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Chapter I. Imaging of the Optic Nerve 

 

1. Human Visual System Anatomy 

The human visual system is an elegant processing pipeline with tremendous capabilities which 

are invaluable in our everyday lives. Our visual system has the ability to concurrently process color, 

shape, motion and spatial information in meaningful ways which is necessary for the execution of 

everyday tasks. This processing involves multiple steps at varying degrees of complexity operating on 

larger and larger spatial fields throughout the brain. However, all of the visual information originates as 

light entering the eye globe where it is focused onto the retina into an image and is transmitted through 

the optic nerve (ON) and lateral geniculate nucleus to primary visual cortex. The ON serves as the single 

conduit for communicating light from the outside world throughout the brain for processing and response.  

 

 

Figure I.1. Eye globe anatomy (left) illustrating the path of light through the cornea, lens and 

vitreous gel onto the retina. Right image is a close up of the mechanics of glaucomatous increased 

intraocular pressure. Fluid exits the eye globe and we see where fluid buildup can decrease 

outflow which raises intraocular pressure.  
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1.1. Eye globes  

The eye globes serve to focus incoming light such that it presents a focused image on the retina. 

The eye has two focusing apparatus, the cornea and the lens. The cornea creates the interface between the 

air and the anterior chamber filled with aqueous humor. The light then passes through the lens which, 

through small muscle contractions, can change shape to adjust the focal length of the system. The lens is 

controlled by the ciliary muscle which is attached to the lens by the zonule fibers. The light next passes 

through the vitreous humor where it can be recorded by the retina (Figure I.1 left). The retina consists of 

two types of photoreceptors, rods and cones, which are sensitive to different light intensities and 

wavelengths. Cones are used for color vision and there are three types of cones which are sensitive to 

long (red), medium (green) and short (blue) wavelength light (Figure I.2 left). Cones are densely packed 

near the center of the visual field or fovea and are used for daytime vision. Rods are more sensitive to 

incoming light and have a spectral response profile centered between the medium and short cones, or blue 

and green light (Figure I.1 left). Rods are used mostly for night vision and are distributed further away 

 

Figure I.2. Visual pathway anatomy (left) illustrating the decussation of fibers at the optic chiasm 

such that each side of visual cortex receives information from one visual hemi-field.  An 

illustration of the meningeal layers of the ON (right).  
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from the fovea. The optic disk is a region approximately 15 degrees nasal from the fovea where the ON 

exits the retina where no photoreceptors are present (Figure I.2 right). The optic disk has been shown to 

be an important indicator of ON health or atrophy, especially optic disk swelling and crowding [1]. The 

photoreceptors convert incoming photons to action potentials which are transmitted through retinal 

ganglion cell axons through the ON.   

 

1.2. Optic Nerve 

The ON is a critical structure for vision and transports all visual information generated in the 

retina posterior through the optic chiasm. The ON consists of myelinated retinal ganglion cell axons as 

well as glial cells and leaves the orbit via the optic canal at the optic disk. The ON is a central nervous 

system structure, not a peripheral nerve, and is therefore ensheathed in three meningeal layers. The 

outermost layer is the thick dura mater, followed by the arachnoid mater. The subarachnoid space 

contains cerebrospinal fluid (CSF) while the thin pia layer surrounds the ON. (Figure I.3 right) The 

majority of ON fibers terminate in the lateral geniculate nucleus (LGN) which relays the information 

 

Figure I.3. Spectral response curves (left) of short (blue), medium (green), long (red) cones and 

rods. Rod and cone density (right) as a function of foveal angle. Note that the blind spot at 20° is 

due to the optic disk.  
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through the optic radiation to primary visual cortex for processing. Some ON fibers also terminate in the 

pretectal nucleus where they influence reflexive eye movements such as the pupillary light reflex and 

optokinetic reflex. Yet other fibers terminate in the suprachiasmatic nucleus for regulation of circadian 

rhythms.  

 

1.3. Optic Chiasm 

The optic chiasm is an x-shaped structure near the hypothalamus which separates the anterior 

visual pathway into the optic nerves anterior and the optic tracts posterior. ON fibers for the nasal visual 

field cross at the optic chiasm such that information from the left and right visual hemi-fields are 

transferred into the right and left LGN respectively (Figure I.3 left). The purpose of this crossing is for 

binocular processing. Left primary visual cortex will receive information from the left visual field from 

both the left and right eyes. Processing for each point in visual space is then localized to a single spot in 

visual cortex. If these fibers were not crossed it would lead to a spatial separation of the information for 

the left and right visual fields coming from the left and right eyes.  

 

1.4. Lateral Geniculate Nucleus 

Visual information travels posterior to the chiasm through the optic tracts to the LGN. The LGN 

acts as a gate receiving feedback signals from areas of visual processing such as the suprachiasmatic 

nucleus and visual cortex. These signals help to suppress incoming information which is unnecessary to 

most effectively use the limited bandwidth for transfer of data from the LGN back to visual cortex.   

 

1.5. Diseases Affecting the Optic Nerve 

There are many conditions which affect the ON including glaucoma, optic neuritis, optic gliomas, 

and optic neuropathies [2]. It is important to remember that the location of damage to the visual system 

will affect the type of visual deficit due to the nature of the fibers crossing at the optic chiasm. ON 

damage which is anterior to the optic chiasm will degrade vision in the eye on the same side. Damage 
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posterior to the optic chiasm will degrade vision in the contra-lateral visual hemi-field. Damage to the 

optic chiasm will result in bilateral degradation.  

1.5.1. Glaucoma 

Glaucoma is the second leading cause of blindness worldwide and disproportionately affects 

women and Asians [3]. The two main types of glaucoma are open-angle and closed-angle glaucoma. 

Open-angle glaucoma is the more prevalent of the two, accounting for 90% of the cases in the United 

States.  Open-angle glaucoma develops slowly and painlessly presenting as gradually progressive visual 

field loss. This visual field loss begins in the periphery and slowly approaches the center of the visual 

field. Many patients do not notice the deficit until the disease has progressed significantly. Closed-angle 

glaucoma is sudden onset and painful and is treated as a medical emergency.  The biological basis of 

glaucoma is not fully understood, yet increased intraocular pressure (IOP) is the only proven treatable risk 

factor [4]. ON degradation in glaucoma is a well-documented effect and has been shown to precede visual 

field loss [5, 6]. ON atrophy is more severe at the superior and inferior portions as observed on the optic 

disk and this atrophy is notably different from ON atrophy from other diseases with its distinctive 

hourglass pattern [5]. The most common course of treatment is to increase aqueous humor outflow using 

eye drops. In many cases surgical intervention by opening the trabecular meshwork using a laser or a 

shunt is necessary (Figure I.1 right). More recent works show the promise of neuroprotective drugs for the 

reduction of IOP and treatment of glaucoma [4].  

1.5.2. Multiple Sclerosis and Optic Neuritis 

Optic neuritis is an acute inflammation of the optic nerve and may be associated with a variety of 

autoimmune disorders or infection. The most common form is acute demyelinating optic neuritis and is 

closely linked with multiple sclerosis (MS). Approximately 15% to 20% of MS patients have been shown 

to have optic neuritis as the seminal event in the MS course, and over 50% of MS cases develop optic 

neuritis at some point [1, 7, 8]. Furthermore, the likelihood of developing MS within 5 years of an optic 

neuritis event is approximately 25%.  Optic neuritis recurrence happens in approximately 30% of patients 

within 10 years and recurrence is more common in patients who have clinically definite MS [9]. 
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Clinically, optic neuritis presents as a sudden onset of loss of vision and pain of eye movement. Most 

patients with a single episode of optic neuritis will often recover their vision. The administration of 

corticosteroids has been shown to expedite visual recovery but has no beneficial effects on long-term 

outcome [7].  

1.5.3. Anterior Ischemic Optic Neuropathy 

The term optic neuropathy is used generically to describe damage to the ON, usually atrophy, 

from any cause. Anterior ischemic optic neuropathy (AION) is a condition whereby the optic nerve head 

becomes ischemic. AION generally presents suddenly upon awakening and is characterized by reduced 

visual performance unilaterally without any pain during eye movement. There are two main types of 

AION, arteritic AION (AAION) and nonarteritic AION (NAION). AAION is due to giant cell arteritis 

while NAION is often idiopathic and can have numerous causes.  AAION is a medical emergency 

because it has the potential to cause rapid bilateral blindness and must be treated immediately with 

corticosteroids [10]. NAION is generally thought to be caused by a combination of two factors, optic disk 

crowding and traditional cardiovascular risk factors. Optic disk crowding is characterized by an optic 

canal which is not significantly larger than the optic nerve head. This leads to a crowded fiber bundle 

within the optic disk. Patients who have cardiovascular risk factors, such as diabetes, hypertension or high 

cholesterol, can develop ischemia to a portion of the optic nerve head. This will cause swelling which 

leads to compression because of the crowded disk and worsens ischemia [11, 12]. Treatment with 

corticosteroids has been shown to also improve visual acuity in NAION [13]. A wide range of other 

treatment options have been presented although none have been proven [14]. 

1.5.4. Optic Glioma 

Optic glioma is a form of glioma, or glial cell tumor, which forms in the ON or optic chiasm. 

Optic gliomas can cause visual loss depending on the size, location, and involvement of the nerve. 

Smaller tumors will often not require treatment. Larger gliomas can cause further complications such as 

raised intracranial pressure (ICP) and proptosis.  Treatment of large gliomas is generally through radiation 

or chemotherapy as surgical resection can be very difficult. Optic gliomas are also closely linked to 
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Neurofibromatosis type 1, a tumor disorder caused by a genetic mutation [15, 16].  

 

2. Optical Coherence Tomography Imaging 

Optical coherence tomography (OCT) imaging has become an invaluable tool for investigation of 

diseases affecting the retina. OCT creates in vivo sub-micrometer resolution sub-surface images through 

the plane of the retina and thus is useful for visualizing the layers of the retina and the posterior segment 

of the eye (Figure I.4). OCT has been shown to be a useful tool in monitoring the progression of both MS 

and glaucoma. There are many advantages to OCT imaging including that it is non-invasive, non-contact, 

painless and fast. OCT imaging is fast enough that it can create a real time feed of images as the probe is 

moved due to this feature intraoperative OCT during ophthalmic microsurgery is under investigation [17, 

18]. The sub-micrometer resolution possible with OCT make histological level evaluation of retinal 

structures viable. OCT also does not impart any ionizing radiation to the patient.    

2.1. Background and Techniques 

There are multiple approaches to creating OCT images but they all work on the basis of low 

coherence interferometry. Low-coherence interferometry was first applied to the eye to measure axial 

length [19] and has since been extended to create 2D and 3D images. The basic principle is that a low-

coherence light source projects light onto a beam splitter which splits the beam into a reference arm and a 

 

Figure I.4. An 800 nm OCT image with 3 micron in plane resolution showing layers of the retina. 

The high resolution of OCT allows for investigation and measurement of each layer of the retina.  
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sample arm. The reference arm reflects off an internal reference mirror. The sample arm reflects light off 

the target, in this case the eye. The reflections of the two arms meet back at the beam splitter where they 

interfere. This interference can then be interpreted into axial information about the sample at the target 

point. The path length of the reference arm can be swept in time with recordings of the interference at 

each reference arm length being taken to acquire data at different depths. This will produce an A-scan 

which contains reflective and scattering properties as a function of depth at a single location. Collecting a 

set of neighboring A-scans constitutes a B-scan which is a single slice through the target. B-scans will 

contain information as a function of depth and position along the direction of data acquisition which can 

be visualized as an image of a planar slice. B-scans do not have to be taken in a straight line and are also 

frequently acquired following a circular path. Multiple B-scans can be combined to form a volumetric 

image. Volumetric images can be formed using any desired combination of B-scans. Circular B-scans are 

commonly used to form radial volumetric images. Further improvements in OCT hardware have been 

introduced building on this principle including the use of broadband light sources to improve axial 

resolution and by detecting backscattered depth information in the frequency domain which eliminates the 

need for movement of the reference mirror and improves scan speed [20].   

 

2.2. Applications 

2.2.1. Glaucoma 

The relationship between retinal nerve fiber layer thickness (RNFL) (Figure I.4) and glaucoma 

has long been known to exist [21] but OCT has recently allowed for the development of more 

sophisticated tools for the study of RNFL [22]. OCT has been shown to be a useful tool for measuring 

RNFL thickness which has been shown to be related to glaucomatous damage [23, 24] and to correlate 

with glaucoma progression [25]. Software has now been developed to automatically characterize RNFL 

thickness as well as optic nerve head properties which are visible in OCT. Commercial software is 

currently available to characterize RNFL thickness measurements as compared to a population of 

thickness measurements. The current focus of research is on techniques such as registration [26, 27] to 
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incorporate longitudinal data from different formats which could reveal subtle trends which are not 

apparent when comparing against a healthy population [28]. 

2.2.2. Multiple Sclerosis 

Multiple sclerosis (MS) is a neurodegenerative disease which is closely linked to optic neuritis. 

RNFL loss has also been shown in MS patients both with and without a history of optic neuritis although 

loss is much more extreme in patients with a history of optic neuritis [29]. This supports the hypothesis 

that RNFL loss associated with MS may be minimal but detectable and can be masked by the severe 

RNFL thinning associated with optic neuritis. RNFL thinning has been found even in MS patients with a 

history of optic neuritis with good visual recovery in both affected and healthy eyes [30, 31]. RNFL 

thinning in eyes without a history of optic neuritis is hypothesized to be due to neurodegenerative retinal 

ganglion cell degeneration. The use of OCT to measure RNFL thinning has been correlated with brain 

atrophy in MS and has been proposed as an outcome measure in clinical trials of neuroprotective drugs 

[32]. The amount of RNFL thinning has been shown to correlate with measures of visual acuity and to be 

different between MS subtypes [33]. All of these results suggest that OCT and RNFL measurements are 

useful tools for characterization of MS. The current standard for MS diagnosis is magnetic resonance 

imaging but OCT represents a promising forefront of MS research as it can provide rapid high resolution 

reconstructions of retinal anatomy [34].  

 

3. Magnetic Resonance Imaging of the Optic Nerve 

Magnetic resonance imaging (MRI) is a critical part of the modern healthcare system and is used 

routinely for imaging a multitude of anatomies. MRI of the ON however is in its infancy and new 

techniques are currently under investigation for accurately imaging the anatomy and microstructure of the 

ON. Creating imaging which is sensitive to ON anatomy is challenging for many reasons including its 

small size (~3mm), the relatively large amount of motion related to saccadic eye movements, the 

surrounding orbital fat and the magnetic susceptibility differences resulting from air-tissue interfaces from 

the sinuses. As optic nerve atrophy is a hallmark of the multiple conditions presented above, there is a 
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need to develop tools to assess the health of the ON in all 3 dimensions with resolutions high enough to 

derive indices reflective of recovery and disease evolution.  As MRI is also non-invasive, the application 

to all diseases of the visual pathway can be considered a target for implementation.   

 

3.1. MRI Background 

3.1.1. Physical Basis for Imaging 

A fundamental principle of protons is that they have a quantum spin number. This property also 

means that these nucleons have a non-zero magnetic moment. If we place protons in an external magnetic 

field they will absorb energy and then re-emit energy when they relax back to their original state, known 

as nuclear magnetic resonance [35, 36]. There are two possible discrete energy states which can be 

obtained, a low energy state which corresponds to protons which are aligned parallel to the external 

magnetic field and a high energy state which corresponds to protons which are anti-parallel. The energy 

spacing between the high and low energy states is given by: 

∆𝐸 =  𝛾ℏ𝐵⃗  (I.1) 

where 𝐵⃗  is the external magnetic field and 𝛾 is the gyromagnetic ratio (4258 Hz/G for hydrogen).  It is 

also known that these nucleons will experience a torque on their magnetic moment from the external 

magnetic field given by, 

Γ = 𝜇 × 𝐵⃗  (I.2) 

 

where 𝜇⃗⃗  is the magnetic moment and Γ⃗  is the torque creating the precession. If this torque is not parallel to 

the magnetic field it causes the magnetic moment to precess at a frequency 𝜔, known as the Larmor 

frequency which is proportional to the external magnetic field as, 

𝜔 = −𝛾𝐵 (I.3) 

 

The fraction of the spins parallel and anti-parallel depends on temperature and magnetic field strength and 

is governed by the Boltzmann distribution. The Boltzmann distribution yields that within a large external 
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magnetic field, such as within an MRI, at body temperature very few spins (about 1 in 1 million) will be 

anti-parallel. For a large collection of protons the time evolution of the net magnetization vector can be 

characterized by the Bloch equation, 

𝑑𝑀

𝑑𝑡
= 𝛾𝑀⃗⃗ × 𝐵⃗  (I.4) 

where 𝑀⃗⃗⃗  is the net magnetization vector and 𝐵⃗  is the external magnetic field. The net magnetization vector is a 

construct which represents the spins of a collection of protons, for a voxel for instance. The net magnetization 

vector is canonically the sum of all parallel magnetization vectors not cancelled by an anti-parallel 

magnetization vector.  

 When this net magnetization vector is perturbed it will relax back to equilibrium through two 

processes. The longitudinal component, which is parallel to the external magnetic field, will relax 

exponentially with a time constant T1 while the in-plane component, perpendicular to the external magnetic 

field, will lose phase coherence exponentially with a decay constant T2 due to interactions with surrounding 

molecules. The apparent relaxation rate is much faster than this decay constant, T2, due mostly to field 

inhomogeneities in the main magnetic field. This accelerated relaxation rate is denoted as 𝑇2
∗
 (T2-star) and is 

always less than or equal to T2 since the apparent relaxation (𝑇2
∗

) is the sum of the relaxation rates of 

molecular interactions and field inhomogeneities as in, 

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′ (I.5) 

 where 𝑇2
′
 is inversely proportional to the magnetic field inhomogeneities while 𝑇2 is a property of the tissue. 

From this it is clear to see that in the absence of magnetic field inhomogeneities the apparent T2 is the actual 

T2. We can then utilize the fact that different tissues within the body have different T1 and T2 relaxation times 

as a means of contrast. T1 and T2 are intrinsic properties of a material and thus different tissues will have 

different relaxation times. This also means that pathology changes can also change these relaxation rates which 

allows for visualization of pathology and diagnosis. For example, an inflamed tissue will contain more 

interstitial fluid from increased vascular permeability and therefore an increased T1 relaxation rate and a 

decreased T2 relaxation rate. In order to form a meaningful image however we need to extract spatial 

information.  
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3.1.2. Image Formation 

To form an image we need three magnetic fields all working in unison in a time-varying dynamic manner. The 

first is the main magnetic field, 𝐵0 , which works to align the spins of all protons and produces a net 

magnetization vector according to the Boltzmann distribution. The second field, commonly denoted 𝐵1, is used 

to perturb the net magnetization vector created by the main magnetic field. As the protons relax we then need 

to measure the signal and we can leverage the fact that each proton precesses at the local Larmor frequency as 

a means of encoding spatial location. If we introduce a spatially varying magnetic field gradient the frequency 

of precession of the spins will vary based on the magnitude of the applied magnetic field and therefore also on 

spatial position. This relationship between frequency and location allows us to then reconstruct the image by 

taking the Fourier transform of the collected signal since each frequency will correspond to a spatial location in 

physical space [37].  

3.1.3. The Spin-Echo Sequence 

The art of manipulating the three magnetic fields in an MRI experiment to generate the desired 

contrast in an image is known as pulse sequence design. One of the most basic pulse sequences is the 

spin-echo (SE) sequence [38]. This sequence is versatile and changing the timing of the sequence can 

produce T1-weighted, T2-weighted or proton density contrast [39]. The signal in a SE sequence is 

generically described by two parameters, the repetition time (TR) and the echo time (TE),  

𝑆 =  𝑀0 (1 − 2𝑒
−

𝑇𝑅−𝑇𝐸
2
𝑇1 + 𝑒−𝑇𝑅/𝑇1)𝑒−𝑇𝐸/𝑇2 (I.6) 

Where 𝑀0  is the equilibrium longitudinal magnetization and 𝑆  is the signal. To understand each 

component of this equation we look at the structure of the pulse sequence. This sequence employs a 90° 

excitation pulse to tip the net magnetization vector into the transverse plane. As the spins begin to 

dephase a 180° refocusing pulse is applied to reverse the direction of the dephasing, so that the spins are 

rephased which is called an echo. Note that this refocusing also refocuses any magnetic field 

inhomogeneities such that the apparent T2 (𝑇2
∗) is the actual T2. An image is then read out at a time t (t = 

TE for maximum signal) after the excitation pulse using the gradients as discussed above. The process 
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can be repeated at a time TR after the original excitation pulse. Referring back to the signal equation, 

(0.1), we see that the first term with 
𝑇𝑅−𝑇𝐸

2
 is due to the longitudinal relaxation between the refocusing pulse 

and the readout while the second longitudinal relaxation term is due to residual longitudinal magnetization 

from the previous TR. Finally the entire equation is weighted by the transverse magnetization signal for the 

prescribed echo time. From this equation we can see how different forms of contrast can be imaged with just 

this single sequence. A long TR and long TE will result in T2-weighting while a short TR and short TE will 

result in a T1-weighting. A long TR and short TE yields a proton density weighted image. The SE pulse 

sequence has a number of advantages, most notably for application to ON imaging is that the 180° 

refocusing pulse off-resonance effects making the spin echo sequence more robust to field 

inhomogeneities and susceptibility artifacts as compared to other pulse sequences.  

 

3.2. Challenges 

MRI of the ON presents a multitude of challenges including:  

 The small size of the ON presents a challenge as high-resolution sequences are necessary 

to avoid partial volume effects.  

 The obfuscation of signal from the surrounding adipose tissue makes creating contrast in 

the ON challenging. The T2 relaxation time of the ON is similar to that of orbital fat 

making fat suppression difficult. Robust fat suppression is also necessary as the olifenic 

orbital fat can resonate at different frequencies and therefore will not be suppressed by 

traditional fat suppression techniques.   

 The location of the ON directly superior to the maxillary sinuses causes significant 

susceptibility artifacts. The maxillary sinuses are a bony structure filled with air. This 

combination of air and bone creates local magnetic field gradients due to the different 

magnetic susceptibility of each material which must be accounted for.  

 The mobility of the ON due to eye movement causes blurring and motion artifacts. Any 
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sequence optimized for the ON should act to minimize these artifacts.  

MRI is often focused on imaging the brain with fields of view on the order of 20 cm and 

resolutions on the order of 0.1-0.3 cm. The ON however is approximately only 0.3 cm in diameter. This 

means that conventional MRI methods targeting the brain do not have sufficient resolution to accurately 

characterize the ON (voxel size ~ structure size) and would result in severe partial volume effects for all 

voxels imaged. To accurately resolve the ON high resolution (> 1mm) imaging sequences will be 

required.  

The orbit contains the ON and surrounding CSF traversing posterior-medially as well as the 

ocular muscles, the rest of the space is occupied by orbital fat (Figure I.5A). Orbital fat (T2~68ms [40]) 

has a similar T2 relaxation time as the ON (T2~78ms [41]) and can obfuscate signal and make imaging 

difficult on conventional T2-weighted MRI. The suppression of orbital fat signal needs to be carefully 

considered when using T2 imaging of the ON.  

Magnetic susceptibility can be summarized by a proportionality constant 𝜒, which describes the 

amount of magnetization in a material in the presence of a given external magnetic field.  

𝑀⃗⃗ = 𝜒𝐵⃗  (I.7) 

Magnetic susceptibility generally reflects the properties of a material. Tissue is diamagnetic and thus has 

a very small (on the order of 10−6) and negative magnetic susceptibility. Air is made up of mostly 

nitrogen, which is diamagnetic (𝜒 = −12 × 10−6), and also about 21% oxygen, which is paramagnetic 

(𝜒 = 34.5 × 10−4) [42]. Two areas with different susceptibility within the same external magnetic field 

will have different magnetization and thus a magnetic field gradient exists between any two areas with 

different susceptibility. These magnetic field gradients accelerate dephasing between protons on either 

side of the boundary which can lead to T2 signal attenuation as well as image distortion [43, 44]. These 

effects are especially detrimental for ON imaging since the ON sits directly superior to the air pocket and 

bone of the maxillary sinuses (Figure I.5B) [45].  

 Another problem which must be addressed is the motion of the ON (Figure I.5C). Saccadic eye 

movements cause rapid movement, the peak angular speed of the eye can exceed 900°/s for large 
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saccades while smaller saccades (<1°) typically result in peak angular velocity of ~80°/s  [46]. This rapid 

motion also causes significant motion of the ON immediately posterior to the globe. During longer 

imaging acquisitions, participants may also fall asleep. If the participant enters REM sleep the movement 

of the ON becomes saccadic and eye movement can exceed 30°/s [47]. One technique to reduce this 

motion is to have the participant fixate on a target to minimize saccadic eye movements. This technique 

will reduce larger motion artifacts but motion cannot be completely eliminated. Thus, motion of the ON 

can cause blurring of the ON signal and must be accounted for when designing ON imaging.  

 

3.3. Applications 

MRI has been used as a method to study the ON since at least 1984 [48] and specifically atrophy 

in MS and optic neuritis patients since at least 1988 [49]. The size of the ON has been measured in 

patients using manual measurements of cross-sectional area at predefined locations along the ON with 

MS and optic neuritis with findings indicating measurable atrophy [50]. Patients at onset had 

inflammation which led to larger mean ON cross sectional area of 16.1 mm2 compared to healthy controls 

at 13.4 mm2. After 52 weeks inflammation had turned to atrophy with mean patient ON measurements at 

 

Figure I.5. Illustration of challenges in MRI of the ON which includes orbital fat obfuscation of 

ON signal due to similar T2 (A). The proximity the of the maxillary sinuses which leads to 

susceptibility (B) and ON motion immediately posterior to the eye globes due to eye movement 

during  acquisition (C).  
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11.3 mm2 [51, 52]. MRI in these studies did not fully address the previously raised concerns and required 

time consuming manual segmentation. For these reasons the focus has been mostly on the use of OCT 

imaging for evaluation of MS and optic neuritis [53]. MRI does however provide the advantage of being 

able to characterize ON atrophy along the entire length of the nerve and if reliable imaging and automated 

segmentation techniques were readily available could be used for more accurate characterization of ON 

atrophy. 

 MRI has also been proposed to differentiate optic neuritis and NAION [54]. Optic neuritis and 

NAION often present very similarly in the clinic although the ON is ischemic and enlarged for NAION 

after a period of time ON atrophy will become apparent in patients with acute optic neuritis leading to 

MS. NAION patients will have their ON size return to normal. MRI has been shown to be a possible 

differential diagnosis between these two conditions [54]. Robust imaging and automated segmentation 

tools would lead to a useful clinical tool for identifying and quantifying ON atrophy to differentiate cases 

of acute optic neuritis and NAION. 

 

3.4. Imaging History 

Anatomical MRI of the ON has been attempted as early as the mid-1980s [55] to evaluate ON 

gliomas [56] and optic neuritis [49]. These early studies used 0.5T scanners with a resolution of 

1.0x1.0x10.0 mm3 [55]. The acceptance of 1.5T scanners yielded higher resolution sequences at 

0.8x0.8x5.0 mm3 by 1996 [57]. By the year 2000 the problem was well characterized as a challenging one 

and qualitative assessment was possible while the future looked bright for quantitative MRI in the ON 

[58]. The move to 3T MRI allowed for still higher resolution sequences, 0.45x0.49x3.0 mm, but still 

lacked robust fat suppression and motion compensation. The thick slices confounded the problem of 

partial volume effects since slice thicknesses were approximately as large as the diameter of the ON [59]. 

In 2007 Hickman noted that imaging of the ON was advancing and there was an emerging need for 

automated segmentation tools as well as the need for better imaging techniques [60]. His point is well 

founded; the literature for segmentation of the ON is almost exclusively for manual segmentation 



18 

 

techniques [51, 52, 54, 61] and semi-automated methods [62]. Only recently have automated 

segmentation methods been applied to the ON [63]. 

 

4. Magnetization Transfer Imaging 

One fundamental limitation of the traditional MRI techniques from Section 3 is that they 

inherently measure the relaxation of free water Hydrogen protons. The precession frequency of any 

hydrogen protons bound to a macromolecule is too high and therefore the relaxation is too short (<10ms) 

to be measured with traditional MRI pulse sequences such as the spin-echo sequence presented in Section 

3.1.3. Probing of macromolecular structure within a voxel is of interest though as this could lend 

information on important biological structures, such as myelin, which are present within the voxel. With 

the clever use of pulse sequences however we can probe these hydrogen protons bound to the edges of 

macromolecules, henceforth the bound pool, and their interactions with the free water hydrogen protons, 

henceforth the free pool. Experimental designs aiming at measuring this phenomenon were seen as early 

as 1963 [64] while some of the first measurements in NMR date back to 1989 [65]. 

 

4.1. Magnetization Transfer Contrast 

Generation of magnetization transfer (MT) contrast is achieved by irradiating the bound pool 

protons with a radiofrequency saturation pulse and the measurement of the nonirradiated free pool. 

Irradiation of the bound pool is achieved by applying a radiofrequency pulse off-resonance as the bound 

pool spins have a much broader absorption lineshape than the free pool spins. If the exchange rate 

between the two pools is slow enough, as it is in tissue, a traditional imaging experiment can then be 

performed after saturation to measure the decrease in signal of the free pool which is a result of the 

transfer of saturated protons from the bound pool [66]. It was not long before it was discovered that MT 

contrast had the benefit of being able to detect biophysical tissue changes in MS [67]. By 1996 there were 

efforts for deployment of MT imaging for clinical use but it was marred with difficulties [68]. These types 

of experiments utilized the magnetization transfer ratio (MTR) for quantification of the MT effect.  
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𝑀𝑇𝑅 =  
𝑀0 − 𝑀𝑠

𝑀0
 (I.8) 

MTR is defined as the difference in signal between images acquired with (𝑀𝑠) and without (𝑀0) 

the application of a saturation pulse, scaled by the signal without a saturation pulse. By 1999 there was a multi-

site study for characterization of MTR in normal white matter [69]. While this technique has proven useful we 

also now understand the limitations of modeling such a complex process so simplistically. Modern methods 

have moved on to quantitative modeling of the exchange process to more accurately characterize the 

underlying macromolecular content of the voxel. One key development which allowed for the spread of MT 

imaging and paved the way for quantitative modeling methods was the development of pulsed MT 

methods allowing for more measurements to be taken within SAR limitations [70]. The reduction of the 

MT phenomenon to a single measure, MTR, was known to be an oversimplification and although MTR is 

a useful construct, even being used in clinical trials, by 2001 a quantitative formulation of MT (qMT) 

exchange had emerged [71].  

 

5. Image Processing 

Image processing is the extraction of meaningful information about the subject of an image using 

manual or automated techniques. Medical image processing is a broad topic and here we will attempt to 

provide a framework which is relevant to this work. We discuss segmentation of medical images, non-

convex fitting through conjugate gradient descent and non-linear regression using random forests. 

 

5.1. Segmentation 

The process of identifying meaningful anatomical structures within an image is known as 

segmentation. Segmentation problems vary widely based on the anatomy of interest and special 

considerations with each individual application. Segmentation has many applications including surgical 

planning, post-surgical assessment and abnormality detection [72]. Abnormality detection is of particular 

interest for this work and can include finding abnormal tissue (e.g. tumors) or detecting abnormal image 
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features whether they be structural, textural or intensity in nature. Segmentation is key to all of these tasks 

as the anatomy of interest must be localized to be analyzed. 

Medical image segmentation has been applied to a wide variety of anatomies but the classic 

anatomy of interest in segmentation of the brain. The brain was one of the first structures to be segmented 

due to the relative regularity across subjects, the rigid container of the skull and the attractive 

applications. Moving to other anatomies, such as the ON which is surrounded by compressible fat and has 

a shape that varies widely between subjects, these constraints do not hold and complicate the problem.  

Despite these challenges recent advances have been made in applying segmentation to a variety of 

anatomies [73].  

Image segmentation has traditionally been performed manually by trained observers such as a 

radiologist. In the late 1990’s computer-assisted segmentation methods were developed. These methods 

increased the accuracy and speed by which an observer could segment images by utilizing image context 

information to inform the final segmentation [74, 75]. While these methods were a step in the right 

direction the ultimate goal was to develop robust automated methods to replace the human intervention. 

This task proved difficult and to this day computer assisted segmentation is the de facto standard for 

many difficult to segment anatomies, including the ON [51, 60].  

Automation of segmentation tasks yields large benefits in the scale at which data can be analyzed. 

Computer assisted segmentation decreases the number of man hours required for each segmented volume 

while automated segmentation reduces it almost completely. This reduction in time facilitates the analysis 

of large data sets previously unreachable. Automated segmentation also has the benefit of reducing any 

bias introduced by human intervention, yielding more reliable segmentation results. Initial attempts at 

automated segmentation were focused on pattern recognition [76, 77]. Intensity models have also been 

used to segment images and correct for global inhomogeneities [78]. Today, there are many methods to 

automated segmentation including thresholding, region growing, clustering, neural networks, Markov 

Random Field models, deformable models and atlas-based approaches [79]. Atlas-based approaches 

including multi-atlas segmentation have had success in a variety of anatomies [73]. Canonical multi-atlas 
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segmentation involves registering a set of multiple atlas images to the target image to be segmented. In 

this context an atlas image is a previously labeled example. With all of the atlas images registered to the 

target space the segmentation of each atlas is propagated to the target through a process referred to as 

label fusion.  

 

5.2. Conjugate Gradient Descent 

There exists a multitude of methods for solutions to non-linear optimization problems [80]. If the 

gradient of the function to be optimized can be solved for analytically, that is the derivative of the 

objective function with respect to each parameter to be optimized, then gradient descent methods can be 

employed [81, 82]. Conjugate gradient methods are a good solution for unconstrained energy 

minimization problems iteratively when more direct solutions are prohibitive to implement. This method 

has the benefit of defining a search direction as the negative gradient direction of the objective function. 

This ensures that the objective function should always be decreasing until a minimum is reached.  The 

conjugate of this method denotes that descent directions at subsequent iterations be conjugate to each 

other. This has been shown to ensure faster convergence, derivation of this is beyond the scope of this 

document.  

 

5.3. Random Forest Regression 

Random forest regression and classification has gained popularity in medical imaging 

applications in recent years [83, 84]. Random forests are an ensemble learning method, meaning they use 

multiple models to learn a better solution than any one model, using an ensemble of decision trees. 

Decision trees predict some output, either classification or a value for regression, based on a set of higher 

dimensional input. The root of the tree splits into multiple interior nodes, each of which contains a 

decision based on one of the input features. The nodes on the tree can be learned by repeatedly splitting 

the training data into subsets. This splitting procedure continues until the entire subset at a node contains 

the same output value. At this point a leaf node, or end node, is created which contains the output value. 
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Once a decision tree is learned, application is simple as an input data point can traverse each decision 

node until it reaches an end node which will contain the desired output value. Random forests are learned 

by training multiple decision trees on random subsets of the input features [85]. Training of a random 

forest intrinsically minimizes the error of regression of the training data. Validation of this error, to avoid 

overfitting, is important with the use of a yet unseen testing data set. The accuracy of the forest can then 

be evaluated on the testing data which was not used to train the model and should correspond to the 

generalization error of applying the model to any other yet unseen data.  

 

6. Contributions 

The primary contributions of this dissertation are as follows. In Chapter II we present a fully 

automated multi-atlas segmentation technique optimized for the structures of the eye orbit. In Chapter 

III we present a novel MRI sequence optimized to provide superior contrast of the ON and sub-arachnoid 

CSF for accurate characterization ON morphology.  We also propose an intensity-model fitting based 

technique for automatically estimating the radius of ON and surrounding CSF utilizing this novel MRI 

contrast. In Chapter IV we evaluate the reproducibility of this technique as well as demonstrate the 

creation of a normative statistical atlas using healthy controls. Chapter V presents improvements which 

build upon the limitations of the slice-wise intensity model fitting technique from Chapter III by 

proposing an iterative method which enforces 3-dimensional consistency of radius estimations. Again this 

technique is evaluated for reproducibility and we present the first long-term reproducibility results 

demonstrating stability of this technique and optic nerve morphology in subjects scanned one year apart. 

In Chapter VI this technique is applied to a clinical population to compare differences between patients 

with MS and a history of optic neuritis as well as patients with MS with no history of optic neuritis. We 

find that global atrophy is detected using our automated method in patients with MS and a history of optic 

neuritis. Chapter VII presents a multi-modal short- and long-term reproducibility data set which is 

released as an open resource for future development of eye orbit analysis pipelines. We also present 

morphological normative values from MRI and retinal layer thicknesses from OCT. Chapter VIII 
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presents analysis of a large-scale retrospective population of clinically acquired scans utilizing the 

techniques presented in Chapter II. In Chapter IX we use simulation to optimize sampling of 

quantitative magnetization transfer modeling to reduce scan times and increase clinical viability. Finally, 

we conclude in Chapter X by summarizing contributions and discussing possibilities for future work. 

More specifically we: 

 We designed and implemented a robust automatic multi-atlas segmentation pipeline 

of the ON, eye globes and muscles for use on clinically acquired data sets utilizing 

multiple sets of atlases to account for various MRI pulse sequences. Multi-atlas 

segmentation has been applied to many anatomies successfully but was never optimized 

for segmentation of eye orbital structures. Optimization of this technique builds the 

foundation for large-scale retrospective analysis of clinical imaging populations. To 

increase the amount of data which can be included in these investigations we employ 

multiple sets of atlas images to segment various contrast mechanisms derived from 

various MRI pulse sequences.  

 We optimized a high-contrast, high-resolution 3-dimensionally acquired MRI pulse 

sequence for contrast in the challenging ON. MRI of the ON is challenging because of 

size, motion, orbital fat and susceptibility artifacts. We account for all of these challenges 

by utilizing a 3-dimensionally acquired, radial readout pattern on a Cartesian grid to 

account for motion. We use robust spectral pre-saturation inversion recovery fat 

suppression to suppress orbital fat. We utilize an extended echo-train T2W turbo spin-

echo sequence to refocus susceptibility artifacts and we use high-resolution isotropic 

acquisition to ensure accurate visualization despite the small size of the structure.  

 We designed a tool for automatic measurement of the ON and surrounding CSF by 

fitting an intensity model in the coronal plane. Taking advantage of the novel contrast 

created with the previous contribution we created an intensity-fitting based algorithm for 

estimating the radii of the ON and CSF from these images. This model takes into account 
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the nonlinear relationship between its parameters and the physical radius measurements 

using a random forest regression and is validated against manual measurements and for 

reproducibility.  

 We defined a normative distribution of the ON and surrounding CSF size in young 

healthy controls which will be useful for comparing patient populations to identify 

structural changes due to ON diseases. By applying these tools to a large number of 

young healthy subjects we were able to define a statistical model of a normal human ON. 

This model can now be utilized for comparisons against patient populations to evaluate 

group effect changes in ON morphology.  

 We improve upon the automatic measurement tool using iterative 3-dimensional 

constraints to enforce anatomical consistency. The initial proposal of this algorithm 

utilized a naïve slice-wise estimation of each ON and CSF radius. This method was 

sufficient as a first step but ignores valuable information from neighboring slices. By 

positing this model into an iteratively constrained framework we enforce measurements 

to be more anatomically viable while still maintaining validation through short-term 

reproducibility.  

 We apply this improved technique to a population of patients with MS and find 

differences between patients with MS and a history of optic neuritis as compared to 

healthy controls and no difference in patients with MS and no history of optic neuritis as 

compared to healthy controls. This experiment showcases the utility of the development 

of these algorithms for increasing our understanding of underlying disease processes and 

morphological changes which have yet been inaccessible to researchers non-invasively.  

 We evaluate the long-term reproducibility of ON radius and various other eye orbital 

MRI morphological metrics. As these new tools are developed they must be validated 

for reproducibility. We have acquired a short- and long-term reproducibility data set 
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which is being released for standardized evaluation and comparison of new eye orbital 

analysis methods.    

 We apply these techniques to a large-scale retrospective clinical MRI population to 

evaluate structural-functional relationships and to detect latent features which may be 

crucial to visual function not yet being utilized in clinical MRI. We show that 

quantification of clinical quality structural MRI through automated analysis explains 

variance in visual function across subjects. This work showcases the benefits of 

developing algorithms useful in evaluating clinical imaging allowing for research into 

large amounts of clinical data.  

 We develop a framework for numerically optimizing qMT sampling to reduce scan 

times and improve clinical viability. MT has been clinically applicable but the extension 

to qMT has been hampered by long scan times. We utilize a simulation framework to 

optimize qMT sampling allowing for more clinically viable sequences to be developed.  

 

6.1. Previous Publications 

Many contributions of this dissertation have been previously published. A robust pipeline for 

segmentation of ON, eye globes and muscles on clinically acquired data is proposed [86]. A method for 

automatic measurement of the radius of the ON and surrounding CSF by fitting an intensity model [87]. 

An application of the previous two methods to healthy controls to develop a normative population useful 

for analyzing patient populations [88]. Short-term reproducibility analysis of ON measures [89]. Three-

dimensional consistency improvements to the ON radius estimation algorithm [90]. The application of the 

improved ON radius estimation tool to MS patients [91]. Chapter VIII is an extension of work co-

authored with a high-school student I helped mentor as first author showcasing structural-functional 

relationships from image segmentation metrics [92]. Lastly, the ON imaging reproducibility experiment 

and results [93].  
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Chapter II. Robust Optic Nerve Segmentation on Clinically Acquired CT 

 

1. Introduction 

The ability to model structural changes of the optic nerve (ON) throughout the progression of 

disease (e.g., inflammation, atrophy, axonal congestion) is significant to characterization of neuropathic 

diseases. Hence, accurate and robust segmentation of the ON has the capacity to play an important role in 

the study of biophysical etiology, progression, and recurrence of these diseases.  Considerable work has 

been done using manual segmentation techniques on computed tomography (CT) for investigating 

pathology. For example, Chan et al developed orbital soft tissue measures to assess and predict thyroid 

eye disease [94] and Weis et al described metrics to thyroid-related optic neuropathy [95]. Bijlsma et al 

highlighted quantitative extraocular muscle volumes as an essential target for objective assessment of 

therapeutic interventions [96]. Manual delineation of ON structures is time and resource consuming as 

well as susceptible to inter- and intra-rater variability. Automatic quantification of the location and 

volumetrics of the ON would allow for larger, more powerful studies and could increase sensitivity and 

specificity of pathological assessments compared to coarse, manual region of interest (ROI) approaches.  

Ideally, automated procedures would result in accurate and robust segmentation of the ON 

anatomy. However, current segmentation procedures often require manual intervention due to anatomical 

and imaging variability. Bekes et al [97] proposed a geometric model-based method for semi-automatic 

segmentation of the eye globes, lenses, optic nerves and optic chiasm in computed tomography (CT) 

images and reported quantitative sensitivity and specificity results from simultaneous truth and 

performance level estimation (STAPLE)[98] of approximately 77%. Qualitatively, this study reported a 

lack of consistency with the results they obtain for the nerves and chiasm. Noble and Dawant [99] 

proposed a tubular structure localization algorithm in which a statistical model and image registration are 

used to incorporate a priori local intensity and shape information. This study reported mean Dice 

similarity coefficient (DSC)[100] of 0.8 when compared to manual segmentations over ten test cases. 

Unfortunately, the success of automated techniques is often dependent upon the application, modality and 
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image quality.  

Atlas-based methods provide a model-free approach to segmentation, which use atlases (pairings 

of anatomical images with a corresponding label volume) to segment a target volume. Other efforts have 

developed a single-atlas approach targeting the ON for radiation therapy and reported a mean DSC of 0.4-

0.5 [101-103]. Multiple atlases significantly improve the accuracy compared to a single atlas [104, 105]. 

In a multi-atlas approach, multiple atlases (existing labeled datasets) are separately registered to the target 

image. Label fusion is used to resolve voxel-wise conflicts between the registered atlases. Although 

multi-atlas segmentation promises a robust and model-free approach to segment medical images from 

exemplar brain images, varied and limited success has been seen for segmentation of the ON with DSC 

ranging from 0.39 to 0.78 [101-103]. 

We explore the development of a more reliable multi-atlas technique for the segmentation of the 

ON, eye globe, and muscles on clinically acquired CT images. Our emphasis is on characterizing 

algorithms that function across a wide variety of clinically acquired images as opposed to less 

translational algorithmic innovations. This chapter is 

organized as follows. First, we evaluate three current 

non-rigid registration algorithms: (1) NiftyReg; (2) 

Automatic registration Toolbox (ART); (3) ANTS 

Symmetric Normalization (SyN) deformable 

registration algorithms. Second, we evaluate six label 

fusion algorithms: (1) majority Vote (MV); (2) 

STAPLE; (3) Spatial STAPLE (spSTAPLE); (4) 

Locally Weighted Vote (LWV); (5) Non-Local 

STAPLE (NLS); (6) Non-Local Spatial STAPLE 

(NLSS) and present implementation details of each 

algorithm. For each method, we present quantitative 

 

Figure II.1. Clinically acquired CT images 

are shown for four representative subjects 

(a-d). Note the variation in field of view 

and pose.   
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and qualitative performance characteristics. Finally, we evaluate the performance of the optimal pipeline 

on a large dataset to demonstrate its robustness. 

 

2. Methods 

 

2.1. Data Set 

CT imaging from 183 thyroid eye disease patients was collected for a total of 543 image volumes. 

Of the patients selected, 81% are females and 70% are Caucasian with ages ranging from 9-83 with an 

average age of 49. As part of a larger study of thyroid eye disease, CT scan volumes of these patients 

were clinically collected from 2003 to 2011 using a wide variety of settings and scanners from Philips, 

GE, Picker and Marconi. The dataset was anonymized during image retrieval from the radiology archives; 

detailed CT acquisition parameters are not available. An arbitrary subset of 30 scan volumes from 30 

distinct patients was selected to guide development and algorithm evaluation.  

On the selected scan volumes, “ground truth” segmentations were performed by experienced 

raters using the Medical Image analysis Processing And Visualization (MIPAV) software package 

(http://mipav.cit.nih.gov/)[106] for the full length of the left and the right optic nerves, eye globes and 

two pairs of extraocular muscles on all the subjects. A single rater labeled all CT scan volumes and a 

second rater labeled an overlapping subset of 15 scan volumes. Raters were graduate students in medical 

imaging who were trained by radiology faculty and supervised by ophthalmology faculty. Raters worked 

on Dell T3500 workstations with dual 22 inch high definition displays and Wacom Intuos tablet input 

devices. Boundary definitions for all structures were obtained according to the signal intensity differences 

in the images. The remaining scan volumes were used for evaluation of the final algorithm.  

http://mipav.cit.nih.gov/
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Clinically acquired CT data for the ON often varies in the target field-of-view (Figure I.1), 

ranging from whole head to more localized images of the orbit with slice thicknesses ranging from 0.4 to 

5 mm (Table II-1).  

 

Figure II.2. Flowchart of the ON robust registration and multi-atlas segmentation pipeline. The 

left (yellow) and right (red) ONs are enclosed within the two pairs of muscles, which connect to 

the eye globes. The left and right eye globes and muscles are seen in purple and green, 

respectively.    

Table II-1 Variability in slice thickness for the manually labeled subset of 30 subjects 

Slice thickness (mm) <=0.4 >0.4 & <=0.5 >0.5 & <=1.0 >1.0 & <=2.0 >2.0 & <=2.5 > 2.5 & <=3.0 >3.0 

Atlas images 2 8 1 4 12 2 1 

All images 3 97 86 101 153 60 43 

 



30 

 

 

 

Figure II.3. Quantitative results of the evaluation of non-rigid registration and label fusion 

algorithms in the ON and globe structure show that SyN diffeomorphic registration followed by 

NLSS label fusion is the most consistent performer across all 30 subjects.     
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2.2. Development Methods 

An outline of the proposed algorithm can be seen in Figure II.2. Briefly, we localize the ON using 

an affine registration of the bony structures to define a reduced field of view ROI around these structures. 

Multi-atlas segmentation is then performed on the reduced field of view image volumes using non-rigid 

registration and statistical label fusion.  

The first step in the multi-atlas pipeline is to identify the general region of the orbits from within 

any clinically acceptable fields of view. The bone structure for each image is identified using an 

experimentally determined threshold at the minimum intensity increased by 30% of the range of 

intensities. Pairwise affine registration is then performed between the bone thresholded images using the 

Aladin algorithm [107, 108] from the NiftyReg package.  

The labels are transformed to the target space using the aforementioned affine registrations. 

Propagated labels are then averaged over the number of atlases to obtain a probability image for each 

target. To estimate the approximate centroids of the ocular structures, voxels are identified as those where 

greater than 90% of the atlases contain ON labels. This set of voxels is then partitioned into 2 groups, the 

left and right ON regions, using k-means clustering. The centroids of these clusters are extended by 40 

mm, a field of view determined experimentally, in all 3 dimensions to obtain the ON ROI.  

Final registrations are computed by performing pairwise non-rigid registration deforming the 

cropped atlas to the cropped target. Note that for all registration steps, the target image (i.e., dataset to be 

labeled) was considered as fixed. Three non-rigid registration methods were evaluated: (1) NiftyReg with 

normalized mutual information and the bending energy used to construct the objective function; (2) ART 

[109] with default parameters; and (3) ANTS SyN deformable registration [110] with cross correlation 

similarity metric window of radius 2, a Gaussian regularizer with σ= 2, and max iterations of 30x99x11, 

3 resolution levels with max iteration of 30 at the coarse level, 99 at the middle level and 11 at the nest 

level, and step size 0.5 [111]. Atlas labels are transferred to the target coordinate space using the 

deformation fields and nearest neighbor interpolation. Finally, label fusion is used to generate the final 
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segmentation.  

The following label fusion algorithms were evaluated: (1) MV [104, 105, 112] with log-odds 

weighting [113]; (2) STAPLE [98]; (3) spSTAPLE [114]; (4) LWV [113] with a decay coefficient of 1 

voxel; MSD similarity metric for the target and atlas intensities; standard deviation of the assumed 

intensity distribution, 𝜎𝑖 = 0.5; (5) NLS [114]; (6) NLSS, an extension to the NLS framework, allows for 

the estimation of a smooth spatially varying performance level field. Parameters for all of the STAPLE 

 

Figure II.4. Quantitative results of the subject-wise volume measurements between manual and 

automatic segmentation.     

Table II-2 Parameter values used for variations of the STAPLE algorithm 

Algorithm  STAPLE Spatial Non-Local 

  Performance 

Parameter 

Initialization 

Decay 

Half-

window 

size 

(mm) 

Global 

bias 

Search 

neighborhood 

(mm) 

Patch 

neighborhood 

(mm) 

𝜎𝑖 

(mm) 

𝜎𝑑 

(mm) 

STAPLE  0.95 0.5 - - - - - - 

SpSTAPLE  0.95 0.5 3x3x3 0.25 - - - - 

NLS  0.95 0.5 - - 2x2x2 1x1x1 0.5 1.5 

NLSS  0.95 0.5 3x3x3 0.25 2x2x2 1x1x1 0.5 1.5 
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algorithm variations are shown in Table II-2.  

Algorithm comparison was done using leave-one-out cross-validation, which generated 29 label 

volumes for each target image. The 29 propagated labels were then fused to obtain the segmentation for 

each structure. Quantitative accuracy was assessed using the DSC [100], Hausdorff distance (HD) [115], 

and mean surface distance (MSD). The HD metrics were computed symmetrically in terms of distance 

from the expert labels to the estimated segmentations and vice versa. All the fusion algorithm 

implementations are available in the Java Image Science Toolkit (JIST)[116, 117].  

 

2.3. Evaluation Methods 

The complete thyroid eye disease dataset was loaded into an institutional eXtensible 

Neuroimaging Toolkit (XNAT) archive [118] and the leading algorithm was executed fully automatically 

using all 30 manually labeled scan volumes as atlases. Following Figure II.2, each of the 30 manually 

labeled datasets was registered (warped) to match the unlabeled target image; statistical fusion was used 

to combine the registered labeled datasets from the atlas subject to form a label estimate for each target 

image.  Out of the total 543 scan volumes there were 12 high-resolution scan volumes (0.3x0.3x0.4 mm) 

with large ON field of view, which were excluded from consideration due to technical constraints, such as 

cluster memory and wall-time settings. From the remaining 531 scan volumes, 30 were used for training 

and algorithm development and were therefore excluded from algorithm evaluation. In total, the 

algorithm is evaluated on 501 scan volumes. Note that all labeling was performed on 3-D volumes.  

The volumes of the automatic segmentations were calculated for the ON and the eye globe 

structure to identify outliers. To isolate the outliers we plot the label volumes of the 501 automatically 

segmented volumes and the 30 manually segmented volumes against the slice thickness, which serves as a 

proxy for image quality.  

To further evaluate the accuracy of the results, we performed principal component analysis 

(PCA)[119] on the images. All 501 test scan volumes and the 30 manually labeled atlases were affine 

registered to a common quality analysis space (one of the initial scan volumes) for comparison. Using the 
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centroid of these labels, all the images were cropped around the ON ROI. PCA was then performed using 

two approaches. First, PCA was performed on the central two slices of the registered intensity images 

(i.e., where the ON was present) and the first several modes were visually investigated. Second, the label 

sets on the registered images were transformed into level sets via Euclidean distance transform on two 

central slices and PCA was performed on the slice-wise level sets. Finally, all automatic segmentations 

were manually examined to identify any other segmentation failures.  

 

3. Results 

 

 

Figure II.5. Qualitative results for the optimal multi-atlas segmentation approach for 7 subjects 

are shown. For a typical subject, the top rows compare manual and automatic results for a 

representative 2D slice. The bottom rows show point-wise surface distance error of the label 

fusion estimate for the ONs and the eye globe structure. The proposed multi-atlas pipeline results 

are reasonable accurate segmentations. However, slight over segmentations of the ON can be 

observed in certain cases (subjects 4 and 7) supporting the results in the volumetry section 

(Figure II.4).   
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3.1. Development Results 

The accuracy of various permutations of registration methods followed by label fusion algorithms 

was evaluated using leave-one-out approach over the 30 ground truth images. Quantitative results of this 

comparison are presented in Figure II.3 for the three different structures considered (ON, globes, and 

muscle). SyN ANTS registration followed by NLSS label fusion provided the most consistent results with 

a median DSC of 0.77 for the ON. Complete results of DSC, HD and MSD can be seen in Table II-3. 

Detailed statistics characterizing all of the approaches are summarized in Table II-5.  The optimal 

combination of registration and label fusion (ANTs SyN + NLSS) can be clearly seen to outperform all 

other combinations in the last column of Table II-5. The ONs were segmented with approximately ±20% 

accuracy by volume whereas the globes and muscles were more stable with ±12.5% accuracy by volume 

 

Figure II.6. Scatter plots of the automatic segmentation volumes for ONs and the eye globe 

structure and label volumes plotted against the slice thickness.      

Table II-3 Performance statistics of NLSS fusion and SyN diffeomorphic ANTs registration 

Region DSC MSD HD 

 Mean Median Range Mean Median Range Mean Median Range 

ON 0.74 0.77 0.41 0.64 0.55 2.03 3.75 3.33 6.86 

Globes/muscle 0.84 0.86 0.19 0.62 0.58 0.78 5.27 5.04 4.74 
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(Figure II.4 and Figure II.5). There was a slight tendency for over-segmentation, as noted by the positive 

bias in nerve volumes and visibly larger nerve boundaries compared to the manual segmentations in 

Figure II.4. 

 

3.2. Inter-rater Reproducibility 

A subset of 15 images with similar variability in slice thicknesses as in the original dataset was 

selected from the manually labeled atlas, for assessing inter-rater reproducibility. Each of these scan 

volumes was labeled by a second experienced rater and the segmentations were compared using DSC, 

HD, MSD, and relative volume difference. Results can be seen in Table II-4.  

 

3.3. Evaluation Results 

The segmentations are evaluated by examining label volumes to identify outliers. Segmentations 

whose volumes are not similar to that of the rest of the segmentations and that of the manual atlases are 

likely to be outliers (extreme values) on the volume measurements and PCA maps. Figure II.6 shows 

failures as a function of ON volume and eye globe and muscle volume. Note that the algorithm was 

successful for the majority of scan volumes and failures have a tendency to occur at the extremes.  

Results from the first PCA analysis, using intensity images, can be seen in Figure II.7a. Results 

 

Figure II.7. Principal component analysis after registration to a common space on the intensity 

values and left and right ON labels.      
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from the second PCA analysis, using registered labels, can be seen in Figure II.7b and Figure II.7c for the 

left and right ON labels respectively. Failures, cases in which the segmentation produced undesirable 

results, are marked in green. Both methods of performing PCA clustered failures as outliers. PCA on the 

label level sets distinguished more outliers. Note that one of the scan volumes of the initial 30 atlases with 

>5 mm slice thickness was poorly registered and appeared as an outlier; however, this image resulted in a 

reasonable segmentation.  

All automatic segmentations were manually examined to identify 33 failed segmentations; these 

failures were also apparent as outliers in the PCA analyses. Two subjects with tumors in the ON region 

resulted in over-segmentation in 17 of the 33 failure scans. Note that the 183 patients were retrieved by 

ICD code. The graduate student raters manually reviewed each of the automatically labeled datasets to 

determine if the algorithm resulted in catastrophic failures.  For the failure cases, we reviewed the images 

with an ophthalmologist to identify the characteristics of the images that led to the failures. Failures could 

be grouped in one of four ways: (1) Two subjects with tumors in the ON region resulted in over-

segmentation in 17 of the 33 failure scan volumes (Figure II.8a); (2) The ROI cropping failed in 2 of the 

33 failures due to extreme rotation of the image during acquisition, as our cropping direction was only 

along the horizontal and vertical axes (Figure II.8b); (3) Scan volumes with excessively large field of 

view (included the abdomen/pelvis, 12 of the 33 scan volumes) were not properly affine registered to the 

atlases resulting in incorrect segmentations (Figure II.8c); (4) 2 of the 33 failed datasets were found to be 

Table II-4 Inter-rater reliability in terms of DSC, symmetric HD, symmetric MSD and relative 

volume difference metrics evaluated on 15 datasets with similar variability as in the original 

dataset 

Region DSC HD (mm) MSD (mm) 

Relative Volume 

Difference 

ON 0.73±0.042 2.90±0.485 0.49±0.107 0.27±0.205 

Globes/muscle 0.85±0.027 4.94±0.613 0.54±0.151 0.11±0.067 
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missing the ON in the acquired field of view (Figure II.8d).  

 

4. Discussion 

The proposed multi-atlas segmentation pipeline provides consistent and accurate segmentations 

of the ON structure despite variable field of view and slice thickness encountered in clinically acquired 

data. Segmentation error is comparable to the inter-rater difference observed when different human raters 

manually label the structures. Human raters achieved a reliability DSC of 0.73 versus 0.77 for ANTS SyN 

and NLSS. Note that the proposed approach is similar to the best-reported performance of other ON 

segmentation algorithms on CT (with DSC ranging from 0.39 to 0.788). The primary advantage of this 

work is the focus on evaluation in the context of a large, retrospective clinical records study in which data 

acquisition was not standardized. Methods targeting “wild type” data are becoming increasingly 

important as imaging science seeks to leverage large archives of clinically available data that are 

individually acquired with standard of care, but have substantive variations in scanner hardware, 

acquisition configuration, and data reconstruction. This work builds upon previous algorithms by showing 

that the robust registration framework is able to consistently handle the high variability of clinical data 

 

Figure II.8. The 33 outlier scan volumes identified were either due to the presence of a tumor (a), 

missing ON slices (b), ROI cropping failure in case of extreme rotation of the image during 

acquisition (c), or excess field of view (including abdominal organs)(d).      
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acquisition scope in terms of both field-of-view and voxel resolution. The “wild-type” success rate was 

93.4% (468 of 501). None of the failure cases are especially worrying as the extremes of field of view 

(very large and missing the ON) and presence of orbital tumors were beyond the design criteria. The 

proposed approach could be used to provide analysis context (i.e., navigation), volumetric assessment or 

enable regional nerve characterization (i.e., localize changes).  

There are opportunities for further algorithm refinements using the recent advances in 

segmentation post-processing such as incorporation of shape priors in the label fusion estimation 

framework, intensity-based refinement [120], or learning based correction of mislabeled voxels [121]. 

Other areas that could be improved include increasing algorithm robustness to reduce the number of 

failures, including a segmentation of the optic chiasm (which is of interest in many applications) and 

simplifying the pipeline to reduce computation time.  
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Table II-5 Statistical assessment of the performance of various registration and label fusion 

algorithms. Significance was assessed by two-sided Wilcoxen Signed Rank Test. Upper quadrant 

shows DSC. Lower quadrant shows Hausdorff distance for the Optic Nerve.  

Blue * symbols show column > row (* p<0.05, ** p<0.01). Green + symbols  show row > column. + 

p<0.05, ++ p<0.01). 
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ANTS_MV ** **  ++ ++ ++ ++ ++ ++ ++ ++ ** + ++ ++    

NR_STAPLE ++ ++ ++  ++ ** ** ** ** ** ** ** ** ** ** ** ** ** 

ART_STAPLE ++ ++ ++   ** ** ** ** ** ** ** ** ** ** ** ** ** 

ANTS_STAPLE ++ ++ ++ ** **  ** ** ** ** * ** ** ** ** ** ** ** 

NR_SPSTAPLE +  ++ ** ** **   ** **  ** ** * ** ** ** ** 

ART_SPSTAPLE   ++ ** ** **   ** *  ** ** ** ** ** ** ** 

ANTS_SPSTAPLE  *  ** ** ** ** **   ++ **  + +   ** 

NR_LWV   ++ ** ** **   **  * **    ** ** ** 

ART_LWV  * ++ ** ** **      ** *  * ** ** ** 

ANTS_LWV  *  ** ** ** * *  ** *  ++ ++ ++    

NR_NLS ++  ++ ** ** **   ++   +    ** ** ** 

ART_NLS  + ++ ** ** *  + ++  ++ ++    ** ** ** 

ANTS_NLS   ++ ** ** **   ++   +  *  * ** ** 

NR_NLSS   + ** ** ** **   *   ** *     

ART_NLSS  ** + ** ** ** ** *  * *  ** **    * 

ANTS_NLSS * **  ** ** ** ** **  ** **  ** ** ** * *  
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Chapter III. Disambiguating the Optic Nerve and CSF Sheath 

 

1. Introduction 

Optic neuritis, from demyelination, is a sudden inflammation of the optic nerve (ON) and is 

marked by pain upon eye movement, and visual symptoms such as a decrease in visual acuity, color 

vision, contrast and visual field defects [122]. Demyelinating optic neuritis is closely linked with multiple 

sclerosis (MS) and many patients who present with optic neuritis will develop MS within 15 years [1]. 

The optic nerve treatment trial showed that the majority of patients, but not all, recover vision after an 

episode of unilateral optic neuritis [1].  Despite this, there is no current radiological biomarker of the ON 

that is well suited to predicting the visual outcome or even the eventual development of MS or can 

adequately characterize tissue evolution (axonal loss, atrophy) after an event of optic neuritis. 

Furthermore, therapeutic interventions can potentially help preserve and/or restore visual function if 

administered before ON axons are lost, i.e., during the ‘neuroplasticity’ window [4, 123, 124]. It would be 

beneficial to understand the relationship between ON damage and diseases of the central nervous system, 

such as MS. However, characterization along the length of the ON still remains challenging. Visually, 

high-resolution MRI methods have been developed to provide an appreciation of the ON in health (Figure 

II.2A) and in disease (Figure II.2B).  The zoomed, coronal reformatted images in Figure II.2 also show 

that in patients with remote optic neuritis (Figure II.2B inset), tissue atrophy is noted compared to the 

healthy nerve (Figure II.2A inset).  However, quantification of the degree of atrophy and even the 

distribution of expected, normal and healthy optic nerve sizes has not been well characterized.  Therefore, 

the goal of this work is to develop an automated tool to measure the size of the ON and the surrounding 

cerebrospinal fluid (CSF) independently for estimating normal population variation and comparison 

among patient populations.  
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Optical computed tomography (OCT) is an important biomarker for visual pathologies; yet, OCT 

only captures the retinal nerve fiber layer at the back of the retina [125]. In fact, from OCT we understand 

the magnitude of axonal loss in optic neuritis [126] and the relationship with visual loss [127, 128]. We 

further hypothesize that gaining information about ON damage along the entire length of the nerve will 

give insight to “normal” areas of the nerve, and areas that are either at risk or already undergoing atrophy. 

Thus, 3D imaging techniques may offer a better platform for understanding disease pathology along the 

length of the ON but high-resolution imaging of the entire ON is challenging due to the small size and 

propensity for artifacts that arise from eye movement and orbital fat. Thus, data derived from MR and CT 

are largely used to identify lesions qualitatively (i.e., absence or presence enhancement) or marked with 

limited quantitative measures (i.e., single-slice cross-sectional area).  

Manual segmentation with “computer assistance” has been, and remains, the de facto standard 

process to quantitatively characterize the ON using MRI. Hickman et al. used contouring to identify ON 

cross-sections in a longitudinal analysis and revealed patterns consistent with acute inflammation 

followed by long-term atrophy [51, 52]. Combined conventional and magnetization transfer (MT) 

imaging studies using manual contouring of the ON volume have shown that ON degeneration is 

associated with persistent functional deficits [129]. These studies have focused on ROIs consisting of the 

 

Figure III.1. An example of a healthy nerve (A) and an atrophied nerve (B) from the multi-atlas 

segmentation atlas subjects. In the coronal view, ON atrophy is apparent. Quantification of these 

structural difference is the target of the presented algorithm. 
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whole ON rather than capturing the cross-sectional variation along the entire tract. Shen et al. suggest 

limiting consideration to a single ON cross-section to limit resource requirements [130]. Meanwhile, 

work toward automating segmentation of the ON has developed in the context of radiation therapy using 

CT. Early “atlas–based” techniques [131, 132] were mildly successful for segmenting the ON [100]. To 

improve sensitivity and specificity, Bekes et al. [133] proposed a geometric method for semi-automatic 

ON segmentation, but indicated qualitative disagreements with expertly drawn labels. MRI has recently 

provided images whereby estimates of the ON and the surrounding CSF using manual observers have 

been accurate [134]; we seek to automate this process. Recent efforts have also attempted to automatically 

segment the ON in MRI but did not isolate the nerve from the surrounding CSF or study the application in 

patients with expected ON atrophy [135]. Recently, we have proposed multi-atlas segmentation pipelines 

for both CT [136] and MRI[137]. The surrounding CSF is not differentiable from the nerve on CT, which 

is why we choose to focus this effort on high-resolution MRI, which when using a heavily T2-weighted, 

fat-saturated acquisition can visualize the dark optic nerve and surrounding CSF clearly (Figure II.2). We 

therefore, optimize and evaluate an MRI imaging sequence to optimize ON-CSF contrast and propose an 

analysis pipeline that 1) segments both the ON and CSF sheath together from the surrounding tissue, and 

2) separates the nerve and CSF into two classes using intensity value information couched in a novel 

model of ON architecture. Importantly, this model takes into account the orientation of the optic nerve 

which may be oblique to the actual imaging plane. 

 

2. Imaging 

 

2.1. Sequence Design 

We developed and optimized a high-resolution 3-D isotropic turbo spin echo (TSE) with 

asymmetric k-space sampling (VISTA) with parameters empirically optimized for ON-CSF contrast. This 

sequence addresses the size of the ON by having sufficiently high resolution in all three planes (≤0.6mm 

isotropic) and allows for accurate characterization of the ON and CSF. The use of a TSE sequence is 
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inherently to B0 inhomogeneities due to magnetic susceptibility caused by the bone-air interface of the 

maxillary sinuses, while asymmetrically sampling k-space blurs any ON motion across k-space. The 

result is a sequence which accurately captures variations in the hostile imaging environment of the ON. 

This sequence is also optimized for CSF-ON contrast as well as CSF-Fat contrast. We use a SPIR fat 

suppression technique to minimize fat signal and maximize CSF-Fat contrast. We utilize an extended 

echo train which leads to a long effective TE and provides good signal in the CSF while suppressing 

signal within the ON and any remaining fat signal, such as olefinic fat, that has not already been 

suppressed with the SPIR.  

 

2.2. Validation 

To validate the proposed imaging sequence we compare the contrast-to-noise ratio (CNR) of our 

proposed VISTA sequence and current clinical standard of care for contrast between both ON-CSF and 

CSF-Fat. We show that our proposed sequence is far superior at achieving ON-CSF contrast to the current 

clinical standard of care while achieving 11 fold higher resolution.  

2.2.1. Data Acquisition 

Ten healthy subjects age 24 to 36 years (average: 28.25, median: 27 years, 6 male/4 female) were 

 

Figure III.2. Comparison of the clinical standard of care (A) T1W image, (B) T2W image and (C) 

our proposed high-resolution sequence for a single subject. Note that the resolution of the clinical 

standard of care yields one slice containing the ON, which is shown, while a medial slice was 

chosen for our proposed method (C) 
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enrolled in the imaging study. Imaging was acquired on a 3T Philips Achieva (Philips Medical Systems, 

Best, The Netherlands) with a 2-channel body coil for transmission and an 8 channel head coil for 

reception for all sequences. After tri-planar localization, we acquired the all volumes in the axial plane. 

The VISTA sequence parameters were: 3D TSE TR = 4000ms, TE = 455ms, α = 90°, FOV= 180 x 180 x 

20mm3, acquired resolution = 0.55 x 0.55 x 0.55mm3, reconstructed resolution = 0.35 x 0.35 x 0.35mm3, 

SENSE factor = 2, fat saturation = SPIR, NSA=2 and total scan time = 7:48. For comparison a clinical 

standard of care T1-weighted (T1W) image was also acquired with parameters: SE TR=400ms, 

TE=12ms, α = 90°, FOV= 180 x 180 x 33mm3, acquired resolution = 0.70 x 0.88 x 3.0mm3, reconstructed 

resolution = 0.42 x 0.42 x 3.0mm3, and total scan time = 3:20. A clinical standard of care T2-weighted 

(T2W) image was also acquired with parameters: TSE TR=3000ms, TE=80ms, α = 90°, FOV= 180 x 180 

x 33mm3, acquired resolution = 0.70 x 0.88 x 3.0mm3, reconstructed resolution = 0.42 x 0.42 x 3.0mm3, 

fat suppression=SPIR and total scan time = 2:48. Subjects were scanned with a baseline scan and again 

within 30 days of the original scan for short-term reproducibility. Inter-scan time was from 4 to 29 days 

(average: 19.4 days, median: 23 days). Figure III.2 shows the clinical standard of care T1W image (A), 

T2W image (B) and our optimized imaging method (C). Note the increased contrast between the CSF and 

ON in our optimized imaging as compared to the standard of care T2W image. The T1W image shows no 

contrast between CSF and ON, only the ON-Fat boundary is visible.  

2.2.2. Data Analysis 

To quantitatively compare the three sequences, contrast-to-noise ratio (CNR) was investigated for 

each of the three sequences for CSF-ON contrast and CSF-Fat contrast. Note that since the CSF-ON 

boundary is not visible on the T1W images (Figure III.1A), this comparison was only made for the 

clinical T2W sequence and our VISTA sequence. CNR is defined as: 

𝐶𝑁𝑅 =  
|𝑆𝑎 − 𝑆𝑏|

𝜎
 (III.1) 
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where 𝑆𝑎  is the mean the signal from tissue 𝑎, 𝑆𝑏 is the mean signal from tissue 𝑏 and 𝜎 is the image 

noise. Regions of interest (ROIs) were drawn on each scan (T1W, T2W and VISTA) for each of the 10 

subjects for both the baseline and short term follow up scans. An ROI was drawn in a homogenous area of 

white matter in the temporal lobe, and the standard deviation of intensity values within this ROI was 

taken as an estimate of image noise (𝜎). ROIs were then drawn such that they encompassed as many pure 

voxels of each of ON, CSF and orbital fat from a medial ON slice. The mean voxel intensity of each of 

these ROIs was then taken as the mean signal from that tissue.  

2.2.3. Results 

Figure III.3 shows the results of the CNR analysis for the CSF-Fat contrast (left) and the ON-CSF 

contrast (right). We can see that the T1W sequence has significantly higher CNR for the CSF-Fat 

boundary than the T2W or VISTA sequences (Wilcoxon rank-sum test; p<0.01). The T2W and VISTA 

both have similar but sufficient CNR to distinguish CSF and orbital fat, due to the SPIR fat suppression. 

The ON-CSF boundary is indistinguishable in the T1W imaging and is therefore excluded from 

 

Figure III.3. Contrast-to-noise ratio (CNR) comparison for contrast between CSF-Fat (left) and 

ON-CSF (right) for the clinical standard of care T1W, T2W and the optimized VISTA sequence. 

** indicates the results are significantly different by Wilcoxon rank-sum test at p<0.01. 



47 

 

comparison. The VISTA sequence has significantly superior CNR to the clinical T2W sequence 

(Wilcoxon rank-sum test; p<0.01). The Rose criterion states that if the CNR is below 3-5, two structures 

become difficult to distinguish [138]. These results suggest the ON-CSF contrast is often difficult to 

distinguish on clinical T2W while the proposed VISTA CNR is well above this criterion.   

2.2.4. Discussion 

We have demonstrated the superiority of our proposed VISTA sequence in characterizing the ON 

and in generating contrast between ON and CSF. This sequence has ON-CSF CNR that is consistently 

above the Rose criterion and therefore more consistent in accurately visualizing the ON as compared to a 

current clinical standard of care with 11.1 fold higher volumetric resolution than the clinical sequence. 

This high contrast in conjunction with the isotropic high resolution of this sequence allows for 

characterization of the size and shape of the ON along the length of the ON, which was previously not 

possible. The improved imaging facilitates automated processing and algorithm development.  

 

3. Analysis 

 

3.1. MRI Acquisition and Summary of Analysis Approach 

All MRI studies were performed with approval of the Vanderbilt Institutional Review Board and 

 

Figure III.4. The proposed algorithm for ON radii extraction. Multi-Atlas segmentation is used to 

locate the ON and sheath as a single labeled object. Using this result, we use the fact that the data 

are acquired isotropically to switch to a coronal plane where the proposed model is fit. The 

parameters are found through this model fitting, and then fed into a nonlinear regression tree to 

extract the underlying radii. 
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signed informed consent was obtained prior to data acquisition.  Six healthy volunteers and 6 patients 

with multiple sclerosis concomitant with a noted clinical history of at least unilateral optic neuritis were 

enrolled in the study.  Anatomical T2-weighted VISTA scans were obtained on a 3T Philips Achieva 

(Philips Medical Systems, Best, The Netherlands) using a 2 channel body coil for transmission and an 8 

channel head coil for reception.  After tri-planar localization, we acquired the T2-weighted volume in the 

axial plane.  The VISTA sequence parameters were:  3D FSE (TR/TE/ = 4000ms/404ms/90°), FOV= 

180 x 180 x 42mm3, nominal resolution = 0.6 x 0.6 x 0.6mm3, SENSE factor = 2, fat saturation = SPIR, 

and total scan time = 5:20.  It should be noted that the TE is long due to the nature of the asymmetrically 

sampled k-space pattern of the VISTA (SPACE on Siemens, and CUBE on GE) acquisition but does 

provide excellent tissue:CSF contrast.  We reformatted the data into the coronal plane and propose a 

model to fit the ON and surrounding CSF in the reformatted plane. The model is initialized using the 

 

Figure III.5. Some examples of the model used to generate synthetic images. (A) shows a 

rendering of the model and how the imaging plane crosses the tubular structure creating an 

elliptical structure in the image. (B) illustrates an example synthetic image with no noise added 

and slight off axis rotation. (C) presents an example synthetic image which is on axis (with Rician 

noise). 
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result of a previously described multi-atlas segmentation protocol [137]. We then fit the model to the ON 

using a conjugate gradient descent non-convex optimization method. A graphic outline of our proposed 

pipeline can be seen in Figure III.4.  

 

3.2. Proposed Model 

To first approximation, the ON can be thought of as a cylinder (~2-4 mm diameter) inside a 

cylindrical sheath (~3-6 mm diameter), which is imaged at an oblique angle. On T2-weighted MRI, CSF 

is brighter than nerve tissue such that the outer cylinder is white and the inner cylinder dark. Even using 

high-resolution methods as those proposed here with isotropic resolution ~0.6 mm, there are only a 

handful of voxels that span the ON (4-7) which are significantly partial volumed such that the resulting 

images appear to be blurred elliptical annuli (Figure III.5).   

We propose a difference of two Gaussians model to fit the intensity values of the ON and CSF 

sheath in the coronal plane. 

 𝐼(𝑥, 𝑦) =  𝐼0[𝑁(𝜇, Σ𝑥𝑦) − 𝑒𝛽 𝑁(𝜇, σ2Σ𝑥𝑦)] 
(III.2) 

where 𝑁(𝜇, Σ𝑥𝑦) is a bivariate normal distribution with mean vector 𝜇 = [𝜇𝑥 𝜇𝑦] and covariance matrix 

Σ𝑥𝑦:  

 𝑁(𝜇, 𝛴𝑥𝑦)   =   
1

2𝜋|Σ𝑥𝑦|
exp [−

1

2
(𝑋 − 𝜇)𝑇Σ𝑥𝑦

−1(𝑋 − 𝜇)]  (III.3) 

 

𝐼0 is an intensity scaling factor, 𝑒𝛽  is a scaling factor to control the relative height of the inner Gaussian. 

Formulating the scaling factor as an exponential constrains the scaling term from becoming negative and 

forces the model to be a sum of Gaussians (rather than a difference) during optimization. σ2 scales the 

covariance matrix to change the relative width of the inner Gaussian. The covariance matrix is comprised 

of the following components:  
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 Σ𝑥𝑦 = [
𝜎𝑥 𝜎𝑥𝜎𝑦 (

2

1 + 𝑒−𝜌
− 1)

𝜎𝑥𝜎𝑦 (
2

1 + 𝑒−𝜌
− 1) 𝜎𝑦

] 
(III.4) 

𝜎𝑥 and 𝜎𝑦  control the width of the model in the x and y direction respectively. 2/(1 + 𝑒−𝜌) − 1 is a 

correlation term which allows for ellipticity in the model. This is necessary due to the fact that the ON is 

not always perpendicular to the imaging plane and thus appears elliptical (Figure III.5A) and heavily 

partial volumed (Figure III.5B) compared to the true coronal (Figure III.5C). This term is formulated as a 

sigmoid function such that the correlation is constrained in the range (-1,1), which improves stability 

during optimization.  

In summary, the complete model is composed of eight terms: 𝛩 =  [σ𝑥, σ𝑦, σ2, 𝐼0, 𝜇𝑥 , 𝜇𝑦, 𝛽, 𝜌]. 

Model error is defined as the sum of squared error between the model and the observed image in Equation 

(III.5). Equation (III.6) is the derivative of the sum of squared error with respect to the set of parameters 

𝛩.  

 ε =  ∑(𝐼(𝑥, 𝑦) − 𝐼(𝑥, 𝑦))
2
 

(III.5) 

 
𝛿𝜀

𝛿𝛩
= 2∑(𝐼(𝑥, 𝑦) − Î(𝑥, 𝑦))  

−𝜕Î

𝜕𝛩
𝑥𝑦

 
(III.6) 

For clarity, the partial derivatives for each parameter are shown in equations (III.7) through (III.12) and 

can then be used in Equation (III.6). The derivatives for σ𝑦  and 𝜇𝑦  are omitted as they are a direct 

substitutions into equations (III.7) and (III.10), respectively. 

 
𝜕Î

𝜕𝜎𝑥
= −Î(𝑥, 𝑦)

[
 
 
 
 
1

𝜎𝑥
+

(𝑥 − 𝜇𝑥)
2

𝜎𝑥
3 +

𝜌(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)

𝜎𝑥
2𝜎𝑦

(1 − 𝜌)

]
 
 
 
 

 
(III.7) 

 
𝜕Î

𝜕𝜎2
=

−𝑁2

𝜎2
[2 +

(𝑋 − 𝜇)𝑇Σ𝑥𝑦
−1(𝑋 − 𝜇)

(1 − 𝜌)
] 

(III.8) 

 
𝜕Î

𝜕𝐼0
=

Î(𝑥, 𝑦)

𝐼0
= 𝑁(𝜇, Σ𝑥𝑦) − 𝑒𝛽 𝑁(𝜇, σ2Σ𝑥𝑦) 

(III.9) 
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𝜕Î

𝜕𝜇𝑥
=

−Î(𝑥, 𝑦)

(1 − 𝜌)
[
𝜌(𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
−

(𝑥 − 𝜇𝑥)

𝜎𝑥
2 ] 

(III.10) 

 
𝜕Î

𝜕𝛽
= −𝐼0𝑒

𝛽𝑁(𝜇, σ2Σ𝑥𝑦) 
(III.11) 

𝜕Î

𝜕𝜌
=  −Î(𝑥, 𝑦) [

𝜌

1 − 𝜌2]

− [
(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)

𝜌𝜎𝑥𝜎𝑦

− 2𝜌(𝑋 − 𝜇)𝑇Σ𝑥𝑦
−1(𝑋 − 𝜇)]𝑁(𝜇, Σ𝑥𝑦) 

+ 𝛽 [
(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)

𝜌𝜎𝑥𝜎𝑦𝜎2
2 − 2𝜌(𝑋 − 𝜇)𝑇σ2Σ𝑥𝑦

−1(𝑋

− 𝜇)]𝑁(𝜇, σ2Σ𝑥𝑦) 

(III.12) 

 

 

3.3. Initialization 

The center of the model is initialized at the centroid of the multi-atlas segmentation labels in the 

coronal plane. To initialize σ𝑥 and σ𝑦, profiles are taken superiorly and inferiorly across the image and 

two local peaks around the center of the ON labels are identified and used to estimate the spread in x and 

y as half the distance between the two peaks. If this fails, both parameters default to an initialization of 2. 

𝜌 is initialized by similarly finding intensity peaks along the two diagonals and measuring the width 

between the two peaks along each diagonal. 𝜌 is then initialized as the difference between these two 

distances. We initialize σ2 to the experimentally found value of 0.6. 𝛽 is initialized such that the scaling 

term 𝑒𝛽 = 0.5. Finally 𝐼0 is found such that the maximum value of the model is equal to the maximum 

value of the input image.  
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3.4. Optimization 

For every coronal slice that contained ON labels from the initial multi-atlas segmentation, the 

difference of  Gaussian model is fit using an iterative conjugate gradient descent [81]. The input to the 

conjugate gradient descent algorithm is a patch which is 9x9 mm (15x15 voxels) centered at the centroid 

of the multi-atlas label. The non-linear optimization routine is a custom implementation in MATLAB 

R2013a (The MathWorks, Inc., Natick, MA, USA). Specific implementation details follow: 

The patch is first normalized to the range (0,1). The gradient of the cost function is computed and 

its negative is used as the initial descent direction. The descent step size is found using a line search 

(iterative bracket search using cubic interpolation and bisection every fifth iteration). The line search is 

run for a total of 25 iterations. The step is taken and the conjugate direction is then chosen as the descent 

direction. Every eight iterations (because there are eight input parameters) the descent direction is reset to 

the negative gradient direction. Also, if the chosen direction is found to be an ascent direction, the 

direction is reset to the negative gradient. Convergence criteria: the magnitude of the gradient is less than 

10-6; the change in the cost function is less than 10-12 between iterations. (Note that small gradients and 

non-decreasing function values indicate proximity to function extrema.) Divergence criteria: algorithm 

exceeds 70 iterations; function values become increasing or undefined. If a divergence criteria is reached 

the algorithm is restarted (only once) using the last iteration as the initialization of the second attempt. 

This resets the search direction to the gradient descent direction, which can allow the optimization to 

bypass local minima. 

 

3.5. Calibration 

Synthetic data was generated to calibrate model parameters to the radius of the ON and 

surrounding CSF in physical space.  A model of two concentric tubes was constructed (Figure III.5) and a 

Monte Carlo simulation is used to simulate partial volume effects. The test images simulate 0.6 mm 

isotropic voxels, which cover an area 30 mm by 30 mm (50x50 voxels). The model is rotated 

independently along x and y ranging from zero to 60 degrees rotation in 7.5 degree steps. The inner radius 
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is varied from 0.4 mm to 3 mm in 0.1 mm steps and the outer radius varies from 0.5 mm to 4 mm in 0.1 

mm steps. The CSF thickness is constrained to be at least 0.20 mm. Twenty five levels of Rician noise 

[139] were simulated which were experimentally determined to be visually similar to those observed in 

ON images we have acquired. These combinations produced a training set of 1,250,964 images. Six 

model parameters [σ𝑥, σ𝑦, σ2, 𝐼0, 𝛽, 𝜌] are correlated to surrounding CSF and ON radius measurements 

through a random forest regression [85]. The centroids are omitted as they are assumed to depend on field 

of view placement only.  

 

3.6. Validation 

To validate that the results obtained from the automatic segmentation match manual 

measurements, we acquired a higher resolution scan of a healthy control. We acquired a short-inversion 

time inversion recovery (STIR) scan with TR/TI/TE = 5000ms/200ms/33ms and 2 signal averages at 0.5 

x 0.5mm2 with 2 mm slice thickness. The image was reconstructed at 0.15 x 0.15 mm2 for the 

measurements. This image was then down sampled to 0.6 mm isotropic and smoothed with a 5x5 voxel 

 

Figure III.6. Calibration results for the random forest regression for the inner and outer radii 

from one fold of a tenfold cross validation on the 1.2 million synthetic images. The color scale 

represents data density calculated within a circle of radius 0.1. A five element 2-D moving 

window median filter was applied for smoothing. The isocontours show lines of constant data 

density.  Note that data density is higher near the lower end for the inner radius and at the higher 

end for the outer radius, this is due to the width constraint on the synthetic images. 
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Gaussian filter with standard deviation of 0.25 voxels. Our algorithm is then applied to the down sampled 

version to obtain an automatic measurement which can be compared to manual measurements made on 

the higher resolution scans.  

 

3.7. Clinical Application 

A small pilot study was conducted to evaluate the viability of this tool in differentiating diseased 

and healthy ONs. Six controls were chosen at random from a population of 47 and six patients with MS 

who have a concomitant clinical history of at least one unilateral optic neuritis event.  We chose the MS 

patients who demonstrated poorest visual performance as determined by the adjusted 1.25% binocular 

contrast visual acuity. These patients were chosen from a pool of 32 MS patients. Each patient and control 

data set was acquired as in the methods. Using the outlined analysis approach and relying on multi-atlas 

segmentation for initialization [137] to locate the centroids of the ONs in the coronal plane and determine 

whether or not a slice contained ON tissue, we calculated the ON radii at every coronal slice. The slice-

wise measurements were interpolated to be the same length as the longest observed ON. The nature of the 

ONs allows for them to be present in a different number of slices from volume to volume. Interpolation 

more closely aligns corresponding parts of the ON across subjects. A three-element moving window 

median filter is also applied across slices to reduce noise in the measurements.  

 

4. Results 

 

4.1. Calibration 

Synthetic data was utilized to calibrate the model parameters of the radii of two concentric tubes 

using Monte Carlo simulation to examine the impact of partial volume effects. Tenfold cross validation 

was performed on a random forest regression using fifteen trees. Fifteen was found experimentally to be 

the point of diminishing returns (R2 improved by less than 0.01) with more trees and increased training 

time. The mean R2 of the predicted versus actual result of the testing set is 0.959 for the outer radius 
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(CSF) and 0.958 for the inner radius (ON). The data density plots of these calibration results can be seen 

in Figure III.6. These plots show the correlation between the predicted and true underlying radius of the 

model. Finally, another forest of fifteen trees was built using all of the training data to be used on clinical 

data.  

 

4.2. Validation 

Validation proceeded by comparing manual measurement of the radii on high-resolution STIR 

acquisitions compared to the lower-resolution T2-weighted VISTA acquisition that was automatically 

segmented.  Using the lower-resolution data, the automatic segmentation calculated the underlying inner 

radius (ON) to be 1.673 mm and the underlying outer radius (CSF) to be 2.929 mm. Using the STIR data 

(Figure III.7, left panel) Manual measurements were taken along the visually determined approximate 

major and minor axes for the inner and outer radii. Manually, the inner radius was measured at 1.605 mm 

 

Figure III.7. The test volume slice used for validation is shown. The four images show the four 

measurements of inner and outer optic nerve diameter. This image was then down sampled and 

smoothed to match current in vivo imaging, and the proposed automatic measurement algorithm 

was applied. The automatic segmentation found the inner radius to be 1.673 mm and the outer 

radius to be 2.929 mm. 
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and 1.855 mm and the outer radius was 

measured at 2.85 mm and 3.255 mm 

indicating close agreement with the 

automated approach. Details of the 

measurements can be seen in Figure III.7 

right panels.  

 

4.3. Clinical Application 

We compared the average 

distribution of inner (ON) and outer 

(CSF) radii across a small cohort of 

healthy controls and MS patients with 

clinical history of optic neuritis.  The 

distributions over slices of the two cohorts (healthy volunteers, dotted solid lines and MS patients, dotted 

lines) along the length of the ON and separated into outer (CSF) radius (top curves) and ON radius 

(bottom lines) are shown in Figure III.8. Statistically the profiles differ closest to the globe and chiasm 

and remain relatively similar across healthy volunteers and patients in the middle segments. The shaded 

areas indicate regions in which the radii of the two populations are statistically different using an unpaired 

two-sample t-test at p<0.05. It is important to note that the regions where the outer radii differ are similar 

to the where the inner radii differ. The inner radii have statistical difference only on slices nearer to the 

globe.  

 

5. Discussion and Conclusions 

This is a first demonstration that the ON can be automatically and quantitatively measured and 

separated from the surrounding CSF in vivo using MRI. In simulation, the model was found to have an 

explanatory R-squared for both ON and CSF radii of greater than 0.95. The accuracy of the method was 

 

Figure III.8. Mean inner and outer optic nerve 

radii for the two six person sample populations 

tested interpolated to the same length as the longest 

sample. The shaded regions indicate where the 

outer radii are statistically different with p<0.05 
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within the measurement error on the highest possible in vivo acquisition (Figure III.7). In the pilot study, 

significant structural differences were found near the ON head and the chiasm.  Structurally, this is not 

surprising, as OCT has shown axonal loss near the ON head, which we identify as being an area of 

diminished ON radii.  Very few studies have shown atrophy of the nerve proximal to the chiasm, which 

lends weight to the need for a high-resolution imaging method to survey the entire nerve.  

There are a number of possible future directions that could lead to improved resolution and 

accuracy of the measurements. If the method were to be used on a different imaging resolution the model-

physical space mapping would need to be recalibrated using an appropriate simulation framework. The 

current approach assumes that slices are independent which is a simplified framework and as such the 

measurements tend to be noisy across the length of the ON for an individual participant. In this work, we 

utilized a median filter to smooth this noise but constraining the model along the length of the nerve could 

address some of these issues and increase accuracy. More careful inter-slice analysis could improve 

model estimation and result in more accurate segmentation.  Finally the curvature of the nerve could be 

better accounted for in the interpolation step along the entire length of the ON. The interpolation step 

currently assumes even samples along the length of every nerve which is not the case. If the curvature of 

the ON were characterized it would be possible to better align each measurement which may reveal new 

ways to differentiate patient populations. Future work will improve upon these techniques to better 

understand ON shape and size and how these vary among populations. 
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Chapter IV. Optic Nerve and CSF Sheath Size Short-Term Reproducibility and Variability of 

Optic Nerve and CSF Sheath Size within Young Healthy Controls 

 

1. Introduction 

The size of the optic nerve (ON) and cerebrospinal fluid (CSF) sheath have been manually 

measured [140, 141] previously and have been suggested as a differential diagnosis [142]. Optic neuritis 

is a sudden inflammation of the ON and is marked by pain on eye movement, and visual symptoms such 

as a decrease in visual acuity, color vision, contrast and visual field defects [122]. The ON is closely 

linked with multiple sclerosis (MS) and patients have a 50% chance of developing MS within 15 years 

[1]. Despite this, there is no radiological biomarker of the ON that predicts eventual development of MS. 

Furthermore, interventions can now help preserve and/or restore visual function if administered before 

ON axons are lost, i.e., during the ‘neuroplasticity’ window [4, 123, 124]. We hope to better understand 

ON disease etiology (including MS) using MRI to examine the ON anatomy along the length of the 

nerve.  

Manual segmentation with “computer assistance” has been and remains the de facto standard 

process to characterize the ON on 3-D imaging. Hickman et al. used contouring to identify ON cross-

sections in a longitudinal analysis and revealed patterns consistent with acute inflammation followed by 

long-term atrophy [51, 52]. We utilize a recently published method to automatically measure the optic 

nerve and CSF sheath [87]. We evaluate the short-term reproducibility of this method and then apply it to 

a population of healthy controls. From this population of healthy controls, we investigate any changes in 

ON size across demographics and build a normative distribution. As a preliminary analysis, we compare 6 

MS patients with a history of optic neuritis to the normative distribution.  

 

2. Methodology 
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2.1. Data  

2.1.1. Short-Term Reproducibility 

Ten healthy subjects age 24 to 36 years (average: 28.25, median: 27 years, 6 male/4 female) were 

enrolled in the imaging study. Imaging was acquired on a 3T Philips Achieva (Philips Medical Systems, 

Best, The Netherlands) with a 2-channel body coil for transmission and an 8 channel head coil for 

reception for all sequences. After tri-planar localization, we acquired the all volumes in the axial plane. 

The VISTA sequence parameters were: 3D FSE TR = 4000ms, TE = 455ms, α = 90°, FOV= 180 x 180 x 

20mm3, acquired resolution = 0.55 x 0.55 x 0.55mm3, reconstructed resolution = 0.35 x 0.35 x 0.35mm3, 

SENSE factor = 2, fat saturation = SPIR, NSA=2 and total scan time = 7:48. For comparison a clinical 

standard of care T1 image was also acquired with parameters: SE TR=400ms, TE=12ms, α = 90°, FOV= 

180 x 180 x 33mm3, acquired resolution = 0.70 x 0.88 x 3.0mm3, reconstructed resolution = 0.42 x 0.42 x 

3.0mm3, and total scan time = 3:20. A clinical standard of care T2 image was also acquired with 

parameters: TSE TR=3000ms, TE=80ms, α = 90°, FOV= 180 x 180 x 33mm3, acquired resolution = 0.70 

x 0.88 x 3.0mm3, reconstructed resolution = 0.42 x 0.42 x 3.0mm3, fat suppression=SPIR and total scan 

time = 2:48. Subjects were scanned with a baseline scan and again within 30 days of the original scan for 

short-term reproducibility. Inter-scan time was from 4 to 29 days (average: 19.4 days, median: 23 days). 

 

Figure IV.1. Comparison of the clinical standard of care (A) T1 image, (B) T2 image and (C) our 

proposed high-resolution sequence for a single subject. Note that the resolution of the clinical 

standard of care yields one slice containing the ON, which is shown, while a medial slice was 

chosen for our proposed method (C), 
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Figure IV.1 shows the clinical standard of care T1 image (A), T2 image (B) and our optimized imaging 

method (C). Note the increased contrast between the CSF and ON in our optimized imaging as compared 

to the standard of care T2 image. The T1 image shows no contrast between CSF and ON, only the ON-Fat 

boundary is visible.  

2.1.2. Demographics Analysis 

2.1.3. Data acquisition 

Anatomical T2-weighted VISTA scans were obtained on a 3T Philips Achieva (Philips Medical 

Systems, Best, The Netherlands) using a 2 channel body coil for transmission and an 8 channel head coil 

for reception.  After tri-planar localization, we acquired the T2-weighted volume in the axial plane.  The 

VISTA sequence parameters were:  3D FSE (TR/TE/a = 4000ms/404ms/90), FOV= 180 x 180 x 42mm3, 

nominal resolution = 0.6 x 0.6 x 0.6mm3, SENSE factor = 2, fat saturation = SPIR, and total scan time = 

5:20.  It should be noted that the TE is exceptionally long due to the nature of the asymmetrically sampled 

k-space pattern of the VISTA (SPACE on Siemens, and CUBE on GE) acquisition.   

2.1.4. Demographic Information  

Our control population consists of 45 individuals which are young adults with good 

representation of both male and female subjects. Six relapse-remitting MS patients with optic neuritis 

were selected to have the worst binocular 1.25% contrast visual acuity to assess whether they were 

different from the normative distribution. 

 

Table IV-1 Age demographic information for the 45 controls and six patients 

 Controls: 45 Patients: 6 

 20-25 25-30 30-35 Over 35 Total 20-25 25-30 30-35 Over 35 Total 

Male 5 12 3 1 21 0 0 1 0 1 

Female 11 1 10 2 24 1 1 3 0 5 

Total 16 13 13 3 45 1 1 4 0 6 

 



61 

 

2.2. Analysis 

Our segmentation begins with a previously described multi-atlas segmentation method [86] which 

automatically segments the orbits, optic chiasm and ON. This method uses 35 manually labeled atlas 

images which include both healthy controls as well as drusen and MS patients. The target image to be 

segmented is registered to each of the 35 atlas images using an affine registration and non-rigid 

registration [143]. The manual labels of the atlas images are then transformed to the target space using 

these registrations and are fused using non-local spatial STAPLE[114, 144]. The segmentation of the ON 

includes both the ON and CSF sheath and so we must refine our segmentation to separate the two 

structures and measure them independently.  

We utilize a previously described model [145] to fit the ON and CSF sheath in the coronal plane 

and extract the radii of both. The model is a difference of two Gaussian distributions which matches the 

intensity profile of the ON in the coronal plane. The second Gaussian is scaled by an exponential term 

and has a scaling factor on the covariance matrix in the range (0,1) such that the second Gaussian is 

always smaller than the first Gaussian. The covariance matrix is formulated with the correlation term as a 

sigmoid function to improve stability later on, during the optimization process.   

The model is initialized using the result of a previously described multi-atlas segmentation 

 

Figure IV.2. Comparison of population variability for scan 1 (blue) and scan 2 (red) as well as the 

computed reproducibility as the standard deviation of the difference of each scan-rescan 

measurement divided by √𝟐. The computed reproducibility error bars are shown on the overall 

population mean distribution for comparison. 
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protocol [86]. Iterative conjugate gradient descent is performed on each slice which contains ON labels 

from the multi-atlas protocol. Each slice’s optimal parameters are then used in the random forest 

regression to predict the true underlying radii of the ON and CSF sheath. The results are analyzed along 

the length of the ON. To make this comparison we interpolate every set of ON measurements to be the 

same number of samples as the longest one in the data set. The nature of the ONs allows for them to be 

present in a different number of slices from volume to volume. Interpolation more closely aligns 

corresponding parts of the ON across subjects. A three-element moving window median filter is also 

applied within each nerve across slices to reduce noise in the measurements.   

 

3. Results 

 

3.1. Short-Term Reproducibility 

The radius of the ON (lower line) and CSF sheath (upper line) can be seen in Figure IV.2 for 8 

subjects in scan 1 (blue) and 8 subjects in scan 2 (red). Two scans, from two separate subjects, were 

segmentation failures and are excluded from this analysis. The error bars are standard deviation and 

illustrate the population variability. The lower line is the radius of the ON along the length of the nerve 

and the upper line is the radius of the CSF sheath along the nerve. Note the labels indicating which 

direction is proximal to the globes and optic chiasm. The computed reproducibility (green) shows the 

standard deviation of the difference of each scan-rescan measurement divided by √2. This factor is 

divided out to account for the summation of two random variables. These error bars are plotted on the 

overall mean distribution for comparison. We here note that the computed reproducibility is less than the 

population variability and the variability along the length of the nerve. This data supports that this tool is 

useful in detecting local population differences.  
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3.2. Demographic Analysis 

3.2.1. Normative Distribution Evaluation 

Using this framework we examined the normative distribution of controls as a function of 

normalized length posterior to the globe. Variations in the distribution based on age and sex information 

were investigated and found to be nonexistent. Figure IV.3 shows the similarity of the distributions across 

both age and sex. This suggests that although the ON varies widely among healthy controls the variation 

is not dependent upon age or sex of the subject.  

3.2.2. Patient Evaluation 

We then compare the six selected patients to the normative distribution to see if irregularities 

became apparent. We would expect patients to fall outside of the normal distribution and it can be seen in 

Figure IV.4 that most of them do. From Figure IV.4 patient 1’s ON appears to be smaller than the 

normative distribution around the midsection of the ON. This would suggest that this nerve is atrophic 

while the sheath appears to be approximately of normal size. The star indicates that this slice is shown for 

comparison in Figure IV.5 against an age matched control in the first column. The comparison in Figure 

IV.5 matches what is observed in the measurements from Figure IV.4. The sheath appears to be of a 

 

Figure IV.3. ON radius with error bars as the standard deviation as a function of normalized slice 

posterior to the globe illustrating the similarity of distributions regardless of age and sex among 

the 45 healthy controls. 
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similar radius to the age matched control’s sheath while the nerve appears slightly atrophic. Patient 2 

appears slightly atrophic through the anterior part of the ON and we see inflammation in the posterior of 

the ON in both eyes. Patient 3 displays atrophy in both eyes in the anterior region. The right eye remains 

atrophic for the length of the ON while the left eye appears to approach the normative distribution.  

Patient 4 appears closest to the normative distribution although the right eye does appear to be slightly 

atrophic in some regions. Patient 5 shows atrophy in the right ON while the left ON appears highly 

inflamed. The stars again mark slices which can be seen in Figure IV.5 for comparison against an age 

matched control. In this comparison it is very clear the ON is much larger than that of the age matched 

control. Patient 6 appears atrophic in both eyes with the left being more severe. Once again Figure IV.5 

shows a selected slice and it is clear that the ON is smaller in this patient when compared to the age 

matched control. These results show promise for this method as a possible tool to differentiate patient and 

control populations.  

 

Figure IV.4. Measurements for the six selected patients as their left and right ONs compare to the 

normative distribution. Note the asterisks which mark the approximate locations of the visuals 

from Figure 4.   
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4. Discussion 

We have applied a fully automated pipeline to measure the radius of the ON and CSF sheath 

along the length of the nerve. We have demonstrated that this pipeline is sufficiently accurate to detect 

local population changes in both ON and CSF sheath size. The results are consistent with previous results 

that population variability should not vary across individuals based on age or sex [88]. Previously ON 

biomarkers have been investigated using manual or semi-automated methods which measured the ON at 

arbitrary points along the ON [61, 146, 147]. This proposed pipeline could be applied to disease 

populations to identify relevant disease biomarkers for disease onset. By measuring along the entire 

length of the nerve, we can identify meaningful areas of local changes which can lead to a more informed 

characterization of the ON by the clinical community. 

We have presented a method for quantitatively measuring the ON and the CSF sheath and have 

demonstrated its feasibility as a possible tool for differentiating patients with ON atrophy or hypertrophy 

 

Figure IV.5. Selected comparisons of 3 patients and age matched healthy controls. Patients 1 and 

6 are atrophic and patient 5 is hypertrophic. 
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from healthy subjects. Although this population of healthy control subjects contains a large amount of 

inter-subject variation the small comparison of patients suggests that there may be information which 

differs within patients from the normative distribution. This differentiation requires further investigation 

with a larger patient population to fully understand how patients with varying conditions compare across 

the length of the ON.  



67 

 

Chapter V. Improved Automatic Optic Nerve Radius Estimation from High Resolution MRI 

 

1. Introduction 

The human optic nerve (ON) is integral to visual performance as it carries all visual information 

posterior from the retina to the cortex for visual processing and is thus compromised in a number of 

diseases, most notably, multiple sclerosis (MS) [1], as well as several forms of optic neuropathy [1, 54]. 

Optic neuritis is known to be closely linked with MS as 25% of optic neuritis events eventually develop 

into MS [53]. However, despite this known association there are no current radiological biomarkers which 

can predict the eventual development of MS or the degree of visual recovery following an optic neuritis 

event. Therefore, while the ON is essential to visual function, it is challenging to image and quantify due 

to the fact that it is a small structure which is constantly in motion. The ON is surrounded by a sheath of 

cerebrospinal fluid (CSF). The size of this CSF sheath has been shown to correlate with intracranial 

pressure which may be associated with increased mortality and less favorable neurological outcomes 

[147]. Qualitatively, tools have been developed to visualize ON degradation utilizing high-resolution MRI 

but automatic quantitative methods are lacking. 

Manual or computer-assisted measurements are still the tiresome standard for quantification of 

the ON. Hickman et al. used manual contouring to measure ON cross-sections in a longitudinal analysis 

 

Figure V-1. An example subject’s short term scan-rescan imaging showing scan 1 (left), scan 2 (middle) 

19 days apart shown in radiological standard orientation. The right plot shows the measurement of the 

left optic nerve for scan 1(blue) and scan 2(red) illustrating the noise in the slice-wise measurements 

which warrant three-dimensional constraint.  
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and found patterns consistent with acute inflammation followed by long-term atrophy [51, 52]. These 

measurements of optic nerve size are often taken at arbitrary points along the length of the ON and thus 

suffer because they would require significantly more time manually labeling cross sections to investigate 

local changes along the length of the nerve due to a lack of automated analysis techniques. A more 

detailed analysis of the ON may reveal anatomical patterns as well as other temporal patterns in disease 

state evolution. Automated segmentation methods have largely focused on segmenting the ON and CSF 

as a single structure, deeming it too challenging to measure the two independently [135, 137]. However, a 

previously presented slice-wise method addressed some of these concerns but yielded results which were 

useful in aggregate but could be difficult for interpretation on the single subject-level [87, 88].  Therefore, 

we propose a fully automated, three-dimensionally consistent technique, building upon the previous 

independent slice-wise technique, to estimate the radius of the ON and surrounding CSF on high-

resolution heavily T2-weighted isotropic MRI.  

 

2. Methodology 

 

Figure V-2. Example radius estimation from slice-wise estimation (left) and constrained estimation 

(right) on the same ON from Figure V-1 showing the smoothness of the constrained estimation method 

results. 
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2.1. Proposed Method 

Radius estimation begins with a previously described multi-atlas segmentation method [86], 

which automatically segments the orbits, optic chiasm and ON including the surrounding CSF for 

initialization purposes. This method uses 35 manually labeled atlas images, which include both healthy 

controls as well as ON head drusen, optic neuritis and MS patients. The target image to be segmented is 

registered to each of the 35 atlas images using an affine registration [107] to achieve a coarse alignment 

of the eye globes. The globe labels are summed for all 35 atlases to achieve a pseudo-probability map 

which is thresholded at 0.5 (or 18 atlas images indicating globe for a particular voxel). The centroids of 

each eye globe are extracted from this coarse hard segmentation and extended 30mm left, right and 

anteriorly, 40mm superiorly and inferiorly and 60mm posteriorly to define the cropping region. An affine 

and non-rigid registration of the cropped region to the cropped atlas images results in a more accurate 

transformation of the atlases to target space [143]. The manual labels of the atlas images are then 

transformed to the target space using these registrations and are fused using joint label fusion [148]. The 

segmentation of the ON includes both the ON and surrounding CSF so we must refine our segmentation 

to separate the two structures and measure them independently. The centroids of the ON label in the 

coronal plane are used as an initial estimate of the centerline of the ON. A cubic regression is performed 

to smooth the centerline and fill in any missing slices [62]. Patches are then extracted along this centerline 

for fitting to the following intensity model.  

 

𝐼(𝑥, 𝑦) =  𝐼0[𝑁(𝜇, Σ𝑥𝑦) − 𝑒𝛽 𝑁(𝜇, σ2Σ𝑥𝑦)] (V.1) 

𝑁(𝜇, 𝛴𝑥𝑦)   =   
1

2𝜋|Σ𝑥𝑦|
exp [−

1

2
(𝑋 − 𝜇)𝑇Σ𝑥𝑦

−1(𝑋 − 𝜇)] (V.2) 
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] (V.3) 
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We begin with a previously described model [145] which can be seen in Equation V.1 to fit the 

ON and CSF sheath in the coronal plane and extract the radii of both. Briefly, the model is a difference of 

two Gaussian distributions, as defined in Equation V.3, which closely resembles the intensity profile of 

the ON in the coronal plane in our heavily T2-weighted imaging. The covariance matrix in Equation V.3 

allows for the model to become elliptical to account for off-axis imaging of the ON. The model is fit to 

the ON in the coronal plane using an iterative conjugate gradient descent optimization method [81].  

In the novel variant of the method proposed herein, three-dimensional consistency is enforced 

through an iterative fitting procedure of this model. The length of the ON is initially fit with the model 

and each of the eight parameters are smoothed using a 5-element moving window average. Any points 

falling outside of a threshold n standard deviations away from the regression, 𝑛σ𝜃, are considered outliers 

and those slices are reinitialized with the regression value as their initial parameter values. The error term 

for the gradient descent is also winsorized at a value of ζ. The tolerance for 𝑛 and ζ are simultaneously 

decreased with each iteration until a smooth set of parameters is converged upon. 

The model parameters are correlated with the radii of the ON and CSF sheath through a random 

forest regression[85] using 1 million synthetic training images. Six of the eight model parameters are used 

for the regression, the centroids are omitted as they are dependent solely on field of view. The standard 

deviation parameters, [σ𝑥, σ𝑦] , are transformed to be a minimum and maximum term. It was 

experimentally observed that these terms can interchange for a single radius given the complementary 

angles of a nerve relative to the imaging plane. By characterizing the terms as a minimum and maximum, 

we force the radius transformation to be rotationally invariant to the fitting process and improves 

smoothness of the transformation. The 1 million training images were generated by simulating partial 

volume effects of imaging two concentric tubular structures with 0.6 mm isotropic voxels using a Monte 

Carlo simulation. This model is then tilted at randomly selected varying angles relative to the imaging 

plane and the size of each of the concentric tubes is varied randomly to generate the training set. The 

regression is validated using tenfold cross validation which shows the predicted radii to correlate with the 

true underlying simulated radii with an explanatory R-squared greater than 0.95 for both ON and CSF 
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radii. 

 

2.2. Data Acquisition 

Ten healthy subjects age 24 to 36 years (average: 28.25, median: 27 years, 6 male/4 female) were 

enrolled in the imaging study, after obtaining consent from the local institutional review board. Imaging 

was acquired on a 3T Philips Achieva (Philips Medical Systems, Best, The Netherlands) with a 2-channel 

multi-transmit body coil for transmission and an 8 channel head coil for reception. After tri-planar 

localization, we acquired all volumes in the axial plane. These images were collected with a Volume 

Isotropic Turbo spin echo Acquisition (VISTA) imaging sequence with the following parameters: 3D 

TSE TR = 4000ms, TE = 455ms, α = 90°, FOV= 180 x 180 x 20mm3, acquired resolution = 0.55 x 0.55 x 

0.55mm3, reconstructed resolution = 0.35 x 0.35 x 0.35mm3, SENSE factor = 2, fat saturation = SPIR, 

NSA=2 and total scan time = 7:48. Subjects were scanned with a baseline scan and again within 30 days 

 

Figure V-3. Comparison of scan-rescan absolute error for the ON (left) and CSF (right). Large circles 

indicate the mean absolute error for a given nerve. Dots indicate individual points between nerves with 

the color corresponding to each subject. Pluses are individual points between nerves within the central 

third of the length of the nerve, the area which is most accurately imaged. The lines are drawn along 

unity and at resolution (0.6mm). Note that pluses tend to be localized within the box indicating 

reproducibility within a voxel for the central third of the nerve as well pluses being localized below the 

line of unity indicating the proposed method has lower absolute error between scans. 
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of the original scan for short-term reproducibility. Inter-scan time was from 4 to 29 days (average: 19.4 

days, median: 23 days). Figure V-1 shows an example short term scan-rescan image pair.  Five of the 10 

subjects were also imaged 11 months later for a long-term follow-up scan with the same acquisition 

scheme.  

 

2.3. Analysis: Short- and Long-Term Reproducibility  

The original slice-wise analysis method [87] and the proposed method are performed on the 

above data for comparison. The shape of the ON often results in a variable number of coronal slices 

between individuals and within individuals across different scans. For comparison each ON was 

interpolated to be the same length as the longest ON in the population, we refer to this as posterior 

normalized slice. Scan-rescan error is quantified as the absolute difference for each point along the ON. 

Scale-invariant smoothness (Equation V.5) for each method is computed as the standard deviation of the 

difference between neighboring points scaled by the absolute mean difference of all neighboring points 

within the nerve. All tests for significance are performed using Wilcoxon sign-rank (p<0.05). 

𝜇𝑑 = 
1

𝑛 − 1
∑𝑥𝑖 − 𝑥𝑖−1

𝑛

𝑖=2

 (V.4) 

𝑠 =  
√ 1

𝑛 − 1
∑ (𝑥𝑖 − 𝑥𝑖−1 − 𝜇𝑑)𝑛

𝑖=2

|𝜇𝑑|
 

(V.5) 

 

3. Results 

 

3.1. Short-Term Reproducibility  

The 3D constrained results are smoother along the length of the ON, as computed by scale-

invariant smoothness (p=0.0025), providing more anatomically plausible results since the ON does not 

change size rapidly. Figure V-2 shows a qualitative comparison of the slice-wise results and the 3D 



73 

 

constrained results. The 3D constrained results are much smoother along the length of the ON providing 

more anatomically plausible results since the ON does not change size rapidly. Figure V-3 shows the 

absolute error between the baseline and short term follow-up scans for the aligned ON points. The circles 

are mean absolute error for a single nerve, with colors representing each subject. The individual points 

which are dots are the absolute difference between two measurements outside the middle third of the ON, 

the points which are pluses are the absolute difference between two points within the middle third of the 

ON again with color corresponding to subjects. The black box indicates error of one voxel and the line of 

unity separates points with lower slice-wise error (above) and lower 3D constrained error (below). We 

can see that the majority of the circles and pluses are grouped within the box indicating absolute 

difference of less than one voxel for the entirety of the nerve and the points within the central third of the 

ON respectively. There are a large number of CSF sheath measurements (13%) within the central third of 

the ON which were previously larger than one voxel reproducibility which are now less than one voxel, of 

the CSF measurements previously outside one voxel nearly all (89%) are now within one voxel.  

 

3.2. Long-Term Reproducibility  

Figure V-4 shows a comparison of the short- and long-term reproducibility using the proposed 

method for the five subjects with long-term follow-up data. The symbols are the same as Figure V-3 with 

circles representing a subject’s ON, pluses indicating individual points within the central third of the ON 

and dots representing individual points outside the central third. The black box is drawn at resolution and 

we can see that the majority of points fall within one voxel difference. The subject-wise ON 

reproducibility, represented by circles, is largely centered along the line of unity indicating that the short- 

and long-term reproducibility of the ON measurements are similar. While the subject-wise CSF 

reproducibility trends above the line indicating larger differences between the baseline and long-term 

follow-up scans than between baseline and the short-term follow-up scans.  

 

4. Discussion 
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We have demonstrated the superiority of our proposed three-dimensionally consistent ON radius 

estimation procedure as compared to the previous slice-wise radius estimation procedure in generating 

anatomically viable results which are reproducible with error of less than the voxel resolution. Future 

work should address challenges faced in accurately characterizing the anterior ON in the presence of 

retrobulbar motion and the posterior ON in the presence of frontal lobe CSF to improve characterization 

along the entire length of the ON. A larger cohort of subjects with long-term follow-ups will be necessary 

to evaluate the long-term changes in ON morphology with more certainty.   

Long-term reproducibility has been shown to be similar to short-term reproducibility indicating 

that the ON and surrounding CSF do not change substantially within a one year period. Histological 

studies have shown that there is a slow loss of axons in the optic nerve with normal aging [149-151], but 

the morphological differences in a 1 year period are expected to be very small based on minimal (if any) 

change in the optic disk [140, 152-155]. To date, the authors are not aware of studies that have 

longitudinally followed human optic nerve morphometry in vivo. 

 
Figure V-4. Comparison of short- and long-term scan-rescan absolute error for the ON (left) and CSF 

(right). Large circles indicate the mean absolute error for a given nerve. Dots indicate individual points 

between nerves with the color corresponding to each subject. Pluses are individual points between nerves 

within the central third of the length of the nerve, the area which is most accurately imaged. The lines 

are drawn along unity and at resolution (0.6mm). Note that pluses tend to be localized within the box 

indicating reproducibility within a voxel for the central third of the nerve. 
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The large variability in ON size suggests that a much larger number of subjects will be required 

to characterize normal ON variability [140]. With a larger set of controls [88] evaluated with this method 

they could be compared against disease populations, such as acute optic neuritis or MS to investigate 

possible imaging biomarkers for disease severity or prognosis. Automatically characterizing the entire 

ON from globe to chiasm will allow for more meaningful searches for imaging biomarkers by the clinical 

community possibly revealing latent local changes in the ON which offer prognostic value.   

All tools used and developed in this work are available in open source from their respective 

authors. The ON-CSF measurement code is primarily written in MATLAB (The MathWorks, Inc., 

Natick, Massachusetts, United States) and bundled into an automated program (i.e., “spider”[156]) that 

combines these tools using PyXNAT[157] and DAX[158] for XNAT [159] and is available through the 

NITRC project MASIMATLAB (http://www.nitrc.org/projects/masimatlab).  

http://www.nitrc.org/projects/masimatlab
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Chapter VI. Quantitative Characterization of Optic Nerve Atrophy in Patients with Multiple 

Sclerosis 

 

1. Introduction 

The human optic nerve is a small (< 3mm in diameter) white matter fiber bundle that exits the 

globe and courses posteriorly to the optic chiasm, and is responsible for communicating all visual stimuli 

to the optic tracts.  It is immediately surrounded by cerebrospinal fluid (CSF) and sits inside the fatty 

tissue of the orbit superior to the maxillary sinuses. In patients with multiple sclerosis MS), the optic 

nerve is one of the most common sites of injury. Approximately 25% of MS patients have retro-bulbar 

optic neuritis as the first symptom and nearly two-thirds of MS patients experience at least one optic 

neuritis event in their lifetime. Optic neuritis is transient and may self-resolve in some cases or leave 

permanent damage in some others, though intervention with steroids has been shown to reduce the 

duration of symptoms[160]. Upon the acute phase resolution, optic neuritis leads to visual deficits in 

about 40-60% of MS patients. The biological substrate of these visual defects is unknown but axonal loss 

likely plays a major role[161]. This axonal loss is often investigated through optical coherence 

tomography using the surrogate of retinal nerve fiber layer thickness, which has been shown to correlate 

with disease severity because the loss of retinal axons is believed to be related to brain damage and 

atrophy[162]. However, this relationship is not well understood and only offers a surrogate for optic nerve 

axonal loss. 

MRI of the orbits represents a viable diagnostic tool for optic neuritis. In the acute phase,  may 

present as an active lesion of the optic nerve on T1-weighted post-contrast sequences. This may leave a 

hyperintense lesion on T2-weighted MRI upon the resolution of the inflammatory event. Signal changes 

may be either focal or diffuse. Despite its clinical application, MRI of the orbits often in times turns to be 

of little utility since signal alterations may not be visible even in the presence of a clear acute clinical 

event or chronic symptoms sequela of tissue injury. Capturing axonal loss which ultimately results into 

optic nerve atrophy is virtually not possible. Measuring volume of the optic nerve is challenged by lack of 
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contrast within the optic nerve, resolution sufficiently high to discriminate between the optic nerve and 

surrounding CSF.  

Aside from MRI pulse sequences, a lack of robust analysis tools to characterize optic nerve 

atrophy cross-sectionally and over time. Analyses typically proceeded by taking a single measurement of 

optic nerve size at a specified location along the nerve [61, 163-165]. In this type of analysis, a single 

measurement is approximated as a surrogate for the health of the entire optic nerve and does not account 

for focal changes that may occur throughout the optic nerve length.  

Recent advancements in MRI pulse sequences offered improved contrast between the optic nerve 

and surrounding CSF while maintaining a relative insensitivity to motion (Figure VI-1). Our group has 

characterized these improvements in optic nerve MRI in healthy controls[88].  Additionally, we have 

recently developed an analysis pipeline for optic nerve MRI that affords an opportunity to evaluate the 

morphology of the optic nerve in vivo along its entire length[87, 90], thereby allowing measurements of 

both global and focal atrophy.  

To date, there has not been a systemic study of optic nerve morphological changes in patients 

 

Figure VI-1. Healthy control scanned with: current clinical standard of care T2w MRI axial view (A) 

and coronal view approximately 10mm posterior to the globe (B), as well as high-resolution isotropic 

T2w research imaging axial view (C) and coronal view approximately 10mm posterior to the globe (D). 

One can appreciate the superior optic nerve:CSF contrast and benefits of isotropic resolution in 

visualizing optic nerve morphology in 3-dimensions. (E) and (F) show axial and coronal views of a 40-yo 

RRMS patient with bilateral history of optic neuritis one year post-diagnosis. 
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with MS, to ascertain the amount of atrophy the optic nerve undergoes along its length after optic neuritis.  

As atrophy is directly tied to axonal loss, there is a need to understand optic nerve damage in MS 

accounting for local changes along the length of the optic nerve. Motivated by this notion, we propose our 

study. We hypothesize that optic nerve volume loss can be detected and quantified in MS patients. Here, 

we report on the first automatic evaluation of optic nerve atrophy using advanced MRI in relapsing-

remitting MS patients.   

 

2. Materials and Methods 

 

2.1. Study Design 

This study is a collaborative project between the neuro-immunology division in the Neurology 

Department and the Institute of Imaging Science in the radiology Department at Vanderbilt University 

Medical Center. The study was performed with approval of the Vanderbilt Institutional Review Board and 

signed informed consent was obtained prior to data acquisition from each subject. Twenty-nine MS 

(median age: 33; age range: 18-53; 69% female; 28 relapsing remitting MS and 1 clinically isolated 

syndrome) and 42 healthy volunteers (median age: 28, age range: 20-38; 52% female) were enrolled in 

the study. Fourteen (48%) patients had no history of optic neuritis (namely ON-, hereafter). The 

remaining 15 patients had a history of either bilateral (7 patients) or unilateral (8 patients) optic neuritis 

(namely ON+, hereafter).  

 

2.2. MRI Protocol 

Anatomical T2-weighted (T2w) VISTA (SPACE on Siemens, CUBE on GE) scans were obtained 

on a 3 Tesla (3T) Philips Achieva (Philips Medical Systems, Best, The Netherlands) using a two-channel 

body coil for transmission and an eight-channel head coil for reception. Images were acquired on the axial 

plane aligned with the optic nerve. Sequence parameters were: 3-Dimensional (3D) fast spin echo 
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(repetition time/echo time/flip angle [TR/TE/α= 4000ms/404ms/90°), field of view= 180 x 180 x 

42mm3, nominal resolution = 0.6 x 0.6 x 0.6mm3, SENSE factor = 2, fat saturation = SPIR, and total 

scan time = 5:20.  

 

2.3. Volumetric Measurements 

We utilize a previously published, open source tool with minor modifications to automatically 

measure the radius of the optic nerve and surrounding cerebrospinal fluid[87]. Briefly, this model fits an 

intensity profile to the optic nerve and cerebrospinal fluid in the coronal plane and transforms the 

parameters from that fit into physical radius measurements. The model is applied to each coronal slice of 

the image containing the optic nerve and can therefore result in inconsistent measurements along the 

 

Figure VI-2. Renderings of the segmented eye globes (green) and optic chiasm (purple) along with the 

measured optic nerves for a healthy control (A-C) and a 47-yo RRMS patient 15.5 years post diagnosis 

with a history of optic neuritis in the left eye (D-F). Color of the optic nerve corresponds to estimated 

optic nerve radius in all panels according to the colorbar in (D). Optic nerve atrophy can be clearly seen 

in (D-F) as compared to (A-C).  
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length of the optic nerve. To address this shortcoming we have modified this model by applying it in an 

iterative manner while decreasing the tolerance from adjacent slices[90]. This technique allows the model 

to ignore slices which are less than optimal and results in anatomically viable, three-dimensionally 

consistent measurements along the entire length of the optic nerve. This model is then applied to all of the 

patients and healthy volunteers, generating two sets of measurements for each individual.  

 

2.4. Statistical Analysis 

Volumetric data from the 42 pairs of nerves of the healthy control group were used to generate a 

normative distribution for detecting differences in patient sub-populations [88]. Group (patents vs healthy 

volunteers) differences in the optic nerve radius estimates were compared using a Wilcoxon rank-sum 

test. We use a previously published technique for comparing optic nerves across subjects to overcome the 

differing number of measurements for each subject [88]. Measurements are interpolated to be the same 

length as the longest nerve amongst the population.  

 

3. Results 

 

3.1. Qualitative Results 

Figure VI-2 shows qualitative results for a healthy control (A-C) and a 47-yo relapsing remitting 

MS patient (D-F). The automatically segmented eye globes and optic chiasm are rendered in green and 

purple respectively. The measurements for the optic nerve are rendered with color representing the nerve 

radius according to the color bar in (D).  

 

3.2. Quantitative Analysis 
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Volumetrics of optic nerves which have never been affected by a clinical episode of ON (n=28) 

were not significantly different from those derived from healthy controls (Figure VI-3 left). Involved 

nerves showed significantly reduced radius from healthy controls at 33% (16/48) of measurements 

localized in the central portion of the nerve and surviving Bonferroni correction (Wilcoxon rank-sum; 

p<0.05 Figure VI-3 right). Of these differences, 15 were continuous points in the central portion of the 

nerve (Figure VI-3 right: shaded area), the last point which is significantly different from the healthy 

controls is posterior to the shaded region, separated by a single non-significant point.    

 

4. Discussion 

We present the first analysis of optic nerve radius using advanced MRI along the entire length of 

the nerve as it applies to patients with MS and optic neuritis. In the present work, we used a T2W TSE 

sequence with extended echo train. The advantage of this sequence over currently available ones is the 

superior resolution and nerve/CSF contrast. It also shows a clinically affordable acquisition time[89] 

 

Figure VI-3. Comparison of volumes of optic nerves never affected by optic neuritis (left) and optic 

nerves with a previous history of optic neuritis (right) to healthy controls. The shaded blue region 

indicates one standard deviation of the healthy control population. The shaded region (right) illustrates 

the region of 15 consecutive measurements (9mm) where the patients’ nerves are significantly smaller 

than healthy nerves (Wilcoxon rank-sum; p<0.05 Bonferroni corrected). The nerves from patients with a 

negative history of optic neuritis were not significantly different from healthy controls. 
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(Figure VI-1 A-D). The isotropic resolution allows for accurate 3D characterization of the optic nerve 

from globe to chiasm.  

Our data detected for the first time a group-level atrophy effect on nerves affected by optic 

neuritis as compared to optic nerves which have never been affected by disease. This analysis is superior 

to traditional single-point metrics which have been traditionally used to characterize optic nerve atrophy 

as this technique can provide more insight into focal optic nerve changes. As such this technique has the 

potential to provide a greater understanding of the degree and location of axonal loss which is known to 

be associated with optic neuritis.  

 The single non-significant measurement point between the large collection of 

significantly different points is likely due to the reduction of estimation accuracy at the most posterior and 

inferior regions of the optic nerve. The anterior portion of the nerve is difficult to characterize accurately 

due to motion artifacts from saccadic eye movements. The posterior region of the nerve is difficult to 

characterize as the sub-arachnoid CSF thins as the nerve approaches the optic chiasm. This thinning of 

CSF reduces the contrast available for accurately measuring the nerve. We hypothesize that a more 

sensitive radius estimation technique would likely find global atrophy among even more measurements 

than that found in this study.  

Although novel, our work is not exempt from limitations. In the future it could be improved upon 

by accounting for the curvature of the optic nerve in the interpolation step. Interpolating nerves to be the 

same length results in a coarse alignment of nerves across the population but does not account for varying 

curvature across subjects. Investigation into the most appropriate alignment methods is still required.  

Our method is also resolution dependent which limits the number of subjects which can be 

utilized in these studies since it cannot be applied to clinical standard of care imaging protocols. If the 

method were to be extended to work on multiple or lower resolutions while maintaining comparable 

accuracy study sizes could increase.  

Notwithstanding the above limitations, we believe that our work represents a preliminary but 

solid demonstration of volumetric measurements of the optic nerve in its entire length. With future work 
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this methodology may translate into clinical application and can provide useful information on the disease 

stage and course in patients with history of optic neuritis, whose symptoms often in times do not find a 

biological surrogate.   

All tools used and developed in this work are available in open source from their respective 

authors. The optic nerve/CSF estimation code is primarily written in MATLAB (The MathWorks, Inc., 

Natick, Massachusetts, United States) and bundled into an automated program (i.e., “spider”[156]) that 

combines these tools using PyXNAT[157] for XNAT[159] and is available in open source through the 

NITRC project MASIMATLAB (http://www.nitrc.org/projects/masimatlab).  

 

 

 

 

 

 

 

http://www.nitrc.org/projects/masimatlab
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Chapter VII. Characterization of Short- and Long-Term Stability of Non-Invasive Optic Nerve 

Imaging 

 

1. Introduction 

Magnetic resonance imaging (MRI) has been utilized for decades to investigate anatomical 

changes in the eye orbit [48, 166]. For example, in a clinical setting it is used to evaluate possible optic 

glioma [167]. However, more recently there has been an effort to utilize MRI quantitatively to attempt to 

uncover yet undiscovered biomarkers of eye orbit health. Historically, quantitative MRI measurements 

have been made manually which is time consuming and inaccurate [61, 163-165]. More recently, 

advancements in eye orbital MRI and image processing techniques have allowed for automated 

quantitative investigation of eye orbital structure [87, 92]. With these recent advancements comes the 

challenge of comparing and contrasting various algorithmic approaches to quantitative eye orbit MRI 

analysis. Results reported must always be taken in context with the type of data being analyzed. 

Optimization of non-clinically viable MRI techniques could lead to inflated algorithmic performance 

compared to those designed to work on clinical standard of care imaging. There are currently many open 

resources for multi-parametric whole brain MRI including the Alzheimer’s disease neuroimaging 

initiative (ADNI) [168], open access series of imaging studies (OASIS) [169], the openFMRI project 

[170]  and the PAIN repository [171].  However, none of these resources are targeted at orbital imaging 

and therefore present an accurate representation of the current clinical standard of care, and state-of-the-

art, of orbital MRI. In this work, we address this challenge by acquiring a short-  and long-term 

reproducibility dataset of young healthy controls acquired using current clinical standard of care as well 

as current state-of-the-art MRI techniques at 3T. The release of this resource provides the image 

processing community with a common dataset for fair comparison of both clinical standard of care and 

advanced MRI image processing techniques.  

 

2. Methods  
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Twenty-four healthy volunteers with no history of ophthalmological or neurological conditions 

were enrolled in the study and informed consent was obtained. Five subjects never returned for any 

follow-up scans after baseline. Of the remaining nineteen subjects (7 Female; age at baseline mean: 27.1 

years; median: 25 years; range 23-36 years) Ten were scanned a second time within one month of the 

initial scan (mean age: 27.6 years; 4 females; mean difference: 19.4 days; min: 4 days; max: 29 days) both 

with protocol 1 (Table VII-1). Seventeen subjects were scanned again approximately one year after 

baseline (mean difference: 353 days; min: 329 days; max: 395 days) with Protocol 2 (Table VII-1) to 

asses long-term stability. All data were acquired using a 3T Philips Achieva (Philips Healthcare, Best, 

The Netherlands) with body coil excitation and an 8-channel head coil for reception. These seventeen 

subjects also underwent bilateral retinal and optic nerve head OCT scanning on a Heidelberg Spectralis 

(Heidelberg Engineering, Heidelberg, Germany). The sequence selection (Table VII-1) is introduced in 

the following sections. 

 

Figure VII-1. Example subject showing their baseline clinical standard of care T1w scan (A) T2w scan 

(B) and high resolution isotropic optic nerve optimized scan (C) as well as their long-term follow up T1w 

(D), T2w (E) and high resolution optic nerve (F). The associated OCT imaging acquired at long-term 

follow up for their optic nerve head scan (G) and macular (H).   



86 

 

2.1. Data 

2.1.1.  Structural Imaging 

Structural MRI has been used to generate contrast between surrounding structures of interest, in 

this case the optic nerve and surrounding orbital tissues. Images representative of the current clinical 

standard of care were acquired for evaluation of application to clinical imaging. Clinically viable high 

resolution isotropic optic nerve imaging optimized for optic nerve:CSF contrast [89] is included for 

evaluation of algorithms which aim to differentiate optic nerve and surrounding CSF [87]. Finally, 

traditional whole-brain MPRAGE and FLAIR imaging were acquired for normalization of brain volume 

as well as evaluation of the controls’ whole brains.   

2.1.1.1  Current Clinical Standard of Care 

Traditional MRI contrast mechanisms of transverse (T2) and longitudinal (T1) relaxation have 

been used clinically to look for qualitative abnormalities of orbital structures. We employ a recreation of 

the current clinical standard of care scans performed at Vanderbilt University Medical Center for orbital 

evaluation of patients. This protocol includes four scans for visualization of the eye orbit, coronal and 

axial T1W spin echo images and coronal and axial T2W turbo spin echo images. These images each have 

high in-plane resolution with thick (3mm) slices for visualizing orbital abnormalities. Inclusion of these 

protocols allows for evaluation of applicability of processing techniques to current clinical imaging 

databases.  

2.1.1.2  High resolution isotropic optic nerve imaging 

Recently 3-dimensional isotopic imaging sequences have been developed to illicit contrast 

between the optic nerve and surrounding cerebrospinal fluid for accurate characterization of optic nerve 

morphology [89]. This sequence employs a T2W turbo spin echo with optimized readout to achieve high-

resolution isotropic contrast. This eliminates the need for coronal and axial acquisitions and therefore 

reduces scan time compared to current clinical standard of care. These data allow for evaluation of 

analysis techniques which aim to measure optic nerve morphology [90].  

2.1.1.3 MPRAGE 
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Magnetization prepared rapid acquisition gradient echo (MPRAGE) [172] creates high-contrast 

T1W images by playing out an inversion pulse such that the magnetization of the gray matter is very near 

zero during the excitation pulse. This creates contrast between the gray- and white-matter allowing for 

qualitative assessments of neurological health. This sequence is included to ensure neurological normality 

of enrolled subjects and for any analysis techniques which may require whole-brain information.  

2.1.1.4 FLAIR 

Fluid attenuated inversion recovery (FLAIR) imaging uses an inversion pre-pulse which is timed 

such that the water signal is very near zero when excitation occurs. This occurs in combination with a 

long echo time produces heavy T2-weighting and is very useful in identifying lesions [173].  

2.1.2. Magnetization Transfer Imaging 

Magnetization transfer (MT) imaging has been shown to be sensitive to myelin content and may 

be useful in evaluating disease progression in demyelinating diseases [174]. We deploy a single-slice MT 

imaging protocol which uses a three-echo Dixon readout in combination with fixation to achieve MT 

quantification of the optic nerve[175]. 

2.1.2.1 B0 Mapping 

A map of the main magnetic field (B0) is acquired to correct for any shift in the offset frequency 

prescribed when fitting a quantitative MT biophysical model. B0 estimation is acquired from two gradient 

echo phase images with ΔTE=2.3ms[176]. 

2.1.2.2 B1+ Mapping 

 Mapping of the RF transmit field is employed to correct for any shift in the actual 

transmitted RF power of the saturation flip angle for MT estimation. Mapping is achieved using the actual 

flip angle imaging method[177]. 

2.1.2.3 Multiple Flip Angle 

Longitudinal relaxation (T1) is estimated using a multiple flip angle (MFA) acquisition using six 

flip angles from 5° to 30° (TR/TE=20/4.6ms).  

2.1.3. Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) utilizes multiple diffusion weighted images (DWI) acquired with 
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different directions and diffusion times to estimate the diffusion of water within a single voxel. We 

acquire 32 gradient directions at b-value 1000 s/mm2. Five minimally weighted reference images (b0’s) 

were also acquired. Voxel resolution for the data is 2.5mm x 2.5mm x 2.5mm with a matrix of 96 x 96 

and 50 slices. The scan parameters were: SENSE=2.2; TR=7800ms; TE=53 ms; partial Fourier=0.7. Fold 

over direction was A-P. 

2.1.3.1 B0 Mapping 

As with MT imaging a map of the main magnetic field is acquired to accompany the DTI imaging 

to allow for correction of main magnetic field inhomogeneities.  

2.1.4. Optical Coherence Tomography Imaging 

Each subject has bilateral retinal and optic nerve head OCT imaging acquired for Protocol 2. 

OCT has been shown to be a useful surrogate for demyelination and progression of multiple sclerosis [25, 

62] and it is important to understand the interactions of OCT and retinal health and how it relates to other 

orbital structures investigated through MRI.  

 

2.2. Analysis 

All imaging data were transferred in DICOM format to a PACS node and then to an XNAT 

instance where they were converted to Neuroimaging Informatics Technology Initiative (NifTI) format 

[158]. Data are identified by randomized scan session codes and all subsequent processing was performed 

on the anonymized NifTI images.  

2.2.1. Structural MRI Analysis 

2.2.1.1 Clinical Standard of Care Orbital Segmentation 

The axial T1W and T2W clinical standard of care orbital MRI images were segmented using 

multi-atlas segmentation [178]. Separate T1W and T2W axial orbital MRI atlases were used, each 

consisting of 20 orbital MRI images containing expert drawn labels for eye globe, optic nerve, orbital fat 

and rectus muscles. The resulting segmentations were then used to calculate volumetric morphological 

features describing common radiological descriptive anatomical measurements [92]. The metrics 
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computed include: volume, maximal diameter and average diameter for each of the superior, inferior, 

medial and lateral rectus muscles; volume and diameter of the globe; length, volume, average area and 

maximal diameter of the optic nerve. Whole eye orbit features calculated included the Barrett index and 

volume crowding index. The result was 22 bilateral features for each subject. These metrics are compared 

across scan sessions and across subjects with reproducibility of each metric being computed as the 

percent difference between measurements.  

2.2.1.2 High resolution isotropic optic nerve radius estimation 

The high resolution isotropic optic nerve imaging was segmented using multi-atlas segmentation 

[178] using an atlas of high resolution isotropic MRI contained expert labels of optic nerve, eye globe and 

optic chiasm. The other anatomical structures considered in the clinical standard of care imaging are not 

visible with this protocol. The results of the multi-atlas segmentation are used as initialization for an 

intensity model fitting based method to estimate the radius of the optic nerve and surrounding CSF [87, 

90].  

2.2.1.3 Whole-brain segmentation 

The whole-brain MPRAGE acquired with Protocol 2 were affine registered to the MNI305 atlas 

[179] and bias corrected with N4 [180] using Advanced Normalization Tools (ANTs)[181] on the atlas 

and the target images. Non-rigid registration was performed from atlas images to the target image using 

Advanced Normalization Tools (ANTs) and symmetric image normalization algorithm (SyN)[182]. 

Image and label volumes for the atlas were then deformed to the target space with bi-cubic and nearest-

neighbor interpolation and fused with non-local spatial STAPLE [183, 184] and Adaboost correction 

[185]. Each individual voxel in the brain was labelled to one of the 133 labels obtained from the multi-

atlas labelling using the BrainCOLOR protocol [186]. T1 image labels were brought back to original 

target space with the ANTs inverse transformation. 

2.2.2. Diffusion Tensor Imaging Analysis 

Diffusion tensor imaging quality analysis reports were generated to ensure data quality and 

perform first level analyses including motion correction and goodness of fit metrics [144, 187-190]. 
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2.2.3. Optical Coherence Tomography Analysis 

The macular OCT images were segmented using a random forest classifier based method to 

segment 8 layers of the retina [191]. These layer segmentations are then reported as average layer 

thicknesses within different sectors of the macula which surround the fovea. Sectors are defined as the 

central 1mm diameter area surrounding the fovea, the inner 3mm diameter ring in superior, inferior, nasal 

and temporal directions and the outer 6mm diameter ring in the same directions with the rest of the image 

being described as just macula[192].  

 

3. Results 

 

3.1. MRI Results 

Table VII-2 shows population averages and standard deviations for all 44 metrics for each of the 

scan measurements split between measurements from the T1w and T2w axial orbital images. It can be 

noted that some metrics, such as right optic 

nerve average area display a difference in 

population means between T1w and T2w 

imaging. While others such as the globe 

diameter appear relatively similar across 

imaging modalities.  

Further visualization of four of these 

metrics can be seen in Figure VII-2 which 

shows the short- and long-term 

reproducibility of each of the four metrics. 

The red lines show measurements from T2w 

scans while the blue lines show 

 
Figure VII-2.  Raw short- (left) and long-term 

(right) reproducibility for four selected metrics 

showing T2w (red) and T1w (blue) measurements to 

illustrate reliability and stability of various metrics 

as well as T1w/T2w bias (bottom right).  
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measurements from T1w scans. Each short-term panel will have 20 lines (10 subjects for T1w and T2w) 

while each long-term panel has 26 lines (13 subjects for T1w and T2w). Again we note that some metrics, 

such as right optic nerve average area (lower right), show a bias in T1w measurements compared to T2w 

measurements while other metrics, such as left superior muscle average diameter (top left), do not.  

Also, the stability of metrics varies depending on scale as well as the nature of the measurement. 

Left globe volume (bottom left) is more stable than left superior muscle average diameter (top left) and 

right medial muscle maximal diameter (top right). However, left superior muscle average diameter (top 

left) is more stable than right medial muscle maximal diameter (top right) as the maximal diameter is 

more susceptible to segmentation errors than the average muscle diameter.  

Figure VII-3 shows the reproducibility of average muscle diameter metrics as compared across 

 

Figure VII-3.  Reproducibility as percent difference between corresponding short- and long-term 

reproducibility scans for T1w and T2w scans for the average diameter of the eight rectus muscles. 

Illustrating greater reliability of muscle metrics from T1w imaging over T2w imaging and the stability of 

both short- and long-term muscle metric reproducibility.  
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short- and long-term reproducibility using both T1w and T2w measurements. Reproducibility for all 44 

metrics aggregated across all subjects can be seen in Table VII-3. Further visualizations of metric 

reproducibility are available in supplementary material. Figure VII-3 shows reproducibility for all 8 rectus 

muscles’ average diameter and it is easily apparent that T1w measurements of muscle diameter are more 

reliable than T2w measurements. Short- and long-term percent differences were not significantly different 

for T1w and T2w measurements (Wilcoxon rank-sum; p<0.01). T1w and T2w percent differences were 

not significantly different for short- or long-term measurements (Wilcoxon sign-rank; p<0.01); 

 

3.2. OCT Results 

Table VII-4 shows population averages and standard deviations for all 17 macular OCT volumes 

acquired with Protocol 2. As expected, the central fovea is thinnest especially the retinal nerve fiber layer. 

Also, the retinal nerve fiber layer is thicker in the inner region superiorly and inferiorly as retinal ganglion 

cells carry visual information away from the fovea. While the outer region has the thickest retinal nerve 

fiber layer nasally as the cells converge on the optic nerve head.  

 

4. Discussion and Conclusions 

Metrics computed from T1w and T2w MRI showed variable reliability and reproducibility as 

would be expected from these modalities. The two modalities are shown to have inherent bias in the 

measurement of optic nerve size, likely due to the fact that these modalities are eliciting different contrast 

from the tissue and therefore any measurements made along contrast boundaries are likely measuring 

different anatomical structures. The optic nerve is part of the central nervous system and therefore 

contains all three meningeal layers. Our results would indicate that T1w and T2w contrast of the optic 

nerve occurs at different layers. This is further evidence that more sophisticated MRI acquisition schemes 

[89] and processing pipelines [87, 90] are required for understanding of any underlying anatomical 

changes occurring in the optic nerve.  

Imaging metrics should be chosen carefully and their susceptibility for artifactual or segmentation 
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error influence should be accounted for. Metrics which measure mean or standard deviation are more 

reliable than maximal metrics for example. These metrics could also be made more resistant to artifactual 

segmentation errors by incorporating robust estimators into their calculation.  

The nature of the imaging is also shown to be important in metric accuracy for rectus muscle 

measurements in Figure VII-3 where we see the superior reliability of T1w metrics for average muscle 

diameter. This is not surprising since the T1w contrast in the muscles is greater than that of T2w imaging. 

This is further evidence that contrast-to-noise ratio of an image directly impacts segmentation and 

morphological feature calculation performance.  

Herein we have presented a comprehensive acquisition and processing dataset for optic nerve 

characterization. We have acquired a wide range of optic nerve imaging sequences utilizing both MRI and 

OCT. We have automatically computed metrics based upon these imaging modalities and demonstrated 

their short- and long-term stability and reliability.  
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Table VII-1. MRI acquisition protocols and sequence parameters 

   

Scan Time Acquired Resolution (mm) 

Sequence Target Orientation (type) Minutes Seconds Left-right Ant-pos Foot-head SENSE (direction) 

Triplanar Survey Localizer - 0 30 250 250 50 - 

B1 Calibration 
 

Axial 0 31 8 10 8 - 

T2W Localizer Axial (MS) 0 30 1.2 0.9 4 2(RL) 

T2W Localizer Sagittal (MS) 0 36 4 1.2 0.9 2(AP) 

T2W Localizer Coronal (MS) 0 30 1.2 4 0.9 2(RL) 

mDixon test Coronal Coronal (MS) 0 8 1 3 1 2(RL) 

quantitative Magnetization Transfer (qMT) qMT Coronal (MS) 6 41 1 3 1 2(RL) 

Multi-Flip Angle (MFA) qMT Coronal (MS) 1 58 1.25 3 1.25 2(RL) 

B0 Map qMT Coronal (MS) 0 21 2 3 2 - 

B1 Map qMT Coronal (MS) 0 34 2 3 2 - 

Clinical T1W Spin Echo Structural Axial (MS) 3 21 0.88 0.7 2 - 

High resolution isotropic T2W TSE Structural Axial (3D) 7 48 0.55 0.55 0.55 2(RL) 

Clinical T1W Spin Echo Structural Coronal (MS) 3 20 0.88 3 0.7 - 

Clinical T2W Turbo Spin Echo Structural Axial (MS) 2 48 0.88 0.7 3 - 

Clinical T2W Turbo Spin Echo Structural Coronal (MS) 2 48 0.88 3 0.7 - 

T1W Fast Field Echo1 Structural Axial (3D) 4 28 1 1 1 2(AP) 

MPRAGE2 Structural Axial (3D) 4 53 1 1 1 2(RL) 

FLAIR Structural Sagittal (3D) 4 53 1.1 1.1 1.1 2.6(AP)/2.0(RL) 

B0 Map2 Diffusion Axial 0 57 3 3 2.5 - 

Diffusion Tensor Imaging (DTI)2 Diffusion Axial  10 8 2.5 2.5 2.5 2.2(AP) 

   

57 43 
    1=Only included in Protocol 1 

        2=Only included in Protocol 2 
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Table VII-2. Population averages and standard deviations of all MRI metrics 

  Rectus Muscle Volume 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Baseline T1  1489.47± 240.36 1127.22± 420.38 1057.26± 231.27 923.05± 186.57 1638.32± 302.05 896.49± 266.96 992.87± 173.85 875.60± 185.80 

Baseline T2  1611.60± 431.98  1223.52± 376.86  1487.50± 448.74  1127.93± 467.46  1512.17± 414.45  956.83± 216.87  1431.63± 515.87  1003.04± 309.62 

ST T1  1489.74± 214.65  1248.33± 389.78  956.15± 218.45  925.42± 194.34  1602.40± 272.77  1011.87± 362.21  981.61± 212.71  861.51± 227.71 

ST T2  1602.81± 385.11  1163.54± 174.27  1277.76± 306.64  1258.07± 582.52  1499.01± 369.17  988.18± 292.96  1246.88± 290.81  1007.97± 305.40 

LT T1  1536.58± 291.02  1178.13± 375.80  1042.95± 237.51  949.84± 155.54  1597.32± 368.37  957.64± 358.04  1011.09± 148.97  928.31± 174.05 

LT T2  1655.02± 455.83  1377.70± 261.74  1453.68± 426.38  1275.00± 345.71  1645.37± 375.09  1098.04± 244.91  1520.22± 493.30  1011.61± 307.74 

All T1  1506.94± 250.92  1172.36± 391.72  1029.99± 229.31  933.47± 173.90  1615.36± 316.24  944.17± 319.96  997.16± 170.78  892.02± 189.13 

All T2  1625.74± 422.74  1267.46± 308.30  1429.40± 413.22  1210.58± 450.24  1558.54± 387.99  1015.83± 247.99  1424.21± 469.45  1007.28± 301.14 

All Scans  1566.34± 350.82  1219.91± 353.79  1229.70± 388.28  1072.02± 366.89  1586.95± 353.14  980.00± 286.94  1210.68± 411.70  949.65± 256.69 

  Rectus Muscle Average Diameter 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Baseline T1 7.14± 0.53 6.22± 0.68 5.73± 0.55 6.08± 0.61 7.46± 0.69 5.84± 0.38 5.69± 0.42 6.07± 0.70 

Baseline T2  7.31± 0.62  6.45± 0.85  6.54± 0.81  6.11± 1.22  7.19± 0.73  5.90± 0.40  6.54± 0.90  5.76± 0.68 

ST T1  7.23± 0.51  6.35± 0.66  5.48± 0.57  6.07± 0.67  7.44± 0.65  6.10± 0.48  5.70± 0.63  5.96± 0.79 

ST T2  7.24± 0.59  6.43± 0.49  6.08± 0.65  6.33± 1.36  7.06± 0.69  5.95± 0.50  6.25± 0.68  5.86± 0.88 

LT T1  7.28± 0.60  6.21± 0.63  5.73± 0.60  6.19± 0.47  7.41± 0.75  5.76± 0.73  5.75± 0.41  6.19± 0.61 

LT T2  7.28± 0.88  6.70± 0.58  6.43± 0.82  6.34± 0.87  7.29± 0.65  6.11± 0.44  6.61± 0.96  5.75± 0.72 

All T1  7.21± 0.54  6.24± 0.65  5.67± 0.57  6.12± 0.56  7.44± 0.69  5.87± 0.56  5.71± 0.46  6.09± 0.68 

All T2  7.28± 0.71  6.54± 0.69  6.40± 0.79  6.24± 1.12  7.20± 0.68  5.99± 0.44  6.50± 0.87  5.78± 0.73 

All Scans  7.25± 0.63  6.39± 0.68  6.04± 0.77  6.18± 0.88  7.32± 0.69  5.93± 0.50  6.11± 0.80  5.93± 0.72 

  Rectus Muscle Maximal Diameter 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Baseline T1 9.09± 0.57 8.81± 1.46 7.69± 1.41 8.15± 0.80 9.56± 0.66 7.99± 1.06 7.36± 0.82 7.89± 0.94 

Baseline T2  11.21± 1.27  9.87± 1.53  9.44± 1.54  10.29± 2.34  11.29± 1.27  8.74± 1.15  9.29± 1.27  9.38± 1.66 

ST T1  9.32± 0.70  9.22± 1.47  6.94± 0.76  7.91± 0.88  9.43± 0.76  8.80± 1.32  7.61± 1.26  7.67± 0.97 

ST T2  11.62± 1.48  8.99± 0.99  9.12± 1.36  10.63± 2.18  11.34± 1.03  9.06± 0.80  9.10± 1.12  9.35± 1.67 

LT T1  9.14± 0.89  8.30± 1.15  7.32± 1.11  8.19± 0.69  9.50± 0.74  7.92± 1.29  7.28± 0.81  8.04± 0.87 
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LT T2  11.20± 1.52  10.54± 1.44  9.42± 1.04  11.15± 2.05  11.63± 1.41  9.33± 1.16  9.49± 1.58  9.58± 2.37 

All T1  9.16± 0.72  8.71± 1.37  7.39± 1.20  8.11± 0.77  9.51± 0.70  8.14± 1.23  7.39± 0.91  7.90± 0.91 

All T2  11.30± 1.39  9.92± 1.49  9.36± 1.31  10.68± 2.19  11.42± 1.26  9.03± 1.09  9.32± 1.34  9.45± 1.91 

All Scans  10.23± 1.54  9.32± 1.55  8.38± 1.59  9.40± 2.08  10.47± 1.40  8.58± 1.24  8.36± 1.50  8.67± 1.68 

  Barrett Index Globe Volume Globe Diameter Optic Nerve Curvilinear Length 

  Left Right Left Right Left Right Left Right 

Baseline T1 0.52± 0.06 0.48± 0.07 9317.13± 1015.44 9376.04± 1076.87 26.07± 0.95 26.13± 1.00 32.41± 1.80 33.07± 2.43 

Baseline T2  0.69± 0.27  0.67± 0.29  8304.91± 1016.40  8206.99± 1103.81  25.09± 1.01  24.98± 1.11  27.68± 4.37  28.42± 2.41 

ST T1  0.48± 0.08  0.49± 0.06  9363.96± 1105.51  9346.51± 1076.71  26.11± 1.04  26.10± 1.02  32.52± 2.31  32.98± 3.50 

ST T2  0.69± 0.15  0.56± 0.05  8221.04± 939.44  8166.46± 944.07  25.01± 0.93  24.95± 0.95  26.91± 3.14  28.13± 2.68 

LT T1  0.51± 0.05  0.51± 0.07  9609.13± 1015.10  9693.86± 1055.93  26.35± 0.92  26.42± 0.94  32.74± 3.03  32.89± 3.57 

LT T2  0.65± 0.12  0.63± 0.07  8391.91± 1065.57  8282.54± 1054.85  25.17± 1.05  25.06± 1.05  28.35± 4.32  28.66± 3.12 

All T1  0.51± 0.06  0.49± 0.07  9435.22± 1020.63  9487.08± 1057.31  26.18± 0.94  26.23± 0.97  32.56± 2.38  32.98± 3.06 

All T2  0.68± 0.20  0.63± 0.20  8318.83± 998.83  8226.10± 1031.21  25.10± 0.99  25.00± 1.03  27.76± 4.07  28.45± 2.69 

All Scans  0.59± 0.17  0.56± 0.16  8877.03± 1150.43  8856.59± 1216.78  25.64± 1.10  25.62± 1.17  30.16± 4.10  30.71± 3.66 

  Optic Nerve Straight-line Length Optic Nerve Volume Optic Nerve Average Area Optic Nerve Maximal Diameter 

  Left Right Left Right Left Right Left Right 

Baseline T1 26.80± 2.08 26.03± 1.68 709.54± 133.79 710.01± 163.24 26.96± 4.69 28.41± 5.97 7.43± 0.82 7.61± 0.71 

Baseline T2  22.58± 2.90  23.13± 2.32  923.96± 183.08  973.05± 178.02  43.20± 7.70  43.94± 6.34  10.63± 0.77  10.48± 0.93 

ST T1  26.71± 1.99  26.09± 2.25  676.93± 172.88  664.11± 168.06  25.71± 6.43  26.68± 6.83  7.12± 0.79  7.30± 0.86 

ST T2  23.01± 1.47  23.35± 2.12  820.21± 182.63  950.99± 130.06  37.80± 7.52  43.07± 6.37  9.93± 1.15  10.69± 0.95 

LT T1  27.16± 2.20  26.16± 2.17  731.20± 143.59  735.62± 112.94  27.49± 4.83  29.48± 4.10  7.43± 0.69  7.65± 0.66 

LT T2  23.02± 3.33  23.39± 2.71  890.90± 277.99  944.73± 162.33  40.24± 8.84  42.17± 5.28  10.08± 1.06  10.48± 0.69 

All T1  26.91± 2.07  26.09± 1.95  710.45± 144.50  709.50± 146.83  26.88± 5.08  28.43± 5.54  7.36± 0.76  7.56± 0.72 

All T2  22.83± 2.79  23.27± 2.38  889.19± 221.64  957.79± 160.01  40.93± 8.21  43.10± 5.89  10.27± 1.00  10.53± 0.84 

All Scans  24.87± 3.19  24.68± 2.59  799.82± 206.62  833.64± 197.24  33.91± 9.79  35.76± 9.31  8.82± 1.71  9.04± 1.68 

  Eye Orbital Volume Volume Crowding Index         

  Left Right Left Right         

Baseline T1 24885.36± 2920.66 24532.95± 2716.34 1.44± 0.15 1.46± 0.16         

Baseline T2  24942.84± 3444.07  24563.37± 3158.55  1.50± 0.41  1.39± 0.29         
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ST T1  24922.92± 2856.84  24200.89± 2470.01  1.45± 0.15  1.50± 0.15         

ST T2  25030.05± 2309.78  24458.44± 1966.88  1.36± 0.16  1.32± 0.15         

LT T1  25671.27± 2709.02  25323.90± 2688.53  1.43± 0.15  1.45± 0.16         

LT T2  25521.72± 3200.10  25073.71± 3094.41  1.48± 0.25  1.40± 0.19         

All T1  25183.97± 2792.18  24753.07± 2636.84  1.44± 0.15  1.47± 0.16         

All T2  25175.73± 3086.36  24729.17± 2870.82  1.46± 0.31  1.38± 0.22         

All Scans  25179.85± 2926.74  24741.12± 2741.15  1.45± 0.24  1.42± 0.20         

 

 

Table VII-3. Mean and standard deviation reproducibility of all MRI metrics 

  Rectus Muscle Volume 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Short-Term T1  3.34±16.46 20.39±60.17 -9.44±14.44 2.36±11.91 2.58±13.23 11.74±52.89 2.99±9.46 3.28±9.00 

Short-Term T2  4.57±17.99 8.63±38.54 -5.45±24.40 2.58±32.17 6.22±15.67 7.42±33.40 -4.67±12.02 5.35±33.19 

Long-Term T1  1.05±13.14 23.75±65.66 -3.25±10.99 -0.62±11.12 -4.47±15.18 21.52±63.26 0.16±4.94 2.13±12.74 

Long-Term T2  -2.49±16.46 22.39±48.99 0.12±26.72 36.95±66.77 5.66±12.32 23.81±49.89 8.48±25.62 3.36±23.23 

  Rectus Muscle Average Diameter 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Short-Term T1 2.51±7.25 1.09±11.35 -4.51±7.31 0.93±6.09 1.21±4.99 3.47±9.00 1.95±5.82 0.38±6.04 

Short-Term T2 -0.51±5.73 3.31±12.15 -4.25±12.21 -0.52±15.18 -2.15±7.78 1.77±8.63 -0.34±6.76 0.79±14.88 

Long-Term T1 1.34±6.21 0.82±12.73 -1.00±4.88 -0.28±4.79 -1.07±7.88 -0.32±14.57 0.16±3.10 -0.01±7.01 

Long-Term T2 -1.56±8.48 4.22±13.66 -1.37±12.03 9.74±19.46 1.51±10.14 4.35±9.10 1.17±8.94 1.19±9.04 

  Rectus Muscle Maximal Diameter 

  Left Superior Left Inferior Left Lateral Left Medial Right Superior Right Inferior Right Lateral Right Medial 

Short-Term T1 4.55±4.87 0.39±17.17 -9.99±13.91 -2.20±7.24 -0.00±7.16 5.62±9.65 4.13±10.17 1.66±6.15 

Short-Term T2 6.49±8.96 -1.45±11.73 1.23±18.96 3.53±26.89 3.77±6.32 9.79±9.13 3.96±15.43 5.64±21.18 

Long-Term T1 0.26±7.88 -3.48±19.91 -4.78±13.96 -1.87±5.54 -0.78±6.68 2.10±20.49 -1.47±6.21 -0.31±6.13 

Long-Term T2 -1.08±12.81 5.86±13.47 0.49±15.66 14.96±24.42 1.77±9.83 6.70±12.56 1.70±14.01 3.98±22.36 
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  Barrett Index Globe Volume Globe Diameter Optic Nerve Curvilinear Length 

  Left Right Left Right Left Right Left Right 

Short-Term T1 -4.47±25.52 8.47±25.42 1.30±2.79 0.29±1.83 0.42±0.92 0.09±0.61 0.23±7.56 0.77±11.07 

Short-Term T2 17.28±36.90 -4.94±15.97 -0.52±0.95 -0.33±2.37 -0.17±0.32 -0.11±0.79 -2.10±15.54 1.44±8.66 

Long-Term T1 0.30±15.69 8.91±18.43 2.26±2.66 2.53±3.28 0.74±0.88 0.83±1.08 1.23±8.57 0.23±11.98 

Long-Term T2 2.61±34.32 -0.44±22.88 0.55±2.91 0.23±2.10 0.17±0.96 0.07±0.69 2.17±16.73 0.47±13.71 

  Optic Nerve Straight-line Length Optic Nerve Volume Optic Nerve Average Area Optic Nerve Maximal Diameter 

  Left Right Left Right Left Right Left Right 

Short-Term T1 -0.65±2.82 0.47±3.70 -4.61±17.80 -5.96±10.51 -4.31±17.73 -6.00±12.92 -4.55±4.55 -2.86±6.07 

Short-Term T2 -0.78±8.18 2.09±8.25 -6.47±9.84 3.48±10.59 -4.29±11.58 2.68±15.28 -4.45±9.76 4.74±9.17 

Long-Term T1 0.58±2.24 -0.31±4.56 1.12±10.96 1.62±13.68 0.93±11.17 2.25±13.82 -0.41±6.44 -0.83±7.28 

Long-Term T2 1.92±17.05 -0.07±10.51 -3.23±22.83 -4.22±12.79 -4.92±14.17 -4.16±11.21 -4.57±8.96 -0.42±5.97 

  Eye Orbital Volume Volume Crowding Index         

  Left Right Left Right         

Short-Term T1 0.39±4.19 0.44±4.00 0.92±5.64 1.47±7.51         

Short-Term T2 0.59±3.60 -0.26±5.09 -3.45±6.32 2.70±11.57         

Long-Term T1 1.92±5.24 1.81±4.54 0.11±6.78 0.27±6.64         

Long-Term T2 2.22±4.61 2.14±3.86 -0.26±11.80 -0.70±9.93         
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Table VII-4. Average and standard deviations of OCT segmentation thicknesses averaged over the central fovea (1mm diameter), inner regions 

(1-3mm diameter), outer regions (3-6mm diameter) and the rest of the macula 

Region 

  Inner Outer   

Center Superior Inferior Nasal Temporal Superior Inferior Nasal Temporal Macula 

RNFL  9.35±1.01  27.17±2.99  27.47±2.56  21.90±2.20  17.57±1.22  41.11±4.41  40.94±4.25  44.47±4.18  19.89±2.04  34.71±3.24 

GCL+IPL  34.75±8.34  95.79±4.10  94.43±4.55  94.31±4.14  91.65±4.78  71.54±5.52  68.76±5.99  79.25±6.14  77.35±5.61  73.74±4.42 

INL  20.80±4.23  43.58±1.88  44.40±1.86  43.27±2.32  41.46±2.10  36.33±2.31  36.00±2.46  38.95±1.79  37.86±2.34  36.67±1.66 

OPL  15.53±2.80  22.09±1.33  23.89±2.50  22.80±3.31  21.85±1.18  20.58±0.98  21.79±1.29  22.56±1.36  21.36±0.65  21.18±0.89 

ONL  91.95±7.65  73.81±5.86  68.72±6.32  76.48±7.37  74.14±5.50  64.04±5.18  55.72±4.95  62.41±6.12  60.89±5.14  63.68±5.09 

IS  23.22±1.10  18.61±0.90  18.37±0.96  19.36±1.14  19.04±0.65  16.78±0.61  16.21±0.48  17.02±0.66  16.49±0.46  17.18±0.49 

OS  35.57±1.46  28.94±1.28  28.61±1.00  29.52±1.29  29.00±1.09  27.67±0.86  28.01±0.94  27.51±0.88  27.46±0.50  28.33±0.53 

RPE  32.40±2.18  33.25±2.62  32.61±2.18  33.18±2.47  32.47±2.11  33.40±2.11  31.80±2.17  32.55±2.12  32.45±1.94  32.57±1.96 

Total  263.59±17.84  343.23±8.46  338.50±9.52  340.82±9.23  327.18±9.27  311.44±9.89  299.22±12.79  324.74±12.68  293.75±11.05  308.08±8.81 
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Chapter VIII. Structural-Functional Relationships between Clinical Eye Orbital MRI and 

Visual Assessments 

 

1. Introduction 

The onset of eye diseases and impairment of vision are often accompanied by changes in physical 

characteristics of eye orbital structures. These changes in orbital structures may play a significant role in 

the progression or recurrence of eye diseases. Magnetic resonance imaging (MRI) of the eye orbit can be 

used to assess the risk and progression of optic diseases and visual loss [22]. Imaging data after damage to 

the orbit of the eye in trauma situations can be related to decline in visual function [21]. Orbital metrics of 

the eye such as Barrett Index have also been shown to be associated with dysthyroid optic neuropathy in 

patients with Graves’ orbitopathy [19-20]. 

Other studies show on a case-by-case basis that orbital structure does not just have an effect on 

eye function, but can also be used as a predictive measure for the decline of visual function [19-21]. The 

orbit is a complex environment—many different factors affect orbital structure and loss of vision. 

However, these studies suggest that a deeper relationship exists between orbital structure and the onset of 

optic conditions. The goal of this study was to explore the relationship between clinical and structural 

metrics by correlating large sets of structural metrics (e.g., Barrett Index) with the clinically obtained 

visual field scores (e.g., visual acuity score). This was done in order to determine if a relationship 

between the two could be obtained, or if a general statistical model for the relationship between the orbital 

structure metrics of the eye and visual field scores can be determined. 

The subjects in this study were selected because they had magnetic resonance imaging (MRI) 

performed on the orbit of the eye as a regular part of their clinical care. They all had clinical visual 

disability scores available as well. An experienced undergraduate manually labeled approximately 20 

subjects of each MRI contrast mechanism. Then, multi-atlas segmentation was performed to segment the 

extraocular rectus muscles, eye globes, optic nerves, and orbital fat [2,3]. Twenty-one different structural 

metrics were then calculated from the segmentation pipelines. For each visual metric, a stepwise 
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regression function fit a generalized linear model to a Poisson distribution in order to determine the 

amount of variance in visual function metrics that can be explained by the structural metrics of the eye 

orbit. 

 

2. Methods 

 

2.1. Patient Data 

The relationship between visual function and MRI-derived orbital structures were investigated in 

a retrospective cohort of patients at Vanderbilt University Medical Center. Subjects were selected based 

on both having met clinical criteria for eye disease and undergoing MRI imaging as part of their regular 

clinical care. The eye diseases incorporated in this study are: Thyroid Eye Disease: toxic diffuse goiter 

without thyrotoxic crisis or storm (242.00), endocrine exophthalmos (376.2*), thyrotoxic exophthalmos 

(376.21), exophthalmic opthalmoplegia (376.22); Orbital Inflammation: acute inflammation of the orbit 

(376.0), acute inflammation of the orbit unspecified (376.00), orbital cellulitis (376.01), orbital periotisis 

(376.02), chronic inflammation of orbit unspecified (376.10), orbital granuloma (376.11), orbital myositis 

(376.12); Optic Nerve Edema: benign intracranial hypertension (348.2); Glaucoma: low-tension open 

angle glaucoma (365.12); Intrinsic Optic Nerve Disease: optic neuritis (377.3), optic neuritis unspecified 

(377.30), optic pappilitis (377.31), retrobular neuritis (acute), nutritional optic neuropath (377.33), toxic 

optic neuropathy (377.34), other optic neuritis (377.39), other disorders of the optic nerve (377.4), 

ischemic optic neuropathy (377.41), hemorrhage in optic nerve sheaths (377.42), optic nerve hypoplasia 

(377.43), other disorders of the optic nerve (377.49).  

The study was conducted on 241 subjects (157 female) over 510 scan sessions. Each of the 

sessions had an instance of visual function testing available within 6 months of the scan. Visual function 

was assessed using the American Medical Association Functional Vision Score (FVS), which is 

calculated based on visual acuity and visual field testing acquired through routine clinical care. FVS is 

described through a subset of four other scores. The Visual Acuity Scores (VAS) of the left and right eyes 
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was combined with the better VAS of both eyes in a weighted manner to calculate the Functional Acuity 

Score (FAS). The Visual Field Scores (VFS) of the left and right eyes were combined with the better VFS 

of both eyes in a weighted manner to calculate the Functional Field Score (FFS). The FVS is calculated 

using the resulting FAS and FFS. [1]  

 

2.2. Image Processing 

Segmentation of the MRI data for computation of image-derived anatomical metrics was based 

off a previously described multi-atlas segmentation method [86, 178], which automatically segments the 

optic nerves (including the surrounding CSF), extraocular rectus muscles, eye globes, and orbital fat. This 

method uses 20 manually labeled atlas images, which include healthy controls as well as multiple 

sclerosis patients. Three atlases, T2W, FLAIR and proton density weighted images, each consisting of 20 

images, were used in this study. Each target scan type was manually assigned to an atlas based on contrast 

similarity, with T1w imaging being segmented with FLAIR atlases due to similar orbital contrast. The  

target image to be segmented was registered to each of the 20 atlas images using an affine 

registration [107]. The sum of the globe labels was used as a probability map in a majority voting fashion, 

and the area corresponding to >50% globe probability, or 10 atlases, was used to compute the centroids of 

the two eye globes. These centroids were dilated by 30mm in the left-right direction, 40mm in the 

superior-inferior direction, 60mm posterior direction, and 30mm anterior direction. The cropped images 

were segmented using an affine and non-rigid registration of cropped atlases [143]. The manual labels of 

the atlas images were transformed to the target space using these registrations and are fused using non-

local spatial STAPLE (NLSS) [114, 144]. Kalman filters were used to isolate the Superior Rectus Muscle, 

Inferior Rectus Muscle, Lateral Rectus Muscle and Medial Rectus Muscle from the muscle labels 

obtained from the multi-atlas segmentation pipeline [8].  

From the segmented orbital structures a MATLAB program computed both traditional radiology 

measures and novel morphological metrics and generated a set of descriptive features for each patient. For 

each of the segmented structures, volume and size features were calculated. These include: volume, 
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maximum diameter, and average diameter for the superior, inferior, medial, and lateral rectus muscles [9-

12]; volume and diameter of the globe[193-196]; and length, volume, average area, and maximum 

diameter of the optic nerve[197, 198]. Features that describe the eye orbit as a whole were also calculated. 

These include: orbital volume; Barrett index[199]; and the volume crowding index[200]. All 21 features 

are calculated bilaterally for each patient. 

 

Table VIII-1. ICD-9 codes for disease cohorts 

Disease ICD-9 codes Description 

Thyroid Eye Disease 242.00 Toxic diffuse goiter without thyrotoxic crisis or storm 

  376.2 Endocrine exophthalmos 

  376.21 Thyrotoxic exophthalmos 

  376.22 Exophthalmic ophthalmoplegia 

Orbital Inflammation 376.0, 376.00 Acute inflammation of orbit 

  376.01 Orbital cellulitis 

  376.02 Orbital periostitis 

  376.1 Chronic inflammation of orbit 

  376.11 Orbital granuloma 

  376.12 Orbital myositis 

  373.13 Abscess of eyelid 

Optic Nerve Edema 348.2 Idiopathic intracranial hypertension 

  377.0, 377.00 Papilledema 

  377.01 Papilledema, increased intracranial pressure 

  377.02 Papilledema, decreased ocular pressure 

Glaucoma 365.0*  Borderline glaucoma 

  365.1*  Open-angle glaucoma 

  365.2* Primary angle-closure glaucoma 

  365.3* Corticosteroid-induced glaucoma 

  365.4* Glaucoma associated with congenital anomalies,  

dystrophies, and systemic syndromes 

  365.5* Glaucoma associated with disorders of the lens 

  365.6* Glaucoma associated with other ocular disorders 

  365.7* Glaucoma stage, unspecified 

  365.8* Other specified forms of glaucoma 

  365.9* Unspecified glaucoma 

Intrinsic Optic Nerve Disease 377.3* Optic Neuritis 

  377.4* Other disorders of optic nerve 
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2.3. Statistical Modeling 

For each of the nine visual function targets (right eye VAS, left eye VAS, both eyes VAS, right 

eye VFS, left eye VFS, both eyes VFS, FAS, FFS, FVS), a forward stepwise univariate regression 

procedure (stepwiseglm, MATLAB 2014b, Mathworks, Natick, MA) was conducted with the structural 

metrics listed above. Structural metrics are combined at the subject level using a median, assuming no 

significant changes across multiple scan sessions each within 6 months of the visual assessment. 

Significant individual correlates (t statistic) were reported along with the coefficient of variation R2 for 

each regression. The models were created for all patient data overall as well as within disease subgroups 

with enough subjects for statistical power. The base regression model was  

𝑦 = 𝛽1𝑥1 + ⋯+ 𝛽𝑛𝑥𝑛 (VIII.1) 

where 𝑦 is a visual function metric and 𝑥1 …𝑥𝑛 are structural metrics derived from the MRI data. 

Since the visual scores are integer values the response variable was fit to a Poisson distribution. This 

model is applied to all subjects, subjects within each of the five disease cohorts (when enough subjects are 

present), with only lateral eye metrics and outcomes, and with age, sex, years since diagnosis and age*sex 

effects added.  

 

3. Results 

 

3.1. Image Processing 

Using the multi-atlas segmentation pipeline, 1,995 MRI volumes across the 510 scan sessions 

were associated with a contrast atlas and labeled with optic nerves (including the sub-arachnoid CSF), 

extraocular rectus muscles, eye globes, and orbital fat. Radiological and morphological features were 

calculated for each image volume.  
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3.2. Statistical Modeling 

All 1,995 sets of morphological features were combined using the median of all measurements. 

Three subjects were excluded from analysis because their optic nerve length measurements were >3 

standard deviations from the mean. Each visual function measurement was regressed with all the 

structural metrics from both eyes as shown in Table VIII-2. These nine regression models were all 

significant (p < 0.001). The structural metrics were separated into left eye structural metrics and right eye 

structural metrics. RVAS and RVFS were regressed with the right eye structural metrics, and LVAS and 

 

Figure VIII-1. Example CT and MRI scans (top row) were expertly labeled (center row, lower row) and 

used in multi-atlas segmentation pipelines. 
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LVFS were regressed with the left eye structural metrics. These four regression models were all 

significant (p < 0.001). As noted in Table VIII-2, the fraction of variance explained by all four models in 

the second set of regressions were less than the amounts of variance explained in their corresponding 

models in first set of regressions using structural metrics from both eyes, indicating significant 

explanatory power in contra-lateral metrics. Each visual function measurement was also regressed with all 

structural metrics from both eyes within each of the three disease cohorts with enough subjects. The other 

two disease cohorts were excluded from this analysis as they contained only 12 subjects (thyroid eye 

disease) and 38 subjects (glaucoma) which the authors determined was not a reasonable number of 

subjects for any amount of significant results. Within the subjects with ICD-9 codes included in the 

edema cohort we can see that the variance explained is much higher than that of all subjects and the 

addition of age, sex and age*sex terms even further increase variance explained. The same trend can be 

seen for orbital inflammation subjects. The subjects within the optic neuropathy cohort have similar 

results to that of the regression with all subjects included. We also note that for all models we capture 

more variance in visual field metrics than in visual acuity metrics. This is likely due to the fact that visual 

acuity is measured as best corrected visual acuity and power is lost with corrective lenses as compared to 

uncorrected visual field measures.  
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Table VIII-2. Explanatory R2 for various regression models. All models significant at p<0.001. 

R-squared (ordinary) LVFS RVFS LVAS RVAS VFS VAS FFS FAS FVS 

All Subjects 0.203 0.194 0.158 0.225 0.145 0.084 0.174 0.132 0.190 

Corresponding eyes 0.126 0.067 0.016 0.057 - - - - - 

Edema (90 Subjects) 0.478 0.376 0.438 0.338 0.383 0.170 0.434 0.187 0.449 

Edema + age/sex  0.499 0.392 0.482 0.338 0.390 0.170 0.434 0.187 0.461 

Orbital Inflammation (90 Subjects) 0.476 0.480 0.376 0.379 0.366 0.124 0.438 0.213 0.443 

Orbital Inflammation + age/sex 0.530 0.511 0.485 0.374 0.364 0.124 0.438 0.213 0.456 

Optic Neuropathy (144 Subjects) 0.250 0.292 0.196 0.306 0.265 0.091 0.274 0.102 0.261 

Optic Neuropathy + age/sex 0.269 0.292 0.223 0.323 0.276 0.091 0.277 0.102 0.254 
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4. Discussion and Conclusion 

This research explores the macro relationship between eye orbit structural metrics and visual 

function measurements. The results indicate a significant relationship between structural and visual 

metrics. The results show broad correlation between structural metrics and visual function with limited 

explanatory power and significant contra-lateral explanatory power. This analysis is further refined by 

breaking down the metrics into manually stratified disease cohorts which represent similar disease 

processes. By doing so our models can better capture variability and increase explanatory power of the 

models. This would indicate that although the predictive power of broad structural-functional 

relationships is limited, within disease cohorts there are trends which are more powerful predictors. These 

results agree with literature on disease processes in that orbital inflammation and edema cause gross 

morphological changes in eye orbit structure which meaningfully correspond to visual deficits. Optic 

neuropathy is not known to have gross morphological changes on orbital structures and therefore has 

similar predictive power to the overall cohort of all disease subtypes. By separating similar disease groups 

we are able to better model the disease process and explain visual function loss through structural 

changes.  

This study is limited in its scope and understanding of underlying disease processes. Further 

investigation into the strongest predictors of visual function loss could yield interesting insights into 

morphological changes which impact visual field. More detailed analysis of changes in visual field 

according to regions of loss could yield interesting effects of morphological changes on regional visual 

field deficits. More subjects for each disease cohort would increase the predictive power and refine 

results. Another limitation of this work is its lack of incorporation of time dependence on data. We define 

the broad window of 6 months for associating a visual assessment with an imaging study as well as then 

aggregating all scans for a single subject. A more refined treatment of the time course variability of these 

effects would also increase study reliability and applicability.  
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Chapter IX. Numerical Optimization of Quantitative Magnetization Transfer Sampling 

Schemes 

 

1. Introduction 

Quantitative magnetization transfer (qMT) sampling schemes have not changed drastically since 

the earliest implementations and have been based off uniform sampling of the MT z-spectrum [71, 201, 

202]. Previous work attempted to numerically optimize qMT of the brain through numerical propagation 

of error, but similar studies have not been attempted to obtain robust estimates of qMT-derived indices in 

the human spinal cord [203]. In this work we use Monte Carlo fitting of simulated data to optimize a qMT 

acquisition protocol to improve the accuracy of the pool-size ratio (PSR) estimation in the human spinal 

cord in vivo. We will begin by formulating our qMT model from the Bloch equations, then proceed to 

describe the experiments conducted to optimize and validate qMT sampling.  

 

2. Background 

Magnetization transfer (MT) is a known effect within biological systems in which an off 

resonance saturation pulse will transfer magnetization to free, mobile, water protons through cross 

relaxation [204]. This type of interaction is typically modeled with a two-pool, or binary-spin-bath, 

model. The two-pool model contains a free water (liquid) pool and a semisolid pool of hydrogen protons 

bound to semi-solid macromolecules [70]. The mobility of protons within each of these pools differs and 

a quantitative description of this model will represent the relative size of each of the pools as well as the 

magnetic properties of both pools. In this work we utilize pulsed z-spectroscopic imaging and extend our 

model as follows from previous works [202, 205].  

As a starting point of our derivation we begin with the model of pulsed cross-relaxation which 

extends the Bloch equations for two spins coupled by cross-relaxation: 

𝑑𝑀𝑥
𝐹

𝑑𝑡
=  −

𝑀𝑥
𝐹

𝑇2
𝐹 − 2𝜋∆𝑀𝑦

𝐹 (IX.1) 
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𝑑𝑀𝑦
𝐹

𝑑𝑡
=  2𝜋∆𝑀𝑥

𝐹 −
𝑀𝑦

𝐹

𝑇2
𝐹 −  𝛾𝐵1(𝑡)𝑀𝑧

𝐹 (IX.2) 

𝑑𝑀𝑧
𝐹

𝑑𝑡
=   𝛾𝐵1(𝑡)𝑀𝑦

𝐹 − (𝑅1
𝐹 + 𝑘)𝑀𝑧

𝐹 + 𝑘
(1 − 𝑓)

𝑓
𝑀𝑧

𝐵 + 𝑅1
𝐹(1 − 𝑓) (IX.3) 

𝑑𝑀𝑧
𝐵

𝑑𝑡
=   − [𝑅1

𝐵 + 𝑘
1 − 𝑓

𝑓
+  𝜋𝛾2𝐵1

2(𝑡)𝑔(∆, 𝑇2
𝐵)]𝑀𝑧

𝐵 + 𝑘𝑀𝑧
𝐹 + 𝑅1

𝐵𝑓 (IX.4) 

Where 𝑀𝑥/𝑦/𝑧
𝐹/𝐵

 is the x-, y- and z-components of the magnetization of the free (F) or bound (B) 

pool. ∆ and 𝐵1(𝑡) are the offset frequency and amplitude of the RF saturation pulse. 𝑅1
𝐹/𝐵

is the inverse of the 

longitudinal relaxation time ( 𝑇1
𝐹/𝐵

) for the free or bound pool. 𝑘  is the effective relaxation rate of 

magnetization from the free to bound pools. 𝛾 is the gyromagnetic ratio. 𝑓 is related to PSR as 𝑓 =
𝑃𝑆𝑅

1+𝑃𝑆𝑅
 

.  𝑔(∆, 𝑇2
𝐵) is the absorption line-shape of the bound pool spins, or the amount of absorption of the bound 

pool at a given offset frequency. Although there are a number of choices for this absorption line shape 

function we use the superLorentzian function which has been shown to have the best fit to experimental 

data of any single-parameter line shapes [206, 207]. Any line shapes which better fit experimental data 

require more parameters and are therefore more difficult to fit [208]. Since the goal of this work is to 

reduce scan times and produce accurate fits with the least number of offsets we choose to adopt the best 

single parameter lineshape.   

𝑔(∆, 𝑇2
𝐵) =  √

2

𝜋
∫

𝑇2
𝐵

|3 cos2 𝜃 − 1|
exp [−2(

2𝜋∆𝑇2
𝐵

3 cos2 𝜃 − 1
)

2

] sin𝜃 𝑑𝜃
𝜋/2

𝑜

 (IX.5) 

 

With the underlying equations formalized above we now turn to the MT-prepared spoiled 

gradient echo pulse sequence which can be broken down into four distinct segments in which Equations 

V.1-(IX.4) need to be solved. These four time intervals are: (1:s) off-resonance saturation, (2:d) delay for 

spoiling, (3:p) readout pulse and (4:r) delay for signal readout and relaxation. For simplicity we assume 

that the direct effect of the off-resonance saturation on the free pool is negligible and the sequence is 
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ideally spoiled [209]. We define the magnetization vector M𝑖 as the z-magnetization of the free and bound 

pools at the end of each of time intervals, 𝑖.  

M𝑖 = [
𝑀𝑧

𝐹(𝑡 = 𝑡𝑖)

𝑀𝑧
𝐵(𝑡 = 𝑡𝑖)

] , 𝑖 =  s,d,p,r (IX.6) 

We also assume that the time-dependant RF amplitude, 𝐵1(𝑡), can be approximated as a square-

wave RF pulse of constant amplitude and the same duration with effective amplitude, 𝐵1𝑒, defined such that: 

𝐵1𝑒 = √∫ 𝐵1
2(𝑡)𝑑𝑡/𝑡𝑚

𝑡𝑠

0

 (IX.7) 

These simplifications allow us to solve Equations V.1-(IX.4) for the saturation time interval (𝑖 =

 s): 

Ms =  exp[(R + W)𝑡s] ∙ Mr + [I − exp((R + W)𝑡s)] ∙ M𝒔𝒔 (IX.8) 

Where R is the relaxation matrix: 

R = 

[
 
 
 
 −𝑅1

𝐹 − 𝑘 𝑘
1 − 𝑓

𝑓

𝑘 −𝑅1
𝐵 − 𝑘

1 − 𝑓

𝑓 ]
 
 
 
 

 (IX.9) 

I is the 2x2 identity matrix; W is the diagonal matrix: 

W = −diag(𝑊𝐹 ,𝑊𝐵) (IX.10) 

Where the elements 𝑊𝐹,𝐵
is the average saturation rate for the free or bound pool respectively 

𝑊𝐹,𝐵 = 𝜋𝛾2𝐵1𝑒
2 𝑔(∆, 𝑇2

𝐹,𝐵) (IX.11) 

Note that the line shape, 𝑔(∆, 𝑇2
𝐹,𝐵), is superLorentzian for the reasons described above for the 

bound pool but follows a Lorentzian distribution for the free pool which follows from the Bloch equations 

[210].  

𝑔(∆, 𝑇2
𝐹) =  

𝑇2
𝐹

𝜋
 

1

1 + (2𝜋∆𝑇2
𝐹)2

 (IX.12) 

The steady-state magnetization vector, M𝒔𝒔, is: 
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M𝒔𝒔 =
1

𝐷
 [
(1 − 𝑓)(𝐴 + 𝑅1

𝐹𝑊𝐵)

𝑓(𝐴 + 𝑅1
𝐵𝑊𝐹)

] (IX.13) 

Where 𝐴 is the determinant of the relaxation matrix, R: 

𝐴 = 𝑅1
𝐹𝑅1

𝐵 + 𝑅1
𝐹𝑘

1 − 𝑓

𝑓
+ 𝑅1

𝐵𝑘 (IX.14) 

And 𝐷 is: 

𝐷 = 𝐴 + (𝑅1
𝐹 + 𝑘)𝑊𝐵 + (𝑅1

𝐵 + 𝑘
1 − 𝑓

𝑓
)𝑊𝐹 + 𝑊𝐹𝑊𝐵 (IX.15) 

The non-irradiated case can be solved by analyzing Equations V.3 and (IX.4) at 𝐵1 = 0; 

Md,r = exp(R𝑡d,r) ∙ Md,r + (𝑰 − 𝑒𝑥𝑝(𝑹𝑡𝑑,𝑟)) ∙ Meq (IX.16) 

Where the equilibrium magnetization, Meq, is: 

Meq = [
1 − 𝑓

𝑓
] (IX.17) 

The readout pulse ( 𝑖 =  p ) is described by a flip angle (α). We accept the conventional 

assumption that the readout pulse has no effect on the bound pool: 

Mp = C ∙ Ms (IX.18) 

Where C is the diagonal matrix, 

C = diag ( cos α, 0 ) (IX.19) 

Using Equations (IX.8), (IX.13) and (IX.16) we can solve for the z-component of the free pool 

magnetization directly before the readout pulse which will be proportional to our signal intensity. For 

simplicity we define some repetitive terms as: 

Es = exp [(R + W)𝑡s] 

Ed = exp (𝐑𝑡d) 

Er = exp (𝐑𝑡r) 

  

(IX.20) 

Using these terms we can write the z-component of the free pool magnetization before the 
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readout pulse as: 

 

M𝑧s
𝐹 = { 𝑰 − exp[𝑹(𝑡𝑠 + 𝑡𝑑 + 𝑡𝑟)] ∙ 𝑒𝑥𝑝(𝑾𝑡𝑠) ∙ 𝑪}−𝟏

∙  {[𝑬𝑠 ∙ 𝑬𝑑 ∙ (𝑰 − 𝑬𝑟) + (𝑰 − 𝑬𝑑)] ∙ 𝐌𝒆𝒒 + [𝑬𝑑 ∙ (𝑰 − 𝑬𝑠)]

∙ M𝒔𝒔} 

(IX.21) 

This formulation is quite intuitive but it is useful computationally to compute the inverse term 

first and check for singularity which occurs as 𝑓 → 0. This formulation allows for us to simulate a given 

qMT experiment or fit this model to experimental data.  

 

3. Methods 

 

3.1. qMT Model Implementation  

The qMT model was implemented in Matlab (Natick, Massachusetts). Estimation of empirical 

data is done by sequential fitting of 𝑇1 to multi flip angle (MFA) using the signal equation: 

𝑀𝑧 =
1 − exp (−

𝑇𝑅
𝑇1

)

1 − cos 𝜃  exp (−
𝑇𝑅
𝑇1

)
sin 𝜃 (IX.22) 

Where 𝑇𝑅 is the repetition time for the MFA acquisition and 𝜃 is the excitation flip angle for 

each acquisition of the MFA. The Matlab optimization function lsqnonlin is used to fit three parameters, 

𝑓, 𝑘 and 𝑇2
𝐵. We use 𝑅1

𝐹 from the MFA fit and assume 𝑅1
𝐹 = 𝑅1

𝐵  and we also use the assumption that 

𝑇2
𝐹𝑅1

𝐹 = 0.0232 to estimate 𝑇2
𝐹 [211].  

 

3.2. Optimization 

To optimize the sampling scheme for qMT z-spectra, we started with a log-linearly spaced 

sampling scheme and iteratively swapped points with those from a denser sampling scheme, accepting the 
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permutation with the lowest PSR mean squared error. The initial model comprised of 8 offset frequencies 

evenly distributed in log-space from 15Hz – 100kHz at two RF MT saturation powers, 900° and 1200°. A 

denser sample set of 32 offsets at these same two powers were generated as possible sampling points. The 

swapping of each original point was evaluated iteratively by evaluating the mean squared error of PSR 

estimation of each potential model using 10,000 Monté Carlo simulations of Gaussian random noise at 

SNR=100. The best performing swap (or the original model) was chosen and the next point was then 

evaluated. Once all 16 points in the original model had been evaluated for superior performance, the final 

model consisted of the sampling scheme in Table IX-1, column 2. Figure I.1 shows a graphical 

representation of the three sampling schemes evaluated including the original starting scheme (left) and 

the optimized scheme (middle).  

 

3.3. Acquisition  

One healthy volunteer was imaged using a 3.0T Achieva whole body scanner (Philips, The 

Netherlands). A two-channel transmit body coil was used for excitation and a 16-channel SENSE 

neurovascular coil for reception. A volume centered near C2-C3 was selected from a T2-weighted survey 

image. qMT data were acquired over this volume using a 3D MT-prepared spoiled gradient echo 

sequence. MT-preparation used a 20ms single-lobe sinc-Gauss pulse, saturation flip angle (αMT) and 

offset frequencies (Δω) as well as other imaging parameters prescribed in Table IX-1, 

FOV=150x150x60mm3 , resolution = 1.0x1.0x5.0mm3, 2 signal averages. B1 was measured in the same 

volume using the actual flip angle imaging method TR1/TR2=30/130ms, α=60°)[177]; ΔB0 from gradient 

echo phase images acquired (ΔTE=2.3ms)[176]; and T1 using a multiple flip angle (MFA) acquisition 

(TR/TE=20/4.6ms, α=5, 10, 15, 20, 25, 30°). A high-resolution (0.65x0.65x5.0mm3) multi-echo gradient 

echo (mFFE) anatomical image was also acquired for registration (TR/TE/ΔTE=700/6.5/8.2 ms, α=28°). 

Total scan time for all three sampling schemes and accompanying scans was 44 minutes.   
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Table IX-1. MT Acquisition Parameters 

Acquisition Log-spaced  Optimized  High offsets 

αMT = 900° Δω = 15, 53, 186, 653, 

2297, 8081, 28427, 100000 

Hz 

Δω = 47, 62, 186, 653, 

1875, 32107, 42653, 

100000 Hz 

Δω = 1000, 1500, 2000, 2500, 

8000, 16000, 32000, 100000 

Hz 

αMT = 

1200° 

Δω = 15, 53, 186, 653, 

2297, 8081, 28427, 100000 

Hz 

Δω = 15, 82, 186, 653, 

2297, 7759, 56663, 75275 

Hz 

Δω = 1000, 1500, 2000, 2500, 

8000, 16000, 32000, 100000 

Hz 

TR/TE/α 90/4.9ms/7° 90/4.9ms/7° 50/2.4ms/6° 

 

3.4. Processing 

All image volumes were coregistered to the MFA to correct for motion artifacts using reg_aladin 

from niftyreg [107]. Measurements were normalized to the highest offset acquired (>70kHz) and fit to a 

two-pool model2 of the MT effect also using MFA, B1
+ and B0 maps for correction of field 

inhomogeneities and T1 variations as described above. Gray matter (GM) and white matter (WM) was 

manually labeled on the mFFE scan and propagated to each of the qMT fits for comparison of PSR 

contrast.  

 

4. Results 

Figure IX.2 shows the anatomical mFFE (left) as compared to the PSR maps generated from the 

log-spaced sampling scheme (A), optimized sampling scheme (B) and high offsets sampling scheme 

which avoids lower offsets nearer to water (C). Qualitatively the PSR map in (B) using the optimized 

 

Figure IX.1. Comparison of sampling schemes showing original log-spacing (left), optimized 

spacing (middle) and high offsets approach (right).  



116 

 

sampling scheme presents the best visualization of the spinal cord GM butterfly seen in the mFFE. Figure 

IX.3 shows a comparison of PSR for both GM and WM. For all three methods PSR was significantly 

different between GM and WM by Wilcoxon rank-sum (p<0.01). The optimized sequence shows lower 

variance within WM than the other two methods while maintaining the superior contrast of the high 

offsets approach.  

 

5. Discussion  

These initial results are promising that numerical optimization of qMT sampling using 

computational modeling can translate to superior image acquisition schemes. This work presents a first 

proof of concept that optimizing qMT sampling schemes can improve upon current norms. The 

optimization framework used here is superior to the numerical propagation of error used by Levesque 

[203] because it more closely mimics the experimental setup of acquiring imaging with noise and fitting 

the empirical data numerically. This framework allows for fewer assumptions than the numerical 

propagation of error framework.  

The use of a single subject is one limitation, more subjects would be necessary to evaluate 

stability of this sampling scheme. These sequences also need to be evaluated in patients with pathology to 

assess sensitivity to useful pathologies such as normal appearing white matter (NAWM) in patients with 

MS. This sensitivity analysis will be crucial in determining whether the added sensitivity from sampling 

optimization is necessary for detecting pathology or if current standards are sufficient. If there is no need 

 

Figure IX.2. PSR map results of fitting empirical data for (A) log-spaced sampling, (B) optimized 

sampling and (C) high offsets sampling with mFFE for comparison (left).   
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for increased sensitivity to pathology this technology could be translated to optimizing qMT acquisition 

times by reducing the number of offsets necessary. This could increase clinical utility of qMT techniques 

by allowing for clinically viable scan times which are sensitive to pathology.  

This work could be improved upon by optimizing for multiple underlying signal models. In this 

work we only optimize sampling for WM but this could be extended. A useful extension would be to 

simulate multimodal distributions of various tissue types such as WM, GM and NAWM and optimize 

detection or discrimination between them. This would be a trivial extension of this work but would 

require additional Monte Carlo iterations to ensure variance stability amongst all of the distributions. Also 

not included in this model are B0 and B1 inhomogeneities. While not significant in the brain other 

anatomies do suffer from substantial inhomogeneities which change the actual offsets and powers being 

acquired. In these cases it would be useful to model this uncertainty to assess sensitivity of these sampling 

patterns to inhomogeneities. Certain acquisition schemes could be very robust in differentiating tissue 

types but only if acquired accurately. In this 

case one would need to evaluate the tradeoff 

between tissue differentiation and robustness to 

inhomogeneities based upon the anatomy of 

interest and how well inhomogeneities can be 

corrected.  

This framework could also be improved 

by utilizing a global optimal search as opposed 

to an iterative approximation. The iterative 

approach is significantly more computationally 

efficient but may not yield the globally optimal 

sampling scheme and as discussed there may 

need to be evaluation of multiple sampling 

 

Figure IX.3. Comparison of GM/WM contrast 

for each of the three evaluated sampling 

schemes. Asterisks indicate significance by 

Wilcoxon rank-sum p<0.01. 
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schemes based upon properties of robustness to various tissues or inhomogeneities. One final area of 

improvement for this work would be in increasing the RF power and offset search space. We utilize only 

two RF powers and 32 offsets for a total search space of 64 points. However, this could be expanded to 

include more RF powers, assuming imaging parameters are still reasonable such as RF deposition and 

TR. Also each of the RF powers could be more densely sampled to include more than 32 points. This 

expansion of search space will make the global optimal search even more challenging. Likely the benefit 

of increasing the search space will outweigh the benefits of ensuring a globally optimal search although 

this area requires further investigation.  
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Chapter X. Conclusions and Future Work 

 

1. Summary 

Imaging of the optic nerve (ON), particularly MRI of the ON has long been a target of the 

medical imaging community. However, the last 10 years have seen limited advances in this field as many 

challenges facing MRI of the ON are still open areas of research today. This work focuses on addressing 

various challenges of ON imaging by developing robust automated processing techniques (Chapters II, 

III, V), applying these techniques to large-scale patient populations (Chapters VI, VIII), acquiring a 

reproducibility data set for comparison of techniques (Chapters IV, VII) and improving upon current 

state-of-the-art quantitative magnetization transfer (qMT) MRI to increase its applicability to small 

structures like the ON (Chapter IV).  

 

2. Multi-Atlas Optic Nerve Segmentation 

 

2.1. Summary 

We present a multi-atlas based method optimized for automatic segmentation of eye orbital 

structures including eye orbital fat, optic nerve, rectus muscles and eye globe (Chapter II). This method 

is extended to be applied to multiple MRI sequence types and morphological and radiological metrics are 

computed from the volumetric segmentations. These metrics are applied to a large-scale retrospective 

patient population from VUMC of patients with imaging and coincident visual field assessments to 

evaluate broad structural-functional relationships in the eye orbit (Chapter VIII).  
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2.2. Main Contributions 

1. We present a comparison of various eye orbital multi-atlas segmentation frameworks and 

compare them quantitatively based upon performance to arrive at an optimized eye 

orbital multi-atlas segmentation algorithm.  

2. This algorithm is extended through the use of multiple atlases to automatically segment 

large retrospective populations of varying MRI contrast mechanisms. Multi-atlas 

segmentation relies on correspondence of contrast between the atlas images and target 

images which is not true for various contrast mechanisms in MRI. We overcome this 

issue by defining multiple atlases and applying the appropriate atlas for segmentation to 

increase the amount of data segmented from large-scale studies. 

3. We extend this algorithm to automatically calculate both radiological and morphological 

metrics describing eye orbital structures. We utilize the volumetric labels produced by the 

multi-atlas segmentation technique to automatically calculate various morphological 

features of each eye orbital structure including radiologically defined biomarkers of 

disease progress.  

4. These techniques are applied to a large-scale diverse retrospective patient population 

from Vanderbilt University Medical Center in which patients had coincident eye orbital 

imaging and visual assessments. We identified broad structural-functional relationships 

between these automatically calculated metrics and the visual field assessments 

conducted independently. This points towards a utility of these tools in identifying 

potential biomarkers of eye orbital diseases in more targeted patient populations. 

 

2.3. Future Work 

The current framework could be improved upon by automating atlas selection and atlas creation 

based upon input MRI contrast. The current broad definition of contrast mechanisms provides large 

improvements over a single set of atlas images but is time consuming for large heterogeneous data sets. 
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Multi-atlas segmentation is time consuming and efforts have been made to speed up multi-atlas 

segmentation, incorporation of these efforts would be beneficial for clinical utility [212]. The application 

of these techniques to a single diverse data set identifies that structural-functional relationships are present 

but more targeted hypotheses need to be formulated and tested within individual disease cohorts to 

identify clinically relevant biomarkers.   

 

3. Non-Invasive Automatic Optic Nerve Radius Estimation  

 

3.1. Summary 

We present an optimized MRI pulse sequence for ON:CSF contrast to address challenges of MRI 

in the ON and enable development of ON image processing pipelines and show that this sequence is 

clinically viable and achieves superior contrast-to-noise ratio to current clinical standard of care imaging 

(Chapter III). An automated ON and CSF radius estimation algorithm is proposed (Chapter III) and 

improved upon (Chapter V) to incorporate 3-dimensional consistency and anatomical viability. This 

improved algorithm is applied to a population of patients with MS and shown to detect a group effect of 

atrophy in patients with a history of optic neuritis as compared to healthy controls while patients without 

a history of optic neuritis are not significantly different from healthy controls (Chapter VI).  

 

3.2. Main Contributions 

1. We optimized an anatomical MRI pulse sequence for the purpose of generating superior 

ON:CSF contrast for accurate non-invasive morphological measurements of the ON. This 

sequence is designed with clinical utility in mind being acquired in clinically viable time 

of only 8 minutes and not requiring modifications to scanner software or hardware. This 

sequence is shown to quantitatively provide better contrast than current clinical standard 

of care MRI.   
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2. We proposed and optimized the first automatic ON radius estimation algorithm which 

takes advantage of the superior contrast from this optimized pulse sequence. This 

algorithm overcomes the limitation of many current studies which often measure a single 

slice of the ON, acting as a surrogate for global ON health. This tool allows for 

investigation of populations with focal or global ON changes.  

3. We propose a method for comparison of these ON measurements by interpolating 

measurements to be the same length, aligning parts of the ON as is commonly done in 

other anatomies such as the spinal cord. The importance of this alignment sheds further 

doubt on previous methodologies of single ON measurements at a predefined location 

posterior to the globe.  

4. We develop a statistical atlas of normative ON radius measurements for comparison of 

patient populations to healthy controls. This atlas is shown to be stable across young 

healthy controls and male and female participants. We also show that these 

measurements are stable for both short- and long-term reproducibility.   

5. We apply this tool to a patient population of MS patients both with and without a history 

of optic neuritis and show that patients with a history of optic neuritis are significantly 

different from healthy controls while patients without a history of optic neuritis are not 

significantly different from healthy controls. This initial application shows just one 

possible application of this tool to detecting global atrophy amongst patient populations 

and increasing our understanding of disease processes.  

 

3.3. Future Work 

The deployment of this sequence to clinical settings will be crucial in the gathering of data for 

further investigation with these tools. Improvements in the pulse sequence to improve resolution or 

signal-to-noise ratio would be beneficial to radius estimation accuracy and clinical utility. The radius 

estimation algorithm has been shown to be useful in detecting group population effects with realistic 
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effect sizes but individual patient measurements are not reliable biomarkers for disease detection or 

progression monitoring. Improving upon the accuracy and robustness of the radius estimation algorithm 

by further refining the understanding of the manifold between model parameters and radius space could 

improve accuracy and clinical utility. The current work can also be extended to other patient populations 

to detect group effects in little understood patient populations, such as glaucoma. This knowledge could 

still be useful clinically in defining guidelines for disease progression or treatment even if manual 

measurements were necessary for applicability to individual patients.  

 

4. Short- and Long-Term Optic Nerve Imaging Reproducibility 

 

4.1. Summary 

We designed and acquired a short- and long-term ON imaging reproducibility study including 

whole-brain MRI, qMT of the ON with fixation to reduce motion artifacts, clinical standard of care orbital 

imaging, optimized ON anatomical imaging and retinal OCT imaging (Chapter VII). This data set is 

used to validate the tools described above in terms of short- and long-term reproducibility and stability 

(Chapter IV). We also show normative values for eye orbit structural morphology and retinal thickness 

measurements from automated OCT layer segmentation. These data will be useful for comparison of 

future eye orbit image processing algorithms as an independent resource for reproducibility of algorithms.  

 

4.2. Main Contributions 

1. We designed and acquired reproducibility data for non-invasive imaging of the eye orbit 

including, clinical standard of care anatomical imaging, optimized anatomical imaging, 

whole-brain anatomical imaging, ON qMT imaging and retinal OCT imaging.  

2. These data are publicly released for future evaluation of reproducibility of eye orbit 

image processing techniques in context. Similar to useful whole brain imaging 

repositories currently used for challenges this resource hopefully provides motivation for 
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development of new eye orbit image processing techniques and fair comparison of 

techniques from various development centers around the world.  

3. Applying the tools above we present the normative and reproducibility of eye orbit 

morphological metrics and OCT segmentation layer thicknesses for a population of 

healthy controls. Publishing normative values contributes positively to the literature of 

non-invasive eye orbit imaging allowing for comparison of techniques and measurements 

from other investigators.  

 

4.3. Future Work 

With the release of these data the hosting of a challenge would now be possible to further push 

the community towards developing clinically relevant image processing techniques. The inclusion of 

current clinical standard of care imaging allows for the evaluation of image processing techniques which 

can be utilized to take advantage of the large amounts of clinical imaging currently being stored at 

medical centers around the world. Additionally, the current state-of-the-art imaging included in this study 

allows for investigators without the ability to acquire their own sophisticated eye orbital MRI to develop 

image processing techniques and evaluate them freely. 

 

5. Numerical Optimization of qMT Sampling 

 

5.1. Summary 

We utilize simulations to numerically optimize qMT sampling to reduce acquisition times for 

increased applicability of qMT imaging to small structures like the ON and spinal cord (Chapter IX). 

qMT imaging offers useful insight into tissue microstructure but comes at a cost of long scan times and 

high knowledge of entry barriers for new investigations. We address long scan times by optimizing qMT 

sampling for tissue sensitivity using established biomechanical models of MT signal and numerical 

simulation.  
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5.2. Main Contributions 

1. We utilize existing biomechanical models of underlying MT signal in an iterative Monte 

Carlo framework to optimize qMT sampling for increased accuracy in estimation of 

underlying tissue properties of interest. This framework is the first of its kind to simulate 

qMT imaging experiments and numerical fitting to optimize sampling based upon fitting 

accuracy of underlying tissue parameters.  

2. Using this framework we develop an optimized offset sampling scheme for estimation of 

pool size ratio of white matter, a quantity which has been shown to be sensitive to myelin 

content within a voxel and useful in investigation of demyelinating diseases and detecting 

areas of white matter with normal transverse and longitudinal relaxation but displaying 

early signs of demyelination.  

3. We show that this optimized offset sampling scheme displays superior pool size ratio 

estimation homogeneity within white matter and gray matter as well as superior contrast 

between white matter and gray matter in the spinal cord of a healthy control compared to 

traditional qMT sampling schemes. 

 

5.3. Future Work 

While this framework presents initially promising results for improvement in qMT sampling 

schemes there are many areas which need further investigation. The optimization framework itself is an 

iterative solution and does not guarantee a globally optimal sampling scheme, optimization of 

computational modeling could enable a search for a globally optimal sampling scheme. The optimization 

performed was limited in scope for simplicity and does not account for other tissue types or transmit and 

main field inhomogeneities. The current framework also does not address the utility of reducing sampling 

to achieve more clinically relevant acquisition times. The promise of these initial results warrants further 

investigation into these areas and improvement upon current qMT best practices through numerical 

simulation.  
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6. Concluding Remarks  

Despite the many challenges of MRI of the ON this work reflects significant advancements in the 

field. Despite the recent absence of large amounts of ON MRI investigation there have been 

advancements which enable the new study of ON through the use of MRI. There are vast opportunities 

now in improvement of orbital MRI imaging and processing techniques as well as application of current 

processing techniques to the large amounts of orbital imaging data available to researchers.  

Traditional clinical orbital imaging can be improved upon without the need for complicated MRI 

techniques which are difficult to translate to the clinic. This ability to translate the imaging protocols to 

the clinic is crucial to further improvement of our understanding of ON pathology as we follow the 

imaging community’s trend towards quantitative imaging metrics. Current clinical standard of care 

imaging is inferior in both contrast and resolution and these new imaging techniques offer greater 

accuracy in characterizing eye orbital morphology for enhanced detection of disease processes. However, 

implementation of these new techniques will take time and so it is also important to ensure that we 

develop algorithms which are applicable to clinically available data which contains latent knowledge 

about disease pathology which has yet to be uncovered. The algorithms derived in this work also present a 

multitude of avenues available for study by applying these techniques to all of the various eye orbital 

disease patient populations available for study in clinical imaging databases. The release of the 

reproducibility data set also marks an important resource for future advancements in image processing 

techniques and this tool will play an important role in algorithm selection and community consensus.  

Non-invasive imaging techniques for the ON have seen thrusts of efforts in the past but with the 

tools presented here the groundwork is set for MRI to play an important role in understanding disease 

pathology in the future. The increased interest of clinicians and engineers in the role of MRI of the ON 

and the ability to answer well formulated hypotheses of eye orbital disease pathology means that the 

impacts of these works will likely yield fruitful investigation for some time and may prove useful as we 

begin to investigate other small anatomical structures of interest.  
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