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CHAPTER I 

 

 

INTRODUCTION 

 

 

A Multisensory World 

 
We live in a world in which we are continuously bombarded by sensory inputs originating from 

objects and events in our environment. At any given moment, myriad visual, auditory, 

somatosensory, gustatory and olfactory inputs are available to the peripheral senses. These 

sensory inputs carry rich information about the world and are fundamentally important for 

cognition and behavior, whether it be in the evolutionary context of the brain or in modern life. 

Everyday activities such as watching television, eating a meal, or speaking with a co-worker all 

include inputs to multiple sensory systems. Sensory inputs are also important for survival, such 

as viewing an approaching car, or perhaps hearing its engine. Both of these stimuli carry 

crucially important information regarding the car’s position in space, and both inputs might 

indicate when it would be unwise to cross a street. Importantly, the auditory and visual inputs in 

this example are interdependent due to commonalities in their physical origin. Due to common 

origin, the car grows closer in perceived visual distance in approximate correspondence with 

increases in the loudness of the engine’s roar. The first sight of the car and first moment hearing 

its engine might also occur simultaneously, as the vehicle turns a corner. Making efficient and 

correct use of these relationships constitutes an important way for the brain as it seeks to form a 

single unified and coherent representation of the world around it. This perceptual representation 
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then becomes the basis of cognition and action, which in this case might be opting to stay on the 

sidewalk. This example is specific, but combining sensory inputs appropriately based on similar 

cues is an important general function of the nervous system. This process of combining inputs 

across sensory modalities is known as multisensory integration, and it has been recognized as a 

fundamental and important contributor to numerous facets of perception and behavior (G. 

Calvert, Spence, & Stein, 2004; Murray & Wallace, 2012; Stein, 2012; Stein & Meredith, 1993). 

With this recognized importance has come the impetus for understanding the fundamental nature 

of sensory integration in the human brain. 

As exemplified by the example of an approaching car, inputs arriving at the sensory 

periphery frequently have useful commonalities. For the car, several useful relationships are 

present in the form of spatial and temporal correspondences between the visual and auditory 

inputs. In the temporal dimension, this takes the form of alignment between the auditory and 

visual inputs. In other words, the onsets and changes in magnitude of the two sensory inputs 

happen at approximately the same time. Additionally, due to differences in the velocities of light 

and sound across space, the visual input also arrives to the retina slightly ahead of the auditory 

input in this example. This relative structuring between the sensory inputs carries important 

information about how they are related to each other, and forms an important tool for the nervous 

system in disambiguating complex environments. The slight temporal lead of the visual input, 

for example, might suggest to a naïve observer that the visual stimulus plays a causal role for the 

auditory stimulus, or it might be used to inform distance. Informative cross-modal temporal 

relationships such as this are ubiquitous in the everyday environment and are deeply important to 

the brain’s ability to construct an appropriate representation of the world. Everyday examples of 

events with such cross-modal temporal correspondence include seeing an object strike a hard 
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surface and the sound of the blow, the aforementioned approaching car, and watching mouth 

movements during speech (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009; 

Schwartz & Savariaux, 2014). In each of these cases, the integration of this information across 

modalities offers substantial facilitation of behavior; In the case of the object strike, reaction 

times to the impulse like (i.e. rapid onset and offset) inputs are faster (Diederich & Colonius, 

2004) and motion perception may be enhanced (Kim, Peters, & Shams, 2012). In the case of the 

car, approaching audiovisual inputs generate faster responses than their stationary counterparts 

do, and this might keep a pedestrian out of harm’s way (Cappe, Thut, Romei, & Murraya, 2009). 

Lastly, in the case of audiovisual speech, intelligibility is substantially improved by temporally 

correlated visual speech compared to auditory speech alone, and this effect is greatly magnified 

in conditions with acoustic interference (Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007; 

Sumby, 1954). 

Informative stimulus relationships are not limited to the temporal dimension, however, and 

are frequently observed in other relational qualities of sensory inputs. For example, when the 

object strikes a surface not only does the auditory input occur in relatively close temporal 

proximity to the visual strike, but also in close spatial proximity – the sound and visual inputs 

occur from the same point in space. Emanation from a spatially coincident source is similarly 

true for the aforementioned examples of an approaching car and audiovisual speech. Similar to 

temporal correspondence, spatial correspondence is an important factor which shapes perception 

and behavior (L. K. Harrington & Peck, 1998; Slutsky & Recanzone, 2001; Spence & Mcdonald, 

2004). Stimuli can also share informative features beyond spatial and temporal correspondence. 

A finger sliding across a corrugated surface, for example, generates auditory and tactile inputs 

with a common frequency. Similarly, angular objects generate irregular (i.e. more “rough”) 
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sounds when encountering surfaces. These correspondences are clearly important for the 

appropriate integration of inputs, as they serve to bias whether inputs should be combined or 

segregated. Different sensory systems have strengths in different domains, such as vision’s 

superiority to audition in terms of spatial precision, and auditions superior temporal precision 

(Welch, DuttonHurt, & Warren, 1986). These relative strengths mean that correspondences 

between the senses must also be evaluated in the context of the sensory modalities involved to 

maximize information about the environment. Given the contingencies present in even these 

simplified examples, and the combinatorial nature of stimulus properties, the exact contribution 

of integration at the level of perception and action is extremely complex. It is thus important to 

identify the properties of sensory inputs that result in integration (i.e. what are the ‘rules’ by 

which inputs are combined) and identify the physiological bases of integrative processes. 

 

 

A Brief Introduction to the Principles of Multisensory Integration 

 
As alluded above, informative relationships between sensory inputs almost invariably occur 

across multiple stimulus dimensions. These dimensions include the aforementioned space, time, 

and frequency dimensions, but numerous other correspondences are possible. Further, the 

combinatorial nature of stimulus properties mean that stimulus space is effectively infinite. How 

then can the nervous system decide which stimuli are integrated and which are not? Early neural 

and behavioral studies focused heavily on this question. These works identified that spatial 

proximity, temporal proximity, and the relative strength of sensory inputs serve as some of the 

strongest determinants of integration. The critical role these factors play has given rise to the 

terms principle when addressing their contributions to how inputs are integrated. 
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Space 

One of the primary determinants of whether stimuli are integrated is the spatial concordance 

between the sources of sensory signals. As alluded in the above example of an object striking a 

hard surface, sensory signals originating from a single location are likely to have a common 

source located at that point in space, and thus it makes sense to afford a preference for 

integrating such signals. A pertinent example of the spatial principle at work is the dependence 

on spatial overlap of response speed facilitation for visual targets an additional auditory input 

(Frens, Vanopstal, & Vanderwilligen, 1995). Similarly, the ventriloquism illusion, in which 

auditory spatial localization is captured by visual inputs, is highly dependent on spatial 

proximity. Only when visual angle between the auditory and visual signals is sufficiently small 

does the visual stimulus capture the location of the auditory stimulus (Slutsky & Recanzone, 

2001). 

 

Time 

Another important factor illustrated by many of the previous examples is that temporal 

concordance between stimuli is an equally important determinant of multisensory integration. 

Many stimuli commonly encountered in the environment have highly informative temporal 

structures across sensory modalities, and this motivates integration of stimuli when they are 

temporally aligned. An example of such a sensory input is audiovisual speech, which has an 

obligatory temporal correlation between the visual and auditory streams at low frequencies 

(Chandrasekaran et al., 2009; Schwartz & Savariaux, 2014). Object strikes (i.e. clapping) are 

similarly associated with a temporally aligned auditory stimulus, and these temporally aligned 
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sounds improve sensitivity for visual motion (Staufenbiel, van der Lubbe, & Talsma, 2011). 

 

Inverse Effectiveness 

Complimenting spatial and temporal contributions to multisensory integration is the principle of 

inverse effectiveness. Inverse effectiveness states that integration is most effective when the 

individual sensory inputs are weak. For example, a soft sound and a dim light would have a 

stronger predisposition towards integration than a loud sound and bright light with equivalent 

spatiotemporal overlap. This increased integrative efficacy is sometimes referred to as 

multisensory gain, which serves to quantify the contribution of integrative effects relative to 

unisensory processing (Stevenson, Ghose, et al., 2014). Increased gain for weak stimuli has been 

observed at the level of single neurons (Meredith & Stein, 1983), cortical populations measured 

with Electroencephalography (EEG) (Stevenson, Bushmakin, et al., 2012), as well as directly in 

human behavior (Senkowski, Saint-Amour, Hofle, & Foxe, 2011). The relative strength of 

sensory inputs is thus a crucial determinant of integration. 

 

Principles of Integration Interact 

Importantly, individual factors (i.e. principles) of integration are not evaluated in isolation (i.e. 

independently). Instead, interaction between these factors directly affects multisensory 

integration. Time and space both contribute to whether stimuli are perceptually unified and small 

disparities in one stimulus dimension can be overridden by strong concordance in another 

(Stevenson, Fister, Barnett, Nidiffer, & Wallace, 2012; Wallace, Roberson, et al., 2004). 

Similarly, stimuli are more likely to be perceived as simultaneous when their origin in space is 

closer (Zampini, Guest, Shore, & Spence, 2005; Zampini, Shore, & Spence, 2003). Interactions 
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between inverse effectiveness and spatial and temporal alignment have been demonstrated by the 

way stimulus intensity modulates perceived timing (Fister, Stevenson, Nidiffer, Barnett, & 

Wallace, 2016) and spatial interactions (Nidiffer, Stevenson, Fister, Barnett, & Wallace, 2016). 

An even more striking demonstration of the interaction between these factors is the ventriloquist 

illusion (Vroomen & De Gelder, 2004), in which sufficient spatiotemporal overlap is associated 

with integration of auditory and visual speech signals which do not have a common source 

(Slutsky & Recanzone, 2001). Perception and behavior are thus shaped by synergistic 

interactions between individual factors. 

 

 

Convergence and Integration of Sensory Inputs in the Nervous System 

 
The acceptance that cross-modal stimulus relationships make substantial contributions to 

perception and behavior has spurred questions regarding the neural instantiations of these 

processes. The abundance of modern neuroscience techniques with varying spatiotemporal 

strengths (Sejnowski, Churchland, & Movshon, 2014) has facilitated diverse approaches to 

characterizing the anatomical and physiological bases of integrative processes.  

 

Anatomical Substrates of Multisensory Convergence 

Characterizing the structural connectivity between sensory systems formed the basis of many 

early investigations and provided some of the earliest evidence of sensory convergence in the 

central nervous system. Studies using this approach have revealed that cross modal interactions 

are supported by anatomical convergence in numerous association regions and, strikingly, even 

in primary sensory cortices. Higher association areas in particular have long been recognized 
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play a crucial role in the mechanistic bases of integration (E. G. Jones, Powell, T.P.S., 1970). 

These association areas are frequently positioned at transition points between primary sensory 

areas, and invasive physiology has indicated that even within these regions there are gradients in 

terms of the overall proportion of neurons that respond to respective sensory modalities. A 

thorough example of this can be found in (Olcese, Iurilli, & Medini, 2013), in which the authors 

found the proportion of visual and tactile responsive neurons to be graded between the respective 

visual and tactile brain areas. Importantly, multisensory neurons were also found to be most 

abundant at the center of this gradient. This is consistent with models of cortical transitions 

between sensory systems, which posit that multisensory neurons should be most frequent within 

cortical border regions (Wallace, Ramachandran, & Stein, 2004). A similar transitional structure 

is suggested by anatomical and electrophysiological studies of the primate superior temporal 

sulcus (STS), a region in which multisensory neurons are found in abundance (Barraclough, 

Xiao, Baker, Oram, & Perrett, 2005; Benevento, Fallon, Davis, & Rezak, 1977; Bruce, 

Desimone, & Gross, 1981; Dahl, Logothetis, & Kayser, 2009; Hikosaka, Iwai, Saito, & Tanaka, 

1988). These studies indicate that unisensory inputs and neurons are interleaved with 

multisensory neurons (Dahl et al., 2009; Seltzer & Pandya, 1994), a structural organization that 

is likewise present in humans (Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Gentile, van 

Atteveldt, De Martino, & Goebel, 2017). Similar anatomical convergence of sensory inputs 

occurs in parietal (Avillac, Ben Hamed, & Duhamel, 2007) and frontal (Sugihara, Diltz, 

Averbeck, & Romanski, 2006) association areas.  

 In addition to association areas, regions long thought to be primarily unisensory have also 

recently been recognized to be a crucial component of the anatomical networks contributing to 

multisensory integration. For example, the core and parabelt regions of the primate auditory 
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cortex project directly to eccentric (i.e. slightly off fovea) regions of the primary visual cortex 

(Falchier, Clavagnier, Barone, & Kennedy, 2002; Rockland & Ojima, 2003) and similar 

projections are present in the cat (Hall & Lomber, 2008). Similar connections in the reverse 

direction from visual to auditory cortical areas are also present in primates (Falchier et al., 2010; 

Musacchia & Schroeder, 2009; Smiley et al., 2007). Anatomical inputs to auditory and visual 

primary cortices also originate from somatosensory cortex (Budinger, Heil, Hess, & Scheich, 

2006; Cappe & Barone, 2005; Hackett, Smiley, et al., 2007). These anatomical studies 

compliment physiological approaches indicating neurons which respond to somatosensory inputs 

can be found in primary and secondary auditory and visual processing areas (Fu et al., 2003; 

Schroeder & Foxe, 2002; Schroeder et al., 2001). It is notable, however, that direct activation 

(i.e. action potentials) by visual cortex neurons is not present for auditory inputs (Y. Wang, 

Celebrini, Trotter, & Barone, 2008) (reviewed in: (Cappe, Rouiller, & Barone, 2009)). It is thus 

clear that the anatomical bases for multisensory interactions are in place even in putatively 

‘primary’ sensory regions.  

In addition to cortico-cortico circuits there are also subcortical circuits which provide 

anatomical convergence between sensory systems. One of the best studied areas is the superior 

colliculus (SC), a midbrain structure involved in processes related to orienting, target selection 

and the transformation of sensory inputs into motor commands (Huerta, 1984; Munoz & Guitton, 

1985; Sprague, 1996). The superior colliculus is a laminar structure, and neurons in the 

superficial layers classically are believed to respond primarily to visual inputs (Casagrande, 

Harting, Hall, Diamond, & Martin, 1972) (although see (Ghose, Maier, Nidiffer, & Wallace, 

2014) for a more recent perspective). The deep layers, however, contain relatively common 

neurons that respond to visual, auditory, and somatosensory inputs, indicating that convergent 
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input from all three of these sensory systems is present (May, 2006; Meredith & Stein, 1986a). 

There are also thalamic connections that are less direct, but could still serve to provide extremely 

rapid inputs to early sensory regions from other brain areas (Cappe, Morel, Barone, & Rouiller, 

2009; Hackett, De La Mothe, et al., 2007; Henschke, Noesselt, Scheich, & Budinger, 2015). 

These thalamic connections are also not merely relays, but directly serve integrative functions as 

well (Komura, Tamura, Uwano, Nishijo, & Ono, 2005), and thus provide an additional 

anatomical route for rapid feed forward integration of sensory inputs. 

 

Physiological Manifestations of Integration 

Complementing anatomical work, physiological approaches such as single unit recording and 

laminar neurophysiology are able to examine how neural activity is shaped by interactions 

between the senses. Some of the earliest invasive physiological work identified that subcortical 

brain regions such as the superior colliculus not only contain neurons which respond to more 

than one type of sensory input, but that these neurons integrate information from these 

convergent inputs. The most powerful example of this integration at the single neuron level is 

that many of these neurons respond super additively, in terms of the sheer number of action 

potentials, when inputs occur in more than one sensory modality (Meredith & Stein, 1986b). 

Additivity in neural responses can be easily quantified by comparing the sum of unisensory 

responses to the multisensory response using the formula ([AV / (A+V)] *100), with values 

greater than 100 percent (i.e. AV > A+V) indicating a ‘super-additive’ multisensory response 

relative to the sum of unisensory inputs (Stein & Stanford, 2008; Stevenson, Ghose, et al., 2014). 

Similarly, values well below 100 percent indicate neural response suppression, and this ‘sub-

additive’ suppression is particularly striking when the multisensory response is smaller than the 
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response to either sensory input in isolation (i.e. AV < A || V). The non-linear nature of both sub- 

and super-additivity also serve as a critical indicator of multisensory integration, rather than just 

multisensory convergence, as they indicate neurons are performing non-linear computations 

rather than merely summating inputs. Employing this analytical approach in a series of seminal 

studies Wallace, Stein, Meredith and colleagues charted the nature of multisensory integration in 

the SC and its dependence on factors such as input from other cortical regions, developmental 

stage, and sensory experience (Jiang, Wallace, Jiang, Vaughan, & Stein, 2001; Meredith & Stein, 

1983, 1985, 1986b; Wallace & Stein, 1994, 2000). This line of work established several critical 

findings which have informed the broader field since that time.  

First, the observation of multisensory interactions in a subcortical structure that was 

classically believed to be primarily visual established that, as predicted by anatomical 

connectivity, physiological manifestations of integration are present throughout the nervous 

system. This finding has since been extended to include numerous subcortical regions such as the 

medial and lateral geniculate nuclei of the thalamus (Noesselt et al., 2010) the striatum (Reig & 

Silberberg, 2014), and the basal ganglia (Nagy, Eordegh, Paroczy, Markus, & Benedek, 2006). 

Other subcortical regions such as the cochlear nucleus have also been shown to be critical to 

multisensory interactions, as their structural connectivity with thalamic and cortical areas 

predicts the strength of multisensory behavioral interactions (van den Brink et al., 2014). 

Multisensory convergence and integration thus involve putatively ‘low level’ processing areas 

that are often positioned ‘early’ in the cortical processing hierarchy. This contrasted with early 

views that integrative processes were primarily instantiated in ‘association cortex’ areas such as 

the superior temporal sulcus (STS), intraparietal sulcus (IPS), and frontal lobe (E. G. Jones, 

Powell, T.P.S., 1970). It is worth noting, however, that midbrain integration (i.e. non-linear 
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interactions), but not convergence, was later shown to be dependent on input from higher 

multimodal association cortex, specifically the anterior ectosylvian sulcus (AES) (Wallace & 

Stein, 1994). This suggests that these views are not entirely dichotomous, and that integration in 

the midbrain is part of a complex cortico-tectal network which functions to transform sensory 

inputs into perceptual representations and motor commands (Stitt et al., 2015). This dependency 

also demonstrates the bidirectional nature of interactions between midbrain structures and higher 

cortical association areas classically recognized to have multisensory functions (Benevento et al., 

1977; Bruce et al., 1981; Hikosaka et al., 1988; Hyvarinen & Shelepin, 1979). These network 

level interactions serve as a mechanism for top down regulation of putatively “low level” 

integration by higher cognitive systems. 

This line of research also began to establish direct neural instantiations regarding how the 

relationships between stimuli affect whether sensory signals are integrated. This includes some 

of the first demonstrations that temporal relationships (Meredith, Nemitz, & Stein, 1987) and 

spatial relationships (Meredith & Stein, 1986a, 1996) contribute to the magnitude of integrative 

effects observed in the neural activity of individual multisensory neurons. Specifically, neuronal 

super-additivity was found to be strongest when stimuli were temporally coincident and to 

decrease monotonically for temporal misalignment (Meredith et al., 1987). Importantly, the slope 

of this monotonic decrease was also found to be asymmetric, which is in line with the asymmetry 

found in perceptual thresholds and tolerance for asynchrony in audiovisual stimuli (reviewed 

below). More recent demonstrations of timing sensitivity for audiovisual stimuli in the cortex of 

rodent models have found similar temporal tuning functions (Schormans et al., 2016). Individual 

SC neurons thus directly implement the temporal principle of multisensory integration through 

non-linear summation of synaptic inputs. This line of work also characterized neural 
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instantiations of the spatial principle for the first time, by demonstrating that integration in the 

SC both requires spatial concordance between stimuli, and that these effects depend on the 

receptive field architecture of individual SC neurons. Specifically, each multimodal neuron in the 

SC has separate unisensory receptive fields (i.e. a trimodal neuron would have a visual receptive 

field, a separate auditory receptive field, and a third separate somatosensory receptive field) 

(Carriere, Royal, & Wallace, 2008; Royal, Carriere, & Wallace, 2009; Wallace & Stein, 1996). 

These spatial receptive fields are frequently coincident, but are not necessarily the same size or 

shape. In particular, auditory spatial receptive fields are generally very large in size, which 

corresponds with audition’s poor spatial precision (Wallace, Meredith, & Stein, 1993; Wallace & 

Stein, 1996). Overlap, or co-registration, between the respective receptive fields is thus 

incomplete, and a single neuron might have spatial receptive field overlap for some regions of 

physical space, but only a single receptive field for other physical locations. Critically, when 

stimulation occurred within more than one receptive field, super additive multisensory 

interactions were observed. Stimulation within only a single receptive field, however, either 

failed to produce super additivity or even produced suppressive (i.e. sub-additive) effects 

(Kadunce, Vaughan, Wallace, Benedek, & Stein, 1997; Kadunce, Vaughan, Wallace, & Stein, 

2001; Meredith & Stein, 1986a, 1996). Notably, enhancement effects dependent on spatial 

receptive field overlap are also specific to cross-modal stimuli and do not occur for two 

concurrent stimuli of the same modality (Alvarado, Vaughan, Stanford, & Stein, 2007), reviewed 

in: (Stein & Stanford, 2008). This indicates that they index true spatially dependent sensory 

integration. This line of work thus extended the notion of spatial receptive fields first 

demonstrated by Hubel and Wiesel (Hubel & Wiesel, 1998) by demonstrating that cross-modal 

co-registration of sensory receptive fields functions as an important neural mechanism 
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instantiating the spatial rule of multisensory integration at the level of the single neuron. 

Similar to the spatial and temporal principles, inverse effectiveness was also found to be 

instantiated at the level of the individual neuron in the SC. The non-linear interactions indicative 

of integration reviewed above are at their strongest, in terms of relative multisensory gain, when 

neural responses are relatively weak to individual sensory inputs (Meredith & Stein, 1986b; 

Stanford & Stein, 2007). For neurons that are relatively unresponsive to unisensory inputs, this 

can result in non-linear multisensory response gain of over an order of magnitude (Stein & 

Stanford, 2008). The presence of such massive levels of response enhancement indicates that 

neurons downstream of these SC neurons receive fundamentally different inputs when weak 

sensory signals are integrated across modalities. Together with the instantiations of the temporal 

and spatial principles, this indicates that all the primary principles of multisensory integration are 

instantiated at the level of individual computational units in the midbrain. Further, lesion of the 

deep layers of the SC not only results in loss of integration at the neural level, but loss of 

multisensory facilitation of spatial localization (Burnett, Stein, Chaponis, & Wallace, 2004; 

Burnett, Stein, Perrault, & Wallace, 2007). In concert with deactivation studies (Wallace & 

Stein, 1994), SC neurons thus instantiate multisensory principles via a distributed processing 

network that incorporates input and modulation from cortical association areas. These 

multisensory interactions then contribute to ecologically important behaviors long known to 

depend on the SC, such as orientation, target selection, and initiation of oculomotor actions such 

as saccades (Casagrande et al., 1972; Sparks & Hartwich-Young, 1989). Combined with 

anatomical evidence, multisensory integration thus appears to be ubiquitous in the brain, 

spanning from early sensory relay sites such as the thalamus and cochlear nucleus, midbrain 

structures such as the SC, and cortical structures spanning the entire hierarchy from primary 
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sensory cortices to higher association areas. These changes in neural encoding when sensory 

inputs occur in multiple modalities then form the basis of behavioral and perceptual facilitation 

effects such as improved target detection and speeded spatial orienting. 

 

Mechanisms of Cortical Integration 

As suggested by the necessity of association cortex for multisensory integration in the 

midbrain, convergence and integration in cortical regions might play a particularly nuanced and 

important role in multisensory processing. This is exemplified by studies indicating that cortical 

association regions, frequently found on the border between two neighboring sensory regions, 

contain large populations of neurons which integrate sensory inputs (Olcese et al., 2013; 

Schormans et al., 2016; Wallace, Ramachandran, et al., 2004). There has thus been a substantial 

interest in identifying population level mechanisms of multisensory integration and their role in 

cortical circuits, which are frequently less stereotyped and more flexible than midbrain circuits. 

This interest is reinforced by apparent functional differences between midbrain and cortical 

signatures of integration, such as the paucity of suppressive local circuit interactions for simple 

stimuli in cortex (Stein & Wallace, 1996). Additionally, it has been recognized that cortical 

population signals such as the phase and amplitude of the local field potential (LFP) or 

correlations in trial-by-trial spike rates between neurons (also known as spike correlation) carry 

information that is distinct and complimentary to that found in the activity of individual neurons 

(for a review see: (Panzeri, Macke, Gross, & Kayser, 2015)). This highlights that cortex might 

have its own unique mechanisms of multisensory integration that leverage information encoded 

in population signals such as neural oscillations. 

One of the most important of these population level interactions is phase reset, a process by 
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which inputs to a system can ‘prime’ it for processing of a new input by changing the relative 

timing of sub threshold oscillatory activity. Evidence for the importance of this mechanism 

comes from experiments employing laminar neurophysiology, which have indicated that a 

sensory input in one modality (e.g. a somatosensory input) results in increased inter-trial 

coherence (ITC) in primary cortical regions for other sensory modalities (e.g. primary auditory 

cortex) (Lakatos et al., 2007). ITC measures the concentration of phase angles across stimulus 
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events, with values close to 0 indicating that phase is randomly distributed and a value of 1 

indicating perfect phase consistency (Figure 1-1). Importantly, this increased phase consistency 

occurs in the absence of changes in oscillatory amplitude or multiunit activity. In other words, 

the magnitude of ongoing activity is unaffected, but the relative timing (phase) of ongoing 

activity shifts to match the input (Figure 1-2). A new input to this region would thus fall at a 

consistent phase and activity level and be processed in a manner differing from a stimulus that 

Figure 1-1 Inter-trial Phase Coherence as a Measure of Phase Consistency 
Inter-trial phase coherence (ITC) measures the dispersion of phase angles across trials. A value 
of 0 indicates a uniform distribution (i.e. phase is completely random) and a value of 1 indicates 
perfect consistency (i.e. phase is identical on all trials). To illustrate the ITC metric, 200 trials 
(blue X’s) were drawn at random for each of four von Mises distributions with varying levels of 
concentration (K) and a mean angle of π/4. The mean resultant vector length (MRVL) for each 
sample distribution was then calculated, which is the ITC. Top row: the phase angles of the 
individual trials in each sample (blue X’s) and the mean resultant vector (orange line). Bottom 
row: the normalized probability (maximum = 1) of each phase angle in the von Mises 
distributions from which samples were drawn. The concentration parameter K controls the 
dispersion of the von Mises distribution. 
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was not preceded by an ‘off primary’ sensory stimulus. If the second stimulus were to be 

delayed, these changes in processing would fluctuate rhythmically depending on what phase the 

new input landed on. Rhythmic amplification of this nature is directly observable in the rhythmic 

structure of LFP and multiunit responses to a second stimulus administered with varying 

temporal delays relative to the ‘priming’ cross modal stimulus (Lakatos et al., 2007). 

Additionally, this mechanism has been demonstrated to be attention dependent, establishing it as 

Figure 1-2 Canonical Oscillatory Phase Reset in Auditory Cortex 
Endogenous neural oscillations (dotted red line) are constantly occurring in auditory cortex. 
When a new stimulus occurs without temporal structure, the phase it falls upon is random. Here, 
tactile stimuli (green bars) occur at random phases. Importantly, however, the tactile stimulus 
resets the phase of the ongoing oscillation. Auditory stimuli (red bars) following with a 
consistent temporal delay thus fall on identical oscillatory phases and are processed consistently. 
For an empirical demonstration of this effect, see (Lakatos, Chen, O'Connell, Mills, & 
Schroeder, 2007). 
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a flexible mechanism for cross-modal physiological interaction (Lakatos et al., 2009). In other 

words, phase reset is able to accomplish task or attention dependent modulation of neural 

activity, consistent with the flexibility of multisensory integration that has been observed at the 

behavioral level (N. M. van Atteveldt, Peterson, & Schroeder, 2014; N. van Atteveldt, Murray, 

Thut, & Schroeder, 2014). Such flexibility in cortical processing also allows task demands to 

influence subcortical processing via the cortico-tectal circuits previously described. Furthermore, 

the presence of phase reset in the human brain and its conferrence of behavioral facilitation is 

directly supported by a number of works utilizing non-invasive approaches such as EEG (Naue 

et al., 2011; Thorne, De Vos, Viola, & Debener, 2011). Phase reset thus offers a promising 

mechanism of flexible integration in cortex beyond direct instantiations of the principles as 

observed in midbrain neurons. Recent evidence suggests that subcortical regions may also 

participate in phase dependent sensory processing through interactions with cortical networks 

(Stitt et al., 2015). Lastly, phase reset of ongoing activity is a crucial step in the establishment of 

consistent phase relationships between brain regions. This phenomenon, known as neural 

coherence, is believed to be an important contributor to multisensory integration and is discussed 

more extensively below in the context of non-invasive approaches. 

 

 

Multisensory Integration in Humans 

 
In addition to invasive anatomical and physiological approaches, the neural bases of integration 

are also well studied in the human brain. In particular, the utilization of non-invasive techniques 

such as electroencephalography and magnetoencephalography (EEG / MEG) and Functional 

Magnetic Resonance Imaging (fMRI) has yielded substantial information regarding anatomical 
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hubs and physiological mechanisms of multisensory integration in humans. 

 

Anatomical Hubs of Multisensory Integration in the Human Brain 

In regards to the structural substrates of multisensory integration, non-invasive studies have 

identified that the human brain has important anatomical hubs that specifically process cross-

modal stimuli and which might perform important multisensory perceptual functions such as 

binding. An example of such a region is the superior temporal sulcus (STS), a region positioned 

between auditory and visual cortical areas which has been identified to be a critical hub for 

audiovisual integration. The human STS has a patchy organization (Beauchamp, Argall, et al., 

2004) in which auditory and visual sub-regions are intermingled with neural patches that respond 

to both types of stimuli. This intermingled organization provides for the transitional boundaries 

which have been identified to be important in animals models of multisensory integration (i.e. 

(Olcese et al., 2013; Schormans et al., 2016; Wallace, Ramachandran, et al., 2004)). Numerous 

studies have indicated that the STS is active during integration of multisensory inputs, and is 

particularly involved when inputs are audiovisual in nature (Balz, Keil, et al., 2016; N. van 

Atteveldt, Formisano, Goebel, & Blomert, 2004). The STS has also been pinpointed in studies 

targeting audiovisual temporal processing (Bushara et al., 2003) and audiovisual speech 

processing, making this region highly relevant to the current work (Baum, Martin, Hamilton, & 

Beauchamp, 2012; Beauchamp, Lee, Argall, & Martin, 2004; Beauchamp, Yasar, Frye, & Ro, 

2008; Bishop & Miller, 2009; G. A. Calvert, Hansen, Iversen, & Brammer, 2001; Macaluso, 

George, Dolan, Spence, & Driver, 2004; L. M. Miller & D'Esposito, 2005; Nath & Beauchamp, 

2011, 2012; Nath, Fava, & Beauchamp, 2011; Schepers, Schneider, Hipp, Engel, & Senkowski, 

2013; Stevenson, Altieri, Kim, Pisoni, & James, 2010; Stevenson, Geoghegan, & James, 2007; 
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Stevenson, Kim, & James, 2009; Stevenson, VanDerKlok, Pisoni, & James, 2011; Wright, 

Pelphrey, Allison, McKeown, & McCarthy, 2003). The crucial role of the STS for audiovisual 

speech integration has also been directly tested by the application of transcranial Magnetic 

stimulation (TMS) during the McGurk illusion (Beauchamp, Nath, & Pasalar, 2010). This study 

found that TMS of the STS attenuated perception of the illusion, indicating that this brain area 

play an important role in the binding of auditory and visual stimuli with speech like properties 

into a unified percept.  

Frontal cortex and parietal cortex have also been noted as hubs of multisensory integration. 

For example, audiovisual sensory evidence, as indexed by the fMRI signal, appears to 

accumulate in the inferior frontal sulcus (Noppeney, Ostwald, & Werner, 2010), which is one of 

the primary nodes of the fronto-parietal networks that contribute to perceptual decisions 

(Heekeren, Marrett, & Ungerleider, 2008). Integration of auditory and visual inputs for sentence 

comprehension also occurs in inferior frontal cortex (Homae, Hashimoto, Nakajima, Miyashita, 

& Sakai, 2002), as does voice-gesture integration (Xu, Gannon, Emmorey, Smith, & Braun, 

2009). Invasive work has similarly demonstrated the presence of integrative processes in 

prefrontal cortex (Romanski, 2007; Sugihara et al., 2006) (for a review see: (Romanski, 2012)). 

Parietal cortex is also intimately involved in multisensory convergence and integration, and a 

number of studies have indicated that information from multiple sensory systems converges in 

parietal cortex. For example, (Bremmer et al., 2001) found that motion signals activated IPS for 

multiple sensory modalities, and (Macaluso & Driver, 2001) found similar IPS convergence for 

tactile and visual stimulation. It is noteworthy, however, that conjuctivity analysis of this nature 

only indicates convergence of information rather than integration (Noppeney, 2012). There is, 

however, evidence that parietal cortex is involved with true multisensory integration effects 
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during speeded response tasks. Specifically the superior parietal lobule demonstrates non-linear 

interactions when measured via electrocorticography (Moran, Molholm, Reilly, & Foxe, 2008) 

and structural connectivity in parietal regions play a crucial role in multisensory reaction time 

facilitation (i.e. violation of the miller inequality (J. Miller, 1982)) (Brang, Taich, Hillyard, 

Grabowecky, & Ramachandran, 2013). Regions of the parietal cortex have also been shown to 

be implementing the integration of cues based on their sensory reliability (Rohe & Noppeney, 

2016) and causal inference (Rohe & Noppeney, 2015), both of which are important factors 

determining how multisensory signals are integrated. Additionally, in a paradigm similar to the 

aforementioned study using TMS to disrupt audiovisual speech integration in the STS, targeted 

disruption of posterior parietal cortex has been shown to impair visuotactile integration (Pasalar, 

Ro, & Beauchamp, 2010). Lastly, the multisensory role of parietal cortex has been confirmed 

across species by the presence of visuotactile interactions in the ventral intraparietal cortex of the 

macaque (Avillac et al., 2007). Importantly, parietal areas are known to play an important role in 

aligning sensory signals into a common reference frame (Cohen & Andersen, 2002; Mullette-

Gillman, Cohen, & Groh, 2005). Multisensory interactions in parietal cortex may thus make 

considerable contributions to the formation of a unified spatial representation of a multimodal 

environment. 

 

Evoked Electroencephalography and Magnetoencephalography 

In contrast to fMRI’s spatial resolution, EEG and MEG are well suited to studying multisensory 

integration in humans due to their high temporal resolution and more direct relationship to 

physiological activity. One of the most straightforward approaches to doing so employs the same 

non-linear effects analysis used in invasive physiological studies (i.e. AV ≠ A+V). Utilizing this 
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approach, a host of non-linear interactions have been identified in evoked potentials (or the 

equivalent evoked fields for MEG) when sensory inputs occur in more than one sensory modality 

(Foxe et al., 2000; Miniussi, Girelli, & Marzi, 1998; Murray, Foxe, Higgins, Javitt, & Schroeder, 

2001; Murray et al., 2005; Raij et al., 2010; Sperdin, Cappe, Foxe, & Murray, 2009). When 

utilizing simple stimuli such as impulses (i.e. flashes, brief touches, or beeps) studies have found 

that non-linear interactions are present in the form of super-additivity, which emerges as early as 

~50 ms after stimulus onset (Giard & Peronnet, 1999; Molholm et al., 2002; Vidal, Giard, Roux, 

Barthelemy, & Bruneau, 2008). These interactions are sometimes found to be somewhat delayed 

(to ~80-100ms) using more complex paradigms designed to conservatively eliminate potential 

duplication of cognitive event related potential (ERP) components (Gondan & Roder, 2006; 

Teder-Salejarvi, McDonald, Di Russo, & Hillyard, 2002). The low latency relative to stimulus 

onset and estimated cortical sources of these super-additive interactions indicates that both early 

sensory cortices and more mid-level cortical structures exhibit super-additive multisensory 

interactions. Rapid cross modal activation has also been confirmed using Electrocorticography 

(also known as intracranial EEG) (Brang et al., 2015), which provides confidence in the 

estimated primary and secondary sensory cortical generators. 

Contrasting the super-additive effects seen in these studies of simple stimuli (i.e. AV > 

A+V), for stimuli consisting of audiovisual speech, which is sometimes considered to be a 

‘complex’ stimulus, non-linear interactions take the form of sub-additivity (i.e. AV < A+V) 

(Baart, 2016; Besle, Fort, Delpuech, & Giard, 2004; Klucharev, Mottonen, & Sams, 2003; 

Mottonen, Schurmann, & Sams, 2004; van Wassenhove, Grant, & Poeppel, 2005). This sub-

additivity is also true for other ecologically valid events with extended time courses 

(Stekelenburg & Vroomen, 2007) and for stimulus pairings which are not audio-visual (Treille, 
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Cordeboeuf, Vilain, & Sato, 2014). Furthermore, in (Stekelenburg & Vroomen, 2007) it is 

demonstrated that for ecologically valid events without anticipatory visual information this sub-

additivity seems to be greatly attenuated, at least for early auditory ERP components such as the 

N1 and P2. This reversal from super to sub-additivity suggests that the presence of stimulus 

features in one modality which provide anticipatory information regarding upcoming events in 

another modality fundamentally change the way sensory integration in the brain occurs for 

naturalistic events. In other words, relative timing of stimuli matters a great deal in terms of 

neural effects, at least for naturalistic stimuli with extended time courses (Stekelenburg & 

Vroomen, 2007). This anticipatory information is particularly important for speech due to the 

complex correlational structure between auditory and visual speech and the fact that visual 

mouth movements generally precede the auditory signal (Chandrasekaran et al., 2009; Schwartz 

& Savariaux, 2014). Changes in auditory neural processing by anticipatory visual speech 

information have thus been proposed to be a form of predictive coding (van Wassenhove et al., 

2005) (for a review of predictive coding at the circuit level see: (Bastos et al., 2012)). Sub-

additive speech interactions have also been observed in a portion of the multiunit activity in the 

auditory cortex of non-human primates (Kayser, Petkov, & Logothetis, 2008). This suggests that 

reductions in EEG signal amplitude may be well correlated with changes in multiunit spiking 

activity and LFP magnitude in auditory cortex. 

Importantly, these non-invasive measurements of human neural activity also demonstrate 

instantiations of the principles of integration which are remarkably similar to those found in 

invasive physiology. For example, the temporal correspondence of inputs regulates the 

magnitude of oscillatory neural responses (Senkowski, Talsma, Grigutsch, Herrmann, & 

Woldorff, 2007). The magnitude of non-linear interactions in ERPs also depends on the relative 
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strength of the individual inputs (Stevenson, Bushmakin, et al., 2012). These non-linear 

interactions also incorporate finer stimulus correspondences. An example of this is found for 

looming sounds, in which increases in sound amplitude over time cause the impression that the 

source is approaching. Responding to such a stimulus (i.e. an approaching predator or vehicle) 

might be particularly crucial for survival. Fitting with this evolutionary hypothesis, non-linear 

ERP effects have been shown to be stronger for looming sounds (Cappe, Thut, Romei, & 

Murray, 2010; Cappe, Thut, et al., 2009). This is particularly important given the bottom up 

nature of the ERP differences in this task, which occur very early and originate from regions that 

include primary sensory cortices. Together these findings indicate that non-invasive 

measurement of multisensory interactions in the human brain exhibit similar response properties 

and flexible cue dependent integration to that seen in invasive physiological models.  

 

Oscillatory Contributions to Multisensory Integration 

In addition to the non-linear interactions in evoked activity, neural oscillations have also been 

proposed to play a crucial role in multisensory integration due to their ability coordinate activity 

across disparate neural networks. This coordination invokes the concept of non-stationary neural 

coherence, in which the momentary relationship between oscillatory activity in two or more 

regions determines the rate and nature of information flow (Hipp, Hawellek, Corbetta, Siegel, & 

Engel, 2012; Siegel, Donner, & Engel, 2012). Coherence can occur along multiple oscillatory 

dimensions within a frequency (i.e. phase coupling (Lachaux, Rodriguez, Martinerie, & Varela, 

1999), amplitude coupling (Bruns, Eckhorn, Jokeit, & Ebner, 2000)), as well as between 

frequencies (i.e. phase amplitude coupling (Canolty & Knight, 2010) and cross-frequency 

envelope modulation (Hipp et al., 2012)). The diversity of these so called intrinsic coupling 
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modes (Engel, Gerloff, Hilgetag, & Nolte, 2013) allows for potentially multiplexed and 

multidirectional information flow within a single oscillatory network (Akam & Kullmann, 2014; 

Helfrich et al., 2016; Hillebrand et al., 2016). Coupling across distinct neural populations using 

these oscillatory mechanisms directly influences both spiking in individual neurons, as well as 

correlation in the magnitude of LFPs in spatially distinct local circuits (Womelsdorf et al., 2007). 

Oscillatory networks are thus believed to be a crucial factor underpinning the formation of task 

specific neural networks and information integration in the brain (Engel, Fries, & Singer, 2001; 

Engel & Singer, 2001; Fries, 2005; Singer & Gray, 1995; Womelsdorf et al., 2007).  
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This selective information integration has been specifically proposed to be important for 

multisensory interactions (Senkowski, Schneider, Foxe, & Engel, 2008). This is supported by 

studies of simple multisensory stimuli, which have indicated that high frequency oscillations in 

the beta (13-30 Hz) and gamma (> 30 Hz) bands are more strongly recruited for multisensory 

stimuli than for their unisensory counterparts (reviewed in: (Senkowski et al., 2008)). This 

indicates that phase coherence (illustrated in figure 1-3) within localized neural populations is 

likely enhanced when stimulation occurs in multiple sensory modalities. This oscillatory 

enhancement has also been shown to be supremely sensitive to the aforementioned integration 

Figure 1-3 Canonical Oscillatory Phase Coherence 
This figure illustrates a stationary version of simple phase coherence. In each trial oscillatory 
activity was generated for 3 hypothetical brain regions. In each trial the phase difference between
regions 1 and 2 is relatively consistent, with the blue oscillation (region 1) lagging the red 
oscillation (region 2). These two circuits are thus coherent (indicated by the dashed line in the 
key), in the sense that their phases are related. In contrast, the oscillation for region 3 (yellow) 
neither consistently lags nor leads the oscillations for regions 1 or 2. This region is thus 
incoherent with regions 1 and 2. Phase coherence can be found both within localized circuits, as 
well as between disparate brain regions. Data were simulated using a 4 Hz Sinewave with 0.1 
radians of uniformly distributed noise for regions 1 and 2 (red and blue) and 2π radians of 
uniformly distributed noise for region 3 (yellow). Note that high phase coherence at small 
anatomical scales often results in differences in the power of the LFP or EEG signal due to 
signal summation. 



 

28 

 

 

determinants such as temporal correspondence (Senkowski et al., 2007). A number of studies 

have also demonstrated that high frequency oscillations are associated with the process of 

perceptually binding stimuli together, specifically in the beta band (Schepers et al., 2013; 

Senkowski, Molholm, Gomez-Ramirez, & Foxe, 2006; von Stein, Rappelsberger, Sarnthein, & 

Petsche, 1999) and the gamma band (Balz, Keil, et al., 2016; Bhattacharya, Shams, & Shimojo, 

2002; Mishra, Martinez, Sejnowski, & Hillyard, 2007; Sakowitz, Quiroga, Schurmann, & Basar, 

2001). Other studies have implicated both the beta and gamma bands (Kisley & Cornwell, 2006), 

while lower frequency bands have also been reported in some cases (Sakowitz, Quian Quiroga, 

Schurmann, & Basar, 2005; Sakowitz, Schurmann, & Basar, 2000). Together these studies, 

which by no means constitute an exhaustive list of the oscillatory literature, suggest that changes 

in oscillatory power occur across the frequency spectrum and are involved in the process of 

perceptually combining sensory inputs. 

Coupling of these oscillations across cortical regions to form functional networks has also 

been shown contribute to multisensory interactions in a number of paradigms including the 

rubber hand illusion (Kanayama, Sato, & Ohira, 2007) and the stream bounce illusion (Hipp, 

Engel, & Siegel, 2011). In these studies, formation of a coherent network is associated with the 

illusory percept, which serves as an index of trial-by-trial multisensory binding. In other words, 

formation of a complex interregional brain network mechanistically based in oscillatory 

coherence predicts whether multisensory perceptual interactions occur. Similarly, in an 

audiovisual duration judgment task, the formation of a coherent brain network in the alpha band 

predicted whether audiovisual cross-modal interactions occurred, despite the frequently 

detrimental nature of the second sensory input to participant performance (van Driel, Knapen, 

van Es, & Cohen, 2014). These studies clearly indicate that rhythmic synchronization between 
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brain areas forms a flexible mechanism of integration across sensory systems. Invasive 

physiological investigations with finer spatial resolution have also yielded similar results, 

although their correspondence to perception is less well established. One example of such a 

finding is increased gamma band neural coherence between auditory cortex and STS for looming 

(i.e. approaching) sensory cues, which are known to be preferentially integrated even in non-

human primates (Maier, Chandrasekaran, & Ghazanfar, 2008; Maier, Neuhoff, Logothetis, & 

Ghazanfar, 2004). These studies are thus consistent with the notion that large-scale 

synchronization forms the backbone of perception (Rodriguez et al., 1999; Siegel et al., 2012), 

and indicate that multisensory specific synchronization may underlie many perceptual 

phenomena. 

 

 

Studies of Multisensory Temporal Processing in Humans 

 
A common theme to many of the most striking demonstrations of audiovisual integration, such 

as audiovisual speech intelligibility (Ross, Saint-Amour, Leavitt, Javitt, et al., 2007; Sumby, 

1954), the McGurk illusion (McGurk & MacDonald, 1976), the stream bounce illusion (Sekuler, 

Sekuler, & Lau, 1997) and the sound induced flash illusion (Shams, Kamitani, & Shimojo, 2000) 

is the substantial temporal alignment between the auditory and visual streams. This temporal 

concordance and its contribution to the final percept strongly suggests that temporal alignment is 

not only a crucial factor in physiological interactions, but also perceptual ones. This has led 

researchers to interrogate the contribution of temporal relationships to multisensory processing in 

a myriad of tasks and experimental designs, which has yielded not only critical insights into 

integrative processes, but also helped to establish how the unifying principles of multisensory 
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integration translate to perception and behavior. One of the crucial findings synthesized from this 

body of research is the concept of the temporal binding window (TBW), a temporal 

psychometric function that has been empirically derived in numerous experiments and which 

describes both the magnitude and probabilistic nature of multisensory interactions (Vroomen & 

Keetels, 2010; Wallace & Stevenson, 2014). Importantly, the TBW bears striking resemblance to 

the temporal tuning functions of individual audiovisual responsive neurons found in frontal 

cortex and in the SC (Benevento et al., 1977; Meredith et al., 1987). The TBW also frequently 

displays an asymmetric shape with a slight visual bias (Alcala-Quintana & Garcia-Perez, 2013; 

Stevenson & Wallace, 2013; van Wassenhove, Grant, & Poeppel, 2007). This asymmetry is 

consistent with the statistics of the natural world, in which visual events frequently precede 

auditory signals due to the faster travel speed of light across space. It is also consistent with the 

causal structure of many events such as object impact, where visual motion precedes sound 

generation, and audiovisual speech, where mouth movements frequently precede sounds. These 

commonalities with physiology and the environment have led researcher to conclude that this 

construct strongly captures temporal dynamics in multisensory processing, and to characterize it 

in a number of settings. 

 

Behavioral Characterizations of Multisensory Temporal Processing 

Armed with the knowledge that the TBW likely represents, to some degree, the underlying 

tuning of the nervous system to temporal correspondence, researchers have systematically 

probed the importance of temporal relationships for myriad multisensory interactions. One of the 

most important tools for doing so is the utilization of psychophysical tasks consisting of 

synchrony judgments (SJ, also known as simultaneity judgment) (Stevenson & Wallace, 2013; 
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Zampini, Guest, et al., 2005) and temporal order judgments (TOJ) (Dixon & Spitz, 1980; Hirsh 

& Sherrick, 1961; Sternberg; Zampini et al., 2003). In both of these tasks, participants are asked 

to explicitly judge the temporal relationships of multisensory stimuli by answering whether 

stimuli occurred simultaneously or not (SJ) or which stimulus came first (TOJ). The stimuli 

utilized in this task range from simple flashes of light and auditory beeps, which are real world 

approximations of impulses for vision and audition respectively, to audiovisual speech, which 

has a substantially more complex spectro-temporal structure within each sensory modality. 

Despite the binary response nature of these tasks, and the resultant conversion of the TBW to a 

probabilistic window, these tasks have been demonstrated to reliably index temporal acuity in 

human observers and have thus become important tools for interrogating multisensory temporal 

function. These tasks have been used to elucidate a number of critical factors in temporal 

perception that are pertinent to the current work and formed the basis of the current research 

hypotheses. Synchrony judgment in particular is highly important to the scope of the current 

work, as it was the primary psychophysical task in all of our EEG experiments. 

 

The Window of Integration Depends on Stimuli and Task 

One of the most important characteristics of the TBW is that it is not constant across different 

experimental stimuli (Figure 1-4). This inter-stimulus variability is extremely important because 

it indicates that temporal perception is not rooted solely in biophysical constraints. As illustrated, 

a straightforward demonstration of stimulus dependency is comparing audiovisual SJ and TOJ 

studies utilizing impulse stimuli (flashes for vision and beeps or noise bursts for audition) with 

the same task demands using audiovisual speech. Comparisons of these studies resoundingly 

indicates that the TBW for speech stimuli is substantially larger than the TBW for impulse 
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stimuli (examples of speech stimuli include: (Conrey & Pisoni, 2006; Dixon & Spitz, 1980; J. A. 

Jones & Jarick, 2006; van Wassenhove et al., 2007; Vatakis, Ghazanfar, & Spence, 2008; 

Vatakis & Spence, 2006a)) (examples of impulses: (Hirsh & Sherrick, 1961; Keetels & 

Vroomen, 2005; Zampini, Guest, et al., 2005; Zampini et al., 2003). This larger window of 

integration is particularly striking given the information content of the signals, as speech carries 

a substantially more refined set of spectro-temporal information than impulses, yet the nervous 

system seems to leverage this increased information content to actually reduce multisensory 

temporal acuity. Several non-exclusive explanations for this effect have been proposed, 

Figure 1-4 Example Temporal Binding Windows 
Simulated simultaneity judgement data for a single participant for stimuli consisting of flashes 
and beeps (blue) and speech (orange). Data was generated for illustrative purposes. The solid 
lines indicate the logistic psychometric functions fit. Dotted lines indicate the point of subjective 
simultaneity (PSS). Note the asymmetry, in which visually leading stimuli (right side of figure) 
are more likely to be judged synchronous than auditory leading stimuli at the same absolute 
temporal offset (stimulus onset asynchrony – SOA). Similarly, the PSS is at values for which 
vision leads audition. 
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including the notion that stimulus ‘complexity’ drives temporal acuity down (Stekelenburg & 

Vroomen, 2007; Vatakis & Spence, 2006a, 2006b) or the presence of a ‘unity effect’ in which 

prior experience with speech generates a predisposition (i.e. a perceptual prior) for aggregating 

sensory streams in time (L. H. Chen & Vroomen, 2013; Y. C. Chen & Spence, 2017; Vatakis et 

al., 2008). The latter unity hypothesis is particularly appealing given the substantial experience 

most adult research participants have with audiovisual speech and Bayesian views of optimal 

integration in which experience might shape priors (Alais & Burr, 2004; Ernst & Banks, 2002) 

(for a review of probabilistic Bayesian inference in the brain see: (Knill & Pouget, 2004)). This 

unity explanation has been critically tested by using sine-wave speech (SWS), a spectro-

temporally impoverished speech signal that is variably perceived as speech or non-speech 

depending on participant’s prior experience (Davis & Johnsrude, 2007; Remez, Rubin, Pisoni, & 

Carrell, 1981). Critically, this study indicated that SWS signals perceived as non-speech are 

perceived with the same temporal acuity as SWS signals perceived as speech (Vroomen & 

Stekelenburg, 2011). This strongly suggests that the majority of differences in temporal acuity 

for speech and non-speech stimuli are rooted in low-level stimulus properties such as the 

duration of envelope fluctuations. Perception of synchrony is also affected by the overall 

duration of the stimuli, which further supports that this might be the case (Boenke, Deliano, & 

Ohl, 2009; Kuling, van Eijk, Juola, & Kohlrausch, 2012). Additional studies have further 

indicated that audiovisual stimuli with intermediate levels of ‘complexity’ and duration, such as 

two natural objects striking one another, have temporal acuity levels between that of impulses 

and speech (Vatakis & Spence, 2006a), further reinforcing links between low level stimulus 

properties and temporal acuity. 

In addition to differences rooted in stimulus properties, multisensory temporal acuity also 
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varies based on task demands. This contrast is most obvious when contrasting the SJ and TOJ 

tasks directly with one another for physically identical stimuli. An example of such a comparison 

can be found in (van Eijk, Kohlrausch, Juola, & van de Par, 2008), in which TOJ, SJ, and SJ3 (a 

version of SJ in which participants may respond “sound-first,” “synchronous,” or “light-first”) 

tasks were used for near impulse stimuli consisting of a bouncing ball and it’s corresponding 

impact sound. This study found that participant performance (in terms of the point of subjective 

simultaneity; PSS) for SJ and SJ3 was tightly coupled, but that TOJ performance was strongly 

decoupled from either SJ task. This finding has also been replicated using a much broader array 

of stimuli (Love, Petrini, Cheng, & Pollick, 2013). Because the physical stimuli are identical in 

these experiments, the observed differences in cross-modal timing perception must be accounted 

for in a top-down (i.e. task dependent) manner. Proposals for this top down regulation include 

prior entry (Spence & Parise, 2010; Spence, Shore, & Klein, 2001; Titchener, 1908; Zampini, 

Shore, & Spence, 2005) and differences in participant interpretation which yield response bias 

(i.e. TOJ instructions might often be interpreted by participants to indicate that perceptual 

segregation of the stimuli is desired, while the opposite might be inferred for SJ) (van Eijk et al., 

2008; Vroomen & Keetels, 2010). In an attempt to disentangle these differences additional task 

instruction such as ‘perceptual fusion’ have been employed, in which participants rate stimuli as 

one or two events (Stevenson & Wallace, 2013). This same study also utilized stimuli of varying 

complexity to provide a more comprehensive view of the roles both tasks and stimuli play in 

influencing temporal integration. The primary finding of this study, aside from an important 

replication of the decoupling between SJ and TOJ tasks, was the finding of a consistent 

correlation across stimuli for participant performance not just in terms of PSS, but also in terms 

of TBW size (i.e. the range of stimulus onset asynchronies (SOAs) reported as predominantly 
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synchronous in SJ). This study thus indicates that the substantial variability in individual 

temporal acuity (i.e. TBW width) (Powers, Hillock, & Wallace, 2009) not only reflects task and 

stimulus dependencies, but also represents a trait level variable. Further this study also firmly 

established that differing methodologies for determining TBW width, such as the distance 

between ambiguous SOAs (50% rate of reported synchrony) or the distance between 

predominantly synchronous SOAs (75% or 76% rate of reported synchrony) yield tightly 

correlated results. This indicates that differences in procedures for fitting psychometric functions 

to behavioral data, which vary across the literature, have minimal impact when interpreting 

studies. 

 

The Window of Integration is Plastic in Development and Adulthood 

The aforementioned decoupling between individual temporal acuity and dependencies on task 

and stimuli suggests that variability in multisensory temporal acuity might reflect individualized 

processing of multisensory temporal cues. One piece of evidence for this is the stability across 

measurements of inter-individual variability in the audiovisual PSS (Freeman et al., 2013; Grabot 

& van Wassenhove, 2017; Ipser et al., 2017; J. V. Stone et al., 2001). A second piece of evidence 

is the extremely large magnitude of inter-individual differences, with differences in TBW size of 

over two fold being observed. (i.e. (Powers et al., 2009)). Such large inter-individual differences 

are difficult to account for based on gross biological substrates alone. Such differences are 

instead better accounted for by experience, or potentially by differences in top down drive. The 

critical role of experience in temporal acuity is further emphasized by the strong developmental 

contribution to acuity elucidated by studies charting its trajectory in childhood (Hillock-Dunn, 

Grantham, & Wallace, 2016; Hillock-Dunn & Wallace, 2012; Hillock, Powers, & Wallace, 2011; 
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Kaganovich, 2016; Noel, De Niear, Van der Burg, & Wallace, 2016). A lifetime’s worth of 

experience is clearly able to substantially shape the window of integration based on these studies, 

and this immediately raises the question of how much experience is required to change 

multisensory temporal perception. An initial approach to this involved extensive multisensory 

feedback training utilizing impulse stimuli. After approximately five hours of training spaced 

over the course of a week, participants demonstrated substantial reductions in TBW size for 

visual leading stimuli which persisted for at least a week (Powers et al., 2009). Substantial 

experience with artificial stimuli and appropriate feedback is thus able to shape temporal acuity, 

particularly for stimuli in which vision leads audition. This training has later been extended by 

targeting both environmentally invalid auditory leading acuity and environmentally valid visual 

leading acuity (Cecere, Gross, & Thut, 2016). This approach indicated that despite specifically 

targeting auditory leading temporal acuity, training only improves participant’s acuity for 

visually leading stimuli. As this is the natural configuration of most environmental stimuli these 

studies together strongly suggest that, in adults, plasticity based on extensive experience is 

possible, but is restricted to ecologically valid stimulus configurations.  

Malleability in temporal perception is not restricted to the longer time scales examined in 

these perceptual learning studies, however, as anyone who has watched a movie with temporally 

misaligned audio and video might corroborate. In such a movie, the mouth movements of the 

actors and the auditory speech streams are often substantially temporally misaligned. Over time, 

however, these temporal incongruities become less noticeable and eventually disappear. 

Psychophysical investigation of this adaptation phenomenon, termed temporal recalibration, has 

revealed that a few minutes of exposure to asynchrony causes participant’s temporal perception 

to recalibrate (Fujisaki, Shimojo, Kashino, & Nishida, 2004; Vroomen, Keetels, de Gelder, & 
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Bertelson, 2004). This adaptation takes the form of the TBW shifting towards the direction of the 

repeated asynchrony, resulting in the presented stimuli quite literally becoming the ‘new 

synchronous’. Plasticity in temporal perception can thus clearly be driven by the statistics of the 

environment over time scales measured in minutes.  

The environment, however, is dynamic on time scales far faster than minutes and it would 

thus be advantageous to adapt to asynchrony at extremely high speeds. Investigations 

specifically targeting rapid adaptation (often referred to as rapid recalibration) have shown that it 

occurs at the level of single trials for both impulse (Van der Burg, Alais, & Cass, 2013) and 

speech stimuli (Van der Burg & Goodbourn, 2015) in a manner that can be strongly dissociated 

from the aforementioned prolonged recalibration (Van der Burg, Alais, & Cass, 2015). Crucially, 

this rapid adaptation also only occurs for audiovisual stimulus pairings, which have substantially 

more temporal dynamic range in the natural environment than stimulus pairing which include 

somatosensory inputs (Van der Burg, Orchard-Mills, & Alais, 2014). Multisensory temporal 

perception is thus highly plastic over a broad range of timescales ranging from days to seconds, 

and the ability to dissociate these processes highlights that multiple discrete mechanisms of 

plasticity contribute to perception of this type. 

 

The Window of Integration Applies Beyond Explicit Temporal Judgments 

An important limitation of the work regarding temporal perception thus far discussed is the 

reliance on explicit temporal judgments with limited ecological validity. Moving away from such 

tasks is thus an important demonstration that the TBW is a generalized principle of multisensory 

perception rather than a manifestation of task demands. An excellent way to approach this 

problem is to employ perceptual illusions and examine their dependency on temporal 
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relationships. A pair of strong examples of this approach utilized the aforementioned McGurk 

illusion and probed whether changes in audiovisual temporal relationships affected the rate of the 

illusory percept (Munhall, Gribble, Sacco, & Ward, 1996; van Wassenhove et al., 2007). These 

studies revealed that perception of the illusion is affected by temporal concordance with a 

structure strikingly similar to that found for synchrony judgments, including the anticipated 

visual first bias common to multisensory temporal tuning. Another illusion leading to a similar 

conclusion for impulse stimuli is examining the effect of audiovisual synchrony on temporal 

ventriloquism (Aschersleben & Bertelson, 2003; Bertelson & Aschersleben, 2003; Morein-

Zamir, Soto-Faraco, & Kingstone, 2003). Temporal ventriloquism is an illusion in which cross 

modal interactions distort the perceived timing of audiovisual stimuli towards the timing of the 

auditory sensory stimulus. This has been explained as occurring due to audition’s dominance 

over vision in the temporal domain (modality appropriateness, (Welch et al., 1986)), and more 

recently and precisely as optimal integration given the superior temporal precision of the 

auditory system (Fendrich & Corballis, 2001; Repp & Penel, 2002). When the synchrony 

between the auditory and visual stimuli is manipulated the strength of temporal ventriloquism, 

defined as the difference between veridical timing and perceived timing, diminishes with 

increasing degrees of temporal offset (Kuling, Kohlrausch, & Juola, 2013). The sound induced 

flash illusion similarly relies on temporal alignment and diminishes with increased temporal 

spacing between the visual flash and auditory stimulus (Shams, Kamitani, & Shimojo, 2002). 

The generalization of the TBW to tasks in which temporal concordance is not explicitly 

evaluated serves as strong evidence that the TBW is a generalized manifestation of the temporal 

principle of multisensory integration. This generality is even further reinforced by the correlation 

between illusory perception rates for the McGurk illusion, the sound induced flash illusion, and 
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individual TBW size (Stevenson, Zemtsov, & Wallace, 2012), indicating that individual 

differences in the temporal dependency of multisensory integration are stable across all these 

tasks and can be indexed with the SJ task. 

 

Physiological Studies of Multisensory Temporal Processing in Humans 

The extensive behavioral characterizations of multisensory temporal integration have, 

unsurprisingly, motivated researchers to investigate the neural instantiations of these processes. 

Surprisingly, despite the incredibly rich body of behavioral work reviewed above, our 

understanding of how these timing processes unfold within the brain is in its relative infancy. 

Proposals that sensory timing might arise from neural circuits not intrinsically dedicated to the 

process highlight that the neural basis of temporal perception might be particularly difficult to 

study, even for unisensory inputs (Johnston & Nishida, 2001; Karmarkar & Buonomano, 2007; 

van Wassenhove, 2009). Some authors have even gone as far to propose that processing of 

temporal information in the brain might even be described as degenerate (Friston & Price, 2003), 

a concept in which multiple non-redundant circuits play the same role of a highly crucial 

biological function (Lewis & Meck, 2012; Merchant, Harrington, & Meck, 2013). Degeneracy 

would allow multiple distinct, yet functionally equivalent, neural architectures for temporal 

perception tasks (Wiener, Matell, & Coslett, 2011). The brain might also be able to keep time in 

the absence of a dedicated anatomical or functional “clock” circuit by comparing temporally 

evolving network states (Bueno et al., 2017; Karmarkar & Buonomano, 2007), but this has not 

been explicitly demonstrated for cross-modal timing. The available hypotheses and evidence for 

neural instantiations of temporal processing, including for audiovisual inputs, are reviewed 

below, but it is noteworthy that empirical evidence for these mechanisms is relatively sparse 
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(Aghdaee, Battelli, & Assad, 2014). 

 

Temporal Coding Through Latency 

In regards to computing relative timing, one hypothesis that has been investigated is whether 

temporal characteristics of stimuli can be encoded in the actual temporal dynamics of the neural 

activity generated by sensory inputs. In other words, temporal order is coded through the 

absolute latency of neural activity in this framework. This possibility was investigated by 

(Vibell, Klinge, Zampini, Spence, & Nobre, 2007) using EEG to elucidate a modest acceleration 

of ERPs to attended sensory modalities, on the order of 4-17 ms depending on the participant and 

the ERP peak examined. In the context of prior entry theory (Spence & Parise, 2010; Zampini, 

Shore, et al., 2005) this acceleration was interpreted quite literally as attention accelerating the 

temporal dynamics of neural activity and the perceived temporal ordering of events in a 

consistent manner. Notably, this effect is not present for spatial cuing (McDonald, Teder-

Salejarvi, Di Russo, & Hillyard, 2005), which instead demonstrated a relationship between 

changes in ERP amplitude and explicit timing. Other investigations of temporal processing have 

revealed that increased auditory ERP magnitude, hypothesized to represent better stimulus 

encoding, might play a role in differences in temporal acuity across individuals (Kaganovich & 

Schumaker, 2016). The strength of ERPs believed to originate from early auditory regions and 

possibly the STS also appear to be related to subjective temporal perception of speech (Huhn, 

Szirtes, Lorincz, & Csepe, 2009). These findings are congruent with the notion that auditory 

inputs are dominant for temporal processing (Repp & Penel, 2002; Welch et al., 1986) and 

similarly agree with the proposed temporal organization hypothesis, in which an ERP of greater 

magnitude would reach a given amplitude threshold more quickly after stimulus onset. 
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Importantly, a strengthened response should also carry a more precise temporal estimate and 

yield an unbound percept (i.e. stimuli reported as occurring at different times), which is what 

these studies generally report. Together these studies indicate that absolute strength and timing of 

phase and time locked neural responses may encode crucial temporal information about the 

stimulus, and that this form of encoding might be particularly viable for auditory inputs. Further 

support for the notion that the temporal dynamics of neural activity might themselves form the 

mechanism of temporal encoding comes from recent work using representational similarity 

analysis (Cecere, Gross, Willis, & Thut, 2017). In this study, the authors tested the hypothesis 

that neural network engagement differs based on stimulus ordering, and the confirmation of this 

theory means that different neural circuits (and thus different neural timing characteristics) are 

engaged depending on which stimulus occurs first. This study thus allows the temporal coding 

hypothesis to correctly account for the marked visual leading asymmetry seen in behavioral 

TBWs (reviewed above) even though absolute latencies of evoked components are relatively 

consistent for different stimulus orders. 

 

Temporal Coding Using an Oscillatory Clock 

Another potential mechanism for representation of time is neural oscillations, which could 

provide a cyclic internal clock against which stimuli could be indexed. This clock could also 

contribute to the eventual percept by binding stimulus pairings which occur within a single 

oscillatory cycle while segregating those that do not. This clock has been proposed to exist both 

locally (i.e. within sensory cortices), but also proposed to reside in subcortical hubs connected to 

multiple regions such as the basal ganglia (Kononowicz & van Wassenhove, 2016), an important 

integrator of cortical oscillatory activity (Coull, Cheng, & Meck, 2011). These oscillations are 
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clearly able to encode or entrain to the temporal structure of stimuli (Cravo, Rohenkohl, Wyart, 

& Nobre, 2011; Giraud & Poeppel, 2012; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008) 

and are believed to drive well documented temporal attention affects (M. R. Jones, Moynihan, 

MacKenzie, & Puente, 2002). Their role in perceived timing is less clear, however. Recently 

there have been attempts to reconcile coupled oscillator models of slow neural oscillations and 

working memory as a mechanism of interval timing (Gu, van Rijn, & Meck, 2015; Jensen, Gips, 

Bergmann, & Bonnefond, 2014). These studies suggest that there is substantial promise in 

oscillatory timing models, but a direct demonstration of a role for phase coupling over the short 

timing intervals used in the popular SJ and TOJ tasks remained un-assessed until the current 

thesis work, which in part aimed to remedy this empirical gap. 

Support for the presence and utility of an oscillatory clock at low frequencies can be found in 

MEG work demonstrating that phase shifts in auditory cortex, and thus phase differentials 

between auditory and visual cortices, explains a substantial portion of sustained audiovisual 

temporal recalibration (Kosem, Gramfort, & van Wassenhove, 2014). In this study, exposure to 

asynchrony shifted the phase of ongoing activity in auditory and visual cortices and the 

magnitude of the shift in auditory cortex predicted the degree of shift in participant’s temporal 

perception. Additional indirect evidence of oscillatory contributions to multisensory temporal 

perception come from experiments extending findings of oscillatory speed (i.e. frequency) as a 

contributor to the temporal resolution of vision (Samaha & Postle, 2015) to the multisensory 

domain (although see (Baumgarten, Schnitzler, & Lange, 2017) for evidence refuting this effect 

for somatosensory inputs). An example of such a study used the sound induced flash illusion and 

found that individual differences in oscillatory speed map onto individual susceptibility to the 

illusion (Cecere, Rees, & Romei, 2015). Specifically, individuals with a faster oscillatory clock 
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had narrower intervals (i.e. TBWs) over which stimuli elicited the illusion. This study then drove 

changes in individual illusion susceptibility using transcranial alternating current stimulation 

(TACS), causally linking participant’s perceptual thresholds with oscillatory speed. In other 

words, experimentally accelerating the participant’s internal oscillatory clock made them more 

sensitive to temporal asynchrony and thus less susceptible to the illusion.  

Notably, none of the aforementioned studies indicate a role for absolute oscillatory phase in 

audiovisual time perception, even when studies have been specifically designed a-priori to 

examine phase (Grabot, Kosem, Azizi, & van Wassenhove, 2017). This lack of an absolute phase 

effect is interesting given the importance of phase for temporal perception within sensory 

modalities using nearly identical perceptual tasks such as tactile simultaneity judgment 

(Baumgarten, Schnitzler, & Lange, 2015) and the profound temporal rhythmicity phase 

instantiates in primary cortices (Lakatos et al., 2007). It is possible that audiovisual phase effects 

are more complex or individualized due to the cross-modal nature of processing (i.e. a phase co-

modulation effect, see (Henry, Herrmann, & Obleser, 2014) for an auditory example). Such a 

relationship is suggested by work showing oscillatory phase effects for auditory speech 

perception, which are highly consistent with audiovisual phase reset (Ten Oever & Sack, 2015). 

In this study, theta phase shaped syllable perception for ambiguous syllables, but the absolute 

phase angles were strongly individualized. In a true audiovisual experiment, potentially 

individualized phase differences for each modality might compound, greatly obscuring the 

influence of phase. Phase individualization in multisensory processing is also suggested by the 

results reported in (Kambe, Kakimoto, & Araki, 2015), which found increases in post-stimulus 

phase consistency (quantified via inter-trial phase coherence [ITC]) in the beta band at central 

electrodes when flashes and beeps were perceived as simultaneous, but no relationship to a 



 

44 

 

 

specific phase angle. It is also possible that individual variability in audiovisual simultaneity 

thresholds (Powers et al., 2009; Stevenson & Wallace, 2013), which has been suggested to be a 

trait level variable (Grabot & van Wassenhove, 2017), obscures phase dependency effects. As an 

example of such a phenomenon, individualized and inverting differences were found for alpha 

power between correct and incorrect judgments in the auditory cortex during audiovisual TOJ 

(Grabot et al., 2017). In other words, the sign of oscillatory power difference flips depending on 

the participant’s inherent response bias for audiovisual order, and a similar flip for phase may be 

at work. Clarifying the role of phase in explicit multisensory timing remains an important goal. 

Importantly, latency and oscillatory timing models are unlikely to be exclusive or exhaustive, 

and work is ongoing to characterize the way temporal structure and stimulus encoding interact 

(for examples see: (Lakatos et al., 2008; Marchant & Driver, 2013; D. M. Simon, Wallace, M. 

T., 2017)). The current work also makes contributions to this topic by beginning to disentangle 

the relative timing and nature of temporal encoding in the human brain. Combined with recently 

developed animal models of audiovisual temporal processing and perception (Schormans et al., 

2016) there are now promising targets for interrogating how the brain encodes cross modal 

temporal structure.  

 

Explicit Timing Engages Distributed Neural Networks 

Regardless of the underlying physiological timing mechanisms, it is clear that a broadly 

distributed network of regions is involved in the processing of timing information. The majority 

of evidence for this comes from fMRI and positron emission tomography (PET) studies, which 

have superior spatial precision to EEG/MEG. These studies have shown that audiovisual 

synchronicity modulates brain responses in areas including the STS, SC, anterior insula, and 
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intraparietal sulcus (Bushara, Grafman, & Hallett, 2001; Macaluso et al., 2004; L. M. Miller & 

D'Esposito, 2005). Activity in the temporal-parietal junction and dorsolateral prefrontal cortex 

have also been reported (Adhikari, 2013). Additionally, the Blood Oxygen Level Dependent 

(BOLD) response in some of these regions, in particular the STS, demonstrates a tuning function 

with substantial similarity to the TBW found in behavioral studies (Stevenson et al., 2010). 

Differences in activity in these areas also emerge for stimulus trains when temporal 

correspondence is manipulated (Marchant, Ruff, & Driver, 2012; Noesselt et al., 2007), 

indicating that they are sensitive to temporal correspondence across modalities rather than just 

stimulus ordering. Notably, the brain regions recruited when judging audiovisual synchronicity 

(i.e. SJ task, occurrence at the same time) only partially overlap with those recruited by cross-

modal interval timing for auditory and visual stimuli, which includes the basal ganglia and 

thalamus in addition to the expected superior temporal cortex (D. L. Harrington, Castillo, Fong, 

& Reed, 2011). This serves as evidence that perceptual processes might be more strongly 

localized in cortical areas, while the fundamental circuitry for sensory interval timing might be 

housed in subcortical circuits such as the basal ganglia, as proposed by the oscillator model 

(Kononowicz & van Wassenhove, 2016). 

Building upon this, a limited number of these studies have attempted to disambiguate 

processing of synchrony (i.e. physical stimulus characteristics) from processing of subjective 

perception (i.e. whether the percept is integrated and reported as occurring at the same time). 

One such study found that STS activation in particular is seemingly more related to subjective 

temporal perception than physical timing (Stevenson et al., 2011). Specifically, this study found 

that the fMRI BOLD response in STS for a mildly asynchronous but perceptually fused stimulus 

was indistinguishable from a truly synchronous stimulus. Similar results were found contrasting 
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a mildly asynchronous but perceptually unfused stimulus with a highly asynchronous stimulus. 

Additional similar results linking the fMRI BOLD response in STS to subjective perception have 

also been demonstrated for audiovisual motion (Bushara et al., 2003). The STS is also 

hypothesized to be one of the cortical generators contributing to differences in evoked auditory 

responses to speech between fused and unfused percepts (Huhn et al., 2009). These studies 

establish that activity in STS in particular may be more closely related to perception than to 

stimulus processing, an important distinction given the generally accepted integrative functions 

of STS.  

Lastly, just as SJ and TOJ tasks provide different behavioral results (Love et al., 2013; 

Stevenson & Wallace, 2013; van Eijk et al., 2008), the neural networks engaged by the two tasks 

have recently been elucidated to differ. In an fMRI study, (Binder, 2015), the author found that 

additional parietal and parieto-occipital brain regions were activated for TOJ that were not 

activated for SJ. The reverse was not true, however, as no SJ specific regions were found. This 

result suggests that additional cognitive resources are utilized in the TOJ task, possibly for 

forming multiple discrete sensory representations before comparing timing. This study also 

shows, for the first time, that top down task demands drive the selection of brain networks for 

processing audiovisual temporal relationships, providing a ready explanation for why SJ and 

TOJ produce distinct behavioral results. Importantly, this result has also been replicated to a fair 

degree in the unisensory domain using tactile TOJ and SJ (Miyazaki et al., 2016), although the 

authors did find SJ specific activation in the insula. Top down network construction for temporal 

processing can thus be conceived of as distinct from stimulus properties, a notion that was 

further examined in the current work. 
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Disruptions of Audiovisual Temporal Processing in Clinical Populations 

Multisensory temporal function has recently emerged as an important topic of study in a number 

of clinical populations that present changes in sensory function. In particular, alterations in 

sensory function, including disruptions in temporal function, have been hypothesized to disrupt 

the development of higher order cognitive functions in developmental disabilities (Wallace & 

Stevenson, 2014). In autism spectrum disorder (ASD), for example, there are a number of 

behavioral studies indicating that auditory and visual cues for ecologically important speech 

stimuli are not integrated in the same manner as they are in typically developing (TD) 

individuals (Foxe et al., 2015; Magnee, de Gelder, van Engeland, & Kemner, 2008; Smith & 

Bennetto, 2007; Stevenson, Siemann, Woynaroski, et al., 2014a; Williams, Massaro, Peel, 

Bosseler, & Suddendorf, 2004; Woynaroski et al., 2013). Generalized disruptions in sensory 

function have also recently gained increased prominence in terms of diagnostic criteria for ASD 

(American Psychiatric Association, 2013). A key finding stemming from investigation using the 

SJ task is that children with ASD have audiovisual temporal acuity comparable to that of TD 

children for impulse stimuli and intermediate stimuli consisting of a hammer strike and the 

associated sound. For audiovisual speech stimuli, however, children with ASD have a 

significantly larger TBW (Stevenson, Siemann, Schneider, et al., 2014). In other words, for 

ecologically important speech stimuli children with ASD are less able to segregate stimuli with 

substantial temporal offsets than their TD peers. The speech specificity of this finding is also 

consistent with previous work indicating differences in processing between speech and non-

speech stimuli in ASD (Mongillo et al., 2008).  

Similar enlargement of the TBW in ASD has also been found in a number of other 

approaches to multisensory temporal processing (Bebko, Weiss, Demark, & Gomez, 2006; de 
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Boer-Schellekens, Eussen, & Vroomen, 2013; Kwakye, Foss-Feig, Cascio, Stone, & Wallace, 

2011), including for audiovisual illusions (Foss-Feig et al., 2010; Woynaroski et al., 2013). For 

example, by parametrically varying the SOA between the flash and the second beep it was 

discovered that the temporal tolerance of the sound induced flash illusion is substantially 

elevated in individuals with ASD (Foss-Feig et al., 2010). In natural environments, such as a 

classroom, this increased window of temporal integration might result in incorrect or 

inappropriate integration of stimuli that should otherwise be perceptually segregated, such as 

visual and auditory speech originating from different speakers (Stevenson, Segers, et al., 2017). 

Additional evidence of audiovisual temporal dysfunction in ASD is provided by the fact that, 

during the SJ task, rapid recalibration (i.e. single trial adaptation) also does not occur or is 

atypical in individuals with ASD (Noel, De Niear, Stevenson, Alais, & Wallace, 2016; Turi, 

Karaminis, Pellicano, & Burr, 2016). This lack of adaptation indicates that not only is the overall 

precision of temporal acuity reduced in this population for some stimuli, but that adaptive 

processes believed to incorporate the temporal statistics of the natural environment are also 

impaired or function differently.  

Little is currently known about the physiological bases of temporal processing deficits in 

ASD, although differences in neural measures of early multisensory integration for simple 

audiovisual and audiotactile stimuli have been observed in ASD (Brandwein et al., 2013; Russo 

et al., 2010). It has been hypothesized, however, that multisensory temporal function might be 

exceedingly vulnerable to disruptions in oscillatory synchronization processes (D. M. Simon & 

Wallace, 2016). These local (i.e. power) and interregional (i.e. coherence) synchronization 

processes have previously been shown to be associated with a host of unisensory integrative 

deficits in ASD (Peiker et al., 2015; Stroganova et al., 2012; Sun et al., 2012). Individuals with 
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ASD also show atypical neural coherence during resting state (reviewed in: (J. Wang et al., 

2013)) and after sensory stimulation (reviewed in: (D. M. Simon & Wallace, 2016)), strongly 

suggested the possibility of such disruption. Differences in local and regional circuit 

synchronization are thus likely contributors to multisensory temporal dysfunction in ASD. 

In developmental disabilities other than ASD, such as schizophrenia and dyslexia, similar 

reductions in multisensory temporal acuity have been found. For example, individuals with 

dyslexia continue to benefit from auditory flankers during visual-visual TOJ at far greater 

intervals than their TD peers (Hairston, Burdette, Flowers, Wood, & Wallace, 2005). This 

flanking effect is a form of temporal ventriloquism (Morein-Zamir et al., 2003) and these 

differences indicate that auditory stimuli which are perceptually segregated in TD individuals are 

still ‘pulling’ the temporal anchors of visual stimuli for individuals with dyslexia. More recently, 

utilization of the SJ task in adults with dyslexia found modest enlargement of the TBW for both 

speech and non-speech stimuli (Francisco, Jesse, Groen, & McQueen, 2017). These studies 

suggest that there may be a generalized deficit in multisensory temporal integration in dyslexia, 

although additional work in this population is clearly needed given the sparsity of findings. 

Individuals with schizophrenia similarly present an enlarged TBW for audiovisual stimuli when 

tested using both the sound induced flash illusion (Hass et al., 2017) and the SJ task (Martin, 

Giersch, Huron, & van Wassenhove, 2013). Multisensory temporal function has also been shown 

to be associated with other more classical schizophrenia symptoms such as hallucinations 

(Stevenson, Park, et al., 2017). Importantly, generalized multisensory dysfunction in 

schizophrenia is better studied than in dyslexia, supporting that dysfunctional temporal 

processing is but one aspect of more generalized cross-modal processing deficits in this 

population (Balz, Romero, et al., 2016; Foucher, Lacambre, Pham, Giersch, & Elliott, 2007; Roa 
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Romero, Keil, Balz, Gallinat, & Senkowski, 2016; Romero et al., 2016; Stekelenburg, Maes, Van 

Gool, Sitskoorn, & Vroomen, 2013; D. B. Stone, Coffman, Bustillo, Aine, & Stephen, 2014; 

Tseng et al., 2015).  

The commonality of disruptions in multisensory temporal processing across multiple 

developmental disorders provides one of the primary motivations for the investigations pursued 

in the current work. Specifically, it is believed that disruptions in multisensory processes make 

contributions to the development of deficits in higher order social and communicative processes 

that serve as the hallmark of autism spectrum disorder in particular (American Psychiatric 

Association, 2013; Wallace & Stevenson, 2014). It is hoped that a better understanding of the 

neural bases of multisensory temporal processing in adults might lay the foundation for studying 

multisensory temporal processing in clinical disorders and development. Such work is hoped to 

eventually provide tools for identification of sensory dysfunction which might serve an important 

role in early diagnosis and treatment of these disorders.  

 

 

Electroencephalography as a Tool for Studying Multisensory Temporal Processing 

 
Temporal Resolution 

Electroencephalography (EEG) is one of many non-invasive approaches available for 

interrogating multisensory processing in the human brain. Its primary strength is its high 

temporal resolution, which yields a well resolved measure of neural processing (Nunez & 

Srinivasan, 2006). This high temporal resolution affords the ability to both resolve activity 

separately for each of the component sensory stimuli and examination of neural oscillations on 

time scales as short as 10-20 milliseconds. These neural oscillations (Buzsaki & Draguhn, 2004; 
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D. M. Simon & Wallace, 2016) have been increasingly recognized as important contributors to 

processing of sensory inputs and perception. These oscillations at the level of the scalp are 

believed to index synchronization of postsynaptic activity in localized cortical circuits on the 

scale of millimeters or centimeters (Buzsaki, Anastassiou, & Koch, 2012). Successful perception 

of near threshold stimuli has been shown to depend on the phase of these neural oscillations at 

stimulus onset, which links them to local network excitability for visual, auditory, and 

somatosensory stimuli (Ai & Ro, 2014; Henry et al., 2014; Henry & Obleser, 2012; Mathewson, 

Gratton, Fabiani, Beck, & Ro, 2009; Spaak, de Lange, & Jensen, 2014; Strauss, Henry, 

Scharinger, & Obleser, 2015). This consistency across modalities suggests that rhythmicity and 

resonance are intrinsic properties of the nervous system contributing to perception, and are not 

sensory system specific or epiphenomenal of highly localized activity (i.e. action potentials). 

This recognized importance motivates the use of tools with the ability to accurately measure 

these fluctuations, including EEG, MEG, and invasive physiological recordings. Furthermore, 

rhythmicity in neural processing is also believed the play an important role in communication 

between anatomically and functionally distinct cortical networks. Synchronization between these 

networks is an important tool that the brain utilizes to multiplex information (Akam & 

Kullmann, 2014) and information flow between neural networks, controlled through differential 

synchronization, is believed to be an important factor in virtually every facet of human cognition 

(Rodriguez et al., 1999; Siegel, Buschman, & Miller, 2015; Siegel et al., 2012). Given the 

obligatory communication between sensory systems during multisensory integration, utilization 

of tools able to capture transient interregional synchronization is important for understanding the 

mechanistic basis of integration. Advances in signal processing over the last decade have also 

provided a myriad of improved approaches for investigating neural synchronization with EEG. 
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These approaches allow resolving of connectivity with a degree of fidelity that was not 

previously possible, and have permitted new functional insights into neural mechanisms of 

information transfer (for examples of recent advances in the phase and amplitude envelope 

domains see (Hipp et al., 2012; Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 

2011)). In the context of temporal processing tasks that typically utilize discrete stimuli which 

generate powerful evoked responses and obscure connectivity, these sophisticated techniques 

offer the opportunity to partially resolve the brain networks performing these computations. 

 

Physiological Relevance 

As suggested by the oscillatory excitability framework, EEG directly indexes physiological 

processes related to population level neural activity known as the local field potential (LFP; a 

measure of voltage change in proximity to a recording electrode) (Buzsaki et al., 2012). This 

contrasts activity such as the blood oxygen level dependent (BOLD) signal indexed by functional 

magnetic resonance imaging (fMRI) which has less direct physiological correlates (Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001). The LFP is known to indirectly measure activity 

of individual neurons participating in networks, as membrane voltage fluctuations in individual 

neurons are strongly coupled to LFP changes and thus correspond with the degree of input 

required to fire an action potential (X. J. Wang, 2010; X. J. Wang & Buzsaki, 1996). This 

correspondence is particularly strong in the high gamma band which does not penetrate the skull 

easily (Ray & Maunsell, 2011), but high gamma is also known to be coupled to lower frequency 

activity readily indexed by scalp EEG (Canolty et al., 2006; Canolty & Knight, 2010). This 

strong EEG to LFP coupling thus allows the EEG signal to be interpreted somewhat more 

directly in terms of network excitability and yields somewhat more focal inference about the 
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functional role of activation. 

 

Translational Promise 

Lastly, EEG has a substantial degree of portability and ease of use that allows relatively easy 

translation of research findings to pediatric, clinical, and, potentially, non-verbal participants. 

While such populations are not the focus of the current work, translating these findings to 

clinical and pediatric populations was considered an important motivation for the current work 

and thus contributed to the selection of the approach. For example, it is currently known that 

children integrate important multisensory cues such as visual speech to a lesser degree than 

adults, and that integration of these signals has a relatively smooth developmental trajectory 

(Foxe et al., 2015). Investigations utilizing EEG have likewise indicated that neural markers of 

audiovisual speech integration have a protracted developmental time course (Kaganovich & 

Schumaker, 2014; Knowland, Mercure, Karmiloff-Smith, Dick, & Thomas, 2014). Extensibility 

to developmental population is thus an important factor in the selection of EEG for the current 

investigations, given behavioral evidence for a protracted developmental trajectory for 

multisensory temporal acuity (Hillock-Dunn et al., 2016; Hillock-Dunn & Wallace, 2012; 

Hillock et al., 2011; Noel, De Niear, Van der Burg, et al., 2016). Extension to pediatric 

populations also offers to elucidate developmental changes in information transfer underlying 

multisensory integration, which to date has not been investigated. Additionally, dysfunction of 

multisensory temporal processing and audiovisual speech integration has been noted in a number 

of clinical populations such as ASD (Foxe et al., 2015; Stevenson, Siemann, Schneider, et al., 

2014), and schizophrenia (Hass et al., 2017; Ross, Saint-Amour, Leavitt, Molholm, et al., 2007; 

van Wassenhove et al., 2005). These same clinical populations have been identified to have 



 

54 

 

 

deficits in the formation of local and long range oscillatory neural networks readily assayed with 

EEG or MEG (D. M. Simon & Wallace, 2016; P. J. Uhlhaas & Singer, 2006; P. J. Uhlhaas, 

Singer W., 2007; P. J. Uhlhaas & Singer, 2012). Preliminary work also indicates that numerous 

aspects of the EEG signal might be of substantial utility for early diagnosis of ASD in particular 

(Bosl, Tierney, Tager-Flusberg, & Nelson, 2011; Damiano C.R. et al., 2017; Gabard-Durnam, 

Tierney, Vogel-Farley, Tager-Flusberg, & Nelson, 2015; Righi, Tierney, Tager-Flusberg, & 

Nelson, 2014; D. M. Simon, Damiano, et al., 2017). The ability to extend the current approaches 

to clinical populations was thus a crucial factor in the experimental designs used and the 

selection of EEG. 

 

 

Introduction to the Current Dissertation Work 

 
The current dissertation work is motivated by a growing body of literature indicating that 

multisensory temporal processing in particular is disrupted in developmental disabilities such as 

ASD (Foss-Feig, Heacock, & Cascio, 2012; Kwakye et al., 2011; Noel, De Niear, Stevenson, et 

al., 2016; Stevenson, Siemann, Schneider, et al., 2014; Stevenson, Siemann, Woynaroski, et al., 

2014b), schizophrenia (Hass et al., 2017; Martin et al., 2013) and dyslexia (Francisco et al., 

2017; Hairston et al., 2005). These same clinical populations also show disruptions in 

multisensory integration for signals where temporal cues are of high importance, such as 

audiovisual speech (Foxe et al., 2015; Ross, Saint-Amour, Leavitt, Molholm, et al., 2007; 

Stevenson, Siemann, Woynaroski, et al., 2014a; Woynaroski et al., 2013). This body of work 

also strongly suggests that dysfunction in multisensory temporal processing may make 

substantial contributions to clinically relevant core symptoms of these disorders such as 
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disrupted social communication in ASD (Wallace & Stevenson, 2014; Woynaroski et al., 2013). 

As multisensory temporal training has been proposed as a method for ameliorating these deficits 

(Wallace & Stevenson, 2014), identification of neural markers for specific stages of multisensory 

processing is also an important step towards neurophysiological validation to interventions. 

Unfortunately, limitations in our understanding of how the typically developing brain 

processes multisensory temporal information impairs our ability to construct investigations into 

the neural basis and developmental time course of these deficits. A better understanding of these 

processes is thus the primary focus of this volume, which represents the first comprehensive 

investigation of temporal perception of audiovisual speech using EEG. To approach the objective 

of comprehensively characterizing the tuning, top-down regulation, and plasticity of audiovisual 

temporal processing in adults we designed a series of experiments utilizing the SJ task. In this 

task, participants report whether sensory stimuli presented with varying degrees of temporal 

offset occurred synchronously or asynchronously. This task has been utilized extensively in the 

literature in both typically and atypically developing individuals to characterize TBWs, and is 

strongly believed to index multisensory temporal processing (Vroomen & Keetels, 2010; 

Wallace & Stevenson, 2014). Crucially, this task is highly flexible, in that sensory stimuli of 

varying content such as flashes and beeps or audiovisual speech can be presented within the 

same experimental framework. Each experiment was designed to isolate and evaluate one or 

more individual stages of audiovisual temporal processing through manipulations to the temporal 

alignment of the physical stimuli and changing psychophysical task demands. We collected 

physiologically interpretable measures of neural processing by concurrently recording EEG as 

participants performed these tasks. Critically, we also examined how neural processing related to 

participant’s perceptual judgments, thus establishing direct links between neural activity and 



 

56 

 

 

participant’s behavior. 

 

The Neural Correlates of Temporal Integration of Audiovisual Speech  

In our first experiment (experiment 1, chapter 2), we examined the degree to which neural 

responses to auditory speech change with the addition of visual speech. Previous work has 

shown that neural responses to auditory speech are of smaller magnitude in the presence of 

congruent visual speech (Baart, 2016; Besle et al., 2004; van Wassenhove et al., 2005). 

Additionally it is also known that this sub-additive effect is absent given a substantial auditory 

leading misalignment (Pilling, 2009). The magnitude of this suppression effect across a full 

range of temporal alignments, however, has not previously been explored. To determine the 

limits of temporal tolerance for this response suppression effect, we employed a combination of 

audiovisual speech stimuli and manipulated the temporal relationship between the auditory and 

visual streams. This experiment served to construct, for the first time, an accurate neural 

description of temporal tolerance in audiovisual speech integration with remarkable similarities 

to the TBW found in behavioral studies. We also identified, for the first time, that low theta band 

power occurring relatively late after stimulus onset depends on temporal alignment between the 

sensory inputs. Critically, we were then able to relate the strength of this theta band activity to 

individual differences in multisensory temporal acuity. This study thus simultaneously elucidated 

the effects of temporal integration in early cortical regions while also identifying the first known 

correlate of individual temporal acuity for audiovisual speech. 

 

Top-Down Control of Multisensory Information Flow 

In our next study (experiment 2, chapter 3), we sought to extend our previous work by 
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determining whether the theta band correlate of temporal processing isolated in experiment 1 

depended on directed processing of audiovisual temporal structure. We combined a reduced 

experimental design from experiment 1 with an additional speeded response condition, and 

alternated participants randomly between these task demands. This approach allowed us to 

contrast physically identical stimuli during which the top down demand for processing of 

multisensory temporal structure was either present or absent. We demonstrate for the first time 

that the low theta power we previously linked to participant performance is modulated by 

temporal relationships only when participants are actively attending temporal structure. We 

further demonstrate that phase coupling between the power modulated local network and other 

brain regions differs based on task demands. Both local and interregional network 

synchronization thus serve to support active processing of audiovisual temporal concordance. 

These results establish a novel and critical role of top down regulation of neural coherence in 

multisensory temporal acuity tasks. 

 

Single Trial Adaptation as a Manifestation of Plasticity in Sensory Evidence Accumulation 

Lastly, in a third experiment (experiment 3, chapter 4), we then sought to investigate the neural 

basis of single trial plasticity in audiovisual temporal perception (Van der Burg et al., 2013; Van 

der Burg & Goodbourn, 2015; Van der Burg et al., 2014). Specifically, we combined the 

experimental approach employed in experiment 1 with an analytical approach previously utilized 

to elucidate the physiological bases of single trial plasticity (D. M. Simon, Noel, & Wallace, 

2017). Relative to the previous work, we utilized audiovisual speech stimuli, which have a 

substantially larger TBW than flashes and beeps (Stevenson & Wallace, 2013). This larger 

binding window allows for an accentuated degree of plasticity in individual temporal 
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recalibration, which has been shown to correlate with TBW width (D. M. Simon, Noel, et al., 

2017; Van der Burg et al., 2013). Further, by employing a speeded design we were able to model 

the evolving the decisional process using the drift diffusion model (Ratcliff & McKoon, 2008; 

Vandekerckhove & Tuerlinckx, 2007, 2008), which posits that choice and response time are 

based on the temporal evolution of an underlying decision variable which integrates sensory 

evidence over time. Lastly, audiovisual speech stimuli have fewer sharp transients in stimulus 

energy than flashes and beeps, affording a uniquely temporally resolved view of the unfolding 

decisional process that is obscured for impulse stimuli (Kelly & O'Connell, 2013; O'Connell, 

Dockree, & Kelly, 2012). Together these strengths allowed us to elucidate that single trial 

plasticity affects neural processes associated with decision making, rather than early sensory 

processing. Importantly, we were able draw links between changes in these physiological 

processes and drift rate, which quantifies the speed and direction of the internal decision 

variable. This study thus established for the first time that single trial plasticity in temporal 

perception occurs because the internal decision signal which determines participant choice 

incorporates the sensory past into its trajectory. 

Together these three experiments serve to elucidate multiple aspects of the neural basis of 

multisensory temporal processing in the human brain. These aspects range the full span from 

changes in processing in initial auditory cortical circuits, to transmission of timing information 

between synchronized brain networks, to the accumulation of sensory evidence controlling 

behavioral responses. These stages of neural processing span the full breadth of the sensorimotor 

hierarchy and highlight the importance of sensory integration at every stage of the transformation 

from sensory inputs to motor outputs. In sum, they offer a novel and unique perspective into how 

temporal factors shape neural activity and contribute to appropriate and robust integration of 
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audiovisual sensory inputs. Together these studies also offer, for the first time, a substantial 

number of promising targets for neurophysiological study in clinical populations with 

multisensory temporal processing deficits, such as ASD, schizophrenia, and dyslexia. 
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CHAPTER II 

 

 

INTEGRATION AND TEMPORAL PROCESSING OF ASYNCHRONOUS 

AUDIOVISUAL SPEECH 

 

 

The contents of this chapter are drawn from a published manuscript in the Journal of Cognitive 

Neuroscience: 

Simon, D.M., Wallace M.T., Integration and Temporal Processing of Asynchronous Audiovisual 

Speech 

 

 

Abstract 

 
Multisensory Integration of visual mouth movements with auditory speech is known to offer 

substantial perceptual benefits, particularly under challenging (i.e., noisy) acoustic conditions. 

Previous work characterizing this process has found that event related potentials (ERPs) to 

auditory speech are of shorter latency and smaller magnitude in the presence of visual speech. 

We sought to determine the dependency of these effects on the temporal relationship between the 

auditory and visual speech streams using electroencephalography (EEG). We found that 

reductions in ERP latency and suppression of ERP amplitude are maximal when the visual signal 

precedes the auditory signal by a small interval, and that increasing amounts of asynchrony 

reduce these effects in a continuous manner. Time-Frequency analysis revealed that these effects 



90 

 

 

 

are found primarily in the theta (4-8 Hz) and alpha (8-12 Hz) bands, with a central topography 

consistent with auditory generators. Theta effects also persisted in the lower portion of the band 

(3.5-5 Hz), and this late activity was more frontally distributed. Importantly, the magnitude of 

these late theta oscillations not only differed with the temporal characteristics of the stimuli, but 

also served to predict participant’s task performance. Our analysis thus reveals that suppression 

of single trial brain responses by visual speech depends strongly on the temporal concordance of 

the auditory and visual inputs. It further illustrates that processes in the lower theta band, which 

we suggest as an index of incongruity processing, might serve to reflect the neural correlates of 

individual differences in multisensory temporal perception. 

 

 

Introduction 

 
Audiovisual Integration of Speech Signals 

We live in a complex environment in which events frequently generate signals in multiple 

sensory modalities. Multisensory integration, the process of combining these sensory inputs to 

form a single coherent percept, has been shown to offer numerous behavioral and perceptual 

advantages in a variety of tasks (Murray & Wallace, 2012). A particularly striking and 

ecologically important example of this process is the integration of visual speech (i.e. mouth 

movements) with auditory speech. In acoustically challenging environments, the integration of 

these signals has been shown to substantially facilitate speech comprehension (Cherry, 1953; 

Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007). The presence of visual inputs is also known 

to play an important role in assisting in the process of stream segregation, in which features of 

selectively attended auditory signals are grouped together while unattended signals are filtered 
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out (Shinn-Cunningham, 2008).  

An important factor facilitating these integrative processes is that auditory and visual speech 

signals share an obligatory temporal correlation due to the nature of speech production. This 

correlation is highly intuitive and well quantified in natural speech (Chandrasekaran, Trubanova, 

Stillittano, Caplier, & Ghazanfar, 2009; Schwartz & Savariaux, 2014) – when the mouth is open 

the speech envelope (i.e. the sound amplitude) is large, and when the mouth is closed the speech 

envelope is small. This temporal correlation is primarily found at relatively low frequencies (1-5 

Hz), which correspond with the temporal structure imposed by the basic units of speech, 

syllables and words (Chandrasekaran et al., 2009). Given this seemingly useful temporal 

structure, a number of studies have aimed to investigate the degree to which temporal 

concordance is important for multisensory speech processing (Munhall, Gribble, Sacco, & Ward, 

1996; Ten Oever, Sack, Wheat, Bien, & van Atteveldt, 2013; van Wassenhove, Grant, & 

Poeppel, 2007). These studies have elucidated that integration, as measured through a number of 

psychophysical tasks, occurs with a degree of temporal tolerance around true simultaneity. To 

capture the temporal interval within which auditory and visual signals can be perceptually 

integrated and bound, the construct of a temporal binding window (TBW) has been put forth 

(Wallace & Stevenson, 2014). The TBW has been shown to be asymmetric for speech stimuli 

and larger for temporal asynchronies in which vision leads audition. This is both consistent with 

the statistics of the natural environment, in which sound travels more slowly than light, as well as 

the causal structure of speech signals in which articulatory movements of the vocal apparatus 

generally precede sounds (Chandrasekaran et al., 2009; Schwartz & Savariaux, 2014). 

 

Neural Manifestations of Audiovisual Speech Integration 
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This recognized ecological importance of vision for bolstering the processing of speech signals 

has spurred investigations regarding how the presence of visual inputs modifies neural 

processing of the acoustic signal. Early investigations revealed that the presence of visual speech 

attenuates the magnitude of early brain responses to auditory speech (Besle, Fort, Delpuech, & 

Giard, 2004; van Wassenhove, Grant, & Poeppel, 2005) and may reduce the latency of individual 

processing stages (van Wassenhove et al., 2005). A meta-analytical approach has indicated that 

these changes in processing magnitude and latency are present over a wide range of experimental 

designs and task demands (Baart, 2016), reinforcing that reduction in neural response and 

reduced onset latency is a robust and generalized indicator of audiovisual speech integration. A 

notable feature of this integrative effect is the sub-additive nature of the interaction, in which the 

absolute magnitude of the multisensory neural response is substantially smaller than its 

constituent components (i.e. AV < A+V). This sub-additivity contrasts starkly with the super-

additive neural responses often seen for non-speech stimuli (Cappe, Thut, Romei, & Murray, 

2010). This suggests important mechanistic differences in the processing and integration of 

multisensory stimuli with informative anticipatory information, such as speech (Stekelenburg & 

Vroomen, 2007).  

The presence of visual speech has also been shown to contribute to the ability of the brain to 

entrain to the auditory speech envelope. Speech is constructed of elements (syllables and words) 

that are produced in a semi-rhythmic stream. The brain has been shown to utilize this 

information by locking the phase of neural activity to the phase of the speech rhythm. This 

process, known as entrainment, is believed to form the backbone of temporal attention (Jones, 

Moynihan, MacKenzie, & Puente, 2002), processing ‘to the beat’ (Breska & Deouell, 2016), and 

for speech serves to selectively amplify future speech signals occurring at the correct phase 
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(Giraud & Poeppel, 2012). The presence of visual speech has also been shown to facilitate this 

entrainment process when multiple speakers are present (Zion Golumbic, Cogan, Schroeder, & 

Poeppel, 2013; E. M. Zion Golumbic et al., 2013), as well as to directly entrain neural 

oscillations (Park, Kayser, Thut, & Gross, 2016), indicating that the visual rhythm can be used to 

disambiguate which portions of the acoustic envelope should be entrained to (Schroeder, 

Lakatos, Kajikawa, Partan, & Puce, 2008). Importantly, the phase of these rhythms has been 

shown to causally affect speech perception under challenging conditions. When the auditory 

signal is perceptually ambiguous, the final speech percept depends on the phase of these ongoing 

spontaneous oscillations (Ten Oever & Sack, 2015). In a further entrainment experiment, it was 

then established that acoustic entrainment generates rhythmic fluctuations in perceptual 

outcomes at the entrained frequency (Ten Oever & Sack, 2015). These experiments establish low 

frequency oscillations as more than simple neural resonance or a byproduct of meaningful 

acoustic processing, and further indicate that visual influences on these oscillations likely have 

perceptual consequences.  

For audiovisual integration these cortical entrainment processes have been shown to occur 

over an extended window of time (>400ms) (Crosse, Di Liberto, & Lalor, 2016). Entrainment 

also exhibits the greatest amount of audiovisual integration at the low frequencies capable of 

capturing the slow cycle times present in naturalistic visual speech (Crosse, Butler, & Lalor, 

2015). Importantly, this neural integration time is substantially greater than the temporal 

integration time seen for auditory speech processing under challenging acoustic conditions (~200 

ms) (Ding & Simon, 2013a). This extended audiovisual window strongly suggests that 

audiovisual speech integration functions as a temporally privileged operation, which may be 

critical given that audiovisual speech has a variable temporal structure for the constituent 
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auditory and visual components (Schwartz & Savariaux, 2014; Ten Oever et al., 2013). 

 

Motivations for the Current Study 

Despite the robustness of the finding that visual speech reduces the magnitude of neural 

responses to auditory speech, the degree to which this depends on the temporal structure of the 

auditory and visual signals has not been fully explored. Previous work has established that an 

ecologically implausible 200 ms auditory lead precludes this effect (Pilling, 2009), but did not 

systematically determine how changes in temporal structure influenced the effect. Given the 

strong characterizations of temporal tolerance in the behavioral domain (Vroomen & Keetels, 

2010; Wallace & Stevenson, 2014), we hypothesized that a similar temporal window for 

response reduction would be present in the associated neural measures. We further hypothesized 

that these effects would be strongest at a small visual lead rather than true synchrony. This would 

be consistent with the natural statistics of audiovisual speech signals, predictive coding accounts 

of audiovisual integration (Talsma, 2015), and numerous behavioral accounts in which 

participants judge slight visual leads to be ‘most synchronous’, a point often referred to as the 

point of subjective simultaneity (PSS) (Vroomen & Keetels, 2010). 

We thus sought to determine the degree to which temporal coincidence between auditory and 

visual inputs mediates the multisensory integration of speech signals measured via reduction in 

neural response amplitude. To do so, we recorded EEG from human participants while they 

performed a psychophysical simultaneity judgment (SJ) task featuring audiovisual speech 

stimuli. Our results indicate that reductions in response amplitude afforded by the presence of 

visual speech operate within an asymmetric temporal window with striking similarities to the 

TBW reported in behavioral studies. The width of this window also strongly aligns with the 
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cycle times of the frequencies with strongest temporal correlation in natural audiovisual speech. 

We further identify a novel theta band incongruity signal present in later stages of processing, 

which is of greatest amplitude in conditions in which temporal misalignment is present. 

Crucially, we link the strength of this signal to participant’s ability to identify asynchronous 

stimuli correctly. Our results shed new light on the neural correlates of the temporal tolerance for 

audiovisual speech integration by elucidating the nature of temporal integration in multiple 

frequency bands and time windows corresponding with distinct stages of cortical processing. 

 

 

Methods and Materials 

 
Participants 

Twenty-eight typically developing adults participated in the study. All participants reported that 

they were right handed, had normal or corrected-to-normal vision, and normal hearing. Two 

participants were excluded from analysis due to behavioral performance indicating they did not 

correctly perform the task and 1 participant did not complete the task, leaving a total of 25 

analyzed participants (16 women) with a mean age of 22.08 years (± 4.21). The study was 

conducted in accordance with the declaration of Helsinki, and informed written consent was 

obtained from all participants. All procedures were approved by the Vanderbilt University 

institutional review board. 

 

Psychophysical Task 
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Participants performed a speeded 2 alternative forced choice SJ task (Fig 2-1). The experimental 

stimuli consisted of an audiovisual movie of a woman saying the syllable ‘BA’, including all pre-

articulatory movements, with a resolution of 720 x 1280 and a duration of 2000ms. We selected 

‘BA’ as our stimulus because it is a highly visually specified syllable (i.e. it is easily lip read) 

which may generate stronger integration effects than less visually specified syllables (van 

Wassenhove et al., 2005). The movie was presented on a 24-inch monitor (ASUS VG248QE) 

Figure 2-1 Speeded Simultaneity Judgment Paradigm 
A) Experimental Timeline. Trials began with a 1700-2000 ms period of a still face consisting 

of the first video frame, followed by the 2s video. Following the movie there was a 750 
ms period of additional still face consisting of the last movie frame. If participants had 
not yet responded, a response screen appeared for up to 2500ms. Participants were 
explicitly told to respond as quickly and accurately as possible and that the response 
screen was an indicator they were responding too slowly. 

B) Auditory signal waveform for the ‘BA’ syllable used for the experiment 
C) Temporal alignment between the auditory signal and visual mouth movements for the 

‘BA’ syllable used for the experiment. Pre-articulatory movements began 166ms before 
sound onset. 

D) Method for creation of stimulus onset asynchronies (SOAs). To create auditory leads the 
visual stimulus was pushed backwards in time by padding the movie with additional still 
frames. Similarly, visual leads were created by pushing the auditory stimulus backwards 
in time through zero padding of the sound waveform. Total movie stimulus duration was 
kept constant at 2 seconds by removing still frames from the end of the movie for 
auditory leads. 
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with a refresh rate of 60 Hz at a distance of 1 meter. The woman’s face was central on the 

monitor and occupied an area approximately 12 cm high by 8.5 cm wide (approximately 6.8° x 

4.8° of visual angle), while the open mouth occupied an area approximately 1.75 cm high by 3 

cm wide (approximately 1° x 1.7° of visual angle). The auditory portion of the movie was 

presented at normal conversational volume (~65dB) through bilateral speakers 1 meter from the 

participant’s head. Trials began with presentation of a still face consisting of the first video frame 

for between 1700 and 2000 ms with a uniform distribution. This was followed by the audiovisual 

movie, with a duration of 2000 ms. Following the movie, a still face consisting of the last video 

frame was presented for 750 ms. If no response was given by the end of the still face period a 

response screen appeared for a maximum of 2500 ms or until a response was given. Participants 

were instructed to fixate on the mouth and to use their right hand to indicate whether the stimuli 

were perceived to occur at the same time (i.e., synchronously) or at different times (i.e., 

asynchronously) via keyboard button press. Participants were also explicitly told to respond as 

quickly and accurately as possible, and that the appearance of the response screen was an 

indicator that their responses were too slow. All participants completed a practice block before 

the main experiment. 

To create the experimental temporal asynchronies, we manipulated the audiovisual stimulus 

by delaying either the visual stimulus (to create an AV trial) or delaying the auditory stimulus (to 

create a VA trial). We created 6 asynchronies ranging from audition leading vision by 450 ms 

(A450V) to vision leading audition by 450 ms (V450A) in steps of 150 ms, resulting in a total of 

7 conditions including the original movie featuring synchronized stimuli. Blocks consisted of 

105 stimuli presented in a random order and participants completed 13 or 14 blocks, for a total of 

1365 or 1470 trials. Stimulus onset for all stimuli was considered relative to the leading stimulus. 
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That is, for auditory leads stimulus onset was at the time of auditory onset, while for visual leads 

stimulus onset was the onset of the video frame associated with auditory onset in the original 

video. These events occurred simultaneously in the synchronous video. In other words, time 0 

corresponded with the first point at which task relevant information was present. 

 

Behavioral Data Analysis 

We began data analysis by first excluding trials in which no response was given and trials in 

which response times were less than 150 ms. We then excluded, on a per condition and 

participant basis, trials with response times more than 3 standard deviations above that 

participant’s mean response time. We also excluded EEG data using these same response time 

criteria. Together these procedures resulted in an exclusion of 10.36 ± 3.19 trials per participant. 

We then calculated for each participant the percentage of trials in each condition in which they 

indicated the stimulus occurred synchronously. For each participant we then fit a Gaussian 

distribution to the reported rate of synchronies in all 7 conditions using the Matlab fit.m function 

with free parameters of amplitude, mean, and standard deviation. The standard deviation of this 

distribution was taking as the temporal binding window (TBW) width and its mean as the point 

of subjective simultaneity (PSS). We note that TBWs are known to be asymmetric, but we 

utilized a symmetric Gaussian fit given the limited number of data points (7 total SOAs), which 

impairs the reliability of asymmetric fitting procedures. We also calculated the full width at 75 

percent maximum (FW75M), equivalent to 1.517 standard deviations, for each Gaussian 

distribution. 

Additionally, we calculated mean participant response time for each condition. Response 

time was calculated from onset of the auditory stimulus for conditions with auditory leads 
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(A450V, A300V, and A150) and synchronous stimulus onset (AV). For visual leads, response 

times were calculated from onset of the video frame where auditory onset would have occurred, 

had it not been delayed. In all conditions, response times thus began at the point at which task 

relevant information was first available. We compared response times across conditions using 

repeated measures analysis of variance (ANOVA) with follow-up paired sample t-tests. 

 

EEG Recording and Processing 

Continuous EEG was recorded from 128 electrodes referenced to the vertex (Cz) using a Net 

Amps 400 amplifier and Hydrocel GSN 128 EEG cap (EGI systems Inc.). Data were acquired 

with NetStation 5.3 with a sampling rate of 1000 Hz and were further processed using MATLAB 

and EEGLAB (Delorme & Makeig, 2004). Continuous EEG data were band-pass filtered from 

0.15 to 50 Hz with a 6 dB roll-off of 0.075 to 50.075 Hz using the EEGLab firfiltnew.m 

function, which implements a bi-directional zero-phase finite impulse response filter. Epochs 3s 

long from 1000 ms before to 2000 ms after onset of the first stimulus were then extracted. 

Artifact contaminated trials and bad channels were identified and removed through a 

combination of automated identification of trials in which any channel exceeded +/- 100 μV and 

rigorous visual inspection. Data were then recalculated to the average reference and submitted to 

independent component analysis (ICA) using the Infomax algorithm (Jung, Makeig, Humphries, 

et al., 2000; Jung, Makeig, Westerfield, et al., 2000) (0.5E-7 stopping weight, 768 maximum 

steps). Lastly bad channels were reconstructed using spherical spline interpolation (Perrin, 

Pernier, Bertrand, Giard, & Echallier, 1987) and data were re-inspected for residual artifacts. 

Overall a mean of 1081 (79% ± 9.5%) of trials were retained, while 4.17 (SD ± 2.42) channels 

and 10.56 (SD ± 4.14) Independent components were removed per participant. There was no 
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difference in the number of trials accepted per condition across participants (F6,144 = 1.46, p = 

0.196).  

 

ERP Analysis 

Event related potentials were calculated by averaging trials for each condition in the time 

domain. To reduce the possibility of brain responses to the pre-articulatory mouth movements 

contaminating the baseline, we baseline corrected ERPs using period from 300 ms to 100 ms 

before onset of the first stimulus. We focused our ERP analysis on auditory event related 

potentials based on previous literature showing they are moderated by concurrent visual speech 

(Baart, 2016; Besle et al., 2004; van Wassenhove et al., 2005). 

 

Peak Amplitude of Auditory Event Related Potentials. 

We extracted the amplitude of event related potentials by defining windows based on canonical 

brain responses and averaging amplitude within those windows. For the N1 component, we used 

a window of 90 to 130 ms after auditory stimulus onset. For the P2 component, we used a 

window of 160 to 240 ms after auditory stimulus onset. For the N2 component, we used a 

window of 250 to 350 ms after auditory stimulus onset. For peak-to-peak voltage differences and 

topographies, we subtracted either the N1 or N2 component from the P2 component. Positive 

values thus indicate greater prominence of the P2 relative to the preceding or following ERP 

component. 

 

Peak Latency of Auditory Event Related Potentials 

We calculated the latency of the N1 and P2 peaks based on previous work indicating they should 
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occur earlier in the presence of a visual stimulus (Baart, 2016; van Wassenhove et al., 2005). We 

identified peaks using the findpeaksG.m function 

(mathworks.com/matlabcentral/fileexchange/11755) with slope threshold = 0.001, amplitude 

threshold = -1.5, and a 5-point boxcar smoothing kernel. The N1 peak was searched in the range 

of 70 to 150 ms and the P2 peak was searched in the range of 160 to 240 ms. In cases where 

more than 1 peak was found or the peak was within 5 ms of the edges of the search range the 

primary peak was selected if unambiguous by the first author (DS) and otherwise treated as 

missing data. For statistical analysis of peak latency, missing data was imputed using the MDI 

toolbox (Folch-Fortuny, Arteaga, & Ferrer, 2016) via trimmed data regression, and analyses 

were repeated with only complete records to confirm results. 

 

Frequency Domain Analysis 

We further examined whether visual inputs modulated brain responses without signal averaging 

using time-frequency analysis. Time Frequency decomposition of single trial EEG data was 

accomplished using convolution with Morlet wavelets with frequencies from 3.5 to 35 Hz in 0.5 

Hz steps. Wavelets had 2.5 cycles at the lowest frequency rising to 9.3 cycles at the highest and 

convolution was performed with a temporal resolution of 10 ms. Power was then decibel 

transformed relative to the -600 ms to -200 ms pre stimulus period.  

 

Re-alignment to Auditory Stimulus Onset 

We present event related potentials (ERPs) and time-frequency representations (TFRs) aligned 

such that time 0 is onset of the leading stimulus and task relevant information. For statistical 

analysis of auditory locked brain responses to stimuli in which visual inputs occurred first, we 
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employed a stimulus re-alignment procedure. Data were re-aligned with conditions in which 

audition occurred first by subtracting the temporal delay from the data time points (i.e. for the 

V150A condition 150 ms was subtracted from the time point values for all data points). This 

results in a new time series in which onset of the auditory stimulus occurs at time 0. Note that 

this re-alignment procedure was performed after baseline correction to prevent potential baseline 

contamination, as these re-aligned time series then had visual stimuli occurring before time 0. 

 

Statistical Analysis 

We performed statistical analysis using paired sample t-tests and repeated measures ANOVAs 

when time windows of interest were known. For analysis of time series data without a pre-

defined window of interest, we utilized nonparametric randomization testing to control for 

multiple comparisons. For the amplitude of evoked potentials, we utilized repeated measures 

ANOVA and performed follow up paired sample t-tests when appropriate. For time-frequency 

representations of single trial data we collapsed in the theta and alpha bands, then performed 

time series testing using non-parametric randomization testing with cluster based correction for 

multiple comparisons (Maris & Oostenveld, 2007). We used the implementation in Fieldtrip 

(Oostenveld, Fries, Maris, & Schoffelen, 2011) with 10,000 randomizations, cluster inclusion 

alpha = 0.05, and a permutation alpha = 0.025. The test statistic used for cluster inclusion was 

dependent sample F multivariate, although we note that the choice of test statistic and cluster 

inclusion threshold do not directly impact the likelihood of a significant finding compared to the 

permutation distribution (Maris & Oostenveld, 2007). Data from 600 ms before to 1050 ms after 

auditory stimulus onset were included in this process. For the theta band, we then performed 

follow-up repeated measures ANOVA testing by collapsing in two separate time windows and 
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then using follow-up paired sample t-tests as appropriate.  

The first time window was the a-priori selected canonical N1 to P2 time region (90-240ms). 

The second time window was 300-650 ms and was selected to account for the remaining 

significant theta power differences while reducing data contamination from the earlier period due 

to the temporal precision of the wavelet transform. We restricted follow-up analysis of this 

second time period to the lower portion of the theta band (3.5–5 Hz) based on visual inspection 

of TFRs which indicated that the majority of the effect was found in the lowest frequencies. For 

completeness, we further analyzed whether temporal windows of 350-650ms or 400-650ms 

yielded different theta band results than our initial analytical selection. For induced alpha power, 

we took an additional step by calculating the first temporal derivative of alpha power to isolate 

the auditory locked power increase from slow induced power decreases clearly attributable to the 

presence of a visual stimulus.  

To estimate the temporal extent of early power effects we fit inverted Gaussian functions to 

the group averaged power data using the Matlab fit.m function with free parameters of 

amplitude, mean, and standard deviation and report the temporal window within 1.517 standard 

deviations (equivalent to the point at which power attenuation effects were at 75% of maximum, 

the FW75M). Finally, we analyzed brain behavior correlations using linear regression (Pearson 

correlation) between participant behavior and time-frequency data averaged over both time and 

frequency. 

 

  

Results 

 
Behavioral Results 
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We began our analysis by compiling reported rates of synchrony for each of the 7 SOAs. 

Consistently with previous experiments, synchronously presented stimuli (i.e., SOA of 0 ms) 

were reported as synchronous most frequently, and increasing rates of asynchrony led to 

increasing rates of reported asynchrony (Conrey & Pisoni, 2006). Gaussian functions were then 

fit to the reported rates of synchrony and were found to fit the individual participant data well 

(96.11 ± 3.33% of variance explained). Mean TBW size across participants, measured as the 

standard deviation of these individual Gaussian functions, was 296.1 ± 97.7 ms. In terms of full 

width 75 percent maximum (FW75M) this window is 449.2ms in width. We also replicated the 

frequently reported asymmetric nature of the temporal binding window as stimuli with a visually 

lead were reported as synchronous more frequently than their auditory first counterparts (mean 

PSS 75.2 ± 33.5 ms) (t-test vs 0; t24 = 11.226, p = 4.902 x 10-11) (Fig 2-2A). Importantly, the 

Figure 2-2 Behavioral results 
A) Mean rate of synchrony reported in each condition. Error bars indicate standard error of 

the mean. 
B) Mean response times for each condition. Error bars indicate standard error of the mean. 

Response time was measured from onset of task relevant information. For auditory leads 
and the synchronous stimulus, this was the onset of the auditory stimulus. For visual 
leads, this was the video frame associated with auditory stimulus onset in the un-edited 
movie stimulus. 

C) Pairwise comparisons of response times between all 7 conditions. Absolute value of the T 
statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. The black line indicate how an individual portion of the grid is 
derived from a paired sample t-test. NS indicates non-significant (p >= 0.05) pairwise 
comparisons. 
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smallest visual lead (V150A) was perceived as synchronous on most trials by the majority of 

participants. Response times were found to differ significantly across conditions (repeated 

measures ANOVA, F6,144 = 24.93, p = 3.8288 x10-20) (Fig 2-2B) and were faster for synchronous 

trials when compared with any of the other asynchronous conditions (all 6 pairwise comparisons 

p < 0.0015). Response times also changed asymmetrically across conditions – increasing the 

asynchrony for visually leading trials resulted in increasing response times, while increasing the 

asynchrony for auditory leading trials resulted in decreasing response times. We present all 

pairwise response time comparisons, masked for significance of p < 0.05 uncorrected in Fig 2-

2C. 

 

Event Related Potentials 

The first step in our EEG analysis focused on the time domain by averaging the signal to derive 

Figure 2-3 Event Related Potentials 
A) Event related potentials at electrode CZ for the synchronous condition (AV, black) and 

the 3 levels of auditory lead (A450V, A300V, A150V). 
B) Event related potentials at electrode CZ for the synchronous condition (AV, black) and 

the 3 levels of visual lead (V150A, V300A, V450A). Note that the auditory ERP is 
delayed by the SOA and that strong positive voltage buildup can be observed. 
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ERPs (Fig 2-3). We chose to focus our analysis on electrode Cz as this electrode is optimally 

positioned to capture auditory event related potentials, and proved to be relatively isolated from 

contamination due to ongoing ERPs from the visual stimulus. Distinct auditory ERPs were 

clearly present in all 7 SOA conditions at this electrode (Fig 2-3A and 2-3B). Despite its relative 

isolation from visual ERPs, strong positive voltage trends, likely a result of parietal voltage 

buildup related to decisional processes, were clearly present in conditions with visual leads (Fig 

2-3B). We thus began our analysis by focusing on the 4 conditions without a visual lead (A450, 

A300V, A150V, and AV). Across these 4 conditions the amplitude of the N1 ERP component 

(90-130 ms) was significantly different (repeated measures ANOVA F3,72 = 25.54, p = 2.3218 

x10-11) (Fig 2-4A). Follow up paired sample t-tests (Fig 2-4B) indicated that differences 

occurred because the smallest auditory lead, A150V, had a smaller N1 (i.e. a less negative 

voltage) than the two larger auditory leads (A450V vs A150V: t24 = 3.412, p = 0.0023; A300V 

vs A150V: t24 = 5.056, p = 3.6 x 10-5). Furthermore, this effect increased for these large auditory 

leads compared to synchronous presentation (A450V vs AV: t24 = 5.915, p = 4.12x10-6; A300V 

vs AV t24 = 6.431, p = 1.19 x 10-6). Importantly, the two larger auditory leads (A450V and 

A300V) were consistent with one another (t24 = 0.439, p = 0.665) (Pilling, 2009), while the small 

auditory lead (A150V) represented an intermediate step between these SOAs and the 

synchronous condition (A150V vs AV t24 = 3.833, p = 0.0008). Voltage for the P2 ERP 

component (160-240 ms) was found to not be significantly different across conditions (repeated 

measures ANOVA F3,72 = 0.4574, p = 0.7129). These findings were found to be qualitatively 

similar when using N1 and P2 amplitudes drawn from individualized peaks (see peak latency 

analysis below) rather than averaging over pre-determined windows (N1 amplitude F3,72 = 27.2, p 

= 7.19 x 10-12; P2 amplitude F3,72 = 1.22, p = 0.3072). We thus not only replicate previous 
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findings of reduced N1 amplitude due to the presence of visual speech and the lack of this effect 

for a sufficiently large auditory lead, but we also establish the level of temporal asynchrony 

Figure 2-4 Event Related Potential Analysis 
A) Auditory N1 voltage (90-130 ms after auditory stimulus onset) for the 3 auditory leads 

(A450V, A300V, A150V) and synchronous presentation (AV). The N1 is significantly 
reduced for a small auditory lead and synchrony. Error bars indicate standard error of the 
mean. 

B) Pairwise comparisons of the N1 between the 4 conditions depicted in C. Absolute value 
of the T statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. 

C) Auditory N1 (90 – 130ms after auditory stimulus onset) to P2 (160 – 240ms after 
auditory stimulus onset) voltage change for all 7 conditions (P2 – N1). Large auditory 
leads have a significantly larger voltage shift. Error bars indicate standard error of the 
mean. 

D) Pairwise comparisons of the P2-N1 voltage between all 7 conditions. Absolute value of 
the T statistic is shown, and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. 

E) Auditory P2 (160 – 240ms after auditory stimulus onset) to N2 (250 – 350ms after 
auditory stimulus onset) voltage change for all 7 conditions (P2 – N2). Large auditory 
leads and large visual leads have a significantly larger voltage shift. Error bars indicate 
standard error of the mean. 

F) Pairwise comparisons of the P2-N2 voltage between all 7 conditions. Absolute value of 
the T statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown.  
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associated with an intermediate level of N1 amplitude suppression.  

 

We then extended our ERP analysis to include all 7 SOAs by focusing on peak-to-peak voltage 

differences (i.e. peak prominence), which has been previous applied in similar studies (Pilling, 

Figure 2-5 Topographic Representation of Event Related Potentials. 
A) Topographic representation of the auditory N1 (90-130 ms after auditory stimulus onset) 

for all 7 conditions. 
B) Topographic representation of the auditory P2 (160-240 ms after auditory stimulus onset) 

for all 7 conditions. 
C) Topographic representation of the auditory N2 (250-350 ms after auditory stimulus onset) 

for all 7 conditions. 
D) Topographic representation of N1 to P2 voltage shift (P2 – N1) for all 7 conditions (i.e. 

Panel B – Panel A). Positive values indicate higher relative prominence of the P2. 
E) Topographic representation of P2 to N2 voltage shift (P2 – N2) for all 7 conditions (i.e. 

Panel B – Panel C). Positive values indicate higher relative prominence of the P2. 
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2009). One advantage of this peak prominence measure is that it functions to cancel the observed 

parietal buildup effects. We first subtracted N1 voltage from P2 voltage (P2 – N1) (Fig 2-4C). 

This voltage difference was found to be largest for the large auditory leads and differed 

significantly across conditions (repeated measures ANOVA F6,144 = 8.089, p = 1.5396 x 10-7). 

Similar to single ERP peak analysis, this peak-to-peak effect was found to be robust when using 

individualized ERP peak amplitudes (F6,144 = 11.27, p = 2.679 x 10-10). Large auditory leads 

(A450V, A300V) had a significantly larger N1 to P2 voltage change than all other conditions, 

while the smallest auditory lead (A150V) had a larger N1 to P2 voltage change than synchronous 

presentation, but not larger than visual leads. Due to the number of unique pairwise comparisons 

(21) we present absolute T value for all comparisons, masked for significance of p < 0.05 

uncorrected (Fig 2-4D). We then repeated this analytical approach for peak-to-peak differences 

between the P2 and N2 (P2 – N2) (Fig 2-4E). Voltage differences between these peaks were also 

found to be significantly different across conditions (repeated measures ANOVA F6,144 = 15.166, 

p = 2.0512 x 10-13). Auditory leads (A450V, A300V, and A150V) and the largest visual lead 

(V450A) were found to have the largest P2 to N2 voltage differences, while this difference was 

small for synchronously presented stimuli and for the small visual lead condition (V150A). We 

present all pairwise comparisons, masked for significance of p < 0.05 uncorrected in Fig 2-4F. 

Topographies for the ERP components of interest (N1, P2, and N2) as well as difference 

topographies (P2-N1 and P2-N2) are presented in Fig 2-5.  

We further analyzed the latency of the N1 and P2 peaks based on previous literature that has 

shown these components to be accelerated by visual speech (Baart, 2016; van Wassenhove et al., 

2005). For the N1 analysis, 19/25 participants had identifiable peak latencies in all 7 conditions, 

while the latency of 10 individual ERP peaks (out of a total of 175 peaks [25 participants x 7 
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conditions] or 5.71%) could not be identified. We imputed these 10 data points using the MDI 

toolbox (Folch-Fortuny et al., 2016) via trimmed scores regression with 4 principle components. 

We then compared N1 latencies across conditions and found that they differed significantly 

(repeated measures ANOVA F6,144 = 13.03, p = 9.6727 x 10-12) (Fig 2-6A). Follow-up t--tests 

Figure 2-6 N1 and P2 Component Latency 
A) N1 latency for all 7 conditions. The latency of the N1 decreased in the presence of a 

temporally aligned visual stimulus and was lowest for a small visual lead. Error bars 
indicate standard error of the mean. 

B) Pairwise comparisons of the N1 latency between all 7 conditions. Absolute value of the T 
statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. 

C) P2 latency for all 7 conditions. Reductions in P2 latency were monotonic and the lowest 
latency occurred at large visual leads. Error bars indicate standard error of the mean. 

D) Pairwise comparisons of the P2 latency between all 7 conditions. Absolute value of the T 
statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. 
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indicated this occurred because visual leads reduced the latency of the N1, with the shortest 

latency occurring at the smallest visual lead (V150A). We present all follow up t-tests, masked 

for p < 0.05 uncorrected in (Fig 2-6B). We repeated this analysis excluding the 6 participants 

with incomplete data and found that the differences were still significant (F6,114 = 9.73, p = 

1.1219 x 10-8). For the analysis of the P2 component, 22/25 participants had identifiable peaks in 

all conditions, while a total of 3 individual ERP peaks (1.71%) could not be identified and were 

imputed using trimmed scores regression and 3 principle components. We then compared P2 

latencies across conditions (repeated measures ANOVA F6,144 = 4.95, p = 0.0001) (Fig 2-6C). 

Effects for the P2 illustrated a monotonically decreasing latency as the amount of time from 

visual onset increased. We present all follow up t-tests, masked for p < 0.05 uncorrected in (Fig 

2-6D). We repeated this analysis excluding the 3 participants with incomplete data and found 

that differences were still significant (F6,126 = 3.71, p = 0.002).  

 

Time-Frequency Analysis 

In order to recapture dynamics lost during signal averaging (i.e. induced brain oscillations), and 

to better separate auditory linked activity from ongoing visual and/or cognitive activity [i.e. the 

centro-parietal positivity (O'Connell, Dockree, & Kelly, 2012), which is clearly visible in the 

ERPs and occurs at a lower frequency (~1-2 Hz)], we utilized time-frequency analysis. In this 

analysis, the wavelets effectively function as band-pass filters, removing slow activity related to 

decisional buildup. Time frequency representations (TFRs) resulting from wavelet convolution at 

electrode Cz for all 7 conditions are presented in Figure 2-7. We focused our analysis on the 

theta (4-8 Hz) and alpha (8-12 Hz) frequency bands as these frequency ranges have established 

functional significance and exhibited clear activity in the TFRs. We did not analyze the 
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pronounced beta desynchronization as it exhibited a left lateralized topography consistent with 

initiation of motor responses. We averaged data within the alpha and theta bands and then used 

non-parametric randomization testing with cluster-based correction for multiple comparisons to 

determine the time period during which conditions differed. In the theta band, a sustained period 

of significant difference was found from 60 to 660 ms (p < 0.0001, randomization test, Fig 2-

8A). In the alpha band we noted that slow drifts in induced alpha power were present beginning 

with the onset of the visual stimuli. These appeared to be distinct from the more localized sharp 

deflections associated with auditory stimulus onset (Fig 2-8B). We corrected for these drifts and 

associated spurious statistical differences by taking the first temporal derivative (i.e. the rate of 

change) of alpha power, thus isolating sharp deflections in power. These differences were found 

Figure 2-7 Time-Frequency Representations for electrode Cz. 
 Top Row: TFRs for auditory leads ranging from large to small (left to right) 
 Bottom Row: TFRs for synchronous presentation (AV) and visual leads ranging from 

small to large (left to right). 



113 

 

 

 

to be significant from 5-145 ms via randomization testing (p < 0.0001, randomization test, Fig 2-

8C). Importantly, the duration of significant differences in theta power was far more sustained 

than for alpha power. Further, theta power demonstrated a topography that evolved between 

distinct central and fronto-central distributions. While statistical significance in the theta band 

was continuous, changes in topography and bandwidth suggested that theta activity might 

represent multiple consecutive processes. We thus opted to analyze theta power in an early 

window (90 – 240 ms, corresponding with the beginning of our a-priori N1 window and ending 

with our a-priori P2 window) and a late window (300 – 650 ms). Given the continuous nature of 

significant time points, we also confirmed that alternative selections for the late time window 

(i.e. 350-650 ms or 400-650 ms) were consistent with our initial selection (see below results 

Figure 2-8 Time-Frequency Activity Averaging Within Frequency Bands  
A) Time course representation of theta (4-8 Hz) power for all 7 conditions. Time courses 

were re-aligned such that time 0 corresponds with auditory stimulus onset in all 
conditions. The black underline indicates the period of sustained significance (60-660ms, 
p < 0.0001, randomization test). 

B) Time course representation of alpha (8-12 Hz) power for all 7 conditions. Time courses 
were re-aligned such that time 0 corresponds with auditory stimulus onset in all 
conditions. Note the strong negative drift attributable to the presence of a visual stimulus.

C) First temporal derivative of alpha (8-12 Hz) power for all 7 conditions. Time courses 
were re-aligned such that time 0 corresponds with auditory stimulus onset in all 
conditions. The black underline indicates the period of sustained significance (5-145ms, p 
< 0.0001, randomization test). A time point of 5 indicates change in power between time 
points 0 and 10 in panel B and so on.  
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section). Change in alpha power was averaged across the entire 5-145 ms period deemed 

significant by the randomization test.  

Topographies for early theta power were found to have a central topography consistent with 

auditory cortical generators and are presented in Fig 2-9A while topographies for the alpha 

power were similarly centrally distributed and are presented in fig 2-9B. Early theta power 

differed significantly across conditions (F6,144 = 24.23, p = 1.0513 x 10-19), with the highest 

power found for large auditory leads (A450V and A300V). These large auditory leads were not 

different from one another (t24 = -1.238, p = 0.228), but were different from all other conditions 

with a more temporally proximate visual stimulus. Strikingly, with the sole exception of V150 

compared to V300A, all individual steps of changing temporal synchrony were significantly 

different from their nearest neighbors (Fig 2-10A). We present all pairwise comparisons for early 

theta power in Fig 2-10B. Change in alpha power was also found to be significantly different 

across conditions (F6,144 = 13.25, p = 6.447 x 10-12). Similar to theta power, change in alpha 

power was high for auditory leads, attenuated by synchronous visual stimuli and small visual 

leads, and recovered for larger visual leads (Fig 2-10C). We present all pairwise comparisons for 

changes in alpha power in Fig 2-10D.  

We next sough to determine the overall temporal tolerance of our participants, as indexed by 

the change in suppression across SOAs. To estimate the temporal extent of the effects at the 

group level, we thus fit a Gaussian distribution (i.e. a TBW) to group averaged power in each 

frequency band. For theta power, a Gaussian function fit the group data extremely well (96.26% 

of variance explained) and had a standard deviation of 325.4ms, a mean of 193.25ms, and a 

FW75M of 493.6ms. For alpha power, a Gaussian function was similarly found to fit the group 

data well (95.80% of variance explained) and had a standard deviation of 257.9ms, a mean of 
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102ms, and a FW75M of 391.2ms. Our time-frequency analysis of the initial auditory responses 

thus strongly indicates that the temporal structure of the audiovisual stimulus relationship 

mediates the magnitude to which visual speech suppresses single trial auditory speech responses. 

Furthermore, this process occurs in a highly continuous manner with a temporal tuning function 

remarkably similar to that found in participant behavior, although we note that we did not find a 

direct relationship between neural response suppression and participant temporal acuity. 

Figure 2-9 Early Time-Frequency Topographies 
A) Topographic representation of early theta (4-8 Hz) power (90 – 240 ms). The topography 

is in full accord with auditory cortical generators. 
B) Topographic representation of the first temporal derivative of alpha (8-12 Hz) power (5 – 

145 ms). The topography is in fair accord with auditory cortical generators. 
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Having examined the frequency representation of the initial auditory response we then 

proceeded to analyze the later period of theta band significance. Visual inspection of results 

indicated that these late theta power differences were primarily driven by frequencies at the 

lower bound of the TFRs (3.5-5 Hz). We thus initially restricted our analysis of late (300-650 

Figure 2-10 Early Time-Frequency Analysis 
A) Early theta power for all 7 conditions. Theta power is highest for large auditory leads, 

decreases with increased temporal alignment between the visual and auditory stimuli, and 
recovers as the visual lead increases. Error bars indicate standard error of the mean. 

B) Pairwise comparisons of early theta power between all 7 conditions. Absolute value of 
the T statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. 

C) First temporal derivative of alpha power for all 7 conditions. Change in alpha power is 
highest for large auditory leads, decreases with increased temporal alignment between the 
visual and auditory stimuli, and recovers as the visual lead increases. Error bars indicate 
standard error of the mean. 

D) Pairwise comparisons of the first temporal derivative of alpha power between all 7 
conditions. Absolute value of the T statistic is shown and results are masked so that only 
comparisons with p < 0.05 uncorrected are shown. 
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ms) effects to these frequencies (see below for analysis in other theta band portions). 

Topographies of low theta (3.5-5 Hz) activity averaged across this period are presented in Fig 2-

11A. Notably, the topography in this time-frequency range presented a more fronto-central 

distribution than observed for early alpha or theta band activity, less consistent with auditory 

cortical generators. This late theta activity also demonstrated differences across conditions (F6,144 

= 11.87, p = 8.5026 x 10-11), but notably these differences were less continuous than for the early 

effects (i.e. within ‘categories’ of auditory lead, synchronous or small visual lead, and large 

visual lead no significant differences were found) (Fig 2-11B). We present all pairwise 

comparisons for late theta power in figure 2-11C. The fronto-central distribution of this late theta 

activity is consistent with previous reports of neural responses to visual stimulus incongruence 

(Hanslmayr et al., 2008) and with more recent reports of cross-modal stimulus incongruence 

(Roa Romero, Keil, Balz, Gallinat, & Senkowski, 2016). To determine if this potentially 

congruence related activity corresponded with participant’s ability to perceive temporal 

incongruence (i.e. stimulus asynchrony) in our experiment we correlated late theta power with 

individual perceptual report separately for each condition. We found that for small and moderate 

auditory leads the level of individual theta power negatively correlated with the rate at which 

participants reported synchrony in each condition (A150V: r = -0.5920, p = 0.0018; A300V: r = -

0.4349, p = 0.0298) (Fig 2-12A & 2-12B). For the largest auditory lead (A450V) this correlation 

approached significance (r = -0.3890, p = 0.0546). This weaker correlation for the A450V 

condition is potentially explained by the high number of participants rarely reporting 

simultaneity (9/25 participants < 1% reported rate of synchrony, 19/25 participants < 5% 

reported rate of synchrony). Correlations between reported rate of synchrony and late theta 

oscillations were similarly negative for synchronous or visually leading conditions, but were not 
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significant (all p > 0.163). We further correlated late theta oscillations in each of these conditions 

to overall temporal binding window size. This correlation was found to be significant for theta 

power in the A450V (r = -0.4397, p = 0.0279) and A150V (r = -0.5318, p = 0.0062) conditions, 

but was not significant for the A300V condition (r = -0.3141, p = 0.126). Similar to correlations 

for perceptual accuracy, correlations between theta power and binding window size were found 

to be non-significant for synchronous and visually leading stimuli (all p > 0.221).  

Figure 2-11 Late Theta Activity 
A) Topographic representation of low theta (3.5 – 5 Hz) activity occurring 300 – 650 ms 

after auditory stimulus onset. The fronto-central distribution is inconsistent with auditory 
cortical generators. 

B) Low theta (3.5 – 5 Hz) power averaged from 300 – 650 ms at electrode Cz. 
Synchronously presented stimuli (AV) and small visual leads (V150A) have the lowest 
power. Error bars indicate standard error of the mean. 

C) Pairwise comparisons for late theta power between all 7 conditions. Absolute value of the 
T statistic is shown and results are masked so that only comparisons with p < 0.05 
uncorrected are shown. Note the near categorical nature of significant comparisons. 
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For completeness, we repeated these analyses in the upper portion of the theta band (5.5 – 8 

Hz) and further examined whether relationships held for the earlier (90 – 240 ms) time window. 

In the upper portion of the theta band (5.5 - 8 Hz) correlations between perceptual accuracy and 

theta power were substantially weaker, reaching only limited trend levels of significance and 

which are potentially attributable to spectral imprecision (A450V; r = -0.2277, p = 0.2737, 

A300V r = -0.3977, p = 0.049; A150V r = -0.3736, p = 0.0658). Theta power in the early time 

window (90 – 240 ms) were not found to correlate with perceptual accuracy in any condition for 

low theta (3.5 – 5 Hz; all p > 0.109) or high theta (5.5 – 8 Hz, all p > 0.32). Additionally, we 

investigated the degree to which the temporal window selected for ‘late’ oscillations contributed 

to the results. We found that utilizing narrower, and thus less conservative, analytical windows 

yielded qualitatively similar results. For example, in the A150V condition a 400 – 650 ms 

window yielded a correlation between reported synchrony and theta power of r = -0.5943, p = 

0.0017. Given the strong similarity across windows and the need to make a temporal division 

Figure 2-12 Relationship between Late Theta Activity and Behavior 
A) Brain behavior correlation between late theta power and reported rate of synchrony in the 

A150V condition (r = -0.5920, p = 0.0018). 
B) Brain behavior correlation between late theta power and reported rate of synchrony in the 

A300V condition (r = -0.4349, p = 0.0298). 
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between early and late power, we opted to utilize the most conservative temporal window and do 

not report on the narrower analytical windows further. Lastly, we confirmed that results in the 

later time window were not entirely phase locked by repeating the TFR analysis using the ERPs 

instead of single trial data. This analysis yielded qualitatively dissimilar results, which indicates 

that the findings in this window require consideration of single trials, and are likely at least 

partially oscillatory. Results in the early time window were found to be phase locked, and thus 

primarily represent the frequency domain version of the ERP. 

 

 

Discussion 

 
We sought to elucidate the effects of temporal concordance between visual speech and auditory 

speech on amplitude suppression, a well-established neural measure of multisensory integration 

for speech signals (Baart, 2016; Besle et al., 2004; Pilling, 2009; van Wassenhove et al., 2005). 

To do so we utilized a simultaneity judgment task that requires participants to attend to both 

vision and audition and we manipulated the temporal relationship between the sensory inputs. In 

terms of event related potentials, we partially replicated previous work (Baart, 2016; Pilling, 

2009; van Wassenhove et al., 2005) by demonstrating suppression of the N1 component by 

synchronous visual signals. Importantly we also demonstrate the presence of an intermediate 

step, in which a sufficiently small auditory lead results in partial amplitude suppression. This 

intermediate step offers confirmation audiovisual speech integration operates in an efficient 

manner in which any visual input makes contributions proportional to its information content. 

Furthermore, through time-frequency analyses designed to reduce the influence ongoing visual 

and, in particular, decisional activity occurring at lower frequencies, we established that this 
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amplitude suppression exhibits substantial temporal tuning. Effects were found to be maximal at 

synchrony and small visual leads, both of which correspond with the greatest reports of 

perceptual synchrony. We also found that effects in the alpha band occurred more rapidly 

(~50ms earlier) than those seen in the theta band. These same time-frequency analyses also 

further indicated that, for auditory leads, low theta (3.5-5 Hz) oscillations persisted well after the 

auditory stimulus. These more persistent oscillations presented with a topographical pattern 

consistent with congruence processing and, most importantly, were found to correspond with 

task performance.  

 

Changes in ERP Amplitude Are Limited to the N1 and N2 Components 

When comparing ERP amplitudes for auditory leading stimuli and for true AV synchronous 

presentations, a highly significant reduction in absolute N1 amplitude was present when visual 

speech was presented synchronously or with a 150 ms delay relative to the auditory signal 

(A150V). This replicates and extends previous results indicating that a reduction in the 

magnitude of auditory cortical responses by visual speech can occur even when vision is slightly 

lagged and the pre-articulatory motion occurs concurrent with the auditory signal. Importantly, 

we also establish that the neural response to a stimulus with a small visual lag differs from both 

audiovisual responses with large visual lags and those to truly synchronous stimuli, thus 

establishing for the first time an intermediate level of suppression. This partial reduction by 

concurrent pre-articulation is consistent with the predictive coding account of audiovisual 

integration (Talsma, 2015), in which the articulatory movements are still informative but to a 

lesser degree. 

Interestingly, we did not replicate findings of reduced P2 amplitude in the presence of 
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audiovisual speech. It is possible that the lack of P2 amplitude reduction in our results is due to 

the nature of the task participants were performing. The simultaneity judgment task requests that 

participants segregate stimuli in an effort to keep their timing as separate as possible. Previous 

work has established that the P2 may be less automatic and more amenable to top down 

regulation than the earlier P1 and N1 cortical responses. Specifically, in a multisensory speech 

task featuring the McGurk illusion (McGurk & MacDonald, 1976), P2 modulation by visual 

speech was reduced by the presence of an ‘incongruent context’ before stimulus onset (Ganesh, 

Berthommier, Vilain, Sato, & Schwartz, 2014). In this study, if the period preceding the 

experimental stimulus contained mismatched auditory and visual stimuli then the level of P2 

integration (i.e. the amount of P2 suppression) for the experimental stimulus was reduced. This 

indicates that the top down factor of whether stimulus modalities are appropriate to integrate can 

modulate the degree of integration measured in the P2. We thus speculate that the lack of P2 

reduction we observe may be a manifestation of the task demands, which asks our participants to 

segregate the stimuli as much as possible. Establishing empirically whether this is the case will 

require additional future work. 

Despite the lack of P2 attenuation, peak-to-peak measures indicated that highly asynchronous 

visual speech accentuates the relative prominence of the P2 compared to the N2. This indicates 

enhanced N2 negativity when the stimulus has a large degree of temporal asynchrony. The N2 

has previously been associated with conflict processing in a number of tasks (Iannaccone et al., 

2015; Larson, Clayson, & Clawson, 2014; Yeung, Botvinick, & Cohen, 2004), and the enhanced 

negativity here indicates the N2 has sensitivity to temporal congruence. Time and frequency 

domain representations of error processing, which may have similar monitoring circuit 

substrates, have been shown to be partially independent and carry complimentary information 
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(Munneke, Nap, Schippers, & Cohen, 2015). Given the substantial temporal overlap between 

ERPs and our time-frequency results, we thus discuss temporal misalignment as a form of 

stimulus conflict further in the context of theta oscillations below. 

 

Visual speech accelerates the N1 and P2 

Previous reports have indicated that the presence of visual speech also accelerates the onset of 

early ERP components (and thus, presumably, their associated processing stages). We partially 

replicated this result and found that for the N1 this acceleration was greatest when vision slightly 

precedes audition (V150A). Although an ~11ms acceleration might seem small, it represents a 

roughly 10% speeding of peak latency. However, given the highly visually specified token that 

was used (the syllable ‘ba’, which is easily lip read and carries relatively well specified temporal 

information), the acceleration present for synchronous presentation (~5ms) is only about half of 

that expected based on previous reports linking the amount of acceleration to visual intelligibility 

(van Wassenhove et al., 2005). This relative reduction may be a result of task demands, similar 

to our lack of P2 amplitude reduction, or may reflect that even subtle differences in experiments 

seem to change whether this effect is found (Baart, 2016). We also found acceleration of the P2 

component, despite not finding amplitude reduction in this same component. Our P2 finding, 

however, consisted of a monotonic latency reduction which reached significance in only the 

largest visual leads and does not replicate findings of fairly substantial (~20 ms) P2 latency 

facilitation afforded by the presence of a synchronous and readily recognized viseme (van 

Wassenhove et al., 2005). Given the apparent lack of temporal tuning, and the vulnerability of 

peak latency measures to effects such as entrainment of alpha oscillations by visual inputs, we do 

not believe our P2 acceleration result serves as an indicator of multisensory integration in this 
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task. Rather we interpret this finding similarly to our P2 amplitude finding, to indicate that the 

degree of P2 latency acceleration present for audiovisual speech may depend on task demands 

and context. 

 

Temporal Constraints on Multisensory Speech Integration 

Time-frequency analysis indicated that reductions in the magnitude of early brain responses 

occurred in both the theta and alpha frequency bands, and were strongly mediated by the degree 

of temporal concordance between the auditory and visual signals. As expected, large auditory 

leads resulted in a robust brain response consistent with auditory only processing. As the 

temporal lag of the visual stimulus decreased, there were corresponding and continuous 

decreases in response magnitude, with the smallest neural response at a small visual lead 

(V150A). Critically, further increases in visual lead resulted in a recovery of response 

magnitude. This neural distribution, with its visual lead bias and highly Gaussian shape bears 

striking resemblance to the TBW found both in our behavioral results, as well as in other similar 

reports (for reviews see: (Vroomen & Keetels, 2010; Wallace & Stevenson, 2014)). This 

extended temporal window for audiovisual speech integration is also consistent with reports that 

the auditory system integrates speech signals over a relatively protracted period of time, 

particularly in challenging acoustic conditions (Ding & Simon, 2013c). Further, these results are 

also highly consistent with recent reports of a similarly extended temporal integration window in 

reconstruction of continuous audiovisual speech (Crosse et al., 2016). Lastly, the extent of the 

temporal integration window we find (~500 ms) corresponds well with the cycle time of the ~2 

Hz lower frequency bound in which auditory speech temporally correlates with visual speech 

(Chandrasekaran et al., 2009). Similar slow frequencies have also been shown to offer the most 
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robust audiovisual gain in speech stimulus reconstruction (Crosse et al., 2015), suggesting that 

not only is integration occurring over a large time window, but that integration over longer 

temporal epochs may result in more robust processing and encoding.  

Intriguingly, we observed notable differences in the modulatory effects of visual speech on 

power in the alpha and theta bands. Specifically, differences in the alpha band emerged 

substantially earlier, while theta band effects were found later and to be more sensitive in 

representing differences between small ecologically plausible temporal offsets (i.e. AV vs 

V150A). Additionally, the positive deflection in alpha power was completely removed by a 

synchronous visual stimulus, while theta power was only attenuated. These differences are 

unlikely to be related to limitations in spectral resolution as symmetric spectral transforms such 

as Morlet wavelets spread lower frequencies further backwards in time. Instead, they likely 

reflect neural activity originating in functionally distinct but anatomically overlapping cortical 

circuits in auditory cortical regions. This is particularly relevant for the alpha band, which has 

been associated with a “working” frequency that determines the temporal resolution of the visual 

system (Samaha & Postle, 2015), and similarly affects audiovisual multisensory processing 

(Cecere, Rees, & Romei, 2015). Cortical alpha activity has also been proposed as an important 

tool for selective inhibition in challenging listening conditions, when integration of visual speech 

is most valuable (Strauss, Wostmann, & Obleser, 2014). Lastly, phase reset across sensory 

systems has been shown to be a generalized context and attention sensitive mechanism for 

multisensory neural interaction (Lakatos, Chen, O'Connell, Mills, & Schroeder, 2007; Lakatos et 

al., 2009) (for a review see: (van Atteveldt, Murray, Thut, & Schroeder, 2014)). In light of this 

previous work, the observed differences in timing and effect magnitude indicate that integrative 

processing of audiovisual speech stimuli may impact the efficacy of alpha reset mechanisms 
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earlier than neural circuits with responses in the theta band, resulting in rapid selective inhibition 

of neural populations that might otherwise contribute to the response. Such rapid dampening may 

then propagate to the slower theta band, which tracks the speech envelope and in our results 

carries a more continuous and precise representation of the temporal offset. This proposed 

interaction between frequency bands in speech processing is also supported by evidence that 

intrinsic theta oscillations shape syllable perception while endogenous alpha oscillations do not 

(Ten Oever & Sack, 2015). Our findings of band specific latency differences can thus be well 

accounted for by a two-stage model of multisensory temporal integration for speech signals. In 

this model, neural populations operating at higher alpha frequencies activate more rapidly, but 

carry less precise temporal information. These fast alpha circuits then refine cortical responses 

occurring in slower theta frequencies and thus allow these theta circuits to carry a more precise 

temporal and envelope representation. Such a model is well aligned with invasive physiological 

work indicating that sub additive neural interactions are associated with enhanced information 

content in cortical signals (Angelaki, Gu, & DeAngelis, 2009). We thus suggest that frequency 

domain analyses such as those conducted here are able to, at least partially, disentangle the 

temporal dynamics of visual influences on auditory cortical responses. 

 

Theta Oscillations as a Marker of Cross-modal Incongruence Processing 

In addition to early theta band effects, we also noted theta oscillations enduring long after 

auditory stimulus onset. These persistent theta oscillations occurred primarily at the lower end of 

the theta band (3.5 – 5 Hz) and had a more fronto-central distribution when compared with the 

early alpha and theta band effects. Not only did these oscillations differ across levels of temporal 

asynchrony, virtually vanishing in conditions where participants report the stimuli as 
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synchronous, but they directly corresponded with the accuracy of participant’s perceptual report 

in auditory leading conditions. Given the nature of the task, in which participants are asked to 

detect temporal incongruence in the stimulus, we believe that these oscillations index processing 

of cross modal temporal incongruence in the brain. This is consistent with previous work which 

has indicated that similar theta oscillations are active during reconciliation of incongruent 

stimulus features (also known as conflict detection or stimulus-stimulus conflict) (Cohen, 2014). 

A well-known example of such processing is the Stroop task, in which written color words and 

the color they are written in are mismatched (e.g., the word ‘blue’ written in red). During 

performance of this task, fronto-central theta oscillations are observed on trials with conflicting 

information (Hanslmayr et al., 2008). Another example of such oscillations is during trials with 

conflicting information in a flanker task (Nigbur, Ivanova, & Sturmer, 2011). The topography of 

theta oscillations seen in such tasks, as well as in our experiment, is also consistent with anterior 

cingulate and other medial frontal generators, which have previous been linked to stimulus error 

processing (Cavanagh & Frank, 2014). The late timing of differences is also consistent with 

recent work examining the formation of large scale functional brain networks associated with 

multisensory speech perception (Kumar et al., 2016), and may indicate that frontal monitoring 

circuits play a critical role in such networks. Additionally, we believe that the presence of this 

relationship for high level (i.e. late frontal) and its absence for low level (i.e. early auditory 

cortex) may stem from the dissociation between perceived simultaneity and low level 

multisensory integration (Harrar, Harris, & Spence, 2017). Our report thus additionally serves as 

evidence that perceptual simultaneity may emerge from higher cognitive processes emerging 

relatively late in time. 

Importantly, it has been shown that similar theta oscillations with medial frontal generators 
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are attenuated during cross-modal conflict in populations with reduced top down error control 

such as patients with schizophrenia (Roa Romero et al., 2016). Atypical multisensory temporal 

processing is increasingly being recognized in a number of neurological and neuropsychiatric 

disorders, including schizophrenia (Martin, Giersch, Huron, & van Wassenhove, 2013) and 

autism (Stevenson et al., 2014). This finding suggests that feed forward activity from sensory 

processing regions to error monitoring systems may form a neurophysiological basis for 

multisensory temporal dysfunction in these disorders. Additionally, we believe it is important to 

highlight the consistency of this relationship across conditions with auditory leads. This 

consistency indicates that superior temporal acuity is associated with stronger incongruence 

signaling regardless of relative perceptual difficulty. In other words, stronger conflict signaling 

during multisensory temporal incongruence is an individual trait and at least somewhat 

independent of perceptual threshold. Future work relating conflict signaling to individual 

differences in multisensory integration may yield further insights into the importance of this 

process. 

That we do not find a relationship between theta oscillations linked to incongruence 

processing and behavior in synchronous or visually leading trials is not surprising. For synchrony 

and the smallest visual lead there is both little behavioral variability across participants and little 

perceived conflict to be signaled, as participants report the stimulus as occurring synchronously 

the vast majority of the time. In conditions with larger visual leads theta band conflict signaling 

would be expected to occur 300-650 ms after onset of the leading visual stimulus, during which 

frontal theta activity is obscured by the much larger auditory cortical response. Alternatively, 

temporal incongruence in visually leading conditions might be processed by different neural 

networks than auditory leading stimuli. This possibility is specifically raised by recent work 
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elucidating that the neural networks engaged during simultaneity judgment depend on stimulus 

ordering (Cecere, Gross, Willis, & Thut, 2017). 

 

Multisensory Temporal Integration as a Fundamental Feature of Speech Processing 

Taken together our time and frequency domain analysis point to a substantial temporal window 

in which visual speech reduces the amplitude and speeds the onset of the neural processing 

associated with speech signals. This window forms a substrate for the integration of relatively 

slowly occurring mouth movements and envelope fluctuations and further supports accounts that 

delta band (1-4 Hz, cycle time 250 ms – 1s) brain activity may serve a role in integrating 

temporal information in speech signals (Schroeder et al., 2008). Given the nature of audiovisual 

speech, in which individual syllables have variable visual-auditory onset timing, the presence of 

such a tolerant mechanism may form a fundamental component of the ability to correctly 

incorporate visual speech to enhance auditory perception. Our findings are also consistent with 

work indicating that multisensory temporal integration may serve as a gain control mechanism 

(Crosse et al., 2016). Our theta band tuning profile in particular, while quite broad, is also quite 

deep (~1.5 decibels), giving it a great deal of dynamic range to impact processing of signals 

differently depending on the degree of temporal alignment with visual inputs. This temporal 

weighting may serve to facilitate neural entrainment in particular, by providing strong weighting 

to near concurrent events and a more moderate weighting to events with ambiguous temporal 

concordance. In a rich visual environment, such a process would serve as a temporal “filter” on 

visual inputs. Lastly, we establish that temporal discordance between stimuli generates activity 

consistent with systems that respond to stimulus incongruence. In the context of naturalistic 

speech, continuous monitoring of temporal congruity and appropriate feedback to sensory 
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systems may make crucial contributions to sharpening the influences visual inputs have on 

auditory speech processing. The combination of these factors indicates that temporal integration 

is a fundamental feature of speech processing, and that neural systems are strongly adapted to 

take advantage of temporal structure in speech signals. 

 

 

Conclusion 

 
We establish that the temporal relationship between auditory and visual stimuli is critically 

important to the degree to which visual inputs attenuate auditory brain responses and accelerate 

the onset of early ERP components. Importantly, this attenuation operates in an asymmetric 

temporal window, in strong agreement with both behavioral and physiological measures of 

multisensory temporal integration for speech signals. Furthermore, the perceived temporal 

relationship of the stimuli is more categorically reflected by late theta oscillations, in that these 

oscillations are present for stimuli frequently reported as asynchronous and virtually absent for 

stimuli predominantly reported to be synchronous. In conditions in which audition leads, the 

strength of these categorical theta oscillations directly corresponded with participant 

performance, and this relationship was particularly strong when the stimulus was perceptually 

ambiguous. These findings contribute to a growing body of literature indicating auditory and 

visual speech signals are integrated over a surprisingly wide window of time, while further 

indicating that temporal mismatch between sensory modalities is processed in a manner similar 

to other types of stimulus conflict. The band specific nature of the neural processing differences 

also suggests that distinct neural populations contribute to temporally distinct stages of 

integration of audiovisual speech signals. Further investigation of these temporal dynamics may 
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make substantial contributions to the refinement of circuit models that account for visual 

enhancement of information content in cortical speech representations. 

While we believe this work sheds important light on multisensory temporal processing it is 

not without limitations. The evoked design, which by nature is highly repetitive, is less 

naturalistic than normal speech. Similarly, the simultaneity judgment task is somewhat removed 

from normal speech task demands such as comprehension and stream segregation, and in 

particular our lack of P2 modulation and unusual P2 latency facilitation may be specific to our 

experimental design. Lastly, because substantial phase resetting of ongoing neural processes 

contributes to evoked responses (Makeig et al., 2002), and the inherent non-independence of 

phase and amplitude measures in noisy signals such as EEG (Ding & Simon, 2013b), our design 

precludes robust analysis of neural phase. Neural phase is known to play a fundamental role in 

speech processing (Giraud & Poeppel, 2012; Schroeder et al., 2008), multisensory timing 

(Kosem, Gramfort, & van Wassenhove, 2014), and the maintenance of ongoing oscillatory 

dynamics at speech frequencies (Herrmann, Henry, Haegens, & Obleser, 2016; D. M. Simon, 

Wallace, M. T., 2017), and the inability to analyze phase limits our ability to assess a potentially 

important processing dynamic contributing to multisensory integration. 

The current study suggests several avenues of potential future research. One such approach is 

examining temporal modulation of neural responses to audiovisual speech across development. 

Multisensory temporal integration is known to have a developmental trajectory (Hillock-Dunn, 

Grantham, & Wallace, 2016; Hillock, Powers, & Wallace, 2011), and utilizing a similar 

approach in children may serve to extend existing findings of reduced audiovisual speech 

integration in childhood (Kaganovich & Schumaker, 2014; Knowland, Mercure, Karmiloff-

Smith, Dick, & Thomas, 2014) by determining the degree to which temporal integration sharpens 
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during maturation. Similarly, given the known deficits in multisensory temporal integration in a 

number of disorders such as autism spectrum disorder (Stevenson et al., 2014), dyslexia 

(Hairston, Burdette, Flowers, Wood, & Wallace, 2005), and schizophrenia (Ross, Saint-Amour, 

Leavitt, Molholm, et al., 2007), extension of this study to these populations may offer to shed 

light on the nature of dysfunctional multisensory temporal processing. Recent approaches to 

temporal processing have also elucidated that neural processing of time is highly variable based 

on existing temporal context (D. M. Simon, Noel, & Wallace, 2017). Given the associations that 

we establish between temporal acuity and congruity processing, examining trial-by-trial 

variability may yield important insights into information transfer between sensory systems and 

performance monitoring circuits in the brain. The use of such approaches may serve to elucidate 

the integrity and developmental trajectory of multisensory temporal integration in both the 

typically and atypically developing brain. 
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CHAPTER III 

 

 

THETA POWER AND COHERENCE SUPPORT MULTISENSORY TEMPORAL 

PROCESSING 

 

 

The contents of this chapter are drawn from a manuscript in preparation: 

Simon, D.M., Wallace M.T., Theta Power and Coherence Support Multisensory Temporal 

Processing 

 

 

Abstract 

 
Environmental events emanating from a common source frequently generate sensory inputs in 

more than one sensory modality. The temporal concordance between these inputs serves as an 

important cue for the nervous system to appropriately integrate sensory information and form 

coherent perceptual representations. Multisensory integration is highly flexible and dependent 

upon contextual cues and task demands, but the neurophysiological basis of this flexibility, 

particularly in the temporal domain, has not been fully explored. In the current study, we 

investigated the degree to which top down task demands affect physiological measures of 

multisensory integration. To do so, we employed a combination of electroencephalography 

(EEG) and a pair of psychophysical tasks in which participants directly attended or ignored the 

temporal relationship between the auditory and visual portions of audiovisual speech stimuli. 
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Consistent with previous work, our results indicate that oscillatory power in the lower portion of 

the theta band (3.5-5 Hz) is sensitive to the temporal concordance of audiovisual speech events. 

Importantly, however, this is only the case when temporal relationships are directly attended by 

participants. We further demonstrate that phase synchronization differs based on task demands. 

This suggests that selective oscillatory synchronization in the theta band plays an important role 

in top down regulation of multisensory temporal processing. Our findings thus indicate that low 

frequency oscillations may encode multisensory temporal information during deliberate 

processing of temporal structure.  

 

 

Introduction 

 
Temporal Processing is Fundamental to Multisensory Integration 

Events in the environment frequently generate sensory signals in multiple sensory modalities. 

Integration of these inputs is an important step in forming perceptual representations of the 

world, and the presence of inputs from multiple senses often conveys numerous behavioral and 

perceptual benefits (Murray & Wallace, 2012). A salient and ecologically important example of 

such a multisensory signal is speech, which consists of both acoustic elements as well as visual 

mouth movements. Integration of these inputs can provide substantial perceptual benefits in term 

of speech intelligibility (Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007). An important cue for 

the appropriate integration of these signals is their relative timing, which has been shown to 

affect integration at both the behavioral (van Wassenhove, Grant, & Poeppel, 2007) and 

neurophysiological (D. M. Simon & Wallace, 2017) level. Computing the temporal relationship 

between stimuli from different sensory modalities thus represents a fundamental step in the 
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process of multisensory integration. To interrogate the nature of these temporal constraints on 

multisensory function, researchers have frequently relied on explicitly asking participants to 

make judgements on the temporal order or simultaneity of stimuli (reviewed in: (Vroomen & 

Keetels, 2010; Wallace & Stevenson, 2014)). Such questions are highly artificial and ask 

participants to actively interrogate a stimulus dimension, temporal structure, for which 

participants have little prior experience and which is rarely actively attended in everyday life. 

Furthermore, temporal acuity in these tasks varies based on the top down task demands imposed 

(i.e. synchrony judgement vs temporal order judgment) (Stevenson & Wallace, 2013; van Eijk, 

Kohlrausch, Juola, & van de Par, 2008). These differences could well be explained by the 

possibility that these temporal tasks recruit specialized task specific neural networks not 

observed during ‘normal’ processing. Examining the nature of these networks may yield 

important information on how the brain reconfigures multisensory information flow to meet 

myriad potential task demands. 

 

Task Dependency in Neural Processing 

Flexibility in processing is one of the most important features of the brain, and underpins its 

ability to function in an ever-changing environment. Mechanistically, this flexibility is believed 

to be rooted in the construction of functional networks (Varela, Lachaux, Rodriguez, & 

Martinerie, 2001). These networks are constructed in a flexible manner, and examples of this 

flexible network reconfiguration that serve to meet task demands include inhibitory control 

(Spielberg, Miller, Heller, & Banich, 2015), and hub based changes in connectivity across tasks 

(Cole et al., 2013). Recent work has begun to probe the mechanistic nature of these task related 

networks. Phase coupling between anatomically distinct neural circuits is believed to be an 
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important contributor to this process (Engel, Gerloff, Hilgetag, & Nolte, 2013; Fries, 2005; 

Womelsdorf et al., 2007), including during sensory processing (Arnal & Giraud, 2012). 

Construction of these phase-coupled networks has been shown to occur extremely rapidly in 

response to task demands, and the fidelity of the constructed network predicts future 

performance on a trial by trial basis (Phillips, Vinck, Everling, & Womelsdorf, 2014).  

Particularly relevant to the current investigation, synchronization in the theta band (4-8 Hz) is 

known to contribute to the maintenance (Klimesch et al., 2006) and retrieval (Womelsdorf, 

Vinck, Leung, & Everling, 2010) of choice relevant information, and is believed to play a 

generalized role in information prioritization, information transfer, and error monitoring 

(Cavanagh & Frank, 2014; Cooper et al., 2015; Sauseng et al., 2006). Task specific network 

construction might be particularly important for integration of information across the different 

senses, which, like processing within a given sensory modality, is known to be flexible in the 

face of dynamic task directives (van Atteveldt, Murray, Thut, & Schroeder, 2014). Multisensory 

integration is dependent on neural interactions across anatomically distinct sensory processing 

circuits, and these interactions are believed to be heavily dependent on neural coherence (Hipp, 

Engel, & Siegel, 2011; Senkowski, Schneider, Foxe, & Engel, 2008). This cross circuit 

coherence is thus highly amenable to top down control when enhancing or attenuating 

information flow is desirable. Multisensory integration during duration judgments has previously 

been demonstrated to be affected by the degree of neural coherence (van Driel, Knapen, van Es, 

& Cohen, 2014), formally implicating fluctuations in network strength in trial-by-trial 

fluctuations in multisensory temporal perception. Top down regulation of neural coherence in 

low frequencies, which are particularly suitable for long range communication (von Stein & 

Sarnthein, 2000), and have been proposed as critical to organizing inputs in time (Kosem, 
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Gramfort, & van Wassenhove, 2014), may thus be an important biological substrate for task 

dependent modulation of temporal information processing between sensory systems. 

 

Rationale for the Current Study 

We previously demonstrated that temporal misalignment between the auditory and visual 

streams is associated with increased power in the lower portion of the theta band (when 

compared with the processing of temporally aligned stimuli). Crucially, we also demonstrated 

that this increased power, which we posited could represent a potential temporal processing 

signal, corresponded directly with participant task performance (D. M. Simon & Wallace, 2017). 

While this study strongly suggested that this error signal was directly related to the processing of 

the temporal structure of the stimuli, it did not determine whether this neural activity is automatic 

or driven by task demands. In an automatic framework, this signal would be present any time 

sensory inputs across modalities were temporally misaligned, and would represent an obligatory 

processing stage evaluating stimulus temporal concordance. Alternatively, as we hypothesize 

here, and representing the core question of the current study, the error signal could be dependent 

on participant’s attention to the temporal relationship of the auditory and visual sensory streams. 

We further hypothesized that when task relevant, this signal would synchronize to other cortical 

regions to transfer the task relevant timing information. To test these hypotheses, we utilized a 

combination of EEG and two psychophysical tasks in which participants passively viewed or 

actively attended the temporal structure of audiovisual speech stimuli with varying levels of 

asynchrony. Our results demonstrate that active processing of multisensory temporal structure 

recruits both local and distributed theta band neural networks. 
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Methods and Materials 

 
Participants 

Twenty-two typically developing adults participated in the study. All participants reported that 

they were right handed, had normal or corrected-to-normal vision, and normal hearing. One 

participant was excluded for analysis due to falling asleep, leaving 21 analyzed participants (11 

female) with a mean age of 22 years (SD ± 4.72). The study was conducted in accordance with 

the declaration of Helsinki, and informed written consent was obtained from all participants. All 

procedures were approved by the Vanderbilt University institutional review board.  

 

Psychophysical Task 

Participants performed two different psychophysical tasks in a blocked design. Task 1 consisted 

of a speeded two alternative forced choice simultaneity judgement (SJ) regarding an audiovisual 

speech stimulus. Task 2 consisted of a speeded response (SR) to flashes or beeps embedded 

within the same speech stimuli. The experimental stimuli consisted of an audiovisual movie of a 

woman saying the syllable ‘BA’, including all pre-articulatory movements, with a resolution of 

720 x 1280 and a duration of 2000 ms (Fig 3-1A). The movie was presented on a 24-inch 

monitor (ASUS VG248QE) with a refresh rate of 60 Hz at a distance of 1 meter. The woman’s 

face was central on the monitor and occupied an area approximately 12 cm high by 8.5 cm wide 

(approximately 6.8° x 4.8° of visual angle), while the open mouth occupied an area 

approximately 1.75 cm high by 3 cm wide (approximately 1° x 1.7° of visual angle). The 

auditory portion of the movie was presented at normal conversational volume (~65dB) through a 

pair of bilateral speakers1 meter from the participant’s head. Trials began with presentation of a 



145 

 

 

 

still face consisting of the first video frame for between 1700 and 2000 ms with a uniform 

distribution. This was followed by the audiovisual movie, with a duration of 2000 ms. Following 

the movie, a still face consisting of the last video frame was presented for 750 ms.  

In task 1 (simultaneity judgment; SJ) participants were instructed to fixate on the mouth and 

to use their right hand to indicate whether the stimuli were perceived to occur at the same time 

(i.e., synchronously) or at different times (i.e., asynchronously) via keyboard button press. 

Participants were explicitly told to respond as quickly and accurately as possible. 

Figure 3-1 Behavioral Task and Behavioral Results 
A) Experimental Timeline. Trials began with a 1700-2000 ms period of a still face 

consisting of the first video frame, followed by the 2 s stimulus movie. Following 
the movie there was a 750 ms period of additional still face consisting of the last 
movie frame. During the SJ task if participants had not yet responded a response 
screen appeared for up to 2500ms. Participants were explicitly told to respond as 
quickly and accurately as possible and that the response screen was an indicator 
they were responding too slowly. 

B) Example of an auditory catch trial for the SR task. A 16.7 ms burst of Gaussian 
white noise (gray shading) was inserted beginning 150 ms after stimulus onset.  

C) Example of a visual catch trial for the SR task. A 1 cm x 1 cm translucent green 
circle appeared within the mouth with a duration of 50 ms, beginning 150 ms after 
stimulus onset when the mouth was fully open.  

D) Rate that stimuli were reported as synchronous in the SJ task for each of the six 
SOAs. 
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In task 2 (speeded response; SR) participants were instructed to fixate on the mouth and to 

use their right hand to indicate the presence of a green flash or auditory click via keyboard button 

press. When no flash or click was present, participants were to withhold response. Participants 

were explicitly told to respond as quickly and accurately as possible. 

To create the temporal asynchronies of the stimulus bank, we manipulated the audiovisual 

stimulus by delaying the visual stimulus (to create an AV trial) or delaying the auditory stimulus 

(to create a VA trial). We created 5 asynchronies ranging from audition leading vision by 300 ms 

(A300V) to vision leading audition by 450 ms (V450A) in steps of 150 ms, resulting in a total of 

6 conditions, including the original movie featuring synchronized stimuli. For the SR task we 

additionally created visual and auditory catch trials. For auditory catch trials, we added a 16.7 ms 

burst of Gaussian white noise at ~75dB to the auditory stimulus (Fig 3-1B). For visual catch 

trials, we added a 50 ms circular green flash 1 cm (approximately 0.6°) in diameter occurring 

during mouth opening to the visual stimulus (Fig 3-1C). We created both auditory and visual 

catch trials for all 6 temporal conditions (and thus 12 types of catch trials) and weighted their 

appearance rate to approximately coincide with the weighting of regular trials. The level of 

asynchrony in the audiovisual speech stimulus was thus not predictive in regards to the presence 

of absence of the catch stimulus. 

As our planned primary analysis involved auditory leading and synchronous stimuli, blocks 

were weighted to increase the number of trials collected in these conditions. These conditions 

(A300V, A150V, and AV) each occurred 28 times per block (25.7% of trials per condition). The 

V150A condition occurred 5 times per block (4.6% of trials), and the V300A and V450A 

conditions occurred 10 times per block (9.2% of trials per condition). This higher weighting of 

V300A and V450A served to minimize sustained recalibration (Fujisaki, Shimojo, Kashino, & 
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Nishida, 2004; Vroomen, Keetels, de Gelder, & Bertelson, 2004) over the course of the 

experiment. In the SR condition we additionally added 2 visual and 2 auditory catches in the 

conditions of interest (A300V, A150V, AV) and 1 visual and 1 auditory catch in the visual 

leading conditions (V150A, V300A, V450A). 

Blocks thus consisted of 109 stimuli (SJ) or 127 stimuli (SR) presented in a random order 

and participants completed 6 blocks of each task, for a total 1416 trials. Block order was random, 

with the constraint that no more than two repetitions of a given task could occur in a row. 

Stimulus onset for all stimuli was considered relative to the leading stimulus. That is, for 

auditory leads stimulus onset was at the time of auditory onset, while for visual leads stimulus 

onset was the onset of the video frame associated with auditory onset in the original video. These 

events occurred simultaneously in the synchronous video. In other words, time 0 in our analysis 

corresponds with the first point at which task relevant information was present. All participants 

completed a practice block for each of the two tasks before the main experiment, and an example 

of synchronous speech was re-demonstrated for participants every 2 blocks. 

 

Behavioral Data Analysis 

In the SJ task, we excluded any trial in which no response was given. For each SOA we also 

separately excluded trials in which the response time was more than 2.5 standard deviations 

greater than an individual participant’s mean response time for that SOA. This resulted in the 

omission of 9.87 (SD ± 3.08) trials per participant, which were also excluded from EEG analysis 

(see below). We then compiled the reported rate of synchrony and mean reaction time for each 

participant separately for each SOA. For the SR task, responses were examined in terms of hit 

rate and false alarm rate to confirm that participants actively attended the task. 
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EEG Acquisition and Pre-processing 

EEG acquisition and processing was performed in line with previous work (D. M. Simon & 

Wallace, 2017). Continuous EEG was recorded from 128 electrodes referenced to the vertex (Cz) 

using a Net Amps 400 amplifier and Hydrocel GSN 128 EEG cap (EGI systems Inc.). Data were 

acquired with NetStation 5.3 with a sampling rate of 1000 Hz and were further processed using 

MATLAB, EEGLAB (Delorme & Makeig, 2004), and fieldtrip (Oostenveld, Fries, Maris, & 

Schoffelen, 2011). Continuous EEG data were band-pass filtered from 0.15 to 50 Hz with a 6 dB 

roll-off of 0.075 to 50.075 Hz using the EEGLab firfiltnew.m function, which implements a bi-

directional zero-phase finite impulse response filter. Epochs 3s long from 1000 ms before to 

2000 ms after onset of the first stimulus were then extracted. Artifact contaminated trials and bad 

channels were identified and removed through a combination of automated identification of trials 

in which any channel exceeded ± 100 μV and rigorous visual inspection. Data were then 

recalculated to the average reference, reduced to 64 dimensions using principal component 

analysis (PCA) and submitted to independent component analysis (ICA) using the Infomax 

algorithm (Jung, Makeig, Humphries, et al., 2000; Jung, Makeig, Westerfield, et al., 2000) (0.5E-

7 stopping weight, 768 maximum steps). Lastly, bad channels were reconstructed using spherical 

spline interpolation (Perrin, Pernier, Bertrand, Giard, & Echallier, 1987) and data were re-

inspected for residual artifacts. Overall a mean of 1154 (81.8% SD ± 10.0%) of trials were 

retained, while 4.43 (SD ± 1.80) channels and 6.66 (SD ± 2.39) Independent components were 

removed per participant. For the SJ task, we also excluded trials using the same behavioral 

criteria used for behavioral data analysis. For EEG analysis of the SR task, we excluded any trial 

in which participants committed a false alarm by responding when there was neither a flash nor a 
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noise burst.  

All EEG analysis was focused on the auditory leading conditions (A300V and A150V) and 

true synchrony (AV) for which we collected a substantial number of trials (see below). A 3 

(SOA) x 2 (task) ANOVA for number of trials retained in these conditions indicated that there 

was no difference in number of trials retained per task (F1,20 = 0.0302, p = 0.8637), but that trials 

were rejected slightly more often in the AV and A150V conditions than in the A300V condition 

(F2,40 = 4.366, p = 0.0193). In practice, this indicated the highest value of 138.8 trials per 

participant were retained in the A300V condition per task, while the lowest value of 135.3 trials 

were retained in the AV condition per task. We believe this ~2.5% difference in trial retention 

rate is unlikely to contribute to differences in our results, and note that we use connectivity 

metrics that compensate for sample size bias. 

 

Time-Frequency Analysis 

We employed time-frequency analysis to examine EEG activity in the frequency domain. Time 

Frequency decomposition of single trial EEG data was accomplished using convolution with 

Morlet wavelets with frequencies from 3.5 to 35 Hz in 0.5 Hz steps. Wavelets had 2.5 cycles at 

the lowest frequency rising to 9.3 cycles at the highest and convolution was performed with a 

temporal resolution of 10 ms. Power was then baseline corrected relative to the -600 to -200 ms 

pre stimulus period and decibel transformed. Frequency bands were selected for further analysis 

a-priori based on previous results from a separate experiment utilizing physically identical 

stimuli. We selected the low theta band (3.5 – 5 Hz) and an analytical window of 300-500ms due 

to our previous demonstration that power in this band is related to perception of asynchrony 

during simultaneity judgment (D. M. Simon & Wallace, 2017). We further selected the canonical 
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theta band (4-8 Hz) and an analytical window of 50-250ms to rule out temporal blurring of the 

initial auditory cortical response as a primary contributor to our results. We then averaged power 

within time-frequency ROIs and contrasted tasks and conditions using a 3 (SOA) x 2 (task) 

repeated measures ANOVA. For topographic representations of multiple electrodes, we 

corrected for multiple comparisons with FDR using q = 0.05 and display only electrodes meeting 

this criterion. 

 

Phase Coupling Analysis 

For connectivity analysis we computed the de-biased version of the weighted phase lag index 

(WPLI) (Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011) between all electrode 

pairs using data from 150-649 ms after stimulus onset (400ms ± 250ms, equivalent to the center 

of the time-frequency window for power). The WPLI is uniquely suited to low frequency 

connectivity in relative proximity to evoked responses as it strongly discounts spurious 

connectivity attributable to volume conduction, thus monotonically representing true neural 

coherence (Ewald, Aristei, Nolte, & Abdel Rahman, 2012; Haufe, Nikulin, Muller, & Nolte, 

2013; Vinck et al., 2011). Data was Hann windowed before transformation to the frequency 

domain via FFT and thus had a frequency smoothing of ± 2Hz. As de-biased WPLI values are 

not normally distributed and equivalent to squared WPLI values, we used fisher’s Z transform on 

the square root of de-biased WPLI values to make them approximately normal and used non-

parametric statistical testing. The de-biasing procedure may also result in coherence value below 

zero, and we replaced all negative coherence values with zeros before fisher Z transforming the 

data. For analysis of connectivity, we then selected only the six right central electrodes showing 

both a significant FDR corrected main effect of SOA and a significant FDR corrected task x 
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SOA interaction effect (E80, E104, E105, E110, E111, E129). Connectivity was averaged across 

these sensors to improve signal to noise ratio. These connectivity values were then submitted to 

randomization testing with cluster based correction for multiple comparisons (Maris & 

Oostenveld, 2007). Using randomization testing, we tested for main effects and interaction 

effects separately by either averaging across SOAs to test for the main effect of task, averaging 

across tasks to test for the main effect of SOA, or subtracting data in the SR task from the SJ task 

(SJ – SR) at each SOA individually to test for an interaction. For the main effect of task, we used 

a dependent samples t-test to determine cluster inclusion. For the main effect of SOA and the 

interaction effect, we used the dependent samples F multivariate test found in FieldTrip 

(http://www.fieldtriptoolbox.org/) (Oostenveld et al., 2011) to determine cluster inclusion. In all 

cases we set a cluster inclusion threshold of alpha = 0.05, a permutation significance of alpha = 

0.05, and used 10,000 randomizations. We note that this analysis was hypothesis based, and we 

initially selected a singular frequency of interest (4 Hz) and time window which best 

approximated our a-priori analytical window for power. In the interest of being thorough, we 

also analyzed connectivity using canonical frequency bands for theta (4-8 Hz), alpha (9-13 Hz), 

low beta (13-18 Hz) and high beta (18-30 Hz). Values within significant clusters were then 

averaged and subjected to 3 (SOA) x 2 (task) repeated measures ANOVA. 

We then sought to infer the directionality of information transfer between connected 

electrodes. To do so we calculated the phase relationship between each cluster and the six right 

central electrodes. Phase difference was calculated by subtracting, for each possible electrode 

pairing and trial, the phase at the central electrode from the phase at the temporal or occipital 

cluster (i.e. Δθ = θcluster - θcentral). For example, connectivity between clusters with six and nine 

electrodes would result in 54 phase angle differences per trial. We then took the weighted 
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circular mean of these values using the absolute value of the sine of the phase angle difference as 

the sample weighting (i.e. sample weight = |sin(Δθ)|). Weighting these values serves to weight 

against volume conduction effects, which drive Δθ towards 0° or 180° (Nolte et al., 2004) and is 

analogous to the weighted calculation performed in the WPLI (Vinck et al., 2011). We took this 

weighted circular mean across all trials, excluding self-pairings, as the mean phase angle 

difference for the participant and cluster pairing in each condition. Phase angle differences across 

participants were statistically analyzed using the circular statistics toolbox (Berens, 2009). Lags 

and leads less than 90° (π/2 rad) yield relatively robust information about directionality, while 

lags and leads between 90° and 180° are interpreted slightly more cautiously. We also calculated 

the mean resultant vector length (MRVL) across participants, which indicates the consistency of 

leads and lags between individuals. A MRVL of 1 indicates perfect consistency across 

participants in terms of cluster phase relationships, while an MRVL of 0 indicates a uniform 

circular distribution of phase relationships. 

 

 

Results 

 
Behavioral Results 

We began our analysis by calculating the rate of reported synchrony and reaction time for each 

of the 6 SOAs used in the experiment. As anticipated, synchrony was reported most frequent for 

truly synchronous stimuli and decreased with increasing SOAs in either direction (Fig 3-1D). 

While response times in the SJ task are not of direct interest relative to our experimental 

hypotheses they replicated previous results, in which simultaneity judgement is fastest for 

synchronous speech stimuli (mean RTs ± SEM for A300V 839 ± 37.6 ms; A150V 792.6 ± 34.7 
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ms; AV 645.4 ± 35.7 ms; V150A 741.3 ± 35.3 ms; V300A 825.4 ± 37.1 ms; V450A 810.6 ± 

37.2 ms. A 1 x 6 SOA repeated measures ANOVA for response time had a significant main 

effect of SOA (F5,100 = 24.95, p = 3.038 x 10-16). We also compiled hit and false alarm rates for 

the SR task, which indicated that participants performed at ceiling for catch trials in both sensory 

modalities. Participants had a mean hit rate of 99.64% (SD ± 0.96%, all participants > 96%) for 

auditory catches and a mean hit rate of 99.38% (SD ± 1.35%, all participants > 94%) for visual 

catches. The false alarm rate (i.e. pressing a response when neither type of catch was present) 

was extremely low, occurring on 0.06% of trials (SD ± 0.12%, all participants < 0.5%). 

Participants thus performed both tasks correctly and with a high degree of fidelity. 

 

Effects of Temporal Structure on Theta Oscillations Are Task Dependent 

We next analyzed whether oscillations in the lower theta band (3.5 – 5 Hz) were stronger for 

large asynchronies as we previously demonstrated (D. M. Simon & Wallace, 2017), and whether 

this effect required attention to temporal configuration. To do so, we analyzed neural responses 

to the A300V, A150V, and AV conditions only, as the number of trials was strongly weighted 

towards these conditions (see methods). We averaged time-frequency representations (Fig 3-2 

and Fig 3-3) from 300 – 500 ms and from 3.5 – 5 Hz at electrode Cz and performed a 3 (SOA) x 

2 (task) repeated measures ANOVA. Electrode Cz was selected as we did not have a strong 

hypothesis regarding lateralization of effects and Cz is well positioned to capture the effects we 

previously reported. 
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We found that at this location there was a significant main effect of SOA (F2,40 = 21.167, p = 

5.368 x 10-7), no main effect of task (F1,20 = 3.887 x 10-6, p = 0.9984), and a significant 

interaction (F2,40 = 7.887, p = 0.0013) (Fig 3-4). We then performed follow-up t-tests which 

indicated that these effects occurred because low theta power during the SJ task was greater in 

the A300V condition than in the A150V (t20 = 4.845, p = 9.815 x 10-5) or AV (t20 = 5.658, p = 

1.545 x 10-5) conditions. Differences in theta power between A150V and AV did not reach 

significance (t20 = 1.675, p = 0.1095). Theta power did not differ across asynchronies in the SR 

task (all t < 1.468, all p > 0.1577). Pairwise comparisons between the two tasks indicated that 

Figure 3-2 Time-Frequency Representations for Electrode Cz 
Tasks (SJ and SR) are displayed as rows, while SOAs (A300V, A150V, and AV) are 
displayed as columns. 

 Top Row: Time-frequency representations for the A300V, A150V, and AV 
conditions during simultaneity judgment. Note the greatest power in the theta band 
is seen in the most asynchronous condition (A300V). 

 Bottom Row: Time-frequency representations for the A300V, A150V, and AV 
conditions during the speeded response task. 
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theta power was higher in the SJ task for the A300V condition (t20 = 2.4305, p = 0.0246), did not 

differ in the A150V condition (t20 = -0.5435, p = 0.5928) and was lower for SJ than SR in the 

synchronous (AV) condition (t20 = -2.8805, p = 0.0092). These results indicate that actively 

attending to the temporal structure of the stimuli is required for activity in the low theta band to 

change with the level of audiovisual asynchrony in the stimulus.  

Figure 3-3 Time Frequency Contrasts for Electrode Cz 
Expanded (3.5-7 Hz) difference for electrode Cz between time-frequency representations 
(SJ – SR). Black box indicates the 3.5 – 5 Hz and 300 – 500 ms window selected for 
further power analysis. Black dot indicates the time-frequency seed used for connectivity 
analysis. Note the striking difference in power within this frequency band and temporal 
epoch between tasks, most notably in the A300V condition.  
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As a control analysis to determine if these effects could be due to temporal smearing of the initial 

auditory response, we calculated power in the canonical theta band (4 – 8 Hz) using a time 

window of 50 – 250 ms. This window captures both the canonical N1 and P2, and which have 

previously been shown to be modulated by temporal structure (D. M. Simon & Wallace, 2017). 

A 3 (SOA) x 2 (task) ANOVA on theta power in this window indicated there was a significant 

main effect of SOA (F2,40 = 45.702, p = 4.667 x 10-11), a main effect of task (F1,20 = 10.620, p = 

0.0039), and no interaction effect (F2,40 = 0.9107, p = 0.4104) (Fig 3-5). Consistent with our 

previous work, follow-up t-tests indicated that for the SJ task the main effect of SOA was 

attributable to graded reductions in theta power as the visual stimulus approached true synchrony 

(A300V vs A150V t20 = 4.875, p = 9.17 x10-5; A300V vs AV t20 = 7.649, p = 2.315 x 10-7; 

A150V vs AV t20 = 3.431, p = 0.0026). Similar results were present in the SR task (SR task 

Figure 3-4 Low Theta Power for Electrode Cz 
Power in the low (3.5 – 5 Hz) theta band as a function of task and temporal asynchrony 

A) Time course of low theta power at electrode Cz (inset depicts electrode location) 
for the A300V, A150V, and AV conditions during both tasks. The grey shaded 
region indicates the 300 - 500ms analytical window.  

B) Low theta power for the SJ task (blue) and SR task (red) in the 300 – 500 ms 
window for each of the three levels of asynchrony. Note that power is greatest for 
the largest asynchrony in the SJ task, and fails to differ based on temporal structure 
for the SR task. 
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A300V vs A150V t20 = 2.832, p = 0.0103; A300V vs AV t20 = 5.8082, p = 1.106 x 10-5; A150V 

vs AV t20 = 3.358, p = 0.0031). Pairwise comparisons also indicated that power in the SR task 

was higher than for the SJ task in the A150V and AV conditions (A300V SJ vs SR t20 = -0.8726, 

p = 0.3928; A150V SJ vs SR t20 = -3.42 p = 0.0027; AV SJ vs SR t20 = -2.984, p = 0.0073). We 

repeated this process using only the 3.5 – 5 Hz band as the larger wavelet size at these 

frequencies might allow temporal blurring unnoticed in the full theta band analysis. This analysis 

yielded similar results to the full theta band; a main effect of SOA (F2,40 = 15.229, p = 1.209 x 

10-5), a main effect of task (F1,20 = 18.743, p = 3.258 x 10-4), and no interaction effect (F2,40 = 

0.1086, p = 0.8974). Crucially, this early theta power was centrally distributed, which is 

consistent with auditory cortical generators, and did not demonstrate a SOA x task interaction. 

The effects we observe in the primary low theta analysis thus cannot be attributed to temporal 

Figure 3-5 Canonical Theta Power for Electrode Cz 
Power in the canonical (4 – 8 Hz) theta band as a function of task and temporal 
asynchrony. 

A) Time course of canonical theta power at electrode Cz for the A300V, A150V, and 
AV conditions during both tasks. The grey shaded region indicates the 50 - 250ms 
analytical window.  

B) Theta power for the SJ task (blue) and SR task (red) in the 50 – 250 ms window for 
each of the three levels of asynchrony. 
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blurring of early auditory cortical responses in the frequency domain. 

We then extended this procedure to all electrodes by performing an individual 3 (SOA) x 2 

(task) repeated measures ANOVA at each electrode for power averaged from 3.5 – 5 Hz and for 

Figure 3-6 Low Theta Power as a Function of Spatial Location 
Spatial representations of low theta power (3.5 – 5 Hz) across task and SOA for the 
interval between 300 – 500 ms. Tasks are displayed in rows, while SOAs are displayed in 
columns. 

 Top Row: Spatial representation of low theta power for the A300V, A150V, and 
AV conditions during simultaneity judgment. 

 Middle Row: Spatial representation of low theta power for the A300V, A150V, and 
AV conditions during the speeded response task. 

 Bottom Row: Spatial representation of the difference in low theta power between 
conditions (SJ – SR).  
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the time interval between 300-500 ms. We corrected for multiple comparisons using FDR with q 

= 0.05 and display topographies for both power (Fig 3-6) and F values (Fig 3-7). A large number 

of electrodes with a right central distribution displayed a significant main effect of SOA (pFDR < 

0.05, 42 contiguous electrodes in the primary cluster). Additionally, a smaller subset (6 

contiguous electrodes) with a right central distribution displayed a significant interaction (pFDR < 

0.05). Both the main effect of SOA and the interaction thus presented at a right lateralized 

location atypical of initial auditory cortical responses. 

 
 
Functional Connectivity in the Theta Band Differs Across Tasks 

We next examined whether connectivity at low theta frequencies differed between tasks or 

SOAs. We selected the contiguous right central electrodes showing significant FDR corrected 

interaction effects and calculated their weighted phase lag index (WPLI) functional connectivity 

centered at 4 Hz and 400±250 ms after stimulus onset (Fig 3-8). These values correspond with 

our analytical window for power and encompass the frequency bands of interest after accounting 

for the frequency smoothing of the Hann Window. We then performed spatial randomization 

Figure 3-7 Statistical Contrasts as a Function of Spatial Location 
Spatial representation of the 3 (SOA) x 2 (task) repeated measures ANOVA for low theta 
power (3.5 – 5 Hz) averaged over interval of 300 – 500 ms. Colors indicate the F-Value for 
the statistical contrast at each spatial location. Black dots indicate electrodes with 
significant effects after correction for multiple comparisons (p < 0.05, FDR corrected). 
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testing for main effects of task and SOA, and for an interaction. For the main effect of task, we 

found two bilaterally placed significant clusters. The left cluster (p = 0.0418) consisted of 10 

temporal sensors, while the right cluster (p = 0.0486) consisted of 9 temporal sensors. We found 

no clusters displaying a main effect of SOA. A single cluster was found when testing for the 

interaction effect (p = 0.0320), which consisted of 14 electrodes over right posterior scalp. 

Cluster locations are depicted as insets in figure 3-9. For completeness, we repeated this process 

for canonical oscillatory frequency bands (see methods) and found no effects for any of these 

bands (all p > 0.1). To better quantify values within the identified clusters we then separately 

averaged connectivity across electrodes within each cluster and performed 3 (SOA) x 2 (task) 

repeated measures ANOVA. 

As anticipated, these ANOVAs were consistent with the results of the permutation testing 

(Table 1). We then performed pairwise T-tests using each cluster’s theta connectivity values 

Figure 3-8 Functional Connectivity as a Function of Spatial Location 
Topographic representations of 4 Hz synchronization to the right central electrode cluster 
(inset left; this cluster represents the connectivity seed) for the SJ (top) and SR (bottom) 
tasks and for the 3 SOAs. Warmer colors indicate increased functional connectivity. 
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comparing the two tasks (Fig 3-9). In the left temporal cluster theta connectivity was higher in 

the SJ task for A300V (t20 = 4.351, p = 3.0996 x 10-4), but not in the A150V (p = 0.304) or AV 

conditions (p = 0.492). In the right temporal cluster theta connectivity was higher in the SJ task 

for A300V (t20 = 3.7471, p = 0.0013) and A150V (t20 = 2.168, p = 0.0424), but not in the AV 

condition (p = 0.4465). These main effects represent elevated theta synchronization between 

temporal sensors and right central electrodes when the stimulus was highly or mildly 

asynchronous during simultaneity judgment. In the right posterior interaction cluster connectivity 

was stronger for SJ in the A300V condition (t20 = 3.9565, p = 7.7886 x 10-4), but was not 

significantly weaker for SJ in the AV condition (t20 = -1.7548, p = 0.0946). We highlight that 

theta synchronization between this cluster and right central sensors is elevated for asynchronous 

stimuli during SJ and somewhat elevated for synchronous stimuli during SR, which yields the 

interaction effect due to inverted trajectories. 

 

Figure 3-9 Low Theta Connectivity by Task and Cluster 
A) Low theta connectivity averaged across the left temporal electrode cluster (inset) 

for the two tasks and three SOAs. 
B) Low theta connectivity averaged across the right temporal electrode cluster (inset) 

for the two tasks and three SOAs. 
C) Low theta connectivity averaged across the right posterior electrode cluster (inset) 

for the two tasks and three SOAs. 
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Table 0-1 ANOVAs for Phase Synchrony 

Cluster ANOVA Contrast F df p-value 

     
Left Temporal Main effect of task 16.649 1,20 5.831 x 10-4 
 Main effect of SOA 1.858 2,40 0.1691 
 SOA x Task Interaction 2.39 2,40 0.1406 
     
Right Temporal Main effect of task 9.667 1,20 0.0055 
 Main effect of SOA 0.6158 2,40 0.5453 
 SOA x Task Interaction 1.9164 2,40 0.1604 
     
Right Occipital Main effect of task 0.7837 1,20 0.3865 
 Main effect of SOA 1.0613 2,40 0.3555 
 SOA x Task Interaction 8.772 2,40 6.938 x 10-4 
 
 

To infer directionality, we then computed weighted mean phase lags between the right 

central cluster and the three identified clusters for each participant. For the SJ task, we restricted 

this analysis to the A300V and A150V conditions as these conditions presented elevated 

connectivity using the non-directional WPLI measure (see above ANOVAs and follow up t-

tests). We also only depict relationships for which a cluster had more connectivity than in the SR 

task (A300V all three clusters, A150V only the right cluster). For the SR task we only performed 

this analysis in the synchronous condition and for the occipital cluster only, as this was the only 

elevated connectivity in this task as part of the interaction cluster. Phase relationships for each 

cluster are presented in Table 2. 
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Table 0-2 Cluster Phase Relationships 

Task & 
Condition 

Target Cluster Phase Angle re: central Time Difference (ms) MRVL 

SJ A300V L. Temporal 2.5784 rad (147.733°) 22.4 lag 
(or 102.6 lead) 

0.7598 

 R. Temporal 0.2437 rad (13.965°) 9.7 lead 0.9764 
 R. Occipital -0.5256 rad (-30.116°) 20.9 lag 0.6997 
     
SJ A150V R. Temporal 0.2016 rad (11.557°) 8 lead 0.9760 
     
SR AV R. Occipital -0.8156 rad (-46.733°) 32.5 lag 0.7111 
 

Figure 3-10 Low Theta Phase Lag in the A300V Condition and SJ Task 
Red circles indicate data for individual participants, while the red vector indicates the 
direction and concentration of phases. 

A) Weighted phase angle difference between the left temporal cluster and the 
connectivity seed in the A300V condition and SJ task. 

B) Weighted phase angle difference between the right temporal cluster and the 
connectivity seed in the A300V condition and SJ task. 

C) Weighted phase angle difference between the occipital cluster and the connectivity 
seed in the A300V condition and SJ task. 
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In the A300V conditions all three of these distributions proved to be highly non-uniform 

when tested with a Rayleigh test (left main effect cluster Z = 12.123, p = 6.955 x 10-7; right main 

effect cluster Z = 20.021, p = 8.733 x 10-14; right occipital interaction cluster Z = 10.282, p = 

9.074 x 10-6) (Fig 3-10). We present a depiction indicating directionality of information transfer 

in the A300V condition in figure 3-11 and note that the directionality was identical in the other 

conditions examined.  

In the A150V condition the right temporal cluster was found to be non-uniform (Z = 20.005, 

p = 9.212 x 10-14) and to lead the central cluster by 0.2016 rad (11.557°), which is equivalent to 

an 8 ms lead (MRVL = 0.9760). In the AV condition and SR task the phase relationship between 

the central and occipital clusters were also non-uniform, as expected (Z = 10.62, p = 5.753 x 10-

Figure 3-11 Functional Low Theta Network for the A300V Condition and SJ task 
Representation of the timing and direction of information flow based on weighted relative 4 Hz 
phase for the A300V SJ task. Arrows point from the leading to the lagging cluster for each 
pairing. Phase relationships were found to be similar in the other conditions (see table 3-2). 
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6). A Watson-Williams multi-sample test for equal means did not indicate that this lag was 

different from the 20.9 ms lag in the A300V SJ task (F1,40 = 1.19, p = 0.2819).  

 

 

Discussion 

 
We demonstrate that power in the lower theta band varies with the degree of temporal 

asynchrony between the auditory and visual components of audiovisual speech stimuli. When 

this temporal disparity is large, theta power is high, and vice versa. Importantly, however, we 

also demonstrate that these differences occur only when the temporal structure of the stimuli is 

actively attended during simultaneity judgment. This suggests that this power modulation is 

reflective of an active temporal processing. Using connectivity analysis, we further demonstrate 

that neural circuits exhibiting power differences couple to temporal sensors in a task dependent 

manner. Connectivity to posterior and more putatively visual areas was also modulated 

differently by asynchrony in the two tasks. These findings serve as evidence that the 

multisensory error signal we previously reported is only processed during active attending of 

temporal structure. They also begin to offer tantalizing insights into how timing information 

might flow between cortical regions during actively attended temporal processing. 

 

Theta Oscillations Index Neural Processing of Temporal Structure 

Our primary finding is that low theta (3.5 – 5 Hz) oscillations are enhanced in the presence of 

temporal mismatch between the auditory and visual components and audiovisual speech. When 

the streams are substantially out of temporal alignment, there is a relatively robust increase in 

theta power compared to passive viewing at right central electrodes. Crucially, we further show 
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that these oscillations are actively suppressed below passive viewing levels when the temporal 

structure of the paired audiovisual stimuli is synchronous. The right lateralized topography of 

theta power differences also serves to differentiate them from the initial auditory cortical 

response despite the limitations in temporal resolution inherent to low frequency wavelet 

transforms. Taken together we believe that these findings reinforce and extend our previously 

proposed hypothesis that power in the lower portion of the theta band indexes cognitive 

processes associated with the identification of temporal mismatch between the auditory and 

visual speech streams (D. M. Simon & Wallace, 2017).  

Previous work in error monitoring has primarily identified cingulate and frontal cortex as the 

locus of error signals. We note that the right central distribution of this activity in our experiment 

and our previous work (D. M. Simon & Wallace, 2017) is somewhat incongruent with the 

expected fronto-central distribution typically associated with these cortical generators (Cavanagh 

& Frank, 2014). It is, however, consistent with previous work examining perceived simultaneity 

for audiovisual speech, which demonstrated right lateralization in perception-based changes in 

the N1 component (Huhn, Szirtes, Lorincz, & Csepe, 2009). This suggests that the lateralization 

of the observed response may be a marker of hemispheric dominance for this type of processing. 

We believe this may also occur because other cortical areas may be involved, leading to a 

complexity in the scalp topographies that mask the precise localization of generators. The 

posterior temporal sulcus, for example, has been suggested to be an important hub for 

audiovisual temporal processing (Stevenson, Altieri, Kim, Pisoni, & James, 2010; Wallace & 

Stevenson, 2014) and projects oscillatory power quite broadly to the scalp. For example, 

(Schepers, Schneider, Hipp, Engel, & Senkowski, 2013) examined beta oscillations originating 

from STS in response to audiovisual speech stimuli and found a rather broad scalp projection. 
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Recent work has also elucidated the importance of low frequency coherence involving motor 

cortex in audiovisual speech integration (Park, Kayser, Thut, & Gross, 2016), and this might 

similarly contribute to the observed scalp topography. Previous work has shown that relative 

temporal information can be found directly in auditory and visual cortex in the form of very low 

frequency (1 Hz) phase (Kosem et al., 2014). Together these findings suggest that a broad 

network may be recruited for computation of multisensory temporal error, leading to a complex 

scalp projection.  

 

Theta Connectivity as a Mechanism for Cognitive Control of Multisensory Processing 

Our results further begin to probe how these potential temporal structure-monitoring circuits are 

selectively synchronized with other brain regions to support temporal processing. During active 

temporal processing, phase synchronization to bilateral temporal regions was elevated when the 

stimuli were physically asynchronous relative to what was seen during passive viewing. In 

contrast, for objectively synchronous stimuli, no differences in phase synchronization were 

present. Importantly, this change in synchrony is unique to the low theta band and strongly 

consistent with the explanation that cortical regions registering temporal structure transfer 

information by coupling at low frequencies when temporal structure is task relevant. We also 

demonstrate that right lateralized connectivity to posterior, and thus more putatively visual 

sensors, is regulated in opposite directions by SOA depending on the current task. During the SR 

task, phase coupling was highest for synchronous stimuli, consistent with the notion that 

networks processing auditory and visual inputs align their phase relationships when stimuli are 

being integrated. During the SJ task, however, this pattern is reversed, and phase synchrony is 

strongest for asynchronous stimuli. We believe this reversal is indicative of the flexible role theta 
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band phase coupling plays in shaping information transfer to meet task demands (Cavanagh & 

Frank, 2014; Cohen, 2014). It is also consistent with previous work showing that top down 

factors can shape phase synchrony between brain areas (Hanslmayr et al., 2012).  

Task dependent low frequency synchronization as a mechanism for top down control of 

multisensory temporal processing has important implications for the study of populations with 

diminished or dysfunctional multisensory temporal integration. One example of such a 

population is schizophrenia, in which multisensory temporal deficits are well documented (Hass 

et al., 2017; Parsons et al., 2013) and diminished theta oscillations have been observed during 

multisensory processing (Roa Romero, Keil, Balz, Gallinat, & Senkowski, 2016). Disrupted 

neural synchrony is present over a broad range of contexts in schizophrenia (Uhlhaas & Singer, 

2010), suggesting that temporal processing dysfunctions may arise from dysfunctional long 

range theta synchronization. Another example of a clinical population with altered multisensory 

temporal processing is individuals with autism spectrum disorder (ASD), who have a diminished 

ability to distinguish asynchronous speech from synchronous speech (Stevenson et al., 2014). In 

both of these populations, flexibility in neural processing may be impaired (Akar, Kara, 

Latifoglu, & Bilgic, 2016; Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; D. M. 

Simon, Damiano, C.R., Woynaroski, T.G., Ibañez, L.V., Murias, M., Stone, W.L., Wallace, 

M.T., Cascio, C.J., 2017). We suggest that a component of inflexibility in these populations may 

be a diminished ability to shape task specific neural networks through low frequency neural 

coherence. Such a deficit would lead to difficulty integrating and segregating timing 

representations appropriately using the theta band network we demonstrate. Future research 

would be well served to examine potential synchronization deficits during multisensory temporal 

processing in these clinical populations. 
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Multisensory Integration as an Active Feature Selection Process 

Our results also serve to reinforce the amenability of the neural circuits mediating multisensory 

integration to top down task demands. Specifically, they indicate that task specific phase 

coupling is present to either support or inhibit the transfer of timing information across neural 

circuits. Neural oscillations as a mechanism for top down control of sensory processing within 

(Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008) and across (Lakatos et al., 2009; 

Mazaheri, Nieuwenhuis, van Dijk, & Jensen, 2009) circuits is well documented, and our study 

highlights that these same processes can be leveraged by the brain to selectively attend or ignore 

timing differences between the individual components of multisensory stimuli. This selective 

synchronization to support transfer of timing information is also interesting given the well-

documented phenomena of temporal recalibration (Fujisaki et al., 2004; Vroomen et al., 2004), 

in which the brain adapts to prolonged exposure to asynchrony. We suggest that reductions or 

alterations in low frequency phase coupling might support this phenomenon by controlling or 

ablating connectivity between networks containing timing representations. 

Limitations of the study include the possibility that participants might have covertly 

performed simultaneity judgment during the SR task. Importantly, however, such covert task 

performance would serve to equalize neural activity across tasks. This effect would run counter 

to the hypothesis that low frequency activity should differ between tasks. The presence of task 

related differences and task x stimulus interactions thus indicates that either covert simultaneity 

judgement did not occur or was sufficiently infrequent that it did not interfere with task related 

differences. Additionally, the temporal resolution of our findings is limited by the spectral 

transforms used. While we provide control analyses by comparing neighboring activity, temporal 
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interference in our results is still a possibility. This is particularly true for our connectivity 

analysis, as the proximity of the ERP may obscure distributed effects in more fronto-centralized 

regions. Specifically, the WPLI is very conservative compared to other connectivity approaches 

(in terms of aggressively discounting potentially volume-conducted synchronization) and may 

discount some true synchronization effects (Cohen, 2015). While we believe this conservative 

approach is a strength of our study as it grants confidence in our significant connectivity results, 

it does raise the possibility that a nontrivial portion of true neural synchronization was missed. 

 

 

Conclusion 

 
Our study demonstrates that top down task demands modulate neural responses to asynchronous 

audiovisual speech. For early neural activity, active attending to multisensory temporal 

concordance acts to dampen cortical responses likely generated by primary and secondary 

auditory cortex. For later cortical responses, active attending of stimulus properties is required 

for temporal structure to modulate activity. Phase based connectivity analysis further indicated 

that low frequency functional networks are differentially engaged during active attending and 

passive viewing of temporally asynchronous stimuli. Our results thus indicate that low frequency 

neural activity in both local and long-range circuits is mediated by top down task demands 

during multisensory temporal processing. The task dependencies we highlight here may also 

contribute to the variability seen in across experiments using ERP component based approaches 

to multisensory integration of speech signals (Baart, 2016). Future work utilizing a more 

continuous design with fewer sharp stimulus transients may be able to elucidate that exact 

temporal dynamics and cortical localization of task dependent activity. Such work might make 
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substantial contribution to elucidating top down control of multisensory information flow in the 

human brain. 
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CHAPTER IV 

 

 

SINGLE TRIAL PLASTICITY IN EVIDENCE ACCUMULATION RATE UNDERLIES 

RAPID RECALIBRATION TO ASYNCHRONOUS AUDIOVISUAL SPEECH  

 

 

The contents of this chapter are drawn from a manuscript in preparation: 

Simon, D.M., Nidiffer A.R., Wallace M.T., Single Trial Plasticity in Evidence Accumulation Rate 

Underlies Rapid Recalibration to Asynchronous Audiovisual Speech  

 

 

Abstract 

 
Asynchronous arrival of audiovisual information at the peripheral sensory organs is a ubiquitous 

property of signals in the natural environment due to differences in the propagation time of light 

and sound. As these audiovisual cues are constantly changing their distance from the observer, 

rapid adaptation to these asynchronies is thus crucial for their appropriate integration, and 

consequently for the creation of a coherent perceptual representation of our dynamic world. We 

investigated the neural basis of rapid recalibration to asynchronous audiovisual speech in humans 

using a combination of psychophysics, drift diffusion modeling, and electroencephalography 

(EEG). Consistent with previous reports, we found that participant’s perception of audiovisual 

temporal synchrony/asynchrony depends on the temporal ordering of the previous trial. Drift 

diffusion modelling indicated that this temporal recalibration effect was well accounted for by 
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trial order dependency in the rate of evidence accumulation (i.e. drift rate). Neural responses as 

indexed via evoked potentials were similarly found to vary based on the temporal ordering of the 

previous trial. Furthermore, these neural signals displayed both response locking and a build-to-

threshold structure that have previously been established as neural correlates of evidence 

accumulation. Within and across subject correlations indicated that the observed changes in drift 

rate and the modulation of evoked potential magnitude were related. These results indicate that 

the rate and direction of evidence accumulation are affected by immediate sensory history and 

that these changes contribute to single trial recalibration to audiovisual temporal asynchrony. 

 

 

Introduction 

 
Adaptation to Temporal Asynchrony as a Contributor to Multisensory Integration 

Objects and events in the natural environment frequently generate informative signals in multiple 

sensory modalities. Combining these multisensory signals into a unified percept has previously 

been shown to offer substantial behavioral and perceptual benefits (Murray & Wallace, 2012). 

These advantages have been particularly well described for speech signals, in which visual 

speech can dramatically facilitate speech comprehension in noisy environments (Ross, Saint-

Amour, Leavitt, Javitt, & Foxe, 2007; Sumby, 1954). An important cue for correctly integrating 

signals emanating from a common source is their temporal relationship, and studies have 

confirmed that the temporal relationship between auditory and visual speech cues directly affects 

whether these signals are perceptually bound (van Wassenhove, Grant, & Poeppel, 2007). This 

reliance on temporal concordance, however, presents a unique challenge to the nervous system, 

as the temporal relationship for audiovisual speech signals continually changes due to differences 
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in the propagation speed of light and sound across space. 

 

Due to these differences in propagation time, it makes substantial ecological sense for the brain 

to adapt to temporal asynchrony in an attempt to take differences in arrival time into account. For 

audiovisual signals, this adaptation has been shown to occur in response to sustained exposure to 

asynchronous signals (Fujisaki, Shimojo, Kashino, & Nishida, 2004; Vroomen, Keetels, de 

Gelder, & Bertelson, 2004), and more recently adaptation has been shown to occur at the level of 

the single trial (Van der Burg, Alais, & Cass, 2013; Van der Burg & Goodbourn, 2015). By 

recalibrating in this manner, the brain is able to appropriately bind signals with a common 

source, even if their arrival times at the sensory periphery are somewhat misaligned. Recently, 

we investigated the neural basis of single trial temporal recalibration and demonstrated that 

neural responses to simple audiovisual stimuli (i.e., flashes and beeps) differ in magnitude 

depending on the temporal ordering of the stimulus on the previous trial (D. M. Simon, Noel, & 

Wallace, 2017). Specifically, when the temporal order of the previous stimulus was the opposite 

of the temporal order of the current stimulus (e.g., visual preceding auditory followed by 

auditory preceding visual), voltage at centro-parietal electrode sites was substantially larger. The 

centro-parietal location and relatively late timing of the differences observed (>325 ms after the 

first stimulus, >125 ms after the second stimulus) strongly suggested that, rather than indexing 

changes in low-level sensory processing, these differences in neural activity were indexing 

supramodal decisional processes (O'Connell, Dockree, & Kelly, 2012).  

 

Motivations for the Current Study 

The current study aimed to extend these findings in three important ways. First, we sought to test 
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whether similar effects are present for audiovisual speech stimuli, which are more ecologically 

relevant than flashes and beeps. Second, the reduced temporal precision afforded to simultaneity 

judgements based on speech stimuli (i.e., speech stimuli seem to be “bound” over larger 

temporal intervals) allowed us to directly test whether these neural effects are restricted to 

occurring after the second stimulus of asynchronous pairings. Most importantly, given that we 

previously hypothesized these physiological and behavioral effects are related to changes in 

evidence accumulation rate, we examined whether diffusion modelling of the decisional process 

could account for the observed neural effects. Specifically, we sought to compare these to drift 

rate, which indexes the quality of sensory evidence (Gold & Shadlen, 2007; Voss, Rothermund, 

& Voss, 2004). To address these questions, we employed a speeded simultaneity judgment task 

in response to audiovisual speech stimuli and concurrently recorded electroencephalography 

(EEG). Our findings indicate that participant’s perceptual judgements and the magnitude of 

neural responses are mediated by trial-to-trial differences in audiovisual temporal ordering across 

speech events. Secondly, we found that given a large enough temporal delay, these neural effects 

occur before onset of the second stimulus. Further, we then demonstrate that the magnitude of 

changes in neural responses correspond well with modeled differences in evidence accumulation 

rate. These results indicate that the rate and direction of evidence accumulation are affected by 

immediate sensory history and that these changes contribute to single trial recalibration to 

audiovisual temporal asynchrony. 

 

 

Methods and Materials 

 
Participants 
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Data was drawn from the study of adult audiovisual speech processing already reported in (D.M. 

Simon & Wallace, 2017) and inclusion criteria were identical across studies. All participants 

reported that they were right handed, had normal or corrected-to-normal vision, and had normal 

hearing. Data from 28 participants were initially collected. Two participants were excluded from 

analysis due to behavioral performance indicating they did not correctly perform the task and 1 

participant did not complete the task, leaving a total of 25 analyzed participants (16 female) with 

a mean age of 22.08 years (± 4.21). The study was conducted in accordance with the declaration 

of Helsinki, and informed written consent was obtained from all participants. All procedures 

were approved by the Vanderbilt University institutional review board.  

 

Psychophysical Task 

The speeded simultaneity judgement task utilized is described in detail in (D.M. Simon & 

Wallace, 2017). Briefly, participants performed a speeded two alternative forced choice 

simultaneity judgment task for audiovisual speech stimuli presented on a computer monitor and 

bilateral speakers. The experimental stimuli consisted of an audiovisual movie of a female saying 

the syllable ‘BA’. Each trial began with a still face presented for 1700-2000ms with a uniform 

distribution. This was followed by the audiovisual movie, with a duration of 2000 ms. Following 

the movie, a still face consisting of the last video frame was presented for 750 ms. If no response 

was given by the end of the still face period a response screen appeared until a response was 

given or for a maximum of 2500 ms. Participants were instructed to use their right hand to 

indicate whether the stimuli were perceived to occur at the same time (i.e., synchronously) or at 

different times (i.e., asynchronously) via keyboard button press. Participants were also explicitly 

told to respond as quickly and accurately as possible, and that the appearance of the response 



182 

 

 

 

screen was an indicator that their responses were too slow. Participants completed a practice 

block before the main experiment. 

To create the experimental temporal asynchronies, we manipulated the audiovisual stimulus 

by delaying either the visual stimulus (to create an AV trial) or the auditory stimulus (to create a 

VA trial). We created six total asynchronies ranging from audition leading vision by 450 ms 

(A450V) to vision leading audition by 450 ms (V450A) in steps of 150 ms, resulting in 7 

conditions including the original movie featuring synchronized stimuli. Blocks consisted of 105 

stimuli presented in a random order and participants completed a total of 13 or 14 blocks, and 

thus 1365 or 1470 trials. Stimulus onset for all stimuli was considered relative to the leading 

stimulus. That is, for auditory leads stimulus onset was at the time of auditory onset, while for 

visual leads stimulus onset was the onset of the video frame associated with auditory onset in the 

original video (as to not include pre-articulatory motion). These events occurred simultaneously 

in the synchronous video. In other words, time 0 corresponded with the first point at which task 

relevant information was present. 

 

Behavioral Data Analysis 

Behavioral data was analyzed by compiling rate of reported synchrony and response times (RTs). 

This was performed separately for each of the seven SOAs, and then repeated for each of the 

seven SOAs sorting trials based on whether the previous trial was auditory leading or visual 

leading. Synchronous trials were omitted from analysis when sorting by lead type. RTs were 

analyzed directly via a 2 lead type x 7 SOA repeated measures ANOVA with follow-up paired 

sample t-tests. Reports of synchrony were fit with single-term Gaussian psychometric functions 

with free parameters of amplitude, mean, and standard deviation (MATLAB fit.m). The mean of 
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the best fitting distribution is taken as the point of subjective simultaneity (PSS) while the 

standard deviation is taken as a measure of temporal binding window (TBW) size. We then 

compared amplitude and PSS of these distributions using paired sample t-tests to determine if 

they changed based on the previous trial. This process was then extended by compiling separate 

distributions for each of the possible seven SOAs on the previous trial, including synchrony. 

These seven data distributions were then once again fit with Gaussian functions and the PSS was 

compared across them using repeated measures ANOVA. Additionally, based on previous 

reports that plasticity in the PSS (i.e., ΔPSS) and TBW size are related (D. M. Simon, Noel, et 

al., 2017; Van der Burg et al., 2013) we investigated whether this relationship was true using 

linear regression (Pearson correlation). We also investigated whether differences between RTs 

for each lead type were related to individual perceptual thresholds using linear regression 

between change in response time and overall rate of reported synchrony separately for each 

condition. 

For calculation and display of differences between auditory and visual leads we primarily 

performed subtraction of visual leading values from auditory leading values (A lead – V lead), 

but used the opposite subtraction (V lead – A lead) for the PSS to TBW correlation to maintain 

comparability with the existing literature (i.e. (Van der Burg et al., 2013)). We note that the 

direction of this subtraction is arbitrary and chosen for consistency with previous publications, 

and thus that the direction (i.e. sign) of effects is not directly interpretable. 

 

Drift Diffusion Modelling 

Choice and RT data were fit to a drift diffusion model (DDM) using the Diffusion Model 

Analysis Toolbox (DMAT; (Vandekerckhove & Tuerlinckx, 2007, 2008)). The DDM was used 
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due to its wide prevalence, well-validated parameters (Ratcliff & McKoon, 2008; Voss, Nagler, 

& Lerche, 2013; Voss et al., 2004) and ability to explain a wide variety of phenomena in choice 

and reaction time data (Ratcliff & Rouder, 1998). We allowed three DDM parameters to vary: 

non-decision time, which quantifies the amount of time related to sensory encoding processes 

and generation of motor responses, drift rate, which corresponds with the strength of the sensory 

evidence and the corresponding trajectory (slope) of the decision process, and drift-rate 

variability, which quantifies the consistency of drift rate across trials. The remaining variability 

parameters (starting point variability and non-decision time variability) were fixed at zero, while 

boundary separation and starting evidence were constrained across conditions but allowed to 

vary across subjects. Constraint of the boundary and starting point parameters across conditions 

was based on a-priori knowledge that, because direction of the rapid recalibration effect depends 

on a relationship between the current and previous stimulus, it cannot be explained by either bias 

towards a particular perceptual choice or change in decisional boundary distance. Fit values 

(Bayesian Information Criterion, Chi Square, and Log Likelihood Ratio) confirmed that this 

model provided the best fit of the data. This was the best fitting model for 13 of 25 participants. 

The best fitting models for the remaining participants were evenly split between including just 

drift rate (3 participants); drift rate and starting point (4 participants); and drift rate and boundary 

separation (5 participants).  

We excluded drift rates for one participant in the A450V condition based on an implausible 

drift rate delta between the auditory and visual leads (A lead – V lead = -0.6317), which was >4 

standard deviations from the mean drift rate delta across all conditions and participants. We 

similarly excluded a single non-decision time for one participant in the A300V condition based 

on an implausible non-decision time fit (1.51 seconds) which was >6 standard deviations from 
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the mean. The effects of removing these values are noted in the results where appropriate. 

 

EEG Recording and Processing 

Continuous EEG was recorded from 128 electrodes referenced to the vertex (Cz) using a Net 

Amps 400 amplifier and Hydrocel GSN 128 EEG cap (EGI systems Inc.). Data were acquired 

with NetStation 5.3 with a sampling rate of 1000 Hz and were further processed using MATLAB 

and EEGLAB (Delorme & Makeig, 2004). Continuous EEG data were band-pass filtered from 

0.15 to 50 Hz with a 6 dB roll-off of 0.075 to 50.075 Hz. Epochs 3s long from 1000 ms before to 

2000 ms after onset of the first stimulus were then extracted. Artifact contaminated trials and bad 

channels were identified and removed, and data were then recalculated to the average reference. 

Data were then submitted to ICA using the Infomax algorithm (Jung, Makeig, Humphries, et al., 

2000; Jung, Makeig, Westerfield, et al., 2000), and artifact related components were removed. 

Lastly, bad channels were reconstructed using spherical spline interpolation (Perrin, Pernier, 

Bertrand, Giard, & Echallier, 1987) and data were re-inspected for residual artifacts. Overall a 

mean of 1081 (79% ± 9.5%) of trials were retained, while 4.17 (SD ± 2.42) channels and 10.56 

(SD ± 4.14) Independent components were removed per participant. For a more thorough 

description of EEG procedures see (D.M. Simon & Wallace, 2017). 

 

Stimulus Locked ERP analysis 

To determine if the temporal ordering of the previous trial influenced neural responses we first 

separated data into two sets based on whether the previous trial was auditory leading or visual 

leading. The first trial of each block, which has no previous trial, and trials in which the previous 

trial was synchronous were excluded from this analysis. We performed this binning process 
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separately for each SOA on the current trial. We then averaged data in the time domain resulting 

in 14 ERPs for each (2 lead types x 7 SOAs). These ERPs were then statistically compared using 

non-parametric randomization testing with cluster-based correction for multiple comparisons 

(Maris & Oostenveld, 2007) as implemented in FieldTrip (http://www.fieldtriptoolbox.org/) 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). The statistical test used for cluster inclusion was 

the dependent samples T test, cluster alpha was set to a = 0.05 and we used a permutation 

significance threshold of a = 0.025, which is equivalent to a two tailed test. Trend level (0.025 < 

p < 0.05) permutation results are also reported where appropriate. Given the potential for 

stimulus timing related differences in neural activity, we restricted testing to paired comparisons 

in which the physical stimulus is identical. We further employed Bonferroni correction on the 

permutation thresholds to rule out the possibility of type one errors and note Bonferonni 

corrected results when appropriate. For each significant spatiotemporal cluster, we then selected 

the electrodes participating when the cluster reached its maximum size, in terms of number of 

electrodes, and averaged them into a single ERP. We tested these ERPs again using non-

parametric randomization testing. For completeness, this process was also performed in 

conditions which did not produce a significant spatiotemporal cluster. As there was no cluster to 

select from in these conditions we utilized a group of six electrodes (E54, E56, E61, E62, E78, 

and E79) common to all significant clusters and positioned over parietal scalp.  

 

Response Locked ERP Analysis 

To analyze decisional signals, we first low pass filtered single trials at 25 Hz to improve signal to 

noise ratio and then re-aligned single trials to participant’s RTs. Trials were then time averaged 

into response locked ERPs to examine the Centro-parietal positivity (CPP) (O'Connell et al., 
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2012). For CPP analysis we pooled values from the same six parietal electrodes (E54, E56, E61, 

E62, E78, and E79) selected for stimulus locked ERP analysis when no spatiotemporal cluster 

was present. To determine the slope of the CPP we fit a line to the CPP from -500 to -50 ms 

relative to participant’s neural response for each condition separately (Twomey, Murphy, Kelly, 

& O'Connell, 2015) and then compared these slopes with a one way repeated measures ANOVA. 

Raw voltage of the CPP was examined using randomization testing with cluster alpha set to 0.05 

and a permutation threshold of 0.025. For defining CPP onset in each condition, we performed a 

point-by-point paired sample t-test using the response locked ERP against 0 and defined onset as 

the first point for which p < 0.01 for at least ten consecutive samples, starting at that point. For 

display purposes, single trials were smoothed with a Gaussian moving average with a standard 

deviation of 49.9 trials, and thus a full window size of 300 trials. 

 

Correlational Analysis 

Correlational analysis between behavioral results, in the form of drift diffusion model 

parameters, and ERPs was performed using rank correlation and linear regression. ERPs were 

reduced to a single value for each lead type by pooling over the electrodes common to all 

significant spatiotemporal clusters found in the A450V, A300V, V300A, and V450 conditions 

(20 electrodes total) and time points similarly significant in all four spatiotemporal clusters (368 

- 567ms). Subtracting these values (A lead – V lead) yielded a per participant voltage difference. 

We performed a similar drift rate subtraction and then correlated these values, pooled across 

conditions, using both Spearman rank correlation and linear regression (Pearson correlation). We 

also performed a similar Δdrift x ΔERP correlation within each participant using linear 

regression, and formally tested if these correlations were significantly different from zero using a 
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one-sample t-test. Finally, we tested whether the number of participants with a significant within 

subject correlation exceeded the null probability using a one-sample proportion test. 

 

Statistical Tests 

Time series data were tested using two-tailed spatiotemporal randomization testing with cluster-

based correction for multiple comparisons (Maris & Oostenveld, 2007). Behavioral data and 

model parameter estimates were analyzed using repeated measures ANOVA and follow-up two-

tailed t-tests. Significance thresholds for permutation tests were corrected for multiple 

comparisons using Bonferroni correction, while behavioral and model comparisons are presented 

uncorrected. All analysis was performed in MATLAB. 

 

 

Results 

 
Perception on Individual Trials Depends on the Temporal Ordering of the Previous Trial 
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We first tested whether our participants demonstrated single trial recalibration to audiovisual 

asynchrony as shown previously (D. M. Simon, Noel, et al., 2017; Van der Burg et al., 2013; 

Van der Burg & Goodbourn, 2015). We fit Gaussian distributions to participant’s behavioral 

responses on the speech SJ task (see methods), and these Gaussians were found to describe the 

distribution of perceptual reports well for all participants (mean r2 = 0.9611, SD +/- 0.0333, r2 for 

all participants > 0.874). Across participants, the mean point of subjective simultaneity (PSS) 

was 75.24 ms +/- 33.51 (t-test vs 0; t24 = 11.226, p = 4.902 x 10-11), and the mean temporal 

binding window (TBW) size was 296.10 ms +/- 97.74 (Fig 4-1A). We also calculated mean 

response time separately for each SOA (Fig 4-1B). 

Figure 4-1 Behavioral Results for All Trials 
A) Proportion of trials reported as synchronous for all 7 SOAs. Error bars indicate 

standard error of the mean. Inset box plot indicates PSS values. 
B) Response times for all 7 SOAs. Error bars indicate standard error of the mean. 
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We then split trials into two categories; those in which the previous trial was auditory leading, 

Figure 4-2 Behavioral Consequences of the Previous Trial 
A) Proportion of trials reported as synchronous for all 7 SOAs separated by whether the 

previous trial was auditory leading (green) or visual leading (orange) and fit to a Gaussian 
distribution. Error bars indicate standard error of the mean. Gaussian fits are scaled to an 
amplitude of 1. The inset box plots indicate PSS values for auditory leading trials (green), 
visual leading trials (orange) or the combination of both (blue). Asterisk marked bars 
indicate a significant paired sample t-test between PSS values. 

B) Response time for all 7 SOAs separated by whether the previous trial was auditory 
leading or visual leading. Error bars indicate standard error of the mean. Asterisks 
indicate a significant difference between lead types. 

C) PSS for psychometric functions fit separately to data sorted into 7 bins based on the SOA 
of the previous trial. Error bars indicate standard error of the mean. Solid line indicates 
the PSS when all data is pooled. 

D) Relationship between TBW size and change in PSS. Change in PSS is calculated as [(PSS 
V lead) – (PSS A lead)] for consistency with previous reports. Red line indicates the 
linear regression fit. 
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and those in which the previous trial was visual leading (Fig 4-2A). Trials in which the previous 

stimuli were synchronously presented were omitted from this analysis. We then re-fit data for the 

two lead types to determine if the psychometric functions differed. The Gaussian distribution fit 

to trials in which the previous trial was auditory leading had a mean PSS of 53.93 SD +/- 31.06 

ms, whereas trials in which the preceding trial was visually leading had a mean PSS of 99.02 SD 

+/- 38.45 ms. We tested whether recalibration occurred by comparing the PSS values for these 

distributions to both the overall PSS and to each other. Both of these PSS values were found to 

be significantly different from the PSS of unsorted trials (auditory lead vs all trials t24 = -11.117, 

p = 5.98 x 10-11; visual lead vs all trials t24 = 9.499, p = 1.330 x 10-9). A paired sample T-test for 

PSS between these distributions was also significant (t24 = -10.43, p = 2.143 x 10-10). Goodness 

of fit between these distributions was found to be equally good (Auditory lead mean r2 = 0.9498 

+/- 0.0381, Visual lead mean r2 = 0.9539 +/- 0.0360, paired sample t test t24 = -0.6375, p = 

0.5298). The amplitude of the Gaussian fits, which serves as a measure of response bias, was 

also not different between the two lead types (Auditory lead mean = 1.048, SD +/- 0.0773, 

Visual lead mean = 1.0533 +/- 0.0769, t24 = -0.6033, p = 0.5520). These results thus strongly 

support the conclusion that the temporal ordering of the preceding trial directly affects 

participant’s perceptual report on the current trial. 

In addition to analyzing perceptual judgments (i.e., synchronous vs. asynchronous) on this 

task, response times (RTs) were also analyzed using a 2 (lead type) x 7 (SOA) repeated measures 

ANOVA. There was a significant main effect of SOA (F6,144 = 25.425, p = 1.89 x 10-20), a main 

effect of lead type (F1,24 = 22.455, p = 8.07 x 10-5), and a significant interaction (F6,144 = 7.046, p 

= 1.365 x 10-6). We then used follow-up t-tests which indicated that RTs were faster in three 

conditions when the previous trial had been visually leading (A450V t24 = -5.3022, p = 1.937 x 
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10-5; A300V t24 = -6.454, p = 1.128 x 10-6; and V150A t24 = -2.548, p = 0.0176) (Fig 4-2B). No 

conditions were found in which a previous trial being auditory leading resulted in faster RTs (all 

other p > 0.21). While the RT difference for the V150A condition was quite modest (16.5 ms), 

the RT advantage in the A450V and A300V conditions was substantial (A450V: 48.55 ms, 

A300V: 54.63 ms). This indicates that the temporal ordering of the preceding trial (i.e., auditory 

lead versus visual lead) can substantially speed RTs, and that this effect is particularly 

pronounced when the current trial is a large auditory lead. 

We then extended the Gaussian fitting procedure to individual SOAs by subdividing all trials 

into 7 bins each corresponding with a single SOA on trial t-1. We compared PSS across these 7 

distributions and found a significant difference (F6,144 = 41.35, p = 5.2290 x 10-29), indicating that 

the PSS shifted to more positive values when the previous trial was visually leading (Fig 4-2C). 

Goodness of fit across these seven distributions did not differ (F6,144 = 1.0897, p = 0.3714). We 

further tested whether shifts in the PSS for visual and auditory leads were differentially 

modulated by the magnitude of the leads. To do this, we isolated conditions of these two types 

and performed two separate 1 x 3 repeated measures ANOVAs (factor of SOA). Differences in 

the magnitude of auditory leads were found to not contribute to the magnitude of the PSS shift 

(F2,48 = 1.04, p = 0.3614), but a trend was found for the magnitude of the visual lead contributing 

to the magnitude of the PSS shift (F2,48 = 2.98, p = 0.060). Lastly, we investigated whether the 

magnitude of the PSS shift depended on individual binding window size as has been previously 

reported (D. M. Simon, Noel, et al., 2017; Van der Burg et al., 2013). We found that this 

relationship was once again present, with larger PSS shifts being associated with larger TBWs (r 

= 0.4215, p = 0.0359) (Fig 4-2D). 
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Changes in Response Time Due to Recalibration Are Individualized 

No differences in overall RT were found between auditory leads and visual leads at many SOAs, 

despite relatively large changes in the rate of reported synchrony. We next investigated if this 

occurred because changes in RT were heterogeneous across participants and might correspond 

with the substantial individual variability found in audiovisual temporal acuity (i.e., individual 

TBW sizes - see (Powers, Hillock, & Wallace, 2009; Stevenson & Wallace, 2013). Specifically, 

a given lead type might drive some participants towards greater perceptual ambiguity, while 

driving others toward greater perceptual clarity, depending on individual thresholds. To 

investigate this possibility, we subtracted visual leading RTs from auditory leading RTs (A lead 

– V lead) and then performed a multi-sample test for equal variances (Fig 4-3A). This indicated 

that the variance of RT changes between lead types differed across conditions (Bartlett statistic = 

19.3863, df = 6, p = 0.0036). Notably, the highest variability (standard deviation) in RT change 

was found in the A150V and V300A conditions, which were the most perceptually ambiguous at 

the group level (A450V = 45.78 ms, A300V = 42.32 ms, A150V = 65.42 ms, AV = 35.53 ms, 

V150A = 32.28 ms, V300A = 60.96 ms, V450A = 43.31 ms).  
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For these two conditions, we then used linear regression to determine if perceptual thresholds 

corresponded with the direction and change in RT. For the A150V condition there was a 

significant negative correlation between overall reported rate of synchrony and RT change (r = -

Figure 4-3 Effects of Rapid Recalibration on Response Time are Individualized 
A) Change in response time (A lead RT – V lead RT) for all SOAs. Inset numbers are the 

standard deviation of the change in response time. The dotted box indicates an outlier 
value not shown in panel B. 

B) Correlation between change in response time (A lead RT – V lead RT) and participant 
mean perception rate pooled across lead types for the A150V condition. A single outlier 
was omitted (see main text for statistics with the outlier included). 

C) Correlation between change in response time (A lead RT – V lead RT) and participant 
mean perception rate pooled across lead types for the V300A condition. 

D) Correlation between change in response time (A lead RT – V lead RT) and participant 
mean perception rate pooled across lead types for the V450A condition. 



195 

 

 

 

0.5127, p = 0.0088), which remained significant even with the removal of a large outlier (r = -

0.5575, p = 0.0046) (Fig 4-3B). The V300A condition demonstrated a similarly significant 

correlation in the opposite direction (r = 0.6463, p = 4.8 x 10-4) (Fig 4-3C). We then expanded 

this approach to the V450A condition, as it was the sole remaining condition without a response 

time effect and found a similar positive correlation (r = 0.5689, p = 0.003) (Fig 4-3D). In all the 

other conditions (A450V, A300V, AV, V150A) no such correlations were found (all p > 0.374). 

These correlations are thus present only at SOAs without a significant RT difference between 

lead types, and in the three conditions which are most ambiguous at the group level (i.e. the 

closest to a 50% rate of reported synchrony). Changes in RT due to rapid recalibration thus 

depend on whether rapid recalibration pushes a participant towards higher perceptual ambiguity. 

When recalibration pushes a participant towards ambiguity, RTs are slower due to a protracted 

Figure 4-4 Proposed Origin for Individualized Changes in Response Time 
A) Illustration of the effect of lead type on perceptual ambiguity for a participant with a 

narrow binding window. Relative to a visual lead, auditory leading trials are more 
perceptually ambiguous in the A150V condition, but less ambiguous in the V300A 
condition. The PSS for each distribution is identical to panel B. 

B) Illustration of the effect of lead type on perceptual ambiguity for a participant with a wide 
binding window. Relative to a visual lead, auditory leading trials are less perceptually 
ambiguous in the A150V condition, but more ambiguous in the V300A condition. The 
PSS for each distribution is identical to panel A. 
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decisional process, while shifts away from ambiguity lead to faster RTs. We Illustrate in Fig 4-

4A and Fig 4-4B how an identical change in PSS can have opposite effects on perceptual 

ambiguity that depend on individual audiovisual temporal acuity (TBW width). These 

individualized differences in RT changes thus explain why differences in mean RT only occur at 

certain SOAs, despite the ubiquity of changes in perceptual report across conditions.  

 

Single Trial Recalibration Changes the Rate of Sensory Evidence Accumulation 

We hypothesized that the changes in perceptual report occur because the previous trial affects the 

rate and direction of evidence accumulation on the current trial. To test this hypothesis we 

employed drift diffusion modelling (see methods for parameters) (Vandekerckhove & 

Tuerlinckx, 2007, 2008). The drift diffusion model posits that decisions are the result of a 

stochastic diffusion process that is absorbed by one of two decision boundaries and offers robust 

quantification of evidence accumulation in two alternative forced choice designs such as that 

employed in the current study. After fitting the drift diffusion model, we utilized a 2 (lead type) x 

7 (SOA) repeated measures ANOVAs for each free model parameter to determine whether they 

were affected by SOA, the nature of the previous trial, and any possible SOA x lead type 

interactions. 
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We first examined drift rate, which is the average rate and direction of the decision variable 

during the decision process. Drift rate demonstrated a significant main effect of SOA (F6,144 = 

108.1982, p = 8.0746 x 10-51), while the main effect of lead type was not significant (F1,24 = 

0.1142, p = 0.7383). There was also a significant interaction effect (F6,144 = 9.7869, p = 

4.8950x10-9) (Fig 4-5A-C). This interaction indicated that the effect of lead type on drift rate 

reversed depending on the SOA, and we thus performed follow-up paired sample t-tests for all 

conditions contrasting lead types. These tests indicated that significant differences were present 

in 5 conditions with large SOAs (Fig 4-5C) (A450V, t23 = 4.9988, p = 4.6778 x 10-5 uncorrected; 

A300V, t24 = 5.8133, p = 5.4018 x 10-6 uncorrected; A150V, t24 = 4.0112, p = 5.122 x 10-4 

uncorrected; V300A, t24 = 4.5270, p = 1.3828 x 10-4 uncorrected; V450A, t24 = -2.3983, p = 

0.0246 uncorrected). Drift rate thus not only varied significantly across SOAs, but was also 

directly affected in a directional manner by the temporal order of the previous trial. When the 

temporal order of the current trial and the previous trial were mismatched, sensory evidence for 

Figure 4-5 Diffusion Model Results: Drift Rate 
A) Drift rate for each of the seven SOAs for a model pooled across auditory leading and 

visual leading trials. Error bars indicate standard error of the mean. 
B) Drift rate for each of the seven SOAs for two models fit separately based on whether the 

previous trial was auditory leading or visual leading. Error bars indicate standard error of 
the mean. 

C) Difference in drift rate (auditory lead – visual lead) between the two lead types in panel 
B. Error bars indicate standard error of the mean. 
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asynchrony was stronger and the decision variable thus accumulated more strongly towards an 

asynchronous choice (i.e. a more negative drift rate). In other words, despite the stimulus on the 

current trial being physically identical for both lead types the strength of the sensory evidence 

differed. 

We next examined non-decision time, which accounts for processes that take place both 

before the decisional process begins as well as other factors such as motor preparation. Non-

decision time demonstrated a significant main effect of SOA (F6,144 = 10.2024, p = 2.1472 x 10-

9), no significant main effect of lead type (F1,24 = 0.0824, p = 0.7765), and a trend towards an 

interaction effect (F6,144 = 2.0831, p = 0.0587) (Fig 4-6A-C). The interaction trend was not robust 

to removal of a single large non-decision time value (see methods; outlier removed F6,138 = 1.69, 

p = 0.1272) and was thus not pursued further. In sum, non-decision time was shorter for 

synchronously presented stimuli, but appeared to be unaffected by the temporal order of the 

preceding trial. As non-decision time encompasses low-level sensory encoding, this serves as 

Figure 4-6 Diffusion Model Results: Non-Decision Time 
A) Non-decision time for each of the seven SOAs for a model pooled across auditory lead 

and visual lead trials. Error bars indicate standard error of the mean. 
B) Non-decision time for each of the seven SOAs for two models fit separately based on 

whether the previous trial was auditory leading or visual leading. Error bars indicate 
standard error of the mean. 

C) Difference in non-decision time (auditory lead – visual lead) between the two lead types 
in panel B. Error bars indicate standard error of the mean. 
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evidence that the overall speed of sensory encoding is unaffected by the nature of the preceding 

trial. 

Last, we examined drift rate variability, which is the magnitude of trial-to-trial variability in 

drift rates for a particular physical stimulus. Drift rate variability demonstrated a main effect of 

SOA (F6,144 = 3.5442, p = 0.0027), no main effect of lead type (F1,24 = 0.7572, p = 0.3928), and 

no significant interaction (F6,144 = 0.9045, p = 0.4935)  

 

Neural Responses to Audiovisual Speech Stimuli Vary Based on the Temporal Ordering of the 

Previous Stimulus 

We next employed an analytical strategy for our EEG data similar to the behavioral data analysis 

by binning trials depending on whether the preceding trial was auditory leading or visual leading. 

Trials in which the previous stimulus was synchronous were once again excluded from this 

analysis. We time averaged these trials into 14 total ERPs (2 lead types x 7 SOAs) and compared 

each pairing at a given SOA utilizing spatiotemporal randomization testing with cluster based 

correction for multiple comparisons. In this analytic approach, comparisons were thus between 

neural responses to physically identical stimuli, with the only difference being the temporal 

ordering of the previous trial. These spatiotemporal tests indicated that significant differences 

were present in the four conditions in which stimuli were most offset in time (A450V, p = 0.001; 

A300V, p = 0.0042; V300A, p = 0.0053 and V450A, p = 0.0001) (Fig 4-7A-D). Note that all 

four of these conditions remain at least marginally significant after Bonferonni correction for 7 

total comparisons (all p < 0.0371, Bonferroni corrected). Additionally, p-values of 0.0001 

represent the floor of a randomization test with 10,000 randomizations and indicate that the 

maximum cluster in the real data was larger than the maximum cluster observed in all 
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permutations. No significant spatiotemporal clusters were identified in the A150V, AV, or 

V150A conditions (all p > 0.09, note that permutation tests are one tailed and thus this does not 

constitute a robust trend). We also note that sufficiently strong centro-parietal clusters (A450V 

and V450A) are associated with a significant dipolar effect at electrodes near the edge of the 

montage due to the average reference. This secondary cluster was smaller and ring shaped when 

significant, and we thus focused our analysis on the centro-parietal locations. 
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Figure 4-7 Spatiotemporal Clustering Results 
A) Raster plot representation of the spatiotemporal cluster in the A450V condition. The 

absolute value of the t-statistic is indicated for each time point for comparisons which are 
both individually significant (p < 0.05) and part of the significant spatiotemporal cluster. 
The inset red line indicates the number of significant electrodes at each time point (same 
scale as electrode number). The dashed line indicates the time point when the cluster 
reached maximum spatial size for the first time.  

B) Raster plot representation of the A300V condition. Inset lines as in panel A. 
C) Raster plot representation of the V300A condition. Inset lines as in panel A. 
D) Raster plot representation of the V450A condition. Inset lines as in panel A. 
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While these spatiotemporal clusters clearly illustrate the presence of effects, they fail to best 

capture the temporal nature of the differences in evoked activity. To better elucidate this, we 

identified the time point where each spatiotemporal cluster first reached its maximum size in 

terms of number of electrodes and selected those electrodes (A450V – 436ms, 43 electrodes; 

A300V – 492ms, 28 electrodes; V300A 492ms, 30 electrodes; V450A 483ms, 37 electrodes) 

(Fig 4-8). Event related potentials for data averaged across these electrodes was then tested for 

significance using randomization testing with cluster-based correction for multiple comparisons. 

In all four conditions, we found at least one significant temporal cluster (all p < 0.0224, 

Bonferroni corrected for 7 comparisons). We depict the spatial cluster selected and ERPs 

averaged across those electrodes in figure 4-9. Notably, in the A450V and V450A conditions, 

the onset times of significant differences substantially precedes the onset of the second stimulus, 

indicating that the neural processes influenced by the temporal ordering of the previous stimulus 

do not rely on both stimuli having occurred. 

Figure 4-8 Topographic Representation of Spatiotemporal Clusters 
Topographic representation of voltage differences between auditory and visual leading trials (A 
lead – V lead) for each SOA. Black dots indicate electrodes which are both individually 
significant (p < 0.05) and part of the significant spatiotemporal cluster. Time points for each 
SOA correspond with the dashed line in figure 7. 
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Figure 4-9 ERPs for large SOAs divided by the lead type of the previous trial. 
Insets depict the cluster of electrodes selected in each condition.  

A) ERPs in the A450V condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). Significant differences between A lead 
and V lead trials are present from 313-689 ms (p = 0.0003, randomization test), and are 
depicted by the black line. The grey shaded area highlights the difference between 
conditions.  

B) ERPs in the A300V condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). Significant differences are present from 
358-567 ms (p = 0.0013, randomization test), and are depicted by the black line. The grey 
shaded area highlights the difference between conditions. 

C) ERPs in the V300A condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). Significant differences are present from 
368-573 ms (p = 0.0032, randomization test), and are depicted by the black line. The grey 
shaded area highlights the difference between conditions. 

D) ERPs in the V450 condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). Significant differences are present from 
280-804 ms (p = 0.0002, randomization test), and are depicted by the black line. The grey 
shaded area highlights the difference between conditions. A marginally significant effect 
is present from 183-261 ms (p = 0.0428, randomization test). 
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For completeness, we also depict the neural responses in the conditions in which no 

significant spatiotemporal differences were found. As there were no significant spatiotemporal 

clusters selected in these conditions, we utilized a centro-parietal electrode cluster selected to 

optimally capture decisional components of ERPs (E54, E55, E61, E62, E78, and E79). This 

cluster was also composed of electrodes found to be significant in all four large SOAs as 

described above. We tested these time series using randomization testing with cluster based 

correction for multiple comparisons and found no significant differences in the A150V and AV 

conditions. In the V150A condition we found a small and very late effect from 914-1000 ms 

after stimulus onset (p = 0.013), which does not survive Bonferonni correction (Fig 4-10).  

 

Figure 4-10 ERPs for small SOAs divided by the lead type of the previous trial. 
Data were averaged across the six electrodes indicated. 

A) ERPs in the A150V condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). No significant differences are present. 

B) ERPs in the AV condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). No significant differences are present. 

C) ERPs in the V150 condition binned depending on whether the previous trial was an 
auditory lead (green) or a visual lead (orange). Significant differences are present from 
914-1000ms (p = 0.013, randomization test), and are indicated by the black underline. A 
marginally significant effect is present from 517-573 ms (p = 0.0443, randomization 
test). 
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Neural Activity Exhibits Decisional Dynamics 

Recent work examining build-to-threshold decision variables has focused on removing stimulus 

transients (i.e. sharp stimulus onsets and offsets) to allow clearer examination of decisional 

activity (Kelly & O'Connell, 2013; Loughnane et al., 2016; O'Connell et al., 2012). We thus 

started our examination of decisional signals by confirming that clear decisional dynamics were 

present despite the presence of onset and offset transients in our speech stimulus. We first sorted 

activity at centro-parietal electrodes, pooled across all conditions and participants, by single trial 

RT. A clear relationship between positive voltage buildup and participant RT is visible when 

trials are sorted in this manner (Fig 4-11A). Re-aligning trials to participant response yielded a 

robust centro-parietal positivity (CPP) response in all conditions, which built to a consistent 

threshold (Fig 4-11B). As expected, the duration of the buildup was longer in conditions in 

which visual stimuli preceded auditory stimuli, consistent with the hypothesis that auditory 

leading temporal precision (i.e. strength of temporal sensory evidence) is greater than visual 

leading temporal precision (i.e. at moderate offset a V-A ordering is more ambiguous than an A-

V ordering). This is highlighted by the significant difference in voltage across conditions 

resulting from visually leading conditions beginning the CPP buildup substantially earlier 

relative to the response (-704 to -289 ms, repeated measures multivariate F test at each time 

point; cluster p = 0.0003, randomization test). This was confirmed when we determined the point 

of CPP onset relative to response for each condition (A450V = -350ms; A300V = -396ms; 

A150V = -508ms; AV = -487ms; V150A = -501ms; V300A = -838 ms; V450A = -640ms). 
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We next examined the rate of evidence accumulation, which is linked to the strength of the 

available sensory evidence. To do so we calculated the linear slope of the CPP from -500 to -

50ms for each condition (see (Twomey et al., 2015) for a similar approach). The CPP slope was 

found to differ significantly across conditions (F6,144
 = 13.17, p = 7.47 x 10-12) (Fig 4-12). 

Additionally, we then split stimuli into visual first (A450V, A300V, A150V) and auditory first 

(V150A, V300A, V450A) categories (omitting synchronous trials). A 2 (sensory order [i.e. AV 

or VA current stimulus]) x 3 (SOA) repeated measures ANOVA indicated that there was still a 

main effect of SOA (F2,48 = 21.27, p = 2.4325 x 10-7), no main effect of leading modality (F1,24 = 

1.33, p = 0.2599), but that a significant interaction effect was present (F2,48 = 9.525, p = 3.2828 x 

Figure 4-11 Decisional signal dynamics during simultaneity judgment. 
A) Amplitude of the centro-parietal positivity (CPP) derived from single trial EEG and 

pooled across all 7 SOAs and all participants. The dotted line indicates stimulus onset, 
while the sigmoidal solid line indicates response times for individual trials. Data were 
sorted by response time and vertically smoothed with a 300 trial Gaussian moving 
average. 

B) CPP calculated separately for each of the 7 SOAs. The dashed line at bottom indicates 
the time window used for slope analysis (-500 to -50 ms relative to response; see figure 
12). Solid black line indicates time points with a significant difference in voltage 
(repeated measures multivariate F test at each time point; cluster p = 0.0003, 
randomization test). Top bar indicates the time region averaged for CPP topography (-50 
to 0 ms relative to response), which is shown in the inset and averaged across all 7 SOAs.
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10-4). This indicates that sensory evidence accumulation rates are asymmetric, in line with larger 

delays being closer to perceptual threshold for stimuli in which vision leads. Furthermore, the 

CPP slope was lowest in conditions that participants found perceptual ambiguous (A150V and 

V300A). This is consistent with these conditions being assigned drift rates closest to zero by the 

diffusion model (see Fig 4-5 earlier), indicating that the available sensory evidence was 

relatively weak. 

 

Neural Response Modulations Index Changes in Information Accumulation Rate 

Lastly, based on previous work hypothesizing that the neural instantiation of rapid recalibration 

relates to differences in information accumulation rate (D. M. Simon, Noel, et al., 2017), we 

investigated whether the observed neural effects correlated with differences in drift rate across 

conditions and within participants. To do so, we pooled the voltage differences between lead 

Figure 4-12 CPP Build Rate by SOA 
Linear CPP slope for all 7 SOAs. Error bars indicate standard error of the mean. Slope was 
calculated from -500 to -50 ms relative to participant response (dashed region in figure 11). Bars 
indicate significant differences in slope (t-test, p < 0.05, uncorrected) 
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types over a total of 20 electrodes and the 200 time points (368 – 567 ms) found to be significant 

in all four large SOA conditions. These pooled values differed strongly across conditions (F6,144 

= 15.20, p = 1.9301 x 10-13) and demonstrated an extremely strong linear relationship between 

SOA and the difference between A leading and V leading ERPs (mean values Pearson r = 

0.9774, p = 1.4516 x 10-4) (within subject mean Pearson r = 0.6285 +/- 0.203, all individual 

subject r > 0.157) (Fig 4-13A). We then correlated these voltage differences with individual 

differences in drift rate, pooling all conditions in which the previous trial was shown to 

significantly affect drift rate (A450V, A300V, A150V, V300A, and V450A). The relationship 

between these values was significant using Spearman rank correlation (r = -0.4930, p = 9.4703 x 

10-9). For display purposes we also computed Pearson correlation, which was similarly 

Figure 4-13 Relationship between neural activity and changes in drift rate. 
A) Change in voltage between the auditory lead and visual lead conditions for each of the 

seven SOAs on the current trial. Data was pooled across the 20 electrodes and 200 time 
points (368-567 ms) found to be significant in all spatiotemporal clusters. Error bars 
indicate standard error of the mean. Inset: The 20 selected electrodes. Red line indicates 
the linear regression fit. 

B) Relationship between change in drift rate and change in evoked amplitude pooled across 
the five SOAs which demonstrated significant drift rate modulation based on lead type. 
Values were pooled as in A. Red line indicates the linear regression fit. 

C) Distribution of within subject correlations between change in drift rate and change in 
evoked potential amplitude. Each dot is one participant. The dashed line indicates the 
critical value (r < -0.7545) for a significant within subject negative correlation (p < 0.05, 
two-tailed) between change in drift rate and change in voltage. 
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significant (r = -0.4761, p = 2.2952 x 10-8) (Fig 4-13B). These correlations indicate that 

individual changes in evoked potential amplitude and individual changes in drift rate attributable 

to the temporal ordering of the previous stimulus relate to one another across multiple 

experimental conditions. 

We then determined whether changes in drift rate within participants correlated with neural 

response modulations. We performed linear regression on individual participant’s change in 

evoked potential amplitude and change in drift rate between the two lead types. These 

correlations were found to be predominantly negative and significantly different from zero 

(paired sample t-test against zero, t24 = -4.4538, p = 1.6659 x 10-4) (Fig 4-13C). Additionally, of 

the twenty-five participants, six (24%) presented individually significant negative correlations (r 

< -0.7545), which is a significant proportion when tested with a one sample proportion test 

against the null probability of 2.5% (Z = 6.886, p = 5.7383 x 10-12). Individual participants thus 

show changes in neural response based on lead type that appear to correspond modestly with 

their changes in evidence accumulation rate, as might be expected given the noisy nature of EEG 

signals.  

 

 

 Discussion  

 
We investigated the neural processes underpinning single trial adaptation to temporal asynchrony 

in audiovisual speech signals. Our behavioral and neural results converge to indicate that this 

rapid adaptation is engendered by changes in the rate and direction of sensory evidence 

accumulation. Specifically, when the temporal order of the current stimulus is inverted relative to 

the previous trial (e.g., visual precedes auditory followed by auditory precedes visual), evidence 
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accumulates more strongly for an asynchronous choice. These results indicate that rapid 

temporal recalibration is based in the ability of neural systems to dynamically evaluate feed 

forward sensory evidence based on immediate sensory history. This adaptive reweighting 

process, particularly between the senses, is likely to contribute to appropriate integration of 

sensory inputs and ecologically advantageous behavioral adaptation to the statistics of a dynamic 

natural world. 

 

Single Trial Recalibration as a Manifestation of Adaptive Decisional Processes 

Our primary finding is that the perceptual phenomenon of rapid audiovisual temporal 

recalibration is rooted in single trial changes in the evidence accumulation process. This is most 

evident in our modelling results, in which the previous trial strongly affects drift rate, which 

indexes the strength of available sensory evidence (Gold & Shadlen, 2007). It is also evident in 

the individualized relationship between RT changes and perceptual threshold. Decisional 

evidence is often relative, in that a contrast between sensory statistics is what determines 

decisional outcomes. A salient example of such a relative process can be found in sensory 

oddball tasks, in which targets typically deviate from standard stimuli along a single stimulus 

dimension (e.g. frequency, luminance, etc.). Recent work has shown that for both auditory and 

visual oddballs, evidence accumulation towards a ‘target’ choice is more rapid when the relative 

distance between the target and standard, in terms of frequency or luminance, is larger (Twomey 

et al., 2015). Our diffusion modelling demonstrates a similar finding, in which drift rate is 

stronger towards an asynchronous choice when the previous stimulus had a highly dissimilar 

temporal relationship. Importantly, however, our study demonstrates this principle for second 

order sensory evidence (i.e. a difference of differences). 
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Physiologically, our results further support the notion that sensory history affects evidence 

accumulation. We strongly replicate prior work demonstrating that parietal ERPs consistent in 

topography and timing with the P3B are larger when temporal ordering switches (D. M. Simon, 

Noel, et al., 2017). We also demonstrate that response locked ERPs strongly exhibit the expected 

features of decisional signals (Kelly & O'Connell, 2015; O'Connell et al., 2012). Under the 

aforementioned relative distance framework, in which ‘evidence’ is the gap between the ‘target’ 

(current stimulus) and immediate sensory history (previous stimulus), these neural response 

modulations would be expected to vary linearly in magnitude with the difference between the 

current and prior stimulus, as observed. Our physiological and behavioral results thus converge 

to indicate that second order sensory evidence, in the form of the temporal relationship between 

the current and former trial, follows the same computational principles as primary sensory 

evidence. 

 

The Past as a Contributor to Current Sensory Evidence 

Our results highlight that the immediate sensory past is a major contributor to feed forward 

processing of sensory inputs. The nature of the previous stimulus results in substantial changes in 

behavior on the current trial, highlighting both the flexibility of temporal decision-making and 

the underlying neuronal processes. While such flexibility has long been recognized in Bayesian 

(Stocker, 2006) and predictive coding (Rao & Ballard, 1999) accounts of sensory processing, 

specific instantiations of the neural adaptation process have remained somewhat elusive. Our 

results strongly indicate that decisional processes are the primary driving force behind rapid 

audiovisual temporal adaptation. We note that no adaptation was observed in early sensory 

evoked potentials (i.e. auditory N1 or P2), which is in agreement with both our previous work 
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(D. M. Simon, Noel, et al., 2017) and sustained audiovisual recalibration experiments (Kosem, 

Gramfort, & van Wassenhove, 2014). While the EEG signal is limited to indexing phase aligned 

population signals and thus is blind to more subtle network dynamics (Nunez & Srinivasan, 

2006), we nonetheless believe this indicates that processing changes within the earliest cortical 

sensory circuits are not primary contributors to single trial recalibration. We do not rule out, 

however, that changes within primary sensory networks could function to store information 

about the temporal environment, as has been shown during sustained adaptation (Kosem et al., 

2014). Features such as selective synchronization of feed forward and feedback connections 

(Bosman et al., 2012) or internal spike correlation (Carnevale, de Lafuente, Romo, & Parga, 

2012) are hidden within the EEG population signal and may be highly distributed across cortical 

regions (Siegel, Buschman, & Miller, 2015). As drift rate indexes the strength of sensory 

evidence feeding into the decision process, such ‘hidden’ mechanisms likely make major 

contributions to changes in feed forward evaluation of sensory information.  

We previously hypothesized that the lack of neural modulations in early evoked responses 

may represent a dissociation between rapid and sustained audiovisual temporal recalibration (D. 

M. Simon, Noel, et al., 2017). These differing types of adaptation have been shown to be 

behaviorally separable (Van der Burg, Alais, & Cass, 2015), but to our knowledge have not yet 

been fully dissociated in terms of neural mechanism. Previous work on sensorimotor 

recalibration over longer time scales suggests that changes in more putatively sensory ERPs 

occurs during sustained recalibration (Stekelenburg, Sugano, & Vroomen, 2011). In light of this 

work, our current findings indicate that flexible circuits feeding into decisional networks adapt 

within a single trial, while a larger number of trials is likely required to transfer adaptation to 

sensory processing regions. Alternatively, the computed nature of the evidence being probed in 
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our experiment might play an important role. Computing a relational comparison across trials 

may require a computational process in which relative timing of individual trials (i.e. stimulus 

pairings) is already stored in a supramodal form. Such representations are ill suited to primary 

visual or auditory areas and are likely to be mediated through activity changes in distributed or 

fronto-parietal networks (Bizley, Jones, & Town, 2016; Heekeren, Marrett, & Ungerleider, 

2008).  

 

Perceptual Recalibration in Decisional Networks 

Our study places audiovisual rapid recalibration into a generalized decisional framework known 

to operate supramodally (O'Connell et al., 2012; Twomey et al., 2015). We also show that this 

decisional framework applies despite the second order nature of the perturbations in task relevant 

sensory information. These findings suggest rapid recalibration may be a specific manifestation 

of a more generalized process by which flexible decisional networks evaluate incoming 

information differently based on sensory history. Previous approaches have highlighted the 

flexibility of the decisional processes subtending perception, including their ability to 

dynamically adapt to perturbations of the available evidence (Huk & Shadlen, 2005; O'Connell 

et al., 2012). We believe that dynamic weighting of incoming sensory inputs based on immediate 

history is a similarly important form of cognitive flexibility. Consideration of such flexibility is 

only further emphasized by our demonstration that this adaptation process makes particularly 

strong contributions to behavioral variability when the available sensory evidence is ambiguous. 

The notion that flexibility in feed forward neural networks underlies rapid recalibration is 

also of particular interest due to recent demonstrations that this process is atypical in individuals 

with autism spectrum disorder (Noel, De Niear, Stevenson, Alais, & Wallace, 2016; Turi, 
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Karaminis, Pellicano, & Burr, 2016). ASD is often characterized by a loss of behavioral (D'Cruz 

et al., 2013) and neural (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; D. M. 

Simon, Damiano, et al., 2017) flexibility, and has well documented differences in P3B amplitude 

(Cui, Wang, Liu, & Zhang, 2017). Furthermore, differences in perceptual performance in ASD 

have been hypothesized to relate to differences in neural instantiations of Bayesian inference 

(Rosenberg, Patterson, & Angelaki, 2015; Turi et al., 2016). Impaired flexibility in the neural 

mechanisms subtending transformation of sensory evidence into decisions forms a ready 

explanation for this constellation of findings and clearly warrants further investigation. 

Despite our convergent behavioral, modelling, and physiological results, our study is not 

without limitations. In particular, the impact of the decision itself (synchronous or asynchronous) 

on neural responses remains unexplored, as our current experimental design is unable to 

disentangle differences in choice from differences in the preceding stimulus. Future work would 

be well served to examine the importance of this factor. Elucidating the location and nature of 

neural activity which encodes the temporal order of the previous stimulus also remains an 

important goal for understanding the mechanistic basis of rapid recalibration. 

 

 

Conclusion 

 
Our results indicate that changes in decisional processes substantially contribute to single trial 

adaptation to audiovisual temporal asynchrony. Specifically, the rate and direction of evidence 

accumulation is affected by the similarity between current sensory evidence and the immediate 

sensory past. Despite the audiovisual speech content of the stimuli in our experiment, the neural 

recalibration processes we report might also underpin numerous other single trial audiovisual 
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adaptation phenomena. Such rapid adaptation may make substantial contributions to the 

flexibility and adaptability of human behavior in the face of a dynamic sensory environment. 
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CHAPTER V 

 

 

DISCUSSION 

 

 

Summary of Results 

 
Multisensory temporal processing and multisensory temporal integration are fundamental 

contributors to the transformation of sensory inputs into a unified and coherent perceptual 

representation of the world. These processes play a critical role in everyday functions such as 

audiovisual speech perception, and thus make substantial contributions to ecologically important 

behavior (Crosse, Butler, & Lalor, 2015; Crosse, Di Liberto, & Lalor, 2016; Ross, Saint-Amour, 

Leavitt, Javitt, & Foxe, 2007). The demonstration that these integrative processes are disrupted 

in a host of developmental disabilities motivates basic research into the role temporal structure 

on the processing and integration of sensory inputs (Francisco, Jesse, Groen, & McQueen, 2017; 

Hass et al., 2017; Martin, Giersch, Huron, & van Wassenhove, 2013; Stevenson et al., 2017; 

Stevenson, Siemann, Schneider, et al., 2014). In this document, the individual stages of 

multisensory temporal processing in the human brain were investigated through a combination of 

EEG and concurrent psychophysical tasks. By taking an admittedly reductionist view focused on 

individual processing stages this work succeeded in offering a unique characterization of how 

multisensory temporal information is processed.  

Chapter 2 thoroughly explored how temporal concordance between the auditory and visual 

streams modulates the degree of multisensory integration for simple audiovisual speech. This 
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study revealed a striking resemblance between the neural tuning functions for alpha and theta 

power and participant’s behavioral responses. This serves as comprehensive evidence that cross 

modal temporal concordance contributes to reductions in the amplitude of auditory evoked 

potentials, which has been identified as an important neural correlate of audiovisual speech 

integration (Baart, 2016; Besle, Fort, Delpuech, & Giard, 2004; van Wassenhove, Grant, & 

Poeppel, 2005). Importantly, the surprising width of this tuning function (~500ms) is in strong 

agreement with complimentary approaches such as stimulus reconstruction (a form of system 

identification), which have similarly found an extended window for audiovisual speech 

integration (Crosse et al., 2015; Crosse et al., 2016). This extended temporal window also 

strongly contrasts with experiments examining temporal integration of auditory only speech 

using similar reconstruction methods and comparable speech stimuli. These studies typically find 

that even under extremely noisy conditions, which extend integration times, temporal integration 

of auditory speech occurs over a substantially shorter timescale of approximately 200-300ms (N. 

Ding & Simon, 2013a, 2013b). Chapter 2 thus adds new evidence to the notion extended by 

(Crosse et al., 2016), that audiovisual temporal integration of speech signals might be a 

privileged operation occurring over larger temporal scales than unisensory temporal integration. 

This notion of an extended audiovisual integration period is particularly compelling in light of 

the 2-5 Hz frequencies (200-500ms cycle time) at which auditory and visual speech streams 

correlate (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009). These extended 

cycle times necessitate a 500ms window of integration to fully capture auditory and visual 

temporal correspondence. Previous work has also shown that audiovisual speech integration is in 

fact strongest at the lower end of this frequency range (Crosse et al., 2015), which further 

emphasizes the need for a relatively extended audiovisual speech integration window. 
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 This study also isolated for the first time a potential oscillatory correlate of temporal 

information processing. This signal manifested in the lower portion of the theta band and not 

only changed across conditions, but also correlated with individual participant’s performance on 

the task. This signal also shared both spatial and frequency characteristics with previous 

investigations of stimulus congruence processing for both visual stimuli (Hanslmayr et al., 2008) 

and audiovisual speech stimuli (Roa Romero, Keil, Balz, Gallinat, & Senkowski, 2016). These 

characteristics strongly suggest that this low theta signal is related to processing of temporal 

structure, and is associated with the brain computing a mismatch between the timing of sensory 

components. 

The isolation of a neural correlate of temporal processing has exciting implications as it 

allows examinations focused on this signal’s properties. We took just such an approach in 

chapter 3, where we interrogated whether this signal requires deliberate processing of temporal 

structure and then characterized the nature and direction of information flow during temporal 

processing. We found that this potential congruence signal only appeared during deliberate 

processing of temporal structure, indicating that it is indeed associated with top-down volitional 

processing of audiovisual timing. We also found that phase coupling in a larger network 

involving this signal’s local circuit was modulated by the presence or absence of the temporal 

processing task. This finding is consistent with the hypothesis that coherence between brain 

regions forms the backbone of directed information flow in the brain and interacts with localized 

processing (Fries, 2005; Siegel, Donner, & Engel, 2012; Womelsdorf et al., 2007; Womelsdorf, 

Vinck, Leung, & Everling, 2010). For asynchronous stimuli in particular, coupling was 

substantially strengthened during active temporal processing, and the phase lags suggested that 

information was moving from right temporal regions to central areas and then to putatively 
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visual occipital areas. This suggests that a functional network, constructed via coherence in the 

lower theta band, supports audiovisual temporal processing. The bilateral nature and temporal 

location of the connected electrodes also suggests that the STS might constitute a contributor to 

this network, consistent with its role as a hub for audiovisual temporal processing and 

audiovisual speech processing (Powers, Hevey, & Wallace, 2012; Schepers, Schneider, Hipp, 

Engel, & Senkowski, 2013). A role for the STS in coherence based networks has also previously 

been shown in the form of preferential synchronization with auditory cortex when useful visual 

inputs are present (Maier, Chandrasekaran, & Ghazanfar, 2008). The data thus suggests that 

connectivity between STS and other brain areas such as auditory cortex is substantially enhanced 

when transfer of temporal information is needed. This study thus offers a glimpse of the 

neurophysiological substrates involved in top down control of audiovisual temporal information 

flow. 

 Lastly, in chapter 4 we established the physiological basis of an important form of neural 

plasticity known as rapid recalibration. Previous reports have indicated that for audiovisual 

simultaneity judgment the reported percept is not based solely on the sensory stimulus presented, 

but also incorporates information from both the immediate (Van der Burg, Alais, & Cass, 2013; 

Van der Burg & Goodbourn, 2015; Van der Burg, Orchard-Mills, & Alais, 2014) and long term 

(Fujisaki, Shimojo, Kashino, & Nishida, 2004; Van der Burg, Alais, & Cass, 2015; Vroomen, 

Keetels, de Gelder, & Bertelson, 2004) sensory history. This previous work further hypothesized 

that the mechanistic basis of this rapid adaptation would be rooted in functional changes in 

sensory processing regions. Judging whether a stimulus is synchronous or asynchronous is a 

form of perceptual decision-making, however, and performance of the SJ task thus necessarily 

involves evidence accumulators located in frontal and parietal cortex (Heekeren, Marrett, & 
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Ungerleider, 2008). This accumulation process utilizes the sensory evidence available, which 

consists of relative timing computations by the neural network examined in chapter 3, and could 

just as easily be the locus of rapid adaptation.  

Importantly, this decisional process has well described theoretical characteristics in which 

sensory evidence integrates over time until it is absorbed by a decisional boundary (Ratcliff & 

McKoon, 2008; Smith & Ratcliff, 2004). This accumulation process is also directly observable 

as ramping activity both in single neurons (Bollimunta, Totten, & Ditterich, 2012; L. Ding & 

Gold, 2012; Shadlen & Newsome, 2001) (for reviews see: (Gold & Shadlen, 2007; Smith & 

Ratcliff, 2004)) and in the neural population signals indexed by EEG and MEG (O'Connell, 

Dockree, & Kelly, 2012; Schurger, Sitt, & Dehaene, 2012; Smyrnis et al., 2012). This ramping 

form of temporal integration, which is distinct from multisensory perceptual integration, is 

observable as a build-to-action threshold that rises at a rate equivalent to the integral of the 

sensory evidence (O'Connell et al., 2012). Such temporal integration is believed to be an optimal 

form of decision making when individual decisional units (i.e. neurons) have sparse or noisy 

representations of the available evidence (Gold & Shadlen, 2007). This accumulation process is 

also known to underlie other canonical action computations such as volitional initiation of motor 

action (Hanes & Schall, 1996), suggesting that temporal integration and boundary absorption are 

ubiquitous properties of action and perception. This strong conceptual framework and its 

corresponding biologically informed models such as drift diffusion (Vandekerckhove & 

Tuerlinckx, 2007) allow for robust interrogation of the decisional contribution to multisensory 

temporal perceptual plasticity. 

Using a combination of electroencephalography and drift diffusion modelling we 

demonstrated conclusively that physiological indices of rapid adaptation to asynchronous 
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audiovisual speech occurs seemingly exclusively in decisional circuits. We found no evidence of 

adaptation in earlier sensory ERP components or sensory encoding time and found that the 

accumulation process itself conformed to canonical descriptions. While many signal dynamics 

are hidden in the EEG population signal (Nunez & Srinivasan, 2006), the strong correspondence 

between changes in physiology and modelling of the underlying decision variable serves as 

evidence for a major decisional component to this phenomenon. This does not exclude the 

contribution of sensory circuits altogether, but constrains their possible contributions to be either 

non-phase locked (i.e. induced phase changes, see: (Kosem, Gramfort, & van Wassenhove, 

2014) for an example), or to take the form of differences in forward information flow to the 

decisional circuit. 

Together, the results of these studies offers a unique characterization of temporal processing 

for audiovisual speech as information ascends the cortical hierarchy. Processing begins in low-

level sensory cortical regions, in which suppressive multisensory interactions are already present. 

More distributed processing circuits are then recruited through neural coherence, which compare 

or combine temporal representations from these areas. Finally, this sensory evidence 

accumulates in parietal decision circuits until reaching a decisional threshold and triggering the 

behavioral response. 

 

 

Implications of Main Findings 

 
Basic Science Implications 

The current work indicates that the precise timing of auditory and visual stimuli plays a crucial 

role in the degree to which visual inputs dampen cortical responses in early auditory areas. 
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Importantly, this effect occurs over a notably prolonged temporal window congruent with both 

behavioral (Munhall, Gribble, Sacco, & Ward, 1996; van Wassenhove, Grant, & Poeppel, 2007), 

imaging (Stevenson, Altieri, Kim, Pisoni, & James, 2010), and physiological (Crosse et al., 

2016) studies, all of which point to substantial temporal tolerance in audiovisual speech 

processing. Similar sub-additive multisensory interactions have previously been identified to be a 

potential hallmark of improvement in information content in neural signals (Angelaki, Gu, & 

DeAngelis, 2009; Kayser, Logothetis, & Panzeri, 2010; Kayser, Petkov, & Logothetis, 2008) and 

a form of anticipatory predictive coding (Stekelenburg & Vroomen, 2007; van Wassenhove et 

al., 2005). The current work particularly demonstrates the sensitivity to temporal alignment of 

early alpha band activity during audiovisual speech processing. This finding is strongly 

consistent with previous invasive physiological approaches demonstrating ~10 Hz (alpha) 

inhibition in the auditory cortex during audiovisual processing (Kayser et al., 2008). Alpha 

oscillations have previously been proposed as an important marker of cortical inhibition crucial 

for the control of information flow within and between sensory regions (Klimesch, Sauseng, & 

Hanslmayr, 2007) and have been specifically highlighted as a mechanism of information 

refinement and resource allocation for auditory sensory representations (Strauss, Wostmann, & 

Obleser, 2014) (for a speech perception example see (Strauss, Henry, Scharinger, & Obleser, 

2015)). Importantly, there is also strong congruence between the generally inhibitory nature of 

alpha oscillations (Jensen & Mazaheri, 2010; Klimesch et al., 2007) and the generally sub-

additive nature of multisensory integration found in experiments using audiovisual speech 

signals (Baart, 2016). Combined with the more rapid onset of alpha band effects relative to theta 

band effects, this suggests an important role for rapid inhibition in refinement of the primary 

auditory cortical response and thus a reduction in overall response magnitude. In the presence of 
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informative (i.e. concurrent or leading) visual speech, the need for such cortical dampening to 

occur would be substantially reduced, and thus serves as a marker of the improved processing 

efficiency proposed by (van Wassenhove et al., 2005). The current work thus suggests that 

inhibitory processes and information sharpening correspond with audiovisual temporal 

congruence in a manner consistent with the low frequency correspondence found in the statistics 

of natural audiovisual speech (Chandrasekaran et al., 2009; Schwartz & Savariaux, 2014). 

Representational sharpening could also be characterized as reduction in the neural 

uncertainty regarding the sensory signal, and thus form the basis of visual influences on auditory 

Bayesian inference in the brain (Knill & Pouget, 2004). Taken in this context, we demonstrate 

that cortical representations of simple acoustic signal features sharpen to varying degrees 

depending on the temporal concordance of the visual input. This sharpening likely makes 

important contributions to perception, but empirically establishing this relationship remains an 

important future step. Such a question could be addressed by determining whether temporal 

tuning and response sharpening, both at the level of the individual neurons (i.e. single unit spikes 

or multiunit activity) and at the level of the circuit (i.e. LFP) are preferentially present in 

perceptually relevant neurons. At the level of the individual neuron this could be interrogated 

using metrics such as choice probability (Britten, Newsome, Shadlen, Celebrini, & Movshon, 

1996) and determining whether neurons exhibiting response suppression consistent with the 

observed scalp signal have categorically higher choice probability than neurons which lack 

response suppression or exhibit disorganized response suppression. This approach has previously 

been utilized in non-human primates to indicate that visual-vestibular neurons with expected 

tuning functions likely make larger perceptual contributions than neurons with suboptimal tuning 

(Gu, Angelaki, & DeAngelis, 2008). Such an approach is further motivated by recent work 
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demonstrating causal links between auditory cortical activity and perceptual decisions (Tsunada, 

Liu, Gold, & Cohen, 2016). The current findings thus create an avenue for directly addressing 

the perceptual contributions of multisensory temporal tuning in auditory cortical neurons by 

determining if visual speech selectively suppresses or enhances activity in the neurons that most 

strongly contribute to perception. 

The protracted tuning function demonstrated also offers constraints on the neural 

mechanisms responsible for reductions in auditory cortical response magnitude. A major 

mechanism proposed for multisensory interactions within the auditory cortex is phase reset 

(Lakatos, Chen, O'Connell, Mills, & Schroeder, 2007; Lakatos et al., 2009; Thorne, De Vos, 

Viola, & Debener, 2011), which is proposed to occurring through direct anatomical inputs from 

other sensory regions (Falchier, Clavagnier, Barone, & Kennedy, 2002; Falchier et al., 2010; 

Hackett et al., 2007; Smiley & Falchier, 2009). This reset mechanism offers a way to rapidly and 

flexibly optimize the neural state in the auditory cortex for input based on visual activity or other 

sensory inputs. In light of the tuning function presented, however, several questions arise. First, 

generation of such a slow tuning function would require primarily (~2Hz) delta phase reset, but 

the phase resets observed in auditory cortex do not fall exclusively within this band (Lakatos et 

al., 2007; Lakatos et al., 2009). In particular, low theta (~4-5Hz) oscillations likely also reset, 

and given the width of the tuning function have enough time to completely cycle. Itis possible 

that the lower frequency reset is preferentially considered (i.e. each oscillatory frequency has a 

distinct integrative process; a mechanism proposed in (Schroeder, Lakatos, Kajikawa, Partan, & 

Puce, 2008) and supported by (Chandrasekaran & Ghazanfar, 2009)). Alternatively, the slow 

tuning function might result from broadband phase resets with distributed timing (i.e. temporal 

jittering), which would cancel at the population level for high frequencies while maintaining low 
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frequencies that are more resistant to temporal jitter. Such temporally imprecise reset might be 

present due to the low temporal precision and relatively smooth rate of change found in visual 

speech signals, and has been demonstrated to serve adaptive functions in cross-modal attention 

tasks (Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008). Disambiguating these mechanisms 

at the level of the EEG signal is not feasible, as the number of neurons active and the phase 

alignment of their activity both manifest as increased signal amplitude and ITC at the scalp 

(Nunez & Srinivasan, 2006). Approaching this question with invasive physiological techniques 

is thus highly appropriate and necessary for answering the question of whether phase reset by the 

visual input is heterogeneous or whether specific frequency bands are preferentially considered.  

Recent work has also revealed the precise nature of timing modulated audiovisual integration 

in the auditory cortex of the macaque for ecologically valid temporal offsets, which are strongly 

consistent with the effects we observed (Kayser et al., 2008; Perrodin, Kayser, Logothetis, & 

Petkov, 2015). We note, however, that the signatures of integration in our study extend well 

beyond the < 200 ms asynchronies which demonstrated integrative effects in the aforementioned 

work. The neural correlates of processing during large asynchronies (>200 ms) at the level of 

individual neurons and the local circuit are thus currently unexplored. Such work is also 

particularly interesting given the ubiquity of perceptual binding (i.e. reports of ‘same time’ or 

illusory perception) at offsets of this size (i.e. the current work or (Stevenson et al., 2010; van 

Wassenhove et al., 2007)), despite the seeming falloff of integrative effects observed at larger 

offsets in (Kayser et al., 2008). Examining neural function for these large offsets may thus yield 

an important opportunity to dissociate low-level integration and high-level perceptual binding 

(i.e. formation of a multisensory “object”) within auditory cortical circuits. 

Determining the invasive neural correlates of the observed auditory response suppression at 
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large temporal offsets might also yield information about these neuron’s potential contribution to 

statistically optimal integration (Ernst & Banks, 2002). A widely observed phenomenon in the 

integration of multisensory inputs is that integration is optimal relative to the reliability of the 

sensory inputs. In other words, a sensory input with a high reliability (i.e. spatial localization 

with vision) carries substantially more integrative weight than one with low reliability (i.e. 

spatial localization with audition) (Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003; Ernst & 

Banks, 2002; Kersten, Mamassian, & Yuille, 2004; Maloney & Mamassian, 2009). Examples of 

this weighted integration include the dominance of the visual input for spatial localization of the 

classical ventriloquist’s illusion (Slutsky & Recanzone, 2001) and the dominance of audition for 

temporal ventriloquism (Aschersleben & Bertelson, 2003; Bertelson & Aschersleben, 2003; 

Kuling, Kohlrausch, & Juola, 2013). Theoretically, refinement of the auditory neural 

representations of sensory inputs should lead to increased representational reliability, and thus 

increased weight during tasks of this type. This could be examined behaviorally by using the 

temporal offset based sharpening we demonstrate, while probing the optimality of an orthogonal 

paradigm such as integration of auditory and tactile cues. Such an approach could also be 

combined with the choice probability method suggested above to determine if choice probability 

and optimality are linked via this neural tuning function. 

 

Bridging Low-Level integration with decision making 

The current work also suggests that changes in decisional processes account for trial-by-trial 

variability in perceptual thresholds. Previously this temporal adaptation process, rapid 

recalibration, was implied to depend on adaptation within sensory systems (Van der Burg et al., 

2013; Van der Burg & Goodbourn, 2015) based on its specificity to audiovisual stimuli (Van der 
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Burg et al., 2014). The results in this work indicate that this is not the case, as rapid recalibration 

causes no observable changes in evoked responses which occur early in time and are readily 

attributable to feed forward encoding in primary auditory cortices (i.e. the N1 or P2). At the 

same time, we observed very large differences in neural activity attributable to modality 

independent decisional processes. This finding of decisional specificity in the rapid recalibration 

process is further reinforced by the fact that non-decision time, which includes both sensory 

processing and generation of motor responses (Ratcliff & McKoon, 2008), is unaffected by the 

nature of the sensory past. Combined with the lack of auditory or visual ERP adaptation found in 

a nearly identical paradigm using flashes and beeps (Simon, Noel, & Wallace, 2017), adaptation 

in initial sensory representations is thus unlikely to be a major contributor to the rapid 

recalibration effect. This finding motivates careful consideration in future work regarding how 

single trial perceptual recalibration occurs or fails to occur at each stage of the transformation 

from a sensory input to perception. 

 For example, temporal adaptation in low-level sensory cortices clearly occurs for low-

level stimuli given sufficient adaptation time consisting of either multiple consecutive trials 

(Stekelenburg, Sugano, & Vroomen, 2011) or long stimulus trains (Kosem et al., 2014). In the 

first of these studies, changes in early sensory ERPs were observed, while in the latter a clear 

neural correlate of temporal recalibration was observed in the form of phase shifts in auditory 

and visual cortex. This indicates that primary sensory regions can indeed adapt to distortions in 

the temporal statistical structure of the environment under certain circumstances, and 

furthermore, that this adaptation in auditory cortex has perceptual relevance (Kosem et al., 

2014). What parameters of the stimuli or experimental design are necessary to engender this low-

level plasticity, however, is currently unknown. In particular, given the differences in temporal 
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processing observed between simple and complex stimuli (reviewed extensively in chapter 1), it 

is unclear if stimulus experience, which could also be viewed as the strength of Bayesian priors, 

plays any role in these low-level adaptation effects. Similarly, both of these studies utilized 

sustained adaptation to varying degrees, and it is possible that putatively ‘low level’ neural 

adaptation only emerges after repeated stimulus presentations. Empirical examination of the role 

stimulus complexity and experimental structure play in early adaptation effects is still needed, 

yielding a number of opportunities for future research. 

Given the lack of evidence of changes in early sensory encoding strength in the current work, 

the next stage to consider is transfer of information between the networks encoding stimulus 

features and the networks making perceptual decisions. By nature, the formation of a perceptual 

decision based on sensory evidence requires feed forward transmission of information from 

sensory circuits to fronto-parietal circuits governing the decision process (Heekeren et al., 2008). 

In other words, circuits processing low-level sensory information must transfer relevant 

information to circuits that contain the evidence accumulators and form the decision. For a 

practical example of this process, when making a decision regarding motion coherence, neurons 

in the middle temporal area (MT/V5) strongly represent motion (i.e. sensory evidence), but only 

weakly represent choice (Britten et al., 1996; Britten, Shadlen, Newsome, & Movshon, 1992; 

Shadlen, Britten, Newsome, & Movshon, 1996). These neurons then and project to neurons in 

the lateral intraparietal area (LIP), which very strongly represent motor choice and demonstrate 

accumulation characteristics (Huk & Shadlen, 2005; Shadlen & Newsome, 2001) (for a more 

recent and nuanced view of the representation of decision and choice in these areas see: (Huk, 

Katz, & Yates, 2017; Yates, Park, Katz, Pillow, & Huk, 2017)). It has previously been 

demonstrated that in motion coherence tasks, motion adaptation causes changes in the directional 
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tuning of the neurons representing the motion (Kohn & Movshon, 2004). In other words, the 

gross population activity present in a scalp ERP is unchanged, but the fundamental nature of the 

message (i.e. sensory evidence) being read by the decisional circuit is altered. The current work 

suggests a similar phenomenon, except that rather than area MT the ‘evidence’ likely resides in 

the distributed network elucidated in chapter 3. 

The final decisional stage, accumulation, was observed to follow the canonical model of 

decisional evidence accumulation. This included a build to threshold decision variable, which 

was found to be consistent across all conditions and a slope (i.e. information accumulation rate) 

that corresponded with the perceptual ambiguity of the sensory stimulus. These findings are 

novel in the current multisensory context, but are well explored for other types of perceptual 

decision-making. For example, the accumulation process for both audition and vision was well 

characterized in (O'Connell et al., 2012), which found that the trajectory of the decision signal 

tracked the integral of the sensory evidence present in primary cortices. This is consistent with 

the theoretical underpinnings of an optimal accumulator model, which integrates noisy evidence 

over an interval until a decision threshold is reached (Gold & Shadlen, 2007; Smith & Ratcliff, 

2004). By integrating information in this manner, neural systems are able to quickly reach 

decisions which are robust to sensory and biological noise. 

The current work thus establishes a strong impetus for understanding how adaptation occurs 

in the intermediate messaging step, as this step is likely responsible for the behavioral plasticity 

observed as well as the trial-by-trial changes in accumulation rate. Additionally, trial-by-trial 

variability in this process likely utilizes specialized circuitry involving auditory and visual brain 

regions, as rapid temporal recalibration has previously been shown to be specific to audiovisual 

stimuli (Van der Burg et al., 2014). Work addressing the underlying coupling process might 
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require invasive techniques, given the fine spatial and neural population specificity required to 

carry out such a specific computational operation.  

More generally, the finding that the audiovisual sensory past shapes the trajectory of the 

decision process is important, because it highlights the need to conceive of perceptual processes 

as interconnected with decisional and motor circuitry in the brain. This is reinforced by recent 

examinations noting that motor cortical regions actively participate in audiovisual speech 

integration (Park, Kayser, Thut, & Gross, 2016). Consideration of such mechanisms is important 

in psychophysical experiments such as SJ, in which binary behavioral reports (and consequently, 

binary decisions) are extracted from neural representations which are almost certainly initially 

continuous. This is also particularly true for multisensory timing experiments, in which 

comparison across potentially disparate sensory timing computations may be required to extract 

the pertinent decisional information. Recent calls to examine multisensory decision-making have 

emphasized that multisensory interactions occur at many levels of the decisional process, but that 

the decisional relevance of integration at each step is rather poorly understood (Bizley, Jones, & 

Town, 2016). The current work expands this call by strongly indicating that, for audiovisual 

multisensory temporal decisions, it is crucially important to consider adaptation within sensory 

circuits and mechanisms of selective feed forward transfer to decisional circuits. 

The role of coupling between sensory systems and decisional accumulators also remain 

relatively unexplored in multisensory contexts. Important mechanisms of neural information 

transmission such as selective synchronization (Bosman et al., 2012) and neural coherence 

(Engel, Gerloff, Hilgetag, & Nolte, 2013) almost certainly play a crucial role in this processing 

stage. Coupling between brain circuits must play an important role in multisensory decision 

making, as neurons in primary sensory cortices seem to encode decision relevant information 
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only for the primary sense despite responding to other modalities (Lemus, Hernandez, Luna, 

Zainos, & Romo, 2010). This indicates that the information for a multisensory perceptual 

decision is likely not present within a single sensory circuit, necessitating some form of 

interregional transfer. In chapter 3, a task switch paradigm was used to isolate low frequency 

phase coupling which supports the SJ task, but additional clarity is clearly needed in regards to 

the directionality and content of information transfer. The coupling observed in the SJ task also 

did not target frontal or parietal scalp locations where decisional accumulation signals are 

typically found, indicating that it may not be an indicator of sensory to decisional coupling 

(Kelly & O'Connell, 2013, 2015; Loughnane et al., 2016; O'Connell et al., 2012; Twomey, 

Murphy, Kelly, & O'Connell, 2015). This discrepancy may occur because of methodological 

differences between established physiological approaches to connectivity and the nature of the 

accumulation process. In particular, the temporal integration process found in decisional 

accumulators is generally considered optimal due to the noisy nature of evidence present for 

individual trials. Non-invasive investigations of cortical connectivity, however, are generally 

based on consistency in phase relationships across trials (for discussions of analytical methods 

for brain synchrony see: (Lachaux, Rodriguez, Martinerie, & Varela, 1999; Nolte et al., 2004; 

Stam, Nolte, & Daffertshofer, 2007; Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 

2011)). In other words, increased consistency (i.e. increased functional connectivity) across trials 

may not correspond well with changes in information flow within trials. Additional work is 

clearly needed to clarify the role of neural coherence in decision making, and how differences in 

coupling strength affect the evidence accumulation process.  
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Future Directions 

 
Clinical Applications 

The current work suggests a number of productive directions for further research. One of these is 

to extend these approaches to clinical populations which demonstrate multisensory temporal 

dysfunction such as ASD, schizophrenia, and dyslexia. Multisensory dysfunction in these 

populations has been hypothesized to cascade into higher order social and cognitive deficits that 

in many cases primarily characterize these disorders (Wallace & Stevenson, 2014). Currently, 

the physiological basis of multisensory perceptual disruptions in all of these clinical populations 

is poorly understood. This is particularly relevant for ASD, in which integrative deficits have 

long been theorized to underpin differences in perceptual performance (Frith & Happe, 1994; 

Happe & Frith, 2006). These integrative processes are believed to rely on both high and low 

frequency coherence (Engel et al., 2013), which has recently been demonstrated to be disrupted 

during visual perceptual processing in ASD (Peiker et al., 2015). Multisensory interactions 

necessarily involve information transfer between sensory systems, a process reliant on neural 

coherence (Senkowski, Schneider, Foxe, & Engel, 2008). Multisensory interactions thus may be 

particularly vulnerable to oscillatory disruptions observed during sensory processing in ASD 

(Simon & Wallace, 2016). Similarly, differences in the P3B ERP component, which is the 

stimulus locked manifestation of evidence accumulation (Kelly & O'Connell, 2015; O'Connell et 

al., 2012; Twomey et al., 2015) have been widely reported in ASD (Cui, Wang, Liu, & Zhang, 

2017). Both theta coherence and the P3B ERP component demonstrated important multisensory 

interactions in the current work, and extension of these approaches to ASD might yield 

substantial insight regarding the neural bases of disruptions noted in simultaneity judgment 

(Noel, De Niear, Stevenson, Alais, & Wallace, 2016; Stevenson, Siemann, Schneider, et al., 
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2014; Turi, Karaminis, Pellicano, & Burr, 2016). 

 

Developmental Applications 

A second important extension of the current work is to determine the developmental trajectory of 

these physiological processes. Behavioral measures of audiovisual temporal integration are 

known to have a strong developmental trajectory in which sensitivity matures in early adulthood 

(Hillock-Dunn, Grantham, & Wallace, 2016; Hillock-Dunn & Wallace, 2012; Hillock, Powers, 

& Wallace, 2011; Kaganovich, 2016; Noel, De Niear, Van der Burg, & Wallace, 2016). The 

neural mechanisms of this relatively slow maturational process are currently unexplored, and the 

physiological measures established by the current work could be readily generalized to pediatric 

populations. This is particularly important for temporal acuity in regards to speech stimuli, as 

audiovisual facilitation of speech comprehension is known to share a similarly extended 

developmental trajectory which (Ross et al., 2011). Importantly, audiovisual speech processing 

also has a well-described developmental trajectory in terms of neural correlates (Kaganovich & 

Schumaker, 2014; Knowland, Mercure, Karmiloff-Smith, Dick, & Thomas, 2014), offering a 

potentially robust extension to the temporal asynchrony manipulations used in the current work. 

Such an approach is only further motivated by the documented developmental trajectory for 

audiovisual speech illusions (Sekiyama & Burnham, 2008), which reinforces the notion of strong 

developmental influences on audiovisual integration and perception. Given the aforementioned 

focus on extending the current work to clinical populations, it also bears mention that 

developmental and clinical factors clearly interact with one another in terms of audiovisual 

speech perception (Foxe et al., 2015; Stevenson, Siemann, Woynaroski, et al., 2014). 

Understanding the aforementioned neural bases of dysfunction in clinical populations thus also 
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requires a comprehensive characterization of multisensory temporal function in developing 

individuals. 

 

Identifying Mechanisms of Audiovisual Perceptual Learning 

Lastly, by characterizing the neural mechanisms involved in multisensory temporal processing at 

multiple levels, the current work creates a unique opportunity to determine how perceptual 

learning paradigms shape neural activity. Perceptual learning has been previously shown to 

improve multisensory temporal acuity for visually leading impulse stimuli (Cecere, Gross, & 

Thut, 2016; Powers, Hillock, & Wallace, 2009). In an fMRI experiment, these behavioral 

improvements were shown to occur due to strengthening of a distributed multisensory network 

involving the SC, STS, and primary sensory cortices (Powers et al., 2012). The physiological 

basis of training based improvements in temporal acuity is currently unexplored, but has 

previously been proposed to involve changes in neural coherence. The current work establishes 

that local and long-range theta synchronization is involved in temporal processing, and 

determining how perceptual training shapes synchronization is an important future step. Recent 

physiological evidence also indicates the presence order specific network recruitment during the 

SJ task (Cecere, Gross, Willis, & Thut, 2017), which mirrors the asymmetry of trainability. This 

suggests that coherence based approaches might disambiguate how activity in the visually 

leading brain network is shaped by training relative to the training resistant auditory leading 

brain network. Combined with the clinical and developmental characterizations suggested above, 

such work could serve as a crucial step in determining whether perceptual training might serve as 

a method of remediation for multisensory temporal dysfunction in clinical populations.  
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Conclusion 

 
Multisensory temporal processing is fundamentally important for the appropriate integration of 

ecologically important audiovisual signals such as speech and makes substantial contributions to 

human perception and behavior. The current work offers a uniquely comprehensive 

physiological characterization of the neural processes involved in this important function in the 

mature human brain. Physiological indicators of multisensory temporal interactions were 

observed at every level of the cortical hierarchy, and spanned from initial sensory processing in 

localized cortical regions to high-level decisional circuits which accumulate sensory evidence to 

form decisions. Taken as a whole, the current work offers substantial insights into how the brain 

aggregates and integrates information from an environment in which sensory signals occur with 

varying degrees of temporal correspondence. These fundamental neural computations underlie 

the flexibility and adaptability of human behavior in naturalistic environments and offer 

numerous forward paths for productive future research. 
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