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Chapter I 

 

INTRODUCTION 

 

The global burden of infectious diseases  

 Infectious diseases were the cause of almost half of all deaths in on the African 

continent and approximately one-sixth of all deaths worldwide in 2011 (1). Some of the most 

prevalent infectious diseases, which account for the vast majority of these deaths, include 

respiratory virus infections, HIV, tuberculosis, and malaria. In the United States, respiratory 

infections are among the most common reasons for which patients seek medical attention, 

accounting for 20% of all visits to primary care physicians and resulting in approximately 

20,000 deaths and 114,000 hospitalizations (2,3). The burden of infectious diseases could be 

greatly reduced if effective medical treatment and management strategies were implemented, 

especially in low- and middle-income countries.  

 Effective clinical management strategies for infectious diseases are dependent on 

rapid and accurate diagnosis. Currently, the most common methods of diagnosis include 

identifying symptoms that are consistent with a specific disease and culturing cells or viruses 

from a patient sample. Because of the high overlap of clinical manifestations amongst 

different classes of infectious diseases, symptom-based diagnosis can be difficult and often 

requires a more definitive means of diagnosis, which oftentimes requires patient samples to 

be sent out to a clinical laboratory. Cell and virus cultures require trained personnel and can 

take several days to get a result. It is therefore simpler for physicians to prescribe antibiotics 

for symptoms consistent with an infection than to wait for the results of a cell culture or a 

report from a clinical laboratory. Consequently, more antibiotic prescriptions are written for 
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reparatory infections than for any other indication, despite the fact that viruses (i.e., 

rhinovirus, coronavirus, adenovirus, influenza, etc.) account for the majority of respiratory 

infections (2). The result has been an overuse of antibiotics, which has lead to soaring rates 

of antibiotic-resistant strains of bacteria in the United States. These issues and many others 

could be mitigated if infections could be diagnosed quickly and conveniently in a clinician’s 

office. Rapid and accurate diagnostics for respiratory viruses would also assist physicians in 

implementing other clinical management strategies, such as isolating infected patients to 

prevent nosocomial spread of infections. 

 

Simple RNA biomarker detection methods are needed 

 For illnesses that advance as a result of the rapid pathogen doubling times, it is 

critical that the time-to-diagnosis be minimized. Pathogen biomarkers, or biological 

indicators of infection, have been identified to assist in diagnosing such illnesses. A pathogen 

biomarker is, in general, a biological molecule that is produced by a pathogen in an infected 

patient and can be used as a means for detecting the presence of the pathogen (4). 

Biomarkers are characterized as less expensive, more rapid, or more accessible to detect than 

the pathogen itself, and can therefore be used as surrogates for the pathogen (5). One 

advantage of properly characterized biomarkers is that their presence can be objectively 

measured using standardized detection methods; therefore, conclusions about the cause of an 

illness can be generated with less bias compared to more subjective diagnostic methods for 

infectious diseases, such as symptom monitoring, cell or virus culture, cell staining, or light 

microscopy. Biomarker detection methods also can be automated, thus reducing the potential 

for human error in the process of diagnosing a disease.  
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 Ribonucleic acid (RNA) biomarkers have been established for a variety of pathogens. 

Human pathogens produce unique sequences of RNA as part of their natural life cycle. These 

RNA sequences have been exploited as “barcodes” of sorts for characterizing and identifying 

pathogen species and have become especially useful for pathogen detection and diagnosis of 

illnesses that result from pathogen infection. Another advantage of RNA as a biomarker of 

disease is that it is produced in great abundance during infection. For example, some viruses 

have been found to produce between 1,000 and 10,000 copies of a single unique sequence of 

RNA per virus particle (6,7). Because RNA has become a standard biomarker of disease for 

many pathogen infections, methods for detecting RNA from patient samples, or molecular 

diagnostic methods, are valuable. Molecular diagnostic methods that are simple and rapid are 

especially desirable in settings with limited access to laboratory resources and trained 

personnel.  

 Many places that could benefit from molecular diagnostics are unable to support the 

personnel or maintain and operate the equipment required for biomarker detection methods. 

This includes a wide range of health care facilities, from rural health outposts in developing 

countries to local clinics in developed countries. Throughout this dissertation, I describe any 

setting that is limited because of training, electricity, or financial constraints broadly as 

resource-limited settings or low-resource settings. In general, these terms are used to describe 

places that could benefit from laboratory-based diagnostics but that do not have the resources 

to access them.  

 

Current molecular diagnostic methods are complex 

 Many molecular diagnostic methods are used to extract and detect RNA biomarkers 

found in patient samples for diagnosing pathogenic infections. These methods often involve 
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multiple steps to perform and commonly require expensive laboratory equipment or trained 

technicians. For example, reverse transcriptase-polymerase chain reaction (RT-PCR) is 

commonly used to identify RNA disease biomarkers from patient samples (8-10). Because of 

its sensitivity, specificity, and relatively rapid time-to-answer, it has become the gold-

standard for RNA detection in clinical laboratories. The effectiveness of RT-PCR, however, 

is dependent on both the quality and quantity of nucleic acid template (11) and the absence of 

contaminants and interfering biological molecules (12). Therefore, complex and time-

consuming sample preparation strategies are required to extract RNA from patient samples in 

preparation for RT-PCR. Furthermore, RT-PCR requires an expensive thermocycler to 

amplify and detect the target RNA and a computer with software to interpret the results. 

Because of these requirements, RT-PCR is generally conducted in large clinical laboratories 

with trained personnel and the resources the purchase and maintain expensive equipment and 

instruments. Therefore, in its current form, RT-PCR is oftentimes unavailable in many 

settings (13,14). Isothermal nucleic acid amplification approaches have been developed to 

function at a single temperature, and therefore do not require a thermocycler. Some 

isothermal approaches have been demonstrated to be as effective as traditional PCR and have 

the potential to be a simpler and less expensive alternative (13,15).  

 Simple rapid diagnostic tests based on lateral flow sample processing and antibody 

binding, which function much like common pregnancy tests, have been developed for 

resource-limited settings. Despite being easy to use, they are not effective in many cases 

because of their lack of specificity and sensitivity. This is because of two primary reasons: 

non-target molecules present in patient samples often interfere with detection, and target 

biomarkers are often present low abundance (7,14,16,17). Therefore, methods for purifying 
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and detecting biomarkers of disease in patient samples are needed in settings with limited 

access to laboratory resources and trained personnel.  

 Magnetic bead-based methods have been developed for a variety of biological and 

biochemical applications such as biomolecule extraction, amplification, and detection, 

because, in part, they enhance the flexibility and simplicity the solid phase assay format (18-

23). Despite their success, magnetic bead-based assays still generally require relatively 

complex procedures that involve dispensing multiple solutions or transferring the beads 

between solutions. For settings where trained personnel are not available or specialized 

laboratory equipment is too cumbersome for the application, such as in point-of-care 

diagnostics, extensive solution handling can reduce assay efficacy and, in many cases, is not 

feasible. Because of these obstacles, simple, self-contained formats for magnetic bead-based 

applications are highly desirable. 

 

Self-contained format simplifies complex methods 

 The focus of this dissertation is on the development and evaluation of simple methods 

to extract and quantify RNA biomarkers from patient samples that are suitable for settings 

that lack the resources of a diagnostic laboratory. The physical format that I developed for 

processing RNA from complex samples is based on the simple idea that magnetic beads can 

capture RNA on their surface and be magnetically pulled across immiscible fluid separators, 

or surface tension valves, contained within small diameter tubing. Surface tension valves are 

fluids that are immiscible with processing solutions and prevent adjacent solutions from 

intermixing when arrayed within millimeter-diameter tubing. The valve mechanism is 

established by selective passage of magnetic beads at the surface tension valve interface. The 

enabling features of this physical format are that i) processing solutions (i.e., RNA binding 
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solutions, wash buffers, etc.) injected into a continuous length of small-diameter tubing and 

separated by immiscible fluid separators, or surface tension valves, remain isolated from one 

another, ii) magnetic beads under a magnetic field gradient can be transported across the 

surface tension barrier of the fluid separators, and iii) magnetic beads passing between 

adjacent solutions through a surface tension interface do not intermix the solutions. Because 

of these features, the format enables sample processing without pipetting, centrifugation, or 

other laboratory instrumentation.  

 Our laboratories have demonstrated the use of this self-contained format as a simple 

and effective format for conducting biological assays, such as extracting RNA, DNA, and 

proteins from complex samples (7,16,17). The format has also been shown to effectively 

integrate with simple RNA detection methods, including an interferometric method called 

backscattering interferometry (BSI) and an isothermal nucleic acid amplification reaction 

called quadruplex priming amplification (QPA) (24,25). The culmination of the efforts 

presented in this dissertation demonstrates that the self-contained format is an effective 

platform for the development of a complete diagnostic device with the potential to be 

implemented in resource-limited settings.   

 

Overview of the body of the dissertation 

 The body of this dissertation covers four major research themes aimed at overcoming 

barriers to the development of diagnostic tests suitable for resource-limited settings. The 

findings of each of these research themes are the basis for the following four chapters, which 

are broken into two major parts. Chapters II and III and describes the design, development, 

and evaluation of a self-contained format for extracting RNA biomarkers from complex 

samples. Chapters IV and V and describes the development of simple methods for detecting 
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RNA biomarkers that are demonstrated to be compatible with the self-contained extraction 

format. The final chapter, chapter VI, describes the current state of progress toward 

developing a complete automated diagnostic device and outlines some additional steps that 

may be considered to produce a functional device. Concise summaries of the material and 

findings are provided at the beginning of each chapter. 
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Statement of Dissertation 

 It was once described to me that getting a Ph.D. degree consisted of becoming a 

extremely proficient, even a world expert, in a subfield of scientific research that is so 

specialized and focused on minutiae that it loses any practical relevance to society. I 

understand how that perception could be developed by a casual observer, as I have many 

times become so buried in a project that its context within the ‘big picture’ has become 

eclipsed by the layers of material that seem to settle on top of me. For the purpose this 

dissertation, however, I have reflected extensively on the impact that my research has made 

or has the potential to make to advance science and technology. For this exercise, I borrowed 

criteria for gauging the importance of science from Arturo Casadevall, Editor in Chief of the 

journal mBio and a major proponent of impactful science. Important science, he argues, 

should be sizable, practical, integrated, and new, which form the acronym “SPIN” (26). I will 

assess the importance of the work that I have completed during my graduate tenure using 

these criteria, and to put my own “SPIN” on the assessment, I will discuss them in the 

reverse order. 

 New. My research efforts have produced novel contributions in the fields of 

biomarker extraction and detection. This includes the development and characterization of a 

novel self-contained sample processing design and insights into the mechanism of 

backscattering interferometry (BSI) signal generation for detecting nucleic acids (7,24,27). 

The self-contained format is a new design for a biomarker extraction and detection format 

and has distinct advantages over other approaches to biomarker extraction and detection. 

First, it does not involve pipetting or other fluid transport steps in its operation. Second, the 

order of the processing steps is controlled by the order of the reagents contained within the 
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processing tubing. Third, the small diameter of the tube increases binding rates by decreasing 

the effective reaction volume and the distance target molecules must travel to interact with 

molecular capture elements. Furthermore, to characterize the physical performance of this 

format, I contributed to the development of a new dimensionless number that describes the 

relationship between the magnetic forces and surface tension forces that act on the beads, and 

can be used to predict whether magnetic beads will cross the solution/valve interface under 

the influence of a given magnetic field gradient (see Chapter II) (27).  

 My involvement on a project that employed BSI for RNA detection also contributed 

to the greater body of science by resulting in new insights about the factors involved in BSI 

signal generation. BSI had been used to successfully monitor binding interactions of a variety 

of biological molecules with high sensitivity, but had never before been used to detect and 

quantify RNA. I developed a unique method for detecting RNA based on refractive index 

shifts that result from DNA probes binding specific RNA targets as measured by BSI. In 

doing this, our laboratories observed for the first time that nucleic acid secondary structure 

alterations (from B-form to A-form) significantly changed the refractive index of a biological 

solution and produced a large BSI signal (see Chapter IV) (24).   

 Integrated. Important science may also integrate past knowledge with new knowledge 

to create something impactful. The research that I have conducted is interdisciplinary, 

integrating knowledge of biology, chemistry, and engineering to overcome challenges in the 

field of low-resource diagnostics. The physical format of the self-contained sample processor 

is a key enabler of integrated sample processing and biomarker detection. This is most 

clearly demonstrated in our work with quadruplex priming amplification (QPA) and our 

work with BSI. QPA was previously developed as a molecular sensor, limited to detecting a 
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unique template DNA sequence (28,29). Using the self-contained format and a novel mRNA-

QPA integration reagent, I enabled mRNA detection using QPA (see Chapter V) (25). 

Similarly, BSI was previously developed to detect a variety of analytes in relatively complex 

solutions, but could not effectively detect RNA biomarkers contained within a complex 

surrogate patient sample. Only by extracting the RNA from the sample using the self-

contained cassette was BSI able to effectively detect the specific biomarker sequence (see 

Chapter IV) (24).  

 Practical. Because the projects I have worked on are generally application driven, the 

outcomes have apparent practical benefits to society. The self-contained format is a simple, 

inexpensive, and disposable platform that enables complex assays to be performed by 

untrained users in settings lacking conventional laboratory equipment and materials (see 

Chapters II and III) (7,27). These features make the assay particularly practical for 

implementation in the field of low-resource diagnostics. The platform has the potential to be 

developed into a diagnostic device suitable for settings that lack laboratory resources and 

trained personnel (see Chapters V and VI) (25). The development of an automated device for 

reducing the number of steps that are completed by the end user is the focus of our current 

efforts. We expect that the culmination of these efforts will result in the development of a 

simple diagnostic device for a variety of diseases that could be implemented in resource-

limited settings. 

 Sizeable. Research that is sizable must have the potential to impact a great number of 

people. Improving the methods for detecting infectious diseases that plague the developing 

world would impact a large number of people and is a major research thrust in the field of 

global health. The development of the self-contained RNA extraction format and integrated 
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detection assays has the potential to make complex and sensitive diagnostic assays accessible 

to the developing world by simplifying the process for the end user. The self-contained 

format for simplifying sample processing may also have the flexibility to extend beyond 

biomarker extraction and detection assays (see Chapter II) (27). Solid phase-based methods 

seem readily adaptable to this format and may benefit from the simplicity offered by the 

magnetic transport of beads through stationary solutions. The assay processing steps are self-

contained, reducing the potential for contamination during processing with the use of an 

externally applied magnetic field to move the functionalized beads, which has some clear 

advantages in the greater fields of automated biopolymer synthesis, high throughput 

screening assays, or industrial quality control.    
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Chapter II 

 

DESIGN CRITERIA FOR DEVELOPING LOW-RESOURCE MAGNETIC BEAD 

ASSAYS USING SURFACE TENSION VALVES 

 

Abstract 

 In this chapter, I outline the design and characterization of the physical parameters of 

our simple, self-contained assay format based on magnetic beads and surface tension valves 

(27). This self-contained format has the potential to facilitate the application of laboratory-

based sample processing assays in low-resource settings and significantly reduce the time, 

expertise, and infrastructure required. The technology is enabled by immiscible fluid barriers, 

or surface tension valves, which stably separate adjacent processing solutions within 

millimeter-diameter tubing and simultaneously permit the transit of magnetic beads across 

the interfaces. I identify the physical parameters of the materials that maximize fluid stability 

and bead transport and minimize solution carryover. I found that fluid stability is maximized 

with ≤0.8 mm i.d. tubing, valve fluids of similar density to the adjacent solutions, and tubing 

with ≤20 dyn/cm surface energy. Maximizing bead transport was achieved using ≥2.4 mm 

i.d. tubing, mineral oil valve fluid, and a mass of 1 - 3 mg beads. The amount of solution 

carryover across a surface tension valve was minimized using ≤0.2 mg of beads, tubing with 

≤20 dyn/cm surface energy, and air separators. Combining our experimental results into a 

single plot using two dimensionless numbers identified the most favorable parameter space 

for valve stability and bead transport. At the end of this chapter, a strategy is presented for 

developing additional self-contained assays based on magnetic beads and surface tension 

valves for low-resource diagnostic applications. 
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Introduction 

 Magnetic bead-based methods have been developed for a variety of biological and 

biochemical applications such as biomolecule extraction, amplification, and detection, 

because, in part, they enhance the flexibility and simplicity the solid phase assay format (18-

23). Perhaps one of the clearest examples of the utility of magnetic beads is the development 

of automated, high-throughput, parallel extraction of nucleic acids from biological samples in 

a 96-well plate format (30), a process that would be too cumbersome or inefficient using a 

traditional column-based solid phase format. Despite their success, magnetic bead-based 

assays still generally require relatively complex procedures that involve dispensing multiple 

solutions or transferring the beads between solutions. For settings where trained personnel 

are not available or specialized laboratory equipment is too cumbersome for the application, 

such as in point-of-care diagnostics, extensive solution handling can reduce assay efficacy 

and, in many cases, is not feasible. Because these obstacles are faced in low-resource 

settings, simple, self-contained formats for magnetic bead-based applications are highly 

desirable.  

The development of multiphase fluidic systems for fluid separation and manipulation has 

also been used for simplifying and automating chemical and biological assays. In 

microfluidic systems, controlled fluid-fluid interfaces and microencapsulation of assay 

components and reagents have been applied to a variety of methods, including large-scale 

parallelization of chemical screening and high-throughput nucleic acid sequencing (31). 

Multiphase microfluidic systems feature robust fluid separation and permit controlled 

manipulation of assay reagents. These characteristics make multiphase microfluidics a 

desirable platform for developing technologies to be used in low-resource settings. 
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Our laboratories have exploited the simplicity of magnetic bead-based assays and the 

robustness of multiphase fluidics to develop methods for the extraction of RNA, DNA, or 

protein biomarkers in a simple, self-contained format suitable for use in a low-resource 

environment (7,16). The analogous commercial kits for nucleic acid or protein extraction 

require centrifugation and extensive solution handling or pipetting, whereas the self-

contained assays our laboratories have developed have a much simpler user interface. The 

assay is carried out within a single length of 1.6 mm inner diameter (i.d.) tubing containing 

pre-arrayed processing solutions and magnetic beads (Figure 1). The biological sample is 

added to the first processing solution through the end of the tube using a transfer bulb or by 

syringe injection though the tubing wall, and then functionalized beads are mixed with the 

sample using an externally applied magnetic field to selectively capture the biomarker of 

interest. As the beads are moved from one solution to the next through surface tension 

valves, the valves maintain their integrity and no solution intermixing occurs. To ensure that 

the magnetic beads mix properly, the magnetic field is moved back and forth along the length 

of the tube to disperse the beads thoughout the solution. 

 

Figure 1. Illustration of the self-contained format for extraction of RNA biomarkers. Surface 
tension valves separate unique processing solutions arrayed within a single length of 1.6 mm 
i.d. tubing. Functionalized magnetic beads used to capture the biomarker of interest are drawn 
through the surface tension valves into each processing solution using an externally applied 
magnetic field (i.e., a permanent cube magnet). 
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Surface tension valves are fluids that are immiscible with processing solutions and 

prevent adjacent solutions from intermixing when arrayed within millimeter-diameter tubing. 

The valve mechanism is established by selective passage of magnetic beads at the surface 

tension valve interface. Magnetic beads under the influence of a sufficiently strong magnetic 

field gradient traverse the immiscible phase when a sufficient mass of beads is gathered at 

the interface (Figure 2). The surface tension valve format inverts the classical solid-phase 

assay format by immobilizing the assay solutions and making the solid phase the movable 

entity. The advantages of this format are in its simplicity; using preloaded assay solutions 

separated by immiscible surface tension valves, cumbersome liquid handling and dispensing 

steps are eliminated and the assay is carried out by simply manipulating the transit of 

magnetic particles through the various processing solutions using a magnetic field. This 

inverted solid phase format based on magnetic beads and stationary fluids separated by 

surface tension forces has been developed for a number of applications (32-36). Other 

laboratory-based magnetic bead assays, such as enzyme-linked immunosorbent assays 

(ELISAs) or onbead isothermal polymerase chain reaction (PCR), could potentially benefit 

from the simplicity and flexibility of this format for applications in low-resource settings. In 

 

Figure 2. Selected video images of magnetic beads under the influence of the magnetic field 
of a permanent magnet moving from one solution to the next through an air surface tension 
valve (A) or a mineral oil surface tension valve (B). 
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this chapter, I identify and characterize the key physical design constraints for developing a 

self-contained format suitable for magnetic bead-based assays.  

 

Materials and Methods 

Materials 

Tygon R-3603 tubing (0.8, 1.6, 2.4, 3.2 and 4.8 mm i.d.) and Chemfluor fluorinated 

ethylene propylene (FEP) tubing (1.6 mm i.d.) were purchased from Fisher Scientific. Glass 

tubing (1.6 mm i.d.) was purchased from the Vanderbilt Glass Shop. Siliconized glass was 

produced using Sigmacote SL-2 (Sigma-Aldrich) following the manufacturer’s protocol. 

Briefly, the glass was cleaned using a piranha solution (3 H2SO4 : 1 H2O2). The glass was 

then submerged in Sigmacote solution for approximately 1 minute then allowed to dry. The 

coated glass was then rinsed with water and baked at 100 °C for 1 hour. The silicon coating 

was validated by a characteristic ~100° contact angle with water. Dynabeads MyOne Silane 

beads were purchased from Life Technologies (cat. # 370-02D). MagAttract Suspension E 

beads were purchased as part of the MagAttract RNA Tissue Mini M48 Kit from Qiagen (cat. 

# 959236), and AccuBead beads were purchased from Bioneer Corporation (cat. # TS-1010-

2). The solutions that were selected for these studies are common nucleic acid extraction 

buffers and span a range of surface tension values. These solutions were GuHCl buffer (4 M 

guanidine hydrochloride, 25 mM sodium citrate, pH 7.0), 50% EtOH GuSCN buffer (50% 

ethanol, 2 M guanidine thiocyanate, 25 mM sodium citrate, pH 7.0), 80% EtOH buffer (80% 

ethanol, 5 mM potassium phosphate, pH 8.5), and deionized water. The surface tension valve 

fluids used in these studies include air or molecular biology grade mineral oil (Bio-Rad). A 
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2.54 cm cube magnet (Emovendo, SKU # M1CU) was used to transport the magnetic beads 

through the solutions in the tubing.  

The range of surface and interfacial tensions of the solution/valve interfaces used in these 

studies spans from ~0 to 72 dyn/cm, and the range of surface energies of the tubing tested 

spans the range of commercially available materials (~20 to 42 dyn/cm) (Figure 3A and B). 

Photographs comparing the configurations used in these studies are shown in Figure 3C. The 

most notable difference among the tubes is the curvature of the menisci, which reflect the 

large range of solid/liquid/gas interactions evaluated in these studies. Tubes were prepared by 

loading them with solutions serially through one end of the tube using a pipette. Unless 

otherwise noted, the baseline experimental configuration for these studies is an 8 cm length 

of 1.6 mm i.d. Tygon R-3603 tubing preloaded with two 75 µL water aliquots separated by a 

1 cm air gap (valve). The tubing was plugged on both ends using plastic end caps. Solution 

carryover and magnetic force studies were performed using 1 mg of Dynabeads MyOne 

Silane.  

 

Surface energy measurements 

The surface energy of the materials used in these studies was calculated using the Zisman 

method. Contact angles of several test liquids spanning a range of surface tensions, including 

distilled water, glycerol, formamide, ethylene glycol, 1-bromonaphthalene, and 
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Figure 3. The properties of the materials tested in these studies span a wide range of values. 
A) The surface free energy of the various materials is related to the advancing contact angle 
with water. The surface free energies of the materials used in these studies (solid squares) 
span the range of available materials (open squares). B) Tubing, solutions, and valve types 
tested span a wide range of interfacial energies. C) Images showing the curvature of the 
menisci for tubing materials, solutions, and valve fluids evaluated in these studies. From left 
to right: i. water and an air valve in tubing of decreasing surface energies. ii. Tygon tubing 
and an air valve with solutions of decreasing interfacial tensions. iii. Tygon tubing and a 
mineral oil valve with solutions of decreasing interfacial tensions. 
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diiodomethane, on the surface of each material were recorded using a standard goniometer 

(Rame-Hart Inst., model # 200-F4). Three angle measurements were taken from four separate  

~2 µL drops placed on each material. The surfaces of the materials were cleaned after each 

test liquid by rinsing with deionized water and then 100% ethanol. The surface energy of 

each material was calculated using the Zisman plots created using the DROPimage Standard 

V. 2.4 software (Rame-Hart Inst.).  

 

Interfacial tension measurements  

Interfacial tension of the solutions used in these studies was determined by using a Simga 

700 Tensiometer (Biolin Sci.) using the Du Nouy ring method. The Du Nouy ring was 

lowered into 30 mL of each test liquid and the force data was collected and analyzed using 

the Attension Sigma software (Biolin Sci.). Each measurement was repeated 25 times for 

each solution. For interfacial surface tension between the liquids and mineral oil, the same 

protocol was followed except that 30 mL of mineral oil was layered on top of each solution 

tested, and the ring was lowered into the mineral oil layer before measurements were made. 

The ring was washed thoroughly after each test with 100% ethanol. The readings through the 

layers of 80% EtOH buffer and mineral oil were approximately zero, because the two 

solutions swirled together during the measurements. Therefore, the interfacial tension of the 

80% EtOH buffer interfaced with mineral oil was approximated as 0 dyn/cm. 

 

Valve stability measurements 

To produce an effective acceleration, or body force, in the x, y, or z direction of the tube, 

a centrifuge suitable for spinning the tubes was constructed. The centrifuge was used for 
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measuring the relative centrifugal force (RCF) at which the surface tension valve fails. A 

motor interfaced with Labview software was used to spin the tubes containing the surface 

tension valve at defined speeds, which were converted to RCF through the following 

relationship: RCF = 1.12𝑟 !"#
!"""

!
. Tubes were prepared by loading a solution containing 

Brilliant Blue dye on one side of a surface tension valve with a solution containing no dye on 

the other side of the valve. Rotational velocity was gradually increased until the valve failed 

as defined by blue color appearing in the clear solution on the opposite side of the valve. The 

stability values are reported in terms of the g-force that caused the valve to fail when applied 

in the direction perpendicular to the tubing wall, which is the orientation that is most likely to 

cause the valve to fail. The effects of the properties of the surface tension valves on valve 

failure were determined for different tubing types and diameters, valve contents and lengths, 

and solution contents. This method was validated using the impact-based drop method to 

evaluate valve stability. The baseline configuration used in these studies was 1.6 mm i.d. 

Tygon tubing loaded with two 75 µL volumes of water separated by an air valve, unless 

otherwise noted. 

 

Valve penetrability measurements 

The force required to move a group of beads through the surface tension valve in the 

linear tubing, where the movement is constrained to the x direction only (Fm,x), was 

calculated using the following equation described by Gijs (37): 

F!,! =   
!!!
!!

𝐵!
!
!"
  +   𝐵!

!
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  + 𝐵!

!
!"

𝐵!  
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where V is the volume occupied by the magnetic beads (m3), χv is the volume susceptibility 

(CGS), µ0 is the permeability of free space (4π × 10-7 T⋅m/A), and B is the magnetic field 

along the axis of the tube through which the beads are pulled (T/m). Volume (V) was 

measured as the bulk volume that the particles occupied under the influence of a magnetic 

field. The values were calculated by measuring the cylindrical volume that a known mass of 

beads occupied in a short length of 1.6 mm i.d. tubing. Volume susceptibility (χv) of the 

magnetic particles was calculated by measuring the magnetic susceptibility of the beads 

using an Alfa Aesar Magnetic Susceptibility Balance Mark 1. This was done by taking 1 mg 

of Dynal beads, MagAttract beads, or Bioneer beads and diluting them into 114 mg silica gel, 

which is the amount required to fill the standard size glass tubes to the required ~3 cm height. 

The calibration constant was calculated using the manganese chloride standard supplied by 

the manufacturer. The blank was made using 114 mg silica gel without beads added. The 

tube was rinsed with water between each sample, dried at 100 °C for 10 min, and the 

magnetic susceptibility of the empty tube was measured to verify that residual magnetic 

beads had been removed after each wash. Each sample was measured three times, removing 

and repacking the beads between each measurement. Mass susceptibility (χg) was calculated 

using the following equation:  

𝜒! =   
!!"#  ×   !!!! ×  !

!"!  ×  !
  

where Cbal is the calibration constant, R is the sample value, R0 is the blank value, l is the 

length (cm) of sample in tube, and m is the mass of magnetic sample in the tube. This was 

converted to volume susceptibility (χv) using the following conversion factor: 𝜒! =   𝜒!𝑑, 

where d is the bulk density of the beads in the presence of a magnetic field. 
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To measure the force required to pull the beads through the solution/valve interface, an 

apparatus was developed to measure x, y, and z coordinates of the magnetic field (B) of a 

2.54 cm cube permanent magnet (Emovendo, SKU# M1CU) at 0.5 mm intervals along the 

axis of the tube using a F.W. Bell series 9900 gaussmeter. The values for the x, y, and z 

coordinates were plotted as a function of distance from the edge of the magnet. The gradient 

of the magnetic field for the x, y, and z coordinates 𝐵(!,!,!)
!

!(!,!,!)
 was approximated using 

the slope of the lines between two consecutive magnetic field measurements. Because the 

gradient of the magnetic field in the y and z coordinates was approximately zero, the 𝐵!
!
!"

 

and 𝐵!
!
!"

 terms of the magnetic force equation were set to zero.  

To measure the force required to pull the beads through a surface tension valve, a 

preloaded tube containing magnetic beads was slowly moved toward the 2.54 cm cube 

magnet along the x coordinate of the measured magnetic field until the point at which the 

beads pulled through the valve interface. The distance of the interface from the magnet was 

recorded and used to approximate the magnetic field strength (𝐵!) and the magnetic field 

gradient (𝐵!
!
!"

) at that distance. The magnetic force requirement values for 1 mg Dynabeads 

MyOne Silane beads moving from water into an air valve in Tygon R-3603 tubing were 

validated using a second permanent magnet, one-forth the size of the magnet described above 

(1.27 cm cube), in a manner similar to the methods described above. The baseline 

experimental configuration used in these studies was 1.6 mm i.d. Tygon tubing loaded with 

75 µL volume of water and another 75 µL volume of water containing 1 mg Dynabeads 

MyOne Silane beads separated by an air valve, unless otherwise noted. 
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Solution carryover measurements 

Carryover volume was measured using a fluorescence-based assay. In these studies, 

fluorescein was added to each solution tested and standard curves were made for small 

volumes of each solution diluted into water. The standard curves for each solution had R2 

values > 0.98 and consisted of at least five data points. Tubes were loaded with a test solution 

containing fluorescein and water separated by an air or mineral oil valve. Using a permanent 

magnet, beads were pulled from the fluorescein-containing solution, through the valve, and 

into the water solution. Then the beads were mixed with the water and removed from the 

water. The amount of liquid carryover associated with the beads was measured by plotting 

the value of fluorescence that was introduced into the water on the standard curve of 

fluorescein in the corresponding solutions diluted into water. The effect of material 

properties on solution carryover was determined for different tubing types, valve contents 

and lengths, bead types and masses, and solution contents. The solution carryover values for 

1 mg Dynabeads MyOne Silane beads moving from water into an air valve in 1.6 mm i.d. 

Tygon R-3603 tubing were validated using a solution mass measurement. The baseline 

experimental configuration used in these studies was 1.6 mm i.d. Tygon tubing loaded with 

75 µL volume of water and another 75 µL volume of water containing 1 mg Dynabeads 

MyOne Silane beads separated by an air valve, unless otherwise noted. 

 

Imaging 

Digital photographs of the fluids within the tubing for the various configurations tested 

were collected using a Nikon D100 D-SLR camera with a 60 mm AF Micro Nikkor lens and 

three Kenko extension tubes (58 mm total extension length). Videos of the magnetic beads 
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crossing the surface tension valves were recorded using a Nikon D800 D-SLR camera with 

the lens and extension tubes used for collecting the images. 

Electron micrographs of the three bead types were collected using a Hitachi scanning 

electron microscope at 3000× zoom with a 3 kV beam strength, a working distance of 14 

mm, and an objective aperture position of 2. Bead samples were prepared by pipetting 5 µL 

of each bead suspension directly onto an aluminum specimen mount and drying at 80 °C 

overnight.  

 

Preliminary valve stability studies 

 An impact-based drop method was used to validate the valve failure values recorded 

using the centrifuge method described above. The surface tension valve failed when the 

preloaded tubing was dropped from a height of 1.05 m onto a solid surface without any 

impact-dampening materials. The impact force that caused the valve to fail was 

approximated assuming a conservative impact time of 15.4 ms. Both the centrifugation and 

impact methods yielded similar failure values for the baseline configuration of 28.8 ± 0.24 g 

and 30.1 ± 4.6 g, respectively. The greater error associated with the impact method could be 

attributed to uncontrollable experimental variables, such as the angle of the tubing at impact, 

vibrations in the tubing after impact, and bouncing of the tubing after impact. Because there 

was significantly more experimental error using the impact method, the centrifugation 

method was used for the valve stability studies.  
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Preliminary valve penetrability studies 

 In preliminary studies, two permanent magnets were tested to determine if the method 

of measurement could be applied to different sizes of permanent magnets. A 2.54 cm and a 

1.27 cm cube neodymium magnets were used, each having different magnetic strengths and 

magnetic field gradients. Both magnets yielded similar force measurements, validating the 

method for determining force produced on the beads under a measured magnetic field 

gradient. The force required to pull 1 mg Dynabeads MyOne Silane beads from water into 

the air valve within 1.6 mm i.d. Tygon R-3603 tubing was 326 ± 78 µN using the 2.54 mm 

cube magnet and 362 ± 124 using the 1.27 mm cube magnet. The relatively large error 

associated with these measurements is attributed to the sub-millimeter differences between 

measurements at close proximity to the magnet, where the magnetic field gradient is the 

steepest. Accordingly, there is greater error using the smaller magnet, for which the magnetic 

field is steeper than the large magnet. The large magnet was used for further force 

measurement studies.  

 

Preliminary carryover studies 

 To validate the fluorescence-based method for measuring solution carryover, a mass-

based method was used. Within the tubing, beads were pulled from water and into the air 

space at the end of the tubing, and the section of tubing containing the beads with the 

associated carryover solution was cut out using a razor blade. The section of tubing was then 

quickly weighed, and the average of three measurements was recorded. The tubing 

containing the beads were then dried for 30 min at 100 °C in an oven, placed at room 

temperature for 30 min, and then weighed again three times. The difference between the 
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averages of the measurements was used to determine the amount of water carryover 

associated with the beads. In baseline configuration studies, both the fluorescence and mass-

based methods yielded similar carryover values of 1.31 ± 0.01 µL and 1.26 ± 0.21 µL, 

respectively. The greater error associated with the mass-based method is most probably the 

result of the lack of precision of the balance for low masses (~1 mg). Also, the more volatile 

liquids (i.e., those with 50% or 80% ethanol) evaporate from the beads too quickly to make 

accurate measurements using the mass-based method. Consequently, the fluorescence-based 

method was used in subsequent carryover studies.  

 

 

Results  

In experimental evaluations of the self-contained format based on surface tension valves I 

sought to identify physical parameters that i) maximized valve stability, ii) enhanced valve 

penetrability by magnetic beads, and iii) minimized the carryover of one processing solution 

to the next. Each of these characteristics is essential for developing an assay format that is 

simple, robust and effective outside of a laboratory setting. The greatest utility is achieved 

with a stable preloaded assay format, which could be transported and stored for long periods 

of time. Similarly, enhancing valve penetrability minimizes the magnetic force required for 

processing and yields the most effective format for reproducible assay results. Finally, 

carryover between processing steps is minimized as it can contaminate and negatively impact 

downstream chemistries and molecular interactions. Factors that affect each of these 

performance characteristics are detailed in the following sections. 
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Valve fluid stability  

Tubing diameter has a substantial effect on valve stability. Valves prepared in the 

smallest commercially available diameter of Tygon R-3603 tubing (0.8 mm i.d.) were 

extremely stable and did not fail at 84.9 g (the highest RCF tested), which is equivalent to 

dropping the tubing from a height of ~8.4 m assuming no air drag (Figure 4A). The stability 

drops off exponentially with increasing tubing diameters up to 4.8 mm (surface tension 

valves can not be supported in tubing with a 5.6 mm diameter or greater). The effect of the 

surface energy of the tubing material was not as striking but suggests a linear, inverse 

relationship between valve stability and tubing surface energy (Figure 4B). Valves prepared 

in FEP tubing, which has the lowest surface energy of the tubing materials tested (20.3 

dyn/cm), were the most stable, failing at 48.2 g. Valves prepared in glass tubing, which has 

the highest surface energy of those tested (42 dyn/cm), on the other hand, were the least 

stable, failing at 22.5 g.  

Valve fluid also had a substantial effect on valve stability. Overall, valves prepared with 

mineral oil were significantly more stable than those prepared with air (Figure 4C and D). 

Additionally, mineral oil valve stability decreased, whereas air valve stability increased, with 

increasing interfacial tension. The most stable valve tested under these conditions was 

mineral oil interfaced with 80% EtOH buffer, which did not fail at the highest RCF tested (80 

g), whereas the least stable valve was air interfaced with 80% EtOH buffer, which failed at 

4.5 g (Figure 4C). The density difference between the solution and valve appears to predict 

valve stability for all the solution/valve combinations tested, particularly for solutions 

interfaced with mineral oil valves (Figure 4D).  
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Figure 4. The effect of material properties on the stability of the surface tension valve. A) 
Surface tension valves within tubing with smaller inner diameter are much more stable than 
those within tubing with larger diameters. B) Surface tension valves within tubing with low 
surface energy are more stable than those within tubing with high surface energy. C) The 
stability of mineral oil valves decreases with increasing interfacial tension (solid circles), 
whereas the stability of air valves increases linearly with increasing interfacial tension (open 
circles). D) Surface tension valves interfaced with solutions of similar density are much more 
stable than those interfaced with solutions with a greater difference in density. E) Valve 
stability increases sharply with valve lengths smaller than 0.3 cm and remains consistent with 
longer valve lengths. F) The volume of water flanking the valve has little effect on the 
stability of the valve. *Valve did not fail at maximum RCF tested. (n = 3, mean ± s.d.; if not 
visible, error bars are obscured by the symbols) 
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 The effect of the length of the valve and the volume of the processing solutions on 

valve stability was also evaluated. Tygon R-3603 tubing (1.6 mm i.d.) was loaded with a 

range of air valve lengths up to 2 cm separating the two water solutions. I found that the 

smallest possible air valve, or separation gap, that can effectively prevent solution 

intermixing was 0.15 cm, which was slightly less stable than a 0.3 cm valve length, most 

likely because the opposing menisci of adjacent solutions are nearly touching. All valve 

lengths 0.3 cm or greater failed at approximately 29 g, suggesting that air separations greater 

than 0.3 cm offer no advantage for valve stability (Figure 4E). All solution volumes tested 

(10 - 90 µL water) had approximately the same stability, failing at approximately 29 g 

(Figure 4F). Although the tested range of valve lengths and solution volumes were limited by 

the design of the centrifuge, it is reasonable to assume that valve lengths and solution 

volumes greater than those tested would follow the established trend and also have little 

influence on the stability.  

 

Valve penetrability 

The force required to pull the beads from water into the air valve was much greater than 

the force to pull from the air valve into water (372 ± 78 µN and 52 ± 8.7 µN, respectively) 

(Figure 5). A similar trend was observed using a mineral oil valve (18.7 ± 8.2 µN and 1.6 ± 

0.3 µN, respectively), although overall the forces were significantly smaller than those with 

the air valve. Additionally, the force require to pull beads along the tubing wall within an 

aqueous solution (i.e., the force required to overcome friction and drag) is the same as the 

force required to pull beads from an oil valve into water (1.6 ± 0.3 µN), which is negligible 

compared to the forces required for beads to penetrate the solution/valve interface. Therefore, 
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the force required to pull the beads from the solution into the valve, through the 

solution/valve interface, is reported, since this is the largest of the forces and thus the limiting 

force for transporting beads.  

The diameter of the tubing had a significant impact on valve penetrability. The force 

required to pull the beads through an air valve drops significantly with larger diameter tubing 

(Figure 6A). In 0.8 mm i.d. tubing, the required force is large and variable (678 ± 271 µN), 

whereas in larger tubing diameters (2.4 to 4.8 mm i.d.) the required forces are much lower, in 

the range of ~60 to 100 µN. The effect of tubing surface energy was less conclusive. With 

the exception of Tygon R-3603 tubing, which has a force requirement of 326 ± 78 µN, there 

appears to be a positive correlation between surface energy of the tubing and force required 

to pull the beads through the valve (Figure 6B). The tubing with the lowest surface energy 

 

Figure 5. The effect of interface orientation and fluid on the force required to pull beads 
through the solution/valve interface. A) The force that is required to pull beads into or out 
of the the mineral oil valve (solid bars) is ~25-fold less than the force required to pull 
beads into or out of the air valve (open bars), respectively. B) The force required to pull 
the beads from water into the air (top panel) or mineral oil (bottom panel) valve is ~10-
fold greater than the force required to pull the beads out of the valve into water. The 
length of the arrows indicates the normalized relative force required to pull beads through 
the valve interface. (n = 3, mean ± s.d.; if not visible, error bars are obscured by the 
symbols)  
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Figure 6. The effect of material properties on force required to pull beads through the 
solution/valve interface. A) The force required decreases when using tubing of a larger 
diameter. B) With the exception of Tygon tubing, the force required to pull beads across a 
surface tension valve increases with the surface energy of the tubing. C) The force required to 
pull beads through mineral oil valves (solid circles) is significantly less than the force 
required to pull beads across air valves (open circles). Force required increases with 
interfacial tension using with both types of valves. D) The magnetic field gradient along the x 
axis that is required to pull the beads through the valve (squares) increases with the amount of 
beads, whereas the magnetic field required (circles) decreases. E) The mass susceptibility of 
the bead used has little influence over the force required to pull beads across a surface tension 
valve. F) Scanning electron microscopy images of the three commercially available silica-
coated magnetic beads (scale bars = 5 µm). (n = 3, mean ± s.d.; if not visible, error bars are 
obscured by the symbols) 
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(FEP) required a pull through force of 420 ± 58 µN, and the tubing with the highest surface 

energy (glass) required a pull though force of 812 ± 172 µN.  

Overall, the force required to pull the beads through a mineral oil valve was significantly 

lower than the force required for air valves (Figure 6C). The force required to pull the beads 

through both mineral oil valves and air valves increased as the interfacial energy increased, 

though the increase was more substantial with air valves. The solution with the lowest 

interfacial energy (80% EtOH buffer solution interfaced with mineral oil) had a force 

requirement of just 17 ± 0.8 µN, whereas the solution with the highest interfacial energy 

(water interfaced with air) required 326 ± 78 µN.  

Interestingly, the force required to pull beads through the valve increased with increasing 

bead mass, whereas the magnetic field gradient required decreased (Figure 6D). The bead 

mass range that has the lowest magnetic field gradient requirement is between 1 - 3 mg. Bead 

masses less than 1 mg become increasingly difficult to pull across the solution/valve 

interface with 0.048 mg being the minimum bead mass that can be pulled through the 

interface under the baseline experimental conditions. Masses much more than 3 mg fill the 

entire diameter of 1.6 mm tubing and increase the experimental error.  

The force required to pull three commercially available bead types was also defined. 

Although one might expect that mass susceptibility would be inversely related to the force 

required for transport across a valve, there was no clear trend among the three types of beads 

tested (Figure 6E). It is interesting to note that despite having similar product descriptions, 

there was substantial variation in the morphology of these bead types as determined by 

scanning electron microscopy. The variability in force requirement appears to reflect their 

varying sizes and dispersity (Figure 6F): Dynabeads are relatively small, monodispersed (1.1 
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± 0.07 µm) silica-coated magnetite spheres; Accubeads are relatively large, polydispersed 

(2.4 ± 1.7 µm) silica spheres trapped amidst magnetite crystals; and MagAttract beads are 

relatively large, polydispersed (3.7 ± 1.9 µm) and amorphous silica-coated magnetite.  

 

Solution carryover  

The number of beads used had the greatest influence on the amount of liquid carried 

across the valve (Figure 7). Using increasing amounts of Dynabeads MyOne Silane beads, 

the carryover volume increased proportionally for the mass of beads tested (Figure 7B). 

Water carryover is ~1.5 µL per milligram of beads, which equals ~3.6 femtoliters of water 

per bead, assuming that the beads are uniformly 1.15 µm in diameter, 3 g/cm3 in density, and 

that there are 4.2 × 108 beads per milligram.  

There was no clear relationship between surface free energy of the tubing or interfacial 

energy at the solution/valve interface to the carryover volume associated with the beads. The 

carryover volume using the four types of tubing was fairly similar and increased only 

modestly (0.9 - 1.2 µL) as the surface energy of the tubing increased (Figure 7C). Overall, 

the carryover volume associated with beads pulled through mineral oil valves was higher 

than with beads pulled through air valves, except with the 80% EtOH buffer solution, which 

had the same amount of carryover with air and mineral oil (Figure 7D, solid bars vs. open 

bars, respectively). The range of carryover volumes was 1.2 - 1.9 µL with air valves and 1.2 - 

2.4 µL with mineral oil valves.  
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Discussion and Conclusions 

Magnetic bead-based methods developed for biomarker isolation, amplification, and 

detection would be especially relevant for diagnostics in low resource settings; however, in 

many cases they are not used because of the prevalence of environmental contaminants and 

the limited access to trained personnel. Because the self-contained assay format described in 

this chapter is sealed from the environment and does not require extensive solution handling 

 

Figure 7. The effect of the material properties on the amount of solution carryover between 
solutions. A) Illustration of magnetic beads under the influence of a magnetic field moving 
from a solution through a surface tension valve within small-diameter tubing. As beads 
traverse the solution/valve interface, a small amount of solution is retained amidst the beads 
and is carried across the valve and into the next solution. B) The carryover volume increases 
linearly with an increased number of beads. C) The surface energy of the tubing has little 
effect on the carryover volume. D) In all solutions except 80% ethanol, there is more 
carryover when using mineral oil valves (solid bars) compared to air valves (open bars). (n = 
3, mean ± s.d.; if not visible, error bars are obscured by the symbols)  
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or pipetting, it has the potential to facilitate the application of these magnetic bead-based 

assays in settings that lack laboratory resources (7,16). Furthermore, as demonstrated by the 

experimental results of these studies, the multiphase fluidic-based format has the flexibility 

to handle the diverse constraints and requirements of a variety of magnetic bead assays, such 

as biopolymer synthesis, high throughput screening assays, or industrial quality control.  

The manipulation fluid-fluid interfaces for performing simplified and automated 

chemical and biological assays is of general interest, especially in the field of microfluidics. 

Consequently, the physical properties governing multiphase microfluidics are under 

investigation by many researchers. Some of the many aspects of the phenomena that control 

microdroplet formation were presented in a special collection of papers (38-41). 

Interestingly, some of the physical properties that influence fluid stability within our self-

contained format, such as surface and interfacial tension and solution density difference at 

the fluid-fluid interface, are similar to those that govern microdroplet formation in 

multiphase microfluidics. In our system, additional variables and constraints associated with 

magnetic particles are discussed in the context of the multiphase fluidic system. 

The self-contained sample processing format based on surface tension valves functions 

well because of three phenomena: i) solutions arrayed in millimeter-diameter tubing and 

separated by immiscible fluid spacers remain isolated from one another, ii) magnetic beads 

under a magnetic field gradient can be transported across the surface tension barrier of the 

fluid separators, and iii) magnetic beads passing between adjacent solutions through a surface 

tension interface do not intermix the solutions. Because of these phenomena, the tubing can 

be preloaded with processing solutions that are effectively separated by surface tension 

valves, and the assay can be carried out simply by moving the functionalized beads through 
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the solutions using an externally applied magnetic field. The results of these studies outline 

the physical design constraints for which these phenomena remain true. Based on these 

results, this discussion presents a generalized strategy for reconfiguring magnetic bead assays 

to the self-contained format.  

The optimal design for the self-contained format would maximize valve stability, 

minimize the force required to pull beads through the valves, and minimize the solution 

carryover across the valve. Because the most useful relationships from a design standpoint 

are between valve stability and penetrability, the results for all the parameters tested in these 

studies are plotted in terms of their effects on these two performance characteristics (Figure 

8). Valve stability is expressed in terms of a modified form of the Bond number 

(∆𝜌𝑟!𝑔 sin𝜃 𝛾), where ∆𝜌 is the difference in density across the valve interface (g/m3), 𝑟 is 

the radius of the tubing (m), 𝑔 is the gravitational acceleration constant (9.8 m/s2), 𝜃 is the 

contact angle of the solution on the tubing wall (°), and 𝛾 is the interfacial tension at the 

solution/valve interface (N/m). The Bond number is a dimensionless relationship of the 

accelerative forces and the surface tension forces that determine whether the surface tension 

valve maintains the separation between two adjacent solutions in small diameter tubing. The 

Bond number is generally used to determine the stability of drops suspended in free solution. 

For these studies, I have modified the Bond number to make it more appropriate for the 

configuration of our fluids, which are interfaced with the solid surface of the inner tube wall. 

In our configuration, the gravitational acceleration acts opposite that of the vertical 

component of the interfacial tension, so by including the sin𝜃, only the vertical component 

of the interfacial tension is considered. Valve penetrability is expressed in terms of the 

Penetrability number (F!,! 𝑙 cos𝜃 𝛾), where F!,! is the force required to move a group of 
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beads the x direction only through the surface tension valve interface (N), 𝑙 is the contact line 

of the group of beads on the solution/valve interface (m), 𝜃 is the contact angle of the 

solution on the tubing wall (°), and 𝛾 is the interfacial tension at the solution/valve interface 

(N/m). The Penetrability number is a dimensionless number that Rick Haselton and I 

developed to describe the relationship between the magnetic forces and surface tension forces 

that act on the beads to determine whether the magnetic beads cross the solution/valve 

 

Figure 8. Comparison of the valve fluid stability and penetrability for various material 
configurations. Solutions interfaced with mineral oil valves (solid squares) are more stable 
and easier to penetrate than solutions interfaced with air valves (open squares). There are 
tradeoffs between stability and penetrability with the range of tubing diameters tested (open 
circles). Tubing surface energy (solid circles) and bead mass (open triangles) influence valve 
penetrability but not valve stability. The minimum mass of beads that can be pulled through a 
valve (solid triangles) can be optimized for valve stability and penetrability. The relative size 
of the symbols corresponds to the relative material property values (e.g., large solid squares 
have higher interfacial energy than smaller solid squares). The positions of the zone 
boundaries indicated by the dotted lines are approximations. 
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interface. Plotting the modified Bond number versus the Penetrability number is useful for 

identifying configurations that support a surface tension valve that is both highly stable and 

easy to penetrate with magnetic beads. For reference, the values that reflect the configuration 

used for our RNA extraction assay (refer to chapter III) are represented as the red open 

square symbols (see Figure 8). Plotting the modified Bond number versus the Penetrability 

number is also useful for determining the effect of changing a single parameter on these 

performance characteristics, and it can be utilized for identifying variables that can be 

manipulated when one variable is constrained by a particular internal or external constraint. 

The parameters that influence the stability and penetrability to the greatest degree, and are 

therefore the most important to optimize, span a range of values outside of the region 

identified as stable and easy to penetrate (Figure 8). In these studies, those parameters 

include tubing diameter, tubing surface energy, and bead mass (open circles, closed circles, 

and open triangles, respectively).  

When reconfiguring a magnetic bead-based assay into the self-contained format, it is 

necessary to balance the physical design constraints of a configuration within the context of 

the chemical constraints of the assay, as the chemical composition of the processing solutions 

is connected to the function of a particular assay. For example, the surface tension and 

density of the processing solutions are intrinsically associated with the assay performance 

and are generally unalterable constraints for designing the physical format of the device. 

Consequently, an important step to designing a self-contained format for a particular assay is 

to identify the internal constraints of the assay. Internal constraints include the arrangement 

and volumes of the solutions, which influence the overall length of the tube; the 

compositions of the reagents, which influence the surface tension of the solutions; and the 
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analyte-binding capacity of the beads, which influences the amount of beads used. These 

factors must be taken into account when choosing materials for configuring the self-

contained format, as the physical configuration for optimizing one performance indicator can 

conflict with the configuration for optimizing another.  

It is clear that tubing material and diameter strongly influence the physical performance 

characteristics of this assay format. In general, tubing material of the lowest surface energy 

(i.e., the most hydrophobic) is preferred as it reduces the magnetic force required to pull 

beads through the valve (Figure 6B) and, to a lesser extent, increases the stability of the 

surface tension valve (Figure 4B). The choice of tubing diameter, on the other hand, must be 

considered as a tradeoff between valve stability and penetrability (see Figure 4A, Figure 6A, 

and Figure 8). Small diameter tubing maintains a stable valve but requires a very high 

magnetic force to move beads across the valve. The opposite is true with large diameter 

tubing, where the valves become less stable as the magnetic force requirement is minimized. 

The Penetrability number described above can explain these phenomena. The surface tension 

of the tubing material determines the contact angle (𝜃) of the solution with the tubing wall. 

With lower material surface tension the contact angle increases, which in turn decreases the 

Penetrability number (i.e. makes the surface tension valve easier to penetrate). Tubing 

diameter on the other hand, influences the contact line (𝑙) of the group of beads on the 

solution/valve interface. With larger tubing diameters the contact line increases, which also 

decreases the Penetrability number. The use of 1.6 to 2.4 mm i.d. tubing with low surface 

energy appears to be optimal for maximizing both stability and penetrability. In contrast, 

valve length and solution volume within the ranges most likely to be used in biological 

assays, do not influence valve stability or penetrability (Figure 4E and F and data not show). 



 41 

Another important design criterion is the immiscible fluid used to separate the processing 

solutions within the tubing. The fluid must provide an adequately stable barrier between 

solutions and permit the transit of the magnetic beads through the interface. I have found that 

separating processing solutions with air works well for practical reasons. Surface tension 

valves made from air are easier to load and more reproducibly separate solutions in 

millimeter-diameter tubing compared to those made with mineral oil, as mineral oil tends to 

inconveniently adhere to the surface of the tubing. Nevertheless, mineral oil works well for 

maximizing stability and minimizing bead pull through force (Figure 4C and Figure 6C, 

respectively). One of the most stable configurations tested was the use of the 80% EtOH 

buffer solution separated by a mineral oil valve. This combination is interesting as the 80% 

EtOH buffer solution has nearly the same density as the mineral oil valve used in these 

experiments (0.83 and 0.86 g/cm3, respectively). The modified Bond number can explain the 

high stability of this valve configuration. One of the variables represented in the modified 

Bond number is the difference in density between the fluids at the valve interface (∆𝜌). 

Because there is such a low difference in density between the solution and the valve (0.03 

g/cm3), the body force (𝑔) acts on each fluid almost equally. This results in a lower value for 

the modified Bond number and a more stable solution/valve interface. Difference in density, 

however, is not predictive of valve stability with air valves (Figure 4D). It appears that with a 

liquid surface tension valve (i.e., mineral oil) interfaced with adjacent solutions, the density 

difference between the solution and valve has a dominating influence on valve stability, and 

with a gas surface tension valve (i.e., air) interfaced with adjacent solutions, the surface 

tension has a dominating influence on stability. Despite the convenience and reproducibility 
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of air separators for preloading processing solutions, applications that require high valve 

stability or valves that are easy to penetrate may benefit most from mineral oil valves. 

Magnetic beads of an adequate mass under the influence of a sufficient magnetic field 

gradient can overcome surface tension barrier of the fluid separators and traverse the surface 

tension valve. A low magnetic force requirement is ideal, because the use of a small 

permanent magnet or an electromagnet is most desirable for the development of automated 

assay formats where limitations on magnet size or power requirements may exist. The force 

required to pull beads through the valve increased with increasing bead mass (Figure 6D). 

This positive correlation between pull-through force and bead mass was also observed by 

Shikida et al. (36). Interestingly, while the force required increased with increasing bead 

mass, the magnetic field gradient required decreased (Figure 6D). This is because a lower 

magnetic field gradient produces a much larger force on beads of increasing mass, as the 

force acting on the beads is directly proportional to both magnetic field gradient and bead 

mass. I have found that valve penetrability is maximized using a mass of approximately 1 - 3 

mg beads in 1.6 mm i.d. tubing (Figure 6D). The minimum mass of beads that penetrated the 

water/air interface in 1.6 mm Tygon tubing and a magnetic field gradient of ~10.2 T2/m was 

0.048 mg. Because the magnetic force acting on the beads is directly related to bead mass, 

the magnetic force that can be generated for bead masses below this minimum threshold are 

not sufficient to overcome the surface tension forces of the meniscus. This minimum bead 

mass value is in the range of those determined by Shikida et al. using beads of much larger 

diameters (36). It was, however, observed that bead masses less than 0.2 mg require more 

time and effort to pull through the solution/valve interface. Some magnetic bead-based 

assays may require the use of low amounts of beads (i.e., <0.2 mg) to optimize the surface 
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area available for binding the biomolecules of interest while limiting nonspecific binding of 

nonspecifically bound contaminants. Therefore, increasing the number of beads in a 

particular assay to reduce the magnetic field gradient required to pull the beads through a 

valve may have deleterious effects on the assay. I observed, however, that the Qiagen 

MagAttract beads required the least amount of force to move through the surface tension 

valves (Figure 6E), likely because of the relatively large size of the individual beads (see 

Figure 6D). Because the surface area to bead mass ratio decreases as the diameter of the 

beads increases, the use of larger beads may resolve this potential problem because of their 

lower surface area to mass ratio. Another way to facilitate valve penetration in the case that 

small masses of beads are to be used is to reduce the surface tension at the interface using a 

detergent. In a report of a 96-well plate mRNA extraction assay analogous to our continuous 

tubing design, Berry et al. use low concentrations of Triton X-100 to reduce the interfacial 

tension at the solution/valve interface (34). The group reported that the addition of 0.01 - 

0.1% Triton X-100 did not interfere with the mRNA binding chemistry yet facilitated the 

magnetic transfer of the beads across the immiscible phase.  

Although the integrity of the valve is maintained and the solutions do not intermix when 

beads traverse a surface tension valve, a relatively small volume of solution associated with 

the magnetic particles is carried to downstream solutions. Minimizing solution carryover is 

most desirable for the majority of bead-based assays, because it limits the amount of 

nonspecifically associated species that are carried over in the solution surrounding the beads 

that may interfere with the efficacy of the chemistry of the downstream solutions. In the case 

of the nucleic acid biomarker extraction assays developed in our laboratories and others, it 

has been reported that the carryover of GuSCN, GuHCl, or ethanol from upstream solutions 
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into the eluate can negatively impact the polymerase chain reaction (PCR) (35). The results 

of these studies indicate that the smallest amount of solution carryover is achieved with the 

fewest beads possible, as the amount of carryover is proportional to the number of beads 

used. Tubing surface energy, solution interfacial energy, and valve fluid had less impact on 

carryover; all carryover volumes fell between 1 - 2 µL per milligram of beads for each 

configuration tested when using 1 mg Dynabeads (Figure 7C and D), which represents 

between 0.3% and 4% of the processing solution volumes used in the most common nucleic 

acid extraction assays. Notably, this carryover volume is approximately equivalent to that of 

the commercially available Dynabeads Silane viral NA (Invitrogen) kit. 

Our laboratories have shown that this simple, self-contained format functions well for a 

variety of biomarker extraction assays (7,16). This format has many advantages for 

implementation in low-resource settings compared to laboratory-based assays. Foremost is 

the simplicity of the preloaded cassette. Because the tubing can be preloaded with assay 

solutions, the processing steps are self-contained, which reduces the potential for 

contamination during the assay with the use of an externally applied magnetic field to move 

the functionalized beads. The self-contained format also has the flexibility to interface with 

other assays, as the tubing permits direct injection or coupling to upstream and downstream 

systems for introducing or removing samples, reagents, or products. Furthermore, automated 

and multiplexed processing could be achieved by simply manipulating the magnetic field 

gradient using electronic motors or electromagnets. Because of these advantages, this self-

contained format may be extended to simplify a variety of magnetic bead-based assays that 

have potential diagnostic applications.  
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Chapter III 

 

DEVELOPMENT OF A LOW RESOURCE RNA EXTRACTION CASSETTE 

 

Abstract 

 In this chapter, I describe the development of a self-contained RNA extraction 

cassette suitable for operation in a low resource setting (7). This is important, because the 

presence of interferents in biological samples is a barrier to the development of nucleic acid-

based diagnostics. In a laboratory setting, the influence of these interferents can be 

minimized using an RNA or DNA extraction procedure. In low resource settings, limited 

access to specialized instrumentation and trained personnel presents challenges that impede 

sample preparation. As nucleic acid-based technologies move out of the laboratory setting, 

there is a need for new approaches to interface biological samples with these devices for 

point-of-care diagnostics. The continuous tubing extraction cassette that our laboratories 

developed contains processing solutions arrayed within a length of 1.6 mm inner diameter 

Tygon tubing. Processing solutions are separated by air gaps and held in place during 

processing by the surface tension forces at the liquid-air interface. RNA adsorbed to silica-

coated magnetic particles is pulled by an external magnet through successive solutions to 

precipitate, wash and elute RNA in the final cassette solution. The efficiency of the 

continuous tubing extraction cassette was evaluated using quantitative reverse transcriptase 

PCR (qRT-PCR) following extraction of respiratory syncytial virus (RSV) RNA that is 

spiked into TE buffer or HEp-2 epithelial cell lysates. RNA was recovered from each sample 

matrix with 22.5 and 7.6% efficiency, respectively. Additionally, 3.6 × 105 RNA copies/µL 
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was recovered from RSV infected HEp-2 cells in a 50 µL elution volume. An overall limit of 

detection after extraction was determined to be nearly identical (97.5%) to the RNeasy kit. 

These results indicate that the continuous tubing extraction cassette has the potential to be an 

effective sample preparation device in a low resource setting. 

 

Introduction 

Nucleic acid-based detection systems, such as quantitative PCR (qPCR), are attractive 

technologies for diagnosis of pathogens because of their sensitivity, specificity and relatively 

rapid time-to-answer. Many research groups have focused on the development of nucleic 

acid-based detection for low-resource settings (13). The effectiveness of PCR is dependent 

on both the quality and quantity of nucleic acid template (11) and the absence of interferents 

(12). For example, carbohydrates, proteins and lipids present in clinical samples have all 

been shown to inhibit PCR (42,43). In addition to various interferents, patient samples also 

contain nucleases, which directly reduce the number of nucleic acid targets present (43).  

To maximize the efficiency of nucleic acid-based diagnostics, RNA can be extracted and 

concentrated into an interferent-free buffer prior to testing. One classic laboratory method 

uses a phenol-chloroform cocktail (44). This method is highly effective but is not as 

commonly utilized today because it is time consuming and requires the use of toxic organic 

chemicals. Several solid phase extraction kits are commercially available to purify RNA 

from patient samples. Many of these kits rely on selective RNA binding to silica-coated 

surfaces in the presence of ethanol and a chaotropic agent such as guanidinium thiocyanate 

(GuSCN) (45,46). GuSCN also denatures protein contaminants including nucleases that may 

be present in the sample (47,48). These kits are not cost effective for low resource use and 
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often require specialized laboratory equipment and trained technicians that are unavailable in 

a low resource setting. Additionally, many involve multiple steps that increase the chance of 

contamination of both the sample and technician. 

There has been a growing interest in microfluidic technologies for sample preparation 

(13,49). Microfluidic devices are capable of overcoming many of the limitations of RNA 

extraction kits. These devices are fully self-contained, decreasing the chance for 

contamination of the sample or operator. The extractions are automated, reducing the skill 

required for operation. Additionally, many of these devices are suitable for integrating with 

downstream nucleic acid amplification and detection technologies (50,51). However, the 

small diameter of the microfluidic channels results in a small surface area of solid phase 

available for RNA adsorption and restricts the total sample volume that can be flowed 

through the chip. These features limit the total amount of RNA recovered (13) and therefore 

negatively impact the limit of detection. Additionally, manufacturing of these devices is often 

complex and difficult to perform on a large scale (13,52). 

I developed a self-contained RNA extraction cassette suitable for operation in a low 

resource setting. A self-contained extraction cassette is pre-arrayed with processing solutions 

separated by air gaps, which our laboratories have defined as surface tension valves. Cells are 

lysed and RNA is extracted after selective adsorption to silica-coated magnetic particles in 

the presence of GuSCN and ethanol. The extraction process is similar to commercially 

available magnetic bead-based extraction kits. However, instead of residing in separate tubes, 

individual processing solutions are contained in a single small-diameter tube separated by 

surface tension valves. The solutions remain stationary due to strong capillary forces. RNA 

adsorbed to the silica-coated magnetic particles is pulled through each processing solution 
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using an externally applied magnetic field and is eluted from the particle surface in the final 

solution. This chapter describes the general performance characteristics of this approach. 

Since there is not a commercially available low resource alternative to our RNA extraction 

cassette, its performance is compared to laboratory-based commercial kits. 

 

Materials and Methods 

Preparation of RSV RNA N gene standards 

 Because our laboratories have experience with respiratory syncytial virus (RSV) 

diagnostics, we have chosen to develop our extraction cassette using RSV RNA. Escherichia 

coli DH5α transformed with the pGBKT7 vector containing RSV N gene was generously 

provided by the Crowe Laboratory at Vanderbilt University. E. coli were grown for 18 hours 

on kanamycin agar plates at 37 °C. A single colony was isolated and transferred into 25 mL 

of Miller’s LB broth with 50 µg/mL kanamycin antibiotics and grown overnight on a rotating 

rack at 37 °C to an optical density of 0.6 - 0.8AU. The plasmid was extracted using a Qiagen 

Spin Miniprep Kit and linearized using the BssHII restriction enzyme. Linearization was 

confirmed by running both pre- and post-linearized plasmids on a 1% agarose gel. Linearized 

plasmid was recovered from the restriction digest by ethanol precipitation. The plasmid was 

then transcribed into RNA using a T7 MEGAscript transcription kit (Ambion, Austin, TX), 

and treated with DNase I. The expected RNA length was confirmed on a denaturing 2%-

formaldehyde-1.2% agarose gel. The RNA was quantified by UV-Vis spectroscopy.  
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Preparation of RSV infected and uninfected HEp-2 cell lysates 

Uninfected HEp-2 cell lysates were prepared from a confluent monolayer of HEp-2 

cells from a T-150 media flask. The cells were harvested by scraping from the T150 flask 

and centrifuging at 500 g for 5 min. The pellet was resuspended into 8 mL denaturing 

solution (4 M guanidinium thiocyanate, 25 mM sodium citrate [pH 7.0] 0.5% N-

laurosylsarcosine [Sarkosyl], 0.1 M 2-mercaptoethanol) and passed through a pipette tip 10 

times. The cell lysates were stored at a concentration of approximately 3 × 106 lysed cells per 

mL in 1 mL aliquots at -80 °C. 

Infected HEp-2 cell lysates were prepared by infecting confluent monolayer of HEp-2 

cells in two T150 flasks with RSV strain A2. After 4 days, one flask was harvested as 

described above and used to perform RSV RNA extractions from HEp-2 lysates. A plaque 

assay was performed on the second flask to quantify the concentration of infectious particles. 

To prepare the assay, cells were scraped from the T150 flask and centrifuged at 500 g for 5 

min. The pellet was resuspended into 8 mL of media, and cells were lysed by 3 cycles of 

freezing in an ethanol and dry ice slurry and thawing in a 37 °C water bath. The cell lysate 

was centrifuged at 100 g for 5 min, and the supernatant was stored at -80 °C in 1 mL 

aliquots.  

One hundred uL of the lysed cells was serially diluted, and each dilution added in 

triplicate to a confluent monolayer of HEp-2 cells in a 24-well plate. Plates were incubated at 

37 °C for 1 h. 1 mL of sterile 0.75% methyl cellulose (w/v) was then added to each well and 

the plate was placed at 37 °C for an additional 4 days. The infected HEp-2 cells were fixed in 

80% methanol at -20 °C for 1 h, washed 3 times with PBS, and blocked with a 5% milk 

solution for 1 h. One hundred fifty µl of 30 µg/mL anti-F protein primary antibody in 5% 
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powdered milk solution was added to each well. After 1 hour, wells were washed 3 times 

with PBS, and 150 µl of 0.5 µg/mL anti-mouse IgG HRP conjugate secondary antibody 

(Promega, Madison, WI) in 5% powdered milk solution was added for 1 hour. Wells were 

washed 5 times with PBS and 150 µl of TrueBlue peroxidase substrate (KLP, Gaithersburg, 

MD) added for 20 min at room temperature. The plaque forming units (pfus) were quantified 

by averaging the plaques at the dilution that resulted in a countable number plaques and 

multiplying by the dilution factor. 

 

Quantitative RT-PCR 

An 82-bp fragment of the RSV N gene was amplified using forward primer 5’-

GCTCTTAGCAAAGTCAAGTTGAAATGA-3’ and reverse primer 5’-

TGCTCCGTTGGATGGTGTATT-3’ (53). Reactions were performed in a 25 µL volume 

using 5 µL of RNA template and the Clontech one-step RT-PCR kit according to 

manufacturer’s instructions. Thermal cycling consisted of 48 °C for 20 minutes to synthesize 

cDNA, 95 °C for 3 minutes to inactivate the reverse transcriptase and activate QTaq DNA 

polymerase, and 40 cycles of 95 °C for 15 s and 60 °C for 60 s using a Rotor-Gene Q thermal 

cycler (Qiagen, Germantown, MD). Product specificity was confirmed using melting curve 

analysis and gel electrophoresis. Data was collected and Ct values recorded by Rotor-Gene Q 

Software (Qiagen, Germantown, MD) and converted to number of copies of RNA per µL 

using a standard curve.  
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RNA extraction using prototype capillary extraction cassette 

Proof-of-principle studies were performed using 14 frozen de-identified nasal wash 

samples provided by Dr. John Williams’ lab (Vanderbilt University Hospital, Nashville, TN). 

Use of specimens was approved by Vanderbilt University’s IRB. At the time of collection, 

nasal swabs were placed in opti-MEM media (Invitrogen, Oslo, Norway) and frozen at -80 

°C. Each sample was characterized by Williams’ lab for respiratory syncytial virus (RSV) 

using RT-PCR after an extraction using Roche Total Nucleic Acid Extraction Kit (Basel, 

Switzerland). RT-PCR was performed using Roche LC Magna Pure machine (Basel, 

Switzerland). We obtained samples that tested positive for RSV as determined by a 

calculated cycle threshold (Ct). We also obtained samples that tested negative for RSV as 

determined by no calculated cycle threshold value within the cycles that were performed. 

Seven samples characterized as RSV positive and seven as RSV negative were selected at 

random from a total of 840 samples. Frozen samples were briefly thawed, divided and 

refrozen as 100 µL aliquots to facilitate comparison across different RNA extraction 

methods.  

A prototype extraction cassette (Figure 9) was constructed from glass capillary tubes 

and pipette tips. Glass capillary chambers (2 mm i.d.) were cut from 0.635 cm stock tubing 

into 80 mm lengths, and the ends were flared outward. Six capillary chambers were aligned 

linearly on the top of a horizontal aluminum stage using machined aluminum mounts. A 

1000 µL pipette tip was placed as a spacer in between each capillary chamber with the wide 

end of the pipette tip around the preceding capillary chamber and the narrow end resting 

inside the flared region of the next capillary chamber. Thus successive processing chambers 

were separated from one another by air spacers within the pipette tips. The first capillary 
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chamber was reserved for the RNA sample and was initially left empty. The remaining 

chambers were pre-filled with the processing reagents supplied in the MagAttract RNA Cell 

Mini M48 kit (Qiagen, Germantown, MD) as follows: 200 µL of “Buffer MW” wash buffer, 

200 µL “Buffer RPE” wash buffer, 200 µL “Buffer RPE” wash buffer, 200 µL RNase/DNase 

free water, 30 µL RNase/DNase free water heated to 65 °C for elution of RNA. Thirty µL of 

nasal wash sample was added to 150 µL of “Buffer RLT” and homogenized by passage 

through a 20-gauge needle five times. Twenty µL of the MagAttract bead solution (Qiagen, 

Germantown, MD) was added to the homogenized sample, vortexed, and placed on a rotary 

mixer for 5 minutes at room temperature. The sample was then pipetted into chamber 1, 

shown on the left in Figure 9. A 2.54 cm cube of grade 40 NdFeB magnet (National Imports, 

Vienna, VA) was placed adjacent to the first capillary chamber and slowly pulled parallel to 

 

Figure 9.  Design of the preliminary extraction method showing the processing solutions 
held in place in glass tubing and separated by air-filled pipette tips.  RNA is adsorbed to 
silica-coated magnetic particles, which are pulled left to right through successive 
processing chambers using an external magnet.  Following processing, the RNA is eluted 
in a final water chamber. 
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the chambers at a rate of ~4 mm/second to pull the magnetic beads through each of the 

processing chambers. The total pull-through time was ~2 minutes. After reaching the final 

elution chamber, the beads were held to one side by the magnet and the eluent was collected. 

The recovery efficiency of RNA extraction was compared to the RNeasy Mini kit (Qiagen, 

Germantown, MD), Dynabeads mRNA Direct kit (Invitrogen, Oslo, Norway) used according 

to manufacturer’s protocols, as well as the MagAttract RNA Cell Mini M48 kit (Qiagen, 

Germantown, MD) performed manually instead of with the Qiagen M48 BioRobot which 

was unavailable for these studies. The number of extracted RSV N gene RNA copies/µL was 

calculated for the 7 RSV positive and 7 RSV negative nasal wash samples after 4 different 

extraction methods using a standard curve. The results were compared to the calculated copy 

numbers of RSV N gene RNA detectable in each sample prior to extraction.  

 

RNA extraction using continuous tubing extraction cassette 

The prototype design was simplified into a continuous tubing design using 8 

processing solutions pre-arrayed within two feet of Tygon tubing (1.6 mm i.d.) (Figure 10). 

These solutions were chaotropic wash buffer (300 µL of 4 M guanidine hydrochloride, 25 

mM sodium citrate, pH 7.0), RNA precipitation buffer (300 µL of 80% ethanol, 5 mM 

potassium phosphate, pH 8.5, 2), water wash (100 µL of molecular grade water, 3×), and 

RNA elution (50 µL of molecular grade water). Each solution was separated from the next by 

an air gap ~2 mm in length. Three types of extraction test samples were prepared: 5 µL of 

RSV N gene standard RNA in TE buffer at a concentration of 1 × 106 copies/µL, 20 µL of 

HEp-2 cell lysates (2 × 103 cells/µL) spiked with 5 µL of RNA standard, or 20 µL of RSV-

infected HEp-2 cell lysates. Cell lysate samples were homogenized by passage through a 25 
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gauge needle five times. Prior to extraction, samples were added to 230 µL of RNA-silica 

binding buffer (230 µL of 2 M guanidine thiocyanate, 25 mM sodium citrate, pH 7.0, 50% 

ethanol) and 20 µL of silica-coated 1 µm diameter magnetic particles (3 × 106 particles/µL) 

(Bioneer Inc., Alameda, CA) and placed on a rotating mixer for 5 minutes at room 

temperature. After mixing, the sample was loaded into the tubing and the tubing ends were 

capped. The particles were collected in the first chamber by the external magnet and pulled 

through the air valves and each successive chamber at ~4 mm/second using a 2 in. diameter 

neodymium ring magnet (Emovendo LLC, Petersburg, WV) as depicted in Figure 10. 

Particles were dispersed in the chaotropic wash and RNA precipitation solutions by rapidly 

moving the magnet back and forth before being recollected. In the water wash solutions, the 

particles were moved at ~8 mm/second to minimize RNA loss by elution during the wash. 

 

Figure 10. Design of the continuous tubing extraction cassette showing individual 
processing solutions separated by surface tension valves. An external magnet is used to 
pull RNA adsorbed to silica-coated magnetic particles through each processing solution. 
Following processing, the RNA is eluted in a final water chamber. 
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Finally, the particles were dispersed in the final elution chamber and incubated at room 

temperature for 5 minutes before removal. The final chamber contents were collected for RT-

PCR analysis. Each RNA extraction was completed in ~15 minutes.  

 

Continuous tubing extraction cassette limit of detection 

The minimum quantity of target RNA added to the RSV negative cell lysates and 

detected by RT-PCR after RNA extraction was found for the continuous tubing extraction 

cassette and compared to the RNeasy kit. Twenty uL of uninfected HEp-2 cell lysate was 

spiked with 5 µL of RNA in TE buffer containing 0, 5 × 103, 5 × 104, 1 × 105, 5 × 105, 1 × 

106, and 5 × 106 copies of RSV N gene RNA standard and extracted by both methods as 

previously described. After extraction, the RNA was quantified by RT-PCR. The limit of 

detection was defined as 3σ above the mean value obtained for control extractions containing 

no RNA. 

 

Post-extraction RNA distribution analysis 

Extraction test samples were prepared using 5 µL of RSV RNA standard in TE buffer 

added to 230 µL of silica binding buffer as described above. Twenty µL of magnetic particles 

were added to the sample and mixed for 5 minutes. RNA was extracted using the extraction 

cassette as described above. After extraction, each chamber was removed by cutting the 

tubing with a razor blade. Each solution was purified with the RNeasy Mini kit according to 

manufacturer’s protocol in order to remove PCR inhibitors. To account for RNA loss during 

the secondary RNA purification step, a control containing 5 µL of RSV RNA standard was 

purified from TE buffer using the RNeasy kit. The purified RNA was quantified by RT-PCR 
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analysis and normalized to the TE buffer control to account for loss during this second 

extraction. RNA remaining on magnetic particles after extraction was determined by 

recollecting the particles post-elution in 100 µL of nuclease free water. The particles were 

placed on a rotary mixer for 12 hours at 4 °C. Particles were removed and RNA in solution 

was purified with the RNeasy Mini kit and quantified by RT-PCR. 

 

Results  

RNA extraction from aliquots of frozen nasal wash samples using the prototype 

extraction cassette shown in Figure 9 recovered 510 ± 800 RSV RNA copies per µL (Figure 

11 dark bars). Using the same sample aliquots, the commercial RNeasy Mini kit, Dynabeads 

mRNA Direct kit and MagAttract RNA Cell Mini M48 kit recovered 4,400±10,000, 

750±1,300, and 940±1,000 copies per µL, respectively. In an unextracted RSV positive nasal 

 

Figure 11. Comparison of RNA yields from nasal wash samples using five extraction 
methods. The number of copies of RNA per µL extracted from RSV positive (black bars) 
and RSV negative (gray bars) nasal wash samples. Extractions were performed using 
prototype extraction cassette, RNeasy Mini kit, Dynabeads mRNA Direct kit, and the 
MagAttract RNA Cell Mini M48 kit (mean ± s.d., n=7).  
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wash sample, 3 ± 3 RSV RNA copies were detected. In samples previously classified as RSV 

negative, an average of less than 1 copy of RSV RNA was detectable per µL for all methods 

(Figure 11, light bars).  

Using the continuous tubing extraction cassette shown in Figure 10, extraction of an 

RSV N gene standard added to TE buffer was recovered at an efficiency of 22.5 ± 19% (1.1 

± 0.95 × 106 copies) (Figure 12A). Recovery efficiency was calculated by dividing the total 

number of copies extracted by the initial number of copies present in the sample and 

multiplying by 100%. In TE buffer, the RNeasy kit recovered 41 ± 19% (2.1 ± 0.95 × 106 

copies). TE buffer does not contain PCR interferents so, as expected, the detection of 

unextracted standard RNA was 100% (Figure 12A, right bar). 

In the more complex uninfected HEp-2 cell lysate sample matrix, the recovery 

efficiency of RNA was 7.6 ± 4.8% (3.8 ± 0.24 × 105 copies) using the extraction cassette, and 

18.1 ± 2.4% (9.1 ± 1.2 × 105 copies) using the RNeasy kit (Figure 12B). The spiked cell 

 

Figure 12. Comparison of the percent of RSV RNA recovered after addition to TE buffer 
(A) or HEp-2 cell lysates (B) using the extraction cassette (left bars), RNeasy kit (middle 
bars), or no extraction (right bars) (mean ± s.d., n = 9). The recovery efficiency of the 
cassette was 55% and 42% of the RNeasy kit from TE buffer and HEp-2 cell lysates, 
respectively. 
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lysates evidently contained RT-PCR interferents since there was no amplification of the 

unextracted spiked sample by RT-PCR (Figure 12B, right bar).  

Using the continuous tubing extraction cassette, RSV RNA extracted from RSV 

infected HEp-2 cell lysates containing 4.6 × 105 pfu/mL recovered 3.6 ± 0.09 × 105 RNA 

copies per µL from the elution chamber compared to 1.2 ± 0.07 × 106 copies per µL using the 

RNeasy kit (Figure 13, black bars). Less than 100 copies/µL was reported in extractions 

obtained from uninfected cell lysates (Figure 13, gray bars), and RNA was not detectable for 

infected or uninfected cell lysates which were not extracted prior to RT-PCR (Ct > 40) 

(Figure 13, “Unextracted”).  

For all methods, RNA loss during extraction was significant. A post-extraction 

examination of the distribution of RNA in the processing solutions was partially successful at 

identifying features responsible for this loss. In a separate series of continuous tubing 

extraction cassette experiments, 59.5% (3.0 × 106 copies) of RNA was accounted for in a 

 

Figure 13. Comparison of RNA extracted from RSV infected (black bars) and uninfected 
(gray bars) HEp-2 cell lysates using the extraction cassette and RNeasy kit. Unextracted 
samples failed to report RSV RNA in either sample (mean ± s.d, n = 3). 
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post-processing distribution analysis of RSV N gene standard added to TE buffer (Figure 14). 

Similar to the results found in Figure 12A, 28 ± 4.5% (1.4 ± 0.23 × 106 copies) of the RNA 

was recovered in the elution. Significant RNA was recoverable in the water wash solutions, 

which contained 21.7 ± 4.6% (1.1 ± 0.23 × 106 copies) of the initial RNA. An additional 7.8 

± 3.5% (3.9 ± 1.8 × 105 copies) of the RNA was recovered from the silica particles after 12 

hours of further elution at 4 °C. Less than 2% of the RNA was recoverable in the RNA-silica 

binding, chaotropic wash, and RNA precipitation solutions. The tube wall was also checked 

for RNA binding by washing with water post-extraction, and no detectable RNA could be 

recovered (data not shown). Approximately 40.5% (2.0 × 106 copies) could not be accounted 

for during the post processing distribution analysis.  

 

Figure 14. The post-extraction distribution of RNA in each processing solution after RNA 
extraction from TE buffer is shown. Insignificant amounts were recovered in the first 
three steps, but the water wash and silica particles contained significant RNA (mean ± 
s.d., n = 3). 
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Continuous tubing extraction cassette limit of detection 

The post-extraction limit of detection was established for the continuous tubing 

extraction cassette by determining the minimum RSV RNA copies in HEp-2 cell lysates 

detectable following an RNA extraction and RT-PCR. 5000 copies of RSV RNA spiked into 

HEp-2 cell lysates (e.g. 5 µL of RNA at 1000 copies/uL into 20 uL of cell lysate) was the 

lowest concentration detectable by RT-PCR after sample extraction using both the 

continuous tubing extraction cassette and RNeasy kit (Figure 15). For the extraction cassette, 

197 ± 8.5 copies were reported in the sample containing no RSV RNA, giving a 3 s.d. limit 

of detection target of roughly 222 copies. Cell lysates spiked with 5000 copies prior to 

extraction reported a value of 228 ± 58.5 copies per PCR reaction. Additionally, 461 ± 19.5, 

 

Figure 15. The limit of detection of RNA detectable by RT-PCR after extraction from 
HEp-2 cell lysates spiked with known amounts of RSV RNA using either the continuous 
tubing extraction cassette (•) or the RNeasy kit (о) (mean ± s.d, n=3). When a sample 
containing no copies of RNA was extracted, 197 ± 8.5 RNA copies were detected with the 
extraction cassette and 202 ± 9.5 copies were detected with the RNeasy kit. The limit of 
detection is shown for the continuous tubing extraction cassette (dotted line).  
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686 ± 123, 1857 ± 206, 5435 ± 1562, and 48,910 ± 22012 copies were reported from lysates 

spiked with 5 × 104, 1 × 105, 5 × 105, 1 × 106, and 5 × 106 copies respectively.  Similarly, 202 

± 9.5 copies were reported in the sample containing no RSV RNA, and 312 ± 26.8 copies 

from lysates spiked with 5000 copies and extracted with the RNeasy kit. Finally, 1489 ± 

27.7, 3250 ± 1240, 13233 ± 1240, 38345 ± 8526, and 101,505 ± 26,173 copies were reported 

from lysates spiked with 5 × 104, 1 × 105, 5 × 105, 1 × 106, and 5 × 106 copies respectively. 

 

Discussion 

One of the factors that limits nucleic acid-based detection is the need for patient 

sample preparation prior to testing (54). Sample preparation techniques mirroring the simple 

nucleic acid-based diagnostic devices currently being developed are necessary to make 

diagnosis practical at the point-of-care. Unfortunately, the operation of most existing 

commercial kits appropriate for RNA extraction and concentration require specialized 

laboratory equipment and trained laboratory personnel.  

In agreement with previous studies, we found that without an initial extraction step, 

only purified RNA in solutions containing no interferents (e.g., TE buffer) can be directly 

detected by RT-PCR (Figure 12A). Direct amplification of viral RNA by RT-PCR prior to 

RNA extraction failed to accurately report the concentration of viral RNA in RSV-infected 

clinical nasal wash samples (Figure 11), HEp-2 cell lysates spiked with RSV RNA (Figure 

12B), and RSV infected HEp-2 cell lysates (Figure 13). Direct amplification has been 

performed on patient samples by others but not without the need for more complex analysis 

(e.g., RT-PCR followed by flow cytometry) (55), which would be impractical in a low 

resource setting. Therefore, RSV false negatives are likely to be obtained when the extraction 
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step is omitted prior to RT-PCR, and sample preparation is necessary to achieve a low limit 

of detection.  

A limit of detection study was performed using spiked cell lysate samples, and the 

results suggest that the proposed continuous tubing extraction cassette and the RNeasy kit 

have a limit of detection of ~200 copies per µL. This limit of detection is better than current 

clinical diagnostics, which have a lower limit of detection of ~104 pfu/mL or ~105 copies per 

µL. In combination with a point-of-care nucleic acid-based diagnostic, the proposed 

extraction cassette would be ideal in a low resource setting. Here, the estimate of 1 pfu 

equaling ~104 copies of RSV RNA is based on the split culture characterization studies of 

RSV-infected HEp-2 cells. With a factor or two improvement in the extraction process or 

optimization of the RT-PCR, lower limits at or below the RSV infectious dose 50 (dose that 

will infect 50% of subjects, ~100 copies per µL) are likely achievable. 

Currently, there are no commercially available low resource nucleic acid extraction 

devices for comparison to the proposed method. However, several laboratory-based 

commercial kits are available, and we compared the proposed low resource method to these 

approaches. Somewhat surprisingly, the proposed low resource method performed well in 

comparison with established laboratory-based methods. As shown in Figure 12, ~22.5% of 

the RNA is recovered by the current design under idealized conditions (spiked TE buffer). 

More complex sample matrices such as cell lysates or nasal wash samples evidently contain 

components that inhibit RT-PCR or make RNA recovery more difficult. All extraction 

methods tested had lower extraction efficiencies when used to extract RNA from cell lysates. 

For example, compared to extraction from TE buffer, the recovery from spiked cell lysates 
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using the extraction cassette was reduced by 65%. Similarly, the recovery using the RNeasy 

kit was reduced by 57%.  

The prototype design was tested with a small subset of previously collected de-

identified nasal wash samples. These samples were labeled RSV positive or negative during 

the collection process (not part of this study) using a commercial laboratory RNA extraction 

process and RT-PCR. The testing of these samples was not designed as a blinded study and 

served as a simple validation of the basic extraction design. The evaluation of these samples 

with our prototype device indicated that the basic design performed similarly to 

commercially available kits (Figure 11) but in general recovered less than the other kits 

tested. All of the extraction methods used correctly classified the RSV positive and negative 

samples. However, the amount of RSV RNA present in these samples was quite variable as 

indicated by the coefficient of variation (s.d./mean) obtained with all of the extraction 

methods. The coefficients of variation were 157% (extraction prototype), 227% (RNeasy), 

173% (Dynabeads), and 106% (MagAttract). This high variation was the major reason for 

using the HEp-2 cell lysates as a more controllable clinical sample analogue for further 

device development and testing. The error obtained with known starting RNA content is 

more indicative of variation inherent in the methods themselves. As Figure 13 indicates, 

under these more controlled conditions, the coefficient of variation is substantially reduced 

for both the extraction cassette at 6% and the RNeasy kit at 13%.  

The inherent flexibility and stability of the extraction cassette provides a unique 

format for creating a low resource RNA extraction device. The device format can be easily 

modified to incorporate larger sample volumes and is suitable for large scale manufacturing. 

The continuous diameter of the tubing minimizes particle loss during sample pull-through by 
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eliminating locations where the particles can become trapped, a limitation of the original 

prototype design shown in Figure 9. In addition, the utilization of surface tension valves in 

the continuous tubing design serves to separate processing solutions within one continuous 

section of tubing, and allows the extraction process to be fully self-contained. Individual 

processing solutions are preloaded into the tubing, eliminating the need for sample handling 

and pipetting during the extraction process. This is advantageous as it minimizes the potential 

for contamination of the wash solutions, the extracted RNA, and the operator. The surface 

tension in the small diameter tubing holds each solution in place, and individual solutions 

remain undisturbed when magnetic particles pass through the air valves. The valves also 

minimize interferent carryover by preventing diffusion down the tubing, and separating the 

water wash into three successive steps also helped to minimize carryover.  

Previous studies using a filament-antibody recognition assay found that high capillary 

forces held solutions within small diameter capillary tubes even in the presence of a moving 

filament (56). This fluid retention and separation are key to the continuous tubing design. 

The surface tension at this interface is affected by the surface properties of the tubing and the 

properties of the air/liquid interface. On-going studies are directed at better understanding the 

physical properties of the cassette such as the particle diameter, density, magnetic 

susceptibility, and surface chemistry that define this phenomenon and how they might be 

modified to improve device performance. A better understanding of these forces will enable 

more flexibility in future design improvements. 

The performance of this approach and could be improved by reducing the overall loss 

of RNA during the extraction process. Unlike commercially available extraction kits, all of 

the required components in this study are known and have been chosen based on published 
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methods for RNA extraction. It is likely that further modifications to individual solutions will 

lead to an increase in the recovery efficiency. The post-extraction RNA distribution in the 

processing solutions suggests that RNA may be irreversibly bound to surfaces or degraded 

during processing. It is also possible that a component in the processing solutions inhibited 

RNeasy recovery. An estimation of the RNA distribution within each wash chamber allows 

us to identify potential locations for optimization (Figure 14). Significant quantities of RNA 

were lost during the water wash steps, which are necessary to remove the ethanol in the 

absence of centrifugation. For downstream RNA detection by RT-PCR, the ethanol must be 

removed prior to amplification; however, other nucleic acid-based detection strategies may 

not be inhibited by the presence of ethanol. In these cases, the water wash chambers could be 

reduced or eliminated and the recovery efficiency of the extraction cassette would be 

improved. Approximately 8% of the RNA still remained on the silica particles after a 5 

minute elution in water. By increasing the elution time, the overall yield of the device could 

be improved by up to 8% in 12 hours, but the total extraction time would be dramatically 

increased. Minimal RNA was detected within the RNA-silica binding, chaotropic wash and 

RNA precipitation solutions. It is possible that additional RNA is bound to the inner wall of 

the tubing or located on particles that become trapped in the surface tension valves during 

magnetic pull-through.  

The extraction cassette investigated in this chapter can potentially be utilized for 

sample preparation in a low resource setting. It is relatively inexpensive to produce at less 

than $1.00 per extraction. A rough cost estimate based on current catalog prices of the 

chemicals and materials required for the continuous tubing design suggests that the most 

expensive items are the magnetic particles (about $0.50) and the Tygon tubing (about $0.30). 
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The recovery efficiency of this device is lower than we would like. However, the continuous 

tubing design can likely be further improved by solution and surface optimization studies. Its 

major advantages are that it can be performed without a laboratory centrifuge or access to a 

pipetter and without the skills necessary to operate these laboratory devices, keys to a low 

resource device. 

 

Conclusion 

In summary, a self-contained RNA extraction device suitable for the preparation of 

patient samples for RT-PCR analysis has been developed. An initial non-laboratory prototype 

design had a recovery efficiency between approximately 12% and 68% of laboratory-based 

commercially available kits. The continuous tubing extraction cassette design improved this 

to between 30% and 55% of the Qiagen RNeasy kit. The performance of this device along 

with its simplicity and flexibility suggests that it merits further evaluation as a sample 

preparation tool suitable for use in low resource settings where nucleic acid-based 

diagnostics must be utilized without specialized equipment, trained personnel, or even 

electricity. 

 

Acknowledgments  

 The purchase of materials and regents for this project was supported in part by a 

Vanderbilt University IDEAS Award and a National Institutes of Health R21 grant 

(EB009235). I thank the National Institutes of Health Training Grant in Mechanisms of 

Vascular Disease for personal support during the time I worked on this project.  

 The work presented in this chapter is the result of the efforts of several individuals. 

The initial concept of RNA extraction in a tube using surface tension valves to separate 



 68 

processing solutions is credited to Rick Haselton. Much of the data was collected by Hali 

Bordelon and Amy Klemm. A considerable amount of effort was contributed by way of 

experiment design and background research into RNA extraction methods and reagents by 

Hali Bordelon and Patricia Russ. Hali also contributed significantly to writing of the 

manuscript that is the basis of this chapter. David Wright provided his immense body of 

knowledge to keep the project efforts in check with reality. And finally, this work could not 

have been completed with out our great collaborators John Williams and Keipp Talbot, who 

collected and provided the RSV-infected nasal wash patient samples. 

 

 



 69 

 

 

 

 

 

Part II. Isothermal methods for nucleic acid detection  

 



 70 

Chapter IV 

 

THE EFFECT OF HYBRIDIZATION-INDUCED SECONDARY STRUCTURE 

ALTERATIONS ON RNA DETECTION USING BACKSCATTERING 

INTERFEROMETRY 

 

Abstract 

 Backscattering interferometry (BSI) has been used to successfully monitor molecular 

interactions without labeling and with high sensitivity. These properties suggest that this 

approach might be useful for detecting biomarkers of infection, such as RNA, which is the 

basis for the work described in this chapter (24). I identified interactions and characteristics 

of nucleic acid probes that maximize the BSI signal upon binding the respiratory syncytial 

virus nucleocapsid gene RNA biomarker. The number of base pairs formed upon the addition 

of oligonucleotide probes to a solution containing the viral RNA target correlated with the 

BSI signal magnitude. Using RNA folding software mfold, I found that the predicted number 

of unpaired nucleotides in the targeted regions of the RNA sequence generally correlated 

with BSI sensitivity. I also demonstrated that locked nucleic acid (LNA) probes improve 

sensitivity approximately four-fold compared to DNA probes of the same sequence. This 

enhancement in BSI performance was attributed to the increased A-form character of the 

LNA:RNA hybrid. A limit of detection of 624 pM, corresponding to ~105 target molecules, 

was achieved using nine distinct ~23-mer DNA probes targeting regions distributed along the 

RNA target. I conclude that BSI has promise as an effective tool for sensitive RNA detection 

and provides a road map for further improving detection limits.  
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Introduction 

 The expression of single-stranded RNA is an essential part of the life cycle of human 

pathogens. RNA is found in great abundance during critical stages of infection. Some virus 

infections produce 103 - 104 detectable RNA molecules per virion (6,7). Additionally, a high 

degree of pathogen-specificity can be found in sequences of expressed RNA. Pathogen 

species and strains can be identified based solely on the detection of RNA sequences as short 

as 16 nucleotides (57,58). Because of their abundance and species-specificity, RNA 

biomarkers are especially useful for pathogen detection and diagnosis of illnesses that result 

from infection. Our laboratories have developed an interferometric method for RNA 

detection based on specific interactions with unlabeled oligonucleotide probes in solution. 

 Many methods have been developed to detect RNA biomarkers. Reverse transcription 

followed by polymerase chain reaction (RT-PCR) is a common technique used to quantify 

RNA. Because of its sensitivity, it has become the gold-standard for RNA detection. PCR-

based methods, however, typically require purification, denaturation, and time consuming 

amplification and labeling. Fluorescence-based methods, such as microarrays or molecular 

beacons, are also commonly used for detecting RNA targets using oligonucleotide probes 

(59), yet they often lack the sensitivity needed for diagnostic applications. Other nucleic acid 

probe-based methods developed for RNA detection include the biobarcode-assay (60), 

cantilever array sensors (61), and surface plasmon resonance (SPR) (62). These methods 

require complex probe synthesis procedures, nucleic acid labeling or immobilization, or 

specialized instrumentation and are deficient in terms of speed, sensitivity, convenience, and 

cost. There is, therefore, a need for methods that are simple, rapid, and sensitive for RNA 

detection. Backscattering interferometry (BSI) is a technology that circumvents the 

limitations of other detection methods as it has a simple instrumental design, does not require 
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molecular labeling or amplification, and can be performed in solution using microliter 

volumes in complex matrices. 

 BSI has been used to successfully monitor binding interactions of a variety of 

biological molecules with high sensitivity (63-69). The design of this unique interferometer 

is very simple. A He-Ne laser is used to illuminate a semicircular microfluidic channel 

containing less than 1 µL of analyte, creating a set of high contrast interference fringes of 

reflected and refracted light (Figure 16A). When a specific binding event occurs, the 

refractive index (RI) of the solution in the channel changes, causing these fringes to shift in a 

manner that is proportional to the concentration of the analyte (Figure 16B - C). Though BSI 

has been used to quantify protein biomarkers via antibody-antigen interactions (64), the work 

presented in this chapter represents the first demonstration of its use for detecting and 

 

Figure 16. Depiction of the optical train and mechanism of signal generation for RNA 
detection using backscattering interferometry (BSI). A) Schematic of BSI optical train. B) 
Digital representation of interference fringes. C) Representation of signal generation as 
probes bind RNA targets. 
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quantifying RNA biomarkers.  

  Nucleic acid probes of various lengths and chemical compositions can be designed to 

complement any sequence of a target nucleic acid. Therefore, the design space of nucleic 

acid probes is extremely large compared to other types of probes, such as antibody-antigen or 

even aptamer-ligand interactions, which require specific and constrained tertiary structures 

for target recognition. Additionally, commercial synthesis of oligonucleotides is widely 

available and is able to produce virtually any sequence of natural or chemically modified 

nucleotides. Compared to other biomolecular probes (e.g., antibodies), nucleic acids also 

have relatively modest chemical complexity and are uniformly charged. These properties 

reduce variations in RI that may result from the interactions of the probes with the solvent, 

making them ideal probes for biomarker detection using BSI. Furthermore, nucleic acids are 

not “sticky” like proteins, reducing artificial signals from non-specific interactions, such as 

binding to the channel wall.  

 An important property of BSI in the context of biomarker detection is its large 

dynamic range. The optical properties of the interferometer are such that the fringes continue 

to shift (i.e., produce a signal) as long as a change in RI occurs and that the RI of the fluid 

differs from that of the microfluidic chip. Consequently, the dynamic range of BSI can be 

expanded as long as there are analytes available to bind and change the RI. BSI sensitivity 

can therefore be dramatically enhanced without reaching signal saturation. This property is in 

contrast to detection assays that are dependent on light intensity, in which photometers can 

become saturated with extreme amplification methodologies. Oligonucleotide probes that are 

designed to produce the maximum change in RI upon binding the RNA target will, therefore, 

provide maximum BSI signal and optimize sensitivity. In this chapter, I report the utility of 
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BSI for label-free detection of a specific viral RNA biomarker sequence in solution. The 

focus of these experiments is on the respiratory syncytial virus (RSV) nucleocapsid (N) gene 

RNA, a biomarker with which our laboratories have had considerable experience (7,70,71). 

A systematic evaluation of a subset of oligonucleotide probe design parameters was 

conducted to determine interactions and characteristics of nucleic acid probes that enhance 

the sensitivity of BSI for detecting this RNA biomarker.  

 

Materials and Methods 

Preparation of the synthetic RNA targets 

 The RNA target used in these studies is a synthetic ~1300 nucleotide positive-sense 

RNA molecule of the RSV strain A2 N gene. The RNA was prepared as previously described 

(7). Briefly, a pGBKT7 vector containing the RSV N gene insert was amplified in 

Escherichia coli strain DH5α, purified using a Qiagen Plasmid Midi Kit, linearized with the 

BssHII restriction enzyme, reverse transcribed using the Ambion T7MEGAscript 

transcription kit, and treated with DNase I. The integrity and length of the RNA product was 

confirmed using denaturing agarose gel electrophoresis. Aliquots of the RNA were stored at 

a concentration of ~80 nM in Tris-EDTA buffer at -80 °C until they were used. The RNA 

mismatch targets used in these studies were commercially synthesized at a 50 nmole scale 

and desalted by Sigma-Aldrich. The sequences of the full length RNA target and the 

mismatch targets used in these studies are provided in Supplemental Figure 1 in Appendix A.  
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Synthesis of the oligonucleotide probes 

 The DNA oligonucleotide probes used in these studies were commercially 

synthesized at a 200 nmole scale by Sigma-Aldrich and purified using reverse phase 

cartridge purification. Locked nucleic acid (LNA) oligonucleotide probes were synthesized at 

a 250 nmole scale by Exiqon and purified with high performance liquid chromatography. 

Each lyophilized oligonucleotide was resuspended to a concentration of ~100 µM in 

molecular grade water (Fisher) and stored at -20 °C until they were used. The sequence of 

each oligonucleotide probe used in these studies is provided in Table 1. 

 

Backscattering interferometry 

 Details of the BSI instrumental configuration have been described in detail previously 

(63). In brief, a 5 mW helium neon laser (λ = 635 nm) is directed onto a borosilicate glass 

microfluidic chip etched with a near-semicircular channel that is about 210 µm wide and 100 

µm deep. The coherent, collimated light source reflects and refracts within the channel, 

creating a fringe pattern that is detected with a linear CCD array. The fringes shift spatially 

with respect to the RI of the solution, and the position of a select group of fringes is analyzed 

with an in-house LabView-based fast Fourier transform analysis program (72).  

 Unless otherwise noted, all assays were performed in an end-point format where a 

fixed concentration of probe (100 nM) was incubated with increasing concentrations (0 - 36.5 

nM) of target RNA in Tris-buffered saline. Samples were mixed with a pipette and incubated 

at room temperature for 2.5 hours to ensure that the binding equilibrium was reached. One 

microliter of each sample was sequentially injected into the microfluidic channel and the 

signal was recorded for 30 seconds. To correct for bulk RI changes, a series of blank 
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measurements were taken from samples containing increasing concentrations of RNA target 

in the absence of probe. These values were then subtracted from the sample signal. The RI 

shift, measured in radians, was then plotted against the concentration of the target to produce 

a binding response curve. The slope of the binding response curve, in radians (rad) per 

nanomolar, was used as a measure of sensitivity. The lower limit of detection (LOD) was 

calculated using the following equation: 

 LOD = 3 × σ / slope 

Table 1. List of the probe sequences used in BSI studies. 
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where σ is the average of three standard deviation measurements at each RNA target 

concentration tested and the slope is the best-fit trendline of the linear range of the binding 

curve (y = ax + b). 

 

Quantification of net nucleic acid hybridization  

 The relative amount of nucleic acid hybridization was quantified using a SYBR 

Green assay. Samples were prepared in triplicate with 1 nM of the synthetic RSV N gene 

RNA, 10 nM of the probe or probes, and a 1:9000 dilution of SYBR Green I (Life 

Technologies). Samples for the blank measurements were prepared in triplicate without RNA 

or without the DNA probes. For the LNA:RNA and DNA:RNA hybridization comparison, 

samples were prepared in triplicate using 60 nM LNA or DNA, 20 nM RNA complement of 

the same length, and a 1:9000 dilution of SYBR Green I (Life Technologies). A standard 

curve of double stranded DNA of the same sequence and length was used to approximate the 

percent hybridization in the LNA:RNA and DNA:RNA samples. Prior to the addition of 

SYBR Green I, each sample was heated to 90 °C for 5 minutes and cooled slowly to room 

temperature over the course of 1 hour. Fluorescence measurements were recorded using a 

BioTek Synergy H4 Hybrid 96-well plate reader using an excitation wavelength of 497 nm 

and a detection wavelength of 520 nm. The values were normalized by subtracting signal of 

the samples from the background signal generated in the RNA-alone or the DNA-alone blank 

samples.  
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Preparation of and evaluation of surrogate nasal wash samples 

 HEp-2 cell lysates were prepared in a manner previously described (7). Briefly, cells 

were cultured to a confluent monolayer in a cell culture flask, harvested, and resuspended in 

a cell lysis/RNA preservation solution (4 M guanidinium thiocyanate, 25 mM sodium citrate 

[pH 7.0] 0.5% N-laurosylsarcosine [Sarkosyl], 0.1 M 2-mercaptoethanol), and stored at -80 

°C. The surrogate nasal wash samples were prepared by diluting the cell lysates into 

phosphate buffered saline at 1 × 105, 5 × 104, 1 × 104, and 0 cells/mL concentrations and 

spiking each with the synthetic ~1300 nucleotide RSV N gene RNA biomarker at a final 

concentration of ~16 nM.  

 For evaluation of the RNA target in the surrogate nasal wash samples using BSI, the 

samples were split into two halves. One half of each sample was used for total RNA 

extraction, and the other half was left unextracted. Total RNA extraction was performed 

using a self-contained continuous tubing extraction cassette as previously described (7). 

Briefly, each sample was added to an RNA binding solution containing silica-coated 

magnetic beads. The beads were mixed with the sample for 5 minutes and then drawn 

through a series of RNA extraction solutions. Total RNA was eluted into water, and 

evaluation of the synthetic ~1300 nucleotide RSV N gene RNA biomarker was performed 

using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and BSI. Each 

sample was extracted and evaluated in triplicate. qRT-PCR was performed as described 

previously (7).  
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RNA folding analysis 

 The folding state of the synthetic RSV N-gene RNA was predicted using the RNA 

Folding Form of the mfold software package available online 

(http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form). The full-length sequence of the 

target (1331 nucleotides, sequence available in Supplemental Figure 1 in Appendix A) was 

used as the input, and the default settings were used. The five structures predicted to have the 

lowest energy were used to identify the folding state at the probe binding sequences. The 

number of consecutive unpaired bases for each of these sequences were averaged from the 

five predicted structures and plotted against the slope of the linear range of the BSI response 

curve. The five lowest energy mfold RNA folding structures are provided in Supplemental 

Figure 2 in Appendix A. 

 

Nucleic acid secondary structure determination 

 Circular dichroism (CD) spectra were collected using an Aviv CD spectrometer 

model 215 (Aviv Biomedical, Inc.). To compare the LNA:RNA, DNA:RNA, and DNA:DNA 

hybrids, solutions were prepared in 40 µL volumes containing 30 µM of DNA, RNA, and/or 

LNA strands in Tris-buffered saline. Prior to collecting CD spectra, each sample was heated 

to 90 °C for 5 minutes and cooled slowly to room temperature over the course of 1 hour. For 

the A-form to B-form transition study, a solution of 80% 2,2,2-Trifluoroethanol (TFE) 

containing 385 µM Tris-HCl, 38.5 EDTA, 5 mM NaCl, and 12 µM of each DNA strand was 

prepared. Prior to adding the TFE, the solution was heated to 90 °C for 5 minutes and cooled 

slowly to room temperature over the course of 1 hour. TFE was added stepwise accompanied 

by immediate mixing to avoid DNA precipitation while transitioning to A-form DNA. The 
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concentration of TFE was diluted to 77.5%, 75%, 72.5%, and 70% to by adding the 

appropriate volumes of a solution containing 385 µM Tris-HCl, 38.5 EDTA, 5 mM NaCl, 

and 12 µM of each DNA strand. At each TFE concentration, 60 µL of the sample was 

removed and CD and BSI measurements were immediately performed. Blank measurements 

were collected from solutions prepared at each TFE concentration and containing 385 µM 

Tris-HCl, 38.5 EDTA, and 5 mM NaCl, with no DNA. All CD spectra were collected from 

320 nm to 200 nm wavelengths at 25.0 °C in a 1.0 mm pathlength quartz cuvette using a 0.5 

nm wavelength step, a 1.0 nm bandwidth, and a 1 second averaging time. Spectra were 

averaged from at least 3 separate scans, smoothed, and normalized using CD-215 software 

version 2.90 provided by the manufacturer. 

 

Results 

Enhanced BSI sensitivity using 22-mer probes  

 The design space of oligonucleotide probes targeting the ~1300 nucleotide RSV N 

gene RNA biomarker sequence is extremely large. Oligonucleotides of virtually any length 

and sequence complementary to the target could be used, and a variety of chemically 

modified nucleotides could be substituted for natural nucleotides. Because an exhaustive 

study of all the potential probe designs is not feasible, I conducted a systematic evaluation of 

a subset of oligonucleotide probe design parameters. The first probe investigated was 

RSVN(242-263), a 22-mer DNA probe with a sequence chosen based on previous success as 

a primer for PCR studies aimed at amplifying RSV N gene cDNA. BSI measurements using 

the RSVN(242-263) 22-mer probe produced a linear response proportional to the 

concentration of the RSV N gene RNA with a LOD of 3.73 nM target RNA (Figure 17A and 
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Table 2). As a negative control, a scrambled sequence of the same 22-mer was evaluated 

under the same conditions and yielded negligible signal. Postulating that probe length would 

correlate with BSI signal, probes RSVN(242-256), RSVN(242-285), and RSVN(242-329) 

were tested, which are 15, 44, and 88 nucleotides in length, respectively, and start from the 

same position in the target RNA as the 22-mer probe. Each of these probe lengths resulted in 

slightly less signal and poorer detection limits than the 22-mer probe. To relate the BSI signal 

to a net increase in base pairs, the relative hybridization of these probes to the RNA target 

was determined using a SYBR Green assay (Figure 17B). The signal generated from the 

 

Figure 17. Comparison of the BSI binding response and net hybridization upon adding the 
15-mer, 22-mer, 44-mer, 88-mer, or four consecutive 22-mer DNA probes to the RNA 
target. A) The probe length that produces optimal BSI signal is 22 nucleotides. Four short 
22-mer DNA probes have improved signal over one 88-mer spanning the same target 
sequence. A scrambled negative control sequence produced negligible signal. B) Net 
hybridization of the four consecutive 22-mers is significantly greater than any of the four 
probe lengths. 
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intercalation of SYBR Green dye in the 15-mer, 44-mer, and 88-mer probe:target hybrids 

was slightly greater than that of the 22-mer probe:target hybrid. Interestingly, we discovered 

that by dividing the 88-mer probe into four contiguous 22-mer probes, the slope of the BSI 

response was significantly increased, resulting in a LOD of 2.04 nM target RNA, or ~4.1 × 

105 molecules. This enhancement in sensitivity was reflected by the increase in the net 

hybridization of the four consecutive 22-mers compared to the 15-mer, 22-mer, 44-mer, and 

88-mer probes (Figure 17 and Table 2). These results indicate that of the probes tested, the 

optimal length is 22 nucleotides for BSI detection and that the BSI signal can be enhanced 

using multiple probes of that length.  

Table 2. Summary of the slopes of the binding curves and limits of detection for each 
probe combination. 



 83 

 

Enhanced BSI sensitivity using multiple distributed probes 

 Next we investigated the influence on assay sensitivity of distributing the probes 

along the ~1300 nucleotide RNA target sequence. Because the four consecutive probes were 

designed to bind contiguous sequences of the target RNA, it was hypothesized that the 

conformation of the target RNA secondary structure prevented the probes from fully 

hybridizing and that distributed sequences would improve signal. By distributing the four 

probes along the length of the target RNA, the slope of response was improved more than 3-

fold over the 4 contiguous sequences (Figure 18A and Table 2). Furthermore, increasing the 

total number of probes to nine further improved sensitivity, providing a LOD of 624 pM, or 

1.5 × 105 molecules target RNA. Accordingly, studies evaluating the net hybridization of the 

single probe versus the four and nine probe combinations revealed increased hybridization 

with the increased number of probes (Figure 18C), further validating that BSI signal is at 

least partially the result of a net change in hybridization.  

 To further demonstrate that the increased signal from the nine-probe cocktail was a 

 

Figure 18. Comparison of the BSI binding response and net hybridization of various 
numbers and distributions of probes incubated with the RNA target. A) Increasing the 
number and distribution of distinct probes improves sensitivity. B) Illustration of the 
relative positions of the DNA probes along the RNA target. C) Hybridization studies 
confirm that increased number of probes bound correlates with increased binding signal. 
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result of an increase in the number of available binding sites, as opposed to the effect of 

having a higher concentration of probes present, a saturation binding isotherm was 

constructed for both the single probe and the nine-probe cocktail. For this assay, the 

concentration of the target RNA was held constant while the probe concentration was varied 

from 0 - 100 nM. The signal at saturation (Bmax) for the single probe was 0.087 radians, 

whereas the signal for the nine distributed probes was 0.25 radians, a 2.9-fold overall 

increase in signal (Figure 19). This result indicates that the sensitivity improvement observed 

in the nine-probe system is the result of an increased number of available binding sites; 

therefore, a greater number of binding events can occur before target saturation is reached. 

This may not be surprising as BSI signal magnitude is directly related to the number of 

binding events (63). These data are consistent with these previous observations and indicate 

that the greatest BSI sensitivity over a large dynamic range is achieved by maximizing the 

number of available target RNA binding sites.  

  

 

Figure 19. Saturation curves of target RNA incubated with increasing concentrations of 
either a single 22-mer probe or a mixture of nine distributed probes. The mixture of nine 
probes saturates at a higher level than the single probe. 
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Target specificity is maintained in RNA samples extracted from complex matrices 

 To evaluate the specificity of BSI using the 22-mer RSVN(242-263) DNA, six 22-

mer RNA targets containing 0, 1, 3, 5, 7, and 10 mismatched nucleotides distributed 

throughout the sequence were tested in an end-point assay format (Figure 20A). With 

increasing mismatched nucleotides in the target sequence, BSI signal dropped off 

significantly, resulting in essentially no signal using the RNA target containing 10 

mismatched bases in the sequence. The signal produced using the RNA target sequences 

containing 1, 3, and 5 mismatches was statistically equal to that of the 0 mismatch target. To 

determine if this tolerance for mismatched nucleotides in the target sequence produced false 

signal in complex samples, we tested BSI for detecting our synthetic ~1300 nucleotide RNA 

target spiked into surrogate nasal wash samples containing increasing background 

concentrations of HEP-2 cell lysate (Figure 20B). In unextracted samples, i.e., samples of 

RNA spiked into cell lysate background, BSI signal diminished with increasing cell lysate 

concentration, resulting in no distinguishable signal in the highest concentration of cell lysate 

 

Figure 20. Evaluations of BSI specificity for mismatched targets or RNA targets in 
complex samples using a single 22-mer probe. A) BSI signal drops off moderately when 
probing for RNA targets wit increasing numbers of mismatched nucleotides. B) BSI signal 
is consistent when probing for the ~1300 nucleotide RNA biomarker in a sample of total 
RNA extracted from HEp-2 cell lysates of increasing concentrations (open circles), 
whereas BSI signal diminishes in unextracted samples of increasing background 
concentration (closed circles). C) qRT-PCR cycle threshold values for the extracted 
samples correlate with the BSI fringe shift values. 
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evaluated. In extracted samples, i.e., samples of total RNA isolated from the cell lysate 

background, the signal produced was consistent despite the increase in the total background 

RNA that would be extracted from the samples. Notably, cycle threshold values of qRT-PCR 

analysis of the extracted RNA samples correlated very well with the fringe shift values of 

BSI (Figure 20C). Taken together, these data suggest that BSI detection of RNA is tolerant of 

a few mismatched nucleotides in the target sequence, yet specificity is retained in total RNA 

extracts from complex cell lysate samples. 

 

RNA target folding affects BSI binding signal 

 During the process of testing a variety of oligonucleotide probe sequences, I observed 

that probes of similar length (i.e., 20 - 22 nucleotides) and nucleotide content, but composed 

of different nucleotide sequences, yielded significantly disparate BSI binding responses. 

Because BSI sensitivity is produced in part by changes in conformation (62), I surmised that 

the probes were not only interacting at the primary sequence level of the target RNA (i.e., 

base pairing), but that probe binding signal was also impacted by the complex folding state of 

the RNA target. To investigate the effects of RNA target folding on BSI response, mfold 

software was used to predict secondary structure motifs in the regions complementary to the 

probes that would account for the variation in probe binding. Specifically, the software was 

used to identify regions of the RNA target that are predicated to be open loops, or sequences 

that would be available to bind a complementary oligonucleotide probe. Although mfold 

cannot predict RNA folding with absolute certainty, with the exception of two probes tested, 

I found a positive correlation between the number of unpaired nucleotides in the open loop 

regions of the predicted structure of the RNA target and the BSI signal produced by the probe 
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complementary to that sequence (Figure 21). In line with probe design software for 

microarray oligonucleotide sequences (58), probes designed to bind RNA target sequences 

predicted to be single-stranded would result in the greatest net change in hybridization and 

produce the greatest change in BSI signal. Probes RSVN(264-285) and RSVN(308-329), 

however, produced a much greater signal that does not appear to fit this model. One possible 

explanation for the large signal of these probes compared the other probes is that tertiary 

structure rearrangements or allosteric changes in the RNA target may be occurring upon 

probe binding. Our laboratories have observed similar binding-order related signal 

enhancements in other systems, particularly the thrombin-binding aptamers (66). These 

observations cannot be fully explained due to limitations in the current model but are under 

investigation.  

 

 

Figure 21. DNA probes designed to bind different regions of the RNA target generate a 
range of binding responses. With the exception of two probes, binding response correlates 
positively with the number of nucleotides predicted to be unpaired in the RNA target (R2 = 
0.86). x-axis values are averages of predicted unpaired nucleotides in the five lowest 
energy folding structures of mfold ± standard error. 
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Enhanced BSI sensitivity using LNA probes  

 With some knowledge of the probe length and spacing parameters that yield good 

signal in BSI for optimized hybridization, I explored locked nucleic acids (LNAs), a category 

of oligonucleotides with unique structure and binding characteristics. LNA oligonucleotides 

have much greater binding affinities for their targets when compared to DNA or RNA of 

similar length and sequence (73). The first LNA probe I used, RSV(242-263)L, was the same 

sequence and length as the 22-mer DNA probe used in our initial experiments, except that 

every third nucleotide in the sequence contains a methylene group bridging the 2’oxygen and 

the 4’ carbon of the ribose ring, “locking” the sugar into the 3’-endo conformation. With 

these simple structural modifications, a 4-fold improvement in sensitivity was achieved over 

the DNA probes, resulting in a LOD of 2.15 nM of target RNA (Figure 22A and Table 2). 

Using a mixture of four distributed LNA probes, identical in sequence and length to the four 

distributed DNA probes, a LOD of 1.05 nM target RNA was achieved. These results 

compare favorably to the 1.5-fold improvement in LOD observed when increasing the 

number of DNA probes from one to four (Table 2). Interestingly, this improvement in signal 

and sensitivity was not attributed to an increase in the net hybridization of the probe to the 

RNA target. Although the increased affinity of LNA for the RNA target would generally 

shift the binding equilibrium toward the bound state, both LNA and DNA probes hybridize to 

approximately the same number of RNA targets (Figure 22B). This result is likely because 

the LNA and DNA probes are added to the RNA target in such excess that, despite the 

increased affinity of LNA for the target RNA, the total number of LNA and DNA probes 

bound to the RNA target was nearly equivalent. Because there is not a significant increase in 

net hybridization when using LNA probes, I concluded that hybridization alone did not 
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account for the 4-fold improvement in BSI signal using the LNA probe. Therefore, I explored 

the possibility that the improvement in sensitivity was the result of the unique structural 

characteristics of LNA:RNA hybrid.  

 

Induced A-form secondary structure improves BSI sensitivity 

 LNA:RNA hybrids primarily form A-form secondary helical structures, whereas 

DNA:RNA hybrids consist of a mixture of A-form and B-form character (74). Since the net 

hybridization measured for DNA versus LNA probes binding the RNA target was 

 

Figure 22. Comparison of the BSI binding response and net hybridization of LNA and 
DNA probes of the same sequence and length incubated with target RNA. A) LNA probes 
improve the BSI signal. B) DNA:RNA hybrids and LNA:RNA hybrids produce virtually 
the same net hybridization. 
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approximately equivalent but the BSI signal of the LNA probes was significantly greater than 

that of the DNA probes (Figure 22B and A, respectively), I hypothesized that the induced A-

form helical character of the LNA:RNA hybrid was responsible for the greater RI change 

upon formation compared to the DNA:RNA hybridization. Accordingly, we evaluated 

nucleic acid hybrids of the same length and sequence that exhibit a range of secondary 

structures using CD and BSI. To reduce the background noise from the unbound regions of 

the ~1300 RNA target, the RNA and DNA complements used in these studies are the same 

length as the LNA and DNA probes (22 nucleotides). Based on the CD spectra, I verified that 

the LNA:RNA hybrid resulted in a characteristic A-form secondary structure, the DNA:RNA 

hybrid resulted in a secondary structure consisting of a mixture of A- and B-form, and the 

DNA:DNA duplex resulted in a characteristic B-form secondary structure (Figure 23A). 

These same hybrids were then evaluated using BSI. The LNA:RNA interaction produced the 

largest RI shift (1.53 × 10-2 rad/nM), followed by the DNA:RNA interaction (5.48 × 10-3 

rad/nM), and the DNA:DNA interaction produced the smallest RI shift (3.75 × 10-3 rad/nM) 

(Figure 23B). These data indicate that the BSI signal or slope reflects the extent to which the 

hybridized product displays A-form secondary structure. These observations are consistent 

with the hypothesis that BSI signal can be maximized using oligonucleotide probes that 

induce the greatest net change in the nucleic acid secondary structure.  
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 To further validate that the formation of A-form secondary structure is responsible for 

the observed increase in BSI signal, as opposed to the differences in the primary structures of 

the nucleotide subunits, we performed BSI measurements on a DNA:DNA duplex matching 

the sequence of the RSVN(242-263) probe at various stages of a trifluoroethanol (TFE)- 

induced B-form to A-form transition. Incubation with high concentrations of TFE is a well-

 

Figure 23. Relative degree of A-form nucleic acid character of the DNA:DNA, 
DNA:RNA, and LNA:RNA hybrids corresponds with increased BSI signal. A) The 
circular dichroism (CD) spectrum of the DNA:DNA duplex (green) corresponds to B-
form secondary helical structure with a maximum near 280 nm, a deep minimum near 250 
nm. LNA:RNA hybrid (red) produces a spectra corresponding to A-form secondary 
structure with a maximum near 270 nm and a shallow minimum near 245 nm. The 
DNA:RNA hybrid produces a spectra that is intermediate of A-form and B-form. B) BSI 
binding curves of LNA:RNA, DNA:RNA, and DNA:DNA. 
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established method for converting B-form secondary structure in DNA:DNA duplexes to A-

form (75,76). TFE was titrated into a solution containing a DNA:DNA duplex and the 

secondary structure transition was confirmed by CD analysis (Figure 24A). BSI signal 

magnitude increased as the DNA:DNA duplex adopted a more A-form character as 

monitored by the ellipticity at 270 nm. These data validate the BSI signal enhancing effect of 

induced alterations to the helical geometry of the nucleic acid hybrid (Figure 24B).  

 

 

Figure 24. Relative degree of A-form character corresponds to increased BSI signal. A) 
Circular dichroism (CD) spectra of the DNA duplex demonstrate a shift from A-form to 
B-form structure with decreasing concentrations of trifluoroethanol (TFE). Inset: A-form 
to B-form transition monitored at 270 nm. B) Ellipticity at 270 nm correlates positively 
with the shift in the refractive index (RI) as detected by BSI. 
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Discussion and Conclusions 

 In this study, our laboratories demonstrated the use of BSI for the detection of a 

respiratory syncytial virus N gene RNA biomarker in solution using unlabeled nucleic acid 

probes. These studies have shown that induced secondary structure formation is a major 

contributing factor to signal generation for detecting RNA with oligonucleotide probes by 

BSI. Several factors are important in obtaining a maximum signal to noise ratio. The number 

of binding events are an important factor, yet as our laboratories have previously shown with 

protein binding systems (63), the nature of the binding event (i.e., the resulting structure) also 

plays a critical role in BSI signal magnitude. The first and most obvious source of secondary 

structure formation is the net helical duplex formation that occurs when a nucleic acid probe 

hybridizes to the RNA target. we found that the sensitivity of the assay is greatest when 

multiple, short probes are employed, distributed along the length of the RNA target (Figure 

18 and Table 2), which results in the maximum number of binding events (Figure 18C). In 

comparison to a single 22-mer DNA probe which detects RNA target concentration at a 

sensitivity of 4.4 × 10-4 radians/nM (LOD = 3.73 nM); four DNA probes produce a 5.7-fold 

increase in sensitivity, or 2.50 × 10-3 radians/nM (LOD = 2.54 nM); and nine DNA probes 

produce a 14.3-fold increase in sensitivity, or 6.27 × 10-3 radians/nM (LOD = 624 pM) (Table 

2). As one would expect, the increase in signal is directly proportional to the number of 

probes available to bind the RNA target.  

 Experiments aimed at studying the effects of probe length demonstrated that BSI 

signal magnitude was greatest using a probe length of 22 nucleotides (Figure 17). 

Interestingly, though they contain the same number of base pairs, four contiguous 22-mer 

probes yield an appreciably larger signal than a single 88-mer probe. We postulate that steric 

hindrance resulting from the native structure of the ~1300 nucleotide RNA target prevents 
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the longer probe from binding as effectively as the four shorter probes. Additionally, in a 

multi-probe assay, it may be the case that some probes bind at a higher kinetic rate than 

others, altering the conformation of the target RNA and thus creating more favorable binding 

conditions for subsequent probes. We also found that while four short, adjacent probes create 

more binding signal that one long probe, sensitivity is improved even further by distributing 

the probes along the length of the target. This may be explained by the potential for probes 

that target sequences immediately adjacent to prevent the other probes from binding because 

of the induced secondary structure and rigidity of the probe-bound sequences. 

 BSI was demonstrated to be effective in detecting the synthetic ~1300 RNA target 

from total RNA extracted from a surrogate nasal wash samples of increasing complexity 

(Figure 20B and C). This result demonstrates the specificity of BSI for detecting target RNA 

as the target only made up a portion of the total RNA extracted from the sample. In 

unextracted samples, however, BSI signal diminished with increasing background cell lysate 

concentration. I hypothesize that the complex bimolecular content present in unextracted cell 

lysate samples has a signal-suppressing effect on BSI. Despite the successful detection of a 

specific RNA target from a background of total RNA extract, BSI displayed moderate 

specificity using a series of mismatched RNA targets (Figure 20A). As the focus of this 

initial work has been centered on improving sensitivity, there is much unknown about factors 

involved in the optimization of specificity in BSI. Future work on developing probes 

optimized for specificity will be needed to improve mismatch specificity.  

 It was determined that individual probes of similar nucleotide content and length did 

not produce a similar level of BSI signal. I found that the discrepancy in BSI signal produced 

from the various probe sequences can be partially explained with RNA folding predictions of 
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the RNA target. For most RNA sequences, secondary structures are significantly more stable 

than tertiary structures and, therefore, are more likely to contribute to the native structure of 

the RNA target (77). Consequently, only the secondary structure of the RNA target was 

evaluated in these studies. Using mfold software to predict the folding state of the RNA 

target, I found that probes targeting sequences predicted to have mostly unpaired nucleotides 

(i.e., open loops) generally produced more signal than probes targeting sequences predicted 

to be mostly double stranded. Two probes, however, produced exceptionally high signal 

compared to probes targeting regions of similar predicted secondary structure. Alterations in 

the tertiary structure of the RNA target induced by probe binding may explain the 

comparatively large signal changes produced by these probes. Future studies will be aimed at 

investigating the role of tertiary structure in BSI signal generation.  

 I also found that the integration of “locked” nucleotides into the DNA probe nearly 

quadruples the sensitivity of BSI (Figure 22 and Table 2). LNA has been widely used for 

nucleic acid probing applications (78-80). It has been reported that LNA has exceptional 

binding affinity for complementary RNA or DNA targets while maintaining or even 

improving sequence specificity (73). Because BSI detects changes in the RI that are induced 

by the binding of two molecules, the signal enhancement produced by LNA oligonucleotides 

could potentially have thermodynamic, structural, and/or solvation explanations. Perhaps the 

most important characteristic of LNA oligonucleotides is the high thermal stability when 

duplexed with RNA. Melt temperatures of LNA:RNA hybrids can increase by ~5 °C per 

locked nucleotide incorporated into the sequence (78). Because of this high affinity for RNA, 

a higher proportion of LNA oligonucleotides should bind complementary targets compared 

to DNA of identical sequence and length. However, the amount of DNA and LNA probe 
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used in these studies is in great excess relative to the number of available targets, which is 

intended to drive binding toward probe saturation. The hybridization studies confirmed that 

the relative amount of bound LNA probes is nearly the same as DNA probes at equilibrium 

(Figure 22), indicating that the thermodynamic explanation is probably not the greatest 

contributor to the BSI signal enhancement.  

 The RI of a solution changes when solutes undergo changes in structural 

conformation. When binding RNA, a single LNA nucleotide can perturb the surrounding 

DNA nucleotides to adopt the C3’-endo conformation. Consequently, LNA:RNA hybrids 

form homogeneous A-form helical secondary structures, whereas DNA:RNA hybrids 

generally form a heterogeneous mix of both A-form and B-form (74). Our secondary 

structural analysis of the nucleic acid hybrids using circular dichroism confirmed that the 

LNA:RNA hybrids formed A-form helical structure, whereas the DNA:RNA hybrid forms a 

mixture of A-form and B-form helical structures (Figure 23A). As another point of reference, 

I studied a DNA:DNA duplex with distinct B-form character as confirmed by CD. The 

increased sensitivity of BSI for detecting A-form hybrids, compared to the A-form and B-

form mixed hybrid or the B-form duplex, indicates a structural basis for RI perturbation 

(Figure 23B). This was further validated through the measurements conducted on the TFE-

induced A-form character of the DNA:DNA duplex, which resulted in increased BSI signal 

(Figure 24). 

 In addition to structural changes, the exchange of the water molecules that hydrate the 

soluble molecules upon binding is also thought to influence the RI, which would have direct 

implications for BSI signal generation. It has been predicted based on NMR structure 

measurements of LNA:RNA hybrids that the number of water molecules interacting with the 



 97 

minor groove may be increased compared to DNA:RNA hybrids (81). The structure of an A-

form hybrid may produce a larger BSI signal than B-form due to this exchange of waters of 

hydration from the solvent to the molecules, accounting in part for the improved BSI 

sensitivity when using the LNA probe. Continued efforts are aimed at identifying the role of 

waters of hydration on the shift of RI that occurs when an oligonucleotide probe hybridizes 

to an RNA target. 

 The results of these studies outline a set of optimal characteristics of nucleic acid 

probes for BSI detection of a viral RNA biomarker. It was determined that multiple nucleic 

acid probes, 22 nucleotides in length, designed to target regions distributed across the RNA 

target resulted in the greatest BSI signal. These studies also indicate that the folding of the 

RNA target as well as the formation of the secondary structure geometry also contribute 

substantially to BSI sensitivity for RNA detection. There is evidence that mfold software can 

be used to identify regions of unpaired nucleotides in RNA targets that are likely to produce 

high signal upon binding. Additional studies aimed at determining tertiary structure 

contributors to signal enhancement along with the secondary structure predictions of mfold 

could be useful for the rational design of oligonucleotide probes for BSI detection. 

Additionally, it was determined that the induction of altered helical geometry of nucleic acids 

upon probe binding significantly improves BSI signal. I found that this can be achieved using 

LNA probes or a high background concentration of TFE, which promote formation of A-

form structure in nucleic acids. Future work will focus on strategies to further enhance BSI 

signal, which could pave the way for a clinically relevant BSI assay for the detection of viral 

RNA in patient samples. 
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this chapter.  
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Chapter V 

 

QUADRUPLEX PRIMING AMPLIFICATION FOR THE DETECTION OF mRNA FROM 

SURROGATE PATIENT SAMPLES 

 

Abstract 

 Simple and rapid methods for detecting mRNA biomarkers from patient samples are 

valuable in settings with limited access to laboratory resources. In this chapter, we describe 

the development and evaluation of a self-contained assay to extract and quantify mRNA 

biomarkers from complex samples using a novel nucleic acid-based molecular sensor called 

quadruplex priming amplification (QPA) (25). QPA is a simple and robust isothermal nucleic 

acid amplification method that exploits the stability of the G-quadruplex nucleotide structure 

to drive spontaneous strand melting from a specific DNA template sequence. Quantification 

of mRNA was enabled by integrating QPA with a magnetic bead-based extraction method 

using an mRNA-QPA interface reagent. The assay was found to maintain >90% of the 

maximum signal over a 4 °C range of operational temperatures (64 - 68 °C). The overall 

efficiency of mRNA extraction and delivery into the QPA reaction from a surrogate patient 

sample was ~45%. QPA had a dynamic range spanning four orders of magnitude, with a 

limit of detection of ~20 pM template molecules using a highly controlled heating and optical 

system and a limit of detection of ~250 pM using a less optimal water bath and plate reader. 

These results demonstrate that this integrated approach has potential as a simple and effective 

mRNA biomarker extraction and detection assay for use in resource-limited settings. At the 



 100 

end of this chapter, I outline the barriers and challenges that must be overcome to implement 

QPA as a readout in a complete diagnostic device. 

 

 

Introduction 

 Many methods are used to extract and detect mRNA biomarkers found in patient 

samples for diagnosing pathogenic infections. These methods often involve multiple steps to 

perform and commonly require expensive laboratory equipment or trained technicians. For 

example, reverse transcriptase-polymerase chain reaction (RT-PCR) is commonly used to 

identify RNA disease biomarkers from patient samples but requires complex and time-

consuming sample purification and preparation strategies that are inaccessible to individuals 

in settings with limited resources because of training, electricity, or financial constraints 

(13,14). Simple rapid diagnostic tests based on lateral flow sample processing and antibody 

binding are commonly used in limited resource settings, but despite being easy to use, they 

are not effective in many cases for two primary reasons: non-target molecules present in 

patient samples often interfere with detection, and target biomarkers are often present low 

abundance (7,14,16,17). Therefore, better methods for purifying and detecting biomarkers of 

disease in patient samples are needed in settings with limited access to laboratory resources 

and trained personnel.  

 The four-stranded G-quadruplex nucleotide structure has been exploited as a platform 

for a variety of novel nucleic acid detection assays because of its unique stability and folding 

characteristics. The quadruplex structure is thermodynamically more stable than duplex DNA 

(28,82) and has been developed to detect short nucleic acid sequences, such microRNAs, that 

are inaccessible by traditional PCR (83). In general, these assays are designed to promote the 
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formation of G-quadruplex structures by complementary base pairing with the target nucleic 

acids and use colorimetric or fluorescence means to monitor the formation of the quadruplex 

structures. Many groups have taken advantage of the peroxidase-like activity of the G-

quadruplex/hemin complex to produce a colorimetric dye in the presence of a target nucleic 

acid (83-85). Some of these peroxidase-like amplification assays have been reported to 

achieve extremely low detection limits (86,87), yet outside of carefully controlled laboratory 

conditions, the assays are limited by the highly unstable peroxide reagents and the 

degradation of the exposed hemin complex (88). Other groups have monitored the formation 

of the G-quadruplex structures using quadruplex-specific intercalating dyes (89-91) or 

Förster resonance energy transfer (FRET) pairs (92). Some of these methods have been 

demonstrated to detect nucleic acids in the mid-pM range (91,92), yet only when performed 

in simple sample matrices (i.e., buffer) under optimal conditions or over the course of many 

hours.  

 Quadruplex priming amplification (QPA) is an isothermal amplification reaction that 

is also based on the thermodynamic stability of the G-quadruplex structure. QPA has been 

demonstrated to function as a robust molecular switch, producing fluorescence in the 

presence of template oligonucleotides with high sensitivity and specificity (28,29,93). A 

schematic of the reaction is shown in Figure 25A. The reaction functions much like 

polymerase chain reaction, but does not require costly and complex thermal cycling. The 

reaction begins when a 13-nucleotide QPA primer precursor to the 15-nucleotide G-

quadruplex sequence anneals to a complementary template molecule. After annealing, a 

polymerase enzyme extends the 3ʹ′ end of the QPA primer with the guanine nucleotides 

required to complete the G-quadruplex sequence. Because the stability of the G-quadruplex 
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structure is greater than that of the duplex DNA, thermodynamic factors drive the 

spontaneous self-dissociation of the duplex (28). Once the G-quadruplex forms, the template 

is released and is free to anneal to another primer and start the next cycle of amplification. 

The G-quadruplex products of the QPA reaction are detected using the incorporated 

fluorescent nucleotide, 6-methyl isoxanthopterin (6-MI) (depicted in Figure 25B), a 

guanosine analog used for studying nucleic acid structures (94). The 6-MI dye functions as a 

readout for the QPA assay as it fluoresces intensely when the oligonucleotide is folded into a 

G-quadruplex structure but is suppressed in the single- and double-stranded states. This 

occurs because 6-MI fluorescence is quenched when π-π stacked with surrounding 

nucleotides, whereas in the parallel G-quadruplex structure, 6-MI forms the chain-reversal 

 

Figure 25. A) Schematic of the isothermal quadruplex priming amplification (QPA) method. 
The guanosine analog 6-methyl isoxanthopterin (6-MI) is denoted with the letter M. The QPA 
template sequence (blue) is abbreviated for simplicity. B) Chemical structure of the 6-MI dye 
used in QPA. C) Illustration of the parallel G-quadruplex product of QPA. 
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loop between guanine-quartets and protrudes into the solvent, unquenched by the 

surrounding nucleotides (Figure 25C) (29).  

 Although QPA has been found to be an effective nucleic acid amplification method, 

the challenge as it relates to biomarker detection is that QPA is limited to the amplification of 

a single unique template oligonucleotide sequence complementary to the G-quadruplex 

sequence and not biomarker target sequences. In these studies, I develop an mRNA-QPA 

interface reagent, which contains the 15-nucleotide template sequence linked to a 22-

nucleotide probing sequence complementary to the mRNA biomarker. This interface reagent 

enables indirect QPA detection of mRNA biomarkers by associating mRNA biomarker 

targets with the templates.  

 The implementation of the interface reagent is facilitated using our previously 

described self-contained extraction format (7,16,17,27). This self-contained format for 

biomarker extraction has been used to process RNA, DNA, and protein biomarkers from 

complex samples to improve RT-PCR, PCR, and lateral flow detection, respectively 

(7,16,17). In this format, sample processing is carried out in small diameter tubing by pulling 

functional magnetic beads bound to target biomarkers through processing solutions that are 

separated by surface tension valves. Surface tension valves (i.e., air or oil separators) keep 

the solutions within the tubing stationary while permitting the transport of magnetic beads 

across the interface (27). The advantages of the self-contained format are that it facilitates 

complex sample processing steps with the use of simple magnetic bead manipulation using a 

permanent magnet, enables the assay to be performed without the use of pipettes or other 

laboratory equipment, and protects the assay contents from environmental contaminants.  
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I have integrated this self-contained format to enable the detection of mRNA from 

surrogate patient sample matrices by QPA. The complete assay functions by extracting 

mRNA biomarkers from a complex sample on the surface of a magnetic bead, binding the 

magnetic bead-captured mRNA biomarkers with QPA template sequences using an mRNA-

QPA interface reagent, and delivering the bead/mRNA/interface reagent complex into a final 

QPA reaction solution for detection (Figure 26). The interface reagent determines specificity 

of the assay; if the specific mRNA biomarkers are present, the interface reagents are 

delivered to the QPA reaction for amplification. In this chapter, I describe the development 

and evaluation of the three critical components that make this integrated assay possible: i) 

self-contained extraction of mRNA using magnetic beads, ii) conversion of mRNA 

biomarkers to QPA templates using the mRNA-QPA interface reagent, and iii) optimization 

of the sensitivity and dynamic range of QPA. 

 

 

Figure 26. Schematic representation of the integrated self-contained mRNA extraction and 
QPA amplification assay. The three critical components for integration (i – iii) and the 
assay processing steps (1 – 5) are identified. 
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Experimental Section  

Oligonucleotide synthesis 

 The oligonucleotides used in these studies include QPA primers, mRNA-QPA 

interface reagents, and a synthetic mRNA biomarker (Table 3). The QPA primer 

oligonucleotides containing the 6-MI dye were synthesized at a 200 nmole scale by Fidelity 

Systems, Inc. and purified by desalting. The mRNA-QPA interface reagents and the synthetic 

mRNA biomarker oligonucleotide were synthesized by Integrated DNA Technologies at 250 

nmole scale and purified using high performance liquid chromatography. Although virtually 

any mRNA sequence could be used as a demonstration of feasibility, the sequence used in 

these studies is based on a 38 nucleotide sequence from the respiratory syncytial virus 

nucleocapsid gene mRNA. The synthetic 22-nucleotide adenine tail was added to this 

sequence to enable extraction using oligo-dT beads. Upon arrival, the oligonucleotides were 

Table 3. Oligonucleotide sequences used in the QPA studies. 
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resuspended to a concentration of ~100 mM in molecular grade water (cat. no. BP2819-4, 

Fisher Scientific) and stored at -20 °C until use.  

 

Circular dichroism of QPA oligonucleotides 

 An Aviv circular dichroism (CD) spectrometer (mod. no. 215, Aviv Biomedical, Inc.) 

was used to collect CD spectra of the single-stranded and quadruplex DNA molecules. 

Oligonucleotides were prepared at a 100 µM base concentration in QPA buffer (10 mM Tris 

HCl, pH 8.7, 2 mM MgCl2, 25 mM KCl, 25 mM CsCl). Each sample was heated in 1 mL 

tubes to 90 °C for 5 minutes and cooled slowly over the course of 1 hour to room 

temperature by controlling the heat block temperature. The samples were analyzed using a 1 

cm path length CD cell. The spectra were collected at 25 °C from 320 nm to 200 nm using a 

1 nm step, a 1.0 nm bandwidth, and a 2 second averaging time. At least three spectra from 

each sample collected, averaged, and smoothed using the using CD-215 software version 

2.90 provided by the manufacturer. The spectra were normalized by subtracting the CD 

spectrum generated from a blank sample (QPA buffer only) collected under the same 

conditions.  

 

6-methyl isoxanthopterin (6-MI) fluorescence measurements 

 Solutions of QPA primer or G-quadruplex oligonucleotides were prepared in 

triplicate at 10 nM, 50 nM, 100 nM, 500 nM, and 1 µM concentrations. Each solution was 

heated to 90 °C for 5 min and cooled over the course of 1 hour to room temperature. One 

hundred microliters of each solution was added to a well of a black Costar round bottom 96-

well plate. Fluorescence measurements were collected in triplicate using a BioTek Synergy 
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H4 Hybrid 96-well plate reader using an excitation wavelength of 340 nm and a detection 

wavelength of 430 nm.  

 

Optimizing the quadruplex priming amplification reaction 

Unless otherwise noted, QPA reactions were carried out in a 100 µL volume containing 

QPA buffer (10 mM Tris HCl, pH 8.7, 2 mM MgCl2, 25 mM KCl, 25 mM CsCl), 2.5 µM 

QPA primer (G4BK_primer_6MI@4), 0.15 units/µL AmpliTaq DNA Polymerase (cat. no. 

P15533, Roche), 0.5 mM dGTP (cat. no. R0161, Thermo Scientific), and 10% w/v Trehalose 

(cat. no. 90210-50G, Sigma Aldrich). Each reaction solution was split into three thin-walled 

PCR tubes (cat. no. 981005, Qiagen), with 25 µL in each tube. The reaction ran at 65 °C in 

the Rotor-Gene Q 6plex thermal cycler (cat. no. 9001720, Qiagen) and real-time fluorescence 

measurements were collected every three minutes using an excitation wavelength of 365 nm 

and a detection wavelength of 460 nm for detecting the 6-methyl isoxanthopterin dye in the 

G-quadruplex product. QPA reactions with 0 nM, 0.05 nM, 0.1 nM, 0.5 nM, and 1 nM 

mRNA-QPA interface reagent (QPA template) concentrations were run in triplicate and in 

parallel and were used as a standard curve. The lower limit of detection was calculated using 

the following formula: 𝐿𝑂𝐷 = 3𝜎     𝑚, where 𝜎 is the average of three standard deviation 

measurements of the QPA signal from each interface reagent concentration and 𝑚 is the 

slope as calculated by the best-fit trendline of the linear range of the standard curve. 
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Preparation of the self-contained processor 

Prior to processing a sample, the solutions of the self-contained processor were preloaded 

by serially injecting the solutions in reverse order through one end of 1.6 mm ID Tygon R-

3603 tubing (Saint-Gobain). Unless otherwise noted, the processing solutions and volumes 

used in the self-contained processor where adapted from the Life Technologies Dynabeads 

Oligo (dT)25 (cat. no. 61005) product manual. The final processing solution was loaded into 

the tubing first by injecting 100 µL of 10 mM Tris-HCl buffer (pH 8.0) for studies to 

determine biomarker and mRNA-QPA interface reagent yield or 100 µL of QPA reaction 

solution for studies on QPA detection. To separate this solution from the next one, a surface 

tension valve, or air bubble spacer, was formed by slightly tilting the tubing until the solution 

moved ~1 cm away from the end of the tubing. This procedure was followed after injecting 

each of the following solutions. Three post-template wash solutions were then loaded by 

injecting 100 µL of wash buffer B (10 mM Tris-HCl, pH 8.0 150 mM LiCl, 1 mM EDTA) 

into the tube three times. One hundred microliters of template binding solution was then 

added by injecting 100 µL of wash buffer B containing 75 nM mRNA-QPA interface reagent 

(G4BK_temp_RSV22+5 w/Cy5), unless otherwise noted. Another series of wash chambers 

were then added: 250 µL of wash buffer B, and two solutions of wash buffer A (10 mM Tris-

HCl, pH 8.0, 150 mM LiCl, 1 mM EDTA, 0.1% LiDS). The end of the tubing opposite of the 

loading end was then sealed using a small plug. At this point the preloaded processor was 

ready for sample loading and processing.  
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Procedure for self-contained processing of mRNA 

The procedure for processing the sample included preparing and injecting the binding 

solution into the processor tubing followed by pulling the magnetic beads through the 

processing solutions. The binding solution was prepared with 1 mg Dynabeads Oligo (dT)25 

(cat. no. 61005, Life Technologies) resuspended in 225 µL binding/lysis buffer (100 mM 

Tris-HCl, pH 8.0, 500 mM LiCl, 10 mM EDTA, 1% LiDS). The sample matrices that were 

used include 100 mM Tris-HCl (pH 8.0), ~2.5 ng/µL yeast total RNA extract (cat. no. 

AM7118, Life Technologies), or HEp-2 cell lysate containing 105 cells/mL (preparation of 

this matrix is described in ref. (7)), each spiked with 30 pmol synthetic mRNA (RSVN_939-

978_mRNA w/HEX). For each sample, 25 µL of the matrix was added to the binding 

solution and mixed for 10 minutes on a laboratory rotator. The plug was then removed from 

the processor tubing, the 250 µL binding solution was added to tubing, and the plug was 

replaced. The magnetic beads were then gathered within the binding solution using a 2.54 cm 

neodymium cube magnet (SKU no. M1CU, Apex Magnets). The beads were then carefully 

pulled through the air separator and into the first wash solution. The beads were dispersed 

within the wash solution for ~5 seconds, gathered, and then pulled into the subsequent 

solution. These steps were repeated for each of the wash buffer solutions. Once the beads 

were pulled into the template binding chamber, they were dispersed throughout the chamber, 

and the processing tube was placed in the dark for 30 minutes, unless otherwise noted. 

Afterwards, the beads were pulled through the three 100 µL wash buffer B chambers as 

described above. Finally, the beads were pulled into the final solution for oligonucleotide 

content analysis or for quantitation by QPA.  
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For content analysis, the elution solution containing the beads was placed on a heating 

block for 10 minutes at 85 °C, the supernatant was removed from the beads, and the 40 µL of 

the supernatant was added to a well of a black Costar round bottom 96-well plate. 

Fluorescence measurements were collected in triplicate using a BioTek Synergy H4 Hybrid 

96-well plate reader with an excitation wavelength of 535 nm and a detection wavelength of 

565 nm for the mRNA biomarker (RSVN_939-978 mRNA w/HEX) and with an excitation 

wavelength of 646 nm and a detection wavelength of 670 nm for the mRNA-QPA interface 

reagent (G4BK_temp_RSV22+5 w/Cy5), and measurements were compared to standard 

curves. For quantitation by QPA, the Tygon tube was placed in a water bath for 5 minutes at 

85 °C and 45 minutes at 65 °C and endpoint fluorescence measurements were collected in 

triplicate using an excitation wavelength of 365 nm and a detection wavelength of 460 nm 

for detecting the 6-methyl isoxanthopterin dye in the G-quadruplex product. QPA reactions 

with 0 nM, 0.05 nM, 0.1 nM, 0.5 nM, and 1 nM mRNA-QPA interface reagent 

concentrations were run in parallel and used as a standard curve.  

The overall effective delivery yield of mRNA-QPA interface reagents in the final 

solution was calculated as a percentage relative to the concentration of spiked mRNA 

biomarkers present in the initial binding solution, and is based on the standard curve of 

interface reagents. This measurement reflects the efficiency of mRNA extraction and 

subsequent binding of the interface reagent. 
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Results And Discussion 

6-methyl isoxanthopterin-labeled G-quadruplex as a molecular sensor 

Our first objective was to establish the 6-MI-labeled G-quadruplex sequence as an 

effective molecular sensor under the conditions of our assay. QPA signal depends on a 

significant difference in fluorescence intensity between the single-stranded state of the 6-MI-

labeled QPA primer (G4BK_primer_6MI@4) and the G-quadruplex product 

(G4BK_+primer_6MI@4). I compared the relative fluorescence intensity of increasing 

concentrations of the two oligonucleotides. The results show that the G-quadruplex product 

had a ~25-fold fluorescence enhancement over the QPA primer, which established it as an 

effective molecular sensor (Figure 27A).  

To validate that this fluorescence enhancement correlated with a G-quadruplex structure, 

circular dichroism was performed on the oligonucleotide samples. The single-stranded 

mRNA-QPA interface reagent oligonucleotide was also analyzed as a control. The circular 

dichroism spectrum of the G-quadruplex product had a minimum at 241 nm, strong maxima 

at 210 and 262 nm, and a slight maximum at 300 nm (Figure 27B). These results are 

characteristic of a parallel quadruplex nucleotide structure (29,76). The single-stranded QPA 

primer, on the other hand, had a spectrum consistent with oligonucleotides with high GC 

content, with a maximum at 264 nm and a minimum at 238 nm. The single-stranded interface 

reagent had a spectrum with a maximum at 276 and a minimum at 243 nm, characteristic of 

single-stranded oligonucleotides.  
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Together, these data indicate that 6-MI is effectively quenched in the single-stranded 

state and that the fluorescence is enhanced ~25-fold when the two nucleotides are added to 

complete the sequence necessary to form the G-quadruplex. This signal-to-noise ratio under 

these ideal conditions is exceptional compared to the 3- to 10-fold ratios reported for other 

G-quadruplex-based amplification assays (83,86,89-92). These results validate 6-MI-labeled 

G-quadruplex as a potential molecular sensor.  

 

 

Figure 27. The 6-MI-labeled G-quadruplex is an effective molecular sensor. A) 6-MI has a 
~25-fold fluorescence enhancement in the G-quadruplex product compared to the single-
stranded QPA primer (mean ± σ, n = 3). B) Circular dichroism (CD) spectra of the 
components of the QPA reaction. The CD spectrum of the elongated QPA primer is 
consistent with a parallel G-quadruplex structure (red), while the spectra of the QPA 
primer precursor is consistent with single-stranded DNA. 
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Optimizing and evaluating QPA for sensitivity 

The next step was to optimize and evaluate the sensitivity and dynamic range of QPA 

(integration component iii from Figure 26). Because QPA is a linear amplification method, 

the most effective measure of efficiency is the slope of the response curve (i.e., the change in 

fluorescence signal per unit time). In these studies, a variety of conditions were tested using 

Qiagen’s Rotor-Gene Q real-time PCR instrument to monitor the change in fluorescence in 

real-time. The optimal temperature was determined by running the QPA reaction at six 

different temperatures from 61 °C to 71 °C using a set of baseline reaction conditions (QPA 

buffer, 2.5 µM QPA primer, 0.05 units/µL Taq polymerase, 0.5 mM dGTP, 0% trehalose, 1 

nM mRNA-QPA interface reagent). While the optimal reaction temperature was determined 

to be 65 - 66 °C, QPA was found to maintain >90% of the maximum signal from 

approximately 64 to 68 °C. (Figure 28A). Using the baseline reaction conditions and a 65 °C 

reaction temperature, a range of primer concentrations from 0 to 10 µM were then tested. 

Optimal signal was produced using a 5 µM primer concentration (Figure 28B). At 5 µM 

concentration, however, the background signal from the QPA primers disproportionately 

increased, which increased the signal-to-noise ratio and decreased the dynamic range. 

Therefore, a 2.5 µM primer concentration was determined as optimal. Next, a range of Taq 

polymerase concentrations from 0 to 0.5 units/µL was tested. Taq polymerase concentration 

had a significant impact on the signal produced, resulting in a signal ~3-fold greater at 0.25 

units/µL compared to the 0.05 units/µL baseline concentration (Figure 28C). Because of the 

cost of the commercial Taq polymerase, 0.15 units/µL was determined to be the most 

economical concentration as it falls within ~20% of the optimal signal yet uses 40% less 

enzyme. The effect of adding trehalose sugar was also evaluated. Trehalose sugar has 
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historically been used to stabilize enzymatic reagents for lyophilization and long-term 

storage (95,96). Furthermore, one group reported that the addition of trehalose sugar to Taq 

polymerase chain reaction increases the efficiency of amplification of GC-rich templates by 

reducing the DNA melt temperature and thermally stabilizing the Taq polymerase enzyme 

(97). Consistent with these findings, the signal generated from the QPA reaction, which 

amplifies templates that are composed exclusively of GC nucleotides, increased linearly from 

0% to 10% trehalose, effectively doubling the signal of the reaction (Figure 28D). 

Concentrations greater than 10% trehalose had less effect on signal; therefore, a 10% 

trehalose concentration was determined to be optimal. Overall, a 3- to 4-fold increase in 

signal was achieved over the course of these optimization studies.  

 

Figure 28. The optimal QPA signal was determined by testing a range of temperatures (A), 
QPA primer concentrations (B), Taq polymerase concentrations (C), and trehalose 
concentrations (D) (mean ± σ, n = 3). 
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Using the optimized reaction conditions, the limit of detection and dynamic range of the 

QPA reaction was determined. A series of mRNA-QPA interface reagent concentrations 

were added to the QPA reaction, and the Rotor-Gene Q instrument monitored the change in 

fluorescence over a period of 45 minutes at 65 °C. The data that was collected produced a 

series of linear response curves with slopes proportional to the concentration of interface 

reagents present in the reaction (Figure 29A). The slopes of these response curves were 

plotted against their respective interface reagent concentrations to generate a standard curve 

for quantification (Figure 29B). Based on these data obtained under optimal conditions, the 

 
Figure 29. Isothermal QPA is a linear and quantitative amplification method as measured 
in real-time using a Rotor-Gene Q PCR instrument. A) QPA signal results in linear 
increase of fluorescence for each interface reagent concentration during the course of the 
reaction (mean ± σ, n = 3). B) The increase in fluorescence over time is directly 
proportional to the concentration of interface reagents present in the reaction. This linear 
response results in a limit of detection of 24 pM interface reagents (mean ± σ, n = 3). 
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limit of detection was determined to be 24 pM mRNA-QPA interface reagents. Using a 

greater range of interface reagent concentrations, it was determined that the dynamic range 

spans nearly 4 orders of magnitude (~20 pM to ~100 nM) (Figure 30). These data 

demonstrate that the QPA reaction effectively quantifies interface reagents at low sensitivity 

and across a relatively wide range of concentrations.  

 

mRNA-QPA interface reagent enables mRNA detection by QPA  

To be useful as a readout for a diagnostic test, QPA templates must be associated with an 

mRNA biomarker characteristic of a particular disease. I developed an mRNA-QPA interface 

reagent for associating mRNA biomarkers with QPA templates to enable QPA detection of 

these mRNA targets (research focus ii from Figure 26). This mRNA-QPA interface reagent is 

key for introducing sequence specificity in the presence of bulk mRNA on the surface of the 

oligo-dT functionalized beads; only if the specific mRNA biomarker is present will the 

template sequence of the mRNA-QPA interface reagent be delivered to the QPA reaction. 

 
Figure 30. The increase in fluorescence over time is directly proportional to the 
concentration of interface reagents present in the QPA reaction. This linear response has a 
dynamic range that spans nearly 4 orders of magnitude. Note: log scale on x- and y- axes 
(mean ± s, n = 3). 
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The interface reagent contains a 22-nucleotide probing region complementary to an mRNA 

biomarker, a 5-nucleotide spacer, and the 15-nucleotide template sequence for QPA. The 

complete integrated assay involves isolating mRNA biomarkers from complex samples using 

oligo-dT functionalized magnetic particles, and then probing for the mRNA biomarkers with 

the mRNA-QPA interface reagent. The QPA reaction is then used to indirectly quantify the 

mRNA by amplifying from the template portion of the mRNA-QPA interface reagent. A 

schematic representation of the physical layout of the assay is depicted in Figure 26. Each 

step of the assay takes place inside of 1.6 mm ID Tygon tubing by simply pulling the 

magnetic particles through processing solutions separated by surface tension valves, until the 

last step, where QPA sponteneously initiates amplification upon the delivery of the interface 

reagents.  

To determine the efficiency of the mRNA extraction assay in the presence of background 

biomolecules (integration component i from Figure 26), mRNA biomarkers were extracted 

from solutions containing Tris-HCl buffer (pH 8.0), ~2.5 ng/µL non-target yeast total RNA 

(~100-fold more RNA than the mRNA biomarker), or a surrogate nasal wash sample 

containing HEp-2 cell lysate. Each of the samples was spiked with 30 pmol mRNA 

biomarker. Although virtually any mRNA sequence could be used as a demonstration of 

feasibility, the sequence used in these studies is based on a 38 nucleotide sequence from the 

respiratory syncytial virus (RSV) nucleocapsid gene mRNA to which a 22-nucleotide poly-A 

tail was added. Extraction of the mRNA was then carried out by pulling the beads through 

the wash buffers and into a Tris-HCl buffer (pH 8.0) elution solution. The concentration of 

the labeled mRNA biomarkers in the final solution was determined using fluorescence 

spectroscopy. Extraction yields from the sample matrices was ~35% of the starting amount of 
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mRNA biomarker, and there was no statistical difference among the three sample types 

(Figure 31A). Notably, the biomarkers are concentrated 2.5-fold through the extraction 

process (the initial binding solution is 250 µL and the final elution solution is 100 µL); 

therefore, the effective biomarker enrichment is nearly 90%. These results indicate that the 

 

Figure 31. The self-contained format is effective for extracting mRNA biomarkers from 
complex samples and associating biomarkers with mRNA-QPA interface reagents. (A) 
Extraction of the synthetic mRNA biomarker sequence is effective in the self-contained 
format using oligo dT-functionalized magnetic beads. mRNA was extracted from 
solutions of increasing complexity: Tris-HCl buffer at pH 8.0, yeast RNA extract at 100-
fold the amount of target mRNA, or Hep-2 cell lysate at 105 cells/mL (mean ± σ, n = 3). 
(B) The number of interface reagents recovered (i.e., the number of interface reagents 
associated with mRNA biomarkers) increases with incubation time and interface reagent 
concentration in the template binding solution (circles = 10 nM, squares = 75 nM, and 
triangles = 100 nM) (mean ± σ, n = 3). 
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mRNA extraction method is robust and compatible with sample matrices of increasing 

complexity.  

The efficiency of mRNA-QPA interface reagent binding to mRNA biomarker was 

evaluated next (integration component ii from Figure 26) by testing 10 to 100 nM interface 

reagent concentrations and 10 to 60 minute incubation times in the template binding solution. 

The amount of interface reagents eluted into Tris-HCl buffer was measured using 

fluorescence spectroscopy and expressed relative to the amount of biomarker recovered in 

the same solution. The data show that the amount of interface reagent recovered increased 

with template concentration and with incubation time, resulting in a maximum interface 

reagent yield of nearly 80% of the amount of recovered mRNA biomarkers using a 100 nM 

interface reagent concentration and a 60 minute incubation time (Figure 31B). An interface 

reagent concentration of 75 nM was chosen, however, to limit the amount of interface 

reagent that would be nonspecifically pulled through with solution carryover, and an 

incubation time of 30 minutes was chosen to decrease the overall assay time. Under these 

conditions, the mRNA-QPA interface reagent yield was 66% of the amount of the recovered 

mRNA biomarkers.  

These data demonstrate that this self-contained assay based on oligo-dT functionalized 

magnetic beads and surface tension valves effectively associates mRNA-QPA interface 

reagents with mRNA biomarkers preparatory to running isothermal QPA. The overall 

effective delivery of interface reagents to the final solution, relative to the concentration of 

mRNA biomarkers present in the initial binding solution, is ~60%. Although this effective 

yield is sufficient for a demonstration of feasibility, there may be instances where it may 

need to be increased. As demonstrated in previous biomarker extraction and concentration 
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studies (17), by simply decreasing the elution solution volume, the final interface reagent 

concentration can be increased. 

 

Self-contained mRNA extraction and detection 

To determine the efficacy of QPA within the self-contained tube format, QPA 

performance was evaluated at 30, 45, 60, 75, and 90 minute time points after incubating the 

tubes at 65 °C in a circulating water bath. In this format, real-time monitoring of the QPA 

reaction was not feasible, so endpoint fluorescence measurements were collected after the 

tubes were pulled from the water bath. The data show that limits of detection between ~300 

and ~250 pM mRNA-QPA interface reagents were achieved when incubated in the tube for 

45, 60, and 75 minutes (Figure 32A, solid squares). At the 30 and 90 minute time points, the 

limits of detection of the in-tube QPA assay were worse, at ~1 nM. These data demonstrate 

that 30 minutes is not long enough to get consistent signal and that at 90 minutes signal 

begins to plateau. A 45-minute incubation time was used for subsequent assays, as it was the 

earliest time point that resulted in a reasonable limit of detection (300 nM). These limits of 

detection are greater than one order of magnitude worse than the QPA reaction monitored in 

real-time using the Rotor-Gene Q PCR instrument (see Figure 29B). To determine if this was 

an effect of the less precise heating method or the endpoint measurement method, endpoint 

measurements of the QPA reaction were also collected using the Rotor-Gene Q instrument. 

Under the precise thermal control of the Rotor-Gene Q instrument, the limit of detection at 

30 minutes was 1.4 nM mRNA-QPA interface reagents and decreased steadily with 

increasing incubation times, approaching a lower limit of ~400 pM mRNA-QPA interface 

reagents at 90 minutes (Figure 32A, open circles). These data demonstrate that the QPA 
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reaction performs well while being heated in a water bath within the self-contained format, 

achieving limits of detection on par with the more precise, thermally controlled Rotor-Gene 

Q instrument. Because of these observations, I hypothesize that real-time monitoring of the 

 

Figure 32. Isothermal QPA performs well when heated within the self-contained format in 
a water bath. A) The limits of detection based on endpoint fluorescence measurements at a 
range of incubation time points of the in-tube QPA reaction heated by water bath (solid 
squares) compared to QPA reaction heated in the Rotor-Gene Q (open circles) (mean ± σ, 
n = 3). B) Detection of the synthetic mRNA biomarker from RNA-spiked (gray bars) and 
unspiked (black bars) surrogate nasal wash samples after self-contained extraction and 
QPA template binding. Three QPA reaction conditions are compared after a 45-minute 
incubation: i) Water bath heated within a tube, endpoint measured (left bars); ii) Rotor-
Gene Q heated, endpoint measured (middle bars); and iii) Rotor-Gene Q heated, measured 
in real-time (right bars). QPA signal is expressed as a percentage of the total possible 
signal given a starting mRNA concentration of 1.2 nM (mean ± σ, n = 3). 
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in-tube QPA reaction will achieve the limits of detection of the real-time Rotor-Gene Q 

instrument. Current efforts are focused on developing an instrument format for heating and 

reading fluorescence of the QPA reaction performed within the self-contained format.  

The performance of the integrated self-contained mRNA extraction and QPA detection 

assay was evaluated next. The assay was performed using surrogate patient samples positive 

for the synthetic mRNA biomarker (30 pmol mRNA spiked into HEp-2 lysates) and negative 

for the mRNA biomarker (unspiked). After loading the sample containing the magnetic 

beads, the entire assay was performed within the assay tube, including mRNA extraction, 

mRNA-QPA interface reagent binding, and QPA amplification. The QPA reaction solution 

was removed after a 45-minute incubation time and the contents were endpoint detected 

using a benchtop plate reader. This method resulted in the detection of ~45 ± 8.9% of 

mRNA-QPA interface reagents relative to the mRNA content in the RNA-spiked sample and 

-4.5 ± 13% in the negative sample (Figure 32B, left gray bar and left black bar, respectively). 

For comparison, the same samples were tested using the Rotor-Gene Q instrument for the 

QPA incubation and detection step, while the mRNA extraction and template binding steps 

remained in the self-contained format. The results from the Rotor-Gene Q instrument was 

comparable to the in-tube method, detecting 35 ± 12% mRNA-QPA interface reagents 

relative to the mRNA content in the RNA-spiked sample and -2.0 ± 2.5% in the negative 

sample when measured at the 45 minute endpoint. Using real-time monitoring of QPA 

outside of the tubing, the quantification of the mRNA-QPA interface reagent was 32 ± 5.1% 

relative to the mRNA content in the RNA-spiked sample and -1.5 ± 0.7% in the negative 

samples (Figure 32B). These data show that monitoring the QPA reaction in real-time 
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produces much more consistent results, while endpoint measurements of QPA result in a 

substantial amount of error.  

These data demonstrate that isothermal QPA performs well when heated in a simple 

water bath and detected using a plate reader, achieving a limit of detection of ~250 pM 

mRNA-QPA interface reagents bound to mRNA. Furthermore, I found the complete self-

contained mRNA extraction and QPA detection assay to be specific, detecting between ~35 

and ~45% of the potential interface reagents relative to the initial concentration of synthetic 

mRNA biomarkers in the biomarker-spiked surrogate nasal wash samples, while detecting 

virtually no signal in the negative control samples, despite containing a high background of 

non-target mRNA molecules from the HEp-2 cell lysates. Based on a 45% relative detection 

of mRNA biomarkers, the effective limit of detection of the complete integrated assay is 

~560 pM mRNA biomarkers from a surrogate patient sample. These data also reveal that 

real-time monitoring of the change in fluorescence over the course of the reaction (i.e., the 

slope fluorescence response curve) produces more consistent results than endpoint analysis 

of the samples (compare the error in Figure 29B to Figure 32A). This is likely because 

variation in the baseline or starting fluorescence of individual samples does not affect the 

slope of the fluorescence response curve, yet influences values of the endpoint analysis. 

Therefore, methods to monitor real-time fluorescence of the QPA reaction are necessary to 

achieve the optimal sensitivity and specificity in the self-contained mRNA extraction and 

QPA detection assay. 
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Conclusions 

In this chapter, I described the integration of self-contained mRNA biomarker extraction 

and isothermal detection based on QPA. The simple assay effectively isolates mRNA 

biomarkers from complex samples, binds the mRNA biomarkers with mRNA-QPA interface 

reagents, and deposits them into a final solution for isothermal QPA detection. Our results 

indicate that this system has a number of advantages for use as an mRNA biomarker 

detection assay. First, the assay is able to detect relatively short RNA molecules, which is not 

possible using traditional RT-PCR. The biomarker target I tested is 60 nucleotides long; 

however, it is theoretically reasonably that targets as short as 35 nucleotides could be 

detected using this assay while still maintaining reasonable specificity (i.e., 15 nucleotides 

complementary to the capture sequence on the bead with 15 nucleotides complementary to 

the mRNA-QPA interface reagent, plus 5 nucleotides in between to prevent steric 

constraints). Second, the QPA assay is simple and robust. The molecular mechanism does not 

require a complex series of interactions and events to function, but is carried out at a single 

temperature with a single primer and polymerase enzyme. Also, the reaction is tolerant of ± 2 

°C change in operational temperature while maintaining reaction efficiency within 90% of 

the optimal efficiency. Another advantage of the QPA assay is that it is quantitative over four 

orders of magnitude and has a lower limit of detection of ~250 pM using an endpoint 

analysis or ~20 pM using real-time analysis. Furthermore, the complete mRNA extraction 

and detection assay is self-contained and requires relatively few steps for the end user to 

complete. The tubing can be preloaded with the assay reagents, so that performing the assay 

simply consists of injecting the patient sample into the tube, pulling the magnetic beads 

through the assay solutions, incubating the tube in a water bath, and reading the fluorescence 
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against a standard curve. The total time duration from sample-in to answer-out is ~90 

minutes. These advantages may also benefit others that are developing simple detection 

methods for amplifying targets form complex samples.  

The integrated mRNA extraction and amplification assay is a practical platform for the 

development of a diagnostic device suitable for settings that lack laboratory resources and 

trained personnel. The assay format is particularly suitable for automated sample processing, 

because of the flexibility of the physical tube format and simplicity of the magnetic bead 

transport. The development of an automated device for reducing the number of steps that are 

completed by the end user is the focus of our current efforts. Furthermore, because many 

mRNA biomarkers of disease are found in patient samples at lower concentrations than the 

mid-pM range, the sensitivity of the assay must be improved to be deployed as a diagnostic 

device. To enhance the sensitivity, an exponential form of the QPA reaction is currently 

under investigation and has shown promise of improving the limit of detection of the assay 

by several orders of magnitude. The ability to test a patient sample for multiple biomarkers at 

once would also be a valuable component of a diagnostic device in limited resource settings. 

Because QPA detects mRNA-QPA interface reagents associated with the mRNA biomarkers, 

as opposed to the mRNA biomarkers themselves, QPA has the potential to be used as a 

standardized amplification interface, where the QPA reaction is used as a singular readout for 

a variety of biomarkers. This could be done by tagging molecular recognition elements (i.e., 

antibody, aptamer, etc.) with the QPA template sequence for detecting proteins, cells, and 

other classes of biomarkers in a manner analogous to the mRNA extraction, only using the 

respective magnetic capture beads instead of the oligo-dT beads. I expect that the 

culmination of these focused efforts, in addition to the data presented in this chapter, will 
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result in the development of a simple and rapid diagnostic device for a variety of diseases 

with the potential to be implemented in limited resource settings. 
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Chapter VI 

 

TOWARD THE DEVELOPMENT OF A COMPLETE DIAGNOSTIC DEVICE 

 

Abstract 

 Although each of the methods, insights, or components discussed in the preceding 

chapters has the potential to make diagnostic tests more accessible to end users, the 

integration of them into an automated diagnostic device would have great value. Therefore, 

this final chapter ties together the concepts that are described in chapters II through V and 

presents a plan for the development of a complete diagnostic device. First, our preliminary 

design for an automated sample processor is described. This automated processor is 

formatted to interface with our self-contained format by rotating a disk containing the tubing 

wrapped around its circumference passed a fixed permanent magnet to pull the magnetic 

beads through the processing solutions. A plan for developing this automated sample 

processor into a complete diagnostic device is described, which includes steps that could be 

taken to create a device that performs sample-in-to-answer-out detection of nucleic acids. 

The proposed device will be able to perform nucleic acid extraction on the surface of 

magnetic beads, amplification by PCR and thermal cycling, and detection in real-time using 

integrated fluorescence optics. A plan for standardizing the readout to PCR for multiple 

biomarker types, including proteins and cells, is also described. The completion of the steps 

described in this plan has the potential to lead to the development of a complete diagnostic 

device with the potential to be implemented in limited resource settings. 
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Introduction 

 The development of a complete diagnostic device will be a research thrust of our 

laboratories in the years to come. The intent of this chapter is to describe the state of the 

technologies developed during my graduate tenure and to outline the next steps that I 

perceive are required to implement these technologies in a meaningful way at the point-of-

care. This chapter serves as a note to those that follow and is written as a guide of sorts for 

developing a complete diagnostic device.  

 

Progress made toward a complete diagnostic device 

 The studies presented in this dissertation have attempted to overcome specific 

technical obstacles in the field of point-of-care diagnostics. I have demonstrated that our self-

contained format based on surface tension valves is an effective platform for nucleic acid 

biomarker extraction, amplification, and detection, with fewer steps than is required in 

conventional laboratory settings (7). This format enables simple patient sample processing 

and biomarker detection for untrained personnel, has the flexibility to be interfaced with a 

variety of upstream and downstream processes, and maintains independence from pipetting, 

centrifugation, and other complex or expensive laboratory-based procedures. To function as a 

complete diagnostic device, I hope to integrate sample loading, processing, and biomarker 

amplification and detection into a single, standalone instrument. Toward this goal, our 

current efforts are focused on developing an automated processor to draw the magnetic beads 

through the self-contained tubing and a simple approach to introduce the patient sample into 

the tubing. 
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Development of an automated processor  

 As described throughout this dissertation, preparation of the patient sample was 

achieved by manually moving a small magnet along the edge of the tube to gather magnetic 

beads and move them into the next processing chamber. Our laboratories have designed a 

prototype automated sample processor based on our self-contained format that rotates sample 

processing cassettes past fixed permanent magnets (Figure 33A). Sample processing 

Figure 33. Depiction of the prototype automated sample processor based on our self-
contained format. A) The extraction cassette processor relies on a stepper motor to rotate 
individual cassettes past fixed permanent magnets for magnetic bead processing. B) The 
extraction tubing is wrapped around the outside of individual cassettes. 
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cassettes are plastic disks with the required length of preloaded tubing wrapped around its 

outer edge. The design aligns the tubing directly over the magnet for magnetic bead 

processing (Figure 33B). The rollers are rotated by a stepper motor at two speeds: a slow 

speed to gather magnetic beads and pull them slowly forward through each solution and a 

fast speed to spread the beads in each chamber and allow them to mix with each individual 

wash solution. This roller operation is independent of both chamber and surface tension valve 

length, and allows the flexibility to extract different biomarker types using the same 

continuously operating program. The continuous roller operation gives the processor 

multiplex capabilities and allows each individual cassette to be placed on the processor and 

removed independently of other cassettes.  

 

Design of a simple patient sample loader 

 One approach to sample loading is to draw the patient sample into a transfer pipette 

containing lyophilized magnetic beads and binding reagents and buffers within the bulb end 

of the pipette. In this simple method, the beads are rehydrated with the sample and the 

biomarkers are captured on the surface of the magnetic beads by simply shaking the bulb. In 

this design, the entire transfer pipette contents were then injected into the extraction cassette, 

effectively shifting the processing solutions down the tube. Shifting the processing solutions 

changes chamber location and makes alignment with detectors more difficult. Therefore, I 

have designed a simple variation on this approach, which does not shift the pre-arrayed 

solutions. The design is illustrated in Figure 34. The first step is to draw the patient sample 

into the bulb of the transfer pipette and simply shake the bulb to dissolve the beads and the 

other freeze-dried reagents. The second step is to apply the tip of the transfer pipette to an 
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injection hole in the side of the tubing wrapped around the ring cassette. When the bulb is 

squeezed the liquid contents and the magnet beads travel down an unsealed region (left in the 

illustration) and fill the contents of a previously open section of tubing. The blue region 

(right in the illustration) contains the processing solutions, which do not move during the 

injection because the far end of this section of tubing is plugged. After the patient sample has 

been loaded into the tubing, the cartridge is placed on the processor and in subsequent passes 

over the fixed magnet the magnetic beads are drawn into the next processing chamber in the 

blue section. Residual patient sample is retained inside of the tubing and is disposed of with 

the ring cartridge.  

 

Next steps for the development of a complete diagnostic device 

 Despite the success our laboratories have had in developing components of a 

diagnostic device, hurdles still exist that prevent these technologies from being implemented 

at the point-of-care. These hurdles include integrating sample loading, processing, and 

Figure 34. Illustration of the basic sample introduction method.  
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biomarker amplification and detection and developing a standard amplification interface for 

multiple biomarker types. These barriers can be resolved through concerted efforts in device 

engineering and chemical investigation.  

 

Integrated sample loading, processing, and biomarker amplification and detection 

 To develop a complete diagnostic device, one plan is to integrate sample loading, 

sample preparation, biomarker amplification and detection into a single instrument. When 

viewed as a complete diagnostic system, integration will provide the following principle 

advantages: 1) integrated sample loader simplifies patient sample loading and reduces 

operator training; 2) cartridges are self-contained, inexpensive, and potentially disposable; 3) 

when cartridges are placed on the processor, processing proceeds automatically; and 4) 

multiple cartridges are processed independently and on a continuous basis. In the following 

sections, I describe plans to incorporate and evaluate an instrument with these additional 

features.  

 The components needed to develop a diagnostic device from our self-contained 

patient sample preparation technology include (A) a simple patient sample loader, (B) a 

means of heating and cooling the samples, and (C) an integrated optical detection strategy. 

These components are conceptually illustrated within the context of the automated device in 

Figure 35. The complete diagnostic is envisioned to function in the following way. A sample 

loader containing lyophilized magnetic biomarker capture beads and binding reagents is 

removed from the cartridge rim and used to draw up a patient sample (Figure 35A). The 

sample loader is reinserted into the cartridge rim and the cartridge is placed on the sample 
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processor. The remaining steps of the assay are carried out automatically as the processor 

rotates the cartridge.  

 As the studies presented in this dissertation have shown, a fixed magnet contained 

within the processor can be used to pull biomarker capture beads through pre-arrayed 

solutions contained within the tubing to remove contaminants from a patient sample and 

concentrate them. Amplification can then be achieved by standard PCR or isothermal PCR 

reagents in the amplification solution and by rotating the cartridge through areas of heating 

and cooling within the box (Figure 35B). Isothermal reactions have one particularly attractive 

advantage over traditional PCR in that they operate at a fixed temperature above the highest 

environmental ambient temperature, which is expected to be at most 45°C. Temperature 

control of reactions can be achieved simply by surrounding the rotating cartridges with a 

simple containment box and heating the air inside of this volume to the temperature required 

Figure 35. Conceptual summary of the major integration components, including A) patient 
sample loading, B) biomarker amplification, and C) optical detection of results. 
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to maintain the target temperatures typical of isothermal reactions (approximately 65°C). An 

alternative approach that could also be considered is the use of a thermally controlled water 

bath. Both of these approaches might cheaply enable isothermal reactions but would seem 

unlikely to be feasible solutions for higher temperature PCR reactions. Microwave radiation 

or infrared light would also appear to be feasible approaches to heat water-based reaction 

solutions. Thermal control for traditional PCR requires the ability to cool the PCR reaction 

mixture to a target temperature, which is critical for optimum assay performance. One simple 

design is to incorporate a fan to draw ambient air into the box. Alternatively, a cooled water 

bath could be used in which the cartridge passes through during each rotation. Amplification 

is detected optically through the transparent tubing wall (Figure 35C).  

 To incorporate fluorescence into the automated device format, I plan to produce a 

design that would incorporate a complete dual channel fluorescence subsystem from Qiagen 

(Figure 36). This device appears to have the characteristics needed for measuring the 

fluorescence of the sample solution through the tube wall. As shown in the diagram, the 

yellow region shown at the bottom of their product brochure image would be replaced by the 

rotating tube section containing the fluorescing solution. The system uses a series of short 

pulses to illuminate the sample and thus should have the capabilities to read the moving 

tubing as it passes slowly in front of the detector. Because the presence of magnetic beads 

may interfere with optical sensing, beads will need to pass through an elution/amplification 

segment where biomarkers are released and then the magnetic beads are pulled into a bead 

graveyard downstream of the amplification region. In this tube layout design, the biomarkers 

elute in the amplification reagent segment and the beads, without biomarkers, are drawn into 

a final water segment and therefore will not be present in the amplification region. In 
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traditional intercalating methods the intercalating dye is also present in the amplification 

reaction mix and thus this segment will be illuminated by the dye excitation wavelength 

during the cartridge rotation. The physical hardware to detect the increase in emission of a 

rotating section of tubing will be based on the proven designs contained in the commercially 

available Qiagen Rotor-Gene Q real-time PCR machine.   

  

Development of a standard amplification interface for detecting multiple biomarker types 

 Another important feature of a simple diagnostic device would be a single readout for 

a variety of biomarker targets. Based on the proven amplification properties of PCR and the 

Figure 36. Depiction of the Qiagen fluorescence detection system (ESElog fluorescence 
detector). 
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potential for isothermal methods, one approach would be to convert target biomarkers into a 

predetermined set of DNA sequences as inputs into a standardized PCR or isothermal 

reaction. Our laboratories have designed a means to convert mRNA, protein, cell surface 

biomarkers, or other biomarkers of interest to a single DNA sequence for this standardized 

amplification and detection method. If successful, this molecular translation or conversion 

will narrow the amplification and detection focus to PCR or isothermal amplification, thus 

simplifying the overall design of the diagnostic instrument. Furthermore, this interface 

standard will enable straightforward integration of any future molecular recognition 

technology with an output conforming to this standardized amplification and detection 

method.  

 The rationale for considering this approach is that the use of PCR for the detection of 

nucleic acid biomarkers has become the benchmark for sensitivity and specificity in 

molecular diagnostics. However, many biomarker targets that most directly correlate with 

infection and disease are not nucleic acids, but proteins, whole cells, or other small 

molecules. The detection of these types of biomarkers requires various amplification and 

detection readouts. Therefore, the development of a universal method to standardize 

amplification and detection of diverse biological and molecular targets would greatly 

simplify the design of a standalone device that incorporates detection of multiple classes of 

biomarkers.  

 The approach to a standardized amplification interface that we are considering 

involves “digitizing” the molecular detection, i.e., linking a biomarker recognition element to 

a unique DNA tag (amplicon) enabling PCR amplification and subsequent detection of 

amplified DNA as a proxy for the biomarker. The concept of digitizing a molecular 
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recognition event into the A, T, C, and G readout for PCR detection has been previously 

established with immuno-PCR, an approach that uses monoclonal antibodies linked to DNA 

tags. Though the sensitivity achieved with immuno-PCR was unprecedented for protein 

detection (attomolar detection limits for proteins) (98), the approach has not been widely 

implemented in clinical diagnostics because its sensitivity is limited by the specificity of 

antibodies. Other methods have been developed to improve the specificity of the biomarker 

recognition element. For example, a proximity ligation approach improves specificity by 

using two antibodies to bind distinct epitopes of the same protein biomarker so that DNA 

amplification occurs only when the two tags are in close proximity. However, the difficulty 

of finding two antibodies that bind close enough together for the reaction to function on a 

relevant protein biomarker surface has impeded its adoption as a clinical diagnostic tool. 

Other DNA-tagged biomarker recognition elements, such as aptamers, have also been used to 

convert a molecular recognition event into a PCR signal with similar results to the traditional 

immuno-PCR (i.e., sensitivity of the assay is limited by the specificity of the recognition 

element). This standardized biomarker-amplification interface approach will help to solve the 

specificity issues associated with immuno-PCR techniques, as our self-contained extraction 

processor will be used to remove non-target interferents.  

 This approach for standardizing biomarker detection to PCR requires two components 

to integrate with our magnetic bead-based biomarker extraction system: biomarker 

recognition elements tagged with DNA and an amplification system for the DNA tags. A 

demonstration of the conversion of biomarker recognition events to PCR using could be done 

using validated reagents from our laboratories, including DNA tagged hybridization probes 
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for viral mRNA, DNA-tagged Ni(II)NTA for the malarial protein HRP-II, and DNA tagged-

CD4 monoclonal antibody for whole CD4+ cells (Figure 37).  

 The plan to achieve this objective is aimed at developing the chemical components 

for a functional standardized amplification interface. It will be necessary to identify the 

optimal chemical methods for associating unique DNA tags with specific biomarker 

recognition elements and test isothermal and standard PCR methods to amplify and detect the 

DNA amplicons associated with captured biomarkers. The basic approach is illustrated in 

Figure 37. As this figure illustrates, three different types of biomarkers (mRNA, proteins, and 

cells) are captured onto the surface of magnetic beads (left side). If biomarkers are present on 

the surface of the magnetic beads they are transported into the next segment of the tubing, 

which contains the amplification interface components (right side). Interaction of these 

Protein 
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component)
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Figure 37. Molecular interface components (right side) required to convert mRNA, 
protein, or cell surface biomarkers (left side) to standardized DNA output (dark blue lines 
to the right of the vertical dotted-line). 
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interface components then associates a single common DNA tag for amplification by a 

standardized PCR or isothermal reaction. Our self-contained processor is particularly suitable 

for this application for three reasons: 1) it enables the capture and presentation of biomarker 

targets on the surface of magnetic beads, preparatory to binding and isolating DNA-tagged 

molecular recognition agents and depositing them into a PCR reaction; 2) it improves 

biomarker recognition specificity by reducing the number of non-target biomolecules present 

in the assay solutions; and 3) it is compatible with standard PCR and various isothermal PCR 

amplification methods.  
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Appendix A. 

 

Supplementary Data  

Supplemental Figure 1. Target sequences used in chapter IV studies. A) Full length 
respiratory syncytial virus (RSV) N gene RNA sequence used in these studies (5’ - 3’). 
Regions complementary to the probes used in these studies are underlined and colored. B) 
RNA target sequences containing mismatched nucleotides (5’ - 3’). Mismatched 
nucleotides are indicated in bold font. 

A…CAAAAAACCCCUCAAGACCCGUUUAGAGGCCCCAAGGGGUUAUGCUAGUUAUGCGGCCG
CUGCAGGUCGACGGAUCCUCAAAGCUCUACAUCAUUAUCUUUUGGAUUAAGCUGAUGU
UUGAUAGCCUCUAGUUCUUCUGCUGUCAAGUCUAGUACACUGUAGUUAAUCACACCAU
UUUCUUUGAGUUGUUCAGCAUAUGCCUUUGCUGCAUCAUAUAGAUCUUGAUUCCUCGG
UGUACCUCUGUACUCUCCCAUUAUGCCUAGGCCAGCAGCAUUGCCUAAUACUACACUGG
AGAAGUGAGGAAAUUGAGUCAAAGAUAAUAAUGAUGCUUUUGGGUUGUUCAAUAUAUG
GUAGAAUCCUGCUUCACCACCCAAUUUUUGGGCAUAUUCAUAAACCUCAACAACUUGUU
CCAUUUCUGCUUGCACACUAGCAUGUCCUAACAUAAUAUUUUUAACUGAUUUUGCUAA
GACUCCCCACCGUAACAUCACUUGCCCUGCACCAUAGGCAUUCAUAAACAAUCCUGCAA
AAAUCCCUUCAACUCUACUGCCACCUCUGGUAGAAGAUUGUGCUAUACCAAAAUGAACA
AAAACAUCUAUAAAGUGGGGAUGUUUUUCAAACACUUCAUAGAAGCUGUUGGCUAUGU
CCUUGGGUAGUAAGCCUUUGUAACGUUUCAUUUCAUUUUUUAGGACAUUAUUAGCUCU
CCUAAUCACGGCUGUAAGACCAGAUCUGUCCCCUGCUGCUAAUUUAGUUAUUACUAAU
GCUGCUAUACAUAAUAUUAUCAUCCCACAAUCAGGAGAGUCAUGCCUGUAUUCUGGAG
CUACCUCUCCCAUUUCUUUUAGCAUUUUUUUGUAGGAUUUUCUAGAUUCUAUCUCAAU
GUUGAUUUGAAUUUCAGUUGUUAAGCUUGCCAAUGUUAACACUUCAAAUUUCAUUUCU
UUUCCAUUAAUGUCUUGACGAUGUGUUGUUACAUCUACUCCAUUUGCUUUUACAUGAU
AUCCCGCAUCUCUGAGUAUUUUUAUGGUGUCUUCUCUUCCUAACCUAGACAUCGCAUAU
AACAUACCUAUUAACCCAGUGAAUUUAUGAUUAGCAUCUUCUGUGAUUAAUAACAUGC
CACAUAACUUAUUGAUGUGUUUCUGCACAUCAUAAUUAGGAGUAUCAAUACUAUCUCC
UGUGCUCCGUUGGAUGGUGUAUUUGCUGGAUGACAGAAGUUGAUCUUUGUUGAGUGUA
UCAUUCAACUUGACUUUGCUAAGAGCCAUAAUGAAUUCGGCCUCCAUGGCCAUAUGCA
GGUCCUCCUCUGAGAUCAGCUUCUGCUCCUCCAUGAUGGCGGCUCGCCC 
 
Grey: RSVN(1070-1091)    Teal: RSVN(957-983) 
Light purple: RSVN(843-872)    Brown: RSVN(800-821) 
Red: RSVN(755-774)     Light blue: RSVN(603-622) 
Light green: RSVN(531-551)    Light brown: RSVN(425-444) 
Pink: RSVN(308-329)    Purple: RSVN(286-307) 
Blue: RSVN(264-285)    Green/Orange: RSVN(242-263) 
Orange: RSVN(242-256)    Orange/Green/Blue: RSVN(242-285) 
Orange/Green/Blue/Purple/Pink: RSVN(242-329) Tan: RSVN(193-214) 
Maroon: RSVN(4-29) 
 

B    0 mismatches:  UAUCCCGCAUCUCUGAGUAUUU  
1 mismatch:   UAUCCCGCAUGUCUGAGUAUUU 
3 mismatches:  UAUCGCGCAUGUCUGACUAUUU 
5 mismatches:  UAUCGCGGAUGUCAGACUAUUU 
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Supplemental Figure 2. The five lowest energy mfold folding structures predicted for the 
~1300 nucleotide RSV N gene RNA sequence. The binding regions of the probes used in 
these studies are highlighted in yellow or blue and numbered 1 - 7. Legends in the top 
right of each structure list each probe evaluated and the number of unpaired bases 
predicted in the corresponding binding region. 
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Appendix B.  

 

Illustrations of Concepts and Designs for Biomarker Extraction and Detection 

Original “Extractionator” design using pipette tips to connect solution-filled capillary tubes 

 

Current manual Extractionator design using a continuous length of plastic tubing 

 

Processing solution Functionalized 
magnetic particles 

Pipet tip 
(air-filled) 

Permanent 
magnet 

Glass capillary 
tubing 

Magnetic beads 

Surface tension valve 
(air or mineral oil) Magnet 

Tygon 
tubing 

Processing 
solutions 
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“Whip-It” Extractionator design relying on centrifugal force to transport beads through tube 

 

 

“Egg Timer” Extractionator design for hands-free magnetic transport of beads through tube 

 

Processing buffers Tygon tubing 

Functionalized high-
density particles 

Surface tension 
valve (air) 

Processing 
solution 

Outer 
solution 
(viscous) 

Surface 
tension valve 
(air) 

Magnetic 
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ring magnet 
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Hollow electromagnet Extractionator design for automated biomarker extraction 

 

 

C-shaped electromagnet Extractionator design for automated extraction 

 

Tygon tubing 

Functionalized 
magnetic particles 
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valve (air) 

Processing buffers 
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Tygon tubing 
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“Worm gear” based automated Extractionator prototype based on a linear actuated magnet 

 

 

“Washing machine” style automated Extractionator design using a motor to turn coiled tube 

 

 

Extraction tube Magnet 

Motor 

Controller 

Pulley 

Worm gear 

Permanent 
magnet 

Servo motor 
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magnet 
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Washing machine style automated Extractionator prototype using a motor to turn coiled tube 

 

 

Multiplexed extraction based on the washing machine style automated Extractionator 

 

 

Fixed 
permanent 
magnet 
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stepper motor, 
driver, and 
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Disposable 
extraction 
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BEGIN EXTRACTION… 
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processing 

Magnetic 
beads 

Fixed 
permanent 

magnet 
Coiled 

extraction tube 

SIDE VIEW TOP VIEW 
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“Drop diagnostics” enabled by Extractionator-based purification and processing  

 

Multiplexed drop diagnostics and mobile result reporting enabled by the Extractionator 
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Self-contained extraction and detection device design based on the Extractionator and BSI  

 

Maximize 
detection 
signal Remove 
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molecules 
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CD4+ cell extraction and “Phantom bead” based detection design using the Extractionator 

 

 

PCR-based detection of protein using DNA-tagged recognition agents and the Extractionator 

 

CD4+ cell 
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Phantom bead 
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Y-DNA-based amplification design based on the Extractionator 

 

Step 1 
Capture target on 
magnetic beads 

*Steps 2 – n 
Amplify signal by step-wise 

formation of a Y-DNA dendrimer 

Step n + 1 
Wash away 

excess Y-DNA 

Step n + 2 
Detect using 
SYBR Green 

= target-bound magnetic beads = Y1 DNA = Y2 DNA = Fluorescence = Y-DNA dendrimer 

Y1 DNA solution!

Y2 DNA solution!

2 3 4 5 … n *Steps: 
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“Amplified Immuno-PCR” assay design using the Extractionator 

 

 

“DNA logic NOT operation” assay design 

 

 

1)  Antigen capture solution 
•  Antigen-containing sample  
•  Ab-functionalized particles 
•  PBS with 5% BSA 

2) Wash solution(s) 
•  PBS with 5% BSA 

4) Wash solution(s) 
•  PBS with 5% BSA 

3) Probe capture solution 
•  DNA and Ab-

functionalized AuNPs 
•  PBS with 5% BSA 

5) Tag release solution 
•  50 mM DTT 

1. Transport through  
wash solution(s) 
and into probe 
capture solution 

2. Transport through  
wash solution(s) 
and into tag release 
solution 

3. PCR 

= magnetite particles = target-specific probe = antigen = DNA tags 

= magnetite particles 

nonspecific interactions 

target-specific interactions 

= target-specific probe 

= nonspecific probe = antigen 

= tags from specific interactions 

=tags from non-specific interactions 

1. Remove  
DNA tags 

2. Hybridization 
3. dsDNA 

digestion 4. PCR 
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“RDT Garage” test enhancement based on magnetic bead-based biomarker concentration 

 

RDT Garage assay workflow 
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Lateral flow design for multiplexed microRNA detection 

 
sample pad 
(glass fiber) 

conjugate pad 
(cellulose fiber) 

test pad 
(nitrocellulose membrane) 

absorption pad 
(hydrogel polymer) 

positive control 
capture oligos 

miRNA  
capture oligos 

gold nanoparticle 
conjugates  

FLOW 

deposited magnetic 
particle sample 
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Appendix C. 

 

Nucleic Acid Extraction Protocols and Reagents 

 

RNeasy protocol 

1) Add 5 µl of the cell lysate to 350 µl RLT and 350 µl 70% EtOH. Vortex. 

2) Place the lysate in RNeasy column with 2 ml tube. Centrifuge at 8000 g for 15 sec. 

Discard flow-through. 

3) Add 700 µl RW1. Centrifuge at 8000 g for 15 sec. Discard flow-through. 

4) Add 500 µl RPE. Centrifuge at 8000 g for 15 sec. Discard flow-through. 

5) Add 500 µl RPE. Centrifuge at 8000 g for 2 min. Discard flow-through. 

6) Centrifuge at 8000 g in empty 2 ml tube for 1 min. Discard flow-through. 

7) Add 50 µl RNase-free water to column and place in 1.5 ml tube. Let sit for 1 min. 

Centrifuge at 8000 g for 1 min. 

8) Discard the column, cap the 1.5 ml tube, and refrigerate at 4 °C prior to PCR. 

 

MagAttract protocol 

1) Add 5 µl of cell lysate to 720 µl RLT and 60 µl silica-coated magnetic particles. Vortex on 

level 2 for 5 min.  

2) Pull magnetic particles to one side with a magnet and remove supernatant. Add 900 µl 

MW and vortex. 



 168 

3) Pull magnetic particles to one side with a magnet and remove supernatant. Add 900 µl 

RPE and vortex. 

4) Pull magnetic particles to one side with a magnet and remove supernatant. Add 900 µl 

RPE again and vortex. 

5) Pull magnetic particles to one side with a magnet and remove supernatant. Add 1000 µl 

RNase-free water while holding the magnetic particles in place with the magnet. Remove 

the magnet briefly to let the magnetic particles fall into the water, then pull them back to 

one side with the magnet and remove the water. 

6) Add 50 µl RNase-free water and vortex. Place on the shaker for 5 min. Then refrigerate at 

4 °C prior to PCR. 

7) Pull magnetic particles to one side with a magnet and collect the eluate.  

*Optional: Pre-heat the RNase-free water for elution to 65 °C. 

 

Original self-contained extraction protocol 

1) Into one end of 1/16th inch Tygon R-3603 tubing, sequentially pipette three 100 µl RNase-

free water rinses, two 300 µl RPE washes, and one 300 µl MW wash, each separated by 

surface tension valves (short air bubbles). 

2) Add 5 µl of cell lysate to 230 µl RLT and 20 µl silica-coated magnetic particles. Vortex on 

level 2 for 5 min. 

3) Pipette the sample into the end of the tubing, separating it from the MW wash by a surface 

tension valve. Cap the end with a small PCR tube. 
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4) Cut the tubing off 1 mm from the last water wash on the end of the tubing opposite from 

the end that the reagents were added. Slide a small PCR tube containing 50 µl RNase-free 

water onto the end. 

5) Gather the magnetic particles from the first solution with a magnet and pull them down the 

tubing through each wash buffer. Stop in each buffer and mix the magnetic particles by 

waving the magnet quickly above the tubing before gathering them again and proceeding 

to the next buffer.  

6) In each of the three water rinses, remove the magnet briefly to let the magnetic particles 

fall into the water, then gather them again and proceed to the next rinse.  

7) Pull the magnetic particles into the small PCR tube containing the 50 µl water by slightly 

twisting the tubing back and forth to get the magnetic particles to pass through the 

slightly constricted end of the tubing. 

8) Remove the small PCR tube containing the water and magnetic particles from the tubing, 

cap it, place it into a 1.5 ml tube and vortex it on level 2 for 5 min. Then refrigerate at 4 

°C prior to PCR. 

 

Nucleic acid extraction reagents 

Binding buffer 

• 4 M guanidinium thiocyanate 
• 25 mM sodium citrate (pH 7.0)  

Wash buffer 

• 4 M guanidine hydrochloride 
• 25 mM sodium citrate (pH 7.0)  
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Precipitation buffer* 

• 5 mM KPO4 pH 8.5 
• 80% ethanol 

 
*Prepare 1 M K2HPO4 and 1 M KH2PO4 solutions using RNase-free water. 
Mix 9.5 ml of 1 M K2HPO4 and 0.5 ml of 1 M KH2PO4 to generate 1 M KPO4 pH 8.5 
buffer. 
 
For 100 ml of buffer: 

• 0.5 ml 1 M KPO4 pH 8.5 
• 80 ml 100% ethanol 
• 19.5 ml RNase-free water 

(from Frank Wellmer, “RNA amplification and labeling of RNA probes.” 
Meyerowitz lab, Caltech. Feb. 2004) 

Wash and elution buffers 

• Nuclease-free H2O 
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Appendix D.  

 

Synthesis of the Respiratory Syncytial Virus RNA Biomarker Protocol 

 

Cell culture 

1) Scrape some cells of E. coli containing the RSV plasmid standard and spread them onto an 

agar plate containing 50 µg/ml kanamycin antibiotic. Place them in 37 °C incubator 

overnight.  

2) Isolate a colony and add it to 25 ml media containing 50 µg/ml kanamycin and shake 

overnight in an autoclaved 50 ml Erlenmeyer flask at 37 °C.  

3) 16 - 20 h later, place the cell suspension in a 50 ml conical tube and spin for 15 min at 

6,000 g. Aspirate off the media and either freeze at -20 °C or continue onto a QIAGEN 

plasmid midi prep. 

 

Plasmid midi prep 

4) Follow the protocol for the QIAGEN plasmid midi kit, starting at step 4. 

*Use the ultracentrifuge in the Crowe lab with permission from Fran, the lab manager 

*Use 17 ml SORVALL PET tubes for spinning at 20,000 g (see Reagan in the Williams lab) 

*The 17 ml SORVALL PET tubes began to crack at 20,000 g once the isopropanol was 

added (step 13), so step 14 was carried out at 20,000 g in 1.7 ml Eppendorf tubes on the 

benchtop microcentrifuge 
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*We air-dried the pellet (step 15) for 20 min, until it didn’t appear wet, and resuspended in 

500 µl TE buffer 

5) Look up the extinction coefficient of our expected sequence using the online calculator 

found at http://www.basic.northwestern.edu/biotools/oligocalc.html, and, using the 

absorbance measured at 260 nm, calculated the µg of DNA. 

*Expect ~150 ng/µl 

6) Run ~100 ng of the plasmid DNA on a 1% agarose gel to confirm the correct migration of 

the supercoiled and nicked form of the DNA. 

 *We use 1 µl of 180 ng/µl DNA 

 

Restriction digest 

7) Perform a restriction digest with a restriction enzyme that is downstream from the inserted 

region according to the manufacturer’s protocol (Use 5 - 10 µg DNA to have enough for 

the T7 transcription). 

*We use 50 µl of 180 ng/µl plasmid DNA (9 µg), 2 µl BSA, 20 µl NEB 4, 8.5 µl BssHII, and 

119.5 µl water. We place it at 37 °C for ~2 h. 

8) Run ~100 ng of the linearized plasmid DNA on a 1% agarose gel to confirm the correct 

migration/length. 

 *We run 4 µl of the product and 1 µl of the original plasmid on a gel and expect a ~1,200 

bp fragment 
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Transcription 

9) Perform the optional proteinase K digestion to ensure all RNases are degraded and cleanup 

with RNeasy 

*We stop and clean up the restriction digest by adding 10 µl 0.5 M EDTA, 20 µl 3 M sodium 

acetate, and 400 µl 100% ethanol to the 200 µl digestion, putting it at -20 °C for 15 min, 

centrifuging at 21,100 g for 15 min, carefully removing the supernatant, resuspending in 

140 µl TE, and incubating for 2-3 h at 37 °C to dissolve the pellet. 

*We add 20 µl proteinase K to our 140 µl TE containing our linearized fragment and 

incubate for 30 min at 50 °C. The proteinase K digestion is then cleaned up using an 

RNeasy kit, eluting the product in 50 µl water. 

10) Perform a T7 transcription using a MEGAscript kit from Ambion 

*We combine 12 µl of each of the kit reagents to our 42 µl linearized DNA plus 5 µl water, 

and place it at 37 °C for 4 h. The product is cleaned up using RNeasy with the optional 

on-column DNA digestion.  

11) Run the product on a formaldehyde-agarose denaturing gel to ensure the correct 

migration/length. 

 *We add 1 µl RNA to the gel 
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Appendix E. 

 

HEp-2 Cell Culture Protocol 

 

Media 

1) Make up media by adding 5 ml 250 µg/ml AmphotericinB, 5 ml 200 mM L-Glutamine, 10 

ml FBS, and 500 µl Gentamicin to 500 ml OPTI-MEM media (all of these reagents are 

purchased at the Core at the correct concentration except Amphotericin, which is sold as 

a lyophilized powder). Mix well then run it through a sterilization filter. 

 

Starting frozen cells 

2) Warm media and 1 ml HEp-2 cells (from liquid nitrogen) to 37 °C.  

3) Add 1 ml HEp-2 cells to 9 ml media and place in a T150 flask. Add 40 ml media and place 

at 37 °C overnight. 

 *HEp-2s are relatively tolerant to DMSO; other cell types may require centrifugation to 

remove DMSO. 

4) Change the media the next day by aspirating it off and replacing it with 45 ml of pre-

warmed media. Let the cells grow for a few days until confluent. 

 

Splitting cells 

5) Once confluent, aspirate off the media and add 20 ml PBS without Mg2+ or Ca+. Rock the 

plate a few times then aspirate off the PBS. Repeat one more time 
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6) Add 5 ml of pre-warmed trypsin and incubate at 37 °C for 5 min. Shake it to remove the 

cells then add 15 ml media to inhibit the trypsin.  

7) Add 3-3.5 ml of the cells suspended in trypsin/media to new T150 flasks then add 45 ml 

media to each flask and place in 37 °C incubator. 

8) Two days later change the media so that the cells reach confluency with plenty of nutrients 

present. 

 

Freezing cell stocks 

9) Once the cells are confluent with fresh media from the day before, they are ready to freeze 

down. 

10) For freezing down 4 T150s of cells, prepare 16 1.5 ml freezer tubes labeled with “HEp-2 

(cell type), p367 (pass #), ¼ T150 (cell #), date, and initials,” and 8 ml media to 

resuspend cells and 8 ml media with 10% DMSO to prepare cells for freezing. 

11) Aspirate media from the cell flasks and wash each flask twice with 20 ml PBS without 

Mg2+ or Ca+. 

12) Add 5 ml trypsin to each flask, incubate for 5 min, shake cells off flask, then add 15 ml 

media to each. 

13) Place cells in 50 ml conical tubes, centrifuge at 100 g for 5 min, remove the supernatant, 

then combine in 8 ml media. 

14) Add the media with 10% DMSO dropwise while shaking. The total solution should then 

consist of 1 ml cells suspended in media with 5% DMSO. 

15) Add 1 ml cells to each of the 16 tubes, place in the ethanol insulated deep-freeze box, and 

put in -40 °C for at least 4 h then into the -80 °C freezer for at least 1 h or straight into the 
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-80 °C for at least 4 h. Then place the samples into the liquid nitrogen, filling out their 

correct location on the sheet above. 

16) The next day thaw one of the samples and plate it to check the viability of the frozen 

cells. Repeat if necessary. 

 

Freezing down cell lysates for RNA analysis 

17) Prepare a denaturing solution of 4 M guanidinium thiocyanate, 25 mM sodium citrate 

(pH 7.0) 0.5% N-laurosylsarcosine (Sarkosyl), and 0.1 M 2-mercaptoethanol, according 

to Chomczynski and Sacchi (“The single-step method of RNA isolation by acid 

guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on” 

Nature Protocols 1:2 581-585, 2006) as follows: 

 17a) Dissolve 25.0 g guanidinium thiocyanate in 29.3 ml water at 65 °C.  

 17b) Add 1.76 ml of 0.75 M sodium citrate (pH 7.0) and 2.64 ml of 10% (wt/vol) 

Sarkosyl.  

 *This stock solution can be stored up to 3 months at room temperature.  

 17c) Add 57.6 µl of 98% 2-mercaptoethanol to 8.0 ml of stock solution.  

 *This working solution can be stored up to 1 month at room temperature. 

 CAUTION: Minimize handling of guanidinium thiocyanate (dissolve in the 

manufacturer’s bottle). 

 CAUTION: The 2- mercaptoethanol should be handled under a fume hood. 

18) Prepare about 8 freezer tubes by labeling them “Uninfected HEp-2 cell lysates, 1/8th 

T150, date, initials.” 
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19) Prepare a freeze bath by getting dry ice from the 3rd floor store room outside and placing 

it in a small breaker of ethanol. 

20) Scrape the cells off the flask into the media that they have been growing in. Place it in a 

50 ml conical tube. 

21) Centrifuge at 500 g for 5 min, then aspirate off the supernatant and resuspend in 8 ml 

denaturing solution and place in a 15 ml conical tube. 

22) Place the tube in the freeze bath for ~5 min until frozen solid, then place in the 37 °C 

heat bath for ~5 min until thawed. Repeat this freeze/thaw cycle two more times. 

 22a) Optional: Centrifuge at 100 g for 5 min and place the supernatant in a new 15 ml 

conical tube.  

23) Add 1 ml of the lysate or supernatant to each of the 8 freezer tubes and store at -80 °C. 

Record the location of the cell lysate stocks in the notebook on top of the freezer. 

 ***At 100% confluence, there are ~110,000 HEp-2 cells/cm2, so a T150 will have ~1.65 

× 107 cells. 
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Appendix F. 

 

Respiratory Syncytial Virus Culture Protocol 

 

Preparing the HEp-2 cells 

1) Prepare a solution of 5 ml media containing 250 or 500 µl of 1.7 × 106 pfu/ml RSV A2 

(250 µl to if the infection will last 5 days, 500 µl if the infection will last 3 - 4 days). 

2) Grow HEp-2 cells to 100% confluence in a T150 flask, then aspirate off the media and add 

the 5 ml media/RSV mixture. Incubate 1 h at 37 °C to allow the virus to attach. Then add 

45 ml media and incubate at 37 °C for 3 - 5 days. 

 

Harvesting the virus 

3) To harvest the virus, prepare about 8 freezer tubes by labeling them “RSV A2 infected 

HEp-2s, date, initials.” 

4) Prepare a freeze bath by getting dry ice from the 3rd floor store room outside and placing it 

in a small breaker of ethanol. 

5) Scrape the cells off the flask into the media that it’s been growing in. Place it in a 50 ml 

conical tube. 

6) Centrifuge at 500 g for 5 min, then aspirate off the supernatant and resuspend in 8 ml 

media and place in a 15 ml conical tube. 

7) Place the tube in the freeze bath for ~5 min until frozen solid, then place in the 37 °C heat 

bath for ~5 min until thawed. Repeat this freeze/thaw cycle two more times. 
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8) Centrifuge at 100 g for 5 min and place the supernatant in a new 15 ml conical tube.  

9) Add 1 ml of the supernatant to each of the 8 freezer tubes and store at -80 °C. Record the 

location of the virus stocks in the notebook on top of the freezer. 

 

Quantifying plaque-forming units 

10) Grow HEp-2 cells to 100% confluence in a T150 flask. Aspirate off the media, wash 

twice, trypsinize, and resuspend the cells in a 5 ml trypsin/15 ml media mixture as 

described in steps 5) and 6) of the “HEp-2 cell culture protocol” above. 

11) Remove 2.2 ml of the media and resuspend it in 23 ml media in a new 50 ml conical 

tube. Place 1 ml of the solution into each well of a 24-well plate and incubate for 2-3days 

until 100% confluent.  

 *A 24-well plate has 1/3rd the surface area of a T150, so by taking 2.2 ml, or 1/9th, of the 

20 ml and plating it across the 24-well plate, we are plating the cells at 1/3rd confluence. 

12) To prepare a dilution plate, add 900 µl media to 6 wells of a 24-well plate and place it in 

the 37° incubator. Also pull out 1 ml of the virus stock and place it in the 37 °C water 

bath.  

13) Aspirate the media off the 24-well plate of cultured HEp-2 cells. Add 1 ml PBS without 

Mg2+ and Ca+ to each well and let sit while preparing the dilutions. 

14) Remove the dilution plate from the incubator and the virus stock from the water bath. 

Add 1 ml virus stock to an empty well. Then add 100 µl virus stock to the first 900 µl 

media and mix. Then pull 100 µl of that 1/10th dilution and add it to the next 900 µl 

media and mix. Continue this process until you have five serial dilutions besides the 

stock. You should also still have 900 µl media without virus added. 
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15) Aspirate the PBS off the 24-well plate and add 100 µl plain media, without virus added, 

to the six wells along the first column. Add 100 µl of the stock virus to the three other 

wells in the first row, 100 µl of the 1/10th dilution to the three other wells of the second 

row, and so on until all six rows have serial dilutions of the virus. Label the plate with the 

dilutions used and write “RSV A2 infected, (date),” then place them in the incubator for 1 

h. Place the media containing methyl cellulose in the 37 °C water bath. 

 *Media containing methyl cellulose is prepared in advance by adding 3.75 g methyl 

cellulose and a stir bar to a 500 ml bottle and autoclaving. After autoclaving, add 500 ml 

sterile filtered media, stir overnight, and store at 4 °C. 

16) After 1 h, add 1 ml methyl cellulose to each well and place in the 37 °C incubator for 3-

5days. 

17) Count the plaque-forming units (pfus) by aspirating off the methyl cellulose and washing 

once with PBS without Mg2+ or Ca+. Aspirate off the PBS wash. 

18) Add 1 ml of 80% methanol at -20 °C to each well and place at -20 °C for 1 h. 

19) Make up a solution of 5% powdered milk (w/v) in PBS. Flick off the methanol, wash 

once with PBS, flick off the PBS, and then add 250 µl of the 5% powdered milk solution 

and shake for 1 h at room temperature.  

20) Flick off the 5% powdered milk solution and add 150 µl of 30 µg/ml primary antibody in 

5% powdered milk solution (1:1000) to each well of the plate (for example, add 7.5 µl of 

30 mg/ml “F-mix” to 7.5 ml PBS, then add 150 µl to each well of the plate). Let it shake 

at room temperature for 1 h. 

21) Aspirate off the primary antibody, wash three times in PBS, remove the last wash by 

aspirating, and add 150 µl of 0.5 µg/ml secondary antibody in the 5% powdered milk 
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solution (1:2000) to each well of the plate (for example, add 3.75 µl of 1 mg/ml 

“Antimouse HRP” to 7.5 ml PBS, then add 150 µl to each well of the plate). Let it shake 

at room temperature for 1 h. 

22) Aspirate off the secondary antibody, wash three times in PBS, remove the last wash by 

flicking, and add 150 µl of TrueBlue peroxidase substrate to each well. Let it sit for 15-

30 min at room temp. 

23) Count the plaques in the row of wells that have the best resolution, and then calculate the 

pfus/ml of the stock by multiplying the average number counted in the row with the best 

resolution of plaques by 10(row#). 
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Appendix G. 

 

RNA and DNA Gel Electrophoresis Protocol 

 

DNA gels 

1) For a 1% agarose DNA gel, add 0.65 g agarose into 65 ml 1× TBE buffer. Place in 

microwave for 2 - 3 min, checking it every 10 - 30 sec. Allow it to cool until it is almost 

too hot to handle. If using ethidium bromide to stain the DNA, add 1 µl to warm agarose 

solution. Pour the gel into a gel casting tray, add a gel comb, and let it set up for 20-30 

min. 

2) Prepare the samples on a piece of Parafilm by mixing 50 - 150 ng DNA or 2 µl DNA 

ladder with 2 µl 6× loading buffer, 1.2 µl (10×) SYBR gold, and enough water to make 

12 µl total volume. Load into the wells of the gel. 

3) Run the gel at 120 V for 60 - 90 min. 

4) Image on the Bio Doc-it gel imaging box using 302 nm wavelength UV. 

5) Access the images by using the IP address (ftp://10.8.68.153), insert “biodocit” as the user 

name, leaving the password blank, and open the ftp files. 

 

RNA gels 

1) For a denaturing 2% formaldehyde-1.2% agarose RNA gel, add 0.78 g agarose into 55 ml 

water. Place in microwave for 2 - 3 min, checking it every 10 - 30 sec. Allow it to cool 

until it is almost too hot to handle. Add 3.5 ml 37% formaldehyde and 6.5 ml 10× MOPS 
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to the warm agarose solution. Perform the rest of the procedures in a hood. Pour the gel 

into a gel casting tray, add a gel comb, and let it set up for 20 - 30 min. 

2) Prepare RNA gel loading buffer with 50% deionized formamide (deionize by stirring 100 

ml formamide with 1 g Dowex MR3 for about 1 h in the hood), 7% formaldehyde, 0.5 

mg/ml ethidium bromide, 1 mM EDTA, 20% glycerol, 1× MOPS, and 0.25% 

Bromophenol blue. Store deionized formamide and running buffer aliquots at -20 °C. 

3) Prepare the samples on a piece of Parafilm by mixing 50 - 150 ng RNA or 1 - 2 µl DNA 

ladder with 15 µl loading buffer for 18 µl total volume, heat to 65 °C for 15 min, cool at 

4 °C for 15 min, then load into the wells of the gel. 

4) Run the gel at 60 V for 60 - 90 min. 

5) Image on the Bio Doc-it gel imaging box using 302 nm wavelength UV. 

6) Access the images by using the IP address (ftp://10.8.68.153), insert “biodocit” as the user 

name, leaving the password blank, and open the ftp files. 
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Appendix H. 

 

Circular Dichroism Spectroscopy of Nucleic Acids Protocol 

 

Starting the spectrophotometer 

1) Open the liquid nitrogen valve to the instrument. Check that the flow into the instrument is 

correct using the gauges on the side on the instrument. Let purge for 20 minutes. 

2) Turn on the “lamp power and cooling switch” and wait for the “lamp ready light” to turn 

on.  

3) Press the red “start button” to fire the lamp. Check that the lamp is drawing current using 

the red LED indicator on the side of the instrument. If it is not drawing current, wait for 

the “lamp ready light” to turn on again, and repeat the process until the red LED indicator 

shows that it is drawing current. 

4) Turn on the “CPU and Instrument switch.” no password is required. Start the CD-215 

software by clicking on the icon on the desktop.  

 

Running an experiment 

5) Prepare the oligonucleotide at a concentration that would result in an optical density 

between 0.8 to 1, or at a base concentration of approximately 100 µM. 

6) Insert the sample or blank into a clean 1.0 mm path length quartz cuvette, and place the 

cuvette in the sample holder of the instrument.  
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7) Set experiment parameters by clicking on “Select Experiment Configuration.” Enter the 

information for the experiment. Common experimental parameters for nucleic acids 

include: wavelength set from 320 nm to 200 nm, temperature set at 25.0 °C, wavelength 

step set at 0.5 nm, bandwidth set at 1.0 nm, and averaging time set at 1 second. Three to 

five scans is sufficient. 

8) Select Data Set / Save Options, then click on Exit / Save Configuration. 

9) Click on “Run Experiment” and wait approximately 20 minutes for three scans. 

10) Once the scans are completed, the “Save Experiment Panel” will appear. Save the 

experiment. Saving, exporting, and loading data is done through the Data Browser under 

the Displays Menu.  

 

Working up the data 

11) Make sure the graph is displaying wavelength (Displays > Data Review > Wavelength). 

12) Click File > Load Data Set. Read Data Set from disk. Find the first .DAT file to analyze.  

13) Click Axis Definitions > Clear left Axis Definition. Clear all.  

14) Axis Definitions > Left- Multi-Data Set. Select all three or five scans of the .DAT file.  

15) Axis Definitions > Data Review Average. Select all three and click “average selected.” 

Name the data set “(experiment) average” and click “Save average trace.” 

16) Repeat steps 12) through 15) for the blank measurements and all the samples.  

17) Click Math Operations > Wavelength experiment. Select data set A, find “(experiment) 

average.” Operation > smoothing. Data set name > “(experiment) smooth.” Click 

calculate. 

18) Repeat step 17 for the blank measurements and all the samples. 
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19) Math operations > wavelength experiment. Select data set A, find the sample 

“(experiment) smooth.” Select data set B, find the blank “(experiment) smooth.” 

Operation > subtract data sets. Data set name > “(experiment) subtracted.” Click 

calculate. 

20) File > load data set. Find “(experiment) subtracted” from list. Export data set > export to 

ASCII text.  

21) If needed, the y-axis can be converted into molar ellipticity. Math operations > 

wavelength. Select data set A, find “(experiment) subtracted.” Operation > convet to 

Molar Ellipticity. Dataset name “(ecperiment) molar ellipticity.” Click calculate. 

 

Turning off the spectrophotometer 

22) Close the software and shut down windows. Turn off the “Lamp Power and Cooling 

Switch,” then the “CPU and Instrument Switch.”  

23) Let liquid nitrogen flow through the system for an additional 5 - 10 minutes. 

24) Turn off the liquid nitrogen. 
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Appendix I. 

 

Nanomaterial Functionalization and Evaluation Protocols 

 

Functionalizing 15 nm AuNPs with molecular beacons 

Coupling 

1) Aliquot 16 ml AuNPs into 16 Epp tubes, 1 ml per tube. Spin them down at full speed 

(21,000 g) for 20 min. 

2) Remove as much of the supernatant as possible (save it in a 15 ml conical tube), and 

combine the samples. 

3) Measure the absorbance of the concentrated samples by diluting 1 µl of it into 99 µl of the 

saved supernatant. Using the saved supernatant as a blank, measure the absorbance at 522 

nm (wavelength). According to Beer’s law, the absorbance equals molar absorptivity 

(L/mol cm) multiplied by path length (cm) multiplied by concentration (mol/L): A=ebc 

(e=3.64 × 108 for 15 nm AuNPs, and b=1 for most cuvettes). Calculate the concentration, 

and multiply it by 100 to get the concentration of the concentrated solution of AuNPs: 

c=(A × 100)/3.64 × 108. 

4) Make a solution of 10 nM AuNPs and 2 µM thiolated DNA in 1 ml dH2O, cover it in foil 

(molecular beacons have a fluorophore), and let it rotate at least 2 h (preferably 

overnight).  

 *Mixing in 8 µM thiolated PEG improved the ability for the molecular beacons to open. 

 *Overnight may be detrimental because the DNA might reform disulfide bonds 
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5) Add 110 µl 0.1 M phosphate buffer (pH 7), 1.1 µl Tween 20, then 22.2 µl 5 M NaCl 

dropwise (half at a time, then vortex). Let it rotate for 2 h. 

6) Add 22.4 µl 5 M NaCl dropwise (half at a time, then vortex). Let it rotate for 2 h. 

7) Add 22.6 µl 5 M NaCl dropwise (half at a time, then vortex). Let it rotate for 2 h. The 

sample is now at 0.3 M NaCl. Save the sample at room temp overnight, or at 4 °C over a 

weekend, until cleanup. 

8) Make a solution of 10 mM phosphate buffer pH 7, 0.3 M NaCl, 0.02% Tween 20 (4 ml 0.1 

M phosphate buffer pH 7, 2.4 ml 5 M NaCl, and 0.8 ml Tween 20 into 32.8 ml dH2O). 

9) Centrifuge the fAuNPs at 13,300rpm for 15 min, remove the supernatant, and resuspend in 

the solution described in 8) above. Repeat two more times. Save the cleaned fAuNPs at 4 

°C until further analysis. 

10) Measure the concentration of the fAuNPs as described in 3) above, without diluting the 

sample 1/100, and using 522 nm wavelength. 

 

Quantifying the number of molecules attached 

11) Make reducing buffer as follows: mix monobasic phosphate buffer with dibasic 

phosphate buffer to get a pH of 8.3. Dissolve 0.617 g DTT into 40 ml of the phosphate 

buffer pH 8.3.  

12) Take 150 µl of the fAuNPs and spin them down at 13,300rpm for a few minutes. Remove 

the supernatant and resuspend in 30 µl water. Measure the concentration of the fAuNPs 

as described in 3) above. 

13) Aliquot the 30 µl into three tubes and dilute it 10-fold into reducing buffer. Rock/shake 

the solutions for 1 h. 
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14) Set up a range of standard curve dilutions of known concentrations of the molecule that is 

attached to the AuNPs in 10% water and 90% reducing buffer. The range should contain 

the estimated concentration of the molecules on the AuNPs (For example, if you 

measured a concentration of fAuNPs of 50 nM in step 12) above, then you should have 5 

nM fAuNPs. If you estimated about 100 molecules are attached to each AuNP, then you 

should have 500 nM molecules in solution after 1 h in reducing buffer. The standard 

curve dilutions could then be set up at 1000 nM, 800 nM, 600 nM, 400 nM, 200 nM, 100 

nM, and 10 nM.) 

15) After the 1 h in reducing buffer, spin the three samples at 21,000 g for a few min. Place 

50-150 µl of each sample to a well of a black 96-well plate. Add the same amount of the 

seven dilutions of the standard curve. 

16) Turn on the Bio-TEK plate reader and wait for it to leave the plate reader out. Open the 

KC4 software, click “Wizard,” click “Reading Parameters,” select the correct excitation 

and emission wavelengths and the correct lanes, the click “Okay.” Click “Layout,” select 

the wells to be read, and click “Okay.” Click “Okay,” then click “Read.” Repeat with a 

higher intensity if required. Plot the curve in Excel and do a linear regression, show the 

R2 and the slope equation. Average the three sample values and plot them on the curve to 

determine the concentration of molecules. Divide by the fAuNP concentration to 

determine the number of molecules/AuNP. 

 

Measuring limits of detection 

17) Adjust the concentration of the target/complement strand o f ssDNA to 10×, 1×, and 0.1× 

the known concentration of probe/molecular beacon on the AuNP (= concentration of 
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AuNPs × number of probes/molecular beacons per AuNP) by diluting it into PBS without 

Mg2+ or Ca+. 

18) Add 50 µl of the fAuNPs plus 50 µl target of each dilution (10×, 1×, and 0.1×), 50 µl of 

fAuNPs plus 50 µl PBS, and 100 µl PBS in triplicate into a black 96-well plate. Cover 

the plate in foil and place on a shaker for 1 h. 

19) Measure the fluorescence of the plate using the Bio-TEK plate reader as described in step 

16) above. 

 

Functionalizing magnetic microparticles with antibodies 

Coupling 

1) Wash 200 µl amine derivatized 1 µm magnetic microparticles three times with coupling 

buffer (50 mM phosphate buffer (pH 7.0), 0.15 M NaCl, and 5 mM EDTA) by pulling the 

particles to one side with a magnet, removing the supernatant and resuspending in fresh 

coupling buffer. 

2) Activate the 200 µl MMPs with 20 µl of 1 mM Sulfo-SMCC (2 mg Sulfo-SMCC into 4.58 

ml nuclease-free water). Rotate for 1 h, then wash 3 times with coupling buffer. 

3) During the 1 h Sulfo-SMCC incubation, reduce 15 µl of 30 mg/ml purified antibodies in 

PBS using 15 µl of 1.2 mM DTT (2 mg into 10.8 ml PBS). Rotate for 30 min, then clean 

up using a NAP-5 column according to the manufacturer’s guidelines. Catch the elution 

fractions (drops) in a 96 well plate, measure absorbance at 280 nm on the plate reader, 

and combine the 4 - 5 fractions with the highest absorbance. 

4) Add the combined fractions of purified antibody to 100 µl Sulfo-SMCC-activated MMPs. 

Rotate for 1 h, then wash 3 times with coupling buffer. 
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Validation by sandwich ELISA 

5) Add 100 µl of a 1:5,000 dilution of Synagis antibody to 9 or more wells of a 96 well UV-

transparent plate. Shake for 1 h, then wash the wells 3 times with PBS. 

6) Add 300 µl of 5% BSA to each well to block for 1 h on a shaker. Don’t wash. 

7) Flick the BSA out, then add 100 µl triplicates of either RSV infected HEp-2 cells, 

uninfected HEp-2 cells, media, or any other control. Shake for 1 h, then wash the plates 3 

times with PBS. 

8) Add a solution of 5 µl of F mix conjugated magnetic microparticles plus 95 µl of 5% BSA 

to each well. Shake for 1 h, then wash times with PBS.  

9) Add 100 µl of a 1:1,000 dilution of goat anti-mouse HRP secondary antibody to each well. 

Shake for 1 h, then wash 5 times with PBS.  

10) Add 100 µl of True Blue peroxidase to each well. Shake for 10 min, then quench with 

100 µl of 2 M H2SO4.  

11) Read the absorbance at 450 nm for each well. 

 

Coupling of antibodies and DNA to gold nanoparticles 

Coupling 

1) Reduce the disulfides present in the thiolated DNA solution by adding 100 nM DTT and 

0.1 M phosphate buffer (pH 8.3). Rotate for 30 min. Desalt using Microcon YM-3 

centrifugal filters. Elute in TE buffer and store at -80 °C. 
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2) Add 35 µl of 0.2 mg/ml Synagis antibody to 10 ml of a stock concentration (2.3 nM) of 15 

nm gold nanoparticles at pH 9.3 (Slowly add 10 - 20 µl 1 M NaOH to the nanoparticles 

while monitoring the pH). Rotate for 30 - 45 min. 

3) Add 50.8 µl of 107 µM of activated DNA to the 10 ml antibody/AuNP solution. Rotate for 

45 min. 

4) Slowly add 200 µl of 0.1 M NaCl (200 µl of 5 M NaCl), 10 mM phosphate buffer (63.4 µl 

of 1 M disodium phosphate and 39.6 µl of 1 M monosodium phosphate), and 0.02% 

Tween 20 (1 µl) to the antibody/DNA/AuNP solution. Rotate for 1 h. 

5) Slowly add another 0.1 M NaCl (206 µl of 5 M NaCl) solution to make 0.2 M NaCl. 

Rotate for 1 h. 

6) Slowly add another 0.1 M NaCl (210 µl of 5 M NaCl) solution to make 0.3 M NaCl. 

Rotate for 1 hor overnight. 

7) Wash the antibody/DNA fAuNPs 3 times by spinning down at 21,100 g for 20 min and 

resuspending in 0.3 M NaCl, 10 mM phosphate buffer, and 0.02% Tween. Remove the 

third wash, and leave the fAuNPs at that concentration. Measure the absorbance at 260 

nm of a 1:50 dilution using the nanodrop and calculate the concentration using C=(A × 

50)/(3.64 × 108 × 0.1). 

 

Tagging and tag validation 

8) Heat 500 µl of a 10 nM fAuNP sample at 95 °C for 10 min to remove nonspecific binding, 

then wash and resuspend in new buffer.  



 193 

9) Add 2 µM of tag DNA (10.89 µl of 107 µM RSV_76) to 10 nM AuNPs, or to buffer for a 

control, in 0.3 M NaCl, 10 mM phosphate buffer, and 0.02% Tween at a total volume of 

500 µl. Rotate overnight.  

10) The next day, spin the solutions at 16,100 g for 30 min and measure the concentration of 

DNA present in 90 µl of the supernatant using the Agilent 8453 UV-Vis at 260 nm (The 

difference between the concentration of tag DNA in the solution containing tag and 

buffer and the tag DNA in the solution containing tag, fAuNPs, and buffer is an indicator 

of how much tag DNA bound to the fAuNPs). 

11) Wash the AuNPs 3 times by spinning down at 21,100 g for 20 min and resuspending in 

0.3 M NaCl, 10 mM phosphate buffer, and 0.02% Tween. Calculate the concentration 

and dilute to 10 nM (~500 µl). 

12) Heat 100 µl of 10 nM AuNPs with tag and 100 µl of 10 nM AuNPs without to 95 °C for 

10 min, then spin down at 21,100 g for 15 min.  

13) Remove the supernatant and record the absorbance on the Agilent 8453 UV-Vis at 260 

nm to calculate the concentration of tag that was released by heating. 

 

Quartz crystal validation of antibody-AuNP attachment 

14) Clean a 5 MHz Au/Cr or Au/Ti quartz crystal by washing it 3 times for 5 min in Piranha 

(3 H2SO4:1 H2O2), rinsing it in water and ethanol between washings. Dry the crystal after 

rinsing in ethanol with nitrogen. 

15) Place the crystal with the large-circle-side up, resting the metal surfaces on the electrodes 

of the Maxtek, Inc. Research Quartz Crystal Microbalance. Tighten the lid then place on 
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the ring stand with the inlet on the bottom and the out let on top. Prime the chamber by 

running PBS through it at speed setting 85. Then turn it down to ~50, or ~30 µl/min. 

16) Open the Maxtek RQCM software and use the “View Status” and “Run Experiment” 

(using RRs perameters) to monitor the frequency and resistance during calibration. 

17) Tune the capacitance by adjusting the course knob to the lowest setting where it will lock 

and allow tuning with the fine knob. Turn the fine knob up until the yellow flashing light 

flashes very slowly (~once per 5 sec).  

18) Once it is locked and tuned at 5(+/-0.02) MHz and a resistance of 350(+/-15) ohms, make 

sure the delta frequency stays +/-0.5 during a 5 min time period in the “Run Experiment” 

mode. 

*If it doesn’t equilibrate, check that there are no bubbles in the chamber and that the crystal 

is good. *Take note of the Run # at the top of the screen 

19) After recording a equilibrated base line with PBS for 5 min, add RSV infected HEp-2s at 

2.0 × 105 pfu/ml until it stabilizes (~10 min), then add PBS until it stabilizes (~10 min), 

then add 1%BSA until it stabilizes (~5 min), then add PBS until it stabilizes (~5 min), 

then add 2-4 nM fAuNPs until it stabilizes (~5 min), then add PBS until it stabilizes (~10 

min). 

 *To ensure no bubbles are introduced into the balance, turn the pump off before 

switching reagents. 

 *Take note of each time point that each reagent was added. 

20) Collect the data by opening the Maxtek RQCM software, open “View Results”, find run 

number, click “Convert Binary to ASCII”, click “yes”, and click “okay”. Lookup the 
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location on the hard drive, paste into flash drive, and change extension from “.dat” to 

“.txt”. 

21) Graph the data by opening Excel, click “data”, click “from text”, then open the file. Insert 

two new columns between “delta frequency” and “Mass #1”. Call the D column “delta 

resistance”, add the formula =$I$2-I2, then drag it down all the rows of that column. Call 

the E column “Mass (µg)”, add the formula =(-C2+(D2*2.095))/165, then drag it down 

all the rows of that column. Highlight column A and column E and create a scatter plot 

graph. 

 

Nanoparticle amplified Immuno-PCR 

Pulldown and tag release 

1) Add 5 µl fMMPs to 100 µl RSV infected lysates and 200 µl of 5% BSA. Rotate for 1 h, 

then wash 3 times with coupling buffer. 

*Use serial dilutions of the lysates to find limit of detection 

*Make an experimental control by using uninfected cell lysates in a separate tube 

2) Mix the fMMPs with 5 µl of 5 nM fAuNPs and 300 µl of 5% BSA. Rotate for 1 h, then 

wash 2 times with 5% BSA plus 3 times with PBS. Resuspend in 300 µl nuclease-free 

water. 

3) Heat to 95 °C for 10 min, pull the fMMPs to one side, then remove the supernatant and 

analyze using PCR. 

 



 196 

PCR amplification of released tags 

4) Add 5 µl of the supernatant from step 3 to 12.5 µl 2× Rotor-Gene SYBR Green PCR 

Master Mix, with 0.2 µM forward and reverse primers, and nuclease-free water to 25 µl 

total volume. Do this in triplicate. 

 *Make a PCR negative control by adding no template/sample in triplicate 

5) Using a Rotor-Gene Q 5-Plex qPCR machine, create the following protocol: 

 DNA polymerase activation:  95 °C for 3 min 

 PCR (40 cylces):  95 °C for 15 sec (melt) 

  60 °C for 1 min (anneal/extension) 

  72 °C for 15 sec (read fluorescence) 

 Melt curve: 50 °C to 99 °C 

6) Calculate the limit of detection using the linear range to calculate 3 standard deviations 

above the background. 
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