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Chapter 1

Introduction

The insider threat arises when an employee in an organization abuses their permissions

to harm the security of the organization’s information system. The insider threat has be-

come one of the greatest security challenges today, due to a number of reasons. First, the

insider threat is a common problem. The U.S. State of Cybercrime survey, conducted by

the U.S. Secret Service, Carnegie Mellon University, CSO Magazine and Deloitte, found

that 23% of electronic crime events are caused by insiders [1]. A Forrester survey in 2013

reports the insider threat is the top cause of data breaches that transpired in organizations

who responded to the survey[2]. Moreover, the Forrester survey shows the problem is

not localized to any specific country, but is rather dispersed across a range of nations, in-

cluding the US, Canada, UK, France and Germany. Second, the insider threat leads to

substantial monetary cost. Respondents to the U.S. State of Cybercrime survey indicated

that insiders’ malicious activities are more costly and damaging than incidents perpetrated

by outsiders. Indeed, we can see that many security incidents resulting in heavy losses

are caused by insiders. For example, in 2011, the UCLA Health System paid the federal

government $865,000 for failing to prevent its employees from snooping in the electronic

medical records of two celebrity patients [3]. In fact, the number of institutions that are

fined due to neglecting insider threat is growing at a fast pace [4].

In general, the insider threat can be addressed by two categories of strategies. The

first is what we refer to as a prospective strategy, which makes a decision (i.e., denial or

approval) about an user’s access at the time of request. Most access control systems fall into

this category, including Mandatory Access Control [5], Discretionary Access Control [6],

Role-based Access Control (RBAC) [7, 8, 9] and Context-based Access Control [10, 11].

Among them, RBAC is the most widely adopted system [12]. The second strategy to
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address the insider threat is what we refer to as a retrospective strategy, which permits the

access to proceed but reviews it afterward. Post-hoc audits [13, 14, 15, 16] fall into this

category. The retrospective strategy is usually adopted in a mission-critical system [17],

such as an electronic medical record (EMR) system.

1.1 Motivation and Research Objectives

When there is a need to design an insider threat mitigation system for an organization,

two important questions are often raised. First, what strategy (i.e., prospective vs. ret-

rospective) should be adopted for the target organization? Second, once one strategy is

chosen, what specific method should be used to implement it? To the best of our knowl-

edge, there is no clear answer for the first question. As for the second question, most of the

existing solutions solely rely on expert knowledge or experience, while ignoring informa-

tion hidden in the massive access log that may help in the refinement of the system design.

In this disseration, we faciliate the design of insider threat mitigation systems by answering

both questions from a data-centric perspective. Note this does not preclude the possibility

that other questions need to be addressed for the satisfactory design of such a system.

1.1.1 Objective 1: Quantify the Trade-off between Prospective and Retrospective Strate-

gies

Given an access request, an access control system is asked to label it as legitimate or il-

legitimate. Thus, one access control system can be viewed as a binary classification model.

Naturally, the reader may think of using typical performances measures, such as accuracy,

F-measure or ROC analysis, to compare classifers (i.e., access control systems). However,

these measures are problematic in the context of comparing prospective and retrospective

systems for several reasons.

First, accuracy and F-measure are used under the assumption that costs of false positive

and false positive are equivalent (assumption 1). Second, although ROC analysis is not
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subject to assumption 1, its validity is based on another assumption specifically that costs

of false positive (negative) across different classifiers are equivalent (assumption 2). Unfor-

tunately, neither assumption holds in our environment. Thus, one of the objectives in this

dissertation is to resolve the problem of comparing two access control systems (classifiers)

without assumption 1 and assumption 2 being true.

1.1.2 Objective 2: Data-Driven Security System Design

In most situations, both of the strategies (especially the prospective approach), are im-

plemented based only on expert knowledge. An access log, which records each access to

resource in system, is rarely leveraged during the application of those security strategies.

Yet an access log could be very useful to either strategy, because the access pattern in the

log may reveal some error or weakness in the existing security configuration. Thus, the

second problem studied in this thesis is how to diagnose, revise and evolve an existing

security system, including prospective and retrospective systems, by applying knowledge

discovery methods.

1.2 Contributions

This dissertation introduces several novel approaches to address each of objectives in

different scenarios. For objective 1, we propose bispective analysis, a novel decision sup-

port framework, to quantify the trade-off between prospective and retrospective strategies.

For objective 2, we develop two different role revision algorithms to optimize two differ-

ent objective functions, and a simple but effective workflow-based audit framework with a

machine learning foundation.

• In Chapter 4, we develop another role revision algorithm called Data-Driven Role

Evolution (DDRE) algorithm. This algorithm uses knowledge mined from access

logs as well as knowledge from experts to faciliate the RBAC design. An objective
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function considering both role homogeneity and expert belief is introduced. We also

perform an empirical analysis with real and simulated datasets to show that our al-

gorithm can generate appropriate RBAC configurations for various biases of the two

competing goals of the objective function.

• In Chapter 5, we devise a procedure called role prediction to measure the quality of

role specifications in RBAC, then develop a heuristic-based algorithm, called Role-

Up, to abstract existing roles along a pre-defined role hierarchy to achieve high qual-

ity roles. Our findings suggest that RBAC for EMR systems can be effectively guided

through information mined from audit logs.

• In Chapter 6, we introduce a workflow based audit system to detect suspicious ac-

cesses. It consists of two phases. First, we develop methods to extract attributes from

workflow sequences. Second, on the labeled accesses characterized by attributes,

we build a classification model with a statistical machine learning algorithm. From

experimental results, we find it achieves satisfactory results.

• In Chapter 7, we devise a novel cost comparison method called bispective analysis

that allows for an explicit comparison of classification models without assumption 1

and 2. Typically, we derive a comparison function whose outputs can reflect correct

choices between classifiers and generate its contour plot. Once provided with the

knowledge of the variables (i.e., the costs of false positive and false negative for the

prospective model, the costs of false positive and false negative for the retrospective

model, and the receiver operator characteristic (ROC) curves for both models), bis-

pective analysis allows administrators to determine the better option by studying a

contour plot. Moreover, bispective analysis provides insight about the distribution of

results under varying cost models, such that administrators can make decisions when

their confidence in the variables is uncertain (e.g., only a range of costs are known or

only partial costs are known).
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The research communicated through this dissertation will be useful to multiple commu-

nities. 1) Security researchers or security administrators will be interested in the proposed

insider threat mitigation system, and the quantification of the trade-off between the prospec-

tive and retrospective systems. 2) Machine learning researchers will be interested in how to

use bispective analysis to make a comparison between classification when traidtional cost

analysis (e.g., ROC) would not work.

1.3 Dissertation Outline

The reminder of this dissertation is organized as follows. Chapter 2 provides surveys

on relevant literatures, and points out their limitations. Chapter 3 introduces a dataset gen-

erated from a real-world information system, which will be used for evaluation purposes.

Chapter 4 and Chapter 5 introduce two data driven approaches to refine an existing RBAC

system. Next, Chapter 6 introduces a novel but simple audit system. After that, Chapter 7

describes a novel technique that can support meaningful decisions between the prospective

and retrospective methods. Finally, Chapter 8 concludes this dissertation, discusses the

limitations and future directions.
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Chapter 2

Related Work

This chapter begins with a survey on the techniques related to quantifying the tradeoff

between prospective and retrospective strategies. Then, we review techniques related to

each of them.

2.1 Work Related to Comparison of Prospective and Retrospective Strategies

In this section, we review existing cost-based security models. We then review method-

ologies to compare classification models and the limitations associated with applying them

to the prospective versus retrospective model analysis.

2.1.1 Cost-based Security Models

According to the National Institutes of Standards and Technologies (NIST) [18], orga-

nizations should rate their information systems in terms of risk across three class: i) low, ii)

medium, or iii) high. An organization should then adopt their security protections propor-

tional to such risk. However, the selected security control may not be appropriate in that

the rating for impact is highly subjective.

To reduce subjectivity in decision making, several risk-based strategies have been sug-

gested for information security management. In particular, based on the recognition that

business processes are often disrupted by static and rigid policies, many of these strategies

are focused on access control. Here we review the approaches most related to our own.

First, [19] proposed an adaptive access control model to balance the tradeoff between risk

and utility in dynamic environments. They create a system that encourages information

sharing among multiple organizations while keeping its users accountable for their actions
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and capping the expected damage an organization could suffer due to sensitive information

disclosure. In relation to our own work, they introduce a method to compute the expected

risk based on 1) the uncertainty and 2) the cost associated with an incorrect decision. Sec-

ond, [20] introduced a policy-based access control model to infer a decision for an incoming

access. This is achieved by training classifiers, using machine learning, on known decisions

and subsequently inferring the new decision when there is no exact matching pattern. By

doing so, each access decision is assigned a certain degree of risk. Third, [21] introduced

the Benefit and Risk Access Control (BARAC) system, which identifies a set of correlated

access requests as a closed system. Based on this system, this method uses a graph-based

model to make a decision for each access, such that the cost of the entire system is mini-

mized. All of these lines of research are significantly different from this dissertation in that

they focus on decisions between prospective access control models with constant misclas-

sification costs, whereas we investigate a decision between prospective and retrospective

models with varying costs.

2.1.2 Comparison of Classification Models

There are a number of performance measures that can be applied to assess the robust-

ness of a classification model. For instance, one could assess the accuracy; i.e., the pro-

portion of total instances that are correctly labeled by the model. However, accuracy is a

biased assessment because it assumes that false positives and negatives occur at the same

rate and are equally costly. As such, a more nuanced strategy for assessing classification

models is to measure the Receiver operating characteristic (ROC) under a range of accep-

tance levels for false positive and false negative thresholds. In doing so, the area under the

curve (AUC) indicates the agility of a classifier, where the “best” classifier is the one that

maximizes this value. The AUC has been invoked as a common approach for assessing

various classification models for information security, such as intrusion detection systems

(e.g., [22]), malware detection (e.g., [23]), and auditing techniques for EMRs (e.g., [24]).
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We recognize the relevance of machine learning (for which AUC is a popular evaluation

measure) for information security has been questioned [25]. Yet, we stress that our goal

is to assess how misclassification costs, rather than the machine learning algorithm itself,

influence information security decisions. AUC also has serious deficencies in itself, 1) it

is misleading when ROC curves cross and 2) it makes an unrealistic assumption on costs

[26].

[27] proposed using a method to analyze the ROC convex hull to compose a dominant

classification strategy over a set of classifiers and class frequencies (in the form of prior

probabilities). This method begins by constructing a convex hull from all ROC curves

(classifiers) to be compared and then determines which point in the convex hull corresponds

to the least overall cost, given the costs of each classifier and prior probabilities. A key

advantage of this method is that it needs only the ratio of costs and ratio of class frequencies

to compose the optimal classifier, such that it is robust to a changing environment.

Subsequently, [28] introduced an alternative to traditional ROC analysis, which is called

a cost curve. In this model, the expected cost of a classifier is represented as a function of

costs and class frequencies, such that the expected cost can be computed explicitly. A

cost curve provides several benefits over the traditional ROC convex hull, including: 1)

given specific cost estimates and prior probabilities, it is easy to “read off” the expected

cost, 2) it is immediately clear which, if any, classifier is the dominant strategy, and 3) it

is straightforward to determine how much one classifier outperforms another. Building on

this work, [26] introduced an approach to compares classifiers by computing their expected

overall cost, in terms of a unified assumption on the probability density function of the costs

of false positives (negatives).

However, in all of the aforementioned techniques, it is assumed that the costs (or cost

distributions) of false positive (false negative) for both classifiers are equivalent. Yet, this

is clearly not the case in our situation, which implies that such strategies could incorrectly

select a model. In fact, we verify this to be the case in our empirical analysis of Chapter 7.
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2.2 Existing Methodologies to Design Role-based Access Control (RBAC) System

This section reviews techniques implementing prospective startegies (i.e., Access Con-

trol). It begins with an introduction of the RBAC model, which forms the basis of our

data-driven access control evolution algorithms. Then, we review a set of methodologies

to design an RBAC system.

2.2.1 Role-based Access Control

RBAC is a framework that has been adopted widely for managing the rights of users in

information system. It was designed to simplify the allocation of access rights by mapping

users to a set of roles, each of which is associated with a set of permissions. A basic

RBAC configuration contains five elements: users, permissions, roles, user-role assignment

(URA) and role-permission assignment (RPA) [8]. URA is a Boolean matrix indicating the

mapping between users and roles, and RPA is a Boolean matrix indicating the mapping

between roles and permissions. This basic RBAC is also called RBAC0 model, but there are

extensions, such as RBAC1 and RBAC2, which introduce role hierarchies and constraints,

respectively [8].

The process of defining roles, which is often referred to as role engineering [29], is a no-

toriously challenging problem and a core part of RBAC design. In general, role engineering

approaches have fallen into two camps: i) top-down and ii) bottom-up. In the top-down set-

ting, organizational experts (or system administrators) model the workflows associated with

an enterprise, which are subsequently decomposed into tasks and roles [30, 31]. Bottom-up

approaches (e.g., [32, 33]), on the other hand, discover roles by leveraging information that

already exists in the system. Many of these approaches (e.g., [32, 34, 33, 35]) propose roles

based on patterns in existing user-permission assignment. Formally, this is represented by a

Boolean matrix indicating the mapping between users and permissions, called UPA in this

dissertaion.
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2.2.2 Role Engineering

There have been various approaches proposed for top-down approaches (e.g., [31, 30,

36]), but given the time-consuming and costly nature of this approach, it has limited adop-

tion in real settings [30].

Thus, over the past decade, there has been a growing interest in bottom-up approaches,

which enables role engineering to be automated with significantly lower cost. Here, we

highlight several approaches that are conceptually similar to our work in that they itera-

tively build larger permission sets for roles. In [33], the goal is to minimize the number

of roles and permissions per role. It was shown that this problem is computationally chal-

lenging and so a greedy heuristic-driven algorithm was proposed. The algorithm consists

of two phases: in the first phase, FastMiner [34] produces a set of candidate roles by inter-

secting each pair of permission sets of users, and then, in the second phase, candidates with

the greatest ability to cover the UPA (i.e., 1’s in the matrix) are selected until coverage is

complete. Alternatively, [32] proposes the ORCA algorithm, which generates roles by per-

forming a hierarchical clustering on permission sets. In this process, the quality of a cluster

(role) corresponds to the number of users associated with it. [35] use graphs to represent

the relations among users, roles, and permissions, and then employs graph optimization to

solve the role mining problem. The process begins with a set of possible roles, which is

composed of the permission sets of all users. Next, pairs of roles are iteratively selected

and are split or merged, to gain the largest improvement on the optimization measure of

the resulting graph. While these strategies propose roles, they do not attempt to maximize

homogeneity and minimize the distance to an existing set of roles. [37] proposes a role en-

gineering method that leverages organizational information to generate a set of roles with

clear business meaning. The method first partitions the data set (user-permission assign-

ment) according to certain appropriate business information (e.g. an organization unit).

Next, they adopt a divide-and-conquer approach that performs role mining on each subset.

This approach may produce RBAC that is close to that built by administrators or experts
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due to the use of business information that is often used in top-down role engineering.

However, like other role mining algorithms, it does not leverage the information recorded

in access logs, such that semantically meaningful roles could not be searched.

There have been several approaches proposed which attempt to revise roles and leverage

permission utilization patterns (which we empirically compared to in the previous section).

[38] defines the minimal perturbation role mining problem, whose objective is to find a set

of roles that has both small distance to the original roles and a small number of roles in total.

f (R) = w · k+(1−w) · k ·D describes the corresponding objective function, where k is the

number of roles, D is the distance between old and new role sets, and w is a parameter used

to control the balance between k and D. In this method, a role is constantly selected from

the candidate role sets produced by FastMiner [34] according to its value on a heuristic

function f (r) = w ·a+(1−w) ·a ·d, where a is the remaining 1’s in UPA covered by this

role and d is the distance between this role and the original role set. The selection process

terminates when UPA is covered by the selected roles. However, this work is limited in that

it neither takes the users’ behavior into consideration, nor does it measure the similarity

of RBAC configurations. Rather, it only uses the similarity between two role sets. By

contrast, [39] takes user behavior into consideration and proposes a simulated annealing

approach to mine URA and RPA with the usage of privileges. This approach begins with a

random initialization of URA and RPA, which is derived from the probability distribution

of users over roles, and the probability distribution of roles over permissions calculated by

the LDA model learned from the access log. It then iteratively decides if a new pair of URA

and RPA matrices would be accepted to replace the old ones by a λ -distance (a measure

of how well they explain the usage of permissions). For simplicity, the resulting URA and

RPA does not necessarily have to be consistent with the original UPA. Thus, this work is

significantly different than ours in that the resulting RBAC configuration is not necessarily

subject to UPA = URA⊗RPA 1.

1x = a ⊗ b denotes the boolean matrix product, in which an element is defined as xi j = ∨k(aik ∧bk j)
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2.3 Existing Audit Methods

There have been a number of papers on developing audit system. Unfortunately, most

of them detect anomalies on user basis. In other words, they aim to determine whether or

not a user is behaving suspiciously. However, in many situations (e.g., healthcare), a finer-

grained monitoring system which can evaluate each single access is desirable. There has

been limited work in this area, but there are several notable publications that suggest this is

feasible. Chen et al. [40] propose a model to monitor an access by measuring the deviation

of an access to the collaborative network profile it belongs to. However, due to the utiliza-

tion of social network, this model does not take advantage of other discriminative attributes

but users in the network. Zhang et al. [41] propose a graph based model to detect anoma-

lies. This model learns a graph from data to be the profile of the workflow for each medical

service. However, only job title sequence was used in this model. By contrast, WOrkflow

Based Audit (WOBA) allows any possible features to function in its framework, thus is

much more extensible. In [14, 42], an explanation-based auditing is proposed for EHR

system. This audit system proposes a mining algorithm to find reasons from the database

for each access. However, this model is specialized at explaining legitimate accesses rather

than detecting malicious accesses.
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Chapter 3

Electronic Medical Record

Since this dissertation explores using knowledge discovered from an access log to facil-

iate security system design, it is critical to have a real-world data set to perform empirical

investigations over. Thus, in this chapter, we introduce an access log, which is extracted

from the electronic medical record (EMR) system in place at Northwestern Memorial Hos-

pital (NMH).

NMH is an 854 bed primary teaching affiliate for the Feinberg School of Medicine at

Northwestern University. All clinicians (including physicians and nurses) retrieve clinical

content and enter inpatient notes and orders online using the Cerner Corporations Power-

Chart EMR system. The access logs generated by the system consist of user- and patient-

specific information as summarized in Table 3.1.

When approved by an authorizing entity, (e.g., the Medical Staff Office), each user of

the system receives a login ID tied to a User Position. The User Positions enable or prevent

access to specific EMR functions. As an example, a medical student orders require co-

signing by a physician. As another example, specific administrative roles do not provide

comprehensive result flow-sheet access.

As an additional safeguard, users select a Chart Access Reason upon first access to a

chart for a particular encounter. The available Chart Access Reasons displayed for selection

are tied to the individuals User Position. Selected User Positions with minimal use case

scenarios have only one potential Chart Access Reason and are therefore not prompted. An

encounter in this context is defined as a hospital visit and is more narrowly specified for the

research cohort below.

The cohort of accesses for this dissertation covers a 3 month period of time for which

patients were either in an inpatient status or an observation encounter status. Observation
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Table 3.1: A summary of the data captured in the Northwestern EMR access logs.

Attribute Description
1 User ID Login credentials (de-identified)
2 Encounter ID Treatment ID for the user
3 Patient ID Medical record number (de-identified for

cohort)
4 User Position Assigned role within the medical record

system
5 Date and Time Stamp Dates were randomly shifted in a 365 day

period for de-identification purposes
6 Chart Access Reason Option selected when a chart is first ac-

cessed by each user during a hospitaliza-
tion. Options available are tied to the User
Position

7 Orders Entered Indicates the number of order entered by
the user during the current chart access

8 Location General location of the patient within the
hospital

9 Service The hospital service caring for the patient
as specified by the doctors caring for the
patient. If the field is blank (Obstetrics
service, e.g.), the specialty of the attend-
ing physician is used
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Figure 3.1: A fictional example of records in the Northwestern EMR access logs.

status refers to an admission for which discharge is expected within 24 hours. An example

of such a log is presented in Figure 3.1.

Each entry in the access logs corresponds to one access to the EHR, including the

information on the user, patient, reason for the access, type of service, location where the

access happens, and whether orders or notes activity occurred. For the purpose of privacy,

the names of patient and users are replaced by pseudonyms. Moreover, for the purposes of

our study, the User Position is considered to be a surrogate for the role. There are 8,095

users and 140 different roles involved by this log. Summary statistics for users and roles

with respect to Reasons, Locations, Services, and accesses are provided in Table 3.2.

Table 3.2: Statistics for the EMR access log

Users Roles Reasons Locations Services Accesses
Total 8095 140 143 58 43 1,138,555

Average per user - - 2 10 9 140
Average per role - - 4 23 20 8,132
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Chapter 4

Evolving Role Definitions Through Permission Invocation Patterns

Role based access control (RBAC) is an important prospective security strategy to mit-

igate the insider threat. In RBAC, roles are traditionally defined as sets of permissions.

Roles specified by administrators may be inaccurate, however, such that data mining meth-

ods have been proposed to learn roles from actual permission utilization. These methods

minimize variation from an information theoretic perspective, but they neglect the expert

knowledge of administrators. In this chapter, we propose a strategy to enable a controlled

evolution of RBAC based on utilization. To accomplish this goal, we extend a subset enu-

meration framework to search candidate roles for an RBAC model that addresses an objec-

tive function which balances administrator beliefs and permission utilization. The rate of

role evolution is controlled by an administrator-specified parameter.

This chapter is organized as follows. Section 4.1 introduces the motivation and back-

ground of our work. Section 4.2 reviews the foundations upon which our method is built,

including role mining problem, access logs, distance measures, and outlier detection meth-

ods. Section 4.3 then describes our role evolution algorithm. Section 4.4 presents experi-

ments performed to evaluate our approach.

4.1 Introduction

As mentioned in Chapter 2, role engineering approaches have fallen into two camps:

top-down and bottom-up. There are benefits and drawbacks to each camp. Top-down

approaches, for instance, are based on expert reasoning, in-depth interviews, and tend to

reflect organizational expectations [43]. However, these approaches often result in high

costs to an enterprise [30] because they require a substantial amount of time to document
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the workflows which exist. They may also be subject to the problem of informant inac-

curacy [44] and, thus, access control models which are incomplete or contain errors [45].

By contrast, bottom-up approaches enable an RBAC system to be derived automatically,

such that their cost is significantly lower than their top-down counterparts. Yet, there is no

guarantee that users in the same role, as defined by their permissions, will exhibit similar

behavior.

Historically, role engineering strategies have treated these camps independently, but

we believe there is merit in combining them into a more comprehensive role engineering

framework. Consider, while it may be that expert-specified RBAC configurations are not

entirely representative of an enterprise, it is unlikely that such information is completely

uninformed. As such, the goal of this chapter is to propose a role engineering approach that

evolves roles in a manner that balances 1) the desire to retain an existing RBAC configura-

tion with 2) the need to assign users with similar behavior into common roles.

From a high-level, our evolution strategy consists of mainly two phases as shown in

Figure 4.1. In the first phase, we mine a set of candidate roles, which are selected to opti-

mize an objective function that balances distance from the original roles with behaviorial

similarity in the form of permission invocation in access logs. In the second phase, each

user is assigned to roles according to a criterion that mitigates redundancy in the access

control model. There are several primary contributions of this work, including:

• A new objective function for the role mining problem. We devise an objective

that balances the administrator’s belief with the evidence in existing access logs. The

function is parameterized, such that a user can bias the resulting RBAC configura-

tions toward belief or evidence as deemed desirable.

• A hybrid role engineering algorithm. We propose a new role engineering algo-

rithm that builds on a subset enumeration technique employed in previous role en-

gineering strategies. Our algorithm evolves existing RBAC configurations into new

configurations which are are more effective at addressing administrators’ beliefs and
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Figure 4.1: An architectural overview of our algorithm

permission utilization goals than current role engineering strategies.

• A multi-objective empirical evaluation. To evaluate the resulting RBAC configu-

rations, we compare our algorithm with state-of-the-art role mining techniques using

a real dataset derived from a large electronic medical record system, as well as a

controlled synthetic dataset. The results show that our role evolution algorithm can

produce a range of RBAC configurations in comparison to previous methods. More-

over, we show the resulting configurations follow the expected bias of the algorithm

and indicate patterns exist in the real dataset.

4.2 Preliminaries

In this section, we review several topics that inform the development of our role revision

method. This section begins with a formalization of a generalized version of the role mining

problem. Next, we provide a description of access logs as they are utilized in our method.

Then, we introduce a formalization of the objective function invoked in our variation of the

role mining problem. Finally, this section concludes with a description of one-class support

vector machines, an effective outlier detection algorithm, which we employ as a measure

of the quality of RBAC configurations.
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4.2.1 Generalized Role Mining Problem

We begin with a generalized perspective of the role mining problem, which will be

refined to model the problems studied in this work.

Definition 1 (Generalized Role Mining Problem) Let t = ⟨U, P, UPA⟩ denote an access

control configuration, where U = {u1, u2, . . . , um} is a set of users, P = {p1, p2, . . . , pn} is

a set of permissions, and UPA is an m×n Boolean matrix indicating the mapping between

U and P.

The goal of the Generalized Role Mining Problem is to find an RBAC configuration

c = ⟨U,P,R, URA, RPA⟩1, subject to UPA = URA⊗RPA, such that an objective function

f () is optimized. In the configuration, R = {r1,r2, . . . ,rk} is a set of roles, URA is an m×k

Boolean matrix indicating the mapping between U and R, and RPA is a k× n Boolean

matrix indicating the mapping between R and P.2

The matrices in Figures 4.2(b) and (c) depict an example of an RBAC configuration. It

can be seen there are six users, seven permissions, and two roles.

Figure 4.2: An example of a user-permission invocation matrix (UPIM) and an RBAC
configuration (URA and RPA).

Given a role rl , we can readily extract the corresponding users and associated permis-

sions. We use P(c)
l = {px | RPAlx = 1} to denote the set of permissions assigned to rl , and

1We only consider the RBAC0 (i.e., we do not consider role hierarchies or constraints).
2x = a⊗b denotes the Boolean matrix product, in which an element is defined as xi j = ∨k(aik ∧bk j).
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U(c)
l = {uy | URAyl = 1} to denote the set of users under rl in the RBAC configuration c.

When appropriate, we adopt the standard convention of representing a role as its corre-

sponding set of permissions. For example, γ = {p1, p2} represents a role possessing two

permissions. In general, all users whose permission set is the superset of γ automatically

obtain this role. There are, however, exceptions to this role that will be introduced in Sec-

tion 4.3.

Various objective functions have been proposed for the role mining problem. Certain

functions are based on the size of R [33], while others use variations of structural complex-

ity [35]. With regard to the latter, objective functions have been based on the size of R and

the total number of elements in URA and/or RPA. We define the objective function from the

perspective of i) user behavior similarity and ii) distance to the initial RBAC configuration.

4.2.2 Access Log

In this work, an access log is represented as an m×n user-permission invocation matrix

UPIM. We use ωi j to denote the number of times user ui invoked permission p j. Figure

4.2(a) depicts the UPIM that corresponds to the RBAC configuration in Figures 4.2(b) and

(c). To mitigate bias which may occur from working with the raw frequency counts, we

preprocess UPIM through a row-wise normalization (i.e., all numbers are divided by their

rowsum) to represent UPIM as a set of user-specific probability distributions.

To measure the homogeneity of a role, we need to extract the corresponding access

records from UPIM. This is accomplished through the application of a projection matrix.

Definition 2 (Projection Matrix) Given an RBAC configuration c and user-permission in-

vocation matrix UPIM, the projection matrix Mrl for role rl is an p× q matrix, where

p = |U(c)
l | and q = |P(c)

l |. Each row (column) of Mrl represents a user (permission) associ-

ated with rl . Let βi j be defined as an element of Mrl as follows. If the ith user in U(c)
l is u f

in U, and the jth permission in P(c)
l is pg in P, then βi j = ω f g.
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4.2.3 Objective Function

To balance existing beliefs in roles with actual user behavior, we propose a new objec-

tive function for the role mining problem, which is based on two goals. The first goal is to

enable each role to possess high homogeneity in the rate at which permissions are accessed.

The second goal is to ensure the new and pre-existing RBAC are “near” one another. We

use functions h() and j() to measure the first and second goal, respectively, and define the

objective function as:

f (cnew) = α ·h(cnew)+(1−α) · j(cold,cnew) (4.1)

where cnew is the RBAC configuration proposed by a role mining algorithm, cold is the

existing RBAC configuration, and α is a real value between 0 and 1 to bias the system

from h() to j(). The following subsections provide details regarding how the functions h()

and j() are computed.

4.2.3.1 RBAC homogeneity

In this section, we formally introduce the notion of homogeneity, which will be applied

to characterize the similarity of the users in a role.

Definition 3 (Homogeneity) Given an RBAC configuration c = ⟨U,P,R, URA,RPA⟩ and a

user-permission matrix UPIM, the role homogeneity of rl is:

ho(rl) = m−1
m

∑
i=1

(1− cosine(xi,cl)), (4.2)

where m is the number of row vectors in Mrl , xi is the ith row vector of Mrl , cl is the mean

vector of all row vectors in Mrl , and cosine(a,b) is the cosine similarity a•b
|a||b| .
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The RBAC homogeneity of c is then defined as:

h(c) = |R|−1 ∑
rl∈R

ho(rl) (4.3)

Role and RBAC homogeneity (Equations 4.2 and 4.3) have a natural geometric inter-

pretation. Consider, if a role consists of a set of highly similar users, then the vectors rep-

resenting the behaviors of these users will form a relatively compact cluster in Rk (where

k is the dimensionality of the vectors) and the degree of the angle between each vector and

the mean of the cluster, measured by 1−cosine(xi,cl), will tend to be small. Conversely, if

the users in a role exhibit highly diverse behavior, then the cluster will tend to have a long

diameter and the degree of the angle will be large.

4.2.3.2 Distance Between RBAC Configurations

In order to measure how far a new RBAC configuration has migrated from the initial

configuration, we introduce a set-based similarity measure. First, we define the distance

between two roles.

Definition 4 (Role Distance) Let γi and δ j be roles in RBAC configurations c1 and c2,

respectively. The role distance between the roles is defined as:

jac(γi,δ j) = 1−
|(P(c1)

i ×U(c1)
i )∩ (P(c2)

j ×U(c2)
j )|

|(P(c1)
i ×U(c1)

i )∪ (P(c2)
j ×U(c2)

j )|
(4.4)

where A×B is the Cartesian product of sets A and B.

In our setting, a role corresponds to the Cartesian product of its associated set of per-

missions and set of users. This enables the comparison of two roles to be performed in

the joint space of permissions and users. Thus, our definition corresponds to the Jaccard

distance, a widely used measure for the comparison of two sets [46].
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We leverage the distance between roles to define the distance between a role and a role

set.

Definition 5 (Role Set Distance) The role set distance from role γ to role set R is the min-

imum distance to any role in the set:

minjac(γ ,R) = min
δ∈R

jac(γ,δ ) (4.5)

Finally, we can define the distance from one RBAC configuration to another.

Definition 6 (RBAC Distance) Let ci and c j be RBAC configurations. The RBAC distance

from ci to c j is:

j(ci,c j) = |Ri|−1 ∑
γ∈Ri

minjac(γ,R j) (4.6)

where Ri and R j are the role sets of ci and c j, respectively.

4.2.3.3 Quality of a Role

We further use the metrics above to define a heuristic function that computes a score

for a role γ . This function, which we call the role score rs, is defined as:

rs(γ) = α ·ho(γ)+(1−α) ·minjac(γ ,R), (4.7)

where α is as defined in Equation 4.1 and R is the role set of cold in Equation 4.1. This

function will be leveraged to guide our role evolution algorithm (described in Section 4.3).

4.2.4 One-Class SVM

To evaluate the homogeneity of the resulting roles, we employ an outlier detection algo-

rithm. The selection of this strategy is based on the hypothesis that the more homogeneous

a role is, the smaller the number of outlying users it will contain. We use a one-class sup-

port vector machine (SVM) [47] to detect outlying users for each role. SVMs have been
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reported as comparable, and often superior, to other anomaly detection methods in various

settings [48], including intrusion detection [49].

One-class SVMs can be applied to learn a region that contains only the training set,

which is expected to be typical data for a class. Any data point in a test set that falls

out of the region will be predicted as an anomaly. Theoretically, the goal of SVM in this

scenario is to find a hyperplane w ∈ F that separates the training set from the origin with

the maximum margin. This can be formalized as an optimization problem as follows:

min
w∈F,ξ∈Rl,ρ∈R

1
2
∥w∥2 +

1
v · l ∑i

ξi−ρ

sub ject to (w ·Φ(xi))≥ ρ−ξi,ξi ≥ 0

, (4.8)

where ξi are non-zero slack variables to be penalized in the objective function. When

values for w and ρ can be found which solve the optimization function, the majority of the

training set satisfies sgn(w ·Φ(xi)) ≥ ρ , while the regularization term ∥w∥ remains small.

The parameter v determines the tradeoff between these two goals. With w and ρ , we have a

decision function f (x) = sgn(w ·Φ(x)−ρ) to determine if an new instance x is anomalous.

In this work, we specifically use one-class SVMs with an RBF kernel, as defined in

Equation 4.9.

K(xi,x j) = exp(−g · ∥xi−x j∥2) (4.9)

The parameters g in Equation 4.9 and v in Equation 4.8 are key factors that influence the

performance of one-class SVMs. We utilize a grid search technique to find values for g and

v that enable a robust SVM [50].

For evaluation, for each role rl , we split the row vectors of a projection matrix into a

training set and a test set. We perform gird search on the training set to obtain g and v,

which are then applied to train and test a one-class SVM. The proportion of outlying users

identified by the one-class SVM is applied to measure the homogeneity of the role.
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4.3 Role Evolution by Permission Utilization

This section begins by formally defining the Role Evolution By Permission Utilization

(REPU) problem.

Definition 7 (REPU Problem) Given an existing RBAC configuration c = ⟨U, P, R, URA,

RPA⟩, a user-permission assignment UPA (UPA = URA⊗RPA) and a user-permission in-

vocation matrix UPIM, REPU is to find a new RBAC configuration c∗ = ⟨U, P, R∗, URA∗,

RPA∗⟩ subject to UPA = URA∗ ⊗ RPA∗, such that the objective function f (c∗) = α ·h(c∗)

+ (1−α) · j(c∗,c) is minimized.

The role mining problem has been shown to be NP-complete [33]. The REPU problem

is a variation on role mining and can be reduced to this problem, making it NP-complete as

well. Thus, we propose a heuristic-based search strategy based on a two-phase process as

defined below.

4.3.1 Algorithm Description

To address the REPU problem, we designed the Data-Driven Role Evolution (DDRE)

algorithm. Here we provide a walkthrough of the process and refer the reader to Algorithm

1 for specific details. The two phases of the algorithm are: i) candidate role generation and

ii) role assignment.

4.3.1.1 Candidate Role Generation

The first phase begins with a set of unit roles UR such that there is one permission per

role and no roles have the same permission (i.e., a one-to-one mapping of permissions and

unit roles). Next, UR is copied to a candidate role set CR. The algorithm then iterates until

a termination condition is satisfied. Each iteration begins by instantiating a set of new roles

into an empty pool DP, which is based on a pairwise union for all roles in CR. For example,

the union of {px} and {py} yields {px, py}.
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The roles in DP are sorted by their quality scores (defined in Section 4.2.3.3), such

that DP serves as a priority queue, where the best role is at the top. The algorithm then

proceeds through the queue, by moving a role from the top of DP to CR and flipping the

1’s in the user-permissions assignment UPAtemp that are covered by the role to 0’s. This

process continues until every element in UPAtemp is set to 0.

4.3.1.2 Role Assignment

Once CR is stable or the maximum number of iterations is reached, the algorithm enters

the second phase of role assignment, the details of which are in Algorithm 3. The goal of

this phase is to ensure that each user is assigned to non-redundant roles. By default, any

user whose permission set is a superset of one role will automatically obtain this role. This

would result in redundancy and an increasing unnecessary complexity in the system. For

example, consider a set of users assigned to roles γ = {p1, p2, p3} and µ = {p1, p2}. The

latter role µ is redundant because the affiliated users can accomplish their task using only

the γ role. Thus µ could be removed for the sake of succinctness.

The problem of winnowing the system down to a minimal set of roles for each user is

similar to the set cover problem: given a user who possesses a set of permissions PMSi =

{pi1 , pi2, . . . , pik} and a set of roles ROLESi = {γ1,γ2, . . . ,γl}whose elements are all subsets

of PMSi, identify the smallest number of roles in ROLESi whose union equals PMSi. It has

already been shown that this problem is NP-complete [51]. Given the complexity of the

problem, we adopt an approximation algorithm [52] to resolve the problem, as shown in

Algorithm 3. At each iteration, we select the role in ROLESi with the largest number of

permissions in common with PMSi. The role is added to Ri and the permissions which were

in common with PMSi are removed from further consideration. This procedure repeats until

no elements exist in PMSi.

Finally, roles in Ri are assigned to user i. After assigning roles for each user, we obtain

a final role set R∗ and a user-role assignment URA∗. Specifically, we generate a role-
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Algorithm 1 Data-Driven Role Evolution

Input: c = ⟨U, P, R, URA, RPA⟩, UPIM, α , maxTimes
Output: c∗ = ⟨U, P, R∗, URA∗, RPA∗⟩

t← 0,DP←∅,CR←∅,CRold ←∅,UR←∅,UPA =URA⊗RPA,UPAtemp =UPA
for each pi ∈ P do

UR←UR∪{{pi}}
end for
CR←UR
while |CRold−CR|> 0 && t ++≤ maxTimes do

DP←∅
for each µi ∈CR do

for each µ j ∈CR do
DP← DP∪{µi∪µ j}

end for
end for
CRold ←CR,CR←∅
Sort(DP, UPIM, c, α){Sort roles in DP according to their quality score. See Algo-
rithm 2 for details.}
for each γi ∈ DP do

if every element in UPMtemp is 0 then
break

end if
if γi cannot cover any 1’s in UPAtemp then

continue
end if
CR←CR∪ γi
change all 1’s in UPAtemp covered by γi to 0’s

end for
end while
{R∗,URA∗}= RoleAssignment(U,P,UPA,CR)
Initialize a p×n Boolean matrix RPA∗ with all elements equal to zero, where p = |R∗|
and n = |P|.
for each µ ′i ∈ R∗ do

for each p j ∈ P do
if p j ∈ µ ′i then

RPA∗i j = 1
end if

end for
end for
return c∗ = ⟨U,P,R∗,URA∗,RPA∗⟩
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Algorithm 2 Sort()

Input: DP, UPIM, α , c = ⟨U,P,R,URA,RPA⟩
Initialize an array of real value, score[], which has the same size as DP
for each γi ∈ DP do

score[i] = rs(γi)
end for
Sort DP in ascending order according to score[]
return

Algorithm 3 RoleAssignment()
Input: U , P, UPA, CR
Output: URA, R

1: R←∅, m = |U |
2: for each ui ∈U do
3: PMSi←{p j|∀p j ∈ P,UPAi j = 1},ROLESi←∅
4: while PMSi ̸=∅ do
5: Select role µk from CR, such that µk ⊆ PMSi and |PMSi∩µk| is maximized.
6: PMSi← PMSi−µk,ROLESi← ROLESi∪{µk}
7: end while
8: R← R∪ROLESi
9: end for

10: Re-index the roles in R using integers 1 to h = |R|, such that R = {µ ′1,µ ′2, . . . ,µ ′h}
11: Construct m×h Boolean matrix URA, such that if µ ′j ∈ ROLESi, URAi j = 1, otherwise

URAi j = 0
12: return R, URA

permission assignment RPA∗ from the permission sets of the roles. Thus, a new RBAC

configuration c∗ = ⟨U, P, R∗, URA∗, RPA∗⟩ is returned.

4.3.2 An Example

In this section, we use the RBAC configuration and UPIM in Figure 4.2 with α = 1 to

illustrate how the DDRE algorithm works in detail.3

UPA and RPA indicate there are two roles and six users. The roles are represented by

permission sets {p1, p2, p3, p4, p5} and {p3, p4, p5, p6, p7}. For this example, we create

a set of ideal roles as the optimal solution, from which we design a series of generative

3α = 1 implies the algorithm is completely biased to generate a set of roles with high homogeneity in user
behavior (i.e., it ignores the structure of the original roles).
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models to construct UPIM. This set contains three roles, which correspond to {p1, p2},

{p3, p4, p5} and {p6, p7}. The generative model for each of the roles follows a fixed dis-

tribution, which for this example is set to {0.2,0.8}, {0.2,0.5,0.3}, and {0.7,0.3}, respec-

tively. This means, for instance, that for an arbitrary user uk associated with the first role,

UPIMk1:UPIMk2 is 1:4.

First, the algorithm initializes the system with a set of unit-roles: {{p1}, {p2}, {p3},

{p4}, {p5}, {p6}, {p7}}. Next, the algorithm performs a pairwise combination of the

unit-roles to derive a pool DP of the form {{p1, p2}, {p1, p3}, . . . , {p6, p7}}. From

this pool, four roles, {p1, p2}, {p3, p4}, {p6, p7}, and {p4, p5}, are selected for the next

round of pairwise combination because they comprise the top four positions of the pool

and are able to recover the UPA. When this set of roles is combined, it updates the

pool to become {{p1, p2}, {p3, p4}, {p4, p5}, {p6, p7}, {p1, p2, p3, p4}, {p1, p2, p4, p5},

{p3, p4, p5}, {p4, p5, p6, p7}}.

At this point, we select another four roles, {p1, p2}, {p3, p4}, {p6, p7} and {p3, p4, p5},

from the pool because they comprise the top four positions in the pool and are able to

recover the UPA. Again, these roles are combined to update the pool to become {{p1, p2},

{p3, p4}, {p3, p4, p5}, {p6, p7}, {p1, p2, p3, p4}, {p1, p2, p3, p4, p5}, {p3, p4, p6, p7},

{p3, p4, p5, p6, p7}}. At this point, roles in the top four positions of the pool, {p1, p2},

{p3, p4}, {p6, p7} and {p3, p4, p5}, are selected to constitute the candidate role set. Since

the candidate role set is the same as the previous round, this phase of the DDRE algorithm

terminates and returns this candidate role set.

Next, the roles {p3, p4} are are redundant in the presence of {p3, p4, p5}, so they are

discarded in the second phase.

Finally, the remaining three roles {p1, p2}, {p3, p4, p5}, and {p6, p7} constitute the role

set in RBAC configuration as a solution, which are the same as the three ideal roles alluded

to earlier.
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4.4 Experiment

We investigated the performance of the DDRE algorithm on both synthetic and real

world datasets. In the process, we varied α to characterize how the resulting RBAC con-

figuration changes. In addition, we compared DDRE with several related role mining al-

gorithms, including the minimal perturbation role mining algorithm [38] and role mining

with latent Dirichlet allocation (LDA) [39], which has been introduced in Chapter 2.

4.4.1 Description of Datasets

4.4.1.1 Electronic Medical Record Roles & Access Logs

Although the EMR described in Chapter 3 is not based on RBAC, a reason is an option

selected when a chart is accessed by the user during a patient’s hospitalization and the

options available are tied to the job title of the user. As a result, we believe it is reasonable

to utilize the reasons as privileges and job titles as roles in the system. Table 4.1 shows how

we acquire an RBAC configuration c = ⟨U,P,R,URA,RPA⟩ and a user-permission invocation

matrix UPIM from the access log.

4.4.1.2 Synthetic Roles & Access Logs

To allow for replication of our study and comparison to the EMR dataset, we created

a synthetic dataset which consists of an RBAC configuration c′ = ⟨U ′, P′, R′, URA′, RPA′⟩

and a corresponding UPIM. As in the example in Section 4.3.2, there are several ideal roles,

each of which has a corresponding probability distribution over its affiliated permissions.

To enable a clean analysis, there is no overlap in the permission sets of these roles.

We merge the permission sets of several ideal roles to realize an actual role in the RBAC

system. For each user under one actual role, we utilize the ideal roles hiding in the actual

role to generate its corresponding vector in UPIM, where the numbers corresponding to one

ideal role need to follow the probability distribution of this ideal role. For instance, we can
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Table 4.1: A summary of how the RBAC configuration and UPIM are derived from the
EMR access logs.

Feature Derivation Process
U The set of users in the access logs.
R The set of job titles in the access logs.
P The union of reason sets available to each

job title in R.
URA |U | × |R| Boolean matrix. If the ith user

and jth job title (role) co-occur in one en-
try of the access log, URAi j = 1; other-
wise URAi j = 0.

RPA |R| × |P| Boolean matrix. If the jth rea-
son (permission) belongs to the reason set
available to ith job title (role), RPAi j = 1;
otherwise RPAi j = 0.

UPIM |U |× |P| real value matrix. If the ith user
and jth reason (permission) co-occur in
the same entry of the access log t times,
then UPIMi j = t.

merge two ideal roles {p1, p2, p3} and {p4, p5, p6} whose distributions are {0.2,0.3,0.5}

and {0.1,0.7,0.2}, respectively, to create an actual role {p1, p2, p3, p4, p5, p6}. The rates

of permissions invoked by each user ui assigned to this role need to be consistent with

the distributions of both ideal roles, which means UPIMi1 : UPIMi2:UPIMi3 = 2:3:5 and

UPIMi4 : UPIMi5:UPIMi6 = 1:7:2. The UPIM matrix is constructed by performing this

procedure for each user. A more detailed example is reported in the Appendix.

For this study, we created 10 ideal roles, and use 10 actual roles, which are derived by

merging different sets of the ideal roles as R′. We synthesize 20 users per role (i.e., 200

users in total) as U ′. For each actual role, the ideal roles used for merging are randomly

selected from the 10 ideal roles. Since the actual roles are represented by permission sets,

RPA′ is derived accordingly. In addition, we derive P′ by uniting the permission sets of all

actual roles. Thus, a synthetic RBAC c′ is successfully constructed.
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4.4.2 Evaluation Measures

We use two measures to assess the quality of the resulting RBAC system.

RBAC Evolution Distance: This measure characterizes the distance between the old

and new RBAC configurations. It directly corresponds to Equation 4.6.

Outlier Rate: This measure characterizes the homogeneity of users’ behavior in the

resulting roles. For this measure, we use the rate at which users are predicted to be outliers

in the system. The outlier rate is computed as follows. For each role rl , we perform outlier

detection on the corresponding projection matrix Mrl using one-class SVM.4 To do so, the

row vectors in Mrl are split into three equally-sized partitions {part1, part2, part3}. We

pick one partition as the test set, and the remaining two partitions as training and validation

sets for a one-class SVM. After we obtain a one-class SVM model, we perform the outlier

detection on the test set. All vectors classified as negatives are designated as outliers. This

process is performed in three-fold cross-validation (i.e., three times with a different test set

and training set), so that each row vector in Mrl is evaluated. The outlier rate of a role rl is

computed as:

orl =
∑3

i=1(# o f outliers in parti)
# o f row vectors in Mrl

(4.10)

Finally, the outliers from each role are consolidated to calculate the outlier rate for the

entire RBAC system:

oor =
∑i ori ·ni

∑i ni
(4.11)

where ni is the number of users who are members of role ri.

Detecting the outlier rate is a more intuitive and straightforward way to measure the

homogeneity of the entire RBAC system5 because the two concepts are strongly related.

4All SVM calculations were performed in libsvm [53].
5The RBAC homogeneity in definition 7 could be replaced with the outlier rate. However, RBAC ho-

mogeneity has significantly lower time complexity (O(mn), where m is the number of roles which ever exist
in DP of algorithm 1, n is the average number of users contained by each role) and can be computed in a
feasible amount of time on a commodity server. By contrast, the outlier rate requires computation on the
order of (O(mn2)).
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Figure 4.3 shows the relationship for both the EMR and synthetic datasets, where each

point is derived from the RBAC configuration from the DDRE algorithm over a range of

α values. The correlation coefficient (r2) for a linear regression was found to be 0.912 and

0.837 for the EMR and synthetic datasets, respectively. Thus, we conclude that the outlier

rate is positively correlated with RBAC homogeneity and use it to measure the homogeneity

of the system in the following evaluation.

Figure 4.3: Relationship between RBAC homogeneity and outlier rate.

4.4.3 Results

4.4.3.1 Assessing the Tradeoff

All of the following experiments were run an Intel Core i5 2.40GHz CPU with 4G

memory and a Windows XP operating system. We ran the DDRE algorithm with a range

of α values to assess its efficiency. Table 4.2 shows the time consumed by the algorithm

on the EMR dataset. The longest time was 21.7 minutes, which shows the algorithm can
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terminate in a practical amount of time. Moreover, the runtime is directly correlated with

α .

Next, we investigated how the RBAC configuration yielded by DDRE changes with α .

Figure 4.4 summarizes this result, where the number near each point in the curves of DDRE

corresponds to the value of α used to generate the corresponding RBAC configuration. In

this figure, it can be seen that when α biases the system towards behavior, the overall outlier

rate is low, whereas the distance between the old RBAC configuration and the resulting

RBAC configuration is large. On the contrary, when α is biased towards the distance to

old RBAC configuration, the overall outlier rate is high, while the distance between the

two RBAC configurations is significantly smaller. In particular, we find that the outlier rate

corresponding to α = 1 is 41.1% and 87.7% lower than that corresponding to α = 0 on

the EMR and synthetic datasets, respectively. The Jaccard distance between the two RBAC

configurations when α = 0 is 90.9% and 100% lower than that corresponding to α = 1

on the EMR and synthetic datasets, respectively. This observation indicates that we can

obtain an almost identical RBAC configuration to the initial one when α = 0. These results

suggest that the DDRE algorithm is effective.

Table 4.2: Runtime of the DDRE algorithm.

α 1 0.97 0.93 0.9 0.8 0.7 0
Runtime(min) 21.7 15.5 12.7 12.5 10.4 7.3 6.4

We also note that the EMR dataset yields a much smaller range of outlier rates and

Jaccard distances than the synthetic dataset. We hypothesized that this is because each

actual role in the synthetic dataset is composed of more ideal roles than the actual roles in

the EMR dataset. For instance, imagine there is an actual role composed of m ideal roles.

When we compute the distance from one ideal role to the actual role, a larger m means the

ideal role has permission set with a smaller size. This will result in a smaller numerator in

Equation 4.4 and, thus, will yield a larger value for j(). Moreover, the ideal role exhibits a

strong pattern as a single role, but the more ideal roles that aggregate into an actual role, the
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faster their patterns are diluted. This leads to a significant increase in outlier detection. By

studying the original roles (actual roles) and the resulting roles (ideal roles) yielded by the

DDRE algorithm with α = 1, we find that each original role in the EMR dataset possesses

1.5 roles on average in the corresponding resulting role set. By contrast, each original role

in the synthetic dataset possesses 5.4 roles on average in the corresponding resulting role

set. We believe this finding validates our hypothesis.

Figure 4.4 also depicts the results of the minimal perturbation role mining (RM-MP)

and role mining with LDA (RM-LDA) algorithms.6 The number near each point of the

RM-MP curve corresponds to the value of w that controls the balance between the number

of roles generated and the Roles Roles Distance, a set-based distance between new role set

and old role set (D in the objective function in [38]). It can be seen that the curves for

RM-MP have the same tendency as that generated through DDRE. That is an intuitive and

expected finding. Consider, when w is biased towards the number of generated roles, the

algorithm will prefer the roles with larger sizes to those that are closer to original roles.

This can lead to low homogeneity and large distances to the original roles. In addition, we

notice that RM-MP yields curves that are close to those from DDRE, however, DDRE has a

broader range of solutions, which can be seen by observed at the points when α approaches

the boundary cases of 0 and 1. This indicates DDRE can yield better results when α be

biased toward either sole objective. The result of RM-LDA on the EMR dataset shows it

yields an overall outlier rate that is comparable to the results of DDRE when biased towards

permission utilization, however, the RBAC it generated is significantly different than the

original RBAC. The result of RM-LDA on the synthetic dataset is in the neighboring region

of that of DDRE, but it is easy to find a solution from the curve of DDRE that has both a

lower RBAC distance and a lower outlier rate than RM-LDA.
6As is stating in [39], the number of topics (roles) specified for the LDA is

√
|U |.
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Figure 4.4: Summary of the tradeoff between the distance of old and new RBAC configu-
rations (i.e., RBAC distance) and the rate of outlying behavior for the EMR and synthetic
datasets.

4.4.3.2 Influence of SVM Training on Outliers

Next, we investigated how the results of one-class SVM are influenced with respect to

the v parameter.7 This experiment is performed to determine if there exist patterns in the

EMR dataset or if our results are based on random effects. As mentioned earlier, v controls

the tradeoff between the fraction of training instances falling into the learned region and

the value of the regularization term. As v increases, less instances in the training set will

fall into the learned region. So, if the entire dataset follows a pattern, the test set will be

distributed in approximately the same region as the training set even though v is decreasing.

Otherwise, due to the high diversity of the support vectors, the test set will likely be located

in a different region.

To perform this portion of our analysis, we created two uncontrolled versions of UPIM

7The paratmeter g is determined by the grid search method and is not investigated.
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Table 4.3: Role prediction accuracy as a function of v.

v=0.16 v=0.21 v=0.26 v=0.31 v=0.36
EMRUN 79.48% 75.48% 71.08% 66.25% 61.93%

EMR 82.48% 77.35% 75.10% 71.51% 67.02%
SYNUN 78.10% 72.00% 66.59% 60.75% 54.93%

SYN 77.18% 73.82% 68.73% 64.18% 58.91%

for the two data sets used earlier by assigning a random value to UPIMi j that was originally

UPAi j = 1. The uncontrolled version of UPIM is used for simulating the access log without

any pattern. We then employed one-class SVM to compute the accuracy (calculated by

1−oor) for the RBAC configurations with the real and uncontrolled UPIM matrices for the

EMR dataset (called EMR and EMRUN) and synthetic dataset (called SYN and SYNUN).

It is expected that the accuracy on the uncontrolled dataset will decrease more quickly than

the controlled dataset.

Table 4.3 shows the accuracy of one-class SVM with different v on the resulting RBAC

configurations. Here it can be seen that the accuracy of SYNUN decreases by 29.67%,

while the accuracy on SYN decreases by 23.67%. By performing a proportion test, the

latter accuracy decrease rate is slower than the former one with 90% confidence. This

observation confirms our suspicion. We further note that the accuracy on EMRUN decreases

by 22.08%, while the accuracy on EMR decreases by 18.74%, and the difference between

them is also proven statistically significant with 90% confidence by the proportion test,

which suggests patterns exist in the real EMR dataset.

4.4.3.3 Statistics of Generated Roles

Finally, Figures 4.5 and 4.6 provide summary statistics of the roles generated when

DDRE is applied to the EMR dataset. In Figure 4.5, each circle (x,y) represents one role

γ . x is calculated by minjac(γ ,R) (see Equation 4.5), where R is the role set of the original

RBAC, while y is the outlier rate (see Equation 4.10) detected for this role. From Figure

4.5, it can be seen there is a major difference between the distributions of roles yielded by
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the algorithm with α set to 1 and 0.

Moreover, we show the marginal distributions of minjac(γ ,R) and the outlier rate un-

der different α in Figure 4.6. The histogram in Figure 4.6(a) demonstrates that the roles

generated by α = 1 tend to have less outlying users than the roles generated by α = 0. By

contrast, the histogram in Figure 4.6(b) demonstrates that the roles generated by α = 0 tend

to be closer to the role set in the original RBAC than the roles generated by α = 1. These

observations further validate the effectiveness of the DDRE algorithm.

(a) Plot of α = 0 (b) Plot of α = 1

Figure 4.5: Plots of roles denoted by corresponding distance to old RBAC and outlier rate

(a) Distribution of Outlier Rate (b) Distribution of RBAC Distance

Figure 4.6: Frequency distributions of (a) outlier and (b) distance rates under α = 0 and
α = 1
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Chapter 5

Role Prediction and Role Revision using EMR

This chapter introduces an approach, called Role-Up, to revise roles by abstracting

existing roles along a pre-defined role tree. This approach differs from the DDRE algorithm

in two aspects. First, it runs without the constraint that UPA = URA⊗ RPA. Second,

we introduce the concept of “role prediction”, which classifies users into roles and obtain

accuracy, instead of “homogeneity” to measure the quality of roles. The purpose we state

the differences is not to claim one approach is superior to the other, but that each one has

different scope of application.

This chapter is structured as follows. Section 5.1 introduces the motivation. In the

Section 5.2 we introduce the background, as well as the Role-Up algorithm designed for

this study. We then report on an extensive experimental analysis of role prediction and the

recommendations made by the algorithm in Section 5.3.

5.1 Introduction

There are two dominant strategies for limiting access to Electronic Medical Records

(EMRs) within enterprises such as hospitals. One strategy is RBAC. This is commonly

accomplished by looking at the job positions in the enterprise and the tasks the employees

in these positions need to perform, then assigning privileges to positions, or variants of

them, to enable the employees to accomplish their assigned tasks. A second strategy, which

we group under the general heading of Experience Based Access Management (EBAM)

[54], emphasizes accountability and the use of audit data to punish abuse (i.e., EBAM is a

retrospective strategy). An often referenced strategy for EBAM is to manually review the

audit logs of VIPs to determine when abuses transpire [55, 56, 57]. Another strategy, often
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called break-the-glass security, discourages abuse by warning users that certain types of

access are likely to be manually reviewed [58].

However, at the current point in time, RBAC and EBAM are used without much com-

mon foundation. Yet there are significant opportunities for synergy between the techniques.

Consider, audit data may provide valuable information about roles, such as whether a new

role would be beneficial or whether two existing roles should be merged. More appropri-

ate role definitions, or roles that are context-specific, driven by auditing analytics, may be

applied to restrict access so that fewer checks are required in the auditing process.

The aim of this chapter is to investigate a key step that could lead to such a synergy

between RBAC and EBAM. We call the concept role prediction and it refers to the ability

to use audit logs to predict whether a given user is associated with a given role. Role

prediction can be a valuable tool for the role engineer, that is, the security administrator

responsible for creating roles and managing assignments to them. For instance, a pair

of roles that are often confused in the role prediction process might be good candidates

for merging. Moreover, role prediction can provide insights into role hierarchies, such as

indicating whether the right relationships have been allocated.

This chapter has three specific goals:

• Hospital Role Classification First, we aim to determine the extent to which expert-

defined job titles in a large academic medical center help to distinguish between roles.

To perform this part of the investigation, we train a machine learning-based classifier

over the various features invoked by users acting in a role while accessing a patient

record, and classify a test set of users. The accuracy acquired is used to measure the

quality of the role specifications.

• Intelligent Role Abstraction Second, we hypothesize that certain abstractions of

roles can permit more accurate differentiation of roles in the system. To answer this

hypothesis we developed and applied role hierarchies to determine appropriate levels

of role auditing. Moreover, we develop a heuristic-based algorithm, called Role-Up,
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to execute a “rolling-up” procedure for the hierarchy.

• Empirical Evaluation Third, we apply our methods to three months of access logs

from a large academic medical center, Northwestern Memorial Hospital. From these

results we judge whether the role specification performs well and how role specifica-

tion might be optimally informed.

Our findings suggest that RBAC for EMR systems can be effectively guided through

information mined from audit logs. We demonstrate generalization of roles can improve

the predictability of role behavior with minimal sacrifices to the specificity of the system.

5.2 Methods

5.2.1 Roles and Hierarchies

One of the specific aims of this chapter is to determine how generalizations of roles in

the EMR system could permit more effective access control. However, at the time this study

was conducted, there was no explicit relationship established between the user positions in

the Cerner EMR. Thus, we collaborated with several clinicians at Northwestern to design a

role generalization hierarchy. This hierarchy, a section of which is depicted in Figure 5.1,

was designed as a tree data structure and consists of four levels: 1) Specific-Position, 2)

General-Position, 3) Conceptual-Position, and 4) Employee. The lowest level in the hierar-

chy, termed Specific-Position, consist of the 140 user positions (i.e., job titles) defined for

the current EMR system. The next level up, termed the General-Position level, was estab-

lished by suppressing semantic qualifiers from the user positions. This level consists of 62

nodes in the hierarchy. The qualifiers that were removed represented certain administrative

pay (or responsibility) grades or specializations of particular job titles. For instance, the

job titles “Dietary 1” and “Dietary 2” were generalized to the common “Dietary”.

The next level up is called the Conceptual-Position level, and was defined with the

assistance of the clinicians. This level is composed of five roles defined to capture the
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anticipated workflow of the healthcare domain. These roles are: i) Doctor: all users whose

workflow is most consistent with that of a physician and includes entering orders/notes

using the physician tools; ii) General Clinician: all non-physician clinical staff who do

not have a restricted domain of work (e.g., nurses who rotate among various care areas);

iii) Specific Clinician: all non-physician clinical staff who work in a specific clinical care

domain (e.g., Oncology, Cardiology, and Gastroenterology). This group likely represents a

more diverse set of users in comparison to the other roles at this level; iv) Billing: users who

interact with charts from a billing specific perspective; and v) Admin: users who interact

with charts from an administrative and not immediate clinical care perspective.

One of the key reasons why these roles deviate from the terms used in the lower levels

is that the “User Positions” address concerns that are less characteristic of the user and

instead reflect system design nuances at the time the user was enrolled. An example of this

somewhat artifactual name distinction is the existence of positions reflecting whether or not

a user had access to CPOE when the user was first enrolled. Now, all physician users have

CPOE capability whether or not their user role at inception indicated this was available.

Thus, it is anticipated that this higher level view should help mitigate outliers of particular

users or job titles. And, at the same time, we believe this level should provide a structure

for other healthcare organizations, and EMR systems, to adopt for similar role assignment

endeavors.

Finally, and for the purposes of completeness, the highest level in the hierarchy corre-

sponds to the root of the tree and consists of a single role, namely Employee or Affiliate.

5.2.2 A Formal Representation of the Users

Before delving into the details of the hierarchy-based role assignment process, we take

a moment to formalize the EMR access log system and the resulting transformations. Let

U = {u1, ...,um} be the set of EMR users and let Role = {role1, ...,rolen} be the set of

roles. For reference, we use | · | to represent the number of elements in a set.
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Figure 5.1: A selection of the role generalization hierarchy designed for this study

Given a database of EMR access transactions, we construct a vector space model for

each user. Specifically, let V = {v1, ...,vm} be a set of vectors, where vi is the corresponding

vector for ui. Each vector is composed of three subvectors, ri, si, and li, which represent

the access features (i.e., reason, service, and location). Each of these subvector is defined

over the domain of categorical values the feature to which it is associated. For instance, ri

contains a position for each of the 143 specific reasons that could have been selected by a

user during a session with a patients record. For each reason, and for each user, we weight

the jth reason and refer to it ri j.

For the purposes of this study, we represent ri j using the term frequency inverse docu-

ment frequency (TF-IDF) weighting model, which is widely used in text mining:

ri j = T Fi j · IDFi =
ni j

Ni
· log
|U |
d j

(5.1)

where ni j is the number of times ri was invoked by ui during their EMR sessions , Ni is

the total number of accesses issued by ui, and d j is the number of users in the system who

invoked reason r j. We apply the TF-IDF schema based on the premise that the more times

a user invokes a reason, the more likely the reason is indicative of the user (i.e., TF) and

that the smaller the number of users that invoke a reason, the more closely related they are

(i.e., IDF). We define si and li similarly.
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5.2.3 A Machine Learning Approach to Role Prediction

The aforementioned vectors provide a summarized view of EMR users behavior in

the healthcare system. We use the vectors as the basis of our role prediction procedure.

Specifically, we train a Naive Bayes classifier [59] with roles as the class labels and the

user vectors as input. The task of predication is to determine the class label (i.e., role) for a

new user vector. For the Naive Bayes classifier, the new instance will be assigned the class

label according to equation 5.2.

roleMAP = argmaxrole j∈RoleP(role j|ri,si, li) (5.2)

Using Bayes theorem and assuming conditional independence over the features, we can

rewrite the expression as:

roleMAP = argmaxrole j∈RoleP(role j)ΠxP(rix|role j)ΠyP(siy|role j)ΠzP(liz|role j) (5.3)

In this work, however, the features are continuous variables, which makes it difficult to

estimate P(rix|role j), P(siy|role j) and P(liz|role j) directly. As a result, we replace the con-

ditional distribution function with the conditional probability density function, for which a

Gauss distribution is used.

Hence, P(role j) is estimated as the proportion of users in role j, while P(rix|role j) is

estimated by the Gaussian density function [59]. For the latter, the parameters of µ and σ

are estimated by calculating the mean and standard deviation of feature rix of the users in

role j, respectively. P(siy|role j) and P(liz|role j) are estimated similarly.

5.2.4 The Role-Up Algorithm

The primary goal of this work is to apply EBAM in the context of EMRs to discover, and

assess, the appropriateness of usersroles. To achieve this goal, we developed an algorithm
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called Role-Up. The algorithm is based on two foundational premises. First, the more

roles in the system, the greater the ability to ultimately manage user groups and achieve a

key security goal of separation of duty. Second, the more homogenous the user behavior

is in a role, the easier it will be to monitor and audit users with respect to their actions.

Pseudocode for Role-Up is provided in Algorithm 4.

Here, we provide a high-level walkthrough of the algorithm. First, in step 1, we extract

the roles in the middle levels of the hierarchy. Next, in step 2, we employ the Naive Bayes

classifier to predict roles in all of levels of the hierarchy. We use a leave-one-out cross-

validation approach to evaluate the predictions. Specifically, role prediction is executed

such that the classifier is trained with all, but one, user vectors. The remaining vector is

then classified into a role. This procedure is repeated for each user until all users receive

predictions. Then, to measure how well the roles are specified, we compute the accuracy

of the system:

Accuracy =
#Correct Predictions

#Predictions
(5.4)

In step 3, we initialize the set of roles to be returned to the administrator as null. In step 4,

we calculate a score for each role at the General-Position and Conceptual-Position levels

using the evaluation function of equation 5.5:

S = αR+(1−α)A (5.5)

R is computed by (|U | −Nrole)/|U |, where Nrole is the number of users covered by this

role, and reflects the specificity after generalizing this role to its parent in the hierarchy.

A is computed as (Accuracyrole−Accuracysub(role)), where Accuracysub(role) is the average

accuracy of all subroles of role at the Specific-Position level.

Then in Steps 5 and 6, we use a greedy procedure to roll-up the hierarchy. We iteratively

select the role with the highest score and implement the corresponding generalization for

all of its subroles. This procedure iterates until the highest score is greater than a certain
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Algorithm 4 Pseudocode for the Role-Up Algorithm.
Input: Vectors: A set of EMR user access vectors, Hierarchy: an EMR user role hierar-

chy, α: a real-valued weighting parameter in the range (0, 1), τ: a threshold
Output: ROLES: The roles an EMR security administrator should apply for system man-

agement
1: Let H be the set of roles in the GeneralPosition and ConceptualPosition levels of

Hierarchy
2: Let Accuracyrole be the predictive accuracy score for each role in Hierarchy (the reader

is referred to the main text for the details on how Vectors is applied in the accuracy
computation)

3: ROLES←NULL
4: for each role ∈ H do
5: Rrole = (|U |−Nrole)/|U |, where Nrole is the number users in this role
6: Arole = (Accuracyrole−Accuracysub(role)
7: Srole = αRrole + (1 - α)Arole
8: end for
9: Sort H by the corresponding scores Srole in descending order

10: for each role ∈ H do
11: If Srole < τ , then break
12: Else
13: ROLES←ROLES

∪
role

14: ROLES←ROLES - the children of role in Hierarchy
15: H←H - the children of role in Hierarchy
16: end for
17: return ROLES

threshold value. At this point, the set of roles is returned to the administrator and the

algorithm terminates.

5.3 Experiments and Results

5.3.1 Initial Role Prediction

Before applying the Role-Up algorithm, we first investigated the predictability of the

roles when the system i trained and tested at each level of the role hierarchy. The results of

this experiment are reported in Table 5.1. First, we observe that when the system is trained

and tested at the initial Specific-Position level (i.e., with 140 user positions we observe

that the system is 51% accurate. In other words, a little more than half of the users can be
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Figure 5.2: The distribution of role predictability (i.e., accuracy) at various level of the role
hierarchy.

accurately predicted as their corresponding roles.

Table 5.1: Predictability of the roles when the system is trained and tested at various levels
of the hierarchy.

Level of Role Hierarchy Accuracy
Specific-Position(original role design) 51.34%

General-Position 52.45%
Conceptual-Position 82.38%

When we step up the hierarchy one level to General-Position, we find there is only

a marginal gain in performance. We observed that the accuracy increased by approxi-

mately 1% to 52.5%. This was somewhat surprising because this level has less than half

the number of roles than Specific-Position. However, when stepped up one more level to

Conceptual-Position, we find that the system became significantly more predictable. No-

tably, the accuracy increased by approximately 30% to 82%.

However, it should be noted that the accuracy of Specific-Position and General-Position

is not uniformly distributed across roles. Rather, there are a significant number of roles that

are highly predictable. To illustrate this observation, Figure 5.2 depicts the distribution of

accuracy scores for the roles at each level in the role hierarchy. Notice that for the Specific-

Position and General-Position levels, an accuracy of 0.5 or greater is achieved for a 57 and

39 (or 79% and 81.2%) roles, respectively.

To make this result more concrete, Table 5.2 provides a summary of the five most and

47



five least predictable roles in the Specific-Position level. There were ten roles that achieved

100% prediction, so for presentation purposes we randomly selected five roles.

Table 5.2: The most predictable roles and the least predictable roles in the system.

Rank Most Predictable Accuracy Users
1(tie) AP-Technologist 100% 54
1(tie) ED Assistant 100% 26
1(tie) ED NMH Physician-CPOE 100% 43
1(tie) NMH Resident/Fellow Clinic-CPOE 100% 10
1(tie) Patient Care Staff Nurse - Lactation 100% 14

Rank Least Predictable Accuracy Users
140 Patient Care Staff Nurse 7.6% 1554
139 Rehab OT 14.3% 28
138 TransferE 20% 20
137 View Only PC 3 21.4% 14
136 Patient Care Staff Nurse (Pilot) 22.1% 217

Despite the finding that a significant number of roles received accuracy greater than the

system average of 0.5, many of these roles were smaller in terms of the number of users

that they cover. Thus, although there are a few outliers, it appears that roles in the EMR

system with a small number of users tend to obtain a high predictability while roles with a

large number of users are less predictable. It is not surprising too much, because a small

number of users implies the role is more specific, and have more specialized responsibilities

compared to other roles. As such, roles with a small number of users can be distinguished

from other roles more easily. Figure 5.3 provides a visual depiction of the relationship

between the number of users in a role and the prediction accuracy. As also noted in Table

5.2, the largest role, Patient Care Staff Nurse, was also the least predictable. However,

some of the larger roles, such as Med Student CPOE, which contained about 500 users,

achieved very high prediction rates (i.e., over 80%). This is a clear illustration of why there

is no one-size-fits all approach to role engineering or role mining.
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Figure 5.3: A plot of accuracy of role as a function of the number of users in the role

5.3.2 A Case Study in Incorrect Predictions

Accuracy provides an indication of how predictable each role (and the system) is, but

it obscures the intuition behind why the system is failing to predict roles correctly. Thus,

we take a moment to illustrate a case study in the types of mispredictions that occur in the

system.

As Table 5.2 shows, the role of Patient Care Staff Nurse is the least predictable role

among all 140 roles in the Specific-Position level. Thus, it is useful to know which roles

the system has predicted these users belong to. Table 5.3 depicts the probabilities for

the five least correct predictions for Patient Care Staff Nurse and Transfer, respectively.

Semantically (and literally), they are very similar roles, and we may infer that these roles

are often assigned the same tasks as Patient Care Staff Nurse. Hence, merging Patient Care

Staff Nurse with Patient Care Staff Nurse Lactation, RAD Nurse or other similar roles in

this table should lead to a more predictable role. This was one of the inspirations for the

expert design of reasonable role hierarchies.

Table 5.4 provides an indication of which roles were being confused in the prediction

process. Specifically, it reports on the conditional probability of predicting a role given

the original role. For instance, there was an 85% chance of predicting Rehab PT if the

original role was Rehab OT. Similarly, there was a 60% chance of predicting Rehab OT if

the original role was Rehab PT. This is further justification for generalizing roles for EMR

management purposes.
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Table 5.3: Most likely incorrect role predictions for Patient Care Staff Nurse and Transfer

Predicted Role Percent
Patient Care Staff Nurse - Lactation 19.6%

View Only PC 1 14.3%
RAD Nurse 14%

Patient Care Staff Nurse (Pilot) 10.4%
SN-RN/Customer Service 5.8%

Predicted Role Percent
Patient Care Staff Nurse - Lactation 15%

Unspecified 10.0%
Unit Secretary 1 10.0%

Patient Care Staff Nurse (Pilot) 10.0%
SN-Management 5.0%

Table 5.4: Most likely incorrect predictions among all of the predictions.

Original Role Predicted Role Probability
RehabOT Rehab PT 85.7%

Patient Care Staff Nurse - Agency Patient Care Staff Nurse - Lactation 75.0%
Rehab PT Rehab OT 60.0%

View Only PC 3 Patient Care Staff Nurse - Lactation 50.0%
Medical Records - Scanner Medical Records 47.4%

5.3.3 Rolling-Up Role Prediction

The following set of experiments report on the application of the Role-Up algorithm.

For the purposes of this work, we set the threshold in the algorithm equal to α . In contrast

to the earlier experiments, Role-Up permits the hierarchy to allow for roles managed at

different levels in the hierarchy. Table 5.5 shows the number of roles recommended by the

approach and the accuracy of the resulting system under different values of α . From this

table we wish to highlight three findings. First, there is a tradeoff in specificity in roles

and accuracy of the system. Notice that when α is low, between 0.1 and 0.4, the number

of roles is relatively small (i.e., 27), but the accuracy of the system is relatively high (i.e.,

approximately 63%). And, when α is higher, such as at 0.8, the specificity of the system is

relatively high (i.e., 60 roles), but the accuracy is lower (i.e., approximately 52%).

Second, we note that α≥ 0.8 appears to be the most appropriate choice. When the

50



Table 5.5: Results of rolling-up the hierarchy under different α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# of Roles Recommended 27 27 27 27 54 55 55 60 64

Accuracy of Role Predictions 63.3% 63.3% 63.3% 63.3% 49.9% 50.2% 50.2% 51.8% 51.3%

Figure 5.4: Distribution of the accuracy for the system when α is set to 0.2 and 0.8.

system is set at this level, Role- Up achieves an accuracy that is slightly better than that of

original role designation while maximizing the number of roles retained for all α settings.

Third, a security administrator might also wish to consider α≤0.4. At this setting, the

system proposed by Role-Up achieves high accuracy, but at the loss of a significant number

of roles.

As an illustration of the tradeoff between high and low α’s, Figure 5.4 provides a dis-

cussion of the accuracy per role.

51



Chapter 6

WOBA: WOrkflow Based Audit System

6.1 Introduction

As mentioned earlier, organizations have attempted to prevent malicious insider activi-

ties through two types of technical strategies, which are audit and access control. The two

strategies have different applicable scenarios. Recent efforts even shows it is possible to

determine which one to be adopted by a quantitative way [60]. In this chapter, we focus

on an audit method. While most of audit strategies are on the basis of machine learning

methods [40, 41, 14], there has been little investigation into incorporating workflow infor-

mation while selecting features. This seems like a missed opportunity because there could

be valuable information for charactering a user or their accesses. A realistic assumption is

that a user tends to appear in relevant workflow (e.g., It is not likely a cardiologist will treat

a HIV patient), such that the attributes extracted from the workflow can be discriminative

with respect to the legitimacy of accesses.

The aim of this chapter is to introduce a workflow based audit (WOBA) framework that

takes advantage of workflow information to detect insider threat. This framework consists

of two phases. First, a feature extraction algorithm is applied on the actual workflows to

obtain useful features (workflow features). In this chapter, we generate two different types

of workflow features. Second, we combine workflow features with additional features that

are commonly used for anomaly detection (ordinary feature) to characterize accesses. On

the accesses, we build a classification model using a statistical machine learning algorithm.

There are several primary contributions of this report, including:

Specifically, there are several primary contributions of the paper, including:

• An audit framework leveraging workflow information We devise a novel but sim-
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ple framework that can integrating workflow features with more traditional features.

Under this framework, any workflow information could be translated into features

suitable for classical machine learning model. Due to its simplicity, this technique

is highly adaptable to most information systems involving workflow. In addition,

since each access is considered as the unit of suspiciousness, this model is capable

of accomplishing finer-grained anomaly detection.

• Empirical Analysis We illustrate how to apply and experiment with SPA on a real

electronic health record system in a large medical center. To evaluate the effective-

ness of SPA, we compare it with the classification model built without workflow

features. The results show SPA can achieve higher accuracy and AUC on detection

than classification with only ordinary features.

The reminder of this chapter is organized as follows. Section 6.2 reviews the foun-

dations upon which our method is built, including traditional features, workflow features

and sequential patterns. Section 6.3 gives a detailed introduction about the entire WOBA

framework. Section 6.4 presents the dataset preparation and experiment design. Section

6.5 presents detailed results of the experiments.

6.2 Preliminaries

In this section, we introduce preliminary concepts and techniques that form the foun-

dation of the WOBA framework. First, we give a description of workflow in a healthcare

system. Second, a context-based classification model is introduced. Finally, we review the

sequential pattern mining.

6.2.1 Workflow

In this chapter, we refer to the access event that is under review as the target. We

assume that the target access takes place in the midst of a workflow, which we represent

53



as a sequence of accesses, such that each is associated with the same underlying resource.

We will represent a workflow as ε = ⟨e1, e2, . . ., ei, . . ., el⟩. For illustration, Figure 6.1

depicts a series of accesses to a specific patient’s EMR from the point of admission to

discharge from a hospital. Here, e3 is the target access and the corresponding workflow is

⟨e1,e2,e3,e4,e5,e6⟩. Workflow features are extracted from all accesses except target access

that transpires in the workflow.

Figure 6.1: An example of a workflow of accesses to a patient’s medical record. Here, the
target access e3 is surrounded by a solid rectangle. The other accesses in the workflow are
surrounded by a dashed rectangle. The parts contained by brackets represent context.

6.2.2 Sequential Rules

We use Table 6.1 as a running example to explain concepts in this section. Table 6.1 is a

sequence database which consists of a set of sequences. Each sequence consists of ordered

items. A subsequence of a sequence s is defined as sequences generated by removing one

or multiple items in s. For example, < ace > is a subsequence of the first sequence in

the database because it can be derived by removing 2nd , 3rd and 5th items in the original

sequence. On the other hand, s is defined as a supersequence of its subsequences.

A sequence’s support is the number of its supersequences in sequence database. A→ B

is a sequential rule where A and B are both sequences. confidence of A→ B is defined by

support(AB)/support(A), where AB is a sequence constructed by joining A and B. A→ B

is named frequent sequential rule when confidence(A→ B) and support(AB) are both

larger than thresholds. Consider an example of the rule ac→ e. Its support is 2 because

1st and 2nd are its supersequences. Also, since the support of ac is 3 (sequence 1, 2 and
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4 contains it), the confidence of the rule is 2/3. Assume we set threshold for support and

confidence as 2 and 0.5 respectively, then ac→ e is considered a frequent rule.

Table 6.1: Sequence Database: An Example

SID Sequences
1 ⟨abacde⟩
2 ⟨bcdeabacde⟩
3 ⟨edbbbae⟩
4 ⟨ceaaabc⟩

6.3 Framework

6.3.1 Context-based Classification

We use C = {C1,C2, . . . ,Ch} to denote the set of context that is associated with a target

access. Cr is composed of elements from dom(Cr), which is the domain of elements as-

sociated with this type of context. For example, let U ∈C denote all users that attend the

workflow of target access. As such, we have dom(U) = {u1,u2, . . . ,ud}, such that ui is a

certain user in the system. As mentioned before, a workflow is represented as ε = ⟨e1, e2,

. . ., ei, . . ., el⟩, from which features would be generated to characterize ei. For ei, we can

use vectors as representations of all h types of context. Equation 7.12 denotes V (U), the

vector corresponding to context U .

V (U) = (vu1 ,vu2, . . . ,vud) (6.1)

In this model, vux is set to 1 if ux is observed when at least one e j ∈ ε1 transpires, otherwise

it is set to 0.

For example, imagine we want to construct a vector corresponding to U (i.e., V (U)), for

the target access e3 in Figure 6.1. Let dom(U) = {u1,u2,u3,u4,u5,u6,u7,u8} in the system

and ⟨u2, u4, u5, u1, u3, u8⟩ be the user sequence corresponding to the workflow in Figure

6.1. ε1 = ⟨e1,e2,e2,e3,e4,e5,e6⟩ is the workflow containing e3, where all accesses (except
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e3) are executed by u2, u4, u1, u3 and u8 respectively. Thus, the vector corresponding to U

for target user is (1,1,1,1,0,0,0,1).

We use ⊕ to denote the union of two vectors1. As such, the vector for all h context can

be represented as CV = V (C1)⊕V (C2)⊕. . .⊕V (Ch).

6.3.2 Use Sequential Rule as Feature

Building on the model in the previous section (6.3.1), it is straightforward to use some

features to represent a target access, such as user IDs and job titles that occur in the sur-

rounding workflow. In this section, we introduce a more complex feature for the access

representation. Consider a simple example, in which a radiologist tends to come after spe-

cialist in a common healthcare workflow. It is rare to see the reverse case for the example.

Thus, sequential patterns could be a potentially useful feature to charaterize a target access.

In this section, we first introduce how to learn sequential pattern from workflows, and then

describle how we represent an access using these patterns.

6.3.2.1 Generating Rules

In this section, we introduce a procedure named workflow serilaization to construct a

sequence database from a single workflow. Let us assume there exists a workflow as shown

in Figure 6.2 (i.e. ebacdebesejklkfeeebaecde). At the beginning, a window with predefined

size k covers the first k items in the workflow. Then, the following procedure accomplishes

workflow serilaization: 1) The subsequence covered by the window is extracted and stored

into the database, 2) Slide the window forward by one position, and 3) If window currently

covers the last item in the workflow then exit, otherwise, go to step 1.

1For example, vector C = ⟨a1,a2, . . . ,am,b1,b2, . . . ,bn⟩ is the union of vector A = ⟨a1,a2, . . . ,am⟩ and
vector B = ⟨b1,b2, . . . ,bn⟩ (i.e., C = A⊕B)
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Figure 6.2: An example of workflow serilaization

We then use the procedure in Figure 6.3 to obtain sequential rules. Each sequential

database is constructed from a training sequence (workflow) by workflow serilaization.

Then each of them is taken as input of a sequential rule mining algorithm, with a set of

sequential rules as the output. It is easy to see that each workflow yields a set of rules.

Let us use seti to denote the rule set corresponding to the ith workflow. We can obtain an

integrated rule set named allRules by performing following operation.

allRules = set1∪ set2...∪ setn (6.2)

6.3.2.2 Use Rules as Features

Algorithm 5 describes the procedure of using sequential rules as features to charaterize

an access. The inputs include allRules, the workflow surrounding the target access (i.e.,

seq, usually consists of the sequence of user ID or job titles in the workflow), and a vector

that will become the representation of the access. First, we use workflow serilaization to
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Figure 6.3: Rule generator

form the sequence database sdb corresponding to seq. Then, for the ith rule in allRules, we

compute its confidence and support in sdb, which are assigned to ci and si of V , respectively.

The resulting V is a feature vector capturing the sequential information in seq.

Algorithm 5 Use Rules as Feature

Input: allRules, seq, V = [c1,s1,c2,s2, ...,cm,sm]
Output: V

1: sdb← work f lowSerilaization(seq)
2: for each rulei ∈ allRules do
3: ci = con f idence(rulei,sdb)
4: si = support(rulei,sdb)
5: end for
6: return V

6.4 Experimental Design

This section provides an overview of the experiments designed for this study. It begins

with a description of the real electronic medical record (EMR) data. This is followed by

an explanation of how context was modeled to train the prospective and the retrospective

security models. We then introduce the machine learning algorithm used for training the

models and the specific measures used for assessing their performance.

58



6.4.1 Electronic Medical Record

In the EMR of Northwestern Memorial Hospital, we assume each (patient-id, encounter-

id) pair defines a unique workflow for patient treatment. This encounter begins when the

patient is admitted to the hospital and ends two weeks after discharge (to ensure that ac-

cesses associated with medical billing are captured). Of the remaining information, there

are five types of context: i) the time a target access was issued (Time)2, ii) the hospital

service the patient was on at the time of the target access (e.g., General Medicine vs. Ob-

stetrics), iii) location in the medical center where the patient resided when the target access

was issued, iv) the users who commit accesses in the workflow of target access and v) the

job titles associated with these users.

We are also interested in seeing how sequential rules (features) improve the perfor-

mance. Thus we use the procedure in Section 6.3.2 to generate sequential rules as addi-

tional features. In the experiment, we use the ClaSP [61] algorithm in SPMF package [62]

to mine sequential rules (features).

6.4.2 Dataset Preparation

Without loss of generality, we assume target user t participates in N patient workflows.

The corresponding context vectors are CV+
1 ,CV+

2 , . . . , CV+
N , which are composed using

the approach described in Section 6.3.1. These vectors are associated with a positive label

class. We use the following process to generate a corresponding set of N negative labeled

instances. We randomly select a workflow in which user t failed to issue an access. From

this workflow, we randomly select an access and build a corresponding context vector.

Doing so N times yields a set of vectors CV−1 ,CV−2 , . . . , CV−N , which are associated with

the negative class. Note that we create different CV+
i and CV−i for prospective model and

retrospective model respectively.

2For this work, dom(Time) consists of four values: a) Morning (6am - 12pm), b) Afternoon (12pm -
6pm), c) Evening (6pm - 12am), and d) Night (12am - 6am)

59



To conduct our evaluation, we construct 10 datasets, each of which corresponds to a

different job title. Let us use Patient Care Staff Nurse as an example. We randomly pick 10

users whose job titles are Patient Care Staff Nurse. For each user, we construct N positive

samples and N negative samples using the process described above. We select 80% of the

vectors from the positive and negative samples, respectively, for the training set, and use

the remaining 20% as the test set. The samples generated for all 10 users are then combined

to form a single dataset for this job title and the overall performance across the 10 users is

measured to evalute the entire dataset. To ensure the results are representative, we select

job titles from 10 different hospital departments. The job titles and summary statistics are

shown in Table 4.3.

We train a classifier for each user using a support vector machine (SVM) using an RBF

kernel [50]. We utilize a grid search technique [50] to find values for parameters to enable

a robust SVM. For each user in the job title, we use the classifier trained on the training set

of this user to assess the corresponding test set.

6.5 Experimental Result

This section shows the results of experiments. First, we introduce the results of WOBA

without sequential feature. Then we show how sequential rules can help to improve the

performance.

Table 6.2 shows how the workflow feature can help the prediction. The second column

corresponds to accuracy of WOBA, while the third column corresponds to the accuracy

of the predictive model with only ordinary features. The third column corresponds to the

accuracy of the predictive model with only workflow features. There are several interest-

ing observations. First of all, WOBA can achieve averagely 90% accuracy, which is very

satisfactory. Second, ordinary features and workflow features are both important to the

prediction performance. Absence of any of them could lead to a significant reduction in

accuracy. Third, it is observed that one type of feature would hardly constantly beat the
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other. In other word, different types of features can be useful in different settings.

Table 6.2: Accuracies

Job Title WOBA Workflow Feature Ordinary Feature
NMH Physician CPOE 0.940 0.915 0.831
Resident/Fellow CPOE 0.922 0.890 0.816

Emergency Department Patient Care Staff Nurse 0.929 0.883 0.871
Utilization Review/Quality Assurance 1 0.933 0.897 0.881

Unit Secretary 0.977 0.948 0.930
Anesthesia CPOE 0.905 0.877 0.817

Radiology Resident/Fellow 0.875 0.842 0.765
Rehabilitation - Physical Therapist 0.919 0.897 0.847

Patient Care Assistive Staff 0.965 0.940 0.938
Patient Care Staff Nurse 0.918 0.866 0.846

Table 6.3 shows how sequential features improve WOBA. In the expriment, we use

only one type of workflow feature: the set of role that occur in the workflow surrounding

the target access. In the meanwhile, we extract sequential rules from the sequence database

formed by role sequences as the sequential features. In the second column of the table,

there are accuracies of WOBA with only role features, while in the third column there

are accuracies of WOBA with both role features and sequential features. It shows that

sequential features can improve the classification accuracy.

Table 6.3: WOBA with Sequential Feature

Job Title R R + S
NMH Physician CPOE 0.803 0.819
Resident/Fellow CPOE 0.807 0.807

Emergency Department Patient Care Staff Nurse 0.862 0.863
Utilization Review/Quality Assurance 1 0.831 0.859

Unit Secretary 0.879 0.902
Anesthesia CPOE 0.841 0.851

Radiology Resident/Fellow 0.826 0.838
Rehabilitation - Physical Therapist 0.843 0.845

Patient Care Assistive Staff 0.816 0.844
Patient Care Staff Nurse 0.818 0.825
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Chapter 7

Quantifying the Tradeoff between Prospective and Retrospective Access Decisions

As mentioned earlier, the insider threat can be addressed through two technical strate-

gies: i) prospective methods, such as access control, that make a decision at the time of

a request, and ii) retrospective methods, such as post hoc auditing, that make a decision

in light of the knowledge gathered afterwards. While it is recognized that each strategy

has a distinct set of benefits and drawbacks, there has been little investigation into how to

provide system administrators with practical guidance on when one or the other should be

applied. To address this problem, we introduce a framework to compare these strategies on

a common quantitative scale. In doing so, we translate these strategies into classification

problems using a context-based feature space that assesses the likelihood that an access

request is legitimate. We then introduce a technique called bispective analysis to compare

the performance of the classification models under the situation of non-equivalent costs

for false positive and negative instances, a significant extension on traditional cost analysis

techniques, such as analysis of the receiver operator characteristic (ROC) curve. Using

domain-specific cost estimates and access logs of several months from a large Electronic

Medical Record (EMR) system (see Chapter 3), we demonstrate how bispective analysis

can support meaningful decisions about the relative merits of prospective and retrospective

decision making for specific types of hospital personnel.

We begin by introducing the motivation and background for our tradeoff quantifica-

tion in Section 7.1. Then, some preliminary knowledges relevant to proposed approach

are introduced in Section 7.2. In Section 7.3, we introduce a novel framework to support

decisions between security strategies. In Section 7.4, we describe the experimental mod-

els for assessing the proposed framework. Finally, we report on empirical results for the

traditional and proposed methods in Section 7.5 and 7.6, respectively.
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7.1 Introduction

A fundamental tradeoff in authorization pits making a decision prospectively, before

access is granted, against making a decision retrospectively, when an audit is carried out.

Much of the work on access control has focused on the prospective decision making, but it

has often been pointed out [63, 64] that retrospective decision making, in which users beg

for forgiveness rather than permission, has some significant advantages. In many applica-

tions: (1) it is difficult to determine what access a user requires in advance, (2) denying

access to a user with a legitimate need could result in significant inconvenience, expense,

or loss, (3) most users are responsible and can be trusted to access resources for legitimate

reasons, and (4) accountability (such as disciplinary action) is effective in deterring abuses.

An iconic example of such a situation is access to patient records in Electronic Medical

Record (EMR) systems, where (1) hospital workflows are complex and commonly involve

emergencies and unexpected events, (2) lack of timely access could result in the loss of

a patient’s life, (3) most healthcare providers are highly trained and ethical profession-

als, and (4) there are strong penalties for abuse. These four criteria (and others, such as

the ability in certain cases to roll back an illegitimate action) provide a good qualitative

story for when retrospective decision-making based on audit may be better than prospec-

tive decision-making based on preventing access to a resource. We see the phenomena in

many non-computer contexts already. For example, a red light tells a driver not to cross an

intersection, but it does not prevent the driver from crossing it. On the other hand, there are

instances where retrospective techniques are inadequate or too risky: the honor system may

not be sufficient if the stakes for abuse are too high and the effectiveness of accountability

is too low.

Given the recognition that retrospective techniques will have their place, we are led

to ask: is there any systematic way to determine when retrospective techniques are better

than prospective ones? Ideally this would be done quantitatively by measuring the tradeoff

between the risks of addressing an abuse at audit time versus denying access to user when
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it is requested. If we accept the idea that the implementation of access control provides,

in general, only an approximation of the desired access rules, then we may be able to

quantify the rules with a ROC that compares false positives to true positives (a technique

commonly used already for biometric authentication systems [65]). Better decision making

then means better Area Under the ROC Curve (AUC) values. For example, if we are able

to estimate that a prospective access control system gives proper access 95% of the time

(true positives), but only if we accept that 10% of the time it will grant access where access

should not have been granted (false positives), then we are on the path to quantify whether

one type of prospective access is better than another. However, this does not offer a clear

way to compare prospective techniques with retrospective ones. The latter, which can use

information from both before and after a user has accessed a record, is expected to have

better AUC values. The problem is that we do not have a cost model that allows us to judge

tradeoffs between a pair of ROCs.

The aim of this chapter is introduce a technique called bispective analysis that can be

used to compare prospective and retrospective techniques for access control via a model

that accounts for the different costs associated with false positives and negatives associated

with each model. This is accomplished by weighting the ROC models for prospective

and retrospective techniques by their costs and, subsequently, combining these in a way

that enables direct comparison to see which is better in which circumstance. The primary

contributions are:

• A Novel Cost Analysis Technique We devise a novel cost comparison method called

bispective analysis that allows for an explicit comparison of classification models

with different costs. Once provided with the knowledge of the variables (i.e., the

costs of false positive and false negative for prospective model, the costs of false

positive and false negative for retrospective, and the ROC curves for both mod-

els), bispective analysis allows administrators to calculate which is the better option.

Moreover, bispective analysis provides insight about the distribution of results under
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varying cost models, such that administrators can make decisions when their con-

fidence in the variables is uncertain (e.g., only a range of costs are known or only

partial costs are known).

• Classification Models for Prospective and Retrospective Security We develop a

technique to represent and evaluate both prospective and retrospective models. To

do so, we translate the context associated (e.g., other users who accessed a record,

when the access was committed, and where the entity associated with the record

was located) with each access into a vector space representation. We then subject

such vectors to a classical machine learning model to build classifiers. In this way,

prospective model and retrospective model are mapped to a common framework,

such that comparable results can be generated. In addition, due to its simplicity

and compactness in representation, this technique is scalable and adaptable to most

information systems.

• Empirical Analysis and Case Study We illustrate how to apply bispective analysis

to analyze tradeoffs for a large urban hospital system based on its EMR audit logs

to provide assessments for various positions at the hospital. We deploy prospective

and retrospective models implemented by the proposed technique in this system, and

then obtain detection results (i.e, false positive rate, false negative rate) respectively.

With bispective analysis and our detection results, we conduct illustrative case studies

about the model selection with different assumptions on costs. In doing so, we assess

how the model plays out for ten care provider positions in the system. The results

show how cost weighting can yields different guidance in comparison to a standard

ROC analysis.
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7.2 Preliminaries

This section begins by reviewing basic concepts in classifier performance evaluation

that are relevant to our strategy. Next, we introduce the definition of the cost of a classifier.

This is followed by a review of the concept of an ROC curve, and several ROC-based

comparison methods for classifiers. Finally, we review the notion of context, which is used

in the implementation of our prospective and retrospective models.

7.2.1 Basic Concepts

The application of a classifier to a test instance results in either a correct or an incorrect

decision. To assess the performance of a classifier, we consider the rates of these results

over a set of cases. In doing so, the following simple measures are relevant: 1) True Positive

Rate (t pr): the fraction of positive samples correctly classified; 2) False Negative Rate

( f nr = 1− t pr): the fraction of positive samples misclassified; 3) True Negative Rate (tnr):

the fraction of negative samples correctly classified; and 4) False Positive Rate ( f pr =

1− tnr): the fraction of negative samples misclassified. Finally we report 5) Accuracy: the

fraction of all samples correctly classified.

For orientation, it should be made clear that false positive and negatives have different

implications (and thus different costs) in prospective and retrospective systems. In the

prospective system, a false positive indicates the system approves an illegitimate access,

while a false negative indicates the system denies access to a legitimate request. In the

retrospective system, a false positive indicates that no investigation is performed for an

illegitimate access, while a false negative means the system recommends an investigation

for a legitimate access.
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7.2.2 Cost Function

The cost of a classifier can be represented by Equation 7.1 [27]. Let π1 and π0 be the

prior probabilities of positive and negative cases, respectively, such that π0 = 1−π1. Let

p10 and p01 be the f nr and f pr, respectively. And, let c10 ∈ (0,∞) and c01 ∈ (0,∞) be the

associated costs for the f nr and f pr, respectively. In the remainder of this chapter, we refer

to c10 and c01 as the false negative cost and false positive cost, respectively.

cost = π1 p10c10 +π0 p01c01 (7.1)

7.2.3 ROC Curve

The result of a probabilistic classifier is dependent on its parameterization. For exam-

ple, the naı̈ve Bayes classifier incorporates a threshold for the probability with which it

claims a class label (e.g., negative versus positive) corresponds to a certain instance. Tra-

ditionally, the result of a classifier is represented by a ( f pr, t pr) pair. The ROC curve can

be obtained by plotting these pairs with respect to a range of parameterizations of the clas-

sifier. And, the AUC [66] is a commonly used measure for the evaluation of classification

models. The larger the AUC of a classifier, the better its performance.

Now, in this setting, a classifier A is said to dominate another classifier B if for any point

( f prA, t prA), there exists a point ( f prB, t prB), such that t prB > t prA and f prB < t prA. For

example, in Figure 7.5(a), it can be seen that the ROC of the retrospective model dominates

the ROC of the prospective model.

Given any combination of π1, π0, c10 and c01, MIN(costA)< MIN(costB) will be true if

A dominates B [27], where MIN(costX) is the minimal value of cost over the ROC curve of

classifier X . This proposition is true because the ROC of A forms the convex hull for both

A and B, and the point ( f pr, t pr) that minimizes cost, for any combination of π1, π0, c10

and c01, is only located on the convex hull [27]. As noted in Section 2.1.2, a premise for
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the convex hull method is that the cost of a false positive (negative) is equivalent for both

classifier A and B. However, as we will show in our empirical analysis, selecting security

models by identifying dominance is inappropriate in situations for which this premise fails

to hold.

7.2.4 Cost Curve

In this section, we review the cost curve introduced in [28]. As mentioned in the Chap-

ter 2, the cost curve retains all the merits of the ROC curve, but provides for several notable

benefits. Though it is also hampered by the assumption of equivalent costs (as mentioned

above), it serves as a foundation of our cost analysis.

Given estimates for π1, c10, π0 and c01, we can discover a point on the ROC curve to

minimize cost. It has been proven that only W = π0c01
π1c10

is needed to determine the point

(1− p̄10, p̄01) of ROC that can minimize cost[27].

[28] introduced the concept of a normalized expected cost, which is defined in equation

7.2. (π1c10 +π0c01) in Equation 7.2 is the maximized cost because it indicates both p10

and p01 are equal to 1. In other words, the classifier has misclassified all samples. Thus,

computing normcost corresponds to normalizing cost into the (0,1) range. In this model,

(1− p̄10, p̄01) in the ROC minimizes normcost as well.

From Equation 7.2, we can state K = W/(W +1) = π0c01/(π1c10 + π0c01), which means

K and W constitute a one-to-one mapping. So, the values for p̄10 and p̄01 can be determined

by K. Thus, the minimized normcost, denoted by normcost∗(K), can be represented by

Equation 7.3. [28] provides a detailed method for deriving the curve of normcost∗ (i.e., the

cost curve). We directly employ this method when a computation of normcost∗ is required,
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but, due to space limitations, we refer the reader to [28] for the details.

normcost =
π1 p10c10 +π0 p01c01

π1c10 +π0c01

= p10 ·
1

W +1
+ p01 ·

W
W +1

= p10 · (1−K)+ p01 ·K

(7.2)

normcost∗(K) = p̄10 · (1−K)+ p̄01 ·K (7.3)

K can be interpreted as the false positive cost ratio. Informally, this corresponds to the

proportion of cost resulting from false positives.

7.2.5 Context

In chapter 6.2.1, concept of workflow is introduced. This section will revisit it and

introduce the concept of context based on it. Again, we refer to the access event that is under

review as the target. This event can be associated with a wide range of semantics, which

we call the context around the target access. The access itself is a request to a resource that

is issued by a user, but there is a variety of contextual information that surrounds the target.

We assume that the target access takes place in the midst of a workflow, which we

represent as a sequence of accesses, such that each is associated with the same underlying

resource. We will represent a workflow as ε = ⟨e1, e2, . . ., ei, . . ., el⟩. For illustration,

Figure 7.1 depicts a series of accesses to a specific patient’s EMR from the point of ad-

mission to discharge from a hospital. Here, e3 is the target access and the corresponding

workflow is ⟨e1,e2,e3,e4,e5,e6⟩. Context can be extracted from the target access itself (e.g.,

the time this access occurs). It can also be extracted from the corresponding workflow (e.g.,

users participated in the workflow). Note the availability of context in a workflow for the

prospective model and the retrospective model are different. The retrospective model can

take advantage of the entire workflow, while the prospective model can only take advantage
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of the parts of the workflow that occur before the target access.

Figure 7.1: An example of a workflow of accesses to a patient’s medical record. Here, the
target access e3 is surrounded by a solid rectangle. The other accesses in the workflow are
surrounded by a dashed rectangle. Parts contained by brackets represent context.

7.3 A Framework to Quantify the Tradeoff between Two Strategies

7.3.1 Framework Overview

To orient the reader, Figure 7.2 provides a high-level view of the proposed decision pro-

cess for a specific user. As previous work has shown [20], reliable access control policies

(i.e., a prospective model) can be learned by a machine learning algorithm. We extend this

notion for implementation of both the prospective model and the retrospective model. To

do so, first, we extract workflows of targeted user from a database of transactions. Next,

we construct vectors from the workflows to represent all accesses issued by the user. For

the prospective model, the vectors are composed of contextual information that occurs at or

before the point of a target access. For the retrospective model, the vectors are composed of

context observed at any time (i.e., before, at or after the time of the target access). Next, the

vectors are subject to a standard machine learning framework to build classifiers that are

representative of prospective and retrospective models. Finally, a decision support system

uses the ROC curves for the classifiers and their associated costs and returns an answer for

which classifier (model) should be adopted to manage this specific user.
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Figure 7.2: An architectual view of the Bispective Analysis

7.3.2 Decision Support

7.3.2.1 Bispective Analysis

As mentioned earlier, the prospective and retrospective security models are based on

as machine learning algorithms. Traditional methods (e.g., ROC analysis) for comparing

classifiers work under the belief that the costs for false positives (false negatives) are equiv-

alent. However, this premise does not hold in the prospective versus retrospective security

decision. Thus, we propose an analytic method called bispective analysis that extends cost

curves to account for classifiers with differing misclassification costs. As will be illus-

trated, this method has a natural visual interpretation that can facilitate the decision making

process.

To begin, equations 7.4 and 7.5 provide formulations for the overall cost of a prospec-
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tive (P) and retrospective (R) model, respectively.

costP = π1 p(P)10 c(P)10 +π0 p(P)01 c(P)01 (7.4)

costR = π1 p(R)10 c(R)10 +π0 p(R)01 c(R)01 (7.5)

These functions allow us to derive a comparison function to compare the costs caused by

the two models, denoted by equation 7.6.

comp(P,R) = ln(
cost∗P
cost∗R

) (7.6)

Here, cost∗P and cost∗R correspond to the minimized overall costs given: i) the false positive

(negative) costs estimates and ii) the prior distributions of positives and negatives. iii) the

ROC curves. When comp(P,R)> 0, the prospective model incurs greater cost than the ret-

rospective model (denoted by R≻ P). When comp(P,R)< 0, the retrospective model incurs

greater cost than the prospective model (denoted by R ≺ P). And, when comp(P,R) = 0,

the prospective and retrospective models have equivalent costs (denoted by R ≃ P).

The comparison function contains too many variables to be visualized in an inter-

pretable manner. Thus, we reduce the number of variables via a mathematical deduction in

Equation 7.7. Note we use the cost curve normcost∗(K) in Equation 7.7. It can be seen that

comp(P,R) is a function of KP = π0c(P)01 /(π1c(P)10 +π0c(P)01 ) , KR = π0c(R)01 /(π1c(R)10 +π0c(R)01 )

and ratio = c(P)01 /c(R)01 . When ratio is a constant z, the comparison function can be repre-

sented as Magnitude(KP,KR), as shown in Equation 7.8. Given this representation, we can

then compose a contour for Magnitude(KP,KR) to investigate the tradeoffs under various

cost conditions.
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comp(P,R) = ln(
π1 p̄(P)10 c(P)10 +π0 p̄(P)01 c(P)01

π1 p̄(R)10 c(R)10 +π0 p̄(R)01 c(R)01

)

= ln(
π1c(P)10 +π0c(P)01

π1c(R)10 +π0c(R)01

·

π1 p̄(P)10 c(P)10 +π0 p̄(P)01 c(P)01

π1c(P)10 +π0c(P)01

π1 p̄(R)10 c(R)10 +π0 p̄(R)01 c(R)01

π1c(R)10 +π0c(R)01

)

= ln(
c(P)01

c(R)01

· KR

KP
· normcost∗P(KP)

normcost∗R(KR)
)

(7.7)

Magnitude(KP,KR) = comp(P,R)|ratio=z

= ln(z · KR

KP
· normcost∗P(KP)

normcost∗R(KR)
)

(7.8)

Figure 7.3(a) depicts an example of such a contour for one user associated with the job

title of NMH Physician CPOE (Computerized Provider Order Entry) in the EMR dataset

of our case study. Each line in the contour plot, which we call a contour line, consists

of the points (KP, KR) for which Magnitude(KP,KR) has a constant value. This value is

represented by the number on the contour line.

T hreshold(KP,KR) = sgn(Magnitude(KP,KR)) (7.9)

To further simplify the decision making process, we can compose a contour using Equa-

tion 7.9, where sgn(·) is the sign function. The value of Threshold() must be drawn from

{−1,0,1}, which corresponds to R ≺ P, R ≃ P and R ≻ P, respectively. Figure 7.3(b)

provides an example of the contour after applying this threshold, where the red region cor-

responds to R ≻ P, the blue region corresponds to R ≺ P and the boundary between them

corresponds to R ≃ P. To provide guidance, the former contour should be utilized when

the magnitude of difference between the prospective and respective models is of interest to

an administrator (e.g., the trends of comparison results when KP and KR changes), while
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(a) Contour Plot for Magnitude(KP,KR) (b) Contour Plot for T hreshold(KP,KR))

Figure 7.3: Contour plots for the NMH Physician CPOE role in the NMH dataset. The red
and blue regions correspond to when the prospective and retrospective models dominate,
respectively.

the latter should be chosen when the administrator is interested only in which model is

dominant.

7.3.2.2 Probability Computation with Comparison Function

Intuitively, in a contour plot, the proportion of the area determined by T hreshold() = 1

reflects the probability that the retrospective model will be the dominant strategy. For illus-

tration, in Figure 7.3(b), the region shaded in red indicates the probability that retrospective

is the dominant solution for the NMH Physician CPOE is very high.

This type of contour can enable an administrator to ascertain which model has a higher

probability of effectiveness. To understand how, let us assume that f (KP,KR) corresponds

to the joint density function of KP and KR. Now, KP and KR can be considered indepen-

dent because they are derived from two distinct classification models. As a consequence,

the probability that the retrospective model dominates the prospective model can be repre-

sented by Equation 7.10, where fP() and fR() indicate the density functions of KP and KR,
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respectively.

Pr(R≻ P) =
∫

T hreshold(KP,KR)=1
f (KP,KR)dKPdKR

=
∫

T hreshold(KP,KR)=1
fP(KP) fR(KR)dKPdKR

(7.10)

A common and reasonable assumption for fP() and fR() is the density function of the

uniform distribution with range (0,1) [28, 67]. This is useful because, in combination with

Equation 7.10, it follows that Pr(R≻ P) corresponds to the proportion of the contour where

T hreshold(KP,KR) = 1. More formally, this is derived as follows

Pr(R≻ P) =
∫

T hreshold(KP,KR)=1
fP(KP) fR(KR)dKPdKR

=
∫

T hreshold(KP,KR)=1
1 ·1dKPdKR

=
∫

T hreshold(KP,KR)=1
dKPdKR.

(7.11)

7.3.3 Context-based Classification

WOBA framework in chapter 6 will be used to translate strategies into context-based

classification models. To make this section more clear, some materials in chapter 6 will be

repeated in this section. The context-based classification consists of three steps: i) construct

vectors from the workflows; ii) train a classifier on a subset of the vectors; and iii) test the

classifier on the remainder of the vectors. Since the work of this chapter does not focus on

a specific machine learning algorithm, here we focus on the process by which we construct

vectors used for prospective and retrospective models.

7.3.3.1 Prospective Model

We use C = {C1,C2, . . . ,Ch} to denote the set of context that is associated with a target

access. Cr is composed of elements from dom(Cr), which is the domain of elements as-

sociated with this type of context. For example, let U ∈C denote all users that attend the
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workflow of target access. As such, we have dom(U) = {u1,u2, . . . ,ud}, such that ui is a

certain user in the system.

In a prospective model, the system needs to make a decision once the target access ei has

been issued. At the moment ei is issued, we only know the accesses transpiring beforehand,

which corresponds to ε1 = ⟨e1,e2, . . . ,ei−1⟩. For ei, we can use vectors as representations

of all h types of context. Equation 7.12 denotes V (U), the vector corresponding to context

U .

V (U) = (vu1,vu2, . . . ,vud) (7.12)

In this model, vux is set to 1 if ux is observed when at least one e j ∈ ε1 transpires, otherwise

it is set to 0.

For example, imagine we want to construct a vector corresponding to U (i.e., V (U)),

for the target access e3 in Figure 7.1. Let dom(U) = {u1,u2,u3,u4,u5,u6,u7,u8} in the

system and ⟨u2, u4, u5, u1, u3, u8⟩ be the user sequence corresponding to the workflow in

Figure 7.1. ε1 = ⟨e1,e2⟩ is the access sequence occurring before e3, where e1 and e2 are

executed by u2 and u4 respectively. Thus, the vector corresponding to U for target user is

(0,1,0,1,0,0,0,0).

We use ⊕ to denote the union of two vectors1. As such, the vector for all h context can

be represented as CV = V (C1)⊕V (C2)⊕. . .⊕V (Ch).

7.3.3.2 Retrospective Model

A retrospective model is employed to review the target access using accesses occurring

in the entire workflow. These accesses correspond to ε0 = ⟨e1,e2, . . . ,ei−1,ei+1, . . . ,el⟩. In

this case, during construction of V (U), vux is assigned 1, if user ux exists when at least

one e j ∈ ε0 transpires (i.e., e j is executed by ux). In Figure 7.1, the user context vector of

the retrospective model is (1,1,1,1,0,0,0,1). It is not necessary for the vector V (Cr) in

1For example, vector C = ⟨a1,a2, . . . ,am,b1,b2, . . . ,bn⟩ is the union of vector A = ⟨a1,a2, . . . ,am⟩ and
vector B = ⟨b1,b2, . . . ,bn⟩ (i.e., C = A⊕B)
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the prospective model and retrospective model to be different. For example, V (Cr) will be

identical for two models when Cr denotes the time the target access was issued.

7.4 Experiment Design

This section provides an overview of the experiments designed for this study. It begins

with a description of the context extracted from real electronic medical record (EMR) data

introduced in Chapter 3. This is followed by an explanation of how context was modeled to

train the prospective and the retrospective security models. We then introduce the machine

learning algorithm used for training the models and the specific measures used for assessing

their performance. Note there is a major overlap with section 6.4 in this section, which

would not be avoided for the ease of read.

7.4.1 Extract Context

In the EMR of Northwestern Memorial Hospital, each (patient-id, encounter-id) pair

defines a unique workflow for patient treatment. This encounter begins when the patient

is admitted to the hospital and ends two weeks after discharge (to ensure that accesses

associated with medical billing are captured). Of the remaining information, there are five

types of context: i) the time a target access was issued (Time)2, ii) the hospital service the

patient was on at the time of the target access (e.g., General Medicine vs. Obstetrics), iii)

location in the medical center where the patient resided when the target access was issued,

iv) the users who commit accesses in the workflow of target access and v) the job titles

associated with these users.
2For this work, dom(Time) consists of four values: a) Morning (6am - 12pm), b) Afternoon (12pm -

6pm), c) Evening (6pm - 12am), and d) Night (12am - 6am)
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7.4.2 Dataset Preparation

Without loss of generality, assume target user t participates in N patient workflows.

The corresponding context vectors are CV+
1 ,CV+

2 , . . . , CV+
N , which are composed using

the approach described in Section 7.3.3. These vectors are associated with a positive label

class. We use the following process to generate a corresponding set of N negative labeled

instances. We randomly select a workflow in which user t failed to issue an access. From

this workflow, we randomly select an access and build a corresponding context vector.

Doing so N times yields a set of vectors CV−1 ,CV−2 , . . . , CV−N , which are associated with

the negative class. Note that we create different CV+
i and CV−i for prospective model and

retrospective model respectively.

To conduct our evaluation, we construct 10 datasets, each of which corresponds to a

different job title. Let us use Patient Care Staff Nurse as an example. We randomly pick 10

users whose job titles are Patient Care Staff Nurse. For each user, we construct N positive

samples and N negative samples using the process described above. We select 80% of the

vectors from the positive and negative samples, respectively, for the training set, and use

the remaining 20% as the test set. The samples generated for all 10 users are then combined

to form a single dataset for this job title and the overall performance across the 10 users is

measured to evalute the entire dataset. To ensure the results are representative, we select

job titles from 10 different hospital departments. The job titles and summary statistics are

shown in Table 7.1.

We train a classifier for each user using a support vector machine (SVM) using an RBF

kernel [50]. We utilize a grid search technique [50] to find values for parameters to enable

a robust SVM. For each user in the job title, we use the classifier trained on the training set

of this user to assess the corresponding test set.
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7.5 Experiment by Traditional Methods

In this section, we compare prospective and retrospective security models using tradi-

tional evaluation strategies to set a baseline. We observe what kind of decision would be

made by these traditional strategies, and figure out they may make unwise decision some-

times.

Figure 7.4: Accuracy of the prospective and retrospective security models for various NMH
job titles

First, Figure 7.4 presents the accuracy of both the prospective model and the retrospec-

tive model on 10 datasets. It can be seen that the retrospective model has a higher accuracy

than the prospective model for each job title. This evidence supports the hypothesis that

contextual information obtained after a target access can lead to better classification per-

formance. Simply put, an retrospective model can yield a more correct assessment of an

access request. Moreover, from Table 4.3 it can be observed that AUCR is larger than AUCP

for every job title, which further indicates that retrospective security models are better than

prospective security models under a traditional assumption of costs.

Next, we inspected the ROC curves of the prospective and retrospective models. The

curves for three of the job titles are depicted in Figure 7.5. From the ROC curves, we find

that the retrospective model dominates the prospective model for the three datasets. This
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Table 7.1: Datasets per job titles and the AUC for their corresponding prospective and
retrospective models.

Abbrev. Job Title Instances Per Class AUCP AUCR
US Unit Secretary 1839 0.984 0.994
QA Utilization Review/Quality Assurance 1 1069 0.959 0.972
PS Patient Care Assistive Staff 777 0.979 0.983
RE Rehabilitation - Physical Therapist 712 0.944 0.964
RC Resident/Fellow CPOE 504 0.925 0.967
AC Anesthesia CPOE 456 0.932 0.953
PC NMH Physician CPOE 448 0.953 0.979
PN Patient Care Staff Nurse 382 0.939 0.959
EN Emergency Department Patient Care Staff Nurse 366 0.961 0.976
RR Radiology Resident/Fellow 364 0.919 0.944

indicates that, if the assumption of equal costs for false positive (negative) holds true, then

the retrospective model will always be chosen regardless of the false positive (negative)

cost estimation and prior positive (negative) probability. The cost curve is considered a

dual representation of the ROC curve. This means using cost curve would reach the same

conclusion (i.e., retrospective model wins) as the ROC curve for the job titles studied. As

such, we do not present the cost curve in this section.

(a) ROC of AC (b) ROC of PS (c) ROC of RE

Figure 7.5: ROC curves for the prospective and retrospective models of three job titles.

The assumption of equal costs for security-related classifiers is made in almost all pre-

vious research. And, if a security professional worked under this belief, then retrospective

protections would almost be utilized over prospective models. However, as has been al-

luded to, this assumption certainly does not hold and, as the following results will illustrate,

can unnecessarily justify costly behavior.
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7.6 Experiment by Bispective Analysis

This section shows how our proposed technique affects the prospective versus retro-

spective decision model. First, we draw a series of contour plots for Magnitude(KP,KR)

or T hreshold(KP,KR) under a different ratio = c(P)01 /c(R)01 for job title Radiology Residen-

t/Fellow. We demonstrate how prospective and retrospective models can be compared from

various pespective. Then, we present several case studies to show the application of our

cost analysis technique in real environments, which demonstrates our technique can make

a more reasonable decision than traditional methods.

7.6.1 Make Decision with Bispective Analysis

Figure 7.6 shows the contour plots of T hreshold(KP,KR) for the Radiology Residen-

t/Fellow job title. With full knowledge about costs and the prior distribution of positive and

negative instances, we can determine which security is best by pinpointing the correspond-

ing coordinate in the plot. We will present case studies later to show this process in detail.

With uncertainty in costs and prior distributions, bispective analysis can still be conducted

through the contour plots from various perspectives, as we now illustrate.

(a) raito = 0.3 (b) ratio = 1.0 (c) ratio = 3.0
Figure 7.6: Contour plots for T hreshold(KP,KR) with different ratio for the Radiology Res-
ident/Fellow. The red and blue regions correspond to when the retrospective and prospec-
tive models dominate, respectively.
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7.6.1.1 Probability Analysis

According to section 7.3.2.2, the area of the region in the contour plot determined by

T hreshold(KP,KR) = 1 equals the probability that R ≻ P. Now, assume that we already

know ratio = 0.3. Then, if we look at the contour plot corresponding to ratio = 0.3 in

Figure 7.6(a), it is clear that P(R ≻ P) < 0.5. This means that an administrator should

choose a prospective model to manage the accesses from Radiology Resident/Fellow when

only ratio = 0.3 is known.

7.6.1.2 Range Narrowing Analysis

In certain instances, with limited knowledge of costs and prior distributions, the search

space can be narrowed into a small area. When this is possible, it can provide a clear

solution to which model should be selected, even if such a decision was not possible in

general. For instance, in an hospital system, the following assumptions about costs for

misclassification in prospective and retrospective systems:

c(P)01 ≈ c(R)01 (7.13)

c(P)10 > c(R)10 (7.14)

The first assumption (Equation 7.13) states that the cost of the prospective system al-

lowing a malicious access and the cost of the retrospective system failing to identify a

malicious access are approximately equal. The second assumption (Inequation 7.14) states

that the cost of a prospective system blocking an access from Radiology Resident/Fellow

would be greater than that of a retrospective system incorrectly identifying a normal and

historical access from this job title as malicious. We will discuss how these assumptions

are justified in our case studies. When such an assumption holds, we should look at Figure
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7.6(b), which is a contour plot of T hreshold(KP,KR) given ratio = c(P)01 /c(R)01 = 1.0. Addi-

tionally, based on these assumptions, it follows that KP−KR < 0 because the numerator of

KP and KR are equal according to c(P)01 ≈ c(R)01 , and denominator of KP would be larger than

that of KR according to c(P)01 ≈ c(R)01 and c(P)10 > c(R)10 . In Figure 7.6(b), it can be seen that the

KP−KR < 0 is always located at the left of the diagonal (i.e., the black dashed line in the

figure), a region where the retrospective security model is always dominant.

Note that when c(P)01 = c(R)01 and c(P)10 = c(R)10 (i.e., the premise that false positive (negative)

costs are equal across two models holds), we have KP−KR = 0, which corresponds to the

dashed line in Figure 7.6(b). That means our bispective analysis can still work under the

permise as is believed in traditional ROC analysis.

7.6.2 Case Studies

In this section, we show three examples of bispective analysis in the domain of health-

care. We consider three job titles, Patient Care Assistive Staff and Anesthesia CPOE, and

Rehabilitation - Physical Therapist, estimating c(P)01 , c(R)01 , c(P)10 , and c(R)10 for each job title,

and then apply bispective analysis to determine if a prospective or a retrospective models

should be applied on this job title. We show that, for some jobs, choosing a prospective

model will minimize cost, disagreeing with techniques that do not take cost into account.

The estimations described are by no means exhaustive; rather they exist to demonstrate the

utility of a cost-based decision support.

7.6.2.1 Cost Estimation

c(P)01 represents the costs of allowing an inappropriate access under a prospective model,

while c(R)01 represents the costs of deciding not to review an illegitimate access under a ret-

rospective model. These costs are generally the result of fines under HIPAA, HITECH,

and other heathcare security statues. As the fines associated with inappropriate access are

likely relatively independent of the security model that they were performed under, we as-
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sume equality of c(P)01 and c(R)01 . We also assume that fines due to inappropriate accesses

are equivalent regardless of who makes them. For the sake of example, fines for inappro-

priate access over eight separate incidents in California hospitals ranged from $5,000 to

$225,000, averaging $18,546 per inappropriate access [68, 69]. Though costs associated

with inappropriate access will vary due to jurisdiction and individual details, we use this

average as both c(P)01 and c(R)01 for the three job titles.

c(P)10 represents denying a legitimate access under a prospective model. This is likely

the most difficult cost to estimate, as it alters behavior in a way that is not currently present

in medical settings. For Patient Care Assistive Staff, which generally would be assisting

another employee that has chart access permission, we can estimate c(P)10 as an hour of per-

sonnel time with no other costs. The national average wage for medical assistive staff is

$11.73 [70]. For Anesthesia CPOE, in the best case, withholding physician access to a

patient chart would cause the physician to wait, incurring a cost of only an hour of per-

sonnel time. The national average hourly compensation for anesthesiologists is $183 [71].

However, withholding access during a high-risk, high-urgency situation could result in a

number of adverse outcomes, such as misdiagnosis or drug interactions, reducing qual-

ity of care and introducing the prospect of legal action. There is very little data on such

a scenario. We estimate c(P)10 for Anesthesia CPOE to be $500, although it could range

from our conservative estimate of $183 to something orders of magnitude higher depend-

ing on physician behavior. Physical therapists generally work in low-urgency situations,

so adverse outcomes are significantly less likely. We estimate c(P)10 for them as $39.51, the

national average wage [70].

c(R)10 represents the costs associated with auditing a legitimate access. We assume that

this decision only incurs costs related to personnel time, specifically an hour of auditor time

at $32.10 [70], again the national average for compliance officers, and an hour of time from

the individual being audited. Thus c(R)10 for Patient Care Assistive Staff is approximately

$43.83, while c(R)10 for Anesthesia CPOE is approximately $215, and c(R)10 for Rehabilitation
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(a) Contour for AC when ratio = 1 (b) Contour for PS when ratio = 1 (c) Contour for RE when ratio = 1

Figure 7.7: Case Study Contour Plots

- Physical Therapist is $71.61.

7.6.2.2 Bispective Analysis on Three Job titles

The resulting values of KP and KR for Patient Care Assistive Staff (PS), Anesthesia

CPOE (AC) and Rehabilitation-Physical Therapist (RE) are in Table 7.2, assuming 1% of

accesses are inappropriate. Using the contour plots in Figure 7.7, we can make the fol-

lowing observations. For AC, a retrospective model minimizes cost. For PS, a prospective

model minimizes cost. For RE, bispective analysis shows the prospective model minimizes

cost (or at least no preference between the two). Remember if we use traditional methods,

retrospective models would be chosen for all three job titles.

Table 7.2: Cost Estimation

c(P)01 c(R)01 c(P)10 c(R)10 KP KR

PS $18,546 $18,546 $11.73 $43.84 0.94 0.81

AC $18,546 $18,546 $183.00 $215.10 0.33 0.46

RE $18,546 $18,546 $39.51 $71.61 0.82 0.72
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Chapter 8

Conclusion

8.1 Summary of Research

This dissertation introduced a set of data-driven techniques to faciliate insider threat

mitigation, which are summarized in this section.

First, we introduced a role prediction and a role revision method with EMR data. This

study illustrated that usage patterns of a commercial EMR system can enable accurate

prediction of certain roles in a healthcare system. Additionally, we illustrated that an au-

tomated approach can be leveraged to integrate role hierarchies with information learned

from EMR access logs to improve role management. These findings are notable because

they suggest that RBAC, in combination with some EMR usage mining, may assist in min-

imizing the management of access to an EMR system. Moreover, the increased specificity

provided by User Positions versus higher levels within the role hierarchy enables more

detailed access pattern analysis. These results are further notable because a recent report

from the Presidents Council of Advisors on Science and Technology (PCAST) recom-

mended that emerging health information architectures should leverage security principles

that have proven successful in a range of industries beyond healthcare [72]. In particular,

the PCAST report alludes to RBAC as a foundation upon which such policies can be de-

fined. With respect to the healthcare domain, RBAC is intended to be a scalable framework

for commissioning (and decommissioning) users with access rights to functions (e.g., or-

der issuance) or elements of a clinical information system (e.g., a specific patients record).

And, notably, various commercial EMR systems have integrated such security frameworks

into their design. Yet, as the PCAST report acknowledges, healthcare organizations rarely

execute RBAC on the scale found in other domains.
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Second, this dissertation proposed a novel role engineering algorithm that enables a

controlled evolution of RBAC based on the utilization of permissions (as documented in

access logs). We devised an objective function that balances an administrator’s beliefs

and actual permission utilization, and defined a role mining problem for finding an RBAC

configuration that optimizes this objective. To solve this problem, we proposed a two-

phase heuristic algorithm. We then performed an empirical analysis with real and simu-

lated datasets to show that our algorithm can generate appropriate RBAC configurations

for various biases of the two competing goals of the objective function.

Third, this dissertation introduces a workflow based audit (WOBA) framework to audit

accesses. The empirical results show WOBA could yield a satisfactory accuracy on the

dataset, and workflow features play a vital role in the performance. In addition, adding

sequential features improved the performance considerably.

Fourth, we propose a novel framework that enables organizations to perform compari-

son between prospective and retrospective models on a quantitative scale. Developing such

a framework addresses two challenges. First, existing prospective and retrospective models

are semantically different such that their results are not directly comparable. Second, the

assumption that costs of false positive (and false negative) are equivalent across the clas-

sifiers needs to hold for existing technique to conduct cost analysis of multiple classifiers.

To address the first challenge, we converted the two security models (i.e., prospective and

retrospective) into a unified classification models by training the same classifiers on the

data represented by the same set of features (contexts). To address the second challenge,

we devise a visualized analysis method, named bispective analysis, that leverage contour

plot of a comparison function to provide a direct decision support for administrator. We

then experimented on a real hospital information system with this framework to show that

it can provide good decision support quality. Somewhat surprisingly, we also found it can

provide decision support even when knowledge about costs are insufficient.

87



8.2 Limitations

This section discusses the limitations for the techniques proposed in this dissertation.

For the first technique, there are two drawbacks. The first drawback of this study to note

is that the original roles (i.e., User Positions), were defined over time and not in a single

security engineering design. As a consequence, in certain cases, User Position designations

represent vestigial remnants of a prior CPOE roll-out strategy. That is, for a time, selected

physician user roles were not entering orders online, although now all physician User Po-

sitions include this functionality. Additionally, User Position assignments fail to take into

account some workflow idiosyncrasies. For example, hospital medicine physicians, or hos-

pitalists, often serve as a pilot physician group requiring their User Position to be distinct

from other internal medicine physicians. Hospitalists may also work as a non-hospitalist

(e.g., as a teaching attending), however, and, at those times, their chart access patterns

would differ from their hospitalist service rotations. The second drawback of this study

is a function of the Role-Up algorithm. Currently, the roll-up procedure is guided by a

greedy heuristic. Specifically, in each iteration, the algorithm generalizes the set of sibling

roles (i.e., roles with a common parent) that provide the greatest gain in predictive accu-

racy without sacrificing much role specificity. However, this process does not guarantee

the discovery of a system that maximizes the number of roles and system accuracy.

The second limitation of this dissertation is with respect to DDRE algorithm. First,

our strategy is based on permission utilization patterns in an atemporal fashion. This is

a simplification of the access logs and neglects that the order in which permissions are

invoked may be correlated. Second, our approach is predicated on the hypothesis that there

is only one pattern (in the form of a distribution of permission rates) associated with the

underlying roles. Yet, it is possible there could be multiple patterns.

The third limitation of this dissertation is about time complexity of WOBA. Although

the introduction of sequential feature improves the auditing performance, the extraction

of sequential features would take prohibitively long time with the increment of sequence
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length. This would be a obstacle to take advantage of all possible workflow information

(e.g. roles and users).

Finally, there are two limitations for bispective analysis that should be acknowledged.

First, its decision support method relies heavily on the contour plot of comparison function

of two models. That means we may need C2
n=n(n−1)/2 contour plots when there are op-

tions of n models. When n is a large number, we would need to study too many contour

plots to make a decision, which would offset the visual convenience of contour plot. An-

other limitation is that the cost function used in this paper assumes correct classification

does not incur cost, which however is not the case in reality. For example, let us consider

retrospective model in hospital system. Assume a user issued a malicious access to a pa-

tient’s record in the system, and was identified later by retrospective system. Even though

the user would be penalized, it is possible the patient’s information has already been leaked

to the public, which would lead to costly consequence.

8.3 Future Research

This section provides intuition into how to extend the research reported in this disserta-

tion.

First, the data studied in this dissertation is simplified with respect to the settings in

which it was captured. For instance, it is assumed that each user appears in a workflow

only once. This is obviously not the case in real world. Additionally, the time span of

the data is only three months, such that the patterns (and anomalies) detected may not

be completely indicative of the functions of an organization over time. Resolving these

two issues would be helpful in improving the usability of techniques in this dissertation in

practice.

Second, it is important to recognize that there could be a gap between the objective

function defined in this dissertation and real world security requirements. It would be

worthwhile to investigate the extent those objective functions reflect the real requirements.
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Third, this dissertation assumes that only one security strategy (prospective strategy

vs. retrospective strategy) would be adopted in real world. However, it is possible that an

organization would have an interest in combining these approaches in practice. Investigat-

ing how to combine these approaches into a sequential decision making setting would be

worthwhile.

8.4 Conclusion

The insider threat has become one of the greatest threat to information security. Two

questions are raised when there is a need to design an insider threat mitigation system: 1)

What strategy (i.e., prospective vs. retrospective) should be adopted for the target organi-

zation? 2) Once one strategy is chosen, what specic method should be used to implement

it? To answer these two questions, this dissertation proposed a set of novel data-driven

techniques, which are validated in a real dataset. We believe techniques in this dissertation

will empower security expert to design more secure and less costly insider threat mitigation

system.
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