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Chapter 1

INTRODUCTION

1.1 Motivation

Structural systems operating in extreme thermo-mechanical conditions undergo signif-

icant deterioration induced by aggressive environmental agents. Numerous engineering

problems display this environment effect, such as tritium ingress into concrete and steel

in nuclear waste containment structures [4], calcium, sulfate and other aggressive agents

ingress into concrete [5], moisture absorption of naval composites [6], and hydrogen dif-

fuse into energy storage and transportation systems [7]. This dissertation focus on the

environmental-mechanical response coupling observed in hypersonic aircraft applications:

oxygen transport into titanium at high temperature environment [3]. In each of these appli-

cation the environment-exposed material usually exhibits significantly weakened mechan-

ical properties. In this dissertation, a multi-physics computational model was developed to

simulate the coupled processes of oxygen ingress transport into a titanium alloy, as well as

the mechanical response of the alloy at the high temperatures.

As the air vehicle operating at hypersonic speeds, a very thin layer of high temperature

atmosphere is generated surrounding the surface of the aircraft, as shown in Fig. 1.1, within

this hot region oxygen ingress into the surface of the structure in the form of diffusion, ad-

vection or reaction processes, causing the material to undergo changes in the material mi-

crostructure, including possible phase transformation, or elevated concentrations of oxygen

within the substrate lattice [8, 9]. Experiments show that as the aircraft operates under the

aerodynamic service loads, surface cracks are likely to initiate from the oxygen enriched

zone, and act as potential sites for nucleation and growth of more microcracks and voids,

eventually forming deep crack that fails the structure.

1



Figure 1.1: Aircraft operating at hypersonic speeds ”reproduced from [2]”.

The near α titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6-2-4-2-S) is a candidate

structural material for various components of concept hypersonic air vehicles [10] [11].

The material degradation process of Ti-6-2-4-2-S in the extreme environment associated

with the hypersonic aircraft operational conditions involves complicated multiple physical

processes, as depicted in Fig. 1.2. The temperature of oxygen abundant environment could

be as high as 6500C, which can significantly affect the mechanical performance of the mate-

rial such as reducing the Young’s modulus, increasing the ductility, plastic strain softening,

reduction of viscosity. In contrast, oxygen ingress also is accelerated at high temperatures

by increasing the diffusivity of the titanium alloy significantly and accelerating both the

advection and reaction processes which also depend on diffusivity. The growing oxygen

concentration results in strain hardening, embrittlement and loss of fatigue life, which plays

the opposite effect upon the mechanical attributes; Furthermore mechanical damage, which

is a manifestation of increasing crystalline defects, provides favorable conditions for further

transport of oxygen.

In addition, phenomena that span multiple spatial scales contribute to the overall degra-

dation in the mechanical response of the structure. During the operational environment,

the aerodynamic mechanical loading and the thermal effects on the material are measured

2
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Figure 1.2: Multi-physics process[3].

in the scale of millimeters, whereas the oxygen ingress affected areas usually only have a

thickness of several microns even after hundreds of hours of high temperature exposure, as

illustrated in Fig. 1.3. This heterogeneity of the characteristic scales of different physical

processes coupling with each other makes the response of the titanium structures subjected

to thermo-chemo-mechanical loading and environmental conditions an extremely compli-

cated problem to solve.

1.2 Background

Extensive research exists on experimental and modeling based investigations of oxy-

gen ingress into titanium alloys (e.g., [12, 13, 14, 15]). The seminal work of Sofronis and

McMeeking [16] provided the first finite element model for the coupled hydrogen trans-

port - deformation response that can describe the hydrogen transport into a metal substrate

around crack tips. This model has been extended to properly account for transport be-

tween trap and lattice sites by Krom et al. [17]. Oskay and Haney [3] proposed a coupled

transport-deformation formulation to simulate the oxygen-induced embrittlement of tita-

nium structures. Peters et al. [18] experimentally investigated the effect of mechanical

loading on the oxygen transport rates and pointed to the effect of very significant relax-

ation that dominates the response under sustained deformations, which complicates the

3



Figure 1.3: Multiscale problem[3].

coupling between the transport and mechanical processes. Parthasarathy et al. [19] pro-

posed a fatigue life prediction methodology for oxygen exposed Titanium alloys subjected

to uniaxial tension loads. Pilchak et al. [20] provided experimental and fractographic inves-

tigation of the effect of high temperature exposure of a near-α titanium alloy undergoing

oxygen ingress. A comprehensive review of earlier diffusivity characterization of titanium

and titanium alloys is provided by Liu and Welsch [21].

1.3 Research Objectives & Tasks

This dissertation presents a multiphysics multiscale methodology to simulate and pre-

dict the material failure mechanism of Ti-6-2-4-2-S in extreme conditions. In order to

formulate a computational model to characterize and to predict the transport and deforma-

tion response of the titanium alloy Ti-6-2-4-2-S in extreme conditions, all three physical

processes: the thermal state, the chemical transport and the mechanical deformation are

4



simulated individually. The key effort of the proposed model is to identify all the physical

processes and their coupling mechanisms. More specifically, transport model is constructed

and mixed finite element approach is implemented to enhance the coupling mechanism be-

tween oxygen transport and mechanical deformation processes. Viscoelastic-viscoplastic

deformation model are formulated to realize the loss of ductility, viscoplastic stress hard-

ening, stress relaxation and change of cyclic response in extreme temperature. The simu-

lated results were calibrated and matched with the experiments, which makes this proposed

model excellent in modeling the α case formation and mechanical response of titanium

structure in its one unique way.

The primary research objective of this dissertation is to understand the transport and

deformation process as well as their coupling mechanism of the titanium alloy Ti-6-2-4-

2-S in extreme conditions associated with hypersonic flight. The following tasks were

performed to achieve this research objective:

1. Establish and model the coupling mechanisms between the oxygen transport and

mechanical deformation process.

2. Devise a mixed finite element model to accurately evaluate the coupled system of

equations.

3. Exercise the proposed computational model along with available experimental data

to understand the interaction between the deformation and environment-induced degrada-

tion.

4. Formulate, implement and verify a multi-yield surface viscoplastic model to capture

the cyclic response in the high temperature environment.

1.4 Material System

Ti-6-2-4-2-S is lightweight, high in tensile strength and toughness, and has good corro-

sion and heat resistance. 0.1% β stabilizer silicon is added to improve the creep resistance

and ductility of the material. The substrate chemical composition of Ti-6-2-4-2-S is shown

5



Table 1.1: Chemistry of Ti-6Al-2Sn-4Zr-2Mo-0.1Si[1].

Si Al Sn Zr Mo O C N Fe Y Ti
Max weight% 0.13 6.5 2.2 4.4 2.2 0.15 0.08 0.05 0.1 0.005
Min weight% 0.06 5.5 1.8 3.6 1.8 - - - - -

in Table 1.1. Ti-6-2-4-2-S consists of two phases: brittle α phase and ductile β phase,

which is HCP and BCC crystal structure respectively. α phase is stable up to the β transus

temperature around 1000 0C; while β phase is more stable at temperature beyond 1000 0C.

When exposed to temperature above 500 0C in oxygen enriched environment, Ti-6-2-4-2-S

will generate an oxide layer on the top and a brittle oxygen enriched layer beneath it. It was

found that the scales of the oxide and α case layer thickness are functions of temperature

and exposure time. The formation and effect of the oxide layer of Ti-6-2-4-2-S is trivial

compared to other titanium alloys, therefore only α case layer formation will be consid-

ered in this dissertation, as shown in Fig. 1.4. The white colored region of the polycrystal

represent the α phase titanium, and the dark colored polycrystal is the β phase titanium.

Transport of oxygen into Ti-6-2-4-2-S usually takes place through vacancies and in-

terstitial sites (lattice diffusion), as well as grain boundaries and dislocations (short-circuit

diffusion)[22]. The transport of oxygen takes place through vacancy mechanism when an

atom moves to another vacant lattice site. The interstitial diffusion involves transport of

atoms from one interstitial position to another in the crystal lattice, which is more typical

for diffusion of small atoms such as oxygen. The ingressed oxygen stabilize the HCP crys-

tal structure of titanium by occupying the free interstitial lattice positions. Consequently,

the material exhibits significantly different mechanical and chemical properties, including

the reduction of ductility, increase of hardness and loss of fatigue life [18].

1.5 Dissertation Organization

The dissertation is organized to tackle each step listed in the research objectives. Steps

1, 2 and 3 were addressed by the construction of coupled transport and elasto-viscoplastic

6
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Figure 1.4: Microstructure of Ti-6-2-4-2-S.

mixed finite element model, as discussed in Chapter 2, where the transport model was

proposed to incorporate the coupling variable of damage and pressure, followed by the

stabilization of the reaction dominated flow. Finally the mixed finite element formulation

of the deformation problem was established and the model was calibrated, validated and

tested together with the stabilized transport model. The step 4 was tackled in Chapter

3, where the elasto-viscoplastic model was upgraded to include the viscoelastic property

with the transport model inherited from Chapter 2 without modifications. The proposed

multiphysics model was calibrated and the performance of the modified component was

tested with a numerical example. In Chapter 4, a multi-yield surface viscoplastic model

was proposed to capture the cyclic response characterization of alloys at high temperatures.

The model is an extension of multi-yield surface plastic model; by incorporate the rate

dependent effect on the back stress evolution and the Mroz collinearity rule of yield surface

translation. At last, Chapter 5 provides the conclusion and future works.
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Chapter 2

A THREE-FIELD (DISPLACEMENT-PRESSURE-CONCENTRATION)

FORMULATION FOR COUPLED TRANSPORT-DEFORMATION PROBLEMS

2.1 Introduction

Aggressive environmental elements deteriorate the mechanical performance of mate-

rial and structural systems subjected to combined loading and environmental conditions.

Examples of engineering problems that display environmental-deformation response cou-

pling are manifold. Two problems that have received significant attention, among others,

are hydrogen- and oxygen-induced embrittlement in metals [8, 9].

Predictive computational modeling of the deformation response of such materials and

structures subjected to aggressive environmental agents remains to be a significant chal-

lenge. The first difficulty is accurately modeling the coupling mechanisms between the

inelastic deformation process and the mass transport of the aggressive agent into the struc-

tural material. The second difficulty is the development of a computational solution method

to accurately evaluate the response in the presence of the coupling mechanisms. An exten-

sive literature exists in characterization and modeling of metals subjected to hydrogen; and

to a lesser extent, oxygen. The mass transport of the aggressive agent into the solid substrate

is often modeled as a diffusion-advection-reaction problem [16], whereas the mechanical

response involves inelastic deformations induced by the mechanical and thermal loads, as

well as the environmental effects. Time-dependent deterioration of the mechanical proper-

ties is marked by the coupling between the transport process of the aggressive agent and the

deformation under mechanical and thermal loads. The transport process typically results in

volumetric expansion, hardening, embrittlement, loss of fatigue life and strength [23, 24].

On the other hand, the chemical potential that drives the kinetics of the aggressive agent
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ingress is a function of the state of stress and deformation through formation of trap sites

(e.g., dislocations) and microcracks that enhance the rate of mass transport.

Computational modeling of this phenomenon requires accurate capturing of the cou-

pling effects between the transport and deformation mechanisms. Oskay and Haney [3]

proposed a coupled transport-deformation formulation to simulate the oxygen-induced em-

brittlement of titanium structures. This formulation does not account for the advection-

reaction terms that become significant at high stress gradient zones. The seminal work of

Sofronis and McMeeking [16] provided the first finite element model for the coupled hydro-

gen transport - deformation response that can describe the hydrogen transport into a metal

substrate around crack tips. This model has been extended to properly account for trans-

port between trap and lattice sites by Krom et al. [17]. Ndong-Mefane et al. [25] addressed

the potential instability problems in advection-dominated transport around crack and notch

tips by employing a stabilized finite element approach. The advection coefficient, which

depend on the pressure gradient, is typically approximated a-posteriori through discrete

differentiation of the pressure estimates at the integration points in a displacement-based

finite element solution of the deformation problem. This leads to significant approximation

errors at regions of high stress gradients such as notch and crack tips.

In this chapter, a three-field computational model was proposed for the evaluation of

coupled transport-deformation problems. The displacement, pressure and concentration

fields are evaluated as independent unknowns. The key novel contribution of the present

chapter is the demonstration that the mixed finite element method, in which the pressure is

treated as an independent unknown in addition to the displacement degrees of freedom, can

be employed to accurately compute the pressure gradient in the deformation problem. The

pressure gradient information, in turn, is employed to accurately calculate the instantaneous

coefficients of the advection-reaction terms of the mass transport problem. In addition,

the computational model has the following properties: (a) the mass transport problem is

stabilized to accurately describe the advection-dominated transport in the presence of high
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stress gradients (e.g., crack and notch tips); (b) the deformation problem is evaluated using

a tight-coupled two-field (displacement-pressure) formulation, whereas the transport and

deformation processes are evaluated based on a staggered approach to efficiently address

problems where the time scales associated with the transport and deformation processes

are disparate.

The remainder of the chapter is organized as follows: Section 2.2 provides the mass

transport model with diffusion-advection-reaction terms coupled to a viscoplasticity model.

In Section 2.3, the finite element model of the coupled physics problems based on the three-

field (displacement-pressure-concentration) modeling is described, including the stabiliza-

tion of the mass transport problem for advection-dominated problems. The details of the

implementation of the proposed approach is included. Numerical verification studies to as-

sess the performance of the model in the context of the oxygen ingress problem in titanium

alloys are discussed in Section 2.4.

2.2 Problem Statement

Consider the domain of an arbitrary solid body, Ω ⊂ Rnsd , subjected to an aggressive

agent along a part of the domain boundary, Γ = ∂Ω, as illustrated in Fig. 2.1 (nsd: number

of space dimensions). When subjected to elevated boundary concentration, fluxes applied

on the domain boundary or stress gradient fields, the aggressive agent tends to diffuse into

the body. Concurrently, the solid body is subjected to time varying mechanical loading.

In this section, the governing equations of the aggressive agent transport and deformation

processes are provided, and the coupling mechanisms between the two physical processes

are described.

2.2.1 Transport Model

I adopt Oriani’s equilibrium theory to describe the diffusion of the aggressive agent into

the stressed solid [26]. According to this theory, the driving force for diffusion is due to the
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Figure 2.1: Coupled transport-deformation processes defined on the problem domain, Ω.

chemical potential of the aggressive agent:

qi (x, t) =−
D(T (x, t))
RT (x, t)

c(x, t)µ,i (x, t) (2.1)

in which, qi denotes the components of the mass flux; D the diffusivity of the aggressive

agent within the solid; T the temperature; R the universal gas constant; µ the chemical

potential; and c the concentration of aggressive agent, given as weight ratio of the diffus-

ing agent and the solid substrate within an infinitesimal control volume. I adopt the index

notation in the problem formulation (i.e., i = 1, ...,nsd). Repeated indices of the spatial di-

mensions indicate summation unless otherwise stated. A subscript followed by a comma

indicates partial derivative ( i.e., f,i = ∂ f/∂xi). x and t parameterize the spatial and tempo-

ral dimensions, respectively. Bold symbol indicates vector notation (i.e., x = [x1,x2,x3] for

nsd = 3). The chemical potential is a function of the concentration and the state of stress:

µ (x, t) = µ0 +RT ln(c)−V̄c p(x, t) (2.2)

where, µ0 denotes the chemical potential at the stress free state and at equilibrium concen-

tration; p = −σii/3 denotes the pressure; V̄c the partial molar volume of the ingressed gas

in the substrate solid; and σi the components of the stress tensor. Using Eqs. 2.1 and 2.2,
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the transport equation of the stressed solid is given as:

ċ− (Dc,i),i−
(

DcV̄c

RT
p,i

)
,i
= 0 (2.3)

with superscribed dot indicates differentiation with respect to time. The initial and bound-

ary conditions for the transport problem are expressed as:

c(x, t = 0) = c∞ (x) ; x ∈Ω (2.4)

c(x, t) = c0 (x, t) ; x ∈ Γ
c
D (2.5)

qini (x, t) = 0; x ∈ Γ
c
N (2.6)

in which, c∞ is the concentration of the aggressive agent at the natural state of the solid; c0

the boundary concentration prescribed along Γc
D ⊂ Γ; Γc

D∩Γc
N = /0 and Γc

D∪Γc
N = Γ; and,

ni the components of the unit normal vector. Only homogeneous type Neumann boundary

condition is considered for simplicity of the ensuing formulation, but the formulation can

be extended to arbitrary Neumann or Robin conditions.

The transport process is coupled to the mechanical deformation through two mecha-

nisms. The first is the stress dependent chemical potential of the aggressive agent, which

leads to the third term in the transport equation (Eq. 2.3). The second is by linking

the diffusivity to the state of damage within the solid. The effect of microcracking and

damage on diffusivity has been recognized in geological materials, concrete and metals

(e.g., [27, 28, 29]). The diffusivity is assumed to be enhanced as a function of the defect

density (e.g. microcrack) as proposed by Krajcinovic [29]. The effect of evolving defect

density on diffusivity is modeled based on the percolation theory [3] as:

D(ω,T ) = D0 (1+D (ω))exp
(
− Q

RT

)
(2.7)

where, D0 is the pre-exponential constant; Q is the activation energy; and, D (ω) the effect
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of mechanical damage on diffusivity:

D (ω) =


aω; ω < ωc

aω− (ω−ωc)
2

ω−ωec
; ωc 6 ω < ωec

∞; ω > ωec

(2.8)

in which, ω ∈ [0,1) denotes the state of damage at a material point, with ω=0 indicating

undamaged state of the material, and, ω=1 corresponds to loss of load carrying capacity at

the material point. ω evolves as a function of mechanical loading as described below. ωc

and ωec denote the conduction and elastic percolation thresholds respectively; and, a is a

material parameter.

In the absence of loading induced defect formation, Eq. 2.7 reduces to the classical Ar-

rhenius form, where the diffusivity varies as a function of temperature only. At low levels

of damage (ω < ωc), the diffusivity is linearly proportional to the damage variable [28].

When damage exceeds the elastic percolation threshold, a continuous path forms across the

material point, permitting free flow of the aggressive agent. At intermediate values of the

damage state, the rate of change of diffusivity progressively increases as a function of dam-

age. The idea of using percolation thresholds to relate microcrack networks to transport

properties in metals have been previously proposed [30]. In contrast, detailed experimen-

tal investigations of damage dependent change in diffusivity in metals has been relatively

scarce. Additional experimental investigations would shed further light on the effect of this

coupling mechanism.

When the body is subjected to a uniform stress field, the transport process (Eq. 2.3)

reduces to the Fick’s law of diffusion, and the state of mechanical deformation affects the

diffusion of the aggressive agent through the damage dependent diffusivity only. In the

presence of stress gradients induced by crack tips, notches and thermal gradients, pressure

significantly affects transport.
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2.2.2 Deformation Model

The governing equilibrium equations describing the mechanical response are:

σi j, j (x, t)+bi (x, t) = 0 (2.9)

where, bi is the body force per unit volume. The constitutive response of the body is

modeled in the rate form based on the assumption of additive split of the strain field:

σ̇i j = Li jkl ε̇
e
kl (x, t) = Li jkl (ε̇kl (x, t)− µ̇kl (x, t)) (2.10)

in which, εi j, εe
i j and µi j denote the components of total, elastic and inelastic strain tensors,

respectively. Assuming small strain kinematics:

εi j =
1
2
(
ui, j (x, t)+u j,i (x, t)

)
(2.11)

where, ui denote the components of the displacement field. Li jkl is the fourth order tensor

of elastic moduli taken to be symmetric and strongly elliptic:

Li jkl = Lkli j = L jikl = Li jlk (2.12)

ζi jLi jklζkl ≥ ηζi jζi j; ∀ζi j = ζ ji; η > 0 (2.13)

The inelastic strains, µi j, is due to the viscoplastic deformation, as well as the lattice

strains induced by elevated temperature and aggressive agent content within the lattice:

µi j = ε
vp
i j + ε

T
i j + ε

c
i j (2.14)

where, ε
vp
i j , εT

i j and εc
i j are the viscoplastic, thermal and concentration strains, respectively.
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Thermal and concentration strains are taken to be volumetric:

ε
T
i j = α (T −T0)δi j (2.15)

ε
c
i j = ϑ (c− c∞)δi j (2.16)

where, δ is second order identity tensor; T0 is the reference (i.e., room) temperature; α

the thermal expansion coefficient; and, ϑ the concentration induced volumetric expan-

sion coefficient. The viscoplastic strain is taken to remain in the deviatoric strain space(
i.e.,εvp

ii = 0
)
.

Splitting the stress tensor into hydrostatic and deviatoric components and considering

the constitutive equations yield:

ṗ =−1
3

σ̇ii =−
1
3

Liikl (ε̇kl− µ̇kl) (2.17)

ṡi j = σ̇i j + pδi j = L′i jkl (ε̇kl− µ̇kl) (2.18)

where,

L′i jkl = Li jkl−
1
3

Lnnklδi j (2.19)

Remark: In this chapter, the focus is on the response of an isotropic solid. The tensor of

elastic moduli then takes the form:

Li jkl = kδi jδkl +2G
(

δikδ jl−
1
3

δi jδkl

)
(2.20)

where, k and G are bulk and shear moduli, respectively. The pressure is expressed as:

p =−kui,i +3k [α (T −T0)+ϑ (c− c∞)] (2.21)

Equation (2.21) is provided in the total form, since the pressure is independent of viscous
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and history-dependent effects. The deviatoric part of the elastic moduli is expressed as:

L
′
i jkl = 2G

(
δikδ jl−

1
3

δi jδkl

)
(2.22)

Applying the stress decomposition to the governing equation yields:

si j, j (x, t)− p,i (x, t)+bi (x, t) = 0 (2.23)

The following boundary conditions are prescribed to evaluate the mechanical problem:

ui (x, t) = ūi (x, t) x ∈ Γ
u
D (2.24)

σi jn j = t̄i (x, t) x ∈ Γ
u
N (2.25)

where, ūi is the prescribed displacement along the Dirichlet boundary Γu
D, t̄i is the pre-

scribed traction along the Neumann boundary Γu
N , such that Γu

D∩Γu
N = /0 and Γu

D∪Γu
N = Γ.

The evolution of the viscoplastic strain is modeled by a generalization of the Johnson-

Cook plasticity model. The viscoplastic model employed in this study accounts for the

effects of embrittlement and hardening as a function of the aggressive agent concentration

[3]. The flow of the viscoplastic strain is expressed in terms of a power law:

ε̇
vp
i j = γ

〈
f

σY

〉q
∂ f

∂σi j
(2.26)

where, γ and q denote fluidity and viscoplastic hardening parameters, respectively; 〈·〉

denotes Macaulay brackets (i.e., 〈·〉 = ((·)+ | · |)/2); σY the flow stress; and, f (σ,σY ) the

yield function. The Von-Mises yield function is adopted in this study:

f
(
σi j,σY

)
=
√

3s̄−σY (2.27)
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where, s̄ is the second invariant of the deviatoric stress, s. The generalized Johnson-Cook

flow stress provides a functional relationship between yielding and the strain, temperature

and concentration:

σY = [A+B(ε̄ν p)
n
+F (c− c∞)][1− (T ?)m] (2.28)

in which A, B, F , m and n are material parameters. The effective viscoplastic strain ε̄ν p

and the non-dimensional temperature T ? are defined as:

ε̄
ν p =

√
2
3

ε
vp
i j : ε

vp
i j (2.29)

T ? =
T −T0

Tmelt−T0
(2.30)

where, Tmelt denotes melting temperature of the solid.

The damage progression within the material is modeled as a function of temperature

and concentration. Let the damage parameter, ω , be the ratio between the equivalent strain,

ε̄vp and the failure strain, ε f :

ω =
ε̄ν p

ε f
(2.31)

where, the failure strain is described as:

ε f = D1 (c)(1+D5T ?) (2.32)

in which, D5 parameterizes the effect of temperature on the failure strain. D1 varies as

a function of concentration and idealize the progressive embrittlement due to aggressive
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agent ingress:

D1 (c) =


D∞

1 if c 6 c∞

1
c∞− ccrit

((
D∞

1 −Dα
1
)

c+Dα
1 c∞−D∞

1 ccrit
)

if c∞ < c < ccrit

Dα
1 if c > ccrit

(2.33)

D∞
1 denotes the failure strain at room temperature in the absence of elevated concentration;

Dα
1 denotes failure strain beyond a critical concentration, ccrit; and the embrittlement is

assumed to be linear at intermediate concentration values. The effect of aggressive agent

ingress on the mechanical response is modeled based on the concentration dependent terms

in Eq. 2.28 and Eq. 2.33. In Eq. 2.28, the flow stress is affected by the concentration.

Elevated concentration tends to harden the material. In addition to hardening, the elevated

concentration embrittles the response by reducing the failure strain in Eq. 2.32.

2.3 Finite Element Formulation

In this section, I provide the finite element formulation of the coupled transport and

deformation problems. The formulation of the transport process includes the stabilization

for the advection dominated flow, whereas the formulation of the deformation is conducted

using a mixed (pressure-deformation) approach.

2.3.1 Weak forms

The governing equation of the aggressive agent transport is viewed as an advection-

reaction-diffusion problem of the form:

ċ− (Dc,i),i +αic,i +βc = 0 (2.34)
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in which, αi and β are coefficients of advection and reaction, respectively:

αi =−
DV̄c

RT
p,i (2.35)

β =

(
DV̄cT,i
RT 2 −

D,iV̄c

RT

)
p,i−

DV̄c

RT
p,ii (2.36)

It is well known that the numerical evaluation of the advection-reaction-diffusion prob-

lem using standard low-order finite elements leads to poor approximation and instability

when the flow is dominated by advection or reaction. Considerable literature exists on

stabilization approaches for this problem, as explained in [31] and references therein. In

this study, I employ the Stabilized Finite Element Method (SFEM) proposed by Franca et

al. [32] to eliminate potential instabilities. The transport response may be dominated by the

advection term around notches and crack tips where high stress gradients are present. In

contrast, the amplitude of the pressure Laplacian around the notch tips is typically smaller

in magnitude. When the temperature and concentration gradients can be taken to be small

(e.g., isothermal conditions and mild variation of diffusivity with respect to concentration),

the reaction component is not dominant and stabilization is applied to the advection term

only.

Let ν ∈ H1
0 (Ω) be a test function; H1(Ω) the Sobolev space of functions with square

integrable values and derivatives defined on Ω; and, H1
0 (Ω) the subspace of functions in

H1(Ω) that are homogeneous along the domain boundary, Γc
D. The weak form of the

transport problem is expressed as:

∫
Ω

ν ċdΩ+
∫

Ω

ν,iDc,idΩ+
∫

Ω

ναic,idΩ+
∫

Ω

νβcdΩ = 0; ∀ν ∈ H1
0 (Ω) (2.37)

in which, the solution is sought within the solution space: c ∈W

W :=
{

ĉ ∈ H1(Ω) | ĉ = c0 on x ∈ Γ
c
D
}

(2.38)
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with sufficient continuity and smoothness assumed for the functions. Restricting the search

for the solution within a finite dimensional subspace based on the Bubnov-Galerkin method,

the stabilized finite element formulation is expressed as:

∫
Ω

ν
hċhdΩ+

∫
Ω

ν
h
,iDch

,idΩ+
∫

Ω

ν
h
αich

,idΩ+
∫

Ω

ν
h
βchdΩ

−
nel

∑
e=1

[∫
Ωe

{
ċh−

(
Dch

,i

)
,i
+αich

,i

}
τe

{
−
(

Dν
h
,i

)
,i
+αiν

h
,i

}
dΩ

]
= 0 (2.39)

in which, νh ∈ V h ⊂ H1
0 (Ω) and ch ∈ W h ⊂ W are the test and trial functions belonging

to the pertinent finite dimensional subspaces, Ωe is the domain of the element, e, in a finite

element discretization of the problem domain; nel the total number of elements, and τe is a

stability parameter which varies from element to element. At each element, τe is computed

based on the following equations:

τe =
h2

e
2D
me

[1+ξ (Pe (x))]
(2.40)

Pe (x) =
me||α||phe

D
(2.41)

ξ (x) =


1; 0≤ x < 1

x; 1≤ x
(2.42)

where, me=1/3 and me=1/24 for linear and quadratic elements, respectively; he is the

average nodal distance in element, e; and Pe the Peclet number. Substituting the coefficient

of reaction and advection (Eqs. 2.35 and 2.36) into Eq. 2.39 yields:

∫
Ω

ν
hċhdΩ+

∫
Ω

ν
h
,iDch

,idΩ−
∫

Ω

ν
h

[
DV̄c

RT
p,ii +

(
DV̄c

RT

)
,i

p,i

]
chdΩ−

∫
Ω

ν
h DV̄c

RT
p,ich

,idΩ

−
nel

∑
e=1

∫
Ωe

{
ċh−

(
Dch

,i

)
,i
− DV̄c

RT
p,ich

,i

}
τe

{
−
(

Dν
h
,i

)
,i
− DV̄c

RT
p,iνh

,i

}
dΩ = 0 (2.43)

In the current study, I employ first order (i.e., bilinear for 2-D and trilinear for 3-D)
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finite elements to discretize the concentration field. The second derivative terms of the

concentration field and the test functions in Eq. 2.43, therefore, vanish. I further assume

that the intra-element variation in the coefficients remains small. The pressure field is eval-

uated as a solution to the deformation problem as defined below and itself is approximated

using low-order finite elements. However, assuming vanishing of the term that involve

the second derivatives of pressure leads to the partial loss of the reaction component, and

the resulting formulation cannot adequately predict self-equilibration of concentrations in-

duced by the pressure gradients. To alleviate this problem, I apply the divergence theorem

to the pressure-dependent terms in Eq. 2.43:

∫
Ω

ν
h

[
DV̄c

RT
p,ii +

(
DV̄c

RT

)
,i

p,i

]
chdΩ+

∫
Ω

ν
h DV̄c

RT
p,ich

,idΩ

=
∫

Γc
N

ν
h DV̄c

RT
p,ichnidΓ−

∫
Ω

ν
h
,i

DV̄c

RT
p,ichdΩ (2.44)

Substituting Eq. 2.44 to Eq. 2.43, the following weak form is obtained for the transport

problem:

∫
Ω

ν
hċhdΩ+

∫
Ω

ν
h
,iDch

,idΩ+
∫

Ω

ν
h
,i

DV̄c

RT
p,ichdΩ−

∫
Γc

N

ν
h DV̄c

RT
p,ichnidΓ

+
nel

∑
e=1

[∫
Ωe

ν
h
,i

(
ċh−D, jch

, j−
DV̄c

RT
p, jch

, j

)
τe

(
D,i +

DV̄c

RT
p,i

)
dΩ

]
= 0 (2.45)

The components of Eq. 2.43 that contains the concentration Laplacian is not included above

since for low order finite elements, the concentration Laplacian vanishes. The evaluation

of the transport problem clearly requires the computation of the pressure gradient fields. To

provide consistent and accurate pressure distribution, the deformation problem is evaluated

using a mixed formulation, where the cardinal unknowns are the displacements and the

pressure. In this chapter, the formulation for the mixed finite element approach is presented

for an isotropic solid.

Let vi and q be the test functions for displacement and pressure in the appropriate
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Sobolev spaces and with sufficient smoothness, and vh
i and qh belong to the correspond-

ing finite dimensional subspaces of the test functions vi and q, respectively. Starting from

Eqs. 2.23 and 2.21, the weak form of the governing equations of equilibrium are: Find

uh ∈H h ⊂H and ph ∈Ph ⊂ H0(Ω) such that for all νh and qh:

∫
Ω

ν
h
i, jsi jdΩ−

∫
Ω

ν
h
i,i pdΩ−

∫
Γu

N

ν
h
i t̄idΓ−

∫
Ω

ν
h
i bidΩ = 0 (2.46)

∫
Ω

1
k

qh phdΩ+
∫

Ω

qhuh
i,idΩ−

∫
Ω

3qh[α (T −T0)+ϑ (c− c∞)]dΩ = 0 (2.47)

in which,

H :=
{

û ∈ [H1(Ω)]nsd | û = ū on x ∈ Γ
u
D
}

(2.48)

and, H0(Ω) is the space of functions with square integrable values defined on Ω.

2.3.2 Discretization

Consider a Galerkin discretization of the concentration, displacement and pressure

fields:

ch (x, t) =
nc

∑
a=1

Nc
a (x) ĉa (t) (2.49)

uh
i (x, t) =

nu

∑
a=1

Nu
a (x) ûai (t) (2.50)

ph (x, t) =
np

∑
a=1

N p
a (x) p̂a (t) (2.51)

where Nc
a , Nu

a and N p
a are the basis functions of the concentration, displacement and pres-

sure fields, respectively; ˆ(·) denotes the nodal coefficients of the corresponding field; and,

the discretization of the test functions follow the Galerkin method. Substituting the concen-

tration discretization (Eq. 2.49) into the weak form of the transport equation (i.e., Eq. 2.45),
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yields:

Fb =
nc

∑
a=1

[∫
Ω

Nc
bNc

adΩ ˙̂ca +
∫

Ω

Nc
b,iDNc

a,idΩĉa +
∫

Ω

Nc
b,i

DV̄c

RT
Nc

a p,idΩĉa−∫
Γc

N

Nc
b

DV̄c

RT
Nc

a p,inidΓĉa +
nel

∑
e=1

∫
Ωe

Nc
b,i

(
Nc

a
˙̂ca (t)−D, jNc

a, jĉa−
DV̄c

RT
p, jNc

a, jĉa

)
×

×τe

(
D,i +

DV̄c

RT
p,i

)
dΩ

]
= 0; b = 1, ...,nc (2.52)

in which, the pressure gradient term is approximated by the discretization of the pressure

field:

p,i =
np

∑
a=1

N p
a,i (x) p̂a (t) (2.53)

Substituting Eqs. 2.49 and 2.50 into Eqs. 2.46 and 2.47 respectively, the equilibrium

equations yield:

Ψbi :=
∫

Ω

Nu
b, jsi jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩp̂c−

∫
Γu

N

Nu
b t̄idΓ

−
∫

Ω

Nu
b bidΩ = 0; b = 1, ...,nu and i = 1, ..,nsd (2.54)

Θc :=
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩp̂a +
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩûbi

−
∫

Ω

3N p
c [α (T −T0)+ϑ (c− c∞)]dΩ = 0; c = 1, ...,np (2.55)

where, the concentration field is computed using Eq. 2.49. Combining Eqs. 2.18 and 2.50

yields:

Ri j := ṡi j−L′i jkl

(
nu

∑
a=1

Nu
a,l

˙̂uak

)
+2Gε̇

vp
i j = 0 (2.56)
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2.3.3 Numerical implementation

Equations 2.52, 2.54-2.56 constitute a coupled system of nonlinear equations, which

are evaluated using the commercial computer program, Diffpack. Diffpack is an object ori-

ented development framework with a library of C++ classes for solution of partial differ-

ential equations [33]. It is possible to solve this system of equations such that the unknown

coefficients of concentration, displacement and pressure are evaluated simultaneously, or

based on the staggered solution approach, in which the evolution of transport and deforma-

tion problems are evaluated separately but in a staggered manner. In this study, I consider

the physical problems, where the characteristic time scales associated with the transport

and mechanical processes are disparate. Typically, the ingress of the aggressive agent is a

long-time phenomenon, whereas the mechanical loading is applied in a shorter time scale.

Conversely, it is also of interest to investigate the transport response under constant ampli-

tude loading, where the transport is regarded as the fast time scale phenomena. The stag-

gered solution strategy (of isothermal type) is appropriate for such problems that involve

disparate time scales, and is adopted in this study. The solution strategy is schematically

illustrated in Fig. 2.2. A manager class controls the execution of the algorithm. At each

time step, the mechanical and transport solver classes are invoked to solve the problems in

turn until convergence is achieved between the solutions of both problems. The thermal

state of the system is provided as an input to both transport and mechanical solvers. In the

evaluation of the transport problem, the pressure and the pressure gradients are treated as

known fields. The pressure and pressure gradients are computed in the deformation prob-

lem as described below. It is well known that the staggered solution algorithm is linearly

convergent and unstable for systems with comparable characteristic times. In this study, the

investigations are limited to temporally disparate problems only and no instabilities were

observed. The transport problem is linear and the numerical implementation is standard. In

the remainder of this section, the nonlinear solution procedure for the deformation problem

is provided.
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Thermal state

  

Loop until
convergence 

Figure 2.2: The solution strategy for coupled transport and deformation problems.

2.3.3.1 Deformation model

The deformation response is evaluated by simultaneously solving Eqs. 2.54-2.56. I

start by discretizing the evolution equation of the deviatoric stress, which is an ordinary

differential equation, using the θ -method:

Ri j = ∆si j−L′i jkl

(
nu

∑
a=1

Nu
a,l∆ûak

)
+2Gt+∆t ε̇

vp
i j θ∆t +2Gt ε̇

vp
i j (1−θ)∆t = 0 (2.57)

where ∆(·)=t+∆t(·)-t(·), and θ ∈ [0,1) is an algorithmic parameter. θ=0, 0.5 and 1 cor-

respond to forward Euler, midpoint and backward Euler algorithms, respectively. By em-

ploying the first order Taylor series expansion of Eqs. 2.54, 2.55 and 2.57 and using the

Newton-Raphson method yields:

k+1
Ψbi ≈ k

Ψbi +
k(

∂Ψbi

∂ skl

)
k+1

δ skl +
np

∑
c=1

k(
∂Ψbi

∂ p̂c

)
k+1

δ p̂c

= k
Ψbi +

∫
Ω

Nu
b, j

k+1
δ si jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c = 0

(2.58)
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k+1
Θc ≈ k

Θc +
nu

∑
b=1

k(
∂Θc

∂ ûbk

)
k+1

δ ûbk +
np

∑
a=1

k(
∂Θc

∂ p̂a

)
k+1

δ p̂a

= k
Θc +

nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi +
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a = 0

(2.59)

and,

k+1Ri j ≈ kRi j +
k(

∂Ri j

∂ skl

)
k+1

δ skl +
nu

∑
a=1

k(
∂Ri j

∂ ûak

)
k+1

δ ûak

= kRi j−L
′
i jkl

nu

∑
a=1

Nu
a,l

k+1
δ ûak +

(
Ii jkl +2Gθ∆t kCi jkl

)
k+1

δ skl = 0

(2.60)

in which,

kCi jkl =

k(
∂ ε̇

vp
i j

∂ skl

)
(2.61)

The increment of deviatoric stress, k+1
δ si j is evaluated using Eq. 2.60 as:

k+1
δ si j =

kQi jkl

(
L
′
klmn

nu

∑
a=1

Nu
a,n

k+1
δ ûam− kRkl

)
(2.62)

where, the modulus kQi jkl is defined as:

kQi jkl =
(

Ii jkl +2Gθ∆t kCi jkl

)−1
(2.63)

Substituting Eq. 2.62 into Eqs. 2.58 and 2.59 yields:

∫
Ω

kQi jklNu
b, jL

′
klmn

nu

∑
a=1

Nu
a,ndΩ

k+1
δ ûam−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c

=
∫

Ω

kQi jklNu
b, j

kRkldΩ− k
Ψbi (2.64)

−
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi−
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a =
k
Θc (2.65)
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When expressed in the matrix form, Eqs. 2.64 and 2.65 yield:

 kKuu Kup

(Kup)T Kpp




k+1
δ û

k+1
δ p̂

=


kfu

kfp

 (2.66)

in which,

kKuu
αβ

=
∫

Ω

Nu
b, j

kQi jklL
′
klmnNu

a,ndΩ; α = b+(i−1)nu; β = a+(m−1)nu(2.67)

Kup
αc = −

∫
Ω

Nu
b,iN

p
c dΩ; α = a+(i−1)nu; 1≤ c≤ np (2.68)

K pp
ab = −

∫
Ω

1
k

N p
a N p

b dΩ; 1≤ a,b≤ np (2.69)

The force vectors are expressed as

kfu = {k f u
1 , ...,

k f u
nsd×nu

}T (2.70)

kfp = {k f p
1 , ...,

k f p
np
}T (2.71)

and the components of the force vector are given as:

k f u
α =

∫
Ω

kQi jklNu
b, j

kRkldΩ−k
Ψbi; α = b+(i−1)nu (2.72)

k f p
a = k

Θa; 1≤ a≤ np (2.73)

Based on the definitions above, I employ the following algorithm to compute the pressure

and displacement fields:

At t = 0, the initial condition of the viscoplastic strain rate is taken as zero, leading to a

linear system of the form:

 0Kuu Kup

(Kup)T Kpp


 0û

0p̂

=

 0fu

0fp

 (2.74)
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where,

0Kuu
αβ

=
∫

Ω

Nu
b, jL

′
i jmnNu

a,ndΩ (2.75)

0 f u
α =

∫
Γu

N

Nu
b t̄idΓ+

∫
Ω

Nu
b bidΩ (2.76)

0 f p
a =−

∫
Ω

3N p
a [α (T −T0)+ϑ (c− c∞)]dΩ (2.77)

The linear system (Eq. 2.74) is evaluated for the initial state of deformation and pressure

coefficients.

At arbitrary time t +∆t; Given: t û, t p̂, tsi j and t ε̇
vp
i j ; Find: t+∆t û, t+∆t p̂.

1. Initiate the algorithm: k = 0.

2. Set the initial guesses of the pressure and deformation coefficients at the current

increment:

0û = t û; 0p̂ = t p̂; 0si j = tsi j; 0
ε̇

vp
i j = t ε̇

vp
i j (2.78)

3. Loop until convergence:

(a) Compute the moduli: kCi jkl , kQi jkl using Eqs. 2.61 and 2.63, respectively.

(b) Calculate k
Ψbi, kRi j, k

Θb using Eqs. 2.54, 2.57 and 2.55, respectively.

(c) Update the pressure and displacement increments, k+1
δ û and k+1

δ p̂, using

Eq. 2.66.

(d) Compute deviatoric stress increment k+1
δ si j using Eq. 2.62.

(e) Update displacement, pressure and stress:

k+1û = k+1
δ û+ kû (2.79)

k+1p̂ = k+1
δ p̂+ kp̂ (2.80)

k+1si j =
k+1

δ si j +
ksi j (2.81)
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Table 2.1: Material parameters for viscoplastic deformation of Ti-6Al-2Sn-4Zr-2Mo-
0.1Si.

ν E0 [GPa] γ [MPa/s] q α [1/◦C] ϑ [1/%c]
0.32 120.8 25.0 1.0 7.7e-6 1.1e-3
A [MPa] B [MPa] F [MPa/%c] n m ccrit [%]
895.0 125.0 140.0 0.2 0.85 4.5
Tmelt [

◦C] ε̇0 [1/s] D∞
1 Dα

1 D5
1700.0 1.0 0.1676 5.0e-3 3.0

(f) Update k+1
ε̇

vp
i j and k+1ε

vp
i j by simultaneously evaluating:

k+1
ε

vp
i j = tε

vp
i j +θ∆t k+1

ε̇
vp
i j +(1−θ)∆t t ε̇

vp
i j (2.82)

k+1
ε̇

vp
i j = γ

〈 k+1 f
k+1σY

〉q k+1(
∂ f

∂σi j

)
(2.83)

(g) k = k+1

2.4 Numerical Verification

In this section, the performance of the proposed three-field model is verified using nu-

merical simulations. The effect of element type on the accuracy and stability characteristics

of the transport and deformation problems based on numerical simulations is investigated.

I am concerned with the response of a near alpha titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-

0.1Si (Ti-6242S), which displays good mechanical properties at high temperatures. When

exposed to high temperatures for an extended period of time, this alloy is known to exhibit

significant embrittlement [24] caused by ingress of oxygen. The material properties that

characterize the mechanical response at a wide range of temperatures and oxygen exposure

are summarized in Table 2.1. Figure 2.3 illustrates the geometry and discretization of the

numerical specimen. The specimen dimensions are 0.8mm x 0.4mm with a 0.4mm deep

notch at the middle. The notch radius is 20µm. Due to symmetry, only a quarter of the

specimen is discretized (with 1846 quadrilateral elements or 3298 triangular elements). The
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Figure 2.3: Geometry, boundary conditions and the finite element mesh of the notched
specimen.

notched specimen is employed to generate a stress gradient, which captures the effects of

advection and reaction terms in the transport model. Plane strain conditions are assumed.

The specimen is discretized using four types of elements, named as u4p4, u4p1, u6p3

and u9p4. The types of elements and the associated nodal positions are shown in Fig. 2.4.

u4p4 consists of four-noded Lagrangian quadrilateral elements for both displacement and

pressure degrees of freedom. In u4p1, the pressure is discretized using a single node posi-

tioned at the centroid of the finite element, whereas the displacement is discretized using

four-node quadrilateral elements. Two types of Taylor-Hood elements were employed.

u6p3 consists of a triangular, quadratic, six-node element for displacement degrees of free-

dom, and a three-node, linear element for pressure degrees of freedom. u9p4 consists of

a quadrilateral, bi-quadratic, nine-node Lagrangian element for displacement degrees of

freedom, whereas a four-node bi-linear element is employed for pressure degrees of free-

dom. In u4p4, u6p3 and u9p4 elements, the pressure field exhibits inter-element continuity,

allowing a straightforward computation of the pressure gradients (i.e., using Eq. 2.53). In

all four element types, the displacement discretization is isoparametric, whereas pressure

field is non-isoparametric. The performance of the four mixed elements are compared to

the reference model (denoted as u4), which is the standard displacement-based finite el-
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(a) (d)(c)(b)

Figure 2.4: The nodal positions in the mixed finite elements: (a) u4p4; (b) u4p1; (c) u9p4
and (d) u6p3.

ement with four-noded bi-linear shape functions. In u4, the pressure is evaluated at the

integration points.

In the case of u4p1 element, the pressure is constant within a finite element, and

Eq. 2.53 cannot be used to directly compute the pressure gradients. The computation of

the pressure gradient for u4p1 is based on the pressure smoothing procedure of the least

squares type [34]. In this procedure, a piecewise continuous smoothed pressure field is

computed. The smoothed pressure approximation is made as a function of four-noded bi-

linear Lagrangian quadrilateral shape functions. The pressure gradient is then computed

using Eq. 2.53 from the smoothed pressure field.

The specimen is subjected to displacement controlled tensile loading with maximum

amplitude of 6.4e−4 mm applied in 11.52 seconds at 650◦C and the mechanical response is

evaluated using the four mixed elements described above. Figures 2.5 and 2.6 display the

pressure as a function of distance from the notch tip plotted along lines 0◦ and 70◦ to the

horizontal, respectively. The pressure profiles at the loading magnitudes of 4.32e−4 mm

and 6.32e−4 mm are shown. At both loading amplitudes a zone of plastic deformation

forms around the notch tip as shown in Fig. 2.7. The peak pressure moves away from the

notch tip as the loading increases due to accumulation of damage and expansion of the

area of the plastic zone. All four models yield similar response at low loading amplitude,

but the results begin to deviate as the loading increases. u4p4 displays slight oscillation

around the peak pressure (Fig. 2.6), whereas u4p1, u6p3 and u9p4 elements yield response

free of oscillations. The pressure predictions of u4p1, u6p3 and u9p4 are stable everywhere

inside the problem domain and in reasonable agreement throughout the loading history. For
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Figure 2.5: Pressure distribution along the notch tip: θ = 0.

u4p4 element, the pressure oscillations are observed within part of the specimen domain

and it is severe along the 70◦ to the horizontal. Figure 2.8 shows the oscillating pressure

distribution around the notch tip at the loading magnitudes of 4.32e−4 mm and 6.32e−4 mm.

The oscillatory behavior of the u4p4 element is expected as this element does not satisfy

the Babuska-Brezzi stability criteria and therefore not guaranteed to be stable.

The convergence characteristics of the mixed formulation are investigated in a mesh

sensitivity study. The mesh sensitivity study was performed using the u6p3 elements. The

pressure variations around the notch tip at Θ = 0 orientation computed using three different

mesh densities are shown in Fig. 2.9. The results correspond to the applied magnitudes of

4.32e−4 mm (lower curves) and 6.32e−4 mm (upper curves). In the three discretizations

considered, the element edge lengths around the crack tip were set to h = 2 µm, 1µm

and 0.5µm, respectively. All three mesh densities produce very similar pressure profiles.

The pressure profiles computed using the h = 0.5 µm and 1µm edge lengths are nearly

identical, pointing to mesh convergence.

The key benefit of employing the mixed finite element approach in computing the cou-

pled aggressive agent ingress and deformation response is to accurately capture the pressure

gradients across the problem domain. The pressure gradient fields are in turn employed in
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Figure 2.6: Pressure distribution along the notch tip: θ = 70.

(a) (b)

Figure 2.7: The area of plastic deformation at applied displacement: (a) 4.32e−4mm ;
(b) 6.32e−4mm computed using the u9p4 model.

(a) (b)

Figure 2.8: The pressure field at applied displacement: (a) 4.32e−4mm ; (b) 6.32e−4mm
computed using the u4p4 model.
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Figure 2.9: The pressure distributions along the notch tip (θ = 0 direction) computed
using the u6p3 elements with element edge lengths of 2µm, 1µm and 0.5µm.

accurately capturing the transport response. This is in contrast to the displacement-based

finite element method, in which the stresses are computed point-wise at the integration

points and must be approximated to extract the pressure gradient fields. It is convenient

and accurate to use the mixed approach since the pressure is available as a continuous field.

Additionally, the mixed finite element method addresses the well-known numerical issues

related to incompressible materials and incompressible flow within the plastic deforma-

tion process. Figure 2.10 shows the pressure distributions as a function of distance from

the notch tip plotted along the direction 45◦ to the horizontal at loading magnitudes of

1.84e−4 mm, 4.32e−4 mm and 6.32e−4 mm, respectively. The pressure distributions com-

puted using the u9p4 and u4 models are compared. The pressure profile of the u4 model is

obtained by interpolating the point-wise pressure values at the integration and smoothing

the interpolated response. When the applied loading is low and the accumulated plastic

strains are small, the pressure distributions from the displacement-based and mixed formu-

lations are very similar. At higher loading amplitudes, significant discrepancy is observed

between the mixed and displacement-based formulations close to the notch tip. The mixed

formulation also results in a relatively smooth pressure field as a function of distance from
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Figure 2.10: Pressure distribution along the notch tip: θ = 45.

the notch tip compared to the displacement-based formulation, which displayed some os-

cillations. Away from the notch tip, where the pressure gradients are low, the pressure plots

from the mixed- and displacement-based formulations are very similar.

Next, the performance of the proposed stabilized transport model is investigated in

the context of a mechanical pressure dependent oxygen transport problem. The numerical

specimen is heated to a uniform temperature of 650◦C and kept at this constant temperature

level for the duration of 420 hours. The time step size employed in the simulations below

is set to 1 hour. The nonuniform pressure field computed in the example above is employed

in the simulations. The pressure field is taken to be time-invariant throughout the duration

of the simulation. While, stress relaxation would likely occur at such high temperatures,

the pressure field is set as constant (but spatially non-uniform) to assess the performance

of the transport model in the presence of significant pressure gradient fields. The transport

properties that control the oxygen ingress process into the titanium alloy are summarized

in Table 2.2. The diffusivity is taken to be independent of concentration magnitude. In the

transport simulations, no external boundary concentrations or boundary fluxes are imposed,

and the transport is taken to be due to pressure gradient induced internal advection only.

The pressure induced oxygen transport within the specimen is observed for the duration of
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Table 2.2: Material parameters for oxygen transport in Ti-6Al-2Sn-4Zr-2Mo-0.1Si.

D0 [mm2/sec] c∞ [%] Q [KJ/mole] ωc ωec a V̄O [cm3/mole]
5.39 0.15 184.0 0.1 0.7 3.56 3.5
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Figure 2.11: Concentration distribution along the notch tip: θ = 0.

high temperature exposure. The transport problem is discretized using four-node bi-linear

elements for concentration degrees of freedom. Figure 2.11 displays the oxygen concen-

tration profiles obtained by the transport model plotted as a function of distance from the

notch tip along the horizontal line (i.e., θ = 0). The two plots compare the concentration

profiles computed using the pressures from u4p1 and u4p9 deformation models. Elevated

pressures lead to increased advection flow of oxygen and higher oxygen concentrations.

The concentration profiles computed using the pressures from u4p1 and u9p4 models are

close to each other and computation of the pressure fields using both models provide rea-

sonable approximations.

In order to verify the stabilization scheme employed in the transport model, a paramet-

ric study is performed by varying the Peclet number of the transport equation. The Peclet

number (i.e., Eq. 2.41) controls the contribution of the advection component of the transport

with respect to the diffusion component. At high Peclet numbers, unstabilized transport

models exhibit instability and inaccuracy. For all simulations in the parametric study, the
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pressure profile computed using the u9p4 deformation model is employed. Figures 2.12-

2.14 compares the oxygen concentration fields generated using the stabilized and unstabi-

lized transport models. The normalized concentration fields are plotted along the horizontal

line (θ = 0) from the notch tip. Figures 2.12, 2.13 and 2.14 shows simulations conducted

using the value of the Peclet numbers of Pe = 1.52×10−4‖p,i‖he; 1.52×10−2‖p,i‖he and

6.08× 10−2‖p,i‖he; respectively, the former computed by the material parameters shown

in Table 2.2. The exact value of the Peclet number varies as a function of the pressure

gradient as well as the characteristic size of the element. The Peclet numbers are achieved

by varying the coefficient of advection, α. When the original Peclet number is employed,

the stabilized and the unstabilized simulations coincide, indicating that the transport is dif-

fusion dominated. For increased values of the Peclet numbers, the unstabilized model ex-

hibits significant errors. When the Peclet number is equal to 1.52×10−2‖p,i‖he, significant

deviations in the concentration values between the stabilized and unstabilized simulations

are observed. When the Peclet number is set to 6.08×10−2‖p,i‖he, severe oscillations are

generated by the unstabilized model with negative concentration values. In all cases consid-

ered, the stabilized model displays concentration distribution free of oscillations around the

notch tip. The present parametric study artificially varied the Peclet number to investigate

the stability of the proposed transport model and instability was only observed when the

Peclet number is set to a higher than the original value. There exists a significant variability

in the transport parameters measured even in a single alloy type [21], which contributes to

wide variations in the Peclet numbers. In addition, the presence of high thermal gradients

and cracks may also lead to high advection coefficients and high Peclet number transport.

2.5 Conclusion

This chapter provided a three-field computational model for coupled transport-deformation

problems. The proposed model is based on a tightly coupled two-field formulation for the

viscoplastic deformation response to provide accurate pressure and pressure gradient fields
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Figure 2.12: Normalized concentration distribution along the notch tip: θ = 0 computed
using the Pe = 1.52×10−4‖p,i‖he.
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Figure 2.13: Normalized concentration distribution along the notch tip: θ = 0 computed
using the Pe = 1.52×10−2‖p,i‖he.
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Figure 2.14: Normalized concentration distribution along the notch tip: θ = 0 computed
using the Pe = 6.08×10−2‖p,i‖he.

to a transport problem. It is demonstrated that modeling the transport processes at the

high stress gradient zones such as around notch tips requires accurately approximating the

pressure and pressure gradient fields. The proposed computational model conveniently and

accurately computes these fields based on the mixed finite element approach.

A number of challenges remain to be investigated in predictive modeling of transport-

deformation problems. One of the main challenges is because of the localized character of

the transport process. In some practical problems, the oxygen ingress is localized within

a very small boundary region of the structure with a thickness of the order of a few grain

diameters. Accurate characterization of localized deformation and failure within this zone

necessitates resolution of the grain scale deformation and transport processes within the

boundary region. Multiscale computational models that can accurately incorporate such

grain scale information into a structural scale problem remain an outstanding issue. Such

models are currently under investigation [35] and will be employed to address localized

coupled transport - inelastic deformation problems.
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Chapter 3

A VISCOELASTIC-VISCOPLASTIC MODEL OF TITANIUM STRUCTURES

SUBJECTED TO THERMO-CHEMO-MECHANICAL ENVIRONMENT

3.1 Introduction

Understanding and predicting the mechanical performance of metallic material and

structural systems operating in combined environments have been active research topics

for decades. Combined environment refers to the simultaneous presence of potentially ag-

gressive environmental agents, elevated temperatures and thermal loads, and a variety of

mechanical loads. In a combined high-temperature environment, aggressive environmental

elements tend to deteriorate the mechanical performance of the material. A case in point is

the effect of oxygen ingress into titanium alloys, which results in significant changes in the

material properties including embrittlement, increased hardness, and dramatic reduction in

fatigue life [23, 24].

Modeling and prediction of the oxygen ingress induced deterioration in structures made

of titanium and other alloys is of particular concern for aerospace structural components

employed in hypersonic air vehicles. The perceived operating thermo-mechanical condi-

tions for hypersonic structures are typically at the upper end of the capability spectra of

titanium alloys. In the presence of high temperatures, atmospheric oxygen tends to diffuse

into the alloy, leading to the deterioration of the material properties marked by a strong

coupling between oxygen transport and mechanical deformation. The presence of elevated

concentrations of oxygen at lattice interstitials and trap sites (e.g., dislocations) causes lat-

tice straining, and inhibits dislocation glide, leading to hardening and embrittlement (i.e.,

early onset of fracture initiation). Further increase of oxygen content leads to phase trans-

formation (e.g., from β to α) and formation of an oxide layer. The diffusion of oxygen
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is also affected by the deformation processes and damage state since the microcrack for-

mation within the brittle oxygen-rich layer as dislocations serve as preferential sites for

oxygen. The presence of surface microcracks and microvoids that typically (but not neces-

sarily) originate at the triple junctions and at grain boundaries also enhances diffusivity of

oxygen deeper towards the interior of the structure.

Extensive research exists on experimental and modeling based investigations of oxygen

ingress into titanium alloys (e.g., [12, 13, 14, 15]). A comprehensive review of earlier diffu-

sivity characterization of titanium and titanium alloys is provided by Liu and Welsch [21].

In contrast, investigations of the coupling mechanisms between oxygen transport, defor-

mation and damage have been relatively scarce. Peters et al. [18] experimentally inves-

tigated the effect of mechanical loading on the oxygen transport rates. Applied loading

beyond yielding showed nominal acceleration of oxygen ingress at elevated temperatures.

The authors pointed to the effect of very significant relaxation that dominates the response

under sustained deformations, which complicates the coupling between the transport and

mechanical processes. Parthasarathy et al. [19] proposed a fatigue life prediction method-

ology for oxygen exposed Titanium alloys subjected to uniaxial tension loads. Pilchak et

al. [20] provided experimental and fractographic investigation of the effect of high tem-

perature exposure of a near-α titanium alloy undergoing oxygen ingress. More recently

Refs. [3, 36] developed a computational transport-deformation model that accounts for the

coupling mechanisms between the two physical processes. This model does not adequately

account for the relaxation processes that significantly affect both the mechanical response

and the coupling mechanisms.

In this chapter, a new coupled deformation-transport model is proposed to study the

response of titanium alloys at combined environments. The proposed approach builds on

the model by Ref. [3] by extending it to account for creep and relaxation processes, which

are critical to the response characterization at high temperatures. The coupled-transport

model is implemented using a three field formulation, in which concentration, displacement
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and pressure are evaluated as independent unknowns [36]. The transport solver includes

pressure dependent advection and reaction terms, which are stabilized using the Galerkin

least-squares stabilization method [31]. The computational model was validated against

experiments conducted in combined environments. The two main novel contributions of

this chapter are: (1) The proposed model accurately captures the time-dependent creep/re-

laxation processes through the incorporation of viscoelastic-viscoplastic mechanisms. The

authors’ previous modeling work did not provide the necessary relaxation mechanisms at

elevated temperatures [3]; (2) A detailed investigation of the coupling mechanisms between

the oxygen ingress induced embrittlement, relaxation and the inelastic deformation is pro-

vided, including partial validation of the interaction mechanisms based on experimental

data.

The remainder of this chapter is organized as follows: Section 3.2 provides the formula-

tion of viscoelastic-viscoplastic model coupled with the oxygen transport model. The finite

element implementation of the viscoelastic-viscoplastic deformation model is described in

Section 3.3. Section 3.4 details the numerical investigation of a high-temperature titanium

alloy of interest, Ti-6242S, subjected to combined loading and high temperature environ-

ment. The calibration of the proposed model based on the independent set of experimental

data and a detailed analysis of the failure and relaxation characteristics of oxygen-exposed

specimens are included in this section. The conclusions and future research directions are

included in Section 3.5.

3.2 Problem Statement

The problem domain is described in Fig. 3.1, where the solid body, Ω ⊂ Rnsd is sub-

jected to an aggressive agent (oxygen) at the exterior surfaces of the problem domain (nsd:

number of space dimensions). The ingressed oxygen results in a more brittle and hardening

material compared to the substrate alloy, where surface cracks will initiate under mechan-

ical loading, as shown in Fig. 3.1. In this section the viscoelastic-viscoplastic deformation

42



Oxygen concentration

Oxygen enriched 

region

Substrate alloy

Figure 3.1: Structural component subjected to coupled transport-deformation processes.

model is formulated together with the transport model. The oxidation mechanism as well as

its effects on mechanical property degradation including the loss of ductility and hardening

are investigated.

3.2.1 Deformation Model

In this section, a viscoelastic-viscoplastic model is defined to describe deformation

behavior in the presence of aggressive agents that affect the mechanical response. The

model presented here extends the coupled transport-deformation model presented in [3] to

account for the relaxation/creep behavior, which is predominant in combined environment

response at elevated temperatures, which also activates aggressive agent transport within

the solid. In particular, the alloys of interest could demonstrate relaxation up to near stress-

free states at elevated temperatures (see Section 3.4). The purpose of the proposed model is

to accurately idealize the short-term (i.e., a few seconds) and the long-term (i.e., in the order

of hours) time dependent creep/relaxation behavior. From the rheological perspective, the

viscoelastic-viscoplastic model is a three-dimensional generalization of Wiechert springs

serially connected to a viscoplastic device as illustrated in Fig. 3.2.

The governing equilibrium equations describing the mechanical response is expressed

in the following form:

si j, j (x, t)− p,i (x, t)+bi (x, t) = 0 (3.1)
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Figure 3.2: One dimensional rheological representation of the viscoelastic-viscoplastic
model.

where, b the body force per unit volume; s is the deviatoric stress tensor; p = −tr(σ)/3

the pressure; σ the stress tensor (σ = s− pδ); δ the second order identity tensor; and tr(·)

denotes trace. I adopt the index notation in the problem formulation (i.e., i = 1, ...,nsd).

Repeated indices of the spatial dimensions indicate summation unless otherwise stated.

A subscript followed by a comma indicates partial derivative ( i.e., f,i = ∂ f/∂xi). x and

t parameterize the spatial and temporal dimensions, respectively. Bold symbol indicates

vector notation (i.e., x = [x1,x2,x3] for nsd = 3) and superscribed dot indicates differentia-

tion with respect to time. The following boundary conditions are prescribed to evaluate the

mechanical problem:

ui (x, t) = ūi (x, t) x ∈ Γ
u
D (3.2)

σi jn j = t̄i (x, t) x ∈ Γ
u
N (3.3)

where, u denotes the displacement vector field; ū is the prescribed displacement along the

Dirichlet boundary; Γu
D; t̄ the prescribed traction along the Neumann boundary, Γu

N , such

that Γu
D∩Γu

N = /0 and Γu
D∪Γu

N = Γ; and n the outer unit normal to the traction boundary.

Assuming small strain kinematics, the total strain tensor, ε, is:

εi j =
1
2
(
ui, j (x, t)+u j,i (x, t)

)
(3.4)
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The adoption of the small strain theory implies that large rotations and large plastic defor-

mations that may be present in some high temperature applications are not included in this

study. The total deformation in the viscoelastic-viscoplastic model is separated into four

components:

εi j = ε
ve
i j + ε

vp
i j + ε

T
i j + ε

c
i j (3.5)

εve, εvp, εT and εc respectively denote the viscoelastic, viscoplastic, thermal and elevated

aggressive agent concentration induced strain, respectively.

The constitutive relationship between the deviatoric stress and the viscoelastic strain is

modeled using the Boltzmann superposition integral in the context of linear viscoelasticity:

si j (t) =
∫ t

0
L
′
i jkl (t− τ)

dεve
kl (τ)

dτ
dτ (3.6)

in which, the spatial dependence of the pertinent fields is suppressed for simplicity. L′ is

the time-dependent deviatoric component of the tensor of viscoelastic moduli, taken to be

symmetric and positive definite at any time during the deformation process:

L′i jkl = L′kli j = L′jikl = L′i jlk (3.7)

ζi jL′i jklζkl ≥ ηζi jζi j; ∀ζi j = ζ ji; η > 0 (3.8)

A convenient time evolution expression for the viscoelastic moduli is the Prony series:

L′i jkl (t) =

[
Ke +

M

∑
m=1

Kmexp
(
− t

ξm

)]
L̄′i jkl (3.9)

in which, L̄′ is a time independent moduli tensor; M the number of Maxwell elements

incorporated in the Wiechert model; Ke is the ratio of equilibrium deviatoric moduli over

instantaneous deviatoric moduli; and Km and ξm are the ratio of deviatoric moduli on mth

Maxwell element over instantaneous deviatoric moduli and the time parameters in the mth
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Maxwell element, respectively. By employing the above expression, all components of

the viscoelastic moduli relax uniformly. A straightforward generalization to component-

dependent relaxation is possible by using a slightly modified version of the Prony se-

ries approximation. By constraining the values of the Prony series parameters such that

Ke +∑
M
m=1 Km = 1, the time independent moduli tensor becomes the instantaneous elastic

moduli; i.e., L̄′ = L′(t = 0).

For an isotropic solid, the deviatoric component of the elastic moduli is expressed as:

L
′
i jkl (t) = 2G(t)

(
δikδ jl−

1
3

δi jδkl

)
(3.10)

Substituting Eqs. 3.9 and 3.10 into Eq. 3.6, the deviatoric stress tensor is expressed as:

si j (t) = 2ḠKeε
ve
i j (t)+2Ḡ

M

∑
m=1

Kmε
m
i j (t) (3.11)

where,

ε
m
i j (t) =

∫ t

0
exp
(
−t− τ

ξm

) dεve
i j (τ)

dτ
dτ (3.12)

in which, εve is the deviatoric component of the viscoelastic strain, and Ḡ = G(0) the

instantaneous shear modulus.

The variation of the relaxation behavior as a function of temperature is modeled using

the Williams-Landel-Ferry (WLF) equation. Let aT denote the WLF time-temperature shift

factor expressed in the form:

logaT (T ) =
−C1 (T −Tref)

C2 +(T −Tref)
(3.13)

where, T denotes temperature; C1 and C2 are material constants and Tref is the reference

temperature, taken to be the room temperature in this study. Provided the relaxation be-

havior at the reference temperature and the material constants are known, the relaxation

behavior at an arbitrary temperature is obtained by shifting the time scale within a master
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WLF curve using aT :

t =
∫

τ

0

dξ

aT (T (ξ ))
(3.14)

The thermal and aggressive agent concentration induced strains are taken to be volu-

metric:

ε
T
i j = α (T −Tref)δi j (3.15)

ε
c
i j = ϑ (c− c∞)δi j (3.16)

where, α is the thermal expansion coefficient; c the concentration; and ϑ the concentration

induced volumetric expansion coefficient. The viscoplastic strain is taken to remain in the

deviatoric strain space (i.e., tr(εvp) = 0). Considering an isotropic solid with insignificant

relaxation under hydrostatic loading, the constitutive relationship for pressure becomes:

p(t) =−kui,i (t)+3k [α (T (t)−T0)+ϑ (c(t)− c∞)] (3.17)

in which, k is the bulk modulus.

The evolution of the viscoplastic strain is modeled by a generalization of the Johnson-

Cook plasticity model to account for the effects of elevated aggressive agent concentration.

The viscoplastic model employed in this study accounts for the effects of embrittlement

and hardening as a function of the aggressive agent concentration [3]. The flow rule of the

viscoplastic strain is expressed in terms of a power law:

ε̇
vp
i j = γ

〈
f

σY

〉q(T ∗)
∂ f

∂σi j
(3.18)

where, γ is the fluidity parameter; 〈·〉 denotes Macaulay brackets (i.e., 〈·〉 = ((·)+ | · |)/2);

σY the flow stress; and f (σ,σY ) the loading function. The viscoplastic hardening exponent,
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q, is expressed as a function of the non-dimensional temperature, T ∗, as:

q(T ∗) = qref +(q̄−qref)T ∗; T ? =
T −Tref

T̄ −Tref
(3.19)

where qref = q(Tref) and q̄ = q(T̄ ) are exponents evaluated at two temperatures.

The Von-Mises loading function is adopted in this study:

f
(
σi j,σY

)
= σeq−σY =

√
3s̄−σY (3.20)

in which, σeq is the equivalent stress; and s̄ the second invariant of the deviatoric stress,

s. The generalized Johnson-Cook flow stress provides a functional relationship between

yielding and the strain, temperature and concentration:

σY = [A+B(ε̄vp)n +F (c− c∞)][1− (T ?)m] (3.21)

in which A,B, F , m and n are material parameters. When the non-dimensional temperature

reaches unity, Eq. 3.21 implies complete lack of material strength. In some applications of

similar models, the non-dimensional temperature is expressed using the melting tempera-

ture (i.e., T̄ = Tmelt). For the titanium alloys of interest, the extrapolation of the experimen-

tal data on the yield strength variation as a function of temperature indicates vanishing yield

strength at around the beta transus temperature. I therefore use T̄ = Tβ in this study. It must

be noted that it is impractical to characterize q in Eq. 3.19 by an experiment conducted at

the beta transus temperature. Since the temperature variation of the exponent is linear, an

experiment conducted at any temperature between Tref and Tβ is sufficient to identically

calibrate q.

The equivalent viscoplastic strain ε̄vp is defined as:

ε̄
vp =

√
2
3

ε
vp
i j : ε

vp
i j (3.22)

48



The damage progression within the material is modeled as a function of temperature

and concentration. Let the damage parameter, ω , be the ratio between the equivalent strain,

ε̄vp and the failure strain, ε f :

ω =
ε̄vp

ε f
(3.23)

ω ∈ [0,1) denotes the state of damage at a material point, with ω=0 indicating no additional

defect compared to the initial state, and, ω=1 corresponds to loss of load carrying capacity

at the material point. The failure strain ε f is described as:

ε f = D1 (c)(1+D5exp(D6T ?)) (3.24)

in which, D5 and D6 parameterizes the effect of temperature on the failure strain. D1 varies

as a function of concentration and idealizes the progressive embrittlement due to aggressive

agent ingress:

D1 (c) =


D∞

1 if c 6 c∞

1
c∞− ccrit

((
D∞

1 −Dα
1
)

c+Dα
1 c∞−D∞

1 ccrit
)

if c∞ < c < ccrit

Dα
1 if c > ccrit

(3.25)

D∞
1 denotes the failure strain at room temperature in the absence of elevated concentration;

Dα
1 denotes failure strain beyond a critical concentration, ccrit; and the embrittlement is

assumed to be linear at intermediate concentration values. The effect of aggressive agent

ingress on the mechanical response is modeled based on the concentration dependent terms

in Eqs. 3.21 and 3.25. In Eq. 3.21, the flow stress is affected by the concentration. El-

evated concentration tends to harden the material. In addition to hardening, the elevated

concentration embrittles the response by reducing the failure strain in Eq. 3.24.

In an alternative approach, the plasticity theory has been extended to account for re-

laxation below the yield values and employed to describe cyclic response at high tempera-
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ture [37]. This approach presents a model that can also capture the viscoelastic response in

cyclic loading through viscoplastic modeling together with pure kinematic hardening. The

key assumption made is the vanishing threshold for yielding, which links the response to

the viscoelastic regime. The treatment of viscoelasticity is spectral in contrast to the in-

tegral type viscoelasticity considered herein. The approach taken in this chapter therefore

constitutes a complimentary proposition to the ideas of Ref. [37].

3.2.2 Transport Model

By incorporating Oriani’s equilibrium theory to describe the diffusion of the aggressive

agent into the stressed solid [26] and considering the effect of stress on the diffusion pro-

cess, the governing equation of the aggressive agent transport is expressed as an advection-

reaction-diffusion problem of the form:

ċ− (Dc,i),i +αic,i +βc = 0 (3.26)

in which, D is the diffusivity of the aggressive agent within the solid, and c the concentra-

tion of aggressive agent, given as weight ratio of the diffusing agent and the solid substrate

within an infinitesimal control volume. αi and β are coefficients of advection and reaction,

respectively, expressed as a function of pressure gradient and Laplacian:

αi =−
DV̄c

RT
p,i (3.27)

β =

(
DV̄cT,i
RT 2 −

D,iV̄c

RT

)
p,i−

DV̄c

RT
p,ii (3.28)

in which, R is the universal gas constant; and V̄c the partial molar volume of the ingressed

gas in the substrate solid.
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The initial and boundary conditions for the transport problem are expressed as:

c(x, t = 0) = c∞ (x) ; x ∈Ω (3.29)

c(x, t) = c0 (x, t) ; x ∈ Γc (3.30)

qi (x, t)ni = 0; x ∈ Γq (3.31)

in which, c∞ is the concentration of the aggressive agent at the natural state of the solid;

c0 the boundary concentration prescribed along Γc; q the concentration flux; and n the

outward normal unit vector to the boundary, Γq.

The transport process is coupled to the mechanical deformation through two mecha-

nisms. The first is the stress dependent advection and reaction flow, as shown in Eqs. 3.27

and 3.28. The second is by linking the diffusivity to the state of damage within the solid.

Considering the enhancement of diffusivity as the increased defect density [28, 27, 29], the

diffusivity is modeled based on the percolation theory [3] as:

D(ω,T ) = D0 (1+D (ω))exp
(
− Q

RT

)
(3.32)

where, D0 is the pre-exponential constant; Q the activation energy; and, D (ω) the effect

of mechanical damage on diffusivity:

D (ω) =


aω; ω < ωc

aω− (ω−ωc)
2

ω−ωec
; ωc 6 ω < ωec

∞; ω > ωec

(3.33)

in which, ωc and ωec denote the conduction and elastic percolation thresholds respectively;

and, a is a material parameter.

The diffusivity is in a linear relationship with the damage variable when damage is

smaller than the conduction percolation threshold value (ω < ωc) [28]. The state when

51



the damage exceeds the elastic percolation threshold, ωec, indicates a physical crack which

allows free flow of the aggressive agent. Beyond ωec, D (ω) is assigned a large but fi-

nite value to avoid numerical instability. At intermediate values of the damage state, the

diffusivity progressively increases as a function of damage [30].

The mechanical state in the proposed model influences transport in two ways: (1) the

increased diffusivity as a function of the damage parameter through damage percolation

idea [29]; and (2) the advection induced by pressure gradients. In the presence of a distinct

crack or notch (either initially present or formed during the process), the pressure gradi-

ents within the process zones produce a non-zero advection term in the transport equation

and induce transport of the aggressive agent, even in the absence of elevated concentra-

tion around external boundaries. This capability of the model was demonstrated in Yan

et al. [36]. Mechanism (1), in the absence of the formation of a distinct crack, does not

introduce transport as only the apparent diffusivity parameter is increased by the presence

of damage. In the investigations discussed in this chapter (i.e., oxygen transport in a tita-

nium alloy) the gradient-induced transport alone would not cause significant embrittlement

since, the amount of oxygen content in the bulk alloy is very low (i.e., approximately 0.15

%wt).

3.3 Numerical Implementation of the Deformation Model

The deformation and transport models described in Section 3.2 are numerically evalu-

ated using a coupled finite element formulation. The evaluation of the transport problem

is performed based on the Galerkin Least Squares stabilized finite element method [32].

The stabilized approach eliminates potential instabilities resulting from the advection dom-

inated flow generated around zones of stress concentration such as crack and notch tips.

The coupled solution of the deformation and transport problems are performed based

on a staggered solution strategy of isothermal type. In this strategy, the mechanical and

transport problems are evaluated in turn until convergence is achieved in both problems at
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each time step. When solving the transport problem, the pressure and the pressure gra-

dients are considered as known fields, computed in the deformation problem. Similarly

in the deformation problem, the concentration field is considered known computed in the

evaluation of the transport problem at the current iteration. The thermal state of the sys-

tem is regarded as an input to both transport and mechanical solvers. The thermal state of

the structure is critical to the overall coupled chemo-mechanical deformation and failure

behavior. The transient thermal diffusion, which is not modeled in this chapter, may also

be important in certain problems such as in the presence of high rate deformation. All

cases in this chapter investigate relatively long term behavior, in which isothermal condi-

tions prevail (hours to hundreds of hours). The thermal steady state is typically reached in

a matter of a few seconds, and therefore the thermal transients do not significantly affect

the chemo-mechanical processes. A detailed formulation of the transport problem and the

coupled solution algorithm has been provided in Ref. [36].

In the remainder of this section, a mixed finite element formulation is proposed and for-

mulated for the viscoelastic-viscoplastic deformation model. In contrast to the traditional

purpose of the mixed formulations (e.g., address incompressibility), the current formulation

employs the mixed approach to obtain an accurate description of the pressure and pressure

gradient fields. The pressure and pressure gradient fields are in turn used to describe the

advection and reaction components of the transport equation.

3.3.1 Recurrence formula for deviatoric stress tensor

A direct computation of the stress based on the viscoelastic strain (i.e., Eq. 3.11) re-

quires the storage of and computation using the entire strain history. Storage of the entire

strain history at each integration point within a large discretized domain is clearly expensive

from the memory perspective. In order to reduce the memory cost, a recurrence formula has

been employed [38]. Consider a time discretization of the governing deformation problem

and let the left subscripts t denote the value of a response field at the previous equilibrated
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increment. Left subscripts t +∆t indicates the response field evaluated at the current in-

crement. For simplicity, the left subscript for the current increment is sometimes omitted.

From Eq. 3.12, the values of ε at the previous and current increments are respectively:

tε
m
i j =

∫ t

0
exp
(
−t− τ

ξm

) dεve
i j (τ)

dτ
dτ (3.34)

t+∆tε
m
i j =

∫ t

0
exp
(
−t +∆t− τ

ξm

) dεve
i j (τ)

dτ
dτ +

∫ t+∆t

t
exp
(
−t +∆t− τ

ξm

) dεve
i j (τ)

dτ
dτ

(3.35)

Assuming that the viscoelastic strain εve varies linearly within the current time step:

t+∆tε
m
i j = exp

(
−∆t

ξm

)
tε

m
i j +

t+∆tε
ve
i j −t εve

i j

∆t
ξm

(
1− exp

(
−∆t

ξm

))
(3.36)

Subtracting the deviatoric stress tensor evaluated at the previous and current time steps

using Eq. 3.11, and employing Eq. 3.36 yields:

si j−t si j = 2Ḡ
(
ε

ve
i j −t ε

ve
i j
)

K̄−2Ḡ
M

∑
m

Km

(
1− exp

(
−∆t

ξm

))
tε

m
i j (3.37)

where,

K̄ = Ke +
M

∑
m

Km

(
1− exp

(
−∆t

ξm

))
ξm

∆t
(3.38)

Equation 3.37 indicates that the calculation of the deviatoric stress at current time step

requires the value of ε at the previous time step, only rather than its entire history, signifi-

cantly reducing the computing and memory requirements.
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3.3.2 Mixed FEM formulation of the viscoelastic-viscoplastic deformation model

The weak forms of the governing equations of equilibrium in terms of the deviatoric

stress and pressure (i.e., Eqs. 3.1 and 3.17, respectively) are expressed as:

∫
Ω

ν
h
i, jsi jdΩ−

∫
Ω

ν
h
i,i pdΩ−

∫
Γu

N

ν
h
i t̄idΓ−

∫
Ω

ν
h
i bidΩ = 0 (3.39)∫

Ω

1
k

qh phdΩ+
∫

Ω

qhuh
i,idΩ−

∫
Ω

3qh[α (T −T0)+ϑ (c− c∞)]dΩ = 0 (3.40)

where, v and q are the test functions for displacement and pressure, defined within the

appropriate Sobolev spaces and with sufficient smoothness. Let vh and qh belong to the

corresponding finite dimensional subspaces of the test functions, v and q, respectively. I

perform a Bubnov-Galerkin discretization of the displacement and pressure fields, as well

as the corresponding test functions:

uh
i (x, t) =

nu

∑
a=1

Nu
a (x) ûai (t) (3.41)

ph (x, t) =
np

∑
a=1

N p
a (x) p̂a (t) (3.42)

in which, Nu
a and N p

a are respectively the basis functions of the displacement and pressure

fields that correspond to node a; ˆ(·) denotes the nodal coefficients of the corresponding

field; and nu and np are the total number of displacement and pressure nodes, respectively.

Substituting Eqs. 3.41 and 3.42 into Eqs. 3.39 and 3.40, respectively, the discretized

equilibrium equations take the form:

Ψbi :=
∫

Ω

Nu
b, jsi jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩp̂c−

∫
Γu

N

Nu
b t̄idΓ

−
∫

Ω

Nu
b bidΩ = 0; b = 1, ...,nu (3.43)
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Θc :=
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩp̂a +
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩûbi

−
∫

Ω

3N p
c [α (T −T0)+ϑ (c− c∞)]dΩ = 0; c = 1, ...,np (3.44)

Consider a one-parameter family discretization of the viscoplastic strain rate in the

form:
t+∆tε

vp
i j −t ε

vp
i j

∆t
= θ t+∆t ε̇

vp
i j +(1−θ) t ε̇

vp
i j (3.45)

in which, θ ∈ [0,1] is an algorithmic parameter. The choices of θ = 0,1 and 0.5 correspond

to the explicit, implicit and midpoint rules, respectively. Substituting Eqs. 3.5 and 3.41

into Eq. 3.37 and using Eq. 3.45, the discretized form of the constitutive equation for the

deviatoric stress is expressed as:

Ri j :=t+∆t si j−t si j−2Ḡ
nu

∑
a=1

Nu
a, j (x) t+∆t ûaiK̄ +2Ḡ

nu

∑
a=1

Nu
a, j (x) t ûaiK̄

+2Ḡ∆tθt+∆t ε̇
vp
i j K̄ +2Ḡ∆t (1−θ)t ε̇

vp
i j K̄ +2Ḡ

M

∑
m

Km

(
1− exp

(
−∆t

ξm

))
tε

m
i j (3.46)

Equations 3.43, 3.44 and 3.46 together consist of the discretized nonlinear system of

the viscoelastic-viscoplastic deformation problem. Newton’s method is employed to solve

this system of equations [33]. Considering the first order Taylor-series expansion of all

three equations yield:

k+1
Ψbi ≈ k

Ψbi +
k(

∂Ψbi

∂ skl

)
k+1

δ skl +
np

∑
c=1

k(
∂Ψbi

∂ p̂c

)
k+1

δ p̂c

= k
Ψbi +

∫
Ω

Nu
b, j

k+1
δ si jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c = 0 (3.47)
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k+1
Θc ≈ k

Θc +
nu

∑
b=1

k(
∂Θc

∂ ûbk

)
k+1

δ ûbk +
np

∑
a=1

k(
∂Θc

∂ p̂a

)
k+1

δ p̂a

= k
Θc +

nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi +
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a = 0 (3.48)

k+1Ri j ≈ kRi j +
k(

∂Ri j

∂ skl

)
k+1

δ skl +
nu

∑
a=1

k(
∂Ri j

∂ ûak

)
k+1

δ ûak

= kRi j−2ḠK̄
nu

∑
a=1

Nu
a, j

k+1
δ ûai +

(
Ii jkl +2ḠK̄θ∆t kCi jkl

)
k+1

δ skl = 0 (3.49)

in which, the left superscript denotes the Newton iteration count. The Taylor series expan-

sion is performed about the previous iteration, k. δ (·) denotes the incremental change in

the corresponding response field (·) within the Newton iteration; and,

kCi jkl =

k(
∂ ε̇

vp
i j

∂ skl

)
(3.50)

The increment of deviatoric stress, k+1
δ si j is evaluated using Eq. 3.49 as:

k+1
δ si j =

kQi jkl

(
2ḠK̄

nu

∑
a=1

Nu
a,l

k+1
δ ûak− kRkl

)
(3.51)

where, the modulus kQ is defined as:

kQi jkl =
(

Ii jkl +2ḠK̄θ∆t kCi jkl

)−1
(3.52)

Substituting Eq. 3.51 into Eqs. 3.47 and 3.48 yield:

∫
Ω

2ḠK̄kQi jklNu
b, j

nu

∑
a=1

Nu
a,ldΩ

k+1
δ ûak

−
np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c =

∫
Ω

kQi jklNu
b, j

kRkldΩ− k
Ψbi (3.53)
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and,

−
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi−
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a =
k
Θc (3.54)

Equations 3.53 and 3.54 are simultaneously evaluated for the increments of the displace-

ment (k+1
δ û) and pressure fields (k+1

δ p̂) at the current iteration, k+1.

When expressed in the matrix form, Eqs. 3.53 and 3.54 yield:

 kKuu Kup

(Kup)T Kpp




k+1
δ û

k+1
δ p̂

=


kfu

kfp

 (3.55)

in which, the components of the tangent stiffness matrix are expressed as:

kKuu
αβ

=
∫

Ω

2ḠK̄kQi jmnNu
b, j

nu

∑
a=1

Nu
a,ndΩ; α = b+(i−1)nu; β = a+(m−1)nu(3.56)

Kup
αc = −

∫
Ω

Nu
b,iN

p
c dΩ; α = a+(i−1)nu; 1≤ c≤ np (3.57)

K pp
ab = −

∫
Ω

1
k

N p
a N p

b dΩ; 1≤ a,b≤ np (3.58)

The left superscript is included only on the sub matrix, Kuu, which is the only nonlinear

part of the tangent stiffness. The unknown displacement and pressure coefficients, as well

as the force vectors are expressed in the vector form as:

k+1
δ û = {k+1û1, ...,

k+1ûnsd×nu}T ; kfu = {k f u
1 , ...,

k f u
nsd×nu

}T (3.59)

k+1
δ p̂ = {k+1 p̂1, ...,

k p̂np}T ; kfp = {k f p
1 , ...,

k f p
np
}T (3.60)

and the components of the force vector are given as:

k f u
α =

∫
Ω

kQi jklNu
b, j

kRkldΩ−k
Ψbi; α = b+(i−1)nu (3.61)

k f p
a = k

Θa; 1≤ a≤ np (3.62)

The finite elements discretizing the displacements and the pressure fields are chosen
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in order to satisfy the Babuska-Brezzi constraint. Ensuring this constraint is satisfied in

the choice of the pressure and displacement discretizations avoids the potential numerical

instability and response oscillations observed in mixed formulations. In the numerical

studies provided in this chapter, I employ nine-node biquadratic in displacement and four-

node bilinear in pressure Taylor-Hood element.

Based on the expressions above, I employ the following algorithm to compute the pres-

sure and displacement fields:

At arbitrary time t +∆t: Given the state at the previous time step; t û, t p̂, ts and t ε̇
vp; Find

the response at the current step; û, p̂.

1. Initiate the algorithm: k = 0.

2. Set the initial guesses for the pressure and deformation coefficients at the current

increment:

0û = t û; 0p̂ = t p̂; 0s = ts; 0ε̇vp = t ε̇
vp (3.63)

3. Loop until convergence:

(a) Compute the moduli: K̄, kC and kQ using Eqs. 3.38, 3.50 and 3.52, respectively.

(b) Calculate kΨ, kΘ and kR using Eqs. 3.43, 3.44 and 3.46, respectively.

(c) Update the pressure and displacement increments, k+1
δ û and k+1

δ p̂ by solving

the linear system in Eq. 3.55.

(d) Compute deviatoric stress increment k+1
δ s at each integration point using Eq. 3.51.

(e) Update displacement, pressure and stress:

k+1û = k+1
δ û+ kû (3.64)

k+1p̂ = k+1
δ p̂+ kp̂ (3.65)

k+1s = k+1
δ s+ ks (3.66)
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(f) Update k+1ε̇vp and k+1εvp by simultaneously evaluating:

k+1εvp = tε
vp +θ∆t k+1ε̇vp +(1−θ)∆t t ε̇

vp (3.67)

k+1ε̇vp = γ

〈 k+1 f
k+1σY

〉q k+1(
∂ f
∂σ

)
(3.68)

(g) k = k+1

3.4 Numerical Investigation of Ti-6242S Response in Combined Environment

The proposed computational model was employed to investigate the mechanical re-

sponse of a titanium alloy exposed to oxygen at elevated temperatures. I focus on modeling

the near alpha titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242S) within a temperature

range of 23-6500C. Ti-6242S displays good mechanical properties at elevated temperature,

making them a candidate structural material for hypersonic aircraft applications. The ap-

plicability of the proposed model to idealize the behavior of the alloy requires temperature

stability, since the effect of microstructure evolution is not explicitly included. The ten-

sile strength properties of Ti-6242S have been reported to be largely unaffected at creep -

high temperature exposure conditions up to 6500C [39]. While the micrographs of from

the experimental investigations considered in this study is not available, the literature on

prior experiments and imaging performed on aged specimens at temperatures up to 6500C

points to limited microstructure evolution (see e.g., [40]). It is possible that even higher

temperatures would induce microstructural evolution that will significantly alter the physi-

cal mechanisms that shape the relaxation, creep and other mechanical behavior of this alloy.

It is noted that the maximum temperature covered in this study already extends the range

of temperatures considered in applications of Ti-6242S, which is typically limited to 500-

5500C. Nevertheless, a more systematic experimental study is needed to clarify the sources

of high temperature deformation mechanisms, including the microstructure evolution.

The present investigation includes the calibration of the model parameters for the cho-
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Table 3.1: Material parameters for oxygen transport in Ti-6Al-2Sn-4Zr-2Mo-0.1Si.

D0 [mm2/s] c∞ [%] Q [kJ/mole] ωc ωec a V̄O [cm3/mole]
5.397 0.15 184.8 0.1 0.7 3.56 3.5

sen titanium alloy based on experimental data (Section 3.4.1), and characterization of the

coupling effects between the oxygen embrittlement, viscous and deformation mechanisms

(Section 3.4.2).

3.4.1 Model calibration

Model calibration includes the identification of the material properties for oxygen trans-

port into the titanium alloy, the viscoelastic and viscoplastic properties of the alloy as well

as the properties that characterize the coupling between the transport and deformation pro-

cesses. Model calibration is performed based on the experimental data conducted at the

Air Force Research Laboratory, as well as the data available in the literature. The cali-

brations that include multiple model parameters were conducted using the least squares

minimization of the pertinent objective function, defined as the discrepancy between the

experimental observable (e.g., stress-strain curve, relaxation curve, etc.) and the results of

the numerical simulations.

The calibrated oxygen transport model parameters are summarized in Table 3.1. The

pre-exponential constant, D0, and the activation energy, Q, are experimentally determined

as 5.397 mm2/s and 184.8 kJ/mole, respectively. These parameters are consistent with

prior experimental investigations [41, 42] as well. The bulk oxygen concentration in the

titanium alloy is provided by the manufacturer (Timet) as 0.15%. The partial molar volume

of oxygen in the alloy is taken to be 3.5 cm3/mole, same as that reported by Ref. [43] for

pure titanium. The parameters that characterize the effect of mechanical damage on oxygen

diffusivity, ωc, ωec and a are consistent with the reported values based on the percolation

theory [44, 45].

The material properties that describe the mechanical behavior are summarized in Ta-
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Table 3.2: Material parameters for viscoplastic deformation of Ti-6Al-2Sn-4Zr-2Mo-
0.1Si.

ν E0 [GPa] γ [MPa/h] ε̇0 [1/s] α [1/◦C] ϑ [1/%c] A [MPa]
0.32 120.8 2000.0 1.0 7.7e-6 1.1e-3 895.0
B [MPa] F [MPa/%c] n m ccrit [%] Tβ [◦C] qref
125.0 140.0 0.2 1.35 4.5 1000.0 1.0
q̄ D∞

1 Dα
1 D5 D6 M Ke

2.7586 0.1676 5.0e-3 9.5e-7 23.25 5 0.0
K1 K2 K3 K4 K5 ξ1 [h] ξ2 [h]
0.5 0.2 0.15 0.1 0.05 4.5e4 4.667e5
ξ3 [h] ξ4 [h] ξ5 [h] C1 C2
4.167e6 4.167e7 4.167e8 -6.3714 -1094.75

ble 3.2. The temperature effect on the elastic and plastic responses are calibrated based

on a series of uniaxial tensile experiments conducted at room temperature, 5380C, 5930C

and 6500C, from which the temperature variation of Young’s modulus, Poisson’s ratio,

yield strength, failure strain and strain hardening variable are calibrated. The loading rate

effect is investigated at room temperature only, where the viscosity at room temperature

was determined. The loading rate experiment conducted at room temperature shows little

difference between the fast and slow loading tests. The rate effect is typically stronger at

elevated temperatures and the discrepancy between the fast and slow loading tests could

be more pronounced. Literature on the quantified effect of load rate on the yield strength

at high temperature for Ti-6242S is quite limited and additional experimental data to fully

quantify the rate effects is needed. The simulated stress-strain response at high temper-

atures using the calibrated properties are compared to the experimental measurements in

Fig. 3.3. The necking process dictated by large structural deformation is not incorporated

into the proposed model and currently the model is limited to small deformation theory. No

attempt was therefore made to calibrate the post-peak behavior of the engineering curve.

The oxygen induced hardening parameter, F , is calibrated based on the microhardness ex-

periments conducted on oxygen-exposed specimens [19]. The embrittlement parameter,

Dα
1 , is chosen such that the ductility nearly vanishes at the critical oxygen concentration
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Figure 3.3: The stress-strain response of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at room and ele-
vated temperatures.

ccrit , taken to be 4.5%. The resulting constitutive response as a function of concentration

are illustrated in Figs. 3.4 and 3.5 at room temperature and 5930C, respectively.

The viscoplastic parameters including the fluidity parameter, γ , the viscoplastic harden-

ing parameters, q0 and q∗, and the viscoelastic parameters including the number of Maxwell

elements, M, the Prony series coefficients, Km and ξm (m = 1, . . . ,M), and the temperature

dependence parameters, C1 and C2, are calibrated based on stress relaxation tests con-

ducted at temperatures of 5930C and 6500C. The number of Maxwell elements is chosen

as 5, the minimum number necessary to accurately evaluate the stress relaxation response

at both short and long time scales. Figure 3.6 compares the experimentally observed and

simulated short term relaxation behavior at temperatures of 5930C and 6500C under the

constant strain magnitude of 3.5%. Within the first 40 seconds of relaxation, both vis-

coelastic and viscoplastic relaxation processes are active since the specimens were loaded

to stress levels beyond the static yield strength. Figures 3.7 and 3.8 compare the simulated

and observed long-term relaxation behavior up to 100 hours. The long-term relaxation

behavior is governed by the viscoelastic component of the model only, as the stress drops

below the temperature dependent static yield stress. A near complete relaxation is observed

at 100 hours of exposure of the specimen to 6500C, whereas the stress asymptotes at ap-
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Figure 3.4: The stress-strain response of Ti-6Al-2Sn-4Zr-2Mo-0.1Si with varying oxy-
gen content at room temperature.

proximately 6.25 MPa when exposed to 5930C. In both cases, the model is in excellent

agreement with the observed relaxation behavior. Further experimental investigation of the

microstructure during the combined loading and high temperature exposure would provide

additional information on the microstructural origins of the relaxation process. The relax-

ation experiments included in this study were uninterrupted and the possible microstructure

evolution was therefore could not be observed.

3.4.2 Response under combined thermo-mechanical environment

The calibrated transport-deformation model is employed to investigate the combined

environment response of Ti-6242S. The investigations focused on the coupling mecha-

nisms between oxygen transport, relaxation and deformation behavior. The proposed nu-

merical investigations are focused on the combined environment setup of the experiments

conducted by Peters et al. [18]. Figure 3.9 illustrates the overview of the experimental

procedure. Each specimen was displacement-loaded using four-point bend (4PB) appara-

tus. The specimens were consequently subjected to constant elevated temperature at their

loaded state. The duration of high temperature exposure was 100 hours. The specimens

were then cooled back to the room temperature and tested using a three-point bend (3PB)
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Figure 3.7: The stress relaxation test of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at 5930C for 100 hrs.
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Figure 3.8: The stress relaxation test of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at 6500C for 100 hrs.
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Figure 3.9: Coupled transport- deformation experiments procedure
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Figure 3.10: Geometry, boundary condition and finite element mesh of the 4 point bend
and the 3 point bend configurations.

setup. Four different scenarios were considered: specimens subjected to 0.75mm (low

amplitude loading) or 1.5mm (high amplitude loading) maximum displacement in 4PB ap-

paratus and exposed to 4500C and 5500C in the heating chamber.

Figure 3.10 shows the geometry, boundary conditions and the finite element discretiza-

tion of the numerical specimen. Plane-strain conditions were assumed. Only half of the

specimen is discretized due to the symmetry of the geometry and the loading conditions.

For computational efficiency, the focus is kept on the tension (bottom) side of the speci-

men. The bottom-left corner of the specimen has very fine resolution with element size

of approximately 0.2µm. The oxygen ingress is applied at the tension side only since the

oxygen induced tension cracks are more critical than the compression observed at the top

surface.

Table 3.3 summarizes the maximum stress achieved immediately after loading in spec-

imens subjected to four-point bending at elevated temperatures. The computed values are

compared to theoretical maximum stress provided in Ref. [18]. The computed and theoret-

ical stress magnitudes are in reasonable agreement with each other, albeit some differences

particularly at high loading amplitude. The discrepancy is attributed to the fact that the the-
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Figure 3.11: Oxygen concentration along the depth from the tensile surface.

oretical values do not consider relaxation during the loading process. The low amplitude

loading remains within the elastic range at both 4500C and 5500C. Figure 3.11 shows the

oxygen concentration distribution measured from the center of the bottom surface along

the vertical direction towards the interior for all four configurations after the 100 hour high

temperature exposure. The oxygen content of the ambient environment is taken to be 13.8%

wt. [19], which was applied as the concentration boundary condition at the tension side of

the specimen. I note that the oxygen uptake capacity of the alloy is approximately 7%

wt. beyond which the oxide layer is formed [15]. Typically, the size of the oxide layer

is significantly smaller than the oxygen enriched case and the effects of oxide formation

are neglected. Figure 3.11 shows that the presence of loading has a nominal effect on the

oxygen ingress in this case, which is consistent with the experimental observations. The

thicknesses of the oxygen enriched layers are 3.162 µm, 2.868 µm, 0.588 µm and 0.515

µm for the high load - 5500C, low load - 5500C, high load - 4500C and low load - 4500C

cases, respectively. Since there is no significant inelastic strain in the low amplitude load

cases, the mechanical state does not affect the oxygen ingress.
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Figure 3.12: Equivalent stress variation in 4 point bending tests for 100 h at the center
of the tensile surface.

3.4.2.1 Relaxation and oxygen ingress under high temperature exposure

Since the four point bending tests were performed at high temperatures under displace-

ment control, significant stress relaxation is expected. The relaxation process interacts with

both the transport of oxygen and the resulting stress state. Figure 3.12 shows the equivalent

stress history at the bottom center of the specimen for the four test conditions. The speci-

mens loaded at low applied displacement magnitude display a typical relaxation behavior.

Since no plastic deformation is predicted at low amplitude loading, the relaxation is en-

tirely viscoelastic. At high amplitude loading, a very different stress evolution is observed

at both temperatures, in which an exponential relaxation is followed by a stress recovery

phase. For instance, at 5500C, the stress drops from the peak value of 513 MPa to 38 MPa

after 1 hour and steadily increase to 243 MPa at 100 hours of exposure. At 4500C, the

stress recovery behavior is similar to the 5500C case, but the recovery is less severe.

In order to interpret the stress recovery observed in plastically loaded specimens, the

numerical simulations were extended up to 2000 hours of high temperature exposure, at

which the specimens reach full relaxation or steady state. Figure 3.13 depicts the equiva-

lent stress distribution of the four point bending specimens along the vertical line measured
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from the bottom-center towards the top (shown as vector d in Fig. 3.10) at a number of time

instances. When the midspan deflection is set to 0.75 mm (i.e., low amplitude loading) the

stresses relax uniformly as the process is purely viscoelastic as shown in Fig. 3.13a,b. The

specimen subjected to 5500C displays complete relaxation at the exposure time of 2000

hr. The slight stress asymmetry between the compression and tension sides is due to the

biased meshing as well as the oxygen ingress imposed on the tension side. When the spec-

imens are plastically loaded with midspan deflection of 1.5mm, a significantly different

time dependent behavior is observed as shown in Fig. 3.13c,d. The loading clearly induces

plastic deformation near the compression and tension sides of the specimens with approx-

imately 1 mm thickness. Within the interior of the specimens, the deformation remains

viscoelastic. Initially, the plastically loaded region induces a faster relaxation compared to

the elastically loaded region since both the viscoelastic and viscoplastic stress relaxation

mechanisms are active in the plastically loaded region. The uneven relaxation moves the

peak stress towards the interior of the specimen. The relaxation induced stress distribution

is resisted by the equilibrium process, which leads to higher stresses at the outer faces of

the specimen at longer times. At the steady state, significant residual stresses are observed

at the plastically loaded outer faces of the specimens. It is important to note that the stress

recovery process is limited to the outer faces of the specimen and despite the stress recovery

mechanism, the overall energy of the specimen monotonically reduces during the exposure

duration since the viscous dissipation process is not recoverable. Similar behavior is ob-

served in the specimens subjected to 5500C and 4500C environments. The relaxation and

stress recovery naturally occurs at a faster rate at 5500C (Fig. 3.13c) compared to 4500C

(Fig. 3.13d). The time evolution of the stress contours within the four-point bending tests

under 5500C exposure for the elastically and plastically loaded specimens are shown in

Fig. 3.14. The spatial evolution of the equivalent stress in the plastically loaded speci-

mens are highly nonuniform in contrast to the elastically loaded specimens, whose stress

distribution remains nearly identical with monotonically decreasing magnitude.
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Figure 3.13: Equivalent stress along the depth from the tensile surface: (a) 0.75 mm
loading at 5500C; (b) 0.75 mm loading at 4500C; (c) 1.5 mm loading at 5500C; and (d) 1.5
mm loading at 4500C.

Table 3.3: Influence of oxidation on cracking at room temperature in 3-P bending.

4PB 3PB
T (0C) D (mm) σmax [MPa] σmax [MPa] [cracks/mm] [cracks/mm]

Theoretical [18] Model Experiment Model
450 0.75 419.00 464.64 - 18.18
450 1.50 >644.20

(
σp0.2

)
619.80 20.00 18.18±9.1%

550 0.75 390.00 400.66 22.36 18.18±18.7%
550 1.50 >578.80

(
σp0.2

)
516.73 8.70 10.26±17.9%

3.4.2.2 Three-Point Bend Response of Exposed Specimens

The numerical specimens subjected to 100 hours of high temperature exposure at the

loaded state are unloaded and cooled to the room temperature prior to further testing using

the three-point bend test setup. This procedure mimics the experimental protocol followed

by Peters et al. [18]. A midpoint vertical deflection of up to 3.6 mm and 4.8 mm was

applied to the specimens exposed to 5500C and 4500C environment, respectively.

Figure 3.15 displays the damage propagation during the 3PB testing of the specimen
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Figure 3.14: Equivalent stress contour of 4 point bending specimen at 5500C with: (a)
1.50 mm midspan deflection at 0.03 hr; (b) 1.50 mm midspan deflection at 10 hrs; c) 1.50
mm midspan deflection at 2000 hrs; (d) 0.75 mm midspan deflection at 0.015 hr; (e) 0.75
mm midspan deflection at 10 hrs; f) 0.75 mm midspan deflection at 2000 hrs;
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Figure 3.15: Three point bending damage at applied displacement of: (a) 2.4 mm; (b) 2.9
mm; c) 3.3 mm; (d) 3.7 mm of the specimen oxidized with 0.75 mm deflection at 4500C.

72



that was exposed to 450 0C under the midspan deflection of 0.75 mm. The damage contours

are from a 2mm by 1mm region near the central section of the tensile surface. A thin sur-

face layer of 0.515 µm thickness has reached or exceeded ccrit during the exposure process,

within which the early onset of damage propagation is initiated. The damage progressively

propagates towards the interior of the specimen along the shear path, reaching a length of

0.8 mm at the applied midspan deflection of 3.7 mm. The damage evolution during the 3PB

testing of the specimen that was exposed to 450 0C under the midspan deflection of 1.5 mm

is very similar, which indicates that the small change in the surface oxygen concentration

has insignificant effect on the mechanical performance. Figure 3.16 compares the damage

state in the three-point bend specimens subjected to 3.6 mm midspan deflection, that were

previously exposed to 550 0C under the midspan deflection of 0.75 mm and 1.5 mm. The

specimen that was previously exposed to high temperature while viscoelastically loaded de-

veloped a slightly larger damage region compared to the viscoplastically loaded specimen.

The difference between the oxygen enriched region thicknesses between the two specimens

prior to the three-point bending is nominal, whereas the initial stress distributions are sig-

nificantly different owing to the stress recovery process discussed above. The discrepancy

between the damage patterns is attributed to the different stress states of the specimens

prior to loading in the three-point bend apparatus. In both cases shown in Fig. 3.16, the

cracks propagate at an angle of approximately 410-450. Experimental data on the direction

of the crack paths is not available for validation of the path of crack propagation, which

may shed further light on the microstructural origins of the failure behavior.

In the current chapter, the scalar damage variable affects the behavior only at the onset

of the state of failure (i.e., ω = 1). At failure, the residual stiffness of the corresponding

element is set to a small fraction of the elastic stiffness of the material, which accounts for

failure induced relaxation and load redistribution. The stiffness relaxation introduced by

this approach is known to induce mesh-dependency [46, 47]. Introduction of advection-

diffusion terms was shown to regularize mesh dependency in certain conditions [48, 49].
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(a) (b)

Figure 3.16: Three point bending damage at applied displacement of 3.6 mm of the
specimen oxidized at 5500C with deflection: (a) 0.75 mm; (b) 1.50 mm.

Through a similar mechanism, the coupling between the oxygen transport and the defor-

mation problem could pose as localization limiter of the deformation problem. The results

in this study indicate that the mesh localization phenomenon is not observed and the dam-

age zone thickness remains larger than the mesh size (3× the element size) in the example

problems studied herein. The current chapter does not include a thorough mesh localiza-

tion investigation and further study of this point is needed to assess whether realistic oxygen

diffusion rates could act as localization limiter for the deformation problem.

Figure 3.17 displays the three point bending damage profiles along the tensile surface

for specimens previously exposed to 4500C and 5500C. The three point bending test gen-

erates nearly identical damage distribution along the tensile surface within the specimens

previously subjected to 4500C regardless of the four point bend loading amplitude as shown

in Fig. 3.17a-c. In contrast, the specimen previously subjected to 5500C and low four point

bend loading amplitude has a significantly different surface damage pattern compared to

the specimen previously subjected to 5500C and high four point bend loading amplitude

as shown in Fig. 3.17d-f. One key difference is the change in the periodic crack spacing,

which reduces from approximately 18 cracks/mm to 10 cracks/mm, which is consistent

with the experimentally observed crack spacing of 22 cracks/mm and 9 cracks/mm, respec-

tively as summarized in Table 3.3. The thickness of the brittle surface layer is increased

with increasing temperature because of the higher diffusivity of oxygen at elevated temper-

atures. The relationship between the spacing between the periodic embrittlement-induced
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surface cracks and the thickness of the brittle surface layer was investigated by Hutchinson

et al. [50], Thoulesset al. [51] and others. The saturation crack spacing is proportional to

the crack length to the first order of approximation. This relationship is due to the increased

fracture process zone around the longer surface cracks compared to the shorter cracks. Un-

der a critical stress magnitude, cracks start to form on the brittle layer and the stresses at

the ligament around the crack relax. With increase in loading, more cracks progressively

form until the saturation is reached where the shear stress at the interface of the brittle case

and the substrate reaches its maximum allowable [19].

3.5 Conclusion

This chapter provided a viscoelastic-viscoplastic model to describe the mechanical re-

sponse of titanium structures operating under high temperature and mechanical loading.

The effects of temperature-activated oxygen ingress into the structure and consequent em-

brittlement and hardening are included by considering a fully coupled transport model to

the proposed deformation model. A suite of experiments on a high temperature alloy, Ti-

6242S, has been employed to calibrate the model parameters and to understand the coupled

mechanisms of oxygen ingress induced embrittlement, viscous relaxation/creep and defor-

mation.

The experimental and the numerical investigations suggest that directly quantifying

the effect of stress or strain state on the oxygen ingress rate is not straightforward. In a

displacement-controlled setup, viscoelastic relaxation quickly reduces the internal stress,

and hence, the load effect on oxygen ingress. In contrast, the effect of small changes in the

oxygen ingress rate due to loading may be significant for cyclic loading cases, where the

interactions of loading and the oxygen ingress rate may have a cumulative effect on crack

initiation. Despite such difficulties, the proposed model accurately captures the coupled

deformation-relaxation-embrittlement response at high temperature environments.

The experimental data employed in this chapter to calibrate and validate the relaxation
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behavior is not exhaustive. While, it is beyond the scope of this chapter to perform a com-

prehensive suite of experiments to fully characterize and connect the proposed model to the

microstructural origins of relaxation, the need to further testing on creep-relaxation regime

including a detailed microstructure study is important to link the relaxation behavior to the

material microstructure, which is quite complex for Ti-6242S. A more systematic experi-

mental study could clarify the sources of relaxation, and point to the effect of microstructure

evolution on creep and relaxation, which is not included in this study.

From the modeling perspective, further improvements to the proposed computational

model are necessary to understand and predict the behavior of titanium alloys operating in

high thermo-mechanical environments. First, the model will be extended to describe the

cyclic behavior to accurately predict initiation of fatigue damage, which is significantly

affected by oxygen ingress. It is also clear that the oxygen ingress is localized within a

very small boundary region of the structure with a thickness of the order of a few grain

diameters. Accurate characterization of localized deformation and failure within this zone

necessitates very fine resolution along the exposed surfaces [35, 52]. Straightforward bi-

ased meshing with such a refined resolution within a realistic structural component is not

computationally feasible. A multi resolution modeling approach is necessary to accurately

capture both the local (i.e., around the boundaries) and global (i.e., throughout the struc-

ture) response. Future research will focus on the development of such a multi resolution

modeling approach.
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Chapter 4

MULTI-YIELD SURFACE MODELING OF VISCOPLASTIC MATERIALS

4.1 Introduction

Modeling cyclic response in the presence of material nonlinearity is critical for many

engineering applications ranging from response of soils subjected to earthquake excitations

to metals subjected to low cycle fatigue. I am particularly concerned with modeling and

prediction of the cyclic response in aerospace structures made of titanium and other alloys

operating in hypersonic conditions in the presence of high temperatures.

Modeling the cyclic response of metals at high temperature has seen tremendous de-

velopments in the past few decades. Thorough surveys of literature have been presented

by McDowell [53], Chaboche [54], Lemaitre [55] among many others. Beyond the crystal

plasticity based cyclic deformation models (e.g., [56, 57, 58]), the majority of phenomeno-

logical plasticity models relies on a single yield surface, typically defined in the stress

space as well as evolution laws, often derived based on the yield surface. Those deforma-

tion mechanisms pertinent to the high temperature environment such as dynamic and or

static recovery are incorporated based on complex functional relationships into the evolu-

tion functions of the internal state variables. The simplest model is the linear kinematic

hardening introduced by Prager et al. [59], where a linear stress-strain response is assumed

in the plastic deformation. A modified model consists of a dynamic recovery term was

proposed by Armstrong et al. [60] to generalize the model to a more variety of materials,

where the evolution of backstress is exponential for a monotonic uniaxial loading. More

modified models were presented by Watanabe et al. [61] to generate a better description of

the onset of the plastic flow by introducing a superposition of backstress.

An alternative formulation, multi-yield surface plasticity, was proposed by Mroz et

al. [62] and further developed in the field of soil mechanics(e.g., [63, 64, 65]). In multi-
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yield surface plasticity, multiple, non-intersecting yield surfaces define the evolution of

plastic flow. The primary advantage of this approach is that the behavior is approximated

as linearly hardening between two neighboring yield surfaces, leading to a piecewise linear

approximation of the plastic flow. The evolution equations are therefore very simple and

the accuracy is controlled by number of defined yield surfaces. A modified multi-yield

surface model was proposed by Elgamal et al. [66, 67], in order to reduce the computational

cost by redefining the backstress translation direction. The available literature in multi-

yield surface plasticity focuses on the rate independent behavior, where dissipation was

introduced as structural damping. To the best of authors’ knowledge, no attempt has been

made so far to introduce rate effects at the material level. Other closely linked modeling

approaches such as bounding surface plasticity[68, 69, 70, 53, 71, 72], which is based on

two yield surfaces have also been proposed. Simo[73] explored the idea of using multiple

(intersecting) hypersurfaces in the stress space to describe complex yield surface shapes in

the context of single yield surface plasticity.

In this chapter, a multi-yield surface viscoplastic model is proposed to study the cyclic

response of alloys. The proposed approach builds on the model by Mroz et al. [62] by ex-

tending it to account for viscoplastic process, which is critical to the response characteriza-

tion of metals at high temperatures. The model is implemented using a mixed finite element

approach, in which displacement and pressure are evaluated as independent unknowns [74].

The multi-yield surface viscoplasticity is incorporated into a viscoelastic-viscoplastic con-

stitutive model to describe the response of titanium alloys operating at high temperature

environments. The computational model was validated against experiments conducted at a

variety of temperatures. The main contribution of this chapter is the extension of the multi-

yield surface plasticity approach to the viscoplastic regime. The effect of rate dependent

behavior on the evolution of the backstress is induced without violating Mroz’s collinearity

rule. A nonlinear kinematic hardening law is introduced by incorporating linear kinematic

hardening [59] and multi-yield surface plasticity.
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The remainder of this chapter is organized as follows: Section 4.2 introduces the back-

ground and the basic theory of the multi-yield surface plasticity. The proposed multi-

yield surface viscoplasticity model is explained in Section 4.3. Section 4.4 presented the

viscoelastic-viscoplastic constitutive deformation equation systems. Section 4.5 describes

the finite element implementation of the multi-yield surface viscoplasticity deformation

model. Section 4.6 details the numerical investigation of titanium alloy, Ti-6242S, at var-

ious temperatures. The calibration of the proposed model is based on an independent set

of experimental data and a detailed analysis of the cyclic characteristics of specimens is

included in this section. The conclusions and future research directions are provided in

Section 4.6.2.

4.2 Overview of multi-yield surface plasticity

In this section, Mroz’s multi-yield surface plasticity model[62], which is the starting

point of the proposed model, is summarized. In Mroz’s formulation, a series of yield

surfaces are defined, each of which is associated with a unique plastic moduli, a yield stress

and a backstress to describe piecewise linear, elasto-plastic, rate independent constitutive

behavior.

Consider M yield surfaces to approximate the elastoplastic behavior as illustrated in

Fig.4.1. The yield surfaces are taken to be initially concentric pointing to initial isotropy of

yielding. The yield surfaces are ordered according to their sizes in the π-plane as shown in

Fig.4.1a. For simplicity, each yield surface is modeled using the Von-Mises yield function

(Fig.4.1b). An arbitrary yield function is expressed as:

f m =
√

3s̄m−σ
m
Y 6 0; m = 1,2, ...,M (4.1)

where, σm
Y is the flow stress of the mth yield surface; f m (s,αm;σm

Y ) the mth yield function;

s̄m is the second invariant of the difference between the deviatoric stress s and the backstress
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αm of the mth yield surface:

s̄m =

√
1
2

(
si j−αm

i j

)(
si j−αm

i j

)
(4.2)

In what follows, I adopt the index notation in the problem formulation (i.e., i = 1, ...,nsd),

where nsd is the number of spatial dimensions. Repeated indices of the spatial dimensions

indicate summation unless otherwise stated. A subscript followed by a comma indicates

partial derivative ( i.e., f,i = ∂ f/∂xi) and the dummy index m is reserved to indicate the

pertinent variable associated with the mth yield surfce.

In multi-yield surface plasticity, a pure kinematic hardening rule is typically employed.

As shown in Fig.4.1, each yield surface undergoes rigid body translation towed by the

deviatoric stress tensor. The shifting of the yield surfaces has to be performed such that

none of the yield surfaces intersect another (i.e., collinearity condition [62]). Let m̂ denote

the current active yield surface at an arbitrary equilibrium state, defined as follows:

f m > 0 ∀ 1 < m 6 m̂; and f m̂+1 < 0 (4.3)

The associative flow rule is used to define the evolution of the plastic strain, which follows

the direction of the outward normal to the current active yield surface at the stress point[67,

65]:

Qm̂
i j =

1
Qm̂

∂ f m̂

∂ si j
(4.4)

where:

Qm̂ =

√
∂ f m̂

∂ si j

∂ f m̂

∂ si j
(4.5)

Employing the standard complementary and consistency conditions defined on the current

active yield surface, the magnitude of the slip rate is computed as:

Lm̂ =
1

Hm̂ Qm̂
i j ṡi j (4.6)
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Where Hm̂ is the plastic modulus associated with the current active yield surface. Then the

evolution of plastic strain ε̇ p is defined as:

ε̇
p
i j = 〈Lm̂〉Qm̂i j (4.7)

Where, 〈·〉 denotes the Macaulay brackets (i.e., 〈·〉= ((·)+ | · |)/2).

Pure deviatoric kinematic hardening rule is adopted as:

α̇
m̂ = |α̇ m̂|µ m̂ (4.8)

where the magnitude of the translation |α̇ m̂| of the current active yield surface satisfies

the consistency condition and the translation unit direction µm̂ was proposed by Mroz for

elasto-plastic material. As shown in Fig.4.2, where translation tensor µ̄ m̂
i j for current active

yield surface m̂ is defined as:

µ̄
m̂
i j =

σ
m̂+1
Y

σ m̂
Y

(
si j−α

m̂
i j
)
−
(

si j−α
m̂+1
i j

)
(4.9)

and the normalized direction is:

µ
m̂
i j =

µ̄ m̂
i j

‖µ̄ m̂
i j‖

(4.10)

Which is employed to avoid any overlapping between yield surface m̂ and m̂+ 1. With

the completion of the translation of the current active yield surface m̂, yield surface m̂-1

becomes the new active yield surface and repeat the translation process. Eventually all the

yield surfaces will be translated tangent to each other at the current deviatoric stress point

s.
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4.3 Multi-yield surface viscoplasticity

In this section, I propose a new formulation that extends the multi-yield surface model-

ing to viscoplasticity. The formulation presented here extends Mroz’s multi-yield surface

plasticity model into rate dependent regime, incorporating kinematic hardening. The rela-

tionship between the evolution of backstress and viscoplastic strain is replaced by a general

form [75] that guarantees the collinearity condition point out by Mroz et al. [62].

I posit the existence of a viscoplastic potential defined as a function of all yield surfaces,

i.e., Ω
(

f 1, f 2, ..., f M). The evolution of viscoplastic strain is expressed as[76]:

ε̇
vp
i j =

∂Ω
(

f 1, f 2, ..., f M)
∂σi j

=
∂Ω

∂ f 1
∂ f 1

∂σi j
+

∂Ω

∂ f 2
∂ f 2

∂σi j
+ ...+

∂Ω

∂ f M
∂ f M

∂σi j
=

M

∑
m=1

∂Ω

∂ f m
∂ f m

∂σi j

(4.11)

It is convenient to consider a generalization of the Perzyna law in order to specify the

viscoplastic potential. Let the viscoplastic potential consists of the additive sum of the

contributions from the viscoplastic potential associated with a single yield surface:

Ω
(

f 1, f 2, ..., f M)= M

∑
m−1

Ω
m ( f m) (4.12)

in which:

Ω
m =

γσm
Y

q+1
<

f m

σY m
>q+1 (4.13)

The resulting flow rule is:

ε̇
vp
i j =

M

∑
m=1

γ <
f m

σY m
>q ∂ f m

∂σi j
(4.14)

where, γ and q denote the fluidity and viscoplastic hardening parameter, respectively. Sub-

stituting Eq.4.1 into Eq.4.14:

∂ f m

∂σi j
=

√
3

2s̄m

(
si j−α

m
i j
)

(4.15)

The formulation of the hardening evolution equations for each yield surface requires
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special attention since it differs significantly from rate-independent multi-yield surface

plasticity. I adopt a simple pure kinematic piecewise linear hardening law, following from

the Prager’s model. In the context of single yield surface plasticity, the evolution of the

backstress is expressed as:

α̇i j =Cε̇
vp
i j (4.16)

where C is material parameter that defines the plastic modulus and the direction of

translation of a yield surface in the multi-yield approach is shown in Eq. 4.10.

It is important to note that in contrast to rate independent plasticity the stress state does

not have to lie within or on the current active yield surface m̂ when rate effect is included.

For instance, in case of a creep test, where the stress state remains unaltered, all yield

surfaces within the active yield surface (i.e., 1 < m 6 m̂) continue to translate with respect

to each other until eventually reaching the image stress at t=∞. At the asymptote, all yield

surfaces remain tangent to each other.

The hardening translation rule in the multi-yield surface viscoplastic model is formu-

lated from the single yield surface viscoplasticity and the multi-yield surface plasticity

approach discussed above.

I adopt a form similar to the Prager’s rue to describe the hardening evolution law for

the current active yield surface, m̂:

α̇
m̂
i j = Ĉm̂

µ
m̂
i j (4.17)

in which, Ĉm̂ denotes the instantaneous plastic modulus associated with the current active

yield surface expressed as:

Ĉm̂ =Cm̂
µ

m̂
i j ε̇

vp
i j (4.18)

where, Cm̂ is the plastic modulus of the current active yield surface. The instantaneous

plastic modulus is scaled by the magnitude of the projection of the slip rate on to the

translation direction of the active yield surface. This is analogous to the instantaneous
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modulus in case of single yield surface viscoplasticity, where the plastic modulus is scaled

with the magnitude of slip rate. The yield surfaces that lie outside the current stress state

(i.e., m > m̂), the backstress remains instantaneously stationary.

In contrast to the rate independent plasticity, where the inner surfaces remain tangent to

the active yield surface, the viscoplastic model does not require the stress state to remain

within the yield surfaces. The time dependent translation of the active yield surface and

the inner yield surfaces must satisfy the collinearity condition at all times. The evolution

of backstress for the inner yield surface are expressed as:

α̇
m
i j = Ĉm̂

µ
m̂
i j (4.19)

which implies that all inner yield surfaces translate at the some speed and direction with

the current active yield surface.

This restriction guarantees that there is no relative translation among the inner surfaces

until the active yield surface m̂ reaches the stress point. Fig.4.3 illustrates the hardening

evolution processes during the creep test when the active yield surface reaches the stress

state (i.e., f m̂ = 0), the current active yield surface switches to the next yield surface (m̂←

m̂−1). The reminder of the inner yield surfaces then translate based on the plastic modulus

and direction of the new active yield surface.

4.4 Viscoelastic-viscoplastic model for cyclic deformation at high temperature

In this section, a viscoelastic-viscoplastic model is defined to capture the cyclic behav-

ior of metals in high temperature environment. The viscoelastic behavior is modeled based

on the Boltzmann integral and Prony series approximation of the time dependent moduli.

The viscoplastic behavior is modeled using the multi-yield surface viscoplastic model for-

mulated in Section 4.3. The purpose of the proposed model is to accurately idealize the

cyclic response in high temperature environment, where rate dependence of the response is

non trivial. The proposed model builds on the viscoelastic-viscoplastic model previously
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developed by the authors[3, 74], and extends the formulation to describe the cyclic behavior

using the multi-yield surface viscoplasticity framework.

The governing equilibrium equations describing the mechanical response of a body

occupying the domain Ω⊂ Rnsd is expressed in the following form:

si j, j (x, t)− p,i (x, t)+bi (x, t) = 0; x⊂Ω; t ∈ [0, t0] (4.20)

where, b is the body force per unit volume; s the deviatoric stress tensor; p = −tr(σ)/3

the pressure; σ the stress tensor (σ = s− pδ); δ the second order identity tensor; and tr(·)

denotes trace. x and t parameterize the spatial and temporal dimensions, respectively. t0

is the upper limit of the time domain. Bold symbol indicates vector notation (i.e., x =

[x1,x2,x3] for nsd = 3). The following boundary conditions are prescribed:

ui (x, t) = ūi (x, t) x ∈ ΓD, t ∈ [0, t0] (4.21)

σi jn j = t̄i (x, t) x ∈ ΓN , t ∈ [0, t0] (4.22)

where, u denotes the displacement vector field; ū is the prescribed displacement along the

Dirichlet boundary; ΓD ⊂ Γ≡ ∂Ω; t̄ the prescribed traction along the Neumann boundary,

ΓN ⊂ Γ, such that ΓD ∩ΓN = /0 and ΓD ∪ΓN = Γ; and n is the outer unit normal to the

traction boundary.

Assuming small strain kinematics, the total strain tensor, ε, is:

εi j (x, t) =
1
2
(
ui, j (x, t)+u j,i (x, t)

)
(4.23)

The adoption of the small strain theory implies that large rotations and large plastic defor-

mations that may be present in some high temperature applications are not included in this

study. The total deformation in the viscoelastic-viscoplastic model is separated into three
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components:

εi j = ε
ve
i j + ε

vp
i j + ε

T
i j (4.24)

εve, εvp and εT respectively denote the viscoelastic, viscoplastic and thermal induced strain.

The constitutive relationship between the deviatoric stress and the viscoelastic strain is

modeled using the Boltzmann superposition integral in the context of linear viscoelasticity:

si j (t) =
∫ t

0
L
′
i jkl (t− τ)

dεve
kl (τ)

dτ
dτ (4.25)

in which, the spatial dependence of the pertinent fields is suppressed for simplicity. L′ is

the time-dependent deviatoric component of the tensor of viscoelastic moduli, taken to be

symmetric and positive definite at any time during the deformation process:

L′i jkl = L′kli j = L′jikl = L′i jlk (4.26)

ζi jL′i jklζkl ≥ ηζi jζi j; ∀ζi j = ζ ji; η > 0 (4.27)

A convenient time evolution expression for the viscoelastic moduli is the Prony series:

L′i jkl (t) =

[
Ke +

ME

∑
me=1

Kmeexp
(
− t

ξme

)]
L̄′i jkl (4.28)

in which, L̄′ is the initial moduli tensor; ME the number of Maxwell elements incorpo-

rated in the Wiechert model; Ke denotes the ratio of equilibrium deviatoric moduli over

instantaneous deviatoric moduli; and Kme and ξme are the ratio of deviatoric moduli on

meth Maxwell element over instantaneous deviatoric moduli and the time parameters asso-

ciated with the meth Maxwell element, respectively. Prony series approximation is utilized

to generate a component-dependent relaxation. In order to make time independent moduli

tensor the instantaneous elastic moduli; i.e., L̄′ = L′(t = 0), the values of the Prony series

parameters are constrained such that Ke +∑
M
me=1 Kme = 1,
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For an isotropic solid, the deviatoric component of the elastic moduli is expressed as:

L
′
i jkl (t) = 2G(t)

(
δikδ jl−

1
3

δi jδkl

)
(4.29)

Substituting Eqs. 4.28 and 4.29 into Eq. 4.25, the deviatoric stress tensor is expressed as:

si j (t) = 2ḠKeε
ve
i j (t)+2Ḡ

ME

∑
me=1

Kmeε
me
i j (t) (4.30)

where,

ε
me
i j (t) =

∫ t

0
exp
(
−t− τ

ξme

) dεve
i j (τ)

dτ
dτ (4.31)

in which, εve is the deviatoric component of the viscoelastic strain, and Ḡ = G(0) the

instantaneous shear modulus.

The variation of the relaxation behavior as a function of temperature is modeled using

the Williams-Landel-Ferry (WLF) equation. Let aT denote the WLF time-temperature shift

factor expressed in the form:

logaT (T ) =
−C1 (T −Tref)

C2 +(T −Tref)
(4.32)

where, T denotes temperature; C1 and C2 are material constants and Tref is the reference

temperature, typically taken to be the room temperature. Provided the relaxation behavior

at the reference temperature and the material constants are known, the relaxation behavior

at an arbitrary temperature is obtained by shifting the time scale within a master WLF curve

using aT :

t =
∫

τ

0

dξ

aT (T (ξ ))
(4.33)

The thermal strains are taken to be volumetric:

ε
T
i j = α (T −Tref)δi j (4.34)
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where, α is the thermal expansion coefficient. The viscoplastic strain is taken to remain

in the deviatoric strain space (i.e., tr(εvp) = 0). Considering an isotropic solid with in-

significant relaxation under hydrostatic loading, the constitutive relationship for pressure

becomes:

p(t) =−kui,i (t)+3k [α (T (t)−T0)] (4.35)

in which, k is the bulk modulus. The viscoplastic behavior of the material is idealized based

on the model defined in Section 4.3. The viscoplastic hardening exponent, q, is expressed

as a function of the non-dimensional temperature, T ∗, as:

q(T ∗) = qref +(q̄−qref)T ∗; T ? =
T −Tref

T̄ −Tref
(4.36)

where qref = q(Tref) and q̄ = q(T̄ ) are exponents evaluated at two temperatures. The tem-

perature dependent yield stress associated with yield surface m is defined as:

σ
m
Y = σYref

(
ε̄

vpm
)(

1− (T ?)ς
)

(4.37)

where σYref is the yield stress evolution with respect to plastic deformation at room tem-

perature; ε̄vpm
represents the equivalent viscoplastic strain at mth yield surface, and ς is a

material parameter.

4.5 Numerical Implementation of the Multi-yield Surface Deformation Model

The solution of the deformation problem is performed based on a staggered solution

strategy of isothermal type. In this strategy, the mechanical problem is evaluated until

convergence is achieved at each time step. The thermal state of the system is regarded as

an input to mechanical solvers. The thermal state of the structure is critical to the cyclic

deformation and failure behavior. The transient thermal diffusion, which is not modeled in

this chapter, may also be important in certain problems such as in the presence of high rate

deformation. All cases in this chapter investigate relatively long term behavior, in which

91



isothermal conditions prevail (hours to hundreds of hours). The thermal steady state is

typically reached in a matter of a few seconds, and therefore the thermal transients do not

significantly affect the mechanical process. A detailed formulation of the transport problem

and the coupled solution algorithm has been provided in Ref. [36]. In the remainder of this

section, a θ rule scheme time discretization is proposed and formulated for the multi-yield

surface deformation model.

4.5.1 Mixed FEM formulation of the multi-yield surface deformation model

The system of equations to evaluate the viscoelastic-viscoplastic response of the solid

is numerically evaluated based on the mixed finite element method. In this approach, both

displacement and pressure fields are taken to be the cardinal unknowns (as opposed to the

standard finite element method, where the displacement field is the sole unknown field

and stress is computed at quadrature points). The nodal displacement and pressure are

simultaneously evaluated as described below.

The weak forms of the governing equations of equilibrium in terms of the deviatoric

stress and pressure (i.e., Eqs. 4.20 and 4.35, respectively) are expressed as:

∫
Ω

ν
h
i, jsi jdΩ−

∫
Ω

ν
h
i,i pdΩ−

∫
Γu

N

ν
h
i t̄idΓ−

∫
Ω

ν
h
i bidΩ = 0 (4.38)∫

Ω

1
k

qh phdΩ+
∫

Ω

qhuh
i,idΩdΩ = 0 (4.39)

where, v and q are the test functions for displacement and pressure, defined within the

appropriate Sobolev spaces and with sufficient smoothness, and Let vh and qh belong to the

corresponding finite dimensional subspaces of the test functions, v and q, respectively. I

perform a Bubnov-Galerkin discretization of the displacement and pressure fields, as well
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as the corresponding test functions:

uh
i (x, t) =

nu

∑
a=1

Nu
a (x) ûai (t) (4.40)

ph (x, t) =
np

∑
a=1

N p
a (x) p̂a (t) (4.41)

in which, Nu
a and N p

a are respectively the basis functions of the displacement and pressure

fields that correspond to node a; ˆ(·) denotes the nodal coefficients of the corresponding

field; and nu and np are the total number of displacement and pressure nodes, respectively.

Substituting Eqs. 4.40 and 4.41 into Eqs. 4.38 and 4.39, respectively, the discretized

equilibrium equations take the form:

Ψbi :=
∫

Ω

Nu
b, jsi jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩp̂c−

∫
ΓN

Nu
b t̄idΓ

−
∫

Ω

Nu
b bidΩ = 0; b = 1, ...,nu (4.42)

Θc :=
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩp̂a +
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩûbi

−
∫

Ω

3N p
c [α (T −T0)]dΩ = 0; c = 1, ...,np (4.43)

Taking the time derivative of Eq. 4.30, and employing Eq. 4.31and discretizing in time

yields the recurrence formula of the deviatoric stress tensor as:

si j−t si j = 2Ḡ
(
ε

ve
i j −t ε

ve
i j
)

K̄−2Ḡ
ME

∑
me

Kme

(
1− exp

(
− ∆t

ξme

))
tε

me
i j (4.44)

where,

K̄ = Ke +
ME

∑
me

Kme

(
1− exp

(
− ∆t

ξme

))
ξme

∆t
(4.45)

I adopt the left subscript indicating the time discretization steps; and the left superscript as

the iterative number. Eq. 4.44 indicates that the calculation of the deviatoric stress at current
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time step requires the value of ε at the previous time step, only rather than its entire history

as Eq. 4.31 implies, significantly reducing the computing and memory requirements.

Consider a one-parameter family discretization of the viscoplastic strain rate in the

form:
t+∆tε

vp
i j −t ε

vp
i j

∆t
= θ t+∆t ε̇

vp
i j +(1−θ) t ε̇

vp
i j (4.46)

in which, θ ∈ [0,1] is an algorithmic parameter. The choices of θ = 0,1 and 0.5 correspond

to the explicit, implicit and midpoint rules, respectively. Substituting Eqs. 4.24 and 4.40

into Eq. 4.44 and using Eq. 4.46, the discretized form of the constitutive equation for the

deviatoric stress is expressed as:

Ri j :=t+∆t si j−t si j−2Ḡ
nu

∑
a=1

Nu
a, j (x) t+∆t ûaiK̄ +2Ḡ

nu

∑
a=1

Nu
a, j (x) t ûaiK̄

+2Ḡ∆tθt+∆t ε̇
vp
i j K̄ +2Ḡ∆t (1−θ)t ε̇

vp
i j K̄ +2Ḡ

ME

∑
me

Kme

(
1− exp

(
− ∆t

ξme

))
tε

me
i j (4.47)

Using Eq. 4.17, Eq. 4.19 and Eq. 4.46, the discretized form of the constitutive equation for

the backstress of the mth yield surface is expressed as:

Rm
i j :=t+∆t α

m
i j −t α

m
i j −t+∆t Cm̂

∆tθ
(

t+∆t µ
m̂
i j
)(

t+∆t µ
m̂
kl
)(

t+∆t ε̇
vp
kl

)
−t Cm̂

∆t (1−θ)
(

t µ
m̂
i j
)(

t µ
m̂
kl
)(

t ε̇
vp
i j

)
(4.48)

Equations 4.42, 4.43, 4.47 and 4.48 together consist of the discretized nonlinear system of

the viscoelastic-viscoplastic deformation problem. Newton’s method is employed to solve

this system of equations [33]. Considering the first order Taylor-series expansion of all four
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equations yield:

k+1
Ψbi ≈ k

Ψbi +
k(

∂Ψbi

∂ skl

)
k+1

δ skl +
np

∑
c=1

k(
∂Ψbi

∂ p̂c

)
k+1

δ p̂c

= k
Ψbi +

∫
Ω

Nu
b, j

k+1
δ si jdΩ−

np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c = 0 (4.49)

k+1
Θc ≈ k

Θc +
nu

∑
b=1

k(
∂Θc

∂ ûbk

)
k+1

δ ûbk +
np

∑
a=1

k(
∂Θc

∂ p̂a

)
k+1

δ p̂a

= k
Θc +

nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi +
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a = 0 (4.50)

k+1Ri j ≈ kRi j +
k(

∂Ri j

∂ skl

)
k+1

δ skl +
nu

∑
a=1

k(
∂Ri j

∂ ûak

)
k+1

δ ûak

= kRi j−2ḠK̄
nu

∑
a=1

Nu
a, j

k+1
δ ûai +

(
Ii jkl +2ḠK̄θ∆t kC̄i jkl

)
k+1

δ skl = 0 (4.51)

k+1Rm
i j ≈ kRm

i j +

k(
∂Rm

i j

∂αm
kl

)
k+1

δα
m
kl

= kRm
i j +

(
Ii jkl− kCm

θ∆t
(

k
µ

m̂
i j

)(
k
µ

m̂
st

)
kC̄m

stkl

)
k+1

δα
m
kl = 0 (4.52)

in which, the left superscript denotes the Newton iteration count. The Taylor series expan-

sion is performed about the previous iteration, k. δ (·) denotes the incremental change in

the corresponding response field (·) within the Newton iteration. Incorporating Eq.4.14, at

each yield surface yields:

kC̄m
i jkl =

k(
∂ ε̇

vp
i j

∂αm
kl

)

=−γ

〈 k f m

kσm
Y

〉q(T ?)
 √

3

2
(

ks̄m
)Mi jkl +

q(T ?)
k f m

−
√

3

3
(

ks̄m
)
 k(

∂ f m

∂σi j

)k(
∂ f m

∂σkl

) (4.53)
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where:
kC̄i jkl =

k(
∂ ε̇

vp
i j

∂ skl

)
=−

M

∑
m=1

kC̄m
i jkl (4.54)

Mi jkl = δikδ jl−
1
3

δi jδkl (4.55)

The increment of deviatoric stress, k+1
δ si j is evaluated using Eq. 4.51 as:

k+1
δ si j =

kQi jkl

(
2ḠK̄

nu

∑
a=1

Nu
a,l

k+1
δ ûak− kRkl

)
(4.56)

where, the modulus kQ is defined as:

kQi jkl =
(

Ii jkl +2ḠK̄θ∆t kC̄i jkl

)−1
(4.57)

The increment of backstress, k+1
δα

m
i j is evaluated using Eq. 4.52 as:

k+1
δα

m
i j =−kQm

i jkl
kRm

kl (4.58)

where, the modulus kQm is defined as:

kQm
i jkl =

(
Ii jkl− kCm

θ∆t
(

k
µ

m̂
i j

)(
k
µ

m̂
st

)
kC̄m

stkl

)−1
(4.59)

Substituting Eq. 4.56 into Eqs. 4.49 and 4.50 yield:

∫
Ω

2ḠK̄kQi jklNu
b, j

nu

∑
a=1

Nu
a,ldΩ

k+1
δ ûak

−
np

∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ

k+1
δ p̂c =

∫
Ω

kQi jklNu
b, j

kRkldΩ− k
Ψbi (4.60)

and,

−
nu

∑
b=1

∫
Ω

N p
c Nu

b,idΩ
k+1

δ ûbi−
np

∑
a=1

∫
Ω

1
k

N p
c N p

a dΩ
k+1

δ p̂a =
k
Θc (4.61)
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Equations 4.60 and 4.61 are simultaneously evaluated for the increments of the displace-

ment (k+1
δ û) and pressure fields (k+1

δ p̂) at the current iteration, k+1.

When expressed in the matrix form, Eqs. 4.60 and 4.61 yield:

 kKuu Kup

(Kup)T Kpp




k+1
δ û

k+1
δ p̂

=


kfu

kfp

 (4.62)

in which, the components of the tangent stiffness matrix are expressed as:

kKuu
αβ

=
∫

Ω

2ḠK̄kQi jmnNu
b, j

nu

∑
a=1

Nu
a,ndΩ;α = b+(i−1)nu;β = a+(m−1)nu(4.63)

Kup
αc = −

∫
Ω

Nu
b,iN

p
c dΩ; α = a+(i−1)nu; 1≤ c≤ np (4.64)

K pp
ab = −

∫
Ω

1
k

N p
a N p

b dΩ; 1≤ a,b≤ np (4.65)

The left superscript is included only on the sub matrix, Kuu, which is the only nonlinear

part of the tangent stiffness matrix. The unknown displacement and pressure coefficients,

as well as the force vectors are expressed in the vector form as:

k+1
δ û = {k+1û1, ...,

k+1ûnsd×nu}T ; kfu = {k f u
1 , ...,

k f u
nsd×nu

}T (4.66)

k+1
δ p̂ = {k+1 p̂1, ...,

k p̂np}T ; kfp = {k f p
1 , ...,

k f p
np
}T (4.67)

and the components of the force vector are given as:

k f u
α =

∫
Ω

kQi jklNu
b, j

kRkldΩ−k
Ψbi; α = b+(i−1)nu (4.68)

k f p
a = k

Θa; 1≤ a≤ np (4.69)

The finite elements discretizing the displacements and the pressure fields are chosen in

order to satisfy the Babuska-Brezzi constraint. Ensuring this constraint is satisfied in the

choice of the pressure and displacement discretization to avoid the potential numerical
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instability and response oscillations observed in mixed formulations. In the numerical

studies provided in this chapter, I employ nine-node biquadratic in displacement and four-

node bilinear in pressure Taylor-Hood element.

4.5.2 Implementation algorithm of the multi-yield surface deformation model

Based on the expressions above, I employ the following algorithm to compute the pres-

sure and displacement fields:

At arbitrary time t +∆t: Given the state at the previous time step; t û, t p̂, ts , tα , t ε̇
vp and

t ε̇
vp
m ; Find the response at the current step; û, p̂.

1. Initiate the algorithm: k = 0.

2. Set the initial guesses for the pressure and deformation coefficients at the current

increment:

0û = t û; 0p̂ = t p̂; 0s = ts; 0
αm = tαm; 0ε̇vp = t ε̇

vp; 0ε̇vp
m = t ε̇

vp
m (4.70)

3. Loop until convergence:

(a) Compute the moduli: K̄, kC̄, kQ, kC̄m and kQm using Eqs. 4.45, 4.54, 4.57, 4.53

and 4.59, respectively.

(b) Calculate kΨ, kΘ, kR and kRm using Eqs. 4.42, 4.43, 4.47 and 4.48, respec-

tively.

(c) Update the pressure and displacement increments, k+1
δ û and k+1

δ p̂ by solving

the linear system in Eq. 4.62.

(d) Compute deviatoric stress increment k+1
δ s and backstress increment k+1

δαm

at each integration point using Eq. 4.56 and Eq. 4.58.
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(e) Update displacement, pressure, deviatoric stress and backstress:

k+1û = k+1
δ û+ kû (4.71)

k+1p̂ = k+1
δ p̂+ kp̂ (4.72)

k+1s = k+1
δ s+ ks (4.73)

k+1
α

m = k+1
δα

m + k
α

m (4.74)

(f) Update viscoplastic strain rate k+1ε̇vp using Eqs. 4.14.

(g) Update viscoplastic strain k+1εvp by evaluating:

k+1εvp = tε
vp +θ∆t k+1ε̇vp +(1−θ)∆t t ε̇

vp (4.75)

(h) Update yield surface translation direction k+1µm using Eqs. 4.10.

(i) k = k+1

4.6 Numerical Investigations

The proposed computational model is employed to investigate the cyclic mechanical

response of a titanium alloy at elevated temperatures. The alloy of the interest Ti-6Al-2Sn-

4Zr-2Mo-0.1Si (Ti-6242S) displays good mechanical properties at elevated temperature,

making it a candidate structural material for hypersonic aircraft applications. The present

investigations start with the verification of the multi-yield surface viscoplastic model (Sec-

tion 4.6.1), where a parametric study is conducted to investigate the effectiveness of the

proposed theory in ensuring that the collinearity rule is strictly enforced. The second part

is the calibration and simulation of the cyclic response of Ti-6242S in low cycle fatigue

test (Section 4.6.2), where the Prager’s linear kinematic hardening modulus, the number of

yield surfaces and the yield stress associated with each surface are evaluated.
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Figure 4.4: Stress relaxation test.

4.6.1 Multi-yield surface viscoplasticity verification

In order to verify the theory, a parametric study is performed by testing the viscoplastic

response and the collinearity theory with given random stress variation input. Figure 4.4

shows the relaxation behavior under the constant strain magnitude of 3.5%. At the early

stage of stress relaxation, both viscoelastic and viscoplastic relaxation processes are active

since the specimens were loaded to stress levels beyond several yield surfaces. The long-

term relaxation behavior is governed by the viscoelastic component of the model only, as

the stress drops inside the first yield surface.

The test stress input history of the collinearity test is shown in Fig.4.5, where σ11 is

monotonically increased to 1000 MPa in 40 s then gradually reduced to zero until 72 s. σ22

remains null in the first 40 s then linearly increase to -1000 MPa until 72 s. For comparison

purpose, two sets of simulations are run in order to test the effectiveness of the proposed

model. The first simulation is executed without the incorporated direction correction term;

therefore the backstress evolution in each yield surface follows Prager’s linear kinematic

hardening in the uniaxial case as:
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Figure 4.5: Time history input of stress tensor.

α̇
m̂
i j =Cm̂

ε̇
vp
i j (4.76)

The second simulation follows the proposed theory in Eq.4.17. The simulation outcome

of the parametric test is summarized in Fig.4.6, where 7 yield surfaces are employed and

3 snapshots are taken from the yield stress translation process at the beginning of test, at

40 s when the uniaxial loading ends and at 72 s when the simulation stops. All the yield

surfaces are concentric circles in the beginning of test, when no loads are applied. At the

end of the uniaxial test, both simulations yield unanimous outcomes as shown in (b) and (e)

in Fig.4.6, implying the collinearity of the backstress of each yield surface and the stress

tensor in uniaxial test. As the stress tensor deviates after time 40 s, the collinearity nature

needs to be maintained by the proposed yield surface translation theory, therefore in (c) of

Fig.4.6, clearly some non-smooth intersection occurs within several interior yield surfaces;

however the proposed theory eliminate the intersection as shown in (f) of Fig.4.6 .
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Figure 4.6: Yield surface translation process of no corrected translation direction at time (a)
0; (b) 40 s; (c) 72 s; of corrected translation direction at time (d) 0; (e) 40 s; (f) 72 s.
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4.6.2 Cyclic response of Ti-6242S alloy

The cyclic responses of Ti-6242S cyclic tests are performed based on the experimental

data conducted at the Air Force Research Laboratory. The test specimen is a round bar with

a cross section diameter 0.25 in and a gauge length 1 inch. The uniaxial experiments were

displacement controlled with a strain range 0.012 and constant strain rate 1.0e−3 1/s. Two

tests were performed at high temperature environment 450 0C with a strain ratio -1 and

550 0C with a strain ratio -∞. The plastic moduli are more linear in the low temperature

environment and generally require less number of yield surfaces. In the current study 6

yield surfaces are employed to generate favorable results compared to the experiments.

The outmost yield surface is set to be enormous enough so that the stress point won’t be

able to jump beyond it.

The simulation results at 450 0C as well as the comparison between the experiments

are summarized in Fig. 4.7. The near identical strain input of experiment and simulation

are shown in (a), where 2 cycles are modeled from the start of the test. The strain ratio of

-1 makes this test a symmetric cyclic response. The simulation stress output is presented in

(b), which generates a good match with respect to the experimental data. For the initially

undamaged material all the yield surfaces (1,2...M) are concentric and share the same ori-

gin. The pure kinematic hardening law and the constant temperature determine that all the

surfaces will translate in the deviatoric stress space without changing size and orientation.

The simulated viscoplastic strain rate history is demonstrated in (c), where each jump of

the viscoplastic strain rate magnitude is a direct consequence of the activation of one more

yield surface, as shown in Eq.4.14. The comparison of the simulated initial hysteresis loop

of stress strain curve and stress plastic strain curve are demonstrated in (d). The applied

0.6% strain generates an approximate 2.5 % plastic strain. It can be seen that the stress, vis-

coplastic strain rate and stress strain hysteresis loop all deliver the symmetric distribution

due to the strain controlled input history.

The comparison of the initial experimental and simulation hysteresis loop of stress
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Figure 4.7: Strain controlled low cycle fatigue test at 450 0C of (a) simulation and experiment
strain input history comparison; (b) simulation and experiment stress history comparison; (c)
simulation viscoplastic strainrate history; (d) simulation stress vs. strain and stress vs. plastic
strain comparison.
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strain curve is presented in Fig. 4.8. It is convenient to generate a piecewise linear elaso-

plastic behavior through the multi-yield function viscoplastic model, and for 450 0C the

activation of 3 yield surfaces gives good match to the experimental data. The other mate-

rial parameters of Ti-6242S, Young’s modulus, Poisson’s ratio, viscoplastic parameters and

viscoelastic parameters are all calibrated and validated in the previous work [74]. Since this

is a uniaxial test, the deviatoric stress point moves back and forth along one direction, and

the yield surface translation direction is coincident with the Prager’s linear hardening law.

As the test starts, the stress point moves from the origin. The plot is determined by the elas-

tic moduli before the stress point reach the first yield surface. Next, the yield surface will

be towed along the moving direction of the stress point, and the loading function Eq. 4.1

of the first yield surface can be a positive value depending on the viscosity. Here the slope

of the stress strain curve is determined by the C1 in Eq. 4.18. As the stress point moves

beyond the second yield surface, both first and second yield surfaces are translating, with

the rate calculated by C2 in Eq. 4.18 of the second yield surface. In the unloading process,

the stress point reverses the moving direction. Plastic unloading can occur in highly rate

dependent materials, however it is trivial in the Ti-6242S up to 550 0C. It is noticeable that

the strain distance of elastic deformation, plastic deformation of first yield surface transla-

tion and so on of unloading curve are all twice as large as the initial loading curve, this can

also be observed from (c) and (d) of Fig.4.7. As a symmetric displacement controlled test,

the two-stress peak also has equal magnitude and the hysteresis loop converges very fast.

Fig. 4.9 shows the simulation results at 550 0C. The strain input of experiment and

simulation are shown in (a), where 2 cycles are modeled from the start of the test. The

strain range is the same as the test in 450 0C but with a different ratio -∞ make this test

a nonsymmetrical cyclic response. The simulation stress output is presented in (b), which

shows more nonlinearity due to the higher temperature. The simulated viscoplastic strain

rate history is presented in (c). It can be seen that the peak value reduces after the initial

loading, which shows that it take longer time to converge in more rate dependent tests. The
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Figure 4.8: Strain controlled low cycle fatigue test at 450 0C of simulation and experiment
stress vs. strain comparison.

comparison of the simulated initial hysteresis loop of stress strain curve and stress plastic

strain curve are demonstrated in (d). The applied 0.6% strain also generates an approximate

2.5 % plastic strain. Eventually the stress, viscoplastic strain rate and stress strain hysteresis

loop are all shifted toward the compression direction due to the given strain ratio.

The comparison of the initial experimental and simulation hysteresis loop of stress

strain curve is presented in Fig. 4.10. It is clear that more yield surfaces needs to be

activated for 550 0C in order to generate good match to the experimental data due to the

highly nonlinear experimental curve. In this test, smaller yield surfaces are expected in

high temperature and smaller values of Cm are introduced in the outer yield surfaces due

to the little hardening around the peak value of the stress. The converged hysteresis loop

deviates away from the initial path as a result of the asymmetry in the applied displacement,

which also leads to the different peak magnitude of the stress value.
sectionConclusion

This chapter provided a multi-yield surface viscoplastic model to study the cyclic re-

sponse of alloys in high temperature environment, from which the time dependent effect has
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Figure 4.9: Strain controlled low cycle fatigue test at 550 0C of (a) simulation and experiment
strain input history comparison; (b) simulation and experiment stress history comparison; (c)
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Figure 4.10: Strain controlled low cycle fatigue test at 550 0C of simulation and experiment
stress vs. strain comparison.

been addressed on the backstress evolution and the Mroz assumption of collinearity rule.

The computational model was verified in a parametric study and then calibrated against ex-

periments conducted in a variety of temperatures of Ti-6242S. The proposed computational

model accurately eliminates the non-smooth intersection of yield surfaces in viscoplastic

regime and generates a good match of the hysteresis curve compared to the experiments.

Improvements remain to be investigated in the proposed model. One main issue is the

oxygen ingress of the titanium alloy at elevated temperatures, which will affect the cyclic

response as oxygen concentration increases. As a result of the embrittlement and hardening

effect of the transport of oxygen[74], the yield surfaces will increase in the proposed model,

which brings in the isotropic hardening component into the multi-yield surface viscoplas-

tic model. Another challenge is the accurate characterization of localized deformation and

failure that necessitates resolution of the grain scale deformation and transport processes

within the boundary region, which needs multiscale computational models that can accu-

rately incorporate such grain scale information into a structural scale problem[77].

108



Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation provided a three-field computational model for coupled transport-

deformation problems. The proposed model is based on a tightly coupled two-field formu-

lation for the viscoplastic deformation response to provide accurate pressure and pressure

gradient fields to a transport problem. The proposed computational model conveniently and

accurately computes these fields based on the mixed finite element approach. The detailed

accomplishments of this dissertation are summarized as follows.

Chapter 2 provided a three-field computational model for the evaluation of coupled

transport-deformation problems. The displacement, pressure and concentration fields are

evaluated as independent unknowns. The key novel contribution of the present chapter is

the demonstration that the mixed finite element method, in which the pressure is treated

as an independent unknown in addition to the displacement degrees of freedom, can be

employed to accurately compute the pressure gradient in the deformation problem. The

pressure gradient information, in turn, is employed to accurately calculate the instantaneous

coefficients of the advection-reaction terms of the mass transport problem. In addition,

the computational model has the following properties: (a) the mass transport problem is

stabilized to accurately describe the advection-dominated transport in the presence of high

stress gradients (e.g., crack and notch tips); (b) the deformation problem is evaluated using

a tight-coupled two-field (displacement-pressure) formulation, whereas the transport and

deformation processes are evaluated based on a staggered approach to efficiently address

problems where the time scales associated with the transport and deformation processes

are disparate.
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Chapter 3 proposed a new coupled deformation-transport model to study the response

of titanium alloys at combined environments. The proposed approach was built to account

for creep and relaxation processes, which are critical to the response characterization at

high temperatures. The computational model was validated against experiments conducted

in combined environments. The two main novel contributions of this chapter are: (1) The

proposed model accurately captures the time-dependent creep/relaxation processes through

the incorporation of viscoelastic-viscoplastic mechanisms; (2) A detailed investigation of

the coupling mechanisms between the oxygen ingress induced embrittlement, relaxation

and the inelastic deformation is provided, including partial validation of the interaction

mechanisms based on experimental data.

Chapter 4 presented a multi-yield surface viscoplastic model to study the cyclic re-

sponse of alloys. The proposed approach was built to realize the rate dependent cyclic

behavior of alloys in the high temperature environment. The main contribution of this chap-

ter is to extend the multi-yield surface plasticity model to viscoplastic regime, from which

the time dependence effect has to be addressed on the back stress evolution and the Mroz

assumption of collinearity rule. A nonlinear stress-strain response kinematic hardening

model is introduced by incorporating linear kinematic hardening and multi-yield surface

plasticity, which avoids the recall terms in dynamic and static recovery and significantly

simplifies the mathematical implementation of the viscoplastic kinematic hardening.

5.2 Future work

Beyond the achievement and contribution of the proposed model in this dissertation,

several challenges remain. First, transport problem needs to be coupled with the multi-

yield surface viscoplastic model. With the variation of oxygen concentration, the isotropic

hardening term will complicate the process of the back stress evolution and viscoplastic

strain rate evaluation. Second, substantial amount of researches show that during the ex-

posure of titanium alloy in the extreme environment, a ceramic oxide layer will develop
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on the surface of the structure[15], which exhibits significantly higher solubility of oxy-

gen than the titanium alloy. Therefore, the existing transport model needs to be improved

to incorporate the variability of diffusivity with respect to the local oxygen concentration,

which will makes the transport model another non-linear problem. Furthermore, a multi-

scale computational approach that can accurately characterize the localization deformation

and failure is required to consummate the model.
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