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CHAPTER I 

 

INTRODUCTION 

 

1.1 Introduction 

Perceptual decisions guide responses based on sensory information.  For example, upon 

encountering a new object, we must decide what it is that we’re seeing before we decide how to 

respond.  Perceptual decisions are among the most simple and frequent types of decisions 

exhibited by humans (e.g., Palmeri, 1997), monkeys (e.g., Schall, 2003), rats (e.g., Kepecs et al., 

2008), mice (e.g., Harvey et al., 2012), and fruit flies (e.g., Zhang et al., 2007).  Therefore, if we 

want to understand the neural mechanisms underlying complex goal-directed behavior, then 

perceptual decision making is a good place to start. 

Recent advances in methods for monitoring neural activity from awake, behaving animals 

and humans have opened the door to rich descriptions of neurophysiological signals occurring 

during perceptual decisions.  However, understanding how this underlying neural activity 

ultimately leads to behavior is not trivial.  Even the simplest behaviors depend on coordinated 

activity across a number of different brain areas.  Different brain areas might implement different 

computations, or the same computation might be distributed across different areas.  Moreover, 

even within a small region of cortex, different neurons have distinct morphologies, patterns of 

connectivity, and response properties depending on their position within the local microcircuit.  

Thus, even within a single brain area, different neuronal populations might implement different 

computations.  Given this complexity, how can we begin to meaningfully relate the growing body 

of neurophysiological observations to complex behavior like decision-making?   

The field of cognitive psychology provides an alternative perspective for understanding 

behavior.  A fundamental concept in cognitive psychology is that mental operations can be 

divided into a series of basic processes (Donders, 1969; Marr, 1982; Sternberg, 2001).  These 



2 

 

theories explain behavior in terms of simple processes that often fit with our subjective 

experience of what it means to think and act.  For example, I first perceive an object, and then 

categorize it, and then act.  Mathematical psychologists have made this approach more rigorous 

by implementing these processes in computational models (Townsend and Ashby, 1984; Luce, 

1991; Busemeyer and Diederich, 2009; Farrell and Lewandowsky, 2010).  Cognitive models 

make the processes explicit by establishing how information is quantitatively represented and the 

algorithms by which it is transformed to drive behavior. 

Cognitive and mathematical psychology have more-or-less converged on a general 

framework to explain the processes underlying perceptual decisions.  Stochastic accumulator 

models (also termed sequential-sampling models, accumulator models, or rise-to-threshold 

models) explain perceptual decision-making by assuming that perceptual information 

accumulates to a response threshold (Nosofsky and Palmeri, 1997; Ratcliff and Rouder, 1998; 

Smith and Van Zandt, 2000; Usher and McClelland, 2001; Ratcliff and Smith, 2004; Bogacz et 

al., 2006).  These models propose that perceptual decision-making entails at least two distinct 

processes: (1) a stimulus must be encoded with respect to the current task, and (2) some 

mechanism must accumulate that evidence to reach a decision.  This family of models currently 

provides the best account of decision-making behavior across a broad range of behavioral 

paradigms.  Ultimately, however, these models were not developed to explain how these 

representations and algorithms could be implemented by the biological processes in the brain. 

This overall goal of this work is to evaluate whether specific neuronal populations can be 

identified with the stages of processing proposed by stochastic accumulator models.  If so, then 

these models might provide a framework to understand how observed neural activity leads to 

choice behavior.  One advantage of the accumulator model framework is that it makes clear 

predictions for how specific model elements should change under certain conditions.  By 

recording neurophysiological signals from macaque monkeys performing perceptual decision-

making tasks, we can test whether the responses of different neuronal populations change in ways 
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that are consistent with model predictions.  In this way, the models can provide a way to 

understand how basic computations underlying perceptual decisions might be distributed across 

different brain areas, or even across different neuronal populations within the same region.   

 The remainder of this chapter will review evidence that specific neuronal populations can 

be identified with the processes proposed by stochastic accumulator models.  I will focus on 

perceptual decisions about where and when to move the eyes because the basic anatomy and 

physiology of the oculomotor system are relatively well understood.  Likewise, I will focus 

mainly on decisions about visual information because the visual system is better understood than 

other sensory modalities.  I will first review the stochastic accumulator model framework and its 

key assumptions.  I will then review anatomy of visually-guided saccades.  Finally, I will review 

the neurophysiology of sensorimotor areas thought to be involved in perceptual decisions.  This 

literature review raises open questions regarding potential links between accumulator models and 

distinct neural states that will motivate the studies described in subsequent chapters. 

 

1.2 Stochastic accumulator models of perceptual decision making 

Stochastic accumulator models divide response time into two basic processes.  First, sensory 

information must be encoded with respect to the current task and potential responses to reflect 

perceptual evidence for a response (Figure 1.1A).  Sensory information is noisy due to external 

noise in the stimulus or internal noise in the brain; thus, a single stimulus is associated with a 

distribution of evidence.  In a standard signal detection theory framework, a perceptual decision 

would be explained by taking a single sample from the appropriate distribution, comparing it to 

some criterion, and basing the decision on whether the sample was greater than or less than some 

criterion (Green and Swets, 1966).  Stimuli that are more easily discriminated will more often 

result in correct classification, whereas stimuli that are more similar will more often produce 

errors.  While this approach provides a good account of choice data across a broad range of tasks 

(e.g., Murdock Jr, 1965; Ashby and Townsend, 1986; Verghese, 2001), it does not explain how 
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the decision unfolds over time. 

 

Figure 1.1 Illustrations of perceptual evidence (A) and evidence accumulation (B).  A: Representation of perceptual 

evidence for target (solid lines) and non-target (dashed lines) stimuli when the discrimination is easy (top, red) or 

difficult (bottom, green).  Signal detection theory predicts that choices are made by comparing a single sample of 

evidence to some criterion (e.g., vertical gray line).  B: Evidence accumulation dynamics.  Samples of perceptual 

evidence are repeatedly sampled (black lines) until some threshold is reached (gray line).  Only one accumulator is 

illustrated, but decisions typically include multiple racing accumulators representing alternative responses.  The quality 

of perceptual evidence determines the mean rate at which evidence accumulates.  Stronger evidence causes faster rates 

of rise (red arrow) and weaker evidence causes slower rates of rise (green arrow). 

 

Stochastic accumulator models extend signal-detection theory by providing a theory for how 

samples of evidence are read-out over time.  Rather than basing decisions on a single sample of 

evidence, the distribution of perceptual evidence is repeatedly sampled and accumulated over 

time (Figure 1.1B).  Alternative responses may be represented by bounds in different directions 

(e.g., Ratcliff, 1978) or by multiple accumulators (e.g., Brown and Heathcote, 2005).  A response 

is selected when the first accumulator bound, or threshold, is reached.  The strength of sensory 

evidence for a particular response increases the rate at which evidence for that response 

accumulates (termed the drift or drift rate). Stimuli that are more easily discriminate will result in 

faster drift rates for the correct response accumulator.  Responses with the greatest drift rate are 

more likely to be selected, but other responses will occasionally win because of noise in the 

evidence distributions.  Often, the drift rate is a free parameter whose value is selected to 

optimize the match between predicted and observed behavior (e.g., Ratcliff and Smith, 2004), but 

more recent models have been developed to explain the computations by which the stimulus 
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representation and drift rate are generated (e.g., Nosofsky and Palmeri, 1997; Palmeri, 1997; 

Ashby, 2000; Lamberts, 2000; Palmeri and Tarr, 2008; Smith and Ratcliff, 2009).   

Several additional parameters govern the nature of the accumulation process (see Ratcliff 

and McKoon, 2008, for review).  First, the total time necessary for processes outside the 

accumulation of evidence is referred to as the non-decision time.  The non-decision time includes 

time preceding the decision that is necessary to encode the stimulus and compute the distribution 

of perceptual evidence, as well as motor delay after a response threshold is reached.  Second, 

adjustments in the starting point of the accumulation can bias the process in favor of particular 

responses.  Accumulators that start closer to the threshold are more likely to win the race for 

selection.  Third, varying the threshold across all accumulators can adjust the emphasis on speed 

relative to accuracy.  Higher thresholds lead to slower decisions, but allow more time for 

evidence to accumulate.  This increases the probability that the accumulator with the highest drift 

rate will win the race (i.e., the correct response).   Thus, changes in non-decision time, starting 

point, and threshold predict very different patterns of behavior.   

Alternative models also propose different mechanisms for whether and how accumulators 

representing alternative responses interact.  Independent race models assume that evidence for 

each response accumulates independently; the first accumulator to reach threshold determines 

which response is made (Vickers, 1970; Smith and Van Zandt, 2000).  Other models assume that 

alternative responses compete through inhibitory interactions.  Models that assume feed-forward 

inhibition propose that model inputs supporting one response simultaneously reflect evidence 

against alternative responses (Mazurek et al., 2003; Ditterich, 2006).  Drift diffusion (Ratcliff, 

1978; Ratcliff and Rouder, 1998) and their discrete analogue random walk models (Laming, 

1968; Link and Heath, 1975; Nosofsky and Palmeri, 1997) represent a form of feed-forward 

inhibition because they assume response boundaries in opposite directions (Bogacz et al., 2006).  

In contrast, models that assume lateral inhibition propose that alternative responses inhibit one 

another.  As evidence in favor of one response grows, it inhibits alternative responses more 
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strongly in a winner-take-all fashion (Grossberg, 1976; Usher and McClelland, 2001).  These 

alternative models can vary in other respects such as whether integration of evidence is perfect or 

leaky.  However, it has been very difficult to discriminate these models based on behavioral data 

alone (Smith and Ratcliff, 2004). 

The accumulator model framework parses a single decision into a series of interacting 

processes that determine behavior.  The model makes predictions about how processes should 

change under specific conditions.  For example, drift rate should decline with the difficulty of a 

perceptual decision and the threshold should increase when accuracy is emphasized.  These 

predictions establish a foundation to begin asking whether the proposed processes map onto 

specific neuronal populations.  Importantly, the neuronal population must also have appropriate 

anatomical connectivity to mediate the proposed function.  For example, a neuron that is said to 

represent evidence must be anatomically positioned to provide input to a neuron proposed to 

accumulate evidence.  Thus, anatomical considerations provide a basis to begin exploring the 

potential links between model components and neuronal populations. 

 

1.3 Neuroanatomy of eye movement decisions 

The outcome of a decision is a choice expressed through action.  A neuron that is involved in 

decisions about eye movements must therefore be capable of influencing neurons that initiate a 

shift of gaze.  Eye movements are initiated by a network of nuclei in the brainstem (Scudder et 

al., 2002; Sparks, 2002).  Briefly, saccades are produced by a pulse of force that rotates the eyes 

followed by a step of force that maintains eccentric gaze by opposing the elastic forces of the 

orbit (Robinson, 1964).  The pulse of force is generated by motor neurons that are directly 

innervated by burst neurons that discharge for saccades of a particular direction, amplitude, and 

velocity (Fuchs and Luschei, 1970).  The step of force is generated by tonic neurons that integrate 

the velocity to provide a tonic position signal to motor neurons (Cannon and Robinson, 1987).  

Burst neurons and motor neurons are tonically inhibited by omnipause neurons (OPNs) that fire 
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tonically, but cease immediately before saccades (Luschei and Fuchs, 1972).  OPNs are thought 

to be inhibited by long-lead burst neurons via inhibitory interneurons (Kamogawa et al., 1996).  

Thus, excitation of burst neurons and inhibition of OPNs is necessary for saccade generation. 

Three sensorimotor areas are well anatomically positioned to initiate saccades when a 

response threshold is reached: Superior colliculus (SC), frontal eye field (FEF), and 

supplementary eye field (SEF).  SC is the main source of subcortical input to the oculomotor 

brainstem nuclei (Moschovakis et al., 1988).  There are also projections from cerebellar nuclei, 

but they will not be discussed here (see Scudder et al., 2002 for review).  FEF, located in the 

anterior bank of the arcuate sulcus, and SEF, located on the dorsal bank of medial frontal cortex, 

are the main source of cortical input to the oculomotor brainstem nuclei (Huerta et al., 1987; 

Stanton et al., 1988; Huerta and Kaas, 1990; Shook et al., 1990).  Of these structures, SC and FEF 

appear to be most critical for control of saccade initiation.  Lesions of either SC or FEF alone 

result in minimal deficits whereas lesions of both FEF and SC result in an inability to generate 

voluntary saccades (Schiller et al., 1979).  In contrast, lesions of SEF result in temporary 

increases in saccade latency, but no major deficits (Schiller and Chou, 2000).  Thus, an intact FEF 

or SC is sufficient for saccade generation, whereas SEF is neither necessary nor sufficient. 

To be identified with a representation of perceptual evidence, a neuronal population must be 

innervated by cortical areas that encode sensory information.  Neurons in primary and extrastriate 

visual cortex encode stimulus features (see Orban, 2008, for review).  FEF neurons receive 

topographic input from many extrastriate visual areas V2, V3, V4, MT, TE and TEO (Schall et 

al., 1995a; Bullier et al., 1996).  The intermediate layers of SC also receive converging inputs 

from diverse posterior visual areas (Leichnetz et al., 1981; Sparks, 1986; Leichnetz and Gonzalo-

Ruiz, 1996; Fries, 2004).  Thus, FEF and SC seem to be well positioned to integrate diverse 

sources of visual information.  In contrast, SEF receives inputs from far fewer visual areas 

(Huerta and Kaas, 1990).  However, FEF and SEF are densely connected, and SC receives direct 

projections from and sends indirect projections to FEF and SEF via the medial dorsal nucleus 
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(MD) of the thalamus (Sommer and Wurtz, 2004b, a; Tanaka, 2007).  Therefore, SEF could 

receive indirect visual information from other sensorimotor areas. 

FEF, SEF, and SC are also interconnected with posterior parietal cortex.  In particular, the 

lateral intraparietal area (LIP) in posterior parietal cortex is densely and reciprocally 

interconnected with FEF and SC (Andersen et al., 1990; Blatt et al., 1990), and also SEF to a 

somewhat lesser degree (Schall et al., 1995a).  LIP also receives input from numerous visual 

areas including V3, V3A, V4, MT, MST, and TEO (Blatt et al., 1990), although the topography 

of these connections is far rougher than those connecting to FEF.  Feedback from SC is also 

relayed to LIP via the MD nucleus of the thalamus and the medial pulvinar (Hardy and Lynch, 

1992; Asanuma et al., 2004; Schmahmann and Pandya, 2004).  Unlike FEF and SC, however, LIP 

is not directly connected to oculomotor nuclei in the brainstem (May and Andersen, 1986; 

Schmahmann and Pandya, 1989).  Thus, while LIP has inputs appropriate to represent perceptual 

evidence, only FEF, SC, and SEF can directly influence saccade production. 

T o summarize, FEF, SC, LIP, and SEF are all at the junction between perceptual and 

motor processing, but the anatomical connectivity for each region places limits on proposed 

functions.  First, neurons in FEF, SC, and LIP receive diverse inputs from visual cortex and could 

integrate different sources of sensory information to represent perceptual evidence.  SEF is 

embedded within this network, although it receives inputs from far fewer early visual areas.  

Second, FEF, SC, and SEF are directly connected to the brainstem saccade generating nuclei and 

could initiate saccades when a fixed threshold is reached.  Neurons in LIP and other extrastriate 

visual areas are not directly connected to the saccade generating nuclei of the brainstem and 

therefore their outputs may undergo further processing prior to saccade initiation.  Given these 

anatomical constraints, we can next ask how neurons within these areas respond while the 

organism is engaged in perceptual decisions and whether the form of modulation is consistent 

with predictions of stochastic accumulator models.   
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Figure 1.2 Schematic of brain areas and pathways involved in visually-guided saccade generation.  Lines indicate 

reciprocal connections.  Arrows indicate one-way projections.  SEF, LIP, 7a, and FEF are interconnected.  SC is 

connected to other sensorimotor areas via the mediodorsal nucleus of the thalamus (not pictured).  OPN: omnipause 

neurons. BN: burst neurons. MN: motor neurons. TN: tonic neurons.  See text for more details. 

 

1.4 Neurophysiology of eye movement decisions 

Neurons in FEF, SC, SEF, and LIP have highly heterogeneous response properties.  At the 

most basic level, these neurons can be classified according to their sensorimotor response 

properties (e.g., Bruce and Goldberg, 1985).  Visual neurons respond briskly when a stimulus is 

flashed in their receptive field and may sustain an elevated firing rate when the stimulus must be 

remembered (Figure 1.3, top).  These neurons may also show some pre-saccadic discharge 

(termed visuomovement neurons1).  Another class of movement neurons responds primarily when 

saccades of a particular direction and amplitude are initiated (Figure 1.3, bottom).  Visual and 

visuomovement neurons are found in FEF, SC, LIP, and SEF (Bruce and Goldberg, 1985; Gnadt 

and Andersen, 1988; Stuphorn et al., 2010).  However, saccade-related neurons are found 

primarily in FEF, SC, and SEF and much less frequently in LIP (Gottlieb and Goldberg, 1999). 

The diversity of response properties must be dictated by differences in the local 

                                                 
1 In subsequent chapters, I will use the term visually-responsive neurons to refer to visual and 

visuomovement neurons that may also have weaker saccade-related discharge, and I will use the term 

saccade-related neurons to refer to movement and visuomovement neurons that may also have a weak 

visual response. 
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microcircuity.  In particular, converging evidence suggests that movement neurons in SEF and 

FEF can be identified with deeper layer 5 pyramidal neurons that distinguish these areas from 

adjacent cortex (Stanton et al., 1989; Matelli et al., 1991) and are the likely origin of projections 

to downstream subcortical oculomotor areas (Stanton et al., 1988; Shook et al., 1990, 1991; 

Pouget et al., 2009).  In SEF, the distribution of movement neurons was found to be significantly 

deeper than visually-responsive neurons (Russo and Bruce, 2000).  In FEF, neurons anti-

dromically stimulated from OPN regions in the brainstem show primarily saccade-related or 

fixation-related responses (Segraves, 1992).  Also, the current threshold for electrically evoked 

eye movements in FEF is lowest at sites in which saccade-related activity has been recorded 

(Bruce and Goldberg, 1985).  In contrast, histological reconstructions suggest that visually-

responsive neurons are distributed throughout the layers (Thompson et al., 1996).  Note that some 

layer 5 projection neurons can also be identified as visually-responsive (Everling and Munoz, 

2000; Sommer and Wurtz, 2000), so the division by layer is not perfect.  Altogether, however, 

these observations suggest that visually-responsive and movement-related neurons may represent 

functionally distinct subpopulations of neurons within sensorimotor areas. 

 

Figure 1.3 Population averages from 33 visual and 21 movement neurons recorded from FEF during a memory-guided 

saccade task in which the target appeared inside (dark gray) or opposite (light gray) the RF of the neurons. 
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In order to understand how visual and movement neurons might correspond to accumulator-

model processes, their properties must be recorded while monkeys perform perceptual decision-

making tasks.  The visual search paradigm is a perceptual decision-making task that requires 

subjects to discriminate a target object among a number of distractors in order to select a response 

(see Wolfe, 2007, for review).  Different models have been developed to explain how subjects 

can discriminate the relevant target from the irrelevant distractors.  Many models of search 

propose that a salience map combines both the physical conspicuousness (i.e., bottom-up 

information) and the behavioral relevance (i.e., top-down information) of items in the visual field 

in order to guide both covert attention and eye movements (Treisman and Sato, 1990; Wolfe, 

1994; Itti and Koch, 2001; Bundesen et al., 2005; Wolfe, 2007).  Eye movements and covert 

attention are assumed to be guided to peaks on the salience map.   

I will first consider the role of visual neurons during the visual search task.  Converging 

evidence suggests that visual neurons in FEF, SC, and LIP can be identified with the salience map 

proposed by models of visual attention (Findlay and Walker, 1999; Thompson and Bichot, 2005; 

Gottlieb, 2007; Bisley and Goldberg, 2010).  During search, the firing rate of these neurons 

initially elevates regardless of the stimulus in the receptive field.  Over time, however, firing rates 

evolve to select the location of behaviorally-relevant stimuli by maintaining an increased firing 

rate if the relevant target is in the neuron’s receptive field and reducing firing rate if an irrelevant 

distractor is in a neuron’s receptive field.  This target selection process takes place across a 

distributed network of visuomotor areas including FEF (Schall and Hanes, 1993; Thompson et al., 

1996; Bichot and Schall, 1999a), SC (McPeek and Keller, 2002; Shen and Paré, 2007), LIP (Ipata 

et al., 2006; Thomas and Pare, 2007; Ogawa and Komatsu, 2009), substantia nigra pars reticulata 

(Basso and Wurtz, 2002), parietal area 7a, (Constantinidis and Steinmetz, 2001; Katsuki and 

Constantinidis, 2012), PFC (Hasegawa et al., 2000; Constantinidis and Steinmetz, 2001; 

Buschman and Miller, 2007; Katsuki and Constantinidis, 2012), and medial dorsal nucleus of the 
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thalamus (Schall and Thompson, 1994; Wyder et al., 2004).  However, it is not known whether 

SEF neurons represent visual salience. 

 

Figure 1.4 Visual neuron recorded from the FEF of a macaque monkey performing the visual search task.    The 

left panel shows the average normalized firing rate when the target (solid lines) or a distractor (dashed lines) were 

inside the receptive field of the neuron during an easy (red) and hard (green) color search task.  The right panels show 

the distribution of mean firing rates in the time window 125-200 ms after the array onset (gray box in left panel).  

Conventions as in left panel.  Firing rate distributions were convolved with a Gaussian distribution for smoothing. 

 

The pattern of firing rate modulation during target selection is consistent with the properties 

of the hypothetical salience map in several ways.  First, the selection process is influence by 

bottom-up properties of the stimulus.  When the target and distractor are easily discriminated, the 

target is selected earlier and the post-selection firing rate difference (i.e., the magnitude of 

selection) is larger (Figure 1.4; Basso and Wurtz, 1998; Bichot and Schall, 1999a; Sato et al., 

2001; Balan et al., 2008; Cohen et al., 2009b).  Note that the evolution of salience is dynamic and 

these dynamics must be taken into account when explaining decision-making.  Second, the 

selection process is influenced by top-down factors including trial history and expected reward.  

When the target identity is fixed for several consecutive trials, the magnitude of selection is 

greater than if target identity has recently changed (Bichot and Schall, 2002).  Firing rates are also 

modulated by the probability and magnitude of expected reward (Platt and Glimcher, 1999; 

Roesch and Olson, 2003; Ding and Hikosaka, 2006).  Third, the representation of visual salience 
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by visual neurons is independent of movement production.  Search targets are selected even if the 

animal is instructed to withhold a saccade (Thompson et al., 1997), if the animal responds 

manually (Thompson et al., 2005a), or if the location of the target unexpectedly changes (Murthy 

et al., 2001; Murthy et al., 2009).  Importantly, these are the same properties that would be 

expected of a population of neurons that represented perceptual evidence that a target is present 

within their receptive field.  However, the connection between the neurophysiological 

representation of salience and accumulator models has not been established. 

Recall that the connections between posterior visual areas and sensorimotor areas that encode 

visual salience are reciprocal (Figure 1.2).  Neurons in the superficial layers of FEF and LIP send 

feed-back projections to many visual areas (Blatt et al., 1990; Pouget et al., 2009) and SC can 

relay signals to visual cortex via the pulvinar (Benevento and Standage, 2004; Lyon et al., 2010).  

Although, the firing rates of neurons in posterior visual areas are primarily driven by their 

preference for object features, these responses can also be modulated to some degree by the 

object’s behavioral relevance (i.e., visual attention; Moran and Desimone, 1985; Luck et al., 

1997b; Ogawa and Komatsu, 2004).  The effect of microstimulation and pharmacological 

manipulation of FEF on extrastriate neurons suggests that feedback from frontal areas like FEF 

might be one source driving these modulations (Moore and Armstrong, 2003; Monosov et al., 

2011; Noudoost and Moore, 2011; but note that the role of SC has recently been called into 

question; Zenon and Krauzlis, 2012).  If so, then the representation of salience in sensorimotor 

areas may be detectable at a population level in regions of posterior visual cortex, although this 

connection has not been conclusively established. 

Next, consider the response properties of FEF and SC movement neurons (Figure 1.5).  

During search, movement neuron responses differ from visual neuron responses in two key ways.  

First, unlike visual neurons, movement neuron firing rates are not independent of saccade 

production.  Movement neurons respond only before saccades of a particular direction and 

amplitude (Schiller and Koerner, 1971; Bruce and Goldberg, 1985; Schall, 1991b; Munoz and 
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Wurtz, 1995).  These neurons fire before saccades when no stimuli are visible (Bruce and 

Goldberg, 1985) and when the saccade is directed away from a visual target (Everling et al., 

1999; Everling and Munoz, 2000).  During search, the onset time of movement neuron firing 

increases with response time if the target location is indicated via saccade (Figure 1.5, right; 

Woodman et al., 2008), but firing rates are suppressed if the location is indicated by hand 

(Thompson et al., 2005a).  When a monkey is instructed to withhold a pre-cued saccade, 

movement neurons, but not visual neurons, modulate their firing rate sufficiently early to predict 

whether or not the saccade was withheld or initiated (Hanes et al., 1998; Brown et al., 2008; 

Murthy et al., 2009).  The lack of independence from saccade production indicates that these 

neurons cannot be identified with a covert representation of salience or perceptual evidence. 

 

Figure 1.5 Movement neuron recorded from the FEF of a macaque monkey performing a color search task.    

Conventions as in Figure 1.4.  Left panel is aligned on array onset and right panel is aligned on saccade. 

 

The second key difference between movement and visually-responsive neurons is that 

movement neurons reach a fixed firing rate threshold immediately prior to saccades (Hanes and 

Schall, 1996; Dorris and Munoz, 1998; Ratcliff et al., 2003; Brown et al., 2008).  This threshold 

may be identified with the trigger that initiates a saccade by tipping the balance of excitation and 

inhibition between burst neurons and OPNs (Figure 1.5).  The time when movement neuron, but 
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not visual neuron, firing rates reach a fixed level accounts for random variability in response time 

(Hanes and Schall, 1996; Brown et al., 2008).  If a task is made perceptually more difficult, then 

response times are longer, but movement neurons still reach the same firing rate immediately 

prior to a saccade (Ratcliff et al., 2003; Ratcliff et al., 2007; Woodman et al., 2008).  Note that the 

value of the threshold is not fixed across all conditions; it may vary during non-visually-guided 

antisaccades (Everling et al., 1999; Everling and Munoz, 2000), when errors are made 

(Thompson et al., 2005b), or when deadlines are employed (Heitz and Schall, 2012).  Critically, 

however, it always appears to be constant within a single condition.  Altogether, these 

observations indicate that movement neurons exhibit dynamics that seem qualitatively consistent 

with the predictions of stochastic accumulator models.   

 

1.5 Linking propositions 

Linking propositions are statements that map unobservable cognitive states onto observable 

neural states, and the population of neurons that instantiate the process are referred to as a bridge 

locus (Teller, 1984; Schall, 2004).  Accumulator models make predictions about how the bridge 

locus for the perceptual evidence and evidence accumulation should change under certain 

conditions.  Given what we now know about the anatomy and physiology of perceptual decision-

making, what are the potential bridge loci for perceptual evidence and evidence accumulation?  In 

this section, I summarize four potential neuronal populations to be evaluated (Figure 1.6).   

One potential link between model and brain are visual neurons in FEF, LIP, and SC that seem 

to represent the salience of objects in the visual field.  Existing models of visual salience propose 

that eye movements are targeted to locations at the peak of the salience map, but the neural 

mechanisms by which a peak on the map are transformed into a command to move the eyes are 

generally not clear.  One possibility is that the representation of salience can be identified with 

the representation of perceptual evidence that drives a stochastic accumulation to threshold, but 

this proposal has not been rigorously evaluated.   
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A second potential link between model and brain are FEF and SC movement neurons.  The 

observation that these neurons reach a fixed firing rate threshold seems consistent with the 

temporal dynamics predicted by accumulator models.  Therefore, one possibility is that these 

neurons might instantiate the accumulation process.  Several existing models have shown that 

movement neuron dynamics can be explained by stochastic accumulation (Ratcliff et al., 2003; 

Boucher et al., 2007; Ratcliff et al., 2007), but these models do not explain the source of 

perceptual evidence.  A complete theory of perceptual decision-making will need to explain both 

where the accumulation takes place, and the source of evidence being accumulated. 

A third potential link between the model and brain are neurons in posterior visual cortex.  

Existing models have focused on the role of feature-selective neurons as a source of feed-forward 

inputs to FEF, LIP, and SC (Shadlen and Newsome, 2001; Mazurek et al., 2003).  However, feed-

back from FEF and possible also LIP are thought to modulate feature-selective neurons according 

to behavioral relevance (Ogawa and Komatsu, 2004).  One hypothesis is that visual neurons that 

represent perceptual evidence in FEF are the source of top down inputs.  If so, then simultaneous 

recordings from FEF and posterior visual cortex should reveal very similar patterns of modulation 

in FEF visual neurons and posterior visual cortex.   

A fourth potential link between model and brain are SEF neurons in medial frontal cortex.  

SEF is interconnected with FEF, SC, and LIP (Huerta and Kaas, 1990).  SEF has both visual and 

movement neurons (Schall, 1991a).  SEF movement neurons, unlike FEF and SC movement 

neurons, do not reach a fixed response threshold and therefore seem inconsistent with evidence 

accumulation (Stuphorn et al., 2010).  However, the role of SEF visual neurons in representing 

perceptual evidence is not known.  To address this question, SEF neurons must be recorded 

during the same visual search task as FEF, SC, and LIP.  If SEF neurons represent perceptual 

evidence, then they should be modulated by physical conspicuousness and behavioral relevance 

similar to other areas known to represent visual salience. 
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Figure 1.6. Potential bridge loci of stochastic accumulator model processes.  The following chapters will address 

whether different regions of macaque cortex represent different components of stochastic accumulator models.  

Chapters III and IV will investigate visual and movement neurons in FEF (red).  Chapter V will investigate the 

relationship between FEF and event-related potentials recorded over posterior visual cortex (blue).  Chapter VI will 

investigate the role SEF (green). 

 

1.6 Overview of studies 

In the following chapters describe a series of experiments that test whether the neuronal 

populations described above could serve as the bridge loci for accumulator model processes. Each 

of the following chapters are published papers or in preparation for publication, and therefore 

each one is written as an independent entity.  However, all papers are connected by a common 

theme in that they provide evidence for the identification of different neuronal populations with 

either a representation of perceptual evidence or evidence accumulation. 

Chapter II does not directly evaluate potential bridge loci of accumulator model processes, 

but instead evaluates methods for comparing accumulator models to neural activity.  The purpose 

of this study was to characterize accumulator model predictions for neural dynamics under a 

range of parameterizations.  This is important preliminary step to identify neurons that implement 

evidence accumulation because noise can cause counterintuitive patterns of dynamics.  This study 

will show that the mapping between model parameters and standard measures of neural dynamics 

is not one-to-one in the face of noise.  In particular, with noise, patterns of predicted dynamics 

based on intuitions about noiseless accumulators can mislead interpretations of patterns of 

neurophysiology.  These results suggest that model dynamics should be directly compared to 



18 

 

neural dynamics, which is the methodology followed in Chapters III and IV.  This work is 

currently in preparation for publication. 

Chapter III evaluates whether FEF visual neurons can be identified with a representation of 

perceptual evidence and whether FEF movement neurons can be identified evidence 

accumulation.  Following the methodology established in (Purcell et al., 2010), I will use visual 

neuron firing rates as input to a multiple accumulator model of search behavior.  I found that a 

model that uses visual neuron firing rates as input can predict detailed search behavior.  Next, 

following the methodology established in Chapter II, I will compare predicted model dynamics 

with observed movement neuron dynamics.  I found that the model predicts the dynamics of 

movement neurons using parameters that were fit to behavior.  This supports the identification of 

visual neurons with perceptual evidence and movement neurons with integration of evidence to 

threshold.  This study is published in The Journal of Neuroscience (Purcell et al., 2012b). 

Chapter IV further tests the link between model components and neuronal populations by 

analyzing the pattern of variability in FEF neurons during search.  This study will show that the 

pattern of response variability in FEF movement neurons is consistent with the pattern of 

response variability predicted by accumulator models.  In addition, this study evaluated how the 

variability of perceptual evidence may change under different conditions by analyzing the 

dynamics of visual neuron response variability.  We found that the mean, but not the variability, 

of visual neuron firing rates is modulated by the strength of perceptual evidence.  This indicates 

that evidence is encoded via signal enhancement rather than noise reduction.  This study is 

published in Journal of Neurophysiology (Purcell et al., 2012c). 

Chapter V tests the potential link between neuronal activity in posterior parietal cortex and 

FEF visual neurons through to represent perceptual evidence.  To address this question, we 

recorded extracranial voltage potentials over posterior visual cortex simultaneously with 

intracranial neuronal activity from FEF.  One advantage of this approach is that ERPs can amplify 

the representation of perceptual evidence in posterior visual cortex by integrating neuronal 
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activity across many centimeters of cortex.  In addition, by using a noninvasive technique, we can 

attempt to identify a potential index of perceptual evidence that can be measured in healthy 

humans.  This study finds that potentials recorded over posterior visual cortex modulate in much 

the same way as FEF neurons and local field potentials.  The timing of these modulations 

suggests that FEF may be a source of input driving the generators of these potentials.  This study 

is published in Journal of Neurophysiology (Purcell et al., 2013). 

Chapter VI tests whether SEF visual neurons represent perceptual evidence.  Although data 

exist to suggest that SEF may not be directly involved in the accumulation of evidence to initiate 

saccades (Stuphorn et al., 2010), less is known about the role that SEF may play in representing 

perceptual evidence for a particular response.  We recorded single unit activity and LFP from the 

SEF of monkeys performing a visual search task.  Surprisingly, we found that SEF neurons do 

not represent the salience (top-down or bottom-up) of stimuli in their receptive field and therefore 

cannot be identified with perceptual evidence for a response.  Instead, SEF neurons signal search 

errors.  This suggests that accumulator model processes do not map onto any SEF neurons.  

Instead, SEF may be involved in performance monitoring processes that are used to adjust 

performance on subsequent trials.  This study is published in The Journal of Neuroscience 

(Purcell et al., 2012a) 

Each study addresses the degree to which particular neurophysiological signals could 

correspond to accumulator model processes.  In some cases, the studies support a close mapping 

between models and physiology.  However, this work also highlights several limitations 

underlying the assumption that simple cognitive models will map cleanly onto discrete neural 

elements.  In the final section (Chapter VII), I will discuss open questions that are raised by this 

work and address potential future approaches with which they could be answered. 
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CHAPTER II 

 

MIMICRY IN MODEL DYNAMICS: RELATING STOCHASTIC ACCUMULATOR MODEL 

PARAMETERS TO NEURAL DYNAMICS 

 

2.1 Abstract 

Accumulator models explain perceptual decisions as the accumulation of evidence to a 

response threshold.  The relationship between model parameters and predicted behavior is well 

known, but the relationship between model parameters and accumulator dynamics has received 

less attention because dynamics were assumed to be unobservable.  The recent identification of 

neuronal activity with the accumulation process suggests that neural dynamics could be used as a 

tool for model selection.  We characterized the expected patterns of neural dynamics using 

different accumulator model parameters to determine when different sources of behavioral 

variability can be distinguished via observed dynamics.  Whereas the mapping between model 

parameters and dynamics is straightforward in the absence of noise, we found that noise 

complicates this relationship.  When noise is moderate to large, changes in the model starting 

point and threshold could be easily identified through model dynamics, but changes in drift rate 

were nearly indistinguishable from changes in the start time of the accumulation (i.e., the 

encoding delay).  We suggest an alternative method for distinguishing changes in drift rate and 

encoding delay based on the across-trial variability of model dynamics.  These results inform the 

interpretation of neurophysiological signals identified with evidence accumulation and suggest 

that researchers should directly compare neural dynamics to model dynamics, and not model 

parameters. 

 

2.2 Introduction 

Cognitive models allow us to infer the basic processes underlying simple perceptual tasks 

(Townsend and Ashby, 1984; Busemeyer and Diederich, 2009).  These models decompose 
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response time (RT) into distinct processes (Meyer et al., 1988; Sternberg, 2001).  Accumulator 

models (also termed sequential sampling models) currently provide the most complete account of 

perceptual decision-making behavior (Ratcliff and Smith, 2004).  These models assume that 

perceptual evidence for a particular response is integrated over time by one or more 

accumulators.  A response is selected when evidence reaches a threshold or boundary.  These 

models can explain RT distributions for both correct and error saccades for a range of perceptual 

tasks. 

Several parameters determine accumulator model predictions.  For example, a drift rate 

parameter defines the mean rate of accumulation, a threshold parameter defines the level of 

evidence that must be reached for a response to be initiated, and a starting point parameter 

determines the initiate state of accumulation.  Often, parameter values are selected to maximize 

the match between observed and predicted behavior.  The resulting values can then be used to 

infer the processes that generated behavior.  However, model parameters also determine the 

dynamics of the accumulation process that unfolds over time.  Less attention has been paid to the 

relation between model parameters and dynamics because these dynamics were assumed to be 

unobservable mental operations. 

Recently, several groups have begun to investigate potential linking propositions between 

accumulator models and neurophysiological measures (Schall, 2004; Smith and Ratcliff, 2004; 

Gold and Shadlen, 2007).   During decision-making tasks, the firing rates of neurons in frontal 

eye field (Hanes and Schall, 1996), superior colliculus (Ratcliff et al., 2003), lateral intraparietal 

area (Roitman and Shadlen, 2002), and premotor cortex (Cisek, 2006) have been identified with 

accumulation to a threshold.  Other groups have identified event-related potentials (ERPs) that 

seem to reflect the evidence-integration process.  During certain perceptual decisions, ERPs 

recorded over parietal cortex demonstrate dynamics consistent with evidence accumulation 

(O'Connell et al., 2012).  In addition, the lateralized readiness potential (LRP), an ERP related to 
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motor preparation, has been identified with accumulation to a response boundary (Gratton et al., 

1988; De Jong et al., 1990; Osman et al., 2000; Rinkenauer et al., 2004; Schurger et al., 2012).   

If valid linking propositions can be identified, then accumulator dynamics could be 

directly observed.  This means that accumulator model dynamics that are generated by parameter 

values fit to behavior could be interpreted as predictions for neural dynamics.  If the mapping 

between model parameters and model dynamics is one-to-one, then predictions for changes in 

neural dynamics could be derived directly from changes in model parameters.  For example, if the 

model requires a change in drift rate to predict behavior, then one might assume a change in 

growth rate of underlying spike trains must have occurred.  Likewise, if appropriate 

neurophysiological data are collected, then one might be able to infer changes in parameters 

simply by analyzing the neural dynamics.  For example, if the growth rate of spike trains changes 

across stimulus conditions, then one might assume that accumulator models will require changes 

in drift rate to explain behavior. 

One potential problem with this approach is that the mapping between model parameters 

and model dynamics may not be one-to-one.  This isn’t a problem for deterministic models in 

which evidence accumulation is ballistic (Brown and Heathcote, 2005; Brown and Heathcote, 

2008), but many accumulator models assume that evidence is noisy (e.g., Usher and McClelland, 

2001; Ratcliff and McKoon, 2008; Smith and Ratcliff, 2009).  Furthermore, noise is ubiquitous in 

neural activity (Faisal et al., 2008).  Given sufficient levels of noise, it is possible that different 

model parameters could predict indistinguishable changes in model dynamics.  In other words, 

the models may exhibit mimicry at the level of dynamics rather than behavior.  However, the 

degree to which this is a problem for the noise levels typically assumed by accumulator models is 

an open question. 

 The goal of this study was to characterize the relationship between accumulator model 

parameters and dynamics.  This is a crucial intermediate step towards understanding the 

relationship between model parameters and neural dynamics that has been unaddressed in 
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previous work.  Previous studies have directly compared the model dynamics with neural 

dynamics (Mazurek et al., 2003; Ratcliff et al., 2003; Boucher et al., 2007; Ratcliff et al., 2007; 

Purcell et al., 2010; Purcell et al., 2012b), but the relation to model parameters was not always 

clear.  For example, Purcell et al. (2010) showed that accumulator models predict the firing rates 

of certain frontal eye field neurons during perceptual decisions, but the effect of specific 

parameters on accumulator dynamics was unclear because the models assumed a complex, time-

varying drift rate.  Other studies have reported model dynamics for sets of parameters that were 

fit to behavioral data (e.g., Ratcliff et al., 2003; Ratcliff et al., 2007), but it is difficult to know 

which parameters contributed to which aspects of the dynamics without systematically 

manipulating the value of individual parameters.   

 In order to characterize the relationship between parameters and dynamics, we quantified 

four measures of model dynamics (onset, growth rate, baseline, and measured threshold) that 

would be expected to correspond to model parameters.  These measures of model dynamics were 

based on established methods that have been applied to neurophysiological data in previous 

studies (Woodman et al., 2008; Purcell et al., 2010; Purcell et al., 2012b).  If the mapping 

between parameters and dynamics is one-to-one, then variation in certain parameters should 

correspond to variation in specific measures of dynamics.  This would mean that model 

parameters could be uniquely identified with specific neural dynamics.  Alternatively, when noise 

is present, changes in one parameter may result in changes in one or more measures of dynamics.  

If so, then measures of neural dynamics cannot be uniquely identified with one parameter.  This 

would mean that inferring changes in a specific model parameter based on changes in a specific 

measure of model dynamics may be invalid. 

 We find that when models include noise, the mapping between some model parameters 

and model dynamics is not one-to-one.  In particular, noisy accumulator models will predict 

variability in the growth rate and onset of dynamics regardless of actual sources of across-trial 

variability.  This can lead to changes in the measured onset across conditions even if the actual 
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encoding delay is unchanged.  We suggest two alternative methods for identifying changes in the 

model encoding delay in the face of noise.  In addition, we find that when models are noisy, 

parameters such as leakage, feed-forward inhibition, and lateral inhibition become very difficult 

to distinguish at the level of model dynamics.  Altogether, these results suggest that, in general, 

model parameters should not be compared directly to neural dynamics.   

 

2.3 Method 

2.3.1 Overview of models 

Different accumulator models make different assumptions about the nature of evidence 

accumulation.  We first evaluated a general independent race model architecture in which one 

accumulator is assumed to accumulate evidence for a single response.  If multiple responses are 

present, then multiple accumulators race to threshold to determine which response is executed 

and the time at which it is executed.  This model is similar to several existing models that assume 

noisy independent accumulators for each response (Vickers, 1970; Smith and Van Zandt, 2000).  

If this model includes no intra-trial noise, then it is similar to the linear ballistic accumulator 

model (Brown and Heathcote, 2008; Palmer et al.) or LATER model (Reddi & Carpenter, 1995).  

We also evaluated a bounded race model that assumes a single accumulator with boundaries in 

both the positive and negative directions representing alternative responses.  This model is similar 

to the well-known drift-diffusion model (Ratcliff, 1978; Ratcliff and Rouder, 1998).  Results for 

the bounded model were highly similar to the independent race model, and therefore we 

summarize them in the Appendix (Figure A.1-A.3). 

All accumulator models share several common assumptions.  We use the term primary 

parameter to refer to parameters that determine basic properties of the accumulation process 

under a single experimental condition (Donkin et al., 2011).  Accumulator models assume four 

primary parameters.  First, the drift or drift rate (v) determines the mean rate of accumulation.  

This parameter is assumed to reflect the strength of sensory evidence for a particular response; 
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strong evidence results in a higher drift rate.  Second, the starting point determines the level at 

which evidence accumulation begins.  Adjustments in the relative values of the starting point 

across different accumulators can introduce response biases.  Third, the model threshold  (a) 

determines the level of evidence that must be accumulated before a response is initiated.  

Increasing or decreasing the threshold for all accumulators emphasizes accuracy or speed, 

respectively.  Note we use the term model threshold rather than simply threshold to distinguish 

the model parameter from our measure of model dynamics described below.  The fourth primary 

parameter of interest is the encoding delay (D) or the delay between the onset of a stimulus and 

the start of the accumulation process.  This is assumed to be the time during which the properties 

of the stimulus are be encoded with respect to task demands.  Typically, the encoding delay is 

combined with motor delay time that is assumed to follow the accumulation process into a single 

non-decision time parameter, but the two can be distinguished in neurophysiological signals. 

Here, we focus specifically on the encoding delay because the motor delay is known to be 

relatively short and invariant for many neurophysiological signals identified with evidence 

accumulation (e.g., Gratton et al., 1988; Scudder et al., 2002).   

Different models make different assumptions about sources of behavioral variability.  

The first way in which models differ in their assumptions about variability is whether or not they 

assume intra-trial variability (i.e., noise) in accumulation.  For example, the diffusion model 

(Ratcliff, 1978) assumes that the accumulation process is noisy (i.e., stochastic), whereas LBA 

(Brown and Heathcote, 2008) assumes that the accumulation is noiseless (i.e., deterministic).  

Noise is assumed to be sampled from a Gaussian distribution with mean 0 and standard deviation, 

s.  A primary goal of this work was to understand the effect of noise on the relation between 

model parameters and model dynamics.  We did this in two ways.  First, we contrasted noiseless 

models (s = 0) to noisy models (s = 0.1).  We choose s = 0.1 because s is commonly fixed to this 

value when fitting models to empirical data by convention (Ratcliff and Rouder, 1998; Ratcliff 

and Tuerlinckx, 2002; Ratcliff and Smith, 2004), although this may not be necessary for all 
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conditions (Donkin et al., 2009).  Second, we report the changes in model dynamics while 

systematically varying the level of noise, drift rate, and model threshold.  This allowed us to 

characterize how the effect of noise on model dynamics depends on the relative values of these 

parameters. 

The second way in which models differ in their assumptions about variability is whether 

or not they assume across-trial variability in certain model processes.  For each primary 

parameter, there is one additional secondary parameter that determines how that parameter varies 

across trials.  The drift rate varies across trials according to a Gaussian distribution with standard 

deviation, η.  The starting point varies according to a Uniform distribution with range, sz.  The 

encoding delay varies according to a uniform distribution with range, st.  The model threshold 

varies according to a Gaussian distribution with standard deviation, sa.  Typically, different 

models assume different sources of across-trial variability.  For example, LBA assumes across-

trial variability in only the drift rate and the starting point.  Our goal was to understand how well 

each of these secondary parameters could be identified through measures of model dynamics.  

Therefore, rather than focus on a single model architecture with specific assumptions about 

sources of variability, we independently assessed the effect of different sources of variability on 

model dynamics2.  We evaluated different versions of each model that assumed a single source of 

variability by systematically varying one secondary parameter and setting all other secondary 

parameters to zero. 

 In addition to primary and secondary parameters, some accumulator models assume 

additional parameters that determine the degree to which integration is perfect or leaky, and 

whether or not there are competitive interactions among accumulators (e.g., Usher and 

                                                 
2 Note that many accumulator models allow for multiple sources of across-trial variability, so these 

simulations represent an idealized situation.  Even if we can show that a source of across-trial variability 

can be uniquely identified with one measure of model dynamics, we cannot be sure that this is true when 

interactions with other sources of variability are present.  However, our simulations will demonstrate that 

even in this idealized situation, we still cannot identify certain sources of variability based on dynamics 

alone.  This problem could only be exacerbated by additional sources of variability. 
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McClelland, 2001).  Therefore, we also evaluated three additional model architectures to 

determine the degree to which leakage and competition can be identified in model dynamics.  The 

leaky race model assumes that integration of evidence is not perfect, but decays with some time 

constant.  This model is similar to the leaky competing accumulator model (Usher and 

McClelland, 2001) without competition and similar to an Ornstein-Uhlenbeck process in which 

the rate of accumulation decreases as the amount of accumulated evidence increases (e.g., 

Busemeyer and Townsend, 1993; Smith, 1995).  The competitive model assumes that competing 

accumulators represent different responses.  This model is also similar to the leaky competing 

accumulator model (LCA; Usher and McClelland, 2001) without leakage.  Competition can be 

implemented as either feed-forward (Ditterich, 2006; Ratcliff et al., 2007) or lateral (Usher and 

McClelland, 2001) inhibition (see also Bogacz et al., 2006).   

 

2.3.2 Measures of model dynamics   

We investigated whether there was a one-to-one mapping between accumulator model 

parameters and four changes in model dynamics that could potentially explain changes in 

behavior.  Measures of model dynamics were selected so that each measure should correspond to 

a specific model parameter if models were noiseless.  First, we measured the onset time of 

accumulation relative to the appearance of the stimulus.  This is the point when activity first 

increased from baseline towards the threshold.  In the absence of noise, changes in the measured 

onset of accumulation should correspond to changes in the encoding delay parameters, D and st.  

Second, we measured the growth rate of accumulation to threshold.  This is the average rate of 

change in activation from the time when activity first began increasing until the time when the 

threshold was reached.  In the absence of noise, changes in the measured growth rate should 

correspond to changes in the drift rate parameters, v and η.  Third, we measured the baseline of 

accumulation.  This is the initial level of evidence prior to the start of the accumulation process. 

In the absence of noise, this should correspond to the starting point parameters, z and sz.  Fourth, 
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we measured the measured threshold activation.  This is the level of activation when the response 

was initiated.  Here, we use the term measured threshold to distinguish the measure of dynamics 

from the model threshold parameter.  In the absence of noise, this should correspond to the model 

threshold parameter, a and sa.  The critical question was whether these relationships will hold 

when the accumulator is noisy (s > 0.01).   

We used established methods for quantifying model and neurophysiological dynamics 

that have been used in previous studies (Woodman et al., 2008; Purcell et al., 2010; Pouget et al., 

2011; Purcell et al., 2012b).  To quantify the onset of activation, we used a sliding-window 

algorithm (+/- 50 ms) that moves backward in 1 ms increments beginning at the time when the 

threshold is reached.  The onset of activation was determined as the time when the following 

criteria are met: (1) activity no longer increases according to a Spearman correlation (alpha = 

0.05) within the window around the current time; (2) activity at that time was lower than activity 

during the 20 ms preceding saccade onset; and (3), as the window was moved backwards in time, 

the correlation remains nonsignificant for 90ms.  We also tested whether the results are similar 

when the onset is computed using an alternative approach in which the onset is determined by the 

time at which activation first exceeds 10% of the distance from baseline to threshold 

(Schwarzenau et al., 1998).  To quantify the growth rate, we divided the distance from starting 

point to threshold by the time from onset until RT.  To quantify the baseline, I will compute the 

average activation in the initial 50ms of the simulation, which was always less than the minimum 

encoding delay.  To quantify the measured threshold, I will compute the average model activation 

from 10 s before until 10 s after the threshold was reached.   

For the most analyses, we report measures of model dynamics computed directly from 

the average accumulation process.  This continuous signal may be most comparable to ERP 

components.  However, accumulator models have also been mapped to the activity of individual 

neurons, which discharge action potentials (spikes) at discrete time points.  The spiking statistics 

of cortical neurons have been modeled according to a Poisson process with a time-varying rate 
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parameter (e.g., Nawrot et al., 2008).  Here, the accumulation process would be more akin to the 

rate parameter, and the Poisson spiking would introduce additional variability that could alter 

measured dynamics.  Therefore, we also simulated a Poisson process using our model dynamics 

as the rate parameter.  Model trajectories were rescaled by dividing by model threshold, a, and 

then multiplying by 50 to produce mean firing rates on the order of typical cortical neurons (e.g., 

Purcell et al., 2012b).  As in neurophysiological studies, we converted simulated spike trains to a 

continuous function by convolving them with a kernel shaped like a post-synaptic potential 

(Thompson et al., 1996).  The resulting activity can then be analyzed exactly as was done for the 

raw model dynamics. 

 

2.3.3 Simulation methods 

To understand the relationship between model parameters and dynamics, it was necessary 

to use numerical simulations in order to analyze the model trajectory associated with each 

response.  Our motivation was to inform the comparison of accumulator models and 

neurophysiology, and therefore our simulation methods aimed to approximate the statistical 

power of neurophysiological recordings.  For a given set of parameters, each model will first 

generate 200 simulated trials.  We refer to this set of trials as a simulated session because it 

roughly corresponds to the number trials obtained from one condition of a single experimental 

session.  For each simulated session, trials were grouped into RT deciles (bins of size 20) and the 

average model trajectory was computed for each decile.  This process was repeated for 200 

simulated sessions.  This approach afforded some noise reduction via averaging, but avoids major 

distortions of model dynamics that can result from averaging trials that result in very different 

RTs.  This approach also allowed us to ask how model dynamics change with RT when models 

assume different sources of across-trial variability.  We found that our results are robust to large 

variations in the number of trials in a given simulated session (Figure A.4). 
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We report the results from two different approaches to measuring model dynamics.  First, 

we could analyze individual simulated sessions and the pool across sessions.  This approach 

approximates the statistical power expected in typical neurophysiological experiments in which 

measurements are made on individual neurons or subjects.  Alternatively, model dynamics could 

be averaged across all simulated sessions to first eliminate noise, and then measurements could be 

computed based on this population grand average.   This approach will test whether the noise 

reduction afforded by pooling across subjects or neurons can change our results. 

 

2.4 Independent race model simulations 

We first simulated an independent race model using a range of parameters in order to 

understand the relationship between model parameters and measured dynamics.  Model 

activation, X, was set to an initial point, z for the duration of the stimulus encoding delay, D.  

Following the encoding delay, model dynamics are governed by the following stochastic 

differential equation: 

. 

For each simulated trial, I is sampled from a Gaussian distribution with mean v and standard 

deviation η.   is a Gaussian noise term with a mean of zero and standard deviation, s.  RT is 

given as the time when activation, X, reaches a fixed threshold.  Model threshold, a, varies 

according to a Gaussian distribution with standard deviation sa.  Encoding delay, D, varies across 

trials according to a Uniform distribution with range st.  Baseline, z, can vary across trials 

according to a Uniform distribution with standard deviation, sz.  All model activation which drops 

below zero will be set to zero because spike rates cannot fall below zero.  All simulations used an 

integration time step of dt = 1 ms.   
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2.4.1 Identifying sources of across-trial variability from model dynamics: noiseless independent 

race 

 We first evaluated whether distinct sources of across-trial variability (i.e., secondary 

parameters) could be identified based on patterns of model dynamics.  To validate our measures 

of model dynamics, we first evaluated an independent race model with no noise.  This model 

architecture is similar to LBA (Brown and Heathcote, 2008) or LATER (Reddi and Carpenter, 

2000) models.  Whereas LATER and LBA assume only across-trial variability in drift rate and 

starting point, we evaluated four versions of this model that each assumed a different source of 

across-trial variability.  This was done by first setting default values of the primary model 

parameters (Tr = 0.2, v = 0.2, z = 0.018, a = 0.5) and initially setting noise to zero (s = 0).  For 

each version of the model, one of the secondary parameters (i.e., st, η, sz, sa) was set to a positive 

value and all other secondary parameters were set to zero.  Parameter values were selected to 

produce response times on the order of those typically observed in perceptual decision-making 

experiments.  To introduce the problem, we first present results using default values of these 

parameters.  Later, we present a more thorough exploration of parameter space to demonstrate the 

generality of these results.   

The first version of the noiseless independent race model assumed that across-trial 

variability in the encoding delay was the only source of behavioral variability (st = 0.2, η = 0, sz = 

0, sa = 0).  Figure 2.1A plots the average trajectories for six representative RT groups.  If 

encoding delay maps directly onto measured onset, then we would expect slower RTs to be 

associated with longer delays.  Indeed, this is exactly what was observed (Figure 2.1A).  

Similarly, Figure 2.1B-D shows that each measure of model dynamics can be uniquely identified 

with a different source of across-trial variability.  The second version of the model assumed that 

across-trial variability in drift rate is the only source of variability (st = 0, η = 0.1, sz = 0, sa = 0).  

For this version, longer RTs are associated with slower rates of accumulation (Figure 2.1B). The 

third version of the model assumed that across-trial variability in starting point was the only 
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source of variability (st = 0, η = 0, sz = .02, sa = 0).  For this version, longer RTs are caused by 

trials in which the baseline level was lower (Figure 2.1C).  Finally, when variability in threshold 

is the only source of behavioral variability (st = 0, η = 0, sz = 0, sa = 0.01), longer RTs are caused 

by greater levels at which the accumulation terminates (Figure 2.1D).  These results are in line 

with general intuitions about how accumulator model dynamics behave in the absence of noise. 

 

 

Figure 2.1 Independent race model dynamics.  Plotted trajectories are averages from RT deciles.  For clarity, only 

the 5th – 10th decile is plotted.  Horizontal dashed lines indicate measured threshold.  All simulations used the 

following primary parameters: D = 0.2, v = 0.2, z = 0.018, a = 0.05.  A-D: Simulated trajectories from a single 

simulated session (200 trials) of a noiseless independent race model (s = 0).  Rows differ according to the source of 

across trial variability (A: across-trial variability in encoding delay; st = 0.2, η = 0, sz = 0, sa = 0; B: across-trial 

variability in drift rate; st = 0, η = 0.1, sz = 0, sa = 0; C: across-trial variability in starting point; st = 0, η = 0, sz = 0.02, 

sa = 0; D: across-trial variability in threshold; st = 0, η = 0, sz = 0, sa = 0.01).  E-H: Same as A-D, but with the addition 

of noise (s = 0.1).  All other parameters are identical across rows.  I-L: Grand average trajectories for 200 simulated 

sessions using the same parameters as in E-H. 

 

 We used these noiseless model trajectories to evaluate the validity of our quantitative 

measures of model dynamics.  Figure 2.2 plots our measures of model dynamics as a function of 
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RT decile for the four versions of the model with different sources of across-trial variability.  If 

the mapping between measures of model dynamics and secondary model parameters is one-to-

one, then each model should produce significantly correlations between only one measure of 

model dynamics and RT.  Indeed, there is a clear one-to-one mapping between each secondary 

parameter and each measure of model dynamics.  The version of the model that assumed only 

across-trial variability in the encoding delay (column 1) predicts that the measured onset 

correlates perfectly with RT, and there is no significant correlation between RT and any other 

measures (all p > 0.05).  Similarly, the version of the model that assumed only across-trial 

variability in drift rate (column 2) predicts that the measured growth rate is strongly inversely 

correlated with RT, and there is no significantly correlation between RT and any other measure 

(all p > 0.05).  The correlation is not perfect due to the geometry of the accumulation process.  

The version of the model that assumed only across-trial variability in starting point (column 3) 

predicts that the measured baseline is perfectly inversely correlated with RT, and there is no 

significant correlation between RT and any other measure (all p > 0.05).  Finally, the final version 

of the model that assumed only across-trial variability in model threshold (column 4) predicts that 

the measured threshold is perfectly correlated with RT, and there is no significant correlation 

between RT and any other measure (all p > 0.050.  These results validate our measures of growth 

rate and onset and confirm our intuitions about noiseless accumulator dynamics.  
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Figure 2.2 Measures of model dynamics for a noiseless independent race model (s = 0).  Scatterplots show the 

measured onset (row 1), growth rate (row 2), baseline (row 3), and threshold (row 4) as a function of the mean RT for 

all ten RT deciles for four versions of the model in which all across-trial variability was due to variability in encoding 

delay (column 1; st = 0.2), drift (column 2; η = 0.1), starting point (column 3; sz = 0.02), or threshold (column 4; sz = 

0.01).  All other parameters governing across-trial variability were set to zero.  The four columns correspond to the 

trajectories plotted in Figure 2.1A-D.  Scatterplots that produced a significant correlation between mean RT and the 

measure of model dynamics are indicated with the Pearson correlation coefficient, r, and corresponding p-value.  All 

other p > 0.05. 

 

 

2.4.2 Identifying sources of across-trial variability from model dynamics: noisy independent race 

 The preceding section showed that each measure of model dynamics can be uniquely 

identified with a specific measure of model dynamics when the accumulation process is noiseless.  

However, many models assume that the accumulation process is noisy.  Noise will contribute to 

predicted behavioral variability and will also affect model dynamics.  Moreover, all 

neurophysiological signals are inherently noisy.  Therefore, we must evaluate the degree to which 

alternative sources of variability can be uniquely identified with measures of model dynamics 

when models assume noise.  To explore the effects of noise on model dynamics, we next 

simulated the independent race model using identical parameters as described above, but with the 
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addition of conventional levels of noise (s = 0.1).  Later, we will report results from simulations 

in which the level of noise was varied.   

To provide an intuition for how noise can affect model dynamics, we first consider a 

single representative simulated session (200 trials) from each version of the model that assumed a 

different source of across-trial variability (Figure 2.1E-H).  Figure 2.1E shows example model 

trajectories for six RT deciles when variability in the encoding delay was the only additional 

source of across-trial variability (st > 0).  The accumulation is noisier, but the onset of 

accumulation still appears to increase with RT as it did for the noiseless model (Figure 2.1A).  

Figure 2.1F shows example model trajectories from a simulated session in which variability in 

drift rate was the only source of across-trial variability in addition to noise (η > 0).  In contrast to 

the noiseless model (Figure 2.1B), the onset of accumulation appears to increase with RT 

although the model assumed no variability in the encoding delay.  Similarly Figures 2.1G,H show 

example model trajectories from a version of the model in which variability in starting point (sz > 

0) and model threshold (sa > 0), respectively, were the only sources of across trial variability.  

These models also show an apparent increase in the onset of accumulation, despite assuming no 

across-trial variability in the encoding delay (st = 0).  Qualitatively, it appears that the onset of 

model activation increases with RT for each version of the noise race model, irrespective of 

actual sources of across-trial variability. 

The example sessions in Figure 2.1E-H suggests that the one-to-one mapping between 

model parameters and dynamics may break down with noise.  To quantify this effect, we 

computed the measured onset, growth rate, baseline, and measured threshold for each RT decile 

of 200 simulated sessions.  Figure 2.3 summarizes the results for each version of the model that 

assumed a different sources of across-trial variability (delay, drift, starting point, or model 

threshold).  First, consider the relationship between measured onset and RT for each version (row 

1).    As in the example simulated session (Figure 2.1E-H), the measured onset correlates strongly 

and consistently with RT for all four versions of the model.  Therefore, correlations between 
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onset and RT cannot be uniquely identified with a single source of across-trial variability for 

noisy accumulators.  Second, consider the relationship between measured growth rate and RT for 

each version (row 2).  All models predict that growth rate is inversely correlated with RT.  The 

correlation is strongest and most consistent for model that included variability in drift, starting 

point, or model threshold and slightly weaker for the model that assumed variability in encoding 

delay.  Therefore, correlations between growth rate and RT cannot be uniquely identified with a 

single source of across-trial variability for noisy accumulators.  Third, consider the relationship 

between the measured baseline and RT for each version (row 3).  Only the model that included 

variability in starting point predicted a correlation between measured baseline and RT.  

Therefore, correlations between baseline and RT can be uniquely identified with across-trial 

variability in starting point, but note that the effect is weaker in the upper tail as noise begins to 

explain larger proportions RT variability.  Fourth, consider the relationship between the measured 

threshold and RT for each version of the model (row 4).  All versions of the independent race 

model that did not include variability in model threshold show no correlation between measured 

threshold and RT.  However, the model that included threshold variability showed a strong and 

consistent correlation.  Therefore, correlations between threshold and RT can be uniquely 

identified with across-trial variability in model threshold. 
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Figure 2.3 Measures of model dynamics for a noisy independent race model (s = 0.1).  Conventions as in Figure 2.2 

except that points now indicate the mean measures of model dynamics across 200 simulated sessions.  Errorbars are 

±SD.  Each panel also shows the average Pearson correlation coefficient across all simulated sessions, , and the 

percentage of simulated sessions that produced a significant correlation (p < 0.05). 

 

 

Across simulated sessions, correlations between RT and the growth rate or onset of 

accumulation were present regardless of actual sources of across-trial variability.  One potential 

explanation is that a single simulated session with only 200 trials is still too noisy to reliably 

detect the actual end of the encoding delay (i.e., start of the accumulation).  Signal averaging is 

the most common approach to noise reduction in neurophysiological analyses (e.g., Luck, 2005).  

Therefore, we tested whether we could more reliably detect variability in encoding delay (st) and 

drft rate (η) by averaging model trajectories for each RT decile across 200 simulated sessions 

(4000 total simulated trials) before computing our measures.  Figure 2.1I-L shows the grand 

average model trajectories for six example RT bins across 200 simulated sessions.  Qualitatively, 

the change in the onset and growth rate of the average trajectories appears remarkably similar 

regardless of the source of across-trial variability (contrast with Figure 2.1A-D).  Figure 2.4 
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shows the relationship between RT and each measure of model dynamics computed from the 

grand average model trajectories.  In general, the patterns are very similar to those based on 

individual simulated sessions.  These results indicate that averaging cannot eliminate the 

observed correlations between RT and measured onset and growth rate and indicate that our 

results are unlikely to be due to a lack of power.  In other words, if these were actual 

neurophysiological signals, then simply collecting more data cannot alleviate the problem. 

 

Figure 2.4 Measures of grand average model dynamics for a noisy independent race model.  Conventions as in Figure 

2.2 except that points now indicate measures of model dynamics computed directly from the grand average of 200 

simulated sessions as plotted in Figure 2.1 (I-L). 

 

2.4.3 Generalization across parameter space 

Thus far we have reported results for only four sets of parameters with and without noise, 

but it is important to verify that these results generalize to broader regions of parameter space that 

are typically encountered when fitting accumulator models to empirical data.  One concern is that 

we simply selected unrealistically small values of across-trial variability.  To test whether this 

was the case, we evaluated a range of values for each secondary parameter.  We selected ranges 
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of parameters based on the relative value of the corresponding primary parameter to encompass 

the ranges typically found for fits of LBA and diffusion models to empirical data (Matzke and 

Wagenmakers, 2009; Donkin et al., 2011).  Figure 2.5 shows the average correlation (±SD) 

between RT and each measure of model dynamics from 200 simulated sessions as a function of 

each secondary parameter.  There are several important observations.  First, there is a strong 

positive correlation between measured onset and RT (row 1) and between measured growth rate 

and RT (row 2) regardless of the values of η ,st, sz, or sa.  Thus, given conventional noise levels 

(s = 0.1), the measured onset and growth rate will correlate strongly with RT irrespective of 

actual sources of variability.  Second, there is a monotonic relationship between sz and the 

strength of correlation between RT and baseline.  Thus, this correlation serves as a good indicator 

for the magnitude of across-trial variability in starting point.  Third, there is a monotonic 

relationship between sa and the strength of correlation between RT and measured threshold.  

Thus, this correlation serves as a good indicator of the magnitude of across-trial variability in 

threshold.  Altogether, these results suggest that these effects are robust to variation across a 

range of values of parameters governing across-trial variability. 
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Figure 2.5 Correlations between measures of model dynamics and RT for a noisy independent race model (s = 0.1) 

with increasing levels across-trial variability.  All simulations used the same primary parameters as preceding figures 

(D = 0.2, v = 0.2, z = 0.018, a = 0.5).  For each column, one parameter determining across-trial variability was varied 

and all other parameters determining across-trial variability were set to zero.  For versions of the model that included 

variability in delay (st) and drift (η), these parameter were varied from 0 to 100% of the value of the corresponding 

primary parameters (D and v), respectively.  For versions of the model that included variability in starting point (sz) and 

model threshold (sa), these parameters were varied from zero until the maximum possible value constrained by the 

distance from starting point to threshold (a – z). 

 

The preceding analyses indicate that the measured onset and growth rate will correlate 

with RT irrespective of additional sources of variability when conventional levels of noise are 

added.  Moreover, these effects could not be eliminated with additional signal averaging.    Why 

is this the case?  To elucidate the effect of noise on accumulator dynamics, we simulated the 

noisy independent race model with no additional sources of across-trial variability (s = 0.1, η = 0, 

st = 0, sz = 0, sa = 0).  Figure 2.6A-C shows examples of individual simulated trials and Figure 

2.6D-F shows the probability of a particular activation level at each time point given that the 

process terminated in a fast, medium, or slow  RT.  The first feature to note is that relatively 

direct paths to the threshold are the only model trajectories that can have produced the fastest RTs 
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(Figure 2.6A,D).  Hence, the fasted RTs occur when, by chance, noise is repeatedly sampled in 

the positive direction.  This produces the elevated measured growth rate that was described 

above.  The second feature to note is that many different paths can produce slower RTs (Figure 

2.6B,C), but the paths must always have remained between the two boundaries (Figure 2.6E,F).  

The result is that, on average, the trajectories remain near baseline until shortly before the 

response is initiated.  This pattern of dynamics has been noted before for versions of the drift 

diffusion model (Ratcliff, 1988; Ratcliff et al., 2003; Ratcliff et al., 2007), but the impact of noise 

on measures of neurophysiology dynamics has never been quantified and the effect has never 

been systematically explored. 

 

Figure 2.6 The impact of noise (s = 0.01) on independent race model dynamics for simulations resulting in fast (top; 

RT < 0.2 s), medium (middle; 0.3 s < RT < 0.4 s) and slow (bottom; 0.4 s < RT < 0.5 s) responses.  All simulations 

used the same primary parameters as preceding figures (D = 0.2, v = 0.2, z = 0.018, a = 0.5), but with no sources of 

across-trial variability other than noise (st = η = sz = sa = 0).  A-C: Simulated trajectories for 10 individual trials 

(colored lines) and their average (black).  Here, individual trails have been low-pass filtered for illustrative purposes 

only.  All other figures and analyses used unfiltered model trajectories.  D-F: The conditional probability that the model 

trajectory was at an activation level at each time step given that the simulation produced a correct fast, medium, or slow 

RTs. 
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To what extent does this pattern generalize across values of primary parameters? To 

address this question, we again consider a model with no sources of across-trial variability (η = st  

= sz = sa = 0).  The encoding delay parameter D simply shifts RTs and the start of the model 

dynamics by a constant amount, and can therefore be ignored for these analyses.  Therefore, the 

predicted model dynamics will depend on the relative values of three parameters: v, a, and s. We 

computed the correlation between each measure of dynamics and RT while varying the 

coefficient of variation s/v (CV), v (v = 0.1 – 0.3) and a (a = 0.04 – 1.6).  The ratio of z/a was 

fixed so that the position of the starting point relative to the bound was constant (z/a = 0.36, as 

above).    Figure 2.7A shows the mean RT across 200 simulated sessions as a function of a, v, and 

CV.  As expected, RTs increase with a, and decreases with v and CV.  The important point is that 

our chosen parameter ranges span a broad range of mean RTs that are typically observed in 

perceptual decision-making tasks.  Thus, we can at least be certain that our conclusions are valid 

for a large subset of plausible parameter values although an exhaustive exploration of parameter 

space is not possible.  Figure 2.7B shows the mean correlation between each measure of model 

dynamics and RT across 200 simulated sessions.  First, consider the effect of each parameter on 

the correlation between measured onset and RT (column 1).  These panels show that even though 

the encoding delay is fixed (st = 0), the model predicts a strong correlation between measured 

onset and RT so long as CV is greater than ~0.3 regardless of the level of drift rate or threshold.  

This result is important because it means that so long as the CV of the model is high, one would 

expect to see an increase in measured onset with RT even when the encoding delay is constant.  

Second, consider the effect of each parameter on the correlation between measured growth rate 

and RT (column 2).  Irrespective of other parameter values, even small amounts of noise will 

predict a negative correlation between growth rate and RT.  This result is important because it 

means that decreases in the correlations between growth and RT do not imply across-trial 

variability in drift rate.  Rather, this may simply be due to noisy accumulation.  Finally, consider 

lack of an effect on each parameter on the measured baseline and measured threshold (columns 3 
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and 4).  Regardless of the CV, v, or a these measures will not correlate with RT unless across-trial 

variability in these parameters (i.e., sz or sa) is explicitly built into the model.  Altogether, these 

results help to shed light on the potential inferences about model parameters that can be made 

based on the pattern of observed neural dynamics. 

 

 

Figure 2.7 The effect of drift rate (v), threshold (a), and coefficient of variation (CV = s/v) on mean RT (A), and the 

mean predicted correlation between each measure of neural dynamics and RT (B).  Values are the average across 200 

simulated sessions.  Encoding delay was fixed at D = 0.2 and starting point was fixed at a/z = 0.36.  Noise was the only 

source of across trial variability (st = η = sz = sa = 0). 

 

2.4.4 Accumulator noise, not Poisson spiking, distorts response dynamics 

Thus far we have measured the onset, growth rate, threshold, and baseline directly from 

the continuous model dynamics, but accumulator models have been identified with single-unit 

spiking.  Intrinsic spiking will increase the variability of the accumulation process, and could 

affect our measures of model dynamics.  For example, perhaps the total synaptic input to a neuron 

is essentially captured by a noiseless accumulator model, but spiking is still variable due to 

biophysical properties of neurons (e.g., volume of neurotransmitter release, proportion of ion 
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channels open, etc).  Would spiking variability also distort the relationship between model 

parameters and dynamics?  To address this question we used our model dynamics as the rate 

parameter for Poisson process to simulate spike trains.  Trajectories were rescaled to approximate 

the mean firing rates of cortical neurons identified with evidence accumulation (e.g., Purcell et 

al., 2012b), but the dynamics were unchanged.  Following conventional neurophysiological 

methods, we converted those spike trains to a spike density function by convolving them with a 

kernel shaped like a post-synaptic potential (Thompson et al., 1996), and analyzed the resulting 

spike density function using the identical methods as were used above for the raw model 

dynamics.   

We analyzed the dynamics of the independent race model using the same default 

parameters as in the preceding section (v = 0.2, z = 0.018, a = 0.5), but with the addition of 

Poisson spiking variability.  We also increased D to 0.3 to avoid edge effects of the convolution 

used to generate the spike density function.  We simulated the same four versions of a noiseless 

independent race model (s = 0) that assumed different sources of across-trial variability (Figure 

2.8A-D).  Even with the addition of Poisson spiking, the parameters of the noiseless independent 

race model could be uniquely identified through accumulator dynamics.  This is because the 

spiking variability, unlike accumulator noise, is independent of RT.  Although individual trial 

dynamics are noisier, the noise is independent across trials and averages out.  We next simulated 

four versions of a noisy race model (s = 0.1) that assumed different sources of across-trial 

variability (Figure 2.8E-H).  Similarly, we found that our conclusions are essentially unchanged 

when Poisson spiking is added to a noisy independent race model.  Although the Poisson noise 

averages out across trials, the accumulator noise still distorts the relationship between model 

parameters and dynamics.  Thus, as long as spiking is independent of RT, Poisson noise will 

average out and will not substantially distort observed model dynamics.  In other words, if these 

were actual neurophysiological signals, simply collecting more data would be sufficient to 

eliminate variability due to Poisson spiking.  
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Figure 2.8 Independent race model dynamics with Poisson spiking.  Plotted trajectories are averages from the 5th-10th 

RT decile. The model trajectory for each simulated trial was rescaled to have a measured threshold of 50 spikes/second 

(sp/s) and then used as the time-inhomogeneous mean rate to a Poisson process.  A-D: Grand average spike density 

functions (n=200 simulated sessions) generated from the dynamics of a noiseless independent race model (s = 0).  All 

parameters are identical to Figure 2.1A-D.  E-H: Grand average spike density functions (n=200 simulated sessions) 

generated from the dynamics of a noisy independent race model (s = 0.1).  All parameters are identical to Figure 2.1I-L. 

 

2.4.5 Across-condition changes in model parmeters and dynamics 

The preceding section demonstrated that distinct sources of across-trial variability may be 

nearly indistinguishable at the level of model dynamics.  Often, however, researchers are 

primarily interested in parameter changes that are necessary to capture observed behavioral 

changes across experimental conditions.  Therefore, we also tested whether potential sources of 

across-condition variability can be identified through measured dynamics.   

To test whether parameter changes can be uniquely identified with changes in dynamics, 

we simulated the independent race model with no sources of across-trial variability (st = η = sz = 

sa = 0).  We fixed other primary parameters at the same default values as before (v = 0.2, Tr = 
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0.2, z = 0.018, a = 0.05) and varied one parameter at a time.  We first evaluated a model that 

included no noise (s  = 0) for comparison with noisy models.  The left column of panels in Figure 

9A-D shows the simulated trajectories for four different versions of a noiseless independent race 

model with different sources of across-trial variability.  As expected, changes in all primary 

parameters could be uniquely identified with changes in noiseless model dynamics. 

We next evaluated a noisy accumulator model with conventional levels of noise (s = 0.1).  

For each simulated condition (i.e., parameter set), we independently analyzed each RT decile to 

avoid averaging across trials with very different durations.  Figure 2.9 shows the grand average 

trajectories from 200 simulated sessions for the 1st, 5th, and 9th RT deciles.  We quantified each 

measure of model dynamics independently for each RT decile and then averaged across deciles 

and sessions (Figure 2.11).  First, consider the effect of changing the encoding delay on predicted 

model dynamics (row 1).  The measured onset increases with the encoding delay for all RT 

deciles, although it is increasingly biased at slower RTs as described above.  Second, consider the 

effect of changing the drift rate on model dynamics (row 2).  When the model is noiseless, the 

change in drift rate is clearly identifiable through changes in the growth rate, but the model 

exhibits very different changes in dynamics when noise is included.  For the fastest RTs (1st 

decile) , the predicted trajectories are indistinguishable regardless of drift rate changes.  This is 

because the fastest RTs always occur when positive noise early in the trial causes a rapid rise to 

threshold.  For slower RTs (9th decile), the onset of accumulation is later when the drift rate is 

lower, in addition to changes in the measured growth rate (Figure 2.11).  In other words, noisy 

race models can predict that changes in the drift rate produce changes in both the onset of 

accumulation and growth rate if all RT deciles are used.  Third, consider the effect of changing 

baseline on model dynamics (row 3).  Changes in starting point cause changes in baseline 

regardless of RT, and so starting point can be uniquely identified with changes in baseline (Figure 

2.11).  Note, however, that accumulator dynamics become complex for slow RTs as the ratio z/a 

is altered.  When z/a is high, the mean model trajectory dips away from threshold following the 
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encoding delay.  This is because in order for trials to terminate with long RTs, negative noise 

must have moved the accumulation away from threshold early in the trial.  When z/a is low, 

model trajectories are sigmoidal, and our standard measures of model dynamics no longer 

adequately characterize these trends.  These dynamics pose a challenge when comparing fitted 

model parameters to neurophysiology,  If the z/a ratio must be very large or small to explain 

behavior, then a neural signal must exhibit these dynamics with large RTs to be identified with 

evidence accumulation.  Finally, consider the effect of changing the threshold on model 

dynamics.  Regardless of RT, changes in the model threshold cause changes in the measured 

threshold (Figure 2.10).  Thus, changes of model threshold across conditions can be uniquely 

identified with changes in measured threshold. 

 

Figure 2.9 Across-condition changes in independent race model dynamics.  The left panels show predicted model 

dynamics for a noiseless race model (left column; s = 0).  All other panels show predicted model dynamics for a noisy 

race model at the 1st, 5th, or 9th RT decile, but with the addition of noise (s = 0.1).  For each row, we selectively 

manipulated one parameter (delay, D; drift, v; starting point, z; or model threshold, a) and all other parameters were 

fixed at default values (D = 0.2, v = 0.2, z = 0.018, a = 0.5).  All parameters determining across-trial variability were set 

to 0 (st = η = sz = sa = 0).  Each plot shows the grand average trajectory across 200 simulated sessions for a single RT 

decile (9th decile). 
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Figure 2.10 Across-condition changes in measures of model dynamics.  Across-condition changes in measures of noisy 

independent race model dynamics.  For each column of panels, we selectively manipulated one parameter (delay, drift, 

starting point, or model threshold) and all other parameters were fixed at default values (D = 0.2, v = 0.2, z = 0.018, a = 

0.5).  For each simulated session, each measure was computed for individual RT deciles and then averaged.  Plots show 

the mean of each measure across 200 simulated sessions.  Error bars are ±1SD.   

 

To understand how changes in drift rate can produce changes in the measured onset of 

accumulation, we computed the measured onset, averaged across RT deciles, as a function of CV 

(s/v)  for different levels of drift rate (Figure 2.11A).  At low levels of noise (CV < 0.2), the 

measured onset closely matches the model encoding delay (D = 0.2) for any drift rate.  As noise 

increases (0.2 < CV < 0.4), the measured onset is biased later than the actual delay, which was 

illustrated above (Figure 2.6).  However, at higher levels of noise (CV > 0.4), the mean onset 

peaks and declines, but the peak varies inversely with the drift rate.  This is because RTs become 

shorter and less variable as drift rate and noise increase, and the onset bias is only possible for 

long RTs (Figure 2.10; Figure 2.6).  Hence, slower drift rates produce a larger bias for a fixed 

CV.  Note that this problem would be exacerbated if we fixed s across conditions rather than 

fixing CV, as is typically done when fitting behavioral data.  Similarly, when the model is noisy, 
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it is possible for changes in threshold to produce changes in the measured onset (Figure 2.11B).  

For comparison, Figure 2.11C shows changes in measured onset as a function of different levels 

of model encoding delay and CV.  The measured onset is biased when noise increases, but the 

magnitude of the bias is not affected by the encoding delay.  Altogether, these simulations 

demonstrate that changes in the measured onset could be explained by changes in drift rate, 

threshold, or encoding delay if the accumulation is sufficiently noisy. 

 

Figure 2.11 Encoding delay (i.e., the beginning of the accumulation process) can be more reliably measured using the 

variance onset.  Other model parameters were fixed at their default values as above with no across-trial variability.  

Measured mean onset (left) and variance onset (right) are plotted as a function of CV (s/v) for five values of encoding 

delay (A, D), threshold (B, E), and drift rate (C,F).  Measured onset was computed individually for each decile and 

averaged across deciles. 

 

The observation that changes in drift rate can cause changes in the measured onset has 

important implications for the interpretation of neurophysiological signals.  For example, if the 

measured onset of neuronal spiking increases with the difficulty of a perceptual discrimination, it 

would not be possible to determine whether this was due to an increase in the time necessary to 

compute the representation of perceptual evidence (i.e., encoding delay), or a decrease in the 
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quality of the evidence itself (i.e., drift rate).  Therefore, we evaluated two alternative methods to 

more reliably identify the start of the accumulation.  The first method is to compute the onset 

using only the fastest RT decile.  The preceding sections showed that the measured onset is 

primarily biased by trials resulting in longer RTs (Figure 2.6; Figure 2.10).  Thus, this method 

provides a more reliable measure of accumulator onset because only trajectories that abruptly rise 

to threshold will produce the fastest RTs.  However, one limitation of this approach is that it 

requires a large sample of trials so that the lower tail of the distribution is sufficiently sampled.   

A second alternative method is to measure the onset of across-trial variability rather than 

the mean; that is, the time when across-trial variability first increases from baseline.  This method 

provides a more reliable measure of accumulator onset because individual trials begin to fluctuate 

around the mean as soon as the accumulation begins even if the mean trajectory remains near the 

starting point (Figure 2.6).  To illustrate this approach, Figure 2.12 shows the population 

activation mean and simulated activation variance for a noisy race model using the same default 

primary parameters as above (s = 0.1, D = 0.2, v = 0.2, z = 0.18, a = 0.05) and all secondary 

parameters fixed at zero.  The measured mean onset increases substantially with RT (Figure 

2.12A), but the variance onset is fixed as a function of RT (Figure 2.12B).  Later in the trial, 

variance dynamics change with RT deciles because accumulator models predict skewed RT 

distributions (i.e., greater variability in the upper tail), but the variance onset is constant.  The 

utility of this approach is further illustrated by Figure 2.11.  The variance onset is constant for all 

values of noise, drift rate, and threshold when the encoding delay is fixed (Figure 2.11D,E), but 

closely tracks the model encoding delay as it is varied (Figure 2.11F).  Thus, measuring the onset 

of neural variance could be used to disambiguate the cause for observed changes in the measured 

onset. 
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Figure 2.12 Independent race model mean and variance dynamics.  Changes in model activation mean (A) and 

variance (B) over time.  Only the 5th-10th RT deciles are plotted for clarity.  Simulations used the following parameters: 

s = 0.1, D = 0.2, v = 0.2, z = 0.18, a = 0.05.  Changes in mean firing rate (C) and Fano factor (D) compute using spike 

times simulated from predicted model trajectories (see text for details).  Same parameters as in A-B.  Insets show 

measured onset as a function of RT. 

 

One potential concern with identify changes in the start of the accumulation based on 

changes in variance is that our simulations assumed a baseline variance of zero, which is not 

physiologically plausible.  To mitigate this concern, we also evaluated changes in variance for a 

model in which model trajectories were used to generate Poisson spikes.  We computed the ratio 

of the spike count variance to the spike count mean (i.e., the Fano factor) in a 50ms running 

window.  We then computed the variance onset based on the resulting Fano factor as described 

above, but with a slightly more conservative threshold (15%) to exclude baseline noise.  We also 

computed the onset of the mean firing rate for comparison.  Even with the addition of Poisson 

spiking noise, the onset of variance was still a more reliable indicator of the accumulation start 

than the onset of the mean spike count (Figure 2.12C,D).     
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2.4.6 Noise obscures leakage dynamics 

The time constant of integration for individual neurons must be finite due to their known 

biophysical properties (Amit and Tsodyks, 1991).  This neurally-motivated property has been 

incorporated into leaky accumulator models (e.g., Usher and McClelland, 2001).  However, 

neural integration is thought to be implemented at the network level (e.g., Wang, 2002), which 

could result in near-perfect integration.  Moreover, leakage is often not necessary to explain 

behavior (Ratcliff and Smith, 2004).  If we can identify a signature of leakage in model dynamics, 

then we could use it to assess whether leakage is present in a neurophysiological signal. 

We simulated a leaky race model to determine whether changes in leakage can be 

identified with specific changes in accumulator dynamics.  Like the race model, activation, X, is 

set to an initial point, z for the duration of the encoding delay, D.  Following encoding time, the 

dynamics of the leaky race model are governed by the following:  

. 

All simulations were run using the same general method as the independent race model, but 

with the addition of a k parameter that determined the strength of leakage. 

 We asked whether we could find evidence for leaky integration based on predicted 

patterns of model dynamics.  A characteristic property of leaky integrates is that the rate of 

accumulation decreases as the accumulation increases.  This will result in a decelerating function 

over time given a constant input (i.e., drift).  Therefore, we asked whether the rate of deceleration 

could serve as a signature of leakage in model dynamics. To identify whether our model 

trajectories were decelerating, we fit model activation, X, as a function of the time, t, from the 

measured onset with a simple power function, .  The p parameter determines the 

acceleration of the function.  Values of p > 1 indicate acceleration, values of p < 1 indicate 

deceleration, and p = 1 indicates a linear rise to threshold.  Thus, we would expect a model with 
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no leakage to predict dynamics that are best described by a linear function (p = 1) and a model 

with leakage to be best described by a power function with p < 1. 

 To evaluate the validity of this approach, we first tested a noiseless leaky race model with 

the following parameters: (v = 1, Tr = 0.2, a = 0.05, z = 0.018), in addition to varying levels 

leakage (k = 0 to ~0.002).  The model included no additional sources of across trial variability (η 

= st = sz = sa = 0).  Figure 2.11A (left) shows examples of predicted model trajectories as k was 

increased.  It is clear that the rate of deceleration is greater as k increases.  Figure 2.11A (right) 

shows that this deceleration was adequately captured by the exponent p in our power function.  

As k increases, the best fitting p parameter decreases from one towards zero indicating that the 

function becomes less linear and more concave.  This result confirms what we know about the 

effect of leakage on model dynamics and shows that fitting power functions to model dynamics 

can adequately track changes in leakage for noiseless race models. 

 The key question is whether this approach is still adequate when noise is present.  To test 

how noise affects the measured deceleration of model activation, we simulated a leaky race 

model parameterized exactly as described above, but with increasing levels of noise (s = 0.1 – 

0.3).  Figure 2.11B shows examples of predicted model trajectories as k was increased and s = 

0.1.  In contrast to the noiseless leaky race model, the model trajectories become increasingly 

sigmoidal as k increases.  As a result, the p exponent of the power function no longer tracks 

increases in k because a power function no longer adequately describes the model dynamics.  

When s > 0.2, the model trajectories are accelerating regardless of the level of k; that is, the 

function is almost entirely convex.  This results in values of p that are consistently higher than 

one regardless of the level of leakage.  This means that any accumulator model with sufficient 

noise will predict an accelerating function regardless of the level of leak.  Thus, deceleration is 

not longer a defining characteristic of leaky integrators when noise is present.   
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Figure 2.13 Leaky race model dynamics.  Predicted model trajectories and best fitting power function exponent, p, 

(insets) for a leaky race model with varying levels of leak (k) and noise (s).  Only the trajectory of the 9th RT decile is 

shown for clarity.  The insets shows p computed independently for each RT decile and averaged.  Noise was varied 

across panels (A: s = 0; B: s  0.1; C: s = 0.2; D: s = 0.3).  The leakage constant was varied from 0 to slightly less than 

0.002 (the maximum value of leakage that will not cause activation to reach asymptote before the threshold is crossed).  

Primary model parameters were set to D = 0.2, v = 1, z/a = 0.36 and there were no sources of across-trial variability 

other than noise (st = η = sz = sa = 0).   

 

2.4.7 Noise obscures feed-forward and lateral inhibition 

Neurophysiological studies suggest that competition may be a fundamental component of 

neural circuits (e.g., Cohen et al., 2010).  Different models have incorporated different forms of 

competitive interactions, but the precise form of competition has been difficult to identify via 

behavior alone.  Some models propose that competition takes place at the level of model inputs 

(i.e., feed-forward competition  Mazurek et al., 2003; Ditterich, 2006; Ratcliff et al., 2007).  

Bounded accumulator models with alternative responses represented in opposite directions {} can 
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be interpreted as a form of feed-forward competition (Bogacz et al., 2006).  Other models assume 

direct competition between accumulators (Usher and McClelland, 2001).  These two forms of 

competition can be very difficult to distinguish behaviorally (Ratcliff and Smith, 2004).  More 

recent studies have suggested that analyzing the form of model dynamics can provide a way to 

resolve this behavioral mimicry (Ditterich, 2010), but these methods have not been evaluated 

under varying levels of noise. 

We simulated a competitive model to test whether feed-forward and lateral competition 

can be discriminated based on the pattern of predicted model dynamics with varying levels of 

noise.  The model is comprised of two accumulators representing different potential responses.  

Like the independent and leaky race model, activation for accumulator i, Xi, is set to an initial 

point, z for the duration of the encoding delay, D.  Following encoding time, the full competitive 

model is described by the following system of stochastic differential equations: 

. 

. 

All simulations followed the same general approach as the independent race and leaky race 

model, but extended to multiple accumulators.  For each simulated trial, I1 and I2 are sampled 

from independent Gaussian distributions with mean v1 and v2 = 1-v1, respectively.  1 and 2 are 

independent Gaussian noises terms with a mean of zero and standard deviation, s.  RT is given as 

the time of the first activation, Xi, to reach a fixed threshold, a.  We did not explore versions of 

this model with across-trial variability in primary parameters.  All model activation which drops 

below zero was reset to zero.  All simulations used an integration time step of dt = 1 ms.  The 

model also includes two parameters that govern the nature of competitive interactions.  A β 

parameter determines the strength of lateral inhibition.  A u parameter determines the strength of 

feed-forward inhibition.  I will manipulate each of these parameters independently to assess their 
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effects on model dynamics.  That is, the feed-forward competitive model will assume u > 0 and β 

= 0, and the lateral competitive model will assume u = 0 and β > 0. 

 Unlike the independent race and leaky models, identifying potential signatures of 

competition must take into account the dynamics of both accumulators.  The key difference that 

distinguishes the two forms of competition is that feed-forward inhibition assumes that the 

strength of inhibition depends on the strength of model inputs (I), whereas lateral competition 

assumes that the strength of inhibition depends on the current level of the competing accumulator 

(X).  Because most models assume a constant drift throughout the trial, this means that feed-

forward inhibition will be constant over time whereas the strength of inhibition for the 

competitive model will be time-inhomogeneous.  Specifically, lateral inhibition is initially equal 

for both accumulators, but over time the inhibition applied to the winning accumulator will 

decrease (as the losing accumulator declines to zero) and the inhibition applied to the losing 

accumulator will increases (as the winning accumulator rises to threshold).  Based on these 

observations, we reasoned that the two forms of accumulation could be discriminated based on 

the temporal evolution of the difference between the winning and losing accumulator.  Because 

feed-forward inhibition is constant, the evolution of this difference should increase at a fixed rate.  

In contrast, because lateral inhibition increases over time, the separation between accumulators 

should increase as the losing accumulator is suppressed toward zero.  In other words, the feed-

forward model predicts that the difference between the winning and losing accumulator should 

grow linearly, whereas the lateral inhibition model predicts an accelerating difference.   

Based on these properties of the model, we reasoned that these two forms of inhibition 

could be distinguished by measuring the degree to which the difference between the winning and 

losing accumulators was linear versus accelerating over time.  We quantified this by fitting a 

power function to the difference in model activation of the winning (X1) and losing (X2) 

accumulators (XD = X1 – X2).  We limited our analysis to only simulated correct trials in which 

X1 was defined as the correct response (i.e., v1 > v2).  We fit XD as a function of the time, t, from 
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the measured with a power function, .  Thus, we would expect a model with feed-

forward inhibition to be best explained by a function with p = 1, and we would expect a model 

with lateral inhibition to be best explained by a function with p > 1. 

To test whether this was a valid method to distinguish alternative forms of competition, 

we first evaluated a competitive model with feed-forward inhibition.  We used the following 

primary model parameters: v1 = 0.55, Tr = 0.2, a = 0.1, z = 0.036), but we added varying levels of 

feed-forward competition (u = 0 to ~0.002) and no lateral competition (β = 0).  The model 

included no across trial variability (η = st = sz = sa = 0).  Figure 2.12A-C shows examples of 

predicted model trajectories for the winning target (X1), the losing target (X2), and the difference 

between the two (XD) as u increased.  As u increases, XD increases at a faster rate, but remained 

linear.  This was indicated by the exponent of the best fitting power function (p) that remained 

near one regardless of the strength of feed-forward inhibition (u).  Note that a noiseless model 

without feed-forward inhibition would also predict a linear rise in XD, and therefore this method 

is not adequate to distinguish feed-forward models from models with no feed-forward inhibition.  

Figure 2.12D-F plots the same trajectories for a model that included the same parameters as 

above, but with varying levels of lateral competition (β = 0 to 12) and no feed-forward 

competition (u = 0).  In contrast to the competitive model with feed-forward inhibition, XD 

accelerates at a faster rate as β increases.  This was indicated by an increase in p as β increased.  

Thus, if accumulators are noiseless, then an acceleration of the difference of alternative response 

accumulators can provide a signature of lateral inhibition. 
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Figure 2.14 Noiseless race model dynamics with feed-forward (A-C) and lateral (D-F) inhibition.  Primary model 

parameters were set to D = 0.2, v = 0.55, z/a = 0.36, a = 0.1 and there were no sources of across-trial variability other 

than noise (st = η = sz = sa = 0).  The first row plots the simulated dynamics of the winning accumulator (X1) under 

increasing values of feed-forward (A) or lateral (B) competition.  The second row plots the simulated dynamics of the 

losing accumulator (X2) under increasing values of feed-forward (B) and lateral (E) competition.  The final row plots 

the difference between the winning and losing accumulators (XD = X1 – X2) with increasing values of feed-forward (C) 

and lateral (F) inhibition.  The insets show the exponent p of the best fitting power function to the difference in 

activation as a function of increasing feed-forward (C) and lateral (F) inhibition. 

 

 Finally, we tested whether these different forms of competition can be distinguished 

when noise is present.  To test how noise affects our ability to discriminate feed-forward and 

lateral competition, we simulated the same models described above with the addition of a small 

amount of noise (s = 0.011).  Figure 2.13 shows examples of predicted model trajectories for 

competitive race models with feedforward (Figure 2.13A-C) and lateral (Figure 2.13D-F) 

competition.  In contrast to the noiseless models, both forms of competition predict that XD 

should follow an accelerating function.  As a result, p remains consistently above 1 regardless of 

the strength of feed-forward and lateral inhibition.  This result places limitations on the use of 

neural signals to discriminate forms of competition. 
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Figure 2.15 Noisy race model dynamics with feed-forward (A-C) and lateral (D-F) inhibition.  Conventions as in 

Figure 2.14, but with the addition of noise (s = 0.11). 

 

 

2.5 Discussion 

Until recently, cognitive psychologists have largely ignored the dynamics of stochastic 

accumulator models.  The possibility that evidence accumulation may be directly observable 

through neurophysiological measurements means that we could potentially discriminate 

competing models based on their predicted dynamics (Ditterich, 2010; Purcell et al., 2010; 

Forstmann et al., 2011).  The utility of this approach depends on the degree to which alternative 

models predict dynamics that can be distinguished in neurophysiological signals.  When models 

are noiseless, we confirmed that distinguishing models with different sources of variability is 

trivial.  However, many models assume some noise, and all neurophysiological signals are noisy.  
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We found that not only do conventional levels of noise obscure the relation between model 

parameters and dynamics, but it does so in ways that can be potentially misleading if not taken 

into account.  In the next several sections we discuss the implications of these results for the 

identification and interpretation of neurophysiological signals implementing evidence 

accumulation, and the use of these signals to test competing models. 

 

2.5.1 On the identification of neurophysiological signals identified with evidence accumulation 

One goal of this work was to clarify predictions for how a neurophysiological signal 

should modulate during decision-making if it implements evidence accumulation.  Based on 

intuitions about the dynamics of noiseless accumulators, it has commonly been assumed that the 

critical hallmark of evidence accumulation is a variation of growth rate with changes in RT 

(Hanes and Schall, 1996; Roitman and Shadlen, 2002).  Our simulations demonstrate that 

variation in the measured onset with RT should also be considered a signature of noisy evidence 

accumulation.  Previous studies have described this property of accumulator models (Ratcliff, 

1988; Ratcliff et al., 2003; Ratcliff et al., 2007), but those models also included encoding delay 

variability, and so the actual cause of changes in onset was not clear.  In addition, no previous 

study has quantified this effect and systematically explored the range of parameters under which 

it is observed.  We found that correlations between onset and RT are observed under a broad 

range of parameterizations that predict response times on the order of those observed empirically.   

 Overall, our results inform the methods that researchers should choose to compare model 

processes with neurophysiological activity.  For evaluating neurophysiological processes that are 

directly identified with evidence accumulation, our recommendation is straightforward: Model 

dynamics should be directly compared to neural dynamics rather than assuming patterns of model 

dynamics based on parameter values (e.g. Mazurek et al., 2003; Ratcliff et al., 2007; Purcell et al., 

2010; Purcell et al., 2012b).  This approach is ideal for electrophysiological measurements with 

high temporal resolution such as single-unit recordings, intracranial local field potentials, and 
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extracranial EEG.  However, putative correlates of evidence accumulation in BOLD responses 

(i.e., Heekeren et al., 2004) will lack the temporal resolution to distinguish onset changes from 

drift rate changes.  A different approach to using cognitive models to understand the brain is to 

correlate model parameters with the magnitude of BOLD responses throughout the brain 

(Forstmann et al., 2008; van Maanen et al., 2011; Wenzlaff et al., 2011; Mulder et al., 2012).  In 

these studies, the goal is not necessarily to identify the actual implementation of evidence 

accumulation, but instead to identify where the cognitive process indexed by a parameter might 

cause elevated neuronal activity (Reilly and Mars, 2011).  For this purpose, correlations between 

model parameters and the BOLD response should be sufficient, although these correlations 

cannot be interpreted in terms actual biological mechanisms. 

 

2.5.2 On the interpretation of neurophysiological signals identified with evidence accumulation 

Based on the properties of noiseless accumulators, it has seemed reasonable to identify 

the onset of neural dynamics with the start of the decision process (i.e., the end of the encoding 

delay).  However, we found that noisy accumulator models predict changes in the onset of 

accumulation with RT even when the encoding delay remains fixed.  This suggests that 

correlations between the onset of activation and RT may simply indicate a noisy accumulation 

process and not changes the duration of stimulus encoding.   

This finding has important implications for the nature of information flow across stages 

that comprise RT.  Many behavioral observations can be explained equally well models that 

assume either continuous or discrete flow of information across stages (e.g., Meyer et al., 1988; 

Ratcliff, 1988).  According to the stochastic accumulator model framework, the start of the 

accumulation process marks a transition from a discrete stimulus encoding stage to the start of 

continuous evidence accumulation.  If the onset of neurophysiological signals indicate this 

transition, then it could be used to infer the degree to which processing is discrete or continuous 

for a given task.  For example, motor related ERP components have been identified with 
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stochastic accumulation to threshold (Gratton et al., 1988; Schurger et al., 2012).  Some studies 

have reported within-condition correlations between the onset of the LRP and RT (Miller, 1998).  

Other studies have reported changes in the LRP onset across different levels of speed and 

accuracy emphasis (Osman et al., 2000; Rinkenauer et al., 2004), congruent or incongruent 

distractor stimuli (Gratton et al., 1988), and target discriminability (Smulders et al., 1995).  If the 

onset of the LRP was identified as the start of a new stage of evidence accumulation or response 

preparation, then these data would be incorrectly interpreted as evidence that these manipulations 

extend the duration of a discrete stimulus encoding stage.  Our simulations suggest that these 

changes in onset could also be due to changes in the strength of evidence (i.e., drift rate) across 

conditions or simply noisy accumulation  

In addition, several studies have reported correlations between the firing rate onset and 

RT in neurons thought to implement evidence accumulation.  For example, during a motion 

detection task, the onset time when neurons in parietal cortex begin increasing their firing rate 

correlates strongly with RT (Cook and Maunsell, 2002).  In addition, the onset time of FEF 

neurons correlates strongly with RT during visual search (Woodman et al., 2008), motion 

discrimination tasks (Ding and Gold, 2012), and when animals slow following errors (Pouget et 

al., 2011).  Similar increases in onset have also been observed in superior colliculus neurons 

during perceptual decision tasks (Ratcliff et al., 2003; Ratcliff et al., 2007).  As with the ERP 

data, it is tempting to conclude that the changes in onset found in these studies indicate the 

extension of a distinct perceptual process stage, but we cannot rule out changes in the strength of 

perceptual evidence or simply noise. 

In addition to changes in the onset of accumulation with RT, we found that correlations 

between growth rate and RT are expected even if the drift rate is fixed across conditions so long 

as any amount of accumulator noise is present.  Growth rate is faster when, by chance, noise is 

more often sampled above the mean and slower when noise is more often sampled below the 

mean.  This observation has important implications for identifying sources of across-trial 
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variability.  Many models predict that across-trial variability in drift rate, instead of or in addition 

to noise, is a key source of behavioral variability (Ratcliff and Rouder, 1998; Reddi and 

Carpenter, 2000; Brown and Heathcote, 2005; Brown and Heathcote, 2008).  Across-trial 

variability in drift rate provides a potential mechanism to explain the observation that many 

subjects produce error response times that are slower than correct response times (Ratcliff and 

Rouder, 1998; Ratcliff et al., 1999).  The observation that the measured growth rate of FEF 

(Hanes and Schall, 1996), LIP (Roitman and Shadlen, 2002; Maimon and Assad, 2006), and SC 

(Ratcliff et al., 2003) neurons varies with RT seems to support this modeling assumption.  

However, our results suggest that these dynamics may simply reflect noisy accumulation of fixed 

mean rate.  Moreover, several groups have shown that slow errors relative to correct RTs can be 

explained by an urgency gain that increases throughout the duration of the trial (Ditterich, 2006; 

Churchland et al., 2008; Cisek et al., 2009).  In addition, an analysis of across-trial variability in 

LIP neurons during a motion discrimination task shows that variability increases approximately 

linearly, which is inconsistent with models that assume across-trial drift is a major source of 

variability (Churchland et al., 2011).  It remains to be seen whether this same pattern of 

variability dynamics is consistently observed across other areas and tasks. 

In contrast to changes in the measured onset and growth rate, we found that variability in 

the measured threshold was only observed when that variability was explicitly built into the 

model. This finding validates the fixed activity threshold as a key signature of evidence 

accumulation.  The observation that the firing rates of FEF (Hanes and Schall, 1996), LIP 

(Roitman and Shadlen, 2002), and SC (Dorris et al., 1997) neurons reach a fixed firing rate 

threshold immediately prior to saccades was the original basis for the hypothesis that these 

models implement a form of evidence accumulation.  Likewise, the observation that the LRP 

reaches a fixed voltage at the start of electromyographic activity supports the identification of that 

component with accumulation to a response threshold (Gratton et al., 1988).  In particular, our 

results reinforce the conclusion that variability in RT is not explained by variability in a response 
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threshold as proposed by some decision-making models (Grice, 1968).  More recently, it has been 

demonstrated that the measured threshold of FEF neurons during adjustments of speed and 

accuracy does not conform to changes of threshold predicted by LBA (Heitz and Schall, 2012).  

Our results suggest that this is not an averaging artifact or consequence of noise; rather, the 

neurophysiological data are inconsistent with hypothesis that FEF neurons implement the 

evidence accumulation process predicted by LBA. 

We found that changes in the measured baseline could be uniquely identified with 

changes in the model starting point.  Several studies have reported changes in baseline activity 

during perceptual decision tasks that affect the baseline firing rates of sensorimotor neurons 

involved in evidence accumulation.  For example, when the number of potential responses is 

known in advance, the baseline firing rates of LIP (Churchland et al., 2008) and SC (Basso and 

Wurtz, 1998) neurons decrease with added response alternatives.  More recently, FEF neurons 

have been shown to increase their baseline firing rate with speed stress (Heitz and Schall, 2012).  

Our simulations indicate that these modulations of baseline firing rate are not due to noise.  In 

addition, our simulations show that correlations between baseline and RT will be substantially 

weaker at longer RTs relative to shorter RTs when the accumulation process is noisy.  This is 

because additional noise accumulates as the trial progresses, and thus the early offset in starting 

point has relatively less of an effect on the overall RT.  Notably, a similar effect has been reported 

in LIP neurons during a motion discrimination task in which manipulations of the prior 

probability of a particular motion direction induced response biases in monkeys (Rao et al., 

2012).  LIP neurons showed clear shifts in baseline activity for the biased response, but those 

biases faded as the trial progressed, which was consistent with predicted accumulator model 

dynamics.   

One caveat to our finding that shifts in baseline with RT reflect explicit variability in 

starting point is that our simulations assumed a discrete perceptual processing stage in which no 

accumulation took place, followed by a decision stage in which evidence began to accumulate.  
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We have previously shown how these discrete stages of processing can be implemented 

neurophysiologically if model inputs are gated (inhibited) prior to the trial (Purcell et al., 2010; 

Purcell et al., 2012b).  However, Purcell et al. (2010; 2012) also found that leaky integrators 

without gating will predict a strongly correlation between baseline and RT even without assuming 

any changes in the starting point offset.  Since many neurophysiological signals do not exhibit 

correlations between baseline and RT, we concluded that some type of gating inhibition must be 

operating. 

 

2.5.3 On the use of neurophysiological signals to discriminate alternative models 

We found that the actual start of the accumulation was not reliably indicated by the mean 

onset of accumulation and we suggested two alternative approaches with which it could be more 

reliably identified.  First, we found that the measured mean onset of the fastest response times 

more accurately reflect the start of the accumulation process.  This is because the fastest RTs can 

only occur when evidence accumulation takes a relatively direct path to threshold.  This approach 

may be suitable when large quantities of data are available, but this method assumes that the 

lower tail of the RT distribution is sufficiently sampled.  As a second alternative, we found that 

measuring the time when across-trial variability first increased above baseline was a reliable 

indicator of the start time of accumulation.  This is because although the mean activity level tends 

to remain near the starting point, individual trails tend to vary considerably above and below the 

mean.  Studies that have measured the dynamics of response variability in LIP (Churchland et al., 

2011) and FEF (Purcell et al., 2012c) neurons during perceptual decision-making tasks have 

reported no changes in the time when variability first diverges from baseline when the difficulty 

of the perceptual decision is manipulated.  This suggests that the encoding delay is relatively 

constant during these tasks.  One difference between the neurophysiology and our simulations is 

that both studies report brief dips in variability prior to increasing, which is commonly observed 

across cortical areas (Churchland et al., 2010). However, Purcell et al. (2012) showed that leaky 
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accumulator models that assume some variability in baseline firing rate can predict this brief 

decline. 

We evaluated whether leaky evidence accumulation can be distinguished from perfect 

evidence accumulation by fitting mean accumulator trajectories with a power function.  When 

models were noiseless, we found that leakage could be clearly identified with decelerating 

functions.  However, when models included noise, the mean rate of accumulation appears to 

accelerate over time regardless of whether leakage is present or absent.  This means that 

observing a linear or accelerating rise to threshold is not sufficient to rule out leaky accumulation.  

Note that this apparent acceleration is due to averaging across trials with slightly different model 

trajectories, although the drift rate is constant throughout the trail (Schurger et al., 2012).  

Depending on the nature of the task, neurons identified with evidence accumulation typically 

exhibit approximately linear (Hanes and Schall, 1996; Hanes et al., 1998; Brown et al., 2008) or 

accelerating (Hanks et al., 2011; Schall et al., 2011; Ding and Gold, 2012) rates of rise to 

threshold.  Linear or accelerating dynamics are also observed in motor-related ERP components 

(e.g. Gratton et al., 1988; O'Connell et al., 2012).  We have shown that these dynamics could be 

produced by either leaky or perfect integrators with noisy accumulation. 

Given that the mean accumulator trajectory may be uninformative about whether or not 

an accumulator is leaky, can we identify alternative methods by which leakage could be 

identified?  One approach is to consider activity prior to the onset of the stimulus.  We have 

found that even gated accumulator models require a small amount of leakage to prevent the early 

accumulation of evidence that exceeds the level of the gate (Purcell et al., 2012b).  This is not 

surprising because the time constant of integration for any individual neuron is necessarily 

limited by the biophysical properties of the cell (Amit and Tsodyks, 1991); that is, all neurons are 

inherently leaky.  An alternative approach is to evaluate the functional relevance of leakage by 

using time-varying stimuli to identify the temporal window during which stimulus fluctuations 

most strongly affected perceptual decisions.  Behavioral studies that have used this approach 
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consistently find that subjects are more strongly influenced by early rather than later evidence, 

which is inconsistent with leaky integration (Ludwig et al., 2005; Kiani et al., 2008; Nienborg and 

Cumming, 2009).  In addition, Huk & Shadlen (2005) found that the effects of brief pulses of 

motion on LIP neurons during a motion discrimination task affected the firing rate of LIP neurons 

in a manner roughly consistent with perfect, but not leaky, integration of motion evidence.  

Finally, leakage is often unimportant to predict decision-making behavior (Ratcliff and Smith, 

2004).  One possible way to reconcile these findings is to appreciate that long time-scale 

integration that is necessary for decision-making is thought to be a property of networks endowed 

with strong recurrent excitation (Wang, 2002).  It may be the case that leakage is important to 

maintaining stable baseline firing rates in the inter-trial intervals, but functionally negated during 

evidence accumulation due to strong recurrent excitation. 

We evaluated whether feed-forward and lateral competition could be discriminated in 

model trajectories by fitting a power function to the mean difference of two competing 

accumulators.  When the competing accumulators were noiseless, we found that lateral 

competition could be distinguished from feed-forward competition because it predicted that the 

difference between accumulators should increase over time.  However, when the models included 

noise, the difference was accelerating regardless of the form of competition.  We have previously 

shown that these two forms of competition may be indistinguishable at the level of neural 

dynamics when models were driven by a time-varying input function derived from observed 

neurophysiology (Purcell et al., 2010; Purcell et al., 2012b).  Other studies have suggested that 

there may be subtle differences in the form of accumulation depending on the precise form of 

competition (Ditterich, 2010), but those differences may be undetectable with higher levels of 

noise expected in neurophysiological signals.  Our results here suggest that even when model 

inputs are fixed, it may be very difficult to distinguish feed-forward and lateral competition based 

solely on patterns of mean firing rate dynamics.   
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A more fruitful approach to identifying differences in feed-forward versus lateral 

inhibition may be to analyze the precise spike time correlations across neurons representing 

alternative responses.  Feed-forward inhibition predicts a dip in the cross-correlogram around 0 

ms, whereas lateral inhibition would predict a dip following some time lag.  Using this approach, 

Ratcliff et al., (2011) observed no appreciable dip in spike time coincidences for pairs of neurons 

recorded in opposite colliculi during a perceptual decision task.  In contrast, Cohen et al. (2010) 

observed reduced spike time coincidences when the target of visual search was inside the RF of 

on neuron, but outside the RF of the second neuron.  This could reflect across area differences in 

the form of inhibition; however, the sample size for both studies was relatively low, and therefore 

more data are needed before strong conclusions can be drawn.  Bollimunta & Ditterich (2012) 

used a different approach to distinguish lateral from feed-forward inhibition by recording from 

LIP neurons while monkeys performed a three-alternative motion discrimination task in which 

support for the target (strongest motion direction) could be manipulated independently of support 

for distractors (weaker motion direction).  They found that modulations of the strength of 

evidence against the target were present in LIP neurons ~80ms before modulations of evidence 

supporting the target, which seems inconsistent with a lateral inhibition mechanism.  However, it 

is also unclear why a feed-forward model would predict such a large delay between the arrival 

inhibition and excitation.  Simultaneous recordings of much larger populations of neurons could 

help to resolve this issue. 

 

2.5.4 Conclusions 

 We characterized the relationship between model parameters and model dynamics as an 

intermediate step for comparisons of model parameters to neuronal populations thought to 

implement the accumulator process proposed by the model.  We found that the mapping between 

model parameters and model dynamics is more complex when the accumulation process is noisy.  

We conclude that the most valid method of comparison models to data may be to directly 
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compare simulated model trajectories to observed neural dynamics.  Additional data will be 

necessary to determine if firing rates can be best described by lateral or feed-forward inhibition. 
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CHAPTER III 

 

FROM SALIENCE TO SACCADES: MULTIPLE-ALTERNATIVE GATED STOCHASTIC 

ACCUMULATOR MODEL OF VISUAL SEARCH 

 

3.1 Abstract 

We describe a stochastic accumulator model demonstrating that visual search performance 

can be understood as a gated feed-forward cascade from a salience map to multiple competing 

accumulators. The model quantitatively accounts for behavior and predicts neural dynamics of 

macaque monkeys performing visual search for a target stimulus among different numbers of 

distractors. The salience accumulated in the model is equated with the spike trains recorded from 

visually-responsive neurons in the frontal eye field. Accumulated variability in the firing rates of 

these neurons explains choice probabilities and the distributions of correct and error response 

times with search arrays of different set sizes if the accumulators are mutually inhibitory. The 

dynamics of the stochastic accumulators quantitatively predict the activity of presaccadic 

movement neurons that initiate eye movements if gating inhibition prevents accumulation before 

the representation of stimulus salience emerges. Adjustments in the level of gating inhibition can 

control tradeoffs in speed and accuracy that optimize visual search performance.  

 

3.2 Introduction 

Many models of visual search and attention assume a map that combines bottom-up and top-

down salience (also referred to as priority) to guide shifts of attention and eye movements 

(Treisman and Gormican, 1988; Duncan and Humphreys, 1989; Bundesen et al., 2005; 

Navalpakkam and Itti, 2007; Wolfe, 2007). Visually-responsive neurons in frontal eye field 

(FEF), superior colliculus (SC) and posterior parietal cortex modulate their firing rate according 

to both physical conspicuity (bottom-up salience) and behavioral relevance (top-down salience; 

Schall and Hanes, 1993; Gottlieb et al., 1998; Bichot and Schall, 1999a; Findlay and Walker, 
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1999; Constantinidis and Steinmetz, 2005; Ipata et al., 2006; Thomas and Pare, 2007; Balan et al., 

2008; Cohen et al., 2009a; White and Munoz, 2011). However, it is poorly understood how 

neurons that encode salience are read out to guide saccades.  Furthermore, no current model of 

visual search accounts for full response time (RT) distributions of error and correct responses 

(Wolfe et al., 2010; Palmer et al., 2011). Alternative models that make very different predictions 

about underlying mechanisms can often explain mean correct RTs equally well, but predicting 

errors and full RT distributions imposes more stringent constraints that can often distinguish 

alternative models (Ratcliff and Smith, 2004). 

Stochastic accumulator models of perceptual decision making explain how a single stimulus 

guides selection of one response among alternative responses (Usher and McClelland, 2001; 

McMillen and Holmes, 2006; Beck et al., 2008; Churchland et al., 2008; Furman and Wang, 

2008; Ditterich, 2010; Leite and Ratcliff, 2010), but the natural world consists of many stimuli. 

FEF and SC movement neurons project to oculomotor brainstem nuclei and initiate a saccade 

when a fixed firing threshold is reached (Hanes and Schall, 1996; Hanes et al., 1998; Pare and 

Hanes, 2003). The firing rate dynamics of movement neurons are well explained by stochastic 

accumulator models (Boucher et al., 2007; Ratcliff et al., 2007), but the source of inputs driving 

movement neurons to threshold is not known. Furthermore, neurally-plausible implementations of 

these models have never been generalized to decisions among multiple stimuli, as in visual 

search. 

We present the first neural model of visual search formulated as a multiple-accumulator 

decision process. We significantly extend a novel modeling technique that defines the source of 

inputs driving accumulators with the observed discharge rates from FEF visually-responsive 

neurons (Purcell et al., 2010). Our new work assumes that this dynamically-modulated 

representation of stimulus salience drives a network of multiple competing accumulators 

associated with alternative stimuli in a visual search display. The transformation from salience to 

saccades is controlled by a tonic gating inhibition. Unlike our earlier work developing and 
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validating this modeling technique, our new model incorporates multiple accumulators and 

explains choice probabilities and full correct and error response time distributions as a function of 

set size during visual search. We identify the accumulators with FEF movement neurons that 

select and initiate saccades when threshold is reached. Accumulator dynamics correspond 

quantitatively to movement neuron dynamics. We show that gating and lateral inhibition are 

necessary by ruling out alternative models which do not include these mechanisms. We also show 

how the gating inhibition provides a novel mechanism to control tradeoffs in speed and accuracy. 

 

3.3 Materials and methods 

 

3.3.1 Behavior and physiology 

Behavioral and neurophysiological data were collected from two adult male macaques 

(Macaca radiata) trained to perform a visual search task in which the number of items in the 

display (set size) varied randomly across trials (Figure 3.1A, inset). Basic behavioral and 

physiological analyses of these data have been published previously (Woodman et al., 2008; 

Cohen et al., 2009b; Heitz et al., 2010). Briefly, after fixating a central stimulus for ~600 ms, a 

stimulus array appeared containing a target (T or L) among one, three, or seven distractors 

(random 90o orientations of the other letter). The eccentricity of the array was always 10o. When 

the array contained two objects, they were always presented at opposite locations and when the 

array contained four items they were always separated by an unfilled location. Thus, stimuli were 

spaced ~7.7o, 14o, 19o or 20o apart in the visual field. Target identity was varied across sessions. 

Monkeys were rewarded for making a single saccade to the location of the target within 2000ms 

and fixating it for 1000 ms. Search performance was qualitative similar across monkeys, therefore 

we data pooled across monkeys in addition to fitting to individual monkey data. 

Neurons were classified using a memory-guided saccade task. A single target (filled gray 

disk) was presented in isolation for 100 ms. Monkeys were trained to maintain fixation for 400-



73 

 

800 ms after target onset. When the fixation spot disappeared, the monkey was rewarded for 

making a saccade to the remembered location of the target. Neurons with a consistent visual 

response <100 ms following target onset and persistent firing during the delay period were 

classified as visually-responsive neurons (59 neurons; monkey Q, 40 neurons; monkey S, 19 

neurons) and were used to derive input to the stochastic accumulators in the model. This included 

both visual neurons with no presaccadic discharge and visuomovement neurons with both visual 

and presaccadic discharge. We included both pure visual and visuomovement neurons as input to 

the model because previous work has shown that visuomovement neurons, like pure visual 

neurons, represent the salience of objects in their receptive field (Thompson et al., 1996; Cohen et 

al., 2009b), but do not have activity sufficient to directly control saccade initiation (Ray et al., 

2009). Neurons with a brisk pre-saccadic discharge, but little or no visual response, were 

classified as movement neurons (22 neurons; monkey Q, 15 neurons; monkey S, 7 neurons) and 

were compared qualitatively and quantitatively to model accumulator dynamics. 
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Figure 3.1: Visual search task and behavior. After fixating for a variable delay, an array of stimuli was presented, one 

of which was the target (e.g., L) and the rest were distractors of random 90o orientations (e.g., T). Monkeys were 

required to make a single saccade to the target for reward. When the array contained two objects, they were always 

presented at opposite locations and when the array contained four items, each was separated by an unfilled location. All 

stimuli were presented at 10o eccentricity. Target identity varied across sessions. Set size varied randomly across trials. 

A-C, Mean ± SEM percent correct (A), correct (B) and error (C) response times for set size 2 (blue), 4 (green), and 8 

(red). Insets show search array illustration (A), correct (B), and error (C) response time distributions. Data are pooled 

across subjects. See Figure 3.5 for individual subject data. 
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3.3.2 Simulation methology 

Neurophysiologically-derived representation of visual salience. Our model assumes that 

output from pools of visually-responsive neurons encoding stimulus salience converge on 

movement neurons that initiate saccades. Observed spike trains of visually-responsive neurons 

define the model input to stochastic accumulators that are identified with movement neurons. 

Here we describe how those observed spike trains are converted into model input on each 

simulated trial. In the next section we describe the architecture of the network of accumulators 

that integrate that model input over time to generate a saccade to a particular stimulus in the 

visual search array at a particular time. Predicted proportions of error and correct responses and 

their associated response time distributions are generated by simulating thousands of trials. 

Model input was derived directly from the spike trains recorded from visually-responsive 

neurons following previously described methods (Figure 3.2; Purcell et al., 2010). For each 

simulated trial, we randomly sampled, with replacement, N spike trains from individual trials and 

generated a spike density function for each trial by convolving the spike trains with a function of 

the form ,  which mimics the post synaptic influence of each 

spike (Thompson et al., 1996); the growth constant, τg, is 1 ms, and the decay constant, τd, is 20 

ms. The pool size, N, was varied to identify the value which optimally predicted behavior (Table 

3.1). Each spike density function was normalized to the maximum firing rate of the neuron, and 

all spike density functions in the sample were summed. The resulting spike density function is 

mathematically similar to a Poisson shot noise process (Smith, 2010). 

Spike trains from all neurons were sorted according to the set size (2, 4, or 8) presented and 

response (correct or error) made when they were recorded. Trials in which the animal 

prematurely broke fixation were excluded (<1%). Spike trains recorded from a particular set size 

condition were used to generate behavioral and neural predictions for that set size. The observed 

choice probabilities for the set size being simulated determined the proportion of simulations that 

used spike trains sampled from correct or error trials. Thus, the spike trains that drive the model 
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represent the responses of visually-responsive neurons recorded under the exact conditions being 

simulated. Simulations that used input from trials in which the animal erroneously looked to a 

distractor most often predicted erroneous responses due to the form of sampled input (Heitz et al., 

2010), but we did not force this to be the case. Indeed, we present examples of models that fail to 

adequately predict error probabilities. 

Post-saccadic spikes cannot contribute to the saccade choice and must be excluded. However, 

simply eliminating those spikes would artificially increase noise as the simulation progressed 

because different trials terminate with different RTs. Instead, we extended each trial with firing 

rates generated according to a Poisson process with a mean rate determined by the spike rate 20 

to 10 ms prior to the saccade. Practically, this prevented the parameter optimization routine from 

failing when certain parameter values could not produce any RT or choice. Ultimately, these 

extrapolated spikes contribute very little to simulations of well-fitting models because simulated 

trials ended within the observed RT range. 

The use of trial-by-trial spike trains recorded while animals performed the visual search task 

distinguishes our modeling approach from other stochastic accumulator models in several 

important ways: First, simulations began well before the presentation of the stimulus array and 

proceeded until the response was initiated (Figure 3.2B). Afferent delays were determined by 

visually-responsive neuron physiology and efferent delays were short and well-established 

quantities (Scudder et al., 2002), so no “non-decision time” parameter is necessary. Second, this 

approach takes into account the heterogeneous nature of neuronal response properties. Whereas 

many models assume highly simplified, prototypical, or idealized neural response function, our 

model is subject to the heterogeneity inherent in neuronal populations. Third, most models make 

specific assumptions about the mathematical form of the input to stochastic accumulators (e.g., 

Churchland et al., 2008; Furman and Wang, 2008; Smith and Ratcliff, 2009). Here, we make no a 

priori assumptions about the form, timing, and variability of inputs within and across trials and 

conditions; instead, the form, timing, and variability are given by the pattern of activity of 
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visually-responsive neurons representing visual salience. Although this approach does not speak 

to the mechanisms that generate salience (e.g., Tsotsos et al., 1995; Itti and Koch, 2001), it 

provides strong constraints on the mechanism by which salience is used to generate a saccade. 

We see this as a crucial first step to constrain new models that explain how the neural 

representation of salience is generated. 

 

 

 

Figure 3.2: A, Gated competitive accumulator model architecture. Spike trains generated by visually-responsive 

neurons during visual search (left) were pooled to generate a dynamic input function to each accumulator unit (vi). 

Input from visually-responsive neurons is integrated by eight accumulator units (mi) to a fixed threshold. Parameters 

that determine threshold (θ), leakage (k), gating inhibition (g), and lateral inhibitory connections (βd) were optimized to 

fit performance. Only 2 of 7 distractor units are illustrated. Leakage is illustrated for only the target unit, but was of 

equal value for all units. Lateral inhibition varied by distance, d, where d denotes the approximate degrees of visual 

angle between two stimuli (top), but was symmetrical between all units. B, Example simulated trial. The distribution of 

visual inputs when the target (thick, vT) or a distractor (thin, vD) were in the receptive field of the neuron varies 

dynamically over time as determined by visually-response neuron physiology (top). Sampled visual inputs (middle) 

drive accumulator units (bottom) that initiate saccades to the location of the target (thick, mT) or a distractor (thin, mD). 

Inputs for this example were generated from spike trains recorded during set size 8. Only one of seven distractor units 

is shown. Predicted RT is the time when the threshold, θ (gray), is reached plus 15ms for the eyes to move. The level of 

gating inhibition, g (magenta), was fit to performance. Accumulation begins only after the gate is exceeded and the 

salience of the target salience of the distractors unit due to lateral inhibition (i.e., target selection time). 

 

 

Stochastic accumulation of visual salience. The physiologically-defined inputs are pooled 

and integrated by a network of leaky, competing accumulators (Figure 3.2A). Trials in which a 
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target was in the RF of a visually-responsive neuron were used as input to the accumulator unit 

encoding the location of the target. Trials in which distractors were in the RF of a visually-

responsive neuron were used as input to units encoding the locations of distractors. Trials when 

the target was near the RF edge were excluded. 

The network always consisted of eight accumulator units regardless of the set size being 

simulated. For set sizes 2 and 4, input to an accumulator representing a location without a 

stimulus was defined by visually-responsive neuron firing rates on trials in which no stimulus 

appeared in the cell’s RF. Thus, the model requires no reconfiguration across set size conditions 

and can generalize naturally to situations with more than eight stimuli. We simulated neural 

activity from 300 ms before stimulus presentation until the initiation of the saccade. A simulated 

choice was made to the location represented by the first accumulator unit to reach a constant 

threshold (Figure 3.2B, bottom). Simulated saccade RT was defined as the time when the 

threshold was crossed plus a fixed ballistic time of 15 ms that accounts for the time necessary for 

brainstem processes that shift gaze (Scudder et al., 2002). 

Model parameters define for all accumulators the threshold (θ), leakage (k), gating inhibition 

(g), and lateral inhibition (βd). Lateral inhibition varied as a function of distance between 

locations, but was symmetrical between any two locations. Critically, no parameters varied across 

set size or with the choice of saccade target or distractor. Therefore, variability in search 

performance was directly determined by variability in the visually-responsive neuron 

representation of salience and how that representation impacts the dynamics of the stochastic 

accumulator network. Thus, the model assumes that set size effects can be understood as a 

consequence of changes in the salience representation that is integrated by stochastic 

accumulators. It is possible that models assuming architectural or parametric differences across 

set size could also predict the observed behavior, but this would be a far less parsimonious 

account. 

Each accumulator was governed by the following stochastic differential equation: 
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, (1) 

 

where mi is the mean activity of the accumulator unit representing location i and vi is the 

input from visually-responsive neurons representing the same location. As with other neural 

stochastic accumulator models (e.g., Usher and McClelland, 2001), we rectified mi to be greater 

than zero because firing rates cannot be negative. Interactions between units were determined by 

symmetrical feed-forward, ud, and lateral, βd, inhibition weights (e.g., Usher and McClelland, 

2001), where d indexes the distance between two stimuli in the array (Figure 3.2A, inset; 4 total 

values corresponding to approximately d = 7.7, 14, 19, and 20 degrees of visual angle separating 

the two stimuli). k is the leakage constant, g is the gating constant, and + denotes rectification 

above zero. The time constant was set to τ = 1 ms and the time-steps were set to dt = 5 ms for all 

simulations. All models included a modest amount of Gaussian noise intrinsic to the accumulator, 

ξ, with mean, μ = 0, and standard deviation, σ = 0.05; this variability is quite small relative to 

variability in the visual inputs. Initial model exploration showed that models explain search 

performance with σ = 0, but we include some intrinsic variability to allow for tonic neuronal 

drive when salience input falls below the level of the gate. We also found that models that assume 

tonic excitation (μ > 0) in addition to salience inputs can predict elevated baseline firing rates as 

observed in our movement neuron sample, but note that movement neurons with little or no tonic 

firing rate are commonly observed (e.g., Pare and Hanes, 2003). 

Gating inhibition. Effective visual search performance requires that saccades are withheld 

until visually-responsive neurons have processed stimulus salience. The model solves this 

problem with a combination of gating and lateral inhibition. Computationally, g is a tonic 

inhibition applied to the salience input, which is rectified to be greater than zero after the 

inhibition is applied (Equation 1). Functionally, gating imposes a firing rate that must be 
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exceeded before the inputs from visually-responsive neurons begin to influence the accumulators. 

All models assumed that gating is independent of set size and stimulus strength. We assumed a 

tonic inhibition for computational simplicity and because it could be easily implemented by 

neurons (see Neurophysiological Implementation in Discussion). The precise form of nonlinearity 

mediating the transformation from visually-responsive neurons to accumulator units is probably 

not critical, so long as accumulator units have little or no response until the inputs exceed some 

critical level. Alternative nonlinearities such as sigmoid or power functions may also work if the 

slope or acceleration is sufficiently steep (e.g., Simen et al., 2006; Simen and Cohen, 2009). 

Figure 3.2B illustrates how gating inhibition and lateral inhibition mediate the transformation 

of salience into response accumulator dynamics. Drive from visually-responsive neurons exists 

even before the search array appears, but no accumulation takes place because baseline input 

firing rates are below the gate. By 100 ms after array presentation, visually-responsive neuron 

firing rates exceed the gate, but top-down salience has not yet emerged. Salience for targets and 

distractors is equal and balanced; lateral competition holds the system at a temporary equilibrium. 

After 150 ms, salience for the target exceeds salience for distractors, which triggers a rise in the 

accumulator unit encoding the target location. Thus, gating and lateral inhibition explain how the 

selection of salient saccade targets by visually-responsive neurons is transformed into a 

competition for saccade execution in movement neurons. 

Alternative model architectures. We evaluated several different model architectures by 

fixing various subsets of the parameters in Equation 1 to zero and varying others to fit search 

performance. Different model architectures instantiate competing hypotheses about the processes 

that lead to the observed response. We compared models on their quality of fit to search 

performance (see Fits to visual search performance) and their ability to predict the time course of 

movement neuron activity (see Measures of movement neuron and accumulator dynamics). 

Models that failed to fit the observed pattern of behavior, that fit significantly worse than 

alternative model architectures, or that failed to predict movement neuron dynamics were 
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rejected. This application of strong inference (Platt, 1964) allowed us systematically to eliminate 

several plausible neural architectures for using salience to make saccades. 

The best performing model architecture across all of our criteria was the gated competitive 

model (Figures 3.4-3.7; Figure 3.12). This model was defined by setting ud = 0 (no feed-forward 

inhibition) and included gating inhibition (g), leakage (k), and lateral inhibitory connections (βd) 

between units (8 free parameters). The term gated accumulator model refers to this particular 

architecture unless otherwise specified. 

We evaluated two alternative model architectures that did not assume competitive 

interactions. The gated race model (Figure 3.9A) was defined by setting ud = 0 and βd = 0; this 

model included gating inhibition and leakage, but no competition (4 total free parameters). The 

gated diffusion-like model (Figure 3.9B) was defined by setting βd = 0; this model included 

gating inhibition, leakage, and feed-forward, but not lateral, inhibitory connections (8 total free 

parameters). We also evaluated a model with both diffusion-like and competitive interactions (12 

total free parameters), but the fit was not significantly improved relative to the gated competitive 

model. 

We evaluated two other model architectures without gating inhibition. The non-gated, non-

leaky model (Figure 3.9C) was defined by setting ud = 0, k = 0, and g = 0; this model included 

lateral inhibition, but integration of the salience occurred without loss (6 total free parameters). 

The non-gated, leaky model (Figure 3.9D; Figure 3.10) was defined by setting ud = 0 and g = 0, 

and included leaky integration and lateral inhibition, but no gating inhibition (7 total free 

parameters). 

Fits to visual search performance. We identified parameters values that best fit search 

performance. We simulated 5000 trials to generate RT distributions and response probabilities for 

each set size. All models were fit to behavioral data using a custom combination of a hybrid 

genetic algorithm (Goldberg, 1989) with a Simplex routine (Nelder and Mead, 1965) 

implemented in MATLAB (The MathWorks). Parameters were optimized to fit both pooled and 
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individual monkey performance (Table 3.1). We used a Pearson χ2 statistic to quantify the 

discrepancies between the frequency of observed and predicted RTs falling within time bins 

defined by the 10th, 30th,50th, 70th and 90th percentiles (Van Zandt, 2000; Ratcliff and Tuerlinckx, 

2002). The χ2 statistic was summed across each set size condition and choice as follows: 

.    (2) 

The summation over i indexes response time bins defined by the quantiles of the observed 

response time distribution corresponding to the cumulative probabilities of 0.1, 0.3, 0.5, 0.7, and 

0.9. Oi are the observed proportion of response times and Pi are the predicted proportion of 

response times within the bins. With these quantiles, the six Oi are 0.1, 0.2, 0.2, 0.2, 0.2, and 0.1, 

respectively. Pi are the predicted proportion of response times falling within each bin. The 

probabilities are converted to frequencies by multiplying by the observed number of data points, 

n. The summation over r indexes responses (correct, error) and the summation over s indexes set 

size (2, 4, 8). We count the number of predicted responses falling within each response time 

distribution; therefore, minimizing this statistic simultaneously fits both the observed response 

probabilities and the response time distribution (Van Zandt, 2000). 

 We used a second statistic, the Akaike information criterion (AIC), a penalized maximum 

likelihood statistic, to test whether improvements in fit can be explained by increases in the 

number of free parameters (Bozdogan, 2000):  

      (3) 

where Oi and Pi are the same as described above. M is the number of free parameters in the 

model.  

We used nonparametric bootstrapping to compare goodness of fit and gauge the reliability 

with which optimally-fitting parameters could be estimated (Efron and Tibshirani, 1993; 

Wichmann and Hill, 2001). We randomly sampled, with replacement, sets of responses (correct 

or error) and response times equivalent to the average number of trials in a session (2137 trials). 
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We fit each model to sampled data 5000 times using different initial states and pseudo-random 

number generator seeds to account for noise in the fit statistic and parameter estimates. Standard 

error and confidence intervals were determined directly from the resulting distributions of fit 

statistics and estimated parameters. Simulations were run in parallel on a high-performance 

computing cluster supported by the Vanderbilt Advanced Center for Computing for Research and 

Education (ACCRE). 

Measures of movement neuron and accumulator dynamics. Following Woodman et al. 

(2008), we analyzed four changes in movement neuron dynamics related to changes in RT across 

and within set size: baseline firing rate before search array presentation, onset of presaccadic 

firing rate increase, growth rate of this increase to threshold, and the presaccadic firing rate 

threshold immediately prior to a saccade. Trials in which a saccade was made to the neuron’s 

movement field were sorted by RT and binned into groups of ten to analyze the relationship of 

movement neuron dynamics to RT. A bin size of ten was selected because averaging eliminates 

some noise, but RT variability within a bin is small enough to avoid distortions due to averaging 

across trials with very different RTs. Only neurons that were recorded for at least 30 trials (3 

bins) were included for a particular set size, which precluded an analysis of error trials.  

To calculate the onset of activation, we used a sliding-window algorithm (+/- 20 ms) that 

moved backward in 1-ms increments beginning 15 ms before the mean time of saccade initiation 

for the bin being analyzed. The onset of activation was determined to be the time when the 

following three criteria were met: (a) Activity no longer increased according to a Spearman 

correlation (α = 0.05) within the window around the current time, (b) activity at that time was 

lower than activity during the 20 ms preceding saccade onset, and (c) as the window was moved 

backward in time, the correlation remained nonsignificant for 20 ms. Results were qualitatively 

similar when the onset was computed as the time point when activity first exceeded two standard 

deviations above baseline. The growth rate was the slope coefficient of a least squares regression 

line fit to the activity from 100 ms to 15 ms presaccade. Baseline was computed as the average 



84 

 

firing rate in the 200 ms prior to the appearance of the search array. Threshold was computed as 

the average activity level of a neuron in the interval 20 to 10 ms relative to saccade (Hanes and 

Schall, 1996). 

To allow commensurate statistical comparisons of models and neurophysiology, model 

dynamics were analyzed in the following way: (a) We simulated gated accumulator model 

trajectories using the best fitting parameters to search performance from the pooled data set, (b) 

we normalized and rescaled the model trajectories by the threshold firing rate observed in 

recorded movement neurons, (c) we generated one spike train for each trial according to a time 

inhomogeneous Poisson process with the rate given by the model activation trajectory for that 

trial, (d) we binned the simulated spike trains into groups of 10 trials according to the predicted 

RT and generated a spike density function from the predicted spikes exactly as was done for the 

actual spikes. This transformed a model prediction in terms of spikes per second into a single 

predicted spike train. These steps were repeated 500 times using numbers of simulated trials 

matched to actual numbers of trials recorded from individual movement neurons. 

We analyzed how each measurement accounted for variation in RT across and within set size. 

To determine how changes in each measure accounted for variation in RT across set size, we 

averaged each measure across bins and computed the slope of the average measure as a function 

of set size. To determine how changes in each measure accounted for variation in RT within each 

set size, we computed the correlation coefficient between each measurement and the mean RT for 

all bins of trials. We report median measures of neural dynamics ± standard error of the median, 

which was obtained using a statistical bootstrap approach (1000 samples).  

It is critical to emphasize that all predicted accumulator dynamics were generated using 

parameters that were first optimized to fit search performance. No parameters were hand-tuned to 

match neural dynamics. Thus, the simulated model dynamics are true predictions and not 

optimized fits to physiology. As predictions, we focus on the general changes in response 
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dynamics across and within conditions, as opposed to specific details that are likely to be 

idiosyncratic to particular neurons. 

ROC analysis. We assessed how reliably FEF neurons signaled the target location by 

computing the area under the receiver operating characteristic (ROC) curve from the distribution 

of trials in which the target appeared inside the receptive field of the neuron and trials in which 

the target appeared outside the receptive field (see Thompson et al., 1996). The ROC was 

computed by incrementing a criterion from 0 spikes/s to the maximum firing rate observed across 

all trials in steps of 1 spike/s.  For this analysis we measured the average area under the ROC 

curve from 100 to 200 ms after array presentation. 

Speed-accuracy tradeoff simulations. We explored how the gated competitive accumulator 

model could accomplish speed-accuracy tradeoffs by systematically varying two key parameters 

of the model. We computed the mean RT, percent correct, and expected reward rate while 

varying the gate or threshold parameters and fixing all other parameters at the values fitted to 

pooled performance data. Each simulation consisted of 700 trials of each set size corresponding 

approximately to the average number of trials in an actual recording session. Reward rate is 

defined by R = P/T, where P is the average proportion of correct choices across all set size 

conditions and T is the average trial duration (Gold and Shadlen, 2002; Lo and Wang, 2006). T 

was defined by T =  where p is the response proportion and RT is the 

average RT for each set size, s (2, 4, or 8), and response, r (correct or error). The intertrial 

interval, ITI, was 1 s as in the experiment protocol. Confidence intervals were computed from the 

distribution of reward rates obtained by simulating expected reward rate 1000 times for each set 

of parameters with randomly sampled inputs. 
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3.4 Results 

3.4.1 Visual search behavior and neurophysiology 

We modeled behavior and neurophysiology observed from macaque monkeys trained to 

perform an attentionally-demanding visual search task (Figure 3.1A), details of which have been 

previously published (Cohen et al., 2009a; Heitz et al., 2010). Monkey behavior exhibited 

hallmarks of inefficient search as observed in humans. Percent correct declined (Figure 3.1A) and 

mean RTs increased (Figure 3.1B; Figure 3.1C) with increasing set size (Cohen et al., 2009b). 

Monkeys also exhibited substantial variability in RTs within each set size (Figure 3.1B and 

Figure 3.1C, insets). The variance of the distribution increases with set size and there is a 

systematic lengthening of the upper tail of the distribution, which is also observed in human 

search performance (Ward and McClelland, 1989; Palmer et al., 2011). No current model of 

search explains full response time distributions (Wolfe et al., 2010) or the neural source of this 

variability. Our new model explains both the systematic and random variability in RT driven by 

single-unit physiology recorded during visual search. 

The first observation guiding our modeling is that visually-responsive neurons in FEF, SC, 

and lateral intraparietal area (LIP) appear to encode salience of potential saccade targets. All 

single-unit data in the present report were collected in FEF, but note that neurons with very 

similar response properties are observed in other oculomotor areas. Thus, although we used the 

discharge rate of visually-responsive FEF neurons as model input, we believe that similar results 

would be observed using discharge rates from visually-responsive SC or LIP neurons.  During the 

visual search task, the firing rates of visually-responsive neurons increase following the onset of 

the search array and are maintained at a higher level if the target is within the cell’s RF (Figure 

3.3A). The average time of target selection increases with set size and the average firing rate 

decreases with set size (Cohen et al., 2009b). Decreases in the average firing rate with set size 

have also been reported in LIP (Balan et al., 2008). In addition, we found that visually-responsive 

neurons signaled the location of the target less reliably as set size increased, as indicated by a 
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decline in the average (±SE) area under the ROC curve (set size 2: 0.63 ± 0.05; set size 4: 0.55 ± 

0.03; set size 8: 0.54 ± 0.03). All differences were significant (paired t-test, all p < 0.05). These 

changes may reflect the limited capacity of the visual system to simultaneously analyze all stimuli 

in the visual field, although we cannot make strong claims about the specific mechanisms 

responsible for this limitation. Importantly, the decrease in firing rate with set size is consistent 

with the identification of these neurons as encoding visual salience. A model that explains how 

salience is translated into a saccade command must explain how these firing rate dynamics are 

read out to initiate a saccade.  

The second observation guiding our modeling is that movement neurons in FEF and SC 

initiate saccades at a fixed firing rate threshold. Note that LIP has very few movement neurons 

without visual responses (e.g., Gottlieb and Goldberg, 1999) and LIP neurons do not project 

directly to oculomotor brainstem nuclei, therefore we do not identify our model accumulator with 

LIP neurons.  Figure 3.3B illustrates the population response of FEF movement neurons during 

the T/L search task. In contrast to the visual neuron population, the firing rates of these neurons 

converge at a fixed firing rate threshold immediately prior to the saccade regardless of the set size 

and RT. This adds to converging evidence that presaccadic movement neurons initiate a saccade 

when a fixed firing rate threshold is reached (Hanes and Schall, 1996; Hanes et al., 1998; Pare 

and Hanes, 2003). A model that explains how stimulus salience is translated into a saccade 

command must explain how presaccadic movement neurons are driven to threshold.  
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Figure 3.3: Frontal eye field physiology during visual search. A,B, Normalized population firing rates for FEF 

visual (A) and movement (B) neurons during visual search with set size 2 (blue), 4 (green), and 8 (red). Spike density 

functions were generated from trials in which the target (thick) or a distractor (thin) was inside the RF of the neuron. 

Spike density functions are aligned on the stimulus array presentation (left) and saccade (right). Stimulus-aligned spike 

density functions end at the median RT. 

 

 

3.4.2 Gated competitive accumulation explains search performance 

The gated accumulator model quantitatively accounts for all aspects of visual search 

performance. We optimized parameters to simultaneously fit the observed choice probabilities 

and RT distributions for both correct saccades to the target and error saccades to distractors 

(Table 3.1). Figure 3.4 compares observed search performance with simulated performance of the 

network. The model accounts for the increase in mean RT with set size (Figure 3.4A) because the 

average firing rate of visually-responsive neurons declines with set size (Figure 3.3A) and 

because neurons encoding competing locations are increasingly active due to the presence of 

distractors in their RF. In other words, as set size increases, more locations become activated on 

the salience map. The model accounts for the decrease in percent correct with set size because 
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increased activation at competing locations decreases the reliability with which the target can be 

discriminated and because visually-responsive neurons select distractors when the monkey makes 

an error (Thompson et al., 2005b; Heitz et al., 2010). Predicted errors are slow relative to correct 

responses because firing rates are lower, on average, on error trials. Thus, the properties of 

visually-responsive neurons coupled to a network of stochastic accumulators have exactly the 

properties necessary to explain the basic properties of search performance. Although we only 

manipulated set size here, we note past results showing that visually-responsive neuron firing 

rates decrease with target-distractor similarity as expected of a salience representation (Bichot 

and Schall, 1999a; Ipata et al., 2006; White and Munoz, 2011). This is exactly the pattern of 

modulation that would be required for our model to predict the observed decreases in 

performance with increased target-distractor similarity, as we have demonstrated previously 

(Purcell et al., 2010). 

The model explains the basic changes in mean RT and accuracy during inefficient visual 

search, which must be true for any viable model of search, but a more rigorous evaluation of 

model performance is whether the model can predict full RT distributions. Figure 3.4 plots the 

observed and predicted RT distributions for correct (Figure 3.4C) and error (Figure 3.4D) trials 

for each set size condition. The model captures the increasing spread and the systematic 

lengthening of the upper tail of the distribution, which is characteristic of inefficient visual search 

in humans and our monkeys (Wolfe et al., 2010; Palmer et al., 2011). We verified that this was 

also true for individual monkeys (Figure 3.5). These results demonstrate that nearly all of the 

variability in search performance can be explained by a gated accumulation of the neural 

representation of stimulus salience. 
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Figure 3.4: Gated competitive accumulator model fits to pooled search performance. A, Mean observed (circles) and 

predicted (lines) correct (solid) and error (dashed) response times for set size 2 (blue), 4 (green), and 8 (red). B, Mean 

observed and predicted percent correct. C,D, Observed cumulative response time distribution quantiles (circles) and 

predicted response time distributions (lines) for correct (C) and error (D) responses. 
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Table 3.1: Best fitting parameter values and fit statistics (χ2 and AIC) for all model architectures and data sets. N: 

number of spike trains sampled from visually-responsive neurons to generate salience input for all conditions. θ: 

threshold. k: leakage constant. g: gate constant. βd : lateral inhibition weights between two units spaced i degrees of 

visual angle apart. ud : feed-forward inhibition weights between two units spaced i degrees of visual angle apart. Bold 

values indicate the best fitting model (minimum χ2). Dashes indicate that parameters were fixed to zero for a given 

architecture. 

Data set/Architecture χ2
AIC N θ k g β7.7 β14 β19 β20 u 7.7 u 14 u 19 u 20

Pooled

Gated race 623 6583 130 1.337 0.430 0.427 - - - - - - - -

Gated diffusion-like 265 6398 40 2.658 0.001 0.511 - - - - 0.039 0.050 0.041 0.050

Gated competitive 123 6199 108 11.605 0.017 0.330 0.048 0.038 0.024 0.024 - - - -

Non-gated, non-leaky 234 6583 550 60.302 - - 0.003 0.004 0.003 0.002 - - - -

Non-gated, leaky 165 6237 80 17.707 0.022 - 0.004 0.022 0.006 0.013 - - - -

Monkey Q

Gated race 403 6543 66 3.373 0.018 0.599 - - - - - - - -

Gated diffusion-like 244 6624 66 3.298 0.001 0.520 - - - - 0.048 0.028 0.041 0.047

Gated competitive 106 6497 134 13.607 0.014 0.330 0.050 0.034 0.018 0.021 - - - -

Non-gated, non-leaky 331 6917 450 60.238 - - 0.004 0.004 0.004 0.004 - - - -

Non-gated, leaky 159 6434 100 17.573 0.027 - 0.031 0.027 0.014 0.012 - - - -

Monkey S

Gated race 631 6193 50 1.095 0.519 0.500 - - - - - - - -

Gated diffusion-like 351 6120 45 1.001 0.424 0.377 - - - - 0.040 0.050 0.007 0.050

Gated competitive 157 6006 70 9.816 0.028 0.269 0.004 0.047 0.000 0.025 - - - -

Non-gated, non-leaky 324 6411 500 55.363 - - 0.003 0.005 0.003 0.004 - - - -

Non-gated, leaky 181 6021 70 14.018 0.027 - 0.008 0.030 0.008 0.020 - - - -

 

Figure 3.5: Gated competitive accumulator model fits to individual monkey search performance. A,B, Observed 

correct response time quantiles and predicted response time distributions for monkey Q (A) and monkey S (B). Insets 

show observed and predicted percent correct. C,D, Observed error response time quantiles and predicted response time 

distributions for monkey Q (C) and monkey S (D). Conventions as in Figure 3.4. 
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3.4.3 Gated competitive accumulation predicts dynamics of presaccadic movement activity 

We identify model accumulator units with movement neurons in FEF and SC. If this mapping 

is correct, then accumulator dynamics should correspond to movement neuron dynamics observed 

during visual search. Figure 3.6 (A-C) plots observed movement neuron spiking dynamics for 

slow, intermediate, and fast responses within each set size condition. The onset of neuronal 

modulations is later, on average, when the monkey responds slower whether within or across set 

size conditions (Woodman et al., 2008), but there is little change in the rate of growth across set 

size when aligned on saccade initiation; the apparent differences in rate of growth when aligned 

on array onset are merely a consequence of averaging across trials with different RTs. Consistent 

with a fixed response threshold, the presaccadic firing rate remains constant regardless of task 

difficulty or response speed. The onset of activation also increases within each set size condition 

and there is a slight decline in the rate of growth to threshold. 

Figure 3.6 (D-F) plots the average simulated trajectories sorted according to the same 

procedure as the movement neuron data. We simulated each set size condition 5000 times and 

generated spikes trains according to a Poisson process with a non-homogenous rate given by the 

simulated model trajectories (see Materials and Methods). The model qualitatively captures key 

physiological observations in the movement neurons. The time when the accumulated activation 

first modulates above baseline increases across and within set size. When aligned on saccade 

initiation, there is little or no change in the rate of growth across set size and only marginal 

change in the rate of growth within set size. Finally, the model reaches a fixed threshold prior to 

the response by design. 
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Figure 3.6: Movement neuron and gated accumulator dynamics. A-C, Spike density functions for FEF movement 

neurons conditionalized on set size (A – 2, B – 4, C – 8) and response time (dark – fast, intermediate – medium, light – 

slow). Fast, medium, and slow SDFs were generated from ten trials sampled at the 20th, 40th, and 80th RT percentile, 

respectively, to avoid averaging distortions. D-F, Simulated neural dynamics from the best fitting parameters of the 

gated accumulator model to the pooled data set (Table 3.1). 

 

Following Woodman et al. (2008), we quantified four measures of neural dynamics to verify 

the correspondence between accumulators and movement neurons: delays in the onset of the 

presaccadic rise (onset), the average rate of rise (growth rate), the starting point (baseline), and 

the firing level at the time of saccade (threshold; see Materials and Methods). All simulations 

used parameters fitted to search performance (Table 3.1). Critically, no parameters were adjusted 

to generate predicted model dynamics. 

First, for the across set size assessment, we computed the average of each measure across RT 

groups and computed the least squares regression slope of that measure as a function of set size. 

Figure 3.7A-D shows the resulting slopes for a representative movement neuron. Only the onset 

of accumulation increases significantly with set size. Figure 3.7E-H shows the resulting slopes for 

the population of all movement neurons (bar histogram) and simulations of the gated competitive 
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accumulator model (line histogram). Across the movement neuron population, the median slope 

of onset as a function of set size is significantly greater than zero (14.4 ± 2.5 ms/item, Wilcoxon 

rank sum test, p < 0.001), but does not differ significantly from the median slope of model 

predictions (14.9 ms/item, p = 0.47). No other slope distribution was statistically different from 

zero or from model predictions (all p  0.05). Thus, the model predicts changes in neural 

dynamics with changes in set size that are comparable to observed movement neuron dynamics. 
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Figure 3.7: Quantification of movement neuron and gated competitive accumulator model dynamics across set size. A-

D, onset of the presaccadic burst (A), growth rate of firing rate rise to threshold (B), baseline firing rate (C), and 

presaccadic firing rate threshold (D) as a function of set size for a representative neuron (see Materials and Methods for 

details). Black line illustrates the slope of each measure of neural dynamics as a function of set. The insets illustrate the 

idealized expected dynamics if a given measure accounts for variability in set size. E-H, Population of slopes of each 

measure of neural dynamics as a function of set size for FEF movement neurons (open gray bars; 22 neurons) and 

simulated model dynamics (black lines; 500 simulations). Asterisks denote significant that the distribution of 

movement neuron slopes is significantly different from zero (Wilcoxon rank-sum test; *** for p < 0.001). 

 

 

Next, for the within set size assessment, we computed the correlation between each measure 

of neural dynamics and RT within each set size independently. Figure 3.8A-D illustrates the 

correlation between each measure of neural dynamics and RT bins from a representative neuron 

recorded during set size 4 trials. Only the onset of the presaccadic burst correlates significantly 
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with response time (Figure 3.8A), although there is a small, but nonsignificant, decrease in the 

rate of growth (Figure 3.8B). Figure 3.8E-H plots the median observed correlation between each 

measure of neural dynamics and RT across the population of movement neurons for all set sizes. 

The median correlation is significantly greater than zero for the onset of the presaccadic burst 

(Figure 3.8E; Wilcoxon rank-sum test, set size 2: 0.67 ± 0.12; set size 4: 0.81 ± 0.05; set size 8: 

0.93 ± 0.02; all p < 0.01). We also observed a weak correlation between baseline and RT in set 

size two that was marginally significant (Figure 3.8G; set size 2: -0.24 ± 0.07, p = 0.04), but no 

other measures of neural dynamics correlated significantly with RT (all p > 0.05). Importantly, 

the strength of correlation with RT was statistically indistinguishable between movement neurons 

and model predictions for most measures of neural dynamics (all p > 0.05). The only exceptions 

were the median correlation between baseline and RT for set size 4 (data: 0.03; model: -0.29; p = 

0.02) and between threshold and RT for set size 4 (data: 0.12; model: -0.17; p = 0.03) which 

differed slightly, but significantly from the data. However, the lack of a systematic relationship 

with set size suggests that this deviation can be attributed to noise. Thus, the model predicts the 

essential quantities seen in the neural dynamics using the same parameters that were optimized to 

fit search performance. 
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Figure 3.8: Quantification of movement neuron and gated competitive accumulator model dynamics across response 

time bins within each set size. A-D, onset of the presaccadic burst (A), growth rate of firing rate rise to threshold (B), 

baseline firing rate (C), and presaccadic firing rate threshold (D) as a function of RT bins for a representative neuron 

(see Materials and Methods for details). Only set size 4 is shown for simplicity. Lines illustrate the least squares 

regression line fit to the data. Red lines indicate significant Pearson correlation coefficients (p < 0.05). E-H, median 

correlation between each measure of neural dynamics and response time for observed movement neurons (circles) and 

simulated model dynamics (lines). Error bars indicate standard error of the median for observed data (bootstrap, 1000 

samples). Asterisks indicate median correlations that significantly differed from zero (Wilcoxon rank-sum test; * for p 

< 0.05; ** for p < 0.01; *** for p < 0.001).  
 

3.4.4 Gating inhibition and lateral competition are necessary 

Using the logic of nested model testing, we determined which model elements are necessary 

to account for visual search performance and replicate movement neuron physiology. First, we 

explored a gated race model architecture without competitive interactions (all βd = 0). This 

architecture qualitatively failed to predict the ordering of mean error RTs (Figure 3.9A). This 
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architecture failed because it has no mechanism to suppress the initial visual responses that drive 

saccades to distractors. Quantitatively, this produced significantly elevated χ2 relative to the gated 

competitive model for both individual and pooled monkey data (p < 0.05, non-parametric 

bootstrap, 5000 simulations; Figure 3.10). The difference was not statistically significant using 

AIC (all p > 0.05), but there are several reasons to believe that this additional complexity is 

warranted. First, the gated race model cannot predict the correct ordering of error RTs and 

therefore qualitatively fails to predict a key component of visual search performance. Second, the 

need for competition is supported by studies demonstrating that microstimulation of FEF can 

suppress firing rates in the opposite hemifield (Schlag et al., 1998) and the presentation of a 

visual distractor in the ipsilateral visual field reduces the firing rate of SC movement neurons 

(Dorris et al., 2007). Lastly, existing theoretical work has demonstrated some form of competitive 

interaction is necessary to optimize the rate of reward for a set amount of sensory evidence 

(Bogacz et al., 2006). Thus, some form of competitive interaction appears to be necessary. 
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Figure 3.9: Rejection of alternatives to gated competitive accumulation. A-D, mean correct and error response times 

(left) and percent correct (right) for observed data and model predictions from alternative architectures. Poor 

performance of a gated independent race architecture (A, βd = 0, ud = 0), gated diffusion-like architecture (B, βd = 0, ud 

is fit), non-gated, non-leaky architecture (C, k = 0, g = 0) and non-gated, leaky architecture (D, g = 0). Conventions as 

in Figure 3.4.  

 

 

We next explored a diffusion-like gated accumulator model with feed-forward inhibition 

between model inputs but no competition between model units (all ud were allowed to vary, but 

all βd = 0). This architecture failed to predict both the ordering of error RTs and the observed 

percentages of correct responses (Figure 3.9B). We observed a significantly worse fit for this 

model than the gated competitive model for all data sets whether or not model complexity is 

taken into account (all P < 0.05; Figure 3.10). This model fails because some mechanism must 
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suppress the initial visual responses to distractor locations, but feed-forward inhibition must 

necessarily be weak when the number of interacting accumulators is >2. If feed-forward 

inhibition is strong, then the inhibition from distractors will overwhelm excitation to the target 

location resulting in excessively long RTs (Usher and McClelland, 2001). These results appear to 

challenge the generality of a large class of drift diffusion models that require feed-forward 

inhibition for their neurophysiological implementation (Gold and Shadlen, 2001; Bogacz et al., 

2006; Ratcliff et al., 2007; Churchland et al., 2008; Ditterich, 2010; Purcell et al., 2010).  

 

 

Figure 3.10: Fit summary for alternative model architectures fit to pooled (A), monkey Q (B), and monkey S (C) 

search performance data. Values are median χ2 (left) or AIC (right) ± 95% confidence interval (Non-parametric 

bootstrap; 5000 simulations). 
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To investigate the necessity of gating inhibition and leakage, we explored a non-gated, non-

leaky model architecture with lateral inhibition but no gate or leak. This architecture failed to 

quantitatively predict both correct and error RTs as well as the percentage of correct responses 

(Figure 3.9C). The fit was significantly worse than the gated competitive model even when taking 

into account differences in model complexity (Figure 3.10). It fails because tonic activity of 

visually-responsive neurons propagates directly to accumulators that initiate saccades before 

salience can be computed. Thus, some mechanism is needed to limit the rate of integration until 

an informative salience signal can be generated, and leakage or gating or both are viable 

mechanisms. 

To investigate the necessity of gating inhibition, we explored a non-gated, leaky architecture 

with lateral inhibition and leakage, but no gating inhibition. This architecture accounted 

qualitatively for the basic pattern of search performance (Figure 3.9D). Although the fit appears 

qualititatively worse than the gated competitive model architecture, this difference was not 

statistically significant for both fit statistics and all data sets (Figure 3.10). We previously found 

the same result using a simplified two-accumulator model framework (Purcell et al., 2010). Thus, 

leaky and gated models cannot be discriminated by behavioral data alone even in this more 

complex network that explains richer behavioral data. However, gated accumulation is necessary 

to for the accumulators to replicate movement neuron dynamics.  Models that do not include 

gating predict a strong negative correlation between the baseline and RT that is not observed in 

the data. Figure 3.11 shows that this result replicates in a multiple-accumulator framework. Thus, 

gating inhibition is necessary to explain movement neuron physiology during visual search. 
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Figure 3.11: Models with no gate fail to predict observed movement neuron dynamics. Observed (brackets) and 

predicted (points) median correlation between response time and four measures of neural dynamics for set size 2 (A), 4 

(B), and 8 (C). Brackets and error bars are 95% confidence intervals around the observed and predicted median 

correlation, respectively (bootstrap, 1000 simulations). Red arrows highlight the key difference between the predicted 

and observed baseline correlation with RT (see also Purcell et al., 2010). 

3.4.5 Control of speed-accuracy tradeoff 

Most stochastic accumulator models assume that adjustments in speed and accuracy are 

controlled via adjustments in the height of the response threshold (Gold and Shadlen, 2002; 

Bogacz et al., 2006; Lo and Wang, 2006; Nakahara et al., 2006; Simen et al., 2006; Ratcliff and 

McKoon, 2008).  However, no current study has reported changes in threshold firing rate at the 

level of individual neurons, and in fact, recent neurophysiological evidence indicates that 

systematic adjustments of RT are accomplished through changes in the onset of accumulation 

(Pouget et al., 2011).  We found that the gated accumulator model produces a speed and accuracy 
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tradeoff when either threshold or gating inhibition is varied. Rather than fit parameters to data as 

in the preceding section, we manipulated the level of the threshold or the gate while fixing all 

other parameters at values fitted to pooled search performance. When the threshold increases, the 

system is more likely to correctly locate and respond to the target, but requires more time to 

accumulate additional salience (Figure 3.12A, inset). When the gate increases, visual salience is 

processed to a higher resolution before it begins to drive saccade initiation (Figure 3.12B, inset; 

see Figure 3.2B). Thus, gating inhibition provides an alternative account for trade-offs between 

speed and accuracy during visual search.  

Mechanisms that trade speed for accuracy should optimize behavior. As one measure of 

optimization, we computed the expected reward rate as a function of threshold and gate. 

Consistent with previous studies, we found that varying threshold produced a non-monotonic 

change in the expected reward rate such that a range of threshold values maximized reward 

(Figure 3.12A).  However, we also found that systematically varying the level of the gate 

produced a non-monotonic change in reward rate (Figure 3.12B). Furthermore, the value of 

threshold and gate that best fit the monkey’s performance fell within the range of parameter 

values that maximized reward rate. This suggests that after extensive practice, the circuitry of the 

network responsible for visual search performance adapted precisely to optimize performance. 

Monkeys could strategically adjust their performance via adjustments in threshold or gating, 

but the alternative mechanisms are indistinguishable in terms of both maximal reward rate and 

robustness to parameter variation. However, the alternative mechanisms make clearly 

distinguishable predictions about how movement neuron dynamics should change when monkeys 

emphasize speed or accuracy. Increases in threshold will obviously increase the presaccadic firing 

rate of neurons (Figure 3.12C), whereas increases in gating will decrease the baseline and delay 

the beginning of accumulation of activity leading to the saccade (Figure 3.12D). New data from 

tasks in which animals are explicitly cued to trade speed and accuracy can be incorporated into 

our modeling framework to discriminate these alternative mechanisms. 
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Figure 3.12: Threshold and gating inhibition can explain speed-accuracy tradeoffs. A,B, Mean expected reward rate as 

a function of the threshold (A) and gate (B) values when other parameters are fixed at the values which best fit the 

pooled search performance. Insets show simulated mean percent correct (black) and RT (gray) corresponding to the 

parameter values used to simulated the reward rates in A and B. Each point is calculated by a simulated session with 

700 trials per set size, which approximates the average number of trials recorded per session. Error bars are 95% 

confidence intervals around the mean which may be asymmetric due to skewed distributions (bootstrap, 1000 

simulations). The red points show expected reward rate using parameters which best fit the animal’s performance. C,D, 

Gated accumulator dynamics for threshold (C) and gate (D) spanning a range of reward rates. Each trajectory reflects 

the average of 1000 simulated trajectories for a given set of parameters. As threshold increases, the accumulation 

begins at the same time, but reaches progressively higher levels. As gate increases, baseline activity decreases and 

accumulation begins rising later. 

 

3.5 Discussion 

We formalized and tested a model of visual search comprised of a network of gated, 

competing units that accumulate a dynamic salience representation. The model accounts for the 

probabilities and RTs of correct and error saccades and also replicates the dynamics of 

presaccadic movement neurons by identifying them with the process of accumulating salience. 

The model also provides a new perspective on the mechanism for speed-accuracy adjustments. 
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3.5.1 A neurophysiologically-constrained account of visual search 

Visually responsive neurons in FEF, LIP, and SC have been identified as a 

neurophysiological salience map (Findlay and Walker, 1999; Thompson and Bichot, 2005; 

Fecteau and Munoz, 2006; Gottlieb, 2007; Bisley and Goldberg, 2010) because these neurons 

modulate their firing rate according to both physical properties of the stimuli in the display 

(Bichot and Schall, 1999b; Ipata et al., 2006; White and Munoz, 2011), reflecting bottom-up 

salience, as well as variables which determine the significance of a stimulus such as its expected 

reward (Ding and Hikosaka, 2006) or stimulus history (Bichot et al., 1996; Bichot and Schall, 

1999a, 2002; Sato et al., 2003), reflecting top-down salience. This salience representation does 

not depend on response or effector (Thompson et al., 1997; Bisley and Goldberg, 2003; Sato and 

Schall, 2003; Gottlieb et al., 2005; Thompson and Bichot, 2005; Murthy et al., 2009; White and 

Munoz, 2011).  

Rather than assuming some model of the salience map endowed with properties that might 

predict search performance, we used the salience representation provided by visually-responsive 

neurons in FEF to investigate the mechanisms sufficient to translate the salience map into a 

saccade.  We found that gated integration with lateral inhibition is sufficient. This is the first 

model to explicitly link the neural representation of salience to a multiple-alternative stochastic 

accumulator network.  Some previous search models include stochastic accumulation, but these 

have only been formulated conceptually (Wolfe, 2007) or are not grounded in physiology (Ward 

and McClelland, 1989; Thornton and Gilden, 2007). We previously modeled correct search RTs 

using a simple two-unit accumulator network (Purcell et al., 2010).  This preliminary model 

accounted for systematic variation of RT with search efficiency, but the data set was insufficient 

to investigate error rates or set size effects; therefore, it was not a viable model of visual search. 

The substantial behavioral and neurophysiological data afforded by the data set modeled here 

impose substantially greater model constraint. 
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We found that gating inhibition is necessary to limit the accumulator input until explicit 

visual salience is present. Many models assume a static salience representation (Palmer et al., 

2000; Navalpakkam and Itti, 2007), but the neural representation of salience evolves dynamically 

over time (Figure 3.3A). In our model, saccade preparation cannot begin until the visual response 

exceeds the gate and an informative salience signal evolves (Figure 3.2B). This mechanism 

contrasts with all previous stochastic accumulator models that require the ad hoc assumption that 

accumulation is simply delayed by an arbitrary non-decision time parameter (Lo and Wang, 2006; 

Ratcliff et al., 2007; Churchland et al., 2008; Stanford et al., 2010). Other work has demonstrated 

that balanced excitation and inhibition can delay the onset of accumulation (e.g., Furman and 

Wang, 2008), but such a system can be susceptible to perturbations that can disrupt stability 

leading to premature threshold crossings. 

 

3.5.2 Extending perceptual decision tasks to multiple stimuli 

Several frameworks have been proposed to explain perceptual decisions about individual 

stimuli and many include discrete or continuous networks of accumulators (Usher et al., 2002; 

Beck et al., 2008; Churchland et al., 2008; Furman and Wang, 2008; Ditterich, 2010; Leite and 

Ratcliff, 2010). Some of these models refer to how visually-responsive LIP and FEF neurons 

integrate the firing rates of neurons encoding visual features to categorize information from a 

single foveal stimulus (Roitman and Shadlen, 2002; Ding and Gold, 2011).  However, a general 

theory of perceptual decision making must explain more complex conditions involving multiple 

stimuli; not just multiple responses. These models identify the same visually-responsive neurons 

that encode salience with accumulators that signal the end of stimulus categorization when 

discharge rates reach a fixed threshold.  However, the dynamics of these neurons are markedly 

different during search tasks where one or more stimuli appear abruptly in the RF of the neuron 

and must be categorized and selected to guide response selection. The initial visual response often 

exceeds the presaccadic firing rate and these neurons do not reach a fixed threshold prior to 
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saccade initiation (Figure 3.3A; Hanes et al., 1998; Brown et al., 2008). Therefore, we propose a 

new framework to account for neural dynamics and search performance. 

According to this framework, visual neurons in FEF, SC, and LIP have already integrated and 

reweighted sensory inputs according to task demands before being input to the accumulator 

network. This interpretation is consistent with cognitive models of perceptual decision making in 

which perceptual processing precedes the start of the accumulation process to determine the 

degree of support for a particular response (Nosofsky and Palmeri, 1997; Logan, 2002). This 

interpretation also highlights the distinct role of different populations of neurons in decision 

making. While the decision that a stimulus belongs to a particular category could be identified 

with selection of the target location by visually-responsive neurons in FEF, SC, and LIP, the 

decision to act requires additional processing by movement-related neurons (Schall, 2001). Our 

model formalizes this distinction. 

 

3.5.3 Strategic adjustments in speed and accuracy 

Threshold adjustments seem to provide a simple and intuitive account of speed-accuracy 

tradeoffs.  However, we found that variation of gating inhibition can produce equivalent speed-

accuracy tradeoffs by either promoting or delaying the accumulation of salience as has been 

observed in another study (Pouget et al., 2011).  This model predicts that changes in gating 

inhibition will produce a qualitatively different pattern of movement neuron dynamics than 

changes in threshold when tested during speed-accuracy tradeoffs.  This also suggests that a 

neuron which implements the gating inhibition will modulate its firing rate inversely with speed-

stress. 

Other recent models have indicated that speed-accuracy tradeoffs can be implemented by a 

time-varying multiplicative gain or “urgency” signal applied to the inputs to stochastic 

accumulators (Churchland et al., 2008; Cisek et al., 2009). Increasing noise and variance are 

intrinsic properties of our neurophysiologically-derived model input (Figure 3.2B). Our model 
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predicts that this could take place via changes in the firing rates of visually-responsive neurons 

without assuming an explicit multiplicative gain parameter. Altogether, our model makes clear 

predictions to discriminate alternative accounts of the neural basis of speed-accuracy tradeoffs.  

 

3.5.4 Neurophysiological implications 

FEF, SC, and LIP neurons have anatomical connectivity to perform the functions proposed by 

our model. These areas receive inputs from diverse regions of extrastriate visual cortex and 

prefrontal areas to compute stimulus salience (e.g., Blatt et al., 1990; Lui et al., 1995; Schall et 

al., 1995a). Neurons representing visual salience reside in both supragranular and infragranular 

layers of FEF (Thompson et al., 1996) and intermediate layers of SC (White and Munoz, 2011). 

Movement neurons reside in layer 5 of FEF and the intermediate layers of SC and project to 

oculomotor brainstem nuclei that control saccade initiation (Moschovakis et al., 1988; Segraves, 

1992). Visually-responsive LIP neurons could drive SC and FEF movement neurons to threshold 

via known projections (Blatt et al., 1990; Pare and Wurtz, 2001).  The constant presaccadic firing 

rate observed in FEF and SC movement neurons may correspond to the fixed degree of excitation 

necessary to tip the balance from gaze-holding to gaze-shifting via excitation of long-lead burst 

neurons and inhibition of omnipause neurons (Munoz et al., 2000; Scudder et al., 2002).  

Our model assumes that a gating mechanism intervenes between visually-responsive and 

movement neurons. Gating inhibition is a simple operation that can be realized through several 

different neural mechanisms. First, gating could be implemented by inhibitory interneurons 

within FEF and SC that can adjust the level of excitation necessary to initiate spiking in 

individual neurons (Somogyi, 1977; Markram et al., 2004). Simple neural networks that balance 

interneuron inhibition with self-excitation exhibit bistable dynamics that limit integration until 

inputs exceed a critical level (e.g., Simen and Cohen, 2009).  Second, gating could be mediated 

by FEF and SC fixation neurons, which fire tonically during fixation but cease firing prior to a 

saccade at a time coinciding with the onset of movement neuron firing across conditions (Munoz 
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and Wurtz, 1993; Everling et al., 1998; Hanes et al., 1998).  Finally, gating inhibition could also 

be implemented via basal ganglia circuitry as posited by other models (Brown et al., 2004; Frank, 

2006). FEF neurons project to the caudate nucleus which sends inhibitory projections to the 

substantia nigra pars reticulate (SNpr; Hikosaka et al., 2000). SNpr neurons cease firing around 

the time of target selection during search (Basso and Wurtz, 2002). SNpr sends direct projections 

to SC and also to the mediodorsal (MD) and ventroanterio (VA) nuclei (Parent and Hazrati, 

1995); thalamic nuclei with saccade-related responses (Tanaka, 2007) and reciprocal connections 

with FEF (Huerta et al., 1987). 

 

3.5.5 Conclusions 

We showed that a feed-forward cascade of salience into a network of multiple competing 

stochastic accumulators can account for visual search performance and replicate the dynamics of 

presaccadic movement neurons activity.  By forgoing the details of spike generation in exchange 

for the ability to relate specific network mechanisms to comprehensive behavioral data, this 

approach allowed us to reject plausible model architectures and identify key mechanisms 

necessary and sufficient to explain how the brain decides among multiple stimuli. We can further 

test our model’s premise of a feed-forward visual-to-motor cascade by using visually-responsive 

neuron physiology recorded in the context of additional tasks as model input to our framework.  

Factorial manipulations of search efficiency and set size, variations in stimulus-response 

mapping, and tasks in which animals are cued to trade speed for accuracy will provide critical 

tests of the basic model assumptions. 
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CHAPTER IV 

 

RESPONSE VARIABILITY OF FRONTAL EYE FIELD NEURONS MODULATES WITH 

SENSORY INPUT AND SACCADE PREPARATION BUT NOT VISUAL SEARCH 

SALIENCE 

 

4.1 Abstract 

Discharge rate modulation of frontal eye field (FEF) neurons has been identified with a 

representation of visual search salience (physical conspicuity and behavioral relevance) and 

saccade preparation.  We tested whether salience or saccade preparation are evident in the trial-

to-trial variability of discharge rate.  We quantified response variability via the Fano factor in 

FEF neurons recorded in monkeys performing efficient and inefficient visual search tasks.  

Response variability declined following stimulus presentation in most neurons, but despite clear 

discharge rate modulation, variability did not change with target salience.  Instead, we found that 

response variability was modulated by stimulus luminance and the number of items in the visual 

field independent of attentional demands.  Response variability declined to a minimum before 

saccade initiation and pre-saccadic response variability was directionally tuned.  In addition, 

response variability was correlated with the response time of memory-guided saccades.  These 

results indicate that the trial-by-trial response variability of FEF neurons reflects saccade 

preparation and the strength of sensory input, but not visual search salience or attentional 

allocation. 

 

4.2 Introduction 

Visually-responsive neurons in the frontal eye field (FEF) have been identified with a 

map of visual salience (Thompson and Bichot, 2005).  By salience we refer to the representation 

guiding the allocation of attention and gaze; some use the term priority (Bisley and Goldberg, 

2010).  The mean discharge rate of these neurons varies with the physical-conspicuity (bottom-up 
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salience; Bichot and Schall, 1999a; Sato et al., 2001; Cohen et al., 2009b) and behavioral 

relevance (top-down salience; Thompson et al., 1996; Bichot and Schall, 2002) of items in their 

response field (RF), regardless of whether a saccade is executed to the RF (Thompson et al., 

1997; Thompson et al., 2005a; Murthy et al., 2009).  In addition, saccade-related neurons in FEF 

have been identified with saccade preparation (Bruce and Goldberg, 1985; Hanes and Schall, 

1996; Boucher et al., 2007; Murthy et al., 2009; Purcell et al., 2010; Purcell et al., 2012b).  The 

mean discharge rate of these neurons increases to a fixed threshold immediately prior to saccades 

(Hanes and Schall, 1996; Hanes et al., 1998).  Thus far, the identification of FEF neurons with 

visual salience and saccade preparation is based entirely on changes in mean discharge rate. 

 Recent studies have demonstrated that the trial-by-trial variability of cortical neurons 

may be modulated by the behavioral relevance of objects in their RF.  Response variability of V4 

neurons declines with attention to an RF stimulus (Mitchell et al., 2007; Cohen and Maunsell, 

2009).  Reduced firing variability of neurons representing behaviorally relevant stimuli could 

improve the reliability with which a search target is discriminated and thereby improve search 

performance (Palmer et al., 2000).  In FEF, neuronal response variability declines following 

stimulus onset, but is not maintained in the absence of sensory input and the magnitude of the 

visually-evoked decline does not depend on whether or not the animal was cued to attend to the 

RF stimulus (Chang et al., 2012).  A previous study from this laboratory reported that response 

variability of FEF neurons did not distinguish targets from distractors in distinct time intervals 

(Bichot et al., 2001b), but the time course of response variability during visual search has never 

been systematically examined under differing attentional demands. 

 Other investigators have suggested that trial-by-trial variability can be a signature of 

motor preparation.  Response variability in pre-motor cortex declines following presentation of a 

reach target and reaches a minimum immediately prior to arm movements (Churchland et al., 

2006).  Similar declines in variability prior to saccades have been reported in V4 (Steinmetz and 

Moore, 2010) and LIP (Churchland et al., 2011).  If FEF neurons initiate saccades at a response 
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threshold, as suggested by discharge rate modulation, then variability should be minimal at 

saccade initiation.  It is not known whether the response variability of FEF neurons declines in a 

manner consistent with this model. 

 We computed the time-varying Fano factor as an index of response variability in FEF 

neurons recorded from monkeys performing a visual search task.  If the response variability of 

FEF neurons depends on visual salience, then Fano factor should be modulated by the behavioral 

relevance and physical conspicuity of an RF stimulus.  If response variability of FEF neurons 

depends on motor preparation, then Fano factor should decline to a minimum prior to saccade 

initiation.  In addition, we would expect Fano factor to vary according to saccade direction and 

correlate with response time (RT). 

 

4.3 Materials and Methods 

4.3.1 Behavioral tasks and recordings 

 We recorded single-unit spiking from the FEF of three macaques (Macaca mulatta).  

Monkeys were surgically implanted with a head post, a subconjunctive eye coil, and recording 

chambers during aseptic surgery under isoflurane anesthesia.  Antibiotics and analgesics were 

administered postoperatively.  All surgical and experimental procedures were in accordance with 

the National Institute of Health Guide for the Care and Use of Laboratory Animals and approved 

by the Vanderbilt Institutional Animal Care and Use Committee. 

 Neurons were recorded from both hemispheres of all monkeys using tungsten 

microelectrodes (2-4 MΩ, FHC) and were referenced to a guide tube in contact with the dura.  All 

FEF recordings were acquired from the rostral bank of the arcuate sulcus at sites where saccades 

were evoked with low-intensity electrical microstimulation (<50 μA; Bruce and Goldberg, 1985).  

Spikes were sampled at 40 kHz.  Waveforms were sorted online using a time-amplitude window 

discriminator and offline using principal component analysis and template matching (Plexon).  

Eye position was recorded at a sampling rate of 1kHz. 
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 The monkeys performed visual search tasks of varying difficulty.  Each monkey 

performed a subset of three variants of a search task in which either set size or target-distractor 

similarity was manipulated.  Basic analyses of these data have been published previously (Sato et 

al., 2001; Cohen et al., 2009b; Purcell et al., 2010; Purcell et al., 2013).   

In the first search task (Figure 4.1A), monkey F searched for a target (green or red disk) 

among seven distractors.  Each trial began with the monkey fixating a central spot for ~600ms.  A 

target was then presented at one of eight isoeccentric locations equally spaced around the fixation 

spot (8-10o eccentricity).  The other seven locations contained distractor stimuli.  Search 

efficiency was varied randomly across trials by manipulating target-distractor similarity.  For 

efficient search, distractors were red or green disks for green or red targets, respectively.  For 

inefficient search, distractors were yellow-green disks for green targets.  The monkey was 

rewarded for making a single saccade to the target and fixating it for ~400ms.   

 In the second search task (Figure 4.1B), monkeys Q and S searched for a target (T or L 

rotated 0o, 90o, 180o, or 270o) among distractors (rotated L or T).  Each trial began with the 

monkey fixating a central spot for ~600ms.  A target was then presented at one of eight 

isoeccentric locations equally spaced around the fixation spot (8-10o eccentricity).  The number of 

distractors varied randomly across trials (set size 2, 4, or 8).  Stimuli were always arranged in 

diametrically opposite locations.  The target and distractor identities remained constant 

throughout a session and target identity was varied across sessions.  The monkey was rewarded 

for making a single saccade to the location of the target within 2000 ms of array onset and 

fixating the target for 500 ms.   

 In the third search task (Figure 4.1C), monkeys Q and S searched for a color target (green 

or red disks) among one, three, or seven distractors of the other color.  The experimental protocol 

was otherwise identical to the form search.  The form search task was considered inefficient 

search and the color pop-out search task was considered efficient search based on behavioral 

patterns (see Results). 
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 All monkeys performed a memory-guided saccade task to distinguish visual- from 

saccade-related activity (Hikosaka and Wurtz, 1983; Bruce and Goldberg, 1985).  The target 

(filled gray circle) was presented without distractors for 80-150 ms.  Monkeys were required to 

maintain fixation for 500-1000 ms after target onset.  After the fixation point changed from filled 

to open, the monkeys were rewarded for making a saccade to the remembered location of the 

target and maintaining fixation for ~500ms.  For monkeys Q and S, the target luminance was 

varied randomly across trials (0.01 to 8.05 cd/m2).  Unless otherwise stated, we used only trials in 

which target luminance was 0.99 cd/m2 for basic analyses of this task because discharge rate 

and Fano factor varied little above this range. 

 

 

Figure 4.1 Color and form visual search tasks.  After fixating for a variable delay, a search array appeared consisting of 

a target and distractors. Monkeys were trained to make a single saccade to the location of the target for reward.  A, 

Color search task with target-distractor similarity manipulation.  Monkey F searched for a green or red target.  Target-

distractor similarity varied across trials.  Target color varied across sessions.  B, Form search task with set size 

manipulation.  Monkeys Q and S searched for a rotated L among Ts or T among Ls.  Set size varied across trials (2, 4, 

and 8 stimulus).  Target identity was consistent within a session.  Stimuli were arranged such that one distractor was 

always diametrically opposite the target location.  C, Color search task with set size manipulation.  Monkeys Q and S 

searched for a green or red target among red or green distractors, respectively.  The task was otherwise identical to the 

form search task. 
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4.3.2 Data analysis 

 For the search task, discharge rate and Fano factor were analyzed by sliding a 50 ms 

window in 10 ms steps across the spike train data.  We verified that all visual search results were 

statistically identical using window sizes ranging from 10 to 150 ms.  We used a larger window 

of 150 ms for the memory-guided saccade task because the average number of trials per condition 

(34 trials) was substantially less than search (110 trials).  This provided additional smoothing at 

the expense of temporal smearing. 

The discharge rate was calculated as the spike count in each time bin divided by the 

length of the window.  The Fano factor was calculated as the ratio of the variance to the mean of 

spike counts across trials within each time bin.  Discharge rate and Fano factor were computed 

separately for each individual neuron, search condition, and stimulus in RF and then averaged 

across neurons.  Trials with incorrect responses were excluded from neural analyses.  Time bins 

in which the mean discharge rate was 0 were excluded from the average.  Only well-isolated 

neurons in which the waveform and average discharge rates were stable across the recording 

session were included.  Unless otherwise noted, all units were included for analysis regardless of 

whether task-related modulations were observed.  Results were identical whether or not 

nonmodulated neurons were included. 

The center of the RF was determined by vector summation of the normalized response to 

each target location during the memory-guided saccade task.  The angle of the resultant vector 

gave the preferred response location.  To be conservative, we considered locations within 45o of 

the preferred angle to be inside the RF, which is slightly smaller than the average RF width at 10o 

eccentricity (~51o)(Purcell et al., 2012a).  We verified that our results do not depend greatly on 

the exact size of the RF.  Trials were sorted according to whether the target appeared inside the 

RF or diametrically opposite to the RF center.  This ensured that at least one stimulus was present 

in the RF on every analyzed trial even when set size was <8.   
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 Discharge rate and Fano factor modulations were assessed using identical statistical 

methods.  To assess significant deviations from baseline, we compared discharge rate and Fano 

factor at each time bin to the average activity -100 to 0 ms relative to array onset (Wilcoxon rank-

sum test, p < 0.01).  The visual latency was defined as the time bin when activity first diverged 

from baseline and remained significantly different for 5 consecutive time bins.  Discharge rate 

and Fano factor in each bin were computed from spike counts in a window as described above.  

To assess target and saccade-direction selectivity, we compared the discharge rate and Fano 

factor when the target or distractors were inside the neurons’ RFs (Wilcoxon rank-sum test, p < 

0.01).  The selection time was defined as the time bin when activity first significantly diverged 

and remained significantly different for 5 consecutive bins.  We used a bootstrapping procedure 

to compute standard error and confidence intervals.  We randomly sampled, with replacement, 

1000 times from our population of neurons, computed the visual latency and selection time for 

each sample, and estimated the standard error and confidence intervals directly from the resulting 

distribution.   

In addition to bin-by-bin statistical comparisons, we also analyzed discharge rate and 

Fano factor in three key epochs.  For spike times relative to stimulus presentation, we defined the 

post-stimulus period as the time interval from 100 ms after array onset until 100 ms before mean 

saccade response time for each neuron.  This epoch was computed separately for each neuron, but 

fixed across trials.  We used this epoch to analyze the earliest period of visual selection that 

followed the initial non-selective visual response, but preceded saccade initiation.  This epoch 

corresponds approximately to the earliest times at which the target location can first be 

discriminated in individual FEF neurons (e.g., Thompson et al., 1996; Cohen et al., 2009b).  

Results were statistically identical using a more conservative window 100 to 150 ms relative to 

array onset for all neurons, which excluded saccades from all but ~1% of trials.  For spike times 

relative to saccade, we defined the pre-saccade period as the time interval from 50 to 0 ms before 

saccade initiation.  We used this epoch to analyze the state of motor preparation immediately 
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prior to saccade.  This epoch allowed us to evaluate models of saccade preparation that predict 

reductions in variability before saccades of a particular direction (e.g., stochastic accumulator 

models).  Results were statistically identical using a larger window of 100 to 0 ms before saccade 

initiation.  During the memory-guided saccade task, we also analyzed the pre-cue interval -200 to 

0 ms before cue (fixation point offset).  We used this epoch to analyze spatial maintenance and 

motor preparation during the memory delay.  Note that our selection of time epochs is not 

intended to imply serial processing of covert attention and saccade processing; rather, the two 

processes probably overlap temporally (Purcell et al., 2010; Purcell et al., 2012b). 

 To assess the effect of luminance on discharge rate and Fano factor, we divided responses 

according to target location and luminance for neurons recorded during the memory-guided 

saccade task.  We grouped trials into three groups according to luminance (Low: 0.01 to 0.6 

cd/m2; Medium: 0.20 to 1.00 cd/m2; High: 1.70 to 5.00 cd/m2).  These groupings were chosen 

such that the average number of trials per condition was sufficiently large and approximately 

equal across groups (~25 trials).  We computed the slope of the least squares regression line for 

discharge rate and Fano factor in the post-target interval as a function of median luminance value 

for each group.   It is likely that more complex nonlinear functions better explain the relationship 

between luminance and discharge rate or Fano factor (Albrecht and Hamilton, 1982), but we did 

not have sufficient data to more precisely quantify the relationship.  Hence, our goal is only to 

show that discharge rate and Fano factor in FEF are monotonically modulated by stimulus 

luminance across the range of tested values.  We used a 50 ms window when computing the 

visual latency of mean discharge rates for improved temporal resolution. 

 To assess the effect of set size on discharge rate and Fano factor, we divided responses 

according to search condition and stimulus in receptive field.  We averaged discharge rate and 

Fano factor across time bins for each set size in a running window (±20 ms, four time bins) 

incremented in time steps of 10ms.  The window moved from array onset until 50 ms before 

mean saccade response time for set size 2 to avoid comparisons across set sizes before and after 
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saccades had been initiated.  At each time step, we computed the slope of the least squares 

regression line for discharge rate and Fano factor as a function of set size and assessed the 

statistical significance (p < 0.01).  We also report the mean discharge rate and Fano factor in the 

window 50 to 125 ms following target onset because the strongest changes in response variability 

were observed in this early visual epoch.  

 We classified FEF neurons as visually-responsive or saccade-related based on responses 

during the memory-guided saccade task.  We computed a visuomovement index (VMI) for each 

neuron as follows: 

 , 

where V is the average discharge rate 50 to 200 ms following target onset and M is the 

average discharge rate 50 to 0 ms prior to saccade.  The VMI is 1 for neurons with only visual 

responses and -1 for neurons with only saccade-related responses.  To be classified as visually-

responsive, the VMI must be greater than 0 and the discharge rate of a neuron must be 

significantly greater than baseline (-100 to 0 ms) following target onset (50 to 200 ms; Wilcoxon 

rank-sum test, p < 0.01).  To be classified as saccade-related, the VMI must be less than 0 and the 

discharge rate must be significantly greater than baseline immediately prior to saccade (-50 to 0 

ms).  We also analyzed the subset of pure visual neuron with significant modulation in the post-

stimulus epoch, but no significant modulation in the pre-saccadic epoch.  Neurons without 

significant modulation in either epoch were considered nonmodulated. 

We quantified spatial tuning by dividing discharge rate and Fano factor by distance from RF 

center (in polar angle) and averaging across neurons and search conditions.  RF center was 

defined as the stimulus location closest to the neuron’s preferred response location.  We fit the 

average discharge rate or Fano factor as a function of target location with a Gaussian function of 

the form: 

, 
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where activation (A) as a function of polar angle ( ) depends on the baseline (B), 

maximum/minimum response (R), optimum direction ( ), and directional tuning ( ) (Bruce and 

Goldberg, 1985; Schall et al., 1995b).  Tuning width was estimated by the standard deviation ( ) 

of the best fitting Gaussian curve.  Previous reports have demonstrated that some neurons exhibit 

flanking suppression (Schall et al., 1995b; Schall et al., 2004), which is best explained by a 

Difference-of-Gaussian function, but we found that the simpler Gaussian function accounted for 

most of the variance in the epoch of interest (all R2 > 0.95).  The data were fitted with a Simplex 

routine (Nelder and Mead, 1965) implemented in MATLAB (fminsearch.m) to minimize the sum 

of squared deviations between observed and predicted values.  Fitting was repeated 20-30 times 

with different initial points to prevent settling in local minima.  We used nonparametric 

bootstrapping to compare estimated tuning width for discharge rates and Fano factor (Efron and 

Tibshirani, 1993; Wichmann and Hill, 2001).  We randomly sampled, with replacement, from the 

set of neurons and fit the Gaussian function to the data 500 times.  Standard error and confidence 

intervals were determined from the resulting tuning width distribution. 

 We used a mean-matching procedure to control for a possible effect of discharge rate on 

Fano factor.  This procedure has been described in detail elsewhere (Churchland et al., 2010).  

Briefly, the mean spike count was determined for each time bin, search condition, and stimulus in 

RF.  The algorithm determined a common distribution of mean spike counts (but not variances) 

that can be found at all time points and for each stimulus-in-RF condition.  We randomly 

eliminated mean counts from a given neuron and condition until a common distribution was 

achieved at each time point for both RF stimuli.  The Fano factor was then computed at each time 

point using only the data points remaining in this common distribution.  The process was repeated 

10 times and averaged to control for variation due to random sampling.  We independently mean-

matched data aligned on target onset and saccade.  We performed this analysis using the Variance 
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Toolbox for MATLAB (Churchland et al., 2010 

http://www.stanford.edu/~shenoy/GroupCodePacks.htm). 

To assess the relationship between Fano factor and RT, we divided trials into short RT 

and long RT according to whether they were faster or slower than the median RT, respectively.  

This analysis was only performed on neurons recorded during the memory-guided saccade task 

because short RTs during visual search made it impossible to distinguish whether variation in 

Fano factor preceded the earliest eye movements.  Trials were divided into RT groups 

individually for each neuron and target location so these factors were not confounded across 

groups.  We excluded the lower 10th and upper 90th percentiles to exclude unusually short and 

long RTs.  RTs <100 ms were considered anticipatory and excluded from analysis.   

 

4.3.3 Accumulator model simulations.   

We implemented a simple accumulator model to compare with observed 

neurophysiology.  The model was governed by the following differential equation: 

. 

The model input, I, was set to baseline, z, until array onset plus some afferent delay, Tr, at 

which point it increased by an amount sampled from a Gaussian distribution with mean, v, and 

standard deviation η.  RT was given as the time when activation, X, reached a fixed threshold, a, 

at which point I was reduced to baseline.  The parameters, z, v, η, and a, were set to 0.2, 1.7, 0.1, 

and 155, respectively, to predict a distribution of RTs similar to that observed during our visual 

search tasks.  All simulations began 500 ms prior to array onset to establish a stable baseline.  We 

fixed Tr to 50 ms to account for afferent delays (Schmolesky et al., 1998; Pouget et al., 2005).  

The time constant, , was fixed at 100 ms.  All simulations used an integration time step of dt = 1 

ms. 
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 We simulated 110 trials for 304 simulated neurons to match the statistical power of the 

experimental data.  For each simulated neuron, we rescaled the parameters z, v, η, and a by a 

value sampled from a uniform distribution ranging from 0.8 to 1.2 to account for variability in 

average discharge rate across the population.  For each simulated trial, we generated spike times 

according to a time-inhomogeneous Poisson process with mean rate given by the model dynamics 

for that simulation.  Spike counts were binned across time, and mean discharge rate and Fano 

factor were computed exactly as described above for experimental data.   

 

4.4 Results 

Three monkeys performed variants of a visual search task requiring a single saccade to a 

target among distractors.  Basic behavioral data have been described previously (Sato et al., 2001; 

Cohen et al., 2009b; Purcell et al., 2013).  Monkey F performed a color search task in which 

search efficiency was varied randomly across trials by manipulating target-distractor similarity 

(Figure 4.1A).  Mean RTs (±SE) were faster during efficient search (208 ± 16.8 ms) relative to 

inefficient search (251 ± 16.3 ms; p < 0.001; Wilcoxon signed-rank test).  Percent correct was 

also higher during efficient (94 ± 1.2) relative to inefficient search (71 ± 1.2).  Monkeys Q and S 

performed an inefficient form search task in which set size was varied across trials (Figure 4.1B).  

The search slope (RT by set size) was steep for both monkey Q (23 ± 1.6; p < 0.001; linear 

regression slope coefficient) and monkey S (11 ± 1.4; p < 0.001), confirming that the form search 

task is attentionally demanding.  Monkeys Q and S also performed an efficient pop-out color 

search task in which set size was varied randomly across trials (Figure 4.1C).  The search slope 

was shallow for both monkey Q (2 ± 0.8; p < 0.01) and monkey S (1 ± 1.0; p = 0.51), and 

significantly lower than form search for both monkeys (both p < 0.001; linear regression; set size 

and task interaction coefficient), confirming that attentional demands for the pop-out color search 

task are minimal. These behavioral patterns are consistent with well-established patterns of 
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efficient and inefficient search in humans (Duncan and Humphreys, 1989; Wolfe, 1998) and 

monkeys (Bichot and Schall, 1999b). 

 

4.4.1 FEF response variability does not reflect behavioral relevance or physical conspicuity 

We recorded activity from 304 FEF neurons while monkeys performed the visual search 

tasks.  Of those, 133 neurons were recorded during singleton color search in which search 

efficiency varied randomly across trials (Monkey F; Figure 4.1A).  Ninety-three neurons were 

recorded during an attentionally-demanding inefficient form search (59 from monkey Q, and 34 

from monkey S; Figure 4.1B).  Seventy-eight neurons were recorded during a pop-out color 

search (44 neurons from monkey Q, and 34 neurons from monkey S; Figure 4.1C).  Our initial 

analyses use the full population of 304 neurons.  

 

Figure 4.2 Temporal dynamics of discharge rate and Fano factor aligned on array onset for the full population of 304 

neurons during all visual search tasks.  A, Mean discharge rate (lines) and ±SE (shading) was computed in a 50 ms 

sliding window separately for trials in which the target or a distractor was in the RF.  Gray dots indicate significance 

from baseline (100 ms before array onset) in steps of 10 ms when the target (dark gray) or distractors (light gray) were 

in the RF (Wilcoxon ranked-sum test, p < 0.01).  Black dots indicate significant differences between discharge rates 

when the target or distractor were in the RF.  The dotted vertical line indicates the selection time (ST), which is the 

time when the distribution of discharge rates for trials in which the target versus distractor were in the RF first diverged 

significantly for 5 consecutive time bins.  B, Mean Fano factor computed in same analysis windows as described 

above.  There is no ST labeled because the distribution of Fano factors for trials in which the target versus distractor 

were in the RF never significantly diverged.  The brief, but non-significant separation around ~190ms can be attributed 

to saccade initiation.  C, Distribution of differences in discharge rate when the target or a distractor was in the neurons’ 

RFs computed in the post-stimulus epoch 100 ms after array presentation until 100 ms before mean saccade response 
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time.  Asterisks denote significant difference of mean value from 0 (Wilcoxon signed-rank test, *** denotes p < 0.001).  

D, Distribution of differences for Fano factor. 
 

 

Figure 4.2 shows the average population discharge rate and Fano factor for trials in which 

a target or a distractor appeared in the RF of the neuron.  The population discharge rate increases 

significantly above baseline following the onset of the array regardless of the behavioral 

relevance of the RF stimulus (Figure 4.2A).  The latency of the response (±SE) was similar when 

a target (46 ± 7.7 ms) or distractor (47 ± 8.3 ms) was in the RF (p > 0.05, bootstrap, 1000 

samples).  Discharge rates are initially equivalent regardless of the stimulus in RF, but diverge 

over time to significantly discriminate the target location 127 ± 4.0 ms following array onset.  

This timing is consistent with estimates of selection time from individual neurons (Cohen et al., 

2009b).  We quantified the magnitude of selectivity across the population by computing the 

difference in discharge rate when the target or distractors were in a neuron’s RF during the post-

stimulus epoch 100 to 150 ms (Figure 4.2C).  The population fired significantly greater on 

average when the target was in their receptive field (7 ± 0.6 sp/s; p < 0.001, Wilcoxon signed-

rank test).  This observation was consistent across search tasks and monkeys (Table 4.1).  These 

results demonstrate the classic observation that the discharge rates of FEF neurons select the 

location of behaviorally relevant objects irrespective of stimulus features (see Schall and 

Thompson, 1999 for review). 
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Table 4.1. Difference in mean discharge rate (DR) and Fano factor (FF) (±SE) for trials in which the target or 

distractors were in the RF.  

Post-array (100 to 150 ms) Pre-saccade (-50 to 0 ms)

Color search

Monkey F Monkey F

Efficient

DR 11.30 ± 2.82 *** 20.20 ± 4.48 ***

FF 0.01 ± 0.03 -0.06 ± 0.04

Inefficient

DR 3.40 ± 1.05 *** 19.04 ± 3.93 ***

FF 0.05 ± 0.03 * -0.08 ± 0.04 *

Inefficient form search

Monkey Q Monkey S Monkey Q Monkey S

Set s ize 2

DR 6.29 ± 0.98 *** 12.65 ± 2.97 *** 13.38 ± 2.00 *** 26.20 ± 4.46 ***

FF -0.01 ± 0.04 -0.01 ± 0.04 -0.07 ± 0.04 * -0.11 ± 0.05 **

Set s ize 4

DR 4.57 ± 0.89 *** 6.97 ± 2.02 *** 17.77 ± 2.56 *** 25.87 ± 4.11 ***

FF -0.05 ± 0.03 0.07 ± 0.10 -0.17 ± 0.04 *** -0.05 ± 0.07 *

Set s ize 8

DR 3.56 ± 0.65 *** 6.59 ± 2.29 ** 19.13 ± 2.83 *** 27.02 ± 4.33 ***

FF 0.01 ± 0.04 0.04 ± 0.05 -0.09 ± 0.04 ** -0.15 ± 0.04 **

Efficient color search

Set s ize 2

DR 4.22 ± 0.89 *** 4.41 ± 1.04 *** 7.73 ± 1.25 *** 11.82 ± 2.53 ***

FF -0.02 ± 0.03 0.02 ± 0.02 -0.04 ± 0.02 * -0.07 ± 0.04

Set s ize 4

DR 3.81 ± 0.63 *** 5.21 ± 0.82 *** 7.29 ± 1.28 *** 11.48 ± 2.42 ***

FF 0.00 ± 0.02 -0.01 ± 0.03 -0.03 ± 0.02 -0.06 ± 0.03 *

Set s ize 8

DR 4.34 ± 0.94 *** 3.93 ± 0.98 *** 8.92 ± 1.55 *** 12.04 ± 2.53 ***

FF -0.02 ± 0.02 0.04 ± 0.03 -0.02 ± 0.03 -0.03 ± 0.03  
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Figure 4.2B shows the average Fano factor computed using the same neurons, conditions, 

and time bins.  The average baseline Fano factor for the population of neurons is 1.2 ± 0.03, 

which indicates slightly less regular spiking than a Poisson model (Fano factor = 1.0), and is 

similar to values observed in visual cortex (Dean, 1981; Tolhurst et al., 1983; Softky and Koch, 

1993).  The population Fano factor declines following the onset of the array regardless of RF 

stimulus.  The latency of the decline was similar for targets (56 ± 11.9 ms) and distractors (62 ± 

9.5 ms; p > 0.05; bootstrap, 1000 samples), and was not significantly different from the visual 

latency of mean discharge rate (both p > 0.05).  This is consistent with previously reported 

declines in the Fano factor of FEF neurons following stimulus onset (Chang et al., 2012), which 

is commonly found in cortical neurons (Churchland et al., 2010).  In contrast to the modulations 

in mean discharge rate, the magnitude of the post-array decline in Fano factor was equivalent for 

targets and distractors.  There is a weak and fleeting divergence around 180 ms that never attains 

statistical significance and can be attributed to variability in the timing of saccades.  The average 

post-stimulus difference in Fano factor when the target or distractors were in the neuron’s 

receptive field was not significantly different from 0 (Figure 4.2D; p = 0.74).  This observation 

was consistent across nearly every individual data set (Table 4.1).  Only the Fano factor of 

neurons recorded from monkey F during inefficient search reached marginal significance, but the 

effect was opposite the expected direction (i.e., distractors were more reliably encoded than 

targets).  Thus, response variability in FEF neurons declines following array onset, but does not 

distinguish behaviorally relevant targets from irrelevant distractors despite robust discharge rate 

modulation. 
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Figure 4.3 Temporal dynamics of discharge rate (top) and Fano factor (bottom) for efficient (left) and inefficient 

(right) search.  Conventions as in Figure 4.2. 

 

In addition to behavioral relevance, the discharge rate of FEF neurons varies with the 

physical conspicuity of objects in their receptive field (bottom-up salience; Bichot and Schall, 

1999a).  To test for an effect of physical conspicuity, we computed discharge rate and Fano factor 

separately for efficient and inefficient search.  Only set size 8 trials were included to eliminate 

variability due to stimulus number.  Figure 4.3 shows the discharge rate and Fano factor 

computed from efficient and inefficient search trials.  As in previous reports, FEF discharge rates 

discriminate the location of the target significantly earlier during efficient search (112 ± 4.8 ms; 

Figure 4.3A) than inefficient search (150 ± 6.1 ms; p < 0.01; bootstrap, 1000 samples; Figure 

4.3C)(Sato et al., 2001).  In addition, the magnitude of discrimination was greater during 

inefficient search (10 ± 0.1 sp/s; p < 0.001; Wilcoxon rank-sum test).   

Fano factor declined following array onset regardless of search efficiency, but it did not 

distinguish whether the target or a distractor was in the RF in either efficient or inefficient search 

(Figure 4.3B,D; Table 4.1).  The average post-stimulus percent decline in Fano factor during 

efficient (-5.7 ± 1.69) and inefficient search (-8.1 ± 1.76) was statistically indistinguishable (p = 
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0.20).  Although Figure 4.3 appears to suggest a variation in baseline variability across tasks, this 

difference is driven primarily by across-neuron differences in Fano factor for the two data sets.  

For neurons that were recorded during both efficient and inefficient search, we verified that no 

within-neuron baseline difference in search efficiency was observed in discharge rate (p = 0.36; 

Wilcoxon signed-rank) or Fano factor (p = 0.20).  Thus, we see no evidence of changes in 

response variability with search efficiency, despite clear changes in mean discharge rate. 

 

4.4.2 FEF response variability reflects the strength of sensory input. 

 The post-stimulus decline in Fano factor irrespective of behavioral relevance or physical 

conspicuity suggests that response variability is sensitive to sensory input independent of 

attentional allocation.  To test this hypothesis, we measured Fano factor while varying the 

strength of sensory input using two manipulations.  First, we systematically varied stimulus 

luminance during the memory-guided saccade task.  The mean post-stimulus discharge rate 

increased with luminance (Figure 4.4A,C; 1.6 ± 0.13 sp/s/cd/m2; p < 0.001; Wilcoxon signed-

rank test).  This effect was partially driven by a decrease in visual latency at high luminance 

levels (Low: 79 ± 7.3 ms; Medium: 74 ± 6.4 ms; High: 53 ± 5.1 ms), which is observed 

throughout the visual system including lateral geniculate nucleus (Maunsell et al., 1999), striate 

(Gawne et al., 1996) and extrastriate areas (Oram et al., 2002), and superior colliculus (White and 

Munoz, 2011).  In addition, the magnitude of the post-stimulus Fano factor decline increased with 

luminance (Figure 4.4B,D; -0.1 ± 0.01 Fano factor/cd/m2; p < 0.001).  This effect was still 

apparent in the mean-matched Fano factor (Figure 4.4C, inset), indicating that the reduction 

cannot be solely attributed to increases in mean discharge rate.  Neither discharge rate nor Fano 

factor showed significant modulation with luminance when the target appeared outside the 

neuron’s RF (both p > 0.05).   Thus, increased sensory input decreases trial-by-trial response 

variability in FEF neurons. 
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Figure 4.4.  Effect of luminance on discharge rate (DR) and Fano factor (FF).  A, Mean discharge rate (±SE) divided 

by target luminance (Low: 0.01 to 0.6 cd/m2; Medium: 0.20 to 1.00 cd/m2; High: 1.70 to 5.00 cd/m2).   Gray dots 

indicate significant differences from baseline (Wilcoxon rank-sum test, p < 0.01).  Inset shows mean-matched 

discharge rate for each luminance group (see Materials and Methods; Churchland et al., 2010).  The mean-matched 

discharge rate is invariant across time and luminance.  B, Variations in Fano factor with luminance.  Conventions as in 

panel A.  Fano factor decreases significantly with luminance even when controlling for changes in mean discharge rate.  

C, Distribution of slopes of mean discharge rate as a function of luminance group in the post-stimulus epoch 

(sp/s/cd/m2).  Inset shows mean discharge rate (±SE) by luminance group.  Asterisks denote significant difference of 

mean value from 0 (Wilcoxon signed-rank test, *** denotes p < 0.001).  D, Same as panel C for Fano factor (Fano 

factor/cd/m2).  Note that discharge rate and Fano factor were computed using 150 ms time bins, therefore the visual 

latency may appear earlier due to temporal smearing.  All latency estimates reported in the text used smaller 50 ms time 

bins. 

 

 Second, we manipulated the strength of sensory input by systematically varying the 

number of objects in the visual field.  In the post-stimulus epoch, mean discharge rate 

significantly decreased as additional items appeared in the visual field (-0.914 ± 0.141 sp/s/item; 

p < 0.001; Cohen et al., 2009).  In addition, Fano factor significantly decreased with additional 

items (-0.006 ± 0.003 per item; p < 0.05).   

Interestingly, Fano factor modulation by set size was strongest shortly after stimulus 

onset, before an effect of set size on discharge rate was evident (Figure 4.5).  Therefore, we also 

compared the effect of set size on discharge rate and Fano factor in this early visual epoch (50-

125 ms).  During the initial visual response, discharge rate did not vary with set size regardless of 

whether a target or distractor was in the neuron’s RF (Figure 4.5A,B insets; both p > 0.05; 
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Wilcoxon signed-rank test).  Although the mean discharge rate was invariant across set size at 

this time, Fano factor still significantly declined with set size when both the target (-0.009 ± 

0.0037 per item; p < 0.05) or distractors (-0.011 ± 0.0033 per item; p < 0.001) were inside the 

neuron’s RF (Figure 4.5C,D insets).  Thus, in search, more objects in the visual field leads to an 

early reduction of neuronal variability independent of later changes in discharge rate. 

 

 

Figure 4.5.  Effect of set size on discharge rate (DR) and Fano factor (FF) for trials in which the target (left) or 

distractors (right) were in the neurons’ RFs.  Mean discharge rate (top, A,B) and Fano factor (bottom, C,D) aligned on 

array onset for set size 2 (gray), 4 (blue), and 8 (red).  Insets show mean discharge rate or Fano factor (±SE) for each 

set size in the time interval 50-125 ms after array onset (shaded region).  Black dots indicate times in which slope of the 

least squares regression line for discharge rate and Fano factor as a function of set size decreased significantly (p < 

0.01).  The regression line was computed by averaging discharge rate and Fano factor across time bins for each set size 

in a running window (±20 ms) incremented in time steps of 10ms.   

 

 

We next divided trials by search efficiency and combined across RF stimuli (Figure 4.6).  

If the decline in Fano factor with set size is due to increasing attentional demands, then it should 

be absent during efficient search.  However, we found that Fano factor in the early visual epoch 

declined with set size for both inefficient (-0.012 ± 0.0050 per item; p < 0.001) and efficient (-
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0.007 ± 0.0021 per item; p < 0.01) search (Figure 4.6B,D).  There was no effect of set size on 

discharge rate at this time for either search task (Figure 4.6A,B; both p > 0.05; Wilcoxon signed-

rank test).  The decline in Fano factor with set size was slightly, but not significantly weaker 

during efficient search relative to inefficient search (p = 0.19).  There are several reasons to 

believe that this is due to lower stimulus luminance and not decreased attentional demands. First, 

the variation of Fano factor with set size is present regardless of RF stimulus (Figure 4.5), and 

therefore lacks spatial specificity or sensitivity to object relevance.  Second, the variation of Fano 

factor with set size appears ~50 ms after array onset, which corresponds to afferent delays in FEF 

(Schmolesky et al., 1998; Pouget et al., 2005), but is before attention-related signals are observed 

in discharge rate.  Lastly, theories of visual attention predict that increased reliability should 

produce improved performance (Palmer et al., 2000), but FEF neurons fired more reliably as 

performance declined during inefficient search. Altogether, these results suggest that Fano factor 

in FEF is modulated by the strength of sensory input but not attentional demands. 
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Figure 4.6. Effect of set size on discharge rate (DR) and Fano factor (FF) during efficient (left) and inefficient (right) 

visual search.  Population histogram for slope coefficient of least squares regression line fit to mean discharge rate 

(A,C, top) and Fano factor (B,D, bottom) in the early visual epoch 50-125 ms after array onset as a function of set size 

during efficient (left) and inefficient (right) search.  Inset shows population mean (±SE) discharge rate (DR) or Fano 

factor (FF) for each set size. Asterisks indicate that the population of slopes was significantly shifted from 0 (Wilcoxon 

signed-rank test, ** p < 0.01; *** p < 0.001). 

 

4.4.3 FEF response variability reflects saccade preparation 

 In the preceding sections, we analyzed Fano factor in early time intervals aligned on 

stimulus presentation to determine how behavioral relevance, physical conspicuity, and the 

strength of sensory input influence response variability in FEF neurons.   In addition to encoding 

visual salience, the discharge rates of FEF neurons have also been identified with saccade 

preparation (Hanes and Schall, 1996; Hanes et al., 1998; Murthy et al., 2009; Gregoriou et al., 

2012).  Specifically, the mean discharge rates of saccade-related FEF neurons have been 

identified with accumulator models of saccade preparation that predict saccades are initiated 

when discharge rates reach a fixed threshold (Ratcliff et al., 2003; Boucher et al., 2007; Purcell et 

al., 2010; Purcell et al., 2012b).  This implies that response variability should reach a minimum 
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prior to saccades of a particular direction.  We analyzed the Fano factor of FEF neurons relative 

to saccade initiation to determine whether changes in response variability were consistent with 

accumulator models of saccade preparation. 

 Figure 4.7 shows the population discharge rate and Fano factor aligned to the onset of 

saccades directed towards or away from the neuron’s RF.  The population discharge rate 

predicted the saccade direction 92 ± 5.2 ms before gaze shifted (Figure 4.7A).  On average (±SE), 

neurons fired 21 ± 1.4 sp/s more when the saccade was directed towards versus away from the RF 

(Figure 4.7C; p < 0.001, Wilcoxon signed-rank test).  The population Fano factor initially 

declined regardless of saccade direction, but evolved to predict saccade direction 58 ± 9.9 ms 

before the eyes moved (Figure 4.7B).  Across the population, Fano factor was significantly lower 

when a saccade was made towards a neuron’s RF (Figure 4.7D; -0.10 ± 0.01, p > 0.05).  

Importantly, the pre-saccadic magnitude of discrimination (p = 0.95) and percent Fano factor 

decline (p = 0.53) were statistically indistinguishable between efficient and inefficient search, 

which indicates that this pre-saccadic selectivity cannot be identified with visual salience.  

Although some individual data sets fail to reach statistical significance, this trend is consistent 

across all tasks and monkeys (Table 4.1).  Thus, although FEF response variability was not 

affected by stimulus relevance, it robustly predicted the direction of an upcoming saccade. 
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Figure 4.7 Temporal dynamics of discharge rate (A) and Fano factor (B) aligned on saccade initiation during visual 

search for the full population of 304 neurons.  Conventions as in Figure 4.2.   C, Distribution of difference in discharge 

rate when the saccade was directed towards or away from the neuron’s RF in the pre-saccade epoch (50-0 ms before 

saccade).  Asterisks denote significance from 0 (Wilcoxon signed-rank test, *** denotes p < 0.001).  D, Same as panel 

C, but for Fano factor. 

 

 

Figure 4.8 Mean-matched discharge rate (DR) (top) and Fano factor (bottom) as a function of time relative to array 

presentation (left) and saccade initiation (right).  Solid vertical line indicates time of saccade.  Mean-matching was 

performed across target locations and saccade directions, but independently for array-aligned and saccade-aligned data.  

Conventions as in Figure 4.2.   

 

A potential concern is that the pre-saccadic Fano factor selectivity could be confounded 

by the differences in mean discharge rate.  Higher discharge rates could impose more regular 
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spiking due to the spike refractory period (Kara et al., 2000; Mitchell et al., 2007).  To control for 

this possibility, we recomputed Fano factor using a mean-matching procedure which subsamples 

neurons and conditions at each time point such that mean discharge rate remains constant across 

time and conditions (Churchland et al., 2010).  In the post-stimulus epoch, the mean discharge 

rate is constant across time and regardless of the stimulus in the receptive field, but there is still a 

significant decline in the Fano factor regardless of stimulus identity (Figure 4.8).  There is a brief, 

late difference in Fano factor around 190 ms that can be attributed to saccade initiation.  Most 

importantly, the pre-saccadic Fano factor is still significantly lower when saccades were made to 

the RF despite identical discharge rates.  Thus, changes in pre-saccadic Fano factor cannot be 

explained by changes in mean discharge rate. 

We quantified the resolution of pre-saccadic spatial tuning during visual search by fitting 

a Gaussian curve to the mean discharge rate and Fano factor as a function of distance from the RF 

center.  Consistent with previous results, the mean discharge rates in the post-stimulus interval 

were well explained by a Gaussian function (R2 = 0.99; Figure 4.9A; but see Schall et al., 1995a; 

Schall et al., 2004), but the Fano factor was constant across target locations (Figure 4.9B).  In 

contrast, pre-saccadic mean discharge rates (Figure 4.9C; R2 > 0.99) and Fano factor (Figure 

4.9D; R2 = 0.96) were both well explained by a Gaussian function.  We used the standard 

deviation of the best fitting Gaussian curve as an index of tuning width.  The pre-saccadic Fano 

factor tuning width (65o ± 8.6o) was slightly, but significantly more broadly tuned than the mean 

discharge rate (51o ± 2.4o; p < 0.05, nonparametric bootstrap, 500 samples).   Thus, response 

variability in FEF neurons reaches a minimum only prior to saccades of a particular direction.  

This is inconsistent with models of motor preparation that predict all neurons in a population 

reach a variability minimum irrespective of the movement (e.g., Churchland et al., 2006; Afshar 

et al., 2011). 
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Figure 4.9. Spatial tuning of mean discharge rate (A,C) and Fano factor (B,D) as a function of distance from RF center 

(in degrees polar angle) during the post-array (left) and pre-saccadic (right) epochs.  Solid lines are best fitting 

Gaussian curves.  Dashed line is the mean across locations for data that did not exhibit significant selectivity in the 

interval of interest.  Error bars are SE. 

 

4.4.4 Visually-responsive and saccade-related subpopulations 

Previous studies have proposed that salience and saccade preparation are encoded by 

functionally distinct subpopulations of FEF neurons.  Specifically, visually-responsive neurons 

are proposed to represent salience, whereas saccade-related neurons are thought to integrate 

salience to a response threshold (Purcell et al., 2010; Purcell et al., 2012b).  We classified neurons 

as visually-responsive and saccade-related based on their responses during a memory-guided 

saccade task to test whether they showed distinct patterns of response variability during search.  

We classified 108 neurons as visually-responsive and 124 neurons as saccade-related.  These 

analyses excluded 28 neurons that were nonmodulated and neurons that were not recorded during 

the memory-guided saccade task. 

We first asked whether a representation of stimulus relevance is selectively present in 

visually-responsive neurons.  Figure 4.10 shows the mean discharge rate and Fano factor as a 

function of time since the array onset.  Discharge rates of both visually-responsive and saccade-
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related neurons evolve to select the target location at 154 ± 9.3 ms (Figure 4.10A, left) and 139 ± 

5.5 ms (Figure 4.10C, left), respectively.  The Fano factor significantly declined following array 

onset for both visually-responsive (Figure 4.10B, left) and saccade-related (Figure 4.10D, left) 

neurons, but Fano factor never significantly distinguished the RF stimulus in either population 

(both p > 0.05).  This indicates that response variability does not change with stimulus relevance 

in both subpopulations. 

 

 

Figure 4.10.  Visually-responsive and saccade-related subpopulations.  Mean discharge rate (A,C) and Fano factor 

(C,D) for visually-responsive (left) and saccade-related (right)  neurons during visual search.  Conventions as in Figure 

4.2. 

 

We next asked whether a representation of saccade preparation is selectively present in 

saccade-related neurons.  Discharge rates of both visually-responsive and saccade-related neurons 

evolved to predict the saccade direction 58 ± 7.6 ms and 80 ± 9.1 ms before the eyes moved, 

respectively (Figure 4.10A, 4.10C, right).  However, the temporal dynamics of Fano factor were 

distinctly different for the two populations.  Visually-responsive neurons never significantly 

distinguished the saccade direction on a bin-by-bin basis (Figure 4.10B), whereas saccade-related 

neurons predicted the saccade direction 51.6 ± 11.6 ms before the eyes moved (Figure 4.10D; p < 

0.01).  Likewise, the subset of 43 pure visual neurons which showed significant post-stimulus 

modulation, but no significant pre-saccadic modulation also exhibited saccade-direction 
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dependent modulation of discharge rate (p < 0.001), but not Fano factor (p = 0.07).  The pre-

saccadic Fano factor of visually-responsive neurons reached a minimum 75 ± 13.8 ms before 

saccade and increased before the eyes moved.  Neurons in brainstem nuclei that control saccades 

become active ~15 ms prior to eye movements (Scudder et al., 2002), which means that 

variability has increased from the minimum when the saccade is triggered.  In contrast, saccade-

related neurons declined to a minimum immediately prior to saccades (3 ± 7.8 ms), which means 

that variability was nearing minimum when the saccade was triggered.  There was also a 

significant positive correlation between VMI and pre-saccadic Fano factor (r = 0.13; p < 0.05), 

indicating that neurons with stronger saccade-related responses tended to have lower response 

variability prior to saccades.  Altogether, the differences in pre-saccadic Fano factor suggest that 

saccade preparation can be identified with saccade-related, but not visually-responsive neurons 

(see also Hanes et al., 1998; Brown et al., 2008). 

 

4.4.5 Stochastic accumulator simulations 

 Saccade-related neurons have been identified with stochastic accumulators that initiate a 

saccade when discharge rates reach a fixed threshold (Ratcliff et al., 2003; Boucher et al., 2007; 

Purcell et al., 2010; Purcell et al., 2012b).  However, many accumulator models predict that 

variability increases over time (Ratcliff, 1978; Churchland et al., 2011), which appears to be 

inconsistent with the post-stimulus decline in Fano factor (Figure 4.10D).  We evaluated a simple 

stochastic accumulator model to test whether the basic predictions of this framework are 

consistent with the observed changes in response variability of FEF neurons.  As expected, the 

model predicts a decline in Fano factor before saccade initiation because responses are initiated at 

a fixed discharge rate threshold (Figure 4.11, bottom right).  Surprisingly, the model also predicts 

the decline in Fano factor following stimulus presentation (Figure 4.11, bottom left).  Variability 

declines observed because the average increase in mean input following array onset (v-z) is 

greater than the increase in variability (η) that gives the model its variable rate of rise.  As long as 
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the ratio, (v-z)/η, is sufficiently high, the model will predict a post-stimulus decline in Fano 

factor.  Critically, using the same parameterization, the model can predict an RT distribution 

comparable to the range observed during visual search tasks (Figure 4.11, top).  We present this 

simple model as a proof of concept that the basic predictions of the accumulator model 

framework are consistent with response-variability dynamics observed in FEF.  Systematic 

evaluation of alternative network architectures will be necessary to fully explore potential 

mechanisms underlying saccade generation and their contribution to response variability. 

 

 

Figure 4.11. Accumulator model simulations.  Simulated model discharge rates (DR) (top) and Fano factor (FF) 

(bottom) relative to array onset (left) and saccade (right).  Lines are the averages (±SE) across 304 simulated neurons 

with 110 simulated trials to match the statistical power of the observed data.  Gray histogram (top) is the quantile 

averaged response time (RT) probability distribution across all simulations.  Only one accumulator representing a 

saccade to the neurons’ response field was simulated.  Note that Fano factor begins declining ~50 ms after target onset 

and reaches a minimum at the time of saccade initiation as observed in FEF neurons (see Figure 4.10C,D). 

 

4.4.6 Response variability during memory-guided saccades 

It is possible that response variability does not change with visual search salience because 

response variability lacks spatial tuning. We analyzed response variability following the onset of 

a single target during the memory-guided saccade task to evaluate this possibility.  Discharge 
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rates increased when the target appeared inside the RF, but were unchanged when the target was 

outside the RF (Figure 4.12A).  This produced significant selectivity following target onset 

(Figure 4.12C; 16 ± 1.2 sp/s; p < 0. 001; Wilcoxon signed-rank test) that was maintained 

throughout the delay interval prior to the cue (9.8 ± 1.0 sp/s; p < 0.001) and the pre-saccadic 

epoch (14.9 ± 1.7 sp/s; p < 0.001).  Thus, modulations in discharge rate were present throughout 

all critical task epochs. 

In contrast, Fano factor declined when the target appeared inside or opposite the RF 

(Figure 4.12B).  Importantly, the decline was greater when the target was inside the RF.  This 

resulted in significant selectivity following target onset (-0.12 ± 0.04; p < 0.001; Wilcoxon 

signed-rank test), but Fano factor returned to baseline shortly after the target disappeared and 

selectivity was absent in the delay interval (p > 0.05).  We verified that this effect was still 

present in the mean-matched Fano factor (Figure 4.12), and therefore cannot be solely due to 

differences in mean discharge rate.  This is consistent with a recent study showing that the post-

stimulus response variability of FEF neurons is broadly tuned, but is not maintained in the 

absence of the stimulus even when the location must later be used to guide saccades (Chang et al., 

2012).  In addition, we found that Fano factor declined prior to saccade initiation regardless of 

saccade direction.  There was a tendency for variability to be lowest for saccades to the neuron’s 

RF (Figure 4.12D), but this difference was not significant.  This is probably due to increased end-

point scatter in the absence of a visual target and a reduction in statistical power relative to the 

visual search data due to fewer recorded trials per neuron.  Altogether, the pattern of Fano factor 

modulation during memory-guided saccades indicates that the absence of any influence of 

salience on response variability during search is not due to an absence of spatial selectivity in 

Fano factor and supports the hypothesis that strong modulation of Fano factor is more closely 

associated with sensory input and motor preparation. 
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Figure 4.12. Memory-guided saccades.  Mean discharge rate (A) and Fano factor (B) during memory-guided saccades 

aligned to target onset (left) or saccade (right) in which the target appeared inside (dark gray, Target in RF) or 

diametrically opposite (light gray, Target opp RF) the neurons’ RFs.  Stimulus duration was 80-150 ms and delay 

intervals ranged from 500-1000 ms.  Insets show mean-matched discharge rate and Fano factor.  Conventions as in 

Figure 4.2. 

 

4.4.7 Response variability and RT 

Previous studies have found that response variability in extrastriate and premotor cortex 

correlate with RT (Churchland et al., 2006; Steinmetz and Moore, 2010).  We analyzed Fano 

factor conditionalized on RT during memory-guided saccades in the epoch prior to the cue.  

Figure 4.13A shows the mean discharge rates aligned on cue. Prior to the cue, there was no 

significant difference in mean discharge rate across RT groups regardless of whether the saccade 

was made towards (p = 0.25; Wilcoxon signed-rank test) or away from the RF (p = 0.72).  In 

contrast, Fano factor was lower in the pre-cue epoch when RT was faster regardless of whether 

the saccade was made towards (-0.05 ± 0.019; p < 0.05; Wilcoxon signed-rank) or away (-0.11 ± 

0.072; p < 0.05) from the RF.  When combining across saccade directions, this difference 

remained significant for the subpopulation of saccade-related neurons (-0.05 ± 0.026; p < 0.05), 

but not visually-responsive neurons (-0.03 ± 0.033; p = 0.47), although a similar trend was 

evident.  Pre-saccadic discharge rate and Fano factor did not depend on the speed of the response 

(Figure 4.13C-D; both p > 0.05), which is consistent with accumulator model predictions.  These 
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results support our conclusion that Fano factor reflects motor preparation in FEF and introduces 

new constraints on models of saccade generation. 

 

Figure 4.13.  Mean discharge rate (A,C) and Fano factor (B,D) aligned on the cue (left) and saccade (right) for 

memory-guided saccade trials with RT earlier (green) and later (red) than median RT.  The thin colors lines in panel 

(A,C) indicate cumulative distributions of fast (green) and slow (red) RTs.  This analysis includes all neurons recorded 

during the memory-guided saccade task and all trials regardless of whether the target was inside or opposite the 

neurons’ RFs.  Whereas discharge rate varied with RT mainly after the response cue, Fano factor varied with RT 

mainly before the response cue.  Discharge rate and Fano factor were indistinguishable across RT samples at the time 

of saccade initiation.   

 

4.5 Discussion 

We found that response variability of FEF neurons declines following stimulus 

presentation, but the magnitude of decline is equal for search targets and distractors.  Response 

variability did not change with search efficiency, despite clear modulation of mean discharge rate.  

Instead, we found that response variability was modulated by the strength of sensory input and 

declined to minimum before saccades to a neuron’s RF.  These results inform models of visual 

search and saccade generation. 
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4.5.1 Relation to theories of visual search and attention 

Theories of visual search propose that a salience map guides attention and eye 

movements to locations of maximal activation (Itti and Koch, 2001; Bundesen et al., 2005; 

Wolfe, 2007).  FEF is part of a network of oculomotor areas including superior colliculus and 

lateral intraparietal area, but not supplementary eye field (Purcell et al., 2012a), that have been 

identified with the salience map (Findlay and Walker, 1999; Thompson and Bichot, 2005; 

Gottlieb, 2007; Bisley and Goldberg, 2010).  According to this framework, the decline in 

response variability that we observed following stimulus presentation could improve the 

reliability with which the location of maximal activation can be distinguished.  Importantly, 

declines in variability at all locations on the map will actually increase the signal-to-noise ratio.  

In other words, considered in a signal detection theory framework (Palmer et al., 2000), target 

discriminability is increased by a reduction in variability for both the noise (distractor) and noise 

+ signal (target) distribution.  Thus, our observation that variability declines equally irrespective 

of object relevance could produce greater target discriminability of the point of maximal 

activation.  These results are consistent with a previous study that failed to find target-distractor 

differences in FEF variability during search (Bichot et al., 2001b), but this study only analyzed 

stimulus-aligned responses during the initial nonselective visual response (0 to 50 ms).  Here, we 

show that response variability in FEF is not modulated by stimulus salience (relevance or 

conspicuity) during visual search despite large changes in mean discharge rate.  This observation 

is also consistent with a previous study which found that the mean discharge rate, but not 

response variability, of FEF neurons was modulated when animals were cued to attend to the 

neuron’s RF (Chang et al., 2012).  Our results extend this observation to visual search tasks in 

which the target must be discriminated from among distractors to appropriately allocate attention 

(i.e., exogenous attention). 

Considered in a signal detection theory framework (Palmer et al., 2000), changes in 

behavioral performance with search efficiency could potentially be explained by increases in 
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response magnitude (target enhancement) or decreases in response variability (noise reduction).  

We found that the discharge rates, but not response variability, of FEF neurons was modulated by 

search efficiency.  This is consistent with the hypothesis that attention does not affect FEF 

response variability (Chang et al., 2012).  This contrasts with observations in V4, in which spatial 

attention reduces response variability (Mitchell et al., 2007; Cohen and Maunsell, 2009).  

Similarly, although attention has been found to reduce trial-by-trial discharge rate correlations in 

V4 (Cohen and Maunsell, 2009; Mitchell et al., 2009) and MT (Cohen and Newsome, 2008), FEF 

neurons show increased correlations when search targets fall within the overlapping RFs of two 

neurons (Cohen et al., 2010).  Thus, although both V4 and FEF neurons show elevated discharge 

rates when representing the location of behaviorally relevant objects (Zhou and Desimone, 2010) 

and FEF is proposed to be a source of attentional modulations in V4 (Moore and Armstrong, 

2003; Gregoriou et al., 2012), measures of response variability and correlated rate variations 

suggest very different mechanisms of selection are operating in frontal and posterior visual areas. 

This result also challenges models of attention which propose a serial scan of locations on 

the salience map (e.g., Treisman and Gelade, 1980; Buschman and Miller, 2009).  Serial search, 

which entails greater variability in the time when attention is focused on an object, should 

produce greater variability in discharge rate during inefficient search.  Our observation that Fano 

factor declines equivalently for efficient and inefficient search is inconsistent with this 

implication. 

 

4.5.2 Stronger sensory input decreases response variability 

Discharge rate increases with luminance-contrast throughout the visual system (Dean, 

1981; Albrecht and Hamilton, 1982; Schiller and Colby, 1983; Tolhurst et al., 1983).  This 

includes neurons in extrastriate areas V4 and superior temporal sulcus (Reynolds et al., 2000; 

Oram et al., 2002) that project topographically to FEF (Huerta et al., 1987; Stanton et al., 1988; 

Schall et al., 1995a).  Thus, increasing luminance can be identified with increasing the strength of 
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sensory input to FEF.  We found that FEF neurons fired more consistently following the onset of 

higher luminance stimuli.  Similar declines in variability are observed in LGN neurons with 

increased retinal stimulation and microstimulation of afferent sources (Hartveit and Heggelund, 

1994).  Moreover, the effect was preserved after mean-matching, which indicates that the 

improvement must be due to decreases in noise above and beyond increases in mean discharge 

rates.  This indicates an improved signal-to-noise ratio for higher luminance stimuli that could be 

partially responsible for variations in performance during saccade detection tasks (Carpenter, 

2004).  

During memory-guided saccades, response variability declined following presentation of 

a single target anywhere in the visual field, but the decline was greatest in the neuron’s RF.  This 

is consistent with a recent study, which found broad tuning of response variability in FEF in 

response to single targets (Chang et al., 2012).  The monkeys in the Chang et al. (2012) study 

were trained to remember the target location in order to perform a subsequent change detection 

task.  Unlike that study, our monkeys were trained to make an oculomotor response to the 

location of the remember target, and therefore could begin preparing a saccade to the remembered 

location during the delay interval.  We observed an additional decline in Fano factor as the time 

of saccade approaches that was similar to the decline observed in neurons recorded from the 

dorsolateral pre-frontal cortex of macaques performing a visual discrimination task (Hussar and 

Pasternak, 2010).  Like Chang et al. (2012), we found that selectivity vanishes shortly after the 

stimulus is removed despite sustained discharge rates during the memory delay.  This provides 

converging evidence that maintenance of spatial information in the absence of sensory input does 

not alter response variability.  Unlike sensory input which is necessarily feed-forward, 

maintenance of spatial information is thought to be implemented through local recurrent 

excitation (Wang, 1999; Compte et al., 2000).  Therefore, our results are consistent with the 

hypothesis that feed-forward, but not recurrent, excitation causes a decline in response variability.  

This hypothesis is also supported by the observation that inactivation of primary visual cortex via 
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electrical stimulation does not alter variability in membrane potential and that changes in 

variability with contrast can be entirely accounted for by changes in variability in feedforward 

inputs form the lateral geniculate nucleus (Sadagopan and Ferster, 2012). 

 

4.5.3 Response variability as a signature of saccade preparation 

During the visual search task, response variability declined to a minimum before 

saccades.  This result was unexpected because a previous study failed to find differences in pre-

saccadic response variability (Bichot et al., 2001b).  This is probably because Bichot et al. (2001) 

included mostly visually-responsive neurons, which were found to show little to no pre-saccadic 

Fano factor selectivity.  Importantly, we found that variability was minimal only for saccades 

directed to the neuron’s RF.  The population Fano factor was spatially tuned only slightly more 

broadly than discharge rates prior to saccade initiation, which is consistent with observations that 

pre-saccadic response variability reaches a minimum before saccades to the RF in LIP 

(Churchland et al., 2011).  In contrast, response variability in pre-motor cortex was found to be 

invariant across arm reaches in different directions (Churchland et al., 2006) and the influence of 

saccade direction on Fano factor variability in V4 is weak (Steinmetz and Moore, 2010).  Weak 

spatial tuning of response variability has been interpreted in support of an ‘optimal subspace 

hypothesis’ in which all neurons in a cortical area initiate a movement when discharge rates 

converge to a specific value (Afshar et al., 2011).  The observation that pre-saccadic Fano factor 

is sharply tuned in FEF neurons means that only neurons that encode the end-point of the 

upcoming saccade are reaching a minimum variance.  Moreover, we showed that only saccade-

related, but not visually-responsive, neurons reach a minimum variance before saccades.  

Altogether, these results suggest that the optimal subspace hypothesis does not generalize to the 

oculomotor system. 

Saccade-related FEF and SC neurons have been identified with stochastic accumulators 

to a response threshold that is invariant with RT within a condition (Ratcliff et al., 2003; Boucher 
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et al., 2007; Purcell et al., 2010; Purcell et al., 2012b).  The most basic prediction of this 

framework is that variability should decline to a minimum at the time of the response.  We 

showed that saccade-related neurons conform to this prediction.  Many forms of stochastic 

accumulator models also predict an increase in variability as a function of time (Ratcliff, 1978; 

Carpenter and Williams, 1995; Brown and Heathcote, 2005), which is inconsistent with the post-

stimulus decline in response variability that we observed.  However, we demonstrated that a 

simple accumulator model can predict both the decline in response variability and RT 

distributions corresponding to those observed during visual search.  The model demonstrates that 

Fano factor will decline so long as the increase in mean input following array onset is sufficiently 

larger than the increase in variability that produces varying rates of rise.  This result provides 

additional constraint on computational models of saccade choice and decision-making.  Future 

modeling work will be necessary to rule out network architectures that fail to predict this decline 

in variability. 

During memory-guided saccades, RTs were fastest when variability was lower prior to 

the imperative stimulus.  This is consistent with our conclusion that response variability in FEF 

reflects saccade preparation.  Similar correlations between response variability and RT have been 

observed in premotor cortex (Churchland et al., 2006) and V4 (Steinmetz and Moore, 2010).  In 

premotor cortex, this observation has been interpreted as evidence that pools of neurons are 

approaching an optimal discharge rate (Churchland et al., 2006; Afshar et al., 2011), but our 

results indicate that, at least for the oculomotor system, accumulator models provide a complete 

account of saccade preparation and initiation.  Why then does variability decline before fast 

saccades?  Several potential mechanisms can cause reduce variability without influencing 

discharge rates, for example increases in balanced excitation and inhibition or self-inhibition.  

Thus, this observation provides additional constraints on future models of saccade generation. 
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CHAPTER V 

 

ON THE ORIGIN OF EVENT-RELATED POTENTIALS INDEXING COVERT 

ATTENTIONAL SELECTION DURING VISUAL SEARCH: TIMING OF SELECTION BY 

MACAQUE FRONTAL EYE FIELD AND EVENT-RELATED POTENTIALS DURING POP-

OUT SEARCH 

 

5.1 Abstract 

Event-related potentials (ERP) have provided crucial data concerning the time course of 

psychological processes, but the neural mechanisms producing ERP components remain poorly 

understood.  This study continues a program of research investigating the neural basis of human 

ERP components by simultaneously recording intracranially and extracranially from macaque 

monkeys.  Here, we compare the timing of attentional selection by the macaque homologue of the 

human N2pc component (m-N2pc) with the timing of selection in the frontal eye field (FEF), an 

attentional-control structure believed to influence posterior visual areas thought to generate the 

N2pc.  We recorded FEF single-unit spiking and local field potentials (LFP) simultaneously with 

the m-N2pc in monkeys performing an efficient pop-out search task.  We assessed how the timing 

of attentional selection depends on task demands by direct comparison to a previous study of 

inefficient search in the same monkeys (i.e., finding a T among Ls).  Target selection by FEF 

spikes, LFPs and the m-N2pc was earlier during efficient, pop-out search than during inefficient 

search.  The timing and magnitude of selection in all three signals varied with set size during 

inefficient, but not efficient search.  During pop-out search, attentional selection was evident in 

FEF spiking and LFP before the m-N2pc, following the same sequence observed during 

inefficient search.  These observations are consistent with the hypothesis that feedback from FEF 

modulates neural activity in posterior regions that appear to generate the m-N2pc even when 

competition for attention among items in a visual scene is minimal.   
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5.2 Introduction 

Event-related potentials (ERPs) provide crucial information on the timing of specific 

cognitive operations (Luck, 2005).  Attention-related ERPs can track shifts in attentional 

allocation in humans processing complex scenes (Woodman and Luck, 1999, 2003).  Specifically, 

the N2pc component provides an index of attentional allocation across the visual field (Luck and 

Hillyard, 1994b, a), but a thorough investigation into the neural mechanisms that generate the 

N2pc is precluded by the difficulty in obtaining intracranial recordings from human subjects.  

Current source density and source estimation procedures suggest that the N2pc is generated by 

attentional modulations in posterior visual regions (Luck and Hillyard, 1994b; Hopf et al., 2000; 

Hopf et al., 2004; Boehler et al., 2011), but these methods are under-constrained without 

intracranial data (Helmholtz, 1853; Luck, 2005; Nunez and Srinivasan, 2006) and cannot resolve 

hypotheses concerning the influence of more distal regions that drive the underlying neural 

generator. 

We have addressed this methodological shortcoming by simultaneously recording ERPs 

with intracranial signals in non-human primates (Woodman, 2011).  We recently identified a 

macaque homologue of the N2pc component, termed the m-N2pc, which is a relative positivity 

contralateral to an attended item (Woodman et al., 2007; Cohen et al., 2009a; Heitz et al., 2010).  

The human N2pc was originally hypothesized to be due to feedback from attentional-control 

structures because of its relatively long latency and sensitivity to task-demands (Luck and 

Hillyard, 1994b), but until recently it has been impossible to test this hypothesis directly.  ERPs 

lack the spatial resolution to distinguish the attention-related modulations in visual cortex from 

control structures in frontal cortex thought to drive those modulations.  This has lead to 

controversy about the degree to which the N2pc reflects bottom-up versus top-down attentional 

signals (Eimer and Kiss, 2010; Theeuwes, 2010).  Having established a homologous component 

in monkeys, we can test this hypothesis using targeted, invasive procedures that are impossible in 

healthy humans. 
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The frontal eye field (FEF) is a region of prefrontal cortex thought to be involved in 

attentional control.  FEF single-unit spiking and local field potentials (LFP) evolve to identify the 

location of behaviorally-relevant search targets (Bichot and Schall, 1999a; Sato et al., 2001; 

Thompson and Bichot, 2005; Monosov et al., 2008; Cohen et al., 2009a; Cohen et al., 2009b), 

whether or not a saccade is generated (Thompson et al., 1997; Thompson et al., 2005a).  For this 

reason, FEF has been identified with a salience map that guides attentional deployment 

(Thompson and Bichot, 2005), possibly via projections to extrastriate visual cortex (Pouget et al., 

2009; Anderson et al., 2011; Ninomiya et al., 2012).  The role of FEF in top-down attentional 

control is further supported by the effects of FEF microstimulation on activity in extrastriate 

visual cortex (Moore and Armstrong, 2003; Ekstrom et al., 2008).   Thus, FEF is a prime 

candidate for an attentional-control structure that could drive the neural generator of the N2pc. 

We recently found that FEF neurons and LFPs select the location of search targets before 

the m-N2pc during an inefficient visual search task (Cohen et al., 2009a).  This result is 

consistent with the hypothesis that feedback from FEF participates in driving the putative 

posterior generator of the m-N2pc.  This hypothesis is also supported by intracranial recordings 

demonstrating that attentional selection occurs in prefrontal cortex before LIP (Buschman and 

Miller, 2007), V4 (Zhou and Desimone, 2010) and IT (Monosov et al., 2010) during 

attentionally-demanding tasks. However, it is not clear how this timing depends on task demands.  

For example, one study has found that the ordering of selection across cortex depends on search 

difficulty (Buschman and Miller, 2007), which could influence the timing of the N2pc relative to 

FEF.  In addition, a recent study reported an N2pc in response to a task-irrelevant singleton 

(Hickey et al., 2006), suggesting that this component may not depend on top-down influences.  

Moreover, some theories of visual attention propose that efficient search for a target defined by a 

single feature can be performed pre-attentively (Treisman and Gelade, 1980).  Thus, it could be 

the case that the onset of the N2pc followed attentional selection in FEF because the task required 

explicit top-down control, but the same may not hold true during efficient search tasks. 
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To determine the degree to which the timing of selection in FEF and the m-N2pc depends 

on attentional demands, we recorded ERPs from monkeys performing an efficient pop-out visual 

search task simultaneously with FEF single-unit activity and LFPs.  The experimental protocol, 

analytical and statistical methods, and monkeys were the same as those used in a previous report 

on attentional selection during inefficient T versus L search to allow for direct comparison across 

studies (Cohen et al., 2009a).  If these three signals reflect the timing of attentional allocation, 

then the timing of selection should modulate with set size when search is inefficient, but not when 

search is efficient.  In addition, if efficient search requires feedback from the saliency map of FEF 

to the neural generator of the m-N2pc, then we would expect selection in FEF to precede or 

coincide with the m-N2pc as was observed during inefficient search.  We would also expect to 

see trial-by-trial correlations between FEF activity and the m-N2pc. 

 

5.3 Materials and method 

 

5.3.1 Behavioral tasks and recordings 

Recording procedure.  We simultaneously recorded neuronal spikes, LFPs, and the 

extracranial electroencephalogram (EEG) from two male macaques (Macaca radiata, identified 

as Q and S).  Monkeys were surgically implanted with a head post, a subconjunctive eye coil, and 

recording chambers during aseptic surgery under isoflurane anesthesia. Antibiotics and analgesics 

were administered postoperative. All surgical and experimental procedures were in accordance 

with the National Institute of Health Guide for the Care and Use of Laboratory Animals and 

approved by the Vanderbilt Institutional Animal Care and Use Committee. 

Neurons and LFPs were recorded from the right and left FEF of both monkeys using tungsten 

microelectrodes (2-4 MΩ, FHC) and were referenced to a guide tube in contact with the dura.  All 

FEF recordings were acquired from the rostral bank of the arcuate sulcus at sites where saccades 

were evoked with low-intensity electrical microstimulation (<50 μA; Bruce et al., 1985).  Spikes 
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were sampled at 40 kHz and LFPs were sampled at 1 kHz.  LFPs were band-pass filtered between 

0.2 and 300 Hz and amplified using a Plexon HST/8o50-G1 head-stage.  LFPs were baseline 

corrected using the average voltage during the window from 100 to 0 ms before array 

presentation.  Spikes were sorted online using a time-amplitude window discriminator and offline 

using principal component analysis and template matching (Plexon Inc.).  We generated spike 

density functions by convolving each spike train with a kernel resembling a postsynaptic potential 

(Thompson et al., 1996). 

Following the method of Woodman et al. (2007), we recorded ERPs from gold skull 

electrodes implanted 1 mm into the skull.  Electrodes were located at approximately T5/T6 in the 

human 10-20 system scaled to the macaque skull.  EEG signals were sampled at 1 kHz and 

filtered between 0.7 and 170 Hz.  A frontal EEG electrode (approximating human Fz) was used as 

the reference for the lateral, posterior EEG signals. 

Behavioral tasks.  The monkeys performed a pop-out visual search task and a memory-

guided saccade task, the latter allowed for the classification of different cell types.  All tasks 

began with the monkey fixating a central white spot for ~500ms.  In the pop-out visual search 

task (see Figure 5.1A), the fixation point changed from a filled to an unfilled white square (10.3 

cd/m2) simultaneously with the presentation of a colored target and one, three, or seven 

distractors of the opposite color.  The number of distractors varied randomly across trials.  

Targets and distractors were either red (CIE chromaticity coordinates x = 0.620, y = 0.337) or 

green (CIE x = 0.289, y = 0.605).  The target and distractor color remained constant throughout 

the session and target color was varied across sessions.  The monkey was rewarded for making a 

single saccade to the location of the target within 2000 ms of array presentation and fixating that 

target for 500 ms. 
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Figure 5.1 Visual search task and behavior.  A, After fixating for a variable delay, a search array appeared 

consisting of one target (e.g., green disk) and 1, 3, or 7 distractors (e.g., red disks).  Monkeys were required to make a 

single saccade to the target for reward.  Target identity varied across sessions.  B, We directly compared our new 

results from efficient pop-out search with previously published data collected from the same monkeys performing an 

inefficient visual search task (Cohen et al., 2009a).  All procedures were identical to efficient search except that the 

monkeys searched for a T versus L (or vice versa).  C, mean response time (RT) to the target as a function of set size 

for both search tasks.  Error bars represent SE around the mean of the session means.  Asterisks indicate significant 

differences in slope across tasks (*** for p < 0.001). 

 

Each neuron was also recorded during a memory-guided saccade task to distinguish visual- 

from movement-related activity (Hikosaka and Wurtz, 1983; Bruce and Goldberg, 1985).  In this 

task, a target (filled gray disk) was presented for 100 ms at one of eight isoeccentric locations 

equally spaced around the fixation spot at 10°
 eccentricity.  The animal was required to maintain 

fixation for 400-800 ms (uniform distribution) after the target presentation.  After the fixation 

point changed from a filled square to an unfilled square, the monkeys were rewarded for making 

a saccade to the remembered location of the target and maintaining fixation at that remembered 

location for 500 ms.   

We also analyzed previously published FEF neurons, FEF LFPs, and the m-N2pc recorded 

from the same monkeys during an inefficient visual search (Figure 5.1B; Woodman et al., 2008; 
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Cohen et al., 2009a; Cohen et al., 2009b).  The task was identical to the pop-out search task 

described above except that monkeys searched for a target defined by form (T or L in one of four 

orientations) among distractors (Ls or Ts, respectively).  Target identity varied across sessions.  

Analytical and procedural methods were identical for data collected during both tasks.  This 

allowed us to perform statistical comparisons between our new data collected during pop-out 

search and previously published data collected during inefficient search. 

 

5.3.2 Data analysis 

Neuron classification.  We identified task-related neurons and LFPs by comparing activity to 

the baseline period 50 ms before presentation of the array.  A neuron or LFP signal was classified 

as visually responsive if activity (discharge rate or voltage) was significantly different from 

baseline in the interval 50-200 ms following stimulus presentation during the memory-guided 

saccade task and in the interval 50-150 ms during search (Wilcoxon rank-sum test, P < 0.05).  A 

neuron or LFP was classified as saccade-related if activity was significantly different from 

baseline in the interval -100 to 100 ms relative to saccade initiation for all tasks.  Unless 

otherwise noted, our analyses focused on visually-responsive units with or without saccade-

related modulation because these are the neurons known to represent visual salience (Bichot and 

Schall, 1999a; Sato et al., 2001; Thompson and Bichot, 2005) and likely to project to posterior 

visual areas thought to generate the N2pc (Thompson et al., 1996; Pouget et al., 2009; Gregoriou 

et al., 2012).  Of the 102 total neurons we recorded, 84 neurons (82%) exhibited significant visual 

responses.  Of the 141 total LFP sites we recorded, 133 LFPs (94%) exhibited significant visual 

responses.  Of the 84 sites in which visually responsive neurons were recorded, 81 (96%) also 

exhibited visually-responsive LFPs.  Thus, the sample size was 81 for the paired comparisons of 

simultaneously recorded neurons, LFPs, and ERPs.  Of the 99 visually-responsive LFP sites in 

which neurons were concurrently recorded, 18 neurons (18%) did not exhibit visual responses. 
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Selection time.  We used a “neuron-antineuron” approach to determine the selection time 

when the target location could be reliably discriminated in single-unit spiking, LFPs, and ERPs 

(Britten et al., 1992; Thompson et al., 1996).  The selection time is defined as the time at which 

the distribution of activity when the search target is inside a receptive field is significantly greater 

than the distribution of activity when the target is opposite the receptive field for 10 consecutive 

milliseconds with a conservative  value of 0.01 (Wilcoxon rank-sum test).  These criteria are 

identical to a previous report (Cohen et al., 2009a).  For all signals, we defined the receptive field 

(or preferred location) as the three adjacent target locations in which the firing rate or voltage 

modulation maximally deviated from baseline.  To ensure that our results were not the artifact of 

the orientation of the corneoretinal potential that changed during the saccade (Godlove et al., 

2011a), we also computed selection time with signals aligned on saccade initiation.  Only signals 

which selected the target >20ms before saccade initiation were included in this analysis. 

For direct comparison with a previous study, we also estimated selection time by a running an 

ANOVA at each millisecond following target presentation (Monosov et al., 2008).  The resulting 

p-value gave the probability that the activity did not vary across target locations.  The selection 

time was the first millisecond that the p-value dropped below 0.05 before continuing past 0.001 

and remaining below 0.05 for 20 out of 25 subsequent milliseconds.  This ensured that 

differences across studies cannot be explained by differences in analytical methods.  This method 

also ensures that our results are not due to our definition of receptive fields.  

We also computed population selection times based on all 102 FEF single-units, 141 LFPs, 

and the m-N2pc conditionalized on whether the target was contralateral or ipsilateral to the 

hemisphere in which the signal was recorded.  This is the approach more commonly used to study 

the human N2pc. This included neurons and LFP with and without significant visual responses 

and with both contralateral and ipsilateral preferred locations.  Since the average firing rates of 

cortical neurons vary markedly, we normalized responses between 0 and 1 by subtracting the 

minimum response and dividing by the range so that variability across recording sites didn’t 
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inflate selection times.  The population selection time is defined as the time when the 

distributions of activity when the target is contralateral and ipsilateral significantly diverge for 10 

consecutive milliseconds with  = 0.01 (Wilcoxon rank-sum test).  Here, the distribution is across 

neurons and recording sites, whereas individual selection times were based on the distribution 

across trials.  All signals were truncated at saccade. 

Magnitude of selection.  We quantified the magnitude of selection as the difference in 

response magnitude when the target or a distractor was in the receptive field (preferred location) 

for each signal.  For spiking activity, the magnitude of selection was computed as the difference 

in average normalized firing rate from 125 to 200 ms after the array presentation.  For LFPs and 

the m-N2pc, the magnitude of selection was computed as the integral of the voltage in the same 

time window divided by the length of the window (Cohen et al., 2009a).  All signals were 

truncated at saccade. 

Set size effects.  To assess how RT, selection time, and magnitude of selection depended on 

set size and search efficiency, we fit a multiple linear regression model of the form,  

, 

where the independent variable, y, is the mean RT for each session, or the selection time and 

magnitude of selection for each single-unit, LFP, or ERP.  The predictor s is the set size (in items) 

and the predictor e is a dummy variable representing search efficiency (0 = efficient, 1 = 

inefficient).  We assessed whether the coefficient β1 was significantly different from zero to test 

for significant set size effects.  We assessed whether the coefficient, β2, was significantly 

different from zero to test for a significant effect of search efficiency. 

Visual response latency.  The latency of the visual response was determined by comparing 

baseline activity to activity during a ms-by-ms sliding window starting at array presentation.  For 

FEF spiking activity and LFPs, the visual onset was the time when activity first became 

significantly different from baseline and remained significant for 10 consecutive ms (Wilcoxon 
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rank-sum test, p < 0.01).  For ERPs, we required significance to be maintained for 30 consecutive 

ms to eliminate false alarms indicated by bimodality in the distribution and visual inspection. 

Trial-by-trial correlations of spike rate, LFP, and ERP amplitude.  We computed the 

Pearson correlation coefficient between the trial-by-trial amplitude modulation of simultaneously 

recorded neurons, LFPs, and ERPs. We used only signals that selected the target in these 

analyses.  For spiking activity, amplitude was computed as the average firing rate in the window 

from 150 ms after the array presentation until saccadic response to exclude the nonselective initial 

visual response.  For LFPs, amplitude was computed as the integral of the voltage in the same 

time window divided by the length of the window.  We compared simultaneously recorded 

neurons and LFPs that were recorded from the same electrode or spaced ~1 mm apart.  For 

comparison with a previous study (Cohen et al., 2009a), the ERP amplitude was first computed as 

the integral of the voltage in the same time window divided by the length of the time window.  

However, it is possible for this method to yield spurious correlations due to common noise picked 

up at the frontal reference.  As a control, we also computed the ERP amplitude as the integral of 

the voltage difference between the two posterior electrodes divided by the length of the time 

window. We computed the correlation using trials in which the target appeared inside the 

receptive field of the neuron and LFP.  As an additional control, we also computed the correlation 

during the baseline period 100 ms before array presentation.  This allowed us to determine the 

inherent correlations between these signals independent of those elicited by the analysis of the 

elements in the search arrays.  For this analysis, we baseline corrected 250-150 ms before the 

time window (i.e., 350-250 ms before array presentation). 

 Control for differences in signal-to-noise ratio.  We measured the change in selection 

time with the number of trials to test whether differences in the signal and noise characteristics of 

the neural measures could explain observed differences in selection time.  Following the 

methodology of Cohen et al. (2009a), we characterized the change in selection time as a function 

of trial number (randomly sampled, with replacement) using an exponential function of the form, 
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 , 

where ST is selection time; n is the number of trials;  is the decay (in units of trials); STmax+min is 

the baseline (ms); and STmin (ms) is the asymptote.  We optimized parameters to fit ST as a 

function of the number of trials individually for each neuron, LFP site, and ERP.  If the signal-to-

noise ratio is comparable across signals, then the rate of decay, , should not vary across signals.  

If the timing of selection varies across signals, then the asymptote, STmin, should vary across 

signals despite similar rates of decay. 

 

5.4 Results 

 

5.4. 1 Behavior 

Two monkeys searched for a red or green target stimulus among one, three, or seven 

distractors of the opposite color (Figure 5.1A).  Both monkeys exhibited behavioral hallmarks of 

efficient, pop-out visual search.  The slopes of RT by set size (i.e., search slopes) were shallow 

for both monkeys (Figure 5.1C and Table 5.1).  These search slopes are characteristic of pop-out 

search in humans (Wolfe, 1998) and monkeys (Bichot and Schall, 1999a).  We compared our new 

effect search data to previous published data from the same monkeys performing an inefficient 

search task for a T among L’s, and vice versa (Figure 5.1B; Cohen et al., 2009b).  Both monkey’s 

search slopes were significantly shallower during efficient search (Figure 5.1C; Table 5.1).  

During efficient search, the slope of percent correct by set size was not significant for monkey Q 

(0.001 ± 0.002; p = 0.43; Wilcoxon rank-sum test) and monkey S (-0.004 ± 0.005; p = 0.72).  

These results clearly indicate more efficient processing during pop-out search and demonstrate 

the low attentional demands of the task. It is the neural basis of this difference in processing 

efficiency which we turn to next. 

 



158 

 

Table 5.1. Response time and selection time search slopes, in ms/items, for each neural signal during efficient (pop-

out) and inefficient visual search.  Values are slope of linear regression ±SE.  Asterisks indicate significant slope 

coefficient for set size: p < 0.05; **p < 0.01; ***p < 0.001.  Pairwise comparisons indicate significant interaction term 

for set size and task.  Inefficient search data have been previously described (Cohen et al., 2009a). 

 

5.4.2 Selection time 

We recorded 102 FEF neurons (48 from monkey S and 54 from monkey Q) that exhibited 

discharge rate modulations following stimulus presentation or around the time of saccade 

initiation.  This report focuses on the subset of 65/102 neurons (64%) that exhibited spatially 

tuned visual responses.  We also recorded LFP from 141 sites (60 in monkey S and 81 in monkey 

Q).  Of these, 109/141 (77%) exhibited spatially tuned visual responses.  The neurons and LFP 

sites were verified to be in FEF based on low threshold microstimulation (Bruce et al., 1985).  

During all of these recordings we simultaneously recorded the m-N2pc from EEG electrodes over 

posterior lateral cortex (Figure 5.2). 

We compared the selection time, the time when each signal first reliably signaled the target 

location, in FEF single-units, FEF LFPs, and the m-N2pc.  Figure 5.2 shows a representative 

session of simultaneously recorded FEF single-unit spikes, FEF LFPs, and the m-N2pc.  All three 

signals show an initial visual response regardless of the target’s location in the visual field.  

However, each signal evolves over time to discriminate the location of the target stimulus before 

the saccade is executed.  In our example session, the neuron signaled the target location with an 

Monkey Q Monkey S

Response time

Inefficient 22.6 ± 1.6 *** 10.5 ± 1.4 ***

Efficient 2.3 ± 0.8 * 0.7 ± 1.0

FEF single-units

Inefficient 4.6 ± 1.5 *** 5.3 ± 1.7 ***

Efficient 1.2 ± 1.1 2.3 ± 1.1

FEF LFP

Inefficient 8.2 ± 1.4 *** 6.3 ±  1.3 ***

Efficient 1.1 ± 1.0 0.4 ± 1.5

m-N2pc

Inefficient 9.7 ± 0.5 *** 6.2 ± 0.9 ***

Efficient 0.9 ± 1.0 1.0 ± 0.9

***

***

***

***

*** ***
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elevated firing rate when the target is inside the RF relative to when it is outside the RF (165 ms 

after the presentation of the search array; Figure 5.2A).  The LFP recorded from the same 

electrode, signaled the target location with a greater negativity for the target relative to distractors 

at approximately the same time (161 ms; Figure 5.2B).  The m-N2pc signaled the target location 

with a greater positivity contralateral to the target, but this selection did not occur until well after 

selection by both FEF spikes and LFP (179 ms; Figure 5.2C). 

 

 

Figure 5.2 Target selection during a representative session.  Average activity of one neuron (A), LFP site (B), and ERP 

over visual cortex (C) when the search target was inside (dark) and opposite (light) the receptive field (or preferred 

location) of the signal.  Bands around average activity indicate 95% confidence intervals.  Vertical lines indicate 

selection time when the two curves became significantly different.  Bands around selection time indicate SE estimated 

using a bootstrap procedure (100 samples).  Solid triangle indicates mean response time for this session. 

 

 

Figure 5.3 shows the distribution of selection times for all three signals across our sample 

of all FEF neurons, FEF LFPs, and concurrently recorded m-N2pc.  Overall, the m-N2pc selected 
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the target later (mean ± SE, 192 ± 3.9 ms) than FEF single-unit spikes (160 ± 4.1 ms; p < 0.001; 

Wilcoxon rank-sum test) and FEF LFPs (171 ± 3.9 ms; p  < 0.001; Table 5.2).  This chronology 

was also observed when these monkeys performed an inefficient T versus L search task (Cohen et 

al., 2009a), but average selection time was later in all three signals (single-units: 167 ± 3.6 ms, p 

= 0.05; LFP: 194 ± 3.2, p < 0.001; m-N2pc: 202 ± 1.9 ms, p < 0.001).  In general, the selection 

time difference between FEF and the m-N2pc was smaller in monkey Q than monkey S (Table 

5.2).  One possible explanation is that FEF feedback was integrated and processed more 

efficiently in the visual cortex of monkey Q, which could explain his superior behavioral 

performance (mean RT: 223  3.0 ms; percent correct: 97  0.7%) relative to monkey S (mean 

RT: 254  4.2 ms; percent correct: 83  0.1%), and larger amplitude m-N2pc (4.0 ± 0.47 μV) 

relative to monkey S (1.9 ± 0.65 μV).  Regardless, it is clear that the m-N2pc never preceded 

selection in FEF for both monkeys, which is inconsistent with a feed-forward hypothesis.  

Importantly, selection took place well before mean saccadic response time, indicating that all 

signals selected the target sufficiently early to have played a role in the covert attention processes 

that precedes saccade execution.  Accordingly, the same pattern of results were observed when 

we computed selection time with all signals aligned on the time of saccade initiation; the m-N2pc 

selected the target significantly later (-71 ± 8.7 ms relative to saccade) than both FEF single-units 

(-113 ± 7.9 ms; p < 0.01) and LFP (-105 ± 6.0 ms; p < 0.01). 
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Table 5.2 Comparisons of target selection time and latency of visual onset across signals during efficient (pop-out) 

search.  Values are means ± SE.  Brackets with asterisks indicate significant differences between signals (Wilcoxon 

rank-sum test).  Asterisks alone indicate significant difference from zero (Wilcoxon signed-rank test). * for P < 0.05; 

** for P < 0.001 

Monkey Q Monkey S

Visual onset time, ms

Single-units 71 ± 3.8 66 ± 2.6

LFP 52 ± 1.9 61 ± 2.6

ERP 67 ± 3.1 68 ± 4.6

Selection time, ms

Single-units 155 ± 4.2 160 ± 5.6

LFP 160 ± 3.7 167 ± 6.1

ERP 168 ± 4.1 203 ± 4.2

Selection time difference

ERP - Single-units 9 ± 4.3 39 ± 4.6 **

ERP - LFP 6 ± 2.6 * 31 ± 4.7 **

LFP - Single-units 3 ± 3.2 8 ± 4.6

*

**

**

*

*

**
**

 

 

Figure 5.3 Population selection times for each type of signal.  Cumulative distributions of selection times measured 

from intracranial FEF single-unit spiking (blue), FEF LFPs (green), and the posterior m-N2pc (red) during pop-out 

search.  Selection precedes saccadic response time (RT, dashed grey line). 
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Figure 5.4 Within-session selection time differences across signals.  Differences between selection time measured from 

simultaneously recorded m-N2pc and FEF single-unit spikes (A), mN2pc and FEF LFPs (B), and FEF LFPs and single-

unit spikes (C).  The solid vertical line indicates the mean of the distribution.  The dashed vertical line indicates zero. 

Asterisks indicate significant differences from zero (Wilcoxon rank-sum test, *** for p < 0.001; n.s. for 

nonsignificant). 

 

Figure 5.4A,B shows that the simultaneously recorded FEF single-units and LFPs typically 

selected the target before the m-N2pc (Table 5.2).  The average difference between the FEF 

single-unit selection time and m-N2pc selection time was 23 ± 3.4 ms (p < 0.001; Wilcoxon 

signed-rank test).  The average difference between FEF LFP and m-N2pc selection time was 16 ± 

2.5 ms (p < 0.001).  When we recomputed selection time using a running ms-by-ms ANOVA 

(Monosov et al., 2008), the selection time difference between the m-N2pc and FEF single-units 

and LFPs remained positive and significant (p < 0.001), indicating that this result cannot be due 

to our selection of preferred locations for each signal.  This sequence of selection supports the 
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hypothesis that feedback from FEF contributes to the generation of the m-N2pc even during pop-

out search. 

One potential explanation is that the m-N2pc is delayed relative to FEF because ERPs are 

summing across neurons with different RFs.  To test for this possibility we also computed 

population selection times based on all FEF single-units, LFPs, and the m-N2pc conditionalized 

on whether the target was in the contralateral or ipsilateral hemifield.  Analyzed in this way, all 

three population signals reflect summation across individual signals with different RFs within a 

hemisphere.  Population selection times (±SE, bootstrap, 500 samples) for both FEF single-units 

(145 ± 18) and LFPs (133 ± 15.8) were still earlier than the m-N2pc (176 ± 27).  The population 

selection time for FEF LFP is earlier than the FEF single-unit selection time because LFP in FEF 

are more strongly contralaterally biased than single-units (Purcell et al., in press).   It is likely that 

the contribution of LFPs and single-units to surface ERPs is more complex than simple 

summation across signals, but this result gives us a degree of confidence that the summation of 

scattered RFs alone cannot explain our results. 

We also compared the relative timing of FEF single-units and LFPs to assess mechanisms 

of efficient target selection within FEF.  During inefficient search tasks, FEF single-units select 

the target before FEF LFPs (Monosov et al., 2008; Cohen et al., 2009a).  However, across the 

population of signals, the selection time for FEF single-units and LFPs was not significantly 

different during efficient search (Figure 5.3; Table 5.2; p = 0.40; Wilcoxon rank-sum test).  

Likewise, during efficient search, there was no systematic selection time difference between FEF 

single-units and LFPs recorded simultaneously on the same electrode (Figure 5.4C; 0.3 ± 5.1 ms; 

p = 0.5; Wilcoxon signed-rank test).  We verified that the selection time difference between FEF 

single-units and LFP was significantly smaller during efficient search relative to inefficient search 

task (22 ± 3.0 ms; p < 0.001).  This across-task difference was also evident when selection time 

was computed using a running ANOVA method (p < 0.001; Monosov et al., 2008).  These results 
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show that when search is efficient, the FEF population activity indexed by the LFPs can 

discriminate the target location as rapidly as individual single-units in the population. 

We measured the latency of the initial visual response in each signal to ensure that the 

differences in selection time were not a consequence of our recording procedures.  For example, 

maybe all electrophysiological activity is earlier when measuring high-frequency spikes or lower 

frequency LFPs on the microelectrodes relative to the surface ERPs. However, this was not the 

case.  Across monkeys, the mean latency (± SE) of the earliest visual response in each neural 

signal was 68 ± 2.4 ms for FEF neurons, 56 ± 1.6 ms for FEF LFPs, and 68 ± 2.7 ms for the 

initial visual ERP component (Table 5.2).  These values are consistent with recent reports (Pouget 

et al., 2005; Monosov et al., 2008; Cohen et al., 2009a).  The visual latency of the FEF LFPs was 

significantly earlier than both FEF neurons and the posterior ERPs (p < 0.001, Wilcoxon rank-

sum test), but the mean latency of FEF neurons and posterior ERPs were statistically 

indistinguishable. 

 

5.4.3 Timing and magnitude of selection during efficient and inefficient search 

Previous studies have shown that discrimination of a target from distractors by visually 

responsive FEF neurons marks the outcome of visual processing for attentional selection (e.g., 

Thompson et al. 1996, 1997; Sato & Schall 2003).  During inefficient search, selection time 

increases with set size in FEF neurons, LFPs, and the m-N2pc (Bichot et al., 2001b; Sato et al., 

2001; Cohen et al., 2009a; Cohen et al., 2009b), which is consistent with delays in the time 

required to reliably focus attention on the target.  Essentially all models of visual attention 

propose that distractors do not effectively compete for selection during pop-out search (e.g., 

Duncan and Humphreys, 1989; Treisman and Sato, 1990; Wolfe, 2007).  Therefore, if selection 

time represents an index of attentional allocation, then we would expect it to remain invariant 

over set size when search is efficient and the target pops out.  Indeed, we found that the mean 

(±SE) slope of selection time by set size during efficient search was not significant for FEF 
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neurons (1.7 ± 1.02 ms/item; p = 0.09), FEF LFP (0.6 ± 0.87 μV/item; p = 0.48), and the m-N2pc 

(0.9 ± 0.9 μV/item; p = 0.32; linear regression; Figure 5.5; Table 5.1).  This contrasts sharply 

with the significant increases in selection time observed during inefficient search for all three 

signals (FEF single-units: 4.9 ± 1.14 ms/item; p < 0.001, FEF LFP: 7.3 ± 0.96 μV/item; p < 

0.001, m-N2pc: 3.3 ± 0.49 μV/item; p < 0.001; Cohen et al., 2009a).  The difference in slope of 

selection time by set size for inefficient search relative to efficient search was significant for all 

three signals (all p < 0.001).  This result indicates that selection time increases with the 

attentional demands of the search task and not simply the number of objects in the visual field. 

 

Figure 5.5 Average selection time for FEF single-unit spikes (top), FEF LFPs (middle), and m-N2pc (bottom) at each 

set size.  Asterisks indicate significant difference in slope across efficient (pop-out) and inefficient (T versus L) search 

(multiple linear regression; * for p < 0.05; ** for p < 0.01; *** for p < 0.001).  Error bars indicate SE. 
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Previous studies have also found that the amplitude of the N2pc (Luck and Hillyard, 1990, 

1994b; Luck et al., 1997a) and FEF neurons (Bichot and Schall, 1999a; Cohen et al., 2009b) 

depends on attentional demands.  During inefficient search, the amplitude of the m-N2pc 

(Woodman et al., 2007) and FEF neurons (Cohen et al., 2009b) declines with set size.  The 

amplitude of ERP components is related to the variability in the latency (Luck, 2005); greater 

amplitude is expected with lower latency variability and lower amplitude is expected with greater 

latency variability.  Thus, if the latency of the N2pc truly reflects an index of attentional 

allocation, amplitude should decline with set size during inefficient search when selection time 

variability increases, but should remain constant with set size during pop-out when selection time 

variability is constant.  Indeed, we found that the slope of amplitude by set size during efficient 

search was not significantly different from 0 for FEF single-units (0.01 ± 0.27 sp/s/item), FEF 

LFP (-0.01 ± 0.16 μV/item), and m-N2pc (0.04 ± 0.13 μV/item; all p > 0.05; Figure 5.6).  In 

contrast, the average slope of amplitude by set size during inefficient search significantly declined 

for FEF single-units (-0.59 ± 0.30 sp/s/item; p < 0.05), FEF LFP (-0.35 ± 0.13; p < 0.001), and 

the m-N2pc (-0.19 ± 0.04; p < 0.001).  This resulted in a significantly smaller magnitude of 

selection for FEF LFPs and the m-N2pc during inefficient search (LFPs: 3.0 ± 0.56 μV; m-N2pc: 

2.2 ± 0.15 μV) relative to efficient search (LFPs: 5.1 ± 0.65 μV, p < 0.01; m-N2pc: 3.4 ± 0.47 

μV, p < 0.01; Wilcoxon rank-sum test).  This pattern of modulation is very similar to effects seen 

in the human N2pc (Luck and Hillyard, 1990; Eimer, 1996).  Altogether, these results indicate 

that selection time and amplitude in FEF neurons are sensitive to attentional demands and extends 

these observations to LFPs and the m-N2pc. 
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Figure 5.6 Average magnitude of selection (response amplitude when the target was in the preferred location of the 

signal minus the response amplitude when a distractr was in the preferred location) for FEF single-unit spikes, FEF 

LFPs, and the m-N2pc at each set size.  Conventions as in Figure 5.5. 

 

5.4.4 Trial-by-trial correlation of spike rate, LFP, and ERP amplitude 

The similar pattern of modulation in all three signals suggests that FEF may be one source 

of modulations in posterior visual areas that generate the N2pc.  If feedback from FEF is present 

during pop-out search and influences the neural mechanisms that generate the m-N2pc, then the 

trial-by-trial amplitude of FEF LFPs should covary with posterior ERP amplitude.  The mean 

correlation between FEF LFP and the m-N2pc was significantly greater than zero (0.53 ± 0.02; p 

< 0.001; Wilcoxon signed-rank test) and comparable to values observed during inefficient search 
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(Cohen et al., 2009a).  We verified that the correlation remained significant when performed on 

the difference in amplitude between posterior surface electrodes (Figure 5.6A; r = 0.03 ± 0.009; p 

< 0.01), which rules out the possibility that it is simply due to shared noise at the reference.  

Moreover, this correlation was absent during the baseline period before array presentation (p = 

0.46) and when only distractors were in the receptive field of the LFP (p = 0.20), illustrating both 

spatial and temporal specificity.  It is known that only the superficial layers of FEF feed back to 

visual cortex (Pouget et al., 2009), which is a likely reason why some LFP sites show negligible 

correlations with the m-N2pc (Figure 5.6A). 

The spike rates of FEF single-units were significantly correlated with LFPs recorded from 

the same electrode (Figure 5.6B; r =  -0.09 ± 0.008; P < 0.001), which is consistent with the 

hypothesis that LFPs reflect postsynaptic activity of neurons surrounding the electrode tip.  This 

correlation dropped, but remained significant, when it was performed across electrodes spaced 

~1mm apart (r = -0.02 ± 0.008; p < 0.001), suggesting that these units were nearing the edge of 

the area over which the LFP integrated (Katzner et al., 2009).  In contrast, the mean correlation 

between FEF spiking and the m-N2pc measured at posterior ERP electrodes was not significantly 

different from zero (Figure 5.6C; r = 0.004, p = 0.61), which is consistent with studies showing a 

negligible relationship between these electrophysiological signals (Cohen et al., 2009a).   
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Figure 5.7 Trial-by-trial correlations between FEF LFP amplitude and the amplitude difference between posterior EEG 

electrodes (A), between FEF LFP amplitude and FEF single-unit firing rate recorded on the same electrode (B), and 

between FEF single-unit firing rate and the amplitude difference between posterior EEG electrodes (C).  Asterisks 

indicate significance from zero, indicated by the vertical dashed line (Wilcoxon rank-sum; n.s. for nonsignificance; ** 

for p < 0.01; *** for p < 0.001). 

 

5.4.5 Control for differences in signal-to-noise ratio across measures of neural activity 

 A potential concern is that the observed differences in selection time across the 

electrophysiological signals are due to differences in the signal-to-noise properties of each signal.  

The pattern of target selection times could just be a difference inherent in the neural measures at 

different spatial scales. In particular, the signal-to-noise characteristics of the spike times of 

single neurons may be different from the signal-to-noise characteristics of an LFP derived from a 
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weighted average of ~105 neurons within ~1 mm2 of the electrode tip (Katzner et al., 2009) and 

from the signal-to-noise characteristics of an ERP component derived from a weighted average of 

many cm of cortex (Nunez and Srinivasan, 2006)  It may be that through summation, the LFPs 

and ERPs become more reliable measures, or the summation may introduce more noise into the 

LFP and ERP.  Following Cohen et al. (2009a), we reasoned that the signal-to-noise 

characteristics of each neural signal will determine how increasing trial numbers affects the 

reliability with which the target can be discriminated (see also Bichot et al., 2001b).  We fit an 

exponential curve to selection times as a function of trial number measured from FEF neurons, 

LFP, and the m-N2pc.  The average number of trials per session was greater than the number of 

trials necessary for all signals to reach asymptote (Figure 5.7A, black point).  The rate of decay, τ, 

was statistically indistinguishable for neurons (101 ± 26.4; median ± SE), LFP (139 ± 33.0), and 

the m-N2pc (129 ± 24.9; Figure 5.7B; all p > 0.09; Wilcoxon rank-sum test).  In a previous study 

of inefficient search (Cohen et al., 2009a), the corresponding values were 94 ± 14.2, 144 ± 21.7, 

and 97 ± 17.5 for neurons, LFP, and the m-N2pc, respectively (all p > 0.14).  This result is 

consistent with the comparable confidence intervals that are apparent in Figure 5.2.  However, the 

level at which selection time reached asymptote was lowest for neurons (138 ± 4.3), followed by 

LFP (150 ± 4.2), and latest by the m-N2pc (180 ± 4.0; Figure 5.7C; all p < 0.05, Wilcoxon rank-

sum test).  This result is consistent with the ordering of selection times reported above (Figure 

5.3).  In a previous study of inefficient search (Cohen et al., 2009a), the corresponding values 

were 151 ± 3.2, 172 ± 5.2, and 188 ± 2.7 for neurons, LFP, and the m-N2pc, respectively (all p < 

0.01).  Thus, we can conclude that the timing differences across the signals are not due to 

different signal-to-noise characteristics of the neural measures. 

 

5.5 Discussion 

To understand the neural mechanisms that generate attention-related ERPs in humans, we 

recorded the macaque homologue of the N2pc component simultaneously with single-unit spiking 
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and LFPs in FEF.  We asked how the timing of selection in all three signals depends on the 

attentional demands of the task by directly comparing the timing of selection during an efficient 

pop-out search task with an inefficient form search task (Cohen et al., 2009a).  We showed that 

both the timing and magnitude of selection in all three signals depends on the attentional demands 

of the task.  However, selection was evident in FEF before the m-N2pc regardless of search 

efficiency.  These results are consistent with the hypothesis that the primate N2pc is due to 

feedback from higher cortical areas, even when bottom-up salience is sufficient for task 

performance.  These results also inform us about the neural mechanisms that generate the N2pc 

and constrain theories of visual attention. 

 

5.5.1 Comparison of human and macaque N2pc 

Before we consider the relevance of our findings to the study of human ERPs, we must first 

ask whether the macaque m-N2pc indexes the same cognitive operations as the human N2pc.  

The m-N2pc satisfies several established criteria for across-species homology (Woodman, 2011).  

Previous studies have shown that the spatial distribution of the N2pc is maximal over posterior 

electrodes in both humans (Luck and Hillyard, 1994b) and monkeys (Woodman et al., 2007; 

Cohen et al., 2009a).  In addition, previous studies have found that the latency of the N2pc 

increases with set size in both humans (Luck and Hillyard, 1990) and monkeys (Woodman et al., 

2007) when search is inefficient.  We found that the latency and amplitude of the macaque N2pc 

(m-N2pc) are insensitive to changes in set size during efficient pop-out search, which is 

consistent with an index of attentional demands and not simply the number of objects on the 

screen. We also found that the amplitude of the m-N2pc is greatest during efficient search, which 

is observed with the human N2pc (Eimer, 1996).  Thus, the m-N2pc satisfies multiple criteria for 

homology including a similar spatial distribution, task dependence, and timing. Our findings 

provide new support for this across-species homology. 
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One notable across-species difference is that the polarity of the N2pc is reversed. Humans 

show a contralateral negativity and monkeys show a contralateral positivity.  This is likely due to 

differences in cortical folding in posterior visual areas across the species.  For example, macaque 

V4 is located on the surface of the prelunate gyrus (Zeki, 1971), but the human homologue spans 

several sulci (Orban et al., 2004).  Another potential across-species difference is that several 

studies of the human N2pc have reported increases in amplitude with attentional demands (Luck 

et al., 1997a; Hopf et al., 2002), whereas we observed declines in the m-N2pc.  This is likely due 

to differences in task design rather than species.  In humans, this effect is observed when targets 

and distractors are tightly grouped in a limited portion of the visual field.  In contrast, when 

stimuli are well spaced across hemifields as in our monkey studies, amplitude decreases with 

additional stimuli (Eimer, 1996).  Future experiments that directly compare the N2pc observed in 

humans and monkeys under identical experimental design (e.g., Godlove et al., 2011b; Reinhart 

et al., 2012a; Reinhart et al., 2012b) can further establish the homology across species. 

 

5.5.2 The origin and interpretation of the N2pc 

We found that the pattern of modulation in FEF LFP and the N2pc were similar during 

inefficient and efficient visual search and the signals were correlated on a trial-by-trial basis.  

This suggests that FEF is influencing the generation of the N2pc, but it seems unlikely that the 

contribution is direct.  First, voltage distributions, current source density topography, and dipole 

source modeling suggests that the dipole seen as the N2pc on the scalp originates in posterior 

visual cortex in humans (Luck et al., 1997b; Hopf et al., 2000; Hopf et al., 2004) and monkeys 

(Woodman et al., 2007; Cohen et al., 2009a; Young et al., 2011).  Second, the timing differences 

that we observed seem inconsistent with identification of FEF as the direct neural generator 

because extracranial EEG is not delayed relative to intracranial synaptic activity (Nunez and 

Srinivasan, 2006).  The electrical fields generated in FEF are probably actively canceled or the 

dipole is oriented such that it does not produce an observable extracranial signal.   
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Instead, these observations are consistent with the hypothesis that FEF is part of a frontal-

parietal network involved in driving attentional shifts in posterior visual areas thought to generate 

the m-N2pc (Corbetta, 1998).  FEF is part of a distributed network of structures shown to encode 

a representation of visual salience for guiding attentional deployments (Thompson and Bichot, 

2005).  Our observation that activity in FEF modulates concurrently with the m-N2pc during both 

efficient and inefficient search suggests that this network is engaged regardless of search 

efficiency.  Some studies have questioned the need for an influence of frontal structures during 

efficient search tasks based on BOLD responses (Leonards et al., 2000) and effects of transcranial 

magnetic stimulation (Muggleton et al., 2003) in prefrontal areas during inefficient, but not 

efficient search.  However, these results are inconsistent with findings from monkey studies 

showing that reversible inactivation of FEF with the GABA agonist muscimol impairs 

performance on pop-out search tasks (Wardak et al., 2006; Monosov and Thompson, 2009).  In 

addition, other studies report comparable BOLD activation in human (Anderson et al., 2007) and 

monkey (Wardak et al., 2010) FEF irrespective of search efficiency.  Thus, our results add to 

converging evidence suggesting that FEF plays an important role in processing visual targets 

even during efficient search tasks. 

Our results also inform the interpretation of the cognitive processes indexed by the primate 

N2pc.  The degree to which the human N2pc reflects the initial spatial selection of a target or 

post-selection processing has been unclear (Eimer and Kiss, 2010; Theeuwes, 2010).  Our data 

place clear limits on the degree to which the latency of the N2pc can be interpreted as the time of 

initial spatial selection because the N2pc followed selection in prefrontal cortex even during an 

efficient search task that required minimal feature analysis.  One limitation of the current task 

design is that the singleton was always task relevant, and therefore we cannot make strong claims 

about the relative timing of selectivity based on pure bottom-up physical salience.  However, our 

results are consistent with a growing body of work demonstrating the sensitivity of the N2pc to 

top-down factors and extend that work by suggesting that FEF is a likely source of this top-down 
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modulation.  When a color singleton is not task relevant, the N2pc is small or absent (Luck and 

Hillyard, 1994b; Eimer et al., 2009) and selectivity in FEF is minimal (Bichot et al., 2001a).  The 

N2pc is also sensitive to rewards associated with target localization and identification (Kiss et al., 

2009), as are FEF neurons (Ding and Hikosaka, 2006).  Lastly, trial history and experience 

influence both the N2pc (Eimer et al., 2010; An et al., 2012) and FEF neurons (Bichot et al., 

1996; Bichot and Schall, 1999a, 2002).  The same FEF neurons that are modulated by these top-

down factors project to earlier visual areas thought to generate the N2pc (Pouget et al., 2009), 

which is consistent with the hypothesis that FEF is the source of these modulations. 

 

Figure 5.8 Selection time by number of trials.  A: average selection time as a function of number of trials 

(randomly sampled, with replacement) across recordings of FEF single-units (blue), LFP (green), and m-N2pc (red).  

The black point (with SE line) indicates the average number of trials in our data set.  B: decay parameter (τ) estimates 

from exponential fits to the selection time by number of trials.  C: asymptote parameter (TSTmin) estimates from the 

exponential fits plotted in B. 
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5.5.3 Relation to previous studies of attentional selection across cortex 

Several recent studies have investigated the timing of attentional selection across cortex 

using paired intracranial recordings.  Zhou and Desimone (2011) observed earlier selection in 

FEF neurons relative to V4 neurons during an inefficient conjunction search tasks. Similarly, 

during inefficient conjunction search, Buschman & Miller (2007) observed earlier selection in 

FEF and dorsolateral prefrontal neurons.  In addition, Monosov et al., (2010) found that FEF 

neurons exhibited significant spatial selectivity before IT neurons exhibited significant object 

selectivity during a difficult search and identification task.  Thus, converging evidence supports 

the hypothesis that attentional selection in FEF neurons precedes attentional selection in several 

earlier visual areas when tasks are attentionally demanding (see also Cohen et al., 2009a), but 

findings during efficient pop-out search are less consistent.  One study found that selectivity in 

lateral intraparietal area precedes selectivity in FEF and dorsolateral prefrontal cortex during pop-

out search (Buschman and Miller, 2007), but preliminary evidence from another study found the 

opposite; frontal areas selected before parietal areas during pop-out (Katsuki and Constantinidis, 

2011).  In addition, studies using nearly identical task designs and analytical methods found that 

both FEF and LIP select the location of a color singleton at approximately the same time 

(Thompson et al., 1996; Thomas and Pare, 2007).  Our observation that the m-N2pc selects the 

target location later than FEF is consistent with studies suggesting that FEF selectivity precedes 

selectivity in early visual areas, but it is important to note that ERPs cannot be regarded as a 

direct proxy for underlying neural activity.  ERPs are thought to reflect the summation of 

synchronous activity across many centimeters of cortex (Nunez and Srinivasan, 2006), and the 

N2pc likely reflects attentional selection across multiple visual areas.  Thus, additional 

simultaneous recordings in frontal and parietal areas will be necessary to conclusively determine 

the degree to which the timing of selection across neurons in different cortical areas depends on 

task demands.  
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In addition to our observations regarding the timing relationship between FEF and the m-

N2pc, we also observed differences in the relative timing of selection in FEF single-units and 

LFP depending on the attentional demands of the task.  Previous studies have found that FEF 

LFPs select the target later than FEF single-units (Monosov et al., 2008; Cohen et al., 2009a).  

We found that the delay in selection time between FEF single-units and LFPs was absent during 

pop-out.  LFPs reflect the synaptic activity of thousands of neurons surrounding the electrode tip 

(Mitzdorf, 1985; Katzner et al., 2009), whereas spiking activity reflects only a single neuron.  

Therefore, one interpretation of this result is that the population of FEF neurons contributing to 

the LFP reached a consensus about target identity more efficiently during pop out.   The absence 

of a delay between selection in FEF single-units and LFP was unexpected given a previous report 

showing a significant delay between the two signals in one monkey performing a covert pop-out 

search task in which target location was reported via lever turn (Monosov et al., 2008).  Covert 

visual search requires active suppression of saccade generating neurons in FEF (Thompson et al., 

2005a), which could have postponed LFP selectivity.  In line with the present findings, another 

interpretation is that the delayed LFP selection time relative to single-units during covert search 

reflects the increased attentional demands required to map target location to the lever turn.   

 

5.5.4 Relation to theories of visual search and attention 

Early models of visual attention proposed that targets that could be distinguished by a 

single feature could be localized “pre-attentively” solely through bottom-up selection of local 

feature differences (Treisman and Gelade, 1980; Itti and Koch, 2001).  Other studies have shown 

that prior knowledge and expectation have a strong influence on pop-out performance (Treisman 

and Gormican, 1988; Maljkovic and Nakayama, 1994; Joseph et al., 1997).  Our finding that an 

attentional control area, FEF, contributes to the generation of the N2pc during efficient search is 

consistent with theories of visual attention that propose no strong dichotomy between efficient 

and inefficient search (Treisman and Sato, 1990; Desimone and Duncan, 1995; Bundesen et al., 
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2005; Wolfe, 2007).  This result is consistent with a recent study which found that the enhanced 

response of V4 neurons to a pop-out stimulus is eliminated when attention is directed elsewhere 

in the visual field (Burrows and Moore, 2009).  Thus, our findings add to behavioral and 

neurophysiological evidence that top-down input from frontal cortex may guide attentional 

selection even during pop-out search. 
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CHAPTER VI 

 

SUPPLEMENTARY EYE FIELD DURING VISUAL SEARCH: SALIENCE, COGNITIVE 

CONTROL, AND PERFORMANCE MONITORING 

 

6.1 Abstract 

How supplementary eye field (SEF) contributes to visual search is unknown.  Inputs from 

cortical and subcortical structures known to represent visual salience suggest that SEF may serve 

as an additional node in this network.  This hypothesis was tested by recording action potentials 

and local field potentials (LFP) in two monkeys performing an efficient pop-out visual search 

task. Target selection modulation, tuning width, and response magnitude of spikes and LFP in 

SEF were compared with those in frontal eye field. Surprisingly, only ~2% of SEF neurons and 

~8% of SEF LFP sites selected the location of the search target.  The absence of salience in SEF 

may be due to an absence of appropriate visual afferents, which suggests that these inputs are a 

necessary anatomical feature of areas representing salience.  We also tested whether SEF 

contributes to overcoming the automatic tendency to respond to a primed color when the target 

identity switches during priming of pop-out.  Very few SEF neurons or LFP sites modulated in 

association with performance deficits following target switches.  However, a subset of SEF 

neurons and LFP exhibited strong modulation following erroneous saccades to a distractor.  

Altogether, these results suggest that SEF plays a limited role in controlling ongoing visual search 

behavior, but may play a larger role in monitoring search performance. 

 

6.2 Introduction 

Natural vision requires an organism to select important objects from irrelevant objects to 

guide responses.  Models of visual search propose that a salience map (also termed priority) 

combines bottom-up physical conspicuousness with top-down knowledge of target features to 

guide attention and eye movements (Tsotsos et al., 1995; Itti and Koch, 2001; Bundesen et al., 
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2005; Wolfe, 2007).  A distributed network of visuomotor areas encodes a representation of 

salience (Findlay and Walker, 1999; Thompson and Bichot, 2005; Gottlieb, 2007; Bisley and 

Goldberg, 2010).  This includes the frontal eye field (FEF; Thompson et al., 1996; Bichot and 

Schall, 1999a; Purcell et al., 2012b), superior colliculus (SC; McPeek and Keller, 2002; Shen and 

Paré, 2007), substantia nigra pars reticulata (SNpr; Basso and Wurtz, 2002), lateral intraparietal 

area (LIP; Ipata et al., 2006; Thomas and Pare, 2007; Balan et al., 2008; Arcizet et al., 2011) and 

parietal area 7A (Constantinidis and Steinmetz, 2001).  Supplementary eye field (SEF) receives 

cortical afferents from FEF, LIP, and 7A (Andersen et al., 1990; Huerta and Kaas, 1990; Schall 

and Hanes, 1993) as well as from the superior temporal polysensory area and nuclei in the central 

thalamus that are innervated by SC and SNpr (Lynch et al., 1994; Parent and Hazrati, 1995) and 

contribute to saccade target selection (Schall and Thompson, 1994; Wyder et al., 2004) (Figure 

6.1). 

Connectivity with these visuomotor areas suggests that SEF may represent just one more 

node in the cortical network representing salience.  Furthermore, SEF neurons exhibit clear visual 

responsiveness (Schlag and Schlag-Rey, 1987; Schall, 1991a, b; Russo and Bruce, 2000; Pouget 

et al., 2005).  SEF neurons respond selectively to a number of stimulus categories including the 

type of information they provide (Campos et al., 2009), arbitrary stimulus response associations 

(Chen and Wise, 1995a, b, 1996; Olson and Tremblay, 2000), expected reward (Seo and Lee, 

2009; So and Stuphorn, 2010), and their rank order in a sequence (Lu et al., 2002; Berdyyeva and 

Olson, 2009).  However, similarity of elementary physiological properties may belie important 

functional differences in more complex contexts; for example, although many neurons in FEF, 

SC, and SEF discharge before saccades, saccade-initiation is directly controlled by FEF (Hanes et 

al., 1998) and SC (Pare and Hanes, 2003), but not SEF (Schiller et al., 1979; Schiller and Chou, 

1998; Stuphorn et al., 2010). 

Other research suggests that medial frontal areas, including SEF, are involved in the 

monitoring and control processes recruited when errors are made and habitual actions must be 



180 

 

overcome (Schlag-Rey et al., 1997; Stuphorn et al., 2000; Stuphorn and Schall, 2006; Isoda and 

Hikosaka, 2007; Emeric et al., 2010; Isoda and Hikosaka, 2011).  Priming of pop-out tasks in 

which the target and distractor features switch randomly every few trials requires overcoming the 

primed tendency to respond to a distractor following switches (Maljkovic and Nakayama, 1994).  

FEF neurons that encode salience modulate in parallel with changes of performance during 

priming (Bichot and Schall, 2002), but it is not known whether medial frontal cortex is involved 

in suppressing the primed tendency to respond to a distractor or facilitating the controlled 

response to the new target. 

We tested the hypothesis that SEF encodes visual salience to select saccade targets by 

recording spiking activity and local field potentials (LFP) in the SEF of two monkeys trained to 

perform a visual search task.  We also asked whether SEF controls or monitors changes in 

performance during priming of pop-out.  The data also provide new quantitative comparisons 

between SEF and FEF. 

 

Figure 6.1 Distribution of visual afferents to supplementary eye field (SEF).  Lines indicate reciprocal connections.  

Arrow indicates one way projection.  SEF is densely connected with visuomotor areas that are known to represent 

visual salience (bold) including frontal eye field (FEF) and lateral intraparietal area (LIP), area 7a, as well as from 

superior colliculus (SC) via the medial dorsal nucleus of the thalamus (MD).  These areas receive afferents from 

diverse areas in visual cortex that encode various target features (italicized).  In contrast, SEF does not receive direct 

input from areas representing stimulus features from which a salience map is computed.  Not pictured are efferent 

connections to SC and reciprocal connections with the ventral anterior and ventrolateral nuclei of the thalamus which 

are innervated by substantia nigra pars reticulata.   
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6.3 Materials and methods 

 

6.3.1 Behavioral tasks and recordings 

Recording procedure.  We recorded neuronal spikes and simultaneous LFP from the SEF of 

one male bonnet macaque monkey (Macaca radiata ~8.5 kg, monkey F) and one male rhesus 

macaque monkey (Macaca mulatta ~12.5 kg, monkey Z).  Monkeys were surgically implanted 

with a head post and recording chambers during aseptic surgery with animals under isoflurane 

anesthesia.  Antibiotics and analgesics were administered post-operatively.  All surgical and 

experimental procedures were in accordance with the National Institute of Health Guide for the 

Care and Use of Laboratory Animals and approved by the Vanderbilt Institutional Animal Care 

and Use Committee.   

Neurons and LFP were recorded simultaneously from the right hemisphere of both monkeys 

using tungsten microelectrodes (2-4 MΩ, FHC) and were referenced to a guide tube in contact 

with the dura.  Spikes were sampled at 40 kHz and LFP were sampled at 1kHz.  LFP were band-

pass filtered between 0.2 and 300 Hz and amplified using a Plexon HST/8o50-G1 head-stage.  A 

60 Hz second-order IIR notch filter was applied offline to reduce electrical noise.  LFP were 

baseline corrected using the average voltage 50ms until the array onset.  Spikes were sorted 

online using a time-amplitude window discriminator and offline using principal component 

analysis and template matching (Plexon).  We generated spike density functions by convolving 

each spike train with a kernel resembling a postsynaptic potential (Thompson et al., 1996).  Eye 

movements were monitored with an infrared corneal reflection system (SR Research) at a 

sampling rate of 1 kHz. 

Behavioral tasks.  Monkeys were trained to perform three tasks: a visual search task, a 

detection task, and a memory-guided saccade task (Figure 6.2).  Tasks were run in blocks and 

task order was counterbalanced across recording sessions.  All tasks began with the monkey 

fixating a central white spot for ~500ms.  In the color visual search task, the fixation point 
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changed from filled to open simultaneously with the onset of a colored target and seven 

isoluminant distractors (2.8 cd/m2) of the opposite color.  Targets and distractors were either red 

(CIE chromaticity coordinates x = 0.648, y = 0.331) or green (CIE x = 0.321, y = 0.598).  The 

monkey was rewarded for making a single saccade to the location of the target within 2000 ms 

and fixating for 500 ms.  For some experimental sessions target and distractor color remained 

constant throughout the session and target color was varied across sessions.  For other sessions 

target and distractor color were swapped in successive blocks of trials to investigate priming of 

pop-out.  Block duration was sampled from a uniform distribution ranging over 8-16 trials.  This 

task required animals to discriminate the singleton target from distractors and then shift gaze to 

that location as quickly as possible while maintaining reasonable accuracy. 

In the detection task, the target (red or green disk) was presented at one of the same eight 

locations and remained on the screen.  Simultaneous with the onset of the target, the fixation 

point changed from filled to open, instructing the animal to make a saccade to the target location 

within 2000 ms and maintain fixation for 500 ms for reward.  This task was identical to the visual 

search task, but included no distractor stimuli. 

In the memory-guided saccade task, a target (filled gray disk) was presented for 100 ms at 

one of eight isoeccentric locations equally spaced around the fixation spot at 10o
 eccentricity.  The 

animal was required to maintain fixation for 400-800 ms (uniform distribution) after the target 

onset.  After the fixation point changed from filled to open, the monkeys were rewarded for 

making a saccade to the remembered location of the target and maintaining fixation for 500 ms.  

For monkey Z, this task also included a small fraction (~15%) of “NoGo trials” in which a change 

in fixation point color cued the monkey to maintain fixation for reward.  The memory-guided 

saccade task was used to temporally dissociate sensory and motor-related responses for neuron 

and LFP classification (Bruce and Goldberg, 1985). 
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Figure 6.2 A, Visual search task.  After fixating a central point for a variable delay (top frame), an array of stimuli was 

presented (bottom frame), one of which was the target (e.g., red disk) and the rest were distractors (e.g., green disks).  

Monkeys were required to make a single saccade (indicated by the arrow) to the target for reward.  B, Detection task.  

This task is identical to the visual search task except the target appeared alone without distractors.  C. Memory-guided 

saccade task.  After fixating for a variable delay (top frame), the target was flashed for 100 ms at one of eight locations 

(middle frame).  The animal was required to maintain fixation for a variable delay until the fixation point changed from 

filled to open (bottom frame), which signaled the animal to make a single saccade to the remembered target location for 

reward. 

 

 

Localization of SEF.  In both monkeys, we determined the location of SEF by the effects of 

intracortical microstimulation and histology (Figure 6.3).  Microstimulation parameters were 

conventional (100ms trains of 333 Hz biphasic pulses of 0.2 ms pulse duration).  After the 

experiment, monkey F was deeply anesthetized with pentobarbital and perfused with 0.1 M 

phosphate buffered saline (PBS), followed by 4% paraformaldehyde (PFA) in PBS followed by 

buffered sucrose solution (10% surcrose, 4% PFA in PBS).  Monkey Z could not be perfused, so 

the brain was post-fixed in 4% PFA for 10 days.  Both brains were photographed in situ.  

Fiduciary guide pins in the recording chamber were located relative to the hemisphere midline 

and arcuate and principal sulci.  The sites of neurons and LFP with task-related responses and 

sites from which saccades could be elicited with low threshold (≤50 μA) microstimulation were 

located in Nissl-stained sections relative to previously described cytoarchitectural landmarks 

(Mitz and Wise, 1987; Luppino et al., 1991; Matelli et al., 1991; Schall, 1991a). 

Frontal eye field data.  We analyzed FEF neurons and LFP recorded during the same visual 

search task to compare directly with SEF.  We analyzed single-unit activity and LFP recorded in 

the FEF of two additional monkeys (monkey Q, Macaca radiata ~7.5 kg; monkey S, Macaca 
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radiata ~8.5 kg) during a color visual search task.  This task included a set size manipulation in 

which the number of distractors (1, 3, or 7) varied randomly across trials, but was otherwise 

identical to the visual search task described above.  We also analyzed previously published 

single-unit activity recorded from the FEF of monkey F while he performed the identical color 

search task (Sato et al., 2001).  All FEF recordings were acquired from the rostral bank of the 

arcuate sulcus at sites where saccades were evoked with low-intensity electrical microstimulation 

(<50 μA; Bruce and Goldberg, 1985).  Analytical methods were identical for SEF and FEF data.   

Behavioral performance was consistent across species.  There was no systematic difference in 

percent correct (87% for monkey F: 85% for monkey Z; 96% for monkey Q; 86% for monkey S) 

or mean RT (210 ms for monkey F; 216 ms for monkey Z; 222 ms for monkey Q; 254 ms for 

monkey S). 

 

 

Figure 6.3 Localization of SEF.  A,B. Dorsal view of recording sites in monkey F (A) and monkey Z (B).  Circle size 

indicates the number of neurons with task-related responses.  Xs indicate sites that were sampled, but no task-related 

neuron was found.  Solid colored lines indicate areas in which limb, orofacial, and saccadic eye movements were 

elicited by electrical microstimulation.  Red dashed lines indicate areas in which low threshold saccades were elicited at 

the symmetric position in the opposite hemisphere.  C. Sagittal sections from monkey F at levels indicated in panel A 

(gray lines 1 and 2) illustrate location of penetrations relative to cytoarchitectural landmarks.  Black vertical lines 

indicate reconstructed penetration locations.  The caudal penetration (C2, left) is 27 mm anterior to the interaural line.  

C1 and C2 are ~4.7 mm and ~6.7 mm lateral of midline, respectively.  Dots mark locations of Betz cells in primary 

motor cortex (M1) and supplementary motor area (SMA).  Dark shading indicates granular layer in prefrontal cortex 

(area 9) and light shading indicates the incipient granular layer that is characteristic of SEF.  Dashed lines indicate a 

damaged region.  D. Sagittal sections from monkey Z at levels indicated in panel B (gray lines 3 and 4).  C3 and C4 are 

~6.0 mm and ~8.0 mm lateral of midline, respectively.  Conventions as in panel C. 



185 

 

 

6.3.2 Data analysis 

Neuron and LFP classification.  We identified task-related neurons and LFP by comparing 

discharge rates or voltage to the baseline period 50 ms before presentation of the array.  A neuron 

or LFP site was classified as visually responsive if discharge rate or polarization remained 

significantly different from baseline for five consecutive 10 ms time bins in the interval 50 to 200 

ms following stimulus presentation for the memory-guided saccade task and in the interval 50 to 

150 ms for the detection or search tasks (Wilcoxon rank-sum test, P < 0.05).  A neuron or LFP 

site was classified as saccade-related if discharge rate or polarization remained significantly 

different from baseline for five consecutive 10 ms time bins in the interval -100 to 100 ms 

relative to saccade initiation for all tasks.  Only visually-responsive neurons are included in our 

analyses of visual salience; although, we verified that results were identical for neurons with 

saccade-related discharge modulation.  As in previous reports, many saccade-related neurons did 

exhibit direction selectivity, but it emerged too late to represent a covert salience representation 

that guided saccade target selection (<20 ms before saccade onset; Scudder et al., 2002 see also 

Stuphorn et al., 2010).  All neurons were included in our priming analyses regardless of when 

task-related modulations were observed. 

Spatial selectivity.  The selectivity of spikes and LFP to target location was quantified by 

vector summation of the normalized response to each target (Batschelet, 1981; Schall, 1991a).  

The angle of the resultant vector gave the preferred response location of the neuron or LFP site 

(0o – ipsilateral; 180o – contralateral).  The length of the resultant vector was defined as the 

direction bias.  Direction bias ranged from 0 (equal responses for all locations) to 1 (maximal 

response to a single location).  When measured during the detection task with a single stimulus, 

this quantified the location and tuning width of the receptive field (RF) for a given eccentricity. 

When measured during the visual search task, this quantified the extent to which the target was 

localized.  For visual search and detection, we used the average voltage or discharge rate from 50 
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ms after stimulus presentation until 50 ms before mean saccade initiation time to exclude 

saccade-related responses.  For the memory-guided saccade task, we used the average voltage or 

discharge rate in the time interval from 50 to 200 ms after stimulus onset.  We assessed the 

significance of spatial selectivity using a permutation test which determined the probability of 

obtaining the preferred location by chance alone (Georgopoulos et al., 1988 ; 1000 simulations, P 

< 0.01). 

We also quantified the selectivity of SEF and FEF neurons and LFP to the target versus 

distractors using a “neuron-antineuron” analysis (Thompson et al., 1996).  We computed the area 

under the receiver operating characteristic (ROC) curve from the distribution of discharge rate or 

polarization in trials in which the target appeared inside the RF and trials in which only 

distractors appeared inside the RF.  The area under the curve reflects the probability that an ideal 

observed could correctly specify whether the target was in the neuron’s RF.  For this analysis the 

RF was conservatively defined as the stimulus locations within 45o of the preferred angle, 

although tuning width was also measured more rigorously (see Receptive field width).  For 

neurons, the ROC was computed by incrementing a criterion from 0 spikes/s to the maximum 

discharge rate observed across all trials in steps of 1 spike/s.  For LFP, the criterion was 

incremented from the minimum voltage observed to the maximum voltage observed in steps of 10 

μV.  The distribution of discharge rates and voltages was obtained for 5-ms intervals averaged 

from 5 ms before to 5 ms after each time point to smooth the data.  The average area under the 

ROC curve from 50 ms after array onset to 50 ms before mean RT determined the magnitude of 

target selectivity for each neuron and LFP site. 

Visual response latency.  The latency of the visual response was determined by comparing 

baseline activity 10 ms before array onset to a ms-by-ms sliding window starting at array onset.  

The visual onset was the time when activity first became significantly different from baseline and 

remained significant for 10 consecutive ms (Wilcoxon rank-sum test, P < 0.01). 



187 

 

Spatial tuning width.  We quantified the spatial tuning width by fitting the variation in 

discharge rate or voltage as a function of target location with a Gaussian function of the form: 

 

where activation (A) as a function of meridional direction ( ) depends on the baseline discharge 

rate (B), maximum discharge rate (R), optimum direction ( ), and directional tuning ( ) (Bruce 

and Goldberg, 1985; Schall et al., 1995b; Russo and Bruce, 2000; Schall et al., 2004; Monosov et 

al., 2008).  Tuning width was estimated by the standard deviation ( ) of the best fitting Gaussian 

curve.  The data were fitted with a Simplex routine implemented in MATLAB (The MathWorks) 

to minimize the sum of squared deviations between observed and predicted values.  We excluded 

neurons and LFP sites for which the Gaussian curve accounted for <50% of the variance in the 

data indicating very poor fit (8 neurons; 26 LFP).  The eccentricity was matched for SEF and FEF 

recordings, which allows for direct comparison across areas and signals, but note that the tuning 

width of SEF and FEF neurons will vary with eccentricity (Bruce and Goldberg, 1985; Russo and 

Bruce, 2000).   

Visual response magnitude.  The magnitude of the initial visual response in SEF neurons 

and LFP was computed as the mean discharge rate or voltage in the interval 50 ms to 150 ms 

minus the baseline in the interval - 50 ms to 0 ms relative to stimulus onset. 

Error signal analysis.  We identified error-related neurons and LFP by comparing firing 

rates and voltage on trials in which the animal made a correct saccade to the target with trials in 

which the animal made an incorrect saccade to a distractor.  Errors in which the monkey 

prematurely broke fixation, failed to maintain fixation on the target, or initiated a saccade to an 

empty location were rare and are not considered further.  LFP were baseline corrected -50 to 0 ms 

relative to saccade onset to eliminate differences in pre-saccadic modulation.  A neuron or LFP 

was classified as error-related if modulation was significantly greater when the monkey made an 

erroneous saccade to a distractor as when the monkey made a correct saccade to the target in the 
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interval 100 to 300 ms after the saccade (t-test, p < 0.05).  The number of trials in which 

erroneous saccades were made to each location was matched across locations by excluding 

random trials.  The number of trials in which correct saccades were made to each location was 

matched to the trial counts for error saccades by excluding random trials.  Thus, the distributions 

of saccade directions was identical when comparing correct and error trials.  Trials in which the 

animal failed to maintain fixation for 400 ms were excluded to eliminate the influence of non-

task-related eye movements (e.g., unrewarded corrective saccades to the target).  This analysis 

used only neurons and LFP recorded during sessions in which the target was varied across blocks 

because monkeys made few errors when the target remained constant (~93% correct).  Most 

errors occurred on trials following changes in target identity, but we found no difference in post-

saccadic activity on switch and non-switch trials, therefore we combined across all error trials 

regardless of the number of trials since the switch. 

 

6.4 Results 

 

6.4.1 Absence of salience in SEF spiking activity during visual search 

We recorded 135 SEF neurons (92 from monkey F; 43 from monkey Z) that exhibited 

discharge rate modulation following stimulus presentation or around the time of saccade 

initiation.  The neurons were verified to be in SEF based on histology and relation to 

microstimulation landmarks (Figure 6.3). Our analysis of visual salience focuses on the subset of 

95 visually-responsive neurons that exhibited discharge rate modulation following stimulus 

presentation.  This included neurons recorded during sessions in which the target was constant 

and sessions in which the target changed in blocks.  Of these neurons, 36 (38%) were classified as 

pure visual neurons which responded only following the stimulus onset and 59 (62%) were 

classified as visuomovement neurons which responded both following stimulus onset and around 
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the time of saccade.  The mean SEF neuron visual latency (±SE) was 71 ± 2.4 ms, which 

approximately corresponds to previous reports (Pouget et al., 2005). 

Table 6.1 Numbers (percentages) of visually-responsive neurons and LFP that selected targets. 

Neurons  LFP  

Monkey Total

Select single

target

Select 

search

target Total

Select single

target

Select search

target

F 69 44 (63.8%) 1 (1.4%) 145 51 (35.2%) 13 (9.0%)

Z 26 14 (53.8%) 1 (3.8%) 40 11 (27.5%) 2 (5.0%)

Total 95 58 (61.1%) 2 (2.1%) 185 62 (33.5%) 15 (8.1%)

 

 

Figure 6.4 Representative visually-responsive neuron during detection and search.  A. Average spike density functions 

on trials when the target was inside (thick) or opposite (thin) the receptive field (RF) of the neuron during the detection 

(left) and visual search (right) tasks.  Vertical dotted line indicates mean saccade response time.  B. Rasters and average 

spike density functions of the representative neuron when the target was located at each of eight isoeccentric location 

during the detection (gray) and search (black) tasks.  Lines indicate response time distributions.  The central polar plot 

indicates the normalized response of the neuron to each target location during both tasks.  The vector sum of the 

response to the target at each location is indicated by the radial line, the length of which indicates the directional bias, 

or strength of spatial tuning. 
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Figure 6.4 shows the discharge rate of a representative visually-responsive neuron during the 

detection and visual search tasks.  We quantified the spatial selectivity of the neuron by 

computing a normalized vector sum of the neuron’s response to the target at each polar angle.  

The angle of the resultant vector quantifies the direction of the center of a neuron’s RF in polar 

angle and the length quantifies the degree of selectivity.  A neuron with a response field restricted 

to one target location would give a vector length of 1, and a neuron with no response field and 

equal responsiveness to stimuli in all directions would give a vector length near 0.  During 

detection, the visual response of the neuron was significantly spatially selective with the RF 

center at -4.6o (bootstrap, 1000 samples, P < 0.001).  During visual search, however, this neuron 

exhibited no spatially selectivity in the RT interval (P = 0.31).  In other words, this neuron has a 

clear RF, but does not discriminate whether it contained a salient singleton or a distractor. 

Across the population of visually-responsive neurons, we identified many neurons with 

spatially localized RFs as evidenced by significant spatial selectivity during the single-target tasks 

(Table 6.1; Figure 6.5A).  The RF centers tended to be located in the contralateral hemifield 

during both the detection (circular mean angle = -160o; V-test, u = 4.89, P < 0.001) and memory-

guided saccade task (circular mean angle = -162o; u = 4.66, P < 0.001).  These observations are 

consistent with previous reports (Schlag and Schlag-Rey, 1987; Schall, 1991a; Russo and Bruce, 

2000). 
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Figure 6.5 A-F, Distribution of directional biases for visually-responsive SEF and FEF neurons and LFP.  Filled 

histograms indicate neurons and LFP sites that were individually significant (P < 0.01).  Insets illustrate the distribution 

of preferred locations (vector angle) and directional bias (vector length) for the population of neurons and LFP (180o – 

contralateral; 0o – ipsilateral).   

 

Although we observed many SEF neurons with well localized RFs, we found that vanishingly 

few exhibited significant target selectivity during visual search (Table 6.1).  Figure 6.5B 

summarizes the measure of vector tuning during search and detection.  The mean directional bias 

during visual search (0.02 ± 0.002) was significantly lower than that measured during both 

detection (0.11 ± 0.01; Wilcoxon rank sum test, P < 0.001 ) and memory-guided saccade tasks 

(0.10 ± 0.01; P < 0.001), indicating that no spatial selectivity could be identified during search.  

No contralateral bias was present during search (u = 0.77, P = 0.22).  Thus, SEF neurons with 

clear RFs during single-target tasks failed to discriminate the target during visual search. 

It is unclear from the preceding analysis whether the reduced selectivity reflects a true 

absence of salience or whether the reduced directional bias merely reflects reduced salience when 

additional stimuli are in the visual field.  Therefore, we also analyzed single-unit activity recorded 
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from FEF, an area known to encode salience (Thompson and Bichot, 2005).  The FEF data were 

recorded from monkey F and two additional monkeys to compare directly the spatial selectivity 

during visual search across areas.  The data from monkey F were previously published (Sato et 

al., 2001).  The FEF dataset was comprised of 157 neurons (101 from monkey F; 32 from 

monkey Q; 24 from monkey S) with significant visual responses.  The mean visual latency of the 

FEF neurons was 68 ± 1.4 ms, which is consistent with previous reports (Thompson et al., 1996; 

Schmolesky et al., 1998).  Results were qualitatively similar across monkeys, so we combined 

data to increase statistical power. 

In contrast to SEF, many FEF neurons (77/157, 49%) exhibited significant target selectivity 

during search when measured in the same way (Figure 6.5C).  Spatial selectivity in FEF was 

significantly biased to the contralateral hemifield during search (circular mean angle = 157o; V-

test, u = 3.95, P < 0.001) consistent with previous studies (Schall et al., 1995b).  The mean 

strength of directional bias in FEF (0.04 ± 0.007) was significantly greater than SEF neurons 

recorded during visual search (Wilcoxon rank-sum test, P < 0.001).  This value is lower than 

previously reported values using single target tasks (e.g., Schall, 1991a) because the visual 

response to distractors decreases the length of the vector sum.  Thus, our results reflect genuine 

differences in the role of these areas in representing visual salience. 

To facilitate comparisons across areas and studies, we also quantified the magnitude of 

selectivity using a “neuron-antineuron” approach (Figure 6.6).  The magnitude of selectivity was 

determined as the area under the ROC curve when the target or distractors were inside a neuron’s 

RF.  During visual search, the neuron’s discharge rate was approximately equal regardless of 

whether the target was inside or opposite the neuron’s RF resulting in ROC values near 0.5 

throughout the trial (Figure 6.6A).  Figure 6.6B compares the mean magnitude of selectivity for 

SEF and FEF neurons that exhibited spatial selectivity when the target was presented alone 

during detection or memory-guided saccades.  The mean magnitude of selectivity (± SE) for SEF 

neurons is only slightly, but significantly, greater than 0.5 (0.51 ± 0.003; P < 0.01).  Thus, 
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visually responsive SEF neurons are highly unreliable predictors of target location.  In contrast, 

the mean magnitude of selectivity of FEF neurons is markedly and significantly greater than 0.5 

(0.58 ± 0.003; P < 0.001; Wilcoxon sign-rank test) and also significantly greater than the SEF 

neuron population (P < 0.001, Wilcoxon rank-sum).  Thus, neurons in SEF, unlike FEF, SC, LIP, 

and 7a, do not reliably discriminate the target from distractors. 

 

Figure 6.6 Neuron-antineuron test for target selectivity.  Top, Response of a representative neuron (A) and LFP site 

(C) during the visual search task in which a target (thick line) or distractor (thin line) appeared in the preferred location.  

Middle, The mean area under the receive operating characteristic (ROC) curve in a running 10 ms window.  Bottom, 

Distribution of average area under the ROC curve in the window 50 ms after array onset until 50 ms before mean 

saccade response time for SEF and FEF neurons (B) and LFP (D).  Asterisks indicate significant difference between 

areas (Wilcoxon rank-sum test; *** for P < 0.001). 

 

6.4.2 Absence of salience in SEF LFP during visual search 

LFP recorded in FEF exhibit differential polarization that discriminates the location of salient 

targets (Monosov et al., 2008; Cohen et al., 2009a), but little is known about the spatial tuning or 

stimulus selectivity of SEF LFP (but see Emeric et al., 2010).  We have demonstrated that the 

spiking activity of SEF neurons does not encode a representation of visual search salience, but all 

single-unit recording studies are based on a limited sample of individual neurons within a given 

region of cortex.  Therefore, it is possible that we did not encounter neurons in SEF that do 

represent search salience.  To mitigate this concern, we also analyzed LFP because they reflect 
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the summed synaptic activity of thousands of neurons in the region of cortex surrounding the 

electrode tip (Mitzdorf, 1985; Katzner et al., 2009) and thus provide a more complete sampling of 

a region.  In addition, LFP reflect subthreshold fluctuations in membrane potential that may not 

have produced a spike (e.g., Poulet and Petersen, 2008; Okun et al., 2010) and may reflect both 

intrinsic processing and inputs from distant cortical areas (Logothetis and Wandell, 2004).  

Therefore, the LFP in SEF may select the target despite an absence of spiking selectivity. 

We recorded LFP from 216 sites in SEF that exhibited task-related polarization (161 from 

monkey F; 55 from monkey Z), of which185 sites exhibited significantly visually-evoked 

polarization (Table 6.1).  Of the 185 visually-responsive LFP sites that formed the data set for our 

analyses, 23 (11%) were classified as pure visual LFP that showed significant modulation 

following only the stimulus onset and 162 (75%) were classified as visuomovement LFP, which 

showed significant modulation following both stimulus onset and around the time of saccade 

initiation.  The greater percentage of visuomovement LFP relative to neurons likely reflects 

summed activity across both visual and saccade-related neurons, which is consistent with the lack 

of evidence for modular or laminar differences in SEF neuron types.  The visual latency of the 

SEF LFP was 54 ± 0.7 ms, which is significantly earlier than the latency of SEF neuron spike rate 

modulation (P < 0.001, Wilcoxon rank-sum test).  This value is earlier than previous reports 

(Emeric et al., 2010), which were based on limited numbers of trials.  All of our sessions included 

>1000 trials; therefore, we believe our latency estimate is more accurate. 

Figure 6.7 shows the average response of a representative LFP site recorded during the 

detection and visual search tasks.  During detection, the visually elicited polarization of the LFP 

varies significantly with target location with an RF center at -142o (bootstrap, 1000 samples, P < 

0.001).  During visual search, however, the LFP recorded at the same site did not distinguish the 

target from distractors (P = 0.08).  
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Figure 6.7 Representative visually-responsive LFP site during detection and search.  Conventions as in Figure 6.4. 

 

We quantified the RF location and spatial selectivity of each LFP site using vector 

summation of the modulation at each target location as described above.  Figure 6.5D illustrates 

the preferred locations and directional bias for the 185 visually-responsive LFP sites.  Across the 

population of visually-responsive LFP sites, many exhibited significant spatial selectivity when a 

single saccade target was presented (Table 6.1).  The reduced percentage of visually-responsive 

LFP relative to neurons likely reflects summed activity across neurons with different preferred 

locations.  There is a clear bias to the contralatereal hemifield during detection (circular mean 

angle = -167o; V test, u = 5.2, P < 0.001) and memory-guided saccades (circular mean angle = -

176o; u = 6.8, P < 0.001), which has been previously reported using only two targets on the 

horizontal meridian (Emeric et al., 2010). 
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Although many LFP sites had spatially selective modulation, very few LFP sites exhibited 

significant target selectivity during visual search (Table 6.1).  Figure 6.5D-E summarizes the 

strength of directional bias during search and detection.  The mean strength of directional bias 

during search (0.05 ± 0.005) was significantly reduced relative to both detection (0.21 ± 0.02) and 

memory-guided saccade (0.22 ± 0.01) tasks (Wilcoxon rank-sum test, P < 0.001).  There was no 

significant difference in the strength of spatial selectivity between detection and memory-guided 

saccade tasks (P = 0.48).  Thus, many LFP sites with spatially selective modulation during single 

target tasks fail to select the target during search. 

We compared the strength of target selection in SEF LFP to LFP recorded from the FEF of 

two additional monkeys that performed the color visual search task.  The dataset was comprised 

of 109 LFP with significant visual modulation following stimulus onset (73 from Monkey Q: 36 

from Monkey S).  Of these, 42/109 (38%) exhibited significant target selectivity during search.  

The mean visual latency of the FEF LFP was 53.0 ± 2.0 ms, which is consistent with previous 

reports (Monosov et al., 2008; Cohen et al., 2009a).  Figure 6.5F illustrates the distribution of 

FEF LFP preferred directions and directional biases. Directional selectivity was significantly 

biased to the contralateral hemified during search (circular mean angle = 174o; V-test, u = 6.03, P 

< 0.001), consistent with previous reports (Monosov et al., 2008).  During search, the strength of 

directional bias in FEF (0.35 ± 0.21) was significantly greater than the directional bias in SEF 

(Wilcoxon rank-sum test, P < 0.001).  Thus, target selectivity is evident in FEF, but not SEF, 

LFP. 

We confirmed the absence of selectivity in SEF LFP by computing the area under the ROC 

curve over the course of the trial (Figure 6.6C-D).  The mean magnitude of selectivity for SEF 

LFP was not significantly different than 0.5 (0.48 ± 0.014; P = 0.85).  In contrast, the mean 

magnitude of selectivity for FEF neurons was significantly greater than 0.5 (0.53 ± 0.004; P = 

0.85) and also significantly greater than the SEF LFP population (P < 0.001).  Thus, we found no 
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evidence that SEF represents salience during search even when taking into account population 

level signals that include subthreshold synaptic activity. 

 

6.4.3 Comparison of visual responses in SEF and FEF 

We characterized two properties of SEF neurons and LFP to determine whether they 

distinguish SEF from other visuomotor areas that encode salience.  First, we compared the tuning 

width of neurons and LFP.  Following Bruce & Goldberg (1985), we used the standard deviation 

of a Gaussian function fitted to the mean discharge rate/voltage of each neuron/LFP as a function 

of target position during the memory-guided saccade task as an indicator of tuning width.  The 

mean tuning width for SEF neurons (56o ± 4.0o, degrees of polar angle) was significantly 

narrower than the mean tuning width for SEF LFP (82o ± 3.8o; Wicoxon rank-sum test; P < 

0.001) (Figure 6.8).  Similarly, the mean tuning width of FEF neurons (51o ± 3.1o) was 

significantly narrower than the mean tuning width for FEF LFP (65o ± 3.3o).  This is consistent 

with the hypothesis that LFP in both areas are integrating across neurons with scattered RFs 

(Monosov et al., 2008).  The slight increase in mean tuning width in SEF relative to FEF was 

significant for LFP (P < 0.01), but not neurons (P = 0.38).  When converted to visual field angles 

using the law of cosines, the estimated RF width at 10o eccentricity was 9o ± 0.6o for SEF neurons 

and 13o ± 0.5o for SEF LFP.  The estimated RF width of FEF neurons was 8o ± 0.4o and FEF LFP 

was 11o ± 0.5o.  Note that these estimates are based on only a single eccentricity (10o visual angle) 

and RF width is known to vary with eccentricity in both FEF and SEF (Bruce and Goldberg, 

1985; Russo and Bruce, 2000).  However, at the eccentricity tested, the tuning width of SEF 

neurons and LFP are roughly comparable to those observed in FEF (Schall, 1991b; Russo and 

Bruce, 2000). 
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Figure 6.8 The distribution of receptive field widths for SEF (open histogram) and FEF (solid red histogram) across 

the population of neurons across the population of neurons (top) and LFP (bottom) during the memory-guided saccade 

task. 

 

Second, we determined whether adding distractor stimuli to the visual field inhibited SEF 

visual responses. FEF, LIP, and SC neurons are suppressed by the addition of stimuli outside 

their RF (Schall et al., 1995b; Basso and Wurtz, 1998; McPeek and Keller, 2002; Falkner et al., 

2010), which suggests some form of lateral inhibition that is thought to be critical for generating a 

salience representation (e.g., Tsotsos et al., 1995; Itti and Koch, 2001). The mean visual response 

of SEF neurons was significantly reduced during search relative to detection (Figure 6.9A-B; 

mean difference: 2.9 ± 0.7 sp/s; P < 0.001, Wilcoxon sign-rank test).  Similarly, the mean visual 

polarization of SEF LFP was significantly reduced during search relative to detection (Figure 

6.9C-D; 2.1 ± 0.4 μV; P < 0.001).  Thus, both FEF and SEF neurons and LFP show evidence of 

lateral inhibition. 
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Figure 6.9 Representative SEF neuron (A) and LFP (C) during detection (gray) and visual search tasks (black) when 

the target fell inside the RF.  Distribution of differences between the mean discharge rate 50 ms to 150 ms after array 

onset for the population of visually responsive neurons (B) and LFP (D) during detection and visual search.  Shaded 

bars indicate neurons that attained individual statistical significant (Wilcoxon sign-rank test, P < 0.05).  Dashed vertical 

line indicates population mean. 

 

 

6.4.4 Absence of cognitive control in SEF during priming of pop-out 

Medial frontal areas, including SEF, are thought to be involved in overcoming habitual 

actions in response to changing environmental demands (Schlag-Rey et al., 1997; Rushworth et 

al., 2002; Nakamura et al., 2005; Isoda and Hikosaka, 2007; Schall and Boucher, 2007; Sumner et 

al., 2007).  We used a priming of pop-out manipulation in which the target and distractor color 

were swapped randomly after several trials (Figure 6.10A) to test whether SEF contributed to 

overcoming the primed tendency to look to the previous target color on trials in which target 

identity switched.  Following target switches, both humans and monkeys are slower and more 

error prone, but performance improves over the next several trials (Maljkovic and Nakayama, 

1994; McPeek and Keller, 2001; Bichot and Schall, 2002).  FEF neurons show robust modulation 

with changes in performance with priming of pop-out (Bichot and Schall, 2002), but nothing is 

known about SEF neurons.  Therefore, we also tested whether SEF contributed to improvements 

in performance in the trials following the switch. 
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Both monkeys exhibited clear behavioral evidence of priming (Figure 6.10B-C).  The mean 

saccade response time was significantly longer on switch trials relative to non-switch trials 

(Wilcoxon sign-rank test; monkey F, 16 ms, P < 0.001; monkey Z, 22 ms, P < 0.001) and percent 

correct was significantly lower (monkey F, 27%, P < 0.001; monkey Z, 28%, P < 0.001).  We 

tested for significant improvements in performance following the target switch by fitting a least 

squares regression line to saccade response time and percent correct as a function of the first five 

trials since the target switch.  Response times declined at an average rate of 4.4 ms/trial following 

the switch (P < 0.001) and percent correct increased an average of 6% per trial (P < 0.001), 

though the largest improvements in performance followed the first trial since the switch.  Thus, 

the monkeys exhibited clear and robust evidence of priming. 

 

Figure 6.10. Priming of pop-out task and behavior.  A, The color of the target and distractors switched randomly every 

8-16 trials (uniform distribution).  B-C, mean response time (left) and percent correct (right) as a function of the 

number of trials since the switch in target identity. 

 

We recorded 91 neurons (29 from monkey F; 62 from monkey Z) that exhibited significant 

task-related modulation around the time of saccade or following stimulus presentation during 
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priming of pop-out.  These analyses included all task-related neurons, not only visually-

responsive neurons.  If SEF is involved in overcoming priming, then we would expect changes in 

discharge rate on switch trials relative to non-switch trials prior to the saccade (Isoda and 

Hikosaka, 2007).  Figure 6.11A illustrates the activity of a representative neuron recorded during 

priming of popout.  The neuron’s response was invariant whether or not the target color switched 

across trials (P > 0.05, Wilcoxon rank-sum test).  Across the population of neurons, the difference 

in discharge rate across switch and non-switch trials was indistinguishable (Figure 6.12B; P = 

0.26).  This was true regardless of whether the target (Figure 6.11C; P = 0.63) or distractors 

(Figure 6.11D; P = 0.39) fell within the RF of the cell.  The same pattern was evident in SEF LFP 

(all P > 0.05).  Clearly, SEF neurons do not exhibit appropriate modulation to have controlled 

changes in performance following target switches. 

Behavioral performance improves in the trials following a target switch.  If SEF is involved 

in performance improvements, then we would expect systematic changes in the discharge rate of 

SEF neurons throughout the trial.  Figure 6.12 illustrates the discharge rate of the same 

representative neuron as a function of the number of trials since the target switch.  In contrast to 

FEF neurons (Bichot and Schall, 2002), there is no monotonic change in discharge rate as 

performance improves in the trials following the target switch. We fit a least squares regression 

line to the discharge rate as a function of the first five trials since the target switch to test for co-

variation of discharge rate with improvements in performance.  The slope of the regression line 

was not significant for this neuron regardless of whether the target or distractors were inside the 

neuron’s RF (Figure 6.12B).  Across the population of neurons, the distribution of slopes was not 

significantly different from zero regardless of the stimulus in the neuron’s RF (all P > 0.05) and 

only chance percentages of neurons attained individual significance (Figure 6.12C).  The results 

were qualitatively similar if discharge rate was directly correlated with saccade response time or 

percentage correct as a function of trials since the switch.  The same pattern was evident in SEF 
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LFP (all P > 0.05).  Thus, SEF does not control performance adjustments observed during 

priming of pop-out. 

 

 

Figure 6.11.  A, Mean discharge rate of a representative neuron recorded during the priming of pop-out task when the 

target.  At no point does the response of the neuron depend on whether the target identity switched or remained 

constant from the previous trial.  (B-D) histograms illustrate the population difference in discharge rate between switch 

and non-switch trials -100 to 0 ms relative to saccade onset when any stimulus (B), the target (C), or distractors (D) 

were in the neuron’s RF.  Shaded bars indicate neurons that attained individual significance (Wilcoxon rank-sum test, P 

< 0.01). 
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Figure 6.12.  A, The mean discharge rate of the same representative neuron shown in Figure 6.11 with discharge rate 

divided by the number of trials since the target switch (n).  B, the mean discharge rate of the neuron in the interval 50 to 

150 ms following array onset and least squares regression line.  C, the distribution of slopes of least squares regression 

lines fitted to discharge rate as a function of trials since target switch for the population of neurons when any stimulus 

(left), the target (middle), or distractor (right) were within the RF of the cell. 

 

6.4.5 Performance monitoring in SEF during visual search 

 We found that SEF neurons and LFP do not signal the location of salient saccade targets 

and do not modulate with changes in behavior during priming of pop-out.  Does SEF contribute at 

all to search performance?  SEF neurons and LFP signal the occurrence of errors during saccade 

countermanding (Stuphorn et al., 2000; Emeric et al., 2010), which is thought to produce error-

related potentials observed extracranially (Godlove et al., 2011b).  However, this observation has 

never been replicated in another task.  Therefore, we asked whether SEF neurons or LFP signal 

the occurrence of an error when the monkeys incorrectly shifted gaze to a distractor location 

during visual search 

 We tested for error-related responses in the 91 neurons recorded during the priming of 

pop-out manipulation which provided sufficient numbers of error trials.  Figure 6.13A shows the 

response of a representative error-related SEF neuron.  Following a brief peri-saccadic 
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suppression, activity remained at baseline for correct trials to the target, but exhibited a brisk 

discharge approximately 100-200 ms after erroneous saccades to a distractor.  Across the 

population of neurons, 24/91 (26%) exhibited significant error-related modulations.  This is only 

slightly higher than previous estimates during saccade countermanding (Stuphorn et al., 2000).  

Figure 6.13B shows the response of a representative LFP site with error-related modulation.  

Following the saccade, a brief positive-going polarization was followed by a significant negative 

polarization following erroneous but not correct saccades.  Across the population of LFP sites, 

17/107 (16%) exhibited significant error-related modulation.  This is slightly lower than previous 

estimates (Emeric et al., 2010).  Importantly, these effects cannot be due to the shift of gaze 

because we matched the distribution of saccade directions across all analyzed correct and error 

trials.  These effects cannot be due to second saccades (e.g., corrective saccades to the target) 

because trials in which the eyes moved <400 ms after the initial saccade were excluded.  Thus, 

we conclude that SEF neurons are signaling the occurrence of an error during visual search. 

 

Figure 6.13. Representative error-related neuron during detection and search.  A. Average spike density function 

(lines) and raster (dots) for trials in which a saccade was correctly made to the target (blue) or erroneously made to a 

distractor (gray). B. Average voltage for correct and error trials.  Conventions as in A. 
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6.5 Discussion 

SEF is embedded anatomically within a network of structures that represent visual salience 

(physical conspicuousness and behavioral relevance).  We found that SEF neurons and LFP do 

not represent visual salience.  We also found that SEF is not involved in overcoming priming 

during pop-out, but did signal the occurrence of search errors.   

 

6.5.1 Absence of salience in SEF 

Anatomical connections with cortical and subcortical areas known to encode salience 

suggested that SEF would represent another node in this network (Figure 6.1).  Previous single-

unit recording studies in SEF also suggest that it may represent salience. When presented with 

foveal cues, some SEF neurons fire selectively before saccades to targets (Chen and Wise, 1995a, 

b, 1996; Olson and Tremblay, 2000).  Other populations of SEF neurons signify the target of an 

upcoming saccade on the basis of reward contingencies (Coe et al., 2002; Seo and Lee, 2009; So 

and Stuphorn, 2010, 2012) or by virtue of its position in a sequence of saccades (Lu et al., 2002; 

Berdyyeva and Olson, 2009, 2010).  Human imaging studies suggest that SEF may be active 

during deployment of covert attention (Kastner et al., 1999).  These factors can be viewed as ‘top-

down’ salience, but we showed that SEF neurons and LFP do not discriminate the target from 

distractors during visual search.  This is consistent with the relatively limited deficits in target 

selection observed following lesions of contralateral SEF relative to FEF lesions (Schiller and 

Chou, 1998, 2000) and the absence of fMRI signal in monkeys presented with pop-out arrays 

(Wardak et al., 2010).   

Our finding that salience is absent in SEF parallels a recent report showing that saccade-

related SEF neurons do not directly control saccade initiation (Stuphorn et al., 2010).  Many FEF, 

SC, and SEF neurons show elevated discharge rates before saccades of particular directions 

(Schlag and Schlag-Rey, 1987), which has been suggested to indicate a similar role in saccade 

generation (Schall, 1991b; Russo and Bruce, 2000).  FEF and SC neurons modulate early enough 
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to control saccade initiation (Hanes et al., 1998; Pare and Hanes, 2003), but SEF neurons 

modulated too late to control saccade initiation (Stuphorn et al., 2010).  Similarly, we found that 

although both SEF and FEF neurons have selective visual responses, SEF neurons do not encode 

salience.  SEF may be less important for ongoing decisions about where to move the eyes (Yang 

et al., 2010), but may play a larger role in monitoring the outcome of prior decisions (Boucher et 

al., 2007).    

 

6.5.2 Does salience require ventral stream innervation? 

The lack of target selectivity and priming effects in SEF neurons is most likely due to an 

absence of necessary visual afferents (Figure 6.1).  FEF, LIP, and SC all receive topographically 

organized input from visual areas V4, TEO, TE, MT, and MST representing features of objects 

on which search can be performed such as color, shape, texture, motion, and depth (Blatt et al., 

1990; Lui et al., 1995; Schall et al., 1995a; Bullier et al., 1996).  In contrast, SEF receives cortical 

visual input only from areas LIP, 7a, FEF, MST, and the superior temporal polysensory area 

(Huerta and Kaas, 1990; Schall et al., 1995a).  Thus, the absence of a salience representation in 

SEF can be understood from the lack of visual afferents originating in areas representing stimulus 

features.  Interestingly, our result is also consistent with a recent study which found that FEF 

neurons projecting to MT are targeted by SEF neurons, but not FEF neurons projecting to V4 

(Ninomiya et al., 2012). 

We ruled out several alternative explanations for the absence of visual salience in SEF.  It 

could be explained by an absence of topographic visual inputs.  However, many SEF neurons and 

LFP sites exhibited well localized RFs.  Furthermore, SEF neuron and LFP tuning widths were, 

on average, only slightly broader than FEF (see also Bruce and Goldberg, 1985; Schall et al., 

1995b; Schall et al., 2004; Monosov et al., 2008).  Thus, the absence of topographic visual inputs 

cannot explain the absence of salience. 
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Alternatively, the absence of salience could be explained by an absence of lateral inhibition.  

Several computational models propose that salience is shaped by suppression of distractor inputs 

(Tsotsos et al., 1995; Itti and Koch, 2001) and lateral inhibition is observed throughout the visual 

system including FEF (Schall et al., 1995b), SC (McPeek and Keller, 2002), and LIP (Falkner et 

al., 2010).  We found that the response of most SEF neurons and LFP were significantly inhibited 

by the addition of distractor stimuli in the visual field.  This could be due to lateral connections 

intrinsic to SEF or could reflect competitive interactions taking place in afferent areas.  

Regardless, an absence of lateral inhibition cannot explain the absence of salience in SEF.   

The absence of a salience representation in SEF has implications for the functional 

connectivity between SEF and other areas in the salience network.  Visually-responsive neurons 

in the superficial layers of FEF encode a representation of salience (Thompson et al., 1996) and 

project to areas of extrastriate visual cortex (Huerta et al., 1987; Barone et al., 2000; Pouget et al., 

2009; Anderson et al., 2011), which are thought to contribute to covert spatial attention (Moore 

and Armstrong, 2003; Cohen et al., 2009b; Purcell et al., 2010).  Given that collateralization of 

intracortical projections is so limited, the absence of a salience signal in SEF suggests that the 

neurons in LIP and FEF that encode salience do not project to SEF.  Alternatively, the absence of 

salience in SEF could be due to active cancellation via local-circuit connections.  However, the 

small proportion of neurons and LFP sites that exhibited significant salience signals indicates that 

these input signals must be suppressed very early in the network, which makes it of limited use 

for subsequent computations. 

 

6.5.3 Absence of priming effects in SEF neurons 

Dorsomedial frontal areas, including SEF, have been implicated in the control processes 

necessary to overcome a habitual action in response to changing context (Rushworth et al., 2002; 

Isoda and Hikosaka, 2007; Sumner et al., 2007; Isoda and Hikosaka, 2011).  The priming of pop-

out task requires the animal to overcome the primed tendency to respond to an old target color.  
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Our monkeys showed clear evidence of priming; target color switches lead to increased response 

times and error rates.  However, we found no modulation in pre-saccadic discharge rates when 

the target color switched across our entire sample of SEF neurons or LFP.  This suggests that SEF 

is not necessary to overcome priming of pop-out. 

We do not believe that the absence of SEF modulation during priming of pop-out can be 

explained by an absence of control signals in SEF.  Pre-SMA is strongly interconnected with SEF 

(Huerta and Kaas, 1990; Luppino et al., 1993) and neurons in this area are strongly modulated on 

trials in which a primed response must be suppressed (Isoda and Hikosaka, 2007).  Humans with 

lesions of SEF show an absence of priming effects in oculomotor tasks (Sumner et al., 2007).  

Furthermore, SEF neurons fire vigorously during tasks that encourage mutually incompatible 

responses including anti-saccade (Schlag-Rey et al., 1997), countermanding (Stuphorn et al., 

2000; Stuphorn et al., 2010), and flanker tasks (Nakamura et al., 2005).  Thus, the absence of 

priming effects during pop-out does not rule out a role for SEF as a source of control control 

during tasks in which competing responses to be actively suppressed. 

Instead, the absence of modulation in SEF neurons can be explained if delays in early 

perceptual processes completely account for pop-out priming.  Consistent with this account, 

priming effects cannot be eliminated by voluntary control or expectation (Maljkovic and 

Nakayama, 1994).  Priming effects correlate with reductions in BOLD activity in extrastriate 

visual areas (Kristjansson et al., 2007).  Transcranial magnetic stimulation applied to visual area 

MT in humans disrupts motion priming (Campana et al., 2006).  Finally, lesions of TEO and V4 

in monkeys lead to an abolished priming effect (Walsh et al., 2000), but lesions of dorsolateral 

prefrontal cortex do not eliminate priming (Rossi et al., 2007).  SEF does not receive input from 

these visual areas and cognitive control is not necessary for perceptual priming, and therefore 

priming effects are not apparent in this area. Thus, our results add to converging evidence that 

priming of pop-out can be entirely accounted for by changes at the level of early feature 

representations (Wolfe et al., 2003; Lee et al., 2009).  We speculate that other tasks (e.g., 
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countermanding) elicited control responses in SEF because those tasks, unlike priming of pop-

out, encouraged early preparation of saccade responses that required active suppression by SEF. 

 

6.5.4 Performance-monitoring signals in SEF during visual search 

 We have ruled out two of the most plausible ways in which SEF could contribute to 

visual search performance, but what role, if any, does SEF play during visual search? SEF 

neurons and LFP modulate following errors during saccade countermanding (Stuphorn et al., 

2000; Emeric et al., 2010), which is one likely source of error-related potentials recorded 

extracranially (Godlove et al., 2011b).  We found that SEF neurons signaled visual search errors 

when monkeys incorrectly made saccades to a distractor.  Modulation followed saccade initiation 

and therefore could not play a role in representing salience to guide current search behavior.  

Rather, these observations can be understood in the context of a performance monitoring 

framework (Schall and Boucher, 2007).  Although SEF does not appear to be actively engaged in 

modifying ongoing visual search performance, it may play a role in monitoring performance and 

relaying outcome information to other cortical areas for subsequent behavioral adjustments. 
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CHAPTER VII:  

GENERAL DISCUSSION 

 

7.1 Summary of results 

 The preceding studies were guided by the assumption that perceptual decisions are 

performed by integrating a representation of perceptual evidence to a response threshold.  Based 

on that framework, I asked whether I could identify how the evidence representation and 

evidence accumulation might be implemented in distinct neuronal populations within and across 

brain areas.   

 First, these studies inform our understanding of the neural representation of perceptual 

evidence.  In Chapter III, I used the firing rates of visually-responsive FEF neurons to drive a 

network of stochastic accumulators that predicted search behavior.  This demonstrates that the 

response properties of these neurons are sufficient to serve as a representation of perceptual 

evidence that drives response accumulators.  Chapter IV showed that this evidence is encoded 

primarily through changes in mean firing rate and not changes in across-trial variability.  Chapter 

V showed that the same pattern of modulation that was observed in FEF visual neurons was also 

evident in the modulation of extracranial event-related potentials that reflect neuronal activity 

across many centimeters of posterior visual cortex.  This result is consistent with existing 

neurophysiological and anatomical data suggesting that the representation of perceptual evidence 

is not isolated in FEF, but is likely distributed across a broad network of brain areas.  However, 

this representation is not everywhere.  In particular, Chapter VI showed that the extent of this 

representation does not include all sensorimotor areas, as it is not evident in the firing rates of 

SEF neurons in medial frontal cortex. 

Second, these studies inform our understanding of the potential neural mechanisms of 

evidence accumulation.  Following the methodology established in Chapter II, Chapter III 

directly compared the predicted dynamics of stochastic accumulator models fit to visual search 
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behavior to the response dynamics of FEF movement neurons.  The observed pattern of 

movement neuron activity was consistent with the pattern of modulation observed both in both 

standard (Chapter II) and neurally-driven (Chapter III) accumulator models, consistent with the 

idea that these neurons integrate the perceptual evidence encoded by visual neurons.  In addition, 

Chapter IV showed that the pattern of response variability in saccade-related FEF neurons was 

consistent with the pattern of response variability predicted by stochastic accumulator models.  

Movement neurons with very similar response properties are also located in superior colliculus 

(Ratcliff et al., 2003), but SEF neurons do not modulate in a manner consistent with accumulation 

to a fixed threshold (Stuphorn et al., 2010).   

Altogether, these results demonstrate the utility of cognitive models for understanding 

how the activity of different neuronal populations can influence decision-making behavior.  

These models provided a framework that allowed us to identify how common computations 

might be implemented by neuronal populations distributed across many cortical and subcortical 

areas, and also how different computations might be implemented by distinct populations of 

neurons within a single brain area.  However, despite the advances in our understanding of simple 

perceptual decisions, these results also raise several open questions concerning the neural 

mechanisms of perceptual decision-making.  In the final sections, I will address several critical 

questions that remain to be addressed. 

 

7.2 Open questions and future directions 

7.2.1 Linking propositions 

 I have demonstrated how the identification of visually-responsive FEF, SC, and LIP 

neurons with perceptual evidence and FEF and SC movement neurons with evidence 

accumulation account for a wide range of neurophysiological and behavioral observations.  

However, a different line of work has identified perceptual evidence with the firing rates of 

motion direction selective neurons in MT and evidence accumulation with visually-responsive 
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neurons in LIP during a motion direction discrimination task.  The major findings supporting this 

mapping are the stimulus-dependent rate of rise in LIP neurons (Roitman and Shadlen, 2002; 

Churchland et al., 2008), the effects of MT stimulation and LIP stimulation on performance 

(Salzman et al., 1990; Salzman et al., 1992; Ditterich et al., 2003; Hanks et al., 2006), and the 

effect of motion pulse simtuli on behavior and LIP activity (Huk and Shadlen, 2005).  How can it 

be that these different populations of neurons each seem to be well explained by a mechanism of 

stochastic accumulation to threshold, although the models assume only a single evidence 

accumulation process? 

 The apparent discrepancy across studies can be somewhat reconciled by appreciating that 

temporal integration and threshold evaluation are likely common mechanisms implemented by 

different neuronal populations for different functions.  For example, tonic neurons in the 

brainstem are thought to temporally integrate a velocity to compute position (Cannon and 

Robinson, 1987).  More recently, neurons in anterior cingulated cortex have been proposed to 

compare firing rates to a threshold to determine whether to leave an environment (Hayden et al., 

2011).  Thus, it seems likely that temporal integration of signals from extrastriate neurons is used 

to generate the representation of perceptual evidence that is observed in FEF, LIP, and SC visual 

neurons and that temporal integration is also used to translate visual neuron firing rates to a 

saccade command via FEF and SC movement neurons.   

 Likewise, threshold detection may play a role in the read-out of both visual neuron 

activity and movement neuron activity.  Indeed, the gating inhibition proposed in Chapter III 

implements a form of threshold on visual neuron activity.  However, it is important to appreciate 

the distinct function role of the threshold on each population.  Visual neurons do not project 

directly to the brainstem saccade generator, and therefore saccades cannot be generated without 

first relaying a signal through SC or FEF movement neurons.  Thus, visual neurons do not reflect 

the irrevocable decision to act, but may instead reflect the categorical decision that a stimulus is 

present.  The framework proposed in Chapter III reflects the fact that these two decisions may be 



213 

 

independent, but often are inherently linked.  Other groups have proposed two-layer accumulator 

models that are consistent with this idea (Shea-Brown et al., 2008; Carpenter et al., 2009).  

Simultaneous recordings from LIP and FEF or SC during perceptual decision-making tasks could 

provide the key data to test this hypothesis. 

 

7.2.2 Modeling at multiple levels 

 The preceding section reveals a fundamental limitation of using higher-level cognitive 

models to understand neurobiological mechanisms: The biological machinery needed to 

implement the processes is necessarily more complex than the simple processes assumed by 

cognitive models.  This problem becomes apparent when one considers that several hundred 

thousand neurons are necessary to initiate a single eye movement (Brown et al., 2008), but eye 

movement behavior can be explained by models that assume only a single stochastic accumulator 

(Reddi and Carpenter, 2000).  In order to bridge this gap more completely, we need to develop 

models at an intermediate level that explain how networks of interacting neurons can implement 

the proposed model process (Wang, 2002; Zandbelt et al., 2012).  However, note that this does 

not negate the need for higher-level models; rather, the relationship is reciprocal.  Higher-level 

models allow us to efficiently reject hypotheses that narrow down the potential ways in which a 

behavior could be performed.  Lower-level models explain the biological mechanisms by which 

the computations could be implemented.  Thus, a more complete understanding of behavior can 

be gained through modeling at multiple levels. 

 

7.2.3 On the role of feed-back in perceptual decision-making 

 According to the standard accumulator model framework, perceptual decisions proceed 

in an entirely feed-forward manner: perceptual evidence is first generated, and then accumulated 

over time to a threshold.  However, Chapter V found that a representation of perceptual evidence 

can be detected at the population level via extracranial potentials, and that this representation is 
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likely due to feedback from frontal and parietal areas that encode perceptual evidence.  However, 

no current stochastic accumulator explains the role of this feedback in the accumulation process.  

These results suggest that a new generation of models should be developed to understand how 

feedback from the accumulator could modulate the representation of perceptual evidence and 

what consequences this might have for predicted behavior and neurophysiological signals.   

 

7.2.4 Performance monitoring during perceptual decisions 

Chapter VI found that the firing rates of SEF neurons did not correspond to any 

component of the stochastic accumulator model framework.  Instead, a subpopulation of SEF 

neurons were shown to fire exclusively after monkeys made erroneous saccades to distractors 

during visual search.  This error detection signal is often proposed to be involved in performance 

adjustments on subsequent trials, but how these adjustments take place is still an open question.  

One hypothesis is that these signals represent a reward prediction error signal (Seo and Lee, 2009; 

So and Stuphorn, 2012).  This signal is a critical component of reinforcement learning models 

that is used to adjust the anticipated value associated with particular stimuli or actions (Sutton and 

Barto, 1998).  However, the relationship between reinforcement learning and accumulator models 

of perceptual decision-making is poorly understood.  Thus, an important goal for future work is to 

understand the relationship between these two modeling frameworks. 

A second important question concerns the specific neuronal mechanisms by which the 

error signals in SEF could influence decision-making.  Imaging evidence suggests that these 

adjustments might involve interactions among medial prefrontal cortex and other areas involved 

in perceptual and motor aspects of decision-making (e.g., Danielmeier et al., 2011; Kerns et al., 

2004; Carter & van Veen, 2007).  Thus, SEF could influence FEF and SC through direct 

projections or could affect behavior via direct projections to the oculomotor brainstem.  

Alternatively, SEF could influence behavior via direct projections to the brainstem.  Simultaneous 

recordings across multiple cortical areas will be necessary to tease apart the functional roles of 
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these different areas.  
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APPENDIX 

 

 

 

Figure A.1 Diffusion model dynamics.  Plotted trajectories are averages from RT deciles.  For clarity, only the 5th – 

10th decile is plotted.  Horizontal dashed lines indicate measured threshold.  All simulations used the following 

primary parameters: D = 0.2, v = 0.2, z = 0.05, a = 0.1.  The left column of panels show simulated trajectories from a 

single simulated session (200 trials) of a noiseless independent race model (s = 0).  Rows differ according to the source 

of across trial variability (across-trial variability in encoding delay: st = 0.2, η = 0, sz = 0, sa = 0; across-trial variability 

in drift rate: st = 0, η = 0.1, sz = 0, sa = 0; across-trial variability in starting point: st = 0, η = 0, sz = 0.04, sa = 0; across-

trial variability in threshold: st = 0, η = 0, sz = 0, sa = 0.02).  The middle column of panels shows the simulated 

trajectories for a diffusion model with the same parameters as the left column, but with the addition of noise (s = 0.1).  

All other parameters are identical across rows.  The last column of panels shows the grand average trajectories for 200 

simulated sessions using the same parameters as the middle column panels. 
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Figure A.2 The impact of noise (s = 0.1) on diffusion model dynamics for simulations resulting in fast (top; RT < 0.2 

s), medium (middle; 0.3 s < RT < 0.4 s) and slow (bottom; 0.4 s < RT < 0.5 s) responses.  All simulations used the 

same primary parameters as Figure A.1 (D = 0.2, v = 0.2, z = 0.05, a = 0.1), but with no sources of across-trial 

variability other than noise (st = η = sz = sa = 0).  A-C: Simulated trajectories for 10 individual trials (colored lines) 

and their average (black).  Here, individual trails have been low-pass filtered for illustrative purposes only.  All other 

figures and analyses used unfiltered model trajectories.  D-F: The conditional probability that the model trajectory was 

at an activation level at each time step given that the simulation produced a correct fast, medium, or slow RTs. 
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Figure A.3 Across-condition changes in diffusion model dynamics.  The left panels show predicted model dynamics 

for a noiseless diffusion model (left column; s = 0).  All other panels show predicted model dynamics for a noisy 

diffusion model at the 1st, 5th, or 9th RT decile, but with the addition of noise (s = 0.1).  For each row, we selectively 

manipulated one parameter (delay, D; drift, v; starting point, z; or model threshold, a) and all other parameters were 

fixed at default values (D = 0.2, v = 0.2, z = 0.018, a = 0.5).  All parameters determining across-trial variability were set 

to 0 (st = η = sz = sa = 0).  Each plot shows the grand average trajectory across 200 simulated sessions for a single RT 

decile (9th decile). 
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Figure A.4  The effects of varying sample size on the noisy independent race model dynamics.  The left column shows 

trajectories for five RT deciles from example sessions with 1, 5, 10, 100, and 200 simulated trials per sessions.  The 

right column shows grand averages across 200 simulated sessions using the sample sizes given by the left column.  In 

other words, for each row, the left column panel was computed by averaging 200 time the sample size given in the right 

column panel.  Even with sample size as low as five, the measures onset still appears to increase with RT.   
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