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CHAPTER I  

INTRODUCTION 

 

Diagnosis, Pathophysiology and Treatment 

Alzheimer disease (AD) is the most common cause of dementia, the global loss of 

cognitive ability beyond the normal changes associated with aging. AD is distinguished 

by multiple cognitive deficits manifested by memory impairment and mental 

disturbances, such as language, motor, sensory and executive functioning impairment. 

These impairments are characterized by gradual onset and continuing decline. The early 

behavior changes commonly include slight memory loss, decreases in initiative, and 

faulty judgment. As the impairment increases, memory loss becomes more significant, 

higher order functions are affected and behavioral and mood disturbances may occur. In 

the late stage of AD, memory loss is severe, there is little impulse control, patients may 

become paranoid and irrational, and severe language deficits may be present.  

 

AD was traditionally diagnosed based upon the criteria and guidelines published by the 

National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) 

and the Alzheimer’s Disease and Related Disorders Association (ADRDA) (G. McKhann 

et al., 1984). Additionally, the Diagnostic and Statistical Manual of Mental Disorders, 

Fifth Edition lists the diagnostic criteria for major or mild neurocognitive disorder due to 

Alzheimer’s disease (American Psychiatric Association. & American Psychiatric 

Association. DSM-5 Task Force., 2013). These criteria include an insidious onset and 

gradual progression of impairment in at least one cognitive domain of executive function, 

learning and memory, language, perceptual-motor or social cognition. These deficits 

must be evident through the concern of the individual, an informant, or the clinician, or 
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through standardized neuropsychological testing or clinical assessment. These deficits 

interfere with independence in everyday activities, do not occur due to delirium and are 

not better explained by another etiology.  

 

According to the DSM-V criteria, probable AD is diagnosed when either there is 

evidence of a causative AD genetic mutation or when there is clear evidence of 

significant decline and impairment in memory and learning and at least one other 

cognitive domain, a steadily progressive and gradual decline in cognition, and no 

evidence of mixed etiology. Possible AD is diagnosed when there is clear evidence of 

steadily progressive and gradual decline in memory and learning with no evidence of 

another etiology.  

 

The National Institute of Aging (NIA) and the Alzheimer’s Association issued new criteria 

and guidelines for clinical use when diagnosing AD that revised the criteria from 1984 

(G. M. McKhann et al., 2011). These guidelines focus on the different stages of AD; 

dementia, mild cognitive impairment (MCI) and preclinical or presymptomatic. These 

criteria proposed classifying individuals with AD as (1) probable, (2) possible, and (3) 

probable or possible AD with evidence of AD pathophysiological process. The first two 

classifications are for clinical use and the third is meant for research settings.  

 

A diagnosis of dementia is made when there are cognitive or neuropsychiatric symptoms 

that meet five criteria. First, they interfere with the ability to function at work or at usual 

activities. Second, represent a decline from previous levels of functioning and 
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performing. Third, are not explained by delirium or major psychiatric disorder. Fourth, 

cognitive impairment is detected and diagnosed through a combination of (1) history-

taking from the patient and a knowledgeable informant and (2) an objective cognitive 

assessment, either a bedside mental status examination or neuropsychiatric testing. 

Fifth, the cognitive or behavioral impairment involves a minimum of two of the following 

domains: impaired ability to acquire and remember new information, impaired reasoning 

and handling of complex tasks or judgment, impaired visuospatial abilities, impaired 

language functions, or changes in personality, behavior or comportment.  

 

Probable AD is diagnosed if this patient meets the above five criteria for dementia and 

has an insidious onset, clear-cut history of worsening of cognition, and initial and most 

prominent deficits of an amnestic presentation (impaired learning and recall of learned 

information) or nonamnestic presentation (language, visuospatial or executive 

dysfunction). Probable AD is not diagnosed when there is evidence of concomitant 

cerebrovascular disease, core features of dementia with Lewy bodies, features of 

behavioral variant frontotemporal dementia, features of semantic or 

nonfluent/agrammatic variant primary progressive aphasia, or evidence for another 

active neurological disease or medication use that affects cognition. There is increased 

certainty if there is documented decline or evidence of a causative genetic mutation. 

 

Possible AD is diagnosed when (a) the course meets the cognitive deficits criteria but 

has either a sudden onset or there is insufficient documentation of decline or (b) has an 

etiologically mixed presentation of concomitant cerebrovascular disease, features of 

dementia with Lewy bodies, or evidence of a neurological disease, comorbidity or 
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medication use that affects cognition. Additionally, these criteria incorporate biomarkers 

for the pathophysiological process of AD. These biomarkers are of two classes: brain 

amyloid-beta (Aβ) protein desposition, low CSF Aβ42 and positive PET amyloid imaging, 

and downstream neuronal degeneration, elevated CSF tau, fluorodeoxyglucose (FDG) 

uptake on PET, and disproportionate atrophy on MRI. If there is positive evidence of a 

biomarker, it will increase the certainty that the dementia is of AD pathophysiological 

process but it is not recommended to be used as routine diagnosis criteria.  

   

AD is categorized as early onset at age 65 or below or late onset (LOAD) after the age 

of 65. Because the definitive diagnosis is only made post-mortem, when beta-amyloid 

plaques and neurofibrillary tangles are found upon autopsy, attempts must be made to 

rule out other etiologies of dementia. Other types of dementia include vascular dementia, 

dementia with Lewy bodies, frontotemporal lobar degeneration, mixed dementia, 

Parkinson’s disease, Creutzfeldt-Jakob disease and normal pressure hydrocephalus.  

 

The hallmark pathophysiologic change observed in AD is gross global cortical atrophy, 

especially in neocortical association, non-primary motor and non-primary sensory areas 

(Figure I-1). There is also a non-uniform loss of neurons. This loss is greatest in the 

neocortex, hippocampus, amygdala, nucleus basalis of Meynert, nucleus locus 

coeruleus, and the Raphe nuclei. These locations are essential for higher-order cognitive 

functioning, learning and memory, emotional behavior, sleep/wake cycles and mood 

regulation. Upon histological examination, amyloid plaques and neurofibrillary tangles 

can be seen (Figure I-1). Misfolded beta-amyloid (Aβ) proteins aggregate and are 

deposited in the extracellular space as plaques. Paired helical filaments and 
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hyperphosphorylated tau protein comprise the intracellular neurofibrillary tangles that are 

often found in the brains of AD patients.  

 

 

Figure I-1. Hallmark pathophysiology and histological changes associated with AD. (a) Gross 
cortical atrophy can be observed in the AD brain on the right compared to the healthy brain on the 
left. (b) Intracellular neurofibrillary tangles and misfolded beta-amyloid plaques can be seen in the 
schematic of histological examination of a brain from an AD patient. Images adapted from 
www.alz.org and www.ahaf.org.  

 

According to the amyloid cascade hypothesis of AD pathogenesis, these plaques may 

stimulate surrounding cells, resulting in chronic inflammation. Aβ is the product of the 

sequential cleavage of amyloid prescursor protein (APP) by beta and gamma 

secretases. Aβ42 is more likely to aggregate in plaques and is considered the more 

pathogenic form of the peptides produced by cleavage (Jakob-Roetne & Jacobsen, 

2009). How these plaques cause cell injury and induce inflammation is not completely 

understood, but it is hypothesized that soluble amyloid may behave similar to ion 

channels and alter regulation of calcium flow into the neurons or alter the integrity of the 

cell membrane (Demuro et al., 2005; Sokolov et al., 2006). Changes in blood vessels 

and the blood-brain barrier can also be seen as amyloid is deposited in arteries leading 

http://www.alz.org/
http://www.ahaf.org/
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to leakage and hemorrhage. Selective breakdown of the blood-brain barrier may 

compromise the effectiveness of amyloid removal. The accumulation of plaques may 

interfere with neuron communication and contribute to cell death. The accumulation of 

plaques induces neuronal toxicity and synapse death, which then results in tangle 

formation (King et al., 2006). The three genetic risk factors for early-onset AD, the 

precursor protein and two proteins involved in the enzymatic cleavage of the protein, are 

all involved in the Aβ cascade and many of the LOAD risk loci (CLU, PICALM, SORL) 

may interact in this pathway. This evidence supports the above hypothesis that Aβ 

homeostasis is a factor in AD pathogenesis.  

 

The intracellular tangles block transport within the neuron and may also contribute to cell 

death. Studies investigating the correlations between tangle load and clinical symptoms 

have found that these tangles may be a better predictor of disease severity than amyloid 

burden (Arriagada, Growdon, Hedley-Whyte, & Hyman, 1992; Giannakopoulos et al., 

2003; Gold et al., 2001). Tau is a microtubule-associated protein and is well established 

in maintaining structural integrity of the neuron. Phosphorylated tau is more likely to 

aggregate and leads to depolymerization of microtubules. This evidence suggests that 

the tangles cause a loss of normal function and are toxic to the neuron (Ballatore, Lee, & 

Trojanowski, 2007; Buee, Bussiere, Buee-Scherrer, Delacourte, & Hof, 2000). A larger 

role for tau in the pathogenesis of AD is supported by the failure of anti-amyloid drug 

therapies in Phase III trials (Berkrot, 2012; ClinicalTrials.gov; ClinicalTrials.gov; "Eli Lilly 

and Company Announces Top-Line Results on Solanezumab Phase 3 Clinical Trials in 

Patients with Alzheimer's Disease," 2012). 
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As more research investigates the underlying biological process that contributes to 

development of AD, it is becoming clearer that many processes (plaque accumulation, 

tangle formation, cerebrovascular dysregulation, etc.) result in disease, as opposed to a 

single factor (Savelieff, Lee, Liu, & Lim, 2013). A population-based study investigating 

correlations between pathological findings upon autopsy and clinical diagnosis of 

dementia or AD found extensive overlap between individuals with and without dementia 

(Corrada, Berlau, & Kawas, 2012). In the brains of non-demented subjects, 22% had 

high stages of tangles and over 50% had neuritic plaques. Furthermore, 49% of the non-

demented subjects met pathological criteria for AD but only 57% of the demented 

patients met these criteria. The non-demented subjects who did have pathological 

evidence had similar average MMSE scores as did the controls without evidence. 

Recent studies provide strong evidence to suggest the etiology of LOAD may be due to 

cerebrovascular dysregulation and that the neuronal degeneration is secondary to this 

dysregulation, but more work is needed to support this theory (Bomboi et al., 2010).  

 

Since understanding the etiology of a disease is essential to the development of 

effective diagnostics and therapeutics, addressing which of these hypotheses correctly 

explains the pathological pathway of AD is of utmost importance. As the true 

pathogenesis of disease remains unclear, treatment options are only available to 

manage memory and behavioral problems (Table I-1). Available treatment for AD is 

given to help alleviate symptoms, cholinesterase inhibitors and drugs targeted to 

glutamate receptors help some patients but results vary from patient to patient. Four 

cholinesterase inhibitors and one N-methyl-D-aspartate (NMDA) receptor antagonist 

have been approved by the United States Food and Drug Administration (FDA) for AD 

treatment. Clinical trials investigating immunotherapy agents that target beta amyloid 
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were halted after those receiving treatment did not have improved cognition or daily 

functioning compared to those who received placebo (Berkrot, 2012; ClinicalTrials.gov; 

ClinicalTrials.gov; "Eli Lilly and Company Announces Top-Line Results on Solanezumab 

Phase 3 Clinical Trials in Patients with Alzheimer's Disease," 2012). However, when 

analyzing only individuals with mild impairment, solanezumab did show a small benefit 

on cognition and trials continue to investigate this effect. 

 

Table I-1. FDA approved AD therapies and drugs in clinical trials. 

 Class Drug Stage of Disease 

Approved NMDA receptor 
antagonist 

memantine moderate to severe AD 

cholinesterase 
inhibitor 

donepezil mild to moderate AD 

tacrine 

rivastigmine 

galantamine 

Clinical 
Trials 

immunotherapy solanezumab mild AD? 

bapineuzumab moderate AD 

 

Epidemiology and Risk Factors 

The prevalence of AD in the United States for individuals aged 85 years and older is 

estimated to be around 30% based on census data and a population-based study of 

chronic diseases of older people. Furthermore, the number of people with AD is 

predicted to triple by 2050, the year in which the youngest baby boomers will be over 85 

years old (Hebert, Weuve, Scherr, & Evans, 2013; Thies, Bleiler, & Alzheimer's, 2013). 

This estimate reflects the changing structure of the United States (US) as the population 

ages and as people have longer life expectancies. Epidemiological studies have found 

that more women than men have dementia, in the US it is estimated that 2/3 of all AD 

patients are women (Hebert et al., 2013). The estimated lifetime risk of AD for a female 
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at age 65 (without dementia) is 17%, for men at this age the risk is 9% (Seshadri et al., 

2006). The World Health Organization lists AD as the 4th leading cause of death in high-

income countries and it is the fifth leading cause of death in Americans over the age of 

65 (Thies et al., 2013; WHO, 2011). These numbers may not be true estimates because 

of the way causes of death are recorded and tabulated. If AD is the underlying cause of 

death, a person is considered to have died from the disease and it is listed as the cause 

of death on the death certificate. However, AD patients can experience a wide variety of 

comorbidities that are affected by the individual’s decreased cognition, executive 

functioning and reliance on caregivers. Pneumonia is a common cause of death among 

dementia patients and may be listed on the death certificate as the immediate cause 

(Brunnstrom & Englund, 2009). The total costs for caring for individuals with AD and 

other dementias are projected to be $1.2 trillion in 2050 (Hebert et al., 2013).  

 

There are many risk factors associated with developing AD. It is an age-dependent 

disease as very few individuals below the age of 65 have AD, about 5-10% of all cases. 

But as age increases, so does the prevalence of the disease, from 3.0% in individuals 

aged 65-74 years, 17.6% 75-84 years and 32.3% aged 85 years or older (Hebert et al., 

2013). Traumatic brain injury (TBI) has been associated with a higher risk of AD, two-

times the risk for moderate TBI and 4.5x risk for severe TBI (Fleminger, Oliver, 

Lovestone, Rabe-Hesketh, & Giora, 2003; Guo et al., 2000; Mortimer et al., 1991; 

Plassman et al., 2000; Schofield et al., 1997). Evidence suggests cardiovascular risk 

factors, such as smoking, obesity, diabetes, high cholesterol and hypertension during 

middle age, and the metabolic syndrome, are also risk factors for AD as vascular 

integrity is important for beta-amyloid homeostasis (Table I-2) (Brenner et al., 1993; Doll, 

Peto, Boreham, & Sutherland, 2000; Hebert et al., 1992; Holden et al., 2009; Kivipelto et 
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al., 2001; Launer et al., 1999; Launer, Masaki, Petrovitch, Foley, & Havlik, 1995; Leibson 

et al., 1997; Lesser et al., 2001; Luchsinger, Tang, Stern, Shea, & Mayeux, 2001; 

Merchant et al., 1999; Michikawa, 2003; Ott et al., 1998; Ott et al., 1999; Raffaitin et al., 

2009; Solfrizzi et al., 2010; Verghese, Lipton, Hall, Kuslansky, & Katz, 2003; Whitmer, 

Sidney, Selby, Johnston, & Yaffe, 2005; Wieringa, Burlinson, Rafferty, Gowland, & 

Burns, 1997). However, continued study of these factors is necessary to determine how 

each contributes to developing AD and to resolve discrepancies between study findings.  

 

Table I-2. Published effect sizes for cardiovascular risk factors that have been associated with 
dementia or AD. Effect sizes are either odds ratios, relative risks, or hazard ratios. 

Risk Factor Effect Study 

Smoking 0.61 Brenner et al., 1993 

0.99 Doll et al., 2000 

0.7 Hebert et al., 1992 

1.97-3.17 male/1.08-1.50 female Launer et al., 1999 

1.9 Merchant et al., 1999 

2.3 Ott et al., 1998 

1.26 Whitmer et al., 2005 

Obesity 0.66 Holden et al., 2009 

1.74 Whitmer et al., 2005 

Diabetes 2.27 male/1.37 female Leibson et al., 1997 

1.3 Luchsinger et al., 2001 

1.6 Cheng et al., 2011 

1.9 Ott et al., 1999 

1.46 Whitmer et al., 2005 

High cholesterol 2.1 Kivipelto et al., 2001 

1.26 Lesser et al., 2001 

1.42 Whitmer et al., 2005 

Hypertension 2.3 Kivipelto et al., 2001 

1.24 Whitmer et al., 2005 

 

Certain other diseases or syndromes, such as Down’s syndrome and cerebrovascular 

injury, are risk factors (Korenberg et al., 1994; Pendlebury & Rothwell, 2009). Down’s 
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syndrome is caused by trisomy 21, and individuals with this syndrome typically develop 

AD due an extra copy of APP on chromosome 21 which increases production of mRNA 

and protein (Oyama et al., 1994). It is estimated that 70% of individuals with Down’s 

syndrome will develop dementia by age 70 (Evenhuis, 1990). Upon postmortem 

analysis, nearly all Down’s syndrome patients will have plaques and meet pathological 

criteria for AD (Mann, 1988). Again, this evidence supports the conclusion that amyloid 

can contribute to AD but the fact that not all Down’s syndrome patients develop AD 

symptoms, despite evidence of amyloid plaques, suggests that multiple processes may 

be interacting.  

 

 

Some evidence suggests high physical activity is a protective factor against AD (Abbott 

et al., 2004; Fratiglioni, Paillard-Borg, & Winblad, 2004; Podewils et al., 2005; Rovio et 

al., 2005; Scarmeas, Levy, Tang, Manly, & Stern, 2001; Verghese, Lipton, Katz, et al., 

2003). It is hypothesized that education or a high cognitive brain reserve and cognitive 

training are also protective, but the specific mechanism and which cognitive domains are 

affected need to be further studied to provide a consensus (Acevedo & Loewenstein, 

2007; Ball et al., 2002; Carlson et al., 2008; Fratiglioni & Wang, 2007; Unverzagt et al., 

2007).   

 

Known Genetic Risk Factors  

In addition to the numerous risk factors detailed previously, family history and inherited 

genetic variations are also associated with AD. The early-onset form of AD resembles 

Mendelian disorders, and therefore familial studies investigating large, multigenerational 
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studies by linkage analysis and positional were successful in identifying APP 

(chromosome 21q), PSEN1 (14q), and PSEN2 (1q) (Goate et al., 1991; Levy-Lahad et 

al., 1995; Rogaev et al., 1995; Sherrington et al., 1995). Over 200 disease-causing 

mutations in these genes have been identified for EOAD.  

 

The heritability of LOAD is estimated at 60-80% (Gatz et al., 2006). APOE is the 

strongest genetic risk factor for LOAD, but accounts for far less than 30% of the 

expected genetic effects (Corder et al., 1994; Corder et al., 1993; Goldstein et al., 2001; 

Graff-Radford et al., 2002; Henderson et al., 1995; Hsiung, Sadovnick, & Feldman, 

2004; Lambert et al., 2013; Myers et al., 1996; Naj et al., 2011; Polvikoski et al., 1995; 

Skoog et al., 1998; Slooter et al., 2004).  

 

Large genome-wide studies have identified risk loci in or very near CR1, CLU, PICALM, 

BIN1, EPHA1, MS4A, CD33, CD2AP, ABCA7, HLA-DRB5/HLA-DRB1, PTK2B, 

SLC24A4/RIN3, DSG2, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, and 

CASS4 (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 2009; Lambert et 

al., 2013; Naj et al., 2011; Seshadri et al., 2010) (Table I-3). These loci are involved in 

complement pathway activation, nervous system development, inflammation, synaptic 

transmission, and beta-amyloid regulation. However, the common variants in these loci 

confer very modest risk. Evidence from candidate gene studies investigating SORL1 has 

been supported by additional studies and even suggest additional genes associated with 

SORL1, such as the SORCS family (Lambert et al., 2013; J. H. Lee et al., 2007; Reitz, 

Cheng, et al., 2011; Reitz, Tokuhiro, et al., 2011; Reitz et al., 2013; Rogaeva et al., 

2007). Recent sequencing studies have identified rare variants in APP and TREM2 
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(Guerreiro et al., 2013; Jonsson et al., 2012; Jonsson et al., 2013). Variants in MAPT 

cause a variety of neurodegenerative disorders, including frontotemporal dementia-

spectrum disorders and PSP. A rare variant in this gene identified in a patient with PSP 

was found to also be associated with increased risk of AD (MAF = 0.20%, n = 3345 

cases, OR = 2.3, p = 0.004) (Coppola et al., 2012). By genotyping the rare variant 

identified from sequencing a subset of individuals in a larger dataset, the researchers 

were able to show an association with LOAD and report larger effect sizes than those 

from the GWAS studies.  
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Table I-3. Summary of genes and SNPs/alleles associated with LOAD disease risk. 

Gene Study SNP/allele OR 

APOE Corder et al., 1993 E4/E2 3.78 

ABCA7 Lambert et al., 2013 rs4147929 1.15 

APP Jonsson et al., 2012 rs63750847 0.19 

BIN1 Lambert et al., 2013 rs6733839 1.22 

CASS4 Lambert et al., 2013 rs7274581 0.88 

CD2AP Lambert et al., 2013 rs10948363 1.1 

CD33 Lambert et al., 2013 rs3865444 0.94 

CELF1 Lambert et al., 2013 rs10838725 1.08 

CLU Lambert et al., 2013 rs9331896 0.86 

CR1 Lambert et al., 2013 rs6656401 1.18 

DSG2 Lambert et al., 2013 rs8093731 0.73 

EPHA1 Lambert et al., 2013 rs11771145 0.9 

FERMT2 Lambert et al., 2013 rs17125944 1.14 

HLA-DRB5/HLA-DRB1 Lambert et al., 2013 rs9271192 1.11 

INPP5D Lambert et al., 2013 rs35349669 1.08 

MAPT Coppola et al., 2012 p.A152T 2.3 

MEF2C Lambert et al., 2013 rs190982 0.93 

MS4A Lambert et al., 2013 rs983392 0.9 

NME8 Lambert et al., 2013 rs2718058 0.93 

PICALM Lambert et al., 2013 rs10792832 0.87 

PTK2B Lambert et al., 2013 rs28834970 1.1 

SLC24A2/RIN3 Lambert et al., 2013 rs10498633 0.91 

SORL1 Lambert et al., 2013 rs11218343 0.77 

ZCWPW1 Lambert et al., 2013 rs1476679 0.91 

TREM2 Jonsson et al., 2013 rs75932628 2.92 

 

Rare variants in early-onset genes, APP, PSEN1 and PSEN2, were identified by 

sequencing 439 probands from multiplex (multiple affected siblings) LOAD families 

(Cruchaga et al., 2012). These results suggest that rare variants found in genes known 

to cause an early-onset version of a disease or disorder may contribute disease risk to a 

late-onset version of the same disease. This study also identified known causative 

mutations in PSEN1 and GRN. Additional novel variants in these genes as well as a 

novel variant in MAPT are likely to be causative or highly penetrant risk alleles. As of 

April 2011, an online database of genetic association studies performed for AD, 
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AlzGene, included 1,395 studies reporting associations for 2,973 polymorphisms in 695 

genes (Bertram, McQueen, Mullin, Blacker, & Tanzi, 2007).   

 

As with many complex diseases, the identified variants do not explain the total expected 

genetic risk due to heritability in populations with similar ancestry to those in which they 

were identified. Prior to the most recent meta-analysis, a study was conducted to 

evaluate the heritability explained by the then known susceptibility variants for LOAD in 

European-descent populations (So, Gui, Cherny, & Sham, 2011). This study estimated 

that four risk loci (APOE, CR1, CLU, and PICALM) may explain 18% of the total 

variance, or might explain 23% of the 79% heritability of LOAD. A recent study 

investigated the proportion of total variation tagged by all genome-wide SNPs for three 

common diseases (S. H. Lee et al., 2013). For Alzheimer disease, this study used 

499,757 SNPs genotyped in 3290 cases and 3849 controls. The researchers estimated 

that these SNPs explain 24% of the total variation. The most recent meta-analysis 

performed on genome-wide SNP data for LOAD demonstrated that the most strongly 

associated SNPs at each of the 21 risk loci, except for APOE, had population-

attributable fractions (PAFs) or preventive fractions between 1.0-8.0% (Lambert et al., 

2013). The PAF is the percentage of AD cases that could be prevented if the risk factors 

were removed. The unexplained genetic risk suggests additional variants in these known 

genes or previously unassociated genes may confer susceptibility. Through the 

identification of additional risk variants or loci, more can be learned about the underlying 

biology and pathogenesis of AD that can inform future studies about diagnosis and 

treatment targets.  
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Additional rare variants with larger effects may explain some of the unknown genetic risk 

for LOAD according to the common disease multiple rare variant hypothesis. This 

hypothesis states common diseases are caused by many causal rare variants in a single 

gene that have large effect sizes. Previous association studies have been limited by 

technology and methods and have been unable to effectively interrogate rare variation. 

The identification of rare functional variants may have more clinical utility in identifying 

at-risk individuals who might benefit from early treatment or increased screening. By 

studying variants identified from whole-exome sequencing, this study aimed to 

interrogate portions of the human genome previously unstudied under the common 

disease common variants hypothesis. 

 

The Amish of Ohio & Indiana 

Most genetic studies evaluating LOAD risk are performed in complex heterogeneous 

populations, introducing analysis and interpretation problems due to heterogeneity. To 

further the understanding of this disease, the genetically isolated Amish communities of 

Ohio and Indiana have been studied to identify additional genetic variants that contribute 

to disease risk.  

 

There were two significant waves of immigration that established the Amish communities 

in the United States. The first wave occurred in the 1700s with Swiss Anabaptists 

settling in Pennsylvania. Then, in the 1800s, additional Swiss Anabaptists and 

individuals from the Pennsylvania settlements immigrated to Ohio and Indiana (Beachy, 

2011) (Figure I-2).The severe population bottleneck that occurs when a small group of 

individuals establishes a separate subpopulation is known as a founder effect. The 
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random drift that occurs in this new subset of the total variation sampled from the 

population may change disease prevalence, reduce effective population size, alter allele 

frequencies and change patterns of linkage disequilibrium. These populations are more 

genetically homogenous because of this founder effect and because members of these 

communities marry within their culture, thus limiting the amount of new genetic variation 

introduced from the general population. Additionally, due to their strict lifestyle, 

environmental exposures are more homogenous. For example, the older Amish have 

generally led an agricultural lifestyle, achieved similar levels of education, and consumed 

similar diets. These factors make the Amish populations advantageous for genetic 

studies by controlling for both genetic and environmental heterogeneity. 

 

 

Figure I-2. Amish immigration patterns. (a) First wave of immigration during the 1700’s which 
founded the community in Pennsylvania. (b) Second wave of immigration during the 1800’s in which 
additional founders came from Europe and were joined in Ohio & Indiana by settlers from the older 

Pennsylvania community. 

 

The Anabaptist Genealogy Database (AGDB) is a database that can be easily queried to 

assist in genetic studies. The developers of this database combined and digitized 

genealogy records and books that include multiple individuals and families. This 

database can be queried to generate a pedigree that connects all individuals of interest, 
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such as all affected individuals in a study population, to a common ancestor or couple 

(Agarwala, Biesecker, & Schaffer, 2003). This resource generated a pedigree consisting 

of over 5000 Amish members that spans 13 generation that connects all of the 

individuals sampled from the communities in Ohio and Indiana. From this pedigree, the 

relationship status and degree of relatedness can be determined for all individuals in the 

full dataset.  

 

Previous Work in the Amish 

Numerous studies investigating complex neurodegenerative diseases and aging have 

been conducted in this isolated founder population for over 10 years. These studies 

have investigated the genetic structure and variation underlying LOAD disease risk in 

the Amish communities from Adams, Elkhart and LaGrange Counties in Indiana and 

Holmes County in Ohio (Figure I-3).  The first study investigated the contribution of the 

APOE ε4 risk allele in this population by studying six AD affected individuals and their 

unaffected siblings. However, none of the individuals genotyped for APOE carried the ε4 

allele. When Amish controls were chosen at random from the population (n = 106 

chromosomes, mean age = 55 years, age range 20-87 years), it was found that the ε4 

allele frequency was 0.037. These Amish controls had a significantly lower frequency of 

the risk allele when compared to three different sets of Caucasian controls populations 

of grandparental Centre d’Etude du Polymorhpism Humaine (CEPH, n = 182 

chromosomes, ε4 = 0.16, p < 2 x 10-4), AD spouse controls from Alzheimer’s Disease 

Research Center (ADRC, n = 444 chromosomes, ε4 = 0.15, p < 6 x 10-5), and data from 

Menzel and coworkers (n = 2,000 chromosomes, ε4 = 0.14, p < 2 x10-6)  (PericakVance 

et al., 1996). More recent evidence from the genotypes from around 900 Amish 

individuals supports this early observation (Cummings et al., 2012). This study found a 
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significant association with APOE (p = 9.0 x 10-6) in the Amish population except for 

Adams County. In LOAD cases from the three other counties the ε4 allele frequency was 

0.18 while it was only 0.11 in cognitively normal controls from the same counties.   This 

work supported the hypothesis that a genetic etiology independent of APOE was likely to 

be underlying the AD observed in the Amish.  

 

 

Figure I-3. Map showing the four Amish communities studied for over 10 years for LOAD, dementia, 
Parkinson’s disease, age-related macular degeneration and autism.  

 

To identify genetic variation independent of APOE, a family-based study of a large 

multiplex pedigree screened the autosomal genome for evidence of linkage (Ashley-

Koch et al., 2005). Novel loci were identified that had not previously been implicated by 

genomic screens of outbred populations. Based on evidence from the literature, it was 

hypothesized that mitochondrial dysfunction was contributing to dementia in the Amish. 

However, haplotype analysis and maternal lineage tracing did not identify haplotypes 

more common in cases compared to controls (van der Walt et al., 2005). Using 

microsatellites, a genome-wide linkage analysis was performed to study five Amish 
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families (Hahs et al., 2006). This study replicated dementia loci identified from other 

populations, but additionally identified two novel loci. This work was expanded using 

Combinatorial Mismatch Scanning to perform association testing (McCauley et al., 

2006). Expanding on this prior work, a genome-wide linkage and association study was 

performed using 798 individuals (109 LOAD cases) and over 600,000 single nucleotide 

polymorphisms (SNPs) (Cummings et al., 2012). This analysis identified four novel 

linkage regions. Under the most significant multipoint linkage peak on chromosome 2p12 

with a maximum LOD of 6.14, one SNP was associated with LOAD with a p-value of 

1.29 x 10-4. The three additional loci with a heterogeneity LOD (HLOD) > 3 were 

detected on 3q26, 9q21 and 18p11. Collectively, these studies provided evidence to 

reject the original hypothesis that a major locus for LOAD existed in the Amish genome.  

 

As a complement to the dementia studies, successful aging (SA) has been investigated 

to identify genetic variation that may protect against neurodegenerative diseases. This 

phenotype is characterized by preservation of cognitive ability, physical function and 

social engagement. A genome-wide linkage screen of 5,944 SNPs was conducted in 

214 Amish individuals (48 SA and 166 non-SA) (Edwards et al., 2011). Three loci 

reached significant heterogeneity log odds (HLOD) scores for multipoint linkage, 

chromosome 6 from 52-65Mb had a max HLOD of 4.49, chromosome 7 from 49-75Mb 

had a max HLOD of 3.11 and chromosome 14 from 42-53Mb had a max HLOD of 3.28. 

In a follow-up study of 263 individuals (74 SA and 189 controls), over 600,000 SNPs 

were examined for both association and linkage (Edwards et al., 2013). The results from 

this study suggest a novel linked and associated region on 6q25-27 with a maximum 

HLOD of 3.2 and minimum association p-value of 2.36 x10-5.  
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Genetic variation in the mitochondrial genome has been associated with longevity in 

multiple populations. Therefore, mitochondrial haplogroups were investigated in the 

Amish (Courtenay et al., 2012). Amish SA cases were more likely to carry Haplogroup X 

and less likely to carry Haplogroup J compared to controls. The association with 

Haplogroup X was novel as no significant associations had previously been reported for 

age-related diseases. Additionally, this haplogroup accounts for 7% of the Amish 

individuals in the study, but occurs in less than 5% of all European populations. The 

association with Haplogroup J replicated previous reports of a population-specific 

positive association with longevity.    

 

Since these isolated populations differ from the general population, the specific variants 

may not be present in the same frequency or have the same effect. However, it is 

expected that the same genes and pathways implicated by the variants will also be 

associated and confer risk in the general population. By studying the genetics of these 

isolated populations, the limiting heterogeneity often occurring in complex population 

studies can be overcome, and variants or genes that help explain the missing heritability 

of LOAD can be identified.  

 

Gaps in Knowledge Addressed 

The previous studies detailed above support the conclusion that genetic heterogeneity 

does exist in this isolated population, and that genetic variation that contributes to 

disease risk continues to be undiscovered. To understand how the known risk loci 

identified in the general population contribute to disease risk in this population, total 
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genetic burden was calculated for Amish cases and controls and compared to unrelated 

individuals. If the known genetic risk burden is lower in the Amish, this would be more 

evidence that additional loci remain to be discovered in this population.  

 

This current study also built on the previous dementia work conducted in the Amish by 

using whole-exome sequencing of a selected subset of the overall study population as a 

screening tool to identify variants harbored in the regions of the genome that are most 

likely to contribute risk. By then genotyping the most significant and interesting candidate 

variants from this screen in the full dataset, there was more power to detect an 

association between the variant and phenotype of interest (Figure I-4). If associations 

were detected in the full dataset, the variants or genes could be studied in the general 

population to learn more the underlying disease process in a more heterogeneous 

population. However, if this exonic variation did not confer susceptibility to disease risk, 

additional studies would need to be performed in this isolated population to continue 

searching for risk loci. 
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Figure I-4. Flow Diagram of this Study. Individuals were selected from the full Amish dataset for 
whole-exome sequencing. The variants identified from these data were used to screen two classes 
of variants, genes that are very near or contain GWAS hits and four candidate linkage regions 
implicated by previous studies. The top variants from these two classes were then genotyped in the 
full dataset and case-control association was performed. 
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CHAPTER II  

ANALYSIS OF GENETIC RISK SCORE 

 

Introduction 

The first successful GWASes were published in 2005 and as of the end of 2013, 1,779 

publications have reported associations for over 12,000 SNPs (Hindorff). Of these, about 

2,000 associations are considered robust (Manolio, 2013). Recent studies suggest that 

for an associated GWAS marker to be suitable for translation to clinical care, and 

specifically for risk prediction use, the disease should be highly heritable, the marker 

should explain a large proportion of the expected heritability, the marker should be 

available for targeted genotyping in a high-risk group, the marker should increase 

predictive value, and that the disease management should have available preventative 

strategies (Manolio, 2013).  When considering late-onset Alzheimer disease (LOAD) and 

these criteria, it is a highly heritable disease but the known risk loci only explain about 

50% of the expected heritability estimates. High-risk individuals, those with a family 

history of disease and those with traumatic brain injury or relevant cardiovascular risk 

factors, could easily be genotyped for a targeted panel consisting of GWAS hits and 

APOE (see Chapter I). The predictive nature of the GWAS hits has not yet been 

sufficiently studied but most of the risk loci confer modest risk. Treatment options for 

LOAD are currently largely targeted at symptoms but current studies are investigating 

treatment in asymptomatic individuals and subjects with mild impairment. Some of these 

characteristics suggest that LOAD would be a suitable disease for which clinical risk 

prediction would be suitable, but several key pieces are still missing, most notably 

missing heritability, predictive markers, and preventative disease management. 
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Genetic risk scores, which sum the individual effects of multiple risk loci, have been 

studied for many complex diseases. For example, the odds ratio for type 2 diabetes 

associated with each additional genetic risk point, or each additional risk allele, was 1.19 

and 1.16 for men and women, respectively, when adjusted for age and body mass index 

(BMI) (Cornelis et al., 2009). When the extremes of the distributions were investigated, 

individuals with BMI greater than 30, a main risk factor for the disease, and a risk score 

in the highest quartile had an odds ratio of 14.06 when compared to individuals with BMI 

less than 25 (not overweight or obese) and a risk score in the lowest quartile.  

 

Age-related macular degeneration (AMD) is a well-studied phenotype and the known 

genetic risk loci explain 15-65% of the expected heritability, dependent on disease 

prevalence (Fritsche et al., 2013). With a large portion of the expected genetic risk 

identified, the use of genetic risk scores in this phenotype may provide useful 

categorization of individuals into low and high risk groups. Thirteen reported AMD risk 

loci were combined into a genetic risk score for 986 cases and 796 controls 

(Grassmann, Fritsche, Keilhauer, Heid, & Weber, 2012). These cases had a significantly 

higher mean score compared to controls (p < 0.01). Furthermore, the relative risk of 

AMD per risk unit was 2.72. The area-under-the-curve (AUC) for the receiver-operating 

characteristic curve (ROC) for the risk score was 0.82, similar to previous studies of risk 

score with fewer AMD loci (Gibson, Cree, Collins, Lotery, & Ennis, 2010; Seddon et al., 

2009). Using 19 known loci to calculate risk score, a subsequent study distinguished 

between cases and controls with an AUC = 0.74 (Fritsche et al., 2013).  
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Another study investigated the predictability of genetic risk score on the progression 

from mild cognitive impairment (MCI) to AD (Rodriguez-Rodriguez et al., 2013). Eight 

LOAD risk SNPs were genotyped in 118 converters and 170 non-converters. Overall, the 

genetic risk score was not associated with the risk of converting from MCI to AD. The 

upper two tertiles did progress two-fold more rapidly than individuals in the lower tertile 

(p = 0.047 for second tertile and p = 0.031 for top tertile). While this study did find 

differences between risk scores for the phenotype extremes, there is not sufficient 

evidence to suggest genetic risk scores can be used to predict an individual’s likelihood 

and risk of developing or progressing to LOAD. Many recent studies have identified 

numerous LOAD risk loci in the general Caucasian population. The most recent meta-

analysis identified 21 replicated or novel markers associated with LOAD, many more 

than the eight investigated in the progression study (Lambert et al., 2013). Additional 

studies targeting identification of novel LOAD risk loci and investigating the predictive 

utility of the currently known loci may provide the necessary evidence and support for 

the use of genetic risk scores in LOAD if suitable disease treatments become available.  

 

In addition to predicting high or low risk groups, genetic risk scores may identify different 

underlying genetic architecture between populations. As described in the Introduction, 

isolated founder populations go through a severe population bottleneck when the 

subpopulation is established by the small group of individuals. The genetic variation 

carried by these founders undergoes random drift within this subpopulation that alters 

allele frequencies and patterns of linkage disequilibrium (LD). Additionally, individuals 

from these populations tend to marry within their culture, thus limiting the amount of 

genetic variation introduced from the general population. The markers interrogated by 

genome-wide association studies (GWAS) tend to be tagging markers, or markers that 
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are in LD with the true risk variant. If the LOAD risk loci identified by the recent GWASes 

are tagging the risk variant and are not the risk variant themselves, and if the Amish 

have unique patterns of LD in these implicated regions because of the founder effect, it 

is unlikely that these known risk alleles will confer the same risk in this subpopulation.  

 

Therefore, if the known risk alleles do not contribute the same risk in the Amish, it is 

hypothesized that the Amish cases will have a significantly lower burden of risk alleles 

when compared to the LOAD cases from a dataset of unrelated individuals. However, if 

all or a subset of the known genetic risk alleles do contribute to disease risk in the 

Amish, the Amish cases should tend to have a significantly higher genetic risk score 

than the Amish cognitively normal controls. To test these two related hypotheses, the 

total genetic risk score for the most recently identified risk loci was calculated for all 

individuals and compared across affection statuses and populations to characterize how 

the known LOAD risk loci contribute to risk burden in the Amish.  

 

Methods 

Study populations 

The full dataset for which samples have been collected is comprised of individuals from 

the Amish communities in Adams, Elkhart and LaGrange Counties in Indiana and 

Holmes County in Ohio. This same study population is also the parent dataset for the 

additional experiments detailed in future chapters. Individuals were ascertained through 

public directories, public notices and referrals from previously enrolled participants. Over 

30% of the Amish populations over the age of 65 have been contacted, and 87% of 

these individuals have consented to participate in the study. The Modified-Mini Mental 
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Status (3MS) exam was used to screen individuals during the initial interviews (Teng & 

Chui, 1987). Information from these baseline screens and additional cognitive testing 

were used to generate a consensus diagnosis according to the National Institute of 

Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s 

Disease and Related Disorders Association (ADRDA) criteria (G. McKhann et al., 1984). 

Methods for ascertainment were reviewed and approved by the individual Institutional 

Review Boards of the respective institutions. Sample collection, DNA extraction, 

cognitive testing and affection statuses derived from the consensus diagnoses followed 

procedures detailed in previous studies conducted in these populations (Cummings et 

al., 2012). DNA from blood samples were allocated by the DNA banks at the Hussman 

Institute of Human Genomics at the University of Miami and the Center for Human 

Genetics Research at Vanderbilt University.  

 

The Modified-Mini Mental Status (3MS) exam was used to screen individuals during the 

interviews. This exam is used as a screening test for dementia. The 3MS has added test 

items that sample a broader range of functions and difficulty levels while allowing a wider 

range of scores than the Mini Mental Status exam (MMSE). Additionally, this test has a 

higher reliability and validity of the scores achieved. The 3MS tests the individual’s ability 

to orientate temporally and spatially, to recall personal information, to perform both rapid 

and long-term recall of 3 items, to recite in the forwards and backwards direction, to 

name highly recognizable objects, to generate a list of objects that meet a given criteria, 

to repeat a spoken sentence, to distinguish which members of a group are similar, to 

read and obey a written command, to write a spoken sentence, to copy a drawing, and 

to follow a three-stage command. These activities are scored on a scale from 0-100 and 

then adjusted for the education level of the individual being examined (Teng & Chui, 
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1987). Individuals scoring higher than an 87 were classified as “normal by screen.” 

Individuals with scores less than or equal to an 87 were examined with further cognitive 

tests using the neuropsychological battery developed by the Consortium to establish a 

Registry for Alzheimer’s Disease (CERAD) and the geriatric depression scale (GDS) 

(Morris et al., 1989). 

 

A yearly case conference is held to review all information pertaining to the screening and 

further cognitive tests, and a consensus diagnosis is made that follows the National 

Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the 

Alzheimer’s Disease and Related Disorders Association (ADRDA) criteria. Definite 

Alzheimer’s disease can only be diagnosed if the patient has histopathological evidence 

of AD upon autopsy; therefore, no diagnoses of this class are made because autopsies 

are not permissible within the Amish culture. Probable AD is evidenced by clinical and 

neuropsychological examination that establishes dementia. Progressive cognitive 

impairments must be present in at least two areas of cognition and must be in the 

absence of other dementia diseases. Possible AD is diagnosed when dementia is 

present with an unknown etiology and no co-morbid diseases are believed to be the 

origin. Lastly, cognitive impairment no dementia (CIND) or mild cognitive impairment 

(MCI) can be diagnosed when dementia presents with focal signs, sudden onset, 

seizures or gait disturbances (G. McKhann et al., 1984).  

 

For the dementia studies, individuals classified as “normal by screen” or “unaffected by 

exam” were categorized as healthy cognitive controls. Individuals classified “affected by 

history” or “affected by exam” with either possible or probable AD were categorized as 
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affected cases during the case conferences. Individuals who reported a history of or 

were diagnosed with CIND, MCI, stroke, non-Alzheimer dementia, neuropsychiatric 

disorder, impairment secondary to vascular injury, major depression, Lewey body 

dementia, trauma, progressive supranuclear palsy (PSP) or other disorders were 

classified as having an unknown affection status for the dementia study as the true AD 

affection status of these individuals is unclear.  

 

For the 198 individuals missing the consensus diagnosis, the adjusted 3MS score was 

used to determine affection status with the same cut-off of 87. Individuals who achieved 

scores of greater than 87 were categorized as normal unaffected controls. Individuals 

with scores less than or equal to 87 (n = 9) were categorized as having unknown 

affection status as the etiology of the low score could not be determined (Khachaturian, 

Gallo, & Breitner, 2000). One individual scored a 22 on the unmodified Mini-Mental 

Status Exam (MMSE) and was categorized an unknown. Individuals ascertained for 

Parkinson’s disease or autism studies were categorized as unknown controls if they 

lacked the proper cognitive test results. Additionally, individuals without screening, 

clinical, or cognitive data (n = 45) were classified as unknown controls as their true 

affection statuses could not be determined. Thirty-five of these individuals only had data 

on APOE status and lacked all clinical information.  

 

In addition to comparing Amish LOAD cases and cognitively normal controls, cases and 

cognitively normal controls ascertained from a general clinical population were studied 

(Table II-1) (Naj et al., 2011). A collaborative study between researchers at the 

University of Miami and Vanderbilt University has ascertained Caucasian individuals 
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affected with LOAD unique from the Amish populations studied. These individuals have 

been diagnosed with probable or definite AD according to NINCDS-ADRDA criteria with 

an age of onset greater than 60. To make these diagnoses, documentation or a clinical 

history of significant cognitive impairment was present. Age- and gender-matched 

cognitively healthy controls were ascertained from the same regions and had a 

documented 3MS or MMSE score in the normal range. As the Amish are founded from 

European immigrants, this European-American dataset of unrelated individuals is of 

similar ancestry. As far as it was able to be determined, the samples in this dataset were 

not related to each other based upon the amount of sharing between individuals across 

a set of previously genotyped genome-wide data. 

 

Table II-1. Demographics of Genetic Risk Score Samples. 

Cohort Affection status Female Total Average age of exam/onset 
(standard deviation) 

Amish LOAD case 63% 126 78 (7.75) 
Cognitively normal control 58% 503 79 (6.72) 

Unrelated LOAD case 63% 473 74 (8) 
Cognitively normal control 60% 498 74 (8) 

 

Risk loci used to estimate total burden 

Total genetic risk score was calculated for each individual in the two study populations. 

Twenty-one single-nucleotide polymorphisms (SNPs) that reached genome-wide 

significant level in the most recent LOAD GWAS, referred to as GWAS hits in 

subsequent sections and chapters, were genotyped in the full Amish dataset (Lambert et 

al., 2013). This study used a genome-wide significant level of p < 5 x 10-8, which corrects 

the type I error for approximately 1,000,000 independent tests. Previous genotypic data 

for APOE were used to include this major genetic risk variant in the analysis (Cummings 

et al., 2012).  
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The genotyping and quality control measures for these data are described in more detail 

in Chapter IV. In summary, these GWAS hits were genotyped with additional variants in 

three Sequenom MassARRAY pools for both populations. Two GWAS hits failed to 

genotype via this method. Two additional GWAS hits were removed from analysis due to 

low calling efficiency (less than 95%). Samples from both populations were removed if 

they were genotyped in duplication, had low genotyping efficiency (less than 95%). 

Additionally for the Amish, samples that could not be related to other individuals were 

removed. Seventeen of the 21 GWAS hits passed this QC are were used to estimate 

total genetic risk (Table II-2).  
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Table II-2. Details of Risk Loci from Meta-Analysis Used to Calculate Total Genetic Risk Score. Alleles (major/minor), MAF, and overall OR Adapted from 
Lambert, et al, 2013. Chr = chromosome. Pos = position in bp. MAF = minor allele frequency. OR = odds ratio. Allele frequency was calculated using the 
921 Amish samples and the 971 samples from the unrelated dataset that passed QC in the follow-up genotyping phase (Chapter IV). Each individual 
marker beta (converted from the published OR) was divided by the sum of all marker betas to calculate marker weights. 

Marker Chr Position Gene Alleles 
 

MAF Overall 
OR 

Amish 
MAF 

Unrelated 
MAF 

Weights 

rs6656401  1 207692049 CR1  G/A  0.20 1.18 0.24 0.18 0.052 

rs6733839  2 127892810 BIN1  C/T  0.41 1.22 0.45 0.40 0.062 

rs35349669  2 234068476 INPP5D  C/T  0.49 1.08 0.45 0.50 0.024 

rs190982 5 88223420 MEF2C A/G 0.41 0.93 - - - 

rs9271192  6 32578530 HLA-DRB5/HLA-DRB1  A/C  0.28 1.11 0.18 0.28 0.033 

rs10948363 6 47487762 CD2AP A/G 0.27 1.10 - - - 

rs2718058  7 37841534 NME8  A/G  0.37 0.93 0.29 0.35 0.023 

rs1476679  7 100004446 ZCWPW1  T/C  0.29 0.91 0.28 0.29 0.030 

rs11771145  7 143110762 EPHA1  G/A  0.34 0.9 0.27 0.32 0.033 

rs28834970  8 27195121 PTK2B  T/C  0.37 1.10 0.32 0.35 0.030 

rs9331896  8 27467686 CLU  T/C  0.38 0.86 0.36 0.41 0.047 

rs10838725  11 47557871 CELF1  T/C  0.32 1.08 0.35 0.31 0.024 

rs983392 11 59923508 MS4A6A A/G 0.40 0.90 - - - 

rs10792832  11 85867875 PICALM  G/A  0.36 0.87 0.45 0.35 0.044 

rs11218343  11 121435587 SORL1  T/C  0.04 0.77 0.05 0.04 0.082 

rs17125944  14 53400629 FERMT2  T/C  0.09 1.14 0.05 0.11 0.041 

rs10498633  14 92926952 SLC24A4/RIN3  G/T  0.22 0.91 0.20 0.22 0.030 

rs8093731  18 29088958 DSG2  C/T  0.02 0.73 0.01 0.01 0.099 

rs4147929 19 1063443 ABCA7 G/A 0.19 1.15 - - - 

rs3865444  19 51727962 CD33  C/A  0.31 0.94 0.29 0.30 0.019 

rs7274581  20 55018260 CASS4  T/C  0.08 0.88 0.10 0.08 0.040 

APOE E4 19 19q13.2 APOE - - 2.5 0.14 0.26 0.287 
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Estimation of total genetic risk score 

The weighted genetic risk score was calculated by multiplying the number of risk alleles 

at each marker by the weight for that marker, and then summing across all markers 

(Equation 1). To determine the weight for each marker, the published odds ratio (OR) for 

the minor allele was converted to an OR for the risk allele. This was then converted to a 

beta effect by taking the natural logarithm of the risk OR. Each individual marker beta 

was divided by the sum of all marker betas (Equation 2, Table II-2). For APOE, the ε4 

allele was coded as the risk allele and an OR of 2.5 was used in the weighting scheme 

(Lambert et al., 2013; Naj et al., 2011; Reitz, Brayne, & Mayeux, 2011; Strittmatter et al., 

1993). No individual from either population was missing genotypes for more than three 

GWAS hits. If an individual was missing a genotype for a marker, the average allele 

frequency for the respective parent population was used to determine the average 

number of risk alleles carried. For the Amish population, an allele frequency that had 

been corrected for the relatedness of the individuals was used. MQLS (detailed in 

Chapter III) uses kinship coefficients to estimate and correct for the relatedness of the 

Amish samples when calculating allele frequencies and testing for association. 

 

 

Equation 1. Total Genetic Risk Score Estimation. GRSi = genetic risk score for the i-th individual. wj = 
weighted effect size for the j-th GWAS SNP. xij = risk allele count for the i-th individual of the j-th 
GWAS SNP. n = total number of GWAS SNPs. 
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Equation 2. Weighted Effect Size Calculation. wj = weighted effect size for the j-th GWAS SNP. betaj = 
published effect size of the j-th GWAS SNP. n = total number of GWAS SNPs. 

 

Regression analysis determines if there is a relationship between two variables, in this 

case, total genetic risk score and affection status or population. To compare cases to 

cognitively normal controls, logistic regression was performed (R, version 3.0.2) to 

estimate the correlation between these two variables in both populations. Moreover, 

Amish LOAD cases were compared to unrelated LOAD cases and Amish cognitively 

normal controls to unrelated cognitively normal controls. As the total genetic risk scores 

calculated for each of the Amish individuals is likely to be correlated with the scores for 

related Amish individuals, generalized estimating equation (GEE) was used to estimate 

a generalized model that incorporates the correlation between outcomes (Halekoh, 

Hojsgaard, & Yan, 2006; Liang & Zeger, 1986). This method has been employed in the 

“geepack” package available in R. By converting the kinship coefficient matrix generated 

by KinInbcoef (see Chapter III) to a correlation matrix, the relatedness of individuals was 

included in the analysis.   

 

Results 

To determine if the known genetic etiology of LOAD in general European Caucasian 

descent populations also impacts LOAD in the Amish, the total genetic risk score using 

known LOAD risk alleles was calculated and compared across affection and population 

groups (Figure II-1). When comparing this genetic risk score, Amish cases harbored a 

significantly higher burden of the known risk alleles (μ = 0.94 genetic risk score) 
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compared to Amish cognitively normal controls (μ = 0.86) (logistic regression, p = 5.99 x 

10-6). As expected, the unrelated cases also had a significantly higher burden (μ = 1.05) 

when compared to the unrelated cognitively normal controls (μ = 0.85) (p < 2 x 10-16). 

When compared to unrelated cases, Amish cases had a significantly lower burden of 

known risk alleles (p = 2.56 x 10-6). Cognitively normal Amish controls were not different 

from the unrelated controls (p = 0.381). When APOE was evaluated independent of the 

GWAS hits, the Amish LOAD cases were more different (μ = 0.45 risk alleles) than the 

unrelated cases (μ = 0.82) (p = 9.76 x 10-8) (Figure II-2,Table II-2). When affection status 

and population groups were compared using GEE instead of regression, the trends were 

similar but the p values from the GEE comparisons of Amish cases to Amish controls 

and Amish cases to unrelated cases were much more significant (Table II-3).  

 

 

Figure II-1. Distributions of Total Genetic Risk Scores. Total genetic risk score averages and 
standard deviations were calculated for the 629 Amish LOAD cases and cognitively normal controls 
and the 971 LOAD cases and cognitively normal controls from the unrelated case-control dataset 
who passed QC for the follow-up genotyping phase. n = total number of individuals. μ = average 
total risk score for group. 
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Figure II-2. Distributions of Genetic Risk Scores for APOE Only. Genetic risk score averages and 
standard deviations were calculated for the 629 Amish LOAD cases and cognitively normal controls 
and the 971 LOAD cases and cognitively normal controls from the unrelated case-control dataset 
who passed QC for the follow-up genotyping phase. n = total number of individuals. μ = average 
APOE risk score for group. 

 

Table II-3. Comparison of statistical model p-values for genetic risk score analysis. 

Group 1 Group 2 Regression p value GEE p value 

Amish cases Amish controls 5.99 x 10-6 < 2 x 10-16 
Amish cases Unrelated cases 2.56 x 10-6 < 2 x 10-16 

Amish controls Unrelated controls 0.38 0.83 

 

Discussion 

The Amish cases tended to have a lower genetic risk score than the unrelated cases. 

This result suggests that the common variants implicated by GWAS explain a smaller 

proportion of genetic risk in the Amish than in the general population. This result is 

consistent with the lack of significant association observed for these risk loci in previous 

studies in the Amish. However, since Amish cases did tend to have a higher burden 

when compared to cognitively normal controls from the same population, these known 

risk loci do explain some of the expected genetic effects. The lack of correlation between 
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total risk and parent population for cognitively normal controls suggests that the Amish 

controls are genetically similar to controls from the general population. In the Amish from 

Elkhart, LaGrange and Holmes Counties, the APOE ε4 allele has a frequency of 0.18 in 

cases and 0.06 in Adams County, but in cases from the general Caucasian population 

this risk allele frequency is 0.42 (Corder et al., 1994; Cummings et al., 2012). This allele 

frequency disparity may in part explain the increase in difference in genetic burden 

between cases from the two datasets when only APOE was analyzed, but additional 

factors are likely to contribute as well. 

 

The effect sizes published by the GWAS were estimated from a dataset of unrelated 

individuals distinct from the Amish populations. The unrelated individuals studied in this 

project were a subset of the meta-analysis in which the associations were detected. The 

largest difference across all comparisons was between the unrelated cases and 

cognitively normal controls. This result is consistent with the reported effect sizes and 

risk alleles and suggests total genetic risk was validly estimated.  

 

The difference in genetic burdens may suggest different underlying genetic architecture 

between the two populations, resulting in different effect sizes or allele frequencies. 

Therefore, the effect sizes used to estimate total genetic risk may not reflect the true 

effect size of the risk locus in the Amish. Alternatively, the lower total risk harbored by 

the Amish may be explained by differences due to the risk allele. The risk alleles 

reported by the GWAS were also determined from a dataset distinct from the Amish 

populations. These markers are not likely to be the functional marker, but are likely to be 

in linkage disequilibrium with the true risk marker. It is possible that an alternate marker 
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would be a better surrogate in the Amish. As stated previously, there is a large 

difference in allele frequency for the APOE ε4 risk locus. Additionally, the overall minor 

allele frequencies between the two populations differ for multiple risk loci. PICALM, 

SORL1, FERMT2, CR1, CASS4, DSG2, and HLA-DRB5/HLA-DRB1 all have at least a 

20% frequency difference between the two populations. These large differences may be 

contributing to the significant differences in genetic burden and support the hypothesis 

that additional variation in or near these risk genes is contributing to disease 

susceptibility in the Amish because of differences in underlying genetic architecture. 

Exonic variation in these risk regions was investigated with additional genomic regions 

implicated by previous studies in the Amish, and is described in the following Chapters. 



 

40 
 

CHAPTER III  

IDENTIFICATION OF VARIANTS FROM EXOME SEQUENCES 

 

Introduction 

The known genetic risk loci do not explain the total expected genetic risk in the general 

population, and the analysis of total risk burden suggests they explain even less in the 

Amish. Therefore, additional variants in known genes or previously unassociated genes 

may also confer susceptibility. Through the identification of additional risk variants or 

loci, more can be learned about the underlying biology and pathogenesis of AD that can 

inform future studies about diagnosis and treatment targets.  

 

The common disease multiple rare variant hypothesis states that common diseases may 

be influenced by multiple causal, but very rare variants in one or more genes that have 

large effect sizes. This suggests additional rare variants with larger effects may explain 

unknown genetic risk for LOAD, as opposed to the common risk loci implicated by 

GWAS. Previous genetic analyses have been limited by molecular technology and 

statistical methods available for genotyping and analysis. New technologies for 

sequencing and statistical methods for variant analysis have allowed for the efficient and 

effective interrogation of rare variation. The clinical utility of genetic variation in disease 

prediction is complex and depends on many factors including the predictive value of the 

risk allele and the therapeutic implications for an asymptomatic at-risk individual 

(Manolio, 2013). If rare functional variants have a larger effect size and are more 

predictive of disease, there may be more clinical utility using these variants to identify at-

risk individuals who might benefit from early treatment or increased screening. Whole-
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genome sequencing determines the complete DNA sequence. Whole-exome 

sequencing is a targeted approach that only sequences the coding portion of the 

genome. By studying rare variants identified from whole-exome sequencing, portions of 

the human genome previously unstudied under the common disease common variant 

hypothesis can be interrogated.  

 

While the costs for sequencing a whole-exome have decreased dramatically and will 

continue to do so, the sample sizes needed to have sufficient power to detect an 

association with a rare variant can still be cost prohibiting. For example, if a variant has a 

minor allele frequency of 1% and an odds ratio (OR) of 2, over 2,000 cases and 2,000 

controls would be needed to have 80% power to detect an association if the type I error 

rate is 0.05. There are many ways to overcome this limitation, two of which have been 

employed in this study. First, as described in detail in Chapter I, isolated founder 

populations are advantageous for genetic studies for many reasons. The severe 

bottleneck that occurs in a founder population can alter allele frequencies. If a rare 

variant is carried by a founder and propagated through subsequent generations, this 

previously rare variant may be enriched in the isolated population. The power to detect 

an association increases because the allele frequency increases. Second, instead of 

sequencing all available samples and performing case-control association testing on all 

variants identified, a subset of individuals can be used. By selecting the individuals most 

likely to harbor genetic variation that is contributing to risk, and then screening this 

sequence data for candidate variation that can be genotyped through a more cost 

effective method in the full dataset, the limiting costs can be overcome.  
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Methods 

Selection of subset of the Amish population for sequencing 

From the larger dataset of 1,119 Amish individuals described in Chapter II, 176 

individuals were selected for whole-exome sequencing for three different studies (LOAD, 

Parkinson’s disease and age-related macular degeneration). One-hundred fifteen 

individuals were chosen for LOAD using the following prioritization (a) large sibships with 

both affected and unaffected individuals, (b) close relatives of sibships in (a), (c) APOE 

2/3 and 3/3 affected individuals and their unaffected siblings, and (d) members of 

subpedigrees with the highest logarithm of odds (lod) scores from previous genetic 

linkage studies (Cummings et al., 2012). It was hypothesized that these cases and 

controls were the most likely subset in which to identify unidentified variants that confer 

risk to LOAD.  

 

For the Parkinson’s disease (PD) sequencing project, all 32 affected individuals were 

selected for sequencing. Up to two unaffected full siblings of those cases were chosen 

as controls, this consisted of 26 unaffected individuals and two individuals with unknown 

PD status. These individuals with an unclear affection status have been diagnosed with 

progressive supranuclear palsy (PSP), a neurodegenerative tauopathy. Symptoms 

include slowed movements and gait difficulty that can be confused for PD. Since PD is 

also a neurodegenerative disease and may co-occur with LOAD, all of the PD affected 

individuals are considered to have an unknown LOAD affection status. As described in 

future sections, the association software used in this study allows for the inclusion of 

unknown controls to increase sample size in a study of related individuals.  
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Four Amish individuals were chosen for the age-related macular degeneration (AMD) 

sequencing project. During the initial baseline screen for the dementia studies, this 

single nuclear family was identified to have three AMD affected siblings and eight 

unaffected individuals. The affected members lacked the known risk alleles in CFH and 

ARMS2. At the time, three affected and one unaffected members were selected as the 

other four members were unavailable for clinically evaluation for AMD. All four 

individuals were categorized as cognitively normal controls for the LOAD project. By 

including individuals from the additional studies, sample sizes were increased and more 

sequence data was available for the processing steps detailed below.  

 

Whole-exome sequencing 

Whole-exome sequencing was performed on DNA extracted from these selected 

individuals’ blood. The DNA for this project was allocated and sequenced by the 

respective DNA banks and sequencing cores at both the Hussman Institute of Human 

Genomics at the University of Miami and the Center for Human Genetics Research at 

Vanderbilt University. The Agilent SureSelect Human All Exon 50 Mb capture kit was 

used to capture the exonic genomic DNA. This kit captures 50Mb targets consisting of all 

coding exons annotated by the GENCODE project and all exons annotated in the 

consensus coding sequence (CCDS), plus 10 base pairs of flanking sequence for each 

targeted region. Additionally, the kit captures small non-coding RNAs. The technology 

captures almost 80% of the exome sequenced at 20X coverage and 77% of the capture 

is on-target ± 200bp ("Datasheet 5990-6319EN," 2010).  
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This exonic library was then sequenced on the Illumina HiSeq 2000 with paired ends 

and read lengths of 75 base pairs. Next-generation sequencing (NGS) can be applied to 

de novo sequencing and re-sequencing. These technologies offer better detection of 

rare variants and more sequence information on a larger scale than previous sequencing 

methods. The Illumina sequencing-by-synthesis chemistry uses bridge amplification and 

reverse terminator chain sequencing. Bridge amplification generates clusters from a 

single fragment of DNA. After exome capture, adaptors are added to DNA fragments 

and then these fragments are immobilized on the surface. Amplification proceeds in 

cycles as nucleotides and polymerase are added to grow clusters. This process creates 

a cluster consisting of identical pieces of DNA. After bridge amplification, reverse 

terminator chain sequencing is performed. As a single base is incorporated, a 

fluorophore corresponding to the nucleotide is released by the polymerase. The 

polymerase can only incorporate a single base at a time allowing each base added to be 

detected. Released fluorophores are detected simultaneously by a four camera system. 

The overall miscall rate is typically reported around 1% and is largely due to 

desynchronization within clusters (Nielsen, Paul, Albrechtsen, & Song, 2011). 

 

Processing of raw sequences and calling of variants 

Sequence processing consisted of aligning reads, removing duplicates, realigning 

around local indels, recalibrating quality scores and calling of variants (Figure III-1). 

Using BWA (version 0.6.2), raw sequences reads were aligned to the UCSC hg19 

human reference genome. Picard tools (version 1.74) was used in the process of 

marking duplicates. All steps performed in the Genome Analysis Tool Kit (GATK, version 

2.1-10) following the best practices available at the time of processing, which consisted 

of local realignment around indels, base recalibration, variant calling (using the 
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UnifiedGenotyper), and variant recalibration. The reference bundle was downloaded 

from GATK and used for all processing steps. 

 

 

Figure III-1. Sequence Processing Pipeline. Read alignment performed by BWA, duplicate removal by 
Picard tools, and all other steps by GATK. 

 

The first step in processing was to map reads to the genome. Aligning reads to a 

reference sequence reconstructs the individual’s genome and then allows for mutations 

or indels to be identified. Due to the large amount of data and reads from a single run of 

the sequencer, algorithms for alignment must be able to efficiently and accurately map 

the data. Incorrect mapping may lead to errors in variant calls, so the aligner must 

handle both sequencing errors and real variation from the reference. BWA, which uses 

the Burrows-Wheeler transform (BWT) to compress data and align short sequences 

rapidly, was used to align the raw sequence reads. In BWT, substrings or characters that 

occur often are repeated in a row and can be compressed by a number of data 

compression methods. These types of aligners are fast, memory-efficient and are useful 

for mapping repetitive reads (Nielsen et al., 2011). BWA performs gapped global 

alignment for paired-end reads for short reads (up to 200bp) (Li & Durbin, 2009). When 
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aligning, the user can specify such values as maximum differences allowed, maximum 

gap and seed size as well as disallow long deletions or indels.  

 

Paired-end reads are advantageous for alignment because each end is mapped to the 

genome, and from these positions, the aligner estimates insert size distribution and pairs 

the mapped locations (Li & Durbin, 2009). This information can be combined with the 

known fragment length from sample preparation and capture to select the paired 

locations that correspond with expected insert size. Therefore, paired-end reads provide 

more information for mapping sequence to the reference genome and reduce the 

number of locations to which a single read may map. Additionally, paired-end reads can 

reduce the difficulty associated with alignment for regions of high diversity, such as the 

major histocompatibility complex (Li & Durbin, 2009). For each individual sequenced, the 

two sequence files, one for each paired-end, were aligned to the most recent reference 

genome, hg19, released by UCSC in February 2009. This reference genome is also 

known as Genome Reference Consortium GRCh37. Then the two aligned files were 

merged into a single file for each individual. 

 

Molecules of DNA can be sequenced in duplication, but the nature of high-throughput 

next-generation sequencing (NGS) would interpret duplicates as increased coverage of 

a site and therefore may affect the probability that a variant is real. Most software tools 

developed for NGS allow for the marking of duplicate reads and subsequent processing 

steps will ignore these duplicates. Duplicates were marked in this dataset using Picard 

tools. Realignment accounts for errors in the original alignment process. Local 

realignment around indels corrects mismatches that may affect variant calling. If an indel 
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is present in a read, bases that follow it will be mismatched to the reference genome and 

might look like variants. The reads were realigned around known sites of indels as 

suggested by GATK’s best practices as it is efficient and little coverage is needed 

(DePristo et al., 2011). 

 

One way to account for the errors and biases associated with NGS is through a phred 

quality score recalibration for each base. This phred quality score reflects the probability 

that the called base is an error and is generated by the sequencer incorporating the 

ambiguity of the fluorescent signal, the quality of neighboring bases and the quality of 

the entire read. The scale is bounded with a highest possible value of Q40, which 

corresponds to a probability of 0.0001 that the base is incorrect. The proportion of bases 

with quality scores of at least Q30 (p = 0.001 that base has been called incorrectly) is 

estimated at 74-80% (Minoche, Dohm, & Himmelbauer, 2011). However, this score may 

not accurately reflect the true error rate for this base. GATK recalibrates the raw quality 

score by incorporating the position of the base in the read, dinucleotide content, and the 

read group. Non-polymorphic sites act as controls and variants are not expected to be 

present. For these non-polymorphic sites, the software estimates the residual 

differences between the mismatch rate based on the raw quality score and the real 

number of mismatches compared to the reference genome (Nielsen et al., 2011). Variant 

calling algorithms then use this recalibrated quality score in determining the probability of 

a variant and the genotype likelihoods. 

 

At this point in processing, GATK’s DiagnoseTargets was used to analyze the coverage 

distribution for all samples for the intervals specified by the capture technology. This tool 
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categorizes regions or intervals of the genome with bad coverage, mapping or read 

mating. Across all samples, 78% of the intervals passed the filters used by 

DiagnoseTargets (Table III-1). Intervals could be assigned multiple flags describing 

coverage, mapping and mating. Of the intervals that did not pass, 22% were sequenced 

with low or insufficient median depth across samples. Low coverage was seen in 11% of 

intervals. This meant that there was less than the minimum depth at the locus, after 

applying the filters specified in the previous processing steps. Gaps in coverage, or 

absolutely no coverage, were observed in 2.5% of the intervals. The remaining 

categories of excessive coverage, bad mate, and poor quality were given to less than 

1% each of intervals. Excessive coverage is defined as more than the specified 

maximum read depth at the locus, indicating some sort of mapping problem. Reads that 

are not properly mated suggest mapping errors. Poor quality indicates poor mapping 

quality of the reads if a fraction of all read in the intervals had low quality.  

 

Table III-1. Summary of Exome Interval Coverage. 

Category Percent of Intervals 

Pass 78.0 
Low median depth 22.0 

Low coverage 10.8 
Coverage gaps 2.5 

Poor quality < 1 
Bad mate < 1 

Excessive coverage < 1 

 

After sequence reads were mapped to the reference genome, a variant caller was used 

to identify those bases that are statistically different from the reference. GATK had two 

available variant callers, HaplotypeCaller and UnifiedGenotyper. The newer 

HaplotypeCaller uses both local de novo assembly and an advanced hidden Markov 

model (HMM) likelihood function. However, this caller is new and hasn’t yet been fully 
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tested and debugged. Therefore variants were called using the UnifiedGenotyper 

(DePristo et al., 2011). This algorithm uses a Bayesian genotype likelihood model to 

estimate allele frequencies and likely genotypes across many samples. The posterior 

probability estimates variant alleles segregating at the locus and also the genotype for 

each sample. The recalibrated quality scores are used to eliminate and filter most of the 

false positive variants (DePristo et al., 2011).  Best practice guidelines recommended a 

minimum confidence score threshold of Q30 for the coverage expected for our data 

(DePristo et al., 2011). By changing this threshold value, the number of false positive 

variants in the dataset can be affected. After the QC detailed below, the average 

coverage was the dataset was 58.60 ± 13.53, within the expected range. The input for 

the UnifiedGenotyper is the read data after processing, and the output is a multi-sample 

unfiltered variant call format (vcf) file. Multi-sample variant calling was performed using 

the intervals specified by the exome capture targets. This was done in batches by 

splitting the interval file every 5000 lines to run multiple processes in parallel and to 

decrease time and computing space needed.  

 

The variant quality score recalibrator (VQSR) removes false positive machine artifacts. 

This step estimates the probability that the called variant is a true variant. For the VQSR 

to achieve the best results, at least 30 samples are needed (DePristo et al., 2011). 

Given the sample size of 176 for this project, VQSR was not limited by the number of 

samples available. The model used by VSQR is determined based on real variants 

provided in the input files, such as those polymorphic sites in HapMap on SNP chip 

arrays. This adaptive model is then applied to all variants discovered to determine the 

probability of the site being a real variant. This probability is reported as the log odds 

ratio (VQSlod) of a true variant versus a false variant under the Gaussian mixture model 
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(DePristo et al., 2011). By applying the error model built to the raw vcf file, a new 

recalibrated vcf file was generated and was ready for analysis. 

 

Data management was performed using vcftools (version 0.1.9) for additional QC steps. 

Samples with an average read depth less than 30 (n = 9) were removed from the dataset 

(Table III-2). These samples also corresponded with samples that were called with low 

efficiency. The full sequencing dataset had previously been genotyped on the Affymetrix 

6.0 GeneChip Human Mapping 1 million array set. The genotypes determined from the 

sequence data were compared to these previous genotypes to check the concordance 

rate. Of the 170,849 sequencing variants, 8,268 overlapped with the 610,611 SNPs 

passing QC from the previous GWAS study. Samples that had a concordance rate less 

than 90% (n = 3) were removed as confidence would be low in the validity of the variant 

calling. The remaining discordant genotypes were largely due to heterozygotyes in the 

GWAS genotyping being called as homozygotes in the sequence data and vice versa. A 

small percentage was due to homozygotes for one allele being called as homozygotes 

for the alternate allele. Gender determined by the percentage of X heterozygosity was 

compared to the genders recorded in the clinical data. Two samples were discordant 

and the genotypic gender did not agree with the charts, therefore these samples were 

removed from subsequent analysis.  

 

Table III-2. Summary of Sample Quality Control Measures. 

Samples Cases Controls Unknowns Total 

Sequenced 59 68 49 176 
Depth < 30 -5 -1 -3 -9 

Concordance < 90% -1 -1 -1 -3 
Gender error 0 -1 -1 -2 

Analyzed 53 65 44 162 
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There were a total of 170,849 variants called across the 162 whole exomes that passed 

the above QC measures (Table III-3). Of these variants, 153,272 passed the processing 

filter of a minimum phred-scaled quality threshold of 10. To control for missing data, 

variants with a calling efficiency of less than 80% were removed from analysis. The 

available statistical software for association analysis in a complex population like the 

Amish (detailed below) is restricted to testing biallelic markers therefore any multiallelic 

markers cannot be analyzed and were removed. As the exome was targeted and 

enriched for at the beginning of the sequencing preparation, all off-target intergenic and 

intronic variants were removed from further analysis. After this QC, 162 individuals and 

79,203 biallelic variants were analyzed (Table III-4). This QCed dataset was 99.1% 

concordant for 8,268 exonic variants overlapping with previous genotyping and 

individuals were sequenced at a depth of 58.60 ± 13.53 (Figure III-2, Table III-5).  

 

Table III-3. Summary of Variant Quality Control Measures. 

Variants Count 

Variants called 170,849 
Pass processing filters 153,272 

Efficiency ≥ 80% 141,534 
Biallelic 141,044 
Exonic 79,203 
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Table III-4. Demographics of Sequencing Samples. Age of exam and onset averages and standard 
deviations were calculated for the 162 samples that passed QC for whole-exome sequencing. 

Affection status Female Total Average age of exam/onset 
(standard deviation) 

LOAD case 55% 53 78 (6.92) 
Cognitively normal 62% 65 76 (7.21) 
Unclear or unknown 41% 44 78 (7.60) 

 

 

Figure III-2. Distribution of Mean Depth per Individual. Mean depth across 79,203 biallelic exonic 
sites calculated by vcftools for the 162 individuals passing the above QC. 

 

Table III-5. Summary of Mean Depth per Site. Mean depth across 162 individuals calculated by 
vcftools for the 79.203 biallelic exonic sites passing the above QC. Percent Within = percent all of 
sites with at least that coverage. 

Coverage Percent Within 

0X 100 

10X 93.0 

20X 82.0 

30X 70.8 

40X 59.6 

50X 49.0 

60X 39.0 

70X 30.6 

80X 24.0 
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Annotation of variants 

Variants were annotated by SeattleSeq (online resource, version 134) and by 

ANNOVAR. These programs annotate each variant for a variety of important information, 

functions, and statistics. SeattleSeq was used to annotate the gene and function for all 

variants. Even though the capture intervals used during variant calling were specified by 

the exome capture technology, intronic and intergenic variants occur within these 

intervals and were therefore in the dataset. By annotating these variants with the gene 

and function from SeattleSeq, only exonic or variants in untranslated regions (those 

targeted by the molecular study design) were included in the association analysis and 

prioritization pool. Additionally, it was used to annotate PolyPhen prediction, Grantham 

scores, and conservation scores (phastCons and GERP) for each variant. PolyPhen 

scores predict whether an amino acid substitution is damaging, affects protein function, 

or if it is benign, lacking phenotypic effect (Ramensky, Bork, & Sunyaev, 2002). 

Grantham scores are based upon a formula to quantify the chemical dissimilarity of the 

amino acid substitution (Grantham, 1974). Lower scores correspond to more 

conservative substitutions and higher scores are more radical. PhastCons estimates the 

degree of evolutionary conservation among vertebrate genomes based upon 

phylogenetic tree (Siepel et al., 2005). Genomic evolutionary rate profiling (GERP) 

identifies constrained elements by quantifying rejected substitutions (Cooper et al., 

2005). ANNOVAR was used to annotate a variant’s inclusion in three catalogs of human 

variation: dbSNP build 137, ESP 6500 release, and 1000 Genomes April 2012 release 

(Wang, Li, & Hakonarson, 2010). 
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Analysis of single variant in cases versus controls 

After variants had been called across all sequenced samples, this information was used 

to perform a case-control analysis of exonic variants. To focus further analysis on the 

variants most likely to contribute genetic risk to LOAD in the Amish, three classes of 

variants were screened. The classes of genes include 26 genes previously implicated in 

LOAD through GWAS, genes known to carry early-onset mutations, and genes located 

in four previously identified candidate linkage regions (Cummings et al., 2012; Harold et 

al., 2009; Hollingworth et al., 2011; Lambert et al., 2009; Lambert et al., 2013; Naj et al., 

2011; Seshadri et al., 2010). These three classes of genes are the most likely to harbor 

variants that contribute to LOAD susceptibility in the Amish. In addition, and as a 

secondary screen, single variant case-control analysis was performed for all 79,203 

sequencing variants to test for possible association with LOAD. 

 

Known familial relationships were incorporated with the genetic information in the 

Modified Quasi-Likelihood Score (MQLS) test. This program accounts for the 

relatedness of individuals through kinship coefficients and corrects for pedigree structure 

while testing for association between a genetic marker and a binary trait (Thornton & 

McPeek, 2007). The KinInbcoef software is used to calculate kinship and inbreeding 

coefficients based upon the pedigree structure. The kinship coefficient is a measure of 

relatedness between two individuals and is the probability that two alleles sampled at 

random from each individual are identical and inherited from a common ancestor. The 

inbreeding coefficient is calculated for each individual by measuring the kinship 

coefficient between the individual’s parents. The AGDB (see Chapter I) generated a 

pedigree consisting of 5,437 members that connects all analyzed samples across 13 
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generations. By specifying this pedigree structure to KinInbcoef, kinship coefficients 

were calculated for every possible pair in the full dataset. 

 

The inputs for MQLS are the calculated coefficients, a marker data file such as a 

modified vcf file, and an estimated prevalence of the binary trait in the general 

population. To run multiple processes in parallel, the full set of variants was divided into 

subsets of 2000 variants each. The output is a p-value for each marker corresponding to 

the MQLS statistic and its place among the chi-squared null distribution. To correct for 

multiple testing, a Bonferroni correction was applied. While such a correction is 

considered overly conservative, this method will reduce Type I error and its conservative 

nature is not extreme (Lander & Botstein, 1989; Sidak, 1968). This determined a 

threshold of significance based upon the number of variants tested. 

 

Prioritization of identified variants 

To overcome low power due to small sample size in the initial screening population, 

exonic variants from the three classes of genes screened were prioritized for follow-up 

analysis in the full dataset. The additional information from this analysis may tease out 

which variants are contributing to the previously significant results or to identify new risk 

variants in known loci. Two criteria were used for prioritization. First, any variant with a 

nominally significant p-value (< 0.01) was chosen. This cut-off was chosen to reduce 

type II error, while accepting a high type I error rate. Second, variants were chosen if it 

was apparently novel by not being present in three catalogs of human variation (dbSNP 

build 137, ESP 6500 release, and 1000 Genomes April 2012 release). All variants 

prioritized for further analysis had a VQSLOD score greater than 2 signifying that the 
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chances the variant is a true variant is 100:1. As the larger Amish population has been 

studied previously, all variants that overlapped with the previous genome-wide analyses 

were omitted from further analysis to avoid redundant testing. 

 

For the initial screen, each GWAS hit had been assigned to the gene in the LD block or 

to the nearest gene by the publishing researchers. However, a more thorough analysis 

of these published associations resulted in an expanded gene list based upon LD 

patterns determined by the CEU genotypes available in HapMap via downloads from 

Haploview (version 4.2). These newly implicated genes were then screened for 

additional variants, but were not included in the analyses of the full Amish dataset due to 

cost constraints.  

 

In addition to screening the three classes of variants described previously, variants that 

were unique to cases or unique to controls were investigated. Because these variants 

only occurred in the exomes of cases or controls, the power to detect an association 

may have been too low in this subset analysis. By prioritizing these variants for 

genotyping in the full dataset, novel associations with previously unknown genes or 

pathways may be identified. To increase the likelihood that these uniquely observed 

variants are contributing to disease risk and are not derived from a de novo mutation and 

propagated in a subpedigree, the variant must be carried by at least 10 “unrelated” 

individuals. “Unrelated” in this context is defined as individuals who are related to other 

carriers with a kinship value less than that for first cousins.  
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Results 

Screen of candidate genes for association with LOAD 

The exomes sequenced harbored 155 exonic variants in the known AD genes screened 

(Table III-6). The most significant p-value among these genes was 0.0098 for position 

10,054,789 on chromosome 19 in ABCA7. Within the candidate linkage regions, 557 

exonic variants were identified and the most significant p-value was 0.00017 on 

chromosome 3 (Table III-7).  

 

Table III-6. Summary of variants identified that are within or very near known AD genes. Counts are 
displayed for the number of variants present in the human variation catalogs of dbSNP build 137 
(dbSNP), ESP 6500 release (ESP), and 1000 Genomes April 2012 release (1000G). The number of 
novel variants identified in each implicated gene is also shown. (*) Closest gene to GWAS hit. 

Gene  Location  Variants  dbSNP  ESP  1000G  Novel  

ABCA7*  19p13.3  20  19  18  18  1  
APOE  19q13.2  0  0  0  0  0  
APP  21q21.3  1  1  1  0  0  

BIN1*  2q14  3  3  3  3  0  
CASS4* 20q13.31 9 9 8 9 0 
CD2AP*  6p12  1  1  1  1  0  
CD33*  19q13.3  1  1  1  1  0  

CELF1* 11p11 1 0 0 0 1 
CLU*  8p21-p12  2  2  2  2  0  
CR1*  1q32  9  9  9  9  0  

DSG2* 18q12.1 8 7 7 5 1 
EPHA1*  7q34  3  3  3  3  0  

FERMT2* 14q22.1 5 4 4 4 1 
HLA-DRB5/DRB1* 6p21.3 0 0 0 0 0 

INPP5D* 2q37.1 2 2 2 2 0 
MEF2C* 5q14 1 1 1 1 0 
MS4A*  11q12.2  45  42  41  35  1  
NME8* 7p14.1 0 0 0 0 0 

PICALM*  11q14  2  2  2  2  0  
PSEN1  14q24.3  1  1  1  1  0  
PSEN2  1q31-q42  2  1  1  1  1  
PTK2B* 8p21.1 12 10 11 10 1 

SLC24A4/RIN3* 14q32.12 5 5 5 4 0 
SORL1  11q23.2-q24.2  15  14  14  14  1  
TREM2  6p21.1  1  1  1  1  0  

ZCWPW1* 7q22.1 6 5 4 4 1 
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Table III-7. Summary of variants identified within implicated linkage regions. Counts are displayed 
for the number of variants present in the human variation catalogs of dbSNP build 137 (dbSNP), ESP 
6500 release (ESP), and 1000 Genomes April 2012 release (1000G). The number of novel variants 
identified in each implicated linkage region is also shown. Chr = chromosome. Mbp = megabase 
pair. 

Peak  Variants  dbSNP  ESP  1000G  Novel  

Chr 2: 62-102 Mbp  282  277  273  276  4  
Chr 3: 161-175 Mbp  54  54  54  54  0  
Chr 9: 99-114 Mbp  158  157  156  156  1  
Chr 18: 7-15 Mbp  63  62  62  62  0  

 

Twenty-one additional genes were implicated by the published GWAS hits. Variants in 

three of these genes are not in LD with the published SNP, but are closely located to the 

marker. Variants in 18 of these genes were in high LD with the published SNP, but not 

reported in the literature. In total, 44 exonic variants were identified in these 21 genes 

(Table III-8). Four of these variants have previously been studied in this population, one 

variant in AGBL2, two variants in GPR111, and one variant in GPR115. None of these 

variants were associated with LOAD in the Amish with a MQLS p-value less than 0.01.  
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Table III-8. Summary of Additional Genes Implicated by GWAS hits. LD = linkage disequilibrium. High 
= variants in this gene are in high LD with published GWAS hit. Low = variants in this gene are in low 
LD with published GWAS hit. novel = not present in dbSNP 137, ESP 6500 release, or 1000 Genomes 
April 2012 release. 

Gene GWAS hit LD Type # variants # novel 

AGBL2 rs10838725 high 4 0 

BCDIN3 rs1476679 high 0 0 

C1QTNF4 rs10838725 high 0 0 

CUGBP1 rs10838725 high 0 0 

FNBP4 rs10838725 high 2 1 

GATS rs1476679 high 3 0 

GPR111 rs9349407, rs10948363 high 5 0 

GPR115 rs9349407, rs10948363 high 6 1 

GPR141 rs2718058 low 2 0 

KBTBD4 rs10838725 high 0 0 

MGC57359 rs1476679 high 0 0 

MTCH2 rs10838725 high 1 0 

NDUFS3 rs10838725 high 1 1 

NUP160 rs10838725 high 5 1 

PILRA rs1476679 high 3 0 

PILRB rs1476679 high 0 0 

PLEKHC1 rs17125944 high 0 0 

TRIM35 rs28834970 high 2 0 

TSC22D4 rs1476679 high 4 1 

TXNDC3 rs2718058 low 0 0 

ZYX rs11767557, rs11771145 low 6 1 

 

Analysis of all variants for association with LOAD 

Single variant case-control analysis was performed for all 79,203 sequencing variants to 

test for association with LOAD (Figure III-3). The most significant p-values were 1.25 x 

10-6 for position 102,762,544 on chromosome 10 and position 91,503,598 on 

chromosome 15. Thirteen additional exonic variants had p-values less than 1 x 10-4 

(Table III-9). None of these reach classical levels of genome-wide significance.  
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Figure III-3. Manhattan plot for MQLS p-values for 79,203 sequencing variants. -log(p value) = 
negative log base 10 of the p-value. Chr = chromosome. (―) p-value less than 1 x 10

-4
. Analyzed 

variants are plotted on the x-axis by chromosomal position (each color represents a different 
chromosome). The y-axis is the negative logarithm of the MQLS association p-values. Each variant 
is plotted as a colored box.  
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Table III-9. MQLS-corrected allele frequencies and case-control association p-values for the top sequencing variants in the sequencing dataset. Chr = 
chromosome. MAF = minor allele frequency. Nucleotide position is based upon the UCSC hg19 human reference genome. Gene and Function 
annotated by SeattleSeq134. 

Marker Chr Position Case MAF Control MAF Overall MAF p value Gene Function 

rs41291476 10 102762544 0.0104 0.0019 0.0013 1.25E-06 LZTS2 synonymous 

rs147224053 15 91503598 0.0104 0.0019 0.0013 1.25E-06 RCCD1 synonymous 

rs4548 3 128525253 0.0987 0.0259 0.0525 3.31E-06 RAB7A synonymous 

rs11380 12 6601475 0.0156 0.0078 0.0072 4.68E-06 MRPL51 missense 

rs201285308 5 176008380 0.0156 0.0078 0.0072 5.00E-06 CDHR2 missense 

rs41279402 20 3785672 0.0414 0.0036 0.0108 9.28E-06 CDC25B UTR-3 

6_137234733 6 137234733 0.0403 0.0171 0.0199 1.01E-05 PEX7 UTR-3 

rs11676272 2 25141538 0.5938 0.4151 0.4619 1.28E-05 ADCY3 missense 

rs144407106 6 136710582 0.0511 0.0203 0.0277 1.53E-05 MAP7 synonymous 

rs149872991 15 91496233 0.0278 0.005 0.0085 3.74E-05 UNC45A missense 

rs147643564 4 175158508 0.0651 0.0195 0.0318 4.67E-05 FBXO8 UTR-3 

rs146399677 20 3785297 0.041 0.0076 0.0129 4.89E-05 CDC25B synonymous 

rs56400929 10 105762909 0.0104 0 0.001 7.00E-05 SLK missense 

rs150358287 20 3687141 0.0894 0.0374 0.0455 7.94E-05 SIGLEC1 stop-gained 

rs34270879 10 90673047 0 0.0434 0.0352 9.17E-05 STAMBPL1 missense 
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Of the identified variants with a VQSLOD greater than 2, only three uniquely occurred in 

cases and six in controls. Only one variant unique to controls occurred in more than 10 

unrelated individuals, as defined by the kinship coefficients of the individuals carrying the 

variant.  

 

Of the biallelic exonic variants analyzed, the Amish exomes harbored 5,387 apparently 

novel variants that had a VQSlod score greater than 2. A minor allele frequency of 

0.00309 corresponded to a single allele present in the 162 exomes. Based upon the 

MQLS-adjusted MAF, 858 of these novel variants were observed a single time or less 

after adjustment for the relatedness of individuals. Only 13 of these novel variants had a 

MAF greater than 0.05, the general threshold to be considered a “common” allele.  

 

Prioritization of identified variants for further evaluation 

A total of 56 variants (25 in AD genes, 30 in linkage regions, and 1 unique to cognitively 

normal controls) were identified from the sequencing data and met our criteria for 

prioritization for genotyping in the full Amish data (Table III-10-Table III-12). 
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Table III-10. Details of 25 top variants identified from 26 known AD genes for follow-up genotyping. Chr = chromosome. MAF = minor allele frequency. p 
value = MQLS association test p value. Function, Gene, PolyPhen, GERP, phastCons, Grantham scores are all annotated from SeattleSeq. # databases 
= number of human variation catalogs the variant is present in (dbSNP 137, ESP 6500 release, 1000 Genomes April 2012 release). 

Marker  Chr  Position   Case MAF Control MAF p value  Gene Function PolyPhen  GERP  phastCons Grantham  # databases  MAF  

1_227079478  1 227079478 0.008 0 0.046 PSEN2  synonymous  unknown  -8.95 0.319 NA  0 0.002 
7_99998700  7 99998700 0.011 0 0.092 ZCWPW1  missense  unknown  -2.24 0 110 0 0.006 
rs202188414  7 100001817 0 0.023 0.128 ZCWPW1  synonymous  unknown  -1.2 0 NA  1 0.017 
8_27297871  8 27297871 0.011 0.019 0.575 PTK2B  missense  unknown  5.63 0.962 98 0 0.017 
8_27300395  8 27300395 0.018 0.02 0.235 PTK2B  synonymous  unknown  3.14 1 NA  1 0.017 
11_47505996  11 47505996 0.009 0.005 0.324 CELF1  synonymous  unknown  0.92 1 NA  0 0.005 
11_59834482  11 59834482 0.031 0.018 0.537 MS4A3  missense  unknown  -1.13 0.002 64 0 0.025 
rs138180929  11 59861473 0.006 0.007 0.417 MS4A2  stop-gained  unknown  4.23 0.997 NA  2 0.006 
rs7929057  11 59980598 0.136 0.101 0.205 MS4A4E  utr-3  unknown  1.64 0.001 NA  2 0.105 

rs147908272  11 60064732 0.012 0 0.332 MS4A4A  synonymous  unknown  -7.66 0 NA  2 0.007 
11_60064763  11 60064763 0.003 0.005 0.393 MS4A4A  missense  benign  -0.63 0 21 1 0.002 
rs148346043  11 60152688 0.028 0.007 0.247 MS4A7  missense  probably  2.76 0.996 60 2 0.013 
rs144076317  11 60165392 0.009 0.015 0.661 MS4A14  missense  benign  -7.17 0 109 2 0.010 
rs142892172  11 60183953 0.011 0 0.354 MS4A14  synonymous  unknown  -1.03 0 NA  2 0.002 
11_60197218  11 60197218 0.038 0.016 0.039 MS4A5  missense  benign  0.97 0 98 1 0.022 
rs200785869  11 60236016 0.017 0.025 0.958 MS4A1  utr-3  unknown  -1.57 0 NA  1 0.019 

11_121454230  11 121454230 0 0.007 0.376 SORL1  missense  unknown  5.91 1 43 0 0.005 
14_53348185  14 53348185 0.01 0.005 0.591 FERMT2  missense  unknown  5.92 1 56 0 0.007 
17_7189779  17 7189779 0.008 0.004 0.686 SLC2A4  missense  unknown  5.11 1 64 0 0.004 
rs62095193  18 29104689 0 0.005 0.834 DSG2  synonymous  unknown  -3.25 0.948 NA  2 0.002 

18_29125783  18 29125783 0.012 0 0.720 DSG2  missense  unknown  5.99 0.998 56 0 0.005 
rs147783767  19 1045209 0 0.005 0.703 ABCA7  missense  benign  1.15 0.21 26 2 0.003 
19_1054789  19 1054789 0.025 0.012 0.010 ABCA7  missense  unknown  2.95 0.008 74 0 0.012 
rs4811697  20 55033856 0.441 0.442 0.221 CASS4  utr-3  unknown  -6.28 0 NA  2 0.445 

rs201970902  21 27484335 0.033 0.021 0.641 APP  synonymous  unknown  3.79 1 NA  2 0.021 

 

Table III-11. Details of one variant identified that is unique to controls. Chr = chromosome. MAF = minor allele frequency. p value = MQLS association 
test p value. Function, Gene, PolyPhen, GERP, phastCons, Grantham scores are all annotated from SeattleSeq. # databases = number of human 
variation catalogs the variant is present in (dbSNP137, ESP 6500 release, 1000 Genomes April 2012 release). 

Marker  Chr  Position   Case MAF Control MAF p value  Gene Function PolyPhen  GERP  phastCons Grantham  # databases  MAF  

rs16960199 19 54976265 0 0.072 0.045 CDC42EP5 utr-3 unknown -3.91 0 NA 3 0.049 
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Table III-12. Details of 30 top variants identified from 4 implicated linkage regions for follow-up genotyping. Chr = chromosome. MAF = minor allele 
frequency. p value = MQLS association test p value. Function, Gene, PolyPhen, GERP, phastCons, Grantham scores are all annotated from SeattleSeq. 
#databases = number of human variation catalogs the variant is present in (dbSNP137, ESP 6500 release, 1000 Genomes April 2012 release). 

Marker  Chr  Position   Case MAF Control MAF p value  Gene Function polyPhen  GERP  phastCons  Grantham  #databases  MAF  

2_73519475  2 73519475 0.010 0.011 0.884 EGR4  missense  0.681 4.4 0.991 58 0 0.011 
rs7598901  2 73675844 0.326 0.288 0.175 ALMS1  synonymous  unknown  -6.6 0 NA  3 0.308 

rs1052161  2 73828538 0.373 0.340 0.216 ALMS1  missense  benign  -6.29 0.001 26 3 0.359 
rs13538  2 73868328 0.206 0.222 0.643 NAT8  missense  benign  -7.73 0 155 3 0.220 

rs2001490  2 73928098 0.352 0.338 0.417 NAT8B  missense  unknown  2.4 0.434 60 3 0.351 
2_74709426  2 74709426 0.021 0.019 0.660 CCDC142  missense  0.99 2.77 0.029 60 0 0.023 
rs2592551  2 85780131 0.384 0.421 0.924 GGCX  synonymous  unknown  4.65 1 NA  3 0.422 
rs3731828  2 85806266 0.384 0.401 0.963 VAMP8  synonymous  unknown  2.93 1 NA  3 0.411 
rs2276626  2 86259443 0.252 0.296 0.410 POLR1A  synonymous  unknown  -0.61 0.926 NA  3 0.274 

rs8244  2 86371883 0.380 0.427 0.242 IMMT  synonymous  unknown  -10.5 0.002 NA  3 0.409 
rs1050301  2 86400824 0.252 0.303 0.356 IMMT  missense  possibly  3.43 1 74 3 0.279 

rs61748137  2 88383970 0.095 0.117 0.549 SMYD1  synonymous  unknown  -7.98 0.597 NA  3 0.112 
rs11889464  2 95537501 0.08 0.055 0.992 TEKT4  synonymous  unknown  1.03 0.959 NA  3 0.078 
2_95537526  2 95537526 0 0.007 0.666 TEKT4  missense  1 1.97 0.89 56 0 0.004 
2_96781817  2 96781817 0.060 0.049 0.824 ADRA2B  synonymous  unknown  1.13 1 NA  0 0.057 
rs1624844  2 97613616 0.338 0.266 0.019 FAM178B  synonymous  unknown  -4.79 0.849 NA  2 0.271 

rs41280595  2 101580575 0.146 0.171 0.631 NPAS2  synonymous  unknown  0.91 0.649 NA  3 0.160 
rs3772173  3 170078232 0.137 0.074 0.752 SKIL  missense  benign  4.42 1 64 3 0.113 

rs5400  3 170732300 0.285 0.154 0.0002 SLC2A2  missense  benign  6.08 0.981 89 3 0.199 
rs2787374  9 103054951 0.358 0.370 0.541 INVS  synonymous  unknown  4.57 0.998 NA  3 0.384 

rs10761054  9 107379895 0.334 0.328 0.297 OR13C9  missense  possibly  -1.27 0.988 22 3 0.349 
9_113018783  9 113018783 0 0.005 0.622 TXN  utr-5  unknown  1.37 0.005 NA  0 0.004 

rs2281937  9 113169126 0.370 0.384 0.936 SVEP1  synonymous  unknown  -7.04 0.798 NA  3 0.371 
rs35142681  9 113449489 0.080 0.032 0.009 MUSK  missense  benign  -7.08 0.006 81 3 0.043 
rs73938538  18 7008583 0.126 0.090 0.006 LAMA1  synonymous  unknown  -7.48 0.664 NA  3 0.087 
rs906807  18 9117867 0.198 0.243 0.903 NDUFV2  missense  benign  4.67 0.974 64 3 0.238 
rs6505776  18 12984144 0.247 0.386 0.007 SEH1L  missense  benign  1 0.929 65 3 0.344 
rs474337  18 13095609 0.247 0.377 0.009 CEP192  missense  benign  3.43 0.039 98 3 0.338 
rs1786263  18 13116432 0.247 0.377 0.009 CEP192  missense  benign  4.76 1 102 3 0.338 

rs12457503  18 14752957 0.350 0.470 0.004 ANKRD30B  synonymous  unknown  -3.21 0 NA  3 0.441 
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Discussion 

In total, over 79,000 exonic variants were identified from the whole-exome sequence 

data. The Amish population harbored 605 previously uninterrogated exonic variants in 

three classes of the genes that are the most likely to contribute to risk of developing 

LOAD. These variants were identified by sequencing a selected subset of individuals 

who were the most probable to harbor identifiable risk loci. Given the small dataset, it is 

not surprising that no variant reached classical genome-wide significance levels. This 

lack of significance could be due to many reasons.  

 

First, the available power to detect an association in this subset was likely very limited. 

Power is dependent on a number of variables, including sample size, allele frequency 

and effect size. The small sample size (162 exomes passing QC measures) is likely to 

be too small even to detect an association for a common allele with a moderate effect 

size. For example, if 162 unrelated cases and an equal number of controls were 

sequenced or genotyped for a variant with a minor allele frequency of 5% and an OR of 

2, the power to detect an association is only 34.7% if the type I error rate is 0.05. This 

estimate assumes individuals are unrelated and therefore is an overestimate of the 

power in this population of related individuals. Sequencing methods allow for the 

detection of all variants present in a genome or exome, including those with small allele 

frequencies. The very low frequencies of some of the identified variants (less than 1%) 

also contributed to limited power.  

 

Second, this screen only looked at exonic variants, or mutations within the coding region 

of the genome. The full exome screen, as a secondary analysis to the candidate regions, 
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only comprises 1% of the complete human genome. While functional variants are likely 

to contribute to disease risk and cause pathology, recent studies suggest the definition 

of “functional” needs to change and be expanded. The ENCODE project identified 

regions of the genome, outside of the exome, that function in transcriptional regulation, 

transcription factor binding sites, chromatin patterning, transcriptional promotion, 

epigenetic regulation of RNA processing, non-coding RNA, DNA methylation, 

transcription enhancement, and DNA structural interactions (Dunham et al., 2012). This 

screen looked at single base substitutions but sequence data has the ability to detect 

insertions and deletions. These classes of variation have been associated with disease 

risk for a variety of phenotypes and were not interrogated by this study. Therefore, it is 

likely that additional variants and mutations in regions outside of known AD genes, the 

implicated linkage peaks, and the exome, will confer susceptibility to LOAD and should 

also be interrogated in future studies. 

  

As previously stated, the top candidate variants were selected from this initial screen for 

follow up genotyping in the larger, more complete Amish dataset. The variants selected 

from the known AD genes and the linkage regions were the most significantly associated 

with LOAD or were the most novel, as defined by their presence in catalogs of human 

variation. By genotyping these variants in over 1,100 samples, the power limitations of 

this screening population may be overcome and associations may be detected.  
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CHAPTER IV  

VERIFICATION OF SELECTED VARIANTS AND EVALUATION OF THE 

SAMPLED AMISH POPULATION 

 

Introduction 

The sequencing experiment detailed in Chapter III has a number of associated problems 

and limitations that can be overcome by focused analysis in a larger study population. 

Variants identified from sequencing data can result from a true mutation in the DNA 

sequence, sample misidentification, sample contamination, an error made by the 

sequencing machine, poor base calling, misalignment, low depth or coverage, low 

quality scores, or other errors. Additionally, to detect an association with a variant of low 

effect size or of low frequency, large sample sizes are needed to have sufficient power.  

 

In this follow-up phase of the overall study, a second genotyping technology was used 

on the full Amish dataset, including the subset of the samples used in the sequencing 

phase. This allows for confirmatory genotyping and concordance checking. If in the full 

dataset, a sequencing variant is monomorphic, (i.e. only one allele is present) the variant 

will fail to validate and is not a true variant. If large discrepancies are found for 

genotypes when comparing the sequence data to the follow-up genotyping, this would 

signal low confidence in the sequence data. Additionally, more accurate estimates of 

allele frequencies are possible as there is a larger sample of the full Amish population 

used. By genotyping a sequencing variant in the full Amish dataset, the sample sizes are 

increased and there is more power to detect an association.   
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The same factors that make the Amish advantageous for genetic studies (see Chapter I) 

also limit the ability to generalize findings for specific variants. The variants identified in 

the Amish dataset are likely to be present in different frequency in the general population 

and therefore may contribute a different level of risk to developing LOAD in this larger 

population. While the variants may not generalize, the genes and underlying disease 

processes implicated by them are likely to generalize in this dataset. Therefore, it is 

important to test whether an association detected in an isolated population, such as the 

Amish, generalizes and is also associated in a dataset derived from the general 

population to determine if the specific variant is important for disease risk or if additional 

variants in the gene or pathway may be identified. For the above reasons, it is necessary 

to verify the top 56 candidate variants identified from the sequence data and evaluate 

association with LOAD in the full Amish dataset of over 1,100 individuals. It is 

hypothesized that these top candidate variants will be associated with LOAD risk in the 

full Amish dataset.  

 

Methods 

Full Amish study population 

The full dataset for which samples have been collected has been detailed in Chapter II. 

This dataset is comprised of individuals from the Amish communities in Adams, Elkhart 

and LaGrange Counties in Indiana and Holmes County in Ohio. From public directories 

and referrals from previously enrolled participants, individuals over the age of 80 were 

identified and all individuals over the age of 85 (as of the year 2006) have been 

ascertained. Over 30% of the Amish populations over the age of 65 have been 

contacted and 87% of these individuals have consented to participate in the study. The 
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Modified-Mini Mental Status (3MS) exam was used to screen individuals during the initial 

interviews (Teng & Chui, 1987). Information from these baseline screens and additional 

cognitive testing were used to generate a consensus diagnosis according to the National 

Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the 

Alzheimer’s Disease and Related Disorders Association (ADRDA) criteria (G. McKhann 

et al., 1984). Methods for ascertainment were reviewed and approved by the individual 

Institutional Review Boards of the respective institutions. Sample collection, DNA 

extraction, cognitive testing and affection statuses derived from the consensus 

diagnoses followed procedures detailed in previous studies conducted in these 

populations (Cummings et al., 2012). 

 

Genotyping and verification of selected variants in the full set of Amish samples 

Fifty-four of the prioritized variants described in Chapter III were genotyped in the full 

dataset using three Sequenom MassARRAY pools and two were genotyped via TaqMan 

assays. Thirty GWAS hits, including the 21 detailed in Chapter II used for the genetic 

risk score analysis, were genotyped in these pools in addition to the sequence variants. 

 

Sequenom is a single base primer extension assay that genotypes variants in pools. An 

oligonucleotide primer anneals immediately upstream to the variant site being tested and 

then is extended using mass-modified dideoxynucleotide terminators. The products of 

this extension are detected via matrix-assisted laser desorption ionization time-of-flight 

(MALDI-TOF) mass spectrometry. The distinct mass of each product confers the allele 

specificity of the assay. Cluster plots are generated for genotype calling when the 

intensity of the high mass product is plotted versus the intensity of the low mass product. 
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The 84 sequencing variants and GWAS hits, plus a variant identified from an age-related 

macular degeneration (AMD) study in this same population, were designed into three 

pools; the first had 31 variants and SNPs, the second 28, and the third 26 (Table IV-1).  

 

TaqMan is a 5’ nuclease assay used primarily for biallelic SNPs. The assay is a 

polymerase chain reaction (PCR) that contains two probes attached to a fluorescent 

reporter. Each probe binds to a single possible allele and is displaced by Taq DNA 

polymerase. Then, the polymerase cleaves the reporter which emits a wavelength that 

can be detected. The genotype calling software plots the fluorescence of one reporter 

versus the other. This plot generates clusters that correspond to the three possible 

genotypes of a biallelic marker, similar to the cluster plots from Sequenom. This assay is 

very accurate (~ 99.7%) and can be easy to run using the pre-designed on demand 

assays or may be harder if novel variants require assays to be designed (Shi, Myrand, 

Bleavins, & de la Iglesia, 1999). Fortunately, the two variants to be genotyped via this 

method had pre-designed assays available (Table IV-2). As the number of markers 

genotyped increases, this technology becomes expensive and time consuming. A single 

SNP is genotyped at a time on a 384-well plate and requires 5 ng of genomic DNA for 

each sample. In today’s costs, genotyping four SNPs in 1536 samples via TaqMan is 

estimated to cost approximately $2,400, while genotyping 50 SNPs via Sequenom is 

estimated to cost approximately $12,000. 
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Table IV-1. Primer sequences for three sequenom pools. W1 = pool 1, W2 = pool 2, W3= pool 3. 

Pool Variant Secondary Primer Primary Primer Pool Variant Secondary Primer Primary Primer 

W1 rs2787374 ACGTTGGATGGATTCTGCCCAGCATGGAC ACGTTGGATGAAGGCGCACTCAAGAGCTCA W2 rs7274581 ACGTTGGATGCTCAGCCTCCCAAAGTGGAA ACGTTGGATGAGCTTGTCAGACCGGGTAAG 
W1 rs16960199 ACGTTGGATGTCGAGCTGAACGACGTCATC ACGTTGGATGACACACCTTGGCCGTTTATG W2 19_1054789 ACGTTGGATGCTGACCCTACATCTCCCCT ACGTTGGATGTCCTCCAGTCCTGCCTCCT 
W1 rs561655 ACGTTGGATGTCAAAATTGTATGCTGCCCC ACGTTGGATGGTATGAAGTTAACCTGGGAG W2 rs906807 ACGTTGGATGAGGCTATGATTTACTAAAC ACGTTGGATGAAGCTCCTCCAGCTCCATTT 
W1 rs28834970 ACGTTGGATGGCTAAGTGAAAGCAGCCGTC ACGTTGGATGCTGGTCATTCCATATAAGTG W2 17_63221207 ACGTTGGATGGTCTCCTTCTAGCCCCTTC ACGTTGGATGGGTGAGGCGAAAGGCTTCC 
W1 rs6656401 ACGTTGGATGGCTTGTAGATGCATCATTTCC ACGTTGGATGGACAGAAGAGCAAAGGACAC W2 8_27300395 ACGTTGGATGCTCCTTATCTGACGTGACTC ACGTTGGATGTCCATGGCAATGTCCTTCTC 
W1 8_27297871 ACGTTGGATGGGTGCTGGAGAAAGGAGAC ACGTTGGATGCGGGTCATGAGGGTATAAAG W2 18_29125783 ACGTTGGATGGAAACTGAATCGCTGAATGC ACGTTGGATGGGTCATCTAGCTCTCCTTCA 
W1 11_60197218 ACGTTGGATGGGGCTTTGAGTTGAAAAGG ACGTTGGATGCCGGTGTTTCTGGTATTTCC W2 rs147908272 ACGTTGGATGTGACCCCCAAATTGTGTACC ACGTTGGATGAGCCTTAGCATGGGAATAAC 
W1 1_227079478 ACGTTGGATGCACCCAGAAGAAGACTCCTA ACGTTGGATGAGTCAAGGGAGGCTCAAAGA W2 rs2588969 ACGTTGGATGTCATACTCTAGCAGAAGAGG ACGTTGGATGATGCCCTTTGCTCTTCAGAC 
W1 rs3865444 ACGTTGGATGACAACTGTTTACACCAGGGC ACGTTGGATGAATCCTATATCCTGCTGGAC W2 rs4938933 ACGTTGGATGGCAGGACTGGAAAAATCTGA ACGTTGGATGGGCCAGTACCATTTTTGGAG 
W1 rs6733839 ACGTTGGATGTTCCCGTTCCATCCTGTTTC ACGTTGGATGGGAAAGAAATCTCTGTTCTGC W2 rs10792832 ACGTTGGATGATCTTGAGGCCACTTAAAGG ACGTTGGATGGAGATGAAGGCCATCCTTTC 
W1 rs13538 ACGTTGGATGGCTCTGCCTGTTGATGATCC ACGTTGGATGTTTTGCTATCCCCTGACGAC W2 rs5400 ACGTTGGATGTAATCACCATGCTCTGGTCC ACGTTGGATGTTCCAAGTGTGTCCCCAAGC 
W1 rs35349669 ACGTTGGATGAAGGGACAAGCGCTTCTGGT ACGTTGGATGTGAAAGTAGGAGCGGAGACT W2 rs11218343 ACGTTGGATGTTACAGATGTGAGCCACTGC ACGTTGGATGCACTCAATGTTCCAAGATCC 
W1 rs2001490 ACGTTGGATGAGAGCTCCTACTGTGCCCA ACGTTGGATGCCAAATCCTACCTGAGTGAG W2 rs6701713 ACGTTGGATGGGAGGTGTTACAGCACACTA ACGTTGGATGGGATTGACAGAGCTGTTAAG 
W1 rs9331896 ACGTTGGATGAGAGGGATAAGAGCTCCGGT ACGTTGGATGCATTTCATTCAGCTCTTCCC W2 2_74709426 ACGTTGGATGAGAGCGCGAAGCTGCATCTC ACGTTGGATGAGACTCTCGAGCCGCTGCTG 
W1 rs11767557 ACGTTGGATGATGATGTCTTAGGGCATCTC ACGTTGGATGCTTGTTGCCTCCATCAACAG W2 11_59834482 ACGTTGGATGGACAACTCCTTAATGACTGG ACGTTGGATGTGAACATTGCCAGTGCTAC 
W1 rs62095193 ACGTTGGATGCATGTTTTGCAGCTTGAAGG ACGTTGGATGTTTCATCTGCATCGAACAC W2 rs6505776 ACGTTGGATGTTTCCCATGAAGCAGCCTAC ACGTTGGATGCAGGGAACCTCAAATCCTTC 
W1 rs10498633 ACGTTGGATGGGCACTTAGCAGACAAGATG ACGTTGGATGTCCTACCTGATCCACAAAGC W3 rs73938538 ACGTTGGATGTCTTCTGGGTGCAGCTTTTC ACGTTGGATGTGATGGCTGCACAGAATCTC 
W1 2_96781817 ACGTTGGATGACCAGGACCCCTACTCCGT ACGTTGGATGCCAGGATGACCAGAGCGTT W3 rs1624844 ACGTTGGATGATGAGATCCCACAGAAGACC ACGTTGGATGTTTTCCACCTAGCTGCTGAC 
W1 rs201970902 ACGTTGGATGCTTGGCAATACTGCAGGATG ACGTTGGATGTGAATGTCCAGAATGGGAAG W3 rs9349407 ACGTTGGATGTGAGTCAGTGAGTGGTGAGC ACGTTGGATGGTTAGCTTTAGTGTATGGTG 
W1 rs7598901 ACGTTGGATGCACTCACATAGAGAGAAGCC ACGTTGGATGGGAGTGGCTGAAACTTTAG W3 rs2281937 ACGTTGGATGGGACTATGGCTTCATGAAGG ACGTTGGATGAGGTGAGTTTTGGAGCACCG 
W1 rs8093731 ACGTTGGATGTAAGGCGGGACTCAGTAATC ACGTTGGATGGGGATGTTAACAGTGGTTTTC W3 rs3752246 ACGTTGGATGAACCACCCCTTGAACCTCAC ACGTTGGATGTGCAGGGTAGGACATGCAG 
W1 rs3731828 ACGTTGGATGTATGACCCAGAATGTGGAGC ACGTTGGATGTCACTGTGGCTTCCAGATCC W3 rs1052161 ACGTTGGATGTAAGTCAACGTCACTGCACC ACGTTGGATGAGAGAGGCTGGCAGAGACC 
W1 rs200785869 ACGTTGGATGATGGTCACTCCATGCAAAGG ACGTTGGATGAGCTTCCAAGAGACATGCTG W3 rs1532278 ACGTTGGATGCAAGATCTCACTCCCTGATG ACGTTGGATGCTGTGTCAGCTGATGCTGAG 
W1 rs41280595 ACGTTGGATGCCTCCTGTAATGGTTTTGAC ACGTTGGATGTGGCAATGAAGCAAACCTCC W3 11_47505996 ACGTTGGATGGATTTCCAAGAAGTGCACTG ACGTTGGATGATCCGGCATTCTTCAATCTG 
W1 14_53348185 ACGTTGGATGGTACTGCATACTTACTACCTG ACGTTGGATGGGGTCATTGTTTTACTATAC W3 17_7189779 ACGTTGGATGGTGAAGATGAAGAAGCCCAG ACGTTGGATGTATGGGGCCCTACGTCTTC 
W1 rs474337 ACGTTGGATGTAGGACAGTCCACGGCTCTT ACGTTGGATGTACCAGTCAAAGGTCCTCAG W3 rs1786263 ACGTTGGATGAGTTTATGCCCCAGAGGATG ACGTTGGATGTTAAGTGTCCGTGATTCCCC 
W1 rs4147929 ACGTTGGATGCACCACACTATGTCCCATTC ACGTTGGATGCACAGTGTGGCGGGGCCAGCA W3 rs148346043 ACGTTGGATGAATCCAGCAATTTCCACCAC ACGTTGGATGAGAGTCCCCATTCTACTCAC 
W1 rs9271192 ACGTTGGATGGATCAGCAGGGTATCTAAAG ACGTTGGATGCCCAAGGAGCTCTGATAAAG W3 rs61748137 ACGTTGGATGACCTGATGTTCTCATTGGGC ACGTTGGATGAGAAGGATGCTTGGCTGAAC 
W1 rs1476679 ACGTTGGATGGTCACATGGTACTTAGACTG ACGTTGGATGATTCTCCCGATCTGTTCTGG W3 rs7561528 ACGTTGGATGTTCAGGAAAGAAGACTCTAC ACGTTGGATGACCATTTAGGCCATAGTTTC 
W1 rs2592551 ACGTTGGATGGGTTAAGGTAGCCCAGTTCG ACGTTGGATGCTATTCCTGGGACATGATGG W3 rs3772173 ACGTTGGATGCCCCCCAGCGAAAAAAATGA ACGTTGGATGCCTTCTTAACTGTTGGCACC 
W1 rs138180929 ACGTTGGATGTTCCCCAGCTCCACAGATTG ACGTTGGATGTGATGATGCTGTTTCTCACC W3 rs11771145 ACGTTGGATGCGGACACCAAAGAATGCATA ACGTTGGATGAACACCACGGAGTGGATTTG 
W2 rs4811697 ACGTTGGATGATGAGGACTGTCTACCTCCC ACGTTGGATGTTTCCCATAGGGCAGAGTTG W3 rs12457503 ACGTTGGATGCAACACGGCTCTCCATTATG ACGTTGGATGCCTTGTTTTGCACCTCGATG 
W2 9_113018783 ACGTTGGATGGCTGTAAGGACCGATGGAAA ACGTTGGATGTAAAGGGAGAGAGCAAGCAG W3 rs2718058 ACGTTGGATGGAGAACGAGCATTGGGTTTC ACGTTGGATGACAACATAAATCAACACAG 
W2 rs10761054 ACGTTGGATGGCAGTGGCATCAATGTGAAC ACGTTGGATGAGTTGGCCTGTGCTGACATC W3 rs8244 ACGTTGGATGCAGAAACACCTACTATCCCG ACGTTGGATGCAGAACAGTTGGCTTTGATG 
W2 2_95537526 ACGTTGGATGAGCGCCTGGGTCTCTGTGG ACGTTGGATGAGAACTGCTATGCTCGCTAC W3 rs1050301 ACGTTGGATGTTCCAAGATTCAGTCGGGTC ACGTTGGATGCCCTTTTGTTTTTGGAGTTG 
W2 rs10948363 ACGTTGGATGTAGTGTGTTAGGATTTGAG ACGTTGGATGACACAACACTTTAGTTCCAC W3 2_73519475 ACGTTGGATGACCCTTGAAGGCAGAGACAG ACGTTGGATGTGCCTGTATGAGCCTCAGC 
W2 rs202188414 ACGTTGGATGCCAGTCCTCAACCTCCATTT ACGTTGGATGGTTTCTGGAGCCGATTCAAC W3 11_121454230 ACGTTGGATGATCCTCATCGGAACCATCCT ACGTTGGATGAGGCCTCCAACTTCCAGTG 
W2 7_99998700 ACGTTGGATGAAGTCCTCGCCATCACTGTT ACGTTGGATGCTGGACCTGGAGCAACTCAT W3 rs142892172 ACGTTGGATGGAGGATTTCTGGCCTTTGG ACGTTGGATGGCAAACCAAAGCCTTGCAAT 
W2 rs10838725 ACGTTGGATGTAGCTCTTCTGGAGACTGAG ACGTTGGATGTTGTCGCCCACGATGGAGTA W3 rs2276626 ACGTTGGATGTTCTCCTTGCGTTTGGCATC ACGTTGGATGGCACATTGTGGATGCTGAAG 
W2 rs17125944 ACGTTGGATGTACTGGTGCATGATTTTGCC ACGTTGGATGGTTTGTGGAACAAGCTGGTG W3 11_60064763 ACGTTGGATGTGACCCCCAAATTGTGTACC ACGTTGGATGCAATGATGTGTATGGCATCT 
W2 rs190982 ACGTTGGATGTACTGAGTCTTATTTTCCCC ACGTTGGATGGTGTAGTTTTCTATGTGCTC W3 rs983392 ACGTTGGATGATGGAACATTTGTGAAGTG ACGTTGGATGTTAGACAACTAAGCTTGTGG 
W2 rs144076317 ACGTTGGATGTGAGGACAACAAGGGGAAGT ACGTTGGATGATCATTGTGGGCTTTGGAAC W3 rs35142681 ACGTTGGATGTGGAAGACAGTGATGATGGC ACGTTGGATGGCTCCACAACTCTCCACAG 
W2 rs147783767 ACGTTGGATGCTGACCTGTCCCTGATCTTA ACGTTGGATGCATCAAAATCCGCATGGAC     

 

Table IV-2. TaqMan assay designs for two variants genotyped via this method. [C/T] = possible alleles for variant of interest within context sequence. 

Variant Strand Context Sequence 

rs11889464 Forward GCTACCACCAGGCCTTCGCCGACCG[C/T]GACCAGTCGGAGCGGCAGCGGCACG 

rs7929057 Reverse ACTGGTGATATTCTTTCCTAGACTA[C/T]CTCCAACCTAGAAAGAAATGAAAAT 
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The genotypic information from the Sequenom pools and the two TaqMan assays were 

combined and the same QC was performed on the complete dataset (Table IV-3). Seven 

variants (two GWAS hits and five sequencing variants) failed genotyping via the 

Sequenom pools (Table IV-4). Of the remaining 78 variants and SNPs, two sequencing 

variants were monomorphic in the larger dataset and thus failed to validate as a true 

variant. Additionally, two GWAS hits with low efficiency (genotypes called in less than 

95% of samples) and one multiallelic sequencing variant were dropped from analyses. 

The available statistical software for association analysis in a complex population like the 

Amish (detailed in Chapter III) is restricted to testing biallelic markers therefore any 

multiallelic markers cannot be analyzed. This resulted in 48 sequencing variants and 25 

total GWAS hits (17 were used in Chapter II) passing these QC measures. 

 

Table IV-3. Summary of Variant QC. Sequence variant = variant identified from whole-exome 
sequence data. GWAS hit = SNP implicated by two recent meta-analyses (Lambert et al., 2013; Naj et 
al., 2011). AMD variant = variant identified from whole-exome sequence data from subset of 
individuals chosen for the AMD project. Complete dataset = all variants and markers genotyped in 
three Sequenom pools and two TaqMan assays. 

 Sequence 
Variant 

GWAS 
hit 

AMD 
variant 

Complete 
Dataset 

Selected from sequence data 56 30 1 87 
Failed to genotype 5 3 0 8 
Failed to validate, monomorphic 2 0 0 2 
Dropped due to low marker efficiency 0 2 0 2 
Dropped due to multiallelic variant 1 0 0 1 
Available for analysis 48 25 1 74 

 

Table IV-4. Five Sequencing Variants that Failed Genotyping in the Verification Phase. Chr = 
chromosome. MAF = minor allele frequency. MQLS-adjusted MAFs and association p-value values 
are from the sequence data (see Chapter III).  

Marker  Chr  Position  Case MAF  Control MAF  p value  Gene 

rs5400  3  170,732,300  0.285  0.154  0.00017  SLC2A2  
rs35142681  9  113,449,489  0.080  0.032  0.00865  MUSK  
rs906807  18  9,117,867  0.198  0.243  0.90281  NDUFV2  
rs474337  18  13,095,609  0.247  0.377  0.00856  CEP192  

rs12457503  18  14,752,957  0.350  0.470  0.00369  ANKRD30B  
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Five of the 48 sequence variants passing the above QC had an initial concordance rate 

with the sequence data less than 97.5%. One of these variants, rs144076317, was low 

in concordance and appeared monomorphic in the larger dataset. Examination of the 

cluster plots generated by the calling software determined that the genotypes needed to 

be manually called as the graph showed weak clustering. The automated genotyping 

software for the Sequenom technology is called Typer ("MassARRAY Typer 3.4 

Software User's Guide for iPLEX and hME," 2006). With this software, TyperAnalyzer is 

used to view and analyze the data collected from the spectra readings. It uses threshold 

values, 85-100%, that correspond to a conservative to moderate call to categorize the 

strength of the genotype in each well. The spectrum for each well shows the location of 

each allele peak. The height of each peak corresponds to the amount detected of each 

analyte or allele reporter (Figure IV-1). The software converts the spectra into a cluster 

plot by plotting the height of the peak for allele 1 versus to height of the peak for the 

alternate allele. The color and shape of the point reflects the genotype call for a 

particular sample. The cluster plot for a reliable assay will have data points that fall along 

the axis (homozygotes) and the diagonal (heterozygotes). For unreliable assays, data 

points will fall between clusters and may be labeled as “no calls” or alternatively, may be 

called as the wrong genotype if not enough data points exist for a given genotype for a 

clear cluster to be formed. This latter scenario was the case for rs144076317 as there 

were too few individuals with the alternate allele for cluster formation. This manually 

calling increased the concordance to 100% and called four individuals as heterozygous 

for the minor allele, including three individuals who were a part of the sequence dataset 

(Figure IV-2).  
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Figure IV-1. Spectrum peaks for rs144076317 from Sequenom MassARRAY Typer Software. (a) 
Spectrum from sample with a reliable peak for G/G genotype. (b) Spectrum from sample with reliable 
peak for G/T genotype. 
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Figure IV-2. Log height plot for rs144076317 generated by Sequenom MassARRAY Typer Software. 
Log height plots each assay results by probe of extension rates using the reported log (height) of 
allele peak signals. (▲) or G = homozygotes for major allele G. (■) or GT = heterozygotes who were 
manually called G/T. (▼) or T = homozygotes for minor allele T. (●) = samples where no call was 
made for the genotype. 

 

The majority of the discordant genotypes for the remaining four variants consisted of 

homozygotes for either allele from the sequence data being called as heterozygotes in 

the follow-up genotyping (Table IV-5). On average 83% of the discordant genotypes 

were of this manner for these variants. The remaining discordant genotypes consisted of 

sequence heterozygotes being called as homozygotes for either allele in the follow-up 

phase. Three of these variants were sequenced at a low depth, less than 10x on 

average across all individuals, but one was sequenced at an average depth of 100x. 

Low sequence depth could explain the discordance if the read counts were too small to 

contain one with the minor allele. For a heterozygous individual, the probability of a read 

containing the minor allele should be 0.5. Therefore, the probability of all reads 

containing the same allele is 0.0625 if the sequence depth is only 4. While small, this is 
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not a trivial probability. These variants with low concordance were flagged but not 

removed from further analysis. It was determined that if these variants were significantly 

associated with LOAD, then confirmatory genotyping would be necessary to be confident 

in the association results. 

 

Table IV-5. Details of the four sequencing variants that were initially less than 97.5% concordant with 
the sequence data. AA to Aa = number of genotypes that were homozygous in the sequence data 
that were called as heterozygous in the follow-up genotyping. Aa to AA = number of genotypes that 
were heterozygous in the sequence data that were called as homozygous in the follow-up 
genotyping MAF = MQLS-adjusted minor allele frequency. 

  AA to Aa Aa to AA    
Marker Discordant 

Genotypes 
Major Minor Major Minor Concordance 

Rate 
Sequence 

Depth 
MAF 

rs4811697 23 10 8 3 2 0.86 5.32 0.36 
rs2001490 15 0 14 0 0 0.91 100.23 0.29 

rs16960199 5 5 0 0 0 0.97 4.32 0.06 
rs3731828 5 3 0 2 0 0.97 9.4 0.34 

 

Two variants failed to validate and were monomorphic in the larger dataset. The first 

variant is a novel missense mutation and is located within the linkage region on 

chromosome 2 at position 95,537,526. The single heterozygote in the sequence dataset 

was sequenced at this position with a depth of 13 and 10 of the reads contained the 

alternate/minor allele. The alternate/minor allele was only observed in a single read in 

three of the remaining 166 individuals who were sequenced with an average depth of 

greater than 30. The MQLS p-value for this variant was 0.67 in the sequence data. The 

Sequenom genotyping software called this individual as homozygous for the referent 

allele. As the true genotype for this individual at the position cannot be resolved, this 

variant from removed from further analysis. 
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The second variant that failed to validate, rs62095193, is located on chromosome 18 at 

position 29,104,689 and is a synonymous mutation in DSG2, a LOAD risk gene 

(Lambert et al., 2013). A single heterozygote had the alternate/minor allele in both the 

sequence and the follow-up datasets. This individual was sequenced at this position with 

a depth of 32 and the alternate allele was present in 14 of the reads. Six of the 166 

individuals with an average depth greater than 30 had a single read with the alternate 

allele. The MQLS p-value in the sequence dataset was 0.83. However, when MQLS 

adjusted the minor allele frequency for the relatedness of the individuals in the follow-up 

dataset, this variant was reported as monomorphic.  This may be either a true non-

validation of the variant or a genotyping error in the Sequenom pools. As only a single 

heterozygote was genotyped and as MQLS reported the variant as monomorphic, it was 

removed from further analysis in the context of no resolution on the nature of the variant.  

 

A total of 1,143 samples were genotyped for the variants (Table IV-6). Of these, 24 

samples were duplicates. Including duplicate samples allows for concordance checking 

across samples and plates to control for the quality of the genotyping assays. Two sets 

of duplicate samples were discordant at nine and 14 variants, respectively. With this 

level of discordant genotypes, both samples from each set were removed from analysis. 

For nine of the duplicate pairs that were concordant, the sample with the lower 

genotyping efficiency was removed. The remaining 11 duplicate pairs were concordant 

and genotyped at the same efficiency, so a random sample from each pair was chosen 

to be removed. Of the 1,119 remaining unique samples, 83 were dropped due to a 

genotyping efficiency below 95%. Two individuals were dropped from analysis for low 

concordance (68% and 77%, respectively) between follow-up genotyping and the 

sequencing data. To calculate kinship coefficients to adjust for relatedness, individuals 



 

78 
 

not currently in the AGDB and those who were not in the subsequent all-connecting 

pedigree (n = 113) were removed. This resulted in 921 samples passing all QC 

measures (Table IV-7). 

 

Table IV-6. Summary of Sample QC.  AGDB = Anabaptist Genealogy Database. 

 Cases Controls Unknowns Complete 
Dataset 

Genotyped samples 144 625 374 1143 
Removed due to discordant duplicates 0 0 4 4 
Removed due to lower efficiency duplicate 1 3 5 9 
Removed random duplicate sample 1 6 4 11 
Removed due to genotyping efficiency < 95% 15 40 28 83 
Removed due to concordance < 80% 1 0 1 2 
Removed because not in AGDB or pedigree 0 73 40 113 
Available for analysis 126 503 292 921 

 

Table IV-7. Demographics of Samples Used For Follow-up Genotyping. Age of exam and onset 
averages and standard deviations were calculated for the 921 samples which passed QC for follow-
up genotyping. 

Affection status Female Total Average age of exam/onset 
(standard deviation) 

LOAD case 63% 126 78 (7.75) 
Cognitively normal 58% 503 79 (6.72) 
Unclear or unknown 49% 292 80 (6.82) 

 

Case-control dataset of unrelated individuals 

A collaborative study between researchers at the University of Miami and Vanderbilt 

University has ascertained approximately 1000 European-American individuals unique 

from the Amish populations (Table IV-8). These individuals are the same as those 

described in Chapter II. As the Amish are founded from European immigrants, this 

European-American dataset of unrelated individuals is of similar ancestry. These 

individuals have been diagnosed with probable or definite AD according to NINCDS-

ADRDA criteria with an age of onset greater than 60 (G. McKhann et al., 1984). To make 

these diagnoses, documentation or a clinical history of significant cognitive impairment 
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was present. Age- and gender-matched cognitively healthy controls were ascertained 

from the same regions and had a documented 3MS or MMSE score in the normal range 

(over 78) ("Canadian study of health and aging: study methods and prevalence of 

dementia," 1994; Tombaugh, 2005). The cases and controls are demographically similar 

with an average age of onset or age at exam of 74 and female percentage of 63% and 

60%, respectively (Naj et al., 2011). 

 

Table IV-8. Demographics of Samples from the Unrelated Datasett. Age of exam and onset averages 
and standard deviations were calculated for the 971 samples which passed QC for follow-up 
genotyping. 

Affection Status Female Total Average age of exam/onset 
(standard deviation) 

LOAD case 63% 473 74 (8) 
Cognitively normal control 60% 498 74 (8) 

 

Case-control analysis  

Case-control association in the Amish was performed using the Modified Quasi-

Likelihood Score (MQLS) test, which corrects for the relatedness of individuals (Thornton 

& McPeek, 2007). This association software was described in detail in Chapter III. Type 

1 error rates for the method are not inflated when used for the Amish (Cummings et al., 

2013). A conservative Bonferroni correction for the number of tests performed (48 

sequencing variants passing QC) was used to determine the threshold for the level of 

significance. Previous studies in this Amish population investigated this software’s power 

to detect associations (Cummings et al., 2013). For dominant and additive models, there 

was greater than 90% power to detect an association at p < 0.05 when the simulated 

odds ratio (OR) was at least 2 and the minor allele frequency was held constant at 0.2. 

For genome-wide data, the Bonferroni-corrected p-value is traditionally 5 x 10-8. If the 

OR is 5, there was < 90% power to detect an association for dominant and additive 



 

80 
 

models, but this power dropped significantly, less than 5%, if the OR was less than or 

equal to 2. In the analysis of the unrelated dataset, logistic regression was performed in 

PLINK (version 1.07) with APOE as a covariate. 

 

Age of onset analysis 

So far, all the analyses described have focused on variants that contribute risk to 

disease status. As an alternative hypothesis, these variants may be acting as a modifier 

of LOAD. One of the most commonly examined measures for LOAD is age at onset. Age 

of onset was recorded for 105 of the 127 cases that passed genotyping QC measures 

detailed above. Previous studies in these populations demonstrate the expected 

relationship between APOE genotype and age of onset (Cummings et al., 2012). An 

association score test (mmscore in GenABEL R package, version 1.7-6), that adjusts for 

the relatedness of the case samples using kinship coefficients, was used to determine if 

there was a relationship between age of onset and genotype in this Amish dataset. 

APOE genotype was used as a covariate in this analysis. To replicate any significant 

results, a similar analysis was performed in the outbred case-control dataset using the 

same information for 464 cases in a linear regression with APOE status as a covariate.  

 

Results 

Similarly to the analysis of the whole-exome sequence data described in Chapter III, 

each of the variants that passed QC during the follow-up phase was tested to see if an 

allele was associated with LOAD in this population. No variant passed the significance 

threshold when corrected for 48 tests (p < 0.001). The most significant result (p = 

0.0012) was for rs73938538 (MAF 0.087), a synonymous variant in LAMA1 within the 
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linkage peak on chromosome 18. No other variant was significant at a threshold of p < 

0.05. Seven of the 48 markers had a p-value less than 0.1 (Table IV-9). 

 

Table IV-9. MQLS-corrected allele frequencies and case-control association p-values for the variants 
in the full dataset. Chr = chromosome. MAF = minor allele frequency. (*) Variant in implicated linkage 
regions. (+) Variant in implicated AD gene. (#) Variant unique to controls.  

Marker Chr Pos Case MAF Control MAF p value Gene 

rs73938538* 18 7008583 0.8487 0.9234 0.0012 LAMA1 
11_47505996

+
 11 47505996 0.0069 0.0001 0.0543 CELF1 

rs1786263* 18 13116432 0.3063 0.3384 0.0550 CEP192 
rs6505776* 18 12984144 0.3162 0.3423 0.0758 SEH1L 

rs8244* 2 86371883 0.4026 0.4523 0.0775 IMMT 
rs3772173* 3 170078232 0.1287 0.1635 0.0788 SKIL 
rs4811697

+
 20 55033856 0.3946 0.37 0.0920 CASS4 

2_74709426* 2 74709426 0.0169 0.0005 0.1167 CCDC142 
rs1624844* 2 97613616 0.2656 0.2391 0.1223 FAM178B 

2_73519475* 2 73519475 0 0.0117 0.1243 EGR4 
2_96781817* 2 96781817 0.0533 0.0236 0.1272 ADRA2B 
7_99998700

+
 7 99998700 0.0131 0.0069 0.1811 ZCWPW1 

18_29125783
+
 18 29125783 0.0042 0.0002 0.1912 DSG2 

rs2276626* 2 86259443 0.2768 0.3375 0.2015 POLR1A 
rs142892172

+
 11 60183953 0.0107 0.0048 0.2104 MS4A14 

11_60064763
+
 11 60064763 0.0053 -0.0005 0.2131 MS4A4A 

11_60197218
+
 11 60197218 0.0171 0.0103 0.2890 MS4A5 

rs201970902
+
 21 27484335 0.0287 0.0146 0.3253 APP 

rs16960199
#
 19 54976265 0.037 0.0583 0.3613 CDC42EP5 

rs138180929
+
 11 59861473 0.0073 0.0201 0.3631 MS4A2 

rs7929057
+
 11 59980598 0.1332 0.0738 0.3681 MS4A4E 

11_59834482
+
 11 59834482 0.0308 0.0199 0.4125 MS4A3 

rs13538* 2 73868328 0.1806 0.2483 0.4776 NAT8 
rs61748137* 2 88383970 0.1409 0.1319 0.5190 SMYD1 
rs41280595* 2 101580575 0.0924 0.1094 0.5396 NPAS2 

11_121454230
+
 11 121454230 0 0.0012 0.5526 SORL1 

rs147783767
+
 19 1045209 0 0.002 0.6346 ABCA7 

rs10761054* 9 107379895 0.3296 0.2884 0.6480 OR13C9 
8_27300395

+
 8 27300395 0 0.0009 0.6483 PTK2B 

rs3731828* 2 85806266 0.3303 0.3579 0.6711 VAMP8 
rs2592551* 2 85780131 0.3161 0.3549 0.6728 GGCX 

rs11889464* 2 95537501 0.0785 0.0528 0.6920 TEKT4 
rs202188414

+
 7 100001817 0.0183 0.0124 0.6977 ZCWPW1 

rs200785869
+
 11 60236016 0.0222 0.0124 0.7086 MS4A1 

rs2001490* 2 73928098 0.7192 0.6956 0.7121 NAT8B 
17_7189779

+
 17 7189779 0.0081 0.0045 0.7210 SLC2A4 

19_1054789
+
 19 1054789 0.0034 0.0111 0.7230 ABCA7 

rs2281937* 9 113169126 0.3966 0.3849 0.7321 SVEP1 
rs144076317

+
 11 60165392 0.0038 0.0019 0.7365 MS4A14 

rs148346043
+
 11 60152688 0.0092 0.0178 0.7424 MS4A7 

1_227079478
+
 1 227079478 0.0019 0.0071 0.7619 PSEN2 

9_113018783* 9 113018783 0.0082 0.0024 0.7637 TXN 
rs2787374* 9 103054951 0.3913 0.3852 0.8000 INVS 

14_53348185
+
 14 53348185 0 0 0.8205 FERMT2 

8_27297871
+
 8 27297871 0.0174 0.0126 0.9210 PTK2B 

rs147908272
+
 11 60064732 0.0066 0.0097 0.9265 MS4A4A 

rs7598901* 2 73675844 0.3029 0.3525 0.9600 ALMS1 
rs1052161* 2 73828538 0.6766 0.6277 0.9657 ALMS1 

rs62095193
+
 18 29104689 NA NA NA DSG2 
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To determine if the rs73938538 association replicated in a dataset of unrelated cases 

and controls, the variant was genotyped in 473 LOAD affected individuals and 498 

cognitively normal controls. When the variant was tested for association with LOAD, it 

failed to replicate (logistic regression with APOE as a covariate, p = 0.28). In this 

unrelated dataset, the minor allele frequency (MAF) in cases was 0.081 and 0.094 in 

controls, which is the opposite direction of effect of the minor allele in the Amish. There 

is at least 90% probability to detect an association, if present, when the effect size is at 

least 0.125 with a type I error probability of 0.05. The association program used in the 

Amish, MQLS, does not return an OR or effect size for the variant being tested so this 

power calculation is an estimate that may vary based on the true effect size.  

 

Additionally, the score test for association in the Amish between age of onset and 

genotype for rs73938538 was not significant (corrected p-value = 0.60, df=1). As this 

result was not significant, it was not tested for in the unrelated dataset. 

 

Discussion 

A synonymous variant in LAMA1, rs73938538, is associated with LOAD in the Amish 

just below experiment-wide significance (Figure IV-3). LAMA1 encodes the laminin alpha 

subunit. Laminins are a major functional component of the basement membranes of 

many tissues. This protein is involved in pathways for axon guidance, extracellular 

matrix interactions, and cell adhesion and migration. Laminin is found underlying the 

endothelium of blood vessel walls and different isoforms may contribute to vascular 

homeostasis (Yousif, Di Russo, & Sorokin, 2013). The alpha1 subunit of laminin is 
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expressed in the basal lamina of blood vessels in the central nervous system, mostly 

confined to capillary walls (Virtanen et al., 2000). There is strong evidence to suggest 

the etiology of LOAD may include cerebrovascular dysregulation and that the neuronal 

degeneration is secondary to this dysregulation (Bomboi et al., 2010; Cullen, Kocsi, & 

Stone, 2006). Amyloid is deposited in arteries leading to leakage and hemorrhage. 

Selective breakdown of the blood-brain barrier may compromise the effectiveness of 

amyloid removal. However, there are conflicting reports on the cause and effect of this 

degeneration and dysregulation and which occurs first. The association of the 

synonymous variant rs73938538 with LOAD in the Amish suggests that the 

cerebrovascular homeostasis and dysregulation may contribute to the underlying 

pathology and degeneration in this isolated population. 
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Figure IV-3. LAMA1 Gene Position and Structure. Derived from the National Center for Biotechnology 
Information (NCBI) genomic region browser (http://www.ncbi.nlm.nih.gov/gene). (a) Full structure of 
LAMA1 and surrounding genes. k = kilobase. m = megabase. (b) Exon level structure of LAMA1 gene 
surrounding rs73938538. (c) Sequence level structure of LAMA1 gene around rs73938538. 

 

While synonymous, or “silent”, mutations do not change the amino acid encoded by the 

DNA sequence, these changes may cause human disease by altering protein 

expression, conformation and function. Messenger RNA (mRNA) nucleotides encode 

enhancers for splicing and mutations may change the efficiency if they occur at exon-

intron boundaries (Pagani, Raponi, & Baralle, 2005). If the synonymous mutation occurs 

in the binding site of a microRNA, this change may alter the degradation patterns of the 
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transcript and therefore alter protein expression levels (Friedman, Farh, Burge, & Bartel, 

2009). However, as this variant does not occur at such a boundary or binding site, it is 

unlikely to be contributing through these mechanisms. 

 

A synonymous mutation can affect the speed of translation at many points. If the 

mutation encodes for a less abundant transfer RNA (tRNA), this can slow down the 

translation machinery (Zhang, Hubalewska, & Ignatova, 2009). Additionally, evidence 

suggests rare and common codons are distributed across mRNA to create control points 

for the speed of elongation. If a synonymous mutation occurs in one of these control 

points or encodes for a rarer tRNA, it can alter the speed of translation and therefore co-

translational folding of specific protein secondary structure and cause misfolded proteins 

(Powers & Balch, 2008; Tsai et al., 2008; Tuller et al., 2010). This synonymous variant 

encodes for a more common valine codon (GTG) which has a frequency of 2.91 in highly 

expressed human genes and 2.78 in all human genes than the referent allele does 

(GTT) which has frequencies of 1.12 and 1.11, respectively (Karlin & Mrazek, 1996; 

Lavner & Kotlar, 2005). Therefore, the associated synonymous variant may increase 

disease risk through inefficient translation or abnormal co-translational folding of a 

protein important for the function of the basement membrane of the cerebrovasculature 

by substituting for a more common codon. 

 

The lack of generalization in the unrelated dataset may be due to several reasons. First, 

the association detected in the Amish population may be a false positive and therefore 

not a true association. If this is true, the association should not be detected in any other 

study population or dataset. However, there is at least 90% probability to detect an 

association, if present, when the effect size is at least 0.125 with a type I error probability 
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of 0.05. Second, the association may be easier to detect in a dataset from a more 

homogeneous background. Third, the phenotype-genotype correlation may have arisen 

separately in the Amish after the founding of the population and could therefore be 

unique to this genetically isolated population. Fourth, the association with this variant 

and LOAD may be the result of an interaction with another genetic variation or a 

component of the environment that is unique to the Amish culture or way of life. If this 

interacting factor was untested or unaccounted for in this study, and therefore not 

reproduced in the unrelated dataset, the association may not be detected.  

 

Five sequencing variants failed genotyping in the Sequenom pools. These variants can 

be genotyped via alternative methods (TaqMan genotyping, direct Sanger sequencing, 

etc.) to overcome this limitation. These variants may be associated with LOAD in the 

Amish, but were not interrogated because of the failure to genotype. If these variants are 

associated in the Amish and that association generalizes in the unrelated dataset, new 

knowledge about the disease process could be learned.  

 

These results suggest that exonic variation in associated LOAD genes and regions 

implicated by previous linkage studies do not contribute risk to LOAD in the Amish 

(within the limits of the power to detect effects), beyond the possible association with 

LAMA1. Other areas of the genome, intronic regulatory elements, epigenetic 

modifications, or previously unassociated genes, may be harboring variation that confers 

susceptibility in the Amish but were not interrogated by this study. Additional studies 

examining the non-exonic variation of known AD genes and the candidate linkage 
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regions, as well as other portions of the genome, are likely to identify new variation that 

confers susceptibility to developing LOAD in the Amish. 
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CHAPTER V  

CONCLUSION 

 

Summary 

Alzheimer disease is the most common cause of dementia and occurs in over 30% of 

the US population over the age of 85 years. The pathophysiology underlying the disease 

is not yet fully understood, and many theories have been proposed to explain observed 

findings from research (see Chapter I). However, this work has not yet translated into 

effective treatment options capable of significantly slowing disease course or targeting 

the underlying biological pathogenesis. Additional research has focused on identifying 

drug targets and predictive biomarkers by studying the many environmental, health and 

genetic risk factors associated with the late-onset form of this disease. However, the 

currently known genetic risk factors do not explain the expected risk based on heritability 

estimates.  

 

The main goal of this project was to help overcome the genetic and environmental 

heterogeneity present in most genetic studies of LOAD by studying the isolated founder 

population of the Amish communities in Ohio and Indiana. To better understand how the 

risk loci previously identified in the general population contribute to disease risk in this 

special population, total genetic burden was calculated for Amish cases and controls and 

compared to unrelated individuals from the general population. This study also built on 

the previous dementia work conducted in the Amish by whole-exome sequencing a 

selected subset of the overall study population. These data were used as a screening 

tool to identify variants harbored in the genomic regions that are most likely to contribute 

to disease risk. By then genotyping the top candidate variants from this initial screen in 
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the full dataset, statistical power to detect an association between the variant and 

phenotype of interest was increased. 

 

The Amish cases tended to have a lower genetic risk score than the unrelated cases 

from the general population. This result suggests that the common variants implicated by 

GWAS explain a smaller proportion of genetic risk in the Amish than in the general 

population. This is consistent with the lack of significant associations observed for these 

risk loci in previous studies in the Amish. However, since Amish cases did have a higher 

burden when compared to cognitively normal controls from the same population, it can 

be assumed these known risk loci do explain some of the expected genetic effects. The 

lack of correlation between total genetic risk and the parent population for cognitively 

normal controls suggests that the Amish controls are genetically similar to controls from 

the general population in the lack of previously reported risk loci. It is likely that 

additional variation outside of the currently reported risk loci confers susceptibility to 

LOAD in the Amish population. Exonic mutations are a likely source of this risk and are 

the easiest and most feasible to interrogate.  

 

In total, over 79,000 exonic variants were identified from the whole-exome sequence 

data. The Amish population harbored 605 previously uninterrogated exonic variants in 

three classes of genes that are considered the most likely to contribute to risk of 

developing LOAD. These variants were identified by sequencing a selected subset of 

individuals who were the most probable to harbor identifiable risk loci. Given the small 

dataset, it is not surprising that no variant reached classical genome-wide significance 

levels. This lack of significance could be due to many reasons, including limited power or 
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the regions of the genome screened were too narrow. The top candidate variants 

therefore were selected from genes known to carry early-onset mutations, genes 

previously implicated through GWAS, and genes located in four implicated candidate 

linkage regions. These variants were then genotyped and analyzed in the larger, more 

complete Amish dataset. 

 

Of these top candidates, a synonymous variant in LAMA1, rs73938538, is associated 

with LOAD in the Amish just below experiment-wide significance. Laminins are a major 

functional component of the basement membranes of many tissues. This gene encodes 

the laminin alpha subunit, which is expressed in the basal lamina of blood vessels in the 

central nervous system. The association of the synonymous variant rs73938538 with 

LOAD in the Amish suggests that cerebrovascular homeostasis and dysregulation may 

contribute to the underlying pathology and neurodegeneration in this isolated population. 

While the presence of this variant does not change the amino acid sequence of LAMA1, 

it does encode a more common codon than the referent allele does, and may increase 

disease risk through inefficient translation or abnormal co-translational folding of the 

resulting protein.  

 

Overall, these results indicate that exonic variation in a majority of previously associated 

LOAD genes, and regions implicated by previous linkage studies, does not contribute to 

risk for LOAD in the Amish dataset studied. However, a potential relationship between a 

variant in the LAMA1 gene and risk for LOAD was identified in this special population. 

The predicted function of this gene is also relevant to LOAD pathophysiology, 

suggesting it as a strong candidate gene for follow-up studies. 
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Future Directions 

The studies described in this thesis work have generated many additional questions and 

potential future studies that should be conducted to address the new knowledge gaps. 

To further elucidate the functional relevance and consequences of the association with 

rs73938538 and LOAD risk, future studies should be conducted to confirm that LAMA1 

is expressed in the relevant cerebrovasculature endothelium. If this expression pattern 

reflects the pattern of neuronal loss and cortical atrophy, this evidence would reinforce 

the contribution to disease risk for this variant. Then similar differential expression 

studies could be performed to test the effects of the associated variant. Negative results 

from these functional and expression studies would suggest that the observed 

association was a false positive or a lack of positive results could suggest that a 

confounding factor may have been present in the association testing that was not 

available or measured in these follow-up studies. 

 

Functional studies investigating the translational effects of rs73938538 should be 

conducted in cell types expressing the mutated gene and protein product. The most 

relevant cell type for this study would be endothelial cells from cerebrovasculature 

tissue, but an initial study could be performed using any cell type that expresses the 

gene product to determine if the variant does affect translation. If this variant does alter 

either speed of translation or co-translational folding, differences could be detected by 

comparing protein lysate from cells with the variant allele to those with the referent allele, 

at the same stage of growth, via Western blotting. Significant decreases in “mutant” 

protein expression would provide additional support that the association detected in the 
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Amish affects translation efficiency and is not a false positive. To assess the actual rate 

of translation, one approach would be to generate a construct containing the variant 

capped and polyadenylated LAMA1 mRNA fused to a luciferase reporter and a construct 

containing the normal mRNA. Translation could then be monitored and compared by 

following the accumulation of luciferase activity over time (Zeenko et al., 2008). To 

determine if the variant alters co-translation folding, a method of SDS-PAGE analysis of 

nascent chains accumulating during LAMA1 translation could be used to monitor 

translation kinetics (Komar, Lesnik, & Reiss, 1999). 

 

To fully understand the differences in genetic architecture suggested by the risk score 

analysis, the reason for the large discrepancy between the regression p-value and the p-

value from GEE should be further investigated. If a null correlation matrix is inputted to 

GEE, the results should be similar to those from the normal regression. However, if the 

p-values resulting from a null correlation structure are still dissimilar, then another 

method may be needed to determine if GEE is over-correcting for the relatedness or if 

the method is properly testing the stated hypothesis.  

 

The same sequence screening and follow-up genotyping datasets could be analyzed in 

different ways to provide alternate results and interpretations. The studies detailed in the 

preceding chapters were conducted on a variant or gene level. By expanding the scope 

of the screening to included pathways implicated by the three classes of genes (those 

implicated by GWAS hits, known to carry early-onset mutations, and located in four 

previously identified candidate linkage regions), additional variation may be identified 

that confers disease susceptibility.  
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These studies focused on single base substitutions, but sequence data can be used to 

identify small insertions or deletions (indels). Other types of larger structural variation, 

larger indels or translocations, may have been captured if the borders incorporated or 

crossed the intervals targeted by the enrichment technology.  

 

One-hundred thirteen individuals were removed from the analysis in the larger Amish 

dataset because they did not have an AGDB identification (ID) number, and therefore 

could not be related to other individuals, or because the AGDB was unable to connect 

them into the pedigree. This represents a significant number of samples, many of which 

are the most recently ascertained individuals. For individuals without an ID, the 

appropriate information should be gathered and the AGDB should be queried to 

determine if these individuals do have an ID and if they can be connected into a new, 

potentially larger pedigree. If genome-wide genotyping has been previously performed 

on an individual for whom the AGDB cannot find an ID, this genetic information could be 

used to estimate the relationship with other individuals in the dataset. By comparing the 

genetic relatedness and other demographic information (age, sex, county, etc.), an 

estimate of the individual’s location within the pedigree could be made. Similar estimates 

could be made for individuals that the AGDB cannot connect into the pedigree, even with 

a known ID. These analyses would increase the sample size and power of the study 

without potentially having to perform additional genotyping. 

 

Alternative methods of genotyping could be used to generate genotypes for the five 

candidate variants that failed in the follow-up phase detailed in Chapter IV. These 
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variants can be genotyped via alternative methods (TaqMan genotyping, direct Sanger 

sequencing, etc.) to overcome this limitation. These variants may be associated with 

LOAD in the Amish, but were not interrogated because of the failure to genotype. If 

these variants are associated in the Amish and that association generalizes in the 

unrelated dataset, new knowledge about the disease process could be learned. 

 

Additional studies examining the non-exonic variation of known AD genes and the 

candidate linkage regions, as well as other areas of the genome (e.g. intronic regulatory 

elements, regions prone to epigenetic modifications, and previously unassociated 

genes), are likely to identify new variation that confers susceptibility to developing LOAD 

in the Amish. This study focused on three classes of genes and variants that occurred 

uniquely in cases or controls, significantly limiting the portion of the exome investigated. 

While the classes of genes studied were the most likely to harbor risk variants, it is still 

likely that other genes outside of these classes may contribute to LOAD. As common 

variation on genotyping chips has been investigated in the Amish, whole-genome 

sequencing would be an effective method to identify additional variation.  

 

To efficiently conduct a whole-genome sequencing study, similar approaches using a 

screening subset of the large population may be necessary due to cost constraints. 

Selection of individuals for sequencing should be determined by the goals of the study 

(Cirulli & Goldstein, 2010). Within family-based studies, sequencing the most distantly 

related affected individuals lowers the number of variants that will be shared due to 

common ancestry and therefore increases the likelihood that a variant is shared because 

of common affection status. Although the Amish individuals sampled for this study are all 
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related to each other in a single pedigree, this work and previous studies have found that 

genetic heterogeneity does exist in this population (Cummings et al., 2012). To control 

for this heterogeneity, the single all-connecting pedigree could be broken into smaller 

subpedigrees from which the most distantly related individuals within these smaller 

families could be chosen for sequencing.  

 

Another study design for sequencing a subset of individuals is selecting individuals at 

one or both ends of a disease or risk spectrum. Within the ascertained Amish dataset, 

the genetic risk score distributions detailed in Chapter II could be used to identify 

cognitively normal individuals with extremely high risk burdens and affected individuals 

with extremely low risk burdens. These controls may harbor protective variants that are 

modifying their high burden and these cases may harbor unidentified risk variants. By 

performing whole-genome sequencing in these well-defined subsets of the overall 

dataset, these types of functional non-exonic or modifying variants could be identified 

and then genotyped in the full dataset to test for association.  

 

Whole-genome sequence data could also be used for imputation or creating a reference 

genome specific to the Amish (Holm et al., 2011; Le & Durbin, 2011). Imputation can fill 

in missing genotypes based on the correlation and predictability of already genotyped 

markers. Imputation can be a cheaper alternative to whole-genome sequencing every 

sample if enough genotypic and haplotype data exist to efficiently and effectively impute 

a large number of variants. If imputation was successful in the Amish, then follow-up 

direct genotyping of candidate variants may not be needed. Imputation accuracy is 
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affected by minor allele frequencies, population ancestry, genotyping platform, inclusion 

of trios, and reference panel size (Marchini & Howie, 2010). 

 

Ascertainment of new individuals is ongoing in the context of the dementia study and 

another study focused on age-related macular degeneration. Continued focus on 

complete ascertainment of all individuals over the age of 60 would ensure that all 

members of the communities are included. Re-ascertainment should focus on individuals 

of “unknown” affection status and younger cognitively normal controls. Further 

neuropsychological study and re-evaluation of “unknown” individuals may help elucidate 

the primary underlying disease process and allow for better phenotyping of those 

individuals for future genetic analyses. By re-screening cognitively normal controls that 

are on the younger end of the age spectrum and individuals diagnosed with MCI, 

disease progression and genetic factors contributing to status conversion may be 

investigated in future studies. Continued re-evaluation of all subjects would reinforce the 

diagnoses and phenotypes assigned. While LOAD is a disease restricted to older 

individuals, ascertainment of the younger generations would incorporate the necessary 

genetic information needed for phasing and haplotype analysis that has been limited by 

little vertical genotyping in the current dataset.  
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