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Chapter 1

Introduction

In many educational and psychological research settirags, aften have a multilevel
structure, such as students within schools or participaessed within day care centers.
Further, binary outcome variables (e.g., true-false angwesent-absent symptom, endorsed-
not endorsed attitude) are often assessed. When the dattustris multilevel resulting
from cluster sampling or multistage sampling and the typeus€ome is binary, multilevel
item response models have been widely applied.

In many multilevel item response model applications, thmesgem discriminations
or loadings are often assumed at the within-level (e.g.sthdent level) and the between-
level (e.g., the school level). In Rasch multilevel itemp@sse models, it is assumed
that item discriminations over levels are the same and aohgKamata, 2001). In two-
parameter multilevel item response models, the same itsamigiinations over levels are
estimated (e.g., Fox & Glas, 2001; Fox, 2004, 2005, 2010;t$i8uCai, 2013; Jeon &
Rabe-Hesketh, 2012). Further, the same item discriminatime assumed over levels in a
multilevel extension of multiple-indicator multiple-ceeI(MIMIC; Joreskog & Goldberger,
1975) approaches (Finch & French, 2011; Kim, Suh, Kim, Alse) & Langer, 2013).
The model formulation that has the same item discriminatmrer levels is referred to as
a variance component factor model (Rabe-Hesketh, Skrp&dzickles, 2004).

Following the tradition of a general multilevel factor mdae multilevel structural
equation modeling (MSEM; McDonald, 1993; Muthén, 199194:Rabe-Hesketh, Skron-
dal, & Pickles, 2004), it is possible to have separate itesar@dnination parameters at each
level of multilevel data. Jak, Oort, and Dolan (2014) usesltdrmcluster biasto refer to
measurement bias across clusters, and cluster bias catelq@éted as measurement bias

regarding any cluster-level variable. Item discriminatdiffering across levels is consid-



ered evidence ofluster biasor alack of cluster invariance Cluster bias can exist at the
test level or at the item level. Hereafter, cluster bias atiést level is calledlobal cluster
bias whereas cluster bias at the item level is calteth cluster bias

Cluster invariance is an important assumption to test ihdat applications. Within-
level item discrimination indicates how strongly each iteomrelates with a within-level
latent variable, and between-level item discriminatiodi¢ates how strongly each item
correlates with a between-level latent variable. Thushagresence of cluster bias, the
latent variables in multilevel item response models do @motlithe same scale or meaning
over levels. In such cases, separate scores at differazis Iglvould be reported (Cronbach,
1976). When cluster invariance is assumed, it can be hypiate that the mean of the
within-level scores is approximately equal to the betwksel scores (Patarapichayatham
& Kamata, 2014). However, in the presence of cluster bids,nbt appropriate to report
the mean individual scores instead of the between-leveesco

As noted in Muthén and Asparouhov (2013), some applicatame required to have
different item discriminations at each level and differenimbers of latent variables at
each level. For example, Harngvist, Gustafsson, Muthéd,Nelson (1994) found “fluid”
abilities highly loaded on a general factor in addition tefather residual factors at the
student level, whereas “crystallized” abilities highlatied on the general factor in addition
to two other residual factors at the classroom level.

In addition, testing cluster bias is crucial for reducing ttumber of parameters to be
estimated in multilevel item response models or MSEM withely responses. The model
with cluster invariance is a much simpler model than the rhadté cluster bias. In two-
level data with cluster bias, for example, a model with @dustvariance can be obtained by
setting equality constraints between the within-levehigiscriminations and the between-
level item discriminations when the number of latent vdeatover levels is the same in
the model.

Previous research on measurement invariance in multilgatl focused on testing



whether the parameters of multiple-group multilevel conéitory factor analysis (CFA)
are the same across groups at the cluster level (e.g., gaaguhool group vs. regular
school group) (Jak & Oort, 2015; Kim, Kwok, & Yoon; 2012; Mah& Neale, 2005;

Muthén, Khoo, & Gustafsson, 1997; Ryu, 2014) or at the irdlial level (e.g., male stu-
dents vs. female students) (Jak et al., 2014; Kim, Yoon, Wan, & Kwok, 2015; Ryu,

2014). Jak and Oort (2015) reported the performance of a Watdand a likelihood ratio
test (LRT) to detect cluster bias at the cluster level wittva-tevel common factor model.

Compared to individual-level or cluster-level resear@hy tudies have addressed the
cluster bias over levels (e.g., the student level and thedddevel). Jak et al. (2014)
presented a method for testing cluster bias in a two-levelroon factor model using a
chi-square difference test and evaluated the performahtteedest to detect cluster bias
over levels. De Jong, Steenkamp, and Fox (2007) and Fox atadyen (2010) presented
random item response models to test whether individuahiésm parameters differ over
clusters. Patarapichayatham and Kamata (2014) showedféwtseof different patterns
and magnitudes of item discriminations over levels on thamedes of within-level and
between-level abilities in a two-parameter multilevemteesponse model. However, there
is a lack of research on the evaluation of cluster bias detechethods and the conse-
guences of ignoring cluster bias in terms of the accuracyacdipeter estimates in the use
of multilevel item response models.

Thus, the first purpose of this study is to evaluate detectiethods for cluster bias.
The second purpose is to show the consequences of ignotistgcbias for the accuracy
of parameter estimates and standard errors (SES) in a tvaoreter multilevel item re-
sponse model because many multilevel IRT applications diccansider the cluster bias
in the model. We limit our study to two-level data and a latesntiable at each level that
are common among educational and psychology studies. dfuitithis study, the param-
eters of the model are estimated using marginal maximurtiiiked estimation (MMLE).

Accordingly, cluster bias detection methods are discusdesh MMLE is used.



This paper is organized as follows. First, we specify the-paoameter multilevel item
response model with and without cluster bias and preserddtextion methods. Second,
an empirical study is shown to illustrate global and itemstdu bias detection when the
two-parameter multilevel item response models are usdaseuently, a simulation study
is presented to evaluate the detection methods and to showotisequences of ignoring

cluster bias. We end with a summary and a discussion.



Chapter 2
Multilevel Item Response Model and Cluster Bias

To frame this data structure within the multilevel litena\e.g., Bryk & Raudenbush,
1992, Ch. 8), item responses at Level 1 are cross-classiftaghersons and items. Persons
at Level 2 are nested within clusters at Level 3. In our speatifoin, Level 2 is the within-

level, and Level 3 is the between-level.
2.1 Multilevel Item Response Models

Multilevel 1tem Response Model with Cluster Bias

Figure 2.1 depicts a two-level two-parameter multilevehitresponse model with clus-
ter bias, which is then specified with equations. In the figtihe squares and the el-
lipses represent manifest and latent variables, resgdgtivtem responses are specified
as [Yik,-- -, Yjki,- - -, Yjki]" for personj (j = 1,...,J), clusterk (k = 1,...,K), and item
(i=1,...,1). Dependency in item responses is explained by two latendhlas,6;c and
6, for the within-level and the between-level, respectivdBach item has its own item
discrimination at Level 2 and Level 3, specified @sv and a; g, respectively. An item
location parametef; g, is specified at Level 3.

Let there be a latent respongg; so that the observed response is 1 whign> 0 and

0 otherwise. Assuming that

Yiki = diw - Ojk + adig- 6&—Bis+Eis (2.1)

whereegjii is a logistic distribution with a logit link. An individuateém score is the com-
bination of the cluster mean and its deviation from the eustean Elyj,;] = E[yg,] +

E[Wiji]) (Heck & Thomas, 2009). Accordingly, an item location isg@geted at Level 3.



Between (Level 3)

Item Responses

Within (Level 2) Oik
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Figure 2.1: Multilevel (two-level) item response modellmiuster bias



The latent response formulation in Equation 2.1 producesribdel for the observed
responsegjxi. The two-parameter multilevel item response model witlstelubias is as

follows:

logit[P(yjki = 1|Bjk, 6)] = diw - O+ aig- 6 — Big. (2.2)

To identify the model, the means and variances of the latidbles 62 and1?) are set to
0 and 1, respectively. Alternatively, item location andcdimination for one of the items
(e.g., the first item) can be set to 0 and 1, respectivelygawsof setting the variances to 1:
B1=0,a1w =1, anda; g = 1 to identify the location and scale units of parameterssThi
scaling of the unit variances over levels provides comgariédm discrimination estimates
over levels. However, this scaling does not yield equalsuait a common construct. As
in multigroup item response models, item parameters camked through anchor items
over levels.

Based on Equation 2.2, an intraclass correlation (ICC) essplecified for each item to
indicate the proportion of variance that is attributableltesters. The ICC is the correlation
coefficient (Corr) among the probabilities of the item rasgEs on the logit scale for the

same clustek, but different persongandj’, and can be defined as follows:

Cov(P (yjki) P(Yjiki))

ICCi = Corr(P(Yiki), P(Yixi)) = (2.3)
| a e \/Var (Yiki) - v/ Var(P(yjui))
a2 T?

— B (2.4)

\/alzwaz +afgT?- \/a W02+ CYZBTZ

With model identification constraints;? = 12 = 1, ICG, leads to

a? a?

ICC; = LB - B (2.5)

2 2
2 2 2 2 asy + d;
\/GI7W+GI7B~\/CYI7W+GI7B |7W |7B

The derivation for ICEis shown in the Appendix.

Cluster bias. Measurement invariance is tested at the following four leve.g.,



Widaman & Reise, 1997): (a) configural invariance-the digi@mand the pattern of zero
and non-zero loadings (or item discriminations) are theesacross groups; (b) weak
invariance-the loading is invariant across groups; (Qmgjrinvariance-the loading and the
intercept (or item location) are invariant across groups; @) strict invariance-the loading,
the intercept, and the residual variances are invariamsaagroups. Applying these four
analyses to cluster bias, only configural invariance andkwariance are relevant to the
use of multilevel item response models. In this study, caméibinvariance was assumed
because we set a limit of one latent variable at each levainuhtilevel measurement in-

variance testing for clusters, cluster bias over levelsliras only item discriminations for

the weak invariance assumption.

With the derivation of ICE¢ (Equation 2.5), cluster bias (GBcan be calculated as

11— I1CC;
B —Oir—Oiw=0ir—Qin-] " 2.
CBi=aip—aiw=Qig—0aip ICC, (2.6)

As can be seen in Equation 2.6, cluster bias magnitude iseseaith decreasing IGC

follows:

Multilevel I1tem Response Modelswith Cluster Invariance
When cluster invariance is assumed, equality constrawves levels are imposed on
item discriminations in Equation 2.2rw = aj g = a;. Accordingly, the two-parameter

multilevel item response model with cluster bias andl@duces to
logit[P(yjki = 1|6jk, 6)] = ai - Bjk + ai - 6 — Big = ai - (O + 6) — Bi g, (2.7)

| |

ICCi =
In the model with cluster invariance, the variance of therawariable at Level 2¢?) can
be set to 1 for model identification, and the variance of thenavariable at Level 3t8)

can be estimated. Alternatively, the ICC can be presentddtent variables in the models



with cluster invariance:

72

ICCp = ———.
o= 1112

(2.9)

The ICG is often smaller than 0.3 in cross-sectional empirical istside.g., Bliese,
2002; Hox, 2002; Snijders & Bosker, 1999), which indicat&aiui?B is likely to be smaller
thana?, in many applications. In addition, for the fixed number of |GEC, the mag-
nitudes of item discrimination parameters with the equalinstraint,aig = aiw = i,
are expected to be larger than the magnitudes of betweehHem discriminationsd; g)
as the number of items with cluster bias increases. Furdsethe number of items with
cluster bias increases, the magnitudesiofre expected to be close ¢&,. Thus, in the
case of ICG= C, the variance of the latent variable at Leveli3)(decreases in a cluster
invariance model as the number of items with cluster biaseses (witho2 = 1 for model

identification). To put this expected resultmfinto an equation,

2 2
a‘gT

ICC = ———"2+— =
| ady +agT?

C, (2.10)

wherea? tends to be overestimated thafi anda?3,, is close tog; as the number of items
with cluster bias increases. With this pattertends to be underestimated in order to have

ICCi =C.

2.2 Parameter Estimation

MMLE and expected a posteriori (EAP) scoring were impleradnising Mplus ver-
sion 7.11 (Muthén & Muthén, 1998-2015). In Mplus, MMLE da@ implemented with the
MLR estimator option, which provides a test statistic and 8&ng the Huber-White sand-
wich estimator that are robust against non-normality. eéift adaptive quadrature points

were used for estimation and EAP scoring.



Chapter 3

Detection Methods

In this section, the LRT (also known as the chi-square difiee test) and model in-
formation criteria are described as methods for detectiolgad cluster bias. In addition to

these methods, the Wald test is described as a method fatidgtéem cluster bias.

3.1 Global Cluster Bias

Two models that we compared to detect global cluster biaasafellows: Model 1 (the
invariance model), for all items, discrimination paramgt&re the same at the within-level
and the between-level; and Model 2 (the global bias mod&lglf items, the discrimination
parameters are freely estimated at the within-level andédxen-level.

Because the two models are nested, the LRT can be conductdtie LRT, the ap-
proximately chi-square-distributed test statistics istimes the difference between the log
likelihoods from the two models, with degrees of freedomatda the difference in the
number of free parameters (i.e., number of items + 1[vadaid evel 3]).

The two models are also compared with model informatiorecsdt the AIC (Akaike,
1974), the BIC (Schwarz, 1978), and the sample-size adju&ite (saBIC; Sclove, 1987),

specified for a Modetn as follows:

AICyh=—-2-LL+2p, (3.1)
BICm=—-2-LL+p-In(J), (3.2)

and
saBIG,=—-2-LL+ p-In(%), (3.3)

wherelLL is the log-likelihood of the estimated modegl,is the number of estimated pa-

10



rameters, and is the number of observations. In calculating the BIC, itificllt to
define the sample size (Skrondal & Rabe-Hesketh, 2004). lilevel IRT applications,
the number of persong, has been used for this purpose (e.g., Bartolucci, Pen&ovi;
tadini, 2011; Cho & Cohen, 2010; May, 2006). Thus, in theentstudy,) was chosen for
the calculation of the BIC. The lowest AIC or (sa)BIC valugaken to indicate the best
fitting model. See Cohen and Cho (2015) and Vrieze (2012)eaews on using model

information criteria in item response modeling and lateriable modeling.

3.2 Item Cluster Bias

The following two models can be compared to detect item elusias, based on the
LRT, AIC, BIC, and saBIC specified in Equations 3.1-3.3: Miadénvariance model), for
all items, the discrimination parameters are the same awitn-level and the between-
level, and Model 2 (item bias model), for one item to be stddibe discrimination pa-
rameters are different at the within-level and the betwlegal. In the item bias model, the
variance of the Level 3 latent variable can be estimatedusectinere are anchor items over
the levels. Thus, there is one degree of freedom for the LRT.

To detect item cluster bias, a Wald test for each item can Ipéeimented. For an item

(Gw—0ig)—0
SE(aNV*aiB)

the 0.05 level. A two-tailed test was implemented becaws®e discrimination parameters

i,z= can be used to test whethidp : a = aow — aig = 0 can be rejected at
can range from positive infinity to negative infinity (Baker Kim, 2004), and thusg;

ranges from positive infinity to negative infinity. When aent is tested using the Wald
test, other items are assumed to be anchor items for scaleacahility over levels. Thus,
the variance of the Level 3 latent variable can be estimatdlda detection of item cluster
bias. It is expected that the performances of the Wald testtaLRT are similar because

the Wald test is asymptotically equivalent to the LRT (Engle84).

11



Chapter 4

Empirical Study

4.1 Data

To illustrate global and item cluster bias detection in tee af a two-parameter multi-
level item response model, we chose a data set collected dha&xal (1999) and previously
analyzed by Fox and Glas (2001) and Vermunt (2007) usingitbeparameter multilevel
item response models. The data are from an 18-item mathatest by 2,156 students in
97 schools in the Netherlands. The average cluster sizettiee number of students for

each school) was 22.22 (standard deviation = 10.31, rat§e86p]).

4.2 Analysis

The data set was analyzed twice, once with the cluster emwe# model and again with
the cluster bias model. Vermunt (2007) showed that a twaspater item response model
with the same item discriminations over levels fits the saata detter than Rasch model.
Fox and Glas (2001) analyzed the same data using a two-pianve-level item response
model with unidimensionality at each level (assuming @ustvariance). Thus, we assume
that configural invariance holds across two levels (i.ewdsits at Level 2 and schools at
Level 3) to illustrate cluster bias detection methods andaimpare results between the

models with cluster invariance and with cluster bias.

4.3 Results

Table 4.1 presents the results of global and item clustes #étection. There was
evidence of global cluster bias based on the LRT (chi-squalee=95.29,d f=17, p-

value=0.000), AIC, and saBIC. However, the BIC suggestadese of global cluster

12



Table 4.1: An Empirical Study: Results of Cluster Bias Datet

Num. LL Wald(SE) LRTET) AIC BIC saBIC
Cluster Invariance 37 -20071.795 - - 40217.589 40427.602+0310.048
Cluster Bias 54 -20024.150 - 95.290(17) 40156.300* 404¥2.8 40291.240*
Item 1 38 -20065.873 0.541*(0.146) 11.844*(1) 40207.745* 0423.434*  40302.703*
Item 2 38 -20067.790 0.534%(0.132) 8.010%(1) 40211.580* 42D269* 40306.538*
Item 3 38 -20071.701 -0.058(0.148) 0.188(1) 40219.403 303 40314.360
Item 4 38 -20070.832 0.211(0.162) 1.926(1) 40217.664 43523 40312.621
Item 5 38 -20071.156 -0.141(0.146) 1.278(1) 40218.311 AR 40313.269
Item 6 38 -20067.765  -0.345*(0.140) 8.060*(1) 40211.531* 0427.219* 40306.488*
Item 7 38 -20071.685 -0.060(0.132) 0.220(1) 40219.371 BMED 40314.328
Iltem 8 38 -20070.772 -0.252(0.190) 2.046(1) 40217.543* 380232 40312.501
Item 9 38 -20071.427 -0.108(0.139) 0.736(1) 40218.854 A2 40313.811
Item 10 38 -20070.918 0.194(0.152) 1.754(1) 40217.836 3625 40312.794
Item 11 38 -20071.669 0.063(0.213) 0.252(1) 40219.338 3025 40314.295
Item 12 38 -20039.835 -1.006*(0.136) 63.920*(1) 40155%6940371.358* 40250.627*
Item 13 38 -20071.642 -0.115(0.306) 0.306(1) 40219.284 34®%3 40314.242
Item 14 38 -20071.781 0.022(0.165) 0.028(1) 40219.563 32453 40314.520
Item 15 38 -20069.259 0.324(0.172) 5.072%(1) 40214.517* 4300206 40309.475*
Item 16 38 -20070.947 0.172(0.145) 1.696(1) 40217.894 3083 40312.852
Iltem 17 38 -20071.282 -0.219(0.222) 1.026(1) 40218.564 34262 40313.521
Item 18 38 -20071.780 -0.019(0.175) 0.030(1) 40219.560 3348 40314.517

Note.* indicates cluster bias.

invariance. For cluster bias at the item level, Items 1, 28] 12 were detected for item
cluster bias based on all criteria. Item 15 was detected #srmarhaving cluster bias based
on the LRT, AIC, and saBIC, and Item 8 was detected as an iteindpaluster bias based
only on the AIC.

Table 4.2 shows the item parameter estimates and the IC&donbdels with and with-
out cluster bias. The item locations from the two models vgarelar (correlation=0.999).
With equality constraints over levels on item discriminas in the model with cluster
invariance, the item discrimination estimates are comsiibetween-level item discrimi-
nations. Compared to between-level item discriminationthe cluster bias model, they
were overestimated in the invariance model. The SEs fortdéime discrimination estimates
in the cluster invariance model were smaller than those etcthster bias model. In the
invariance model, the variance estimate of Level 3 was Q®which was an expected result
because ICQn the invariance model was larger than that in the bias model

Figure 4.1 presents the IRT scale score comparisons bettheamodel with cluster

bias and the model with cluster invariance. At Level 2 (thedent level), it appears that

13



Table 4.2: An Empirical Study: Results of ltem Parameteingaties from Models with
Cluster Bias and Cluster Invariance

Item Cluster Bias Cluster Invariance
Qi w Qi Bis ICC Qi Bis ICC

Item 1 1.161(0.121) 0.945(0.138) -0.509(0.176) 0.399 3(@®92) -0.539(0.134) 0.5
ltem 2 1.220(0.145)  0.920(0.176) -1.408(0.172) 0.363 a(@D99) -1.435(0.143) 0.5
Item 3 1.133(0.125) 0.655(0.124) -0.186(0.122) 0.250 a@a»77) -0.183(0.119) 0.5
Item 4 1.121(0.146) 0.812(0.191) -1.609(0.168) 0.344 3(0915) -1.630(0.142) 0.5
ltem 5 0.731(0.111)  0.388(0.124) -0.891(0.101) 0.220 DO084) -0.883(0.094) 0.5
Item 6 0.874(0.105) 0.368(0.076)  0.051(0.090) 0.151 q9s67) 0.066(0.099) 0.5
ltem 7 1.119(0.116) 0.568(0.118) -0.734(0.132) 0.205 a@e91) -0.721(0.121) 0.5
Item 8 1.162(0.149) 0.528(0.145) -2.333(0.164) 0.171 A(0®95) -2.292(0.144) 0.5
Item 9 0.979(0.102)  0.476(0.098) -0.459(0.096) 0.191 T(O@DP71) -0.446(0.097) 0.5
Item 10 0.814(0.126) 0.596(0.111) -1.274(0.137) 0.349 749@082) -1.290(0.111) 0.5
ltem 11 0.981(0.140) 0.585(0.152) -1.389(0.156) 0.262  7&(@.086) -1.388(0.119) 0.5
ltem 12 0.968(0.097) 0.013(0.078) -0.045(0.067) 0.000  5M®054) 0.009(0.094) 0.5
Item 13 1.136(0.242) 0.607(0.189) -2.934(0.224) 0.222 04(1.160) -2.926(0.180) 0.5
ltem 14 1.595(0.142) 0.935(0.219) -1.835(0.194) 0.256  82A(®.118) -1.830(0.185) 0.5
Item 15 1.075(0.152) 0.732(0.144) -1.151(0.139) 0.317 26(0.113) -1.166(0.115) 0.5
ltem 16 0.756(0.089)  0.472(0.102) -0.869(0.096) 0.280  6WJ.073) -0.872(0.084) 0.5
Item 17 1.334(0.185) 0.725(0.134) -2.563(0.169) 0.228 93(@113) -2.549(0.165) 0.5
ltem 18 1.057(0.142) 0.604(0.122) -0.463(0.114) 0.246  39(@077) -0.459(0.109) 0.5

Note. Estimates are not on the same scale.

the scores from the two models were similar (correlatioB€9). At Level 3 (the school
level), the scores for the model with invariance were highan the scores for the model
with cluster bias at the lower level of the IRT scale scoresweler, the reverse pattern was
found at the higher level of the IRT scale scores. Figure dgpdnts the SE comparisons
between the model with cluster bias and the model with diust@riance. The SEs for
the model with cluster invariance were larger than thosehfermodel with cluster bias at
Level 2, whereas the SEs for the model with cluster invaBamere smaller than for the
model with cluster bias at Level 3. The smaller SEs in the rhadl& cluster invariance

may be due to overestimated item discriminations at LeveitB @quality constraints.
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Figure 4.1: Score comparisons between cluster bias (3-amascluster invariance (y-axis)
at Level 2 (top) and at Level 3 (bottom)
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Figure 4.2: Standard error (SE) comparisons between clh&s (x-axis) and cluster in-
variance (y-axis) at Level 2 (top) and at Level 3 (bottom)
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Chapter 5

Simulation Study

Cluster bias and cluster invariance conditions were géeereo evaluate detection
methods for Type | error rates and power, and to present theecuences of ignoring
cluster bias. For cluster bias conditions, the populatiata-djenerating model is a two-
parameter multilevel item response model with cluster (Eagiation 2.2). An R program
(R Core Team, 2015) was used to generate data sets.

We selected simulation conditions that may affect the patara of multilevel model-
ing from previous research (e.g., Ludtke, Marsh, Robliz&cTrautwein, 2011; Preacher,
Zhang, & Zyphur, 2011). The simulation conditions include tumber of clusters, cluster
size (i.e., the number of individuals per cluster), and B€.I Further, simulation condi-
tions related to cluster bias such as the magnitudes ofeclbss and the number of items
that have cluster bias were also considered (e.g., Pathe@Etham & Kamata, 2014). As
shown in Equation 2.5, the degree of the ICC reflects thealdmas magnitudes. In this
study, the ICC was chosen as a simulation condition instéallister bias magnitudes. In

the following, we explain these selected conditions in nu@il.

5.1 Simulation Condition

Number of clusters.

The number of clusters was setKo= 50 or 100. The smaller size of 50 was chosen
in accordance with what is found in many intervention stadeg., Bottge et al., 2015).
The larger size of 100 represents the magnitude found ilometor international assess-
ments (e.g., National Assessment of Educational Prograsshe Trends in International

Mathematics and Science Study).

Cluster size.
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Balanced cluster sizes were selectechas 20 or 50; both are commonly found in
multilevel studies (e.g., Preacher et al., 2011).
Given a selected number of clusters and cluster size, thénamber of individuals

results in four different sample sizek= 1,000, 2,000, 2,500, or 5,000.

| CC (cluster bias magnitude).
The ICC was set at ICC = .05, .10, or .30. ICC values are ranggatgr than .30 in
educational and organizational studies (e.g., Bliese2R08s considered in Preacher et al.

(2011), values of .05, .10, and .30 represent small, medameh)arge ICCs, respectively.

Number of itemsthat have cluster bias.

Twenty percent, 50%, and 100% of the items (4 items, 10 iteamd,20 items, respec-
tively) were considered as the number of items that haveerlbsgas. The first 16 items and
10 items for the 20% and 50% conditions, respectively, wetéoshave cluster invariance.

As a fixed condition, the number of item parameters was séd.dt@m parameters for
the model with cluster invariancej(and3;) were generated. Cluster bias was introduced
to item discriminations at Level 3x(g) for the model with cluster bias and was manipu-
lated by the ICC (using Equation 2.5). Item locati¢) (was generated from a standard
normal distribution, and item discriminatioa;iy) was generated from a log-normal distri-
bution with a mean of 0 and a variance of .25 used as a priaflaision in the BILOG-MG
program (Zimowski, Muraki, Mislevy, & Bock, 1996). Latenanables @ and 6;) were
generated with a standard normal distribution to adheréd¢onodel identification con-
straints.

For cluster bias, 500 replications were simulated for edctin® 36 conditions (= 2
levels for the number of clustess 2 levels for cluster sizes 3 degrees of ICCk 3 levels
for the number of items that have cluster bias) to show théopeance of the detection
methods. To show the consequences of ignoring cluster bidhdhee model comparison
approaches, each generated data set per condition wageshailyice, once with the model

with cluster invariance and with the model with cluster biBlsus, the total number of runs
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was 36,000 (= 36 conditions 500 replicationsx 2 models). For detecting item cluster
bias, the models with item cluster bias were compared wighitkiariance model. The
number of item cluster bias models was the same as the nurhitems that have cluster
bias: 4, 10, and 20 models for the 20%, 50%, and 100% bias womsli respectively.
The total number of runs was 24,000 for the 20% bias condiB0rD00 for the 50% bias
condition, and 120,000 for the 100% bias condition (= 12 diomas x 500 replications
x each number of models). Four additional conditions wereduoted to show Type |
error rates of detection methods at different levels of darsgzes (2 levels of cluster size
and 2 levels of the number of clusters). The invariance maddlthe global bias model
were compared in these conditions. Therefore, an addIttgfA0 (= 4 conditionsx 500

replicationsx 2 models) were considered for Type 1 error rates in the cagmbél bias.

5.2 Evaluation Measure

The performance of the detection methods was evaluatedyfoe T error rates and
power. Type | error rates were defined as the ratio of the nuoflienes that global cluster
bias was incorrectly identified by the detection methodssgreplications when no bias
was simulated. Power was defined as the proportion of the auafltimes that global and
item cluster bias was correctly identified by the detecti@ihods across replications when
cluster bias was simulated.

To show the consequences of ignoring cluster bias, biasheebbdt mean square error
(RMSE) for the item parameter estimates, and the IRT scaleesovere calculated for
the results of the model with cluster invariance. Bias fa@ itiem location estimates and
IRT scale scores were considered instead of relative biesuse the relative bias can be
misleading when the true parameters to be used in the deatonare close to 0. However,
for within- and between-item discriminations that are ne&an0 values in the denominator,
percentage relative bias was considered instead of biasetemt the acceptable degree

with an empirical cutoff (i.e., 10%).
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To evaluate the SEs for each kind of parameter estimateetatve difference of the
estimated SE (Hoogland & Boomsma, 1998) for each model waslated and compared

between the cluster invariance model and the global biasemod

SE= : (5.1)

whereSE is the average SE across replications ard the standard deviation of the pa-

rameter estimates across the replications.

5.3 Result Hypotheses

In this section, the expected results are described for ¢tection methods and the

accuracy of the parameter estimates and SEs.

Model selection.

The LRT and the information criteria are used to detect dlohsster bias. Deviance
becomes smaller as a model has more free parameters totestirharefore, the deviance
of a global cluster bias model is always smaller than thatrofn&ariance model. The
difference in deviance between the two models approximdddows the chi-square dis-
tribution with the difference in the number of free parametes the degrees of freedom. If
the global cluster bias model has a better fit than the inneeianodel, the LRT result will
be significant. The result of the LRT becomes significant wiherdifference in deviances
is large and the degrees of freedom are small. The differenttee number of parameters
is smaller in conditions with a small number of items thatédheluster bias. Therefore, the
LRT is more likely to show significant results in conditiongtwa small number of items
that have cluster bias, controlling for deviance. The d#ifee in the cluster bias magnitude
between the global cluster bias model and the invarianceshedreater in low ICC con-
ditions, which results in a large difference between theadwes. Accordingly, the LRT is

more likely to show significant results in low ICC conditions
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The AIC tends to select the more complicated model (the ¢loloater bias model)
when the difference in the number of parameters is smallgvdsn the two models (e.g.,
Burnham & Anderson, 2002). Therefore, the AIC is expectesidect the global cluster
bias model compared to the invariance model in conditiorns wismall number of items
that have cluster bias when the deviance of the two modeteisame. In addition, when
only the ICC differs between the two models, the deviancediiar between the two
models even though the number of parameters is the sameefdtesrthe AIC is expected
to select the global cluster bias model in low ICC conditiamntrolling for other factors.
Further, as the sample size becomes larger, the deviarwéadtsmes larger, controlling
for the number of parameters. Because the AIC does not t&k@@aount the sample size,
the AIC is expected to select the global cluster bias modearger sample size conditions,
controlling for other factors.

The BIC penalizes more than the AIC when the sample size besdanger than 8
(In(8) = 2.08). The sample size is always larger than 8 in the simulat@mditions. In
addition, a more drastic increase in log-likelihood is rieggh before a complex model (the
global cluster bias model) is chosen over a simple modeiiftregiance model). Therefore,
the BIC is expected to select the global cluster bias modsldéen than the AIC. The BIC
also takes into account the number of parameters in the tyeieain; thus the expected
pattern is similar to AIC: the global cluster bias model vii# selected when there is a
small number of items having cluster bias and low ICC coodgj controlling for other
factors. In spite of the penalty term for the sample sizeyiptes research has shown that
the accuracy of the information criteria improves when tragle size is large (e.g., Lin &
Dayton, 1997).

The Wald test is used to detect item cluster bias. The reftiiedVald test is significant
when the cluster bias magnitude is large and the SE is sntadkeTore, it is likely that the
power will be higher in low ICC conditions (the cluster biaagnitude is large) and large

sample sizes conditions (the SE is small). Informatioredatare also used to detect item
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cluster bias. The general pattern of results by conditi@xpected to mimic that presented
for global cluster bias. That is, higher power is expectetth@low ICC and small number

of items having cluster item bias conditions.

Consequences of ignoring cluster bias.

The invariance model has the same item discrimination petemestimates over levels
even when the true parameters are different. This equalitgtcaint makes item discrim-
ination parameter estimates in the invariance model masehl than those in the global
cluster bias model. Because between-level item discritiong are smaller than within-
level item discriminations (in our simulation design anghested in the empirical study),
it is expected that the between-level item discriminatiaresoverestimated. Under the in-
variance model, bias is expected to be larger in low ICC dr because the cluster bias
magnitude is larger. In addition, in the invariance modeshs expected to be larger in
large cluster bias item conditions because more items gxdhitster bias.

As shown in Equation 1, the probability of a correct respdasxpressed as the dif-
ference between the item location parameter and the IRE scake weighted by the item
discrimination parameter. The item location parametamades will not be biased if the
mean of the weighted IRT scale scores is assumed to be theasaiméhe population. The
distribution of the true IRT scale scores at each level Wdlohe standard normal distribu-
tion. The mean of the weighted IRT scale scores is not affideyethe item discrimination
parameter because the mean of the true IRT scale scores l®e0ndan of the IRT scale
scores for each model was assumed to be 0 for model ideniofdatthe invariance model
and global cluster bias model. Because the mean of the IR& scares is assumed to be 0
and the mean of the true population is also 0, the item locgtgvzameter estimates are not
biased in either model.

As the bias becomes larger, the RMSE also becomes largerwvani@ance is controlled.
As the bias for the item discrimination parameter is largetlie invariance model than for

the global cluster bias model, the RMSE is also expected targer for the invariance
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model. For the invariance model, the RMSE is expected to igetan conditions with a
low ICC and a large number of cluster bias items because tiraass are more biased
in those conditions. For the global cluster bias model, tMSE is not influenced by
those conditions because the estimates are not biased.e/Asithple size increases, the
SE of the estimates decreases. Under both models, the RM&§peésted to be smaller
in large sample size conditions, controlling for bias. Bessathe item location parameter
estimates are not biased, the RMSE is influenced only by thelsssize. The item location
parameter estimates are expected to be smaller in largelesamp conditions in both
models.

When MMLE is used, IRT scale scores are predicted based dtethgarameter esti-
mates. Item parameter estimates are more biased and hgee RV SE in the invariance
model than in the true model. As a result, the IRT scale scare®xpected to be more
biased and have larger RMSE in the invariance model thandriité global cluster bias
model. Within each model, the bias is expected to be largeonditions with a low ICC
and a large number of cluster bias items because the bias @éth parameters is larger in
those conditions, when the variability of the estimatehésdame between the two models.
The RMSE is expected to be larger in low ICC, large number o$telr bias items, and
smaller sample size conditions because the RMSE of the itgamgeters is larger in those
conditions.

The differences in the SE between the invariance and clb&smodels are expected

to be stronger as the ICC and the number of items with clusasrdre larger.

5.4 Results

No convergence problem occurred during the estimationgadBelow, we first show
the results for the detection methods. Subsequently, thdtsefor the consequences of
ignoring cluster bias are presented in terms of bias and M8Rfor the item parameter

estimates and the IRT scale score.
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Results of Detection M ethods

Typel error rates. Table 5.1 shows the Type | error rates for the detection nastho
To investigate the Type | error rates of the detection methtte invariance model was
compared with the global bias model when there was no clbssr

The Type | error rate for the LRT and the AIC was mainly affeldby cluster sizeny.
For the LRT, the Type I error rate was 0.040 in the levehpf 50, whereas it marginally
exceeds in the level afy = 20. The AIC fell below the nominal significance level: 0.008
with n = 20 and 0.006 witm, = 50. The Type | error rate was 0 across all conditions for
the BIC and the saBIC.

Power. In this subsection, the power of the detection methods isgoted for global
cluster bias and item cluster bias, respectively.

Global cluster bias.Table 5.1 and Figure 5.1 (top) present the result of poweedas
on the LRT and the information criteria. In the 20% and 50%s lmanditions, all criteria
yielded acceptable power for all conditions@.994) except two conditions for the BIC.
The power for the two conditions based on the BIC was 0.8320a6@b in ICC=0.3,K =
50, ng = 20 in the presence of 20% and 50% bias. In the 100% bias cond#il methods
did not successfully detect the true model, the invarianodeh Power ranged from 0.036
to 0.190 for the LRT, less than or equal to 0.028 for the AlGv&dfor the saBIC was 0 for
all conditions. The power of the LRT and the AIC decreasedh witreasing sample size
and increasing ICC.

Item cluster biasTable 5.2 and Figure 5.1 (bottom) present the power resuitdidister
bias at the item level. The power of the AIC was the highestsxall conditions among
the five detection methods. The Wald test, LRT, and saBIC sdasimilar power across
all conditions. The BIC showed the lowest power. In the 20% %0% bias conditions,
the following patterns were evident. All methods but the Bi©wed acceptable-0.800)
power in the ICC=0.05 and ICC=0.1 conditions. When the ICG=@ll methods failed

to have acceptable power, except for the largest sampldisazek = 100, n, = 50). For

24



Table 5.1: Simulation Study: Type | error and Power for Gldblaister Bias

DIF% ICC K Nk LRT AIC BIC saBIC

0 .50 50 20 0.060 0.008 0.000 0.000

0 .50 50 50 0.040 0.006 0.000 0.000

0 .50 100 20 0.056 0.008 0.000 0.000

0 .50 100 50 0.040 0.006 0.000 0.000

20 .05 50 20 1.000 1.000 1.000 1.000
20 .05 50 50 1.000 1.000 1.000 1.000
20 .05 100 20 1.000 1.000 1.000 1.000
20 .05 100 50 1.000 1.000 1.000 1.000
20 1 50 20 1.000 1.000 1.000 1.000
20 1 50 50 1.000 1.000 1.000 1.000
20 1 100 20 1.000 1.000 1.000 1.000
20 1 100 50 1.000 1.000 1.000 1.000
20 .3 50 20 1.000 1.000 0.832 0.994
20 3 50 50 1.000 1.000 1.000 1.000
20 .3 100 20 1.000 1.000 0.998 1.000
20 3 100 50 1.000 1.000 1.000 1.000
50 .05 50 20 1.000 1.000 1.000 1.000
50 .05 50 50 1.000 1.000 1.000 1.000
50 .05 100 20 1.000 1.000 1.000 1.000
50 .05 100 50 0.998 1.000 1.000 1.000
50 1 50 20 1.000 1.000 1.000 1.000
50 1 50 50 1.000 1.000 1.000 1.000
50 1 100 20 1.000 1.000 1.000 1.000
50 1 100 50 1.000 1.000 1.000 1.000
50 .3 50 20 1.000 1.000 0.606 0.996
50 3 50 50 1.000 1.000 1.000 1.000
50 .3 100 20 1.000 1.000 0.996  1.000
50 3 100 50 1.000 1.000 1.000 1.000
100 .05 50 20 0.190 0.028 0.000 0.000
100 .05 50 50 0.056 0.006 0.000 0.000
100 .05 100 20 0.098 0.014 0.000 0.000

100 .05 100 50 0.060 0.004 0.000 0.000

100 1 50 20 0.086 0.008 0.000 0.000
100 1 50 50 0.068 0.002 0.000 0.000
100 1 100 20 0.062 0.004 0.000 0.000
100 1 100 50 0.036 0.006 0.000 0.000
100 .3 50 20 0.068 0.006 0.000 0.000
100 3 50 50 0.038 0.000 0.000 0.000
100 .3 100 20 0.052 0.004 0.000 0.000
100 3 100 50 0.050 0.006 0.000 0.000

Note. Type | error rates in bold
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Table 5.2: Simulation Study: Power for Item Cluster Bias

bias% ICC K ng  Wald LRT AlC BIC saBIC

20 .05 50 20 0971 0971 0992 0915 0.971
20 .05 50 50 1.000 1.000 1.000 0.999 1.000
20 .05 100 20 0.997 0.996 1.000 0.983 0.995
20 .05 100 50 1.000 1.000 1.000 1.000 1.000
20 1 50 20 0937 0935 0976 0.830 0.938
20 1 50 50 0998 0.999 1.000 0.983 0.997
20 1 100 20 0.991 0.991 0.998 0.956  0.989
20 1 100 50 1.000 1.000 1.000 1.000 1.000
20 3 50 20 0597 0.587 0.738 0.433 0.595
20 3 50 50 0.834 0.825 0.920 0.628 0.783
20 .3 100 20 0.747 0.752 0.860 0.541 0.710
20 3 100 50 0.950 0.951 0.982 0.828 0.918
50 .05 50 20 0.878 0.874 0.941 0.767 0.878
50 .05 50 50 0978 0.975 0.991 0.923 0.967
50 .05 100 20 0.955 0.953 0.981 0.885 0.944
50 .05 100 50 0.998 0.997 1.000 0.986 0.997
50 1 50 20 0.804 0.803 0.886 0.680 0.807
50 50 50 0943 0942 0974 0.856 0.927

1

1 100 20 0.915 0.915 0.958 0.811 0.899

1 100 50 0.994 0.994 0.999 0.965 0.989
50 .3 50 20 0473 0467 0.627 0.305 0.475

3 50 50 0.683 0.667 0.786 0.485 0.622

.3 100 20 0.605 0.607 0.741 0.428 0.567
50 3 100 50 0.901 0.824 0.899 0.649 0.764

100 .05 50 20 0.068 0.051 0.152 0.009 0.054
100 .05 50 50 0.072 0.047 0.152 0.004 0.029
100 .05 100 20 0.062 0.050 0.156 0.005 0.036
100 .05 100 50 0.060 0.048 0.149 0.003 0.020
100 1 50 20 0.064 0.050 0.157 0.008 0.053

100 1 50 50 0.074 0.048 0.160 0.005 0.030
100 1 100 20 0.063 0.054 0.159 0.005 0.038
100 1 100 50 0.060 0.051 0.159 0.004 0.021
100 .3 50 20 0.062 0.050 0.150 0.009 0.053
100 3 50 50 0.064 0.046 0.152 0.004 0.028
100 3 100 20 0.052 0.046 0.152 0.005 0.032
100 3 100 50 0.059 0.052 0.159 0.004 0.022

Average

bias%

20% 0.918 0.917 0.955 0.841  0.908

50% 0.844 0.835 0.899 0.728 0.820

100% 0.063 0.049 0.155 0.005 0.035

ICC

0.05 0.618 0.612 0.655 0.575 0.607

0.1 0.603 0.598 0.648 0.546 0.591

0.3 0.502 0.489 0.597 0.360 0.464

K

50 0.552 0.544 0.619 0465 0.537

100 0.600 0.594 0.650 0.592 0.576

Nk

20 0.569 0.564 0.646 0.476 0.557

50 0.648 0.637 0.693 0574 0.617
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Figure 5.1: power: Global cluster bias (top) and item clubktas (bottom)

27



the largest sample size, the AIC, LRT, and Wald test showaeepover 0.800. For all
criteria, power decreased with the increasing number cfdaidtems and ICC, whereas
power increased with the increasing number of clusters &mter sizes. In the 100%
bias condition, all methods showed low power, and power veasangely affected by any
conditions of the number of clusters, cluster size, or ICke power for the saBIC, Wald
test, LRT, and BIC was less than or equal to 0.074. The poweh&AIC was less than or
equal to 0.160.

Results for Consequences of Ignoring Cluster Bias

In this section, the accuracy of the item parameter estsrate the IRT scale scores
and that of the SEs are presented for the invariance modelhengdlobal bias model in
the presence of cluster bias. Accordingly, the results efitlvariance model are for the
consequence of ignoring cluster bias. Results of the glblzedl model are reported for
comparison purposes.

|tem parameter estimates.

Bias. The bias for the item discrimination parameters is showraipld 5.3 and Figure
5.2. Relative bias was reported for item discriminatioimestes, and absolute bias was re-
ported for item location estimates. Regarding within-léteen discrimination parameters,
the relative bias in all conditions was less than 10% for tlariance model and the global
bias model. The performance of the global bias model wasrsrge that of the invari-
ance model in the 20% and 50% conditions except the 20% bth#C=0.3 conditions.
For those conditions, the invariance model showed smatsrthan the global bias model
because the degree of bias was ignorable. These resuktat@diat ignoring cluster bias
led to inaccurate results in within-level item discrimiatestimates unless the number of
cluster bias items was small and the ICC was high (the dedigia®was inversely related
to ICC). When cluster bias was ignored as in the invariancdehahe bias was negative
(i.e., the within-level item discrimination parametersreve@nderestimated) and increased

with number of bias items in 20% and 50% conditions.
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Figure 5.2: Accuracy: Percentage relative bias for witleiel item discrimination param-

eters {rw) (top) and between-level item discrimination parameterg) (bottom)

29



However, in the 100% condition, the bias in the invariancalehavas unexpectedly
smaller than the bias in the global bias model. We furtheestigated the item discrim-
ination parameter estimates in the invariance model tostiyate these unexpected re-
sults. When cluster invariance items exist over levels ahen?20% and 50% conditions,
the within-level item discrimination estimates were clés@n average of the within- and
between-item discrimination parameters in the invarianoelel. However, when all item
discriminations differed between levels as in the 100% @wrd the within-level item dis-
crimination estimates were close to the within-level itestdmination parameters instead
of the average of the within- and between-level item disoration estimates.

Regarding the between-level item discrimination paramsetbe bias was dramatically
higher for the invariance models than for the global bias @hadross all conditions, which
suggested that ignoring cluster bias would be problematierims of the accuracy of the
between-level item discrimination estimates. As expedtezibetween-level item discrim-
ination parameters were overestimated in ignoring cluste. For the global bias models,
the relative bias was acceptabtel(0%) in most conditions, except the condition when the
number of cluster bias items was 100%, ICC was low, and thekasizve was small. The
invariance model showed acceptably small bias only with 209ster bias and 0.3 ICC
conditions. The bias was positive (i.e., the between-lgeeh discrimination parameters
were overestimated) and decreased with a higher ICC andraad#eg number of cluster
bias items.

Regarding the item location parameters, in most conditibadias was small regard-
less of the model. The degree of bias was less than or equi83across all conditions.

RMSE.Concerning the within-level item discrimination RMSEsgdeigure 5.3 top),
the global bias model outperformed the invariance modeh@20% and 50% bias con-
ditions. The global bias model showed small RMSEs in mostitmms (from 0.047 to
0.115), whereas the invariance model showed larger RMSERW0ICC (i.e., a higher

bias magnitude in item discriminations) and a larger nundbelduster bias items. How-
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ever, in the 100% bias condition, the RMSE in the invariancelehwas a bit higher than
the RMSE in the global bias model. This unexpected patteinois the fact that there was
smaller bias in the invariance model than in the global biad@h(as discussed above) and
there was a smaller number of item discrimination pararsetelbe estimated in the invari-
ance model than in the cluster bias model (i.e., smalleatbdity). The RMSE decreased
with the increasing number of clusters and cluster size.

Regarding the between-level item discrimination paramegfgee Figure 5.3 bottom),
the global bias model showed better performance in all ¢mmdi, which implies that the
result interpretation for the between-level item discriation estimates can be misleading
when ignoring cluster bias. Similar to the within-levelntaliscrimination parameters, a
higher ICC was positively associated with a smaller RMSEthar invariance model in
the 20% and 50% conditions. In the 100% condition, the iawvare model had a notice-
ably high RMSE when global bias was used because of the lageed of bias. In this
condition, the RMSE was not affected by sample size.

Regarding RMSEs for item location estimates, the globa iviadel and the invariance
model yielded comparable values in every condition.

Relative bias of SERegarding the SE for the within-level item discriminatia@r@meter
estimates, acceptable levels of bias for the SE were olst@ingmost every condition for
the global bias model, whereas unacceptable bias was faurttid invariance model in
low ICC (0.05 and 0.1) and large cluster sirg £ 50) conditions.! Regarding the SE
for the between-level item discrimination parameter estes, the relative bias of the SE
for the invariance model was identical to that for the withemel discrimination parameter
because of the equality constraint. The global bias modelet acceptable relative bias

in the 20% and 50% bias conditions, but unacceptable SEs e#ened in the 100%

Lincreasing relative bias of SE in a large cluster size mightbunter-intuitive. This result resulted in
the characteristics of relative bias. The standard deviatif estimates decreased as the total number of
individuals increased, whereas the average of estimateeBieased both the number of individuals and the
number of clusters increased. Thus, controlling for the Ipeinof individuals, the relative bias of SE was
larger in large cluster size conditions.
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Figure 5.3: Accuracy: RMSE for within-level item discrinaition parametersof ) (top)
and between-level item discrimination parametess) (bottom)
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bias condition. The SE was severely overestimated the mastei low ICC (0.05) and
the smallest sample size(= 20 andK = 50) condition. Concerning the item location
parameter, both models yielded overestimated SEs in ewergition. The relative bias
increased with increasing sample sizes.

| RT scale score precision. When there was no cluster bias, the IRT scale score did not
show any difference between the invariance and global biadets in terms of bias and
RMSE. Below, the results are interpreted for cluster biasldmns (i.e., 20%, 50%, and
100%).

Bias. Table 5.4 presents the accuracy of IRT scale scores (alsbigeee 5.4). The
invariance model and the global bias model yielded comparadlues in almost every
condition: from -0.033 to 0.018 for the invariance model &an -0.033 to 0.043 for the
global bias model. Bias was mainly affected by the total darsjzes (i.e.J=number of
clustersx cluster size). For example, the average bias of the IRT scales at the within-
level across conditions within the same total sample size Wa22, -0.033, -0.021, and
0.001 inJ=1000, 2500, 2000, and 5000, respectively, and the biasdatidiffer between
the invariance and global bias models.

RMSE.Regarding the IRT scale scores at the within- and betweerid€see Figure
5.5), the RMSE for the invariance model was higher than thfdahe global bias model
except the 100% bias condition. The RMSE decreased witkeasing sample sizd)and
higher ICC in both models. In the 100% bias condition, the EM&nged from .366 to
.760 for the invariance model and from .237 to .967 for thégldias model. This extreme
RMSE at the between-level resulted from different reasotisae invariance and global bias
models. In the invariance model, the estimated varianceeo§tores at the between-level
was largely underestimated. Thus, all IRT scores at thedmtvlevel shrank to the mean.
In the global bias model, there was no problem with the vagaof the latent variable at
the between-level because it was fixed to 1 for model ideatiba. Instead, the item dis-

crimination parameter estimates were close to 0 as the ICfedsed (range=[0.089,0.528]
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for ICC=0.05; range=[0.129,0.767] for ICC=0.1; range2@*,1.506] for ICC=0.3). It was
because the true parameters at the between-level for ité@imavow ICC had values close
0 according to the formula we used for the ICC calculatiomdsquation (5).

Relative bias of SEAcross all conditions, the estimated SE was less accuratsoth
the within- and between-levels in the invariance model tharglobal bias model. The ac-
curacy of the SE estimation for the global bias model wordexrselCC increased, whereas
that for the invariance model was not affected by the ICCh&n100% bias condition, the
invariance model revealed that the relative bias of the SEedbetween-level decreased as

ICC increased.
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Table 5.3: Simulation Study: Accuracy of ltem Parametemizaties

Bias* RMSE SE

Invar. Bias Invar. Bias Invar. Bias
DIF% ICC K N aw ag B aw as B aw ag B aw ap B aw ag aw ag B
0 .50 50 20 127 127 0.020 153 -1.93 0.012 0.103 0.103 0.09313100.114 0.090 0.040 0.040 1.143 0.023 0.457 1.187
0 .50 50 50 091 091 -0030 1.12 -2.59 -0.025 0.065 0.06560.06.081 0.076 0.062 0.028 0.028 2.128 0.014 0.991 2.224
0 .50 100 20 0.68 0.68 -0.009 0.79 0.54 -0.006 0.071 0.07160.06.092 0.079 0.064 0.036 0.036 1.149 0.022 0.361 1.199
0 .50 100 50 1.34 134 0014 136 -3.65 0.015 0.049 0.049 0.00D60 0.064 0.044 0.028 0.028 1.588 0.021 0.965 2.034
20 .05 50 20 -2.77 3534 0017 145 -0.68 0.025 0.216 0.18®20.00.109 0.102 0.094 0.073 0.073 0.966 0.023 0.019 0.966
20 .05 50 50 -3.00 3566 -0.030 120 0.42 -0.020 0.185 0.1%9B80. 0.068 0.063 0.060 0.138 0.138 1.786 0.026 0.035 1.814
20 .05 100 20 -3.76 33.84 -0.006 0.54 0.65 -0.008 0.190 0.1%B70 0.074 0.069 0.064 0.074 0.074 0.997 0.032 0.036 0.993
20 .05 100 50 -2.80 35.88 0.017 1.44 -0.96 0.017 0.178 0.14880. 0.051 0.048 0.045 0.170 0.170 1.621 0.051 0.067 1.676
20 1 50 20 -1.90 23.40 0.016 1.36 0.15 0.026 0.197 0.168 0.001108 0.100 0.094 0.062 0.062 0.993 0.032 0.030 0.990
20 1 50 50 -2.01 2350 -0.032 121 0.67 -0.020 0.169 0.14%590.00.069 0.064 0.061 0.102 0.102 1.763 0.013 0.017 1.794
20 1 100 20 -2.85 22.06 -0.005 0.52 0.44 -0.006 0.175 0.14660. 0.075 0.069 0.065 0.056 0.056 0.998 0.028 0.033 0.995
20 1 100 50 -1.81 23.69 0.015 143 0.03 0.017 0.162 0.13560.09.051 0.047 0.045 0.140 0.140 1.672 0.053 0.062 1.691
20 3 50 20 013 879 0.017 1.32 0.85 0.026 0.143 0.133 0.0920800.103 0.095 0.040 0.040 1.045 0.034 0.026 1.043
20 3 50 50 -0.01 868 -0.033 1.05 0.97 -0.021 0.110 0.10380.06.067 0.065 0.062 0.044 0.044 1.923 0.032 0.021 1.936
20 3 100 20 -0.64 790 -0.006 046 0.55 -0.005 0.119 0.10450.00.075 0.071 0.064 0.047 0.047 1.072 0.041 0.039 1.075
20 3 100 50 0.19 887 0018 124 0.97 0.017 0.102 0.094 0.0495100.048 0.046 0.051 0.051 1.833 0.026 0.030 1.780
50 .05 50 20 -8.33 105.39 0.018 1.15 -3.89 0.028 0.303 0.3®900. 0.114 0.099 0.094 0.126 0.126 0.743 0.028 0.026 0.731
50 .05 50 50 -8.58 106.46 -0.029 1.05 -1.09 -0.009 0.276 0.81®9 0.071 0.062 0.060 0.273 0.273 1.290 0.034 0.032 1.306
50 .05 100 20 -9.89 100.43 -0.003 0.21 -0.14 -0.004 0.29500.8D66 0.080 0.069 0.062 0.102 0.102 0.806 0.017 0.020 0.787
50 .05 100 50 -8.16 106.75 0.016 142 -4.41 0.016 0.276 0.30880 0.054 0.050 0.043 0.267 0.267 1.236 0.041 0.058 1.321
50 1 50 20 -6.53 66.21 0.017 0.95 -2.02 0.028 0.269 0.30400.09.113 0.101 0.094 0.093 0.093 0.771 0.039 0.018 0.766
50 1 50 50 -6.67 66.66 -0.028 0.95 -0.39 -0.004 0.244 0.28%60. 0.072 0.062 0.058 0.205 0.205 1.443 0.017 0.030 1.458
50 1 100 20 -7.79 63.18 -0.005 0.28 0.05 -0.004 0.260 0.28B50. 0.079 0.069 0.063 0.101 0.101 0.835 0.042 0.037 0.826
50 1 100 50 -6.16 67.38 0.016 1.51 -2.15 0.017 0.242 0.28860.00.054 0.049 0.044 0.203 0.203 1.276 0.031 0.048 1.376
50 3 50 20 -1.65 21.41 0.019 146 0.12 0.031 0.167 0.201 0.00115 0.105 0.096 0.057 0.057 0.942 0.037 0.031 0.939
50 3 50 50 -1.90 21.29 -0.033 1.07 0.67 0.001 0.138 0.17770.06.073 0.065 0.058 0.056 0.056 1.707 0.017 0.010 1.688
50 3 100 20 -2.62 20.13 -0.005 0.53 0.54 -0.003 0.152 0.17%30. 0.081 0.072 0.063 0.042 0.042 0.987 0.026 0.043 0.993
50 3 100 50 -1.59 2154 0.014 141 050 0.017 0.136 0.17520.00.054 0.049 0.044 0.067 0.067 1.663 0.032 0.025 1.683
100 .05 50 20 0.58 338.44 0.020 1.66 -43.07 0.021 0.116 0.90870 0.121 0.199 0.088 0.026 0.026 0.158 0.105 0.928 0.172
100 .05 50 50 1.04 340.42 -0.030 1.22 -0.34 -0.034 0.074 00I®2 0.076 0.063 0.065 0.017 0.017 0.333 0.019 0.399 0.328
100 .05 100 20 -0.07 33558 -0.016 0.45 -6.85 -0.018 0.08D40.0.062 0.085 0.098 0.063 0.024 0.024 0.200 0.067 0.53510.20
100 .05 100 50 1.45 34222 0.010 152 -10.28 0.010 0.056 0®P39 0.057 0.054 0.039 0.026 0.026 0.306 0.029 0.307 0.304
100 1 50 20 091 202.74 0.020 1.57 -15.01 0.019 0.116 0.79880. 0.123 0.137 0.088 0.023 0.023 0.249 0.061 0.496 0.250
100 1 50 50 0.94 202.81 -0.029 0.98 0.59 -0.033 0.073 0.7@9%10. 0.076 0.059 0.063 0.013 0.013 0.561 0.012 0.377 0.559
100 1 100 20 -0.06 199.81 -0.015 0.07 115 -0.017 0.080 0.0&®1 0.086 0.074 0.062 0.030 0.030 0.316 0.029 0.231 0.316
100 1 100 50 1.44 20433 0.012 148 -7.63 0.013 0.056 0.79400. 0.058 0.051 0.041 0.028 0.028 0.479 0.027 0.308 0.477
100 3 50 20 110 54.43 0019 145 -1.36 0.013 0.111 0.43290.08.127 0.102 0.088 0.020 0.020 0.671 0.019 0.361 0.682
100 3 50 50 092 54.16 -0.028 1.00 1.97 -0.033 0.068 0.41%30.00.078 0.064 0.066 0.028 0.028 1.274 0.023 0.761 1.289
100 3 100 20 0.18 53.03 -0.010 0.19 2.76 -0.014 0.075 0.41%620. 0.087 0.074 0.063 0.036 0.036 0.702 0.036 0.283 0.716
100 3 100 50 141 5491 0.012 143 -3.06 0.025 0.052 0.42410.00.058 0.049 0.047 0.049 0.049 1.232 0.036 0.670 1.243
Avg.
bias%
20% -1.77 2230 -0.001 1.10 0.34 0.004 0.162 0.137 0.068 60.0D71 0.066 0.083 0.083 1.389 0.032 0.035 1.396
50% -5.82 63.90 0.000 1.00 -1.02 0.009 0.230 0.264 0.067 00.0®71 0.065 0.133 0.133 1.142 0.030 0.031 1.156
100% 0.82 198.57 -0.003 1.08 -6.76 -0.004 0.080 0.709 0.06308600.085 0.064 0.027 0.027 0.540 0.039 0.471 0.545
ICC
0.05 -3.41 147.42 -0.001 1.02 -5.43 0.002 0.173 0.427 0.06107400.075 0.060 0.101 0.101 0.803 0.036 0.189 0.815
0.1 -250 89.67 -0.001 0.95 -1.86 0.003 0.157 0.378 0.061 740.0.068 0.060 0.081 0.081 0.874 0.029 0.130 0.885
0.3 -0.37 27.93 -0.001 1.05 0.46 0.004 0.114 0.238 0.066 10.0872 0.066 0.045 0.045 1.254 0.030 0.192 1.256
K
50 -1.99 90.31 -0.006 1.16 -3.23 0.002 0.157 0.356 0.074 90.0885 0.073 0.073 0.073 0.980 0.030 0.190 0.985
100 -2.29 8955 0.003 0.85 -1.47 0.004 0.141 0.346 0.051 40.0®58 0.051 0.080 0.080 0.960 0.034 0.149 0.971
'S
20 -255 94.01 0.005 0.87 -3.65 0.008 0.170 0.374 0.077 0.09®5 0.078 0.057 0.057 0.747 0.039 0.177 0.747
50 -1.96 95.85 -0.008 1.26 -1.31 -0.001 0.144 0.366 0.055 630.0.056 0.053 0.104 0.104 1.300 0.029 0.181 1.318

Note.*: Relative percentage bias was reported for item discraam estimates.
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Table 5.4: Simulation Study: Accuracy of IRT Scale Score

Bias RMSE SE

Invar. Bias Invar. Bias Invar. Bias
DIF% ICC K % Oix 6« Oik 6« Oix 6« Oik 6« Oik 6« Oix 6«
0 .50 50 20 0.022 -0.013 0.021 -0.020 0.477 0.199 0.481 0.20635001.383 0.327 1.088
0 .50 50 50 -0.033 0.013 -0.033 0.017 0.473 0.159 0.474 0.1627201.357 0.266 1.253
0 .50 100 20 -0.021 0.012 -0.021 0.015 0.482 0.216 0.483 0.20B54 1.357 0.343 1.212
0 .50 100 50 0.001 0.002 0.001 0.003 0.470 0.160 0.470 0.1526901.295 0.267 1.300
20 .05 50 20 0.022 -0.015 0.022 -0.009 0.473 0.237 0.459 0.20350 1.370 0.232 0.370
20 .05 50 50 -0.033 0.014 -0.033 0.021 0.469 0.190 0.451 0.16275 1.353 0.210 0.366
20 .05 100 20 -0.021 0.018 -0.021 0.014 0.478 0.247 0.45800.20.355 1.365 0.242 0.392
20 .05 100 50 0.001 0.010 0.001 0.006 0.466 0.202 0.449 0.1427201.354 0.206 0.349
20 1 50 20 0.022 -0.015 0.022 -0.008 0.472 0.234 0.462 0.20635201.400 0.253 0.477
20 1 50 50 -0.033 0.013 -0.033 0.022 0.469 0.187 0.456 0.15127101.351 0.218 0.452
20 1 100 20 -0.021 0.017 -0.021 0.015 0.477 0.245 0.462 0.206355 1.369 0.259 0.488
20 1 100 50 0.001 0.008 0.001 0.006 0.465 0.199 0.453 0.15427001.365 0.217 0.439
20 3 50 20 0.022 -0.015 0.022 -0.008 0.474 0.217 0.472 0.20885101.413 0.311 0.898
20 .3 50 50 -0.033 0.010 -0.033 0.020 0.469 0.173 0.466 0.1627101.379 0.252 0.925
20 3 100 20 -0.021 0.014 -0.021 0.015 0.478 0.231 0.474 0.203354 1.380 0.320 0.939
20 .3 100 50 0.001 0.007 0.001 0.005 0.466 0.182 0.463 0.1626901.370 0.250 0.894
50 .05 50 20 0.022 -0.016 0.022 -0.005 0.466 0.336 0.445 0.202351 1.450 0.185 0.193
50 .05 50 50 -0.033 0.015 -0.032 0.040 0.462 0.282 0.439 0.168273 1.401 0.174 0.203
50 .05 100 20 -0.021 0.018 -0.021 0.021 0.471 0.325 0.44250.20.357 1.409 0.191 0.223
50 .05 100 50 0.001 0.012 0.001 0.008 0.460 0.292 0.436 0.1427201.398 0.173 0.197
50 1 50 20 0.022 -0.016 0.022 -0.005 0.465 0.320 0.449 0.22(85101.440 0.203 0.261
50 1 50 50 -0.033 0.015 -0.032 0.041 0.462 0.266 0.443 0.1527001.392 0.186 0.271
50 1 100 20 -0.021 0.017 -0.021 0.020 0.471 0.311 0.448 0.20453 1.414 0.208 0.291
50 1 100 50 0.001 0.012 0.001 0.008 0.459 0.278 0.441 0.1526801.403 0.183 0.272
50 3 50 20 0.022 -0.015 0.022 -0.004 0.469 0.257 0.467 0.22534701.427 0.278 0.688
50 .3 50 50 -0.033 0.012 -0.032 0.043 0.464 0.206 0.460 0.174#6601.390 0.231 0.717
50 .3 100 20 -0.021 0.016 -0.021 0.019 0.474 0.263 0.468 0.28848 1.388 0.287 0.748
50 3 100 50 0.001 0.006 0.001 0.007 0.462 0.220 0.457 0.17@6401.392 0.229 0.735
100 .05 50 20 0.021 -0.019 0.021 -0.019 0.432 0.760 0.44570.96.211 2.646 0.146 -0.068
100 .05 50 50 -0.032 0.017 -0.033 0.013 0.426 0.682 0.42840.60.196 2.007 0.179 0.696
100 .05 100 20 -0.021 0.013 -0.021 0.012 0.427 0.745 0.43%30.70.229 2.542 0.184 0.493
100 .05 100 50 0.001 0.011 0.002 0.012 0.425 0.700 0.426 0.607190 2.114 0.180 1.044
100 1 50 20 0.022 -0.018 0.021 -0.019 0.439 0.685 0.450 0.68350 2.135 0.187 0.319
100 1 50 50 -0.033 0.016 -0.033 0.011 0.432 0.603 0.434 0.462208 1.749 0.197 1.018
100 1 100 20 -0.021 0.013 -0.021 0.012 0.436 0.662 0.44060.58.263 2.028 0.238 1.022
100 1 100 50 0.001 0.011 0.002 0.014 0.431 0.618 0.432 0.4420301.804 0.197 1.304
100 3 50 20 0.022 -0.017 0.021 -0.023 0.455 0.415 0.459 0.30408 1.588 0.280 1.029
100 3 50 50 -0.033 0.015 -0.033 0.009 0.450 0.353 0.450 0.28836 1.509 0.231 1.291
100 3 100 20 -0.021 0.014 -0.021 0.011 0.457 0.401 0.45970.30.315 1.542 0.302 1.256
100 3 100 50 0.001 0.007 0.002 0.019 0.447 0.366 0.448 0.2323201.498 0.230 1.374
Avg.
bias%
20% -0.008 0.005 -0.008 0.008 0.471 0.212 0.460 0.183 0.3B721 0.248 0.582
50% -0.008 0.006 -0.007 0.016 0.466 0.280 0.450 0.190 0.3¥@91 0.211 0.400
100% -0.008 0.005 -0.008 0.005 0.438 0.583 0.442 0.512 0.23B0 0.213 0.898
ICC
0.05 -0.007 0.006 -0.007 0.009 0.420 0.385 0.409 0.337 0.2570 0.177 0.343
0.1 -0.007 0.006 -0.007 0.009 0.421 0.354 0.413 0.275 0.268%01 0.196 0.509
0.3 -0.008 0.005 -0.008 0.009 0.464 0.274 0.462 0.222 0.291A01 0.267 0.958
K
50 -0.005 -0.001 -0.005 0.006 0.434 0.337 0.428 0.285 0.27®51 0.208 0.532
100 -0.009 0.012 -0.009 0.012 0.434 0.342 0.426 0.274 0.2A811 0.216 0.656
Nk
20 0.000 0.000 0.000 0.002 0.462 0.383 0.455 0.342 0.32281.6R.239 0.557
50 -0.016 0.012 -0.016 0.017 0.455 0.333 0.446 0.248 0.25131. 0.208 0.697
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Chapter 6

Summary and Discussion

The first purpose of this study was to evaluate the performainthe model selection
criteria to detect global bias and item cluster bias. OVeita¢ expected simulation results
were found except the case in which all items exhibited elusias. LRT generally revealed
acceptable Type | error rates, whereas all model seledtitania revealed acceptable power
to detect global cluster bias when some portion of itemstetdheluster bias (e.g., 20% and
50%). One exception for power was the BIC with a small samigke &nd high ICC (i.e.,
small cluster bias magnitude in discriminations). In aiddit different detection methods
showed different power regarding item cluster bias. As etquk the AIC showed the
highest power among the information criteria we comparetiel\there is cluster bias for
all items, unexpectedly, the detection methods of globas laind item cluster bias were
problematic using all detection methods we considered.

The second purpose of this study was to show the consequefigesring cluster bias
in terms of the accuracy of the parameter estimates and SEsxpgected, the bias and the
RMSE of the within-level and between-level item discrintioa parameter estimates were
mainly problematic when a portion of items have cluster kgag., 20% and 50%). Ignor-
ing cluster bias would be acceptable only when a small poiothe items have cluster
bias (e.g., 20%) and a high ICC (small bias magnitude in oiigoation). Because of the
equality constraints used when ignoring cluster bias, betwlevel item discriminations
tend to be overestimated when they are not as high as wighil-ltem discriminations
(which is commonly true because the ICC is smaller than .5astrapplications). Further,
unacceptable SEs of the item discrimination estimates veoened when ignoring cluster
bias unless there is small ICC and large cluster size. RegpifidT scale scores, the overall

accuracy (quantified RMSE) was low in ignoring cluster bldswever, bias was unexpect-
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edly comparable between models with and without taking agoount cluster bias. The
SEs of the IRT scale scores were not precise in ignoringedusas in all conditions we
considered.

The results from the present study provide implicationsefealuating the detection
methods and the consequences of ignoring cluster bias itlewal item response models.
First, two forms of the BIC performed differently dependimig the number of cases used
in the equation. The BIC with the total sample sidethe number of clusters cluster
size) as the number of cases showed the lowest power amomwgtdrga. The power for
the BIC increased as the sample size became larger, but Wer pas still not adequate
(<.80) in the condition with a large number of bias items (50%g a high ICC (0.3). In
contrast, the performance of the saBIC was comparable tothiae Wald test or the LRT.
The saBIC includes a smaller penalty terms than the BIC do#sei formula. Otherwise,
the BIC with the number of clusters as the number of casestrbgla better indicator of
a multilevel item response model. Yu and Park (2014) repaitat using the number of
clusters leads to a better performance than total samm@érsthe BIC for multilevel latent
class models. Taken together, based on our study, the tataber of individuals is not
recommended for BIC calculation in multilevel item resp@nsodels. Instead, the saBIC
or the BIC with the number of clusters is recommended.

Second, the power for item cluster bias was unexpectediyoen all items have clus-
ter bias. As shown in this study, largely overestimated betwievel item discriminations
are expected in ignoring a large amount of cluster bias imtragiance model, which is the
baseline model in detecting global bias and item bias. Weeliwe invariance model as a
baseline model to follow IRT differential item functionifBIF) detection method conven-
tion. When a large number of bias items is suspected, thdibaseodel (the invariance
model) is a misspecified model. In such a case, a global biaehi® more appropriate
than the invariance model as a baseline model. Thus, whegeatamber of cluster item

bias is found (e.g., larger than 50%), comparing item chlsites detection results between
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two different baseline models, invariance and global biagdefs is recommended.

There are methodological limitations to the present stueyst, the simulation con-
ditions employed in the study are limited to two-level datd ane latent variable at each
level. More extensive simulations that vary these limitedditions should be conducted to
make solid generalizations. Second, as mentioned edHexe are alternative approaches
for testing cluster bias for item discriminations, such asradom item response modeling
approach using Bayesian analysis (De Jong, Steenkamp, &0 ; Fox & Verhagen,
2010). The random item response modeling approach was nsidared in this study be-
cause our focus was on the model selection methods with MMIdfparing the model
selection methods considered in this study to the randamriésponse model approach is
also left as a future study.

In spite of the methodological limitations, this study dttates and evaluates model se-
lection methods for global and item cluster bias in a commatiilavel data structure - one
found in empirical studies - and in the use of MMLE (which is arsacommon estimation
method than Bayesian analysis in current IRT applicatioAs)summarized earlier, LRT
provides adequate Type | error rates and power for detegtofgpal cluster bias, whereas
the AIC is generally recommended for detecting item clubias. We showed that ignor-
ing cluster bias is of concern for between-level item disaniations used for understanding
constructs in multilevel data. Given our simulation resuwte recommend testing global
and item cluster bias as part of the analysis steps applisuittlevel item response mod-

els.
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