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CHAPTER I 

 
INTRODUCTION 

 

1.1. Objectives 

 The objectives of this research were the development and utilization of new techniques to 

analyze optical recordings of cardiac spiral wave activity, both in the context of local 

electrodynamic behavior and global large-scale behavior. Optical imaging is an emergent 

technique which records changes in the cardiac transmembrane potential by the use of voltage-

sensitive fluorescent dyes. This approach permits precise, non-invasive measurement of the 

transmembrane potential with high spatial and temporal resolution. 

 It is well known that the development of unstable, self-sustaining reentrant waves of 

electrical activity underlies life-threatening arrhythmias such as ventricular tachycardia and 

fibrillation. However, many details regarding the mechanisms of reentry remain unclear. Recent 

work has shown that fibrillation exhibits a large amount of spatiotemporal organization. An 

understanding of the response of cardiac tissue to an electrical stimulus is crucial for proper 

treatment and prevention of cardiac arrhythmias; an example is the application of a strong 

defibrillating shock to halt fibrillation. Optical imaging has played a key role in discerning the 

spatiotemporal patterns of fibrillation and in the verification of theoretical computational models 

of cardiac propagation. 

 Application of this imaging modality has provided a new and promising form of analysis: 

cardiac activation may be quantified by plotting the transmembrane potential signal against a 

time-delayed version of itself to form a phase portrait. This procedure allows the conversion of 

images of voltage into images of the phase of the tissue during the cardiac cycle and as a result 

provides a means to detect phase singularities. Since phase singularities are believed to be the 

organizing centers to reentrant activity, a reliable method of isolating the singularities from the 

optical image not only permits analysis of the salient features of fibrillation but also reduces the 

information content necessary to track their motion and interaction. 

 The goal of this project was to apply novel techniques of data visualization and phase 

portrait analysis to explore the dynamics of spiral wave formation and interaction and the 
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electrical activity evident at the epicardial surface as well as within the underlying myocardial 

substrate. 

 

1.2. Specific Aims 

The following specific aims were necessary to accomplish the objectives of this research: 

Aim 1. Implement an algorithm to localize phase singularities based upon the phase portrait 

calculation. A phase portrait of the cardiac system (derived either from experimentally 

obtained or numerically simulated data) may be used to generate a phase map. The 

concept of topological charge was applied to the phase map to provide a mathematically 

robust means of isolating the phase singularity. This technique was then used to perform 

an experimental and theoretical analysis of phase singularity interaction dynamics.  

Aim 2. Improve the characterization of the cardiac phase portrait. While the use of the time-

series analytical method is a standard means of reconstructing the phase portrait from a 

single variable, some shortcomings remain. This aim explored a re-definition of the phase 

portrait for the purpose of overcoming these limitations and optimizing the use of the 

phase calculation in order to capture essential elements of singularity initiation. 

Aim 3. Extend the algorithm developed in Specific Aim 1 to filament localization. Filaments are 

the three-dimensional analogue of the phase singularity, and are believed to underlie 

fibrillatory activity in the context of the three-dimensional myocardium. The algorithm 

developed earlier was extended to isolating the filament in numerical simulations. 

Considerations which govern the choice of variables for a phase portrait derived from a 

multi-variable system were also examined.  

Aim 4. Examine the interaction behavior of a filament pair. Early numerical predictions of 

singularity interactions exhibited morphological differences from the experimental 

observations, indicating that more sophisticated numerical models are required. Since the 

singularity dynamics are intricately tied to underlying filament interactions, a simple 

model was created to study the interaction dynamics of a pair of adjacent circular 

filaments. This behavior was quantified in terms of the filament time-of-life as a function 

of the initial separation and radius of the filament pair. 

Aim 5. Quantify the effects of the depth-weighted optical signal on epicardial propagation 

behavior. Studies indicate that the location of filaments may be deduced on the basis of 
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the behavior of transmembrane potentials recorded on the epicardium, presumably due to 

the fact that the optically recorded signal is depth-dependent. For this aim, a three-

dimensional cardiac model was created to simulate filament behavior. The corresponding 

phase singularity and epicardial potential behavior was examined both with and without 

the inclusion of a weighted optical signal. 

Aim 6. Further substantiate the results of Specific Aims 1 and 2 by performing three-dimensional 

whole-heart epicardial visualization. Optical imaging techniques are applied traditionally 

to a single view that presents the potential distribution of a fraction of the cardiac surface, 

which is a limitation when examination of whole-heart phenomena is desired. Recently, a 

novel panoramic imaging algorithm was developed and validated, and hence provided a 

proof-of-concept that this obstacle can be surmounted. This aim was concerned with the 

practical application of this visualization technique to extend our nonlinear analysis to the 

full epicardial surface. 
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CHAPTER II 

 
BACKGROUND AND SIGNIFICANCE 

 

2.1. Introduction: Significance of ventricular fibrillation and defibrillation 

 Ventricular fibrillation, a phenomenon characterized by rapid, uncoordinated electrical 

and mechanical activity without effective ventricular contraction and cardiac output, is the most 

common cause of sudden cardiac death in the industrialized world, with nearly a quarter of all 

human deaths attributable to this pathology [1]. The basic mechanisms by which fibrillation are 

initiated are not fully understood. Defibrillation, a process that halts fibrillation, may be 

performed chemically or mechanically but is most commonly accomplished by the application of 

a strong electric potential across the heart. Despite the fact that the life-saving effects of 

defibrillation have been known for close to a century [2], the mechanisms by which electrical 

defibrillation achieves its effects are not fully understood. The future design and application of 

clinical arrhythmia treatments such as pacemakers and defibrillators is dependent upon our 

understanding of both these phenomena. What is clear, however, is that the best approach to 

obtain the necessary information for understanding both fibrillation and defibrillation is to study 

the distribution of potentials over both the entire heart and individual cardiac myocytes. Since 

electrical stimuli are thought to alter the transmembrane potential to generate cellular excitation, 

it is specifically the spatiotemporal distribution of the transmembrane potential (Vm) during 

fibrillation and defibrillation that is under intense scrutiny in cardiac electrophysiology. Given 

this specification, the question remains of identifying how arrhythmias manifest themselves in 

the heart and what techniques are available to a researcher who wishes to examine this 

phenomenon. 

 

2.2. The heart as an excitable medium 

 

2.2.1. The cardiac cycle 

 At the most basic level, the heart is an electromechanical organ which functions to supply 

the metabolic needs of the organism by pumping blood to and from all necessary tissues. This 

task is performed by means of a coordinated muscular contraction cycle which progresses across 
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the four chambers of the heart: the right atria (RA), left atria (LA), the right ventricle (RV) and 

left ventricle (LV). This mechanical process is mediated by the underlying electrical properties 

of the cardiac tissue, i.e., coordination of the contractile behavior is dependent upon reliable 

coordination of a series of electrical signals and pathways. The basic cardiac cycle is as follows: 

(a) Deoxygenated blood fills the RA from the superior and inferior vena cava. Meanwhile, 

newly oxygenated blood from the lungs enters the LA. The sinoatrial node (SAN) located in 

the RA initiates the electrical cycle by firing an electrical pulse. This wave sweeps across 

both atria and causes the RA and LA to deposit their blood in the RV and LV, respectively. 

(b) The atria are electrically isolated from the ventricles except at one point, the atrioventricular 

node (AVN). Once the wave from the SAN reaches the AVN, the AVN fires and a 

propagating wave is transmitted down a specialized conducting system (the bundle of His 

and the Purkinje fibers) located in the septal wall dividing the RV and LV. 

(c) This wave is then distributed to the ventricular wall and propagates to the surface of the 

heart. This results in a synchronized contraction of the ventricles; the RV pushes the 

deoxygenated blood towards the lungs through the pulmonary artery for oxygenation and the 

LV pushes the oxygenated blood out to the rest of the body through the aorta. 

It is straightforward to see that a failure of the electrical conduction system leads to a breakdown 

in the rhythm of muscular contraction, with often fatal results if left unremedied.  

 

2.2.2. Details of cardiac electrical properties 

 The nature of the propagating electrical wave (known as an action potential) is mediated 

by ion channels embedded within the cardiac cellular membrane. The cardiac membrane is a 

member of a class of cells with excitable properties, because the application of a sufficiently 

large external stimulus will cause the voltage across the cell membrane (the transmembrane 

potential, Vm) to undergo a large excursion in magnitude before returning to the resting potential. 

Furthermore, the diffusive coupling between the cells permits the excitatory wave to be 

transmitted from one cell to its neighbors without attenuation with distance from the starting cell. 

These general properties are common to a set of systems known as excitable media and can be 

observed in many chemical and physical systems, as well as in other areas of biology [3]. 

 For the most part, the most important channels are those that conduct sodium (Na+), 

potassium (K+) and calcium (Ca2+); each of these are comprised of gating proteins which open  

 

 5



 
Figure 2.1: Illustration of a typical ventricular action potential. Phases are labeled along the 
graph. 

 

and close in response to the transmembrane voltage experienced across the channel and with a 

time constant associated with the transition of the protein from an open to a closed state. In the 

resting state, a ventricular cardiac cell maintains a Vm value of about -90 mV until a 

suprathreshold stimulus is applied and triggers an action potential. The cardiac action potential 

progresses through the following phases (several of the fluxes are mediated by channels of 

multiple types so only the major ions are described here): 

(a) Phase 0: A change in Vm (usually induced by neighboring cells) causes the opening of 

voltage-gated fast Na+ channels. The influx of sodium results in a depolarizing reversal in Vm 

from -90 to +25 mV. At the peak of the action potential, the Na+ channels inactivate. 

(b) Phase 1: A transient outward K+ current causes a small early decrease in Vm. 

(c) Phase 2: The depolarization causes Ca2+ channels to open, permitting a calcium influx from 

both extracellular sources and from the sarcoplasmic reticulum. At the same time, an efflux 

of K+ begins. The balance between these two currents produces a plateau in the action 

potential shape and is responsible for the action potential duration typically being on the 

order of 200-300 ms. Contractile activity also occurs during this period due to the presence of 

Ca2+. 

(d) Phase 3: As the Ca2+ channels close, additional slow K+ channels open; their efflux results in 

repolarization. 

(e) Phase 4: The final ion concentrations are restored via ion exchangers and ATPase resulting in 

Vm returning to rest. 
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2.2.3. Models of cardiac electrical and structural properties 

 The pioneering work of Hodgkin and Huxley in creating a quantitative model of the 

propagating electrical behavior of a squid giant axon by decomposing it into a set of principle 

ionic currents has provided the impetus of the production of a wide variety of similar models 

tailored for the cardiac membrane [4]. Examples of active membrane models range from two 

variable systems (FitzHugh-Nagumo [5]) to four (Beeler-Reuter [6]) to ten (DiFrancesco-Noble 

[7]) in order to replicate the basic current components or ensembles of currents, to more 

sophisticated and physiologically realistic models with in excess of fifteen variables (Luo-Rudy 

II [8] and its successors). Since there are a variety of excitable cellular types in the mammalian 

heart, the design of action potential models must be tailored for the specific tissue in question. In 

addition, a balance must be struck between avoiding computational complexity and desiring to 

specify as many ionic pathways in as much detail as possible. As additional research reveals new 

currents and refines measurements of known currents and ion concentrations, even more 

complex (and hopefully more realistic) models will be possible. 

 Regardless of the active kinetic model chosen, the membrane model must then be 

combined with a representation of the underlying spatial domain in which these fluxes act. For 

excitable media in general, this coupling is described in the form of a reaction-diffusion equation 

applied to a scalar field of concentrations u r( , )t in the following generalized form: 

 ( ) (u D u F u
t

),∂
= ∇ ⋅ ∇ +

∂
 (2.1) 

where  is the position vector, t is time, D is the diffusion coefficient tensor and F is a function  

of u (often non-linear) containing the mass-action law terms.  

r

 As a first approximation, the cardiac fiber may be modeled as an axially symmetric one-

dimensional cable composed of a membrane separating an extracellular space from the 

intracellular space. In this system, only the current across the membrane (transmembrane 

current) proceeds radially; all other currents are axial. Furthermore, the axial currents are ohmic, 

allowing traditional circuit theory to be applied to the problem; specifically, the intracellular and 

extracellular currents have intracellular and extracellular resistances ri and re associated with 

them. This set of initial assumptions comprises what is known the core conductor model, which 

is illustrated in Fig. 2.2 [9]. 
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Figure 2.2:  Diagram of the core conductor model with circuit segments of length dx.  

 

 Lastly, it is assumed that the transmembrane current is the sum of capacitive and ionic 

currents; that is, 

 m
m m i

dV
onI C

dt
= + I  (2.2) 

where Im is the current density, Cm is the specific membrane capacitance, Iion is the contribution 

from the ionic fluxes and Vm is the transmembrane potential. By recognizing that any change in 

the axial current over a distance dx must be equal and opposite to a change in Im by virtue of 

conservation of current, the following formula is obtained, 

 
2

2

1
( )

m m
m

e i

V VC
p r r x t

∂ ∂
= +

+ ∂ ∂ ionI

mI

 (2.3) 

where p is the circumference of the cable. By appropriate nondimensionalization of Eq. (2.3), 

one can obtain an result of the same form as (2.1). 

 In reality, cardiac cells are connected together via gap junctions which allows current to 

flow from cell to cell within the intracellular medium without crossing the membrane into the 

surrounding extracellular space. Since Vm reflects the voltage present in both domains at a given 

time, a model is required that can describe the complexity of the interconnectivity between the 

intracellular and extracellular regions. Such a spatial representation was introduced by Tung in 

which the structural geometry of the interconnection between the two domains is homogenized 

to produce a pair of coupled equations [10] 

 ( )i iVσ β∇ ⋅ ∇ = , (2.4) 

 ( )e eV mIσ β∇ ⋅ ∇ = − , (2.5) 
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where σi and σe are the electrical conductivity tensors and β is the surface area-to-volume ratio; 

these quantities are spatially averaged such that the system is homogeneous. The membrane 

current density Im is the same as in Eq. (2.2) and Vi and Ve are the intracellular and extracellular 

voltages such that Vm is Vi - Ve. It should be noted that the two domains share the same space, 

and both equations must be solved simultaneously at each spatial point. Essentially, Eqs. (2.4) 

and (2.5) describe a system in which the total current is conserved between the two domains, 

with the cellular membrane as the only route by which the current can cross. If the conductivity 

tensors in the two domains are proportional, i.e., i k eσ σ=

)/

 where k is a constant (equal 

anisotropy), Eqs. (2.4) and (2.5) collapse into a form of (2.3), also known in this context as a 

monodomain equation. In reality, the ratios of conductivity values longitudinal and transverse to 

the fibers in the intracellular and extracellular domains are generally unequal (in other words, 

( ) ( ) ( ) (/i long i trans e long e transσ σ σ σ≠ ) [11]. This unequal anisotropic character of the cardiac tissue 

leads to a number of interesting, even surprising, theoretical predictions of this model with 

respect to the response of the tissue to an externally applied stimulus, many of which have been 

confirmed by experiment [12,13]. For this reason, the bidomain system is generally regarded as 

the current state-of-the-art in terms of modeling the cardiac excitable medium [14]. 

 

2.3. Reentry as a mechanism for fibrillation 

 

2.3.1. Introduction 

 The electrical properties mentioned above allow for much more complex patterns of 

propagating waves than the simple planar propagation representative of the cardiac cycle, 

provided the proper conditions are present. This electrical irregularity, termed an arrhythmia, can 

usually manifest itself in one of two ways: (1) tachycardia, characterized by excessive periodic 

electrical activity (this category is further subdivided into monomorphic if one frequency is 

present, and polymorphic if more frequencies are present); and fibrillation, characterized by 

more irregular and disorganized electrical activity. In general, although both arrhythmias can 

occur on the atria, they are usually not considered to be life-threatening. However, ventricular 

fibrillation is much more serious since the primary contractile action of the heart is disrupted. 

Furthermore, it is not uncommon for ventricular tachycardia to degenerate into ventricular 
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fibrillation. The hypothesis of fibrillation occurring by means of uneven and repetitive electrical 

propagation was first proposed over a century ago [15]. Based on continuing research, the 

phenomenon of reentrant excitation, in which a wave of excitation repeatedly activates the same 

area of tissue independently of the natural cardiac rhythm, is believed to play a significant role in 

the initiation of such lethal arrhythmias [16]. 

 

2.3.2. Anatomic Reentry 

 The physical features of the heart, such as the arteries and connective tissue bundles, 

combined with the various tissue types and their associated differing electrophysiologic 

properties, may form the anatomical basis for the formation of reentrant patterns. An action 

potential generated by an electrical stimulus may propagate into a region where the tissue is not 

fully recovered from the previous excitation and further propagation is obstructed at that point 

(unidirectional block). The wave is then forced to follow an alternate pathway, which may be 

provided by an anatomic structure, such as an orifice or scar tissue due to an infarction. Early 

studies showed that a self-maintained excitatory wave could be created about a ring of tissue; in 

this case, the obstacle to propagation is the hole in the center of the ring [17,18]. 

 The dimensions of the anatomic obstacle determine the size of the reentrant circuit. If the 

rotation period (the circuit path length divided by conduction velocity) is longer than the 

refractory period, there will be an excitable gap, a region between the wave crest and wave tail 

which consists of excitable tissue. A properly timed stimulus may annihilate or reset the reentry 

via invasion of the circuit through the excitable gap [19,20]. 

 

2.3.3. Functional Reentry 

 Anatomic obstructions are not the only mechanisms of reentry. Functional reentry occurs 

through conduction block caused by heterogeneities of dynamic electrical properties of normal 

cardiac tissue, such as the time course of repolarization and recovery of excitability [21]. For 

example, the leading circle mechanism of reentry [22] occurs when a local disparity in 

refractoriness causes unidirectional block. Propagation is permitted in areas with shorter 

refractory periods but halted in regions with longer refractory periods; the wave then circulates 

back to those areas which were previously refractory but have now recovered excitability. No 

anatomic obstacle is required, which makes the underlying cause of reentry much more difficult 
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to assess. Unlike anatomic reentry, in leading circle reentry there is no excitable gap; the circuit 

is the minimum permissible length such that the wave crest is sufficient to re-excite the tissue at 

the relatively refractory wave tail. In addition, the wave front creates centripetal “wavelets” 

which propagate towards the center. The collision of these wavefronts renders the center 

completely refractory. The width of the excitable gap is partially determined by the curvature of 

the turning wavefront [23,24] as well as spatial heterogeneities along the length of the circuit 

[19]. 

 

2.3.4. Spiral Wave Reentry 

 An alternate mechanism is based upon the observation in theoretical studies that reentry 

may be initiated if the heart is treated as a generic, homogeneous, nonlinear excitable medium. It 

has been shown that activity analogous to reentry is a ubiquitous feature in such media given the 

proper conditions and has been observed in a variety of chemical, physical, and biological 

systems [25-28]. This form of functional reentry manifests itself as a spiral activation pattern 

with decreasing wave front curvature with increasing distance from the center. The propagation 

velocity of a cardiac wavefront is strongly dependent upon the curvature of the front. As a result, 

due to a limit in maximum curvature at the tip of the spiral, the wave does not rotate about the tip 

itself, but rotates around an organizing center called the core. In contrast to the leading circle 

form of reentry, the core area is not invaded by wavefronts, but instead is an unexcited but 

excitable medium that defines the primary dynamic characteristics of the wave [3,29]. 

 Currently, the critical-point hypothesis conceptualized by Wiener and Rosenblueth [30] 

and later extended by Winfree [31,32] for application to cardiac studies is accepted as the 

governing principle by which spiral wave reentry is initiated. This theory posits that a spiral 

wave will form at the intersection between a line of critical refractoriness created by an initial 

stimulus (S1) and a line of critical field strength imposed by a later, second stimulus (S2); this 

process is illustrated in Fig. 2.3. In experimental practice and computer simulation, these waves 

are typically produced by a procedure known as cross-field stimulation, based upon critical-point 

theory, which is shown in Fig. 2.4A using a simulated model. At 1000 time units (t.u.), an S1 

planar wave has propagated across the medium from left to right, creating a spatial gradient of 

refractoriness across the tissue. During its progression, a second S2 planar wave is activated via a 

line stimulus traveling in a perpendicular direction to the first wave, from top to bottom. The  
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Figure 2.3: Illustration of the critical point hypothesis. A wave is generated by an line S1 
stimulus in (A), propagates across the tissue from right to left in (B), creating a critical 
excitability contour T* in its refractory wake (blue). At this point, a line S2 stimulus (red) 
delivered on bottom edge of the tissue produces a critical threshold contour S* in (D). The 
intersection of T* and S* causes unidirectional conduction block and initiates a spiral wave 
whose progress is seen in (F). Wavefronts are shown in yellow. 

 

second wave encounters refractory tissue on the right and is unidirectionally blocked. The left 

side, meanwhile, has recovered excitability, permitting the wave to continue propagation. The 

wave then curls to the left, following the gradient of refractoriness, creating a counter-clockwise 

reentrant spiral wave. In Fig. 2.4A, at 2300 t.u., the spiral wave has undergone one full rotation. 

Similar conditions with an initial planar wave followed by a properly timed point stimulus create  
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Figure 2.4: Creation of (A) single spiral and (B) figure-of-eight reentry via cross-field 
stimulation in a FitzHugh-Nagumo model. White denotes depolarized tissue, black denotes 
hyperpolarized tissue, gray denotes resting tissue. Labels underneath indicate time step in 
simulation. S2 is applied at 1000 t.u. 
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Figure 2.5: (A) Illustration of the critical point hypothesis in quatrefoil reentry for cathode break 
S2 stimulation. In the left panel, the refractory wake created by the S1 stimulus is shown in blue, 
the depolarization at the virtual cathode created by the S2 stimulus is shown in red, and the 
hyperpolarization at the virtual anode created by S2 stimulus is shown in white. The right panel 
shows the progression of the four spiral waves. Wavefronts are shown in yellow. (B) Creation of 
quatrefoil reentry in a Beeler-Reuter model. White/gray: depolarized tissue, black: 
resting/hyperpolarized tissue. At t = 21 t.u., the tissue is still refractory from the S1 stimulus just 
prior to the S2 stimulus at t = 22 t.u. 

 

a pair of counter-rotating spiral waves, a spiral pattern known as "figure-of-eight" reentry [32], 

as shown by the simulation in Fig. 2.4B. Both of the single spiral wave and figure-of-eight 

reentries have received extensive attention in the literature [23,33-38]. 

 Another interesting form of reentry is that initiated by S1-S2 stimulation through an 

electrode at one location (unipolar), as opposed to two separate locations as described 

previously. The formation of this reentrant circuit is dependent on a peculiarity of the bidomain 

membrane model described in Section 2.2.3, the presence of virtual electrodes. When a cathodal 

electrode stimulates cardiac tissue, it gives rise to a “dog-bone”-shaped depolarization pattern 

around the electrode, oriented perpendicular to the longitudinal fiber axis; this polarization 

distribution is called a virtual cathode. Counter-intuitively, regions of hyperpolarization flanking 

the cathode also appear parallel to the fiber axis; these are termed virtual anodes. The presence of 

virtual electrodes has been shown to be a direct consequence of the fact that cardiac tissue 

possesses unequal anisotropy ratios in the extracellular and intracellular spaces [39]. The virtual 

anode has the effect of shortening the refractory period of the S1 wavefront, while the virtual 

cathode lengthens the refractory period. Therefore, at the termination of the unipolar S2 stimulus 

(“break” stimulation), the resulting wavefront is unable to propagate into the depolarized virtual 

cathode region but is able to propagate into the hyperpolarized virtual anode region due to 

unidirectional block. The progression of events is depicted in Fig. 2.5. This reentrant pattern is 

termed “quatrefoil” reentry since the juxtaposition of the depolarized and hyperpolarized areas 

 

 14



forms four critical points, and hence four spiral waves. Numerical predictions of this form of 

reentry have been borne out experimentally [40,41]. 

 

2.3.5. Spiral Wave Motion 

 Spiral waves may remain stationary or may drift, giving rise to multiple, dynamic 

reentrant pathways [37,42]. Much of the computational work into spiral wave motion has made 

use of the FitzHugh-Nagumo (FHN) model [5], a simple, two variable system which is a 

generalization of the basic properties of an excitable medium. [43]Variation of  the parameters in 

the model demonstrated a variety of cycloidal and elliptical patterns of meander and it has been 

shown that the threshold for excitation and the ratio of the recovery rate to excitation rate are the 

dominant parameters in determining spiral wave trajectory [43-45]. Later work utilizing higher 

order, more complex models exhibited the same essential patterns [46,47].  

 The presence of a parameter gradient has been shown to cause spiral wave drift which 

has been examined both analytically [48] and experimentally in the Belousov-Zhabotinsky (BZ) 

oscillating chemical reaction [49,50] as well as cardiac tissue [51]. Furthermore, the imposition 

of a gradient via periodic forcing of a system parameter at the resonant frequency of the spiral 

permits a degree of control over the trajectory of the wave [52,53]. The possibility of eliminating 

spiral waves by externally driving them into regions of tissue where they cannot be sustained has 

obvious applications to the field of defibrillation and is currently under investigation [46,54]. 

 The interaction of rotors has been a topic of extensive discussion in the literature, both 

numerically and theoretically [55-59]. In the complex Ginzburg-Landau equation (CGLE) 

system, analytical solutions have been found for various parameter ranges and indicate that the 

interaction between spiral waves is fairly weak, decaying exponentially over short separation 

distances [60] (for a comprehensive review of CGLE vortex interaction, see [59]). However, a 

corresponding analytical solution for the FHN system interaction dynamics has yet to be found. 

Because the correspondence between the parameter values in the CGLE and those in a physical 

system is not clear, it may not be possible to replicate these theoretical behaviors in an 

experimental preparation. Still, the case for the existence of bound states between spirals has 

been advanced theoretically for the CGLE and numerically for the FHN models [56,61]. In 

particular, a bound state between spirals of the same chirality would correspond to a multi-armed 

spiral pattern. Such behavior has in fact been studied in some experimental settings such as the 
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BZ reaction, among others [62,63], although theoretical evidence suggests that they are unstable 

under conditions of weak excitability or as the number of arms increases [64,65]. However, no 

evidence exists that these two phenomena occur in cardiac tissue, other than in cases where local 

structural heterogeneities cause spiral wave pinning [66]. 

 A significant amount of research is centered on the finding that excitation 

inhomogeneities within the medium will cause frequency-dependent spiral wave interaction. 

That is, a spiral wave with a higher frequency of rotation will tend to repel its slower-rotating 

neighbors. This phenomenon has been observed experimentally for the BZ reaction [67,68] and 

simulated numerically on a FHN-type model [69], the Ginzburg-Landau system [70,71], as well 

as more physiologically realistic cardiac models [72]. 

 Much of the literature describing observations of the motion of spiral waves of cardiac 

tissue is qualitative; for example, it is well known that a pair of cardiac spiral waves of opposite 

chirality and sufficient proximity will attract one another and annihilate due to conduction block 

between the pair. However, substantive quantitative studies of spiral interactions over time in 

experimental preparations are almost non-existent ([73] is an exception). Much of the reason for 

this paucity is the fact that often the observed spirals are involved in full-blown fibrillation, at 

which point the behavior is already so complex that the relationships between nearby spirals are 

difficult to determine. The possibility of using a controlled, repeatable means of generating 

multiple spiral waves to overcome this issue will be explored later in this dissertation. 

 

2.3.6. Three-dimensional spiral waves 

 Scroll waves are the three-dimensional analogue of spiral waves, and may be visualized 

as a stack of spiral waves extending through the bulk myocardium. The three-dimensional line 

connecting the two-dimensional core regions in the stack is termed a filament, around which the 

scroll wave rotates. Hence, a spiral wave observed on the epicardial or endocardial surface 

simply becomes the cross-section of the scroll wave where it has come into contact with a 

boundary. 

 Observation of the BZ reaction provided the first demonstration of scroll waves [74]. The 

three-dimensional shape of the filament need not remain fixed; filament morphology can assume 

one of any number of forms, leading to the evolution of extremely complex scroll wave 

dynamics [75]. For example, a filament may extend transmurally (across the myocardial wall) to 
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form an I-shape, presenting as a single spiral wave on the surface. A U-shaped filament occurs 

when the filament ends terminate on the same surface; the surface manifestation would appear as 

figure-of-eight reentry, such that the two counter-rotating spiral waves are actually endpoints of 

the same scroll wave. A filament forming a closed loop within the bulk myocardium is 

commonly known as a scroll ring, with no reentrant activity discernable on the surface but 

instead exhibiting the periodic appearance of “breakthrough” activations as the outer portion of 

the scroll wave reaches the epicardium. Thus, categorization of the scroll wave pattern on the 

basis of surface electrophysiological recordings is extremely difficult due to the variability of 

filament configuration. 

 

2.3.7. Scroll waves and ventricular arrhythmias 

 A persistent question is exactly how isolated spiral waves spontaneously break up to 

multiple complex reentrant pathways, and thus, what was once ventricular tachycardia (VT) 

degenerates into VF. Moreover, it has been shown that this instability appears not necessarily as 

a result of the presence of homogeneities in the cardiac properties as once thought, but also as a 

consequence of the inherent dynamics of an excitable medium [3].  

 While two-dimensional numerical simulations can generate VF-type behavior from spiral 

wave reentry (see [76] for a review of mechanisms by which this may occur) the three-

dimensional aspect of the myocardial wall, in light of experiments, cannot be ignored. Hence, 

another debate involves the question of whether scroll wave breakup is responsible for VF 

induction. Despite the difficulty of tracking scroll waves in experiments, evidence suggests that 

polymorphic VT corresponds to the presence of a single, drifting scroll wave oriented 

perpendicular to the surface [37]. While additional experimental evidence is not yet forthcoming, 

the hypothesis that VF is a direct result of filament instability leading to filament proliferation is 

generally accepted, and there is a rapidly growing body of literature involving numerical studies 

investigating the parameters under which scroll waves destabilize and break  

 One mechanism which is considered to be important in filament destabilization is the 

presence of rotational anisotropy in cardiac tissue. The muscle fibers lie in sheets tangent to the 

epicardial and endocardial surfaces, but longitudinal axis of each layer is not parallel between 

sheets. Rather, they undergo a roughly 120° rotation from epicardium to endocardium, an 

amount which has been found to be fairly consistent between species [77]. This angular fiber 
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rotation has implications on filament orientation [78,79] but in particular, it has a important 

effect on the rate of angular rotation of the scroll wave around the filament as a function of 

arclength, a quantity known as twist. It has been shown numerically that a buildup of twist along 

the length of the filament significantly decreases stability, and that this twist is largely generated 

by the rotational anisotropy of the tissue [80-82]. This indicates that not only the intrinsic 

properties of the excitable medium but also the structural heterogeneity of normal cardiac tissue 

may facilitate the formation of VF. 

 Studies indicate that the thickness of the myocardial wall is an important factor in the 

initiation of VF; the threshold value of wall thickness has been estimated as 1/π × (distance the 

wave travels during one rotation), giving a minimum value of roughly 3 mm [83]. Other 

numerical studies have since demonstrated that tissue thickness is a factor in determining 

filament stability [82,84-86]. To validate this hypothesis, in vitro studies can create a thin layer 

of myocardium by freezing the endocardium and much of the intramural layers, leaving the 

epicardium intact. Such experiments confirm that a minimum wall thickness, about 3 - 4 mm, is 

needed to generate VF, otherwise sustained VT occurs [87,88]. Human left ventricular 

myocardium is on the order of 1 cm, and hence is thick enough to support filament breakup. 

 Filament tension, a parameter which describes the whether the filament length increases 

or decreases with time, has been implicated as a cause of instability of scroll waves embedded in 

weakly excitable tissue [89]. If the tension is positive, perturbations to a linear filament are 

damped (a filament with kinks will straighten) or a scroll ring will eventually collapse as it acts 

to minimize its length. However, if the tension is negative, perturbations to an initially straight 

filament grow with time, causing the filament to lengthen. The filament will eventually either 

break upon the bounding surfaces in a bounded medium or pinch off within the interior of the 

medium and generate additional filaments. While ordinarily cardiac tissue is highly excitable, the 

presence of ischemia (as a result of coronary artery occlusion, for example) decreases excitability 

and may produce regions of negative tension. 
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2.4. Phase portrait analysis 

 

2.4.1. Introduction 

 The utility of analyzing dynamical systems in terms of geometric trajectories within a 

phase portrait has been established for over a century and applied to a variety to physical 

problems. The power of this approach lies in the ability to examine the behavior of the system in 

question without the need to solve it explicitly, in that each point illustrates the behavior of the 

full system at a given point in time. In particular, the dynamics of excitable media are usually 

composed of coupled first-order autonomous differential equations, and hence naturally lend 

themselves to analysis in the phase plane. 

 

2.4.2. Applications to cardiac models 

 Differential equations describing the ionic basis of nerve action potentials were derived 

by Hodgkin and Huxley [4], followed by analytical studies by FitzHugh which illustrated the 

oscillatory behavior of the equations by the use of phase space and explored qualitative 

properties by phase plane analysis [5]. The FitzHugh-Nagumo (FHN) equations, derived and 

simplified from the Hodgkin-Huxley model and closely related to the van der Pol oscillating 

system, are now commonly used as a generic, two-variable model of excitability with the 

following formulation: 

 , (2.6) 2 (uu D u c v u u= ∇ + + − 3 / 3)

) / , (2.7) 2 (uv D v bu a v c= ∇ − − +

with 1-2b/3 < a < 1, 0 < b < 1, and b < c2. The variable u corresponds to the membrane potential, 

which changes rapidly and has a large diffusion coefficient, Du. The variable v corresponds to a 

measure of refractoriness, which changes slowly and has a small diffusion coefficient, Dv; for 

cardiac models, Dv is set to zero. Other similar two-variable formats use the same basic theme; 

see [43] for a review and comparison of various formulations. 

 The phase for a sample FHN system without diffusive coupling is shown in Figure 2.6 

(i.e., a 0-D point). A single stable fixed point is seen at the intersection of the nullclines, 

corresponding to the system in a resting state. A suprathreshold change in u will cause the state  

 

 19



 
Figure 2.6: Phase portrait for FHN equations (a = 0.7, b = 0.8, c = 3) showing 
electrophysiological states of (u,v) on the left, time traces of u and v on the right. A stable fixed 
point, shown as a red circle, occurs at the intersection of the two nullclines (green and blue 
lines). Arrows show the direction field. A sample trajectory is shown as a thick black line. 

 

variables to undergo a rapid excursion towards the left (corresponding to depolarization). The 

trajectory progresses slowly up the left branch of the u cubic nullcline until it reaches the local 

maximum, at which point it moves rapidly right. It then travels slowly down the right u nullcline 

branch and returns to the rest state. In this way, it reproduces the significant qualities of an 

excitable system, namely a closed loop trajectory under the conditions of a sufficiently large 

perturbation, even though a stable fixed point exists. Even so, the FHN system remains a 

caricature of a cardiac action potential; it fails to reproduce the specific characteristics unique to 

cardiac ionic kinetics, such as upstroke and repolarization times as well as restitution properties 

(the relationship between the action potential duration and the duration of the previous rest 

period). Several attempts have been made to maintain the two-variable simplicity of the FHN 

formulation while being more physiologically realistic [90,91]. 

 For practical purposes, an experimenter may not have direct access to multiple, 

concurrent state variables in order to perform a dynamical systems analysis. However, a 

topologically equivalent attractor may be reconstructed given only one component of the system 

[92,93], a procedure known as times-series analysis. For N evenly sampled values of y(t), the 

attractor in two dimensions is 

yi = [y(i),  y(i + τ)], 

where τ is the time-embedding lag and i = 1,…,N-1. 
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Figure 2.7: Examples of phase portraits for the BZ two-variable (u,v) model. (A) u(t) against 
v(t). (B) u(t) against u(t+τ). Red circle indicates origin. 

 

In experimental studies, typically the single observable variable is the transmembrane potential 

in cardiac tissue, V r  (we drop the usual subscript for this section) at a given spatial location 

. To reconstruct the attractor in phase space, we create a second variable, V

( , )t

r ),(' tr , which we 

define by time-delay embedding of V, 

 '( , ) ( , )V r t V r t τ≡ + . (2.8) 

 In the dynamical literature, the question of how to select an optimal τ for a particular 

system has been studied extensively [94]. Generally speaking, it is desirable to choose τ such 

that the correlation between V and V’ is minimized; for example, Gray et al. [73] calculated τ as 

the first zero-crossing of the autocorrelation function of V ),( tr . However, the autocorrelation 

function insures only linear independence between signals, so typically calculation of the 

average mutual information is the preferred method of choosing τ since it is applicable to non-

linear signals as well [95]. It is also worth noting that newer studies are investigating the 

feasibility of obtaining simultaneous optical recordings of the transmembrane potential plus an 

additional parameter (such as calcium) in order to circumvent this issue [96,97], despite the 

technical difficulties of using a multi-imager system and minimizing of cross-talk between the 

spectra of multiple fluorescent dyes [98,99]. 

 Once the additional variable has been generated, we can represent the temporal behavior 

of an excitable element in phase space as a closed path, termed a limit cycle. We can then define 
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the local phase of this element, ),( trφ , in terms of the angle around the limit cycle in phase 

plane, referenced to an origin. One formulation is the following: 

 ( , ) ( )( , ) arctan ,
( , ) ( )

mean

mean

V r t V rr t
V r t V r

τφ + −
=

−
 (2.9) 

where V  is the mean value of V( )mean r ),( tr  [73]. An example of a phase plane reconstruction is 

shown in Fig 2.7 for the BZ two-variable model. However, other schemes to express phase may 

be defined, and there exist additional concerns which make the reconstruction of the attractor 

derived from a cardiac signal a special case, particularly in the choice of τ; both of these topics 

will be explored later in this dissertation. 

 

2.5. Phase singularities and filaments as topological defects 

 As a result of the observation of vortex-like behavior commonly observed in nonlinear 

systems, the terminology of nonlinear dynamics is beginning to appear in the cardiac 

electrophysiology literature.  One such concept in particular is that of the topological defect, 

which is a discontinuity in an ordered parameter field that cannot be removed by continuous 

deformation of the local field [100]. Furthermore, if the defect is enclosed by a continuous closed 

loop, the value of the order parameter as the loop is traversed changes as a multiple of 2πn, 

where n is an integer known as the winding number. While the concept of the topological defect, 

well known in disciplines such as crystallography, was not applied to cardiology until fairly 

recently, providing an interpretation of the resetting of phase in a functional reentrant circuit 

[32]. An example of phase resetting may be illustrated by the mechanism of cross-field 

stimulation described in Section 2.3.4. If the stimulus is suprathreshold in strength, it has the 

effect of shifting, or resetting, the phase of the membrane into a new cycle (even-resetting); if the 

stimulus is subthreshold, the phase is reset but remains within the current cycle (odd-resetting). 

Provided the timing is correct, the stimulus creates neighboring regions upon the membrane 

which will experience even- and odd-resetting. The adjacent spatial discrepancy in phase will 

generate a point about which the phase will span all possible values in an orderly manner. Using 

the terminology defined above, we are defining phase φ as the order parameter in this situation; a 

closed loop about the defect will progress through a full 2π of phase, hence a winding number of 
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±1. In this context, a phase singularity is defined as the point in space where the gradient of the 

phase diverges, i.e., φ∇  becomes infinite and the phase itself at this point is undefined.  

 On the basis of the above mathematical abstraction, theoretical topological analysis of the 

phase distribution during vortex-like activity indicates that a phase singularity must exist within 

the core of a spiral wave [73,101]. Furthermore, as a 2-D point defect is a cross-section of a 3-D 

line defect, by analogy, a spiral wave phase singularity can be seen to be the surface 

manifestation of a scroll wave filament. It should be noted that while the defect is a discontinuity 

in the order parameter, it does not correspond to a discontinuity in any actual physical quantity. 

Nonetheless, this description yields useful information on the characteristics of scroll waves. 

Topological analysis shows that the filament can never terminate in the myocardial bulk but 

instead the ends are restricted to either external boundaries or pinned to a closed bounding 

surface [102]. Similar arguments can be made describing the nature and constraints of filament 

reconnection [103,104]. Numerical simulations have indicated that filaments can be created in 

exotic configurations, such as intricate knotted rings [105,106]; in addition, simple scroll rings 

and twisted filaments have been observed in the BZ reaction [107-110]. However, how many of 

these patterns are realizable in the myocardium, as well as their stability once formed, have yet 

be discovered. At this point, we can see how the discussion from the previous section (Eq, (2.9) 

in particular) is applicable in creating the phase order parameter from a set of data, whether is 

experimentally obtained or numerically simulated. 
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 Further topological constraints provide additional properties of the phase singularity. For 

example, a suitably large contour around a pair of topological defects yields a winding number 

equal to the sum of the individual winding numbers. Effectively, a pair of defects can be 

transformed into a single defect with the total net winding number provided they are brought into 

proximity with each other, such that the contour around them approaches an infinitesimal length. 

Therefore, removal of a topological defect requires that a second defect with the opposite 

winding number be brought into contact to produce a net zero winding number; driving a single 

singularity into a boundary produces the same result [100]. At short distances, it has been 

experimentally established that vortices with opposite direction of rotation can annihilate [73], in 

accordance with mathematical theory; the question of whether nearby vortices attract or repel (or 

even form stable bound paired states) is determined by the parameters of the simulated excitable 

system and is poorly understood for cardiac tissue. 



 The CGLE system (mentioned in Section 2.3.6) given by 

 2 2(1 ) (1 )A A i A A i
t

α∂ Aβ= − + + + ∇
∂

 (2.10) 

has proven amenable to investigation of filament dynamics in part due to the fact that an explicit 

solution can be obtained for a single-armed spiral, 

 0 0( , , , ) ( ) exp{ [ ( ) ]}zA r z t F r i t r k zφ ω σφ ψ= − + + + , (2.11) 

where (r,θ) are polar coordinates, 2
0 (1 )c k cω ε= − − −  is the rotation frequency, kz is the axial 

wavenumber, and the functions F(r) and ψ(r) have the asymptotic behavior such that as r → ∞, 

F(r) → 2
01 kε− ,ψ’(r) → k0, and as r → 0, F(r) ~ r, ψ’(r) ~ r. The important item to note here is 

not only does an explicit solution to (2.10) exist, but also that in (2.11), the parameters σ denotes 

the topological charge, equal to ±1 in this case, and φ is the phase field; both of the important 

order field parameters are “built-in,” so to speak, into the solution A0. For this reason, the CGLE 

system has been examined extensively for stability [111], reconnection [103], twist [112] and 

motion [113] of singularities and filaments. 

 

2.6. Cardiac optical mapping 

2.6.1. Introduction 

 Traditionally, measurements of cardiac electrical activity have been obtained via 

extracellular electrograms or glass microelectrodes. However, optical fluorescence imaging has 

emerged as an alternate technique to perform cardiac mapping since its development in 1974 and 

its first successful application to cardiac tissue in 1976 [114,115]. This methodology involves 

monitoring changes in Vm with the use of dyes whose fluorescence is potentiometric (i.e., 

voltage-dependent). The dye molecule lodges in the cell membrane where, in response to a 

change in the local transmembrane potential, undergoes a charge shift, changing the optical 

properties of the dye and causing a shift in the fluorescence peak such that that fluoresced signal 

has an intensity proportional to Vm. In practice, Vm at a recording site is estimated as -∆F/F, 

where F is the fluorescence intensity obtained from electrically resting tissue at a particular 

location in the heart, and ∆F is the difference between F and the intensity when the tissue is 

excited. A depolarization produces a fluorescence shift towards shorter wavelengths, which is 

manifested as a downward deflection in the recorded long-wavelength signal. The minus sign is 
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added to invert the signal so that action potentials are displayed with the standard orientation 

recorded electrically. Excitation may be spatially localized using a laser beam [116,117] or over 

large areas of the heart using optical fibers or diffusers [24,118].  

 

2.6.2. Advantages of optical mapping 

 Optical dyes have been used in studies that explore the mechanisms in which a 

defibrillation shock halts fibrillation [119], discern the spatiotemporal patterns of fibrillation 

[73], and verify theoretical computational cardiac models of propagation [13]. Optical cardiac 

mapping offers several advantages over traditional glass microelectrode or extracellular 

recordings 

1. It is a non-invasive technique: The use of glass microelectrodes requires the insertion of a 

probe in the intracellular space of the myocyte through the cell membrane. In some 

circumstances, (such as studies of embryonic heart cells), cell impalement may be 

undesirable since it damages the cell [120]. Insertion of the probe may be extremely 

troublesome because of the small size of the cell (the length of a cardiac myocyte is typically 

100 µm, with a width of 30-50 µm), or it may be unstable because the tissue is moving due to 

mechanical contraction. Maintaining stable electrophysiological properties may also be 

difficult. The use of dye that is localized to the lipid bilayer circumvents these problems  

2. Optical mapping permits examination of a large surface area with high resolution: The spatial 

observation of the specific extent of cardiac arrhythmias is necessarily a multi-scale and 

multi-site measurement. Reentrant excitation may originate over an area as small as 2-4 mm2 

[121], requiring high-resolution mapping, but then give rise to spiral waves which may 

circulate over the entire ventricular area [37], which necessitates observation at many 

locations. Multi-site recordings are possible with contact electrodes arrays, but electrode size 

and density, and array complexity place an upper limit on the number of data channels 

allowed. Furthermore, stable recordings are dependent upon uniform electrode contact, 

which is difficult to achieve with a large electrode array. Optical recording allows for 

simultaneous recording from hundreds or thousands of cardiac sites, with a spatial resolution 

that increases linearly with magnification with a limit on the order of 50-100 µm [122]. 

3. It can directly observe both depolarization and repolarization: The primary advantage of 

extracellular recording over microelectrodes is the fact that the activity of cells may be 
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recorded without impalement and resultant damage. However, extracellular recording is 

limited to sampling the extracellular potential field without measuring the underlying source, 

the cardiac action potential. Examination of the action potential upstroke during 

depolarization is essential for determination of conduction velocity and cycle length, both of 

which are altered in reentrant pathways [36,123]. Studies indicate that the prolongation of 

repolarization for fibrillating waveforms may be critical to the process of defibrillation [124]. 

Since optical mapping is a measurement of Vm, which reflects membrane behavior, and is 

less dependent on the geometry of the cell and the electrode, the information obtained is 

better suited to examining local cardiac depolarization and repolarization. 

4. The optical technique is not adversely affected by stimulus artifacts during an electrical 

pulse: The recording of surface potentials are usually complicated by the presence of a 

stimulus artifact produced by the extracellular electrical field. The artifact is usually manifest 

as a spike followed by a time decay, the amplitude and time constant of which is dependent 

upon on the characteristics of the stimulator, electrodes, and the filtering effects of the 

preamplification stage [125]. The superposition of the artifact upon the physiological signal 

precludes data capture for several milliseconds after a stimulus, unless differential 

extracellular recordings or special amplifier systems are used [126]. The presence of a 

stimulus artifact is an accepted part of microelectrode recording, which can be diminished 

but usually not removed entirely. In the case of optical recording, in which Vm, rather than the 

extracellular field, is the parameter examined, the contribution to the signal from the stimulus 

is much smaller [119,127]. This attribute can provide crucial information about electrical 

behavior associated with strong stimuli, such as virtual electrode effects [128] 

5. Changes in fluorescence are rapid: Experiments using the dye RH 237 demonstrated that the 

dye is capable of reproducing action potential upstroke rates faster than equivalent 

microelectrode measurements, on the order of a few microseconds [129]. Other dyes are 

capable of response times faster than the swiftest changes in transmembrane potential [130]. 

 

2.7. Summary and thesis outline 

 This chapter provided a general overview of the behavior of the heart, both in the normal 

healthy state and the pathological arrhythmic state. The reentrant circuit was presented as the 

basic unit of arrhythmic behavior and the current conceptual models and behavior of reentrant 

 

 26



excitation with corroborating theoretical and experimental evidence were illustrated. The role of 

the three-dimensional structure of the cardiac tissue and its implications for the observation of 

reentry has been examined. Also, phase portraits as a means of nonlinear analysis was described 

as a potential starting point for the study of cardiac dynamical systems. Lastly, the section 

concluded with an explanation of optical mapping with the use of voltage-sensitive fluorescent 

dyes as a viable non-contact means of obtaining cardiac data with high spatial and temporal 

resolution. 

 The purpose of this thesis is to explore the dynamics of spiral and scroll wave formation 

and interaction and the electrical activity evident at the epicardial surface as well as within the 

underlying myocardial substrate. To this end, we will apply novel techniques of data 

visualization and phase portrait analysis. The thesis is organized as follows: 

 Chapter 3 will detail the development of an algorithm which detects phase singularities 

in an efficient and robust manner using topological charge. This portion also includes an initial 

comparison of singularity behavior during quatrefoil reentry obtained via experimental protocol 

and numerical simulation. This chapter acts the primary impetus for much the remaining work. 

 Chapter 4 continues development of the algorithm derived in Chapter 3 to overcome 

some of the limitations of using the time-delay embedding method. Specifically, we refine the 

variables used to create the phase portrait and further define the origin point around which the 

phase is calculated. 

 Chapter 5 further extends the algorithm in Chapter 3 from 2-D singularities detection to 

3-D filament localization. Also, a quantitative comparison of topological defect detection using 

time-delay embedding and two-variable phase portrait reconstruction will be presented, as well 

as providing criteria in determining which two variables from a multivariate ionic kinetic model 

are optimal for phase portrait reconstruction. 

 Chapter 6 attempts to address the discrepancy in experimental and theoretical singularity 

interaction results from Chapter 3. Here, we explore a simplified filament system of quatrefoil 

reentry corresponding to that expected experimentally. 

 Chapter 7 incorporates more physiologically realistic factors into filament observation, in 

particular optical depth effects from using voltage-sensitive dyes. This section will discuss 

implications for future experimental observations of epicardial activation activity. 
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 Appendix A1 provided a demonstration that singularity detection on a whole-heart basis is 

indeed possible. An imaging system was developed previously for observation of the entire 

epicardial surface and was employed for visualization of small-scale cardiac electrodynamics. 

This section was regulated to an appendix due to the brevity of the manuscript. 

 Chapter 8 will summarize the results from Chapters 3 through 7 and Appendix A1 and 

will discuss the overall themes of this thesis, as well as giving limitations and presenting future 

directions of the presented work. Also, the research considerations and the societal implications 

are discussed. 
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3.1. Abstract 

 Quantitative analysis of complex self-excitatory wave patterns, such as cardiac 

fibrillation and other high-order reentry, require the development of new tools for identification 

and tracking of the most important features of the activation, such as phase singularities. Image-

processing operations can be used to detect the phase singularity at the tip of a spiral wave. The 

phase space behavior of a spatiotemporal sequence of data may be reconstructed using time-

series analysis. The phase singularities are then localized efficiently by computing the 

topological charge density as the curl of the spatial phase gradient. We analyze the singularity 

interaction dynamics of both experimentally observed and numerically simulated instances of 

quatrefoil reentry, and find that the singularity behavior in the experimental preparations may be 

classified into three categories on the basis of how their separation changes with time. We 

conclude that topological charge densities may be calculated easily and efficiently to reveal 

phase singularity behavior. However, the differences between theoretical and experimental 

observations of singularity separation distances indicate the need for more sophisticated 

numerical models. 

 

3.2. Introduction 

 Reentrant excitation, a phenomenon in which a wave of excitation repeatedly activates 

the same area of tissue independently of the natural cardiac rhythm, is believed to play a 

significant role in the initiation of lethal arrhythmias, such as ventricular tachycardia and 

fibrillation [1,2].The reentrant circuit around which activation propagates can be defined by an 

anatomical obstacle, such as an infarction, or by heterogeneities of dynamic electrical properties 

of normal cardiac tissue, such as the time course of repolarization and recovery of excitability 

[3,4]. Under such circumstances, the circuit can manifest itself in the form of spiral waves [5]. 

These waves may remain stationary, drift, and even give rise to multiple, dynamic reentrant 

pathways [6,7]. The quantitative analysis of these complex spatiotemporal patterns of activation 

requires the development of new tools that allow the identification and tracking of the most 

important topological features of the patterns. Simple excitatory waves in non-linear dynamical 

systems, such as the spiral wave in the Belousov-Zhabotinsky (BZ) reaction [8] or in cardiac 

tissue, are typically analyzed by comparing experimental observations with the theoretical 

predictions of numerical models [9]. 
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 The spiral wave rotates about an organizing center, or core, which is thought to be an 

unexcited but excitable medium that defines the primary dynamic characteristics of the wave 

[10,11].  Within the core, there is a phase singularity, i.e., a region where the phase is undefined. 

The phase singularity may be described in terms of topological charge, nt, [12,13], defined as  

 1
2t

c

n φ
π

d≡ ∇ ⋅∫  (3.1) 

where )(rφ  is the local phase, and the line integral is taken over path on a closed curve c 

surrounding the topological defect. Even though the core cannot be easily distinguished from the 

surrounding active tissue, it is possible to observe and track the phase singularity. Hence, it is 

upon this element that we will focus our attention. 

 

3.3. Methods 

 Theoretical studies of self-excitatory systems can examine the relationship of the pair of 

key excitatory and recovery variables in phase space, in which one variable is plotted against the 

second. In experimental studies, there is typically a single observable variable, such as the 

transmembrane potential in cardiac tissue, which we will call V ),( tr . To allow us to analyze the 

system in phase space, we use time-series analysis to create a second variable, V ),(' tr , which is 

defined by time delay embedding of V, 

 '( , ) ( , )V r t V r t τ≡ +  (3.2) 

where τ is the delay calculated as the first zero crossing of the autocorrelation of V ),( tr ,  

indicating linear independence [14]. From these two variables, we can represent the temporal 

behavior of an excitable element in phase space as a closed path, termed a phase trajectory. We 

can then define the local phase of this element, ),( trφ , in terms of angle, around the trajectory in 

phase-plane, referenced to a central point. 

 By defining the integrand of Eq. (3.1), the gradient of the phase, as a wave vector, k ,  

 ˆ( , ) ( , ) ( , ) ( , )k r t r t r t i r t j
x y

φ φ φ ˆ∂ ∂
≡ ∇ = +

∂ ∂
 (3.3) 

we see that by evaluating nt for a small circular path of radius a in Eq. (3.1), the topological 

charge nt is proportional to the curl of the wave vector. Specifically, we are concerned with the 

component perpendicular to the plane containing c, i.e.,  
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1ˆ lim
a

c

k z k d
aπ→

∇× ⋅ ≡ ⋅∫  (3.4) 

 

where k  and d  are assumed to be restricted to the xy plane. Since k  is derived from the 

gradient of a scalar field, the curl of k  is zero everywhere where φ is differentiable, except at the 

phase singularity itself, where φ is undefined. This integral may be computed by the following 

procedure. The wave vector k  may be approximated from a discretized phase image consisting 

of pixels ],n[mφ  by a finite difference operation in the x and y directions 

 [ , ] [ , ] [ 1, ] [ , ]x xk m n m n m n m nφ φ φ= ∇ = + −  (3.5) 

 [ , ] [ , ] [ , 1] [ , ]y yk m n m n m n m nφ φ φ= ∇ = + −  (3.6) 

Absolute phase jumps greater than π in adjacent elements are corrected by converting them to 

their 2π complement. Computation of the line integral in Eq. (3.1) at location [m,n] may be 

expressed as a convolution operation 

 ( ) ˆ x y yk z k kx∇× ⋅ ∝ ∇ ⊗ + ∇ ⊗  (3.7) 

where ⊗ is the convolution operator, and  

 , and  (3.8) 
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are the convolution kernels. 

 The procedure developed above was used to locate phase singularities within a fourfold 

symmetric reentrant pattern known as quatrefoil reentry [15,16]. Such a pattern has recently been 

demonstrated in cardiac tissue, and, in contrast to most reentrant arrhythmias, it can be used to 

create repeatable patterns of four closely interacting singularities. In this paper, we analyze data 

from our earlier experiments. The experimental protocol has been described previously [16], but 

we summarize it here briefly. High-speed optical imaging using a CCD camera at 267 frames per 

second was used to record the response of 5 isolated, Langendorff-perfused rabbit hearts stained 

with the voltage-sensitive dye di-4-ANEPPS. 1 µM of the calcium channel antagonist D600 was 

added to the perfusate to inhibit motion artifacts. A premature S2 cathodal stimulus was 

delivered within the vulnerable phase during periodic pacing via a unipolar point electrode 
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placed on the posterior left ventricle. Within a narrow range of coupling intervals, the boundary 

between the induced virtual anodes and virtual cathodes provided four pathways by which 

reentry could occur after the termination of the S2 stimulus. While the resultant quatrefoil 

reentry was not sustained, lasting only a few cycles, there was sufficient propagation to clearly 

identify the reentrant pattern. Spatial and temporal filtering was applied to improve the signal-to-

noise ratio, and the signals were normalized with respect to the S1 amplitude. The value of τ 

used for a spatiotemporal data sequence was calculated as the average of the optimal values of τ 

calculated for each pixel in that sequence. 

 

3.4. Results 

 The earlier work by Gray et al. [14] and our present study are the first that provide 

quantitative, experimental measurements of the interaction dynamics of multiple singularities in 

cardiac tissue. While Gray tracked as many as four singularities at one time and could observe 

singularity annihilation, the dynamics of the interaction between these singularities was not 

analyzed. In contrast, our experimental and theoretical studies of quatrefoil reentry provide us 

with the requisite data required to test our understanding of these interactions. For this study, the 

tissue was modeled as an anisotropic bidomain, both as a 2-D sheet of tissue and a 3-D cylinder 

of tissue, using cylindrical coordinates (z,ρ,θ) to specify position; axisymmetry allowed the 

results for the cylinder to be determined independently of θ  by means of an appropriate 

coordinate transformation. The active membrane components were modeled using Beeler-Reuter 

kinetics, slightly modified such that strong hyperpolarization would not produce unrealistic 

membrane conductance, and the speed of the calcium channel kinetics increased by a factor of 

eight to ensure a stable spiral wave; further details on the model parameters are described 

elsewhere [17]. Figure 3.1 shows the spatiotemporal pattern described by quatrefoil reentry for 

both a numerically simulated model and an experimental preparation; both groups of data were 

normalized to unity with respect to the S1 stimulus. 

 Previous studies [5,16] have indicated that a reduced variation in action potential 

amplitude exists in those regions which are either undergoing conduction block or are located  
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Figure 3.1: Images of the spatiotemporal distribution during quatrefoil reentry of the (A) 
transmembrane potential in a numerically simulated model and (B) the fluorescence intensity in 
an experimental preparation. The fluorescent signal obtained from the epicardium is proportional 
to the transmembrane potential. The color bar indicates the pseudocolors used for representing 
the normalized signal magnitude; yellow is fully depolarized, blue is hyperpolarized, purple is 
resting. The arrow indicates fiber direction. 

 

within the core of a spiral wave. It stands to reason that calculating the variance of sequential, 

overlapping segments of the temporal signal and identifying those regions of low variance will 

highlight these areas. Figure 3.2 shows the spatiotemporal relationship between the motion of the 

activation wave and the regions of low variance shortly after the initiation of quatrefoil reentry 

for both the numerical model and experimental preparation. In each instance, the black mesh 

encloses the low variance regions calculated with an isovalue of 0.2 in Fig. 3.2A and 0.06 in 

B. The presence of four distinct low variance regions and the fact that the colored surface 

representing the wavefront rotates around each of the meshes confirms that the phase singularity 

should be located within the low-variance region. 

3.2

 Figure 3.3 displays a comparison between numerical simulation and experimental 

preparations of quatrefoil reentry, along with the images after application of the phase and curl 

operations. The calculated values of τ were on the order of 26 ms for the experimental data 

sequences and 35 ms for the numerically simulated data sets. In Fig. 3.3B and C, note the 

presence of four phase singularities; in particular, the value of the curl at the singularity positions 

in Fig. 3.3C corresponds to the spiral wave chirality (blue corresponds to clockwise rotation, red 

to counter-clockwise). Thus, by this method, we succeed in isolating the phase singularity of 

spiral waves for analysis. Figure 3.4 shows an example of quatrefoil trajectories obtained from 

application of the above algorithm to both experimentally prepared and numerically simulated 

data. It can clearly be seen that the singularities exhibit dynamic behavior. 
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Figure 3.2: Depiction of the spatiotemporal evolution of a quatrefoil reentrant wavefront pattern 
relative to regions of low variance of wavefront amplitude in (A) numerically simulated and (B) 
experimental preparations. Spatial axes lies in the horizontal plane, temporal axis is vertical; 
spatial units in s.u., time units in t.u.. Solid surface represents isopotential surface of the reentrant 
wavefront where the normalized Vm is 0.7, colored for clarity. Black mesh encloses regions of 
reduced variance in temporal signal, calculated at a threshold variance value of 0.2 in (A), 0.06 
in (B). 

  

 In three-dimensional figure-of-eight reentry, the symmetry of the system requires that the 

two singularities define the ends of a filament about which the single scroll wave rotates. In the 

instance of quatrefoil reentry, the observed surface pattern is consistent with two pairs of phase 

singularities connected by two singularity filaments, about which a pair of synchronized scroll 
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waves rotates underneath the epicardial surface. If we consider the finite thickness of the left 

ventricular wall, the possibility of two transmural filaments cannot be ruled out conclusively. For 

this paper, we define the term transverse pair, TP, as the oppositely charged singularity pair 

aligned perpendicular to the axis of symmetry defined by the cardiac fiber direction, as shown in 

Fig. 3.3A. A longitudinal pair, LP, describes the pair of singularities aligned parallel to the 

cardiac fiber axis of symmetry. Examples of TP and LP are illustrated in experimental and 

simulated data in Fig. C. 3.3

 We examined relative distances between transverse and longitudinal singularity pairs for 

twenty cases of quatrefoil reentry. For the earliest detectable singularities, in the majority of 

cases the TP separation was less than that of the LP separation. We found that transverse and 

longitudinal pairs exhibit dynamic behavior which could be grouped into three classifications on 

the basis of the time course of the average pair separation, as shown by specific examples of 

trajectories in Fig. 3.4.  The average of the TP and LP separation distances for each of the 20 

instances of quatrefoil reentry is shown in Fig. 3.5. Figure 3.6 depicts the TP and LP separation 

distances, along with the average of the TP and LP separation distances, averaged for each 

classification. The taxonomy of the separation distances is described as follows: 

1. Type I (n = 10) is characterized by an initial expansion in the TP separation distance and a 

contraction in the LP separation distance to form a more equidistant arrangement in the four 

singularities. The initial phase has an average expansion velocity of 0.20 mm/ms. Both pairs 

then exhibit weak oscillatory behavior at a relatively constant separation distance (Fig. 3.4A, 

A, A). 3.5 3.6

3.6

2. Type II (n = 4) is characterized by an initial overall contraction in both TP and LP separation 

distance, with an average contraction velocity of 0.30 mm/ms. Thereafter, both TP and LP 

separation distances experience strong oscillatory behavior, coupled with a contraction in 

separation distance (Fig. 3.4B, 3.5B, 3.6B). 

3. Type III (n = 6) is characterized by an initial overall expansion in both TP and LP separation 

distances, with an average expansion velocity of 0.83 mm/ms. Afterward, both pairs then 

exhibit oscillatory behavior with an expanding trend in separation distance. At times, the 

average TP separation is less than half that of the average LP separation (Fig. 3.4C, 3.5C, 

C). 
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Figure 3.3: Numerically simulated (left column) and experimental (right column) quatrefoil 
reentry following an electrical stimulus applied to the center of tissue. (A) Normalized spatial 
distribution of transmembrane potential from simulated data, and fluorescence intensity from 
experimental data. The arrow indicates fiber direction. (B) Phase distribution of image in (A). 
(C) Curl distribution of wave vectors calculated from image in (B), highlighting the presence of 
four phase singularities. The transverse pairs (TP) are indicated by numbers 1 and 2, and 3 and 4, 
the longitudinal pairs (LP) indicated by numbers 1 and 4, and 2 and 3. 
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Figure 3.4: Demonstration of trajectories of quatrefoil phase singularities in (x, y, t) space, 
illustrating dynamic behavior in time. The singularities are numbered (1-4) and connected in the 
same order as in Fig. 3.3, to indicate TP and LP. Time interval is measured from the end of the 
S2 stimulus. (A) Type I: initial linear expansion followed by linear contraction; (B) Type II: 
initial linear contraction followed by oscillatory contraction; (C) Type III: initial linear expansion 
followed by expansion trend; (D) 3-D Numerical model pair separation distances. 
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Figure 3.5: Plots of the average of the TP and LP separation distances for all instances of 
quatrefoil reentry grouped into the three types. Each curve represents a different experiment. (A) 
Type I; (B) Type II; (C) Type III. 

 

 

 
Figure 3.6: Taxonomy of the pair separation distance S (in mm) plotted as a function of time T, 
computed as a fraction of the rotation period. T = 0 represents the termination of the S2 stimulus. 
Blue, green, and red lines represent TP, LP, and average separation distances, respectively. 
Curves begin from time of first detection of singularities. (A) Type I; (B) Type II; (C) Type III; 
(D) 2-D Numerical model pair separation distances; (E) 3-D Numerical model pair separation 
distances. 

 

 Several interesting observations may be made on the basis of Fig. 3.4. Note that in C, a 

TP is the first to extinguish (labeled 3 and 4). However, in A and B, the LP singularities labeled 

2 and 3 are extinguished in both cases, most likely by mutual annihilation in the instance of A, 

on the basis of their proximity at the time the singularities disappear. This behavior in A and B 

suggests that the filament remnants of 1 and 4 have either spanned the myocardial wall so that 

the other end of the filament is not visible, or recombined to form a new transverse pair [18]. 

 The same calculations were applied to the numerically simulated data. In comparison, 

analysis of pair separation for the model data sets did not conform to any of the above 

classifications, exhibiting clearly repetitive oscillatory behavior for both TP and LP, in both the 

two- and three-dimensional cases. Examples of numerically simulated separation distances are 

shown in Fig. 3.6D and E. 
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 Examination of the periodicity of the interaction between the singularities was performed 

by cross-correlating the TP and LP separation distances, as shown in Fig. 3.7. As indicated 

above, the oscillatory nature of the Type II behavior is reflected in the cross correlation (Fig. 

B) which indicated a period of oscillation of 133 ms. Type III also suggested an oscillation of 

separation distances (Fig. 3.7C), albeit over a wider period, unlike Type I, which exhibited no 

interdependence of separation distances (Fig. A). The cross-correlation for the numerical 

models both display a strong correlation at the zero-th shift. 

3.7

3.7

 
Figure 3.7: Cross-correlation of TP and LP separation distances. (A) Type I; (B) Type II; (C) 
Type III; (D) 2-D Numerical model; (E) 3-D Numerical model. 

 

3.5. Discussion 

 Now that we have identified the phase singularities and can compute their trajectory in 

physical space, we can return to Figure 3.2 and compare the trajectory to the regions of low 

variance. Figure 3.8 shows a single spiral wave from the quatrefoil reentry with the 

corresponding phase singularity trajectory overlaid as a white line. While the mesh encloses the 

trajectory completely in the numerical model (Fig. 3.8A), for the instance of the experimental 

preparation, the trajectory may wander outside the mesh at some places (Fig. 3.8B). Whether this 

disparity is due to the rapidity of singularity motion, the width of the overlapping temporal 

segments used to calculate variance, or the calculation of phase itself is a topic of further 

research. In both cases, we see that phase singularity trajectory follows the time course of the 

low variance mesh, as expected. 

 While the interaction of rotors has been discussed intensively in the literature [19-21], the 

problem is far from being resolved. Analytical solutions have been found for simple systems 

such as those governed by the Ginzburg-Landau equations [22,23], demonstrating that 

inhomogeneities within the medium will cause frequency-dependent spiral wave interaction. For  
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Figure 3.8: Depiction of the spatiotemporal evolution of a single spiral wave from Fig. 3.2 
relative to region of low variance of wavefront amplitude and phase singularity trajectory in (A) 
numerically simulated and (B) experimental preparations. Spatial axis lies in the horizontal 
plane, temporal axis in vertical plane; spatial units in s.u., time units in t.u.. Solid surface 
represents isopotential surface of the reentrant wavefront where the normalized Vm is 0.7, colored 
for clarity. Black mesh encloses regions of reduced variance in temporal signal, calculated at a 
threshold variance value of 0.2 in (A), 0.06 in (B). Trajectory of the phase singularity 
represented as a thick white line. 

 

systems with FitzHugh-Nagumo dynamics, no analytic solution has yet been found; numerical 

simulations show the oscillatory interaction of vortices at close range where the parameter values 

have been constrained to prohibit single vortex meander [24], a significant difference from 

experimental observations [6,7]. The long-range interaction of vortices has been studied in the 

BZ reaction [25], again indicating a frequency-dependent element involved in vortex drift. At 
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short distances, it has been experimentally established that vortices with opposite topological 

charges can annihilate [14], in accordance with theory [13]. 

 In this paper, we have observed a significant difference in the singularity dynamics (as 

defined as the time dependence of the singularity separation distance) between the experimental 

preparations and numerical models. One possible source of this discrepancy may be the addition 

of the excitation decoupler D600 to suppress mechanical contractions for the purposes of the 

experiment. The use of electromechanical uncoupling agents have been used previously for the 

purpose of optical mapping of phase singularities [14]. D600 is known to alter wavefront 

dynamics, but its full range of effects on singularity dynamics cannot be determined without 

further study beyond the scope of this initial paper. 

 Current evidence supports the dependence of epicardial phase singularity dynamics on 

underlying filament behavior [7]. Further exploration into the correlation of experimental and 

numerical results will necessitate the development of more detailed models. A future step is to 

carry out numerical simulations of filament behavior in a 3-D model of continuous myocardium 

which more closely represents the physiological substrate that may be found in experimental 

preparations. Another issue which needs to be addressed is the fact that using time series analysis 

is but one of several techniques to calculate phase for an oscillatory system (for a review, see 

Pikovsky et al. [26]). The algorithm described here is designed to detect a 2π phase change 

around a point, regardless of the technique used to generate the spatial distribution of phase 

values. However, the influence of the method chosen to construct the phase map on phase 

singularity localization (and the derived dynamics) is not yet fully understood. 

 

3.6. Conclusion 

 The concept of topological charge provides a technique to localize phase singularities 

easily and efficiently present in cardiac tissue that is undergoing reentrant excitation to reveal the 

dynamics of their behavior. Our experimental study demonstrates both expansion and contraction 

of the distance between singularities, and annihilation of singularities that are either connected 

by a filament or not. We conclude that the experimentally observed dynamics are more complex 

and varied than those predicted our model, either because the dynamical properties of the model 

are too simple, or the anisotropies and heterogeneities of the tissue are not adequately 

represented, or the model is not operating in the correct parameter space. Until the models are 
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improved, our experimental observations of quatrefoil reentry provide us with an excellent, 

although experimentally challenging, system for the study of singularity dynamics. 
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4.1. Abstract 

 Cardiac reentrant arrhythmias may be examined by using time-series analysis, where a 

state variable is plotted against the same variable with an embedded time delay, τ to form a phase 

portrait. The success of this procedure is contingent upon the resultant phase space trajectories 

encircling a fixed origin. However, errors in interpreting the dynamics of phase singularities 

associated with reentry may arise due to the trajectories not encircling the origin or due to a poor 

choice of τ. We demonstrate an algorithm which is capable of establishing proper orbits without 

the need to specify τ. We find that phase singularities could be localized closer to the point of 

initial formation than was possible previously, which is important for the purposes of singularity 

tracking and investigating electrodynamic interactions. 

 

4.2. Introduction 

 Phase plane analysis has recently offered a unique perspective into cardiac fibrillatory 

behavior [1-5]. An excitable element may be mapped into phase space by plotting a state variable 

against another variable; for example, the two-variable FitzHugh-Nagumo model allows for 

phase space to be examined in terms of excitability versus refractoriness [6]. Normally, an 

excitable element remains at one stable location in phase space until a suprathreshold stimulus 

perturbs the system and forces the element into a closed-loop trajectory about an attractor. 

 For practical purposes, an experimenter may not have direct access to multiple, 

concurrent state variables in order to perform a dynamical systems analysis. However, using 

time-series analysis, a topologically equivalent attractor may be reconstructed given only one 

component of the system [7,8]. For N evenly sampled values of y(t), the attractor in two 

dimensions is [ ( ) ( )]iy y i y i τ= +  where τ is the time-embedding lag and i = 1,…,N-1. 

 Given a spatiotemporal activation sequence, we can use time-series analysis to 

reconstruct a phase space trajectory by using the transmembrane potential, V(t), as a state 

variable, and plotting it against V(t+τ). Typically, τ is usually calculated as the first zero-crossing 

of the autocorrelation function for the data in order to insure linear independence between the 

two state variables [9]. We may then define phase, θ, as the angle made by the phase space 

trajectory with respect to a central origin at a particular instant in time [1]. 
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 Rotors are regions of excitability rotating around a central spatial location. In phase 

space, this point corresponds to the phase singularity, a topological defect where all phase values 

(i.e., −π to π) converge and the phase itself at that point is undefined [10]. An example is shown 

in Figure A; here, an isochronal activation map is used to highlight the location of the rotor 

and the motion of the wave around it. Regions around the phase singularity are characterized by 

4.1

 
Figure 4.1: (A) An isochronal map from numerically simulated data. The white arrow indicates 
direction of wave rotation. (B) Transmembrane signal measured at site indicated by the black 
arrow in (A). Oscillations falling below the mean value, Vmean, of the signal are drawn in blue. 
(C) Phase portrait of the signal shown in (B) using τ  = 3. The origin (Vmean, Vmean) is indicated by 
a circle. 

 
Figure 4.2: Example of phase space trajectories resulting from poor choices of τ. (A) τ = 3. (B) τ 
= 6. 
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low amplitude oscillations [11,12]. In the phase plane, these correspond to rotations with a small 

circumferential length. 

 As described by Gray et al., [1] a fixed origin in the phase plane is defined by using the 

average value, Vmean, of the state variable V(t) for the entire sequence about which the 

instantaneous phase angle is determined. However, in the case of unstable or drifting reentrant 

patterns such as fibrillation, low-amplitude passive responses may occur as the vortex meanders 

through or near a particular location. Therefore, one limitation of this approach for is that, for 

such a site, all cycles in the phase plane may not encircle the origin as defined by Vmean, as shown 

in Figure 4.1C. In addition, the selection of embedding delay τ is critical; a non-optimal choice 

of τ may lead to a low-quality reconstruction of phase space. If τ is too small, then V(t) ≈V(t+τ) 

(i.e., the values are highly correlated), resulting in the trajectories being concentrated on the 

diagonal in the reconstructed phase space, as shown in Fig. 4.2A. An overly large choice of τ 

leads to decorrelation of the data, resulting in stretching and deformation of the phase trajectories 

as the structure of the attractor is destroyed. If we define a proper rotation as one which has a 

definite direction and a unique center of rotation, we see from Fig. 4.2B, this choice of τ leads to 

several improper rotations along the trajectory, which will yield a distorted calculation of phase 

about Vmean. This in turn could lead to errors in interpreting the dynamics of phase singularities 

associated with reentry. Furthermore, during full fibrillation, the number of wavefronts and wave 

morphology changes unpredictably. Hence, the optimal value of τ as calculated by the auto-

correlation method may not be unique for the entire spatiotemporal course of recorded activity. 

We propose an alternate method of reconstructing the phase space which takes into account the 

non-stationary nature of fibrillatory behavior and the pitfalls of a non-optimal choice of τ. 

 

4.3. Methods 

 The primary difficulty in calculating phase for this variety of oscillatory behavior is the 

presence of multiple centers of rotation in the phase plane during the temporal evolution of the 

system. A solution is to modify the state variable in an attempt to insure a fixed center of rotation 

[13]. This procedure is dependent on the proper implementation of the empirical mode 

decomposition (EMD) [14], which divides the signal into a series of intrinsic mode functions, 

each of which represents an oscillation frequency embedded within the signal. However, the 
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process grants proper rotations to all deflections in the signal, regardless of amplitude. Therefore, 

oscillations stemming from noise are treated the same as oscillations generated from action 

potential propagation. A companion problem is the iterative nature of the procedure, which can 

result in inappropriate exaggeration of even the most minute deflections. Therefore, there is not 

necessarily a good correlation between an intrinsic mode of a temporal signal at a particular 

location and its neighbor. Hence, the EMD does not easily lend itself to analysis of a spatially 

distributed series. We have modified the algorithm in order to include considerations unique to 

cardiac data. 

 

4.3.1. The pseudo EMD (pEMD) 

 Since not every oscillation in the data is significant, the first task is to determine which 

oscillations are given proper rotations in the phase plane. To this end, the algorithm first 

performs a pEMD upon the data. First, we construct two envelope curves which connect the 

maxima, Vmax(t),  and minima, Vmin(t), of the wave form. This is performed by applying a sliding 

maximum and minimum filter to the data. The length of the filter window is determined in the 

following way. The period of the reentrant activity was estimated on the basis of the dominant 

frequency component of the data; since much of tissue is at some distance from the phase 

singularities present, it was assumed that the period obtained would be representative of single 

action potentials alone. Since reentry may be characterized by double-humped potentials [15,16], 

we then used half this value as the filter window length in order to also isolate the double peaks. 

Applying these two filters and subtracting the results will yield zeros surrounding the extrema. 

The result can further be processed to produce the actual extrema points. As opposed to [14], we 

have chosen to use piecewise cubic Hermite rather than cubic spline interpolation to connect the 

extrema since cubic spline interpolation may create large swings between extrema. The envelope 

midline Vmean
*(t) is then computed as [Vmax(t)  + Vmin(t) ]/2. We then detrend V(t) by computing 

V’(t) = V(t) - Vmean
*(t). In this way, we create a rough approximation of an intrinsic mode 

function with the pertinent frequency information desired. 
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4.3.2. The Hilbert transform 

 Mathematically, a function and its Hilbert transform are orthogonal over the infinite 

interval. Hence plotting V’(t) against its Hilbert transform will yield proper rotations in the phase 

plane. The Hilbert transform is calculated as [17] 

 
-

1 '( )[ '( )] P.V. V TH V t dT
t -Tπ

∞

∞

 
=  

 
∫  (4.1) 

where P.V. is the Cauchy principal value of the integral. For practical purposes, this integral is 

never actually calculated; it is obtained from V’(t) by a filter with a unity amplitude response and 

a phase response with a constant π/2 lag at all frequencies. V’(t) and H[V’(t)] may be combined 

as complex conjugates to form an analytical signal, 

  (4.2) ( )( ) '( ) [ '( )] ( ) i tV t V t j H V t A t e θ= + ⋅ =

where A(t) is an amplitude function, and θ(t) is a phase function. 

 The application of the pEMD and the Hilbert transform is displayed in Fig. 4.3 for a 

numerically simulated signal. 

 

4.3.3. Calculation of phase 

 Using a constant Vmean, the spatial phase map for each coordinate (x,y) is calculated as  

 ( , , ) ( , )( , , ) arctan
( , , ) ( , )

mean

mean

V x y t V x yx y t
V x y t V x y

τθ
 + −

=  − 
  (4.3) 

whereas the expression of phase using the Hilbert transform is 

 ( , , )( , , ) arctan
[ '( , , )]
V' x y tx y t

H V x y t
θ


= 

 


  (4.4) 

(4.4)The formulation of θ in  is the same as what follows from the definition of the analytical 

signal given in (4.2). Also note that the new formulation is independent of any time-embedded 

delay, τ. 

 

4.3.4. Numerical simulation and experimental preparation 

 The numerical methods are identical to those described previously [11,12,18]. The tissue 

was modeled as a 3-D bidomain using the Beeler-Reuter model for the active membrane kinetics 
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Figure 4.3: Flowchart of the algorithm as applied to numerically simulated data. (A) V(t) with 
Vmean*(t) shown as red line. (B) V ’(t), the result of subtracting Vmean*(t), as produced by the 
pEMD, from V(t). (C) The Hilbert transform of V’(t). 

  

  

 

 61



  (4.5) 
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where D is the diffusion coefficient, C is the membrane capacitance, iNa is a fast inward sodium 

current, iK1 is time-independent outward potassium current, ix1 is a time-activated outward 

current, iS is a slow inward calcium current, iext is the external injected current, and yk are a 

number of gating variables. 

 The experimental protocols, high-speed optical imaging system, and signal-processing 

methods have been described previously [12]. A conditioning stimulus (S1) through an electrode 

renders the tissue in a refractory state. A subsequent premature stimulus delivered through the 

same electrode (S2), produces unidirectional conduction block such that quatrefoil reentry, a 

spiral wave pattern with fourfold symmetry, is created. The same stimulation protocol is used for 

the numerical simulations. For the experimental setup, spatiotemporal movies were recorded at 

267 frames/sec in an image format of 96 x 64 pixels (20.0 x 13.5 mm) for 300 frames. For the 

purposes of this manuscript, we express τ in time units (t.u.) of image frames. Spatial and 

temporal filtering was applied to improve the signal-to-noise ratio. Both the experimental and the 

numerically simulated data were normalized to the range [0,1] with the resting potential as 0 and 

the amplitude of the S1 stimulus as 1. 

 Singularity detection was performed using the algorithm described in [3]. In brief, the 

concept of topological charge is implemented as a series of convolution operations to detect a 

spatial phase distribution of 2π around a pixel, the distinguishing characteristic of a phase 

singularity. These points are assigned a topological charge of ±1, depending on chirality; 

elsewhere, the pixels are assigned a value of zero. 

 

4.4. Results 

 The pEMD-Hilbert transformed phase trajectory corresponding to Figure 4.1C is shown 

in Figure A, where it can be seen that each orbit corresponds to a single proper rotation about 

the origin (0,0). Fig. B is an expanded view of Fig. 4.4A, showing a portion of the trajectory 

with the same segment as in Fig. 4.1B highlighted with a broken line. We see that the origin is 

encircled by both these loops. 

4.4

4.4
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 The difference in the phase maps can be seen in Figure 4.5. Figure 4.5A shows the phase 

map using a fixed center of rotation and τ = 3, whereas Fig. 4.5B is generated using the pEMD-



Hilbert transformed data. Fig. 4.5C shows a difference map, the result of subtracting the first two 

panels from each other. Within the phase map, the phase singularities may be identified as those 

areas where all the colors converge to a single point. The most significant differences from the 

time-series method are concentrated around the vicinity of the phase singularities, which is 

expected since it is those regions where Vmean is most likely to miss rotations in the phase plane, 

while yielding relatively unchanged values at larger distances from the singularities. 

 The dependence of the localization of the phase singularity on the choice of τ is shown in 

Fig. 4.6. Of note is the disparity in the location of the singularities using a constant center of 

rotation, especially in Fig. 4.6C, where extraneous singularities are visible. The singularities 

created with the pEMD-Hilbert transform bear the most resemblance to those generated using τ = 

3; while τ = 7 was calculated by the autocorrelation function to be the optimal value for the 

embedded delay, lowering τ to 3 actually provided the least amount of trajectory deformation in 

the vicinity of the singularities. 

 We examined the difference between the locations of the singularities as defined using a 

fixed center of rotation and a τ of 3, and using the pEMD-Hilbert transform. The average 

difference was 2.3 ±1.9 spatial units (on a grid of 101 x 101 units). We also observed that the 

difference tended to be the greatest when the spiral was experiencing its greatest degree of 

meander. 

 Applying this formulation to experimental data (an isochronal activation map is shown in 

Fig. 4.7A) yields similar results. Figure 4.7B displays an unprocessed sample waveform taken 

from a data set exhibiting quatrefoil reentry. The dotted regions in Fig. 4.7B highlight a region 

where a phase singularity is present. The corresponding phase trajectory is shown in Fig. 4.7 C, 

which exhibits some improper rotations. Again, we calculate Vmean* for this waveform, generate 

V’(t) and subsequently H[V’(t)], as seen in Figure 4.8. The corresponding pEMD-Hilbert 

transformed phase trajectory to Fig. 4.7A is shown in Figure 4.9A, where it can be seen that each 

orbit corresponds to a single proper rotation about the origin (0,0). Figure 4.9B is an expanded 

view of Fig. 4.9A, showing a portion of the trajectory with the same segment as in Fig. 4.7A 

highlighted with a broken line. Like the numerically simulated waveform, we see that the origin 

is encircled by these loops. 
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 The difference in the phase maps can be seen in Figure 4.10. Figure 4.10A shows the 

phase map using a fixed center of rotation and τ = 7, whereas Fig. 4.10B is generated using the  



 
Figure 4.4: (A) Example of phase trajectory using Hilbert transform. Circle indicates origin 
(0,0), same segment from Fig. 4.1B drawn in blue. (B) Expanded view of (A) illustrating the 
highlighted segment. 

 

 

 
Figure 4.5: Comparison of phase maps calculated from numerically simulated data. (A) Map 
calculated using τ = 3. (B) Map calculated using Hilbert transform. (C) Difference map created 
by subtracting (A) and (B). 
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Figure 4.6: Comparison of phase singularity maps generated from various values of τ and the 
pEMD-Hilbert transform. (A) τ = 3; (B) τ = 6; (C) τ = 9; (D) pEMD-Hilbert transform. 

 

 

 
Figure 4.7: (A) An isochronal map from experimental data. The white arrow indicates direction 
of wave rotation. (B) Transmembrane signal measured at site indicated by arrow in (A). 
Oscillations indicating presence of the phase singularity shown in blue. (C) Phase portrait of the 
signal shown in (B) using τ = 7. Origin (Vmean, Vmean) indicated by circle. 

 

 65



 

 
Figure 4.8: Flowchart of the algorithm as applied to experimental data. (A) V(t) with Vmean*(t) 
shown as red line. (B) V ’(t), the result of subtracting Vmean*(t), as produced by the pEMD, from 
V(t). (C) The Hilbert transform of V ’(t). 
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Figure 4.9: (A) Example of phase trajectory using pEMD-Hilbert transform. The circle indicates 
the origin (0,0), the same segment from Fig. B is shown in blue. (B) Expanded view of (A) 
illustrating the highlighted segment. 

4.7

 

 

 

 

Figure 4.10: Comparison of phase maps calculated from the experimental data set used to obtain 
Figs. 4.7-4.9. (A) Map calculated using τ = 7. (B) Map calculated using the pEMD-Hilbert 
transform. (C) Difference map created by subtracting (A) and (B). 
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Figure 4.11: Phase singularity maps during S2 stimulation using experimental data using τ = 7 
(left column) and the pEMD-Hilbert transform (right column). S2 + (A) 3, (B) 8, and (C) 12 t.u.. 

 

 

 
 

 

 

 68



 
 

 

 
Figure 4.12: (A) V(t) traces from point located within virtual cathode (solid black curve) and 
virtual anode (solid blue curve); corresponding Va(mean)*(t) and Vc(mean)*(t) traces for each 
measurement point (dotted lines); Vmean defined as zero (broken line). Vertical lines show 
duration of S2 stimulus. (B) V ’(t) traces corresponding to V(t) in (A). Zero line drawn in red. 

4.12
 

Figure 4.13: Phase trajectories for the data at the virtual cathode in Fig.  with the segment 
corresponding to the duration of S2 stimulus drawn in blue. (A) � = 7, (B) pEMD-Hilbert 
transform. 
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pEMD-Hilbert transformed data. Fig. 4.10C shows the difference map; once again, the regions 

with highest difference magnitude are located at the singularities, although some noise can be 

seen in Fig. 4.10B. The average difference in singularity localization between the two 

methodologies was 0.52 ± 0.47 mm (in a field of view of 20.0 x 13.5 mm). 

 An additional consequence of using Vmean
* is that we are able to observe the initial phase 

singularity formation much closer to the start of the S2 stimulus than is permissible with Vmean, as 

shown in Figure 4.11. Figure 4.11A is taken at a point 3 t.u. after the beginning of the S2 (S2 

terminates after 7 t.u.); the singularities are not visible in the frame generated from Vmean because 

the improper rotations in the phase plane during S2 result in a miscalculation of phase and 

therefore, a disruption in singularity localization. This finding is important for the purpose of 

automated phase singularity tracking and for examination of the early dynamics of the phase 

singularity. 

 

4.5. Discussion 

 Computation of the spatial phase map is important for tracking phase singularity 

formation and behavior during fibrillatory activity. The standard means of calculating the phase 

map assumes a constant, fixed center of rotation in the phase plane, which may lead to missed or 

distorted rotations in the phase trajectory. Detrending the state variable on the basis of oscillation 

magnitude serves to create a non-stationary origin which takes the temporal evolution of the 

signal into account. The analytic signal of this new state variable generates a proper rotation in 

the phase plane (a 2π rotation about the origin) while removing the dependence on the choice of 

time-embedded delay τ. We have observed small differences in singularity localization 

depending on which methodology is used; while a discussion of absolute localization accuracy is 

difficult due to the lack of a “gold standard” of singularity identification, the pEMD-Hilbert 

transform algorithm attempts to correct for several recognized sources of error. In addition, this 

method has the effect of enabling phase singularity observation closer to initial formation than 

previously allowed. 

 

4.5.1. Observation of Initial Singularity Formation 

 Virtual electrodes are critical to phase singularity formation and initial dynamics, and 

therefore their early detection is important [3,19]. The fact that phase singularities are visible 
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earlier using the pEMD-Hilbert transform algorithm than the constant Vmean methodology is 

evident from Figure 4.11; reducing τ to 3 causes the singularities to appear earlier but still not as 

early as the those produced by the pEMD-Hilbert transform algorithm The question remains as to 

whether these “early” singularities are indeed real or an artifact of the algorithm. In Fig. 4.12A, 

the optical signal during S2 from a virtual cathode (Vc) is shown alongside a signal from the 

virtual anode (Va). The constant values of Vmean for Vc and Va has been subtracted from both 

curves such that Vmean from this point on is now zero for both curves (shown as a broken line). 

We see that while the zero-line origin intersects the hyperpolarization trough at Va, it completely 

misses the depolarizing peak at Vc. In terms of the phase plane, the depolarization from the 

virtual cathode advances the phase of this point and initiates reentry by producing a new cycle 

(type 0 or even phase resetting) [10]. Hence, the fact that this shift in phase is not captured as a 

full rotation around the origin in the phase plane is problematic. The appearance of the phase 

singularity is delayed until a neighborhood of pixels repolarize such that they create a 2π 

distribution about the origin in the phase plane (recall that singularity detection requires a 2π 

distribution of phase around a spatial point). 

 On the other hand, we see that both the anodal and cathodal traces are bisected by 

Va(mean)
* and Vc(mean)

*, respectively. Once V’(t) is generated by subtracting these midline traces, 

both Vc and Va are distributed about the zero-line origin, as shown in Fig. 4.12B. Figure 4.13 

illustrates Vc from Fig. 4.12A in the phase plane created using Vmean where the S2 stimulus 

generates an improper rotation, whereas the use of Vmean
* brings the S2 oscillation into a proper 

rotation. The expected even phase resetting at Vc is clearly seen which, along with Vc, produces 

an accompanying 2π distribution of phase around the origin and the appearance of the 

corresponding singularity at the junction between the virtual electrodes. 

 

4.5.2. Limitations 

 While this method generates proper rotations for selected oscillations in the waveforms, 

the question still remains of what is the smallest oscillation magnitude which should be allowed 

a proper rotation. For an example, note the small hump at t = 164 t.u. in the top panel of Fig. 4.3 

which is missed by Vmean
*. The question is whether omitting this peak is acceptable or not. If it is 

part of a sub-threshold response, then it does not matter; unless the phase is reset somewhere in 

its vicinity, even though the phase value may be calculated differently, a phase singularity will 
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not be detected. If instead it is a low amplitude response due to its proximity to the reentrant 

core, shifting its value such that it encircles the origin will cause a phase distortion which may 

impair singularity localization. In the case of the numerical data of Fig. 4.3, such a situation 

causes a slight smearing of the singularity. For experimental data, it is a larger concern since 

spurious extrema may create unwanted deflections in Vmean
*. The magnitude of this issue is 

dependent on the window size used for the calculation of Vmean
*, therefore, a compromise must 

be made between making the window so short it catches unwanted extrema, or so long that it 

compromises the selection of the double-peaked potentials. This issue is problematic because an 

excursion in Vmean
* is not transient but instead occurs over a duration lasting the length of time 

from the previous extrema to the subsequent extrema. Hence, phase values can be distorted over 

a wide length of time. 

 As mentioned above, it is worth noting that a small value of τ produces results similar to 

the pEMD-Hilbert algorithm, as compared to the larger value determined by the auto-correlation 

function (Fig. 4.7). For time-delay embedding method, choosing a value of τ close to the 

duration of the action potential upstroke tends to minimize the trajectory distortion in the phase 

portrait, especially in the case of fibrillation where the upstroke duration is prolonged [2]. 

Therefore, globally choosing a short τ for the time-delay embedding method achieves the same 

desired effect in the phase plane as the orthogonality of the Hilbert-transformed signal. 

 The algorithm presented still possesses a time-dependent component, the calculation of 

the pEMD; the effectiveness of the Hilbert transform is dependent on the proper determination of 

the pEMD. The window length is currently chosen not on the basis of the double oscillations 

themselves but inferred on the basis of the full action potentials. Using half the period of the full 

potential seems to be successful in most cases tested but this assumption may not apply to every 

set of cardiac waveforms. Setting the filter window too large may cause small oscillations 

situated between larger ones to be omitted entirely; setting the window too small runs the risk of 

incorrectly capturing deflections due to noise. Based on our experience, we have found it more 

desirable to err on the side of a shorter window when selecting the optimal window length. A 

more rigorous criterion for the calculating the pEMD is a subject for future research. 
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5.1. Abstract 

 The unique time course of an excitable element in cardiac tissue can be represented as the 

phase of its trajectory in state space. A phase singularity is defined as a spatial point where the 

surrounding phase values changes by a total of 2π, thereby forming the organizing center for a 

reentrant excitatory wave, a phenomenon which occurs in cardiac fibrillation. In this paper, we 

describe a methodology to detect the singular filament in numeric simulations of three-

dimensional scroll waves by using the concept of topological charge. Here, we use simple two-

variable models of cardiac activity to construct the state space, generate the phase field, and 

calculate the topological charge as a summation of 3-D convolution operations. We illustrate the 

usage of the algorithm on the basic dynamics of vortex ring filament behavior as well as the 

more complex spatiotemporal behavior observed in fibrillation. We also compare the motion of 

filament wavetips as determined by the phase field produced by two-variable state space and 

single-variable, time-delay embedded state space. Finally, we examine the state spaces produced 

by a more complex three-variable model. We conclude that the use of state space analysis, along 

with the unique properties of topological charge, allows for a novel means of filament 

localization. 

 

5.2. Introduction 

 One of the more intriguing properties of excitable media driven by reaction-diffusion 

equations is the ability to support vortices, known as spiral waves in two dimensions and scroll 

waves in three dimensions [1]. The study of these phenomena is of vital importance in biology 

because such self-organizing systems seem to underlie ventricular fibrillation (VF) which leads 

to sudden cardiac death [2]. Spiral waves are characterized by rotation about a topological point 

defect known as a phase singularity. Since spiral waves are actually the two-dimensional cross-

section of a scroll wave, the phase singularity may also be interpreted as the cross-section of 

three-dimensional line termed a filament. 

 While the motion of spiral waves can be observed experimentally in cardiac preparations 

[3-5], the direct observation of scroll waves and the accompanying filament is limited to two-

dimensional projections of three-dimensional chemical reactions [6,7]. In cardiac studies, the 

presence of scroll waves must be inferred from epicardial or endocardial recordings [8-11] or 
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specialized transmural measurements [12,13]. For this reason, numerical models of excitable 

media are invaluable in providing information about the dynamic properties of filaments. 

 Previous studies have performed the localization of a numerically simulated filament in 

various ways. Another method detects the area for each spatial z plane where the excitation 

remains below a minimal threshold over a single rotation period; the center of mass of these 

areas is taken to be the filament [14-17]. Another approach is to find the intersection of two 

successive isopotential surfaces (i.e., the line at which the isopotential temporal derivative is 

zero) [18,19], which corresponds to detection of the wavebreak, a discontinuity in the wavefront 

such that the wavefront meets its own repolarizing tail. In a similar fashion, the intersection of 

the excitatory and recovery state variables for a particular value may also be used [14]. Other 

methods include finding the location of the maximum cross product of the state variable 

gradients [7] or the location of maximum curvature of a particular isopotential [20]. In this paper, 

we refine the methodology of localizing the filament using the concept of phase and topological 

charge [3,21].  

 

5.3. Methods 

 

5.3.1. Two-variable reaction-diffusion model 

 To illustrate our method, we will first consider an excitable medium consisting of a two 

variable reaction-diffusion system described with the following partial differential equations 

  (5.1) 
2/

/ ( , ),
u t D u f u v
v t g u v

∂ ∂ = ∇ +
∂ ∂ =

( , ),

where u is a fast variable analogous to the transmembrane potential, v is a slow variable 

representing tissue recovery, D is a diffusion coefficient in space units2/time unit (in this case, 

we set D = 1), and ∇2 is the Laplacian operator. 

 

5.3.2. Two-variable state space and phase 

 The term phase in cardiac literature indicates the unique state of an excitable element. 

The primary difficulty with using an activation value for the purposes of the singular point 

detection stems from the fact that the chosen value is encountered twice: once during 

depolarization and once during repolarization, and hence is not unique. However, by plotting u(t) 
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versus v(t), we can represent the phase, φ(t), of each 3-D point of the model at x = (x,y,z) as an 

angular measurement with respect to an origin, (u*,v*) as follows: 

 ( , ) atan[ ( , ) *, ( , ) *]x t v x t v u x t uφ = − −  (5.2) 

where atan is the four-quadrant inverse tangent such that ( , )x tφ  is in the range [-π, π].  

 The choice of the origin in state space, (u*,v*), is important to the calculation of phase 

and cannot be selected randomly. Ideally, the phase at a given spatial point should progress 

through 2π during a complete rotation such that the phase is uniquely defined. This condition 

corresponds to this point generating a state space trajectory which encircles an origin during the 

course of the rotation. Because the amplitude of the action potential tends to decrease with 

increasing proximity to the filament, the trajectories from points close to the filament 

circumscribe smaller orbits. Hence, the ideal state space origin is one that is encircled by all 

trajectories regardless of the originating spatial location, though this point may vary depending 

on the excitable model used in the calculation. To choose this point, we performed a two-

dimensional spiral wave simulation using the chosen excitable model for a complete rotation 

after the spiral had been fully formed. Subsequently, the trajectories of all the points were plotted 

and the point in state space which was encircled by the smallest trajectories was selected as the 

origin. 

 

5.3.3. Time-series reconstructed state space 

 In numerical simulations, the defined variables are available to the investigator for the 

purpose of constructing the state space. However, for practical purposes, an experimentalist may 

have access to only one observable variable at a time. However, the trajectories in two-

dimensional state space may be reconstructed from a single variable such that they are 

topologically equivalent to those in the multidimensional state space, by expanding the observed 

variable (u, for instance) into a vector time series by embedding a time delay, τ, into u [22]. 

Taken’s embedding theorem shows that for N evenly sampled values of u(t), the state space in 

two dimensions is 

ui = [u(i),  u(i + τ)], 

where τ is the time-embedded delay and i = 1,…,N-1. It has previously been shown that the 

dynamics of cardiac activation behavior can be derived using time-delay embedding, or time-

 

 78



series analysis [3,21], utilizing the transmembrane potential with a time-delay embedded version 

of the potential. Here, the phase is calculated as 

 ( , ) atan[ ( , ) *, ( , ) *]x t u x t u u x t uφ τ= + − −  (5.3) 

Note that the origin in this case is (u*,u*). 

 The value of τ is chosen such that the phase can be uniquely specified during the course 

of a scroll wave rotation. Typically in nonlinear dynamics literature, an optimal choice of τ is 

one such that the mutual dependence of the two variables is minimized [23]. However, studies 

indicate that for cardiac activation, a τ that is on the order of the action potential upstroke 

duration reduces the amount of trajectory folding that would lead to a non-unique calculation of 

phase [24]. 

 

5.3.4. Topological charge 

 The phase singularity is the spatial point where all phase values converge and may be 

localized through calculation of the topological charge, nt, defined as [25,26] 

 1
2t

c

n φ
π

d≡ ∇ ⋅∫  (5.4) 

[26] where the line integral is taken over the path on a closed curve c surrounding the 

singularity; nt is an integer value whose sign depends upon the chirality of phase surrounding the 

singularity. By defining the integrand of Eq. (5.4), the gradient of the phase, as a wave vector 

field, k , i.e, , we see that by evaluating n( , ) ( , )k r t r tφ≡ ∇ t for a closed path in the limit as the 

area goes to zero in Eq. (5.4), the topological charge nt is proportional to the curl of the wave 

vector, 

 ˆ ˆx yyx x z
k kk k kk

y z z x x y
∂ ∂   ∂ ∂ ∂ ∇× ≡ − + − + −   ∂ ∂ ∂ ∂ ∂ ∂    

ẑy xk∂
  (5.5) 

(5.5)

Since k  is derived from the gradient of a scalar field, the curl of k  is zero everywhere where φ 

is differentiable, except at the phase singularity itself, where φ is undefined and there exists a net 

circulation of phase, as shown in Fig. 5.1. 

 

5.3.5. Computation of topological charge as a convolution operation 

 For simplicity, we will show how the vector in  may be generated by examining the 
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Figure 5.1: (A) A 2-D cross-section of a scroll wave mapped in the state space; inset shows the 
eight numbered pixels surrounding the singularity. The numbered ordering indicates the 
integration path and direction. (B) The position of the numbered pixels in the phase portrait; 
arrows show the trajectory of the pixels in the state space. The location of (u*,v*) is shown with 
an asterisk. 

 

ẑ  component only. The kz component of k  may be approximated from a discretized phase 

spatiotemporal sequence ],,[ pnmφ  with regular grid spacing by a centered, half-step finite 

difference operation in the x and y directions [27] 

  (5.6) 
[ 1/ 2, , ] [ 1/ 2, , ] [ 1, , ] [ , , ],
[ , 1/ 2, ] [ , 1/ 2, ] [ , 1, ] [ , , ]

x x

y y

k m n p m n p m n p m n p
k m n p m n p m n p m n p

φ φ φ
φ φ φ

+ = ∇ + = + −

+ = ∇ + = + −

According to Eq. (5.4), in order to localize a singularity, there must exist a 2πnt total change in 

phase around that point. Therefore, caution must be observed when calculating the gradient 

across the branch cut from π to -π, such as between points 2 and 3 in the x-direction in Fig. 5.1. 

Otherwise, what is actually a continuous change in v or u between two adjacent pixels could be 

misrepresented as a discontinuity in phase, and hence incorrectly contribute to the total change in 

phase around that point. We accommodate for this by correcting any absolute phase jumps 

greater than π in adjacent elements by converting them to their 2π complement. Computation of 

the line integral in Eq.  at location [m,n,p] can be expressed by the following convolution 

operation 

(5.4)

 ( ) ẑ z z
x y yk k xk∇× ⋅ ∝ ∇ ⊗ + ∇ ⊗  (5.7) 

where ⊗ is the convolution operator, and  

 
1 1

0 0
z
x

+ − 
∇ =  

 
, and 

1 0
1 0

z
y

− 
∇ =  + 

 (5.8) 

 

 80



are the 2 x 2 convolution kernels which we term Nabla kernels. The subscript indicates the axis 

parallel to the path segment, and the superscript indicates the plane to which the kernel is normal. 

The wave vector values lie between the grid nodes (Eq. (5.6)), but since our grid discretization 

cannot accommodate data at half intervals, they must be mapped to the grid nodes, i.e., kx[m + 

1/2,n,p] and ky[m,n + 1/2,p] are mapped to kx[m,n,p] and ky[m,n,p], respectively. Hence, the 

skewed appearance of the kernels reflect this configuration.  

 The other components of k  may be calculated in a similar manner. Eq.  now 

becomes 

(5.5)

 ( ) ( ) ( )ˆ ˆx yx x y y z z
z y y z x z z x x y y xk k k k k k k∇× ∝ ∇ ⊗ + ∇ ⊗ + ∇ ⊗ + ∇ ⊗ + ∇ ⊗ + ∇ ⊗ ẑ  (5.9) 

The Nabla kernels are basically the same as those in Eq. (5.8), but aligned such that the path 

integral is evaluated along their respective normal planes. Hence, when implemented, the other 

Nabla kernels are rank-3 tensors; and x
y∇ x

z∇  are 2 x 1 x 2 tensors such that 

x
y∇ ={∇ = , 0 elsewhere}, (111) (211)1, 1x x

y y− ∇ = +

x
z∇ ={ , 0 elsewhere}, (111) (112)1, 1x x

z z∇ = + ∇ = −

which perform the path integral within the x plane, and x
y∇ and x

z∇  are 1 x 2 x 2 tensors such that 

y
x∇ ={ , 0 elsewhere}, (111) (121)1, 1y y

x x∇ = + ∇ = −

y
z∇ ={ , 0 elsewhere}, (111) (112)1, 1y y

z z∇ = − ∇ = +

which does the same within the y plane. Similarly, the convolution is a 3-dimensional operation. 

 While nt is defined as an integer times 2π, which gives a degree of robustness, machine 

precision may preclude computation of an exact integer multiple. However, we may correctly 

divide the result of (5.9) by 2π and subsequently round off to the nearest integer. The filaments 

are delineated as the points x  for which any of the vector components in Eq. (5.9) is non-zero. 

Rather than “connecting the dots” to create a 3-D curve for each filament, we have chosen, for 

ease of visualization, to isosurface (the 3-D analogue of the 2-D contour operation) the grid using 

a threshold of zero; hence, the filaments in the following figures appear as tubes of constant 

radius rather than lines. 
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5.4. Results 

 

5.4.1. Scroll ring behavior 

 One of the more familiar examples of scroll wave reentry is the scroll ring, a rotationally 

symmetric loop which has been found in chemically excitable media [7] and is believed to be 

capable of occurring in cardiac tissue [28]. We chose this phenomenon to test our algorithm 

using a modified FitzHugh-Nagumo model [29,30], 
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where f(u) and τ(u) are piece-wise linear functions 
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Figure 5.2: Trajectories in state space from all elements of a 2-D grid containing a spiral wave 
generated using the system described by Eq.  and . Inset shows the location of 
(u*,v*). 
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where c1 = 4.0, c3 = 15.0, E1 = 0.018, τ1 = τ3 = 0.5, τ2 = 16.66, B1 = 0.01, B2 = 0.95, and E2 = 

[(c1+ c2)E1+ c3]/( c3 + c2), a = E1(c1+ c2)/ c2 to insure continuity of f(u). For this instance, we set 

c2 = 0.88 and used a 120 x 120 x 120 monodomain spatial grid with a spatial discretization of 0.5 

spatial units (s.u.). The simulations used a simple forward Euler method for time integration with 

a temporal discretization of 0.01 time units (t.u.), with no-flux boundary conditions on the spatial 

grid. For this model, (u*,v*) was chosen as (0.175,0.177), as shown in Figure 5.2. 



 Figure 5.3A shows a cross-section through a vortex scroll wave, in gold, with the 

calculated filament ring superimposed in green. We can clearly see how the wave rotates around 

and through the filament half-loop to start the next reentrant loop. The scroll ring filament 

shrinks with time while drifting along its symmetry axis as predicted theoretically [31]; in Fig. 

B, we also observe the final closure of the filament ring when reentry terminates. 5.3

 

5.4.2. Complex fibrillatory behavior 

 It is believed that the emergence and subsequent proliferation of scroll waves underlie 

arrhythmias such as VF [18,32-35]. Such behavior is characterized by extreme spatiotemporal 

turbulence. As a demonstration of the ability of the algorithm to represent such complex 

behavior, we used a model developed by Aliev and Panfilov [36] 

 1

2

( , ) ( )( 1) ,

( , ) ( ( 1)),

f u v u u u uv

vg u v v u u
u

α β

µσ α
µ

β

= − − − −

 
= + − − − − + 

 (5.12) 

where β = 0.15, σ = 0.002, µ1 = 0.2, µ2 = 0.3, and α = 40. The spatial grid is a 120 x 120 x 16 

mesh with a 1.0 s.u. discretization; the simulation parameters and boundary conditions remained 

the same as those used for (5.11). The origin (u*,v*) was chosen as (0.0235,1.06) in this model, 

as illustrated in Figure 5.4. 

 In this model, the filament dynamics become unstable with time due to negative filament 

tension [14], causing a single scroll wave to break up into multiple wavelets for a given value of 

α, provided the excitable medium is sufficiently thick [37]. Figure 5.5 shows an example of 

unstable scroll wave reentry. The reentry was initiated as a wavebreak with a slight slant in the z 

direction (t = 0 t.u.). This perturbation combined with negative filament tension causes the 

filament to curve and break into three pieces on the lower surface (t = 174). Each of the new 

filaments further spawns new filament breaks until full fibrillatory activity is present (t = 800). 

 

5.4.3. Comparison between two-variable and time-series state space 

 We used the model described in Eq. (5.12) to compare the filament motion generated by 

the two-variable state space ( u(t), v(t) ) and the time-series state space ( u(t), u(t+τ) ); an 

example of the trajectories from the two state spaces is shown in Figure 5.6. The spatial grid was 
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Figure 5.3: (A) Snapshots of a cross-section through a simulated vortex ring generated by the 
system described by Eq. (5.10) and (5.11) with the wave (gold) isosurfaced at 75% of maximal 
activation amplitude. The filament as calculated by the curl algorithm is shown in green. The 
number underneath each frame is the time of the snapshot in time units. (B) Snapshots during the 
spontaneous annihilation of the vortex ring. Time is in time units (t.u.). 
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Figure 5.4: Trajectories in state space from all elements of a 2-D grid containing a spiral wave 
generated using the system described by Eq.  Inset shows the location of (u*,v*). (5.12).

 
Figure 5.5: Three-dimensional snapshots of vortex filaments generated by the system described 
by Eq. (5.12) during unstable scroll wave reentry. The number underneath is the time of the 
snapshot in time units. Time is in time units (t.u.). 
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a 120 x 120 x 32 mesh with spatial and temporal discretizations of 0.5 s.u. and 0.01 t.u., 

respectively, and τ was set at 1.26 t.u., approximately the duration of the action potential 

upstroke. A scroll wave was initiated by the same process mentioned above, and the simulation 

was run until shortly before the original filament collided with the bottom surface, breaking it 

into two new filaments. Subsequent surface-filament collisions produced new singularity pairs 

upon the surface, where each singularity is the terminating end of a filament. Each of these 

singularities was tracked using the topological charge algorithm applied to the phase field 

derived from either the two-variable state space or the time-series state space. We measured the 

time-of-life of each of the observed singularities over a 432 t.u. time span, sampling the data 

every 1.08 t.u.. 

 Table 5.1 displays the results. Eleven singularities were observed on the surface during 

the course of the simulation. The time-of-life of the singularities ranged from 9.72 to 224.64 t.u., 

dependent upon the underlying filament behavior; a singularity would vanish when the filament 

moved from the top surface to one of the other bounding surfaces. Six of the eleven singularities 

were observed over the same time interval for the two phase methodologies; for the remaining 

five cases, the discrepancy was one sampling interval. The RMS error between the two methods 

was calculated over that that period of time during which the singularities appeared in both 

 
Figure 5.6: Phase portraits generated by the system described by Eq. (5.12) for (A) two variable 
state space and (B) time-series state space. τ is set at 1.26 t.u in (B). 
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methodologies, and averaged 0.23 s.u., ranging from 0.16 to 0.31 s.u.. 



 

 

Table 5.1: Measured time-of-life and error between wavetip trajectories on the top surface 
produced by the two-variable state space (2V) and time-series state space reconstruction (TS). 
Time-of-life measured in time units (t.u.), error measured in space units (s.u.). 

 

Singularity 

number 

Time-of-life (t.u.) 

2V / TS 

RMS Error (s.u.) 

1 117.72 / 117.72 0.21 ± 0.26 
2 224.64 / 224.64 0.16 ± 0.24 

3 10.8 / 9.72 0.22 ± 0.36 

4 72.36 / 72.36 0.22 ± 0.26 

5 18.36 / 19.44 0.25 ± 0.32 

6 15.12 / 14.04 0.31 ± 0.31 

7 115.56 / 114.48 0.27 ± 0.31 

8 144.72 / 144.72 0.17 ± 0.25 

9 56.16 / 56.16 0.29 ± 0.27 

10 77.76 / 77.76 0.25 ± 0.28 

11 29.16 / 29.16 0.17 ± 0.25 
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Figure 5.7: (A) An example of the waveforms v(t), u(t), and w(t) produced by the system 
described by Eq (5.13). (B) ( u(t), v(t) ) state space. (C) ( u(t), w(t) ) state space. (D) (w(t), v(t) ) 
state space. 

 

5.4.4. Three-variable reaction-diffusion model 

 Up until this point, we have used a two-variable model of cardiac activity, which serves 

as a computationally inexpensive caricature of action potential morphology. However, more 

complex models exist which attempt to realistically duplicate the ionic currents which are 

responsible for the dynamic properties of the cardiac action potential; each current is represented 

by a differential equation governing the change in ion concentration (see [18,38,39] for 

examples). While it is trivial to construct a two-dimensional state space when only two 

parameters are available, we now turn our attention to the issue of uniquely determining phase 

 

 88

when a multi-variable model is used. 



 We have chosen to use a three-variable model developed by Fenton and Karma designed 

to reproduce the spiral wave behavior of more complex ionic models while remaining 

numerically simple for 3-D applications [40]. The equations are  
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where u is the dimensionless transmembrane potential, D = 0.001, v and w are gating variables 

responsible for inactivation and reactivation of the currents Jfi, Jso, and Jsi, and 
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5.7

5.8

and H(x) is the standard Heavside step function. We have chosen to use the parameter values 

which were used to fit the model to the modified Beeler-Reuter (MBR) restitution curve. 

Because we wished to examine a near-stationary case for the sake of simplicity, we set the 

conductance parameter to 2.4, for which the 2-D isotropic wavetip motion is circular. The other 

values of the parameters for this configuration are provided in [40], so we omit them here. An 

example of the waveforms produced by the three variables is shown in Figure 5.7A. 

 We performed simulations on a 200 x 200 grid with spatial and temporal discretizations 

of 0.0015 s.u. and 0.025 t.u., respectively. State space trajectories are shown for u versus v (Fig. 

B), u versus w (Fig. 5.7C), and w versus v (Fig. 5.7D). We observed that for (u,v) and (u,w) 

state space, there exists a clear center of rotation, but for (w,v) state space, no such center is 

present. By choosing (u*,v*) to be (0.127,0.990) and (u*,w*) to be (0.08,0.85), we found that the 

spiral wave traced out a circular pattern on the grid surface for both state spaces, as shown in Fig. 

. 
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Figure 5.8: Wavetip path traced out by the system described by Eq. (5.14) for ( u(t), v(t) ) and ( 
u(t), w(t) ) state spaces. 

 

5.5. Discussion 

 The use of phase to localize phase singularities in both numerically simulated studies and 

experimental preparations has been shown previously [3,21,24,41]. The use of topological 

charge lends itself as a robust methodology to detect these singular points [21]. In this paper, we 

have shown that the same principle may be easily extended to detect filaments in three 

dimensions in models of cardiac reentry. 

 

5.5.1. Properties of the Nabla kernels 

 It is worth mentioning that the Nabla kernels perform two functions. First, the kernels are 

derivative operators similar to the Prewitt operators used in image processing [42], which are 

appropriate for evaluating the differential form of the curl operation, as in Eq. (5.5). Second, the 

kernels function as a compact summation operation over a discretized path. This feature is 

needed at the singularity itself, where differentiability fails, and evaluation of the path integral in 

Eq. (5.4) is necessary to obtain n inate value. For the Nabla kernels 

shown in (5.8), the path length is 8 units (over a 3 x 3 square), which will produce a singularity 

at one pixel. While small lengths are desirable for optimal localization, paths of various lengths 

may be constructed simply by altering the kernel size and elements; for example, a path of length 

12 (a 4 x 4 square) is defined by  

t rather than an indeterm
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5.5.2. The issue of state space selection 

 For a stationary scroll wave modeled with a two-variable system, the origin may be 

selected by examination of the (u,v) state space portrait, since the trajectories all encircle a single 

point (Figs. 5.2 and 5.4). This is the case even for systems with low excitability; in the model 

described by Eqs. (5.10), for c

resulted in a filament at the center of a nearly quiescent core with the scroll wave rotating at 

some distance around it.  

2 = 0.75, the origin was found to be (2.25 x 10-3, 2.25 x 10-3) and 

 Using our two-variable models, we have examined the effect of using two methods to 

construct the state space in order to define phase: using the two model parameters as independent 

variables (Eq.(5.2)) or using time-delay embedding to create a time-shifted variable from one of 

the parameters (Eq. ). In the majority of cases (6 out of 11), the observed surface 

singularities appeared and terminated during the same interval. In the other cases, the variation 

was within one sampling interval (1.08 t.u.). The spatial difference in localization was also fairly 

small: on a spatial grid with a 0.5 s.u. discretization, the average error was smaller than the 

discretization. The similarity of the results suggests that one variable is indeed sufficient to 

obtain the phase field data, a conclusion also reached by Iyer and Gray, who examined 2-D spiral 

wave simulations [41]. However, in their simulations, they performed their comparison on a 

stationary BAR model, whereas we utilized a non-stationary system in which we would expect 

the average error to be somewhat greater.  

(5.3)

 Even though such simple models remain useful, more physiologically realistic models 

have come to the forefront for the investigation of cardiac dynamics. These models entail the 

addition of parameters to represent the individual ionic currents present in the cell, with varying 

degrees of complexity. The question now becomes, which of these parameters do we use to 

construct the state-space? The answers lies in recognizing the desired characteristics of the 

trajectories in state space, i.e., phase is uniquely defined if the trajectories revolve in a consistent 

direction in state space around a given origin during the course of a single wave rotation. In 

nonlinear dynamics literature, the analytic signal concept (based on the Hilbert transform) may 
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be used to define a unique phase of a signal by creating a signal with a π/2 phase lag [43]. It 

turns out that one property of the original signal and the Hilbert transformed signal is that they 

are orthogonal over the infinite interval. Hence, in order to uniquely determine phase, the model 

parameters should be chosen such that they are as close to orthogonal to one another as possible 

over the duration of the signal [44]. With this in mind, we can now see why the (v,w) state space 

in Fig. 5.7D was an inappropriate choice for singular point detection: looking at Fig. 5.7A, we 

observe that v(t) and w(t) are strongly correlated as compared to u(t) with respect to both v(t) and 

w(t). A calculation of the cross-correlation indicates that u(t) and w(t) would be the best choice 

for this model in terms of orthogonality (that is, minimal cross-correlation).  

 Preliminary experimental results indicate that a useful state space may be created using 

the optically recorded Ca2+ and transmembrane potential signals [45]. However, even with 

explicit knowledge of all the parameters, an investigator can still opt to use a single observable 

variable (such as the transmembrane potential) to reconstruct the state space by taking advantage 

of Taken's embedding theorem. 

 

5.5.3. Future directions 

 Finally, it is worth noting that despite the variety of methods available to the researcher 

for singularity and filament localization (as described in the Introduction), a universally accepted 

“gold standard” methodology does not exist. Iyer and Gray [41] have performed a partial 

analysis, comparing the phase analysis method for 2-D simulations against isochrone and 

isopotential map methods, and found that the phase analytical method was consistent with these 

other methods. Therefore, it stands to reason that the approach described here for localization of 

3-D filaments should also be consistent with other methods described above, at least on a 

qualitative level. While a comprehensive quantitative comparison of the accuracy of topological 

approach relative to the other methodologies is beyond the scope of the present work, such a 

study would be extremely useful to the cardiac community. 

 

5.5.4. Limitations 

 The topological charge segment of the algorithm, Eq.  will localize the singular 

values located in any given phase field. However, we must first insure that the phase field is in 

 (5.9),
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fact accurate. As mentioned before, the choice of the origin (u*,v*) in state space is critical for 

the proper calculation of phase in Eq.  and must be determined beforehand. 

 Recall that the only requirement for the detection of a singular point is a net 2π phase 

distribution of the surrounding spatial points about (u*,v*) when mapped into state space. The 

choice of origin may differ from model to model, as we have seen above, but this requirement 

does not, which actually provides the criterion for whether the choice of origin is an appropriate 

one. While this is straightforward for a stationary or near-stationary wave, for rapidly moving 

scroll waves, we may need to compromise by finding the origin which is encircled by most, 

rather than all, of the trajectories. Iyer and Gray [41] addressed this issue in part by localizing the 

phase singularity of a non-stationary 2-D spiral wave. They found that the singularity could be 

localized to within the core region even under the presence of 10% added noise, although the 

error was greater than that for a stationary spiral wave. Clearly, the formulation of an algorithm 

for selecting the optimal origin for a non-stationary wave deserves more thorough study. 

 Another issue is that of localization precision. As it stands, the topological charge 

algorithm is constrained to the discretization of the local grid when computing the convolution 

operation. Hence, the localization of the singular points is as precise as the grid spacing, which 

may be problematic when dealing with numerically sensitive filament properties, such as 

velocity and twist. This may dealt with by using a finer grid discretization, but this solution may 

be computationally expensive. Another solution is to find the intersection of two different 

isophase contours in the phase field. While this solution does not use Eq. (5.4), the fact that the 

phase contours intersect at the filament stems from topological considerations. 
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6.1. Abstract 

 The dynamics of vortex filament-filament interactions remain poorly understood in 

hydrodynamics, superconductors, and excitable media. Cardiac tissue is of particular interest 

because the creation and interaction of 3-D line defects (filaments) are believed to underlie lethal 

arrhythmias. We replicate an experimentally observed reentrant filament configuration using a 

numerical model of the Belousov-Zhabotinsky (BZ) reaction to simulate a pair of adjacent 

circular filaments (scroll rings) with common symmetry axes and varying initial radii and 

separation distances. The interaction properties are quantified in terms of the scroll-ring lifetime 

(T V e observe a decrease in T istance 

decreases for a pair of rings whose axial activity approaches each other. For rings with outward-

moving axial activity, the rings exhibit a drastic extension in T

distances. In both cases, we observe a transition from attractive to repulsive behavior at a critical 

distance, indicating the presence of a bifurcation. We show that both behaviors can be described 

in terms of the difference of two Yukawa potentials.  We conclude that ring interactions may be 

quantifiable in terms of lifetime and velocity and present unexpected behaviors associated with 

competing interaction and decay mechanisms. 

 

6.2. Introduction 

 Spiral waves have been observed in a wide variety of media, including chemical [1], 

physical [2,3], and biological settings [4,5]. Recently, attention has been directed towards the 

existence of scroll waves, the three-dimensional analogue of spiral waves, which rotate around a 

line defect known as a filament. Filament-filament interactions are of considerable importance in 

many fields, and have as-yet unresolved dynamics. It is believed that the initiation and 

interaction of filaments in the excitable substrate of cardiac tissue underlies ventricular 

tachycardias and arrhythmias [6,7]. However, the presence of cardiac filaments must be either 

inferred from epicardial [6-9] or transmural mapping using voltage-sensitive dyes or electrodes 

[10,11]. In general, filaments are most often directly observed experimentally in the context of 

the Belousov-Zhabotinsky (BZ) reaction [12,13]. 

 Recently, quatrefoil reentry (QR) has been shown as a viable means of reproducing 

multiple (in this case, four) surface singularities and hence two U-shaped (semicircular) 

filaments in a controlled, repeatable fashion [14,15]. QR follows repeated stimuli applied at a 

L) and direction of initial velocity ( 0). W L as separation d

L within a range of separation 
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single site, and has been used to demonstrate the importance of unequal bidomain anisotropies in 

cardiac electrodynamics. Previous work has examined 2-D phase singularity interaction 

dynamics in QR [16], and demonstrates that the interaction dynamics of the singularities in the 

experimental preparation were more complex than could be adequately explained by the existing 

numerical models. In this study, we replicate the experimentally observed QR filament 

configuration using a simulated pair of adjacent circular filaments (scroll rings) oriented along 

their symmetry axes with varying initial radii and separation distances. By symmetry, the 

dynamics of semicircular filaments in an excitable half-domain are identical to a circular 

filament in a whole domain. 

 

6.3. Methods 

 In order to study the interaction effects of paired scroll rings, it is desirable to utilize an 

excitable system for which a single insolated scroll ring experiences a minimum of translational 

movement. In this way, we can then attribute any drifting motion to the effects of interaction. It 

has been mathematically shown that in the case of an untwisted scroll ring with equal diffusion 

coefficients (such as the Belousov-Zhabotinsky (BZ) reaction) for which the curvature is not too 

great, the ring shrinks without drifting along the symmetry axis according to the equation [17]  

 
2( ) 2 ,d R D

dt
= −  (6.1) 

 

where R is the radius, and the D is the diffusion coefficient. 

 We use a two-variable model of the BZ reaction [18] using the Field-Koros-Noyes 

formulation [19,20]  

21 (1 ) 2 ,
1

dv w vv v q
d w v

µα β
τ ε µ

 − = − − + + ∇  − +  
v  (6.2) 

 2 ,
1

dw wv w
dt w

α δ= − + ∇
−

 (6.3) 

where v is the bromous acid concentration, w is the relative ferroin concentration, and δ = Dw/Dv 

is the ratio of the diffusion coefficients of the two variables, taken to be equal to 1 in this case. 

The numerical values of the model parameters were identical with those used in [21]. 

 The calculations were performed in a three-dimensional domain using a cylindrical 

coordinate system (z,ρ,θ). Since the rings are axisymmetric, the results are independent of θ and 
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therefore, all calculations may be performed on the (z,ρ) plane only. The diffusion coefficient 

was 2 × 10-5 cm2/s. To solve Eqs. (  and ( , we used an explicit Euler scheme on a regular 

grid of 240 x 240 nodes, with a spatial discretization of 0.04 mm and a temporal discretization of 

0.1 s, and zero-flux boundary conditions. 

6.2) 6.3)

 

6.4. Results and Discussion 

 The results of these simulations are shown in Figs. 6.2 and 6.3, where T

function of the initial ring radius, R Z A) and the initial 

trajectories in (ρ,z) are shown in (B). Values of (Z R pled at intervals of (0.32,0.64) 

mm; in regions where changes in T ore detail, values were sampled at (0.08,0.32) 

mm. We also show the initial velocity of the large radius scroll rings in the z-direction in Figs. 

6.2C and 6.3C, created by generated cubic spline fits to the (z,ρ) trajectories. Not unexpectedly, 

we observed that scroll rings for which Z

independent of one another for both configurations. For Z , the values of R it the 

quantity 2D to within 5%, although for values of R  2.56 mm, the analytical solution of 

Eq. (6.1) fails due to the increased curvature of the ring with smaller radii [17]. 

.2

 Figure 6.1 illustrates the initial conditions used to simulate the two modes of quatrefoil 

reentry, termed cathodal and anodal break, in which rings of opposite chirality face or oppose 

each other; these terms are used for the purpose of nomenclature only and are not meant to imply 

that the physiological circumstances have been reproduced. A scroll ring was initiated by setting 

v and w to appropriate values to produce the needed critical point. For anodal break, the 

orientation of the refractory area is reversed to produce scroll wave which rotate in the opposite 

direction. At this point, the trajectory of the scroll ring in the (z,ρ) plane was computed until the 

ring annihilated. In this scheme, the filament is therefore depicted as a singularity; the location of 

the singularity was determined using a topological charge method shown previously [16]. 

L is shown as a 

0 and the inter-ring separation, 0, in (

0, 0) were sam

L required m

0 was sufficiently large behaved as though they were 

0  > 4 mm 0
2/TL f

0 less than

 For cathodal break, as Z0 is further decreased below 4 mm, TL decreases rapidly with a 

|d(T0)/d(Z0)max| ≈ 2.23 mm for large R0 (Fig. 6 A). As can be seen in Fig. 6.2C, the velocity in 

the z-direction increases with Z0 and then subsequently falls off for large Z0. Note the presence of 

a zero-crossing for Z0(crit) ≈ 2.23 mm indicating a transition in behavior, from repulsive to  
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Figure 6.1: Quatrefoil reentry produced by cathodal break (left column) and anodal break (right 
column). Top row depicts the experimental configuration. Black regions are tissue stimulated by 
cathodal excitation, gray border is initial wavefront at edge of excited tissue, hatched regions are 
refractory tissue, white regions are unexecited/hyperpolarized tissue, stars show location of 
phase singularities). Middle row illustrates initial numerical approximation of the experimental 
configuration. Black (refractory) is (v,w) = (0,0.9), gray border (excited) is (v,w) = (0.8,0.8), 
white (unexecited) is (v,w) = (0,0.8). Bottom row depicts the spatial distribution of the variable v 
after 160 s. The arrows show the direction of the motion of the wave front as it passes through 
the plane of the ring. 
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attractive. Upon examination of the filament trajectories in the (z,ρ) plane, we observed that 

between Z  for large R e exists a shift in annihilation behavior (from 

mutual ring collision to individual ring collapse). 
0 = 2.16 - 2.32 mm 0, ther

 For anodal break, as Z0 is decreased below 4 mm, TL actually increases with Z0, reaching 

a maximum of 1.4 × 105 s at Z0 = 2.4 mm, after which TL falls off dramatically as Z0 is further 

decreased. Much as in cathodal break, the velocity in the Z-direction increases with Z0 and then 

subsequently falls off for large Z0, with a zero-crossing at Z0(crit) ≈ 2.42 mm (Fig. 6.3C). 

Examination of the trajectories in the (z,ρ) plane shows that for Z0 < 2.4 mm, the rings exhibit 

attractive behavior and annihilate by collision for large R0; furthermore, in this range of Z0 for R0 

> 4.12 mm, the rings expanded as they attract one another. For Z0 > 2.4 mm, the rings annihilate 

by collapse. 

 The subject of theoretical or numerically simulated 2-D spiral wave interaction has been 

widely treated in the literature. However, due to the analytic intractability of the problem, similar 

progress in theoretical filament interaction dynamics is only recently forthcoming. Much of the 

literature deals with topological concerns [22], self-interaction or stability [17,21,23,24], or 

motion of a single filament [25-27]; such experiments have been performed mostly with the 

complex Ginzberg-Landau equations. In general, filament studies are concerned with 

determining the factors behind filament instability leading to breakup as opposed to the 

dynamics once breakup occurs and multiple filaments are present. 

 The lifetime of a vortex has been used as a heuristic previously in the case of a spiral pair 

in which it was found that spirals placed at a certain initial distance apart, Z0(crit), fell into one of 

two regimes: (1) Z0(crit), the spirals would attract one another and annihilate, (2) Z0(crit), the spirals 

would remain stable infinitely [28]. In much the same way, we see the same regimes in our data, 

(1) mutual annihilation and (2) collapse via shrinkage, the positive filament tension precluding 

infinite stability. Furthermore, in [29], an unstable solution of the complex Ginzburg-Landau 

equations for a single pair of vortices is found to correspond to a change of vortex interaction 

behavior; the transition across a critical distance changes attractive into repulsive behavior. As 

Figs. 6.2C and 6.3C indicates, this bifurcation is also observed in our data. 

 A persistent issue in the examination of vortex dynamics is the determination of the 

parameters involved in modulating the excitable medium which governs close- and long-range 
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Figure 6.2: (A) Scroll-ring lifetime T R ulation. Each 
point is a single simulation for a given (R ints 1 - 4 refer to (R
(5.12,2.24), (5.12,2.4), (5.12,2.72), and (5.12,8.48), respectively. (B) Initial trajectories in the 
(ρ,z) plane. (C) Relationship between the initial separation distance (Z d initial scroll rings 
velocity in the z-direction (V ng of the numerical data with a 
difference of Yukawa potentials. Graph of ψ(Z  

L as a function of ( 0,Z0) in cathodal break sim
0,Z0). Po 0,Z0) = (5.12,2.08), 

0) an
0(z)). The curve represents a fitti

0) shown as inset.
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Figure 6.3: (A) Scroll-ring lifetime T R ulation. Each 
point is a single simulation for a given (R ints 1-3 refer to (R
(5.12,2.4), (5.12,2.72), and (5.12,8.48), respectively. (B) Initial trajectories in the (ρ,z) plane. (C) 
Relationship between the initial separation distance (Z itial scroll rings velocity in the z 
direction (V erical data with a difference of Yukawa 
potentials. Graph of ψ(Z

L as a function of ( 0,Z0) in anodal break sim
0,Z0). Po 0,Z0)  = (5.12,2.24), 

0) and in
0(z)). The curve represents a fitting of the num

0) shown as inset. 
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interactions [30]. It has been shown that the dynamics of vortex systems are analogous to that of 

a collection of charged particles [31], and hence the problem of vortex-vortex interaction may be 

analyzed as a particle-field problem. Determination of the inter-vortex distance mediated by 

underlying potential and the associated force has been extensively studied analytically in the 

Ginzburg-Landau equation [32]. Approaching the issue of paired scroll ring behavior by 

reducing the problem to the dynamics of singular filaments allows us to ascertain whether we 

can determine a filament-filament interaction potential. Here we assume the filament may be 

treated as a point “mass” within a cylindrical coordinate system; by examining behavior for the 

largest R0 studied (R0 = 5.08 mm, in this case), the filaments all start with the same (unknown) 

effective ``mass''.  Because these filaments appear to be moving dissipatively rather than 

ballistically, the initial velocity in the Z direction V0(z) alone can be used as a measure of the 

force on the filament and hence the interaction potential, ψ(Z0). We have found that the 

dependence of the initial velocity, and hence force, on the initial separation Z0 is readily fitted by 

the difference of two Yukawa potentials [33] of the form 
2 0 4 0

0 0 1 3
0 0

( )
− −

= −
C Z C Ze eV Z C C
Z Z

 (6.4)  

that describes both the attractive and repulsive behaviors, with the fitted parameter values given 

in Figs. 6.2C and 6.3C. Equation (6.4) can be integrated trivially to convert force to ψ(Z0), where 

we assume that ψ(∞) = 0 (graphs of ψ(Z0) are shown as insets). 

 Mathematically, the configuration of the two scroll rings with axial symmetry is 

equivalent to a single spiral wave with a reflecting (Neumann) boundary condition normal to the 

symmetry axis. It is worth noting that in this scenario, the bifurcation in behavior occurs within 

the space of one spiral wavelength (λ ~ 1.7 mm). In experiments observing BZ spiral drift along 

a boundary, it is observed that the direction of drift corresponds to the spiral chirality [34]. This 

explains the direction of drift once the curvature of the independently rotating ring becomes 

sufficiently great towards the end of the ring's life (note the direction of the vectors for R0 < 1 

mm in Figs. 6.2B and 6.3B). However, it also explains the increased lifetime of the anodal break 

ring as the initial separation approaches Z0(crit) since the interaction of the ring with the 

``boundary'' tends to pull the ring in the +z direction, offsetting the collapse due to filament 

tension. By the same token, Z0(crit) in cathodal break is close to that of anodal break (2.23 vs. 2.42 
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mm); in this case, “boundary”-induced drift cooperates with the filament tension, and hastens 

ring collapse.   

 

6.5. Limitations 

 As noted earlier, this is a very generalized approximation to the phenomena of anodal and 

cathodal break excitation in cardiac tissue. In this study, we have used a chemical oscillatory 

system rather than an ionic active membrane model due to the BZ reaction's well-defined 

behavior. We have imposed symmetry constraints for the sake of simplicity; a more extensive 

study in the absence of such constraints, especially without the reflecting boundary condition, 

would merit future investigation. Bound spiral pairs may be obtained for singly-diffusive 

systems (of which cardiac models are a subset) [35], in contrast to the doubly-diffusive BZ 

model in which spirals pairs tend to be repulsive in the presence of any symmetry-breaking 

between the spirals [36]. Also, we have ignored such structural properties that would present in 

cardiac tissue such as anisotropic propagation, fiber rotation with depth, and curvature of the 

extended tissue as would be found in ventricular myocardium. In actuality, the motion of spiral 

waves on the cardiac epicardium tends to be characterized by meandering upon the surface [37-

39], due to geometric effects of the filament's curvature as well as the presence of a 

heterogeneous excitable medium. However, this present study provides some clues as to the 

behavior of the filament in the relative absence of additional perturbations. 
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7.1. Abstract 

 Optical mapping with voltage-sensitive dyes provides a high-resolution technique to 

observe cardiac electrodynamic behavior. While most studies assume that the fluorescent signal 

is emitted from the surface layer of cells, the effects of signal attenuation with depth on signal 

interpretation are still unclear. This simulation study examines the effects of a depth-weighted 

signal on epicardial activation patterns and filament localization. We simulated filament behavior 

using a detailed cardiac model, and compared the signal obtained from the top (epicardial) layer 

of the spatial domain with the calculated weighted signal. General observations included a 

prolongation of the action upstroke duration, early upstroke initiation, and reduction in signal 

amplitude in the weighted signal. A shallow filament was found to produce a dual-humped 

action potential morphology consistent with previously reported observations. Simulated scroll 

wave breakup exhibited effects such as the false appearance of graded potentials, apparent supra-

maximal conduction velocities, and a spatially blurred signal with the local amplitude dependent 

upon the immediate sub-epicardial activity; the combination of these effects produced a 

corresponding change in the accuracy of filament localization. Our results indicate that the 

depth-dependent optical signal has significant consequences on the interpretation of epicardial 

activation dynamics. 

 

7.2. Introduction 

 Over the past thirty years, optical mapping has been shown to be a powerful tool for 

discerning cardiac activation patterns, in both isolated single cell [1,2] and whole heart 

preparations [3,4]. In such experimental applications, the cell or tissue is stained with a voltage-

sensitive fluorescent dye, that binds to the cellular membranes and transduces transmembrane 

potential chnages into fluorescent signals. Such methods permit a non-contact means of recoding 

electrical activity with temporal resolution on the order of microseconds [5] and spatial 

resolutions on the scale of 50-100 µm [6]. The majority of the current optical mapping studies 

assume that the fluorescent signal is emanating from the surface layer of the cardiac tissue 

preparation. In this way, the observed dynamic behavior is presumed to be independent of the 

underlying electrodynamic activity within the myocardium. While this approximation may 

suffice for some preparations, such as those involving cultured cell layers [7], recently studies 
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involving sections of myocardium of more physiologically realistic thickness are questioning the 

validity of this assumption [8,9]. 

 The question of the origin of the optically recorded signal is particularly relevant in light 

of more recent literature attempting to make inferences on the underlying electrical activity on 

the basis of reentrant activity observed on the surface. The spiral waves associated with reentry 

rotate around topological defects known as phase singularities [10]. It is believed that the phase 

singularity is the surface manifestation of a line defect known as a filament, which in turn forms 

the organizing center of a scroll wave, the three-dimensional analogue of a spiral wave. Since the 

myocardium is a three-dimensional excitable substrate, the additional degree of freedom makes 

the contribution of filaments more complex to discern, yet no less important to the study of 

arrhythmogenesis [11]. The extreme technical difficulty of filament observation in situ has made 

experimental studies of their dynamics limited primarily to examination of oscillatory chemical 

reactions [12,13]. However, recently the depth effects of the optical signal have been used to 

infer the existence of underlying filaments based upon the epicardial presence of “dual-humped” 

action potentials [14,15], and others have tailored their imaging technique to pinpoint the 

location of signals originating from sub-epicardial tissue [16]. 

 In this study, we will examine of the effects of the inclusion of optical averaging with 

depth in computational simulations of spiral and scroll wave activity. We will begin with a 

simple, single filament configuration and progress forward to the complex case of the behavior 

of multiple filaments and the corresponding phase singularity localization during fibrillation. By 

so doing, our goal is to gain valuable insight in anticipating potential difficulties in the 

interpretation of experimentally observed epicardial electrical activity in terms of scroll wave 

dynamics. 

 

7.3. Methods 

 For this study, we use the three-variable model implemented by Fenton and Karma for 

the purpose of reproducing the reentrant wave behavior of more complex ionic models while 

remaining computationally tractable for 3-D applications [17]. The equations are  
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where u is the dimensionless transmembrane potential, v and w are gating variables responsible 

for inactivation and reactivation of the currents Jfi, Jso, and Jsi, defined by 

1 2
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 (7.2)  

and H(x) is the standard Heavside step function (H(x) evaluates to 0 for x < 0 and 1 for x ≥ 0). 

For this paper, we employ the parameters values used to fit the model to the modified Luo-Rudy 

(MLR) and modified Beeler-Reuter (MBR) restitution curves; These values are provided in [17], 

so we omit them here.  is the diffusion tensor defined as D
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 (7.3) 

where the zero-elements reflect the fact that the fibers all lie in the (x,y) plane. The remaining 

elements are defined as  

  (7.4) 2 2
|| cos ( ) sin ( ),xxD D z D zθ ⊥= + θ

2 θ

),

  (7.5) 2
|| sin ( ) cos ( ),yyD D z D zθ ⊥= +

 ||( ) cos ( )sin (xy yxD D D D z zθ θ⊥= = −  (7.6) 

where D|| and D⊥ are the diffusion coefficients for propagation parallel and perpendicular to the 

local fiber orientation, respectively. θ(z) is the angle between the x-axis and the fiber orientation 

in plane z and is determined by the formula   

 ( ) z Z/ 2 ( / ) , 0z Z zθ θ θΣ Σ= − + ≤ ≤  (7.7) 

where θΣ is the total amount of fiber rotation from epicardium (z = 0) to endocardium (z = Z) as 

measured from the x-axis. The coefficients D|| and D⊥ are defined as σ/(SvCm) where σ|| = 1.863 

mS/cm and σ⊥ = 0.186 mS/cm (in accordance with values estimated by Roth [18]), Sv is the 

surface to volume ratio (3000 cm-1), and Cm is the membrane capacitance (1 µF/cm2). σz was set 

equal to σ ⊥ . We imposed no-flux (Neumann) boundary conditions, i.e.,  
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 0ˆ ( )n uσ⋅ ∇ = , (7.8) 

L

where  is the normal vector to the boundaries of the spatial domain. Eq. (7.8) leads to the 

following equations: 

n̂

 0 for surfaces  = 0 and  = ,xx x xy y xu u x xσ σ∂ + ∂ =  (7.9) 

 0 for surfaces  = 0 and  = ,yx x yy y yu u y y Lσ σ∂ + ∂ =    (7.10) 

 0 for  = 0 and  = .zu z z zL∂ =   (7.11) 

The equations in (7.2) are solved explicitly using a finite difference scheme. The spatial 

discretization steps in all three dimensions were set to 0.133 mm with a time step of 20 µs. 

 With this model, the study was conducted in three stages: (1) a 2-D cross section 

representative of a single straight intramural filament; (2) examination of a rectangular slab with 

no fiber rotation, i.e., θΣ = 0 and; (3) examination of a rectangular slab with rotational anisotropy 

with θΣ = 120°. 

 The fluorescent signal corresponding to the depth-weighted transmembrane potential is 

given as 

 0

0

( , , ) ( )
( , )

( )

Z

Z

u x y z w z dz
u x y

w z dz
= ∫

∫
 (7.12) 

where the integral is performed from the epicardium (z = 0) to the endocardium (z = Z). w(z) is 

the epicardial weighting function experimentally determined by Baxter et al. in a 

transillumination study of sheep right ventricle [19], 

  (7.13) - /0.8 / 0.44 /1.34( ) (907 e 702 )  (  in mm). z z zw z e e z− −= −

We use u0 to refer to the u values located at the epicardium (the top layer of grid nodes, z = 0) 

and u to refer to the signal derived from the depth-weighted average of u. 

 

7.4. Results 

 

7.4.1. Cross-section of intramural filament 

 The initial study observed a single intramural filament, located close and parallel to the 

epicardium. We model this simple case as a two-dimensional cross-section of  
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Figure 7.1: (A) The three-dimensional model (left) and the cross-section AA’ (right) showing 
the position of the singularity at t = 0 ms (open circle) and the two recording locations on the 
epicardium (1 and 2). Double arrow shows longitudinal fiber direction; spatial units are in cm. 
Time traces at point (1) are shown in (B); time traces at point (2) are shown in (C). Panels on the 
right are insets of selected intervals indicated with a box in the panels on left. 

 

tissue in the fiber plane; since the single straight filament is oriented perpendicular to the 

longitudinal fiber direction, it appears as an isolated singularity in the cross-section with an 

initial location (x,z) of (2, 0.13) mm. For the model, we have chosen to use the parameter values 

specific to the MLR restitution curve. The reason for this choice is that the observations of 

Efimov et al. [14] indicated the presence of a long, linear core around which the reentrant wave 

rotated, a property also shared by the MLR model. For the tissue, we used a 4.8 cm x 0.8 cm 
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section (362 x  62 nodes), with the longer dimension corresponding to the longitudinal fiber 

direction; the geometry is shown in Fig. 7.1A. To localize the phase singularity (the 2-D cross-

section of the filament), we use the state-space methodology of determining cardiac phase [20] in 

conjunction with the topological charge algorithm developed by Bray et al. [21]. We have shown 

previously that using the u and v variables in the 3-variable model produces the optimal phase 

portrait [22]. The origin in (u(t),v(t)) state-space was set to (0.175,0.03). 

 Figure 7.1B compares the u and 0 u

ity. W

signals obtained from a point on the epicardial surface 

at point 1 (0.13,0), far from the singular e see that while the morphology of u is similar to 

that of u ere are three noticeable differences between the two signals: (1) the upstroke of 0, th

u starts earlier; (2) u is greater in amplitude than u til the peak of both 

signals; and (3) the repolarization trace of 
0 during the upstroke un

u is lower in amplitude than that of u e 

following upstroke. Figure 7.1C shows 
0 until th

u and u epicardial point directly 

above the transmural reentrant core at the closest point of approach of the scroll wave with the 

epicardial surface. Here we observe that (1) the 

0 at point 2 (2.33,0), an 

u signal has a dual humped morphology, with 

the first peak much larger in magnitude that the second; and (2) both peaks of u are significantly 

smaller in amplitude than the single peak of u0. 

 Figure 7.2 depicts u0 and u in the form of a time-space plot. Time-space plots are a 

simple means of illustrating the spatiotemporal evolution of the transmembrane potential signal; 

successive frames of the amplitude of a signal along a line are stacked to form a 2-D plot of 

activation behavior, with time as the y-axis [11,23]. The one-dimensional nature of u0 and u in 

this simulation makes it ideal for this form of visualization. In Fig. 7.2A, we see the time course 

of the u0 signal across the length of the tissue. The presence of epicardial breakthroughs, labeled 

“EB” in the figure, is apparent by the V-shaped patterns of activation in the plot. The corner of 

the V-pattern of depolarization moves upward with time, indicating that the location of the initial 

breakthrough is non-stationary. We have used white lines in Fig. 7.2A to indicate the slope of 

activation branches in the vicinity of the breakthrough; the slope of the line is inversely related to 

the propagation velocity. Also of note is that the slope of the left activation branch is shallower 

(and hence, the apparent conduction velocity is faster) than that of the right branch 

(approximately 74.0 cm/s versus 43.5 cm/s). In fact, the conduction velocity of the left branch is 

faster than the maximum conduction velocity for the model in a 1-D cable where D is set to D|| 

(~47 cm/s).  
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 In Figure 7.2B, illustrating the 

 
Figure 7.2: Time-space plots of u from the epicardial surface. (A) Top layer of nodes. Solid 
white lines show slope of activation. (B) Weighted average. (C) Difference between (A) and (B). 
Epicardial breakthroughs labeled as EB, additional secondary depolarizations labeled as AD. 

u

cal re

signal, we clearly see an additional “depolarizations” 

(AD) in between the epicardial breakthrough patterns, lying in the region roughly between x = 

1.5 to 3 cm. This behavior resembles a passive response (as opposed to an action potential) since 

it is transient and is restricted to a lo gion of tissue. However, the peak magnitude of the 

depolarization is on the order of 0.42, far above the threshold of activation (u is in the range of 

[0, 1]). In Fig. 7.2C, we display the result of subtracting the u he 0 from t u  images, where the 

orange and yellow hues indicate the areas where u  is greater than u

the blue hue indicates where u
0, purple is close to zero, and 

0 is greater than u . We see that the presence of these apparent 

depolarizations is highlighted by the oval regions of orange. Furthermore, we see adjacent  
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Figure 7.3: Snapshots of the temporal development of the depth-weighted and top layer signals. 
Top panels: u  and u x. Bottom panels: Corresponding scroll wave 
cross-section, with the filament trajectory overlaid as white line. Figure shows wave traversing 
(A) above and (B) below the core as traced out by the white line. 

0 signals as a function of 

 

regions of blue color indicating that in these particular areas, the magnitude of the weighted 

signal in u  significantly underestimates the magnitude of the u0 signal in the epicardial layer.

 The reason for both of these phenomena is shown in Fig. 7.3, where we show the scroll 

wave cross-section u(x,z) and filament trajectory (bottom panels), along with the corresponding 

u and u0 traces as a function of x (top panels); the difference in the two traces over time 

corresponds to Fig. 7.2C. As mentioned above, reentrant waves in the MLR model possess a 

linear core trajectory. Hence, in Fig. 7.3A at t = 262 ms, the wave is rotating clockwise and is in 

the process of completing the upper arc of its trajectory (as shown by the white line). We see that 

the trajectory has brought the leading edge of the wave near to the epicardial surface; hence, u0 is 

still close to maximally depolarized at the region of closest approach. Meanwhile, we see that as 
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the wave completes the turn of its reentrant trajectory (t = 370 ms), the portion of tissue 

underneath the arc is in the process of repolarization. While the depolarized tissue within the first 

few epicardial layers plays a substantial role in the magnitude of the weighted signal, the reduced 

value of u(x,z) in the repolarizing mid-myocardial layers contribute as well. The net effect of the 

summation over depth at this point in time is that u

create a s

is depressed with respect to u0 (see the first 

peak of the double potential in Fig. 7.1B), with the maximum difference located at the point of 

closest approach, producing the negative blue regions in Fig. 7.2C.  

 Likewise, at t = 340 ms in Fig. 7.3B, the filament is traversing the lower half of the linear 

arc. Since the closest approach of the filament brings it to within 1.07 mm of the epicardial 

surface, those repolarizing surface layers experience a slight passive response, corresponding to a 

very small positive deflection in u

depolarized intramural layers is sufficient to ignificant positive deflection in the 

weighted 

0 for those cells. On the other hand, the contribution of the 

u signal, as seen in the second peak of the double potential in Fig. 7.1B. Again, the 

location of the peak corresponds to the local maxima in Fig. 7.2C (orange regions) at that point 

in time. 

 Further examination of scroll wave patterns can provide additional details about the 

relationship between u0 and u . The intramural wavefront approaching the epicardium on the 

upper left of u(x,z) in Fig. 7.3B at t = 400 ms, produces the earlier upstroke of u (in comparison 

to u0) as expected, at the point when the wavefront is about 2 mm from the epicardium, with a 

clear peak at x = 1.0 cm. This value is in agreement with earlier studies of Baxter et al. [19]. We 

also observe that u is greater than u0 only for the duration of the upstroke in the regions where 

the wavefront is approaching the epicardium. As the wave progress, u is lower in magnitude 

than u0 due to the decrease in u with depth during repolarization associated with the decreasing 

fluorescence contribution from the lower layers. However, in the areas where the wavefront is 

traveling away from the epicardium, such as in the upper right of u(x,z) in Fig. 7.3A, t = 362 ms, 

u0 remains greater than u for the duration of the upstroke, and the two signals follow almost 

identical time courses for x ∈ [0,1.6] and [3.2, 4.8] cm during this rotation. Based upon the 

trajectory of the scroll wave with respect to the epicardium, we can also see the reason for the 

apparent supra-maximal velocity. The scroll wave approaches the epicardial surface at a shallow 

oblique angle as can be seen in the upper left corner of the u image at t = 400 ms. This is 

exhibited in the difference image in Fig. 7.2C as a yellow ridge along the left branches indicating 
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Figure 7.4: Snapshots of the temporal development of the depth-weighted and top layer signals 
for an elliptical filament. 1 n: 3-D tissue slab with filament in black. 2 n: u
column

st colum nd colum 0. 3rd 
:u . 4 n: th colum u - u ent on the bounding surfaces is shown in all 

columns as a white line. 
0. Trajectory of the filam



that u increases rapidly while u0 remains at a fairly constant value. This situation continues until 

the actual moment of breakthrough when the underlying wavefront arrives at the epicardium. 

 

7.4.2. 3-D elliptical filament, no fiber rotation 

 The second study consisted of our observing a shallow elliptical filament, located close to 

the epicardium. We model this preparation as a three-dimensional section of tissue. The number 

of grid points is 362 × 151 × 62, such that the tissue slab has dimensions 4.8 × 2.0 x 0.8 cm

with the longer dimension corresponding to the longitudinal fiber direction. In this case, the 

filament has one end located on the upper, epicardial surface and the other on a longitudinal face. 

Again, we use the MLR parameter values for the active kinetic model. 

3, 

 Figure 7.4 illustrates the results from this portion of the study. The first column shows the 

filament and its trajectory within the tissue slab with u mapped on the bounding surfaces; the 

orientation of the slab and the fiber direction is the same as that shown in Fig 7.1A. At t = 0 ms, 

the scroll wave is completing a turn at the end of a line of conduction block. The column 

depicting u - u0 indicates that there is a positive difference between u and u0 at the region where 

the underlying scroll wave is closest to the epicardium. Furthermore, the magnitude of (u - u0)  is 

greatest at the shallowest portion of the scroll wave, adjacent to the conduction block, but 

decreases rapidly in the direction of the filament’s major axis (i.e., transverse to the fiber 

direction) due to the short space constant of the weighting function with respect to the increasing 

filament depth.  

 At t = 46 ms, the leading edge of the scroll wave is propagating above the area of 

conduction block. Therefore, we see positive (u - u0) in those regions where the wavefront is 

close to the epicardium but has not yet broken through, namely at the borders of the break-

through activation in u0. Also, (u - u0) is negative in the region of the leading edge’s closest 

approach to the epicardium, decreasing in magnitude along the major axis of the filament 

adjacent to the intersection of the conduction block with the epicardium.  

 The wavefront begins turning a corner at t = 88 ms and continues the behavior described 

above. At t = 150 ms, the scroll wave has completed the turn and the region of positive (u - u0) is 

at the inner edge of the wave adjacent to the tip. In this case, this region does not extend very far 

along the filament due to the fact that the epicardial activation is still significant and the 

underlying scroll wave is not yet within the space constant of the weighting function. At t = 176 
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Figure 7.5: Comparison of u  and u eakup. Regions of interest are 
colored to highlight details. (A) Diminished 

0 signals during spiral wave br
u magnitude; (B) apparent supra-maximal 

conduction velocity in u tion; (C) epicardial breakthrough; 
(D) sub-epicardial graded potentials in 

0, arrow shows direction of propaga
u ; arrow shows direction of sub-epicardial propagation. 

 

ms, however, we have returned to a scroll wave configuration much like that of t = 0, with the 

same resultant effects on u . 

 

7.4.3. 3-D scroll wave breakup in presence of fiber rotation 

 For our final study, we examined a rectangular slab with rotational anisotropy, using θ

120° as a typical value; as indicated by Eq.(7.7), the fibers at the mid-wall are parallel to the x-

axis. The simulation was conducted on a grid composed of 349 × 151 × 61 grid points, 

corresponding to a tissue slab with dimensions of 4.6 × 2.0 × 0.8 cm. However, it has been 

shown that a perturbed scroll wave using the MLR model in tissue up to 12 mm thick and 

24°/mm of fiber rotation fails to destabilize [24]. Therefore, we chose to use the MBR parameter 

Σ = 
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values for Eq. (7.1) for which [24] showed that a single filament does break up for the wall 

thickness and rotation rate values selected for our study (see their Fig. 8). 

 In Figure 7.5, we show the scroll wave breakup produced from a single filament in the 

presence of fiber rotation. Even though the parameters of the simulation are closer to that of 

actual myocardium, the trends observed from sections 7.4.1 and 7.4.2 are all present in this case. 

(a) The u potential is significantly lower in magnitude than that of u0. In many regions, 

depolarized tissue is present at, or close to, the epicardium, while the tissue underneath is in 

the process of repolarizing and is returning to rest. Although the transmural layers have a 

smaller weight associated with them, they contribute more to u than the epicardial layers in 

this case, resulting in a reduction in u . In Fig. 7.5A, we observe an epicardial breakthrough 

activation propagating in a V-shaped pattern. In u0 the depolarization is uniform over the 

region of breakthrough. In contrast, the activation inu is clearly of lower amplitude except in 

those regions where the action potential is reentering into the transmural epicardium (the legs 

of the V-pattern), and thereby allowing more layers to contribute to the weighted signal. 

(b) A significant degree of directional blurring of the u potential. In regions where a scroll 

wavefront approaches the epicardium at a shallow angle, the encroaching wave exhibits a 

graded potential over a wide area in the direction of the wavefront in u , producing a 

subsequent rapid depolarization and an apparent supra-maximal velocity in u0. Figure 7.5B 

illustrates an apparent “finger” of depolarization in u directed towards the left (shown by 

arrows), that the epicardial wave in u0 subsequently follows as it breaks through. 

(c) Gradual depolarization of u

 the sign

during epicardial breakthroughs. If a filament is oriented parallel 

to the epicardial surface, ature of the rising scroll wave is observable at the 

epicardium in u prior to u mple is shown in Fig. 7.5C, where the u time trace of the 

point directly over the breakthrough would demonstrate the apparent initiation of 

depolarization much earlier in 

0. An exa

u than in u

(d) Graded potential in 
0. 

u . In some regions, the intramural scroll wave produces a graded 

potential as seen in u

right of the colored region of interest in 

. In Fig. 7.5D, we observe a slender region of repolarization at the top 

u hat is seen in 0. W u but not in u

potential extending retrograde to the repolarization tail (shown by arrows). In this intervening 

region, the wave fails to achieve an epicardial breakthrough (and hence there is no noticeable 

action potential in u ut is sufficiently close to the surface such that it produces an apparent 

0 is a graded 

0), b
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depolarizing deflection in u

uble-

. Once the conduction block has sufficiently dissipated, the 

graded potential manifests as a breakthrough (in this case, the one shown in A). This 

situation is akin to the do humped potential observed in the previous section and seen in 

[14]. 

 It stands to reason that the combination of the above phenomena would lead to 

differences in the efficacy of the detection and subsequent tracking of the intersection of the 

filament with the epicardial surface (i.e., a phase singularity). We investigated this effect by 

examining phase singularity localization for both u0 and u for the previous fibrillatory 

computation. Since an experimenter usually has access to only one variable at a time when 

observing epicardial behavior, rather than use the multivariate state-space phase portrait (u,v) as 

previously, we use the Takens time-embedding state-space methodology to produce a 

topologically equivalent time-series phase portrait [20,25]. This is done by expanding the 

observed variable u into a vector time series by embedding a time delay τ into u(t) such that the 

state space in two dimensions is composed of u(t) plotted against u(t - τ). We set the time-

embedding delay τ to a value approximately equal to the upstroke duration of the action 

potential, i.e., 5 ms, to insure the absence of folding in the phase space trajectories [26]. The 

origin in (u(t), u(t - τ)) state-space was chosen as (0.21,0.21) by examining the phase portrait for 

a 2-D spiral wave and selecting a  point which was encircled by the smaller phase trajectories. 

The phase singularities were localized with our topological charge algorithm detailed previously 

[22]. 

 In general, we noted several trends in singularity creation and annihilation which were 

seen to follow primarily as a consequence of the observations detailed above: 

(a) In those regions where the magnitude of u is greater than that of u reation of the 

singularities is generally observed to occur earlier in 
0, the c

u than in u entioned previously, 

the sub-epicardial activation causes a premature initiation of the upstroke in 
0. As m

u as opposed to 

u nt earlier phase resetting when a singularity is produced. 

Likewise, the annihilation of a singularity pair typically takes place later in 
0, which leads to an appare

u than in u

these regions since the underlying depolarization also persists longer in 
0 in 

u than in u0. 
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Figure 7.6: Illustration of phase singularity localization during a 20-ms segment of fibrillatory 
activity in the MBR model. Left panel: (x,y) domain; right panel: (x,y,t) domain. Trajectories 
from u0 and u shown in blue and green, respectively. The singularities are labeled with numbers. 

 

(b) In contrast, in those regions where the magnitude of u is less than that of u0, the singularities 

are created generally later and annihilate earlier in u than in u0. In this case the activated 

(whether depolarizing or repolarizing) epicardial tissue is overlying tissue that is close to rest, 

but the same reasoning in terms of apparent phase resetting applies as in (a). 

(c) As an extension of (a), regions which experience graded potentials in u are likely to exhibit 

the appearance of singularities in u which are absent in u0. In such areas, the apparent 

propagation in u is not in fact epicardial at all and hence, while the singularity may be visible 

in u , it does not actually represent a filament intersecting with the epicardial surface but 

instead the trajectory of a filament has brought a section of it just underneath the surface. 

(d) Similarly, as an extension of (b), regions in which the activation is localized to the epicardial 

layer and layers immediately beneath it may reveal singularities in u0 which are absent inu . 

This may occur for a very shallow U-shaped filament, for example. 

An example of the disparity in detection is illustrated in Fig. 7.6, which shows eight epicardial 

singularities in u0 and u tracked during a 20 ms period. In this instance, the error in singularity 

localization between u0 and u over this period is 0.57 ± 0.16 mm. Of note are trajectories 7 and 8 

which were detected in u0 but not in u , corresponding to situation (c) above. Because the 

immediately underlying filament activity can produce adjacent areas which are subject to a 

combination of the above conditions, all of which are reflected in u , it is difficult to generate 
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hard-and-fast rules to determine which of the above scenarios will occur. It should be noted that 

in many cases the qualitative behavior of the detected phase singularities remained basically the 

same between u

7,28]

ted quantitative m

depth in biological tissue have yi

sections of sheep right ventri

u

at the op

stained with di-4-ANEPPS calcula

tissue depth which contributes to 

itiv

and u0. That is, for meandering singularities which persisted for a long time 

period, even though discrepancies in spatial localization and creation/annihilation times existed, 

the basic trajectory did not change, such as trajectory 2 in Fig. 7.6. 

 

7.5. Discussion 

 The presence of a depth-dependent optical signal has been well-documented in the 

literature [2  but its effects on the interpretation of the optically mapped cardiac signal have 

only recently been a topic of investigation [8,9]. Generally speaking, investigations which have 

attemp easurement of the dependence of emission wavelength upon penetration 

elded varying results [29], and unfortunately the same is the 

case in the cardiac literature. Girouard found decay constants of 0.29 and 0.43 mm for the 

excitation and emission decay constants using di-4-ANEPPS in guinea pig left ventricle 

(thickness: 2.25 ± 0.20 mm), with the top 500 µm contributing 95% of the signal and the largest 

contribution coming from the uppermost 100 µm; however, this value was dependent upon the 

optical magnification used [30]. Knisley estimated that the top 300 µm contributed to the 

majority of the optical signal for a rabbit ventricular preparation using di-4-ANEPPS (maximum 

thickness measured: 600 µm) [31]. Baxter et al. found optical penetration depths of 0.80 and 

1.34 mm for the excitation and emission decay constants of di-4-ANEPPS in transmural cross-

cle (thickness: 8 mm) with 82% of the signal emanating from the 

top millimeter [19]. A study by Al-Khadra et al. observed optically-recorded (di-4-ANEPPS) 

action potentials from papillary muscles which had a dual-humped morphology [32]. Shielding 

the papillary m scle from the underlying septum yielded action potentials of normal shape, 

indicating th tical signal was the sum of the signals from the two tissues. Assuming this 

is the case, the underlying signal originated from a tissue depth on the order of a millimeter. 

Similarly, a Monte Carlo simulation by Ding et al. using broad field illumination for tissue 

ted that that 62% of the collected fluorescence originated 

within a 1-mm radius block of tissue with a 1-mm depth [33]. Quantitative measurements on the 

the signal have been shown to be dependent on such factors as 

spectral sens ity, light absorption and scattering, among others [29,34]. Recent publications 
 

 127



have called increasing attention to the need to be aware of the location of the focal plane with 

respect to the tissue surface as well as the associated depth of field used at a given magnification 

with the collecting lens [19,35]. 

 In this study, we do not attempt to demonstrate the validity of the numerical estimates of 

the weighting functions mentioned in the literature. Instead, we report the expected effects of 

applying the weighting function of [19] on observed epicardial activation patterns, allowing 

inferences to be drawn with other, similar w(z) functions. Using the function in [19], Janks and 

Roth [36] demonstrated that the inclusion of optical averaging with depth in a simulation of a 

passive membrane model may provide a partial explanation as to why experiments fail to 

observe the large transmembrane polarization near the electrode during unipolar stimulation (as 

predicted theoretically), and surmised that a longer length constant, λ, in w(z) would increase the 

discrepancy. Likewise, observing active propagation with a larger value of λ would most likely 

alter the results in sections 7.4.1 and 7.4.2 in a quantitative (not qualitative) manner. However, it 

is doubtful that the effect of a longer λ on fibrillatory tissue, such as that seen in the last section 

of the Results section, would be as predictable as in [36]. As noted in [19], a sub-epicardial wave 

becomes noticeable when the wave approaches 1 – 2 mm of the surface using their formulation 

of w(z). For this reason, an intramural filament produced dual-peaked APs in u

ry close to the epicardium

onger upstroke tim

o

 only when the 

line of conduction block brought the trajectory of the filament ve . 

Obviously, in regards to our observations of a single shallow filament, a longer λ would permit 

deeper filaments to be observed epicardially, accompanied by even l es and 

larger magnitude second peaks in the filament axis. However, in the case of full fibrillatory 

activity, the effect of a longer λ is more difficult to estimate due to the decreased relative 

difference between λ and the scroll wavelength in the z direction. That is, if m re waves are 

present in those layers which contribute significantly to u (as determined by λ), the activation 

seen at the surface will seem to become increasingly complex as more of the total filament length 

(along with the associated twist due to fiber rotation and resultant scroll activity [24]) is 

represented in w(z). 

 The presence of a depth-dependent signal adds a new layer of difficulty to the already 

complex interpretation of cardiac activation patterns. It is well known that since the optical 

signal is generated from an aggregate of cells, the action potential upstroke can be blurred within 
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a set of pixels and erroneously lead to an artificially long upstroke duration; for CCD cameras, 

blurring also increases as a function of the photon integration time required to obtain an adequate 

SNR [30,37]. These results indicate that even if these technical effects were corrected, blurring 

would still occur and may be significant depending on the underlying filament orientation. 

Baxter et al. notes that their equation for w(z) takes into account scattering losses at the surface 

but not the effects of lateral scattering within the tissue; the effect of the inclusion of this 

behavior on our results is unknown, but will most likely further complicate optical data analysis. 

 The appearance of action potentials with two distinct peaks (“double-humps”) has long 

been known as a signature of reentrant conduction block [38,39] and has been used previously 

for core identification [40]. Typically, these double-humped potentials are attributed to 

electrotonic interaction across the line of block. However, Efmov et al. demonstrated double 

potentials at distances greater than a space constant (up to 12 mm) from the line of block [14]. 

Since this is a longer distance that can be normally accounted for by electronus, this led them to 

consider the possibility that a scroll wave may be rotating sufficiently close to the epicardial 

surface in such a way that the optical signal experiences two deflections from the wave 

propagating on either side of the region of conduction block. Our simulations confirm this 

interpretation as a possibility since a filament is unlikely to elicit a noticeable isolated passive 

response in u0 unless it passes within a fraction of a millimeter of the epicardium (in which case 

a minor perturbation in the filament trajectory towards the bounding surface will produce a full 

active response on the epicardium), whereas the deflection in u can be observed at a tissue depth 

of an order of magnitude larger the passive length constant. However, while we were able to 

replicate the double-humped behavior in u in the controlled case of a single elliptical filament, 

such multiple peaks were observed to be fairly infrequent in the simulation of filament breakup. 

This is understandable given that the recordings made by Efimov et al. were of sustained 

polymorphic tachycardia as opposed to full fibrillatory activity, indicating that just a single 

filament was present [11]; the dynamic activity of multiple filaments precludes the stability 

needed to produce the extra peak in our simulations. Also, it is important to note that in the 

experimental setting, other factors come into play such as motion artifacts and early after-

depolarizations associated with some pathological states which may lead to the erroneous 

presence of multiple peaks in the optical signal. 
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 The detection and tracking of surface phase singularities remains the most 

straightforward means to discern filament activity, albeit in a limited way [11,17]. While various 

methodologies exist to localize singularities (see [22] for a short review), all of them assume that 

the epicardial mapping is in fact an accurate representation of the surface activation dynamics. 

We have shown here that the inclusion of optical signal depth information can lead to an 

erroneous characterization of the phase singularity (and hence filament) dynamics, including the 

occurrence of false positive and false negative filament detection under certain conditions. We 

note again that the basic meander pattern and trajectory is often unaffected, and if the scroll wave 

is fairly perpendicular to the epicardium (i.e., transmurally) within the length constant λ, then the 

difference in localization (though probably not the creation/annihilation times) between u and u0. 

will be small. However, the presence of twist due to rotational anisotropy or other 

heterogeneities will promote filament bending, thus making such an optimal configuration 

transient at best, especially once breakup events begin to occur. 

 In summary, our results indicate that the depth-dependent optical signal has significant 

consequences on the interpretation of propagation dynamics, in terms of the distortion of the 

magnitude, spatial extent and temporal timing of epicardial activation and, as a consequence, 

phase singularity localization and behavior. As mentioned above, many additional variables 

clearly play a role in determination of the weighting function but their quantitative values remain 

unknown or inconsistent thus far; furthermore, it is difficult to reconcile the variability between 

experiments performed with different protocols. Nevertheless, this study illustrates that 

accounting for the three-dimensional nature of the optical signal is vital to appropriately bridging 

the gap between numerical simulations and experimental optical data in understanding cardiac 

spatiotemporal electrodynamics. 
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CHAPTER VIII 

 
SUMMARY AND FUTURE WORK 

 

 The objectives of this research were the development and utilization of new techniques to 

analyze optical recordings of cardiac spiral wave and scroll wave activity, both in the context of 

local electrodynamic behavior and global large-scale behavior. 

 The review of the dynamic characteristics of cardiac tissue in Chapter 2 served to 

illustrate the magnitude and importance of cardiac arrhythmia research. The spiral wave was 

established as the basic unit of fibrillation and tachycardia. After investigating the fact that spiral 

wave motion and interaction dynamics is an open question in the field, the three-dimensional 

nature of the problem was described and the concept of the filament was presented. The use of 

the phase portrait as a tool to examine a non-linear dynamic system and its application to the 

general principles of topological charge and phase singularities were introduced. Finally, optical 

recording was presented as a recent innovation to experimental observation. 

 Within this framework, Chapter 3 detailed the development of an algorithm which detects 

phase singularities based upon calculation of the two-dimensional phase distribution. This 

procedure is based upon the link between the curl of the phase gradient and the definition of 

topological charge. By discretizing the topological charge path integral, the algorithm is able to 

isolate the phase singularities in an efficient and robust manner from both experimental and 

numerically simulated data. An initial comparison of experimental singularity behavior revealed 

that the separation distances between singularities in quatrefoil reentry could be grouped into 

classes but these categories were at variance with numerically predicted results. 

 While the topological charge algorithm is mathematically sound, it is only as effective as 

the phase calculation which precedes it. Chapter 4 refined the methodology involved in 

reconstructing the phase portrait and the definition of the point around which the phase is 

defined. The impetus was to attempt to overcome some of the limitations of using time-series 

analysis and utilize some of the characteristics of the action potential morphology in determining 

the phase portrait origin. The combination of the Hilbert transform and the pEMD enabled the 

observation of singularities closer to their initial formation during quatrefoil reentry than with the 
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method shown in Chapter 3.   



 Phase singularities are the cross-sections of three-dimensional filaments, the behavior of 

which is considered integral to an understanding the transition to turbulence during fibrillation. 

Chapter 5 generalizes the algorithm described in Chapter 3 to the three-dimensional spatial 

domain. In addition, the time-series analytical method of phase portrait reconstruction was 

compared against two-variable phase portrait in terms of localization. Finally, since sophisticated 

cardiac models are multivariate, the study provided the criteria for determining which two 

variables are used for an optimal phase portrait. 

 With the interaction of phase singularities and filaments unknown in all but a select few 

analytical models, Chapter 6 attempted to address the discrepancy in experimental and 

theoretical results from Chapter 3. Quantification of the interaction of a simplified filament 

system in a configuration similar to that generated by quatrefoil reentry in terms of filament 

lifetime indicated that a critical bifurcation exists between attractive and repulsive behavior 

along with annihilation by mutual collision and collapse by shrinkage. The possibility of treating 

the filaments as a pair of point charges by fitting the initial velocities to a Yukawa potential was 

also investigated.  

 Optical recording has become the de facto means of obtaining high-resolution cardiac 

data. For a typical epicardial recording, it has generally been believed that the thickness of tissue 

which contributes to the optical signal is on the order of 250 µm. However, this is an assumption 

which has increasingly been challenged. Chapter 7 is an attempt to incorporate the attenuation 

with depth of the optical signal into the observation of filament and singularity dynamics. This 

study suggests that the inclusion of optical depth leads to a variety of significant effects, such as 

long upstroke times, graded potentials stemming from the underlying filaments, and false 

positive and negative singularity detection. 

 Appendix A1 provided a demonstration that singularity detection on a whole-heart basis 

is indeed possible. The catadioptric system that was developed previously has been shown to be 

a viable system for the visualization of the entire epicardial surface [1] but its application to the 

issue of small-scale cardiac electrodynamics has not been performed until now. 

 

8.1. Limitations and future work 

 A number of limitations within this study need to be mentioned. The topological charge 

 

 136

algorithm described in Chapter 3 is designed for a rectangular grid; this formulation is sufficient 



for most applications which use rectilinear coordinates. However, some numerical models 

require the use of unstructured finite meshes, for which the line integral is not as straightforward 

to compute. This critique also applies to the generalized algorithm described in Chapter 5.  

 Regarding Chapter 4, the heuristic used to reconstruct the pEMD remains empirical in 

nature; there is not yet a rigorous rule to determine the critical amplitude and peak-to-peak width 

for a double potential response characteristic of an excitable element in the vicinity of the core. 

The use of the pEMD which is dependent on the non-local characteristics of the signal also 

means that it is not amenable to real-time analytical use, as opposed to the time-series method 

which only requires retention of data frames from the previous τ time-units. For this reason, the 

Hilbert-pEMD algorithm might be impractical on large data sets because an additional variable 

the same size as the original needs to be generated. Also, it is important to consider that the 

pEMD is a global operator based upon the extrema of the voltage signal; while the pEMD signal 

and the pEMD-Hilbert transformed signal may be independent, it is not one-sided with respect to 

time. Therefore, trends in the pEMD that occur prior to a particular point in time may be 

reflected in the phase values at that time point or even afterwards, such that the phase values are 

causally related to preceding trends as well as current events. 

 Generally speaking, the choice of the origin in the phase portrait is the most critical issue 

in obtaining the phase of a system by this method. Several studies have used a single fixed point 

to calculate phase around, such the mean of each pixel [2-6]; the pEMD in Chapter 4 is a 

temporally-dependent determination for non-stationary spirals. It is worth noting that a previous 

study has shown that an amplitude range exists over which the error in singularity localization is 

fairly small [6]. Selecting the origin for a 1-D numerical system is simple: find the fixed point by 

solving for the intersection of the nullclines since all phase trajectories encircle this point. 

However, for a spatially-coupled case, the solution is not as straightforward since the diffusive 

term offsets the phase trajectories with respect to the 1-D case; therefore, the phase trajectories 

may not encircle a single point. Furthermore, this offset is dependent on the value of the 

laplacian and hence is not consistent between spatial locations, or even between successive time 

steps if the reentrant pattern is non-stationary. In such instances, if the pEMD is not practical, the 

question remains of how to determine the best starting estimate for the origin; one possible 

criterion is choosing a value close to the excitation threshold [7]. These concerns are worth 
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exploring in more detail. 



 Adding to the difficulty of validating the methods presented here is the fact that while 

there is a variety of filament/singularity detection techniques (see the Introduction section of 

Chapter 5 for a review), each with their own shortcomings, there is no universally accepted “gold 

standard” methodology. A comprehensive quantitative comparison of these methods would be 

beneficial to the cardiac community. 

 The filament interaction analysis presented in Chapter 6 includes a number of 

simplifications. Rather than using one of the standard cardiac models, this portion of the study 

used the oscillatory BZ chemical reaction. The reason for this choice is that the scroll ring 

dynamics for a doubly-diffusive system of this type are well-documented and simple, in that they 

exhibit shrinkage only with no associated drift (provided the curvature is not excessive). This 

choice was deemed necessary in order to examine the interaction of the filaments such that any 

drift (i.e., attractive or repulsive behavior) could be attributed to the interaction and not to 

idiosyncrasies of the ring dynamics itself. Also, we have imposed severe symmetry constraints 

on the system (axisymmetric geometry, reflecting boundary conditions), again for the sake of 

simplicity. The behaviors of adjacent filaments during fibrillation certainly do not obey such 

constraints except in transient, isolated cases. Lastly, structural heterogeneities such as tissue 

anisotropy and fiber rotation and curvature have been ignored, all of which are known to 

contribute to the motion of epicardial phase singularities and filaments [8]. However, this study 

is a first step in this research direction and these restrictions will be relaxed in future studies. 

 The study of effects of optical depth on observed filament dynamics in Chapter 7 was 

limited primarily by the fact that the weighting function used was a model of fluence rate from 

flourophore point sources in terms of absorption only but not in terms of scattering. It is well-

known that scattering of light in biological tissue is appreciable, especially laterally in the 

myocardium; a study quantifying the amount of lateral scattering has not yet been performed. 

Other effects such as the location of the focal plane and the depth of field are only recently being 

investigated in the context of cardiac optical studies, and hence are not included in the model 

either. 

 Currently, the reconstruction of the heart geometry in Appendix A1 is limited primarily 

by the total time required by the process. Currently, a panoramic experiment progresses through 

the following steps: (1) the heart is affixed to the perfusion system, and the mirrors and camera 
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adjusted; (2) the whole heart experiment is performed; (3) the heart is rotated on the perfusion 



system to obtain snapshots for the geometric reconstruction; care must be taken to insure that 

neither the camera nor the mirrors are moved; (4) the heart is removed, and a target object is put 

in its place to determine the mirror position with respect to the camera; (5) the mirrors are 

removed and a calibration grid is used to calibrate the camera. Care must be taken to insure that 

the camera is not jostled during steps 1 – 5 as well as the mirrors during steps 1 – 4. Generally, 

the calibration of the camera is a rate-limiting factor during the time course of the experiment. 

The fact that the camera calibration and determination of the mirror orientation takes place after 

completion of the experiment precludes creating the geometric model for real-time use during 

the experiment. An ideal system would permit quick and precise calibration of the camera and 

mirrors at the beginning of the experiment. Many of the current difficulties with calibration stem 

from the fact that the imaging optics and the object to be imaging are positioned independently 

of one another. This difficulty can be overcome if all components of the imaging system could 

be placed on a stable mounting system; in this way, calibration needs to be performed only once. 

In addition, currently each incremental rotation of the perfusion system and each snapshot for the 

reconstruction must be individually entered at a console; an automatic computerized means of 

staggering the rotation and the snapshot acquisition would streamline the system and reduce total 

run time of the experiment. 

 

8.2. Research considerations 

 Before beginning this research, two major factors were considered: how to protect the 

research subjects used in this research, and what, if any, contributions this research would make 

to society. These factors are described below: 

 1) Protection of research subjects: No human subjects were used for this research. As 

much of the research was theoretical in nature, no animals were used directly since much of the 

data was generated by numerical modeling. Numerical modeling has been integral to the 

discipline of cardiac electrophysiology, both as an impetus to suggest new experiments and as a 

means to provide insight into the physics of cardiac action potential propagation, in particular, 

the phenomenon of reentry. Most of the experimental results presented were derived or validated 

using rabbit cardiac data obtained from earlier experiments [9]. For these cases, experiments 

were conducted in accordance with NIH regulations for the ethical use of animals in research and 
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were approved by the Vanderbilt University Institutional Animal Care and Use Committee 



(IACUC approval date: 8/14/01, Animal Welfare Assurance Number: A3227-0). As new and 

interesting quantities arise, new techniques will be implemented to examine them and the present 

method of re-examining previous data to validate these techniques has served well and will most 

likely continue to do so. 

 2) Societal implications: The phenomenon of cardiac fibrillation continues to be the 

primary cause of mortality in the industrialized world [10]. Advances in treatment and 

prevention are largely guided by gaining a better understanding of the initiation, subsequent 

behavior and interaction, and annihilation of reentrant waves and the phase singularities which 

they organize around. In terms of applications to engineering, the algorithm to detect topological 

charge distribution has the advantage of mathematical robustness and computational speed. In 

terms of novel scientific research, the interaction of filaments is still a largely unexplored field 

and our studies have added to the gradually growing body of literature. In addition, the issue of 

optical depth with respect to optical mapping is still in its infancy and the results presented here 

indicate that it should be a topic of interest to cardiac electrophysiologists.  
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A.1 Introduction: Whole-heart optical mapping 

 As noted in Chapter 1, optical mapping allows for simultaneous recording of hundreds of 

sites. However, studies of large-scale wavefront dynamics require visualization of the entire 

epicardial surface. Current use of optical imaging technology is still limited to a single field of 

view of the heart, namely that portion of the heart that is visible to the imaging device at a given 

point in time. Two solutions have been proposed to this problem: the use of a system of multiple 

cameras to record from different regions simultaneously [1-4], or a system of reflecting surfaces 

(a catadioptric system). Both methods serve to maximize photodetector coverage of the full 

epicardial surface. The use of a catadioptric system has the following advantages over the use of 

multiple cameras for cardiac imaging [5]: 

1. Certain mirrors, when imaged by a perspective camera, yield a single viewpoint projection of 

a particular scene. 

2. A wide field of view can be obtained using non-planar mirrors while maintaining a single 

viewpoint. 

3. Parameters of the lens, CCD, and digitizer, such as blurring, lens distortion, pixel size, aspect 

ratio, etc., are identical for all the views. For all practical purposes, each view is produced by 

the same camera-digitizer system. In particular, in a multi-camera setup, the cameras must be 

synchronized in order to present a temporally synchronous display of cardiac propagation. 

The use of mirrors permits capture synchronization for all views, and hence, allows for the 

observation of asynchronous events, such as arrhythmias and fibrillation, over the whole 

heart. 

4. Since the setup is monocular, only one set of intrinsic camera parameters needs to be 

determined for camera calibration purposes. 

The cost of the system setup is directly proportional to the number of cameras and digitizers 

used. A system with multiple cameras may be prohibitively expensive, while a monocular setup 

has an overhead of only one camera and one digitizer. 

 A special concern of optical mapping, and particularly of whole heart imaging, are 

artifacts due to muscular contraction; motion of the cardiac tissue may cause blurring which 

confounds localization of wavefront activity. Contractile motion may be halted though either 

mechanical or chemical means. Mechanically suspending contraction usually involves pressing 
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the portion of the heart to be imaged against an optical window [6,7]. The primary advantage is 
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the absence of pharmacological agents that could potentially alter the electrophysiological 

properties of the cardiac tissue that are to be measured. However, the compression of the cardiac 

vasculature upon the viewing window increases the possibility of ischemia of the region that is 

being imaged and the use of a mechanical constraining device would block some portion of the 

heart from the imager. The effects of tissue compression and the tissue-glass interface upon the 

spatial patterns of polarization are still in question [8]. Chemical agents are used more frequently 

in optical experiments, the primary agents being diacetyl monoxime (DAM, 2,3-butanedione 

monoxime), which inhibits cross-bridge interaction, and D600 (gallopamil), which blocks Ca2+ 

flux through the slow channel. Both have been determined to have slight nonspecific influences 

on action potential properties [9,10], although DAM has been reported to cause ventricular 

edema [11]. Recent studies indicate that cytochalasin D acts as an effective mechanical de-

coupler, while reducing the action potential-altering effects of DAM [12]. 

 While a catadioptric system has been developed for whole-heart mapping [13], it was 

limited by producing three discontinuous images with only the anatomic features to resolve 

them. A multi-view geometric reconstruction algorithm has been developed to overcome these 

issues and was previously validated as a proof-of-concept [14]. This study represents the first 

attempt at three-dimensional, whole-heart phase singularity localization. 

 

A.2 Methods and Results 

 We observed the three-dimensional electrodynamic behavior of a Langendorff-perfused 

rabbit heart stained with the voltage-sensitive dye di-4-ANEPPS during endocardial pacing and 

fibrillation, using panoramic epicardial imaging to provide catadioptric visualization of the 

anterior and posterior regions of the heart with one CCD camera and two mirrors at a frame rate 

of 335 frames/sec in a 128 × 64 pixel format [14]. The Ca2+ channel blocker D600 eliminated 

motion artifacts. We then created phase maps [15] from the normalized fluorescence (F) using an 

algorithm based on the Hilbert transform [16], and generated singularity maps by computing 

topological charge [17]. In contrast to previous studies, with a limited field of view, we herein 

report panoramic visualization of not only Vm but also cardiac phase and phase singularity 

distributions over the entire ventricular epicardium. 

 Whole-heart geometric reconstructions are shown in Fig. A.1 in panels A through C for 

both pacing and fibrillatory activity, with the atrial pixels removed (white circle indicates 
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endocardial pacing site). The ventricular dF/dt mapping is illustrated in A, showing the wave 

fronts. Panel B depicts the phase mapping for the behavior in A, while panel C shows the phase 

singularity distribution nt computed from B. Note the expected absence of singularities during 

pacing and their presence during fibrillation. This procedure illustrates that fibrillatory whole-

heart electrodynamic behavior can be described in terms of phase singularities by observing the 

singularities’ location and dynamics relative to ventricular epicardial anatomy. 
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Figure A.1: Whole-heart geometric reconstructions mapped with (A) temporal derivative of 
fluorescence dF/dt, (B) phase θ and (C) singularity distribution, nt. Pacing and fibrillation 
episodes shown in separate columns. 
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"Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric 
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