈A1 |R1 〉 and 〈A2 |R2 〉 along ϕ : H1→ H2 where Hi is a

finitely generated subgroup of 〈Ai |Ri 〉. Then Ga has a presentation

〈A1,A2 |R1,R2∪{ui = ϕ(ui)}k
i=1 〉

where {u1, ...,uk} is a generating set for the associated subgroup H1.

We will fix the groups Ge and Ga and their presentations for the remainder of Section III.2.

Definition III.2.12. Let H be a subgroup of a group G generated by S and Z,Z′ be subsets of Γ(G,S). We

will say that Z,Z′ are H-separated if there exists g ∈ G such that Z,Z′ are contained in distinct components

of Γ(G,S)\gH where gH is the set of vertices of Γ(G,S) labeled by elements from the coset gH.

Lemma III.2.13. Let H be a subgroup of a group G generated by S. The property of being H-separated is

invariant under the left action of G on Γ(G,S).

Lemma III.2.14. Suppose that He or Ke is a proper subgroup of 〈A |R′ 〉. Let γ be a loop in Γ(Ge,Se) and

N > diam(γ). Then there exists elements {g1, · · · ,gN} in Ge such that

(i) gi · γ,g j · γ are H-separated for H ∈ {He,Ke} and

(ii) |gig−1
j | ≥ 2N and |gi| ≤ 4N for all i 6= j.

Proof. Without loss of generality, we will assume Ke is a proper subgroup. Let γ and N be as in the statement

of the lemma. Choose a ∈ 〈A |R′ 〉\Ke and let gi ≡ tN(ta)it−N . Notice that gi has no pinches for any i ∈ Z
and gig−1

j = gi− j. For i 6= j, |gig−1
j | is at least 2N since tN(ta)i− jt−N has no pinches. Being Ke-separated is

invariant under the action of Ge on Γ(Ge,Se); hence, it is enough to show that γ and gi · γ are Ke-separated.

Let x be the vertex of Γ(G,S) with label gi and x0 the vertex with label 1.

Since tN(ta)it−N has no pinches, gi and 1 are in different components of Γ(Ge,Se)\T N+1Ke where 1 is

the identity element of Ge. As well, dist(gi,T N+1Ke) ≥ N and dist(1,T N+1Ke) ≥ N. Then N > diam(γ)

implies that γ , gi · γ are in distinct components of Γ(Ge,Se)\T N+1Ke.

An analogous proof gives us the following result for Ga where g j = aN
1 (a1a2)

ja−N
1 for ai ∈ Ai\Hi.
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Lemma III.2.15. Suppose that Hi is a proper subgroup of Gi for i = 1,2. Let γ be a loop in Γ(Ga,Sa) and

N > diam(γ). Then there exists elements {g1, · · · ,gN} in Ga such that

(i) gi · γ,g j · γ are H1-separated and

(ii) |gig−1
j | ≥ 2N and |gi| ≤ 4N for all i 6= j.

Theorem III.2.16. Suppose that G is an HNN-extension or amalgamated product where the associated

subgroups are proper, quasi-isometrically embedded, prairie groups. Then every asymptotic cone of G is

either simply connected or has uncountable fundamental group.

Proof. Let G ∈ {Ge,Ga} and S be the corresponding generating set for G. Suppose that Conω
(
G,d

)
is not

simply connected. Then there exists γ an essential loop in Conω
(
G,d

)
and we may choose loops γn in

Γ(G,S) such that
(
γn(t)

)
= γ(t). Let cn = 2diam(γn). Let Sn be the set of elements of G given by Lemma

III.2.14 or Lemma III.2.15. For every two distinct elements gn,hn of Sn, gn · γn and hn · γn are H-separated

for some quasi-isometrically embedded prairie subgroup H of G.

Let g = (gn),h = (hn) ∈∏
ω Sn.

Claim. Then g · γ , h · γ are well-defined loops in Conω
(
G,d

)
and g · γ is not homotopic to h · γ if g,h are

distinct elements of ∏
ω Sn.

The first assertion follows from the fact that gn grows big O of the scaling sequence.

Suppose that g · γ is homotopic to h · γ for distinct h,g. Then ω-almost surely gn 6= hn and there exists

kn such that gn · γn and hn · γn are in distinct components of Γ(G,S)\knH.

Thus g ·γ , h ·γ are in distinct components of Conω
(
G,d

)
\ limω knH by Lemma III.1.6. Since H is quasi-

isometrically embedded; limω knH is bi-Lipschitz to Conω
(
H,d

)
which is simply connected, uniformly

locally simply connected, and geodesic.

Thus limω knH is simply connected, uniformly locally simply connected, and uniformly locally path

connected. Hence, Lemma III.2.8 implies that g ·γ and h ·γ are null-homotopic which contradicts our choice

of γ .

This completes the proof of the claim. The theorem follows since ∏
ω Sn is uncountable.

Corollary III.2.17. If G is has more than one end, then every asymptotic cone of G is either simply con-

nected or has uncountable fundamental group.

Proof. If G has more than one end, then it has a graph of groups decomposition with finite edge groups and

hence is an HNN extension or an amalgamated product with finite associated subgroups and finite subgroups

are always quasi-isometrically embedded prairie groups.

This corollary was also shown in [18] since groups with more than one end are relatively hyperbolic.

A lemma due to Burillo.

Lemma III.2.18 ([7]). If X has is quasi-isometric to a metric space with a log metric then every asymptotic

cone of X is totally disconnected.
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Corollary III.2.19. Suppose that G is an HNN-extension or amalgamated product where the associated

subgroups are exponentially distorted. Then every asymptotic cone of G is either simply connected or has

uncountable fundamental group.

Proof. We will proceed as in the proof of Theorem III.2.16. We only need to show how to circumvent the

use of Lemma III.2.8.

We can construct Sn as before and let g = (gn),h = (hn) for gn,hn ∈ Sn.

If gn 6= hn ω-almost surely, then there exists X = limω knH such that g ·γ , h ·γ are in distinct components

of Conω
(
G,d

)
\X . Since H is exponentially distorted, it is totally disconnected by Lemma III.2.18.

Suppose that h : A→ Conω
(
G,d

)
is a homotopy from g · γ to h · γ . Then there exists a component C

of h−1(X) which separates the boundary components of A. Since X is totally disconnected, h(C) must be a

point. Hence h can be modified to a map on the disc by sending the component of the disc bounded by C to

h(C). Thus g · γ must be null-homotopic, which contradicts our choice of γ .

Corollary III.2.20. Let G = 〈a, t | (ap)t = aq 〉 be the Baumslag-Solitar group where |p| 6= |q|. For every

(ω,d), Conω
(
G,d

)
has the following properties.

(i) Conω
(
G,d

)
is not semilocally simply connected.

(ii) π1(Conω
(
G,d

)
,x0) is not simple.

(iii) Every decomposition of π1(Conω
(
G,d

)
,x0) into a free product of subgroups has a factor which is a

not free and uncountable.

(iv) π1(Conω
(
G,d

)
,x0) contains an uncountable free subgroup.

Proof. Let G = 〈a, t | (ap)t = aq 〉 be the Baumslag-Solitar group where |p| 6= |q|. Properties (i)− (iii) are

proved in Corollary 3.2 of [12]. So we need only prove (iv). The proof is an adaptation of the proof of

Corollary III.1.22.

Since Conω
(
G,d

)
is not semilocally simply connected, it is not simply connected. Thus is contains an

essential loop γ . Theorem III.2.16 shows how to find an uncountable set of essential loops all of which are

in distinct components of Conω
(
G,d

)
\ limω

e gn〈aq〉 for some choice of gn ∈ G.

Using this uncountable set of loops, we can find S′γ as in Corollary III.1.22. We will now use the notation

from Corollary III.1.22 and show how to modify the proof.

Suppose that xn1
1 ∗ · · · ∗ xnk

k is a null homotopic loop in Conω
(
G,d

)
where xi 6= xi+1, x1 6= xk and xni

i is

an essential loop. Then there exists h : D→ Conω
(
G,d

)
a map from the unit disc in the plane such that

h(∂D) is a parameterization of the curve xn1
1 ∗ · · · ∗xnk

k . Let C be the closure of the connected component of

D\h−1
{

limω
e gn〈aq〉

}
containing the subpath p of ∂D which maps to xn1

1 .

Recall that 〈aq〉 is exponential distorted in G. Thus limω
e gn〈aq〉 is totally disconnected by Lemma

III.2.18.

Since C is the closure of a component of D\h−1
({

limω
e gn〈aq〉

})
, ∂C\{p} is connected and maps into

limω
e gn〈aq〉. Hence h(∂C\{p}) is a point b.

31



Define h′ : D→ Conω
(
G,d

)
by h′(y) = h(y) for y ∈C and h′(y) = b for y 6∈C. Then h′ is continuous

and xn1
1 is null homotopic which contradicts our choice of xn1

1 .

Again, the subgroup generated by S′γ may not by a free group but it is the free product of cyclic groups.

Thus it is easy to find an uncountably generated free subgroup. This completes the proof of the corollary.

III.2.1 Partitions of van Kampen diagrams

Definition III.2.21. Suppose that β is a simple closed curve contained in the interior of a planar disc D.

Then D\β has exactly two components. The component of D\β whose closure contains ∂D will be called

the unbounded component of D\β . The other component will be called the bounded component. A point

v ∈ D is interior (or exterior) to β , if it is contained in the bounded (or unbounded) component of D\β .

The following definition of partitions are due to Papasoglu in [44].

Partitions of the unit disc in the plane: Let D be the unit disk in R2 or the planar annulus
{
(x,y)|x2 +

y2 ∈ [1
4 ,1]

}
. A partition P of D is a finite collection of closed discs D1, · · · ,Dk in the plane with pairwise

disjoint interiors such that D = ∪iDi, ∂D = ∂ (D1∪·· ·∪Dk), and Di∩D j = ∂Di∩∂D j when i 6= j. A point

p on ∂D1∪·· ·∪∂Dk is called a vertex of the partition if for every open set U containing p, U ∩ (∂D1∪·· ·∪
∂Dk) is not homeomorphic to an interval. An edge of a partition is a pair of adjacent vertices of a disc in

the partition. A piece of a partition is the set of the vertices of a disc in the partition. A partition is then a

cellular decomposition of the underline space of P where each vertex has degree at least 3; so we will use

the standard notation, P(i), to denote the i-th skeleton of a partition.

Geodesic n-gons in a metric space X: An n-gon in X is a map from the set of vertices of the standard

regular n-gon in the plane into X , i.e. an ordered set of n points in X . If X is a geodesic metric space, we

can extend the n-gon to edges by mapping the edge between adjacent vertices of the standard regular n-gon

in the plane to a geodesics segment joining the corresponding vertices of the n-gon in X . We will say that

such an extension is a geodesic n-gon in X .

Partitions of loops in a geodesic metric space X: Let D be the unit disc in the plane and γ : ∂D→ X

be a continuous map. A partition of γ is a map Π from the set of vertices of a partition P of D to X such that

Π
∣∣
∂P∩P(0)= γ

∣∣
∂P∩P(0) . The vertices/edges/pieces of Π are the images of vertices/edges/pieces of P. We will

write Π(∂Di) for the pieces of Π, where Di are the 2-cells of the partition P.

Remark III.2.22. Suppose that Π : P(0)→ X is a partition of a loop γ in a geodesic metric space. We can

extend Π to P(1) by mapping every edge contained in ∂P(2) to the corresponding subpath of γ and every

edge not contained in ∂P(2) to a geodesic segment joining its end points. Then the length of a piece is the

arc length of the loop Π(∂Di). We will write |Π(∂Di)| for the length of the piece Π(∂Di). We define the

mesh of Π by

mesh(Π) = max
1≤i≤k

{|Π(∂Di)|}.

At times it will be convenient to ignore some pieces of a partition. If Z is a subset of the pieces of P,

then the relative mesh of Π is

rmeshZ(Π) = max
Di∈Z
{|Π(∂Di)|}.
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When X is a Cayley graph of a group, we will also assume that the partition takes vertices of P to vertices

in the Cayley graph. A partition Π is called a δ -partition, if meshΠ < δ . A loop of length k in a geodesic

metric space is partitionable if it has a k
2 -partition.

Let P(γ,δ ) be the minimal number of pieces in a δ -partition of γ if a δ -partition exist and infinity

otherwise.

If P is a partition of the unit disc in the plane, then P(1) can be considered as a planar graph where every

vertex has degree at least 3. Then one can use the fact that the Euler characteristic of a planar graph is 1 to

obtain the following.

Lemma III.2.23. Let Π : P(1) → Γ(G,S) be a partition of a loop in the Cayley graph of G. If Π has F

pieces, then Π has at most 3F edges and at most 2F vertices.

A straightforward inductive argument gives us the following lemma.

Lemma III.2.24. Suppose that T is a finite simplicial tree with at most j vertices of degree 1. Then T has

at most j−1 vertices with degree greater than 2.

Our goal for the remainder of Section III.2.1 and Section III.3 is to define partitions of van Kampen

diagrams and show how to use the standard techniques for reducing van Kampen diagrams to build nice

partitions of loops in the Cayley graph.

Definition III.2.25. Suppose that 〈A, t |R 〉 is an HNN-extension with stable letter t. Let w be a word in

the alphabet S∪ S−1. We will use |w|F to denote the freely reduced word length of w, |w|G to denote the

minimal word length of w in 〈A, t |R 〉 and |w|t to denote the number of t-letters in w.

A word w is a t-shortest word if |w|t ≤ |w′|t for all w′ =G w and

|w|G = |w|t +∑ |vi|G (III.2)

where vi ranges over maximal a-subwords of w. To avoid trivialities, we will also require that every a-

subword of a t-shortest word be freely reduced.

We will say that w is an almost t-shortest word if |w|t ≤ |w′|t for all w′ =G w.

A path γ in the Cayley graph of G is a t-shortest path (or an almost t-shortest path) if Lab(γ) is a

t-shortest word (or an almost t-shortest word).

The equality in (III.2) implies that if we replace each maximal a-subword of a t-shortest path with a

geodesic, then the whole path is geodesic. This gives us the following result.

Lemma III.2.26. Every edge in Γ(G,S) labeled by a t-letter on a t-shortest path from g to h is also an edge

of a geodesic from g to h.

Definition III.2.27. Let P be a partition of the unit disc D2 or the unit annulus in the plane and ∆ a van

Kampen diagram over 〈S |R 〉. A continuous map Ψ : P(2)→ ∆ is a partition of ∆ if it satisfies the following

conditions.

(i) Ψ(P(0))⊂ ∆(0)
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(ii) Ψ takes edges of P to edge paths in ∆(1)

(iii) For each closed 2-cell D of P, Ψ(D) is a reduced subdiagram of ∆

If we consider ∆ as a metric space with the edge metric, then Ψ|P(0) is a partition of the loop ∂∆ under

our previous definition.

As before, the edges/vertices/pieces of Ψ are the image under Ψ of edges/vertices/pieces of P in ∆.

Define the mesh of Ψ by mesh(Ψ) =mesh(θ ◦Ψ) where θ is the canonical map into the Cayley complex.

Ψ is an h-partition of ∆, if Ψ is partition of ∆ and a homeomorphism. If Ψ is a h-partition of ∆ and θ ◦Ψ

takes edges of P to geodesic paths (t-shortest paths), then we will say Ψ is a geodesic partition (t-shortest

partition) of ∆.

This gives the underling space of ∆ two cell structures, the cell structure inherited as a van Kampen

diagram and the cell structure inherited from the partition. When there is a chance of confusion, we will

specify if we are considering a vertex/edge in the underling space as a Ψ-vertex/Ψ-edge or a ∆-vertex/∆-

edge.

The following lemma follows trivially by considering each of the three types of 0-refinements.

Lemma III.2.28. Suppose that Ψ : P(2)→ ∆ is a partition (or a geodesic partition) and ∆′ is a 0-refinement

of ∆. Then there exists a partition (or geodesic partition) Ψ : P(2) → ∆′ which preserves the number of

pieces, edges, and vertices; the mesh of the partition; and the labels of edges (after removing any possible

1’s).

III.3 HNN extensions with free associated subgroups

Let G be a multiple HNN extension of a free group F with free associated subgroups. Then G has a

presentation

〈A∪{ti} |{uti
i,s = vi,s} for i = 1, ...,k and s = 1, ..., ji 〉

where Ui = 〈ui,1, ...,ui, ji〉,Vi = 〈vi,1, ...,vi, ji〉 are free subgroups with free generating sets {ui, j}, {vi, j} re-

spectively and ti are stable letters. We will use 〈S |R 〉 to denote this presentation for G which we will fix

throughout Section III.3. Let

K = max{|ui,1|F , ..., |ui, ji |F , |vi,1|F , ..., |vi, ji |F}.

We will also fix the constant K throughout this section. To simplify notation, we will frequently refer to

ti-bands in diagrams over 〈S |R 〉 as just t-bands when the specific i is inconsequential.

Lemma III.3.1. Let T be a t-band in a van Kampen diagram ∆. Then ∆ can be modified while preserving

the numbers of cells and the boundary label of ∆ such that the label of top(T ) and bot(T ) are freely

reduced words.

Proof. If Lab(bot(T )) = w1uu−1w2, then we may cut ∆ along the subpath of bot(T ) labeled by uu−1 and

re-identify them as in Figure III.1. This is the so called diamond move (see [11]). A similar process can be

performed for top(T ).
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Edges in gray are labeled by u or u−1 respectively

q1

w1

w2

q1

w1

w2 w2
w1

q1

Figure III.1: Modifying ∆ to insure that the label of the boundary of a t-band is freely reduced.

Lemma III.3.2. Suppose that T is a reduced t-band in a van Kampen diagram ∆ over 〈S |R 〉 endowed

with the edge metric. Then there exist an L such that top(T ) is in the L-neighborhood of bot(T ) where L

is a constant depending only on the associated subgroups.

Proof. The lemma is trivial if you are considering topc(T ) and botc(T ) in placy of top(T ) and bot(T ).

So we will prove the lemma by finding a bound on the diameter of the backtracking that was removed to

obtain top(T ).

Recall that {ui,1, ...,ui, ji},{vi,1, ...,vi, ji} are free generating sets for the associated subgroups where

ui,k,vi,k are words in the alphabet A. For the purposes of this lemma; let U be the disjoint union of

〈ui,1, ...,ui, ji〉 and 〈vi,1, ...,vi, ji〉 and if g ∈U , let |g|s denote the length in the associated subgroup. Let

L′ = max{|g|s | g ∈U and |g|G ≤ 2K}.

Fix T a reduced t-band in ∆ and v a vertex on top(T ). Then there exists a vertex v′ on botc(T ) such

that dist(v,v′) ≤ K + 1. Suppose that p is a maximal subpath of botc(T ) which contains the vertex v′ and

has freely trivial label in F(A). We will assume (without loss of generality) that botc(T ) is labeled by

words from {ui,1, ...,ui, ji}. Then for some j, Lab(p) = w1uε1
j,s1
· · ·uεr

j,sr
w2 where w1 is a terminal segment of

uε0
j,s0

, w2 is an initial segment of uεr+1
j,sr+1

, and εi =±1. Let g = uε0
j,s0
· · ·uεr+1

j,sr+1
. By construction |g|G is at most

2K and in U . Thus |g|s ≤ L′. This implies that v′ is at most L′K from a vertex of bot(T ).

Thus v is at most L = L′K +K +1 from a vertex of bot(T ) which completes the lemma.

The following lemma is a correction of a lemma by Olshanskii and Sapir in [39].

Lemma III.3.3. There exists a constant L such that every diagram over 〈S |R 〉 which has no t-annuli and

all t-bands are reduced has diameter no greater than 3L|∂∆|
2 .

Proof. Let L be the constant from Lemma III.3.2.

Let s be the number of t-bands in ∆ and n= |∂∆|. Then s≤ n
2 . There exists a t-band T such that (without

loss of generality) topc(T ) is contained in ∂∆ (see Lemma 2.1 of [39]). Then ∆ is obtained by gluing T

and a diagram ∆1 with s− 1 t-bands which satisfies the same hypothesis. Every vertex on a bot(T ) can
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be connected to the boundary of ∆ by a path of length at most L. By induction on s, we can deduce that

every vertex inside ∆ can be connected to the boundary of ∆ by a path of length at most Ls≤ Ln
2 . Hence the

diameter of ∆ is at most 3Ln
2 .

Lemma III.3.4. Let ∆ be a van Kampen diagram with no t-annuli, every t-band reduced, and γ : [0,1]→ ∆

be a parametrization of ∂∆. Suppose that 0 = t0 < t1 < · · ·< tk < tk+1 = 1 is a partition of the unit interval

and I a subset of {0, · · · ,k} such that γ restricted to [ti, ti+1] is a t-shortest path for i ∈ I. Then θ(∆) has

diameter no greater than

5L
2

(
∑
i 6∈I

∣∣∣γ|[ti,ti+1]

∣∣∣+∑
i∈I

dist
(
θ ◦ γ(ti),θ ◦ γ(ti+1)

))
where L is the constant for Lemma III.3.2 and θ is the canonical map into the Cayley graph.

Proof. Let C = ∑i6∈I
∣∣γ|[ti,ti+1]

∣∣+∑i∈I dist
(
θ ◦ γ(ti),θ ◦ γ(ti+1)

)
. By the same argument as in Lemma III.3.3,

every vertex of ∆ can be connected to a vertex on ∂∆ by a path of length at most Ls where s is the number

of t-bands in ∆.

For i ∈ I, let wi = Lab(γ|[ti,ti+1]) and w̃i be a geodesic word obtained by replacing each maximal a-

subpath of wi by a geodesic word. For i 6∈ I, let wi = Lab(γ|[ti,ti+1]) = w̃i. Then C = |w̃0w̃1 · · · w̃k|. Fix ∆i

a reduced van Kampen diagram with ∂∆i = pi p̃i where Lab(pi) = wi and Lab(p̃i) = w̃−1
i . Let si be the

number of t-bands in ∆i. Since no t-band of ∆i can start and stop on pi; hence, s,si ≤ C
2 . By repeating the

arguments from Lemma III.3.3, we can see that any point in ∆i is at most Lsi from a point on p̃i. Hence, if

x,y are two points on ∂∆, then dist
(
θ(x),θ(y)

)
≤ Lsi +Ls j +

C
2 ≤

LC
2 + LC

2 + C
2 .

If x,y are two points in ∆; dist
(
θ(x),θ(y)

)
≤ 2(Ls)+(Lsi+Ls j+

C
2 ). Therefore θ(∆)≤ LC+(LC+ C

2 )≤
5LC

2 .

Remark III.3.5. Let Π : P(0)→ Γ(G,S) be a partition of a loop γ in Γ(G,S). We can extend Π to P(1) as

in Remark IV.0.18; but instead of mapping the interior edges of P to geodesics, we will map the interior

edges to t-shortest paths in Γ(G,S). We can label the edges of P(1) with the label of their image. Then

we can fill each piece with a reduced circular van Kampen diagram. This produces a van Kampen diagram

with boundary label equal to the Lab(γ) and Π induces a canonical homeomorphism from P(2) onto this

van Kampen diagram. Thus every partition Π of γ induces a t-shortest partition Ψ of a diagram such that

Π = θ ◦Ψ. Then by Lemma III.3.4, each subdiagram corresponding to a piece has diameter at most 5Ln
2 .

III.3.1 Removing t-bands from partitions

Definition III.3.6. Suppose Ψ : P(2)→ ∆ is a t-shortest partition of a van Kampen diagram ∆. A t-band T

crosses a Ψ-edge e, if e contains a t-edge from T . If T is a t-annulus which crosses a Ψ-edge e, we will

call the end points of the corresponding t-edge, the crossing vertices of T .

Lemma III.3.7. If Ψ is a t-shortest partition of ∆ and T is a t-band in ∆, then T crosses each Ψ-edge at

most once.
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T

∆

e

t-edges

Figure III.2: A Ψ-edge which crosses T twice cannot be t-shortest.

Proof. If T crossed a Ψ-edge e twice, then e would contain two t-edges and the subword of e beginning

and ending with these t-edges would be equal to a subword of topc(T ) or botc(T ). See Figure III.2. Thus

e was not t-shortest. (Note we are using the fact the diagrams are planar.)

Corollary III.3.8. Let Ψ : P(2) → ∆ be a t-shortest partition of ∆ and T be a t-annulus in ∆. Then the

bounded component of P(2)\Ψ−1(m(T )) contains a vertex of P.

Corollary III.3.9. Let Ψ : P(2) → ∆ be a t-shortest partition of ∆. Then ∆ can have at most V maximal

T -annuli where V is the number of vertices of the partition Ψ.

Lemma III.3.10. Let Ψ : P(2) → ∆ be a h-partition of ∆ with F pieces where ∆ is an annular diagram

where the boundary components have labels which are trivial in G. Suppose that T is a t-annulus in ∆ such

that T crosses each edge at most once and if v is a crossing vertex of a Ψ-edge with vertices e−,e+, then

dist(e−,e+)≤ dist(e−,v)+dist(v,e+). Let B = max
D∈P
{diam(θ ◦Ψ(D))}.

Then there exists a partition Ψ̃ : P̃(2)→ ∆′ where ∆′ is obtained by removing T such that

(i) Ψ̃ has no more than 9F2 +4F pieces, and

(ii) mesh(Ψ̃)≤max{3(B+2K),mesh(Ψ)},

where K is the max of the word length of the generators of the associated subgroups.

Proof. Let Ψ : P(2)→ ∆ be a partition of ∆ as in the statement of the lemma and let A be the underline space

of P. Let ∆A be the subdiagram of ∆ obtained by removing all cells interior to topc(T ).

Let V = {v1,v2, · · · ,vk} be the set of crossing vertices of T which are contained in topc(T ) where

the ordering is obtained by traversing topc(T ) in the clockwise direction. Let qi be a subpath of topc(T )

between vi and vi+1 without backtracking (where the indices are taken modulo k) which intersects V only at

vi,vi+1 and m(qi) the corresponding subpath of m(T ). Since T crosses each vertex at most once, k ≤ 3F .

By construction m(qi) is contained inside of Ψ(D) for some piece D of P. Thus qi is in the K-

neighborhood of Ψ(D) and diam(θ ◦Ψ(qi))≤ B+2K

Claim 1. There exists a refinement P′ of P and a partition Ψ′ : P′(2)→ ∆ with Ψ′(x) = Ψ(x) for all x ∈ P(1)

such that
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Di

wi+1

βT
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T

Ψ(Di)

vi+1vi

P′(1) ∆

Ψ
ei qi

Figure III.3: Constructing P′

(i) the number of pieces of P′ is less than 4F;

(ii) mesh(Ψ′)≤mesh(Ψ); and

(iii) there is a simple closed curve βT in P′(1) such that

(a) Ψ(βT )⊂ topc(T ),

(b) βT has at most 3F edges, and

(c) if Ψ′(x) is interior to m(T ), then x is interior to βT .

Proof of Claim 1. Let wi = Ψ−1(vi) and W = {wi}. For each pair i, there exist a unique cell Di of P such

that Ψ−1
(
m(qi)

)
⊂ Di. Let ei be an arc in Di from wi to wi+1 such that ei∩P(1) = {wi,wi+1}. In addition,

we may assume that the arcs ei have disjoint interiors. Then βT = e1 ∗ e2 ∗ · · · ∗ ek is a simple closed curve.

Let P′(0) = P(0)∪W . The edges of P′ are the closure of the connected subsets of P(1)∪βT \P′(0). This

gives βT a cellular structure. Each vertex of βT corresponds to a crossing vertex of ∂oT . Since βT has at

most 3F vertices and each edge cuts a piece of P into two pieces, P′ has at most 4F pieces.

We can define Ψ′|P(1) = Ψ and map ei to qi. By Lemma III.3.1, we may also assume that Ψ′(ei) has

freely reduced label. We can extend Ψ′ to the 2-cells of P′ in the natural way. Then Ψ′ : P′(2) → ∆ is a

partition of ∆ which satisfies the first and third conditions of the claim.

The geodesic condition on crossing vertices guarantees that the mesh does not increase as we add the

vertices vi and the edges ei.

Claim 1 gives us that Ψ(βT ) bounds a subdiagram of ∆ with freely trivial boundary label and βT bounds

a subcomplex of P′(1). There exist a simplicial tree LT labeled by a-letters and a map ϒ : βT → LT such

that θ ◦Ψ′|βT
= θ ′ ◦ϒ where θ ′ is a label preserving map from LT into Γ(G,S). LT is constructed by

choosing a free reduction of Lab(Ψ′(βT )).
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We can replace the subdiagram in ∆ bounded by Ψ(βT ) with LT . This creates a pairing of ∆-edges

in ∆. What we want to be able to do is mirror this identification of edges on βT . The problem is that this

identification can pair proper segments of edges in βT . To correct this we will need to add new vertices to

P′ to insure that this identification respects Ψ′-edges. In general, this will cause the mesh to increase since

edges of βT do not map to geodesics. So we will subdivide pieces to get a useful bound on our new mesh.

This is where the bound B on the diameter of each piece comes into play.

We will say that a subpath of βT is an LT -segment, if all vertices of the edge path except possible the

initial and terminal vertices have degree 2 in ϒ(βT ).

Claim 2. There exists a refinement P′′ of P′ and a partition Ψ′′ : P′′(2) → ∆ with Ψ′′(x) = Ψ′(x) for all

x ∈ P′′(2) = P′(2) such that

(i) the number of pieces of Ψ′′ is no more than 9F2 +4F,

(ii) βT is subdivided into at most 9F2 edges and each edge is an LT -segment, and

(iii) rmeshZ (Ψ
′′) ≤ max{3(B+K),mesh(Ψ)} where Z is the set of pieces of P′′ which are not interior to

βT .

θ(∂oT ) = θ ◦Ψ′′(βT ) = θ ′ ◦ϒ(βT )

ei
1

ei
2

ei
3

ϒ(ei
1)

ϒ(ei
2)

ϒ(ei
3)

P′′(1)1

ϒ

pi

po
LT

Figure III.4: P′′(1)1 and LT

Proof of Claim 2. ϒ must map each ei injectively into LT , since Lab(Ψ′(ei)) is freely reduced. Thus a

vertex of LT with degree 1 must be the image of a vertex of ei for some i and ϒ(βT ) has at most 3F vertices

of degree 1. Then Lemma III.2.24 implies that it has at most 3F vertices of degree greater than 2. For each

i, we can add new vertices to ei which are the unique ϒ-preimage of vertices of LT with degree greater than

2 or the unique ϒ-preimage of a point of ϒ(W ) (see Figure III.4). Doing this subdivides ei into at most 3F

edges which we will label by ei
j with their ordering induced by ei. This divides βT into at most 9F2 edges.

Let P′′1 be the cellular decomposition obtained by adding {e j
i } to P′. Notice the P′′1 is not a partition of A

since it has vertices of degree 2.
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P′′(1) P̃(1)

Figure III.5: Constructing P̃

In P′ there existed exactly two pieces which share ei as a common edge, pi which is contained in the

bounded component of R2\βT and po which is contained in the unbounded component (see Figure III.4).

We will now subdivide the piece po to obtain pieces with bounded mesh (see Figure III.5). Let f i
j be an

arc in po from the initial vertex of ei
1 to the terminal vertex of ei

j for all j > 1. We also will require that the

new edges have disjoint interiors contained in po. This subdivides po into at most 3F +1 pieces, i.e. we add

3F pieces to our count. Repeating this process for each i, gives us a partition P′′ of A.

We must now explain how to map these edges into ∆. Each new edge connects points with image on

the Ψ(βT ). Thus we can send each edge to the reduced subpath of Ψ(βT ) connecting the images of their

vertices and map the 2-cells in the natural way. Let Ψ′′ : P′′(2)→ ∆ be this new partition.

The distance between ei
j and ei

j′ is at most B+2K for all j and j′. This implies that the requirement on

the mesh is then satisfied.

We can replace the subdiagram of ∆ bounded by Ψ′(βT ) with LT , creating a new van Kampen diagram

∆′. This also induces a paring of edges on βT such that after removing the disc bounded by βT and

identifying edges of βT according to this pairing, we obtain a new partition P̃ of the quotient space A′.

If m(T ) separates the boundary components of A, then A′ is a planar disc. If m(T ) doesn’t separate the

boundary components of A, then A′ is an annulus. Then Ψ′′ induces a map Ψ̃ : P̃(2)→ ∆′ with the desired

properties, see Figure III.5.

Definition III.3.11. Recall that G has a presentation

〈A∪{ti} |{uti
i,s = vi,s} for i = 1, ...,k and s = 1, ..., ji 〉

where Ui = 〈ui,1, ...,ui, ji〉,Vi = 〈vi,1, ...,vi, ji〉 are free subgroups with free generating sets {ui, j}, {vi, j} re-

spectively and ti are stable letters.

Let Xi be the midpoints of the set of edges {(g, ti) | g ∈Ui} in Γ(G,S) .
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By Britton’s lemma, gXi separates Γ(G,S) for every g ∈ G. Let x1,x2 be two points in Xi such that

x2 =G x1ui, j. Then in Γ2(G,S) we can find an arc joining x1 to x2 which intersects Γ(G,S) only at x1 and x2.

Let Ti be the subset of Γ2(G,S) obtained by connecting all such points of Xi by arcs which intersect Γ(G,S)

only at their endpoints. Since Ui is free, Ti is a tree. Then Ti separates Γ2(G,S) and will be called the median

tree for Xi. Notice that Xi, Ti are not cellular subset of Γ(G,S) or Γ2(G,S), even thought they do have a

natural cellular structure.

Let Z,Z′ be subsets of Γ(G,S). We will say that Z,Z′ are t-separated if there exists g ∈ G and i such

that Z,Z′ are in distinct components of Γ(G,S)\gXi. This is equivalent to saying that as subsets of Γ2(G,S);

Z,Z′ are in distinct components of Γ2(G,S)\gTi.

Remark III.3.12. Notice that t-separated does not imply Ui-separated or Vi-separated. Let Z the set of

vertices of Γ(G,S) that have a label without pinches which begins with the letter t1. Let Z′ be the remainder

of the vertices of Γ(G,S). Then Z,Z′ are in distinct components of Γ(G,S)\X1. Since Z ∪Z′ contains all

the vertices of G, they cannot be Ui-separated or Vi separated for any i. The point is that Xi separates by

removing midpoints of edges and gVi or gUi separates by removing vertices.

Lemma III.3.13. Suppose Ui is proper, Vi is proper, or the number of stable letter in S is greater than 1 . Let

γ be a loop in Γ(G,S) and N > diam(γ). Then there exists elements {g1, · · · ,gN} in G such that gi · γ,g j · γ
are t-separated and |gig−1

j | ≥ 2N for all i 6= j; and |gi| ≤ 4N.

Proof. If Ui or Vi is proper, then {g j} can be constructed as in Lemma III.2.14. If S has at least two stable

letters, then let gi = tN
1 t i

2t−N
1 . In any of the three cases, the proof of Lemma III.2.14 also shows that the loops

{g j · γ} are pairwise t-separated.

Lemma III.3.14. Suppose that θ : ∆(2)→ Γ2(G,S) is the canonical label preserving cellular map from a

van Kampen diagram ∆ over 〈S |R 〉 to the Cayley complex. Then θ−1(gTi) is a set of medians of ti-bands in

∆.

Proof. The only cells in Γ2(G,S) intersecting gTi are those corresponding to relations of the form ut
i, j = vi, j.

The preimage of each edge of gTi is a median of such a cell in ∆.

Lemma III.3.15. Suppose that ∆A is an annular diagram such that the components of θ(∂∆A) are t-

separated. Then there exist a t-annulus in ∆A which separates the boundary components of ∆A.

Proof. Since the components of θ(∂∆A) are t-separated, there exists g∈G and i such that they are in distinct

components of Γ2(G,S)\gTi. Then θ−1(gTi) separates the components of ∂∆A and the result follows from

Lemma III.3.14.

Theorem III.3.16. Let G be a multiple HNN of a free group with free associated subgroups. Then either

all asymptotic cones of G are simply connected or G has an asymptotic cone with uncountable fundamental

group.

Proof. If G has only one stable letter and both associated subgroups are not proper, then G has a quadratic

Dehn function (see [4]) and every asymptotic cone of G is simply connected.
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If there exists an asymptotic cone of G which is not simply connected, then there exists a sequence of

loops γn in Γ(G,S) such that P
(
γn,
|γn|
2

)
≥ n for all n. Let dn = |γn|. Then dn diverges ω-almost surely and

γ(t) =
(
γn(t)

)
is a loop which has no finite partition in Conω

(
G,d

)
.

Using Lemma III.3.13, we can choose Sn = {gn,1, · · · ,gn,kn} of element of G such that

a) if i 6= j, then gn,i · γn and gn, j · γn are t-separated and

b) for all i, 2diam(γ)dn ≤ |gn,i| ≤ 4diam(γ)dn.

Claim. Let g = (gn),h = (hn) be distinct elements in ∏
ω Sn. Then g · γ is a well-defined loop Conω

(
G,d

)
and g · γ is not homotopic to h · γ .

The first assertion follows from the fact that gn grows big O of the scaling sequence.

Suppose that g · γ is homotopic to h · γ . Then we have a homotopy h : A→ Conω
(
G,d

)
between the

two loops where A is a planar annulus. Let P be a partition of A where each piece is a triangle such

that diam(h(D)) ≤ 1
84L for each piece D of P. Then we can chose partitions Πn : P(0)→ Γ(G,S) such that(

Πn(x)
)
= h(x) for all x∈ P(0). As in Remark III.3.5, Πn induces a t-shortest partition Ψn : P(2)→ ∆′n where

∆′n is an annular van Kampen diagram where both boundary paths are labeled by Lab(γn). The mesh(Ψn)≤
|γn|
60L + o(|γn|) < |γn|

30L ω-almost surely. Lemma III.3.4 implies that the diam(θ ◦Ψ(D)) ≤ 5Lmesh(Ψ) < |γn|
6

ω-almost surely.

Since g 6= h, gn 6= hn ω-almost surely and the loops gn · γn and hn · γn are t-separated ω-almost surely.

Lemma III.3.15 implies that there exists a t-annulus in ∆n which separates the two boundary components

of ∆n ω-almost surely. Lemma III.3.10 implies we can remove this t-annulus to obtain a partition Ψ̃n of a

circular diagram ∆′n with Lab(∂∆′n) = Lab(γn) ω-almost surely. Notice that mesh(Ψ̃n) < 3( |γn|
6 +K) and

has at most 9F2 +4F where F is the number of pieces of P. This then contradicts our choice of γn.
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CHAPTER IV

LOOP DIVISION PROPERTIES

The following definitions of locally connectivity properties are standard, see [29, Chapter 1].

Definition IV.0.17. A space X is called locally simply connected if for every pair (U,x) where U is a

neighborhood of x ∈ X , there exists V , a neighborhood of x contained in U , such that the inclusion induced

homomorphism from π1(V,x) to π1(U,x) is trivial; i.e. every loop in V bounds a disc in U . A metric space

X is uniformly simply connected if for every ε > 0 there exists a δ > 0 such that every loop with diameter at

most δ bounds a disc with diameter at most ε .

A space X is called semilocally simply connected if every point x ∈ X has a neighborhood U such that

the inclusion induced homomorphism from π1(U,x) to π1(X ,x) is trivial, i.e. every loop in U bounds a disc

in the whole space.

Remark. A space that is locally simply connected is semilocally simply connected. The converse is false,

since the cone on any space that is not locally simply connected is semilocally simply connected but still not

locally simply connected. See [29, Section 1.3].

The following definition of a partition is due to Papasoglu [44].

Partitions of the unit disc in the plane: Let D be the unit disk in R2. A partition P of D is a finite

collection of closed discs D1, · · · ,Dk in the plane with pairwise disjoint interiors such that D= ∪iDi, ∂D=

∂ (D1∪ ·· · ∪Dk), and Di∩D j = ∂Di∩ ∂D j when i 6= j. A point p on ∂D1∪ ·· · ∪ ∂Dk is called a vertex of

the partition if for every open set U containing p, U ∩(∂D1∪·· ·∪∂Dk) is not homeomorphic to an interval.

An edge of a partition is a pair of vertices which are joined by a path in ∂D1∪ ·· ·∪∂Dk that intersects the

set of vertices only at its endpoints. We will say that such vertices are adjacent. A piece of a partition is

a maximal set of vertices of the partition contained in a single disc of the partition. A partition is then a

cellular decomposition of the unit disc where each vertex has degree at least 3; so we will use the standard

notation, P(i), to denote the i-th skeleton of a partition for i = 0,1,2.

Geodesic n-gons in a metric space X: An n-gon in X is a map from the set of vertices of the standard

regular n-gon in the plane into X , i.e. an ordered set of n points in X . If X is a geodesic metric space, we

can extend an n-gon to edges by mapping the edge between adjacent vertices of the standard regular n-gon

in the plane to a geodesics segment joining the corresponding vertices of the n-gon in X . We will say that

such an extension is a geodesic n-gon in X .

Partitions of loops in a geodesic metric space X: Let γ : ∂D→ X be a continuous map. A partition

of γ is a map Π from the set of vertices of a partition P to X such that Π
∣∣
∂D∩P(0)= γ

∣∣
∂D∩P(0) . The ver-

tices/edges/pieces of Π are the images of vertices/edges/pieces of P. We will write Π(∂Di) for the pieces of

Π, where Di are the 2-cells of P.

Remark IV.0.18. Suppose that Π : P(0)→ X is a partition of a loop γ in a geodesic metric space. We can

extend Π to P(1) by mapping each edge contained in ∂D to the corresponding subpath of γ and every edge
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not contained in ∂D to a geodesic segment joining its end points. The length of a piece is the arc length of

the loop Π(∂Di). We will write |Π(∂Di)| for the length of the piece Π(∂Di). We define the mesh of Π by

mesh(Π) = max
1≤i≤k

{|Π(∂Di)|}.

When X is a Cayley graph of a group, we will also assume that the partition takes vertices of P to vertices

in the Cayley graph. A partition Π is called a δ -partition, if meshΠ < δ . A loop of length k in a geodesic

metric space is partitionable if it has a k
2 -partition.

Let P(γ,δ ) be the minimal number of pieces in a δ -partition of γ if a δ -partition exist and +∞ otherwise.

IV.1 Coarse Loop Division Property

Definition IV.1.1. Let X be a geodesic metric space.

Define ϑ i : N→ N∪{∞} by ϑ i(n) = sup
{

P(α, |α|2i ) | α is a loop in X such that n− 1 < |α| ≤ n
}

. We

will call ϑ = ϑ 1 the divisibility function of X .

Suppose ω is an ultrafilter on N, (dn) an ω-divergent sequence of positive real numbers, and ε a positive

real number. We will say that X is ε-coarsely loop divisible; if for every δ ∈ (0,ε) there exists an A ⊂ N
with ω(A) = 1 such that the divisibility function ϑ restricted to

⋃
n∈A

[δdn,εdn] is bounded by a constant

K = K(δ ,ε).

We will say that X is uniformly ε-coarsely loop divisible; if the constant K = K(δ ,ε) can be chosen

independent of δ .

We will say that a group G is (uniformly) ε-coarsely loop divisible; if the Cayley graph Γ(G,S) is

(uniformly) ε-coarsely divisible.

The property of being ε-coarsely loop divisible depends on
(
ω,d

)
. When there is a chance of confusion,

we will say that X is ε-coarsely loop divisible with respect to
(
ω,d

)
.

If X is ε-coarsely loop divisible for every ε and the bound K(δ ,ε) can be chosen independent of both δ

and ε , then Conω
(
X ,e,d

)
has Olshanskii-Sapir’s property LDC(K) as defined in [39].

We will see (Proposition IV.1.21) that for finitely generated groups this definition is independent of the

generating set in the sense that if S,S′ are two finite generating sets for G, then Γ(G,S) is ε-coarsely loop

divisible if and only if Γ(G,S′) is ε ′-coarsely loop divisible for some ε ′ > 0.

Remark IV.1.2. Suppose that ϑ is bounded on
[ n

2l ,n
]

by K. Let α be a loop of length n and fix a partition

of α into at most ϑ(n) pieces with mesh less than n
2 . As in Remark IV.0.18, the partition can be extended to

the 1-skeleton of the partition such that each loop has length less than n
2 . We can then partition each piece

with length at least n
4 into at most K pieces of length less than n

4 . This builds a n
4 -partition of α with at most

K2 pieces. Hence ϑ 2(n)≤ K2. Iterating this process, we obtain ϑ l(n)≤ Kl .

Lemma IV.1.3. Fix l ∈ N. If X is ε-coarsely loop divisible, then for every δ ∈ (0,ε) there exists an A⊂ N
with ω(A) = 1 such that ϑ l restricted to

⋃
n∈A

[δdn,εdn] is bounded by a constant K = K(δ ,ε, l).

Thus the coarse loop division property does not depend on which function ϑ l is used in its definition.
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Proof. Suppose X is ε-coarsely loop divisible. Fix δ such that 0 < δ < ε . Choose a K and an ω-large A

such that ϑ restricted to
⋃

n∈A

[
δ

2l dn,εdn
]

is bounded by K. By Remark IV.1.2, ϑ l restricted to
⋃

n∈A

[
δdn,εdn

]
is bounded by Kl .

Definition IV.1.4. Let (γn) be a sequence of loops in a metric space X and d = (dn) an ω-divergent sequence

of real numbers. Then (γn) is not (m,d,ε,δ )-partitionable if δdn ≤ |γn| ≤ εdn and P(γn, |γn|/2) > m ω-

almost surely. When d and ε are fixed, we will say that (γn) is not (δ ,m)-partitionable. Additionally; given

a sequence of loops which is not (δ ,m)-partitionable, we will say that a fixed member γn of the sequence is

not (δ ,m)-partitionable if δdn ≤ |γn| ≤ εdn and P(γn, |γn|/2)> m.

Remark IV.1.5. Let γ : ∂D→ X be parameterized by arc length. Suppose that 8diam(γ)< |γ|. Let P be the

cellular decomposition of the unit disc D such that P(1) is ∂D∪A where A is a maximal square inscribed in

D. Then Π : P(0)→ X defined by Π(t) = γ(t) is a partition of γ with five pieces (four 2-gons and one 4-gon)

and mesh(Π)≤max{ |γ|4 +diam(γ), 4diam(γ)}< |γ|
2 .

Thus, if (γn) is not (m,d,ε,δ )-partitionable for some m≥ 5, then |γn| ≤ 8diam(γn). Hence; if (γn) is not

(δ ,m)-partitionable, then |γn| ≤ O
(
diam(γn)

)
where the big O constant is independent of (γn).

The following two propositions were proved by Papasoglu in [44, pages 792-793]. The formulations are

slightly different here but the proofs are the same. The proofs are also outlined in [39].

Proposition IV.1.6. Let X be a metric space and (γn) a sequence of loops in X such that |γn|=O(dn). If each

γn has a δn-partition with at most k pieces, then the loop γ(t) =
(
γn(t)

)
in Conω

(
X ,e,d

)
has a δ -partition

with at most k pieces where δ = limω δn
dn

.

Proposition IV.1.7. Let X be a complete geodesic metric space. If X is uniformly ε-coarsely loop divisible

for every ε > 0 with respect to the pair
(
ω,d

)
, then Conω

(
X ,e,d

)
is simply connected.

To prove Proposition IV.1.7, Papasoglu uses Proposition IV.1.6 to show that every loop in

Conω
(
X ,e,d

)
is partitionable and the number of pieces is independent of the loop. He then iterates the

process of taking partitions and extending them to the 1-skeleton as in Remark IV.0.18. A consequence

of this procedure is that the diameter of the constructed disc is proportional to the length of the loop (the

proportionality constant can be chosen to be the bound on the number of pieces in the partitions).

Lemma IV.1.8. Suppose that X is a complete geodesic metric space which is uniformly ε-coarsely loop

divisible with respect to the pair
(
ω,d

)
. Then there exists a constant K such that every loop in Conω

(
X ,e,d

)
with diameter less than ε

8 bounds a disc with diameter less than Kε .

Proof. Since X is uniformly ε-coarsely loop divisible every loop in Conω
(
X ,e,d

)
with length less than ε is

partitionable with a uniform bound on the number of pieces required. Suppose that a loop in Conω
(
X ,e,d

)
has length at least ε and diameter less than ε

8 . Then it has a partition with 5 pieces by Remark IV.1.5.

Thus every loop in Conω
(
X ,e,d

)
with diameter less than ε

8 is partitionable and we can apply the proof of

Proposition IV.1.7.
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Lemma IV.1.8 can be restated in the following way.

Proposition IV.1.9. Let X be a complete geodesic metric space. If X is uniformly ε-coarsely loop divisible,

then Conω
(
X ,e,d

)
is uniformly locally simply connected.

Proposition IV.1.10. Let X be a complete geodesic metric space. If X is uniformly ε-coarsely loop divisible,

then X has an asymptotic cone which is simply connected.

Proof. Suppose that X is uniformly ε-coarsely loop divisible for some
(
ω,d

)
and ε > 0. We can consider

an ultralimit of the metric spaces Xk = Conω
(
X ,e,(dn/k)

)
. By Corollary 3.24 in [18], limω Xk is again an

asymptotic cone of X . Thus we can choose
(
µ,(pn)

)
and (xn) such that Conµ

(
X ,(xn),(pn)

)
and limω Xk

are isometric.

The identity map id from Conω
(
X ,e,d

)
to Xk rescales distances by a fixed constant which implies that

P(γ, |γ|/2) = P(id(γ), id(|γ|)/2). Since X is uniformly ε-coarsely loop divisible, there exists ν0 such that

P(γ, |γ|/2) < ν0 for every loop γ contained in a ball of radius ε

4 in Conω
(
X ,e,d

)
. Hence; every loop γ

contained in a ball of radius kε

4 in Xk has the property that P(γ, |γ|/2)< ν0. Thus for any loop α in limω Xk;

P(α, |α|/2)< ν0. Hence limω Xk is uniformly ε-coarsely loop divisible for every ε > 0 with respect to the

pair
(
µ,(pn)

)
and Proposition IV.1.7 implies that Conµ

(
X ,(xn),(pn)

)
is simply connected.

Lemma IV.1.8 shows that a necessary condition for a group to be uniformly ε-coarsely loop divisible

for every ε > 0 is that all loops in Conω
(
X ,e,d

)
bound discs with diameters proportional to their length.

Remark IV.1.11. Let X be a topological space. The topological cone of X written X̂ is the quotient space

of X × [0,1] obtained by identifying all points (x,1) for x ∈ X . X canonically embeds in X̂ by x 7→ (x,0)

and we will generally identify X with X ×{0}. The Hawaiian earring is the one-point compactification of

a sequence of disjoint arcs and can be realized in the plane as the union of circles centered at (0, 1
n) with

radius 1
n . We will use E to denote this subspace of the plane and an to denote the circle centered at (0, 1

n) with

radius 1
n . The Hawaiian earring group is π1(E,(0,0)) = H. Let En =

⋃
i≥n

ai and Hn = π1(En,(0,0)) ≤ H.

Notice that En is homeomorphic to E which implies that Hn is isomorphic to H.

Ê is a space which is not uniformly ε-coarsely loop divisible but is simply connected and not locally

simply connected. Suppose that instead of coning from a single point, we were to cone each circle individu-

ally. Then as long as we required that the sequence of cone points converged to the wedge point of E but at

a rate slower than the radii of the loops, this space would be locally simply connected but not be uniformly

ε-coarsely loop divisible for any ε . These two examples show that for general metric spaces being uniformly

ε-coarsely loop divisible is not a necessary condition for a space to be simply connected or locally simply

connected.

Erschler-Osin [21] and Druţu-Sapir [18] proved that many metric spaces π1-embed into the asymptotic

cones of finitely generated groups. In both papers, the spaces that were π1-embedded into the asymptotic

cones of finitely generated groups were uniformly locally simply connected.

A positive answer to either Question 1 or Question 2 would imply that the results of Erschler-Osin and

Druţu-Sapir cannot be extended to spaces which are semilocally simply connected but not locally simply

connected.
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We will now prove some implications of the coarse loop division property.

The following lemma is an immediate consequence of Proposition IV.1.6 and Proposition III.1.2.

Lemma IV.1.12. Suppose that X is a complete geodesic metric space which is ε-coarsely loop divisible.

Every loop in Conω
(
X ,e,d

)
with length less than ε is partitionable.

Lemma IV.1.13. Suppose that X is a complete homogeneous geodesic metric space. If every loop in

Conω
(
X ,e,d

)
with length less than ε is partitionable, then X is ε ′-coarsely loop divisible with respect to

the pair
(
ω,d

)
for every ε ′ < ε .

Proof. Suppose that X is not ε ′-coarsely loop divisible with respect to the pair
(
ω,d

)
for some ε ′ with 0 <

ε ′ < ε . Then there exists a δ > 0 such that for every ω-large A, ϑ restricted to
⋃

n∈A
[δdn,ε

′dn] is unbounded.

Let γn be a loop based at xn such that δdn ≤ |γn| ≤ ε ′dn and satisfies at least one of the two following

properties.

a) P
(

γn,
|γn|
2

)
> n

b) P
(

γn,
|γn|
2

)
≥ P

(
α,
|α|
2

)
for all α such that δdn ≤ |α| ≤ ε ′dn

Let mn = P
(

γn,
|γn|
2

)
. Since ϑ restricted to

⋃
n∈A

[δdn,εdn] is unbounded for every ω-large A; limω mn =

+∞. Thus for every m, (γn) is not (δ ,m)-partitionable.

The path γ(t) =
(
γn(t)

)
is a well-defined loop in Conω

(
X ,e,d

)
with positive diameter and arc length at

most ε ′ < ε . By assumption, there exists a |γ|2 -partition of γ with L pieces. However, this induces a |γn|/2-

partition of γn with L pieces ω-almost surely. Hence P
(

γn,
|γn|
2

)
≤ L ω-almost surely, which contradicts

our choice of mn.

Proposition IV.1.14. Suppose that X is a complete homogenous geodesic metric space. If

Conω
(
X ,e,d

)
is semilocally simply connected then X is ε-coarsely loop divisible for some ε > 0.

It is not known whether the converse holds. The converse is Question 2 with the uniform hypothesis

removed.

Proof of Proposition IV.1.14. Suppose that every loop in Conω
(
X ,e,d

)
contained in a ball of radius ε is

nulhomotopic in Conω
(
X ,e,d

)
. Then for every γ of length at most ε , there exists a continuous map of a

disc into Conω
(
X ,e,d

)
which extends γ and is necessarily uniformly continuous. For sufficiently small ν ,

a ν-partition of the disc gives us a finite |γ|/2-partition for γ . Then the result follows from Lemma IV.1.13

Theorem IV.1.15. Let X be a complete homogenous geodesic metric space. If X is not ε-coarsely loop

divisible with respect to
(
ω,d

)
for every ε > 0, then Conω

(
X ,e,d

)
has uncountable fundamental group.

The proof will require the following result of Cannon and Conner.
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Theorem IV.1.16 (Cannon, Conner [9]). Let X be a topological space, let ϕ : π1(X ,x0)→ L be a homomor-

phism to a group L, U1 ⊃U2 ⊃ ·· · be a countable local basis for X at x0, and Gi be the image of the natural

map from π1(Ui,x0) into π1(X ,x0). If L is countable, then the sequence ϕ(G1)⊃ ϕ(G2)⊃ ·· · is eventually

constant.

Proof of Theorem IV.1.15. Let X be a complete homogenous geodesic metric space. Suppose that X is not

ε-coarsely loop divisible for any ε and Conω
(
X ,e,d

)
= Xω has countable fundamental group. Let i∗ be

the identity map on π1(Xω ,e). Theorem IV.1.16 implies that i∗(Gn) is eventually constant where Gn is the

image of the natural map from π1(B1/n(e),e) into π1(Xω ,e).

Fix N such that this sequence is constant for m≥N, and let ε = 1/N. Therefore every loop in B1/N(x̃) can

be homotoped into B1/m(e) for any m≥ N. In general, this will not imply that the ball is simply connected.

However, it does imply that every loop γ of length less than ε has a partition with finitely many pieces and

mesh at most |γ|2 . Then Lemma IV.1.13 implies that X is ε-coarsely loop divisible which is a contradiction.

Theorem IV.1.17. Let X be a complete homogenous geodesic metric space. If X is not ε-coarsely loop

divisible with respect to the pair
(
ω,d

)
for every ε > 0, then the fundamental group of Conω

(
X ,e,d

)
is not

free. In particular, if π1

(
Conω

(
X ,e,d

))
= ∗ jG j for some free product of groups G j, then there exists a j

such that G j is uncountable and not free.

We will use the following two results in the proof of Theorem IV.1.17.

Theorem IV.1.18. Suppose that ϕ : H→ F is a surjective homomorphism where F is a free group. Then F
has finite rank.

If we consider homomorphisms from the natural inverse limit containing H to free groups, then this is

a theorem of Higman [30]. When we consider homomorphism from H, this is a consequence of Theorem

IV.1.16 and a proof can be found in [50].

Theorem IV.1.19 ([19]). Suppose that ϕ : H→ ∗ jG j is a homomorphism. Then there exists an n such that

ϕ(Hn) is contained in a subgroup which is conjugate to G j for some j.

Proof of Theorem IV.1.17. Since X is not ε-coarsely loop divisible with respect to
(
ω,d

)
for every ε , we

may find a null sequence of loops αn in Conω
(
X ,e,d

)
such that αn has no finite |αn|

2 -partition. Since

Conω
(
X ,e,d

)
is transitive by isometries, we may choose αn such that αi(0) = α j(0) = e for all i, j. By

passing to a subsequence, we may assume that |αn|< |αn−1|
2 . This implies that the ball of radius |αn| does not

contain a loop which is homotopic to αi for i< n. Since αn forms a null sequence of loops and αi(0) =α j(0)

for all i, j, there exists a continuous map f from E to Conω
(
X ,e,d

)
such that f (an) = αn.

Suppose that π1
(
Conω

(
X ,e,d

)
,(xn)

)
was free. Then f∗(H) would be free and Theorem IV.1.18 would

then imply that it has finite rank. Hence f∗(H) is countable which by Theorem IV.1.16 would imply that

f∗
(

π1
(
En,(0,0)

))
as a sequence in n is eventually constant. This contradicts our choice of αn.

Thus for every n, f∗(Hn) is uncountable and not free. The last claim of the theorem follows from

Theorem IV.1.19.
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Proposition IV.1.20. Let X be a complete homogenous geodesic metric space. If X is not ε-coarsely loop

divisible with respect to
(
ω,d

)
for every ε > 0, then the fundamental group of Conω

(
X ,e,d

)
is not simple.

Proof. Let Xω = Conω
(
X ,e,d

)
and αi be a null sequence of loops in Xω constructed as in the proof of

Theorem IV.1.17. Let An be the union of the images of αi for i > n. Let Yn be the topological cone of An in

Xω , i.e. the subset of X̂ω consisting of Conω
(
X ,e,d

)
×{0} and the canonically embedded Ân. The inclusion

map ιn : Conω
(
X ,e,d

)
→Yi defined by x 7→ (x,0) induces a map ιn∗ on fundamental groups with non-trivial

kernel. Hence, it is enough to show that the induced map on fundamental groups is non-trivial.

Claim. For i≤ n, ιn(αi) is homotopically essential in Yn.

Proof of claim. Suppose that h : D→ Yn is a nullhomotopy of ιn(αi) for some i≤ n where D is the unit

disk in the plane. Let z be the cone point. Notice that An separates Yn. Hence the boundary of each component

of h−1(Ân) is contained in h−1(An). By possible modifying h, we may assume that each component of

h−1(Ân) which is not contained in h−1(An) intersects the cone point z. (Suppose B is a component of

h−1(Ân) such that h(B)∩{z}= /0. Then we can push h down along cone lines to insure that h(B)⊂ An.)

Since each component of h−1(Ân) which is not contained in h−1(An) intersects h−1(An) and h−1(z)

(two disjoint closed sets), there are only finitely many components of h−1(Ân) which are not contained in

h−1(An).

Let C be the component of h−1(Xω) containing the unit circle in the plane. Then C is a planar annulus

of finite genus.
(
The genus is equal to the number of components of h−1(Ân) which are not contained in

h−1(An).
)

Since each boundary component of C except the unit circle maps into An, the diameter of its

image is at most |αn+1|< |αn|
2 . This implies that h : C→ Xω can be used to find a finite partition of αi with

mesh at most |αn|
2 . Hence, αi is partitionable which contradicts our choice of αi.

The property of being ε-coarsely loop divisible is a quasi-isometry invariant in the following sense.

Proposition IV.1.21. If X and Y are two quasi-isometric homogenous geodesic metric spaces, then X is

ε-coarsely loop divisible if and only if Y is ε ′-coarsely loop divisible for some ε ′ > 0.

Proof. If X and Y are are quasi-isometric, then their cones are bi-lipschitz. If X is ε-coarsely loop divisible

for some ε > 0, then Proposition IV.1.6 implies that every loop of length less than ε in Conω
(
X ,e,d

)
is

partitionable.

Let f : Conω
(
X ,e,d

)
→ Conω

(
Y,e′,d

)
be a bi-lipschitz map with bi-lipschitz constant C. By iterating

partitions as in Remark IV.1.2, we can see that every loop of length less than ε in Conω
(
X ,e,d

)
has a

partition with finitely many pieces and mesh at most |γ|2C . Let γ be a loop in Conω
(
Y,e′,d

)
with length less

than ε

C . Then f−1 ◦ γ has length at most ε and hence has a partition with mesh at most |γ|2C . Then composing

the partition with f gives us a partition of γ with finitely many pieces and mesh at most |γ|2 . Lemma IV.1.13

implies that Y is ε ′-coarsely loop divisible for every ε ′ < ε

C .
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IV.1.1 Absolutely non-divisible sequences

Definition IV.1.22. A sequence of loops (αn) is absolutely non-divisible if there exists an M such that the

sequences P
(

αn,
|αn|
M

)
and |αn| both tend to +∞ and

{ |αn+1|
|αn|

}
is bounded.

Remark IV.1.23. Suppose that |αn| is unbounded and
{ |αn+1|
|αn|

}
is bounded. To simplify our notation, we

will let |αn|= an and B be a bound on
{an+1

an

}
.

Let n0 = 1. Then we can define {ni}, inductively, by letting ni+1 = min{n∈N | an > ani +1 and n > ni}.
If ni+1 6= ni +1, then ak ≤ ani +1 for all ni ≤ k < ni+1.

Thus
ani+1

ani

=
ani+1

a(ni+1)−1
·

a(ni+1)−1

ani

≤ B
ani +1

ani

≤ Bmax
{

2, 2
an0

}
.

Therefore {ani}i is a subsequence which is absolutely non-divisible.

Thus, it is possible to loosen this definition slightly and only require that |αn| be unbounded.

Lemma IV.1.24. Fix ω an ultrafilter on N, d an ω-divergent sequence, and A an infinite subset of the

natural numbers. Suppose that A = {b1 < b2 < b3 < · · ·} has the property that the set of ratios
{bk+1

bk

}
is

bounded by L. Then for any ε > 0, there exists a sequence (an) in A such that limω an
dn
∈
[

ε

L ,ε
]
.

We allow an to have repeated terms; hence, an is not necessarily a subsequence of bn. However an is not

eventually constant, since limω dn =+∞.

Proof. Let L be an upper bound on the set
{bn+1

bn

}
. For all n such that b1

dn
≤ ε , choose (in) such that bin

dn
≤

ε <
bin+1

dn
. Let an = bin .

Then εdn < bin+1 which implies that ε

L <
bin
dn

= an
dn
≤ ε . For all n such that b1

dn
> ε , let an = b1. Then

limω an
dn
∈
[

ε

L ,ε
]
.

Lemma IV.1.25. Let X be a complete geodesic metric space. If there exists a sequence of absolutely non-

divisible loops in X, then for every pair
(
ω,d

)
and ε > 0, X is not ε-coarsely loop divisible.

Proof. Fix ε > 0, ω an ultrafilter, and d an ω-divergent sequence of real numbers.

Let (γn) be a sequence of loops in X which is absolutely non-divisible. By passing to a subsequence as

in Remark IV.1.23, we may assume that the lengths of γn are nondecreasing. Let A = {|γn|} and L be an

upper bound on
{ |γn+1|
|γn|
}

.

Let (an) ⊂ A be a sequence constructed as in Lemma IV.1.24 where we replace ε by ε

2 . Consider the

sequence of loops γkn where γkn has length an. Since limω an
dn
∈
[

ε

2L ,
ε

2

]
, we have |γkn | ∈

[dnε

L ,dnε
]

ω-almost

surely. However, P
(
γkn ,

|γkn |
M

)
tends to +∞. Hence, ϑ restricted to

⋃
n∈A

[ ε

L dn,εdn] is unbounded for all ω-large

A. Hence Lemma IV.1.3 implies that X is not ε-coarsely loop divisible. Since ε was arbitrary, X is not ε-

coarsely loop divisible with respect to
(
ω,d

)
for any ε > 0. Since

(
ω,d

)
were also arbitrary, this completes

the proof.

Lemma IV.1.25 and Theorem IV.1.15 immediately imply the following corollary.
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Corollary IV.1.26. Let X be a complete homogenous geodesic metric space. If there exists a sequence of

loops in X which is absolutely non-divisible, then every asymptotic cone of X has uncountable fundamental

group and is not semi-locally simply connected at any point.

IV.1.2 Simply connected cones

When Papasoglu proved Proposition IV.1.7, he used the uniform bound on the number of pieces in a partition

to construct discs. Being coarsely loop divisible implies that loops in the cone are partitionable but does

not give a bound on the number of pieces which is independent of the loop. Thus Papasoglu’s method

is insufficient to build discs when a space is only coarsely loop divisible and not uniformly coarsely loop

divisible. Here we will show that requiring a linear isodiametric function on partitions along with coarsely

loop divisible is sufficient to build discs.

When considering subsets of N, we will write [a,b] for the set
{

n ∈ Z | a≤ n≤ b
}

. For A⊂ N, we will

let Ac = N\A. For d ∈ R+ and A⊂ N, let Md(A) =
{

x ∈ N | [ x
d ,xd]∩A 6= /0

}
.

Proposition IV.1.27. Suppose that for every
(
µ,(pn)

)
there exists an ε > 0 such that X is ε-coarsely loop

divisible with respect to the pair
(
µ,(pn)

)
. Then there exists a pair

(
ω,d

)
such that X is ε-coarsely loop

divisible for every ε > 0 with respect to
(
ω,d

)
.

Before we can prove Proposition IV.1.27, we will need a necessary condition for X to be ε-coarsely loop

divisible for every pair
(
ω,d

)
.

Lemma IV.1.28. Let Ak = ϑ−1
(
[1,k]

)
, A′k = ϑ−1

(
{k}
)
, and Bk = ϑ−1

(
[k+1,∞)

)
. If X is ε-coarsely loop

divisible for every pair
(
ω,d

)
, then for every s ∈ N there exists b = b(s) such that

i) if ci
k = sup

{
y
x | i < x and [x,y]⊂ Ak

}
, then ck = lim

i→∞
ci

k and ck→ ∞,

ii) if bk = sup
{

y
x |[x,y]⊂Ms(Bk)

}
, then bk < b for all sufficiently large k, and

iii) if c′k =
{

y
x |[x,y]⊂Ms(A′k)

}
, then c′k < α for all k.

Proof. For fixed k, ci
k is a decreasing sequence in i. Hence, ck exists as an extended real number (ci

k might

be infinite for all i). The sequence ck is increasing since the sets Ak are nested.

Proof of (i). Suppose that there existed L such that ck < L for all k. We may choose an increasing

sequence kn such that ci
n < 2L for all i > kn. Thus for every interval [x,y] such that kn < x and x

y ≥ 2L,

[x,y] 6⊂ An, i.e. [x,y]∩Bn 6= /0.

Fix an ultrafilter ω and let dn = (kn)
2. Suppose X is ε-coarsely loop divisible for some ε > 0. Then⋃

n∈A
[ εdn

2L ,εdn]⊂ At for some t and ω-large A. However; for all sufficiently large n, kn <
εdn
2L which implies that

[ εdn
2L ,εdn]∩Bn 6= /0 for all sufficiently large n. This contradictions our choice of t such that

⋃
n∈A

[ εdn
2L ,εdn]⊂ At .

Proof of (ii). Fix s ∈ N. Suppose that (ii) does not hold. Then there exists [xn,yn] ⊂Ms(Bn) such that
yn
xn
> n. Fix an ultrafilter ω and let dn = (xnyn)

1
2 , the geometric center of the interval [xn,yn]. Then for every

n′ ≤ n, M√
n(dn)⊂ [xn,yn]⊂Ms(Bn′). (The first inclusion follows by our choice of dn and the second holds

since Ms(Bn)⊂Ms(Bn′) for n′ ≤ n.)
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Suppose X is ε-coarsely loop divisible with respect to
(
ω,d

)
for some ε ∈ (0,1). For any 0 < δ < ε ,⋃

n>m
[δdn,εdn] ⊂Ms(Bm) for every m > 1

δ 2 . If δ < ε

2s and [δdn,εdn] ⊂Ms(Bm), then [δdn,εdn]∩Bm 6= /0.

Since this hold for every sufficiently large m, we can derive a contradiction as in (i).

The proof of (iii) is the same as proof of (ii).

Proof of Proposition IV.1.27. We will use the notation from Lemma IV.1.28. The lemma is trivial if some

ck = ∞. Thus we will assume that for every k, ck < ∞.

Let k′1 = 1 and s1 =
ck′1
3 . We may choose k1 > k′1 and b1 such that sup

{
b
a

∣∣[a,b]⊂Ms1(Bk)
}
< b1 for all

k ≥ k1.

Suppose that we have inductively define si, k′i, ki and bi for all i < n.

Choose k′n ∈ N such that ck′n > b3
n−1 · c2

k′n−1
and let sn =

ck′n
3 . Again, we may choose kn > k′n and bn such

that sup
{

b
a |[a,b]⊂Msn(Bk)

}
< bn for all k ≥ kn.

Choose [a1,1,b1,1] a maximal interval in Ak1 containing a point of
(
Ms1(Bk1)

)c. Suppose that for all

i < n, we have chosen [ai,i,bi,i].

Let [an,n,bn,n] be a maximal interval in Akn containing a point of
(
Msn(Bkn)

)c such that bn−1,n−1 < an,n.

Claim. Let x ∈
(
Msi(Bki)

)c. Then [ x
si
,xsi] ⊂ Aki and there exist x′ ∈

(
Msi−1(Bki−1)

)c∩[ x
si
,xsi] such that

Msi−1

(
[ x′

si−1
,x′si−1]

)
⊂ [ x

si
,xsi].

Proof of claim. Let x ∈
(
Msi(Bki)

)c. Then Msi(x)∩Bki = /0 which implies that [ x
si
,xsi] in Aki .

Let a = x
si

and b = xsi. Then x
a ,

b
x = si =

ck′i
3 . This implies that b

a >
( ck′i

3

)2
>
(b9

i−1·c4
k′i−1

9

)
.

Let t = max{bi−1,ck′i−1
}. Since b

t4a > bi−1, [at2, b2

t2 ] contains a point x′ ∈
(
Msi−1(Bki−1)

)c. Then the

inequality t ≥ ck′i−1
> si−1, along with the inclusion Mt

(
[ x′

t ,x
′t]
)
⊂ [a,b] imply that Msi−1

(
[ x′

si−1
,x′si−1]

)
⊂

[a,b]. This completes the proof of the claim.

Fix n. The claim shows that we can find a nested sequence of intervals [a1,n,b1,n] ⊂ [a2,n,b2,n] ⊂ ·· · ⊂
[an,n,bn,n] such that [a1,n,b1,n]⊂ Aki and Msi−1

(
[ai,n,bi,n]

)
⊂ [ai+1,n,bi+1,n].

Let dn = (a1,nb1,n)
1
2 . Then

⋃
n>i

[
dn

si
,sidn] ⊂ Akn . Therefore X is ε-coarsely loop divisible with respect to

the pair
(
ω,d

)
for all ε > 0, since si diverges.

This gives us the following analogue to Proposition IV.1.7. Rather than require a bound on the number

of pieces in a partition, we only require a linear bound on the diameter of partitions and ε-coarsely loop

divisible for all ε > 0.

Proposition IV.1.29. Suppose that for some fixed pair
(
ω,d

)
, a complete geodesic metric space X is ε-

coarsely loop divisible for all ε > 0. If there exists an l,L,N and an increasing function f : N→N such that

every loop γ in X with |γ| ≥ L has a partition Π of γ with the property that

(i) Π has at most f ◦ϑ l(|γ|) pieces,

(ii) Π is a |γ|2 -partition of γ , and
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(iii) diam(Π)≤ N|γ|

then Conω
(
X ,e,d

)
is simply connected.

Proof. Suppose that for some fixed pair
(
ω,d

)
and all ε > 0, X is ε-coarsely loop divisible. Fix l,L,N and

f : R→ R as in statement of the lemma.

We will break the proof into two parts. First we will show that every geodesic n-gon α in Conω
(
X ,e,d

)
which is a limit of geodesic n-gons from X bounds a disc of diameter at most 2N|α|. We will then show that

this is enough to imply that all loops are nullhomotopic.

Step 1. Let α be a geodesic n-gon in Conω
(
X ,e,d

)
such that α(t) =

(
αn(t)

)
where αn is a geodesic

n-gon in X . By hypothesis; for each n such that |αn| > L, there exists a partition Πn of αn which satisfy

conditions (i)− (iii) of the lemma.

By Lemma IV.1.3, there exists a K and an ω-large set A such that (ϑ l)−1(
⋃

n∈A

[
| |α|dn

2 ,2|α|dn
]
) is bounded

by K. We will assume that for all n∈A, |αn| ∈
⋃

n∈A

[ |α|dn
2 ,2|α|dn

]
. Thus Πn has at most f (K) pieces ω-almost

surely.

Then Proposition IV.1.6 implies that the partitions Πn induce a partition Π of α which satisfies con-

ditions (1) and (2) of the lemma. In Papasoglu’s proof of Proposition IV.1.6, Π is just the ω-limit of the

partitions Πn; thus, condition (3) is also satisfied for Π.

Fix γ a geodesic n-gon in Conω
(
X ,e,d

)
such that γ(t) =

(
γn(t)

)
for γn a geodesic n-gon in X .

We have shown that there exists a partition Π1 : P(0)
1 → Conω

(
X ,e,d

)
of γ into pieces of length |γ|/2

with the diameter of the partition no greater than N|γ|.
Proceeding by induction, suppose that we have defined Πk : P(0)

k → Conω
(
X ,e,d

)
a partition of γ into

pieces of length |γ|2k for k < i such that for all 1 < k ≤ i−1

• Πk extends Πk−1

• for x ∈ imΠk dist(x, imΠk−1)≤
N|γ|
2k .

The partition Πi−1 extends to a map Π̃i−1 on the (1)-skeleton of Pi−1 as in Remark IV.0.18. Then we

can partition each of the subloops into pieces of length less than |γ|/2i with the desired diameters. We can

then use these partitions to extend Πi−1 to Πi satisfying the two induction hypothesis.

For all i > j; if x ∈ imΠi, then dist(x, imΠ j)≤
i

∑
s= j

N|γ|
2s . Hence, Πi converges to a continuous function

from the unit disc into Conω
(
X ,e,d

)
which extends γ . Therefore γ bounds a disc of diameter 2N|γ|. This

completes Step 1.

Step 2. Let Qn be the convex hull of the regular 2n-gon inscribed in S1, the unit circle in the plane with

the standard Euclidean metric. Then Qn has a natural cell decomposition with 2n vertices and 2n edges and

one 2-cell. Furthermore, we may assume that the 0-skeleton of Qn form a nested sequence of subsets of S1.

Let A2
1 = Q2 which has diameter 2. For n > 2, Qn\(interior(Qn−1)) is a set of 2n triangles with vertices on

S1 each of which share a unique edge with Qn−1 and have diameter less than π

2n−1 . Let {An
i }2n

i=1 be this set of

triangles. Then A =
⋃
i,n

An
i covers the interior of the unit disc and a dense subset of its boundary.
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Fix a loop γ : S1→ Conω
(
X ,e,d

)
.

We may choose a geodesic 4-gon γ2
1 : ∂A(1)

2 → Conω
(
X ,e,d

)
such that γ2

1 |Q2∩S1 = γ|Q2∩S1 and γ2
1 is the

limit of geodesic 4-gons from X . We can inductively define geodesic 3-gons {γn
i : ∂An

i → Conω
(
X ,e,d

)
}

i) γn
i |∂An

i ∩Qn−1 = γ
n−1
j |∂An

i ∩Qn−1 for some j and

ii) γn
i |∂An

i ∩S1 = γ|∂An
i ∩S1 .

Using Step 1, we can define maps {hn
i : An

i → Conω
(
X ,e,d

)
} such that hn

i is a nullhomotopy of γn
i and

diam(hn
i ) no greater than 2Nδ n

i where δ n
i is the sum of the distances between the image of adjacent vertices

of An
i .

This defines a function h : A→ Conω
(
X ,e,d

)
by h(a) = hn

i (a) for some i and n. This is well defined by

Condition (i). Since γ is continuous on a compact set; for ever ε > 0, there exists a K such that 2Nδ n
i < ε

for all n > K. Thus h is continuous on A. By Condition (ii), h|A∩S1 = γ|A∩S1 which implies that h extends to

a nullhomotopy of γ .

Corollary IV.1.30. Let G be a group and S a finite generating set for G. Suppose that there exists an l,L,N

and an increasing function f : N→ N such that every loop γ in Γ(G,S) with |γ| ≥ L has a partition Π of

with the property that

(i) Π has at most f ◦ϑ l(|γ|) pieces,

(ii) Π is a |γ|2 -partition of γ , and

(iii) diam(Π)≤ N|γ|.

Then at least one of the following occurs.

(A) G has an asymptotic cone which is not semilocally simply connected and has an uncountable funda-

mental group.

(B) Every asymptotic cone of G is locally simply connected and G has an asymptotic cone which is simply

connected.

Proof. If for some ultrafilter and scaling sequence G is not ε-coarsely divisible for every ε > 0, then G has

an asymptotic cone which is not semilocally simply connected and has uncountable fundamental group.

Otherwise, for every pair
(
ω,d

)
; G is ε-coarsely divisible with respect to

(
ω,d

)
for some ε > 0. The

proof of Proposition IV.1.29 implies that every asymptotic cone of G is locally simply connected.

Proposition IV.1.27 implies that there exists a pair
(
ω,d

)
such that G is ε-coarsely divisible for every

ε > 0 with respect to
(
ω,d

)
. Proposition IV.1.29 implies that Conω

(
G,d

)
is simply connected.
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IV.2 Examples

Lemma IV.2.1. Suppose that G is a group with a finite presentation 〈S |R 〉 which has an exponential

isoperimetric function. If there exists a sequence of loops γn in Γ(G,S) such that |γn| grows at most linearly

and Area(γn) has an exponential lower bound, then there exists a sequence of absolutely non-divisible loops

in Γ(G,S).

Proof. Let γn be a sequence of loops in Γ(G,S) such that |γn| ≤ Ln and Abn ≤ Area(γn) = δ (|γn|) ≤ DcLn

where δ is the Dehn function for the presentation 〈S |R 〉 and A,b,c,D,L are positive constants. Fix M such

that c
L
M ≤ b.

Suppose that for some subsequence ni, γni has a |γni |
M -partition with at most K pieces where K is indepen-

dent of i. Then

Abni ≤ Area(γni) = δ (|γni |)≤ Kδ (
|γni |
M

)≤ KDc
Lni
M .

This implies that
bni

c
Lni
M

=
( b

c
L
M

)ni
is bounded independent of i which contradicts our choice of M.

Thus P
(
γn,
|γn|
M

)
diverges and the lemma follows from Remark IV.1.23.

Corollary IV.2.2. Every asymptotic cone of the following groups is not semilocally simply connected and

has an uncountable fundamental group which is not free and not simple. In addition, any decomposition of

the fundamental group of an asymptotic cone of one of the following groups as a free product has a factor

which is not free and uncountable.

1. SL3(Z);

2. Baumslag-Solitar groups – BSpq = 〈a, t | t−1apt = aq 〉 for |p| 6= |q|;

3. the 3-manifold Sol3, R3 endowed with the Riemannian metric ds2 = e2zdx2 + e−2zdy2 +dz2;

4. any extension of Rn by R via a matrix with all real eigenvalues of norm strictly greater than 1 and at

least two eigenvalues with different sign;

5. Baumslag-Gertsen group – 〈a, t | (t−1a−1t)a(t−1at) = a2 〉;

6. Out(Fn) and Aut(Fn) for n≥ 3;

7. G7 = 〈a,s, t | [a,at ] = [s, t] = 1,aat = as 〉; and

8. G8 = 〈θ1,θ2,a,k |aθi = a,kθi = ka, i = 1,2 〉.

G7 is of interest since it is metabelian and not polycyclic. It is sometimes referred to as the Baumslag

group. G8 was constructed by Olshanskii and Sapir and has cubic Dehn function and linear isodiametric

function.
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Proof. Epstein and Thurson in [20] showed the existence of a sequence of loops in SL3(R) and BSpq for

|p| 6= |q| satisfying the conditions of Lemma IV.2.1.

The result for Baumslag-Solitar groups and Sol3 was already known and is due to [8]. Cornulier showed

the existence of a sequence of absolutely non-divisible loops for groups of the type (4) in [14].

Kassabov and Riley in [32] showed that the loops in the Cayley graph of G7 with label [a,atn
] have the

desired properties.

For Out(Fn) and Aut(Fn) Bridson and Vogtmann exhibit the necessary sequence in [5].

That leaves only (5) and (8). Since G5 = 〈a, t | (t−1a−1t)a(t−1at) = a2 〉 has a Dehn function which

is greater than any tower of exponentials, we cannot apply Lemma IV.2.1. Gersten in [23] showed the

existence of a sequence of loops γk such that γk has length 3 ·2k+1 and area at least 22
2...

2
}

k times

. Platonov in

[45] showed that δ (n) = 22
2...

2
}

log2(n) times

is an isoperimetric function for G5.

Suppose that for some subsequence ni, P
(
γni ,

|γni |
6

)
≤ K. Then for all ni

22
2...

2
}

ni times

≤ Area(γni)≤ K22
2...

2
}

log2(
32ni

6 ) times

= K22
2...

2
}
(ni−1) times

which is a contradiction. Hence γk is an absolutely non-divisible sequence of loops and the result follows

from Corollary IV.1.26.

Ol’shanskii and Sapir in [39] constructed a sequence of loops γn in the Cayley complex of G8 =

〈θ1,θ2,a,k |aθi = a,kθi = ka, i = 1,2 〉 such that γn has length 6n. Additionally, they showed that γn cannot

bound a disc decomposed into at most l subdiscs of perimeter n where l ≤
√

n and hence is an absolutely

non-divisible sequence of loops.

Remark IV.2.3. Suppose that X is a one-dimensional metric space and Y is the support of any finite set of

paths in X . Then Y is a compact one-dimensional metric space and thus its fundamental group is locally

free, residually free, and residually finite by Theorem 5.11 in [10]. Since X is one-dimensional, the ho-

momorphism from the fundamental group of Y to the fundamental group of X induced by set inclusion is

injective (see Theorem 3.7 in [10]). Thus π1(X ,x0) is locally free.

Burillo in [8] shows that all asymptotic cones of solvable BSp,q with |p| 6= |q| and Sol3 have topological

dimension 1. As well, any extension of Rn by R via a matrix with all real eigenvalues of norm strictly

greater than 1 and at least two eigenvalues with different sign will have one-dimensional asymptotic cones

(see [14]). Thus the fundamental groups of their cones are locally free.

To prove Corollary IV.2.2, we analysed mappings of Hawaiian earrings into asymptotic cones and

showed that the induced homomorphism’s image had the desired properties. However, this method doesn’t

give us much information concerning the structure of the rest of the fundamental group. When an asymp-

totic cones of a group is one-dimensional, one can apply standard techniques for one-dimensional space, as

in Remark IV.2.3, to better understand the structure of the fundamental. Requiring a dimension constraint

on the asymptotic cone is a strong condition and does not apply to many well studied groups.
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IV.2.1 A group with a locally simply connected cone which is not simply connected

In [37], it was shown that there exists a group with the following properties.

Theorem IV.2.4. There is a finitely generated group G whose Dehn function f (n) satisfies the following

properties:

1. there are sequences of positive numbers di→∞ and λi→∞ such that f (n)≤ cn2 for arbitrary integer

n ∈ [ di
λi
,diλi] and some constant c and

2. there is a positive constant c′ and an increasing sequence of numbers ni→ ∞ such that f (ni)

n2
i
→ ∞ but

for every i, and for every integer n with n < c′ni, we have f (n)≤ c′n2
i .

Ol’shanskii construct G as a multiple HNN extension of a free group using S-machines.

Corollary IV.2.5. If G is as in Theorem IV.2.4.

(A) There exists an ω such that Conω(G,(ni)) has a nontrivial fundamental group.

(B) Conω(G,(ni)) is locally simply connected for all ω .

(C) Conω(G,(di)) has trivial fundamental group for all ω .

Proof. Ol’shanskii and Sapir in [41] showed that the second condition implies the existence of a b < 1 such

that f (ni)
f (bni)

→ ∞. This was used to show that divisibility function restricted to
⋃
i
[bni,ni] is unbounded. Then

(A) follows.

The first condition implies that G is uniformly ε-coarsely loop divisible for every ε > 0 with respect to

the pair
(
ω,(di)

)
for any ultrafilter ω . Therefore Conω(G,(di)) has trivial fundamental group.

The second condition implies
(
by the same argument that was used to show G is uniformly ε-coarsely

loop divisible for every ε > 0 with respect to the pair
(
ω,(di)

)
that there exists an ε > 0 such that G is

uniformly ε-coarsely loop divisible for the pair
(
ω,(ni)

)
. Hence, Conω(G,(ni)) is locally simply connected.

Question 7. Can this group have an asymptotic cone which is not locally simply connected?

Thomas and Velicovick consider a group GI = 〈a,b | (anbn)7 = 1; n ∈ I 〉 which they show for an appro-

priate choice of I has simply connected and non-simply connected asymptotic cones [51].

Proposition IV.2.6. Let I0 = {22n}. Let I0,k = I0∩ [22k
,∞) and I =

⋃
∞
k=1 2k ·I0,k. Then GI = 〈a,b | (anbn)7 n∈

I 〉 has a cone which is locally simply connected and a cone which is not semi-locally simply connected.

Proof. Let γn be the loop based at the identity with label (anbn)7 for n ∈ I. Thomas and Velicovick show

using small cancelation that P
(
γn,
|γn|
2

)
= ∞ [51, Lemma 1.1].

If we let dn = 82n−1
, then the argument of Thomas and Velicovick shows that Conω

(
G,d

)
is an R-tree

for any ω .
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Let ρn = 2n22n
= 22n+n. Let γn,k be the loop with label (a22n+k

b22n+k
)7 for k ≥ n. Then |γn,k|

ρn
= 14

2n−k .

Hence (γn,n−i) is a loop of length 14
2i in Conω

(
G,(ρn)

)
which has no finite partition. This implies that

Conω
(
G,(ρn)

)
is not ε-coarsely loop divisible for any ε > 0. Thus Conω

(
G,(ρn)

)
is not semi-locally

simply connected and has uncountable fundamental group for any ω .
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[17] C. Druţu, S. Mozes, and M.V. Sapir. Divergence in lattices in semisimple Lie groups and graphs of

groups. Trans. Amer. Math. Soc., 362(5):2451–2505, 2010.
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