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CHAPTER I 
!

INTRODUCTION 
!

 This Thesis Dissertation is comprised of four chapters that, respectively: 1) Examine the potential 
value of studying cellular dynamics and heterogeneity in the context of emerging biological warfare 
threats; 2) Review both the advantages and disadvantages of current methods that track cells using time-
lapse live-cell microscopy; 3) Propose a novel algorithm to measure and track changes in cellular 
behavior dynamically; and 4) Highlight a novel semi-automated algorithm developed to identify and 
track cellular focal adhesions overtime in 3D.  
!

Background 
 Biological warfare has existed for centuries, with one of the earliest known examples occurring in 
1155 when Emperor Frederick Barbarossa poisoned water wells with cadavers in the siege of Tortona, 
Italy.   Such incidents have continued throughout the ages. In 1972, the Convention on the Prohibition of 1

the Development, Production, and Stockpiling of Bacteriological (Biological) and Toxin Weapons and 
their Destruction was signed and adopted for enforcement by the United Nations Office for 
Disarmament Affairs.   This treaty aims to prevent the development of offensive   biological weapon (BW) 2 3

agents and eliminate existing stockpiles; however, it only applies to those 170 nation-states that signed the 
convention and does not affect the actions of the 23 non-signatory states, such as Israel, Chad, and 
Kazakhstan,   or independent groups and individuals that seek to employ such weapons. 4

 The 2001 anthrax letters demonstrated that the 1972 BW convention limits only one aspect of the 
problem. Weapons of mass destruction (WMD), once previously under the sole control of nation-states, 
now could be maintained and deployed by an individual, albeit possibly in smaller quantities than could 
be produced by a nation-state. In 2010, it was concluded that these letters, which were sent to political 
leaders and media outlets across the United States, constituted a terrorist attack   and were sent by Dr. 5

Bruce Ivins, a trained microbiologist employed by the Department of Defense.   In April and May of 2013, 6

two separate ricin letter attacks were allegedly carried out by individuals who, with little to no scientific 
experience and support, were able to create a biological agent, albeit one that may not have had the 
potency of an effective weapon.   Compared to the 2001 anthrax letters, the separate 2013 ricin letters 7

illustrate a transition in BW production from the trained individual to the layman, as it has been alleged 
that the first set of letters was sent by a karate instructor from Tupelo, Mississippi,   and the second set 8

from a part-time actress / housewife from Dallas, Texas, who pleaded guilty to sending the letters on  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December 11, 2013.   These recent incidents demonstrated that a relatively low level of sophistication and 9

technological knowledge was no bar to deployment of a WMD.   10

 A 2005 Washington Post article by Steve Coll and Susan Glasser presciently stated that “one can 
find on the web how to inject animals, like rats, with pneumonic plague and how to extract microbes 
from infected blood . . . and how to dry them so that they can be used with an aerosol delivery system, 
and thus how to make a biological weapon. If this information is readily available to all, is it possible to 
keep a determined terrorist from getting his hands on it?”    11

 The ability of non-scientists to create and deploy a biological weapon highlights the emergence of 
a new threat, the “biohacker.” “Biohacking” is not necessarily malicious and could be as innocent as a 
beer enthusiast altering yeast to create a better brew. Yet the same technology used by a benign biohacker 
can easily be transformed into a tool for the disgruntled and disenfranchised   to modify existing or 12

emerging biological warfare agents and employ them as bioterrorism. 
 The United States Military defines a biological warfare agent as “a microorganism that causes 
disease in humans, plants, or animals or the degradation of material.”   Biological agents are classified as 13

pathogens, toxins, bioregulators, or prions.  
 Pathogens are disease-producing microorganisms, such as bacteria, rickettsiae, or viruses.   These 14

can be either naturally occurring or altered by random mutation or recombinant DNA techniques. 
Toxins are defined as poisons formed as a specific secreting product in the metabolism of a plant or 
animal such as snake venom.   Bioregulators, such as enzymes and catalysts, are compounds that regulate 15

cell processes and physiological activity. Bioregulators are necessary and found in the human body in 
small quantities however introduction of excess quantities can cause malaise or death.   Prions are 16

proteins that can cause neurodegenerative diseases by converting the normal amino acid sequence into 
another prion in humans or animals.   The most notable prion caused the 1996 mad cow epidemic in 17

England.  
 Biological agent weapons, unlike conventional weapons or other WMD, have the potential to 
create a runaway uncontrollable event. The damage of a bomb or artillery shell is constrained by the blast 
radius. The effects of chemical and nuclear WMD dissipate over time, albeit with a broad range of half-
lives, environmental diffusivities, and ease of decontamination. In contrast, BW are microorganisms that 
upon dissemination could proliferate exponentially within a single host, linger, and spread from one host 
to another. Hence BW have the potential to be unbounded in both space and time. The hosts themselves 
serve as potent amplifiers for the agent. Common to all BW agents is the existence of a lag time between 
time of infection and onset of symptoms. This lag time or incubation time allows infected individuals to 
be asymptomatic and continue with their normal lives,   increasing the potential for spreading. 18
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 The Defense Advanced Research Projects Agency (DARPA) commissioned a JASON study in 
2003 to examine the best means to detect, identify, and mitigate the effects of a biological agent release 
within the United States.   The study emphasized that current technologies and those expected to be 19

developed within the next five years would not accomplish a nationwide blanket of biosensors. Instead, 
sensors that are currently available should be used at critical locations according to a pre-established 
“playbook.”   Outside the range of these critical nodes, biosurveillance against a bioterrorism event 20

would be accomplished through medical surveillance. The essential component of such surveillance 
would be the “American people as a network of 288 million   mobile sensors with the capacity to self-21

report exposures of medical consequence for a broad range of pathogens.”   As a result of the H1N1 flu 22

pandemic, the 2012 National Strategy for Biosurveillance further reiterates the findings of the JASON 
report and calls for medical biosurveillance to move beyond chemical, biological, radiological and 
nuclear (CBRN) threats. This expansion increases medical surveillance to examine a “broader range of 
human, animal, and plant health challenges,”   in an effort to improve early detection of emerging 23

diseases, pandemics, and other exposures. 
 Medical biosurveillance, however, has an intrinsic limitation: it is entirely dependent on the self-
reporting of symptoms and illnesses, which only occurs after an incubation period. This time lag is the 
window of opportunity for malicious activity by the biohacker aimed at increasing the damage and 
spread of BW effects. For instance, delayed onset of symptoms and ease of international travel enable an 
individual from the United States to be anywhere in the world within a few hours of BW exposure, 
potentially infecting hundreds if not thousands along the way. From the biohacker’s disturbed point of 
view, a highly virulent pathogen with short incubation interval and rapid mortality may not be as 
desirable as a less virulent one, which will allow the infected individuals to travel greater distances before 
exhibiting symptoms or dying. A biohacker possesses several strategies to maximize the BW incubation 
period to evade or alter the medical biosurveillance network. 
 Many biological warfare agents are naturally occurring around the world or easily derived from 
plants and could be transformed by biohacking. The advent of modern technologies enables the 
biohacker to employ one or a multitude of strategies to increase the tactical or strategic effectiveness of a 
biological agent. These strategies have been broadly classifed as “Wolf in Sheep’s Clothing,” “Trojan 
Horse,” “Spoof,” “Fake Left,” and “Roid Rage.”    24

 A “Wolf in Sheep’s Clothing” occurs when a biological organism or toxin is modified through 
genetic engineering so that it can be expressed in an active form but does not present the normal native 
epitopes.  -   In a “Trojan Horse,” a biohacker maintains the epitope of a non-threatening agent but re-25 26

engineers the active component of the toxin to increase its biological threat but not the detectability. The 
“Spoof ” occurs when a benign agent is modified to express epitopes distinctive of a known toxin in order 
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to trigger an unnecessary protective response by the target parties (the local, state, or federal 
government), while the delivering party (the biohacker) can afford to remain unencumbered. The “Fake 
Left” is a means to modify through selection or genetic engineering the method of transmission of an 
organism e.g., from fluid to airborne, to facilitate dispersion of  an agent in a target population. The “Roid 
Rage” strategy potentiates the effects of a common virus by expressing the deadly viral components of 
another virus, such as altering the flu virus to express the RNA sequence of Ebola.  
 Any of these strategies could be used separately or in conjunction. These strategies also do not 
require large or sophisticated laboratories to accomplish.   As noted above, beer home brewing hardware 27

may be sufficient to culture some bioagents. Moreover, a plethora of scientific data is at the biohacker’s 
disposal. For example, research by Herfst et al published in Science in 2012 on the avian flu virus (A/
H5N1) highlights the five specific genetic modifications required to transmit the virus from ferret to 
ferret, a highly relevant model since ferrets are susceptible to the same flu viruses as humans.   Such 28

information provides a framework for biohackers to implement their strategy.  
 Modifications to a known pathogen could potentially render treatments useless as well as lead to 
increased numbers of casualties as the agent requires longer identification time. Our current 
understanding of bio-weapon agents is depicted in figure 1, highlighting in two dimensions the natural 
proximity and overlap of both physical characteristics and biological effects of known bio-weapon agents 
from a multi-dimensional phase space. Such proximity evokes the potential for a biohacker to blur the 
identification of a agent. For example, the closeness between Staphylococcal Enterotoxin B (SEB) and 
Ricin demonstrate an opportunity for a bio-hacker to swap either their epitopes or functions.  
 Due to the preponderance of available information, technology, and equipment, preventing the 
emergence of a biohacker is a major challenge. Foiling a successful large scale BW attack relies on the 
ability to rapidly detect the presence of and identify a biological weapon agent, thus leading to rapid 
treatment of those infected. Currently however there exists a significant lag time between point detection 
methods, positive identification and treatment. 
!

Current Methods and Issues 
 As a 2006 Strategic Study on Bioterrorism highlights, “early detection of an attack or outbreak of a 
disease is crucial in order to confine the spread and to deploy the most effective response mechanisms, 
including medical countermeasures.”   Current detection methods are categorized as either point-29

detection or medical bio-surveillance. Their main drawback is temporal lag, which enables a BW agent to 
spread. In the case of a point detector, for instance, a potential threat agent must be collected, 
transported, and tested, taking up to 96 hours (dependent on the proximity of sample collection and 
laboratory).  A publication from Lawrence Livermore National Laboratories highlights that “detecting  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Figure 1. This phase space diagram is a 2D representation of a multi-dimensional array showing several 
known bio-weapon agents; Botulism Toxin (Botox), Staphylococcal Enterotoxin B (SEB), Ricin, 
Smallpox, and Anthrax and their relationship to each other in terms of classification. Shown but not 
labelled in the blue is the phase space for Russian engineered Anthrax. This figure was adapted from a 
presentation by John Wikswo.   30
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viable pathogens involves several labor- and time-intensive steps, such as pipetting, centrifuging, plating, 
and colony counting...confirmed results can take several days to obtain.”   31

 A 2003 study commissioned by the Defense Advance Research Projects Agency (DARPA) and 
conducted by the Jason Committee highlighted that current technologies as well as technologies expected 
to be developed within the next five years would not provide a nationwide blanket of biosensors. Instead 
sensors that are currently available should be used at critical locations according to the pre-established 
“playbook.” Outside of the range of these critical nodes, bio-surveillance against a bioterrorism event will 
be accomplished through medical surveillance. The critical component of medical bio-surveillance is the 
“American people as a network of 288 million mobile sensors with the capacity to self-report exposures 
of medical consequence to a broad range of pathogens.”   The delayed onset of symptoms and detection, 32

identification, and verification difficulties of biological agents confer advantages to the enemy, 
highlighted in figure 2. This determination is potentially out-dated as the technology and associated costs 
from 2003 have changed.  
 The Joint Biological Point Detection System (JBPDS), a continuous environmental aerosol 
monitor, is currently available for point detection surveillance. These devices collect samples over a four 
hour interval and then the sample is transported to a “central laboratory” for analysis; highlighting the 
existing best case scenario for detection to identification. Further limiting to this system is the database 
of pathogens. The JBPDS is only capable of examining the pathogens such as anthrax, tularemia, plague, 
and brucellosis that are present in the database. Hence if a pathogen is not being specifically in the 
designated database then no alarm for a potential pathogen is activated.  
 Further complicating the current point detection systems is their static nature of the chemical and 
biological agent database. The database is tied to looking for specific markers that are present but figure 3 
indicates such markers may or may not be present. A biohacker could be using one of the previously 
mentioned strategies modify an agent so that the signature of the agent as seen through its gene 
expression, or genotype, is different yet the resulting agent and effects, phenotype, are the same.  
 One proposed method to overcome current lag time in the detect-to-treat scheme is through the 
employment of a mobile polymerase chain reaction (PCR). However, PCR suffers from two major 
limitations.  The first is the critical requirement of maintaining sample purity, as PCR is extremely 
sensitive to contamination and would require a clean-room environment (e.g., laminar flow hoods) that 
is difficult to implement in the field or combat environments. Another is that PCR would require a 
database of known pathogens for identification, and if the sampled pathogen is not in the database or has 
been modified by a biohacker then little to no information is garnered. 
 Additionally, PCR and other current detection methods seek a unique identifiable characteristic 
of the pathogen such as an epitope. These markers however could be transiently expressed by a biohacker  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Figure 2. Nominal timeline for a bioterrorism event. There is a substantial lag time between the time of 
infection and the onset of symptoms, and development of full-blown disease. Adapted from Figure 2 of 
the Jason Committee report.   33
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Figure 3. Path to the neutrophil as seen through Gene Expression Dynamics Inspector (GEDI) highlights 
that under different conditions there are two separate means and 2773 genes that transform a HL-60 cell 
into a neutrophil. It is such a path that demonstrates static observation may lead the researcher to 
missing the crucial endpoint. Additionally this path highlights that a “bio-hacker” could modify the 
biological weapons agent to avoid detection and yet the end result is the same. Adapted from Huang et al 
(2005) and Eichler et al (2003).  -   34 35

!
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and so identification at a single time point could result in misidentification. Figure 4 is a temporal series 
following the release of a bio-weapons agents that has been modified by a bio-hacker. Through clinical 
bio-surveillance, a large number of cases with flu-like symptoms would present themselves at hospitals 
and clinics and a growing number of associated casualties would occur a few days after the release (B). 
Currently, identification is accomplished using a standard solid-phase peptide assay that identifies 
receptor binding epitope that is unique to Anthrax (C) and is being expressed by the casualty causing 
agent. Treatment is initiated using antibiotics such as Cipro. Treatment however does not abate the 
worsening symptoms which progress from flu-like symptoms to pustules. The epitope that led to the 
initial Anthrax identification is also no longer visible. The Cipro treatment had no effect on the 
worsening smallpox symptoms as physicians began seeing these physical symptoms emerge (D). Missing 
within the static identification techniques such as DNA sequence or epitopes presentation are the actual 
biological effects of the BW agent.  
 Though the potential to identify biological agents through their DNA exists, the practice is not 
perfect and such methods ignore other components that could be used for identification.  Work by 
Eklund et al (2009), which measured the rate of glucose consumption, oxygen concentration, lactate 
changes and the acidification rate, highlight that changes are not stochastic but, rather, effects are 
dynamic and different between the BW agents. Figure 5 highlights heterogeneous response of different 
BW agents, Ricin and Anthrax, on different cell types in time. More specifically, it is a dynamic response 
that potentially creates unique signatures for an agent that can be measured in real-time. This level of 
quantifiable difference poses the question if BW agents can be identified through their dynamics and 
heterogeneous effects on cells and highlights the significant amount of information available for 
understanding the BW agents mechanism of action modified by a “bio-hacker.”  
!

Dynamics and Heterogeneity 
 The impact of BW agents on human health directly percolates from organ failure and tissue 
destruction, but is ultimately defined by the toxic effects on cellular functions, with the most severe being 
cell death. Measuring response to biological agent at the cell level is therefore paramount to assessing BW 
potential damage and subsequent treatment strategies. Figure 6 highlights the centrality of the cell 
between small molecules and organism. Current assays suffer from limitations in measuring two critical 
aspects of cellular response to perturbations: dynamics and heterogeneity. 
 Dynamics refers to the rate of change in the size of a cell population. Current assays do measure 
change of size in a perturbed cell population, but not in terms of rates. Rather, they are largely based on a 
single fixed time-point measurement (at 72- or 96-hour after treatment). This static metric is quite useful 
to estimate potency of a toxic substance, but dynamics of response remain vague at best because they are  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Figure 4. The consequences of misidentification as a “bio-hacker” modifies the BW agent through 
transient expression to be identified as a different agent leading to the wrong treatment. 
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Figure 5. Glucose, Oxygen, Lactate, and Acidification response to (A) 100nM Ricin in neuroblastoma 
cells and (B) 1 and 2 uM Anthrax in macrophages. Adopted from Eklund et al.   36
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Figure 6. Mutli-scale visualization of molecules to organism. Highlighted at the center of the figure is the 
role of the cell which is the link between small molecules and tissues, organs, and the organism. Adopted 
from Anderson and Quaranta, 2008.   37

!
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by necessity based on the unverified assumption that the measured change in population size will carry 
on indefinitely. This is a grave limitation because accurate estimates of rate response are absolutely 
necessary for predictive models for depth and spreading of the effects of a BW agent. 
 Heterogeneity exists at all biological scales from genes to cells to populations. In a broad context, 
understanding variation has been advocated in genetics and proteomics to improve therapeutics and 
vaccine production. Heterogeneity also occurs in the cell-to-cell response to BW agents, even when cells 
are relatively homogeneous as in a differentiated tissue (e.g., epidermis or liver). This variation becomes 
key to the tissue, or organ, damage depth and capacity to recover. Current assay generally measure 
response of a perturbed cell population as averages. For example, inhibition of population cell growth can 
be due to a varying combination of individual cells that enter a reduced division rate, quiescence, or 
death, in response to a perturbation. By taking an average measurements and disregarding deconvolution 
in actual cell fates, precious information on BW agent effects is lost. Quantification of single-cell 
heterogeneity that shapes the overall cell population response to a BW agent would provide potential 
means of identification of that agent.  
 The centrality of the cell in the scale of systems biology has brought forward advanced methods to 
detect and accurately measure in continuous time phenotypic changes at the single-cell level. This 
emerging technological capability represents a pivotal opportunity to measure both the dynamics and 
heterogeneity of response to BW agents, and reclassify their effects in terms of accurate predictive 
mathematical models based on measurements taken at the time of a BW exposure, prior to the 
presentation of symptoms. 
 Historically, the caged canary has been synonymous with early warning mechanisms.  For 
example, in coal mines dangerous gases such as methane and carbon monoxide would kill the canary 
first, providing an early warning mechanism to alert personnel to evacuate the threatened area. In the 
21st century, by reducing the scale of the canary from an organism to a cell, it should be possible to 
rapidly forecast the magnitude of the threat posed by exposure to a BW agent by measuring dynamics 
and heterogeneity of single-cell cell response. 
!

The BioDigital Canary 
 The BioDigital Canary (BDC), figure 7, is a next generation bio-detector that incorporates 
multiple, orthogonal (i.e., mutually complementary) quantitative measurements of cellular stress using 
state-of-the-art time-lapse live-cell fiber optic microscopy, mass spectrometry, and NMR spectroscopy 
that combined measure nuclear morphology, division, apoptosis (cell death) rates, migration/motility, 
lipid changes, choline, and glutamine. Combined, the dynamic and variable changes induced by a BW 
agent are unique to that agent and such signatures lead to real-time identification of the agent. 
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Figure 7. Schematic of the Bio-Digital Canary. Highlighted in the schematic are the critical components 
of the BDC to include the bio-reactor, measuring devices, and the data handling components.  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 In the BDC, cultured human cells act as a biological sensor. While the idea of using cells as 
biosensors is not new, its implementation in the field has become feasible only in the last few years. 
Recent advances in cell culture have enabled automated, self-feeding, stable 3D cell culture systems. A 
2005 study demonstrated that cells cultured in bioreactors, similar to the Bio-Digital Canary reactors, can 
be maintained for over a year while exhibiting minimal morphological changes;   thus supporting 38

deployable and sustainable applications which require minimal maintenance. 
 The next-generation bioreactor provides reliable identification of cellular stress based on changes 
in cell morphology, motility, and cell death/proliferation rates both across the system and among 
individual cells in response to exposure to a biological agent. By quantitatively characterizing these 
multivariate alterations, the bioreactor generates a “signature” that is unique to a particular agent. The 
signature is simultaneously and continuously compared to an existing database for rapid identification. In 
case of unknown/emerging agents, preliminary assessment of potential mechanism of action is feasible. 
The cell bioreactor, detectors and associated software for data analysis comprise a self-contained system 
that is adaptable and scalable. 
 The data detectors included in the BDC (i.e., lapsed fiber optic microscopy, mass spectrometry, 
and NMR spectroscopy) are each based on well established technology, but never before deployed in an 
integrated, mutually supportive manner. The crux of the BDC, as currently designed, resides in the 
analysis of the time-lapsed image microscopy which must not only accurately quantify the morphological 
features and changes of those features for each cell, but also track the cell and its lineage over time. The 
incorporation of time-lapsed image microscopy also provides a link between the population of cells and 
the behavior of that population at the single cell level.   
 The following work illustrates a novel approach to cellular tracking using time-lapsed image 
microscopy. This work will explore previous methods highlighting their successes and limitations and 
introduce a novel integer programming based algorithm for image processing and cellular tracking. 
!
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CHAPTER II 
!

REAL-TIME ANALYSIS OF TIME-LAPSE LIVE-CELL MICROSCOPY 
!

 Technological advances have led to the development of high-throughput microscopes that are 
capable of capturing high resolution images over an extended period of time. Such technology enables 
researchers to study morphological or molecular features (e.g., via fluorescent protein reporters) over 
time. As Georgescu et al (2006) highlighted in 2011, an important limitation of time-lapse live-cell 
microscopy is the ability to track cell populations through time for the purpose of exploring cell 
ancestry.   This is largely due to the fact that current cell tracking algorithms are based on particle 39

tracking, and do not consider cell division. Live cell populations in culture exhibit a doubling time of 
approximately 20-30 hours. Accurate identification of siblings is absolutely required for cell ancestry 
tracking with low error. 
 Tracking cells manually is extremely time consuming, tedious, and error prone. For example if an 
experiment lasts 7 days and images are captured every 15 minutes, there are 672 images with 
approximately 100 cells in the initial image. Consequently, a minimum of 67,200 cells must be tracked 
over the course of the experiment. This cell quantity also needs to take into account variability of cell fate 
in response to perturbations, i.e., cells that are dying and cells that are dividing as well as their movement. 
Hence the task of manual tracking is not trivial. 

!
Integer Programming 

 Integer programming, also known as the “Traveling Salesman” problem, has been around for 
centuries, the concept being that a salesman with a list of cities and known distances must determine the 
shortest possible route that enables the salesman to visit each city exactly once and return to the original 
city. This “optimization problem” has been applied to a plethora of problems including cell tracking.    
 Al-Kofahi et al (2006) reported using integer programming to develop an automated process for 
tracking proliferative lineages as well as cell motility in murine neural progenitor cells. This method was 
the first of its kind to incorporate morphological features for cellular tracking. By measuring 
morphological features such as size, shape, location, motility, and migration, Al-Kofahi et al calculate a 
probability distribution for each option of a specific cell in a subsequent image. The integer programming 
function attempts to minimize probability density function which in turn generates the path of a cell over 
time.  
 These authors tracked murine neural progenitor cells through time to test their integer 
programming algorithm. Though the automated nature of Al-Kofahi’s et al work greatly diminishes the 
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time required to manually track cells, the algorithm is not accurate nor scalable due to the low number of 
cells (ten) being tracked in each image and the unverified assumptions used to build the probability 
distribution functions. Consequently the exact method used by Al-Kofaji et al was not scalable to images 
with high cell density. 
!
Large Datasets 
 Large datasets can be viewed in two ways: either large numbers of cells on the images, or a large 
number of images that require processing. Large datasets are computationally expensive and require time 
for processing. Subsequently, development of automated tracking techniques is accomplished using 
smaller datasets, the assumption being that if the items are tracked using a few cells over a short period of 
time then the principles are easily scalable to larger datasets. This assumption however is incorrect since 
options drastically increase as the dataset become large. Tracking 10 cells over 10 images might provide 
100 potential options over the course of the image set. However, it is not the same as tracking 100 cells 
over 100 images which would provide 10,000 data points.  
 If the integer programming is set up to use every object in the subsequent frame as a potential 
match for a previous object, then for each image generates 99! by 200 matrix for integer programming. 
Such large matrices are computationally and time expensive.  
!
Assumptions 
 Pivotal to Al-Kofahi et al’s   method is the probability distributions for their parameters. Their 40

probability distribution of the changes in morphological parameters is based on a truncated normal 
distribution which ultimately penalizes cells that had little to no change. This change is calculated for 
parameters such as distance travelled and changes in morphology. The significance of this assumption 
will be illustrated later when highlighting changes in “high-confidence” cell tracks which follow a half-
normal distribution and not a normal distribution.  

!
CellAnimation 

 CellAnimation is a modular framework for microscopy assays developed by Walter Georgescu at 
Vanderbilt University and published in 2011.   The core program of CellAnimation is its tracking 41

capabilities. For tracking and subsequent identification of mitotic events, CellAnimation uses a modified 
nearest neighbor algorithm with heuristic thresholds. The algorithm incorporates the distance travelled 
and change in cellular area to correctly identify cells from one image to the next.  
 Prior to tracking, images are imported into the assay and undergo a rapid segmentation program 
that identifies cells using a watershed algorithm and object size. The graphical user interface provides 
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ease of use and the algorithm is capable of handling large datasets as well as a platform for correcting 
tracks. The underlying modified nearest neighbor tracking algorithm used not only the linear distance 
between potential objects but also incorporates a change in cellular area parameter. This parameter uses a 
threshold to ensure there are no drastic (> 20%) changes in area of a cell from one image to the next.  
 The CellAnimation algorithm has one significant limitation: its ability to detect mitotic events is 
not optimal. As stated above, correctly identifying siblings is paramount to the accuracy of long term 
tracking and cell ancestry recognition.  
!
Detecting Mitotic Events 
 CellAnimation uses a series of “if/and” classifier statements to determine if a cell is mitotic. These 
statements are based on area, eccentricity, and minimum time for cytokinesis. The steps of the 
CellAnimation process, highlighted in figure 8, are efficient but frequently fail to detect mitotic events. 
Several test runs demonstrated a 50% rate of missed mitotic events. This is  unacceptable because one 
missed mitotic event introduces a wrong tracking trajectory, which generates incorrect cell lifespans and 
ancestry. That is, instead of being considered siblings, of the two newborn cells one continues its lifespan 
to an unrealistic length, the other is considered an altogether new cells entering the image field. 
 An example of a missed mitotic event using CellAnimation is highlighted in figure 9.  The left and 
right images are from frame 21 and 22, respectively, of a control experiment using MCF10A cells. The 
numbers indicate the CellAnimation tracks. In frame 21 two cells are identified as 53 and 71, respectively. 
In the next frame, following a correctly identified mitotic event, cell 71 is properly split into cells 147 and 
2124. In contrast, as a consequence of a missed mitotic event, cell 53 continues on its lifespan and cell 146 
“magically” appears. Such missed mitotic events are further illustrated by the cartoon in figure 10.  
 The disruptive effect of missed mitotic events is apparent in the changes in cellular lifespan. A 
correctly detected mitotic event will yield two new lifespans whereas a missed mitotic event yields one 
new, short lifespan and one long continued lifespan. This information subsequently yields incorrect 
cellular ancestry and diminishes the value of the automated microscopy data. Preliminary examination of 
the CellAnimation mitotic events yielded missed events nearly 50% of the time. These missed events tend 
to occur as cells become more confluent. 
 Attempts were made to correct the mitotic event portion of the CellAnimation algorithm. 
However, the structure of the code itself proved to be a major hindrance. Additionally, there was no 
guarantee that modifications to the heuristic method in CellAnimation would yield better detection of 
mitotic events. 
!
!
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Figure 8. Steps for CellAnimation’s means to detect mitotic events. The diagram highlights the “if/and” 
classifier statements used by CellAnimation to detect mitotic events. 

!

 19



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Figure 9. Example of missed mitotic event in sequential frames. Cells labelled 53 and 71 divide into two 
daughter cells. The labeling for the daughter cells, 147 and 2124, reflect two new tracks while the 
daughter cells of 53 are 146 and 53. The cell 53 track would thus have a longer lifespan than is accurate.  

!
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Figure 10. Cartoon of missed mitotic events in CellAnimation highlighting the continuation of one cell 
while one cell simply appears. 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CHAPTER III 
!

A NOVEL APPROACH 
!

Concept 
 Cells exhibit the potential to undergo different fates in response to perturbations, such as BW 
agents. Cells are capable of dividing, dying, or entering quiescence depending on the signals and 
conditions of their microenvironment. The diversity of cell fates is a major challenge to tracking cells over 
time.  
 Different cell fates are compounded by changes in motility,  cell morphology and division rates, 
highlighting the challenge of  accurately tracking cells particularly on a large scale over extended time 
periods. To harness this data types, we sought to combine the power of integer programming with the 
ability to handle large datasets. There exist three distinct and novel components to our approach: 1) 
segmentation is revised using a user generated training set for better identification of cells, 2) a k-nearest 
neighbor algorithm is used to generate “high confidence tracks”, and 3) assumptions about the tracks are 
automatically scrutinized within the program.   
 The schematic in figure 11 highlights these three distinct components of our Time-Lapsed Live-
Cell (TL2C) tracking. The first process is image segmentation, the second component  assigns values to 
objects and tracks them over time, and the third is the review process to visualize the output.  
 All segmentation and tracking was accomplished using the 2012b MathWorks MATLAB 
(MathWorks, Natick, MA) platform. The MATLAB platform enabled ease of development by the 
incorporation of functions already pre-established. Processing time for completing a full image stack 
increases with the number of images, number of cells per image, and decreases with the processor speed. 
!

Segmentation 
 The segmentation code was developed by Shawn Garbett and Sam Hooke in the Quaranta Lab at 
Vanderbilt University. It is a five step process that uses a combination of MATLAB scripts, R code, and a 
graphical user interface for detailed segmentation review. R is a free statistical computing and graphics 
environment developed by Bell Laboratories. R is compatible with a variety of platforms including UNIX, 
MAC, and Windows.    42

 The first step in the segmentation process is the “Naive Segmentation.” Using a script file titled, 
“LocalNaiveSegment” in MATLAB the image files are loaded and then processed through the 
“NaiveSegment” function. This function segments using several functions: “Top Hat,” “Noise Threshold,” 
“Background Threshold,” and “Fill Holes.” The “Top Hat” function removes background objects bigger  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Figure 11. Schematic of over-arching processes and sub-processes of the proposed novel Tracking 
Algorithm. 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than 50 pixel areas. Noise Threshold then uses a 3 pixel circle to remove noise. Background Threshold 
uses a 0.2 level which means that 20% below normal is off and 80% is real. Finally the image “holes” 
generated by the removing of noise and background thresholding are filled in accordingly by “Fill Holes”. 
This first pass segmentation is completed for all images in a stack and the output data is saved as both a 
comma separated file and a MATLAB supported “.mat” file. The output data also includes the physical 
properties of the cells within each frame. These properties include centroid location, area, perimeter, 
major axis length, minor axis length, eccentricity, convex area, solidity, intensity, and filled area.  
 Using the “Segment Review” graphical users interface function (figure 12), the user is then able to 
review how well the Naive Segmentation function processed the image stack. The images are loaded into 
the interface and the user is then able to visualize an image and select individual cells/objects and relabel 
them. The cells/objects at this point are determined by the user to be either “nucleus,” “mitotic,” “under-
segmented,” “over-segmented,” or “debris.” The term under-segmented refers to two or more cells not 
segmented properly so that an aggregate of cells is shown as a single object. The complement to under-
segmentation is over-segmentation where a single cell is separated into two or more cells. During the 
segment review process the user is expected to filter through images and select at least 200 of each 
category. However, it is often difficult to find that many mitotic cells within a image stack, depending on 
experiment conditions. Upon completion of the review process the data is saved as a comma separated 
file and includes the cells / objects physical characteristics as well as the classifier determined by the user 
in the review.  
 The comma separated file is then analyzed in R through Perl import script. Within the R 
environment the Perl script extracts the segment review data in order to generate classifiers using the 
cell’s / objects physical characteristics.  
 Following the model generation in R, the images are reprocessed using three functions, 
“LocalNaiveSegment,” “LocalFinish,” and “LocalGMMSegment.” The local naive segmentation 
reprocesses the images through the same NaiveSegmentation function and the cells / objects are 
identified once again. The local finish method then uses a watershed algorithm based on a transformation 
distance to re-segment the objects that are under-segmented before the re-segmented objects are re-
identified using the “Top Hat” function. 
 Finally the “LocalGMMSegment” function begins to process the images. This function measures 
the mean and standard deviation of the cell / object for the following morphological features: area, 
eccentricity, minor axis length, and solidity for the objects in the training set derived from the user 
segment review.  This data is used to create a Gaussian mixture model (GMM). Then each object in the 
image is reviewed separately and the physical properties (area, eccentricity, minor axis length, and 
solidity) are measured. Likelihoods are then generated using these physical parameters to determine the  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Figure 12. Example of an image being undergoing the Segment Review function where the user can 
generate a training set of what is correctly segmented, what is under-segmented, over-segmented, debris, 
and dividing cells. 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cell category (debris, nucleus, and mitotic). Once a likelihood is determined, the cell is re-segmented if 
necessary and all of the cell parameters are measured and added to the output file. Upon completion of 
processing of all objects in all images, a .mat file is generated for each image in the stack. These .mat files 
and the embedded information can then be used to track cells throughout an image stack. 

!
Tracking 

 Following segmentation, the corresponding .mat files are imported by the tracking algorithm 
function for processing. Each .mat file is read in, and data is arrayed into a matrix by image number and 
object number. Each object has corresponding morphological characteristics that are also arrayed in the 
matrix. These characteristics include area, perimeter, major axis length, minor axis length, convex area, 
eccentricity, intensity and solidity. Additionally, the classifier generated by the manual portion of 
segmentation is also imported into the tracking function and used to determine if a cell is mitotic. 
 The imported data is then processed through a series of functions labelled: Naive Bayes Classifier, 
High Confidence Tracks, Potential Matches, Probability Density Function Calculations, Integer 
Programming Array Construction, Binary Integer Programming, Match Indexing to Track Generation, 
and Fractional Proliferation. Each of these functions is highlighted further below. 
!
Naive Bayes Classifier   
 In simplistic terms, a Naive Bayes Classifier is a supervised machine learning technique, i.e., a 
probabilistic classifier based on applying Bayes’ theorem.  This theorem is highlighted in equation 1. The 
classifier is based on the concept that states are mutually exclusive and exhaustive, i.e., at least one state 
must occur and no two states can occur at the same time. Hence, in detecting mitotic events, a cell is 
classified as either mitotic or non-mitotic given the parameters of A which in this application are physical 
characteristics of the cell.  
 The Naive Bayes Classifier uses the concept presented in equation 1 in MATLAB and functions in 
two steps. First the algorithm conducts supervised learning by combining known data (area, intensity, 
major axis length, minor axis length, solidity, and perimeter) with known responses into a model 
(“dividing” or “non-mitotic”). This model uses the separate physical parameters provided to calculate the 
probability that an object is in a certain mutually exclusive category, such as a letter or number, based 
upon the values of the parameters and the classification. Ideally, the parameters are ‘separable’; i.e., the 
two states do not have overlapping values. This concept is highlighted by the cartoon (figure 13) and 
illustrated further by the MCF10A data in figure 14.  The model, or predictive values based on the 
classifier and probabilities, is then applied to an unknown dataset with the same parameter categories to 
determine the state of the unknown.   
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Equation 1. Generalization of Bayes’ Rule. This equation specifies the probability of B given A where B is 
the prevalence in a population. Adopted from Rosner’s Fundamentals of Biostatistics.   43
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Figure 13. Cartoon representation of physical characteristics and cell phase. The green “x” represents a 
cell undergoing mitosis while the grey “x” represents a non-mitotic cell. This is meant to be a snapshot of 
cell cycle and characteristics and is not indicative of quiescent cells. 
!
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Figure 14. Comparison on the morphological parameters; Area versus Intensity (A), Area versus Major 
Axis Length (B), and Area versus Perimeter (C). This data is derived from the manually reviewed 
segmentation and the black circles are those labelled “nucleus” while the green and red dots represent 
cells that are mitotic; either pre- or post-division. This figure highlights that certain parameters provide 
better separation (A and B) for dividing and non-dividing cells whereas perimeter overlaps between the 
categories. 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 This process classifies objects based on the probability that said object is similar to another object 
that is already classified. In terms of cellular tracking the Naive Bayes Classifier is used to determine if 
cells in an image are mitotic, either pre-division or post-division. This determination is based on the 
probability distributions generated on the cells morphology when comparing cells that were identified 
during the manual segmentation to be either mitotic and segmented properly. For the Naive Bayes 
Classifier used in the tracking algorithm there are 6 specific morphological features used: area, major axis 
length, minor axis length, eccentricity, convex area, and intensity. These parameters were selected using a 
general linear model (GLM) and calculated in R using the binomial. These selected parameters had a p-
value > 0.001 as indicated in figure 15. 
 The Naive Bayes Classifier seeks to exploit the dynamics of cell morphology as the cell progresses 
through the cell cycle. Cells tend to be smaller and more elongated near the point of mitosis so by using 
the data generated from Segment Review, it is possible to identify the population of cells in an image that 
would potential be mitotic. 
 This process within the tracking function analyzes every cell in every image and labels them 
either “dividing” or “nucleus.” These designators from the Naive Bayes Classifier do not actually mean a 
cell is dividing or not; rather it identifies the cell to be examined for a possible mitotic event during the 
binary integer programming. The classifier tags generated within each image for each cell are maintained 
in the matrix throughout the tracking process.  
!
High Confidence Tracks  
 The High Confidence Track function in the tracking algorithm uses MATLAB’s internal nearest 
neighbor algorithm to generate “high-confidence tracks.” The nearest neighbor algorithm categorizes the 
query points based on their distance to points in a training set. The distance is calculated using the 
Euclidean distance (equation 2) given an mx-by-n data matrix x. The cells in the query set are then 
indexed to the known data from the previous image. The cells with the shortest distance are the nearest 
neighbor and linked to form the initial tracks. 
 A high confidence track is crudely defined as a cell that survives the length of the image stack 
without dividing or dying. The nearest neighbor algorithm compares the changes in the cell’s X and Y 
coordinates as well as the changes in the cells area and eccentricity as the images progress from t to t+1.  
After each comparison the cells are indexed to assign cells to corresponding tracks and ensure there is no 
redundancies in identifications within the same frame. Once the indexing is complete the nearest 
neighbor progresses to the next frame until the last frame. 
 Once complete, the nearest neighbor tracks are sorted and the cells that meet the “high 
confidence criteria” become subsets. As mentioned, the criteria for high confidence are that cells do not  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Figure 15. Highlights the general linear model calculations comparing the cellular morphological 
parameters between dividing and non-dividing cells. 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Equation 2. Euclidean distance equation used by MATLAB.  Adopted from MATLAB code 
documentation.   44
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divide and do not leave the frame over the specified period of time. The high confidence tracks are then 
processed to measure the changes in each cell of a track from frame to frame. The changes in position 
(distance travelled), area, eccentricity, major axis length, minor axis length, solidity, and eccentricity are 
calculated and used to generate the probability distributions of potential cells in the integer programming 
portion. 
 The data from the high confidence tracks illustrates the half-normal assumption that was 
previously neglected by Al-Kofahi et al (2006) in their work. Figure 16A plots the distribution of changes 
calculated for each cell frame-to-frame throughout the “high-confidence tracks.” Figure 16B compares 
the measured data plotted in 16A to the theoretical quartiles of a half normal distribution.  
 The parameters selected for the probability distributions were also analyzed to determine 
relationship between the variables. The analysis is highlighted in figure 17 and used the Spearman 
correlation to ensure that the variables are independent. This was a concern since the distributions are 
based on changing morphological features and the influence of cell size could prevent the selected 
morphological parameters from being independent.  
  
Potential Matches 
 The Potential Match function generates a list of all possible tracks for a cell in an image in the 
next sequential image. This list generation is accomplished for every cell in every image. The function 
uses MATLAB’s internal “range search” function. The radius of the range search uses the product of the 
user input “range multiple" and the average distance. The average distance is calculated from the distance 
each cell travels from one image to the next in the high confidence tracks.  
 The potential match function determines the potential matches for all images, and then arrays the 
data in a large matrix which is passed to the next function. This process is highlighted in figure 18.  
!
Probability Density Function Calculations 
 The probability density function (PDF) is used in the binary integer programming to calculate the 
minimized matches with the binary integer programming. In order to generate the PDF values, this 
function first calculates the differences between the cell in image t and the potential matches in image t+1  
for the following features: distance travelled, area, eccentricity, major axis length, minor axis length, 
solidity, and intensity.  
 The differences for each feature is then used to calculate the negative log likelihood which is 
highlighted in equation 3. The sum of all the negative log likelihoods for each potential match then 
becomes the PDF value for those matches. 
!
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Figure 16. Plots of changes in morphological features derived from the high confidence tracks.  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Figure 17. Relationship between the morphological features of the cells which contribute to the 
probability distribution function used to determine the best track in the integer programming. 
!
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Figure 18. Cartoon the highlights the use of the search radius to generate the list of potential matches. A 
illustrates the radius is the product of the Average Distance generated from the high confidence tracks 
and a user designated value. B illustrates how the search radius is centered on the cells X,Y coordinates 
from image t in image t + 1. A list of all corresponding cells is then generated for the cell from image t. 
!
!
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Equation 3. The equations highlighting above are extracted from the Tracking Algorithm in order to 
calculate the negative log likelihoods for the cellular parameters as well as their sum to create the 
probability distribution function.  

!
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Integer Programming Array Construction 
 The Integer Programming Array function uses potential matches to generate an array for each 
step in the image sequences so that there is an array for the objects for image t to t+1. This array process 
can be seen in figure 19. The array function also reads through all cells that were previously labelled 
“dividing” to determine if a cell potentially has two daughter cells in the subsequent image. The array 
function then generates the necessary construct and adds the daughter PDF values together. There is a 
weighting factor given to the potentially mitotic PDF value. This value is user designated and future plans 
are to elucidate a consistent value for the weighting factor. For the MCF10A cells under these conditions 
the weighting factor is 1/8th. This factor however needs to be examined further and validated since it 
may be a function of cell type and motility.  
!
Binary Integer Programming  
 The Binary Integer Programming function uses the internal MATLAB algorithm. This algorithm, 
highlighted in equation 4, uses the linear programming based branch-and-bound method. The algorithm 
searches for a feasible solution and then updates the solution matrix before moving onto the next step or 
branch in the step up. As the algorithm progresses, it continually verifies the previous selection by 
ensuring there is not another feasible solution. This process is illustrated in figure 20.  
 This function progresses sequentially from one frame to the next until complete. The output for 
this function is a binary list where a “1” indicates a selected cell and a “0” represents the non-selected. 
The output is equal in length to the array and the selected values correspond to the potential match list 
generated previously. 
!
Match Indexing to Track Generation 
 This function generates the cellular tracks for an image stack. The function uses the potential 
match list, the binary integer programming output, and potential mitotic data to generate the tracks. The 
binary output is indexed against the potential match list to generate a list of all selected cells from one 
frame to the next.  
 If a cell is identified as having undergone a mitotic event from the indexing process, then the 
parent and daughter IDs and morphological features are extracted and entered into the track matrix. The 
cells that come from a mitotic event are labelled in the information category with either “111222” or 
“222111.” Additionally if a cell appears in a frame that is not the first frame then it is labelled “333333.” 
Cells appearing could come from the outside of the focal plane or from the edge of the image.  
 Once the track list is completed for all of the images, then the tracks for each cell are given a 
“global identification number.” This is a sequential and arbitrary ID to keep track of the cells through the  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Figure 19. Translation of options to binary matrix. The options highlighted in the left side of the cartoon 
are translated into an array and then a binary matrix. The top row highlights the separate portions of the 
matrix where known tracks are compared to the potential options from another frame. 
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Equation 4. MATLAB Binary Integer Programming Algorithm.   45
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Figure 20. Branching tree example for MATLAB’s Binary Integer Programming. This figure was adopted 
from and modified from MATLAB’s 2013 Binary Integer Programming documentation.   46
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image stack. This ID also enables analysis of the tracks and enables fixing of tracks if issues are identified. 
The tracks are written as a comma separated file that can be used for further analysis.  
!
Fractional Proliferation 
 The Fractional Proliferation function is a function which reads through the track list to extract 
mitotic information from the cells for data analysis. The function reads through the track information for 
the “111222” and “222111” tags. The function also extracts the cells with the “333333” tag to see if those 
cells are from potential mitotic events that were missed. The extracted data is then reformatted to data 
construction used by Tyson DR., et al in their 2012 Nature Methods paper.   The Fractional Proliferation 47

information is used to both validate the test and as potential marker for changes in cellular behavior as 
the result of a perturbation. The output of this section is a comma separated file that can be used for 
further analysis. 
!
Performance - Speed 
 The tracking algorithm was run through 2013b MATLAB by MathWorks (Natick, MA) on a 
Apple Macbook running with a 2.9 GHz Intel Core i7 processor with a 8GB memory. The speed of the 
algorithm was tested under various conditions.  
 Increasing the number of images increases the overall run time, but the proportion of run time 
for each function remains the same. This result is highlighted in figure 21 where 21a highlights the 
overall runtime versus the image stack while 21b highlights the proportion of each function in the overall 
time.  
 Subsequently the frame skip option was examined. By increasing the frame skip option from 1 to 
2 the run time is halved for each image stack length. This result is illustrated in figures 21c and 21d which 
highlight the total run time and the proportion of the function run, respectively.  
 Altering the range multiple for the search radius increased the overall run time. This function 
effects were examined using an image stack of 400 images and increased from 5 to 10 and then to 15. The 
range multiple is a user designated value that is multiplied against the average distance travelled by the 
cells in the high confidence tracks. This radius is used to search for potential matches in the potential 
function of the code. Figure 22 highlights the increasing overall run time (a) as well as the increasing 
time for the potential function (b).  
!
Performance - Accuracy 
 The accuracy of the algorithm was examined in three categories: cell counts, tracks, mitotic 
events. 
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Figure 21. Algorithm run time on 2.9 GHz Intel Core i7 processor with 8 GB memory. A and B highlight 
the run time at 100 image stack intervals. The relative proportions of each function in the code remain 
relatively unchanged. Increasing the frame skip option C and D however decreases the overall time by 
one halve while the proportions remain the same.  
!
!
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Figure 22. Highlights the effects of increasing the range multiplier in the code from 5 to 10 and to 15. The 
range multiplier is used in conjunction with the average distance travelled for each cell in the high 
confidence tracks to calculate the search radius in the next frame to find potential matches. 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The accuracy of cell counts was evaluated by comparing ImageJ analysis of the original images, counts of 
the post segmentation from SegmentReview, and the post-integer programming analysis. ImageJ is a java 
based image processing tool developed by the Research Services Branch of the National Institute of 
Health in Bethesda, Maryland.   The cell count comparison was conducted using a 10 frame interval 48

through the 655 image test set. The image test set is a control well of MCF10A cells treated with DMSO. 
The results highlighted in figure 23 illustrate that there is little difference between the ImageJ analysis of 
the original images, the post-segmentation analysis and the post-integer programming analysis in the 
first 400 frames. After the 400th frame, which is approximately 40 hours into the experiment, the cells 
become confluent, i.e., they are touching and overlapping in places, significantly increasing difficulty of 
the segmentation task. The trends of the post-segmentation and the post-integer programming cell 
counts are the same, indicating that the variation is likely due to the cells moving out of frame along the 
edges since the integer programming removes tracks that move out of the frame. The difference between 
image J analysis and the segmentation is likely do to the image J algorithm. 
 Due to cell count variation at the higher frame numbers, the tracks through the first 400 frames 
were examined. The track information was plotted in R Project Statistical Software (University of 
Auckland, New Zealand). The tracks are initially plotted in three dimensions, so that the cell tracks are 
shown by the X,Y-location and the frame number being the depth. Figure 24 highlights the tracks 
generated from the first 400 images.  
 Upon further examination of the tracks, it was determined that some tracks were not correct. 
Some tracks ended prematurely creating shorter tracks than expected in the experimental conditions. 
The tracks were then subsetted into four groups based on track length based on the number of image 
frames. These groups were frames 1 to 5, frames 6 to 10, frames 11 - 15, and frames > 16. The number of 
tracks in each subset and the proportion of each subset are highlighted in figure 25. By increasing the 
range multiplier, the total number of tracks was decreased while the proportion of long tracks (> 16 
frames) was increased as shown in figure 25B. This result indicates a relationship between the broken 
tracks and the range multiplier suggesting that some of the broken tracks are due to cells moving out of 
the search radius during the potential function of the algorithm. An additional cause of broken tracks is 
the result of cells moving in and out of the frame either on the focal plane or from the edges of the image. 
 To examine the location of the broken tracks, the short tracks were plotted in 3D, shown in figure 
26, using a 400 image stack with a range multiplier of 20. In the 3D rotatable image, it is clearly 
recognizable that most of the short tracks are near the edges of the image (unfortunately this is poorly 
captured by the 2D printed version). 
 The lifespans of the cells was also examined in order to ensure the detection of mitotic events. 
Results are highlighted in figure 27 and are derived from the Fractional Proliferation output data  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Figure 23. Comparative cell counts using three different methods / sources. ImageJ processed the raw 
images for cell counts. Segmentation added the objects found in each image following SegmentReview 
processing and Post-IP used the results of the tracking to count the cells. 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Figure 24. The tracks for cells in images 1 through 400 plotted in 3D. Each cell / track is plotted using a 
different color. The individual tracks in this image are difficult to distinguish but highlights the amount of 
information in one image stack. 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Figure 25. Highlights the number of tracks (a) and the percentage of tracks (b) in four different subsets 
as a function of the range multiplier. The blue highlights the shorted subset 1 - 5 frame lifespan, the green 
is 6 - 10 frame lifespan, the red is 11 - 15 frame lifespan, and the black is the lifespan greater than 16 
frames. The overall number of tracks deceases with increasing range multiplier suggesting that the a 
faster moving cells are being identified with a larger search radius. 
!
!
!
!
!
!
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Figure 26. A three dimensional plot of the shortest track subset (lifespan 1 - 5 frames). The images shows 
the X- and Y- location of the centroid while the z-axis is the frame number. The high number of short 
tracks in the first 100 frames suggest that the non-confluent state is allowing the cells to move outside of 
the range search and in the later images the cells are becoming confluent and tracks are intersecting and 
breaking down at times. This was tracked using the 20 value of the range multiplier. 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Figure 27. Highlights data extracted regarding mitotic events from the tracking information. This data is 
incomplete due to the short run of the program. The program only ran out to 400 frames instead of 655 
which was due to the confluence of the cells. 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generated by the tracking code. Due to the shortened length of the movie to 400 images, this data is 
incomplete. If the image stack were able to progress the complete life span information would be 
automatically generated for comparison with manually tracked data. 
!

Future Directions 
 A critical shortfall for the current state of the algorithm is the lack of visualization tools. 
MATLAB presents an opportunity to build a graphical user interface in order to visualize the post 
algorithm tracks and to modify the tracks as necessary. Due to time constraints, the user interface was 
not developed, though the code is open and manageable for future development. This user interface 
could also be tied into the SegmentReview GUI so that only one single user interface is presented. The 
GUI should also help refine the short tracks.  
 Initial development has begun on an additional function for user initiated merging of tracks. 
Currently this function extracts basic information about tracks from the overall tracks matrix. This 
function looks for unique track IDs, as well as cell locations in the start and end frames. The function 
then removes all cells that are within 5% of the image edge which prevents the attribution of cells that 
move in and out of the image over time. The function then moves through each frame, looking for tracks 
that are both ending and beginning. Using IDs, track details are extracted from the overall track matrix 
and plotted in 3D scatter plots. The plot in figure 28 only consists of tracks that are starting in the 
selected frame as well as the tracks that end in the previous frame. To assist in visualization, a red circle is 
drawn around the first starting track and a blue ring around the last cell of the ending track. This feature 
enables a user to rapidly see potential matches. The radius of the circle equals the previously used search 
radius.  
 At each frame the user is prompted with several questions regarding the potential broken tracks 
and is asked to provide ID numbers and potential mitotic events. This allows the function to continue 
short tracks that are identified by the user and introduce missed mitotic events. The identified 
information is then processed through the tracks matrix so that the tracks are properly updated.  
 This function could easily be further improved in the future through the incorporation of a 
Bayesian algorithm to select the potential short track matches, thus reducing the user interaction.  
 Image stacks from a larger repertoire of experiments also need to be analyzed to validate the use 
of the algorithm on different cells and/or conditions. 
!
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Figure 28. Screen shot of the current merge plot function which enables users to review and correct the 
short tracks. This image depicts a missed mitotic event where track ID 438 divides into daughter cells 
1254 and 1255. The initial algorithm missed the event and track 438 ended and the two daughter tracks 
abruptly began. 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CHAPTER IV 
!

AUTOMATED IDENTIFICATION OF FOCAL ADHESION IN 3D 
!

Background 
 The following is a collaboration between the Vanderbilt Laboratories of Vito Quaranta and Donna 
Webb for the purpose of applying concepts of automated cell tracking to the identification of subcellular 
structures. In this example, we focus on focal adhesions.  
 Cell migration plays a role in a variety of physiological processes, such as wound healing, and 
diseases, including cancer metastasis. Due to the multitude of proteins and protein complexes involved, 
its molecular underpinnings remain incompletely understood. A major class of protein complexes 
involved in cell migration is focal adhesions (FAs), which are “organized aggregates of specialized 
proteins distributed at the basal surface of adherent cells.”    Understanding structure-activity 49

relationship of FAs is a major challenge. For instance, the size of FAs appears to regulate cell speed, 
whereby cells with small FAs move rapidly while cells with large FAs move slowly.   While this function 50

of FAs in cell motility can be investigated by genetic manipulations and pharmacological interventions  , 51

  , a significant obstacle is the requirement of manual quantification of FA size and abundance, a time 52

consuming and error prone task. To overcome this challenge we developed a computational pipeline to 
automatically process time-lapse z-stack fluorescence microscopy images for identification and 
characterization of FAs. 

!
Algorithm 

Software 
 The algorithm was developed using the MATLAB by MathWorks (Natick, MA) platform. 
!
Image Processing 
 The automated detection of focal adhesions in three dimensions (3D) is accomplished using two 
scripts/functions in MATLAB. The overall process of the scripts is illustrated in figure 29. The first script 
conducts the image processing, detects the FAs, measures their x- and y-locations, intensity and area, 
produces a rough FA track through the slices using MATLAB’s k-nearest neighbor algorithm, and 
provides a comma separated file with the image number, z-plane number, x-location, y-location, area, 
intensity, index / track identification, and distance from that previous slice. 
 The analysis and processing of 3D microscopic images is not trivial due to the user option to 
change the number of slices in a 3D image, and to the intensity variation in each plane. Consequently, it  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Figure 29. Schematic of the image processing and focal adhesion identification process for 3D confocal 
microscopy images. 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is necessary to process images with a varying number of 3D slices and a varying intensity. This issue is 
highlighted in figure 30. The z-plane provides the researcher with the ability to visualize and analyze 
morphological cellular characteristics at varying depths as compared to the single plane of two 
dimensional (2D) images.  While multiple planes provide an advantage in visualization, they complicate 
image processing.  
 Each image in a time series has parameters, X, Y, Z which indicate the images width, height, and 
depth, respectively. Using a ‘for loop’ for the length of the image stack (start frame to end frame), each 
image is read and analyzed to determine the number of z-planes in the 3D image. The images are then 
normalized by the following formula: multiplying the minimum pixel value by the maximum pixel value 
which is then divided by double the maximum minus the minimum pixel value in the image, equation 5.  
 The output is then filtered using a series of Gaussian and local average filters. The Gaussian filter 
creates a symmetric gaussian filter using user set size and standard deviation (for the images shown, filter 
used a size of 5 pixels with a standard deviation of 2.5 pixels). The average local filter used a disk shaped 
filter of 10 pixels. The average brightness of the image was also determined for each plane and multiplied 
by the brightness intensity threshold which is also a user specified value. We observed that a ten percent 
change in the intensity threshold can lead to either no FAs or hundreds of pixelated debris throughout 
the images. In the images shown this value was determined to be 1.25. This brightness threshold value is 
used to select all pixels of greater value within the image slice. This image is then saved as image 1.  
 A frequency filter is then used to attenuate the signal of the image. The script allows for the user 
to either specify a “low pass” or “high pass” filter (for the images shown the low pass filter was used). In 
such a filter, a distance matrix is generated where the distance calculated using the pixel strength of the 
original image. The values in the distance matrix are then attenuate by the following formula:  dividing 
the values by the cut off frequency, a user input value of 10, and the remaining value is then raised to 
twice the filter order. The full equation can be seen in Equation 6. The product of the frequency filter is 
then saved as image 2.  
 The two separate images are then flattened by dividing the intensity threshold image over the 
frequency filtered image. The resulting quotient is image 3 or “combined images” and processed to 
identify objects within the image. Objects smaller than the user specified value were removed from the 
image, ideally leaving viable objects.  All of the slices in an image and images in an image stack are 
processed using the same steps and settings.  
 One shortcoming is that the threshold intensity at one depth or z plane may not provide the most 
ideal intensity at another. The wrong intensity threshold could and does potentially leave artifacts within 
the image. However, if small enough (depending on the user settings) these artifacts can be cleared using 
the minimum area filter.  
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Figure 30. Schematic illustrating the potential for intensity attenuation at varying depths in 3D images.  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Equation 5. Normalization equation used to normalize each slice of a 3D image stack for identifying and 
tracking focal adhesions.  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Equation 6. Filter equation used to process slices in a 3D image stack in order to identify and track focal 
adhesions.  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Focal Adhesion (FA) Identification 
 A processed image consisting of processed z planes of “combined images” is then analyzed to 
identify the centroid location, area,  and intensity. This is done using the region properties function in 
MATLAB to determine the area and x- and y- coordinates of the centroid. The accumulation array 
function is used to calculate the raw intensity. The accumulation array adds the pixels in the designated 
object. It is important to understand that the intensity values are a function of the thresholding values 
such that increasing the threshold decreases the intensity counts. The area data is then used to provide 
another level of filtration on the objects to help determine the FA locations in a cell. With the user 
determined parameters of minimum and maximum FA area, the objects are filtered leaving only those 
that meet the criteria. Each object is then indexed in the binary image of identification.  
 The selected objects in each slice are then compared to the next slice in the z plane enabling a user 
to compile the FA 3D properties. The variation in FA complexes in terms of both 3D size and location 
can then be compared to the speed at which a cell is moving.  
 The output of this first process is a comma separated file that allows the user to manually curate 
the FA tracks. Ideally, the k-nearest neighbor search conducted in z-planes for a cell would generate 
perfect tracks through the slices and from image to image. However, depending on the depth in the z-
plane and the dynamics of cell movement, FAs may be constantly appearing, disappearing, and changing 
in size. The manual curation step provides the user a quick tool with information regarding the potential 
FAs and allows the user to ensure that the FAs of a track in a slice are matching the FAs at a greater depth. 
This also allows the research to validate the FA tracks in time.  
!
Outputs 
 The FA data is then saved and exported as a comma separated file with the headers, ”Counts”, 
“Image Number”, “Slice”, “CentroidX”, “CentroidY”, “Area”, “Intensity”, “IndexID”, and “Distance.” This file 
enables the user to review the focal adhesions by reviewing the area, intensity, location, and distance to 
nearest FA in the previous slice of an image. The user can then curate the index identification to ensure 
accuracy before the file is imported into the next function.  
!
Focal Adhesion Visualization 
 Using the intensity threshold image and the data embedded in the user curated comma separated 
file, an output image is created with FAs and identification numbers. Each FA is drawn on the image in 
blue and the identification number is drawn in red. The FAs are identified as correct by using the area in 
the user curated file and comparing that value to the values embedded in the processed image. If the 
areas match then that FA is drawn on the image slice. This process is repeated for every slice of an image 
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and until the list of FAs is exhausted. Each slice is then written in order into a tagged image file (TIF) 
stack for that image file name.  
 The image stack (images with z-planes) are exported to a user designated output location.  
!
Opportunities for Improvement 
 There are two critical areas that could be improved within the code: the intensity thresholding in 
the z plane, and the user curated portion.  
 Currently the algorithm is designed as a single-intensity threshold that fits all images and slices in 
a stack and time sequence. This, however, could be improved by using varying intensity thresholds, since 
this would almost certainly lead to better plane-specific segmentation (what works for z-plane equal to 
one does not necessarily work for z-plane equal to five) and enhanced FA identification accuracy. 
 The other potential for improvement is to minimize the necessity for manual curation by 
maximizing automation. Such improvement could be done using a either a Naive Bayes Classifier or 
through integer programming. For a Naive Bayes Classifier there would need to be background 
information describing a correctly identified FA and these properties would need to be separable from 
incorrect FAs. Several possible parameters include area, intensity, solidity, major axis length, and minor 
axis length.  
 Additionally, a binary integer programming step could improve the tracking of FAs not only 
through slices but also through time. The binary integer programming could use the same physical 
properties as the Naive Bayes Classifier to calculate the probability distribution in order to determine the 
best option for the FA tracks. 
!
Results of 3D Focal Adhesion Algorithm 
 The results of the semi-automated FA process are promising and figure 31 highlights one example 
image. The 3D image has 5 slices which were processed sequentially and analyzed using the methods 
highlighted in figure 29. The slices indicate that there is one primary FA that meets the area and intensity 
thresholds in all slices of the image while figure 32 shows a FA that appears in slice 1 but not in slice 2. 
These differences highlight the requirement for user input, as well as curation based on knowledge of the 
experimental conditions. The FA in slice 1 may really exist in the subsequent slices but the user 
designated intensity thresholds could have caused the intensity and subsequent size to be washed out 
with the background. This possibility is suggested by the visible gray hue that surrounds the cell. The 
intensity is also attenuated with height/depth of the image as the cell, media, and debris absorb light from 
the camera.  
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Figure 31. Focal Adhesion output images. The images are the slices of the 3D image stack with the 
identified focal adhesions which were identified using the semi-automated method previously described. 
Raw image provided by the Donna Webb Laboratory at Vanderbilt University. 

!
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Figure 32. Different Focal Adhesions. The examination of the identified focal adhesions illustrates that 
there are different focal adhesions identified for the same image yet different slices. This is attributed to 
the selection based on focal adhesion intensity and size. Object 1 from slice 1 is not shown in slice 2 since 
the intensity for that object is lost  likely due to light attenuation in the image capturing process.  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 The data presented in table 1 corresponds to the image presented in figure 31. This data illustrates 
the previously mentioned problem with FA identification in between slices. The FA labeled 1 has an area 
of only 16 pixels (compare to the other FA with an area 5 times larger), on the cusp of the lower limit set 
at 15 pixels by user-designated settings. The user could easily lower the pixel limit in order to explore the 
existence of this FA in other slices at the risk, however, of generating additional “ghost” FAs. Clearly, user 
knowledge is key. 
 The center of each FA in the slice is additionally identified using the x- and y- coordinates in the 
image. The intensity for each FA is the raw sum of pixel intensity. The intensity is not integrated for the 
area of the FA rather the total of all pixels. The raw counts enable the user to integrate over the area of the 
FA to determine if the intensity strength corresponds with a desired experimental effects. Specifically is a 
high intensity reading the result of a thresholding error or is it a real focal adhesion complex in the cell. 
 The nearest neighbor tracking is currently rudimentary compared to the larger tracking scheme 
for cells, and uses only the MATLAB internal nearest neighbor algorithm which was previously 
highlighted. This nearest neighbor search is currently designed to only account for tracking within a 
specific image from slice to slice and not image to image. The tracking is currently limited for two 
reasons. One, the algorithm does not know how to handle the disappearance of a FA. Two, the algorithm 
does not know which slice and correct FAs should be used for the next image in the sequence. The Webb 
lab is currently working to compile corrected image data in order to create a training set. This training set 
can then be used to generate distribution of of area, distance traveled, and intensity in order to properly 
track intensity. The Webb lab is also attempting to determine which set of x- and y- locations for a FA 
should be used for image-to-image tracking. For example, are the FAs tracked by the slices in the 3D 
image stack which continue from one image to the next (slice 1, image 1 to slice 1, image 2) or is there 
one set of FAs generated for all the slices of an image to compare to the next image.  
!

Conclusions 
 Though the results of the semi-automated focal adhesion algorithm are at an early stage, the 
potential for a fully automated algorithm is evident. The initial data indicate correct identification of FAs 
is being achieved. However, a few issues remain to be addressed. One issue being identifying a viable 
intensity threshold to process the images since the light attenuates in depth. This process is new 
subsequently the user of algorithm and the instrument need understand the capabilities and limitations 
of the both. By tracking light intensity in the instrument and how that effects thresholding intensities will 
enable users to accurately and identify focal adhesions in the first pass. Such understanding includes 
knowing the changes in the density of the cell media and when the light on the instrument is dying or has 
been replaced. These factors directly effect the light in the image and effect the image processing. 
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Table 1. Focal Adhesion data for the image presented in figure 25. The counts are the labels on the image 
in each slice of figure 25 and correspond to the subsequent columns which include image number, slice 
number, X- and Y- location of the adhesion center, area, intensity and the index ID and distance which 
are from the nearest neighbor search in the subsequent slice. The intensity counts are the number of 
pixels in the adhesion area. The intensity is not integrated over the area rather it is the raw count data. 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 Further experimentation and image processing will also enable provide a databased of properly 
identified focal adhesions. This database with its physical characteristics of focal adhesions can then be 
used to process future images both in terms of identification of focal adhesions and tracking. The low 
number of focal adhesions and the limited number of frames in the focal adhesions movies make the 
focal adhesion a potential candidate for integer programming tracking.  
 More results of the 3D focal adhesion semi-automated process is pending work by the Webb 
Laboratory and results are slated for publication in 2014. 
!
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