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CHAPTER 1 

 

INTRODUCTION 

 

Helicobacter pylori: History 

For many years, the human stomach was considered an inhospitable environment for 

bacterial growth. In the 1980’s, Robin Warren and Barry Marshall challenged this dogma 

by cultivating the Gram-negative bacterium known as Helicobacter pylori (H. pylori) 

from gastric biopsies (1). This discovery led to a Nobel Prize in Medicine in 2005. 

Currently, H. pylori is considered the dominant microbiota of the human stomach, and it 

is estimated that it persistently colonizes about 50% of the population worldwide (2-3).  

Infection is usually acquired in early childhood, and it has been hypothesized that 

transmission occurs via fecal-oral and oral-oral routes (4-5). Most H. pylori-infected 

individuals remain asymptomatic. However, about 5% of infected persons develop peptic 

ulcer disease, <1% develop gastric adenocarcinoma and about 0.1% develop gastric 

lymphoma (6-9), making H. pylori the most common etiologic agent of infection-related 

cancers and the only known bacterial carcinogen (type 1 carcinogen) (10). Further, gastric 

cancer remains the second leading cause of cancer-related deaths worldwide (11).  For 

the past few decades, antibiotics have been used to treat H. pylori-infected patients, but 

the bacterium is becoming resistant to several antibiotics (12-15).  
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H. pylori: Microbiological characteristics 

H. pylori is a spiral-shaped, microaerophilic bacterium that contains polar 

flagella. Once the bacterium colonizes the stomach, it mainly localizes to the gastric 

mucus layer, but some bacteria adhere to gastric epithelial cells (16). The helical shape 

and the presence of flagella help the organism move within the viscous environment of 

the stomach (17-19). Interestingly, it has been shown that H. pylori swims faster than 

rod-shaped bacteria in low viscosity media, and maintains this velocity in high viscosity 

media (19-21). To survive the harsh environment of the stomach, H. pylori metabolizes 

urea to ammonia using a protein known as urease (22-23). This reaction generates a 

neutral environment around the organism, and protects it from gastric acid (24).  

 

H. pylori virulence factors 

Why certain individuals develop H. pylori-related disease and others remain 

unaffected remains an important unanswered question. The high level of genetic 

variability in H. pylori strains has hindered the identification of specific bacterial factors 

that link H. pylori to disease outcome. The genome sequences of several strains have 

been analyzed, and these studies have shown that there is extensive variation in H. pylori 

gene content (presence/absence of complete genes and pseudo-genes), and extensive 

variation in nucleotide sequences (92%-99% nucleotide identity in conserved genes) (25-

30). Nevertheless, various virulence factors that link H. pylori to disease have been 

identified. These include several outer membrane proteins, the cag pathogenicity island 

(cag PAI), and vacuolating cytotoxin A (VacA).  
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Several H. pylori outer membrane proteins function as adhesins that mediate the 

attachment of the bacterium to gastric epithelial cells, resulting in cellular alterations and 

allowing the delivery of bacterial effector proteins into the host cell (31).  Two outer 

membrane proteins considered adhesins and categorized as virulence factors are (A) 

BabA, which binds to Lewis b antigen and related terminal fucose residues found on 

antigens of gastric epithelial cells (32-34), and (B) SabA, which binds to sialylated 

carbohydrates on the surface of cells (31). Binding of these proteins to the surface of cells 

has been associated with the induction of proinflammatory responses (31).   

Another important virulence factor is the cag PAI. This 40 kb segment of DNA 

encodes multiple proteins that assemble into a type IV secretion system which includes a 

needle-like pilus structure (35-36). Pilus formation is cell contact dependent, and several 

Cag proteins are reportedly capable of binding to the β1-integrin receptor on host cells 

(36-40). Once a molecular bridge forms between the cell and the bacterium, the effector 

protein known as CagA is translocated and delivered into the eukaryotic cell (41-42). 

CagA is then phosphorylated (43-44) and interacts with multiple host proteins, including 

tyrosine phosphatase SHP-2 (45-46). Non-phosphorylated CagA can also interact with 

multiple cellular targets, including E-cadherin and Par1b/MAPK2 (46-48). The crystal 

structure of CagA was recently solved and suggests that flexibility within the 3 domains 

of CagA, plus the highly disordered C-terminus, is responsible for the complex array of 

interactions that have been reported (49). Overall, CagA is considered one of the most H. 

pylori important virulence factors and the only known bacterial oncoprotein.  

Another very important H. pylori virulence factor is the VacA toxin. My thesis 

will focus on studies of the VacA toxin, and thus a detailed description of the toxin will 
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be given in the following sections. An interesting feature of H. pylori virulence factors is 

that individual strains commonly express CagA, BabA and specific VacA types (known 

as s1/i1/m1), whereas other strains fail to express any of these factors. H. pylori strains 

that express CagA, BabA, and have VacA (type s1/i1/m1) are associated with increased 

inflammation, increased cellular alterations, and an increased risk of disease in 

comparison to strains that lack these factors, or that have another VacA type (s2/i2/m2) 

(2).  

 

VacA  

VacA was first described in 1988, when Leunk et al added broth culture 

supernatants from H. pylori broth cultures to eukaryotic cells (50). Surprisingly, they 

observed that the cells became vacuolated , and proposed that a secreted bacterial factor 

was responsible for the vacuolation phenotype (50). VacA was later purified, 

characterized, and proven to be responsible for the vacuolation of cells (51).  

The vacA gene is present in almost every H. pylori strain, but not all strains 

express a functional protein. Furthermore, vacA alleles of H. pylori strains from unrelated 

humans exhibit a high level of genetic diversity and several vacA types have been 

recognized based on sequence diversity (52-54). Most studies have focused on diversity 

at the 5’ end of vacA in a region known as the s-region, or within the middle region (m-

region) (Figure 1) (52).  Two main families of s-region and m-region sequences have 

been recognized (designated types s1 and s2, m1 and m2) (52-54). H. pylori strains 

containing type s1 or m1 vacA alleles are associated with a higher incidence of gastric 

disease (peptic ulcereration and gastric adenocarcinoma)  than are strains containing type 
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s2 or m2 vacA alleles (52, 55). A third polymorphic region, known as the intermediate 

region (i-region), was recently identified (56). Similar to the s- and m-regions, two 

families of i-region sequences have been recognized, and these are designated type i1 and 

i2 (56).  Within the i-region, there are three main clusters of sequence diversity, known as 

polymorphic clusters A, B, and C (56). Importantly, H. pylori strains containing i1 vacA 

alleles have been associated with a higher incidence of gastric disease (peptic ulcereration 

and gastric adenocarcinoma), in comparison to H. pylori strains containing i2 vacA alleles 

(56-64). Multiple combinations of type 1 and 2 vacA alleles have been observed (i.e. 

s1/i1/m2), but several alleles are relatively common (i.e. s2/i2/m2 or s1/i1/m1) (56, 58).  

Another polymorphic region is the deletion region (d-region) (65). Strains containing a 

69 to 81 base pair deletion between the i-region and m-region are considered d2, while 

strains containing no deletion in this region are considered d1 (65). A previous study 

showed that vacA d1 alleles were associated with neutrophil infiltration and gastric 

mucosal atrophy in Western H. pylori strains, while vacA d2 alleles were not associated 

with any alterations (65). Although the relationship between vacA alleles and H. pylori 

disease outcome has been well established, the mechanism by which the VacA protein 

contributes to disease is not clear.  
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FIGURE 1: Regions of sequence diversity in vacA. Four major regions of sequence 
diversity (polymorphic regions) have been identified in the vacA gene. The figure 
illustrates the s-region, i-region, d-region and m-region, and the approximate locations of 
these regions within the vacA gene. All of these regions have been characterized as type 1 
(s1, i1, d1 and m1) or type 2 (s2, i2, d2, and m2), and type 1 alleles are associated with a 
higher risk of  H. pylori related disease.  
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VacA expression and secretion  

VacA gene expression occurs via a DNA-dependent RNA polymerase (66). This 

holoenzyme recognizes a TAAAAA sequence at the -10 position and a non-conserved 

region at the -35 region, prior to transcription (66). Expression of vacA can be 

upregulated by low iron conditions in a fur-independent manner (67-69). After proper 

transcription and translation, a 140 kilodaltons (kDa) pro-toxin containing a signal 

peptide, passenger domain (p88), and β-barrel domain is produced (Figure 2A) (70-72). 

VacA is then secreted through a type V or autotransporter pathway as a soluble 88 kDa 

protein (p88) (51). A proportion of the toxin remains attached to the bacterial cell surface, 

and the remainder is released into the extracellular space (73-74). As a first step in the 

autotransporter pathway, the signal peptide is recognized by the Sec machinery in the 

inner membrane of the bacterium (75-76). This leads to the cleavage of the signal 

peptide, and the translocation of the p88 (passenger domain) and β-barrel domain into the 

periplasm (75-76). As a consequence, the VacA β-barrel is able to insert and form a pore 

in the outer membrane (77). Based on functional studies of pertactin (produced by 

Bordetella pertussis), it has been hypothesized that the p88 (passenger domain) is then 

pulled from C to N terminus in an energy-independent manner (72, 78). Once the toxin is 

exposed to the extracellular space, further cleavage events occur in the region between 

p88 and the β-barrel domain (79). This final step allows the secretion of p88 (77, 79-80). 

It is still not clear whether this final cleavage event occurs through an autoproteolytic 

process or through the action of a specific protease. Interestingly, in several other 

bacterial species, the insertion of the β-barrel domain of autotransporters requires a β-
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barrel assembly machine (BAM) complex (76, 81-85). H pylori contains homologs to 

BAM proteins, but the functions of these proteins have not been studied in H. pylori.  

The VacA β-barrel domain has also been studied in an Escherichia coli (E. coli) 

autotransporter secretion system (86). Specifically, Marin et al. tested whether an E. coli 

passenger domain could be translocated if its β-barrel was replaced with the VacA β-

barrel. The results showed that the VacA β-barrel, in place of the E.coli β-barrel, was not 

capable of secreting E. coli passenger domain (86). On the other hand, another study by 

Fischer et al tested whether the passenger domain of VacA (p88) could be replaced with 

the B subunit of cholera toxin in H. pylori (77). The authors showed that cholera toxin 

was efficiently translocated, and became surface exposed, when the VacA passenger 

domain was replaced with cholera toxin (77).  
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FIGURE 2: VacA expression and secretion. (1) VacA is expressed as a pro-toxin that 
consists of a signal sequence (SS), p88 (passenger domain), and β-barrel domain. (2) 
VacA is secreted through an autotransporter pathway. (2a) The signal sequence is 
recognized by the Sec machinery and then (2b) VacA is translocated to the periplasm. 
(2c) Once in the periplasm the β-barrel forms a pore in the outer membrane and (2d) 
VacA is translocated into the extracellular space. This figure was modified from (78). 

 

 

 

 

(2a) 

(2b) 
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(1) Expression 

(2) Secretion (2) Secretion 
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VacA p33 domain 

Partial proteolytic digestion in vitro of the 88 kDa secreted toxin yields two 

fragments, designated p33 and p55, which probably represent two domains of VacA 

(Figure 3) (71, 87-88). Cleavage of the p88 protein into these two fragments occurs at a 

site that is predicted to be a surface-exposed flexible loop (71, 88). The p33 domain 

contains part of the s-region and d-region, and the complete i-region. At the protein level, 

functional differences between d1 and d2 proteins have not been reported (65). In 

contrast, type s1 VacA proteins cause numerous cellular alterations in vitro, whereas type 

s2 VacA proteins lack detectable activity in most in vitro assays (52, 89-91). A 12-amino-

acid amino-terminal extension has been shown to be responsible for most of the 

differences in activities of the s1 and s2 proteins (91). Although multiple studies reported 

that particular variants of the vacA i-region are markers of disease outcome, thus far there 

have been very few studies comparing the activities of type i1 and type i2 VacA proteins 

(56). One study reported that type i1 VacA proteins caused vacuolation of HeLa and 

RK13 cells (derived from human cervix and rabbit kidney, respectively), whereas type i2 

VacA proteins caused vacuolation of RK13 cells but not HeLa cells (56). Therefore, it 

was concluded that the i-region is a determinant of VacA cell-type specificity (56). Taken 

together, these studies suggest that regions of sequence diversity within the p33 domain 

are important for functional activity of VacA.  
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FIGURE 3: VacA domains. VacA secretion produces a p88 toxin. Proteolytic digestion 
of the secreted toxin yields two domains designated as p33 and p55. The arrows indicate 
proteolytic events that occur during VacA secretion or subsequent to secretion. This 
figure was modified from (73). 
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VacA p33 domain 

The secreted toxin is considered a pore-forming toxin and can cause multiple 

cellular alterations. The identification of amino acids in the p33 domain that are 

important for VacA-dependent cellular effects has been an active area of VacA research. 

It has been determined that the p33 domain contains an amino terminal portion that is 

important for membrane channel formation (92-94). Specifically, a well characterized 

mutant (VacA ∆6-27) lacks three hydrophobic GXXXG motifs, lacks toxin activity and 

membrane channel activity, and exhibits a dominant negative phenotype when mixed 

with wild-type (WT) VacA (92). Similarly, it has been shown that amino acids located 

outside the amino-terminal hydrophobic region (G121 and S246 in the VacA sequence of 

H. pylori strain 60190) are important for vacuolating activity (95). The importance of the 

p33 domain in cell vacuolation  has also been demonstrated by a study that expressed an 

approximately 422 residue VacA protein (corresponding to the p33 domain and the 

amino-terminal portion of the p55 domain) intracellularly in HeLa cells, and showed that 

this portion was sufficient to cause cell vacuolation (96).   

Intracellular expression of p33 has been reported to result in localization of p33 to 

mitochondria (97). Additional studies of p33 domain-mitochondria interactions identified 

a stretch of 32 hydrophobic amino acids that seems to be a novel type of mitochondria-

targeting sequence capable of interacting with the translocase of the outer membrane of 

mitochondria (TOM) complex (98).   At the structural level, it has been predicted that a 

large portion of p33 comprises a β-helical fold (99); however, a detailed structure of the 

p33 domain has not been determined. 
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VacA p55 domain 

The p55 domain contains the m-region, which as described previously is a region 

of sequence diversity. At the protein level, this region consists of approximately 280 

amino acids (from approximately D455 to V735 in the VacA sequence of H. pylori strain 

60190). Functional studies have shown that m1 and m2 VacA proteins have different 

cell-type specificity (100-101). Similar to the i-region, m1 proteins affect a wider range 

of cells as compared to m2 VacA proteins (100-103). Furthermore, it has been proposed 

that cell specificity is due to differences in binding to specific receptors (102-103). In 

support of this hypothesis, a phylogenetic analysis of the p55 domain showed that there is 

strong divergence and positive selection in the p55 domain (54). The crystal structure of 

the p55 m1 was determined, and consists predominantly of a right handed β-helical 

structure (Figure 4) (99). The β-helical structure is characteristic of passenger domains 

secreted by the autotransporter pathway (75-76).  

To analyze structural differences between type m1 and m2 VacA proteins, the p55 

m2 protein structure has been modeled based on comparison to the m1 crystal structure, 

but a detailed structure of the p55 m2 protein has not been determined (99). Through this 

analysis, various differences between the m1 and m2 structures were identified (99). It 

was also proposed that both the p55 m1 and m2 proteins contain an autochaperone 

domain at the C-terminal position (99). Interestingly, in other autotransporters it has been 

shown that the β-cap serves as an autochaperone important for translocation and secretion 

of the passenger domain (99, 104-105). A detailed mutagenesis study of the β-helical 

loops in the p55 m1 protein, showed that several coiled loops can be deleted without any 

adverse effects on toxin secretion or activity (106). Further structural and functional 
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studies of the p55 m2 protein will be required to allow a thorough understanding of type 

m2 VacA proteins.  
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FIGURE 4: Crystal structure of the p55 domain. Structural analysis of the p55 domain 
shows that this domain has a β-helical structure, which is a characteristic of several other 
autotransporters. This figure was reprinted from (99). 
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VacA oligomerization 

The 88 kDa VacA monomers secreted by H. pylori can assemble into large water-

soluble oligomeric complexes (Figure 5) (107-109). These flower-shaped structures can 

be either single-layer (containing 6-9 subunits) or bilayer (containing 12-14 subunits) 

(107-109). Similar oligomeric structures have been visualized on the surface of VacA-

treated cells or lipid bilayers (109-111). A current model proposes that VacA monomers 

interact with the plasma membrane and subsequently oligomerize, which allows the 

formation of VacA pores in cell membranes (73, 112). Amino acid sequences within both 

the p33 domain (residues 49-57) and the p55 domain (residues 346 and 347) are required 

for assembly of VacA into these oligomeric structures, and mutant proteins lacking these 

sequences fail to cause cell vacuolation (113-114). Furthermore, certain non-

oligomerizing VacA mutant proteins (Δ49-57 and Δ346-347) have dominant negative 

inhibitory effects on the ability of WT VacA to cause cellular alterations, which supports 

the hypothesis that oligomeric structures are required for VacA effects on host cells (113-

115). Water-soluble VacA oligomeric complexes lack cytotoxic activity unless they are 

first dissociated into monomeric components by exposure to low-pH or high-pH 

conditions (107, 116), and therefore, it is presumed that VacA monomeric components 

interact with host cells and subsequently reassemble into membrane channels. Although 

the structure of water-soluble VacA oligomeric complexes has been investigated in detail, 

the conditions that promote oligomerization of VacA are not well-understood.  
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 FIGURE 5: VacA oligomerization. Secreted p88 VacA can form “flower shaped” 
oligomeric structures. These structures are thought to mimic a pore forming state of the 
toxin (108).  
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VacA effects on gastric cells  

VacA causes many cellular alterations and has been categorized as a 

multifunctional protein (73). In general, the toxin is considered a pore-forming toxin (73, 

117-118), although it has also been proposed that VacA is a novel kind of AB-type toxin 

(119-120). In either case, a current model for VacA intoxication of gastric epithelial cells 

proposes that as a first step, the toxin binds to a host receptor. Thus far, multiple 

receptors have been identified and include sphingomyelin (121-122), receptor-like 

tyrosine phosphatases (RPTP-α and RPTP-β) (123-124), epidermal growth factor (EGF) 

receptor (125), fibronectin, heparin sulfate (126), glycosylphosphatidylinositol (GPI)-

anchored proteins (127-129) and low-density lipoprotein receptor-related protein-1 

(LRP1) (130). VacA can also associate with lipid rafts (131-132). Upon binding to the 

host cell, VacA can then (1) activate cell signaling pathways, (2) act as a pore forming 

toxin in the plasma membrane, and/or (3) be internalized and cause vacuolation, 

mitochondrial alterations, and/or cell death (73, 117-120).  

Cell signaling occurs soon after the toxin encounters the cell, and it has been 

reported that VacA can activate mitogen-activated protein kinases p38, ERK1/2, and 

transcription factor 2 (ATF 2) in gastric epithelial cells (133-134). The G-protein coupled 

receptor kinase interactor (Git1) signaling pathway is also altered by VacA (135).   

VacA can also act as a pore-forming toxin by causing the reduction of 

transepithelial electric resistance of monolayers in polarized epithelial cells (136). This 

can lead to the release of molecules such as Fe3+, Ni2+, sugars, and amino acids, which 
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affects the homeostasis of the cell (136-139). In addition, VacA alters nutrient acquisition 

in the cell by inducing apical mis-localization of transferrin receptors (140).  

Finally, it has been shown that VacA can be internalized into the host cytoplasm 

through endocytosis (128). This process is actin-dependent, temperature-dependent, 

energy-dependent, and is clathrin-independent (128-129, 131-132, 141-143). Once in the 

cytoplasm, VacA first accumulates in early endosomes (144), and the toxin then traffics 

to late endosomes (145-146). It has been shown that GTPases like Rac1 and Cdc42, as 

well as the adaptor molecule CD2-associated molecule protein (CD2AP) are important 

for VacA internalization (144-145, 147).  A current model proposes that once VacA is in 

the endosome, the toxin acts as a chloride channel (118). Specifically, it has been 

suggested that the influx of chloride ions into the endosome causes the activation of V-

type ATPase (148-149). As a consequence, ammonium ions and other weak bases 

accumulate, and osmotic swelling (vacuolation) occurs (146, 150). The membranes of 

vacuoles contain late endocytic markers (Rab 7, LAMP1, and Pgp110) (146, 151-152). 

The role of vacuolation in vivo is not clear.  

Intracellular trafficking of VacA can also lead to the localization of the toxin to 

the mitochondria (73, 117-120). It has been suggested that this occurs via 

juxtapositioning of endosomes with mitochondria (153). Once in contact with the 

mitochondria, the toxin causes reduction of mitochondrial transmembrane potential (97-

98, 154-155), cytochrome c release (97-98, 154-155), reduction of cellular ATP and cell 

cycle progression (156-157), PARP cleavage (157), and mitochondrial fragmentation 

(158). The host proapoptotic factors BAX and BAK, as well as dynamin-related protein 1 

(Drp1), are important for VacA effects on the mitochondria (153, 159-160). VacA-
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induced mitochondrial alterations can lead to cell death. Thus far it has been reported that 

VacA can cause both apoptosis and programmed cell necrosis in epithelial gastric cells 

(73, 117-120, 157, 161-164). VacA also is reported to cause autophagy in gastric 

epithelial cells (130, 165-167). Although this pathway has not been studied in detail, it 

has been proposed that it could serve as a mechanism for the regulation of toxin-mediated 

damage in cells. It is important to mention that VacA effects on gastric cells have mainly 

been studied in vitro. Therefore, in future experiments it will be necessary to determine 

which of these pathways are relevant in vivo. 

VacA toxin effects on immune cells 

VacA also has effects on cells of the immune system and has been classified as an 

immunomodulatory toxin (168-170). In macrophages, it has been reported that VacA can 

disrupt phagosome maturation (171). On the other hand, VacA selectively inhibits the 

invariant chain (Ii)-dependent pathway of antigen presentation (172). In mast cells, VacA 

is capable of binding to the surface of the cell, inducing the production of cytokines, and 

inducing cell migration (173). More in depth studies have been done in T cells (169, 174-

175). Based on these studies, a model for VacA effects on T cells proposes that VacA 

interacts with β2-integrin on the surface of human T cells (174) and is then internalized 

through a clathrin-independent pathway (176). In addition to binding to β2-integrin, it has 

been proposed that VacA also binds to another cellular factor that has not yet been 

identified (174, 176). Once inside T cells, VacA inhibits the activation and nuclear 

translocation of nuclear factor of activated T cells (NFAT) by preventing the action of 

calcineurin (169, 176). As a consequence, VacA inhibits the expression and secretion of 

interleukin- 2 (IL-2) (Figure 6) (169, 174). Effects of VacA on IL-2 production have been 



21 
 

studied most extensively in Jurkat cells (169, 174-175). Interestingly, mouse T cells are 

VacA resistant (175). In addition to its effects on IL-2 production by Jurkat cells, VacA 

inhibits the activation-induced proliferation of primary human T cells and B cells (170, 

174, 176-177). It has been shown that some of these effects can be NFAT independent 

(170, 175). Further studies will be required to establish the specific mechanism by which 

VacA intoxicates immune cells. 

VacA–related cellular alterations have mainly been studied in vitro, and the 

number of studies using animal models to study VacA has been very limited. In vivo 

studies reported that H. pylori vacA-null mutant strains are capable of colonizing the 

stomach of mice, gerbils and gnotobiotic piglets, which suggests that vacA is not required 

for colonization of the stomach (178-182). On the other hand, it was also reported that 

vacA-producing strains outcompeted vacA-null strains in mouse stomach colonization 

studies, suggesting that vacA provides an advantage for colonization (181). Furthermore 

it has been reported that primary murine T cells are resistant to VacA (175). Further 

animal model experimental studies will be required to better understand the role of VacA 

in vivo. 
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FIGURE 6: Model for VacA effects on T-cells. VacA initially binds to an 
uncharacterized receptor/co-receptor (factor X). This initial interaction may facilitate the 
binding to β2 receptor. VacA is then internalized via a clathrin-independent pathway, and 
once inside the cell VacA can alter the action of calcineurin. Therefore, NFAT cannot be 
dephosphorylated and enter the nucleus. As a consequence, IL-2 production and T-cell 
proliferation is disrupted. This figure was modified from (174). 
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Research objectives 

Over the past decade, functional studies of the VacA toxin have demonstrated the 

importance of the p33 domain in toxin activity. The p33 domain is thought to be the pore-

forming domain of VacA, can target mitochondria in host cells, contains various 

polymorphic regions that have clinical importance, and contains amino acids required for 

oligomerization (73, 117-120). The importance of the p33 domain has been well 

established; however, virtually nothing is known about the structural properties of this 

domain.  Based on in silico studies, two contrasting models for the p33 domain have been 

proposed. The first model proposes that the p33 domain contains a β-helical structure 

similar to the p55 domain at the C-terminus, and a α-helical pore-forming domain (93, 

99).  In contrast, the second model proposes that the p33 domain adopts a β-barrel 

structure (98). A structural model for the p33 domain could provide important new 

insights into the mechanism of action of the toxin (183-185). Therefore, my overall 

research goal was to structurally and functionally analyze the p33 domain.  

When I started my studies of the VacA toxin, the crystal structure of the p55 

domain had been recently determined by Kelly Gangwer in Borden Lacy’s laboratory 

(lab)  (99).  I started collaborating with Borden Lacy’s lab, and as a first step we 

undertook studies aimed to express and purify a recombinant form of the p33 domain. In 

chapter 2, I will present data showing our successful purification of an active form of the 

p33 domain. Our experimental data showed that mixing p33 and p55 reconstituted the 

VacA toxin. These studies highlight the functional importance of the p33 domain, and 

provide a basis for structural studies of the p33 domain. 
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Epidemiological studies of vacA polymorphic regions have demonstrated that the 

VacA toxin can be used as a marker for H. pylori-disease outcome. Functional studies 

related to these regions have mainly focused on the s- and m-region (52, 89-91, 100-103). 

The i-region was recently described, and is present within the p33 domain (56). Based on 

previous clinical studies, the i-region was classified as either type 1 (i1) or type 2 (i2), 

and  it was shown that strains containing i1 vacA alleles were associated with a higher 

incidence of H. pylori disease as compared to strains containing i2 vacA alleles (56-62). 

At the protein level, there has been relatively little effort to analyze possible differences 

in the activity of type i1 and i2 VacA proteins. To further analyze the p33 domain, I 

performed functional studies of the p33 i-region. In chapter 3 I will describe studies of 

the p33 i-region which show that i1 VacA proteins are more potent than i2 proteins in a 

Jurkat T cell model. This study highlights the importance of the p33 domain in T cell 

activity.   

Structural characterization requires the efficient expression, purification, and 

crystallization of a protein. In chapters 2 and 3 I was able to express and purify 

recombinant forms of the p33 domain. As a next step in trying to structurally characterize 

the p33 domain, I performed crystallization studies. In chapter 4 I will summarize various 

approaches that I employed for these studies, and describe a current method that has led 

to VacA crystals. Collectively, structure and function studies of the p33 domain will (A) 

help elucidate mechanisms of action of VacA, and (B) help us understand the role of 

VacA in disease. 
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CHAPTER 2 

 

EXPRESSION, PURIFICATION, AND REFOLDING OF 

RECOMBINANT VACA P33 DOMAIN 

 

 

Introduction 

H. pylori VacA is a pore-forming toxin that causes multiple alterations in human 

cells and contributes to the pathogenesis of peptic ulcer disease and gastric cancer. The 

toxin is secreted by H. pylori as an 88 kDa monomer (p88) consisting of two domains 

(p33 and p55). While an X-ray crystal structure for p55 exists and p88 oligomers have 

been visualized by cryo-electron microscopy, a detailed analysis of p33 has been 

hindered by an inability to purify this domain in an active form. In this chapter I describe 

the development of methods that allow the efficient purification of the p33 domain. 

Furthermore, through structural and functional studies, we show how p33 and p55 

mixtures are able to reconstitute VacA toxin activity. These studies highlight the 

importance of the p33 domain in toxin activity and oligomerization, and provide a basis 

for structural studies of the p33 domain. 

 

Materials and Methods 

Purification of p88 VacA from the H. pylori broth culture supernatant 

H. pylori strain 60190 (expressing WT VacA) and a strain expressing a 

VacAΔ6−27 mutant protein were grown in broth culture, and VacA proteins were 
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purified in an oligomeric form from the culture supernatant as described previously (92, 

107). These preparations of purified VacA oligomers were acid-activated prior to use in 

cell culture experiments (107, 116). 

Plasmids for expression of p33 and p55 VacA fragments 

Plasmids encoding the p33 and p55 domains of VacA from H. pylori strain 60190 

(a type s1/m1 form of VacA; GenBank accession number Q48245), as well as a c-Myc-

tagged p33 protein and a p33Δ6−27 mutant protein, have been described previously  (70, 

87, 99, 115). The p33 proteins contain a C-terminal hexahistidine (6X His) tag, and the 

p55 protein contains an N-terminal 6X His tag. 

Expression and purification of recombinant VacA proteins 

VacA p55 was purified as described previously (99). VacA p33 was expressed 

in E. coli BL21(DE3) by culturing in Terrific broth (Fisher) supplemented with 25μg/mL 

kanamycin (TB-KAN) at 37°C overnight with shaking. A c-Myc-tagged form of 

p33 (87) was expressed in the same manner. Cultures were diluted 1:100 in TB-KAN and 

grown at 37°C until they reached an absorbance (A600) of 0.6. Cultures were induced with 

a final isopropyl β-D-thiogalactopyranoside (IPTG) concentration of 0.5 mM and 

incubated at 37°C for 2 hours (h). VacA p33 proteins were purified from inclusion 

bodies. Briefly, IPTG-induced cultures were pelleted, washed in 0.9% NaCl, and 

resuspended (10 mL/L of culture) in sonication buffer [10mM Tris (pH 7.5), 100 mM 

NaCl, 1 mM EDTA, protease inhibitor (Roche), and 20000 units/mL lysozyme (Ready-

lyse, Epicenter)]. The cells were incubated at room temperature for 15 minutes (min) 

with shaking and sonicated with six 20 watt bursts (45 seconds [s] per burst with 15 s 

cooling periods). Lysed bacterial cells were centrifuged to pellet the inclusion bodies. 

http://www.ncbi.nlm.nih.gov/sites/gquery?GlobalQuery.GQueryCluster.GQuerySearchBox.Term=Q48245�
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The insoluble inclusion body pellet was resuspended in buffer containing 100 mM 

NaH2PO4, 10 mM Tris, and 8 M urea (pH 8.0) at 5 mL/g of wet weight and incubated for 

1 h at room temperature. The samples were centrifuged, and the resulting supernatant was 

added to Ni-NTA beads (Novagen) at a ratio of 4 mL of supernatant/mL of beads. The 

protein/bead  mixture was incubated for 1 h at room temperature before being loaded into 

a column. The column was washed with 10 column volumes of 100 mM NaH2PO4, 10 

mM Tris, 10 mM imidazole, and 8 M urea (pH 6.3), followed by 100 mM NaH2PO4, 10 

mM Tris, and 8 M urea (pH 5.9). The p33 protein was eluted from the column with 100 

mM NaH2PO4, 10 mM Tris, and 8 M urea (pH 4.5). Successful expression and 

purification of p33 were confirmed by mass spectrometry (data not shown). 

Refolding of VacA p33 

The denatured VacA p33 protein was refolded via dialysis of the protein against a 

buffer containing 55 mM Tris, 21 mM NaCl, 0.88 mM KCl, 1.1 M guanidine, and 880 

mM arginine (pH 8.2) for 24 h. The protein then was dialyzed in two other buffers, each 

for 24 h. The first reduced the guanidine concentration to 800 mM and the arginine 

concentration to 500 mM, and the second reduced the arginine concentration to 250 mM 

and maintained a guanidine concentration of 800 mM (186). Further reductions in the 

arginine or guanidine concentrations resulted in precipitation of p33 VacA. 

Cell culture assays 

HeLa cells were grown in minimal essential medium (modified Eagle’s medium 

containing Earle’s salts) supplemented with 10% fetal bovine serum (FBS) in a 5% 

CO2 atmosphere at 37°C. Jurkat lymphocytes (clone E6-1) (ATCC TIB-152) were grown 
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in RPMI 1640 medium containing 2 mM l-glutamine, 1.5 g/L sodium bicarbonate, 4.5 

g/L glucose, 10 mM HEPES, and 1.0 mM sodium pyruvate supplemented with 10% FBS.         

For vacuolating assays, HeLa cells were seeded at a density of 1.2 × 104 cells/well 

into 96-well plates 24 h prior to the addition of VacA proteins. The recombinant p33 and 

p55 proteins (each at 1 mg/mL) were premixed in a 1:1 mass ratio, which corresponds to 

an 1.7:1 molar ratio. The use of excess p33 on a molar basis compensated for the 

possibility that refolding of denatured p33 might be less than 100% efficient. 

Preparations of purified p33, p55, or the p33/p55 mixture were then added to the tissue 

culture medium overlying HeLa cells (supplemented with 10 mM ammonium chloride) 

and incubated overnight at 37°C. VacA-induced cell vacuolation was detected by 

inverted light microscopy and quantified by a neutral red uptake assay, a well-established 

method that is based on rapid uptake of neutral red into VacA-induced cell vacuoles (51, 

187). For dominant negative assays, we tested the ability of the refolded p33Δ6−27 

protein or the purified H. pylori p88 Δ6−27 protein to inhibit the activity of WT VacA 

(92, 115). To analyze VacA effects on T cells, we analyzed the capacity of VacA to 

inhibit IL-2 secretion by Jurkat T cells (169). Jurkat cells were plated at a density of 1 × 

105 cells/well, and recombinant p33 and p55 were added to cells either individually or as 

a p33/p55 mixture (1:1 mass ratio) for 30 min at 37°C. After incubation, 0.05 μg/mL 

phorbol 12-myristate 13-acetate (PMA) and 0.5 μg/mL ionomycin were added for 24 h at 

37°C. The cells were then centrifuged at 2000 rpm for 7 min, and the supernatants were 

tested for IL-2 by an enzyme-linked immunosorbent assay (ELISA), according to the 

manufacturer’s protocol (R&D Systems Human IL-2 Immunoassay) (175). 
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Interactions of p33 and p55 with HeLa cells 

Purified p55 was labeled with Alexa 488 (Molecular Probes) according to the 

manufacturer’s instructions. HeLa cells were incubated with Alexa 488-labeled p55 alone 

(10 μg/mL) or a mixture of labeled p55 with purified refolded p33 (each at 5 μg/mL) at 

37°C. Alternatively, cells were incubated with purified Alexa 488-labeled p55 with a c-

Myc-tagged p33 protein (87) that was purified and  refolded using the same methodology 

described above for p33. Cells were fixed with 4% formaldehyde. The c-Myc-tagged p33 

protein was detected by indirect immunofluorescence using an anti-c-Myc antibody and 

an Alexa fluor-555-conjugated secondary antibody. Cells were viewed with an LSM 510 

inverted confocal microscope (Carl Zeiss). 

Size exclusion chromatography 

Gel filtration was performed using either Superdex 200 10/300 GL high-

resolution resin or Superdex 200 10/300 prep grade resin, equilibrated in 55 mM Tris (pH 

8.0), 21 mM NaCl, 0.88 mM KCl, 800 mM guanidine, and arginine (either 800 or 250 

mM). Protein samples were first injected onto the gel filtration column individually at a 

final concentration of 0.75 mg/mL for the p33 protein and 0.4 mg/mL for the p55 protein. 

To analyze p33/p55 mixtures, the appropriate sizing column fractions corresponding to 

either p33 or p55 were each concentrated to 1 mg/mL. VacA p33 was added to p55 in a 

2:1 volume ratio, the mixture incubated for 45 min at 4°C, and the p33/p55 mixture then 

applied to a gel filtration column. Retention volumes of bovine thyroglobulin, alcohol 

dehydrogenase, bovine serum albumin, and carbonic anhydrase were used as standards to 

calculate the molecular masses of the purified VacA proteins. 
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Electron microscopy 

To visualize the morphology of p33/p55 mixtures, appropriate gel filtration 

fractions containing these proteins were analyzed by electron microscopy using 

conventional negative staining as described previously (188). Protein solutions were 

diluted to appropriate final concentrations (25−100 μg/ mL), and 2.5 μL aliquots were 

spotted onto glow-discharged copper-mesh grids (EMS) for approximately 1 min. In 

some experiments, p33/p55 mixtures were mixed in a 9:1 (v/v) ratio with Brucella 

broth (189) or n-dodecyl β-D-maltoside (DDM, Anatrace) prior to electron microscopy 

analysis. The final concentration of DDM was 0.34 mM, which corresponds to twice the 

critical micelle concentration. The grids were washed in 5 drops of water followed by 1 

drop of 0.7% uranyl formate. Grids were then incubated on 1 drop of 0.7% uranyl 

formate for 1 min, blotted against filter paper, and allowed to air-dry. Initial images of 

WT p88 or the p33/p55 mixture mixed with Brucella broth were collected on an FEI 

morgagni run at 100 kV at a magnification of 36000X. Images were recorded on an ATM 

1Kx1K CCD camera. Images of p88 used for multireference alignment were collected on 

a FEI 120 kV electron microscope at a magnification of 67000X. Images were recorded 

on DITABIS (Pforzheim, Germany) digital imaging plates. The plates were scanned on a 

DITABIS micrometer scanner, converted to mixed raster content (mrc) format, and 

binned by a factor of 2, yielding final images with 4.48 Å/pixel. Images of the p33/p55 

mixture in DDM purified by gel filtration were taken on a 200 kV FEI electron 

microscope equipped with a field emission electron source and operated at an 

acceleration voltage of 120 kV and magnification of 100000X. Images were collected 

using a Gatan 4Kx4K CCD camera. CCD images were converted to mrc format and 
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binned by a factor of 4, resulting in final images with 4.26 Å/pixel. Images of both p88 

and the p33/p55 mixture were taken under low-dose conditions using a defocus value of 

−1.5 μm. 

For alignment and averaging of p88 VacA and p33/p55 VacA in DDM, 9871 and 

1273 images of p88 and p33/p55 VacA particles, respectively, were selected with Boxer 

and windowed with a 120 pixel side length (190). Image analysis was conducted with 

SPIDER and the associated display program WEB (191). The images were rotationally 

and translationally aligned and subjected to 10 cycles of multireference alignment and K-

means classification. For analysis of p88 VacA, alignment particles were first classified 

into 20 class averages (data not shown) and seven representative classes then were 

chosen as references for another cycle of multireference alignment. For analysis of 

p33/p55 VacA, particles were first classified into 10 class averages (data not shown) and 

then four representative projections were chosen as references for another cycle of 

multireference alignment. 
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Results 

Expression, purification, and refolding of recombinant p33 VacA 

In previous studies, it has not been possible to purify a functionally active form of 

the p33 domain (87). We attempted to purify the p33 VacA fragment from E. 

coli extracts under native conditions but were unsuccessful. Therefore, we expressed and 

purified the recombinant p33 under denaturing conditions and then used dialysis to 

reduce the concentration of denaturants and allow the protein to refold. After the p33 

protein was refolded, it eluted as a well-defined peak by size exclusion chromatography 

(Figure 7). 
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FIGURE 7: Purification of recombinant p33 VacA. Sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie blue stain of p33 VacA 
purified under denaturing conditions (inset). Gel filtration chromatography (Superdex 
200 10/300 GL high-resolution resin) of p33 VacA after protein refolding, using buffer 
containing 800 mM guanidine and 800 mM arginine, as described in Experimental 
Procedures. 
 

 

 

 

 

 

 



34 
 

Refolded p33 mixed with purified p55 causes cellular alterations 

To test the activity of the purified p33 and p55 proteins, we added these proteins 

individually and in combination to HeLa cells and analyzed the capacity of the proteins to 

cause cell vacuolation, a hallmark of VacA activity. No detectable vacuolating activity 

was observed when the p33 or p55 protein was added to cells individually, as 

demonstrated by the neutral red uptake assay and light microscopic examination of the 

cells (Figure 8A and data not shown). Similarly, none of the buffers alone or in 

combination exhibited any detectable activity (data not shown). In contrast, a mixture of 

the purified p33 and p55 proteins caused extensive vacuolation of HeLa cells (Figure 8A 

and 8B). The potency of the p33/p55 mixture was slightly lower than that of the p88 

VacA protein purified from H. pylori broth culture supernatant (Figure 8B). A mixture of 

p55 and heat-denatured p33 failed to cause any detectable effects on cells (data not 

shown). 

Previous studies have shown that VacA from H. pylori inhibits production of IL-2 

by Jurkat cells (169). To test whether p33 and p55 proteins exhibit a similar activity, we 

incubated Jurkat cells with the purified p33 and p55 proteins individually and in 

combination. When added individually, neither p33 nor p55 had any effect on IL-2 

secretion (Figure 8C). In contrast, the p33/p55 mixture inhibited IL-2 secretion from 

Jurkat cells (Figure 8C and 8D). The potency of the p33/p55 mixture was slightly lower 

than that of the p88 VacA protein purified from H. pylori (Figure 8D). Collectively, these 

results indicate that the refolded p33 protein, when mixed with the p55 protein, is 

biologically active and capable of causing alterations in eukaryotic cells. 

 

http://pubs.acs.org/doi/full/10.1021/bi100618g#fig2�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig2�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig2�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig2�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig2�


35 
 

 

 
FIGURE 8: Effects of p33 and p55 VacA proteins on HeLa cells and Jurkat cells. 
Purified refolded p33 and purified p55 (each at 1 mg/mL) were mixed together in a 1:1 
mass ratio, which ensured an excess of p33 on a molar basis. The p88 VacA protein 
purified from the H. pylori culture supernatant was acid-activated prior to contact with 
cells (107, 116), whereas the p33 and p55 preparations were not acid-activated. (A) HeLa 
cells were incubated with the purified VacA proteins at a final concentration of 10 μg/mL 
(or 5 μg/mL for each protein in the case of the p33/p55 mixture). Cell vacuolation was 
quantified by the neutral red uptake assay (OD540). (B) HeLa cells were incubated with 
the indicated final concentrations of a p33/p55 mixture (20 μg/mL corresponds to 10 
μg/mL p33 and 10 μg/mL p55) or the p88 form of VacA purified from the H. pylori broth 
culture supernatant. Cell vacuolation was quantified by the neutral red uptake assay. (C) 
Jurkat cells were incubated with the indicated purified VacA proteins at a concentration 
of 6 μg/mL (or 3 μg/mLfor each protein in the case of the p33/p55 mixture) for 30 min at 
37˚C. The cells were then stimulated, and IL-2 secretion was measured as described in 
Experimental Procedures. (D) Jurkat cells were incubated with the indicated final 
concentrations of a p33/p55 mixture or the p88 form of VacA purified from the H. pylori 
culture supernatant. The cells were then stimulated, and IL-2 secretion was measured as 
described in Experimental Procedures. Results represent the mean (standard deviation, 
based on analysis of triplicate samples. 
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Refolded p33Δ6−27 exhibits a dominant negative effect 

When certain mutant VacA proteins (e.g., VacAΔ6-27) are mixed with WT VacA, 

the mutant proteins can act as dominant negative inhibitors of WT VacA activity (91-92, 

113-115). To further validate the new methods for expression and refolding of p33 

proteins, we expressed, purified, and refolded the p33Δ6-27 protein under the same 

conditions used for purification and refolding of the p33 WT protein. When added to 

cells individually or in combination with purified p55, the p33Δ6-27 protein did not cause 

detectable cell vacuolation (Figure 9A). To test for dominant negative properties of the 

mutant protein, we premixed the p33Δ6-27 protein with p33/p55 mixtures that were 

known to be active (Figure 9A). When this p33/p55/ p33Δ6-27 mixture was added to 

cells, no detectable vacuolation was observed, indicating that the mutant protein 

exhibited a dominant negative effect (Figure 9A). The purified refolded p33Δ6-27 

protein, when mixed with purified p55, exhibited dominant negative inhibitory properties 

similar to those of the p88Δ6-27 protein purified from the H. pylori broth culture 

supernatant (Figure 9B) (92, 115). 
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FIGURE 9: Refolded p33Δ6-27 exhibits dominant negative properties. (A) VacA 
p33Δ6-27 was purified and refolded as described in Experimental Procedures. Purified 
p33Δ6-27 was mixed with p55 and p33 (each at 1 mg/mL) at a 1:1:1 mass ratio. HeLa 
cells were then incubated with the indicated recombinant VacA proteins (either 
individually or in a mixture) at a final concentration of 10 μg/mL for 9 h at 37̊ C. Cell 
vacuolation was quantified by then neutral red uptake assay. (B) WT p88 VacA (5 
μg/mL) was incubated with the indicated concentrations of the VacA p33Δ6-27/p55 
mixture or the p88Δ6-27 VacA protein purified from the H. pylori culture supernatant. 
Cell vacuolation was quantified by the neutral red uptake assay. Results represent the 
mean standard deviation, based on analysis of triplicate samples. 
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Interactions of p33 and p55 with HeLa cells 

Several previous studies have shown that sequences within the p55 domain 

contribute to the binding of p88 VacA to cells, and it has been suggested that p55 

functions as a cell binding domain (101, 192-193). To investigate the cell binding 

properties of p55 in further detail, we incubated HeLa cells with purified fluorescently 

labeled p55. Very little if any interaction of purified p55 with HeLa cells was observed 

(Figure 10A). In contrast, when p55 was incubated with HeLa cells in the presence of 

purified refolded p33, a marked increase in the level of binding and uptake of p55 by 

cells was observed (Figure 10A). Thus, p33 markedly enhanced the cell binding 

properties of p55. Further studies indicated that when a mixture of p33 and p55 was 

incubated with cells, both p33 and p55 bound to the cell surface (Figure 10B). These 

properties of purified p33 and p55 proteins are consistent with previously observed 

properties of p33 and p55 proteins contained in crude E. coli extracts (87). 
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FIGURE 10: Interaction of p55 and p33 proteins with HeLa cells. (A) HeLa cells 
were incubated with Alexa 488-labeled p55 alone (10 μg/mL) or a mixture of labeled p55 
and purified refolded p33 (5 μg/mL each) for 4 h at 37̊ C. Cells were imaged as described 
in Experimental Procedures. (B) Cells were incubated with purified Alexa 488-labeled 
p55 and purified refolded c-Myc-tagged p33 protein for 1 h at 37̊ C. The c-Myc tagged 
p33 protein was detected by indirect immunofluorescence. 
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Interaction of refolded p33 with purified p55 

To investigate potential interactions among the purified p33 and p55 proteins, we 

performed size exclusion chromatography experiments. When the refolded WT p33 

protein was analyzed, a peak with a predicted mass of 96 kDa was observed (Figure 11, 

red peak with an asterisk). When the purified p55 protein was analyzed, a peak with a 

molecular mass of 178 kDa was observed (Figure 11, green peak with an asterisk). When 

the p33/p55 mixture was analyzed, a peak with a predicted mass of 86 kDa was observed 

(Figure 11, blue peak with an asterisk), the 96 kDa peak (corresponding to p33 alone) was 

lost, and the 178 kDa peak (corresponding to p55 alone) was minimized. Representative 

fractions were tested by SDS-PAGE and Coomassie blue staining; this revealed an 

approximate 33 kDa band for the VacA 96 kDa peak, a 55 kDa band for the 178 kDa 

peak, and two protein bands of 33 and 55 kDa for the 86 kDa peak (Figure 11B). When 

tested in cell culture assays, the p33/p55 mixture corresponding to the blue peak in 

Figure 11 caused cell vacuolation with a potency similar to that shown in Figure 8B (data 

not shown). Taken together, these results suggest that the refolded p33 protein interacts 

with the purified p55 protein to yield a p33/p55 complex. Moreover, these data suggest 

that p33 homo-oligomers and p55 homo-oligomers must undergo disassembly to interact 

with each other and form 88 kDa p33/p55 complexes. 
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http://pubs.acs.org/doi/full/10.1021/bi100618g#fig5�
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FIGURE 11: Analysis of p33 and p55 proteins by gel filtration. (A) Size exclusion 
chromatography (Superdex 200 10/300 prep grade resin) of refolded p33 (red peak), 
purified p55 (green peak), or a mixture of the two proteins (blue peak). Refolded p33 and 
purified p55 (each 1 mg/mL) were mixed at a 2:1 mass ratio and injected into the sizing 
column, as described in Experimental Procedures. The buffer contained 800 mM 
guanidine and 250 mM arginine, which were required to maintain the solubility of the 
p33 protein. The inset shows retention volumes of p33, p55, and the p33/p55 mixture in 
comparison to those of standard proteins. (B) The lower-molecular mass peaks (asterisks) 
from each of the size exclusion chromatography experiments shown in panel A were 
analyzed by SDS-PAGE and Coomassie blue staining. 
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Assembly of p33/p55 complexes into oligomeric structures 

The p88 VacA protein secreted by H. pylori can assemble into water-soluble 

oligomers (107-109, 194). To investigate the possibility that p33 and p55 domains might 

assemble into similar structures, we visualized the p33/p55 mixture (purified by gel 

filtration as a monomeric complex) by electron micrsocopy. VacA p88 oligomers purified 

from the H. pylori culture supernatant (and exchanged into guanidine- and arginine-

containing buffer by gel filtration) were analyzed as a control. As expected, large 

flowerlike structures were visualized in preparations of H. pylori p88 VacA (Figure 12A). 

In contrast, the p33/p55 mixture consisted mainly of small rodlike particles (Figure 12B), 

similar to the appearance of p88 monomers produced by H. pylori (107-108). 

To explain why p88 proteins in the H. pylori broth culture supernatant readily 

assemble into flowerlike oligomeric structures whereas purified p33 and p55 proteins do 

not, we hypothesized that the broth culture medium used for growth of H. pylori (a 

nutrient-rich medium prepared from yeast extract and animal tissue, known as Brucella 

broth) might contain factors that promote VacA oligomerization. To test this hypothesis, 

we examined the appearance of the p33/p55 mixture by electron microscopy, either in the 

presence or in the absence of added Brucella broth. In the presence of added Brucella 

broth, an increased level of formation of flower-shaped complexes was detected 

(Figure 12C). These experiments indicated that Brucella broth stimulates the 

oligomerization of p33/p55 mixtures into oligomeric structures similar to those formed 

by p88 VacA from H. pylori. 
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FIGURE 12: Assembly of p33 and p55 proteins into oligomeric structures. Electron 
microscopy analysis of (A) p88 purified from the H. pylori culture supernatant and then 
exchanged into a guanidine-containing buffer by gel filtration or (B) a mixture of 
refolded p33 and p55 that eluted from the sizing column (corresponding to Figure 11A, 
blue peak with an asterisk). (C) The p33/p55 preparation shown in panel B was mixed 
with Brucella broth as described in Experimental Procedures and then analyzed by 
electron microscopy. The images in this figure represent analysis of at least three grids 
for each condition and analysis of >10 fields per grid. The scale bar is 100 nm for all 
panels. 
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High resolution imaging of p33/p55 oligomeric complexes 

We reasoned that the complex mixture of components in Brucella broth, including 

numerous membrane-derived factors, promoted the formation of flowerlike oligomers. In 

an effort to stimulate VacA oligomerization using more refined conditions, we incubated 

p33/p55 mixtures with various additives designed to create an amphipathic environment, 

including bovine heart total extract solubilized in chloroform, chloroform alone, and the 

detergent DDM. Each of these additives promoted oligomerization of the p33/p55 

monomeric complexes into flowerlike oligomeric structures (data not shown). The VacA 

oligomers formed in the presence of bovine heart extract or chloroform had a more 

heterogeneous appearance than the VacA oligomers formed in the presence of DDM, and 

therefore, we studied the latter oligomers in further detail. To permit higher-resolution 

imaging, p33/p55 monomeric complexes (corresponding to the 86 kDa blue peak in 

Figure 11) were mixed with DDM, dialyzed, and passed over a gel filtration column in 

the presence of DDM and arginine and the absence of guanidine. Under these conditions, 

the 86 kDa peak was minimized and a high-molecular mass (>300 kDa) peak was 

observed (data not shown). High-molecular mass complexes containing WT p33 and p55 

were isolated and analyzed further by electron micrsocopy. The appearance of these 

oligomers (Figure 13A) was similar to that of p88 oligomers isolated from H. pylori broth 

culture supernatant (Figure 13B). To further characterize the structural features of 

p33/p55 oligomers, approximately 1300 particles were classified into 10 groups and four 

classes were chosen as references for an additional round of reference based-alignment 

(Figure 13C and data not shown). To directly compare the structural organization of 

p33/p55 oligomers with that of p88 oligomers purified from H. pylori broth culture 

http://pubs.acs.org/doi/full/10.1021/bi100618g#fig5�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig7�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig7�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig7�
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supernatant, class averages of p88 oligomers were also generated. Because p88 oligomers 

seemed to adopt a larger number of conformations than p33/p55 oligomers, a larger 

number of p88 images were classified. Approximately 10000 particles of p88 VacA were 

classified into 20 class averages (data not shown), and seven classes were chosen for an 

additional round of reference-based alignment (Figure 13D and data not shown). The 

result of the p33/p55 complex alignment (Figure 13C) shows that the majority of the 

p33/p55 oligomers are composed of six or seven subunits [67% (Figure 13C, panels 1 

and 2)], with one smaller class composed of an oligomer with 12 visible subunits [22% 

(Figure 13C, panel 3)] and one class representing poorly formed oligomers (Figure 13C, 

panel 4). The 12-subunit complex may represent a double-layer oligomer with the two 

layers splayed (108-109). The overall appearances of hexameric and heptameric p33/p55 

oligomers are reminiscent of single-layer hexameric and heptameric oligomers formed by 

p88 VacA (Figure 13D, panels 1 and 2) (107-109). These single-layer oligomers exhibit a 

striking chirality, which suggests that one surface adsorbs preferentially to the support 

film. In contrast to the p33/p55 oligomers, a majority of the p88 oligomers exist as 

double-layer complexes containing 12−14 subunits (Figure  13D, panels 3−6)  (107-109). 

Importantly, difference maps created between averages of p33/p55 and p88 single-layer 

heptameric and hexameric oligomers did not show any statistically relevant difference 

peaks (data not shown), which indicates that these oligomeric forms are structurally 

equivalent. 

http://pubs.acs.org/doi/full/10.1021/bi100618g#fig7�
http://pubs.acs.org/doi/full/10.1021/bi100618g#fig7�
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FIGURE 13: Analysis of p33/p55 VacA oligomers in negative stain. Mixtures of 
refolded p33 and p55 eluted from the sizing column (corresponding to Figure 11A, blue 
peak with an asterisk) were mixed with DDM and then dialyzed overnight in buffer 
containing 55 mM Tris (pH 8.0), 21 mM NaCl, 0.88 mM KCl, 250 mM arginine, and 
DDM. The protein was passed over a gel filtration column that was equilibrated with 
dialysis buffer containing DDM, and VacA oligomers eluting in a high-molecular mass 
fraction were then analyzed by electron microscopy. (A) Representative image of 
negatively stained p33/p55 VacA oligomers eluting in a high-molecular mass fraction. 
The scale bar is 100 nm. (B) Representative image of negatively stained p88 VacA 
oligomers isolated from H. pylori broth culture supernatant. The scale bar is 100 nm. (C) 
Four class averages of p33/p55 VacA particles in negative stain generated from 
reference-based alignment. The number of particles in each projection average is shown 
in the bottom right corner of each average. The side length of individual panels is 511 Å. 
(D) Seven representative class averages of p88 VacA particles in negative stain generated 
from reference-based alignment. The number of particles in each projection average is 
shown in the bottom right corner of each average. The side length of individual panels is 
538 Å. 
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Discussion 

In this study, we demonstrate that a functionally active form of H. pylori VacA 

can be reconstituted from two purified VacA fragments (p33 and p55). Previously, the 

p55 fragment was purified and its crystal structure determined (99), but it was not 

possible to purify a soluble, functionally active form of p33. In this study, we purified the 

p33 domain under denaturing conditions and then employed a series of steps designed to 

allow the protein to refold and remain soluble. We found that the refolded p33 protein 

was soluble in a buffer containing 800 mM guanidine and 250 mM arginine, but upon 

removal of these additives, the p33 protein became insoluble. Analysis of the p33 protein 

by circular dichroism was not feasible because of interference caused by the presence of 

arginine. Nevertheless, in comparison to denatured p33, the refolded p33 protein 

exhibited functional activity when mixed with the p55 fragment, which suggests that the 

p33 protein was successfully refolded. 

Previous studies reported that a mixture of E. coli lysates containing VacA p33 

and p55 can cause vacuolation of HeLa cells (87), and intracellular coexpression of p33 

and p55 in HeLa cells results in cell vacuolation (96, 195). However, there are numerous 

limitations associated with the use of crude E. coli lysates or intracellular expression 

systems. By using purified p33 and p55 proteins in this study, we were able to monitor 

the process by which p33 and p55 proteins interact to yield a functionally active VacA 

protein. Specifically, we demonstrate that the p33 and p55 proteins were purified with 

molecular masses of 96 and 178 kDa, respectively. The mass of the p33 protein is 

consistent with a trimeric form, but efforts to validate this by electron microscopy were 

unsuccessful. The mass of the p55 protein is consistent with a trimer as well, but the 
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crystal structure of p55 revealed a head-to-head packed dimer that adopts an elongated 

dumbbell shape (99). The elongated shape and the unusual buffer conditions likely 

account for the high apparent molecular mass of p55 on the sizing column. When the p55 

and p33 preparations are mixed, the p55 and p33 homo-oligomers each dissociated to 

yield a p33/p55 complex with a mass of 86 kDa, corresponding to a complex containing 

one p55 subunit and one p33 subunit. These p33/p55 monomeric complexes were visible 

by EM as elongated rods (Figure 12), similar to the appearance of p88 VacA monomers 

(108). 

The ability to reconstitute a functional protein from two individually expressed 

component domains is somewhat unusual among bacterial protein toxins, and unusual 

among proteins in general. This phenomenon is probably facilitated by distinctive 

structural features of VacA. The VacA p55 domain consists predominantly of a β-helix, 

composed of multiple 25-amino acid repeats, each of which forms a three-β-strand 

triangle-shaped coil (99). Adjacent coils are held together by backbone hydrogen bonds. 

The β-helix is therefore very different from globular proteins where adjacent structural 

elements are held together with an intricate arrangement of side chain interactions. On the 

basis of computer modeling, the VacA p33 domain is also predicted to comprise a β-

helical structure, and it is predicted that the p88 protein comprises an elongated 

continuous β-helical structure (99). In the experiments described here, we speculate that 

the C-terminal coil of p33 interacts with the N-terminal coil of p55, recapitulating the 

structural relationship that exists between these two domains in the intact p88 VacA 

protein (99). 

http://pubs.acs.org/doi/full/10.1021/bi100618g#fig6�
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A distinctive property of the p88 VacA protein secreted by H. pylori is its ability 

to assemble into water-soluble, flower-shaped oligomeric structures (107-109, 194). In 

contrast, we observed that purified p33 and p55 proteins interact to form 86 kDa 

complexes but do not readily assemble into oligomeric structures when maintained in 

buffer alone. One possible explanation is that the guanidine and arginine constituents of 

the buffer (required for maintenance of p33 solubility) prevent VacA oligomerization; 

however, we observed that these agents did not cause disassembly of p88 oligomers 

purified from the H. pylori culture supernatant. We hypothesized that the H. pylori broth 

culture supernatant might contain factors (either components of the rich Brucella broth 

medium used for culture of H. pylori or additional H. pylori products) that allow VacA 

oligomers to form. We observed that, indeed, the addition of freshly prepared Brucella 

broth (not previously cultured with H. pylori) to purified p33/p55 mixtures promoted 

assembly of VacA into oligomeric structures. Similarly, the addition of detergent also 

stimulated oligomerization. We speculate that oligomerization is stimulated by exposure 

to an amphipathic environment and that the oligomerization observed in these 

experiments mimics the process by which VacA oligomerizes when in contact with 

membranes of host cells. 

The p88 VacA protein is typically purified in an oligomeric form from the H. 

pylori broth culture supernatant (51, 107-109, 194), and monomeric forms of p88 VacA 

have been relatively difficult to purify. When added to cultured eukaryotic cells, purified 

p88 VacA oligomers lack detectable activity in most assays unless the oligomers are first 

exposed to low-pH or high-pH conditions, which results in oligomer disassembly; 

oligomers have been observed to reassemble if the pH is returned to neutral (107, 110, 
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116, 123, 196-198). A current model presumes that VacA monomers interact with the cell 

surface and then reassemble into oligomeric complexes that function as membrane 

channels. In our study, we demonstrate that a mixture of purified p33 and p55 proteins is 

fully active in cell culture assays in the absence of low-pH or high-pH activation. Since 

the p33/p55 mixture predominantly consists of a p88 complex (Figures 11 and 12), this 

provides additional support for a model in which VacA monomers interact with the 

plasma membrane. 

Several lines of evidence indicate that oligomerization of p88 VacA is required 

for VacA-induced cellular alterations (92, 94, 113-114). VacA oligomeric structures have 

been visualized on the surface of VacA-treated cells or lipid bilayers (109-111), and in 

contrast to double-layer oligomeric forms of VacA found in H. pylori culture supernatant, 

there is evidence that the VacA oligomeric complexes formed on the surface of cells are 

single-layer (110). Potentially, oligomerization of VacA occurs preferentially within lipid 

raft components of the plasma membrane (111, 131, 143). In this study, we observed that 

detergent promoted assembly of p33/p55 mixtures into predominantly single-layer 

oligomeric structures. Therefore, the complexes visualized in this study are predicted to 

be useful models for VacA channels that form in the context of human cells. 

The reconstitution of VacA activity from purified p33 and p55 components 

probably involves a complex series of molecular events. An initial step involves 

disassembly of p33 and p55 homo-oligomers and formation of a p33/p55 complex. 

Potentially, the presence of p55 disrupts p33/p33 interactions, or the presence of p33 may 

disrupt p55/p55 interactions. An important observation is that neither p33 nor p55 bound 

to cells when added individually, whereas the p33/p55 mixture exhibited strong binding 
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to cells (Figure 10). One possible explanation is that the homo-oligomeric forms of p33 

and p55 lack cell binding activity, and cell binding surfaces become exposed upon 

disassembly of the homo-oligomeric complexes. Alternatively, the receptor binding 

site(s) may span both the p33 and p55 domains. Finally, the assembly of p33/p55 

complexes into higher-order flower-shaped oligomers may stabilize the interaction of 

VacA with the surface of eukaryotic cells, and oligomer formation is predicted to be 

required for insertion of VacA into membranes and channel formation. 
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CHAPTER 3 

 

FUNCTIONAL STUDIES OF THE VACA P33 DOMAIN I-REGION 

 

Introduction 

The secreted VacA toxin is an important H. pylori virulence factor that causes 

multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles 

have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) 

are associated with an increased risk of gastric disease, compared to strains containing 

other vacA types (s2, i2, and m2). The m-region is located in the p55 domain, and has 

been shown to be important for cell type specificity. The s-region is located within the 

VacA signal peptide and the N-terminus of the p33 domain, and has been shown to be 

important in various in vitro assays. The i-region is located exclusively in the p33 

domain, and thus far there has been relatively little study of the role of the i-region in 

toxin activity. We hypothesized that type 1 VacA proteins would cause increased cellular 

alterations in vitro as compared to type 2 VacA proteins. In this chapter I will present 

experimental data indicating that type i1 and i2 proteins differ in the capacity to cause 

alterations in T cells.  

 

Materials and Methods 

Bacterial strains and culture conditions 

Bacterial strains and the plasmids used in this study are listed in Table 1. The 

WT H. pylori 60190 strain (ATCC 49503) and strain X47 (generously provided by 

http://iai.asm.org/content/80/8/2578.long#T1�
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Douglas Berg) were grown on Trypticase soy agar plates containing 5% sheep blood at 

37°C in ambient air containing 5% CO2. H. pylori mutant strains were grown on Brucella 

agar plates containing 10% FBS, supplemented with metronidazole (3.75 μg/ml) or 

chloramphenicol (5 μg/ml) when indicated. H. pylori liquid cultures were grown in 

Brucella broth supplemented with either activated charcoal or 5% FBS (51). 

Preparation of H. pylori broth culture supernatants and normalization of VacA 

concentrations 

For experiments using H. pylori broth culture supernatant (derived from bacteria 

cultured in Brucella broth containing FBS), supernatants were concentrated 50-fold by 

ultrafiltration with a 30-kDa-cutoff membrane (Millipore). The relative concentrations of 

VacA in broth culture supernatant preparations from WT and mutant H. pylori strains 

were determined by Western blot analysis using anti-VacA antiserum no. 958 (prepared 

by immunization of a rabbit with VacA oligomers purified from H. pylori broth culture 

supernatant) (131). This anti-VacA antiserum reacted equally well with i1 and i2 VacA 

proteins in an ELISA assay (data not shown). When necessary, the concentrations of 

VacA in individual preparations were normalized by diluting samples with the 

appropriate volumes of concentrated Brucella broth containing FBS. 

Purification of VacA from H. pylori broth culture supernatants 

For experiments using purified VacA, VacA oligomers were purified from H. 

pylori culture supernatants as described previously (107). Prior to adding purified VacA 

to eukaryotic cells, the oligomeric VacA preparations were acid activated by the slow 

addition of 200 mM HCl until a pH of 3.0 was reached. 
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Mutagenesis of vacA 

To generate unmarked H. pylori mutant strains, we used a negative selection 

method (199). As a first step, metronidazole-resistant forms of strains 60190 and X47, 

designated 60190 ΔrdxA and X47 ΔrdxA, were generated by deletion of the rdxA gene. 

Polymerase chain reaction (PCR) analysis confirmed that the rdxA locus was deleted 

from the mutant strains. As a next step, cloned vacA sequences were disrupted by 

insertion of a cat-rdxA cassette. This cassette confers resistance to chloramphenicol 

mediated by the chloramphenicol acetyltransferase (cat) gene from Campylobacter coli, 

and susceptibility to metronidazole is mediated by an intact rdxA gene (HP0954) from H. 

pylori 26695 (199). For mutagenesis of vacA in H. pylori strain 60190, the cat-

rdxA cassette (described above) was ligated into an StuI site in plasmid pA178, which 

contains a vacA DNA fragment from H. pylori 60190 (91). The resulting plasmid 

(pCGR1), which is unable to replicate in H. pylori, was used to transform the H. pylori 

60190 ΔrdxA strain, and single colonies resistant to chloramphenicol (5 μg/ml) but 

sensitive to metronidazole (3.75 μg/ml) were selected. For mutagenesis of vacA in H. 

pylori strain X47, a DNA fragment encoding VacA amino acids 4 to 727 was PCR 

amplified from this strain, and the PCR product was cloned into pGEMT-Easy 

(Promega). The resulting plasmid was digested with EcoRV, and the cat-rdxA cassette 

was ligated into this restriction site. The resulting plasmid (pCGR2) was transformed into 

the H. pylori X47 ΔrdxA strain, and single colonies resistant to chloramphenicol but 

sensitive to metronidazole were selected. Immunoblot analysis revealed the loss of VacA 

expression in these mutants, and insertion of the cat-rdxA cassette into the vacA gene was 

confirmed by PCR amplification and nucleotide sequence analysis of PCR products. To 
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introduce alterations into the i-region of the chromosomal vacA gene in H. pylori strains, 

we constructed various plasmids using an inverse PCR approach with the 5′ 

phosphorylated primers listed in Table 2. The vacA sequence from each plasmid was 

sequenced to ensure that unintentional mutations were not introduced. These plasmids 

were used to transform H. pylori strains containing the cat-rdxA cassette, and 

transformants resistant to metronidazole were selected. The presence of the desired 

mutations was confirmed by PCR and nucleotide sequence analysis of PCR products. 
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Table 1: H. pylori strains and plasmids 

Strains/Plasmid Relevant characteristics                                                                                                                Reference 
Strains 
60190  WT (ATCC 49503); vacA s1/i1/m1                                                                                                             (50)    
60190 ΔrdxA Same as 60190 except HP0954 (rdxA) gene deleted; metronidazole resistant                           This study 
60190 cat rdxA Same as 60190 ΔrdxA except cat cassette and rdxA inserted in vacA;  
                                        chloramphenicol resistant and metronidazole sensitive;  
                                        expression of VacA is disrupted                                                                                                            This study 
60190 i2B                     Same as 60190 ΔrdxA except vacA cluster B changed to i2                                                             This study 
60190 i2C                     Same as 60190 ΔrdxA except vacA cluster C changed to i2                                                             This study 
60190 i2BC Same as 60190 ΔrdxA except vacA clusters B & C changed to i2                                                    This study 
60190 i1/i2C Same as 60190 ΔrdxA except vacA cluster C has 4 amino acids changed to i2                            This study 
X47                    Wild type; vacA s1/m2, chimeric i-region                                                                                                (200)     
X47 ΔrdxA                      Same as X47 except HP0954 (rdxA) gene deleted; metronidazole resistant                                This study 
X47 cat rdxA Same as X47 ΔrdxA except cat cassette and rdxA inserted in vacA;  
                                        Chloramphenicol resistant and metronidazole sensitive;  
                                        expression of VacA is disrupted                                                                                                            This study     
X47 i1C                     Same as X47 ΔrdxA except vacA cluster C changed to i1                                                                  This study 
 
Plasmids 
pMM672                       Allows deletion of rdxA in H. pylori strains                                                                                            (199)  
pCGR1                           Contains cat-rdxA cassette on Stu1 site; derived from pA178 plasmid                                         This study  
pCGR2                           Contains cat-rdxA cassette on EcoRV site from X47 vacA                                                                This study 
pCGR3                           60910 cluster B changed from i1 to i2 by inverse PCR using primers B1F & B1R                         This study 
pCGR4                           60190 cluster C changed from i1 to i2 by inverse PCR using primers C1F & C1R                         This study  
pCGR5                           60190 cluster B & C changed from i1 to i2 by inverse PCR using primers C1F & C1R  
                                        and pCGR3 as template                                                                                                                          This study 
pCGR6                           A portion of 60190 cluster C changed from i1 to i2 by inverse PCR  
                                        using primers C2F & C2R                                                                                                                        This study                             
pCGR7                           X47 cluster C changed from i2 to i1 by inverse PCR using primers C3F & C3R                              This study 
p55                    Expresses VacA p55                                                                                                                                    (99)                 
p33                    Expresses  VacA p33                                                                                                                                   (201)                                    
p33 i2                    Expresses p33 i2                                                                                                                                       This study 
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Table 2: PCR primers used for mutagenesis of the vacA i-region 

Primera Sequence (5’-3’) 
Primer B1F  ATTACAAGCCGTGAAAATGCTGAAATTTCTCTTTATG 
Primer B1R TTTTTCTGAACTTTTCAAAGTCAAAACCGTAGAGC 
Primer C1F TATATGGTAAGGTGTGGATGGGCCGTTTGC 
Primer C1R GATCAACGCTCTGATTTGAGCTTGAAACCAAATTGAGCGTAGCGCCATC 
Primer C2F AACCAAAGCGTTAAATTAAATGGCAATGTG 
Primer C2R GCTGTTTGACACCAAATTGAGCGTAGCGCCA 
Primer C3F TTAAATGGCAATGTGTGGATGGGCCGTTTGCAATA 
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Cell culture 

RK13 cells were obtained from the American Type Culture Collection (ATCC 

CCL-37) and were cultured in minimal essential medium supplemented with 10% FBS 

and 1 mM nonessential amino acids. Jurkat T lymphocytes (clone E6-1, ATCC TIB-152) 

were cultured in RPMI 1640 medium containing 2 mM L-glutamine, 1.5 g/liter sodium 

bicarbonate, 4.5 g/liter glucose, 10 mM HEPES, 1.0 mM sodium pyruvate, and 10% FBS. 

Jurkat lymphocytes containing stable luciferase reporters were cultured as described 

above, except that the medium was supplemented with 1 μM puromycin. 

Neutral red uptake assay 

To quantify VacA-induced cell vacuolation, RK13 cells were seeded at a density 

of 2 × 104 cells/well into 96-well plates for 24 h prior to the experiment. Serial dilutions 

of concentrated H. pylori culture supernatants containing different forms of VacA were 

added to serum-free tissue culture medium (supplemented with 10 mM ammonium 

chloride) overlying cells and incubated overnight at 37°C. VacA-induced cell vacuolation 

was detected by inverted light microscopy and quantified by a neutral red uptake assay, a 

well-established method that is based on rapid uptake of neutral red into VacA-induced 

cell vacuoles (51, 187). Background levels of neutral red uptake by untreated cells were 

subtracted to yield net neutral red uptake values. 

Analysis of IL-2 production by Jurkat cells 

Jurkat T cells were plated in 96-well plates at a density of 1 ×105 cells/well, 

and H. pylori broth culture supernatant preparations or purified VacA proteins were 

added to cells for 30 min at 37°C. The cells were then stimulated with PMA (50 ng/ml; 

Sigma) and ionomycin (500 ng/ml; Sigma) and maintained in RPMI 1640 medium 
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containing 10% FBS for 24 h. Cells were pelleted, and levels of IL-2 in the supernatants 

were quantified by ELISA, according to the manufacturer's protocol (R&D Systems; 

human IL-2 immunoassay). To ensure that IL-2 production was not altered by T-cell 

apoptosis, we monitored the viability of Jurkat cells in each experiment by using trypan 

blue staining and did not detect any significant effect of VacA on viability of the cells 

(data not shown), a result that is consistent with previous publications (169-170). 

Expression and purification of recombinant VacA proteins 

Recombinant p33 and p55 proteins, derived from H. pylori strain 60190, were 

expressed in E. coli and purified as described previously (99, 201). In addition, we 

modified the plasmid encoding the i1 p33 protein derived from H. pylori strain 60190, so 

that it expressed an i2 form of p33. To do this, we first changed the sequence in 

the vacA i-region polymorphic cluster B from type 1 to 2 by inverse PCR, using the WT 

p33 plasmid as a template and primers B1F and B1R (Table 2). The resulting plasmid, 

containing a type 2 cluster B and type 1 cluster C, was then used as a template to change 

the amino acid sequence of cluster C to type 2, using primers C1F and C1R (Table 2). 

The modifications in the i-region were confirmed by nucleotide sequence analysis. VacA 

p33 and p55 were expressed by culturing E. coli BL21 (DE3) in TB-KAN at 37°C 

overnight with shaking. Cultures were diluted 1:100 in TB-KAN and grown at 37°C until 

they reached an A600 of 0.6. Cultures were induced with a final IPTG concentration of 0.5 

mM and incubated at 25°C for 16 to 18 h (p55 proteins) or at 37°C for 3 h (p33 proteins). 

VacA p55 was purified under native conditions by nickel affinity, ion exchange, and gel 

filtration chromatography (99). VacA p33 proteins were purified under denaturing 

conditions from inclusion bodies by using Ni-affinity resin (Novagen). The purified 

http://iai.asm.org/content/80/8/2578.long#T2�
http://iai.asm.org/content/80/8/2578.long#T2�
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denatured VacA p33 proteins were then refolded by dialysis and were purified further by 

gel filtration chromatography (201). 

Flow cytometric analysis of VacA binding to cells 

Purified p55 was labeled with Alexa 488 (Molecular Probes) according to the 

manufacturer's instructions (201). Jurkat cells (1 × 105 cells per condition) were treated 

with Alexa 488-labeled p55 alone (10 μg/ml) or with a mixture of Alexa 488-labeled p55 

plus either purified refolded p33 i1 or p33 i2 proteins (each at 5 μg/ml) at 4°C for 1 h. 

Cells were then washed three times in cold phosphate-buffered saline (PBS) containing 

0.5% bovine serum albumin (BSA) and fixed in 2% paraformaldehyde. The cells were 

collected using a flow cytometer (LSR II system; BD, San Alta, CA) and analyzed using 

BD Diva (175). Immunofluorescent microscopy experiments indicated that the VacA 

proteins were not internalized at 4°C (data not shown). 

Immunoblot analysis of VacA binding to cells 

Jurkat cells (1 × 106 cells per condition) were cultured in serum-free medium for 8 

h and then incubated with preparations of H. pylori broth culture supernatants at 4°C for 

1 h. Cells were washed three times with cold PBS, pelleted, and heated at 100°C for 5 

min in sodium dodecyl sulfate (SDS) loading buffer. Samples were electrophoresed on a 

4 to 20% gradient precast acrylamide gel (Bio-Rad) and transferred onto nitrocellulose 

membranes. Membranes were immunoblotted with rabbit anti-VacA serum (serum 

number 958, diluted 1:10,000) or anti-GAPDH serum (ABcam, diluted 1:1,000), 

followed by horseradish peroxidase-conjugated secondary antibodies (Promega, diluted 

1:10,000). Immune complexes were revealed by using an enhanced chemiluminescence 

system (ECL Western Blotting Analysis System; GE Healthcare). 
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Generation of a Jurkat cell line with a stable NFAT luciferase reporter 

Jurkat lymphocytes were transduced with replication-deficient lentiviral particles 

encoding an NFAT reporter or a negative-control reporter (Cignal Lenti NFAT reporter 

assay and Cignal Lenti reporter negative control; Qiagen), according to the 

manufacturer's protocol. Briefly, Jurkat cells (1 × 104 cells per condition) were infected 

with lentiviral particles carrying the desired reporter at a multiplicity of infection (MOI) 

of 50 viral particles per cell. After 3 days, the cell culture medium was changed and 

supplemented with 1 μM puromycin. After 3 additional days, surviving clones were used 

for further experiments. 

Luciferase assay 

Jurkat cells carrying a stable luciferase reporter (NFAT or negative control) were 

cultured (1 × 105 cells per condition) and treated with viable H. pylori strains (MOI of 50 

bacterial cells per Jurkat cell) or H. pylori broth culture supernatant preparations for 1 h 

at 37°C. Cells were then stimulated with PMA (50 ng/ml) and ionomycin (500 ng/ml; 

Sigma) for 6 h. Luciferase activity was measured using the luciferase assay system with 

reporter lysis buffer (Promega) according to the manufacturer's protocol. Luciferase 

activity is expressed as relative values (luciferase activity of cells containing NFAT 

reporter divided by luciferase activity of cells containing the negative-control reporter), 

and the values for control cells (stimulated with PMA-ionomycin, without VacA 

treatment) are assigned a relative value of 1 (or 100%). 

VacA binding to integrin 

VacA binding to β2 integrin was evaluated by ELISA. The wells of microtiter 

plates (Immunolon IB) were coated with 50 μl of recombinant αMβ2 integrin or αVβ3 
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integrin derived from human CHO cells (R&D system) at 4°C for 24 h. Unbound protein 

was then removed and the wells were blocked with PBS containing 5% BSA at 4°C for 

48 h. After blocking, serial dilutions of H. pylori culture supernatants containing 

equivalent concentrations of different forms of VacA were added to the wells at 25°C for 

1 h. Wells were then washed three times with PBS-0.05% Tween 20, and bound VacA 

was detected by incubating the wells with anti-VacA rabbit serum (diluted 1:1,000/serum 

no. 958), followed by incubating with horseradish peroxidase-conjugated secondary 

antibody (diluted 1:1,000; Promega), each at 25°C for 1 h. Rabbit serum and secondary 

antibody were diluted in PBS containing 3% BSA. ELISA was developed using Strep 

Ultra TMB-ELISA (Thermo Scientific). 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

Results 

Manipulation of the vacA i-region 

The VacA proteins secreted by different WT H. pylori strains vary markedly in 

amino acid sequences, and there are also differences among strains in the levels of VacA 

secretion (52, 89). To facilitate analysis of the VacA i-region, we used an approach in 

which we manipulated the chromosome of reference H. pylori strains (60190 and X47) in 

a manner so that we altered the region of vacA encoding the i-region and maintained all 

other regions of vacA without changes. For initial studies, we altered vacA in strain 60190 

(which contains type s1/i1/m1 vacA) so that two clusters of polymorphisms in the i-

region (cluster B and cluster C) were changed from an i1 form to an i2 form, as described 

in Materials and Methods. The modified strain was designated 60190 i2BC (Table 

1 and Figure 14A). Immunoblot analysis indicated that the modified H. pylori strain 

expressed and secreted VacA in a manner similar to the WT strain (data not shown). The 

WT strain and modified H. pylori strain were grown in broth cultures, and bacterial 

supernatants were concentrated and normalized so that they contained equivalent 

concentration of VacA, as described in Materials and Methods. To investigate whether 

there were any detectable differences in the ability of these proteins to cause alterations in 

gastric epithelial cells, serial dilutions of the supernatant preparations were added to 

RK13 cells. Consistent with results of a previous study (56), we did not detect any 

difference in the ability of the i1 and i2 forms of VacA to cause vacuolation of RK13 

cells (Figure 14B). This suggests that manipulation of the VacA i-region by this approach 

does not result in misfolding of the protein. 

 

http://iai.asm.org/content/80/8/2578.long#T1�
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FIGURE 14: VacA-induced vacuolation of RK13 cells. (A) Amino acid sequence of 
the VacA i-region in WT H. pylori strain 60190 (type i1) and a strain expressing a 
modified VacA protein in which clusters B and C were changed from type i1 to type i2 
(60190 i2BC). (B) Broth culture supernatants derived from the WT strain (type i1) or 
strain 60190 i2BC were concentrated and normalized so that they contained equivalent 
VacA concentrations, as described in Materials and Methods. Serial dilutions of VacA-
containing preparations were then added to RK13 cells. Vacuolating activity was 
measured by a neutral red uptake assay. Relative VacA concentrations are indicated. 
Results represent the means ± standard deviations from triplicate samples. 
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Effects of type i1 and i2 VacA on IL-2 production by Jurkat cells 

Previous studies have shown that type i1 forms of VacA can suppress IL-2 

secretion from Jurkat cells (169, 174-175). To determine whether type i1 and i2 forms of 

VacA differ in this activity, we compared the ability of the WT i1 form of VacA and the 

i2BC form described above to suppress IL-2 secretion by Jurkat cells. We also 

manipulated H. pylori strain 60190 so that individual polymorphic regions within 

the vacA i-region (cluster B or cluster C) were changed to type i2 (Figure 15A). These 

modified strains are designated 60190 i2B and 60190 i2C. Cluster A was not 

manipulated, since sequence variation at this site has not been linked to disease outcome 

(56). Immunoblot analysis indicated that each of the modified H. pylori strains expressed 

and secreted VacA, similar to the WT strain (data not shown). The WT and modified H. 

pylori strains were grown in broth cultures, and supernatant preparations containing 

equivalent concentrations of VacA were prepared, as described in Materials and 

Methods. Jurkat cells were pretreated with broth culture supernatant preparations from 

the WT and modified strains and were then stimulated with PMA and ionomycin. IL-2 

production by Jurkat cells was quantified by ELISA, as described in Materials and 

Methods. In comparison to supernatant from a vacA-null mutant strain, supernatant 

containing WT i1 VacA suppressed IL-2 secretion, as expected (Figure 15B). 

Supernatants containing i2 forms of VacA (i2B, i2C, or i2BC) also suppressed IL-2 

secretion, but in comparison to i1 VacA, the i2 forms of VacA had a significantly 

reduced capacity to suppress IL-2 secretion (Figure 15B). 

 

http://iai.asm.org/content/80/8/2578.long#F3�
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We next investigated the role of the VacA i-region in the context of H. pylori 

strain X47, which contains an s1/m2 type of vacA. The vacA gene in this strain contains a 

type i2 sequence in cluster C of the i-region, and cluster B is chimeric. A previous study 

(56) reported that polymorphisms in cluster C accounted for differences in the activity of 

i1 and i2 forms of VacA on epithelial cells. Therefore, we investigated whether changing 

cluster C of vacA in this strain from type i2 to type i1 would result in an increased 

capacity of VacA to suppress IL-2 secretion from Jurkat cells. To do this, we 

manipulated H. pylori strain X47 as described in Materials and Methods such that amino 

acids in cluster C of the vacA i-region were changed from an i2 to an i1 form, resulting in 

a strain designated X47 i1C (Figure 15C). The WT and modified H. pylori strains were 

grown in broth cultures, and supernatant preparations containing equivalent 

concentrations of VacA were prepared, as described in Materials and Methods. Jurkat 

cells were pretreated with the H. pylori culture supernatant preparations and were then 

stimulated with PMA and ionomycin. In comparison to VacA produced by the H. 

pylori X47 WT strain (X47 i2), VacA containing an i1 form of cluster C (X47 i1C) had 

an increased inhibitory effect on IL-2 secretion by Jurkat cells (Figure 15D). 
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FIGURE 15: Role of the VacA i-region in inhibition of IL-2 secretion by Jurkat 
cells. (A) Amino acid sequence of the VacA i-region in WT H. pylori strain 60190 (type 
i1) and modified strains. Modified strains were constructed so that 60190 i2B contains an 
i2 sequence in polymorphic cluster B and an i1 sequence in cluster C, 60190 i2C contains 
an i2 sequence in cluster C and an i1 sequence in cluster B, and 60190 i2BC contains i2 
sequences in both clusters B and C. (B) H. pylori strains were cultured in broth, and 
preparations of culture supernatants were standardized so that they contained equivalent 
concentrations of VacA, as described in Materials and Methods. Jurkat cells were 
pretreated with 1:20 or 1:50 dilutions of culture supernatant preparations, each containing 
the indicated VacA protein, and then stimulated with PMA-ionomycin. After 24 h, the 
cells were pelleted and the IL-2 content of supernatants was analyzed by ELISA. (C) 
Amino acid sequence of the VacA i-region in WT strain X47 and a modified strain. WT 
strain X47 contains an i2 sequence in cluster C, and the X47 i1C strain contains an i1 
sequence in cluster C. (D) Jurkat cells were pretreated with 1:20 or 1:50 dilutions of 
culture supernatant preparations, each containing the indicated VacA protein, and cells 
were then stimulated with PMA-ionomycin. After 24 h, the cells were pelleted, and the 
IL-2 content of supernatants was analyzed by ELISA. Results represent the means ± 
standard deviations of triplicate samples of a single experiment. Similar results were 
obtained in two additional experiments. *, P value of ≤ 0.05 compared to WT i1 VacA 
(A) or WT VacA from strain X47 (B) at a 1:20 dilution; ***, P value of ≤ 0.05 at a 1:50 
dilution (analysis of variance [ANOVA] followed by Dunnett’s post hoc test for panel B; 
Student t test for panel D). Levels of IL-2 secretion are expressed as relative values 
(levels of IL-2 secreted by cells treated with WT VacA or modified VacA proteins, 
divided by levels of IL-2 secreted by cells treated with supernatant from the VacA-null 
mutant strain). Values for cells treated with supernatant from the VacA-null mutant strain 
are assigned a relative value of 1 (or 100%). 
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Effects of purified VacA proteins on IL-2 production by Jurkat cells 
 

To further analyze the activities of type i1 and i2 VacA proteins, we purified i1 

and i2 VacA proteins from broth culture supernatant of either WT H. pylori 60190 

(expressing i1 VacA) or the 60190 i2BC strain (expressing an i2 form of VacA) (Table 1) 

and then tested the effects of these proteins on Jurkat cells. The purified VacA i1 protein 

suppressed IL-2 secretion from Jurkat cells, whereas the purified VacA i2 protein had 

relatively little effect (Figure 16A). To corroborate the conclusion that i1 and i2 proteins 

differed in activity, we generated an additional modified form of VacA and analyzed the 

activity of this purified protein. Specifically, we mutated the 5’ end of vacA cluster C 

in H. pylori strain 60190 so that it contained amino acids corresponding to i2 sequences. 

Cluster C in this modified form of VacA, designated i1/i2C VacA, contained an A-to-V 

substitution and an SNQ insertion (VSNSNQSVKLNGN; for comparison, the type i1 

sequence is ASNSVKLNGN and the type i2 sequence is VSSSNQSVDLYGK). We then 

purified the WT i1 protein and the VacA i1/i2C protein (containing i2 amino acids in the 

5′ region of cluster C) from H. pylori supernatants and tested these proteins for their 

ability to inhibit IL-2 production by Jurkat cells. In comparison to the WT i1 VacA 

protein, the i1/i2C VacA protein was less potent in its ability to inhibit IL-2 production 

(Figure 16B). We also attempted to purify WT and modified VacA proteins expressed 

by H. pylori strain X47, but this was not feasible due to a failure of this strain to grow in 

medium free of FBS (which is essential for purification of VacA). 

As another approach, we tested the activity of purified recombinant VacA i1 and 

i2 proteins. We have previously shown that a mixture of i1 p33 plus p55 VacA domains 

reconstitutes toxin activity in assays using HeLa cells (87, 200). Therefore, we expressed 

http://iai.asm.org/content/80/8/2578.long#T1�
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both i1 and i2 forms of p33 as described in Materials and Methods, mixed either purified 

VacA p33 i1 or p33 i2 proteins with purified p55 (1:1 mass ratio), and tested the effects 

of these preparations on Jurkat cells. In comparison to a mixture of p33 i1 plus purified 

p55, a mixture of p33 i2 plus purified p55 had a significantly reduced capacity to 

suppress IL-2 secretion from Jurkat cells (Figure 16C). Taken together, these results 

indicate that the i-region is an important determinant of the capacity of VacA to inhibit 

IL-2 secretion. 
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FIGURE 16: Effects of purified VacA proteins on IL-2 secretion by Jurkat cells. (A) 
Jurkat cells were pretreated with purified p88 VacA proteins secreted by either WT strain 
60190 (expressing type i1 VacA) or a modified strain expressing i2BC VacA, which 
contains i2 sequences in polymorphic clusters B and C. (B) Jurkat cells were pretreated 
with purified H. pylori VacA proteins secreted by either WT strain 60190 (type i1) or a 
modified strain expressing an i1/i2C protein (as described in Results) at the indicated 
protein concentrations. Cells were then stimulated with PMA-ionomycin, and after 24 h 
the cells were pelleted and the IL-2 content of supernatants was analyzed by ELISA. (C) 
Recombinant purified p33 proteins containing either i1 or i2 (clusters BC) amino acid 
sequences were mixed with purified p55. The indicated protein concentrations for the 
VacA p33-p55 mixture (1:1 mass ratio) correspond to the total protein concentration. 
Jurkat cells were pretreated with the VacA preparations and were then stimulated with 
PMA-ionomycin. After 24 h, IL-2 production was quantified by ELISA. Results 
represent the means ± standard deviations of triplicate samples of a single experiment. 
Similar results were obtained in two additional experiments. *, P value of ≤ 0.05 as 
determined by Student’s t test. Levels of IL-2 secretion are expressed as relative values 
(levels of IL-2 secreted by cells treated with WT VacA or modified VacA proteins, 
divided by levels of IL-2 secreted by cells treated with buffer alone). Values for cells 
treated with buffer are assigned a relative value of 1 (or 100%). 
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Analysis of VacA effects on NFAT activation 

Previous studies have shown that the effect of VacA on IL-2 secretion by Jurkat 

cells is dependent on inhibition of NFAT (169). We therefore investigated whether the 

composition of the VacA i-region influences the ability of VacA to inhibit NFAT 

activation. We first transduced Jurkat cells with replication-deficient lentiviral particles 

that carry an NFAT luciferase reporter or a negative-control reporter and selected for 

puromycin-resistant cells that contain the reporters, as described in Materials and 

Methods. We then cocultured the cells with viable H. pylori (60190 WT strain, 

60190 vacA-null mutant strain, or 60190 i2BC) (Figure 17A). After 1 h of incubation, 

cells were stimulated with PMA-ionomycin for an additional 6 h, and luciferase was 

measured as described in Materials and Methods. In comparison to the WT H. 

pylori strain (expressing type i1 VacA), which inhibited NFAT activation, H. 

pylori expressing type i2 VacA (60190 i2BC) had an impaired ability to inhibit NFAT 

activation (Figure 17A). Similar results were obtained when analyzing H. pylori broth 

culture supernatant preparations (Figure 17B). As shown in Figure 17B, supernatant from 

the vacA-null mutant strain caused some detectable inhibition of NFAT activation, which 

might be attributable to actions of other factors besides VacA on NFAT activation or 

nonspecific effects of the preparation on the luciferase assay. In summary, the results 

obtained in these studies of NFAT activation were concordant with results obtained in the 

IL-2 assays. 
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FIGURE 17: Effects of VacA proteins on NFAT activation. Jurkat cells stably 
expressing an NFAT luciferase reporter or a negative-control luciferase reporter were 
treated with viable H. pylori strains (WT strain 60190 [expressing i1 VacA], vacA-null 
mutant strain, or 60190 i2BC [expressing i2BC VacA]) (A) or with H. pylori broth 
culture supernatant preparations derived from these strains (B) and then activated with 
PMA and ionomycin. Luciferase activity was quantified by luminometry, as described in 
Materials and Methods. NFAT activity is expressed as relative values (luciferase activity 
of cells containing NFAT reporter divided by luciferase activity of cells containing the 
negative control reporter), and the values for control cells (stimulated with PMA-
ionomycin, without VacA treatment) are assigned a relative value of 1 (or 100%). Results 
represent the means ± standard deviations of triplicate samples of a single experiment. 
Similar results were obtained in two additional experiments. *, P value of ≤0.05 as 
determined by using Student’s t test, comparing WT strain 60190 and a strain expressing 
VacA i2BC (A) or culture supernatant preparations derived from these strains (B). 
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Analysis of VacA binding to Jurkat cells  

To investigate a possible mechanism for the observed differences in activities of 

i1 and i2 VacA proteins, we analyzed the binding properties of VacA proteins containing 

type i1 or type i2 i-regions. Broth culture supernatant preparations from H. pylori 60190 

strains expressing either i1 VacA or i2 VacA (60190 i2BC) proteins, as well as a 

supernatant preparation from a vacA-null mutant strain, were incubated with Jurkat cells 

for 1 h at 4°C. Cells were then washed and immunoblotted with an anti-VacA antibody to 

detect VacA binding. As shown in Figure 18A and 18B (top), immunoblot analysis of the 

supernatants in the absence of Jurkat cells indicated that the levels of VacA were similar 

in the normalized preparations from WT and modified strains. In comparison to i2 VacA, 

i1 VacA bound more avidly to the cells (Figure 18A, bottom). Additionally, we tested the 

binding of VacA proteins produced by H. pylori strain X47 (X47 WT VacA [i2] and X47 

i1C). Consistent with the results obtained when analyzing VacA proteins produced by 

strain 60190, the WT VacA i2 protein from strain X47 exhibited decreased avidity of 

binding compared to the i1C VacA protein (Figure 18B, bottom). 

As another approach for analyzing VacA binding, we quantified VacA binding to 

Jurkat cells using a flow cytometry-based assay. For these experiments, we used 

recombinantly expressed p33 and p55 VacA domains. We have previously shown that 

p33 can facilitate the binding of purified p55 to HeLa cells (87, 201). Therefore, in the 

current experiments, we labeled the recombinant VacA p55 protein with Alexa 488, as 

described previously (201), and mixed the labeled p55 protein with either unlabeled p33 

i1 or unlabeled p33 i2 protein (1:1 mass ratio). These protein mixtures were incubated 

with Jurkat cells for 1 h at 4°C, and cells were then washed and analyzed by flow 
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cytometry. When combined with unlabeled p33 i1, the labeled p55 protein bound more 

avidly to Jurkat cells than when the labeled p55 protein alone was added to Jurkat cells 

(Figures 18C and 18D). The labeled p55 protein bound significantly less avidly when 

mixed with p33 i2 than when mixed with p33 i1 (Figures 18C and 18D). Representative 

histograms are presented in Figure 18C, and quantification of levels of VacA binding is 

shown in Figure 18D. Collectively, these experiments indicate that, compared to type i2 

forms of VacA, type i1 forms of VacA bind more avidly to Jurkat cells. 
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FIGURE 18: Binding of VacA proteins to Jurkat cells. H. pylori strains were cultured 
in broth, and culture supernatant preparations were standardized so that they contained 
equivalent concentrations of VacA. Jurkat cells were incubated with supernatant 
preparations from the indicated H. pylori strains for 1 h at 4°C. Cells were washed and 
lysed, and protein samples were then analyzed by immunoblotting using an anti-VacA 
antibody. (A) Analysis of WT H. pylori strain 60190 (expressing i1 VacA), 60190 vacA-
null mutant strain, and 60190 i2BC (expressing i2BC VacA). (B) Analysis of WT H. 
pylori strain X47, X47 vacA-null mutant strain, and strain X47 i1C. Top panels (labeled 
“60190 supernatant” and “X47 supernatant”) depict immunoblot analysis of H. pylori 
supernatant preparations prior to the addition to Jurkat cells. Bottom panels (labeled 
“Bound VacA”) depict VacA binding to Jurkat cells. GAPDH was analyzed as a loading 
control. (C) Jurkat cells were treated with purified Alexa 488-labeled p55 (2.5 µg/ml) 
plus either purified p33 i1 or p33 i2 (2.5 µg/ml) for 1 h at 4°C. After treatment, cells were 
washed and analyzed by flow cytometry. Values indicate mean fluorescence intensity 
(MFI), based on three independent samples, and the percent positive cells (% pos. cells), 
defined as the proportion of cells exhibiting detectable fluorescence in comparison to 
control cells. Representative histograms depicting VacA binding are shown. (D) 
Graphical representation of VacA binding to Jurkat cells, based on flow cytometry 
analysis. These data are from an experiment performed on a separate day compared to the 
data in panel C. *, P value of ≤0.05 compared to p33 i2 and p55 Alexa 488, as 
determined by using Student’s t test. Results represent the means ± standard deviations of 
triplicate samples from a single experiment. 
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Binding of type i1 and i2 VacA to β2 integrin  

Previous studies have shown that β2 integrin is a receptor for VacA in T cells 

(174). We hypothesized that the observed difference in binding of i1 and i2 VacA 

proteins to Jurkat cells might be due to differences in the binding of these proteins to β2 

integrin. To test this hypothesis, we performed an ELISA-based binding assay as 

described in Materials and Methods. Both VacA i1 and VacA i2 proteins bound to αMβ2 

integrin in a dose-dependent manner, and no significant differences in binding avidity 

were detected (Figure 19). As expected, both forms of VacA bound less avidly to a 

control protein (αVβ3 integrin) than to αMβ2 integrin. Taken together, these results 

suggest that the observed difference in binding of i1 and i2 VacA proteins to Jurkat cells 

is not attributable to differences in VacA binding to the β2 integrin receptor. 
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FIGURE 19: Binding of type i1 and i2 VacA proteins to β2 integrin. Wells of 
microtiter plates were coated with αMβ2 integrin or αVβ3 integrin as described in 
Materials and Methods. Serial dilutions of culture supernatants from H. pylori 60190 
strains, containing equivalent concentrations of either WT (i1) or i2BC forms of VacA, 
were then added and incubated for 1 h. Unbound protein was removed, wells were 
washed, and VacA binding was analyzed by ELISA, as described in Materials and 
Methods. The background absorbance (VacA binding to wells in the absence of integrin) 
was subtracted from all absorbance values. Results represent the means ± standard 
deviations of triplicate experiments and are representative of three independent 
experiments. 
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Discussion 

VacA is one of the most important virulence factors produced by H. pylori (73, 

202-204). Numerous studies have shown that H. pylori strains containing specific 

vacA types (such as s1 or m1) are associated with a higher risk of gastric disease than are 

strains containing s2 or m2 vacA types (205). Correspondingly, type s1/m1 forms of 

VacA exhibit increased cytotoxic activity in vitro compared to type s2/m2 forms of VacA 

(52, 90-91). Recently, it was reported that strains containing the type i1 forms of vacA are 

associated with a higher risk of gastric disease than are strains containing type i2 forms 

of vacA (56-62). One study reported that the i-region is a determinant of cell-type 

specificity (56), but thus far there has been very little study of the role of the i-region in 

VacA activity. In the current study, we tested the hypothesis that VacA i1 and i2 proteins 

differ in the ability to cause functional alterations in T cells, using Jurkat cells as a model 

cell line. 

In accordance with a previous study (56), we found that both i1 and i2 forms of 

VacA caused vacuolation of RK13 cells. Both the i1 and i2 VacA proteins inhibited IL-2 

secretion and NFAT activation in Jurkat cells, but the i2 VacA proteins had a reduced 

potency. Type i1 VacA proteins bound more avidly than type i2 VacA proteins to Jurkat 

cells, and this difference in binding probably accounts, at least in part, for the observed 

difference in activity. Previous studies have shown that binding of VacA to epithelial 

cells is mediated not only by the p55 domain but also by the p33 domain (87, 201). The 

results in the current study provide additional evidence that the VacA p33 domain 

contributes to VacA cell-binding properties. 
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The observed difference in the binding properties of i1 and i2 VacA suggest that 

these proteins might differ in binding to a specific receptor on the surface of Jurkat cells. 

As shown in Figure 19, we did not detect any significant difference in the binding of type 

i1 and i2 VacA to β2 integrin, which is an important receptor for VacA on T cells (174). 

This result suggests that the i-region might be involved in VacA binding to alternate 

receptors which have not yet been characterized (174, 176). Various candidates for these 

alternate receptors include sphingomyelin, GPI-anchored proteins, or glycolipids (174, 

176). Further studies will be required to better understand the basis for the differential 

binding properties of i1 and i2 forms of VacA. 

Type i1 and type i2 forms of VacA differ in amino acid sequences at a relatively 

small number of sites within polymorphic clusters A, B, and C, and these polymorphisms 

account for most of the sequence variation that is observed within the VacA p33 domain 

(54). Experiments in the current study indicate that polymorphisms in cluster C are 

important determinants of VacA activity in a Jurkat T cell assay. Prior to the current 

study, a random mutagenesis study revealed that mutations in two amino acids in close 

proximity to this region (T210A, S246L) altered the capacity of VacA to cause 

vacuolation in HeLa cells (93, 206). Taken together, these studies highlight the functional 

importance of this region of the p33 domain. At present, a crystal structure is available 

for the p55 domain of VacA (99), but no structural data are available for the p33 domain. 

In future studies, it will be important to determine the structure of the p33 domain and to 

investigate the structural basis for the observed differences in activity of type i1 and i2 

forms of VacA. In addition, it will be important to determine whether the VacA i-region 

http://iai.asm.org/content/80/8/2578.long#F7�
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influences the potency of other VacA activities, including a spectrum of alterations 

produced by VacA in gastric epithelial cells and several types of immune cells (73). 

It is striking that within three different regions of VacA (s-, i-, and m-regions), 

there is marked sequence variation among proteins expressed by different H. 

pylori strains, and analysis of each region indicates the existence of two main groups of 

VacA proteins categorized as type 1 (s1, i1, m1) and type 2 (s2, i2, m2) (52, 54, 56, 207). 

In each case, the sequence variations are associated with differences in VacA activity 

toward host cells (52, 56, 89-91, 100-103). It may be presumed that selective forces had 

an important role in the origin of these variations, as well as in the maintenance of the 

different allelic variants (54). In future studies, it will be important to determine how 

these different forms of VacA each provide a selective advantage to H. pylori. 
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CHAPTER 4 

 

CRYSTALLIZATION OF THE VACA TOXIN 

 

Introduction 

The secreted pore-forming toxin known as VacA is considered one of the most 

important virulence factors produced by H. pylori. This toxin causes multiple alterations 

in host cells, and has been associated with H. pylori-related disease. The p33 domain is 

important for most VacA-related cellular alterations, but the structure of the p33 domain 

has not been determined. The availability of the p33 domain structure would provide 

insights into the mechanism of action of VacA, and would fill an important gap in our 

knowledge of the VacA toxin. In this chapter I will present experimental data describing 

our efforts to crystallize the VacA toxin.  

 

Materials and Methods 

Bacterial strains and growth conditions 

Plasmids were propagated in E.coli DH5α. His-tagged recombinant proteins were 

expressed in E.coli BL21 (DE3) (supplemented with kanamycin), and maltose binding 

protein (MBP)-tagged recombinant proteins were expressed in E.coli Neb Express 

(supplemented with Ampicillin). H. pylori strains were grown as described previously 

(92, 107). Briefly, H. pylori 60190 strains producing WT VacA or VacA Δ6-27 were 

grown on Trypticase soy agar plates containing 5% sheep blood at 37°C in ambient air 

containing 5% CO2. H. pylori mutant strains (H. pylori ΔrdxA, H. pylori vacA::cat rdxA, 
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and H. pylori producing VacA Δ346-347 with a strep tag) were grown on Brucella agar 

plates containing 10% FBS, supplemented with metronidazole (3.75 μg/ml) or 

chloramphenicol (5 μg/ml) when indicated. H. pylori liquid cultures were grown in 

Brucella broth supplemented with 1X cholesterol (BB-cholesterol) as described 

previously (208). Cholesterol was purchased from Gibco as a 250X solution, and a 

specific concentration was not given by the manufacturer.    

Mutagenesis of recombinant proteins 

Multiple constructs for the expression of recombinant VacA proteins were 

generated (see Table 1) by a mutagenesis approach as described in Chapter 3.   

Purification and refolding of VacA recombinant proteins 

Recombinant 6X His-tagged proteins, and an MBP/His-tagged p33 protein 

(containing an MBP at the N-terminus and a 6X His tag on the C-terminus, and 

designated as MBP-H3C-p33tail-His tag)  (Table 1), were purified as described in 

Chapter 2. Briefly, proteins were expressed by culturing E. coli BL21 (DE3) (for His-

tagged proteins), or E. coli Neb Express (MBP/His-tagged p33 protein) in TB 

(supplemented with kanamycin for His-tagged proteins and ampicillin for MBP/His-

tagged p33 protein) at 37°C overnight with shaking. Cultures were diluted 1:100 in TB 

(supplemented with kanamycin for His-tagged proteins and ampicillin for MBP/His-

tagged p33 protein) and grown at 37°C until they reached an A600 of 0.6. Cultures were 

induced with a final IPTG concentration of 0.5 mM and incubated at 37°C for 3 h. The 

proteins were purified under denaturing conditions from inclusion bodies by using Ni-

affinity resin (Novagen), and were then refolded by dialysis. Finally, the proteins were 

purified further by gel filtration chromatography. Gel filtration was performed using 
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either Superdex 200 10/300 GL high-resolution resin or Superdex 200 10/300 prep grade 

resin, equilibrated in 55 mM Tris (pH 8.0), 21 mM NaCl, 0.88 mM KCl, 800 mM 

guanidine, and arginine (either 800 or 250 mM). Purification under native conditions 

using MBP-tagged proteins was unsuccessful. We attempted to refold MBP-tagged 

proteins, but the refolded protein did not bind to amylose beads.  
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Table 3: Recombinant VacA constructs 

Constructs Plasmid Description 
Expression/ 
Purification Activity 

 
His-tagged* 

   p33 Expresses a WT VacA p33 domain (amino acid 1 to 312) derived from H.  pylori 60190 strain Yes/Insoluble Active w/ p55 
p33 Δ6-27 Similar to p33 but contains a deletion of amino acid 6 to 27  Yes/Insoluble D.N.°  w/p33-p55 
p33 Δ49-57 Similar to p33 but contains a deletion of amino acid 49 to 57  Yes/Insoluble D.N. w/p33-p55 
p33 i2C Similar to p33 but contains an i-region in which cluster C has been changed to a type i2 Yes/Insoluble Active w/ p55 
p33 i2BC Similar to p33 but contains an i-region in which cluster BC has been changed to a type i2 Yes/Insoluble Active w/ p55 
p33 tail Similar to p33 but contains the C-terminus of the p55 domain (amino acids 727 to 821) Yes/Insoluble Active w/ p55 
p33 (1-99) Contains amino acids 1 to 99 from p33 No 

 
p33 (1-99) tail 

Contains amino acids 1 to 99 from p33, plus the C-terminus of the p55 domain (amino acids 727 
to 821) Yes/Insoluble 

N.A.ˇ w/p88 100-
821 

p33 (28-312) Contains amino acids 28 to 312 from p33 No 
 

p33 (28-312) tail 
Contains amino acids 28 to 312 from p33, plus the C-terminus of the p55 domain (amino acids 
727 to 821) Yes/Insoluble 

N.A. w/p88 100-
821 

p33 (100-312) Contains amino acids 100 to 312 from p33 No 
 

p33 (100-312) tail 
Contains amino acids 100 to 312 from p33, plus the C-terminus of the p55 domain (amino acids 
727 to 821) Yes/Insoluble 

N.A. w/ p88 100-
821 

p42 (1-478) Expresses p33, plus a portion of the p55 domain (amino acids 313 to 478) Yes/Insoluble Active w/ p55 
p42 12X His Similar to p42 but contains a 12X His-tag Yes/Insoluble D.N. w/p33-p55 
p42 Δ6-27 Similar to p42 (1-478) but contains a deletion of amino acid 6 to 27  Yes/Insoluble D.N. w/p33-p55 
p60 (1-600) Expresses p33, plus a portion of the p55 domain (amino acids 313 to 600) Yes/Insoluble Active w/ p55 
p88 Expresses a WT VacA p88 domain (Amino acid 1 to 821) Yes/Insoluble Active w/ p55 

p88 100-821 Similar p88 but contains a deletion of amino acids 1 to 100  Yes/Insoluble 
N.A. w/ p88 100-
821 

p88 Δ6-27 Similar to p88 but contains a deletion of amino acid 6 to 27  Yes/Insoluble Not tested 
p88 d2 Similar to p88 but contains a d-region type i2 Yes/Insoluble Not tested 
p88 (N-term His) Similar to p88 but contains the His-tag in the N-terminus No 

  
 
MBP-tagged^ 

   
MBP p33 LL 

Expresses MBP and WT VacA p33 domain (similar to p33), the linker between the MBP and p33 
is 35 amino long Yes/Insoluble 

 MBP p33 tail LL Similar to p33 LL but the p33 domain contains the C-terminus of the p55 domain (amino acids Yes/Insoluble 
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727 to 821) 
MBP p33 ML Similar to MBP p33 LL but contains a 7 amino acid linker Yes/Insoluble 

 MBP-p33 SL Similar to MBP p33 LL but contains a 3 amino acid linker Yes/Insoluble  
MBP p33 (1-99) Expresses MBP and amino acids 1 to 99 from p33 Yes/Insoluble 

 
MBP p33 (1-99) tail 

Similar to MBP p33 (1-99) but contains the C-terminus of the p55 domain (amino acids 727 to 
821) Yes/Insoluble 

 MBP-H3C-p33 tail-
His 

Similar to MBP p33 tail LL but the linker is an H3C proteolytic site, and the p33 has a His tag at 
the  C-terminus Yes/Insoluble 

 
    
     
*C-terminus tagged (unless otherwise stated), cloned into pET 41b,  and expressed in BL21 DE3 E. coli cells 
° D.N. stands for dominant negative test as described in Materials and Methods 
ˇ N.A. stands for no activity 

  ^ N-terminus tagged,  cloned into pMAL, and expressed in NEB Express E. coli cells 
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Expression of VacA strep tag Δ346-347 in H. pylori 

An H. pylori 60190 strain designated as H. pylori VacA strep tag Δ346-347 was 

constructed by a mutagenesis approach as described in Chapter 3. As a first step, we 

constructed a plasmid encoding a strep tag (WSHPQFEK) in VacA (amino acids 308 to 

315 from H. pylori strain 60190), and harboring a deletion of amino acids 346 and 347 

(Δ346-347). The plasmid was sequenced to ensure that unintentional mutations were not 

introduced. As a next step, an H. pylori vacA::cat rdxA strain (described in table 1 of 

chapter 3) was transformed with the VacA strep tag Δ346-347 plasmid, and transformants 

resistant to metronidazole were selected. The presence of the strep tag, and the deletion of 

amino acid 346 and 347, was confirmed by PCR and nucleotide sequence analysis of 

PCR products. VacA expression was confirmed by immunoblot analysis. 

VacA expression and secretion 

H. pylori strains were cultured in BB-cholesterol for 24 h (208). To test VacA 

expression, bacteria were pelleted and resuspended in SDS loading buffer. To test 

secretion, the culture supernatant was mixed with SDS loading buffer. The samples were 

then electrophoresed on a 4 to 20% gradient precast acrylamide gel (Bio-Rad) and 

transferred onto nitrocellulose membranes. Membranes were immunoblotted with rabbit 

anti-VacA serum (serum number 958, diluted 1:10,000) followed by horseradish 

peroxidase-conjugated secondary antibody (Promega, diluted 1:10,000). Immune 

complexes were revealed by using an enhanced chemiluminescence system (ECL 

Western Blotting Analysis System; GE Healthcare).  
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Purification of H. pylori VacA  

For experiments using purified WT VacA and VacA Δ6-27, VacA oligomers 

were purified from H. pylori culture supernatants as described previously(92, 107). For 

purification of VacA strep tag Δ346-347, a modified protocol from Schmidt et al (209) 

was developed. As a first step, a seed culture of H. pylori VacA strep tag Δ346-347 was 

inoculated in BB-cholesterol and grown for 24 h. Cultures were then diluted 1:50 in BB-

cholesterol, and grown for an additional 48 h. As a next step, H. pylori cultures were 

centrifuged and the supernatants were brought to a 50% saturation with ammonium 

sulfate. The proteins were then pelleted by centrifugation, resuspended in PBS buffer, 

and dialyzed into buffer A (50 mM Tris, 150 mM NaCl, 1 mM EDTA).  The dialyzed 

proteins were incubated with Strep-Tactin resin (Quiagen), and loaded into a gravity 

column. Finally, the proteins were extensively washed with buffer A, and VacA was 

eluted with buffer B (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 5 mM D-desthiobiotin). 

Cell culture assays 

Cell culture assays were done as described in Chapter 2. Briefly, HeLa cells were 

grown in minimal essential medium (modified Eagle’s medium containing Earle’s salts) 

supplemented with 10% FBS in a 5% CO2 atmosphere at 37 °C. For vacuolating assays, 

HeLa cells were seeded at a density of 1.2 × 104 cells/well into 96-well plates 24 h prior 

to the addition of VacA proteins. To test for vacuolation activity using recombinant 

proteins, preparations of purified proteins (e.g. p33 plus p55 or mutant p33 proteins plus 

p55) were premixed in a 1:1 mass ratio (as described in Table 1). The proteins mixtures 

were then added to the tissue culture medium overlying HeLa cells (supplemented with 

10 mM ammonium chloride) and incubated overnight at 37 °C. VacA-induced cell 
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vacuolation was detected by inverted light microscopy and quantified by a neutral red 

uptake assay. For dominant negative activity assays we tested the ability of the refolded 

p33Δ6−27, p33Δ49-57, p42 (1-478) Δ6-27, or VacA strep tag Δ346-347 to inhibit the 

activity of WT VacA. For H. pylori VacA strep tag Δ346-347 the proteins were acid 

activated by the slow addition of 200 mM HCl until a pH of 3.0 was reached, prior to 

addition to the cells.  

Circular dichroism 

H. pylori purified WT VacA and VacA strep tag Δ346-347 were diluted to 0.3 

mg/ml in PBS and Buffer B (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 5 mM D-

desthiobiotin), respectively. Spectra were acquired with a Jasco J-810 CD 

spectropolarimeter at room temperature in a quartz cell with an optical path length of 0.1 

cm. The spectra were recorded in the 190 to 260 nm wavelength range, using a 1 nm 

bandwidth and a 1 s time constant at a scan speed of 100 nm/min. The signal-to-noise 

ratio was improved by the accumulation of at least 5 scans.  

Electron microscopy 

Electron microscopy experiments were done in collaboration with the Ohi lab 

using a method described in Chapter 2. In summary, VacA proteins (2.5 μL of a 25 

μg/mL protein solution) were spotted onto glow-discharged copper-mesh grids (EMS). 

The grids were then washed, and stained in 0.7% uranyl formate. Images were collected 

on an FEI morgagni run at 100 kV at a magnification of 36000×, and recorded on an 

ATM 1Kx1K CCD camera. 
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Crystallization and diffraction 

Crystallization and diffraction was done in collaboration with the Lacy and Spiller 

lab. For crystallization trials using recombinant p33 proteins, we concentrated the 

proteins in 50 mM Tris, 21 mM NaCl, 250 mM arginine, and 800 mM guanidine buffer. 

We extensively attempted to reduce the amounts of guanidine and arginine in the buffer, 

but reducing the concentrations of these components caused the proteins to precipitate 

from solution. Mixtures of recombinant p33 and p55 (or the indicated mutants, see Table 

2) were concentrated as described above, but the individual proteins were pre-mixed prior 

to concentration. For crystallization trials using H. pylori VacA Δ6-27, oligomeric VacA 

was concentrated in PBS buffer. For crystallization trials using VacA strep tag Δ346-347, 

the protein was concentrated in buffer B (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 5 

mM D-desthiobiotin). Once the protein was concentrated to at least 5 mg/ml, various 

commercially available (Hampton Research, QIAGEN) crystallization screens were set 

up using a Mosquito nanoliter dispensing high-throughput robot (see Table 2). The trays 

were set at 21̊ C by the sitting drop method in which protein and precipitant were mixed 

in a 1:1 ratio. A hanging drop method was further used to optimize for VacA strep tag 

Δ346-347 crystals. X-ray data were collected from single crystals at 100 K on beamline 

21G at the Advanced Photon Source (Argonne, IL). 
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Results 

Crystallization trials with recombinant VacA  

Chapter 2 described the development of methods to express, purify, and refold 

recombinant forms of the p33 domain (WT p33 and p33 Δ6-27). As an initial step to 

structurally characterize the p33 domain, we attempted to crystallize these proteins, but 

were unable to obtain crystals (Table 2). In an effort to express a soluble form of the p33 

domain, we engineered multiple VacA–encoding plasmids. Surprisingly, all of our 

recombinant VacA proteins expressed as insoluble proteins (Table 1).  Many of these 

proteins were purified and refolded, and caused vacuolation of HeLa cells when mixed 

with purified p55 (Table 1). These results suggested that the purified p55 domain could 

promote folding of the p33 domain. To test whether this was indeed the case, we 

constructed a p33 protein which contained the p33 domain plus the C terminus of the p55 

domain (designated as p33tail). We purified, refolded, and set crystallization trays with 

the p33 tail protein, but the protein did not crystallize (Table 2). As an alternative way to 

test our hypothesis, we mixed refolded p33 with purified p55, refolded p33 Δ49-57 with 

purified p55 (non-oligomerizing mutant), and refolded p33 with purified p55 Δ346-347 

(non-oligomerizing mutant), and set crystallization trays with the mixed proteins. Similar 

to our previous results, we were unable to obtain crystals (Table 2).  
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Table 4: Crystallization trials with VacA proteins 

Protein source Crystallization conditions tested Crystals 
 
Recombinant 

  p33 Crystal Screen 1&2, Index Screen,and  JCSG screen No 
p33 Δ6-27 Crystal  Screen 1&2, and Index No 
p33 ACD Crystal  Screen 1&2, and Index No 
 
Recombinant Mixed 
proteins 
p33 Δ49-57 + p55 Crystal Screen 1&2, Index Screen, and JCSG screen No 
p33 + p55 Δ346-347 Crystal Screen 1&2, Index Screen, and JCSG screen No 
   
H.pylori  

  VacA Δ6-27* Crystal Screen 1&2, Index Screen No 
* Trays were set with protein at both neutral and low pH 
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Purification of H. pylori VacA  

Our inability to crystallize recombinant VacA p33 proteins led us to explore the 

use of H. pylori purified VacA. We started these studies by trying to crystallize an 

oligomeric form of H. pylori VacA (VacA Δ6-27), but were unsuccessful (Table 2). 

Previous studies have shown that VacA oligomers can have multiple conformations, 

which can make the protein sample heterogeneous and impede protein crystallization 

(107-109). To obtain a purified non-oligomeric form of VacA, we sought to make an H. 

pylori mutant strain that encoded a non-oligomerizing VacA protein. Previous studies 

have shown that VacA is incapable of oligomerizing if amino acids 49-57 from the p33 

domain or 346-347 from the p55 domain are deleted (113-114). Therefore, we deleted 

amino acids 346-347 and inserted a strep tag into the H. pylori chromosomal vacA gene 

(see Materials and Methods). A schematic of the construct is shown in Figure 20A. To 

ensure that the presence of the strep tag and the deletion of amino acids 346-347 did not 

alter protein stability or impair VacA secretion, we tested protein expression and 

secretion by immunoblotting, as described in Materials and Methods. As expected, WT 

VacA was efficiently expressed and secreted, while a VacA null strain did not express or 

secrete VacA (Figures 20B and 20C). The VacA strep tag 346-347 was efficiently 

expressed and secreted (Figures 20B and 20C).  
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Figure 20: H. pylori VacA strep tag Δ346-347 construction. (A) A mutagenesis 
approach was used to insert a strep tag (amino acids 308-315) and delete amino acids 346 
and 347 (Δ346-347) as described in Materials and Methods. The figure is a representation 
of the secreted p88 VacA containing the p33 and p55 domains, and the approximate 
location of the strep tag and Δ346-347. A comparison of the amino acids in the WT and 
strep tag Δ346-347 H. pylori strains is also shown. The strep tag and Δ346-347 are 
highlighted in red. (B) Immunoblot analysis of VacA (B) expression and (C) secretion in 
H. pylori producing WT VacA, VacA null, or H. pylori producing VacA strep tag Δ346-
347. 
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Purification of H. pylori VacA strep tag Δ346-347 

Previous analyses of non-oligomerizing VacA mutants have mainly been done 

using H. pylori culture supernatants, and previous efforts to purify such proteins were 

unsuccessful (113-114). Therefore, as a first step in trying to structurally analyze the 

VacA strep tag Δ346-347, we developed a purification system as described in Materials 

and Methods. Using this method, we were able to purify the VacA strep tag Δ346-347 as 

an approximate 88 kDa protein with minimal p33 and p55 breakdown (Figure 21A). 

Protein purification was confirmed by immunoblotting with anti-VacA and anti-strep tag 

antibodies (data not shown). We performed gel filtration chromatography experiments, 

but were unable to recover the protein (data not shown). To ensure that the protein did 

not aggregate or oligomerize, we analyzed the purified VacA strep tag Δ346-347 by 

electron microscopy. The VacA strep tag Δ346-347 had a rod-shaped appearance (Figure 

21B). Previous studies have shown that H. pylori VacA assembles into flower shaped 

oligomers, and that acid treatment causes VacA oligomers to disassemble into possible 

monomers (107). To compare the macromolecular structure of VacA strep tag Δ346-347 

with WT VacA, we performed electron microscopy on the oligomeric and acid-treated 

VacA (data not shown and Figure 21C). When compared, the VacA strep tag Δ346-347 

had a similar appearance to the acid treated WT VacA (Figures 21B and 21C).  
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Figure 21: Purification of H. pylori VacA strep tag Δ346-347. (A) SDS-PAGE and 
Coomasie blue staining of the purified VacA strep tag Δ346-347. Electron microscopy 
analysis of purified (A) VacA streptag Δ346-347 and (B) acid treated WT VacA. Insets 
show a closeup of the grid.  
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Inhibitory activity of H. pylori VacA strep tag Δ346-347  

A previous study by Ivie et al (114) demonstrated that deleting amino acids 346 

and 347 caused the toxin to be inactive in a cell vacuolation assay. Furthermore, it was 

demonstrated that mixing supernatants from H. pylori strains expressing WT VacA and 

Δ346-347 resulted in inhibition of the activity of WT VacA (114). Therefore, the VacA 

Δ346-347 was categorized as a dominant negative mutant (114). To test whether our 

purified VacA strep tag Δ346-347 had a similar phenotype, we mixed purified WT VacA 

with purified VacA strep tag Δ346-347, and tested for vacuolating activity. As expected, 

adding purified WT VacA alone to HeLa cells caused extensive vacuolation, while 

adding the VacA strep tag Δ346-347 alone did not cause any detectable vacuolation 

(Figure 22). Consistent with results from by Ivie et al (114), we observed that mixing 

purified WT VacA with purified VacA strep tag Δ346-347 caused an inhibition in the 

activity of the WT VacA protein (Figure 22). These results suggest that the VacA strep 

tag Δ346-347 can interact with WT VacA.  

 

 

 

 

 

 

 



100 
 

 

 

 

 

 
 
 
Figure 22: Inhibitory activity of H. pylori VacA strep tag Δ346-347. Purified VacA 
strep tag Δ346-347 (10 µg/ml) was mixed with WT VacA (2.5 µg/ml), and HeLa cells 
were then incubated with the indicated VacA proteins (either individually or in a mixture) 
for 9 h at 37°C. Cell vacuolation was quantified by the neutral red uptake assay. 
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Folding of the H. pylori VacA strep tag Δ346-347 protein 

The observed expression, secretion, and dominant negative activity of VacA strep 

tag Δ346-347 all suggested that the protein is folded.  To directly demonstrate proper 

folding, we performed circular dichroism experiments as described in Materials and 

Methods. We first obtained the spectra for oligomeric purified WT VacA. In agreement 

with a previous studies (113), the WT VacA had a negative band at around 220nm 

(Figure 23A). We then tested VacA strep tag Δ346-347 and obtained a spectra that was 

identical to the WT VacA (Figure 23B). Our results suggest that the VacA strep tag 

Δ346-347 protein is folded.  

 

 

 

 

 

 

 

 

 

 



102 
 

A 

 

B 

 

 
Figure 23: Folding of H. pylori VacA strep tag Δ346-347. Purified (A) WT VacA and 
(B) VacA strep tag Δ346-347 were diluted to 0.3 mg/ml and the spectra for the proteins 
were obtained as described in Materials and Methods 
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Crystallization of VacA strep tag Δ346-347  

 We then set out to crystallize the VacA strep tag Δ346-347, in collaboration with 

the Lacy lab. Our initial screen was done by the sitting drop method as described in 

Materials and Methods, and we tested over 1000 crystallization conditions. After 7 days 

we observed cube-form crystals in 4 conditions (condition 1, 1M Ammonuim sulfate/ 5% 

Isopropanol; condition 2, 1.5M Sodium chloride/ 10% Ethanol; condition 3, 1M 

Ammonium phosphate/ 100mM Sodium Citrate pH 5; and condition 4, 1M Sodium 

chloride/ 100mM Sodium acetate pH 4.6). To optimize and obtain larger crystals, we then 

set crystallization trays by the hanging drop method as described in Materials and 

Methods. From the 4 conditions that yielded crystals by sitting method, we were able to 

reproduce “condition 3” and “condition 4” using the hanging drop method. After further 

optimization of “condition 4”, we obtained larger crystals, which diffracted to 4.5 A 

(Figure 24A and 24B). All the diffraction data were indexed, integrated, scaled, and 

merged with HKL2000 (Figure 24 B and Table 1). The crystals were spacegroup I23 with 

an a=b=c=330.7 Å cell edge.  Molecular replacement using the 2.4 Å p55 domain of 

VacA (99) as our search model revealed a solution where each asymmetric unit has two 

monomers (Figure 24C).  A packing arrangement of two monomers per asymmetric unit 

in a 330 Å3 cubic I23 spacegroup indicates that the crystals are 88% solvent.  While this 

is high, we observe a full array of crystal packing contacts that allow for the formation of 

the cubic spacegroup (Figure 24C), and we have not been able to identify convincing 

molecular replacement solutions that contain additional monomers. The resulting electron 

density map suggests that the β-helical structure of the p55 domain will extend into the 

C-terminal portion of p33 (Figure 24D).   
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Figure 24: H. pylori VacA strep tag Δ346-347 crystallization.  Purified VacA strep tag 
Δ346-347 was concentrated and crystallization trays were set as described in Materials 
and Methods.(a) Crystals of the VacA strep tag Δ346-347 can grow reproducibly in 
hanging drops within 3 days in 0.9-1.5 M sodium chloride and 0.1 mM sodium acetate 
pH 4.6 - 5. (b) The crystals diffract to 4.5 Å resolution at the synchrotron X-ray source. 
Molecular replacement using the 2.4 Å p55 domain [104] structure shows the (a) 
orientation of the protein in the crystals and (b) the density map for the p33-p55 junction. 
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Table 5: X-ray data collection statistics 

 

Data Collection  VacA44 
  

Unit Cell 330.7, 330.7, 330.7, 90, 90, 90 

Resolution (outer shell), Å 50.0-4.5 (4.58-4.50) 

Rmerge*, % 10.9 (52.1) 

Mean I/σI  10.4 (2.75) 

Completeness, % 99.7 (97.8) 

Redundancy 7.4 (6.6) 

Unique observations 35776 (1747) 

 

Outer resolution bin statistics are given in parentheses.  

*Rmerge =  Σhkl(Σi|Ihkl,i - <Ihkl>))/Σhkl,i<Ihkli>, where Ihkl,i, is the intensity of an individual 
measurement of the reflection with Miller indices h, k and l, and <Ihkl> is the mean 
intensity of that reflection.   
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Discussion 
 

Structural characterization of a protein requires its efficient purification and 

crystallization. Previously, the crystal structure of the VacA p55 domain was determined 

(99). In this study, our objective was to crystallize the p33 domain. In Chapter 2 we 

performed an extensive analysis of the VacA p33 domain, and were able to purify and 

refold a recombinant form of the p33 domain.  As a first logical step we attempted to 

crystallize the refolded p33 domain (as described in Chapter 2), but were unsuccessful. 

One possible explanation is that the high concentrations of guanidine and arginine in the 

buffer could interfere with protein crystallization. We tried to reduce the amounts of 

guanidine and arginine in the buffer, but reducing the concentration of any of these 

components caused the protein to precipitate from solution. To avoid the refolding step, 

we preceded our studies by making and expressing various mutant forms of the p33 

domain (Table 1). Many of these mutant proteins were engineered to contain fragments 

of the p55 domain. Our hypothesis was that these fragments could help improve 

solubility. However, we show that when tested for expression, none of the proteins were 

expressed in the soluble fraction (Table 3).  

Interestingly, we were able to purify and refold mutant forms of the p33 domain 

and found that most of the proteins were active in a cell culture assay, only when mixed 

with purified p55. This was a rather unexpected finding, because when mixed together, 

some of the proteins (i.e. p33 tail, p42, and p60 [see Table 3]) had an overlap of at least 

100 amino acids within the p55 domain. These experiments demonstrate that VacA toxin 

activity can be reconstituted in the presence of overlapping segments. Further 

experiments will be needed to determine the oligomeric arrangement and molecular 
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events that occur during the VacA reconstitution process. The fact that refolded p33 

proteins were only active when mixed with purified p55 suggests that the purified p55 

may be promoting the folding of a partially refolded p33 protein. To test this hypothesis 

we tried to crystallize p33-p55 mixtures, but were unsuccessful.  

Recombinant proteins are a widely use tool in structural biology. However, based 

on our inability to express a soluble form of the p33 domain or crystallize the p33-p55 

recombinant mixtures, we decided to test H. pylori purified VacA. The p88 VacA protein 

is typically purified in an oligomeric form from the H. pylori broth culture supernatant, 

and monomeric forms of p88 VacA have been relatively difficult to purify (113-114). 

Previous studies have shown that VacA can form many types of oligomers, which can 

make a VacA sample extremely heterogeneous (107-109). In fact many activity assays 

require the disassembly of VacA oligomers by the slow addition of acid (107). Therefore, 

we tried to crystallize both an oligomeric form of VacA and an acid treated purified 

VacA, but were unsuccessful.  We found that in the VacA acid treated sample, the pH 

was raised in several of the crystallization conditions, which may have caused the protein 

to re-oligomerize or aggregate.  

As an alternative approach to crystallize H. pylori purified VacA toxin, we were 

interested in analyzing non-oligomerizing forms of the VacA toxin. Thus far, it has been 

shown that deleting either amino acids 49 to 57 from the p33 domain or amino acids 346 

to 347 from the p55 domain yields a non-oligomerizing VacA protein (113-114). These 

studies were mainly done using H. pylori broth culture supernatants (113-114). 

Therefore, in this study we developed a system for the purification of non-oligomerizing 

VacA mutants. Specifically, we manipulated the H. pylori chromosome using a method 
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described in Chapter 3, and inserted a strep tag into a vacA gene encoding a Δ346-347. 

We performed an extensive analysis of the purified protein and showed that the protein 

was efficiently expressed and secreted, had an inhibitory effect when mixed with WT 

VacA, and was correctly folded. We performed crystallization trials and for the first time 

we were able to crystallize a full length VacA toxin which contained a WT p33 domain.  

Furthermore, the VacA crystals diffracted to a 4.5 Å  resolution. Further experiments will 

be necessary to obtain a high resolution structure of the VacA toxin.  

A very high priority is to optimize our existing crystals for higher resolution 

diffraction (< 4 Å).  Our preliminary experience in analyzing the diffraction properties of 

these crystals at the synchrotron indicates that the resolution improves as the size of the 

crystals increases.  We will try a variety of techniques aimed at growing larger crystals. 

These include, but are not limited to, seeding, the incorporation of additives, adjustments 

in protein concentration and temperature, and moving from a hanging drop vapor 

diffusion experiment to sitting drop conditions and crystallization under oil.  Datasets 

will be collected for all crystals that diffract better than 4.5 Å.  The dataset that reflects a 

combination of high-resolution diffraction intensities with excellent scaling statistics (low 

Rmerge, high signal-to-noise, high completeness and redundancy) will be used for structure 

determination.  
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CHAPTER 5 

 

CONCLUSIONS 

 

Summary and Conclusions 

One of the most important virulence factors produced by H. pylori is the secreted 

toxin known as VacA. The toxin causes multiple alterations in host cells, and is 

considered a multifunctional toxin. VacA is secreted as an 88 kDa protein containing two 

domains designated as p33 and p55. The p55 domain has been shown to be important for 

binding to cells, and the crystal structure of this domain has been determined. When I 

initiated my studies of the VacA toxin, very few studies had directly analyzed the p33 

domain, and the structure of the p33 domain had not been determined. The overall 

objective of my thesis work was to structurally and functionally analyze the p33 domain, 

in order to provide a better understanding of the mechanism of action of the VacA toxin. 

In Chapter II, we expressed and purified a recombinant form of p33 under 

denaturing conditions and optimized conditions for the refolding of the soluble protein. 

We showed that refolded p33 could be added to purified p55 in trans to cause vacuolation 

of HeLa cells and inhibition of IL-2 production by Jurkat cells, effects identical to those 

produced by the p88 toxin from H. pylori. The p33 protein markedly enhanced the cell 

binding properties of p55. Size exclusion chromatography experiments suggested that 

p33 and p55 assembled into complexes consistent with the size of a p88 monomer. 

Electron microscopy of these p33/p55 complexes revealed small rod-shaped structures 

that converted into oligomeric flower-shaped structures in the presence of detergent. This 
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study was the first report of the purification of an active form of the VacA p33 domain. 

Our data highlighted the importance of the p33 domain in VacA activity and binding to 

cells, and showed that p33 contributes to the assembly of VacA oligomers. 

In Chapter III, we compared the ability of i1 and i2 forms of VacA to cause 

functional alterations in Jurkat cells. To do this, we manipulated the 

chromosomal vacA gene in two H. pylori strains to introduce alterations in the region 

encoding the VacA i-region. We did not detect any differences in the capacity of i1 and 

i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of 

VacA, i2 forms of VacA had a diminished capacity to inhibit NFAT and suppress IL-2 

production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did 

i1 forms of VacA. Our results indicated that the VacA p33 i-region is an important 

determinant of VacA effects on human T cell function, and specifically highlighted the 

importance of the p33 domain in VacA activity and binding. 

In Chapter IV, we developed a method for the purification of a non-oligomeric H. 

pylori secreted VacA, which we designated as VacA strep tag Δ346-347. Immunoblot 

analysis showed that the VacA strep tag Δ346-347 was efficiently expressed and 

secreted. Electron microscopy revealed that the purified protein adopted a rod-shape 

form, which was similar to acid treated WT VacA.  In agreement with results of a 

previous publication (114), the VacA strep tag Δ346-347 inhibited the activity of WT 

VacA in a cell vacuolation assay. Circular dichroism demonstrated that the protein was 

correctly folded, and crystallization trials were performed. The VacA strep tag Δ346-347 

formed cube-like crystals that diffracted to 4.5 Å, and molecular replacement showed that 

a portion of the density map was consistent with the previously determined structure of 
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the p55 domain. These results provide a structural basis for the determination of a high 

resolution p88 VacA structure, which includes the p33 domain. 

Collectively, my thesis work has provided important insights into the structure 

and function of the p33 domain. Functionally, my work has demonstrated the importance 

of the p33 domain in VacA activity and binding to epithelial and T cells.  Structurally, 

my work has demonstrated the importance of the p33 domain in the formation of VacA 

oligomers, and has provided important structural data which will serve as a platform to 

determine a high resolution structure of the VacA toxin. Overall, our work has helped fill 

important knowledge gaps in the VacA toxin field. However, as expected with any 

scientific field, many questions remain unanswered. In my next section, I will discuss 

ongoing and future efforts to further understand the VacA toxin.   

 

Future Directions 

Analyze the mechanism by which VacA causes alterations in T cells: 

 VacA is considered an imumomodulatory protein, and in my thesis work I have 

shown that the p33 domain is important for VacA alterations in T cells. However, many 

important questions related to VacA-T cell interactions remain unanswered.  

What is factor X? A previous study showed that integrin β2 is a receptor for 

VacA on T cells [180]. In the same report, the authors proposed that VacA could also 

bind to another receptor designated as factor X. In our analysis of the i-region, we 

observed differential binding of i1 and i2 VacA proteins to Jurkat cells, but our binding 

experiments showed that these differences were not β2 integrin dependent. On the other 

hand, sphingomyelin has recently been identified as a receptor for VacA in epithelial 
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cells (121-122), and a previous study showed that another pore forming toxin is capable 

of binding to sphingomyelin in Jurkat cells (210-211). Therefore, we hypothesize that the 

factor X in T cells is sphingomyelin. To test our hypothesis, we performed a pilot 

experiment using a flow cytometry binding assay. Specifically, we added VacA toxin to 

Jurkat cells that had been pretreated with sphingomyelinase.  Then, we performed a 

binding assay as described in Chapter III. Compared to cells treated with buffer alone, we 

observed that pretreatment with sphingomyelinase caused VacA to bind less avidly to 

Jurkat cells. These preliminary results suggest that sphingomyelin is important for VacA 

binding to cells. As a followup to these studies, we could potentially knockdown a gene 

that is required for sphingomyelin synthesis, and test VacA binding. One candidate gene 

could be sphingomyelin synthase 1, which in a previous study was shown to be important 

for sphingomyelin production in Jurkat cells (210).  As an alternative approach, we could 

perform a competition binding assay using a sphingomyelin binding protein (such as 

lysenin) and VacA (210-213).  

Alternatively, it is possible that sphingomyelin is not factor X. As another 

approach to identify factor X, we could perform crosslinking, pulldown, and mass 

spectrometry experiments. Specifically, we would insert a strep tag into the WT VacA 

protein by a mutagenesis approach. We would then purify the tagged protein, add VacA 

to Jurkat cells, chemically crosslink the proteins, lyse the cells containing complexes, and 

analyze these complexes by mass spectrometry.  

Does the i-region affect human T cells? We have been able to study the effect of 

the p33 i-region in Jurkat cells. The use of Jurkat cells presents certain drawbacks 

because these cells do not precisely mimic naturally occurring T cells. As another 
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approach to study VacA-T cell interactions, we began a collaboration with the Kalams 

lab, and our main objective was to analyze the effects of VacA on human T cells. We 

began this work by performing a pilot experiment which tested the effect of the i-region 

on IL-2 production by human T cells. Our preliminary results show that, similar to the 

Jurkat cell system, the i1 VacA was able to inhibit IL-2 production more efficiently than 

i2 VacA in human cells. Further experiments will be needed to confirm these results and 

optimize the assay. Once this assay is optimized and we are certain about our results, we 

could potentially analyze the effect of the i-region on T cell proliferation, NFAT 

activation, and VacA binding, using i1 and i2 VacA proteins. Additionally, we could test 

the activation of other cytokines, and test specific pathways that lead to this activation in 

human T cells. 

To analyze the role of VacA in vivo, it would be necessary to use an animal 

model system; however, previous studies have shown that mouse T cells are not VacA 

sensitive (175). Another animal model system which has not been explored for VacA 

studies is the gerbil model. Unlike mice, gerbils develop gastric cancer when infected 

with H. pylori (214-216). In an effort to use the gerbil model for VacA studies, we 

isolated T cells from gerbil spleens, and attempted to stimulate cell proliferation using 

various compounds. None of the tested compounds stimulated gerbil T cells to 

proliferate, and this complicated efforts to assess effects of VacA on these cells. As one 

way to move forward, we could infect gerbils with H. pylori strains expressing various 

VacA forms (i.e. s1/i1/m1 or s2/i2/m2). This would permit us to test colonization, and 

various T cell markers (such as IL-2) by real time PCR. 
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What are specific VacA targets in T-cells? Previous studies have shown that 

VacA interacts with mitochondria in epithelial cells (73, 118-120).  The effect of the 

VacA toxin on T cell mitochondria has not been analyzed in detail. To evaluate this, we 

could use a recombinant p33 protein tagged with a specific epitope; once tagged, we 

could add VacA to cells, allow for internalization, and perform pulldown experiments. 

This would allow us to identify specific intracellular VacA targets. Alternatively, we 

could perform confocal microscopy and assess colocalization with labeled mitochondrial 

proteins that have been shown to be important for VacA interactions in epithelial cells.  

 

Analyze trafficking of the VacA toxin 

What is the molecular mechanism for VacA trafficking in T cells and gastric 

cells? As a first step in VacA intoxication, the toxin binds to a receptor and is then 

internalized (73). VacA can potentially enter cells through various routes and localize in 

multiple sites (73, 118-120). Currently, the exact molecular mechanism for VacA 

trafficking has not been determined. Some studies propose that both the p33 and p55 

interact with mitochondria (154). In contrast, other studies propose that the p33 is the 

only domain necessary for VacA-mitochondria interactions (97-98). Most of these studies 

have been done in gastric cells, and it will be necessary to establish if the same patterns 

of trafficking occur in T cells. 

As a first step in trying to understand VacA trafficking, it will be necessary to test 

whether VacA breaks down into p33 and p55 within specific intracellular organelles. 

These studies could potentially be done by isolating cellular organelles from VacA-

infected cells, and analyzing VacA breakdown by immunoblotting. As a next step, the 
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routes through which VacA travels could be tested. As a classical way to study 

trafficking, we could potentially perform immunofluorescence microscopy. As a pilot 

experiment to test whether this system would work with purified p33 and p55 proteins, 

we performed immunofluorescence microscopy using a mitochondrial labeling 

compound (Mitotracker) and a mixture of refolded p33 with Alexa488-labeled p55. Our 

results suggest that there is minimal colocalization of labeled p55 with mitochondria 

(Figure 25). These studies can be continued by monitoring colocalization of the p33 

domain with mitochondria. Alternatively, we could label various intracellular targets, and 

monitor trafficking of the p33 and p55 domains.  This system could then be adapted for 

use in T cells.  
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FIGURE 25: Analysis of VacA localization by immunofluorescence microscopy. 
Mitochondria from HeLa cells were labeled with Mitotracker (red). A mixture of purified 
p33 plus Alexa48-labeled p55 (green) was then added to cells, and after internalization, 
the sample was analyzed by microscopy. 
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Evaluate structural properties of the VacA toxin 

 What is the structure of the p33 domain? Given our recent success in 

crystallizing VacA, we expect that it will be feasible to determine a high resolution 

structure of the toxin. To accomplish this, I am optimizing crystallization conditions to 

obtain larger crystals that will diffract to a higher resolution. As an alternate approach, I 

have been generating H. pylori strains that secrete other non-oligomeric VacA mutant 

proteins. These mutants will contain a strep tag and will be purified as described in 

Chapter IV. Crystallization trials will then be conducted.  

 Assuming that we can determine a high resolution structure of the VacA toxin, an 

immediate followup could be to try to crystallize other VacA variants. These variants 

include the s2, i2, and m2 VacA forms.  For these experiments, we would purify H. 

pylori secreted toxins as described in Chapter IV. In future studies it will also be of 

interest to try to co-crystallize VacA with candidate receptors, including sphingomyelin. 

Recently, the crystal structure of lysenin bound to sphingomyelin was determined (211), 

and the methodology in this report could be used as a platform for this type of study. 

The availability of the VacA crystal structure could help us understand structural 

features of the p33 domain that are relevant for VacA function. Previous mutagenesis 

studies have identified specific amino acids within the p33 domain that are important for 

VacA activity (92-94). With the VacA structure available, we could map the sites of these 

mutations and deduce how the corresponding residues contribute to VacA function. On 

the other hand, the availability of the VacA structure could help explain whether 

structural differences within the i-region are responsible for the observed differences in 

activity (described in Chapter 3). 
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VacA is considered a pore-forming toxin, and the p33 domain is thought to be the 

pore forming domain (118-119). The membrane-inserting portions of pore-forming toxins 

are structurally categorized as β-barrel or α-helical, and these (183-185, 217)[214-

217][214-217]structural features determine the specific mechanism of action (183-185, 

217). Therefore, the VacA structure would provide insights into the mechanism by which 

VacA inserts into membranes to form pores. 

 

Evaluate VacA oligomerization 

Recently the Ohi, Lacy, and Cover lab performed an electron microscopy analysis 

of the VacA toxin (218). These studies were done by a negative stain microscopy 

method. Importantly, the crystal structure of the p55 domain was modeled into VacA 

oligomers, and we observed that the p33 domain was localized to the central core of the 

oligomer (Figure 26A and 26B).  

Further electron microscopy experiments could analyze VacA insertion into 

membranes.  Specifically, we could analyze VacA oligomerization in the presence of 

lipids. This type of analysis could elucidate quaternary conformational changes that are 

important for membrane insertion. Other EM studies include testing whether different 

forms of VacA (s2, i2, and m2) differ in their oligomeric structures when compared to 

VacA type s1/i1/m1. One drawback of our current electron microscopy approach is that 

there are limits of the resolution at which a structure can be determined. As an alternative 

approach, we could perform cryo-EM analysis of the VacA toxin. These studies are 

currently been performed in collaboration with the Ohi lab, and we are hopeful that they 
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will provide insight into VacA oligomeric structure. In all of these studies, valuable 

insights will emerge by comparing the VacA crystal structure with EM structures.  
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FIGURE 26: Electron microscopy analysis of the VacA toxin. (a) The 2.4-Å crystal 
structure of p55 was modeled  into an oligomeric VacA structure, and the domain fit into 
the straight “arms” of the EM map of the oligomer (b) Cartoon representation of (a). Blue 
domains are the p33, and red domain is the p55 domain.  
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