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Chapter I. Introduction 

1. Overview 

Medical imaging refers to the technologies of creating visual representation of the interior of human 

body for scientific research and clinical analysis. Different imaging technologies (modalities) provide 

different properties, which enables us to investigate human body using particular field of view (FOV) and  

image contrast [2]. The history of medical imaging can be traced back to the discovery of X-ray in 1895 by 

Wilhelm Conrad Roentgen, who took the first X-ray on his wife’s hand [3]. Since then, many milestones 

have been made to enable new modalities and devices that we are performing currently (e.g., Ultrasound, 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), etc.) [2].  

Two-dimensional (2D) or three-dimensional (3D) medical images are the major outcomes from 

medical imaging techniques. Based on such images, clinical practitioners can make diagnoses by visually 

investigating the medical images, which relies heavily on the experts’ experiences. To provide more 

information for clinical diagnoses and enable the scientific research, quantitative metrics are extracted from 

the qualitative images, which results in the research field called medical image analysis (MIA) [4]. To 

derive quantitative information from medical images, the expert manual delineation has been regarded as 

the “gold standard” due to the high reliability [5]. However, the manual delineation is resource and time 

consuming even with the advanced image-guided interactive tools [6]. Therefore, the fully-automated 

medical image processing is appealing for extracting quantitative metrics from qualitative medical images. 

 Medical image analysis is an interdisciplinary field of engineering, computer vision, mathematics, 

data science and medicine, which focuses on the computational analysis of the acquired medical image 

rather than image acquisition (medical imaging) [4]. The computational methods in MIA can be categorized 

to two parts (Figure I.1). The first part is the image processing (Figure I.1a), which uses mathematical and 

computational models to extract quantitative information or metrics from medical images. Representative 

image processing approaches are preprocessing [7], registration [8], segmentation [5], surface 

reconstruction [9], etc. The second part is called data analyses (Figure I.1b), which investigates and 
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understands the hidden regularities behind the metrics extracted by image processing. The common data 

analyses approaches include statistical analysis [10], visualization [11], modality specific computing [7], 

etc. 

 

Historically, the medical image analysis on structural images was limited to a small-scale cohort 

(e.g., <500 images), whose images were collected from a single scanner (site) (e.g., [12-23]).  The rationales 

of using a small cohort are that (1) it is difficult for a single lab to collect a large-scale cohort (e.g., >5000 

images) considering the time and resource consumption. (2) There are the difficulties in data sharing and 

collaborations between different institutes (e.g., need for approval from institutional review board (IRB)). 

(3) The image quality and homogeneity are easier to control by using small-scale image cohort collected 

from a single scanner.  

In the past decade, advancements in data sharing and robust processing have made available 

considerable quantities of brain images all over the world, which has been changing the way of performing 

medical image analysis to the Big Data (large-scale) fashion [23, 24]. The recent special issue of 20th 

 

Figure I.1. The principle of Big Data Medical Image Analysis, which contains (1) large-scale 
image processing, and (2) large-scale data analysis. The focus of the dissertation is to provide a 
Big Data medical image analysis solution, which including large-scale image processing methods, 
consistent segmentation and surface reconstruction, inter-subject variation control, and large-
scale data analysis. Then, we deploy the entire pipeline to understand the lifespan brain aging  as 
an example. 
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anniversary of the Medical Image Analysis journal (MedIA) demonstrates this challenge and opportunity 

in the first paragraph of “Future Directions” chapter “Big data is becoming a reality with very large scale 

imaging projects underway or planned. This new scale of data is enabling the solution of challenging 

problems where the simplicity of methods can offset by the quantity of data available. There are very 

exciting opportunities at the interface of MIA and the field of Medical Informatics; however there a very 

few people currently working in both areas.”[25]. 

The large-scale medical images are typically collected from multiple sites, which leads to the 

greater inter-subject variations than traditional small-scale cohorts. For instance, it is important to rectify 

the inter-subject variations in acquisitions, scanning protocols, scanner differences, population variations 

etc. in Big Data image analysis. Existing efforts on reconciling such variations are to (1) standardize the 

format and of data sharing[26], (2) perform meta-analysis using more data [27-29], (3) propose advances 

in image processing algorithms [30, 31]. However, given the fact that “The development of large-scale 

medical image analysis algorithms has lagged greatly behind the increasing quality (and complexity) of 

medical images and the imaging modalities themselves” [23], there is an urgent demand to develop large-

scale image processing frameworks for the robust and timely medical image analysis [23]. 

Herein, new image processing methods and data mining approaches, compatible for the large-scale 

scenario, are required to (1) reduce the computational time for large-scale image processing, (2) achieve 

robust and consistent volume and surface metrics, (3) reconcile inter-subject variations for large cohorts, 

(4) perform large-scale data analysis using the metrics derived from image processing, and (5) to be robust 

for variations on intensities and contrasts for multi-site scans.  

Beside the methodological challenges, applying large-scale medical image analysis techniques on 

investigating clinical and research problems leaves many rooms for researchers to fill in. Recent works 

have demonstrated the advantage of conducting large-scale medical image analysis in understanding 

prevalent human disorders [32],  brain connectivity [33], psychiatric disorder [34] etc. Yet, only limited 

works have been conducted on investigating lifespan human brain aging, an essential topic in neurological 

research and clinical investigation, using Big Data medical images. Historically, age-related changes have 
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been studied in detail for specific age ranges (e.g., early childhood, teen, young adults, elderly, etc.) or more 

sparsely sampled for wider considerations of lifetime. Contemporaneous advancements [23, 24] in data 

sharing have made considerable quantities of brain images available from normal, healthy populations, 

which enable availability of the Big Data for investigating lifespan human aging.  

Another interesting application of performing large-scale image processing methods is to explore 

the anatomies of abdomen organs. For instance, accurate non-invasive spleen volumetric size estimation 

plays an essential role in splenomegaly diagnosis and scientific studies [35]. Ultrasound [36-38] and 

computerized tomography (CT) [39-41] have been widely used in the spleen segmentation, yet, limited 

studies have been applied to magnetic resonance imaging (MRI) [42-44]. A major challenge of automated 

MRI spleen segmentation is that the absolute intensity of MRI is not in a quantitative scale like the 

Hounsfield Units (HU) in CT. Another challenge is that the relative intensity contrasts of abdominal tissues 

are in large variation using the different contrast mechanisms (e.g., T1-weighted (T1w), T2-weighted 

(T2w), proton density (PD), etc.). Such challenges hinder frequently used CT segmentation methods, which 

depend on absolute intensity scales, to be applied on the large-scale MR cohorts directly. Another direction 

is to model pyelocalyceal anatomy for the kidney, which can also influence the success rate of various 

treatment modalities of kidney stone. The traditional methods of deriving such quantitative measurements 

have relied on 2-dimensional images of a 3-dimensional system as well as manual delineations, which are 

both cumbersome and potentially inaccurate during treatment planning. 

Herein, we present several new methods to address key technical challenges in large-scale medical 

image analyses and integrated such methods to investigate lifespan brain aging and abdominal image 

evaluation. 

2. Challenges in Large-scale Image Analysis 

The increasing demands of imaging-based diagnosis and rapid developments of the advanced 

medical imaging techniques lead to the rapid growth of imaging data produced by hospitals and institutes 

[23]. Only in the past decade, the worldwide clinical and scientific collaboration has provided hundreds of 
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terabytes of data, which has been made publicly available [24]. The dramatic increasing in the volume and 

dimension of the medical images results in the challenges of image storage, processing and analysis [23, 

24]. However, new clinical and scientific opportunities are arising to explore the valuable information from 

the large-scale data [23, 24]. Ideally, the automated medical image analysis algorithms are the key to extract 

biomarkers (biometrics) efficiently and robustly [23, 24]. However, since traditional medical image analysis 

techniques historically designed for smaller cohorts, new challenges emerge when deploying the existing 

methods under large-scale scenarios [23-25]. This situation leads to the high demands of novel medical 

imaging processing and data analyses algorithms, which are able to deal with the unprecedented large-scale 

datasets [23-25]. 

2.1. Large-scale Brain Image Processing 

Image segmentation and surface reconstruction are two essential methods in large-scale brain 

image processing. Image segmentation is a computational procedure that assign a distinct label for every 

voxel in the digital medical images [5]. The representative image segmentation approaches include, but not 

limit to, threshold based segmentation [45], C-means clustering [46], deformable models [47], graph cuts 

[48], shape model [49], appearance model [50], learning based model [51], atlas-based segmentation [52-

54] etc. Using image segmentation, we are able to derive volume based metrics (e.g., volume size, shape, 

momentum etc.) of each ROI. Surface reconstruction is another fundamental image processing approach, 

whose aim is to reconstruct the surfaces of different ROIs based on segmentation and deformable model. 

The typical surface reconstruction tools include, FreeSurfer [55], CRUISE [56], BrainVISA [57] etc. From 

the surface reconstruction, the surface based metrics (e.g., surface area, thickness, curvature etc.) are 

derived.  

In large-scale image processing, we not only want to achieve the higher sensitivity from each 

individual subject compared with traditional image processing, but also want to achieve higher robustness 

of segmentation and surface reconstruction across the large-cohort. Historically, the image segmentation 

and cortical reconstruction are typically conducted independently, which may lead to inconsistent metrics 
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from two procedures. Such spatial inconsistences can hinder the simultaneous usages of volume and surface 

features in large-scale data analyses. There are limited reports of methods [58-60] for consistent whole 

brain volumetric segmentation and cortical surface reconstruction.  

Another challenge in large-scale medical image analysis is the large inter-subject variations. Unlike 

the traditional small-scale image analysis, whose variations are typically well controlled by an individual 

institute. Larger inter-subject variations need to be controlled, at least alleviated, in the large-scale 

scenarios. To control the inter-subject variations, the total intracranial volume (TICV) has been widely used 

as a covariate in brain volumetric analyses [61-67]. Compared with whole brain volume (WBV) [68], TICV 

is often preferred since it provides an estimation of premorbid brain size [69, 70]. Historically, the existing 

methods performed TICV estimation only used a single affine registration. To reconcile the large inter-

subject variability, Commowick et al. proposed to build a personal specific anatomical atlas for head and 

neck [71]. However, this framework cannot be directly applied to establish probabilistic atlases since each 

probabilistic atlas is averaged from a group of segmentations. 

2.2. Large-scale Image Analysis 

Image processing provides large-scale measurements/features (e.g., volume, surface, TICV) from 

big medical image cohorts [72]. Then data analysis used such measurements to explore the hidden 

regularities behind the images, which is related to data mining [23-25, 73]. The next challenge is to explore 

the large-scale metrics by either developing new or adapting existing computational and statistical models.  

However, traditional image analysis methods can yield less optimal performance for the large-scale 

challenge. Taking the lifespan brain volume trajectory as an example, prevalent analysis approaches have 

had difficulties addressing (1) complex volumetric developments on the large cohort across the life time 

(e.g., beyond cubic age trends), (2) accounting for confound effects, and (3) maintaining an analysis 

framework consistent with the general linear model (GLM) approach pervasive in neuroscience.  

2.3. Computational Efficiency 

For the traditional atlas-based segmentation methods, the Big Data also bring the considerable 
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issues such as higher demands on computational resources and time. To alleviate the computational 

complexities, learning based algorithms have been successfully employed  to speed up the labeling process 

including, but not limited to, SVMs [74-76], random forest[77, 78], artificial neural networks [74, 79], 

logistic LASSO [80] and boosting [75]. Unfortunately, the previous learning-based schemes are mostly 

limited to single anatomical region segmentation rather than whole brain. When applied on whole brain, 

the computational expensive non-rigid registration is typically required to alleviate large inter-subject 

variation.  

2.4. Large-variations for the Abdomen 

The last challenge is that most of the prevalent medical image analysis approaches are historically 

designed for neuro images, which hinders us to apply such methods (e.g., preprocessing, registration, multi-

atlas label fusion) to abdomen directly [81]. A major reason is that the abdomen has greater heterogeneity 

than the brain. Moreover, the locations of abdominal viscera for same subject can change obviously between 

two scans. For inter-subject variations, the heterogeneity is even greater. For instance, the spleen size of 

splenomegaly cohort varies from 368 cubic centimeter (cc) to 5670 cc reported by [82].  

3. Context for Advancing Large-scale Image Processing 

Hundreds of secondarily derived biomarkers and biometrics can be extracted from a single medical 

image using advanced medical image processing methods, which allows the researchers to explore the 

hidden spatial and temporal relationships from large-scale dataset.  We first introduce the multi-atlas 

segmentation (MAS) theory, then present two new techniques based on multi-atlas principle: (1) large-scale 

multi-atlas learner fusion (reduces the computational time), and (2) consistent multi-atlas segmentation and 

surface reconstruction (provides consistent volume and surface). Then, to reconcile the inter-subject 

variations, the data-driven probabilistic atlas and total intracranial volume estimation methods are 

introduced.  
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3.1. Multi-atlas Segmentation 

Among segmentation methods, atlas-based segmentation is one of the most prominent families, 

which uses a pairing of structural MR scans and corresponding manual segmentation. In atlas-based 

segmentation models, an existing dataset (atlas) is spatially transferred to a previously unseen target image 

through deformable registration. Single-atlas segmentation has been successfully applied to some 

applications [83-85]. Yet, more recent approaches employ a multi-atlas paradigm as the de facto standard 

atlas-based segmentation framework [86, 87]. In multi-atlas segmentation, the typical framework is: (1) a 

set of labeled atlases are non-rigidly registered to a target image [8, 88-90], and (2) the resulting label 

conflicts are resolved using label fusion [87, 91-99]. 

The most prevalent multi-atlas label fusing theory has been developed to model the spatial 

relationships between atlases and targets in 3D scenarios. To improve the performance of 4D MAS for 

longitudinal data, we propose a novel longitudinal label fusion theory, called 4D joint label fusion (4DJLF) to 

incorporate the probabilistic model of temporal performance of atlases to the voting-based fusion. 

3.2. Multi-atlas Learner Fusion 

One major concern of applying multi-atlas segmentation framework on Big Data is the 

computational complexity as it typically takes over 24 hours for more than ten non-rigid registrations and 

the following multi-atlas label fusion.  To decrease overall computational complexity, new approaches have 

emerged to minimize registration time. One of the most common methods is the atlas selection [97, 100-

102], which reduces the times of registration by keeping the most representative atlases. Another direction 

is to use the learning based scheme, which grasps the non-local correspondences offline [91-93, 103, 104].  

Advanced by the large-scale images, we present multi-atlas learner fusion (MLF), a framework for 

replicating the robust and accurate multi-atlas segmentation model, while dramatically lessening the 

computational burden.  

3.3. Consistent Multi-atlas Volume and Surface Computing  

Whole brain volume segmentation and cortical reconstruction has been typically considered as 



9 
 

independent processing in neuroimaging [105-110]. As a result, such spatial inconsistences can further 

hinder the consistent brain morphometry analyses. There are limited reports of methods for consistent whole 

brain volumetric segmentation and cortical surface reconstruction [58-60, 106, 111]. In this dissertation, 

we presented the multi-atlas CRUISE (MaCRUISE) method to achieve consistent whole brain segmentation 

and cortical surface reconstruction.  

3.4. Big Data Driven Probabilistic Atlas 

Probabilistic atlases are essential in understanding the spatial variation of brain anatomy, in 

visualization, and data processing. However, inter-subject variability is normally greater than inter-group 

variability, which hinders group-based atlases to capture individual variation. Advanced by large-scale 

training images, we presented a large-scale data-driven framework to learn a dictionary of the whole brain 

probabilistic atlases (132 regions) from 1888 heterogeneous 3D MRI training images.  

3.5. Total Intracranial Volume Estimation 

TICV is a widely used metric to reconcile inter-subject variations in neuro imaging, which is 

estimated by the volume inside the brain cranium including gray matter (GM), white matter (WM), 

cerebrospinal fluid (CSF) and meninges [112]. To derive accurate TICV estimation from brain MRI scan, 

a number of approaches have been developed and evaluated [113-122] [106] [117]. However, none of them 

estimate TICV by counting the voxels inside skull, which is a natural way of calculating TICV. In this 

dissertation, we present a multi-atlas based TICV estimation method using Non-Local Spatial STAPLE 

(NLSS) which is more accurate than previous methods and consistent with whole brain multi-atlas 

segmentation. 

4. Large-scale Data Analysis 

The large-scale data analysis has been broadly applied to medical research and healthcare in past 

decades, which enables us to establish the correlations between qualitative data (e.g., demographic data), 

quantitative medical records (e.g., laboratory values) [123], and diseases [124]. Different from the medical 
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records, the large-scale image data analysis has not been widely investigated due the high degree of freedom 

in big image cohorts.   

4.1. Large-scale Multi-site Cohorts  

The maturation of medical imaging technologies as well as the image sharing and storage 

approaches provide the opportunity to deploy large-scale analysis on medical images. Investigating 

fundamental diseases using multi-scale images [125], as well as multi-site images [126] have been 

recognized during the past decade. The National Institutes of Health (NIH)  National Database of Autism 

Research (NDAR) ([127], https://ndar.nih.gov/) is a database of understanding the autism disease. The 

National Institute on Aging's (NIA) Baltimore Longitudinal Study of Aging (BLSA) ([128, 129], 

https://www.blsa.nih.gov/) is a clinical research programs of understanding aging and aging-related 

diseases. The collections of functional MRI (fMRI) have been publicly available on both task-based fMRI 

from OpenfMRI project ([130], https://openfmri.org/) and resting-state fMRI from “1000 Functional 

Connectomes” project (fcon_1000) ([131], http://fcon_1000.projects.nitrc.org/). Other publicly available 

cohorts include Information eXtraction from Images (IXI), Open Access Series on Imaging Studies 

(OASIS) [132] and Multi-Modal MRI Reproducibility Resource (MMMRR)[133]. 

4.2. Large Inter-subject Variation 

For a single study, the medical imaging data may not face the difficulties using existing processing 

algorithms and statistical method. However, as data sets from different studies, populations and sites are 

amassed into a large-scale cohort, considerable challenges emerge. For instance, it is challenging of 

rectifying the inter-subject variations in acquisitions, scanning protocols, scanner differences, population 

variations etc. Recent efforts on reconciling such variations are to (1) standardize the format and of data 

sharing[26], (2) perform meta-analysis using more data [27-29], (3) propose advances processing 

algorithms [30, 31]. However, if any, common solutions are well accepted to perform image analysis by 

rectifying such variations on large-scale image cohorts [24].   
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4.3. Lifespan Brain Aging 

In the past decade, many efforts have been made of performing Big Data medical image analysis 

in understanding, but not limited to, Parkinson’s disease [32],  brain connectivity [33], psychiatric disorder 

[34]. However, few, if any, works have been done on investigating the lifespan aging, the development of 

brain structures across lifespan, which is a key topic in understanding neuro-development. Herein, 

investigating lifespan aging on human brain is an appealing application of integrating the new Big Data 

medical image processing and analysis approaches. In this dissertation, we propose to investigate the 

lifespan human brain aging on more than 5,000 MR structural images. 

5. Robust Multi-model Abdomen Image Processing 

5.1. Atlas-based Splenomegaly Segmentation 

Splenomegaly is an abnormal enlargement of the spleen, which is associated with liver disease, 

infection and cancer [134]. Accurate non-invasive spleen volumetric size estimation plays an essential role 

in splenomegaly diagnosis and scientific studies [35]. Spleen segmentation using Ultrasound [36-38] and 

computerized tomography (CT) [39-41] have been used as the major imaging techniques in quantifying 

spleen size [135, 136]. However, the MRI has not been widely used as the absolute intensity of MRI is not 

in a quantitative scale like the Hounsfield Units (HU) in CT. Another challenge is that the relative intensity 

contrasts of abdominal tissues are in large variation using the different contrast mechanisms (e.g., T1-

weighted (T1w), T2-weighted (T2w), proton density (PD), etc.). In this dissertation, we propose to use 

multi-atlas segmentation framework with Bayesian atlas selection and surface constraint on robust multi-

contrast MRI spleen segmentation for splenomegaly. 

5.2. Deep Learning Based Splenomegaly Segmentation 

In recent years, deep learning methods have shown their superior performance on automatic spleen 

segmentation compared with traditional methods [137]. However, the existing deep learning methods are 

typically deployed on CT images with normal size spleen (e.g., spleen size < 500 cubic centimeter (cc)). 
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When dealing with splenomegaly MRI segmentation (e.g., spleen size > 500 cc), we need to deal with large 

inhomogeneity on intensities of clinical acquired MR and large variations on shape and size of spleen for 

splenomegaly patients [138]. Recently, global convolutional network (GCN) have shown advantages in 

sematic segmentation on natural images with large variations by using larger convolutional kernels [139]. 

Meanwhile, adversarial networks have been proven able to refine the semantic segmentation results [140]. 

In this dissertation, we propose a new Splenomegaly Segmentation Network (SSNet) to perform the 

splenomegaly MRI segmentation under the image-to-image framework with the end-to-end training. In 

SSNet, the GCN is used as the generator while the conditional adversarial network (cGAN) is employed as 

the discriminator [18].  

One major limitation of DCNN methods is that we typically have to manually trace a new set of 

training data when segmenting new organs or new imaging modalities. For instance, a DCNN trained with 

normal spleens was not able to capture spatial variations of splenomegaly. Image synthesis has been used 

to segment images for one modality from another [141-144], yet, paired images were typically required for 

traditional methods. Recently, two stage methods have been proposed to use cycle generative adversarial 

networks (CycleGAN) [145] to synthesize training images for a target modality[146, 147]. Then, these 

efforts trained a segmentation network independently using synthetic images  [148]. However, these two 

independent stages did not use the complementary information between synthesis and segmentation. 

Herein, we proposed a novel end-to-end synthesis and segmentation network (EssNet) to achieve the 

unpaired MRI to CT image synthesis and CT splenomegaly segmentation simultaneously without using 

manual labels on CT. 

5.3. Characterization of Pyelocalyceal Anatomy for Kidney 

 Nephrolithiasis is a costly and prevalent disease that is associated with significant morbidity 

including pain, infection, and kidney injury.  While surgical treatment of kidney stones is generally based 

on size and quality of the stones, studies have suggested that specific characteristics of pyelocaliceal 

anatomy, such as the lower pole infundibulopelvic angle, can also influence the success rate of various 
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treatment modalities [3, 4].  However, the traditional methods of deriving such quantitative measurements 

have relied on 2-dimensional images of a 3-dimensional system as well as manual delineations, which are 

both cumbersome and potentially inaccurate during treatment planning [3, 5, 6]. In this dissertation, we 

propose a novel non-invasive framework that automatically achieves a tree structure of the renal collecting 

system using CT urograms, allowing for 3-dimensional characterization of the pyelocaliceal anatomy.   

6. Contributions 

The primary contributions are as follows. In Chapter II we present an efficient whole brain 

segmentation approach by learning features from large-scale MRI data. In Chapter III we present a novel 

multi-atlas CRUISE (MaCRUISE) method to combine the multi-atlas whole brain segmentation with brain 

cortical surface reconstruction. In Chapter IV we present a surface parcellation method to parcellate 

reconstructed whole brain surfaces to detailed cortical labels. Chapter V presents a novel data-driven 

method to establish a target image specified probabilistic atlas from large-scale cohorts. Chapter VI presents 

a novel simultaneous total intracranial volume (TICV) and posterior fossa volume (PFV) segmentation 

algorithm to achieve better performance than baseline methods. Chapter VII explore the life-span brain 

volume trajectories on whole brain, network, and region levels on more than 5,000 multi-site MRI brain 

volumes. The volumetric features were obtained using multi-atlas segmentation and a novel covariate-

adjusted restricted cubic spline regression method was proposed to model the non-linear trajectory curves. 

In Chapter VIII we extend the multi-atlas label theory from 3D to 4D by considering the spatial temporal 

performance of registered atlases for longitudinal scenario. In Chapter IX we present a novel atlas-selection 

based segmentation method to perform MRI splenomegaly segmentation. We further leverage the 

splenomegaly segmentation accuracy by combing deep convolutional neural network and adversarial 

network in Chapter X. Chapter XI present a synthesis learning based segmentation method to perform 

splenomegaly segmentation on CT without having CT ground truth. In Chapter XII, we revisit the 

pyelocalyceal anatomy in management of kidney stone using 3D segmentation methods. Finally, we 

conclude in Chapter XIII by summarizing contributions and possible future directions.  
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6.1.  Contributions on Brain 

• We proposed the MLF framework cuts the runtime on a modern computer from 36 hours 

down to 3-8 minutes, which accelerate the multi-atlas segmentation on large-scale image. 

It explores the possibilities and limitations of designing fast whole brain segmentation 

methods on large-scale training images. 

• We designed and implemented MaCRUISE to achieve consistent whole brain 

segmentation and cortical surfaces. Using MaCRUISE, we achieve 132 volume labels and 

98 surface labels from a single T1-weighted (T1w) MRI scan by integrating previous 

separated multi-atlas segmentation theory and surface reconstruction theory. 

• We present a data-driven framework to build a personal specific probabilistic atlas under 

the large-scale data scheme. 

• We proposed a robust TICV estimation method using multi-atlas label fusion, which has 

been shown to be more accurate than previous methods. We created a set of TICV brain 

atlases to be publicly available for our community. 

• We proposed to use C-RCS regression method within a multi-site cross-sectional 

framework and revisit the brain volumetry problem using more than 5,000 MR images. 

• We proposed 4DJLF under the general label fusion framework by simultaneously 

incorporating the spatial and temporal covariance on all longitudinal time points, which is 

a longitudinal generalization of a leading joint label fusion method (JLF) that has proven 

adaptable to a wide variety of applications. 

6.2.  Contributions on Abdomen 

• We performed the first study on multi-model MRI splenomegaly segmentation with multi-

atlas segmentation as well as deep convolutional neural network. 

• We compared different strategies for multi-atlas splenomegaly segmentation and proposed 

the novel L-SIMPLE multi-atlas framework.  
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• We proposed the SSNet to address spatial variations when segmenting extraordinarily large 

spleens. SSNet was designed based on the framework of image-to-image conditional 

generative adversarial networks. 

• We introduced a novel end-to-end (EssNet) to achieve the unpaired MRI to CT image 

synthesis and CT splenomegaly segmentation simultaneously without using manual labels 

on CT. 

• We proposed a novel non-invasive framework that automatically achieves a tree structure 

of the renal collecting system using computerized tomography (CT) urograms, allowing 

for 3-dimensional characterization of the pyelocaliceal anatomy.   

6.3. Previous Publications 

Many contributions of this dissertation have been previously published. A learning based fast multi-

atlas segmentation method was introduced [149]. A consistent multi-atlas whole brain segmentation and 

surface reconstruction pipeline was proposed [150, 151]. A data-driven framework to build a personal 

specific probabilistic atlas was presented under the large-scale data scheme [152].  A robust method for 

automatic measurement of the TICV was introduced [153]. A new regression method was proposed to apply 

on large-scale neuroimages for understanding lifespan brain volumetry [150].  A longitudinal multi-atlas 

label fusion theory was presented [154]. Splenomegaly segmentation pipelines were proposed using multi-

atlas segmentation [82], fully convolutional neural network [155], and synthesis learning [156]. A non-

invasive framework was proposed to achieve a tree structure of the renal collecting system using CT [157]. 
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Chapter II. Multi-atlas Learner Fusion: An efficient segmentation 

approach for large-scale data 

1. Introduction 

Magnetic resonance (MR) imaging of the brain is an essential diagnostic method in clinical 

investigation and an effective quantitate method in neurology and neurological research. To explore the 

complicated relationships between biological structure and clinical diagnosis as well as brain function, 

segmentation of anatomical structure on MR images has been widely used. Expert manual delineation [158, 

159] has been regarded as “gold standard”. However, since manual segmentation is extremely resource 

consuming, automatic methods have been proposed to get robust and accurate segmentation [52-54].  Atlas-

based segmentation, which uses a pairing of structural MR scans and corresponding manual segmentation, 

is one of the most prominent approaches. 

In atlas-based segmentation models, an existing dataset (atlas) is spatially transferred to a 

previously unseen target image through deformable registration. Single-atlas segmentation has been 

successfully applied on some applications [83-85]. Yet, more recent approaches employ a multi-atlas 

paradigm as the de facto standard atlas-based segmentation framework [86, 87]. In multi-atlas 

segmentation, the typical framework is: (1) a set of labeled atlases are non-rigidly registered to a target 

image [8, 88-90], and (2) the resulting label conflicts are resolved using label fusion [87, 91-99]. 

Recently, learning based multi-atlas segmentation has emerged from the multi-atlas segmentation 

as a new family of methods. One field of study deals with the generation of a template library based on the 

limit set of manual segmentation such as the LEAP algorithm [160] and the MAGeT Brain [161]. Other 

approaches used group-wise registration and iterative group-wise segmentation such as the MABMIS 

algorithm [162]. A new algorithm exploited the strengths of both label fusion and statistical classification 

to get more robust segmentations [163]. Meanwhile, the widely used supervised machine learning 

algorithms have also been successfully employed  including, but not limited to, SVMs [74-76], random 
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forest[77, 78], artificial neural networks [74, 79], logistic LASSO [80] and boosting [75]. 

Unfortunately, this robustness of multi-atlas segmentation comes at the cost of computational 

complexity (CC) because both typical multi-atlas approaches and the learning based methods rely on 

expensive non-rigid registrations or non-local correspondences calculation. Concisely, we define these two 

types of computational complexity as (1) the computational complexity of conducting non-rigid 

registrations (CCNR), and (2) the computational complexity of capturing non-local correspondences 

(CCNC). 

To decrease overall computational complexity without compromising segmentation quality, new 

approaches have emerged to minimize CCNR. One of the most common methods is the atlas selection [97, 

100-102], which reduces the CCNR by keeping the most representative atlases. In recent years, researchers 

have even tried to eliminate the CCNR by employing non-local label fusion methods [91-93, 103, 104]. 

However, the reduction of CCNR is typically accompanied with the large increase of CCNC. To minimize 

the CCNC further, other researchers have attempted to use the learning based scheme, which grasps the 

non-local correspondences offline [74-79]. Once the model is well trained, it is able to be applied on the 

target image efficiently. However, these learning-based algorithms are still limited since the learning based 

models are applied and tested on homogenous small-scale dataset (typically less than 200 subjects from the 

same resource) without using a great deal of available heterogeneous data (from different resources e.g. 

different studies and scanners).  As a result, the previous learning based schemes are mostly applied on 

segmenting single anatomical region or subcortical regions rather than whole brain. When applied on whole 

brain, non-rigid registration (high CCNR) is still essential to compensate the large inter-subject variation 

for the small size of the dataset.  

In this chapter, to eliminate both CCNR and CCNC, we propose the multi-atlas learner fusion 

(MLF) framework. Due to the large amount of training atlases used in our framework, we are able to provide 

more candidates for atlas selection and a larger training pool during the learning step, which dramatically 

leads to reduction of the total computational complexity when segmenting a target image. Particularly, the 

MLF framework has the following important characteristics. 
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1. Efficient framework by using large-scale dataset. When the training dataset is large and 

representative enough (3464 images from 6 projects), the MLF framework is able to find 

the close trained AdaBoost learners (“close” means with the similar anatomy) for the target 

image. As a result, the MLF provides a high-speed learning based segmentation framework 

that only requires 3-8 min to segment a target image by totally eliminating the CCNR and 

CCNC. 

2. The elements of the framework are designed for the large-scale scenario. The PCA is used 

for low-dimensional projection, which eliminates the computational expensive pairwise 

similarity measurements (typically required by manifold learning approaches) for 

thousands of training data (even on larger data sets).  The AdaBoost, combined with 

decision tree, has proved to be an extremely successful in two-class classification (the case 

this chapter is investigating) and even described as the “best off-the-shelf classifier in the 

world” [164].  After the training procedure, 3464 AdaBoost learners were trained and a 

group of the closest learners (with smallest Euclidean distance on PCA low-dimensional 

space) were applied on each target image. 

3. Application of whole brain segmentation. The framework is trained and applied on the 

whole brain segmentation (133 labels) which is much more complicated than segmenting 

single anatomical region or subcortical regions. 

In the rest of the chapter, we propose a whole-brain (133 labels) multi-atlas segmentation 

framework using a large-scale data paradigm. Building on seminal works in machine learning (e.g., 

AdaBoost [165] and Principal Component Analysis (PCA)),  we use a learning-based approach to emulate 

the accuracy of a premier multi-atlas segmentation framework while dramatically lessening the 

computational burden. Given a large collection of training data which was pre-processed using a state-of-

the-art multi-atlas segmentation procedure, we: (1) construct a low-dimensional representation of our 

training data for computing neighborhood relationships and (2) optimize an AdaBoost classifier for each 

training image that maps a weak segmentation estimate (e.g., a majority vote of the local neighbors) to the 
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expensive, yet highly accurate, multi-atlas segmentation estimate. Thus, when a new target image needs to 

be segmented we simply need to (1) project the image into the low-dimensional space, (2) construct a weak 

initial segmentation, and (3) fuse the locally selected learners from the training phase. We refer to the 

algorithm as multi-atlas learner fusion (MLF) (Figure II.1). 

2. Data and Pre-Processing 

Herein, the complete data aggregates 7 unique datasets covering a wide range of demographics, 

ages, and neurological states (Table II.1). Data from 1000 Functional Connectome (fcon_1000)[166], 

Information eXtraction from Images (IXI), Open Access Series on Imaging Studies (OASIS)[132] and 

Multi-Modal MRI Reproducibility Resource (MMMRR)[133] are publicly available. The Baltimore 

Longitudinal Study on Aging (BLSA) is the study of aging whose data are collected by the National Institute 

of Aging [167]. The Deep Brain Stimulation (DBS) data is obtained from the DBS project at Vanderbilt 

University [168]. The Tennessee Twin Study (TTS) is an ongoing study that examines the health and 

wellbeing of twins born in Tennessee between 1984 and 1995 [169]. In total, a set of 3505 subjects was 

scanned resulting in a total of 3886 T1-weighted MR whole-brain volumes. For validation, the data was 

separated into three groups: training, testing, and reproducibility. First, the MMMRR dataset was used in 

its entirety as the reproducibility set as it consists of 21 subjects identically scanned twice. The remaining 

datasets were split 90%/10% into the training/testing cohorts. Note, all intra-subject scans were placed 

accordingly in the same training/testing group.  

In addition, 50 MPRAGE images (from unique subjects) from OASIS dataset were manually 

labeled with 133 labels by NeuroMorphometrics with BrainCOLOR protocol [170]. Forty five images 

(from 50 MPRAGE images) were used as the original atlases in multi-atlas segmentation [132]. Meanwhile, 

6 randomly selected images (from 45 MPRAGE images) were used for a simulation test. Lastly, the 5 

unused images (from the 50 MPRAGE images) were used for an empirical evaluation.  

For all 3,886 images, a state-of-the-art multi-atlas segmentation was performed. For consistency, 

all images were affinely registered [89]  to the MNI305 atlas [171]. Practically, 10-20 atlases are sufficient 
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for a good multi-atlas segmentation [97]. Thus, based on our experience, for each image, the 15 closest 

atlases were selected (using a naïve PCA projection), pairwise registered [88, 89], fused [92, 172], and 

corrected through implicit error modeling [173]. On average, this process took 36 h on a modern computer. 

 

 

Finally, for all 3464 training images, a low-dimensional representation was computed using PCA. 

Briefly, whole brain anatomical images were down-sampled to 2mm isotropic resolution and only the non-

background voxels were used for the PCA analysis. Such voxels were extracted from a non-background 

mask whose probability of non-background is greater than 0.8. The non-background probability is 

Figure II.1 Flowchart demonstrating the multi-atlas learner fusion (MLF) framework. A large 
collection of training images is processed offline using a typical multi-atlas segmentation 
pipeline. The dimensionality of the training images is then reduced, and learners are 
constructed to map a weak initial estimate to the multi-atlas segmentation. Finally, for a new 
testing image, the image needs to be projected into the low-dimensional space and the locally 
appropriate learners can be fused to efficiently and accurately estimate the final segmentation. 

Table II.1. Data summary. Each value is represented by: number of subjects (number of images) 
 Training Testing Repro. 

1000 Functional Connectome (fcon_1000)a 1055 (1055) 117 (117)  
Baltimore Longitudinal Study on Aging (BLSA) 578 (883) 64 (94)  
Information eXtraction from Images (IXI)b 523 (523) 58 (58)  
Deep Brain Stimulation (DBS) 493 (493) 54 (54)  
*Open Access Series on Imaging Studies (OASIS)c 375 (392) 41 (44)  
Tennessee Twins Study (TTS) 113 (118) 13 (13)  
Multi-Modal MRI Reproducibility Resource (MMMRR)d   21 (42) 

Total: 3137 (3464) 347 (380) 21(42) 
a: https://www.nitrc.org/projects/fcon_1000/ c: http://biomedic.doc.ic.ac.uk/brain-development/ 
b: http://www.oasis-brains.org/ d: https://www.nitrc.org/projects/multimodal 
*: With OASIS, 6 subjects are used for simulation and 5 subjects are used for empirical validation. 
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represented by a probabilistic map which is obtained by averaging the segmentations (set all non-

background regions to 1 and background to 0) defined by the multi-atlas segmentation estimates. Local 

distances, the pairwise Euclidian distances between any two subjects on low-dimensional PCA domain, are 

computed using the projection weights onto the first 15 modes of variation (representing 15.33% of the 

total variation). Notice that the remaining variation (84.67%) might be introduced by the registration error 

and the large inter-subject variance of brain anatomy. The results of the pre-processing framework are 

summarized in Figure II.2. 

3. Multi-Atlas Learner Fusion Theory 

The theory presented below builds on the foundation for learning-based error correction presented in [173]. 

For training image ݆, we assume that we are given (1) the target image, ࡵ௝ ∈ ℝே , (2) the initial weak 

segmentation, શ୨ ∈ ேࡸ , and (3) the multi-atlas segmentation, ષ୨ ∈ ேࡸ , where ܰ is the total number of 

voxels, and ࡸ is the set of possible labels (herein, |ࡸ| = 133). As in [173], the AdaBoost training procedure 

is computed for all of the labels independently. For each label, let ࡮௟, such that ݈ ∈  be the collection of ,ࡸ

voxels for which any of the training images observe label ݈.  
For the classifier, let the feature matrix be defined as ࢄ௟ ∈ ℝெ×ி, such that each element, ܺ௠௙௟ , is 

 
Figure II.2 Summary of the training data processed through multi-atlas segmentation and their 
corresponding representation in the estimated low-dimensional space. The inlays in (A) and (B) 
illustrate that the PCA distance metric leads to reasonable clustering of anatomical features. 
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the feature value for feature ݂ at sample ݉ and label ݈, where ܨ is the number of features, and ܯ ≤  ௟| is࡮|

the number of samples (or voxels). For simplicity, we define the features at each sample the same way as 

[173]. Briefly, these consist of the voxel coordinates, the observed labels (i.e., all Ψ௝௜ ݏ. .ݐ ݅ ∈  ௠), the targetࡾ

intensities (i.e., all I௝௜ ݏ. .ݐ ݅ ∈  ௠is the collection ofࡾ ௠), and the corresponding spatial correlations whereࡾ

voxels within the feature window defined for sample ݉ (herein, a 5mm isotropic window centered at the 

current sample). This feature collection strategy results in a total number of features of ܨ = 1009. Finally, 

we define the class vector as, ࢅ௟ ∈ {−1, 1}ெ, where ௠ܻ௟ = 1 if Ω௝௠ = ݈, and ௠ܻ௟ = −1 otherwise. 

For the AdaBoost training, let ࡰ௝௟(௧) ∈ ℝெ, be the distribution of relative weights for all samples at 

iteration ݐ ≤ ܶ (where ܦ௝௟௠(଴) = ଵெ initially). The goal of the training process at iteration ݐ is to optimize the 

weak learner, ℎ௝௟௧, where ℎ௝௟௧[ܺ௠௟ ] ∈ {−1,1} 

ℎ௝௟௧ = arg max௛ೕ೗೟ อ0.5 − ෍ ௝௟௠(௧)ܦ ቀ1 − ൫ℎ௝௟௧[ܺ௠௟ߜ ], ௠ܻ௟ ൯ቁ௠ อ (2.1) 

where, ߜ(∙,∙) is the Kronecker delta function. Note, herein, the weak learner in (1) is a decision tree 

and optimization of this learner is addressed later in the manuscript. Next, the weight associated with the 

current iteration, ߙ௝௟௧ ∈ ℝ, is defined as 

௝௟௧ߙ = 12 ln 1 − ∑ ௝௟௠(௧)ܦ ቀ1 − ൫ℎ௝௟௧[ܺ௠௟ߜ ], ௠ܻ௟ ൯ቁ௠∑ ௝௟௠(௧)ܦ ቀ1 − ൫ℎ௝௟௧ൣܺ௠௟ߜ ൧, ௠ܻ௟ ൯ቁ௠  (2.2)

and the sample weight can be updated with 

௝௟௠(௧ାଵ)ܦ = 1ܼ exp ቀߙ௝௟௧ߜ൫ℎ௝௟௧[ܺ௠௟ ], ௠ܻ௟ ൯ቁ (2.3)

where ܼ is a partition function ensuring that ∑ ௝௟௠(௧ାଵ)ܦ = 1௠ . This process is then iterated until we have 

reached the desired number of iterations, ܶ (herein, ܶ = 50). 

Once the training process has been performed on all training images, we can then approximate the 

desired multi-atlas segmentation through fusing the trained AdaBoost learners associated with the 

corresponding locally selected training images. If we let ࡶ be the set of selected training images, and ષ∗ ∈



23 
 

  ேbe the approximated multi-atlas segmentation, then Ω௜∗ (i.e., the estimated label at voxel ݅) is computedࡸ

Ω௜∗ = arg max௟∈ࡸ ෍ ෍ ௝௟௧ℎ௝௟௧ൣߙ ௜ܺ௟൧௧௝∈ࡶ  (2.4)

where the feature matrix, ࢄ, is defined in exactly the same way for the testing image as it was previously 

defined for the training images. 

4. Methods and Results 

Throughout, all segmentation comparisons are assessed with the mean Dice Similarity Coefficient 

(DSC) [174] across the 132 non-background labels, and all claims of statistical significance are made using 

a Wilcoxon signed rank test (p < 0.01) [175]. In Figure II.1 to Figure II.6, the DSC values were calculated 

in MNI305 space. To compare the label fusion results (in MNI305 space) with the manually labels images 

(in original space), in Figs. 7 and 8, the DSC values were calculated in original space by affinely transferred 

the label fusion results to each subject’s original space. Here, the 4x4 affine matrices were the inverse 

matrices which were generated during the affine registration in preprocessing. 

 

 
Figure II.3 (a) Total variation captured by first N modes from the PCA projection. The upper left figure 
shows the total variation captured by first N modes from the PCA. It is got from the percentage of the 
cumulated sum of the first N eigenvalues among all eigenvalues. The lower left figure shows the 
derivative of the upper left figure.  (b) Coordinate embedding of 3464 training dataset from 6 projects. 
The first two modes in the PCA low-dimensional space are shown. 
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4.1. low-dimensional representation 

 For the large-scale framework, it is time-consuming to find the closest leaners by calculating the 

similarity measurements between every testing subject and 3464 training images in the original image 

space. Thus, the low-dimensional representation is used for computational efficiency. In the MLF 

framework, we need to find the close (anatomically similar) trained learners for a target image by a low-

dimensional representation of high-dimensional MRI image data. Linear models such as principle 

component analysis (PCA) [176] and Multidimensional Scaling (MDS) [177] have been widely used to 

address this problem. In recent years, non-linear manifold learning algorithms like Isomap [178], Laplacian 

Eigenmaps [179] and Local Linear Embedding (LLE) [180] have also been successfully used in addressing 

the low-dimensional projection [160, 181-183]. However, the typical non-linear methods require the 

computational expensive pairwise similarity measurements which is a heavy burden for datasets with 

thousands, or more, 3D images. Thus, to accommodate the large-scale scheme, the PCA is employed in the 

MLF framework. The first 15 modes of variation in the PCA are used as the low-dimensional representation 

as it offers a practical / pragmatic choice that has shown stable performance for the MLF framework. The 

chosen number of components represents a balance between capturing more variations and avoiding over-

fitting (Figure II.3a). However, we do not claim the optimality of the number of PCA low-dimensional 

representation from Figure II.3a. To validate the usage of PCA, the widely used Laplacian Eigenmaps 

method is also evaluated in this chaper. The comparisons are shown in the section 4.6. 

The first two modes of variation for PCA applied to the 3464 training images are shown in Figure 

II.3b. As shown in the figure, the training images are densely distributed in the Eigenspace. As a result, 

locally closer trained learners are able to be found for a target image by the large-scale framework than the 

small-scale framework. Moreover, the images from different studies distributed differently in the 

Eigenspace, which means these studies are not redundant. Thus, a more representative training dataset is 

provided by the heterogeneous datasets. 
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4.2. Parameter Optimization and Sensitivity 

First, we optimize the number of locally selected atlases for the initial weak segmentation (via a 

majority vote). For optimization, the desired parameters are swept across an appropriate range for a random 

subset of 50 training images. The results can be seen in Figure II.4. The Dice similarity values in the Figure 

II.4 are computed by comparing the 50 segmentations from the AdaBoost classifier with the corresponding 

multi-atlas segmentations. For the initial majority vote accuracy (Figure II.4A), using too few (e.g., 5) or 

too many (e.g., all available training data) results in sub-optimal accuracy. Additionally, there is marginal 

return when increasing the number of selected atlases beyond 25. Thus, as computation time is of primary 

concern, the closest 25 training images were used for all subsequent analysis. 

 

Second, we optimize the weak learner (decision tree) used in AdaBoost classifier. The decision tree 

works as the weak learner ℎ௝௟௧ for the image ݆, label ݅ and iteration ݐ. At iteration ݐ, The decision tree is 

built based on the Classification And Regression Tree (CART) method [184]. Each node can be split into 

two child and the splits are determined by the maximizing the classification rate[185, 186]. For the 

AdaBoost weak learner optimization (Figure II.4b), we consider decision trees with depths ranging from 1 

(i.e., a “decision stump”) to 4. Additionally, we consider two sampling methods, unequal and equal. For 

each label, the samples are the feature voxels from the training data (matrix X) and the corresponding true 

 
Figure II.4 Parameter optimization and sensitivity for the number of atlases fused for the initial 
majority vote (A), and the type of weak learner used for the AdaBoost classifiers (B). A representative 
segmentation using the optimized parameters can be seen in (C). Note, on (B), “*” indicates statistically 
significant difference, and “NS” indicates no significant difference. 
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values (matrix Y) within pre-calculated regional masks. Each regional mask extracts the voxels with 

probability larger than 0 from its regional probabilistic atlas, which is obtained by averaging the regional 

segmentations from all the 3464 training segmentation images. For unequal sampling, all available voxels 

within the mask were used for each label, regardless of the resulting class imbalance between the positive 

class (ܻ = 1) and negative class (ܻ =-1). For equal sampling, a random subset from the larger class was 

selected to enforce class balance (the same number of samples in positive and negative class). Here, it is 

evident that (1) increasing the decision tree depth improves training accuracy, and (2) equal class sampling 

provides a marginal, yet significant, improvement in segmentation accuracy. Given the marginal return and 

dramatic runtime increase of a depth 4 decision tree, a depth 3 decision tree with equal class sampling was 

used for all subsequent experiments.

 

4.3. Testing Data Accuracy and Assessment 

Next, we quantify our ability to replicate the expensive multi-atlas segmentation result using the 

MLF framework. Using the multi-atlas segmentation estimate on our testing data (380 images) as a “silver 

Figure II.5 Mean accuracy assessment for the defined testing data using the multi-atlas 
segmentation estimate as a “silver standard”. The results demonstrate (1) the MLF framework 
provides a dramatic decrease in total segmentation time, (2) increasing the number of fused 
learners has valuable benefits in terms of segmentation accuracy, and (3) fusing more than 5 
local learners the MLF framework provides substantial and significant accuracy benefits over 
the joint label fusion baseline. 
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standard” we applied the MLF framework with varying numbers of local learners (from 1 to 25). The “silver 

standard” is the multi-atlas segmentations using both rigid and non-rigid registration [88, 89] and Non-local 

Spatial Staple label fusion [92]. As a benchmark, we consider fusing the 25 nearest training images using 

the premier joint label fusion (JLF) algorithm [91].  More specifically, the multi-atlas segmentation uses 

typical “non-rigid registration + fusion” framework to (1) generate the training images, and (2) demonstrate 

the state-of-the-art multi-atlas segmentation performance with non-local information. Once we get the 

trained framework, the MLF only requires an affine registration when applying new subjects to the trained 

AdaBoost learners. To compare with the MLF, the benchmark JLF also uses “affine registration + fusion” 

framework, which guarantees the MLF and the JLF are in the exactly same condition except the label fusion. 

The results of this experiment across the 380 testing images (Figure II.5) demonstrate: (1) increasing the 

number of local learners results in an improved ability to replicate the multi-atlas segmentation result, (2) 

using at least 5 learners results in significant and substantial improvement over the JLF benchmark, and (3) 

increasing the number of learners from 1 to 25 increases the total segmentation time from approximately 3 

min to approximately 8 min – which remains a speedup of ≈30x over the JLF benchmark and ≈270x 

over the multi-atlas framework (shown in Table II.2).  In Table II.2, we show the time consumed by 

registration and label fusion as well as the total time required for each framework. For multi-atlas 

segmentation, 15 non-rigid registrations were conducted for each testing subject. However, for the JLF and 

MLF, only 1 affine registration was required since all the training data and the trained AdaBoost learners 

had already been aligned to MNI space. The qualitative results support the quantitative accuracy analysis 

for both the worst and median cases from the testing set. 
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4.4. Reproducibility Data Accuracy and Assessment 

Then, we assess the reproducibility of the MLF framework using the MMMRR dataset (see Table 

II.1). Within this dataset, all 21 subjects were scanned twice with exactly the same scanning parameters. 

All subjects are healthy without history of neurological disease. This dataset is intended to be a resource 

for statisticians and imaging scientists to quantify the reproducibility of their imaging methods using data 

available from a generic session at 3T. The intra-subject reproducibility was assessed by comparing the 

mean DSC for: (1) the MLF result vs. the corresponding multi-atlas result, (2) the intra-subject multi-atlas 

estimates, and (3) the intra-subject MLF framework estimates. The results (Figure II.6) demonstrate: (1) 

the MLF similarity to the multi-atlas segmentation result approaches the intra-subject reproducibility for 

multi-atlas segmentation, and (2) MLF is significantly more reproducible than multi-atlas segmentation 

with a mean intra-subject DSC improvement of 0.0288. 

4.5. Efficacy of Large-scale Data Model 

Next, we compare the efficacy of the large-scale data model with a small-scale model via a 

simulation. The purpose of doing simulation is to compare the performance using large-scale heterogeneous 

dataset with using small-scare homogenous dataset. Moreover, more independent training and testing 

datasets can be generated from the limited number of available truth atlases (with manual segmentations). 

 
Figure II.6 Reproducibility analysis on the MMMRR dataset.  Note, (1) the MLF similarity to the 
multi-atlas segmentation result approaches the intra-subject reproducibility for multi-atlas 
segmentation, and (2) MLF is significantly more reproducible than multi-atlas segmentation on this 
dataset. 
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To generate simulated data, we randomly selected 6 subjects from 45 atlases and divided them to 3 training 

subjects and 3 testing subjects. Then, a deformation was applied on the 3 training subjects to generate 90 

deformed images and labels (30 for each subject) by sampling a sixth-order Chebyshev polynomial with 

random coefficients [92]. In these 90 image-label pairs, 10 were used as atlases in multi-atlas segmentation 

for three label fusion algorithms: (1) majority vote (MV), (2) Spatial Staple (SS) [172] and Non-local 

Spatial Staple (NLSS) [92] while the rest 80 were used as training data for the MLF framework. Note that 

the multi-atlas segmentation (MV, SS and NLSS) uses the non-local registration while the MLF framework 

does not. Lastly, the 3 testing subjects were deformed to 27 testing images using the same method as 3 

training subjects.  

After getting the simulated data, we (1) applied multi-atlas segmentation algorithms on 27 

simulated testing images using 10 simulated atlases, (2) trained the MLF framework by 80 simulated 

training image-label pairs and tested the MLF framework by 27 simulated testing images, and (3) evaluated 

the large-scale data model by running the 27 simulated testing images under the MLF framework which 

was trained by 3464 images (see Table II.1). When testing the large-scale data model, for each testing 

subject, the same subject in large-scale training dataset was excluded to keep the testing procedure unbiased. 

The results (Figure II.7) show: (1) increasing the number of training data from 80 to 3464 results in 

significant improvement on the DSC, (2) with small-scale training data, the MLF framework performs 

worse than any of multi-atlas segmentation algorithms (MV, SS and NLSS), (3) with large-scale training 

data, the MLF framework (with 25 learners) provides significant improvement not only over the small-

scale model but also over MV and SS, (4) the MLF framework with 25 learners performs less accurately 

than NLSS since the MLF framework does not use the non-local information which NLSS used. Therefore, 

the large-scale data model improves the performance of the MLF framework and achieves acceptable 

accuracy. 
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4.6. Empirical Validation 

Lastly, we compare the performance of MLF framework with state-of-the-art multi-atlas 

segmentation algorithms by an empirical validation. To conduct the empirical validation, we employed 5 

manually labeled subjects (with the same protocol as atlases but have not been used as atlases) from the 50 

MPRAGE images as unbiased testing data. Note that these were obtained from the human raters after the 

 
Figure II.7 Summary of the simulation and results.  The flowchart shows the framework of the 
simulation: (1) 3 images were deformed to 90 simulated images and converted to MNI space by affine 
registration. (2) 10 of them were used as atlases for multi-atlas segmentation while 80 of them were 
used as training data for the MLF framework. (3) 3 images were deformed to 27 testing images for 
comparing the Multi-Atlas segmentation, small-scale model and big data model. The results 
demonstrate (1) the performance of the MLF framework is significantly improved when using big 
data model (3464 training images) and (2) the MLF framework under big data model provides the 
better performance than MV and SS even without using non-local information. 

Table II.2 Runtime of each method on an Intel Xeon W3550 4 Core CPU (64 bit Ubuntu Linux 
12.04) 

Methods 
Time consumed 

Registration Fusion Total 
Multi-Atlas segmentation (with MV) ≈ 22 h ≈ 5 min ≈ 22 h 
Multi-Atlas segmentation (with SS) ≈ 22 h ≈ 2 h ≈ 24 h 
Multi-Atlas segmentation (with NLSS) ≈ 22 h ≈ 14 h ≈ 36 h 
Joint Label Fusion framework ≈ 2 min ≈ 4 h ≈ 4 h 
Multi-Atlas Learner Fusion framework (with 5 learners) ≈ 2 min ≈ 2 min ≈ 4 min 
Multi-Atlas Learner Fusion framework (with 25 learners) ≈ 2 min ≈ 6 min ≈ 8 min 
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conclusion of the algorithm training and development process. Since the testing dataset has the size n=5, 

all claims of statistical significance in this section are made using a Wilcoxon signed rank test (p < 0.05) 

which is the smallest significant level for n=5 [175]. 

Briefly, we conducted four types of analyses called Test-1, Test-2, Test-3 and Test-4. In Test-1, the 

multi-atlas segmentation pipeline is applied to 5 MPRAGE images with different label fusion algorithms: 

MV, SS and NLSS (use 15 atlases from 45 MPRAGE images). In Test-2, the 25 nearest training images 

were selected by Laplacian Eigenmaps and then fused by the majority vote and JLF algorithm. Test-3 is the 

same as Test-2 except using the PCA for low-dimensional projection. Lastly, Test-4 applied the MLF 

framework with varying numbers of local learners (from 1 to 25). Note that  Test-2, Test-3 and Test-4 use 

the same 3464 training images.   

Overall, Test-1 has the highest CCNR among 4 groups. Test-2 is employed to compare the non-

linear low-dimensional projection with the PCA used in Test-3.  Test-3 serves as the benchmark to evaluate 

the performance of the MLF framework in Test-4.  

While providing a speedup of ≈30x over the JLF benchmark (Test-3) and ≈270x over the multi-

atlas framework (Test-1), the segmentation quality of MLF framework (Test-4) is comparable with other 

methods. Dice similarity is used as the main metric of segmentation quality (Figure II.8a). Meanwhile, the 

average surface distance (ASD) is used as a supplementary metrics (Figure II.8b).  Figure II.9 compares 

different methods (same as Figure II.8) by showing the same axial slice from one subject in the testing 

dataset. Here, we discuss the Dice similarity first. 

1. Test-1 vs Test-4. We compare the MLF framework (Test-4) with three non-rigid registration 

based multi-atlas segmentation algorithms, MV, SS and NLSS (Test-1). The mean Dice similarity 

coefficients of the MLF framework (with 25 learners) are significantly higher than MV and SS. Meanwhile. 

Meanwhile, as shown in the simulation, the MLF framework with 25 learners performs less accurately than 

NLSS, which uses both non-rigid registration (high CCNR) and non-local correspondence (high CCNC). 

The results demonstrate the MLF framework (without CCNR and CCNC) provides significant 
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improvement on Dice similarity over MV and SS (high CCNR) without using time-consuming non-rigid 

registration algorithms.  

2. Test-3 vs Test-4. The comparison is conducted between the MLF framework (Test-4) and two 

benchmarks, majority vote and JLF (Test-3) which both use the same affine registration. Notice that the 

majority vote here is applied on the 25 atlases selected from 3464 training data (without CCNR). It is 

different from the majority vote in the multi-segmentations, which fuse the 15 non-rigid registered manual 

segmentations (in Test-1 with high CCNR). The MLF framework has significantly higher Dice similarity 

than the majority vote benchmark and has statistically indistinguishable Dice values comparing with the 

JLF benchmark. It proves that the MLF framework (without CCNR and CCNC), significantly outperforms 

the majority vote benchmark (without CCNR and CCNC) with the similar computational complexity. In 

addition, it has the comparable performance of JLF benchmark, which requires high CCNC to find non-

local correspondences. 

3. Test-2 vs Test-3, we compare the non-linear manifold learning method (Test-2) with the PCA 

method (Test-3) used in the MLF framework. The dataset used in Laplacian Eigenmaps is exactly the same 

 
Figure II.8 Results of empirical evaluation. The results indicate without using non-local information, 
the MLF framework (large-scale) provides better performance than two multi-atlas segmentation 
algorithms (MV and SS) and has comparable performance as the JLF benchmark. Note that, the 
multi-atlas segmentation used “non-rigid registration + fusion” framework while the JLF and the 
MLF used “affine registration + fusion” framework. 
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as the one used for the PCA described in former sections. The closest subjects are selected based on the 

Euclidian distance of first 15 features in the Laplacian Eigenmaps. The Laplacian Eigenmaps is generated 

from the pairwise similarity measurements (normalized mutual information) between whole brain 

anatomical images. The results show that PCA performs significantly better than Laplacian Eigenmaps, 

which validates the usage of the PCA scheme. Even as validated, we do not claim any optimality of the 

PCA projection. Investigation into alternative low-dimensional projection methods could provide 

improvements. 

The average surface distance (ASD) measurement repeats the finding in the Dice similarity except 

(1) the smaller value is better for ASD, which is different from the Dice similarity, and (2) the mean ASD 

is not significantly smaller than MV in multi-atlas segmentation. However, it is still better than the SS. The 

similar results from the surface distance provide a more robust comparison than using Dice similarity only.  

To summarize, (1) the empirical validation repeats the results in the simulation, (2) the MLF 

framework (without CCNR and CCNC) outperforms MV and SS in Dice similarity coefficients without 

using non-rigid registration (high CCNR), (3) the MLF framework has comparable performance as JLF 

benchmark without using resource consuming non-local correspondences (high CCNC), and (4) PCA and 

Figure II.9 Example for one subject, which corresponds to the different methods in Figure 
II.8. The anatomical and the manual segmentation of the target image are also provided. 
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the Laplacian Eigenmaps have similar performance and PCA is a valid method under large-scale scenario. 

5. Discussion and Conclusion 

We present multi-atlas learner fusion (MLF), a framework for replicating the robust and accurate 

multi-atlas segmentation model, while dramatically lessening the computational burden.  Using a training 

set of 3464 images, we estimate a low-dimensional representation of brain anatomy for selecting nearest 

appropriate example images, and build AdaBoost learners that map weak initial segmentations to the more 

accurate multi-atlas segmentation result. By completely bypassing the deformable atlas-target registrations, 

the MLF framework, cuts the runtime on a modern computer from 36 h down to 3-8 min – a speedup that 

could be further enhanced through GPU-based optimization. Specifically, we: (1) describe a technique for 

optimizing the initial segmentation and the AdaBoost learning parameters (Figure II.4), (2) quantify the 

ability to replicate the multi-atlas result with mean DSC of approximately 0.85 on a testing set of 380 

images (Figure II.5), (3) demonstrate accuracies that are approaching the intra-subject multi-atlas 

reproducibility on a separate reproducibility dataset, and show significant increases in MLF reproducibility 

(Figure II.6), (4) show the advantage of large-scale data model by comparing small-scale training data with 

large-scale training data (Figure II.7), and (5) indicate the performance of MLF is better than MV and SS 

and is comparable to state-of-the-art multi-atlas segmentation algorithm (the JLF framework) without using 

non-local information (Figure II.8). 

The results show the advantages of using large-scale data. Compared with the MLF framework 

under small-scale, the large-scale scheme improves the segmentation accuracy significantly. Compared 

with other state-of-the-arts multi-atlas segmentation methods, the MLF framework (without CCNR and 

CCNC) outperforms the typical multi-atlas frameworks (MV and SS) without using the resource consuming 

non-rigid registrations (high CCNR).  Meanwhile, the MLF framework has comparable performance with 

the JLF benchmark (high CCNC). As a result, the MLF framework surpasses the expensive CCNR and 

CCNC, which speeds up the segmentation to 3-8 min without compromising on segmentation accuracy. 

With the availability of more training data (even the big data) the performance of the learning based large-



35 
 

scale framework could be further enhanced.  

In the interest of brevity, all of our comparisons have been against the standard pairwise registration 

framework for multi-atlas segmentation, and have not included the more recent advancements in groupwise 

registration (e.g., [162]). The primary reason for not directly including this comparison is: (1) groupwise 

registration is still a very active area of continuing research, and (2) the MLF framework is, in its essence, 

a machine learning perspective on the groupwise registration model. Meanwhile, since the simulated data 

and empirical data were manually labeled by the same protocol (BrainColor), the effect of inter-protocol 

comparison has not been discussed in this chaper. 

The MLF framework is designed for the large-scale scenario so it does not perform well on small-

scale dataset such as the 80 training dataset in the simulation. Meanwhile, although outside the scope of 

this chapter, applying the MLF framework on other applications (e.g., spinal cord segmentation and 

abdominal organ segmentation) would be interesting research topics in the future. As the soft tissues 

structures are not well constrained by bone and tend to exhibit higher inter-individual variation, we cannot 

make the conclusion that the proposed method is able to be applied on abdomen organ segmentation 

directly. However, this learning based large-scale processing framework might trigger new methods in 

organ segmentation with more representative training images and more powerful registration and label 

fusion tools for whole abdomen. 

In the end, while the MLF framework shows great promise for rapid and accurate multi-atlas 

segmentation, there are certainly areas for which further investigation is warranted. Namely, first, we used 

a naïve PCA projection to model the neighborhood relationships between the training images. The proposed 

method is an open framework, which is able to incorporate with other algorithms. For example, the PCA 

and the AdaBoost algorithms could be replaced by any other low-dimensional projection methods and other 

two-class classifiers. More recent advancements in the manifold learning literature (e.g., [183]) present 

fascinating opportunities for more accurately modeling these relationships. Second, while highly 

successful, we do not claim any optimality of our AdaBoost-based learners. Investigation into alternative 

classification techniques (e.g., [187]could provide valuable improvements in segmentation modeling 
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without dramatically altering the MLF framework. 
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Chapter III. Consistent Cortical Reconstruction and Multi-atlas Brain 

Segmentation 

1. Introduction 

Whole brain segmentation and cortical surface reconstruction are two essential automatic 

techniques for quantitatively investigating Magnetic resonance (MR) images [50, 53, 188-190]. MR images 

provide morphometric measurements such as region of interest volume [191-194], cortical thickness [105, 

195, 196], and surface area [197, 198] using either manual delineation or automatic medical image 

processing methods [199, 200]. Manual investigation is extremely resource consuming, so validated 

automatic methods [52-54] are overwhelmingly preferred. 

Atlas-based segmentation assigns tissue labels to the voxels of unlabeled images using a pairing of 

an anatomical MR image and a corresponding manual segmentation [201]. The pair of images is commonly 

referred as an atlas. Initially, labels were transferred from a single atlas to a target by image registration 

[83-85]. However, single-atlas segmentation has difficulty capturing large inter-subject anatomical 

variation [202]. As reviewed in [203] the de facto standard atlas-based segmentation paradigm, has become 

to use multiple atlases and carry out label combination [86, 87, 91-99, 203].  

Cortical reconstruction, the localization and representation of human cortical surfaces, is another 

widely used automatic technique in neuroscience [105-110]. Cortical reconstruction has been key to surface 

based registration [204-208], cortical labeling [209-211], population-based probabilistic atlas generation 

[212], and surface based morphometry [213, 214].  

Spatial inconsistences that can hinder further brain morphometry analyses might develop because 

brain segmentation and cortical reconstruction are typically conducted separately. There are limited reports 

of methods for consistent whole brain volumetric segmentation and cortical surface reconstruction [58-60]. 

FreeSurfer is a well-known method for whole brain segmentation and cortical reconstruction that has been 

widely accepted as the de facto standard of brain segmentation [59, 106, 111]. FreeSurfer first automatically 
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labels whole brain image volumes as gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and 

subcortical regions by combining a Markov random field (MRF) and probabilistic atlases into a Bayesian 

framework [193, 215, 216]. Then, an outer (or pial) surface is reconstructed based on the GM/CSF 

boundaries while an inner surface is reconstructed based on the GM/WM interface [106]. Finally, the 

cortical GM regions are labeled based on a surface parcellation that forces the cortical segmentations to be 

consistent with the surfaces [209, 217]. However, since the latter steps strongly rely on the former steps in 

this “segmentation to surface reconstruction to parcellation” strategy, the cortical parcellation fails when 

the segmentations and surfaces are reconstructed incorrectly. FreeSurfer has yielded inaccurate whole brain 

segmentations and cortical surfaces in older adults typically with larger ventricles. When this happens, the 

resulting surface reconstruction and parcellation are inaccurate.  

Cortical surface measurements from FreeSurfer have been evaluated against manual measurements 

in Alzheimer's disease [218] and post-mortem histologic measurements [219]. In both cases, FreeSurfer 

surface estimates showed a high level of correspondence with the manual estimates. Thus, alternative 

cortical surface algorithms should be consistent with FreeSurfer as long as FreeSurfer operates as intended. 

Substantial differences would indicate a failure of either FreeSurfer or the novel method. FreeSurfer is not 

the only approach for segmenting cortical surfaces. Cortical Reconstruction using Implicit Surface 

Evolution (CRUISE) [58, 220, 221] is a well-validated method that reconstructs consistent cortical surfaces 

and fuzzy segmentation [222-224].  

In this chapter, we propose a novel “multi-atlas segmentation to surface” method called Multi-atlas 

Cortical Reconstruction Using Implicit Surface Evolution (MaCRUISE). MaCRUISE simultaneously 

obtains 133 volumetric labels from a single multi-atlas segmentation and achieves volume consistent and 

robust cortical surfaces based on the same segmentation. Multi-atlas segmentation is performed with Non-

local Spatial Staple (NLSS) [92, 172]. The main contribution of this work is to integrate cortical 

reconstruction and multi-atlas segmentation. Specifically: (1) MaCRUISE obtains self-consistent whole 

brain multi-atlas segmentation (133 labels) and cortical surfaces without compromising surface accuracy. 

(2) MaCRUISE achieves more accurate volumetric segmentations than a traditional multi-atlas framework. 
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(3) While both deriving consistent whole brain segmentations and cortical surfaces, MaCRUISE is 

comparable in accuracy to FreeSurfer while achieving greater robustness across an elderly population. 

Notably, we do not seek to “outperform” FreeSurfer or CRUISE in terms of absolutely accuracy for cases 

in which these methods work as designed since they have both been extensively validated with respect to 

human expertise.  

This work extends previous conference work [225]. Herein, we present a more complete description 

of the MaCRUISE and a more thorough analysis of the performance on an extended dataset. Additionally, 

we introduce MaCRUISE+ (by extending MaCRUISE using the CRUISE+ approach [220]) as a method to 

reconstruct accurate cortical surfaces and volumetric segmentations when multiple sclerosis (MS) lesions 

are present.  

 

 
Figure III.1 Block diagram of MaCRUISE. Black text indicates the steps in original 
CRUISE while red text indicates the additional steps in MaCRUISE. 
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2. Theory and implementation 

MaCRUISE is a method that produces consistent multi-atlas segmentations and cortical 

reconstruction from T1-weighted MR images (Figure III.1). First, cortical surfaces are reconstructed based 

on estimated tissue class memberships and multi-atlas boundary information. Second, multi-atlas 

segmentations are refined by the reconstructed cortical surfaces. 

2.1. Preprocessing 

Images are bias corrected with N4 [226] prior to being used as inputs for multi-atlas segmentation. 

The bias corrected images are skull stripped with SPECTRE [227] and processed by dura stripping [220] 

in preparation for TOAD.   

2.2. Segmentation 

2.2.1. Multi-atlas segmentation 

Multi-atlas segmentation is performed with 45 MPRAGE images from the Open Access Series on 

Imaging Studies (OASIS) dataset [132]. The images are expertly delineated using 133 labels (132 brain 

regions and 1 background) according to the BrainCOLOR protocol [170]. All of the 45 OASIS atlases are 

available from Neuromorphometrics  Inc. (http://www.neuromorphometrics.com/) and 35 of the atlases are 

freely available from the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling  [228] 

(https://masi.vuse.vanderbilt.edu/workshop2012/).  

Briefly, each target image is first affinely registered [89] to the MNI305 atlas [171]. Following [92, 

149], the 15 closest atlases for each target image are selected from the 45 OASIS atlases using PCA 

projection. The 15 selected atlases are non-rigidly registered to the target image [88] and non-local spatial 

staple label fusion (NLSS) [92, 172] is used to combine the labels from each atlas to the target image. For 

non-rigid registration, we use symmetric image normalization (SyN), with a cross correlation similarity 

metric convergence threshold of 10ିଽ and convergence window size of 15, provided by the Advanced 

Normalization Tools (ANTs) software [88]. After multi-atlas labeling, each voxel in the brain is assigned 
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to one of the 133 labels in the BrainCOLOR protocol. 

To assist with the cortical reconstruction framework in CRUISE, all cortical GM labels are 

combined into a single GM segmentation (ܯୋ୑). All WM labels and several subcortical labels (nucleus 

accumbens, amygdala, lateral ventricle, pallidum, putamen, thalamus, and ventral diencephalon) are 

combined into a single “pseudo-WM” segmentation (ܯ୛୑). The “pseudo-WM” subcortical labels are used 

to define ܯ୛୑ to mimic the CRUISE “Autofill” procedure [58]. Finally, ܯୋ୑, ܯ୛୑, and the remaining 

subcortical labels (hippocampus, amygdala, basal forebrain, and inferior lateral ventricle) are grouped 

together to form a cerebrum segmentation ܯେୣ୰ୣୠ୰୳୫ (Figure III.2). 

 

2.2.2. Memberships from TOADS 

A straightforward way of reconstructing consistent cortical surfaces based on the multi-atlas 

segmentation is to establish surfaces on NLSS's GM/WM hard segmentation directly (NLSS+CRUISE). 

However, the atlases are manually labeled based on the expert defined protocol, so objective bias occurs. 

Moreover, the surface reconstruction suffers from the partial volume effect (PVE) in NLSS's hard 

segmentation. As shown in Figure III.3, independent application of CRUISE after NLSS (NLSS+CRUISE) 

does not yield accurate surfaces.  

 
Figure III.2 Results from NLSS multi-atlas segmentation. From the multi-atlas segmentation, 
we derive cerebrum segmentation, GM segmentation and WM segmentation. 
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To address the bias and PVE in multi-atlas segmentation, fuzzy memberships are introduced in 

MaCRUISE using TOADS [224]. TOADS conducts fuzzy segmentation on skull and dura stripped T1 

volumetric MR images by combining topological and statistical atlases. Finally, robust memberships ்ߤ of 

GM, WM, and CSF (்ߤୋ୑௜ ୛୑௜்ߤ , , and ்ߤୌ୊௜ ) for each voxel ݅  are derived from TOADS.  

2.2.3. Segmentation fusion 

Multi-atlas hard segmentations are combined with the TOADS memberships to obtain fused GM, 

WM, and CSF memberships ( ߤୋ୑௜ ୛୑௜ߤ , , and ߤୌ୊௜ ) for each voxel (Figure III.4). The combination consists 

of four stages. 

Stage I assigns TOADS membership values within multi-atlas cerebrum segmentations. 

୛୑௜ߤ = ୛୑௜்ߤ , ୋ୑௜ߤ = ୋ୑௜்ߤ and ୌ୊௜ߤ = ୌ୊௜்ߤ if େୣ୰ୣୠ୰୳୫௜ܯ == 1 (3.1) 

This stage initializes the membership value from the TOADS fuzzy membership function within 

the multi-atlas cerebrum segmentation ܯେୣ୰ୣୠ୰୳୫. 

Stage II eliminates all the memberships outside the multi-atlas cerebrum segmentations. 

Figure III.3 Here we present the differences and challenges in directly applying multi-atlas hard 
segmentation to cortical reconstruction. (“NLSS+CRUISE”). (a) shows cortical reconstruction 
based on GM and WM segmentation using CRUISE. (b) shows the consistent surfaces with 
NLSS multi-atlas. (c) shows that the outer surface (green) and inner surface (magenta) from 
NLSS+CRUISE are inaccurate on enlarged 2D overlay (red rectangle). The dotted surfaces 
indicate the improvements by using the proposed MaCRUISE method 
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୛୑௜ߤ = 0, ୋ୑௜ߤ = 0 and ୌ୊௜ߤ = 0 if େୣ୰ୣୠ୰୳୫௜ܯ == 0 (3.2) 

This step not only restricts outer boundaries of brain tissues by cleaning up the remaining dura and 

skull but also removes the cerebellum and brain stem by multi-atlas segmentations. This replaces the 

cerebellum and brain stem removal step in TOADS. 

Stage III fills in the WM using the multi-atlas WM segmentation, which serves as an approximation 

of the inner cortical volume. 

୛୑௜ߤ = 1, ୋ୑௜ߤ = 0 and ୌ୊௜ߤ = 0 if ୛୑௜ܯ == 1 (3.3) 

This stage plays a similar role as the “Autofill” procedure in CRUISE, which modifies the WM 

segmentation by filling the ventricles and subcortical GM structures (e.g., putamen, caudate nucleus, 

thalamus, hypothalamus).  

 

 

Figure III.4 Refined segmentations are obtained from segmentation fusion with the 
following characteristics: (1) PVE issues in NLSS multi-atlas segmentation are resolved 
(blue rectangles), (2) the fused segmentations have WM labels consistent with TOADS 
(red rectangles), and (3) non-cerebrum tissues are cleaned by the multi-atlas segmentation 
(yellow rectangles).  
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Stage IV corrects the inaccurate skull-stripping for the voxels whose ߤ௧ୋ୑௜  are extremely small — 

that is, smaller than a constant ܥ  within ܯୋ୑௜ ܥ .  is empirically set to 0.001 as the default value in 

MaCRUISE. 

୛୑௜ߤ = 0, ୋ୑௜ߤ = 1 and ߤୌ୊௜ = 0 if ୋ୑௜ܯ == 1 and ௧ୋ୑௜ߤ <  (3.4) ܥ

In other words, if voxel ݅ is labeled as GM in the multi-atlas segmentation but also has an extremely 

small GM membership value in TOADS, then we trust the multi-atlas segmentation and set the membership 

value to 1 because this typically happens when skull-stripping fails. 

After conducting the previous four stages sequentially, we obtain a fused segmentation that (1) is 

restricted to multi-atlas cerebrum segmentation, (2) addresses PVE by assigning fuzzy membership values 

inside the multi-atlas GM hard segmentation, (3) has robust WM filling using multi-atlas WM and 

subcortical segmentation, and (4) fixes incorrect GM membership values that result from inaccurate skull-

stripping. 

2.3. Cortical reconstruction 

2.3.1. Multi-atlas anatomically consistent GM enhancement 

Although the PVE in GM segmentation is addressed by segmentation fusion, the GM membership 

function in tight sulci is still obscured or even undetectable because the GM cortex is “back to back” in 

tight sulcal regions. To detect these sulci, one family of approaches applies cortical thickness constraints to 

estimate their locations [105, 229]. Another approach called Anatomically Consistent Enhancement (ACE) 

[56, 58] edits the GM membership values by creating a thin separation between sulcal GM banks based on 

evidence of the presence of CSF. However, ACE might not be able to detect tight sulci when the presence 

of CSF is not well captured by TOADS, especially when the contrast between GM and CSF is low. 

Moreover, the spatial location of sulci from ACE might not be consistent with the multi-atlas segmentation. 

To force the estimated sulci to be consistent with multi-atlas segmentation, a hierarchical method 

called Multi-atlas Anatomically Consistent GM Enhancement (MaACE) is proposed to assign multi-atlas 
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cortical boundaries with the highest priority while estimating the sulci locations (Figure III.5). MaACE 

generalizes ACE for consistency by solving for ܶ(x) in the following Eikonal equation [58, 230]: ܨ(x)‖∇ܶ(x)‖ = 1 in Ω ܶ(x) = 0 for x ∈ Γ 
(3.5) 

where ܶ(x) is the weighted distance function for spatial 3-D position x. ܨ(x) is a speed function (defined 

below) and Γ is the location of the interface between GM and WM (0.5-isosurface). ܶ(x) can be computed 

using the fast matching method [230]. If ܨ(x) is equal to one everywhere, then ܶ(x) is the Euclidean 

distance from the GM/WM interface and the estimated sulci will be located at the midpoint between the 

gyral banks. The ACE approach defines ܨ(x) to be a spatial varying function that depends on the CSF 

membership values at x:  

(x)ܨ = 1 −  ୌ୊(x) (3.6)ߤ0.9

where the ߤୌ୊(x) is the CSF membership function and the 0.9 is an empirical coefficient. In this case, ܶ(x) can be regarded as the time it takes for a wave front starting from the GM/WM interface to reach x 

where the speed of the wave front will slow down in the CSF.  

Since different cortical labels are separated mainly by sulci location in the BrainCOLOR protocol, 

cortical boundary locations in the multi-atlas segmentation are used as additional evidence of sulci in 

MaACE. We combine the boundary information to ACE and specify ܨ(x) as: 

(ݔ)ܨ = 1 − 0.9൫݉ܽݔ൛ߤୌ୊(ݔ),  ൟ൯ (3.7)(ݔ)ୠ୭୳୬ୢୟ୰୷ߤ

where ߤୠ୭୳୬ୢୟ୰୷(ݔ)  represents the boundary information in multi-atlas segmentations for which ߤୠ୭୳୬ୢୟ୰୷(x) = 1.  This is when x is at the “boundary” of cortical labels. The boundary is defined as any 

cortical voxel that (1) detects two or more different cortical labels among its 26 connections, and (2) does 

not detect WM labels among its 26 connections. 
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When using boundary information, MaACE detects additional sulci locations, which are not 

detected by ACE (yellow arrow in Figure III.5). Meanwhile, MaACE forces the sulci location to be 

consistent with multi-atlas segmentation (red arrow in Figure III.5b).  The benefits of , which are a 

generalized form of Eq. 3.7, can be understood by considering its action in specific cases:  

Case I: ܨ(x) becomes 0.1 when the multi-atlas segmentation boundaries exist with certainty — i.e., ߤୠ୭୳୬ୢୟ୰୷(x) = 1. This step forces the estimated sulci to be consistent with the sulci definition in multi-

atlas segmentation no matter if CSF evidence exists or not.  

Case II: When CSF exists and multi-atlas segmentation boundaries do not (i.e., ߤୌ୊  becomes formula (6) which is conventional ACE. It forces the estimated sulci to (x)ܨ ୠ୭୳୬ୢୟ୰୷(x)), thenߤ <

be consistent with the evidence of CSF. 

Case III: If we do not have evidence from either multi-atlas boundaries or CSF (i.e., ߤୠ୭୳୬ୢୟ୰୷(x) = μୌ୊ = 0), then ܨ(x) becomes a constant speed 1 and the sulci are located at the midpoint 

between sulcal banks (as in conventional ACE).   

 
Figure III.5 MaACE compared with the ACE method, (1) MaACE is able to detect sulci in the 
outer surface that are not detected by ACE, particularly when CSF evidence is not visible 
(yellow arrow in b). (2) MaACE also forces sulci locations to be consistent with multi-atlas 
segmentation at the boundaries of cortical labels (red arrow in b). This figure also shows the 
enhanced GM membership and skeleton from ACE and MaACE (top row). 
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Using (7) and applying the fast matching method (FMM) starting from the GM/WM interface, 

segmentation consistent sulci are obtained from the “shocks” — that is, where the wave fronts hit each 

other [230]. In FMM, new values of ܶ(x) are obtained by solving quadratic equations using ܨ(x) and finite 

forward and backward difference approximation of ∇ܶ(x). The ACE framework [56, 58] indicates that if 

an additional centered finite difference approximation ∇௖ܶ(x) is conducted on the FMM derived ܶ(x), 

values of ܨ(x)‖ ∇௖ܶ(x)‖ are much smaller than 1. As a result, the set of shock points are obtained by 

applying a constant threshold ܳ. 

ܵ = ‖௖ܶ(x)∇‖(x)ܨ|ݔ}  ≤ ܳ and (ݔ)ܶ > 1} (3.8) 

The threshold ܳ is smaller than 1 and empirically set to 0.85. Use of the constraint ܶ(ݔ) > 1 

guarantees that the estimated sulci are only found outside the GM/WM surface and at a distance of 1 mm 

or greater from the GM/WM surface. 

The final estimated sulci locations are obtained by conducting a thinning morphological operation 

on ܵ to obtain its skeleton (which is centered on ܵ and is only one voxel thick). After obtaining this skeleton, 

the GM membership function is modified as follows.  

ୋ୑ᇱߤ (ݔ) = ൜ܨ(x)‖∇௖ܶ(x)‖ ∙ ୋ୑(x)ߤ if x is on skeletonߤୋ୑(x) otherwise  (3.9) 

2.3.2. Topology-perserving deformable cortical reconstruction 

Three cortical surfaces — inner, central, and outer — are reconstructed with subvoxel accuracy by 

using the Topology-preserving Geometric Deformable surface Model (TGDM). First, the filled WM 

membership function is refined by a topology correction step to remove holes and handles. Then, an inner 

surface is reconstructed using the topological corrected WM membership values [56, 222]. A GVF force 

[231], a curvature force, and a regional pressure force are applied to push the inner surface from the 

GM/WM interface to the pial surface using the TGDM level set approach. The GVF force is generated by 

the MaACE-corrected GM membership function. The regional pressure force guarantees that the central 

surface is located within the cortical segmentations. Finally, using the central surface as the initial surface, 
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the outer surface is found using another TGDM step controlled by a curvature force and the MaACE-

corrected GM membership function [58, 107, 230, 232, 233]. The TGDM method used is the same as that 

used in the original CRUISE algorithm.  

2.4. Cortical consistent segmentation editing 

Despite efforts to maintain consistency between the various sources of information, inconsistent 

voxels still remain at this stage (Figure III.6). We introduce the Cortical Consistent Segmentation Editing 

(CCSE) method to ensure that the multi-atlas segmentation is consistent with the cortical surfaces that have 

been reconstructed using TGDM.  CCSE allows us to define what is “consistent” in a quantitative manner 

using two coefficients: an inner surface consistency coefficient ߙ  and an outer surface consistency 

coefficient ߚ.  

 

Let ߶௜௡ and ߶௢௨௧ be the level set functions for the inner and outer cortical surfaces reconstructed 

using TGDM. We can use these functions together with ߙ and ߚ to correct the labels produced by multi-

atlas segmentation in the following way: (1) If a voxel is not labeled as background but it is more than ߚ mm outside the outer surface, then we label it as background. (2) If a voxel is more than ߙ mm inside the 

inner surface but has a background or cortical label that should be outside the GM/WM interface then it is 

 
Figure III.6 The CCSE step corrects the inaccurate cortical labels to background or WM, if they 
are located outside of the outer surfaces or inside the inner surfaces, respectively. Meanwhile, 
CCSE adjusts the incorrect volume-wise labels to be cortical labels for voxels between inner and 
outer surfaces. The distances between voxels and surfaces are provided by the zero set level set 
functions  ࣘ࢔࢏  and ࢚࢛ࣘ࢕. The level of consistency is quantitatively controlled by two consistent 
coefficients, the inner surface consistent coefficient (ࢻ)  and the outer surface consistent 
coefficient (ࢼ). 
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relabeled as WM. (3) In between the outer and inner surfaces, all voxels should be given cortical labels. If 

a voxel is incorrectly labeled, then it is marked as “needs label” and it is relabeled as one of the 98 cortical 

labels in the BrainCOLOR protocol using an iterative strategy described in [234]. Briefly in each iteration, 

the remaining “needs label” voxels are filled by the most commonly occurring cortical labels around its 26 

connections. This procedure is performed iteratively until all “needs label” voxels are relabeled or no more 

voxels could be reached. (4) If a voxel is both on skeleton and its ߶௢௨௧  is 0 ≤ ߶௢௨௧ ≤  we keep the ,ߝ

original label and the ߝ is empirically set to 0.05 mm in MaCRUISE so that the labels with tight “back to 

back” sulcal surfaces (< 1 voxel width) are not over corrected. 

Although the estimated cortical surfaces have subvoxel accuracy (since they are produced using a 

connectivity consistent marching cubes algorithm), the multi-atlas segmentation result only has voxel 

accuracy. This means that distances to the surfaces are reported with subvoxel accuracy but volumetric 

labels are restricted to the accuracy of the voxels. Since most T1w MR images (obtained for clinical and 

research purposes) have resolutions on the order of 1mm, it makes sense to choose ߙ and ߚ to be 0.5 mm 

so that voxels that cover about half of the cortex are given cortical labels. Therefore, both ߙ and ߚ are set 

to 0.5 mm for the remainder of this manuscript where the sensitivity of the algorithm regarding ߙ and ߚ is 

explored. Note that in the software implementation, users are free to choose alternative values for both ߙ 

and ߚ.  

2.5. Extension to handle WM lesions with MaCRUISE+ 

We introduce a variation on MaCRUISE called MaCRUISE+, which incorporates the CRUISE+ 

method into the MaCRUISE framework. CRUISE+ [220] accurately and automatically reconstructs cortical 

surfaces when WM lesions are present, which commonly occurs in patients with multiple sclerosis. As with 

CRUISE+, MaCRUISE+ uses both Fluid Attenuated Inversion Recovery (FLAIR) T2-weighted (T2w) 

images and T1w images together with the Lesion-TOADS algorithm [235] in place of the TOADS 

algorithm. Lesion-TOADS estimates fuzzy membership functions for GM, WM, CSF, and the WM lesions. 

MaCRUISE+ uses the WM mask generated by Lesion-TOADS to remove inaccurate multi-atlas cortical 
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boundaries within the WM lesions. The other steps of MaCRUISE+ are identical to those of MaCRUISE. 

3. Methods and Results 

Validation of the MaCRUISE and MaCRUISE+ methods was performed with four distinct datasets 

and experiments. First, absolute surface accuracy of MaCRUISE was compared with the reference methods 

on a public database of expertly traced cortical surface points for control subjects. Second, absolute surface 

accuracy of MaCRUISE+ was compared with the reference methods on a public database of expertly traced 

cortical surface points for multiple sclerosis patients. Third, absolute volumetric accuracy of MaCRUISE 

was compared with the reference methods on an available (for purchase) database of expertly labeled whole 

brain volumes. Fourth, the robustness of MaCRUISE was assessed relative to the reference methods on a 

database of older healthy subjects. All validation datasets were obtained from different individuals other 

than the atlases used to construct the MaCRUISE and MaCRUISE+ methods.  

3.1. Landmark based surface validation on healthy data 

3.1.1. Data 

The first experiment used a publicly available dataset consisting of five healthy subjects (age range: 

30–49) [133] with Magnetization Prepared RApid Gradient Echo (MPRAGE) T1-weighted images 

acquired in the sagittal orientation (resolution=1.0 × 1.0 × 1.2 mmଷ; FOV=240 × 204 × 256 mmଷ). In 

prior work [220], two human raters placed 420 landmarks on both outer and inner surfaces of each subject 

at the calcarine fissure, cingulate gyrus, central sulcus, parieto-occipital sulcus, superior frontal gyrus, 

superior temporal gyrus, and Sylvian fissure. The landmarks were made on sulcal fundi, sulcal banks, and 

gyral crowns with floating point precision. For FreeSurfer, the T1w input images were interpolated to its 

optimal resolution (1.0 × 1.0 × 1.0 mmଷ) using the default setting. For CRUISE, the recommended voxel 

resolution for optimal performance (0.8 × 0.8 × 0.8 mmଷ) was used.  
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3.1.2. Experiment and results 

Each of the methods (FreeSurfer, CRUISE, NLSS+CRUISE, and MaCRUISE) was run in an 

automated manner on each of the 5 datasets. Accuracy was assessed by computing the absolute surface 

errors (distance from surfaces to landmarks). Briefly, NLSS+CRUISE errors were larger than FreeSurfer 

and CRUISE, and the surface errors of MaCRUISE were comparable to those of both FreeSurfer and 

CRUISE. Table III.2statistically evaluates the differences in Error! Reference source not found.by 

conducting paired t-tests and Cohen's d effect size [236] analyses. Note that small p-value might indicate a 

significant effort of a magnitude that is not clinically relevant, so we rely on both metrics to interpret 

differences. Figure III.7shows the reconstructed inner and outer surfaces from one subject in the first 

experiment.  

 

 
Figure III.7 Inner and outer surfaces are shown for different methods for a healthy subject. The 
red and yellow dots in blue and red rectangles are the manual outer and inner surface landmarks, 
respectively. FreeSurfer and CRUISE are two benchmark methods that achieve accurate surfaces. 
Note, NLSS+CRUISE does not reconstruct accurate surfaces. Using MaCRUISE, we obtain 
consistent cortical surfaces and whole brain multi-atlas segmentations. MaCRUISE generates 
accurate surfaces at lateral ventricles as well as highlighted in yellow rectangles. 
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Table III.1 Absolute surface errors on subjects with healthy anatomy with MaCRUISE 
(mean ± standard deviation in mm). 

 FreeSurfer CRUISE NLSS+CRUISE MaCRUISE 

Optimal resolution* 1x1x1mm3 0.8x0.8x0.8 mm3 0.8x0.8x0.8 mm3 0.8x0.8x0.8 mm3 

Rater A 
Outer Surface 0.524 ± 0.372 0.486 ± 0.413 0.880 ± 0.755 0.518 ± 0.414 

Inner Surface 0.460 ± 0.371 0.540 ± 0.429 0.799 ± 0.758 0.544 ± 0.431 

Rater B 
Outer Surface 0.434 ± 0.369 0.613 ± 0.546 1.050 ± 0.889 0.585 ± 0.464 

Inner Surface 0.432 ± 0.362 0.542 ± 0.483 0.913 ± 0.961 0.544 ± 0.482 

* We resampled the original images to either 1x1x1 mm3 or 0.8x0.8x0.8 mm3 prior to running the different methods. 

The best results and their corresponding resolutions are reported in this table. 

Table III.2 Paired t-test and effect size analyses on absolute surface errors for landmarks 
with MaCRUISE. 

 
Rater A Rater B 

p value Cohen's d* p value Cohen’s d 

NLSS+CRUISE vs. FreeSurfer 
Outer Surface <0.001 0.598 <0.001 0.905 

Inner Surface <0.001 0.567 <0.001 0.662 

NLSS+CRUISE vs. CRUISE 
Outer Surface <0.001 0.648 <0.001 0.592 

Inner Surface <0.001 0.419 <0.001 0.488 

MaCRUISE vs. FreeSurfer 
Outer Surface 0.541 0.015 <0.001 0.361 

Inner Surface <0.001 0.209 <0.001 0.262 

MaCRUISE vs. CRUISE 
Outer Surface <0.001 0.078 <0.001 0.055 

Inner Surface <0.001 0.009 0.145 0.003 

*Cohen’s d score is defined as “trivial” (d<0.2),“small effect” (0.2≤d<0.5), “medium effect” (0.5≤d<0.8), or “

large effect” (d≥0.8). The bold d value numbers indicate the “medium” or “large” effect. Double underline 

indicates the significantly superior methods (p<0.001 and d≥0.5), while the dotted underline indicates a lack of 

evidence for systematic differences (p>0.05 or d<0.5). Single underline indicates the significantly superior methods 

(p<0.001 and d≥0.5) from at least one rater. 



53 
 

3.2. Landmark based surface validation on MaCRUISE+ 

3.2.1. Data 

The second experiment used five publicly available MS subjects, consisting of four female subjects 

and one male subject with a mean age of 48.4 years (range: 40–59) with both MPRAGE and FLAIR images 

[220]. In prior work [220], the images were annotated in both healthy cortical regions and near lesions. The 

MPRAGE T1w images were acquired in the sagittal orientation with resolution 1.0 × 1.0 × 1.2 mmଷ. The 

FLAIR T2w images were acquired in the sagittal orientation but at resolution 0.83 × 0.83 × 2.2 mmଷ. All 

datasets were isotropically interpolated to 0.83 × 0.83 × 0.83 mmଷ [220]. Two human raters labeled 420 

landmarks per surface for each MS subject in approximately the same regions of interest (ROI) as described 

in but not near any WM lesions. To evaluate the surface reconstruction performance near WM lesions, five 

additional ROIs were specified to be near WM lesions. The original two raters and a third human rater each 

marked 50 landmarks for each MS image. As a result, a total of 2100 landmarks for healthy anatomy and 

250 landmarks for cortex near WM lesions were used to evaluate the performance. 

3.2.2. Experiment and results  

Each of the methods (FreeSurfer, CRUISE+, and MaCRUISE+) was run in an automated manner 

on each of the 5 datasets. As an additional baseline comparison, FreeSurfer was run with the same lesion 

mask as used by MaCRUISE and MaCRUISE+, which was generated by Lesion-TOADS (referred as 

Corrected FreeSurfer*). Note that since the spatial resolution of the data was already 0.83 mm isotropic to 

match the highest resolution FLAIR data, all methods used the same data resolution.  
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Accuracy was assessed by computing the absolute surface errors (distance from surfaces to 

landmarks) as shown in Error! Reference source not found.and using paired t-test and effect size analyses 

as shown in Error! Reference source not found. with the same approach as MaCRUISE. The underlined 

annotations in Table III.4 Paired t-test and effect size analyses on absolute surface errors for landmarks 

with healthy anatomy and WM lesions with MaCRUISE+ indicate the superior methods (p<0.001 and 

d≥0.5) (definition found in Table III.2). Figure III.8 shows the reconstructed inner and outer surfaces from 

one MS subject with landmarks near WM lesions. 

 

 
Figure III.8 Inner and outer surfaces are shown for each method for an MS subject. Red and 
yellow dots in blue and red rectangles are the manual outer and inner surface landmarks, 
respectively, near WM lesions. Based on the landmarks, CRUISE+ and MaCRUISE+ achieve 
more accurate surfaces than FreeSurfer and lesion corrected FreeSurfer*. Note that the 
corrected FreeSurfer* uses the same lesion mask as CRUISE+ and MaCRUISE+, which is 
generated by Lesion-TOADS. From (c), MaCRUISE+ achieves consistent cortical surfaces and 
whole brain segmentations that CRUISE+ does not. 
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Table III.3 Absolute surface errors with healthy anatomy and WM lesions with MaCRUISE+ (mean 
± standard deviation in mm). 

Landmarks 
 FreeSurfer

Corrected 
FreeSurfer* CRUISE+ MaCRUISE+

Healthy 

Anatomy 

Rater 

A 

Outer Surface 0.445 ± 0.394 0.433 ± 0.339 0.509 ± 0.490 0.529 ± 0.496 

Inner Surface 0.572 ± 0.471 0.511 ± 0.420 0.482 ± 0.455 0.485 ± 0.510 

Rater 

B 

Outer Surface 0.778 ± 1.605 0.600 ± 0.976 0.518 ± 0.539 0.624 ± 0.698 

Inner Surface 0.423 ± 0.326 0.411 ± 0.302 0.368 ± 0.340 0.390 ± 0.354 

Near WM 

Lesions 

Rater 

A 

Outer Surface 0.858 ± 1.588 0.679 ± 1.009 0.551 ± 0.566 0.670 ± 0.808 

Inner Surface 0.536 ± 0.488 0.494 ± 0.407 0.337 ± 0.283 0.368 ± 0.293 

Rater 

B 

Outer Surface 0.874 ± 1.498 0.735 ± 1.043 0.589 ± 0.599 0.682 ± 0.755 

Inner Surface 0.476 ± 0.564 0.446 ± 0.551 0.425 ± 0.315 0.387 ± 0.340 

Rater 

C 

Outer Surface 1.028 ± 1.270 0.874 ± 0.878 0.641 ± 0.553 0.705 ± 0.699 

Inner Surface 0.707 ± 0.530 0.696 ± 0.588 0.410 ± 0.293 0.447 ± 0.322 

*FreeSurfer after correction with the WM lesion masks generated by Lesion-TOADS. 
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3.3. Segmentation Accuracy  

3.3.1. Data 

The accuracy of CCSE corrected segmentation was quantitatively evaluated with five MR 

volumetric images (MPRAGE T1w images with resolution1.0 × 1.0 × 1.0 mmଷ) from the OASIS dataset 

[132]. The images were independently labeled by an expert anatomist at Neuromorphometrics Inc. 

(http://www.neuromorphometrics.com/). The labeling protocols and procedures were the same as with the 

45 atlases used in NLSS framework. However, the original 45 atlases have been available and used for 

several years of algorithm development. We felt that there existed a possibility that the performance could 

be over-tuned on these datasets, so the five images were retrieved at a later time and were distinct from the 

original 45 atlases. This approach avoided any unintentional bias that could have been present in a standard 

Table III.4 Paired t-test and effect size analyses on absolute surface errors for landmarks with 
healthy anatomy and WM lesions with MaCRUISE+ 

Landmarks  
Rater A Rater B Rater C

P 
value

Cohen’s 
d

P 
value

Cohen’s 
d 

P 
value 

Cohen’s 
d

Healthy 

Anatomy 

MaCRUISE+ vs.FreeSurfer 
Outer Surface <0.001 0.186 <0.001 0.124   

Inner Surface <0.001 0.177 <0.001 0.098   

MaCRUISE+ vs. 

Corrected FreeSurfer* 

Outer Surface <0.001 0.226 0.037 0.028   

Inner Surface <0.001 0.057 0.002 0.065   

MaCRUISE+ vs.CRUISE+ 
Outer Surface <0.001 0.040 <0.001 0.170   

Inner Surface 0.330 0.006 0.145 0.063   

Near WM 

Lesions 

MaCRUISE+ vs.FreeSurfer 
Outer Surface 0.022 0.149 0.011 0.162 <0.001 0.315 

Inner Surface <0.001 0.417 0.024 0.191 <0.001 0.594 

MaCRUISE+ vs. 

Corrected FreeSurfer* 

Outer Surface 0.870 0.010 0.249 0.059 <0.001 0.213 

Inner Surface <0.001 0.355 0.147 0.128 <0.001 0.526 

MaCRUISE+ vs.CRUISE+ 
Outer Surface <0.001 0.170 <0.001 0.137 0.003 0.103 

Inner Surface 0.013 0.110 0.005 0.115 0.002 0.121 

*FreeSurfer after correction with the WM lesion masks generated by Lesion-TOADS. 
Please see Table 2 for a description of effect size with Cohen’s d score. 
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cross-validation analysis. 

3.3.2. Experiment and results 

Each of the methods (JLF, NLSS, and MaCRUISE with CCSE) was run in an automated manner 

on each of the 5 datasets. The accuracy of NLSS and CCSE corrected segmentations were evaluated by 

calculating the Dice values with respect to manual segmentations. To determine statistical differences, we 

used a Wilcoxon signed rank test on the averaged Dice values (132 labels) for each subject with a sample 

size n=5 for each test. Moreover, we calculated the averaged Dice values on all cortical labels (98 labels) 

and WM labels (2 labels). The p value used was 0.05, which is the smallest feasible significance level of n 

= 5. [175]. We evaluated the sensitivity of MaCRUISE to the consistency coefficients ߙ and ߚ by sweeping 

them independently from 0 mm to 1 mm with 0.05 mm intervals and re-running all subjects with 

MaCRUISE for a total of 441 parameter combinations on 5 subjects. As an additional comparison for 

volumetric accuracy, joint label fusion (JLF) [91] was applied to the registered atlases with its default 

setting on the same data.  

MaCRUISE improved segmentations over the entire range of consistency coefficients ߙ and ߚ 

(Figure III.9). The largest improvement averaged over all labels was more than 0.013 Dice (at ߙ = 0.2 mm 

and ߚ = 0.2 mm). Note that CCSE is based on cortical surfaces, so the largest benefits were seen in cortical 

labels, while the WM labels were only affected by the inner surface consistency coefficient (ߙ). The lower 

row of Figure III.9 shows a box plot of Dice improvements for ߙ = 0.2 mm, ߚ = 0.2 mm and ߙ = 0.5 mm, ߚ = 0.5 mm. These two sets of coefficients represent those with the largest improvements in this dataset 

and those that were selected as default values used in MaCRUISE respectively. Both sets of box plots reveal 

that the Dice values are significantly improved compared to NLSS. Surprisingly, even though the Dice 

values of WM were already above 0.9, they were improved by nearly 0.03 in the case of ߙ = 0.2 mm and ߚ = 0.2 mm. The use of the default values sacrifices approximately 0.01–0.03 in Dice value over the 

optimal values. The median Dice values of CCSE were greater than those of JLF, and the CCSE achieved 

significant better performance than JLF in the case of ߙ = 0.5 mm and ߚ = 0.5 mm.  
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3.4. Robustness of consistent cortical surfaces and segmentations 

3.4.1. Data 

We conducted a quantitative and qualitative robustness test on images of 200 control volunteers 

(100 M/ 100 F, ages 60.3 to 92.1, mean age 77.6). MPRAGE T1w MR volumetric images were collected 

as part of the Baltimore Longitudinal Study of Aging (BLSA) study, which is a study of aging operated by 

the National Institute on Aging [128, 237].  

3.4.2. Experiment and results 

Each of the methods (FreeSurfer, CRUISE, and MaCRUISE) was run in an automated manner on 

each of the 200 datasets. Average surface distance (ASD) and correlation analyses were conducted to 

 
Figure III.9 This figure shows the sensitivity MaCRUISE has to ࢻ and ࢼ by varying them between 
0 mm to 1 mm with 0.05 mm intervals. The upper row shows average Dice improvement from 
NLSS to CSEE in MaCRUISE. (a) The method has maximum improvement when ࢻ = ૙. ૛ mm 
and ࢼ = ૙. ૛ mm. (b) The cortical labels follow a similar trend. (c) WM labels are only affected by 
the inner surface consistent coefficient ࢻ. (d) The box plot shows the largest Dice improvements of 
all 132 labels from this dataset (ࢻ = ૙. ૛ mm, ࢼ = ૙. ૛ mm) compared to the default values in 
MaCRUISE (ࢻ = ૙. ૞ mm, ࢼ = ૙. ૞ mm). (e) and (f) demonstrates the improvements of all 98 
cortical labels and 2 WM labels respectively. We compare our approaches with the state-of-the-
art JLF method as well. “*” indicates statistically significant difference. 
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evaluate the global performance and consistency between MaCRUISE and the benchmarks (CRUISE and 

FreeSurfer). The number of global failures (outliers) was used as the robustness metric. First, the surface 

distance [196] between MaCRUISE and the benchmarks was examined to detect outliers. The artificial 

surface regions that separate the two hemispheres in FreeSurfer were excluded from the ASD measurement 

since MaCRUISE and CRUISE do not have such surfaces. Second, the segmentations of the lateral 

ventricles were examined to identify additional failures.   

 

Mean ASD between MaCRUISE and the benchmark algorithms are generally around or smaller 

than 0.5 mm (Figure III.10a). However, there are four images (marked using red numbers 1 through 4) that 

are located outside of a margin of 2.5 standard deviations. These large surface distances indicate that at 

least one of the methods failed with these images. For the ventricle volumes, a strong linear correlation was 

found except in seven outlier volumes (marked using green numbers 4 through 11) (Figure III.10b). Thus, 

a total of 11 failed volumes were automatically detected. The segmentations and surfaces of the failures for 

these subjects are shown in Figure III.11 (red outliers) and Figure III.12 (green outliers). The global failures 

 
Figure III.10 This figure shows the average surface distance (ASD) between different methods and 
the correlation of lateral ventricle size for the population of elderly subjects. (a) The ASD between 
MaCRUISE with CRUISE and FreeSurfer is less than 0.5 mm in most cases, but four outliers are 
found. (b) The size of lateral ventricle is plotted using FreeSurfer and MaCRUISE which identified 
seven more outliers. A total of 11 inconsistent outliers are detected where failures occured in one 
of the methods. We note that FreeSurfer systematically estimates smaller ventricle size than 
MaCRUISE in the outliers. 
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(in the red rectangles) occur in all 11 volumes for FreeSurfer and in two volumes for CRUISE. In contrast, 

we do not find any global failures from MaCRUISE. Therefore, none of the 11 failures are attributable to 

MaCRUISE. To complete the analysis, we visually inspected the surfaces and segmentations for the 

remaining 189 volumes and did not find any global failures for either MaCRUISE or the benchmark 

algorithms.  

 

 
Figure III.11 The four outliers from surface distance analysis are shown.  Both whole brain 
segmentations and cortical surfaces on axial slices are provided. The areas in red rectangles show 
the global failures in FreeSurfer whereas MaCRUISE did not exhibit any such failures. 
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4. Discussion 

MaCRUISE is an open framework that allows users to replace NLSS and TOADS with other multi-

atlas or fuzzy segmentation approaches. MaCRUISE+ is an example of replacing TOADS with Lesion-

TOADS (also available as open source), which incorporates the MaCRUISE framework in the case of 

pathology. MaCRUISE and MaCRUISE+ are publicly available as open source software through the JIST 

software package (http://www.nitrc.org/projects/jist/) [238, 239]. MaCRUISE is also implemented as a 

 
Figure III.12 The seven outliers from inconsistent lateral ventricle size are shown. Both whole 
brain segmentations and cortical surfaces on axial slices are provided. The areas in red rectangles 
show the global failures while the areas in yellow rectangles show the local inaccurate surfaces. 
MaCRUISE did not exhibit such failures in any images. 
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plugin called “PlugInsMaCRUISE” in CRUISE software. The source code is available using CVS access 

(www.nitrc.org:/cvsroot/toads-cruise).  

While FreeSurfer has been widely used and is regarded as the de facto standard method for 

generating whole brain segmentations and cortical surface locations, FreeSurfer failed globally in about 5% 

of older adult populations from a BLSA sample dataset. Even though manual correction would probably 

address these failures, the time required for manual correction makes it undesirable. Compared with 

FreeSurfer, the proposed MaCRUISE achieves (1) greater robustness in older populations, and (2) 

comparable accuracy on normal healthy images. To the best of our knowledge, this is the first work that 

integrates multi-atlas segmentation into cortical reconstruction. Moreover, the perspective of using multi-

atlas segmentation and the proposed consistency adjustment approaches could be integrated into FreeSurfer, 

which might improve the robustness of FreeSurfer on older adult populations. The statistical analyses using 

both paired t-test and effect size analyses indicate a lack of evidence for systematic differences (p>0.05 or 

d<0.5) between MaCRUISE and CRUISE when examining datasets on which CRUISE has been validated. 

Therefore, the proposed MaCRUISE achieves comparably accurate cortical surfaces compared with the 

CRUISE method while providing consistent whole brain segmentation when the original CRUISE method 

does not. 

Consistency is another essential challenge in clinical and scientific analyses of MR brain images. 

MaCRUISE establishes consistent brain segmentation and cortical surfaces by combining multi-atlas 

segmentation with cortical reconstruction. However, the naive strategy of directly deploying CRUISE after 

NLSS (NLSS+CRUISE) did not yield accurate surfaces. With the specific contributions of this work (i.e., 

segmentation fusion, MaACE, and CCSE), MaCRUISE improves both surface and volumetric accuracy 

(Figure III.9).  

While MaCRUISE shows great promise for consistent multi-atlas segmentation and cortical 

reconstruction, there are certain areas that warrant further investigation. We used NLSS framework as the 

multi-atlas segmentation algorithm and employed TOADS as the fuzzy segmentation approach. Since the 

two different segmentation methods are conducted independently, inconsistency exists between their 
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segmentations. To reconcile the inconsistency, the segmentation fusion method is used in the MaCRUISE. 

While this is highly successful, we do not claim optimality of using NLSS and TOADS. Using other multi-

atlas or fuzzy segmentation methods might yield a better performance when establishing consistent multi-

atlas segmentation and cortical reconstruction. Since the proposed method is an open framework, users are 

encouraged to explore methods other than NLSS and TOADS freely. Recently, [240] indicated that the 

Advanced Normalization Tools (ANTs) based framework achieved a higher predictive performance than 

FreeSurfer by evaluating thickness-based prediction of age and gender. Such analyses of predictive power 

are relevant, but depend heavily on the population context. For example, a method that exaggerated aging 

effects would have greater power to detect aging, but could be less accurate in an absolute sense and 

potentially less useful when aging is not an effect of interest. Examining predictive power of MaCRUISE 

versus other approaches would be a valuable direction for further investigation. 

There are potential drawbacks in the presented MaCRUISE approach. First, the robustness of multi-

atlas segmentation framework comes at the cost of computational complexity from both expensive non-

rigid registration and non-local correspondences calculations. Empirically, MaCRUISE typically takes 

approximately 38 h. This is broken up into  NLSS framework (≈36 h), TOADS segmentations (≈1 h) and 

cortical reconstruction (≈1 h) on a single core of an Intel Xeon W3550 4 Core CPU (64 bit Ubuntu Linux 

14.04). As a result, MaCRUISE has much greater time complexity than CRUISE (<2 h) or FreeSurfer (<15 

h) on the same machine. Recently, a learning based multi-atlas framework called multi-atlas learner fusion 

(MLF) has been proposed to reduce the time that multi-atlas segmentation requires to less than 10 min 

[149]. Replacing the NLSS by MLF would be a promising way of reducing the total computing time of 

MaCRUISE to less than 3 h. Second, both the multi-atlas segmentation and TOADS results are functions 

of the imaging sequence and are thus biased based on the sequence [241]. Contrast synthesis may become 

an important approach to ensure performance across imaging sequences e.g., following [242]. Third, the 

cortical surfaces derived between subjects do not have pre-defined correspondence, which necessitates 

surface and/or image registration. Finally, we do not claim the optimality of the number of atlases used in 
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the experiments. Fifteen atlases were chosen based on our previous experience with the collection of 45 

available atlases [92, 149]. Users may wish to optimize the number of atlases for their application via cross-

validation or bootstrapping [203]. 

5. Conclusion 

Herein, we introduced MaCRUISE, a novel consistent whole brain segmentation and cortical 

surface reconstruction approach using multi-atlas segmentation. MaCRUISE achieved greater robustness 

on T1w MRI images from older adults than FreeSurfer without compromising on the accuracy of normal 

healthy images. MaCRUISE achieves significantly greater volumetric accuracy than solely using NLSS 

multi-atlas segmentation. MaCRUISE+ established consistent cortical surfaces and volumetric 

segmentations for images with WM lesions. 

From landmark based surface validation, we demonstrated that MaCRUISE achieved consistent 

whole brain multi-atlas segmentation and cortical reconstruction (Figure III.7) without compromising 

accuracy (Error! Reference source not found. and Table III.2) since the differences between MaCRUISE 

and the benchmark algorithms are either “trivial” (d<0.2) or “small effect” (d<0.5). MaCRUISE+ was 

similarly accurate (Error! Reference source not found. and Table III.4) and provided consistent whole 

brain segmentations (Figure III.8). MaCRUISE allows users to control the consistency level between whole 

brain segmentations and reconstructed surfaces using the consistency coefficients ߙ and ߚ. The refined 

segmentations achieved robust improvements on a wide range of different ݏ′ߙ and ݏ′ߚ (0 mm to 1 mm) 

compared to NLSS (Figure III.9). Finally, by evaluation of gross failures on a collection of 200 volumetric 

images from older adults, MaCRUISE is more robust to errors in surface segmentation than CRUISE or 

FreeSurfer (Figure III.10, Figure III.11 and Figure III.12). In all cases, MaCRUISE achieved consistent 

segmentations of the cortical surface and all brain labels, which was not the case for either CRUISE or 

FreeSurfer.  
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Chapter IV. Improved Stability of Whole Brain Surface Parcellation with 

Multi-atlas Segmentation 

1. Introduction 

Mapping the anatomical and functional relationships in the human brain is essential for image-

based brain mapping. Detailed and consistent whole brain volume segmentation and surface parcellation 

provide the tools to establish such relationship by classifying the brain tissue and cortex into different 

functional regions. Many previous efforts have been proposed to perform the whole brain segmentation or 

surface parcellation; however, only few works provided consistent whole brain segmentation and surface 

parcellation [58-60]. FreeSurfer has been widely accepted as the de facto standard for consistent whole 

brain segmentation and surface parcellation using “surface-to-volume” strategy [59, 106, 111]. Recently, 

another “volume-to-surface” approach called multi-atlas cortical reconstruction using implicit surface 

evolution (MaCRUISE) was proposed to establish the consistent and robust whole brain segmentation and 

showed its advantages in certain aspects [225, 243]. MaCRUISE combined the multi-atlas segmentation 

(MAS) [153] with the Cortical Reconstruction using Implicit Surface Evolution (CRUISE) surface 

reconstruction [58] to achieve the consistent volume segmentation and cortical surfaces. Although it 

performed detailed volume segmentation (with 132 labels) and reconstructed consistent cortical surfaces, 

the MaCRUISE approach did not provide the cortical surface parcellatio. To understand the human 

anatomical and functional relationships, more regional features from cortical surfaces (e.g., area, thickness, 

curvature) are appealing to quantify brain anatomy for population analyses [150, 244, 245]. This work is 

motivated by the previous learning based surface parcellation methods [210, 246-248].  

Herein, we extend the MaCRUISE method to MaCRUISE surface parcellation (MaCRUISEsp) by 

developing the volume segmentation based surface parcellation (VSBSP) and topological correction 

functionalities (Figure IV.1). MaCRUISEsp has following advantages: (1) The parcellated central surface 

(located inside the gray matter) was provided along with the traditional inner surface (white matter surface) 
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and outer surface (pial surface). The parcellated surfaces have been used in a recent gray matter based DTI 

mapping method [249]. (2) 98 cortical labels were provided by MaCRUISEsp for inner, outer and central 

surfaces respectively. To validate the method, 42 T1-weighted (T1w) MR volumes (21 scan-rescan 

longitudinal pairs from Kirby21 dataset [250]) were used. The proposed method achieved 0.94 on median 

Dice similarity coefficient (DSC) for central surface parcellation and superior performance on inner surface 

parcellation compared with FreeSurfer. 

 

2. Method 

2.1. Multi-atlas Segmentation based Surface Reconstruction 

The input image of the entire processing pipeline was a single T1w brain magnetic resonance image 

(MRI). First, non-local spatial STAPLE (NLSS) multi-atlas segmentation framework was used to achieve 

whole brain segmentation[153]. Then, the MaCRUISE approach was deployed on the target image to obtain 

consistent whole brain segmentation and cortical surface reconstructions [225, 243]. From MaCRUISE, the 

 
Figure IV.1 The motivation of MaCRUISEsp was to provide quantitative surface labels for 
MaCRUISE surfaces. 
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inner, central, and outer surfaces were reconstructed, which were spatial consistent with volumetric 

segmentation (Figure IV.2).   

2.2. Volume Segmentation Based Surface Parcellation 

The central surface was parcellated from the whole brain volumetric segmentation. Briefly, we 

propagate volume labels to the central surface using the nearest label projection. For each vertex on the 

surface, the corresponding volumetric cortical label was assigned as the label of such vertex. This process 

was performed on all vertices to get the entire central surface parcellated. Since the central surface were 

bounded in the gray matter (GM), each vertex on the central surface were assigned a cortical label (rather 

than white matter or background labels). The BrainCOLOR atlas/protocol [170] was used in the proposed 

MaCRUISEsp framework to parcellate each surface to 98 cortical labels.  

2.3. Topological Correction 

In the BrainCOLOR protocol, each label represented a brain region with one connected component 

(OCC). However, after propagating the volumetric labels to surfaces, the OCC was not always ensured due 

to the topological mismatch. Therefore, the topological correction (TC) step was introduced to ensure each 

surface label to be an OCC. First, we detect the number of components of each label using “trimesh2” 

software (http://gfx.cs.princeton.edu/proj/trimesh2/). Then, all components on the surfaces (except the 

largest one) were marked as “need to fix”. After repeating the previous steps for all labels, we marked all 

non OCC vertices as “need to fix” and fixed all of them using an iterative nearest neighbor filling strategy 

described in [234]. In each iteration, the remaining “needs to fix” vertices were filled by the most commonly 

occurring surface labels around their neighbor as the following equation: 
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ప෡ܮ  = argmax௡ ෍ ௞ܮ) == ݊)௞∈ఊ(௜) , ݊ ∈ [1,2,3 … , ܰ] (4.1) 

where ݇ indicates the indices of the labeled voxels (with the label ܮ௞) around the unlabeled voxel ݅. The ݊ 

represents all possible ܰ cortical labels. After the topological correction, the central surface was corrected 

to OCC for each label. 

 
Figure IV.2 Work flow of MaCRUISEsp. (1) MaCRUISE was deployed on a single T1w MRI 
volume to achieve consistent whole brain segmentations and cortical surfaces (inner, central and 
outer). (2) Surface parcellation was performed on central surface using volume segmentation based 
surface parcellation (VSBSP). (3) The topological correction is conducted to ensure the one 
connected component (OCC) for each surface region. (4) The inner and outer surfaces were 
parcellated on by propagating the labels from central surfaces. Finally, 98 cortical labels were 
assigned for each surface. 
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2.4. Surface Label Propagation 

After previous steps, the central surface was parcellated and corrected. Then, the inner and outer 

surfaces were parcellated by propagating the labels from the central surface. For each vertex on inner (or 

outer) surface, the label was propagated from another vertex on central surface, who had the smallest 

Euclidean distance to inner (or outer) vertex. To handle the label propagation on the back to back cortical 

surfaces with narrow sulcus, central vertices outside (inside) the normal plane of the vertices on the inner 

(outer) surfaces were considered in the distance calculation. Particularly, the nearest searching was 

restricted by the normal half of the plane that perpendicular to the norl direction.  

3. Experiments 

3.1. Data 

42 T1w MPRAGE MRI volumes (21 scan-rescan patients) from Kirby21 dataset [250] were used 

in the empirical validation to evaluate the reproducibility of the proposed MaCRUISEsp framework. The 

cohort consists of 11 male and 10 female patients, were collected from 3T Philips Achieva scanner with 

parameters: TR = 6.7 ms, TE=3.1 ms, resolution (RS) = 1.0 × 1.0 × 1.2mmଷ and the field of view (FOV) 

= 240 × 204 × 256mm.  

3.2. Experiments 

The MaCRUISEsp pipeline (Figure IV.3) was deployed on the dataset. Then the Dice similarity 

coefficient (DSC) was calculated on the parcellated scan-rescan whole brain surfaces. Briefly, each rescan 

surface was registered to the scan surface using rigid registration. Then the correspondence of vertices on 

the paired surfaces were established using the closest point matching. Finally, the DSC was derived by 

dividing the number of matched vertices by the average number of the vertices on the registered scan-rescan 

surfaces. The Wilcoxon signed rank test [175] was used for statistical analyses.  All claims of statistically 

significance in this paper are made using the Wilcoxon signed rank test for p < 0.01.  
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4. Results 

The qualitative results (Figure IV.3) as well as the quantitative results (Figure IV.4) on the 

registered scan-rescan surfaces were demonstrated. In Figure IV.4, the reproducibility results on inner and 

outer surfaces using FreeSurfer Destrieux 2009 atlas were employed as the baseline performance. Note that 

in FreeSurfer, the Destrieux atlas has fewer labels (75 labels) on surfaces compared with the BrainCOLOR 

atlas (98 labels) in MaCRUISEsp framework, which would bias FreeSurfer toward larger ROIs and higher 

DSC. The Pearson correlation results (surface area and cortical thickness) across 21 scan-rescan pairs for 

all cortical labels were provided in the Figure IV.5.   

 

 
Figure IV.3 Qualitative reproducibility results on the surface parcellation between a randomly 
selected scan-rescan patient using MaCRUISEsp.  
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Figure IV.4 Quantitative segmentations results on the surface parcellation for the entire Kirby21 
cohort. The reproducibility on inner and outer surfaces using FreeSurfer’s Destrieux 2009 atlas 
(75 labels) were employed as the baseline. The MaCRUISE+VSBSP method as well as the 
MaCRUISEsp (MaCRUISE+VSBSP+TC) method using BrainCOLOR atlas (98 labels) were 
presented. The symbol “*” indicated the differences are significant for the Wilcoxon signed rank 
test for p < 0.01. 

 
Figure IV.5 The reproducibility of surface metrics (surface area and cortical thickness) were 
shown. The Pearson correlation values for four metrics on each label were shown in the left panel. 
The color of each label corresponds to the Pearson correlation value showed in the color bar. Then, 
the qualitative results of all labels were shown as the boxplot in the right panel. 
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5. conclusion and Discussion 

We present the MaCRUISEsp method for the whole brain surface parcellation. From the 

experimental results, the “volume-to-surface” strategy with topological correction provided us 0.95, 0.92 

and 0.85 median DSC for central surface, inner surface and outer surface respectively (Figure IV.4). The 

results showed that the MaCRUISEsp provided the central surface parcellation, which not was typically 

provided by FreeSurfer. With topological correction, the MaCRUISEsp obtained the generally better 

reproducibility than without using topological correction. The proposed methods achieved significantly 

higher reproducibility than FreeSurfer on inner surface parcellation while the FreeSurfer achieved 

significantly higher reproducibility than the proposed methods on the outer surface parcellation. Note that 

the comparison was made in the situation that more labels were provided by MaCRUISEsp (98 labels) 

compared with FreeSurfer (75 labels). For a more thoughtful analysis, the reproducibility on the surface 

metrics were provided in Figure IV.5. Qualitatively, the results from proposed methods were encouraging, 

but are not directly comparable to FreeSurfer as the two approaches use different definitions of cortical 

labels.
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Chapter V. Data-driven Probabilistic Atlases Capture Whole-brain 

Individual Variation 

1. Introduction 

Probabilistic atlases play important roles in understanding the spatial variation of brain anatomy, 

in visualization, and in the processing of data. The basic framework of making probabilistic atlases is to 

bring the image data from the selected subjects into an atlas space by rigid or non-rigid registration [251]. 

Then, probabilistic maps are generated by averaging the segmentations of regions from a specific group of 

subjects with similar demographic data, such as age, sex and from the same site. However, the inter-subject 

variability is normally larger than the inter-group variability, which causes the group-based scheme to fail 

to capture a great deal of individual variation.  

To overcome the large inter-subject variability, Commowick et al. proposed the “Frankenstein's 

creature paradigm” to build a personal specific anatomical atlas for head and neck region [71]. The 

paradigm first selected regional anatomical atlases based on a training database then merged them together 

into a complete atlas. However, this framework cannot be directly applied on making probabilistic atlases 

since each probabilistic atlas is averaged from a group of segmentations. Moreover, compared with the 105 

CT images used as the database in Commowick’s framework, we employ 2349 heterogeneous MRI images 

in our framework. 

In this chapter, we propose a large-scale data-driven framework to learn a dictionary of the whole 

brain probabilistic atlases (132 regions) from 1888 heterogeneous 3D MRI training images. The novel 

contributions of this chapter are (1) providing a new data-driven perspective of making whole brain 

probabilistic atlas, (2) generating the more accurate personal specific probabilistic atlases by using the 

large-scale data from different groups and even different sites, and (3) achieving low computational cost of 

applying the learned dictionary on new subjects.  

2. Data 
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The complete dataset aggregates 9 datasets (7 are publicly available), with a total 2349 MRI T1w 

3D images obtained from healthy subjects. The 2349 images are divided to 1888 training datasets and 431 

testing datasets based on the site and demographic information. The entire 1888 training images are used 

to train the data-driven framework called “Training Set 1888”. A subset of 720 training images called 

“Training Set 720” are employed to generate group atlases. The 431 testing datasets are selected with at 

least 15 available withheld subjects in each group.  

3. Methods  

The proposed data-driven framework consists of two main portions. First, a dictionary is learned 

by the training data (Figure V.1). Second, the learned dictionary is applied to a new subject by affine 

alignment to MNI space (Figure V.2). 

3.1. Get Regional Segmentations and Point Distribution Model 

All 720 training subjects were first affinely registered [89] to the MNI305 atlas [171]. Then, a state-

of-the-art multi-atlas segmentation (including atlases selection, pairwise registration [88], label fusion [92] 

and error correction [173]) was performed on each subject. 45 MPRAGE images from OASIS dataset were 

used as original atlases which are manually labeled with 133 labels (132 brain regions and 1 background) 

by the BrainCOLOR protocol [170]. Here, we define ௜ܵ as the whole brain segmentations with 133 labels 

and the ݅ ∈ {1,2 … ,720} represent different subjects.  

Then, a mean segmentation ܵ̅ is generated from all { ௜ܵ}௜ୀଵ,ଶ,…,଻ଶ଴ by majority vote label fusion. 

Since the ܵ̅ is smooth, it is a good template of making surface meshes for 132 regions. When the meshes 

are generated, the vertices തܸ ௞ on the mean segmentation ܵ̅ can be propagated to individual segmentations 

[252]. We non-rigidly register each ௜ܵ  to ܵ̅  and get the diffeomorphism ߶௜(∙)  [88]. The inverse 

transformation ߶௜ି ଵ(∙) is used to propagate the തܸ ௞ back to individual vertices ௜ܸ௞ (Figure V.1).  
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3.2. Clustering 

The Affinity Propagation (AP) clustering method [253] was used to cluster the similar segmentations by 

using the ௜ܸ௞ as features. The advantage of AP clustering is it can adaptively cluster the samples into a 

number of clusters without providing the number of clusters. For region ݇, the negative mean Euclidian 

distance ݀௞(݅, ݆) between vertices ௜ܸ௞ and ௝ܸ௞ is used as the similarity measurement for AP clustering,  

݀௞(݅, ݆) = − ௞ܯ1 ෍ ฮݒ௜,௠௞ − ௝,௠௞ݒ ฮଶெೖ
௠ୀଵ  (5.1)

where the ݒ௜,௠௞  and ݒ௝,௠௞  are the ݉௧௛ vertex in the vertices ௜ܸ௞ and ௝ܸ௞. ܯ௞ is the size of the vertices ௜ܸ௞ or 

௝ܸ௞. Typically, 7~20 reliable clusters are generated for each region.  

3.3. Learn Dictionary 

3.3.1. For One Region 

The regional anatomical atlases ܣ௖௞ are the “dictionary index” and the regional probabilistic atlases 

 

Figure V.1 Flowchart of training a data-driven dictionary of whole brain probabilistic atlas. 
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௖ܲ௞ corresponding “dictionary target” (red rectangular in Figure V.1). First, the regional probabilistic atlases 

௖ܲ௞ for the cluster ܿ is obtained by averaging the segmentations that belong to that cluster.  

௖ܲ௞ = ௖ܮ1 ෍ ௜ܵ௞ , ௖ܶ = ௖ܮ1 ෍ ,௜ܫ ݈݈ܽ ݅ ∈ ݎ݁ݐݏݑ݈ܿ ܿ (5.2)

where ௜ܵ௞  is the segmentation of region ݇  from subject ݅  and ܮ௖  is the number of segmentations in the 

cluster ܿ. The anatomical atlases for each cluster are found by (2) and ܫ௜ is the whole brain anatomical image 

from subject ݅.  
However, as shown in Figure V.1, each ௖ܶ is a whole brain anatomical atlas rather than a regional 

anatomical atlas for region ݇. So, we need to extract the target area for region ݇ by a reasonable mask ܯ௞. 

To get the mask ܯ௞ , we (1) average all { ௖ܲ௞}௖ୀଵ,ଶ,…,஼  to തܲ௞  (2) obtain the ݇ܯ  by setting the 

threshold തܲ௞  > 0.01. The obtained mask will be much larger than any individual segmentation, which 

covers the potential spatial locations of region ݇. 

Finally, we apply the mask ܯ௞ on every ܶܿ to get a regional anatomical atlas ܣ௖௞ 

௖௞ܣ = ௖ܶ° ௞ (5.3)ܯ

The masked ܣ௖௞ is corresponding to the regional probabilistic atlas ௖ܲ௞. 

3.3.2. For Whole Brain 

We repeat the “For One Region” steps 132 times (for all regions except background) to get the 

whole brain dictionary as shown in the lower left part of Figure V.2.  
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3.4. Apply Dictionary on New Subjects 

To efficiently establish an individual whole brain probabilistic atlases, each target subject is 

affinely aligned [89] to the MNI305 atlas to get ܫ௜ (Figure V.2). Then, the regional intensity ܤ௜௞ can be 

masked out by  

௜௞ܤ = °௜ܫ ௞ (5.4)ܯ

By comparing the ܤ௜௞ to our learned dictionary, the index can be obtained by finding the most 

correlated regional anatomical atlas ݇ܿܣ .  The correlation metrics used here is the Pearson correlation.  Once 

the index ܿ݉ܽݔ is found, the corresponding ௖ܲ೘ೌೣ௞  is  chosen as the regional probabilistic atlas for the new 

subject. ܿ௠௔௫௞ = arg max௖ ,௖௞ܣ൫ݎݎ݋ܿ ,௜௞൯ܤ ܿ ∈ {1,2, … , (5.5) {ܥ

Repeating equations (4) and (5) for all regions, we find the 132 most correlated regional 

probabilistic atlases for the new subject.  

Figure V.2 Flowchart of applying the dictionary to customize a probabilistic atlas for a new subject. 
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3.5. Normalize to Whole Brain Atlas 

Since the regional probabilistic atlases were chosen independently, the total probability for a voxel 

might be larger or smaller than 1. To normalize them to a complete set of whole brain probabilistic atlases, 

we employed a whole brain tissue probabilistic mask ܯ௧from 1888 training image which contains the voxels 

with tissue probability greater than 0.05. For each voxel (ݔ, ,ݕ  ௧, the 132 regionalܯ within the mask (ݖ

probabilistic atlases are normalized to 1; otherwise we keep it untouched. 

෠ܲ௞(ݔ, ,ݕ (ݖ = ۔ۖەۖ 
ۓ ௖ܲ೘ೌೣೖ௞ ,ݔ) ,ݕ ∑(ݖ ௖ܲ೘ೌೣೖ௞ ,ݔ) ,ݕ ଵଷଶ௞ୀଵ(ݖ ,ݔ ,ݕ ݖ ∈ ݊݅ܽݎܾ ݇ݏܽ݉  ௧ܯ

௖ܲ೘ೌೣೖ௞ ,ݔ) ,ݕ (ݖ ݁ݏ݅ݓݎℎ݁ݐ݋  (5.6)

Last, the probability of background ෠ܲ଴(ݔ, ,ݕ  is obtained by (ݖ

෠ܲ଴(ݔ, ,ݕ (ݖ = 1 − ෍ ෠ܲ௞(ݔ, ,ݕ ଵଷଶ(ݖ
௞ୀଵ  

(5.7)

The set of { ෠ܲ௞(ݔ, ,ݕ  ௞ୀ଴,ଵ,ଶ,…,ଵଷଶ is the normalized data-driven whole brain probabilistic atlases{(ݖ

for the new subject. For each voxel in the whole brain probabilistic atlases, the total probability of 132 

labels and background is 1. 

4. Experimental Results 

Two metrics are employed in the experiments. First, the Jensen-Shannon (JS) divergence is used 

to assess the spatial similarity between the probabilistic atlases and the target segmentations for each testing 

subject [254]. Here, the “target segmentations” means the multi-atlas segregations for the withheld testing 

images and the manual segmentations for the OASIS images. The smaller JS divergence value is, the more 

similar the two spatial distributions are. So, smaller is the better for JS. 

Second, to compare the different probabilistic atlases more intuitively, we apply “naive 

segmentation” on whole brain by choosing labels with the highest probability for each voxel. Notice that 

we are not providing a novel segmentation algorithm. Instead, we compare the spatial accuracy of different 

probabilistic atlases by using the naïve segmentation since this approach is entirely depending on the 
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probability. Then, the Dice similarity measures the overlaps between the naive segmentations and the target 

segmentations.  

All statistical significance tests are made using a Wilcoxon signed rank test (p<0.01). Creating a 

whole brain probabilistic atlas for a new subject can be done with 1 rigid registration and 12 seconds of 

CPU time (Xeon W3520 2.67GHz). 

4.1. Evaluation by Withheld Testing Data 

Figure V.3 and Figure V.4 show the results by using withheld testing subjects. The green boxplots 

represent the average JS or Dice values by applying the probabilistic atlases from all the other 17 group 

atlases for one testing subject. The blue, red and orange boxplots show the JS or Dice values by using the 

corresponding group probabilistic atlases, data-driven probabilistic atlases from Training Set 720 and from 

Training Set 1888. 

 

Figure V.3 and Figure V.4 demonstrate that the data-driven atlases match the target segmentations 

significantly better than the traditional group based atlases with the significantly smallest JS divergence 

and greatest Dice values while the atlases from other groups perform the worst. Moreover, for the data-

driven atlases with two different numbers of training images, the large-scale Training Set 1888 performs 

significant better than Training Set 720 for both JS divergence and Dice similarities. 

Figure V.3 Jensen-Shannon divergence. The comparisons of JS divergence for different atlases are all 
significantly different for both withheld and OASIS testing images. 
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To conclude, (1) the group based atlases perform significantly better than the atlases from other 

groups which demonstrates the group-based framework is able to control the inter-group variability; (2) our 

proposed data-driven framework produced the more accurate probabilistic atlases than group based atlases 

by capturing the individual variance; (3) by using the large-scale training data, the performance of data-

driven framework is improved significantly. 

 Evaluation by OASIS Data 

45 subjects from OASIS dataset with manual segmentations are used for 44 leave one tests. The data-driven 

probabilistic atlases are obtained from the learned dictionary. The right hand panel of results in Figure V.3 

and Figure V.4 show that the results of manual segmentations repeat the finding in previous section 

Moreover, we show one testing subject (slice z = 75 in MNI space from 3D image) from the OASIS 

dataset in Figure V.5. By comparing with the manual segmentations for 6 regions, it shows that the data-

driven atlases match the true segmentations more accurately than the group atlases. Moreover, the large-

scale Training Set 1888 matches the manual segmentation better than the smaller Training Set 720.  

5. Discussion 

Figure V.4 Dice similarity. The comparisons of Dice value for different atlases are all significant for 
both withheld and OASIS testing images except the IXI-HH group marked by “Ø”. 
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We present a data-driven framework to learn a dictionary of whole brain probabilistic atlases and apply it 

on newly seen subjects to achieve accurate individualized whole brain probabilistic atlases. This framework 

(1) provides a new perspective of using data-driven scheme rather than the traditional group based methods, 

(2) uses the large-scale heterogeneous data to achieve more personal specific probabilistic atlases than using 

the single-group and single-site data by capturing the individual variation (3) demonstrates the advantages 

of using large-scale scheme in generating personal probabilistic atlases compared with the smaller size of 

training images, and (4) only requires one affine registration and Pearson correlations for applying the 

learned dictionary on a new subject which achieves low computational cost.  

Due to the higher accuracy and low computational cost, the proposed data-driven personal specific 

probabilistic atlases are able to replace the traditional group based atlases when used as the priors in many 

medical image processing algorithms and applications.

Figure V.5 One testing subject from OASIS dataset. Top row shows the anatomical image, manual 
segmentation, highest probability segmentations using the group probabilistic atlases, Training Set 
720 and Training Set 1888. The lower rows show the details of 6 regions. For each region, from left to 
right are: anatomical image, manual segmentation, probabilistic atlases generated by different 
methods and their overlays on manual segmentations. 
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Chapter VI. Simultaneous Total Intracranial Volume and Posterior Fossa 

Volume Estimation using Multi-atlas Label Fusion 

1. Introduction 

Total intracranial volume (TICV), the volume inside the brain cranium, is the total volume of gray 

matter (GM), white matter (WM), cerebrospinal fluid (CSF) and meninges [112]. In volumetric analyses, 

many inter-subject differences can be explained by differences in head size [61]. To reduce variability, 

TICV has been widely used as a covariate in regional and whole brain volumetric analyses [61-67]. 

Compared with whole brain volume (WBV) [68], TICV is often preferred since it provides an estimation 

of premorbid brain size [69, 70]. 

Manual delineation of the cranial vault is the gold standard for measuring TICV from magnetic 

resonance (MR) images [63]. However, this labor-intensive and time-consuming procedure is impractical 

on large cohort. As a result, automatic TICV estimation methods are appealing. One family of methods 

directly applies the automatic skull-stripping techniques to TICV estimation for particular imaging 

modalities. In MRI, skull is dark while CSF is bright in some modalities (e.g., T2-weighted (T2w) and 

proton density (PD)). Therefore, the brighter CSF and brain tissues are able to be segmented from the darker 

skull using skull-stripping, and the total volume of the CSF and brain tissues are used as TICV. For instance, 

the brain extraction tool (BET) and the brain surface extractor (BSE) achieved accurate TICV estimation 

using PD images [255]. However, both skull and CSF are dark in other modalities (e.g., T1-weighted 

(T1w)), in which the skull-stripping techniques typically yield less accurate TICV estimations because of 

the low contrast between the CSF and skull. To derive accurate TICV estimation on such MR modalities, 

a number of approaches have been developed and evaluated [113-122]. Among these methods, three of the 

most prevalent are integrated in FreeSurfer (FS) [106], FMRIB Software Library (FSL) [117], and 

Statistical Parametric Mapping (SPM12). In FreeSurfer, the estimated TIV (eTIV) tool estimates TICV by 

investigating the affine transformation between target image and template [116]. The idea is that the TICV 
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volume is correlated with the determinant of the transform matrix (called “scaling factor”), which aligns a 

target image with a template. SIENAX, part of FSL, also provides a volumetric scaling factor as a 

normalization for head size [256]. This scaling factor is the determinant of scaling matrix from affine 

registration, which rescales the target image's skull to the template’s skull [257]. Therefore, FreeSurfer and 

FSL do not provide explicit skull/CSF boundaries (SCB) when estimating TICV. SPM provides two 

different approaches for TICV estimation (e.g., implemented in SPM5 and SPM8). The first approach, 

called the reverse brain mask (RBM) method, non-rigidly registers a TICV mask from template space to 

individual space [120, 258]. The second approach accumulates the tissue probabilities of GM, WM, and 

CSF in standard space using the “New Segment” toolbox [113, 259]. The first approach provides a TICV 

mask in individual space, however the second method produces more accurate TICV estimations [260]. 

More recently, the newly released SPM12 provides a new “Tissue Volumes” toolbox, which combines 

the advantages from two previous approaches in a unified framework [261]. As a result, SPM12 achieves 

superior TICV estimations compared with previous SPM versions [261]. However, the TICV value and the 

related SCB are provided in standard space by SPM12 rather than in individual space.  Extra efforts from 

the user side are required if the users want to achieve consistent TICV value and SCB in individual space. 

FreeSurfer, FSL and SPM12 are three of the most well validated and widely accepted TICV 

estimation software packages. However, none of them estimate TICV by counting the voxels inside skull 

(or SCB), which is a natural way of calculating TICV. The reason is that it is difficult to obtain adequate 

intensity contrast between skull and CSF in MR T1-weighted (T1w) images (assuming that the thickness 

of dura is negligible). To obtain the SCB, multispectral MR data (e.g., T2-weighted (T2w), proton density 

(PD)), with more clear skull evidence, have been combined with T1w images in TICV estimation [63, 115, 

120, 122]. However, it is still essential to measure TICV with explicit SCB using a single T1w image since: 

(1) T2w and PD images are not available in all datasets and T1w images are commonly available structural 

MR sequences. (2) TICV estimation with SCB not only leads to a natural way of obtaining TICV (count 

voxels inside skull) but also allows us to calculate sub-region volumes, e.g., posterior fossa volume (PFV), 
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which is essential in investigating cerebellum development, e.g., [262-264]. 

TICV estimation using STAPLE label fusion [96] has been proposed to derive SCB using a single 

T1w image [265]. However, the STAPLE label fusion algorithm has shown limitations [266], which have 

led to extensions of STAPLE [92, 172, 267-274]. Recently, an improved method called Non-local Spatial 

STAPLE (NLSS) label fusion, a combination of Spatial STAPLE [172] and Non-local STAPLE (NLS) 

[92], has shown advantages over STAPLE, Spatial STAPLE and NLS in brain segmentation [149, 151, 

272, 275, 276], optic nerve segmentation [277-280] and spinal cord segmentation [281]. Therefore, using 

NLSS in TICV estimation is promising as it takes both spatial varying performance and non-local intensity 

correspondence into account. Although the NLSS method has been successfully applied in different 

applications, its mathematical derivation has not been published yet, which hinders other researchers 

seeking to implement and use NLSS methods. 

In this chapter, we proposed to use NLSS approach to estimate TICV and PFV simultaneously from 

a single MR T1w image. The main contributions of this work are: (1) TICV and PFV are simultaneously 

obtained with explicit SCB. (2) We develop TICV and PFV labels for 45 images of the widely used OASIS 

dataset under BrainCOLOR protocol [170, 228] and make a subset freely available online 

(https://www.nitrc.org/frs/?group_id=385). (3) This the first journal appearance of NLSS method with 

detailed mathematical derivation. In the multi-atlas segmentation framework, the pairs of T1w images and 

TICV labels (atlases) are essential [203]. Normally, atlases are obtained by labor-intensive manual tracing. 

However, since skull has much higher Hounsfield unit (HU) than other brain tissues [282], we speed up the 

atlas generation using a semi-manual strategy to obtain TICV and PFV labels using a dataset with 20 paired 

MR and CT images. Then, the TICV and PFV labels are propagated to the BrainCOLOR atlases [170, 228] 

by deploying NLSS multi-atlas segmentation. From leave-one-out evaluations and reproducibility analyses, 

the NLSS TICV estimation method demonstrates its advantages compared with FreeSurfer, FSL, SPM12 

and a previously proposed STAPLE TICV estimation approach. The new TICV and PFV labels in OASIS 

BrainCOLOR atlases provide acceptable performance, which enables simultaneous whole brain 

segmentation as well as TICV and PFV estimation without conducting additional time-consuming non-
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rigid registrations. Moreover, NLSS tool is publically available as open source software through the JIST 

software package (http://www.nitrc.org/projects/jist/) [238, 239].  

2. Theory 

The derivation of NLSS closely follows Spatial STAPLE [172] and NLS [92], which use 

Expectation-Maximization (EM) framework [283, 284]. The majority of the derivations of STAPLE), 

Spatial STAPLE, and Non-Local STAPLE are left to their original works, but they are described briefly in 

this work. The notation follows STAPLE [96]. 

2.1. Problem Definition 

A target gray-level image with ܰ voxels is represented as ܫ ∈ ℝே×ଵ. The corresponding latent true 

segmentation for the target image is given by ܶ ∈ {0,1, … , ܮ − 1}ே×ଵ, where {0,1, … , ܮ − 1} represents ܮ 

possible labels for a given voxel ݅ (݅ ∈ {1,2, … , ܰ}). Since T is unknown, the labels for the target image are 

estimated using ܴ pairs of atlases with intensity values ܣ ∈ ℝே×ோ  and label decisions ܦ ∈ {0,1, … , ܮ −1}ே×ோ. In STAPLE family of approaches, the label fusion problem is regarded as a probabilistic estimation 

of hidden true segmentation based on the performance of multiple atlases. The performance parameter  ߠ௝௦ᇲ௦ 

indicates the probability that observed label is ݏᇱ given that the true label is ݏ for atlas ݆ (݆ ∈ {1,2, … , ܴ}).  

All ߠ௝௦ᇲ௦, can be written as a matrix ߠ ∈ [0,1]ோ×௅×௅, called performance parameters. The "[0,1]" indicates 

each ߠ௝௦ᇲ௦ satisfies 0 ≤ ௝௦ᇲ௦ߠ ≤ 1. 

2.2. STAPLE  

The full derivation of the STAPLE algorithm is available in [96]. Briefly, the goal of STAPLE is 

to select the performance parameters ߠ, such that they maximize the complete log-likelihood ߠ෠ = arg maxఏ ln (ߠ|ܦ)݂  (6.1) 

corresponding to the observed atlases ܦ and the unobserved latent true labels ܶ. Since ܶ is not 

available, the performance parameters are estimated through EM framework. In the E-step, the weight 
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variables ܹ(௞) ∈ [0,1]௅×ே are derived from ߠ(௞), where ௦ܹ௜(௞) represents the probability that the true label 

of voxel ݅  is ݏ  at iteration ݇  given ௦ܹ௜(௞)  ≡ ݂( ௜ܶ = ,ܦ|ݏ ((௞)ߠ . Applying Bayes’ rule and the assumed 

conditional independence between atlases, ܹ(௞) for a particular voxel and label is given by 

௦ܹ௜(௞) = ݂( ௜ܶ = (ݏ ∏ ݂ ቀܦ௜௝ = |ᇱݏ ௜ܶ = ,ݏ ∑௝(௞)ቁ௝ߠ ݂( ௜ܶ = ݊) ∏ ݂ ቀܦ௜௝ = |ᇱݏ ௜ܶ = ݊, ௝(௞)ቁ௝௡ߠ  (6.2) 

where ݂( ௜ܶ =  is the true label at ݅ and will be discussed later in this ݏ is the prior probability that label (ݏ

chapter. ݊  represents all existing labels while  ݆  represents all atlases. Using ߠ௝௦ᇲ௦(௞)  as the simplified 

expression of ݂(ܦ௜௝ = |ᇱݏ ௜ܶ = ,ݏ   ௝(௞)), the ௦ܹ௜(௞) can be rewritten asߠ

௦ܹ௜(௞) = ݂( ௜ܶ = (ݏ ∏ ∑௝௦ᇲ௦(௞)௝ߠ ݂( ௜ܶ = ݊) ∏ ௝௦ᇲ௡(௞)௝௡ߠ (6.3) 

The denominator is the partition function to force ∑ ܹ௦ ௦௜(௞) = 1.  

Following the derivation of [96], the M-Step maximizes performance parameters at the iteration ݇ + 1 as ߠ௝(௞ାଵ) = arg maxఏೕ ෍ lnൣܧ ݂൫ܦ௜௝ ห ௜ܶ , ௝൯ߠ ቚ ,ܦ ௝(௞)ቃ௜ߠ (6.4) 

which can be solved as 

௝௦ᇲ௦(௞ାଵ)ߠ = ∑ ௦ܹ௜(௞)௜:஽೔ೕసೞᇲ∑ ௦ܹ௜(௞)௜ (6.5) 

where ߠ௝௦ᇲ௦ ≥ 0 and ∑ ௝௦ᇲ௦ߠ = 1௦ᇲ . This process iteratively solves for the true data likelihood in the E-Step 

and updates the performance parameters in the M-Step.  

2.3. Spatial STAPLE 

Spatial STAPLE (SS) is an extension of the STAPLE algorithm where the performance parameters, ߠ, are calculated at each voxel [172]. The parameters are given by ߠ ∈ [0,1]ோ×ே×௅×௅, which correspond to 

performance parameters defined voxel-wise instead of globally. As a result, the E-step in Spatial STAPLE 
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is given by 

௦ܹ௜(௞) = ݂( ௜ܶ = (ݏ ∏ ∑௝௜௦ᇲ௦(௞)௝ߠ ݂( ௜ܶ = ݊) ∏ ௝௜௦ᇲ௡(௞)௝௡ߠ (6.6) 

which incorporates the spatially varying performance. ߠ௝௜௦ᇲ௦(௞)  is the simplified expression of  

௜௝ܦ)݂ = |ᇱݏ ௜ܶ = ,ݏ  ௝௜(௞)). The M-step follows the derivation of STAPLE, but since the degrees of freedomߠ

are a factor of ܰ higher than STAPLE, two extra extensions are included to account for the increased 

complexity. First, the performance parameters are binned over small pooling regions instead of a strictly 

voxel-wise derivation. Following [172], this is implemented by defining spatial pooling regions ܤ, where ܤ௜ is the index of the bin which voxel ݅ is contained in. Second, the performance is augmented by a non-

parametric prior ߠ௝(଴)  on the performance following [172] and [270]. This augmentation improves the 

stability of the performance parameters. Thus the M-Step is given by 

௝௜௦ᇲ௦(௞ାଵ)ߠ = ௝௦ᇲ௦(଴)ߠ௜௝௦ᇲߣ + ∑ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔∶஽೔ᇲೕୀ௦ᇲߣ௜௝௦ᇲ ∑ ௝௦ᇲ௦(଴)௦ߠ + ∑ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔ (6.7) 

where ∑ ௝௜௦ᇲ௦ߠ = 1௦ᇲ ௜௝௦ᇲߣ .  is a weighting parameter depends on the size of pooling region ܤ , which 

balances the prior and the updated probability. We derive ߣ௜௝௦ᇲ  using the same definition as [172].  

2.4. Non-Local STAPLE 

Non-local STAPLE (NLS) incorporates the image intensity from both the atlas images ܣ ∈ ℝே×ோ 

and target image ܫ ∈ ℝே×ଵ into the STAPLE framework using a patch-based non-local correspondence 

manner [92]. Patch-based non-local correspondence was initially introduced to account for registration 

inaccuracy [93]. NLS incorporates patch-based non-local correspondence into the STAPLE framework as 

follows. The E-Step is given by 

௦ܹ௜(௞) = ݂( ௜ܶ = (ݏ ∏ ∑ ௝௦ᇲ௦(௞)ߠ ∑௝௜ᇲ௜௜ᇲ∈ࣨ(௜)௝ߙ ݂( ௜ܶ = ݊) ∏ ∑ ௝௦ᇲ௡(௞)ߠ ௝௜ᇲ௜௜ᇲ∈ࣨ(௜)௝௡ߙ (6.8) 

ࣨ(݅) is a search neighborhood around voxel ݅ and ߙ௝௜ᇲ௜ is the non-local weighting between voxel 
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݅ in the target image at voxel ݅ᇱ on the ݆th atlas, within the search parameter ࣨ(݅). ߙ௝௜ᇲ௜ is given by 

௝௜ᇲ௜ߙ = 1ܼఈ exp ቌ− ฮ℘൫ܣ௜ᇲ௝൯ − ௜ଶߪฮଶଶ2(௜ܫ)℘ ቍ exp ቆ− ℰ௜ᇲ௜ଶ2ߪௗଶቇ (6.9) 

where ℘(∙) is the set of intensities within its patch neighborhood. In this definition, ฮ℘൫ܣ௜ᇲ௝൯ −  ฮଶଶ is(௜ܫ)℘

the L2-norm between the atlas patch centered at ݅′ and the target patch centered at ݅, ℰ௜ᇲ௜ଶ  is the Euclidean 

distance in physical space between ݅ and ݅ᇱ, ߪ௜  and ߪௗ  are the standard deviations for the intensity and 

distance weights respectively, and ܼ௔ normalizes ߙ to be a valid probability distribution for each atlas and 

target voxel. The M-Step for Non-Local STAPLE is  

௝௦ᇲ௦(௞ାଵ)ߠ = ∑ ቀ∑ ௝௜ᇲ௜௜ᇲ∈ࣨ(௜):஽೔ᇲೕୀ௦ᇲߙ ቁ ௦ܹ௜(௞)௜ ∑ ௦ܹ௜(௞)௜ (6.10)

which follows the original M-Step of STAPLE while incorporating non-local correspondence. 

2.5. Non-local Spatial STAPLE 

The Non-local Spatial STAPLE (NLSS) algorithm follows directly from the derivations of Spatial 

STAPLE and Non-local STAPLE. The NLSS algorithm defines the following performance level function ݂(ܦ, ,ܶ|ܣ ,ܫ (ߠ (6.11)

In the NLSS algorithm, ߠ is spatially varying as in Spatial STAPLE and non-local correspondence 

is used to account for registration errors. 

2.5.1. NLSS E-Step 

The E-Step of NLSS follows similar to the E-Step of STAPLE. First, Bayes' rule is applied as  

௦ܹ௜(௞) = ݂( ௜ܶ = ,ܦ)݂(ݏ |ܣ ௜ܶ = ,ݏ ,ܫ ∑(ߠ ݂( ௜ܶ = ,ܦ)݂(݊ |ܣ ௜ܶ௡ = ݊, ,ܫ (ߠ (6.12)

Following the expansions, this becomes 

௦ܹ௜(௞) = ݂( ௜ܶ = (ݏ ∏ ∑ ௝௜௦ᇲ௦(௞)ߠ ∑௝௜ᇲ௜௜ᇲ∈ࣨ(௜)௝ߙ ݂( ௜ܶ = ݊) ∏ ∑ ௝௜௦ᇲ௡(௞)ߠ ௝௜ᇲ௜௜ᇲ∈ࣨ(௜)௝௡ߙ (6.13)
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This derivation incorporates both the spatially varying performance parameters derived in Spatial 

STAPLE and the non-local correspondence derived in Non-local STAPLE. 

2.5.2. NLSS M-Step 

In M-step of NLSS, the previously calculated ௦ܹ௜(௞) is used to update ߠ௝௜(௞ାଵ) by maximizing the 

expectation of the log likelihood function as ߠ௝௜(௞ାଵ) = argmaxఏೕ೔ ෍ lnൣܧ ݂൫ܦ௝, ,௝|ܶ௜ᇲܣ ,௜ᇲܫ ,ܦ|௝௜൯ߠ ,ܣ ,ܫ ൧௜ᇲ∈஻೔(௞)ߠ  

= argmaxఏೕ೔ ෍ ෍ ௦ܹ௜ᇲ(௞)௦ ln ݂൫ܦ௝, ௝|ܶ௜ᇲܣ = ,ݏ ,௜ᇲܫ ௝௜൯௜ᇲ∈஻೔ߠ  

  = argmaxఏೕ೔ ෍ ෍ ௦ܹ௜ᇲ(௞)௦ ln ቌ ෍ ௝௜௦ᇲ௦௜ᇲᇲ∈ࣨ(௜ᇲ):஽೔ᇲᇲೕୀ௦ᇲߠ ௝௜ᇲᇲ௜ᇲቍ௜ᇲ∈஻೔ߙ  
(6.14)

Using a Lagrange ߣ Multiplier [285] with constrain ∑ ௝௜௦ᇲ௦ߠ = 1௦ᇲ  and setting the derivative equal 

to zero this becomes 

0 = ௝௜௡ᇲ௡ߠ߲߲ ቎ ෍ ෍ ௦ܹ௜ᇲ(௞)௦ ln ቌ ෍ ௝௜௦ᇲ௦௜ᇲᇲ∈ࣨ(௜ᇲ):஽೔ᇲᇲೕୀ௦ᇲߠ ௝௜ᇲᇲ௜ᇲቍ௜ᇲ∈஻೔ߙ + ߣ ෍ ௝௜௦ᇲ௦(௞ାଵ)௦ᇲߠ ቏ (6.15)

This equation can be solved as 

௝௜௦ᇲ௦(௞ାଵ)ߠ = ∑ ቀ∑ ௝௜ᇲᇲ௜ᇲ௜ᇲᇲ∈ࣨ(௜ᇲ):஽೔ᇲᇲೕୀ௦ᇲߙ ቁ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔ ∑ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔  (6.16)

Like Spatial STAPLE, the same whole-image implicit prior ߠ௝௦ᇲ௦(଴)  is introduced for computational 

and stability concerns [172]. The prior can be derived from a number of approaches (e.g. STAPLE [96], 

Majority Vote, Locally Weighted Vote [95], etc.). In our NLSS implementation, the Majority Vote while 

ignoring “consensus voxels” (i.e., voxels where all raters agree) is employed as default method [86]. This 

method ignores the consensus voxels when constructing the performance level parameters. Then, the final 

stable version of Eq. 5.16 is reformulated to 
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௝௜௦ᇲ௦(௞ାଵ)ߠ = ௝௦ᇲ௦(଴)ߠ௜௝௦ᇲߣ + ∑ ቀ∑ ௝௜ᇲᇲ௜ᇲ௜ᇲᇲ∈ࣨ(௜ᇲ):஽೔ᇲᇲೕୀ௦ᇲߙ ቁ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔ߣ௜௝௦ᇲ ∑ ௝௦ᇲ௦(଴)௦ߠ + ∑ ௦ܹ௜ᇲ(௞)௜ᇲ∈஻೔  (6.17) 

where ߣ௜௝௦ᇲ  is a weighting parameter depends on the size of pooling region ܤ௜, which balances the prior and 

the updated probability. We derive ߣ௜௝௦ᇲ  and ܤ௜ using the same way as [172].  

Notice that the Eq.6.16 is the theoretical expression of M-step in the EM framework while the 

Eq.6.17 is an approximate maximizer for computational and stability concerns. The implementations of 

both cases have been provided in the publically available open-source code, which enable the users to 

switch from each other by controlling ߣ௜௝௦ᇲ. In practice, the Eq.6.17 typically provides better performance 

than Eq.6.16. Therefore, the implementation of Eq.6.17 is the default setting in NLSS open-source code. 

2.5.3. Initialization, parameters and detection of convergence 

The voxelwise prior ݂( ௜ܶ =  .in NLSS is initialized using the weak log-odds majority vote [95] (ݏ

The performance parameters are typically initialized assuming each atlas has high performance as  

௝௜௦ᇲ௦ߠ = ቐ0.95 if ݏ = ܮ0.05′ݏ − 1 else (6.18) 

The search neighborhood ࣨ(∙) and the patch neighborhood ℘(∙) are the two key parameters in 

non-local search model. In all presented experiments, the search neighborhood ࣨ(∙) was set to 7 × 7 × 7 

voxels search window centered at a target voxel while the patch neighborhood ℘(∙) was empirically set to 3 × 3 × 3 voxels. The two standard deviation parameters ߪ௜ and ߪௗ in Eq.6.7 were empirically set to 0.1 

and 1.5 respectively. The algorithm is iterated until the trace of the difference of confusions matrices 

between iterations is small, typically less than 10ିସ. 

3. Method 

This section first introduces a semi-manual method to establish atlases with TICV and PFV labels 

Second, the multi-atlas segmentation framework using NLSS label fusion is demonstrated. Third, the 

procedure of generating TICV and PFV labels for the BrainCOLOR (BC) atlases is introduced. Last, the 
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statistical analysis methods used in this work are introduced. 

 

3.1. Semi-manual Segmentations and Semi-manual Atlases 

We start by automatic skull labeling using CT images, then obtain TICV labels (voxels inside brain 

skull), and finally propagate labels to MR images using rigid registration. The procedure of automatically 

generating TICV atlas (Figure VI.1) is inspired by the recent work [121]. Briefly, each CT image is aligned 

to MR image using rigid registration [89] (Figure VI.1a). Then, the skull masks are obtained from CT 

images, whose voxel values are greater than 300 HU [286] (Figure VI.1b). Then, a 3D closing 

morphological operation (a dilation followed by an erosion) followed by neck removal [287] is applied on 

the skull mask to obtain the binary skull label. The closing morphological operation fills the holes in the 

 
Figure VI.1 Semi-manual pipeline of establishing atlases. First, the TICV label is obtained by 
applying a threshold, morphological operations and the level set method on CT images. Then, the 
TICV label is propagated to MR image space and the reference PFV label are provided by 
merging TICV label and the automatic whole brain segmentation. Finally, the semi-manual 
atlases are obtained by conducting manual refinement on the reference labels. 
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skull, and the inner side of the filled skull provides the SCB (Figure VI.1c).  

The TICV segmentation is the region inside the SCB. However, the SCB is not a closed surface 

(e.g., the foramen magnum in the occipital bone). Such opening regions make it difficult to derive the TICV 

segmentation by only using morphological operations. To deal with the opening regions automatically, 

Topology-preserving Geometric Deformable Model (TGDM) [288] with gradient vector flow (GVF) field 

[231] is employed. The Standard Geometric Deformable Model (SGDM) has been widely used in image 

segmentation due to its parameterization independence and ease of implementation. However, topological 

flexibility of SGDM is not always desired in medical image segmentation especially when the number of 

components has been known and must be preserved. Based on our anatomical prior knowledge, the TICV 

segmentation should only contain one component (one contour surface). Therefore, the TGDM framework 

is employed to keep such topology. In its implementation, the level set contour of TGDM is moved by the 

gradient vector flow (GVF) field [231]. The advantage of GVF field is that it forces the contour towards 

skull and has close to zero force at the opening regions. We also apply a curvature force [288]  to keep the 

surface smooth at the opening regions. Using TGDM, the non-skull voxels inside zero level set are labeled 

as TICV segmentation. Such segmentation has a smooth boundary at the opening regions. By copying the 

labels from the registered CT images voxel-by-voxel, we obtain skull and TICV labels on MR images 

(Figure VI.1d).  

Then, we label posterior fossa within the TICV labels. Instead of doing complete manual 

delineation, a rough automatic segmentation is provided as the reference labels to accelerate the procedure. 

Briefly, we start with a NLSS multi-atlas segmentation to obtain the whole brain segmentations (133 labels) 

for each MR image under BrainCOLOR protocol [170, 228] (Figure VI.1f). Then, we group the cerebrum 

regions (above tentorium cerebelli) together, which excludes the CSF and tissues in posterior fossa tissues 

(cerebellum and brainstem) (Figure VI.1g). A closing morphological operation is conducted to obtain the 

reference labels (Figure VI.1h and j), which indicates the rough location of posterior fossa.  Finally, a 

manual refinement step is conducted by an experienced graduate student to correct the inaccurate voxels in 

the reference labels and obtain the final PFV labels (Figure VI.1j). Using this semi-manual pipeline, we 



93 
 

obtain the 20 atlases consist of both T1w images and labels (posterior fossa, cerebrum and background). 

The TICV is the sum of posterior fossa and cerebrum.  

3.2. NLSS Multi-atlas framework 

We use a canonical multi-atlas segmentation framework which contains registration, atlas selection, 

label propagation and label fusion [203]. Briefly, the target image is first corrected by a N4 bias field 

correction [226] and then affinely registered [89] to the MNI305 atlas [171]. Practically, using 10–20 atlases 

are sufficient to achieve accurate whole brain segmentation [97]. Empirically, the 15 closest atlases with 

smallest Euclidian distance to the target image on PCA manifold are chosen if total number of available 

atlases is greater than 15 [149]. Then, the 15 selected atlases are then non-rigidly registered to the target 

image [88]. For non-rigid registration, we use symmetric image normalization (SyN), with a cross 

correlation similarity metric convergence threshold of 10ିଽ and convergence window size of 15, provided 

by the Advanced Normalization Tools (ANTs) software [88]. Finally, the proposed NLSS label fusion is 

used to combine the labels from each atlas to the target image. After multi-atlas labeling, each voxel is 

assigned to one of the labels. 

3.3. TICV and PFV labels for OASIS BrainCOLOR atlases 

Using the semi-manual strategy, Researchers are able to reconstruct semi-manual atlases using their 

own data. However, the paired MR and CT images are not typically available, especially when people want 

to derive both TICV and PFV labels as well as whole brain segmentation simultaneously (e.g., 133 labels 

in BrainCOLOR protocol). Therefore, we propagate the TICV and PFV labels from semi-manual atlases to 

the BrianCOLOR atlases [170, 228], which consist of 45 OASIS images [132]. We have made a subset of 

new BrainCOLOR atlases freely available online to facilitate the community. 
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Briefly, the semi-manual atlases (Figure VI.2b) are employed to segment 45 OASIS T1w images 

using the NLSS multi-atlas segmentation (Figure VI.2c). Then, the TICV and PFV labels are derived for 

the OASIS dataset, which are referred as BrainCOLOR1 (BC1) atlases. Then, the BrainCOLOR2 (BC2) 

atlases are derived by combining TICV and PFV labels with 133 original labels in BrainCOLOR atlases. 

Note that if the original manual labels conflict with the TICV or PFV definition in BC1 atlases, we keep 

the original labels in BC2. Finally, The BrainCOLOR3 (BC3) atlases are obtained by merging the TICV 

and PFV labels in BC2 atlases.  

3.4. Statistical Analysis 

In this chapter, we conduct several types of volumetric analyses between FreeSurfer, FSL, SPM12 

and multi-atlas approaches. To evaluate the volumetric similarity between the automatic methods and semi-

 
Figure VI.2 BC1, BC2 and BC3 atlases are obtained by adding TICV and PFV labels. (a) 20 paired 
MR-CT images are used to generate (b) semi-manual atlases. Then the NLSS multi-atlas 
segmentation is conducted on (c) T1w images 45 OASIS images in BrainCOLOR (BC) atlases to 
achieve TICV and PFV labels. (d) The first automatic segmentation results are referred as BC1 
atlases. (e) Then the original 133 labels from BC are merged with BC1 atlases by keeping the BC 
labels if conflictions happen. The merged BC2 atlases contain 136 labels including the TICV, PFV 
and BC labels. (f) The 136 labels are merged back to 4 labels to resolve conflicts and form the BC3 
atlases. A subset of BC2 atlases have been made freely available online to facilitate other 
researchers. We compare the performance of BC1, BC2 and BC3 atlases as well as semi-manual 
atlases. 
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manual segmentations, the absolute volume similarity (ASIM) (a ratio from 0 to 1, higher is better) is 

employed as: 

ASIM = 1 − | ଵܸ − ଶܸ|0.5( ଵܸ + ଶܸ) (6.19) 

However, the ASIM only compares the similarity of volume sizes without reflecting the spatial 

information especially the accuracy of SCB. For instance, the segmentations that have similar amounts of 

volume may have large differences in spatial appearance and location. Therefore, the widely used Dice 

coefficient (Dice) is employed as: 

Dice = ܣ|2 ∩ |ܣ||ܤ + (6.20) |ܤ|

where ܣ and ܤ represent any two binary volumes that need to be compared and |∙| represents the volume 

of regions. Dice values evaluate the overlap between regions ܣ and ܤ which takes both volumetric and 

spatial information into account. Moreover, the mean surface distance (MSD) between ܣ and ܤ is also 

employed to measure the average surface distance between binary volumes. 

The reproducibility is another important aspect of evaluating TICV estimation. In this chapter, we 

assess the reproducibility of TICV estimation using a test-retest strategy, which compares the TICV and 

PFV measurements between two consequential scans from the same subject. To capture this difference, the 

absolute volume difference (ADIFF) (a ratio from 0 to 1, lower is better) is used as: 

ADIFF = | ଵܸ − ଶܸ|0.5( ଵܸ + ଶܸ) (6.21)

After obtaining the previous metrics, the Wilcoxon signed rank test [175] is used for statistical 

analyses.  All claims of statistically significance in this chapter are made using the Wilcoxon signed rank 

test for p < 0.05.  

4. Data and results 

4.1. Accuracy Test 

Twenty subjects, with both MR and CT images from the deep-brain stimulation (DBS) project, 
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were employed to evaluate the accuracy of TICV and PFV estimation. The MR images were 3D T1w 

volumes with 256×256×190 voxels, which have 1×1×1 mm resolution.  The CT images were acquired with 

pixel size = 0.49 mm, slice thickness = 0.625 mm and FOV = 250×250×190 mm. From these paired MR-

CT images, 20 semi-manual atlases (MR T1w images and labels) were generated using the semi-manual 

method. Note that the CT images were only used in generating semi-manual atlases, but were not used in 

the evaluations. 

First, FreeSurfer (FS), FSL, and SPM12 were deployed on the 20 T1w MR images to estimate the 

TICV results. Then, the NLSS multi-atlas framework was deployed on the same dataset using leave-one-

out strategy. In each leave-one-out test, other 19 atlases were used as candidate atlases, which ensured the 

independence to the testing image. The linear relationship between the estimated TICV results and true 

TICV volumes (semi-manual atlases) were evaluated by linear regressions (Figure VI.3). The linear 

relationship between the estimated TICV results and with the true TICV volumes (semi-manual atlases) 

were evaluated by linear regressions (Figure VI.3). The ܴଶ coefficient of determination was provided to 

indicate how strong the linearity was between measurements, where the higher ܴଶ indicated the stronger 

linearity. From the results, the NLSS TICV estimation achieved the largest ܴଶ values (ܴଶ=0.970) to the 

semi-manual segmentations while FSL had the lowest ܴଶ. NLSS TICV estimation also had ܴଶ=0.942 to 

FreeSurfer and ܴଶ=0.956 to SPM12. The lower right box plot indicated the ASIM scores for different 

methods compared with semi-manual segmentation. NLSS TICV had significant higher ASIM scores than 

FreeSurfer and SPM12. The ASIM score for FSL was not shown since it only provided scaling factors 

rather than volumetric values. 
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Second, NLSS TICV estimation was compared with the previously proposed STAPLE TICV 

estimation [265]. For more complete analyses, we also compared the NLSS estimation with other label 

fusion approaches such as majority vote (MV), Spatial STAPLE, NLS and joint label fusion (JLF) (Table 

Figure VI.3 (a) Scatter plots comparing FreeSurfer, FSL, SPM12 and NLSS on TICV estimation. 
In the first column, different automatic methods are compared with semi-manual segmentations 
by plotting the TICV volumes with a red line of best fit and NLSS method using semi-manual 
atlases achieves latest R2 = 0.970. The remaining columns show the scatter plots between automatic 
methods. NLSS method still achieves large R2 values compared with FreeSurfer, FSL and SPM12. 
(b) Box plot of ASIM values between FreeSurfer, SPM12 and NLSS with Semi-manual 
segmentations. The proposed NLSS (“Ref.”) method achieves significantly higher (“∗”) ASIM 
scores than FreeSurfer and SPM12. Since FSL only provides scaling factors rather than TICV 
volumes, it does not have units in (a) and not shown in (b). 
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VI.1 and Table VI.2) using the semi-manual atlases. The JLF (Wang et al., PAMI 2013) approach is the 

state-of-the-art label fusion method using non-local intensity similarity. In each leave-one-out analysis, the 

BC1, BC2 and BC3 atlases (on 45 OASIS images) were also generated from the 19 semi-manual atlases. 

Then these intermediate atlases were also deployed on the target image and their accuracies were compared 

with semi-manual atlases using the same NLSS multi-atlas framework.  

Table VI.1 shown four different metrics of evaluating the accuracy of different TICV measurement 

approaches: (1) Intraclass correlation (ICC) and Pearson Correlation were used to measure the correlation 

between different methods and semi-manual segmentations.  The two-way random single measures was 

used as the ICC model [289]. (2) The ASIM values were used to show the accuracy of TICV volumetric 

estimation. (3) Dice similarity coefficients were employed to take the spatial information into account upon 

the ASIM metric. (4) MSD values were also derived to measure the average surface distance between binary 

segmentations. From Table VI.1, the family of multi-atlas segmentations (MV, STAPLE, SS, NLS, JLF 

and NLSS) obtained higher correlation coefficients than the prevalent FreeSurfer, FSL and SPM12 

approaches. The multi-atlas approaches achieved higher mean and smaller standard deviation (std) on 

ASIM metric. Within the multi-atlas family, when using the same semi-manual atlases, the NLSS TICV 

estimation achieved higher scores on correlation coefficients, mean ASIM and mean Dice than previously 

proposed STABLE TICV estimation. Meanwhile, it had the smaller mean MSD and the lower standard 

deviation than the STAPLE method. The NLSS estimation was significantly superior to MV, Spatial 

STAPLE, NLS on both TICV (Table VI.1) and PFV (Table VI.2). The NLSS and JLF had advantages on 

PFV and TICV respectively. However, the differences between NLSS and JLF were not statistically 

significant. When comparing the performance between different atlases, the BC1, BC2 and BC3 atlases 

performed worse than the semi-manual atlases on correlation coefficients, mean ASIM, mean Dice and 

mean MSD. However, the correlation coefficients and the mean ASIM values of using BC1, BC2 and BC3 

atlases were still higher than FreeSurfer, FSL, and SPM12. 

Figure VI.4, Figure VI.5 and Figure VI.6to 6 show the box plots and the statistical results using 

Wilcoxon signed rank test. In each figure, the statistical analyses were conducted between the NLSS method 
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using semi-manual atlases (marked as reference “Ref.”) with other approaches or different atlases. If the 

difference was statistically significant, we marked the method with “*” symbol. Otherwise, we marked the 

method with not significant “N.S.”. Figure VI.4 shows the ASIM values, which only considered volumetric 

results for both TICV and PFV segmentations. For TICV estimation, the ASIM of NLSS (semi-manual 

atlases) was significantly higher than FreeSurfer, SPM12, STAPLE, Spatial STAPLE and NLS. For PFV 

estimation, the ASIM of NLSS (semi-manual atlases) was significantly higher than STAPLE, Spatial 

STAPLE, and NLS. The different performance between NLSS and JLF are not statistically significant. 

Using the same NLSS method with different atlases, the semi-manual atlases performed significantly better 

than BC1, BC2 and BC3 atlases in both TICV and PFV volumetric estimation.  

It is also important to note how the improved accuracy is able to be translated into clinical research 

benefits. We evaluated the statistical power of detecting a group difference between two simulated clinical 

cohorts using two-sample t-test at significant level 0.05.  

Figure VI.5 employed the Dice similarity coefficients as the metric, which took both volumetric and spatial 

information into account. Since the TICV and PFV segmentations were not provided by the default 

processing in FreeSurfer, FSL, and SPM12, we conducted statistical analyses within the multi-atlas family. 

For both TICV and PFV segmentations, the NLSS using semi-manual atlases achieved the significant 

higher Dice values than MV, STAPLE, Spatial STAPLE, and NLS. The semi-manual atlases also achieved 

significant higher Dice values than the BC1, BC2 or BC3 atlases. Figure VI.6 reflected the statistical 

analyses on MSD. Again, NLSS using semi-manual atlases had the smaller MSD compared with MV, 

STAPLE, Spatial STAPLE, and NLS. The performance between NLSS and JLF in Figure VI.5 and Figure 

VI.6 are not statistically significant. To visually check the findings in Figure VI.5 and Figure VI.6, Figure 

VI.7 shows the qualitative performance of different methods on the same subject. The surfaces of the semi-

manual segmentations, which used as reference results, were remarked as red contours. The area of positive 

error (estimate larger than reference) was the area with green and purple color outside the contours while 

the negative error (estimate smaller than reference) was colored as white. 
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Figure VI.4 Box plots and statistical results on volume accuracy. The statistical analyses were 
conducted between the proposed NLSS TICV estimation using semi-manual atlases (marked as 
reference “Ref.”) with other approaches or different atlases. If the difference was statistically 
significant, we marked the other method with “*” symbol. Otherwise, we marked it as “N.S.” 
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Figure VI.5 Box plots and statistical results on Dice coefficients. The statistical analyses were 
conducted between the proposed NLSS TICV estimation using semi-manual atlases (marked as 
reference “Ref.”) with other approaches or different atlases. If the difference was statistically 
significant, we marked the other method with “*” symbol. Otherwise, we marked it as “N.S.” 
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Figure VI.6 Qualitative results comparing multi-atlas segmentation methods with semi-manual 
segmentation. The red contours represent the spatial location of the semi-manual segmentation. 
The white color indicates the negative error, in which the estimated segmentation is smaller than 
the semi-manual reference. The green and purple color outside the red contours indicates the 
positive error, in which the estimated segmentation is larger than reference. 
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Figure VI.7 Qualitative results comparing multi-atlas segmentation methods with semi-manual 
segmentation. The red contours represent the spatial location of the semi-manual segmentation. 
The white color indicates the negative error, in which the estimated segmentation is smaller than 
the semi-manual reference. The green and purple color outside the red contours indicates the 
positive error, in which the estimated segmentation is larger than reference. 
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4.2. Reproducibility Test 

We employed the publicly available Kirby21 dataset (https://www.nitrc.org/projects/multimodal), 

which consisted of scan-rescan images on 21 subjects [133].  Each subject had two scans with multispectral 

MR data (e.g., MPRAGE, FLAIR, DIT etc.) and we used 42 T1w MPRAGE images (with 1×1×1.2 mm 

resolution over an FOV of 240×204×256 mm) in this reproducibility test. Ideally, the TICV and PFV 

estimations between two scans from the same subject should be close to each other. 

 
Figure VI.8 Volumetric reproducibility analysis of different approaches on scan-rescan T1w 
images. For all methods, inconsistency of TICV estimation between two scans on the same 
subject is less than 2%. The statistical analyses were conducted between the proposed NLSS 
TICV estimation using semi-manual atlases (marked as reference “Ref.”) with other approaches 
or different atlases. If the difference was statistically significant, we marked the other method 
with “*” symbol. Otherwise, we marked it as “N.S.” 
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Figure VI.8 demonstrated the reproducibility of different methods on the same 21 pairs of scan-

rescan T1w images. We used the ADIFF metric to reflect the ratio of the different volume in the total 

volume. The results indicated that for both TICV and PFV estimations, all methods achieved small ADIFF 

values (mostly smaller than 2%). 

4.3. Sensitivity of Non-local Search Parameters 

In NLSS, the search neighborhood ࣨ(∙) and the patch neighborhood ℘(∙) are the two essential 

parameters of controlling the non-local search range and the size of patch. Figure VI.9 demonstrates the 

Sensitivity to NLSS non-local search parameters: (a) the sensitivity of search neighborhood ࣨ(∙), and (b) 

the sensitivity of patch neighborhood ℘(∙). The ࣨ(∙) and ℘(∙) are evaluated using six different sizes of 

dimensions:  1×1×1, 3×3×3, 5×5×5, 7×7×7, 9×9×9, and 11×11×11 (voxels). The Dice and MSD are 

provided for both TICV and PFV estimation using NLSS multi-atlas segmentation framework. Gray 

outlines indicate the values use in the experiments of this chapter. 

5. Conclusion and Discussion 

This chapter proposes the simultaneous TICV and PFV estimation framework using multi-atlas 

label fusion. Using the NLSS multi-atlas framework, we are able to obtain accurate TICV and PFV 

estimation simultaneously with explicit boundary between skull and CSF. The mathematical derivation is 

provided for NLSS. The performance of the proposed method was compared with prevalent FreeSurfer, 

FSL, and SPM12 methods and the previously proposed STAPLE based TICV estimation. For more 

complete analyses, the NLSS method is also compared with MV, Spatial STAPLE, NLS and JLF. 
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Figure VI.9 Sensitivity to NLSS non-local search parameters. 
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Compared with the FreeSurfer, FSL, SPM12, the proposed NLSS approach achieves significant 

superior performance in TICV estimation with highest correlation coefficients, mean ASIM, mean Dice 

and lowest mean MSD (Table VI.1 and Table VI.2, Figure VI.3). Compared with other label-fusion 

methods (Figure VI.4, 5 and 6): (1) NLSS approach achieves statistical better performance in simultaneous 

TICV and PFV estimation than the previously proposed STAPLE method [265]. (2) NLSS approach 

achieves statistical superior performance than MV, Spatial STAPLE and NLS). (3) For ASIM, Dice and 

MSD, the differences between NLSS and JLF are not statistically significant, which means NLSS and JLF 

are comparable accurate in TICV and PFV estimation. From Table VI.1 and Table VI.2, the JLF has overall 

better measurements in TICV estimation, while the NLSS has better measurements in PFV estimation. 

From Figure VI.8, all methods achieve high reproducibility (ADIFF<0.2). JLF method achieves statistical 

smaller ADIFF score than NLSS method on TICV estimation. Overall considering all results, JLF is 

superior on TICV side while NLSS is superior on PFV side when conducting the simultaneous TICV and 

PFV estimation. 

The accuracy and reproducibility are the two essential aspects when evaluating the performance of 

TICV estimation. FreeSurfer, FSL and SPM12 achieves high reproducibility demonstrates that the affine 

registration and tissue segmentation used in the three methods are reproducible. The superior accuracy and 

high reproducibility indicate that the multi-atlas based approaches do not compromise on reproducibility 

while providing more accurate estimations.  The multi-atlas labeling approaches not only provide more 

accurate TICV estimation but also estimates PFV simultaneously (which is not available in FreeSurfer, 

SPM12 and FSL). The PFV is essential in investigating the clinical conditions of the cerebellum [262-264]. 

The continuing investigation of this work would be on the relationship between the accuracy of TICV 

estimations and the power of detecting differences between empirical datasets. For instance, we could 

evaluate the statistical power of detecting the differences of particular metrics (corrected by TICV) between 

patients and controls using different TICV estimation methods.  

We provide new TICV and PFV labels on the widely used 45 OASIS images using BrainCOLOR 

protocol. The new atlases enable simultaneous BrainCOLOR, TICV and PFV segmentation from only one 
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set of time-consuming non-rigid registration. To evaluate the performance of the new BC1, BC2 and BC3 

atlases, we compared them with semi-manual atlases using the same NLSS framework. Using these 

intermediate atlases, we lost less than 2% of accuracy from ASIM and Dice score and increased the MSD 

to less than 0.5 mm compared with directly using semi-manual atlases. However, the performances of BC1, 

BC2 and BC3 atlases are still better than FreeSurfer, FSL and SPM12 (Table VI.1). Since the BC2 atlases 

have included original BrainCOLOR labels, we provide these BC2 atlases freely available online to 

facilitate other researchers (https://www.nitrc.org/frs/?group_id=385). The T1w MR images of the same 

OASIS images for BC2 atlases are available via subscription from Neuromorphometrics  Inc. 

(http://www.neuromorphometrics.com/) and a subset of them are freely available from MICCAI 2012 

Grand Challenge and Workshop on Multi-Atlas Labeling  [228] 

(https://masi.vuse.vanderbilt.edu/workshop2012/). 

The semi-manual atlas generation method may be applied on other datasets if paired MR and CT 

images are available. The rigid registration is used to align CT and MRI images in this study. The 

registration performance might be affected if huge neck/jaw movements happen in either modality. For 

such cases, applying a brain mask (masking out neck and jaw) before registration would address the 

movement issue. The proposed NLSS multi-atlas segmentation framework is flexible in terms of 

incorporating other regions of interest during TICV estimation. For example, recently, multi-atlas labeling 

has been used to label brain skull on CT-MRI datasets [290]. In TICV and posterior fossa estimation, we 

only interested in the accuracy of the inner skull boundary, so we did not seek to fully characterize the 

cranium. However, it would be interesting to simultaneously provide TICV, PFV and skull labels in the 

future. The TICV estimation using multi-atlas segmentation is computationally more expensive than using 

FreeSurfer, FSL and SPM since multiple non-rigid registrations (≈1.5 hours per registration) are conducted 

for a target image. However, the total length of running time can be reduced by running such independent 

registrations in parallel. Moreover, the computed registration can be used for other purpose (e.g. segmenting 

other brain structure, morphometry, manifold learning etc.). 
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Chapter VII. Mapping Lifetime Brain Volumetry with Covariate-Adjusted 

Restricted Cubic Spline Regression from Cross-sectional Multi-site MRI 

1. Introduction 

Brain volumetry across the lifespan is essential in neurological research and clinical investigation. 

Magnetic resonance imaging (MRI) allows for quantification of such changes, and consequent investigation 

of specific age ranges or more sparsely sampled lifetime data [1]. Contemporaneous advancements in data 

sharing have made considerable quantities of brain images available from normal, healthy populations. 

However, the regression models prevalent in volumetric mapping (e.g., liner, polynomial, non-parametric 

model, etc.) have had difficulty in modeling complex, cross-sectional large cohorts while accounting for 

confound effects.  

This chapter proposes a novel multi-site cross-sectional framework using Covariate-adjusted 

Restricted Cubic Spline (C-RCS) regression to map brain volumetry on a large cohort (5111 MR 3D 

images) across the lifespan (4~98 years). The C-RCS extends the Restricted Cubic Spline [291, 292] by 

regressing out the confound effects in a general linear model (GLM) fashion. Multi-atlas segmentation is 

used to obtain whole brain volume (WBV) and 132 regional volumes. The regional volumes are further 

grouped to 15 networks of interest (NOIs). Then, structural covariance networks (SCNs), i.e. regions or 

networks that mature or decline together during developmental periods, are established based on NOIs 

using hierarchical clustering analysis (HCA). To validate the large-scale framework, confidence intervals 

(CI) are provided for both C-RCS regression and clustering from 10,000 bootstrap samples.  
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2. Methods   

2.1. Extracting Volumetric Information 

The complete cohort aggregates 9 datasets with a total 5111 MR T1w 3D images from normal 

healthy subjects (Table VII.1). 45 atlases are non-rigidly registered [88] to a target image and non-local 

spatial staple (NLSS) label fusion [98] is used to fuse the labels from each atlas to the target image using 

the BrainCOLOR protocol [170] (Figure VII.1). WBV and regional volume are then calculated by 

multiplying the volume of a single voxel by the number of labeled voxels in original image space. In total, 

15 NOIs are defined by structural and functional covariance networks including visual, frontal, language, 

memory, motor, fusiform, basal ganglia (BG) and cerebellum (CB). 

Table VII.1 Data summary of 5111 multi-site images. 
Study Name Website Images Sites 

Baltimore Longitudinal Study of Aging (BLSA) www.blsa.nih.gov 605 4 

Cutting Pediatrics vkc.mc.vanderbilt.edu/ebrl 586 2 

Autism Brain Imaging Data Exchange (ABIDE) fcon_1000.projects.nitrc.org/indi/abide 563 17 

Information eXtraction from Images (IXI) www.nitrc.org/projects/ixi_dataset 523 3 

Attention Deficit Hyperactivity Disorder (ADHD200) fcon_1000.projects.nitrc.org/indi/adhd200 949 8 

National Database for Autism Research (NDAR) ndar.nih.gov 328 6 

Open Access Series on Imaging Study (OASIS) www.oasis-brains.org 312 1 

1000 Functional Connectome (fcon_1000) fcon_1000.projects.nitrc.org 1102 22 

Nathan Kline Institute Rockland (NKI_rockland) fcon_1000.projects.nitrc.org/indi/enhanced 143 1 
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2.2. Covariate-Adjusted Restricted Cubic Spline (C-RCS) 

We define ݔ as the ages of all subjects and ܵ(ݔ) as the corresponding brain volumes. In canonical ݊th degree spline regression, splines are used to model non-linear relationships between variables ܵ(ݔ) and ݔ  by deciding the connections between ܭ  knots (ݐଵ < ଶݐ < ⋯ < (௄ݐ . In this work, such knots were 

determined based on previously identified developmental shifts [1], specifically corresponding with 

transitions between childhood (7-12), late adolescence (12-19), young adulthood (19-30), middle adulthood 

(30-55), older adulthood (55-75), and late life (75-90). Using the expression from Durrleman [291], the 

canonical ݊th degree spline function is defined as 

(ݔ)ܵ = ෍ ௝௡ݔሶ௢௝ߚ
௝ୀ଴ + ෍ ݔ)ሶ௜௡ߚ − ௜)ା௡௄ݐ

௜ୀଵ (7.1) 

where (ݔ − ௜)ାݐ = ݔ − ,௜ݐ if ݔ > ݔ)   ;௜ݐ − ௜)ାݐ = 0, if ݔ ≤   .௜ݐ

To regress out confound effects, new covariates ଵܺᇱ , ܺଶᇱ , … , ܺ௖ᇱ  (with coefficients ߚଵᇱ, ଶᇱߚ , … ,  ௖ᇱ) areߚ

introduced to the ݊th degree spline regression  

(ݔ)ܵ = ෍ ௝௡ݔሶ௢௝ߚ
௝ୀ଴ + ෍ ݔ)ሶ௜௡ߚ − ௜)ା௡௄ݐ

௜ୀଵ + ෍ ௨ᇱߚ ܺ௨ᇱ஼
௨ୀ଴ (7.2) 

where ܥ is the number of confound effects.  

In the RCS regression, a linear constrain is introduced [291] to address the poor behavior of the 

cubic spline model in the tails (ݔ < ݔ  ଵandݐ >  ௄)[293]. Using the same principle, C-RCS regressionݐ

 
Figure VII.1 The large-scale cross-sectional framework on 5111 multi-site MR 3D images. 
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extends the RCS regression (݊ = 3) and restricts the relationship between ܵ(ݔ) and ݔ to be a linear function 

in the tails. First, for ݔ <  ,ଵݐ

(ݔ)ܵ = ሶ଴଴ߚ + ݔሶ଴ଵߚ + ଶݔሶ଴ଶߚ + ଷݔሶ଴ଷߚ + ሶଵଷߚ + ෍ ௨ᇱߚ ܺ௨ᇱ஼
௨ୀ଴  (7.3) 

where ߚሶ଴ଶ = ሶ଴ଷߚ = 0 ensures the linearity before the first knot. Second, for  ݔ >  ,௄ݐ

(ݔ)ܵ = ሶ଴଴ߚ + ݔሶ଴ଵߚ + ݔ)ሶଵଷߚ − ଵ)ାଷݐ + ⋯ + ݔ)ሶ௄ଷߚ − ௄)ାଷݐ + ෍ ௨ᇱߚ ܺ௨ᇱ஼
௨ୀ଴  (7.4) 

To guarantee the linearity of C-RCS after the last knot, we expand the previous expression and 

force the coefficients of ݔଶ and ݔଷ to be zero. After expansion,  

(ݔ)ܵ = ൭ߚ଴଴ሶ + ଵଷݐሶଵଷߚ + ⋯ + ௄ଷݐሶ௄ଷߚ + ෍ ௨ᇱߚ ܺ௨ᇱ஼
௨ୀ଴ ൱

+ ൫ߚሶ଴ଵ + ଵଶݐሶଵଷߚ3 + ⋯ + ௄ଶݐሶ௄ଷߚ3 ൯ݔ+ ൫3ߚሶଵଷݐଵ + ଶݐሶଶଷߚ3 + ⋯ + ଶݔ௄൯ݐሶ௄ଷߚ3
+ ൫3ߚሶଵଷ + ሶଶଷߚ3 + ⋯ + ଷݔሶ௄ଷ൯ߚ3

(7.5) 

As a result, linearity of ܵ(ݔ) at ݔ > ∑ ௄ implies thatݐ ௜௄௜ୀଵݐሶ௜ଷߚ = 0 and ∑ ሶ௜ଷ௄௜ୀଵߚ = 0. Following 

such restrictions, the ߚሶ(௄ିଵ)ଷ and ߚሶ௄ଷ are derived as 

ሶ(௄ିଵ)ଷߚ = − ∑ ሶ௜ଷ௄ିଶ௜ୀଵߚ ௄ݐ) − ௄ݐ(௜ݐ − ௄ିଵݐ and ሶ௄ଷߚ = ∑ ሶ௜ଷ௄ିଶ௜ୀଵߚ ௄ିଵݐ) − ௄ݐ(௜ݐ − ௄ିଵݐ  (7.6) 

and the complete C-RCS regression model is defined as 

(ݔ)ܵ = ሶ଴଴ߚ + ݔሶ଴ଵߚ + ෍ ሶ௜ଷ௄ିଶߚ
௜ୀଵ ݔ)] − ௜)ାଷݐ − ௄ݐ − ௄ݐ௜ݐ − ௄ିଵݐ ݔ) − ௄ିଵ)ାଷݐ

+ ௄ିଵݐ − ௄ݐ௜ݐ − ௄ିଵݐ ݔ) − ௄)ାଷݐ ] + ෍ ௨ᇱߚ ܺ௨ᇱ஼
௨ୀ଴

(7.7) 

2.3. Regressing Out Confound Effects by C-RCS Regression in GLM Fashion 

To adapt C-RCS regression in the GLM fashion, we redefine the coefficients ߚ଴, ,ଵߚ ,ଶߚ … ,  ௄ିଵ asߚ
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Harrell [292] where ߚ଴ = ,ሶ଴଴ߚ ଵߚ = ,ሶ଴ଵߚ ଶߚ = ,ሶଵଷߚ ଷߚ = ,ሶଶଷߚ ସߚ = ,ሶଷଷߚ ⋯ , ௄ିଵߚ = -ሶ(௄ିଶ)ଷ. Then, the Cߚ

RCS regression with confound effects becomes 

(ݔ)ܵ = ଴ߚ + ෍ ௝ߚ ௝ܺ௄ିଵ
௝ୀଵ + ෍ ௨ᇱߚ ܺ௨ᇱ஼

௨ୀ଴ (7.8) 

where ܥ is the number for all confound effects (ܺ௨ᇱ ). ଵܺ = ݆ and for ݔ = 2, … , ܭ − 1 

௝ܺ = ൫ݔ − ௝ିଵ൯ାଷݐ − ௄ݐ − ௄ݐ௝ିଵݐ − ௄ିଵݐ ݔ) − ௄ିଵ)ାଷݐ + ௄ିଵݐ − ௄ݐ௝ିଵݐ − ௄ିଵݐ ݔ) − ௄)ାଷݐ  (7.9) 

Then, the beta coefficients are solvable under GLM framework. Once ߚመ଴, ,መଵߚ ,መଶߚ ⋯ , መ௄ିଵߚ  are 

obtained, two linear assured terms ߚመ௄ and ߚመ௄ାଵ are estimated: 

መ௄ߚ = ∑ መ௜௄ିଵ௜ୀଶߚ ௜ିଵݐ) − ௄ݐ(௄ݐ − ௄ିଵݐ and መ௄ାଵߚ = ∑ መ௜௄ିଵ௜ୀଶߚ ௜ିଵݐ) − ௄ିଵݐ(௄ିଵݐ − ௄ݐ   (7.10)

The final estimated volumetric trajectories መܵ(ݔ) can be fitted as 

መܵ(ݔ) = መ଴ߚ + ෍ ݔ)መ௝ߚ − ௝)ାଷ௄ାଵݐ
௝ୀଵ + ෍ መ௨ᇱߚ ܺ௨ᇱ஼

௨ୀ଴ (7.11)

In this work, gender, field strength and total intracranial volume (TICV) are employed as covariates ܺ௨ᇱ . TICV values are calculated using SIENAX [257]. Field strength and TICV are used to regress out site 

effects rather than using site categories directly since the sites are highly correlated with the explanatory 

variable age. 

2.4. SCNs and CI using Bootstrap Method 

Using aforementioned C-RCS regression, the lifespan volumetric trajectories of WBV and 15 NOIs 

are obtained from 5111 images. Simultaneously, the piecewise volumetric trajectories within a particular 

age bin (between adjacent knots) of all 15 NOIs ( መܵ௜(ݔ), ݅ = 1,2, … ,15) are separated to establish SCNs 

dendrograms using HCA [294]. The distance metric ܦ  used in HCA is defined as ܦ = 1 −corr( መܵ௜(ݔ), መܵ௝(ݔ)), ݅, ݆ ∈ [1,2, … ,15] and ݅ ≠ ݆, where corr(∙) is the Pearson's correlation between any 

two C-RCS fitted piecewise trajectories መܵ௜(ݔ) and መܵ௝(ݔ) in the same age bin.  
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The stability of proposed approaches is demonstrated by the CIs of C-RCS regression and SCNs 

using bootstrap method [295]. First, the 95% CIs of volumetric trajectories on WBV (Figure VII.2) and 15 

NOIs (Figure VII.3) are derived by deploying C-RCS regression on 10,000 bootstrap samples. Then, the 

distances ܦ between all pairs of clustered NOIs are derived using 15 (NOIs) ×10,000 (bootstrap) C-RCS 

fitted trajectories. Then, the 95% CIs are obtained for each pair of clustered NOIs and shown on six SCNs 

dendrograms (Figure VII.4). The average network distance (AND), the average distance between 15 NOIs 

for a dendrogram, can be calculated 10,000 times using bootstrap. The AND reflects the modularity of 

connections between all NOIs.  We are able to see if the AND are significantly different during brain 

development periods by deploying the two-sample t-test on AND values (10,000/age bin) between age bins.   

3. Results 

Figure VII.2a shows the lifespan volumetric trajectories using C-RCS regression as well as the 

growth rate (volume change in percentage per year) of WBV when regressing out gender and field strength 

effects.  Figure VII.2b indicates the C-RCS regression on the same dataset by adding TICV as an additional 

covariate. The cross sectional growth rate curve using C-RCS regression is compared with 40 previous 

longitudinal studies (19 are TICV corrected)[1], which are typically limited on smaller age ranges.  

Using the same C-RCS model in Figure VII.2b, Figure VII.3 indicates the both lifespan and 

piecewise volumetric trajectories of 15 NOIs. In Figure VII.4, the piecewise volumetric trajectories of the 

15 NOIs within each age bin are clustered using HCA and shown in one SCNs dendrogram.  

Then, six SCNs dendrograms are obtained by repeating HCA on different age bins, which 

demonstrate the evolution of SCNs during different developmental periods. The ANDs between any two 

age bins in Figure VII.4 are statistically significant (p<0.001). 
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Figure VII.2 Volumetry and growth rate. The left plot in (a) shows the volumetric trajectory of 
whole brain volume (WBV) using C-RCS regression on 5111 MR images. The right figure in (a) 
indicates the growth rate curve, which shows volumetric change per year of the volumetric 
trajectory. In (b), C-RCS regression is deployed on the same dataset by additionally regressing out 
TICV. Our growth rate curves are compared with 40 previous longitudinal studies [1] on smaller 
cohorts (21 studies in (a) without regressing out TICV and 19 studies in (b) regressing out TICV). 
The standard deviations of previous studies are provided as black bars (if available). The 95% CIs 
in all plots are calculated from 10,000 bootstrap samples 
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Figure VII.3 Lifespan trajectories of 15 NOIs are provided with 95% CI from 10,000 bootstrap 
samples. The upper 3D figures indicate the definition of NOIs (in red). The lower figures show the 
trajectories with CI using C-RCS regression method by regressing out gender, field strength and 
TICV (same model as Figure VII.2b). For each NOI, the piecewise CIs of six age bins are shown in 
different colors. The piecewise volumetric trajectories and CIs are separated by 7 knots in the 
lifespan C-RCS regression rather than conducting independent fittings. The volumetric 
trajectories on both sides of each NOI are derived separately except for CB. 
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Figure VII.4 The six structural covariance networks (SCNs) dendrograms using hierarchical 
clustering analysis (HCA) indicate which NOIs develop together during different developmental 
periods (age bins). The distance on the x-axis is in log scale, which equals to one minus Pearson’s 
correlation between two curves. The correlation between NOIs becomes stronger from right to 
left on the x-axis. The horizontal range of each colored rectangles indicates the 95% CI of 
distance from 10,000 bootstrap samples. Note that the colors are chosen for visualization 
purposes without quantitative meanings. 

 



120 
 

4. Conclusion and Discussion 

This chapter proposes a large-scale cross-sectional framework to investigate life-time brain 

volumetry using C-RCS regression.  C-RCS regression captures complex brain volumetric trajectories 

across the lifespan while regressing out confound effects in a GLM fashion. Hence, it can be used by 

researchers within a familiar context. The estimated volume trends are consistent with 40 previous smaller 

longitudinal studies. The stable estimation of volumetric trends for NOI (exhibited by narrow confidence 

bands) provides a basis for assessing patterns in brain changes through SCNs. Moreover, we demonstrate 

how to compute confidence intervals for SCNs and correlations between NOIs. The significant difference 

of AND indicates that the C-RCS regression detects the changes of average SCNs connections during the 

brain development. 

Emerging “big data” studies need a regression that is able to capture the complicated lifespan brain 

development without unnecessarily sacrificing power. The proposed C-RCS regression is a such framework 

that addresses age-range analyses and varied neuroanatomical regions of interest. To the best of our 

knowledge, this is the first work that uses C-RCS to quantify temporal changes in SCNs using brain 

volumetry with a cross-sectional, multi-site paradigm. The challenge of using C-RCS method is that the 

knots should be defined properly. The software is freely available online1. 

                                                      
1  https://www.nitrc.org/frs/?group_id=385 
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Chapter VIII. 4D Multi-atlas Label Fusion using Longitudinal Images 

1. Introduction 

An essential challenge in volumetric (3D) image segmentation on longitudinal medical images is 

to ensure the temporal consistency while retaining sensitivity. The consistency of longitudinal segmentation 

is essential to control the “type I” false positive error while the sensitivity of longitudinal segmentation is 

important to control the “type II” false negative error. One wants to control both two types of errors when 

investigating clinical studies (e.g., understanding normal aging [128, 129]). Many efforts have been made 

to incorporate the temporal dimension into volumetric segmentation (4D) for the studies. One family of 4D 

methods is to control the longitudinal variations during pre/post-processing using 4D intensity filtering 

[296], 4D registration [297], or temporal mean template [298]. These methods control inter-subject 

variations between target images, which result in more consistent 3D segmentations. Another family of 4D 

methods is to incorporate the longitudinal variations within segmentation methods, such as 4D fuzzy C-

means [299] or 4D graph-cuts [300]. In the past decade, multi-atlas segmentation (MAS) has been regarded 

as de facto standard segmentation method in 3D scenarios [203]. To improve the performance of 4D MAS for 

longitudinal data, several previous avenues have been explored. Li ݁[301] .݈ܽ ݐ proposed a MAS based 4D surface 

labeling approach, which minimized a spatial temporal energy function. However, the energy function is designed for 

using surface features (e.g., shape, cortical folding geometries etc.), which is limited to surface labeling. Guo ݁ݐ ݈ܽ. 
[302] proposed a hierarchical feature learning approach to obtain common feature representations using longitudinal 

multi-modal (T1 and T2) images. However, the application is restricted on the availability of multi-modal longitudinal 

data. Wang ݁[303] .݈ܽ ݐ proposed a 4D label fusion method with temporal sparse representation technique, which was 

not limited by applications or modalities. However, this method (1) only considered two consecutive time points (ݐ 

and 1+ݐ) in the temporal smooth term, and (2) assumed the l1-norm sparsity of fusion weights. When more than two 

longitudinal target images are available, the more comprehensive strategy is to consider the spatial smoothness on all 

time points simultaneously (Figure VIII.1). Moreover, in the general label fusion framework (without sparsity 

limitation), the voting based [91] and statistical fusion [92] have been successfully applied in 3D image 
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segmentations [203], which motivated this work proposed a general purpose 4D label fusion theory that 

simultaneously considers all available longitudinal images (time points) and can be adapted to different applications. 

2. Theory 

2.1. Model Definition 

Let one target image be represented by ௧ܶ , ݐ ∈ [1,2, … , ݇] . 4DJLF considers all available 

longitudinal target images, ܂ = { ଵܶ, ଶܶ, … , ௞ܶ}. First, all longitudinal target images are registered to the 

first-time point using rigid registration [89]. ݊ pairs of atlases ۯ = ,ଵܣ} ,ଶܣ … ,  ௡} are available in theܣ

MAS, where each pair consists of one intensity atlas and one label atlas. Then, we register the ݊ intensity 

atlases to ݇ longitudinal target images to achieve ݉ = ݊ × ݇ registered pairs of atlases. For mathematical 

convenience, we concatenate all registered atlases (based on the sequence in ܂) to derive ݉ registered 

intensity atlases set ۷ and ݉ registered label atlases set ܁ as ۷ = ,ଵ(ଵ)ܫ} … , ,௡(ଵ)ܫ ௡ାଵ(ଶ)ܫ , … , ,ଶ௡(ଶ)ܫ ⋯ , ଶ௡ାଵ(௞)ܫ , … , ܁ {௠(௞)ܫ = { ଵܵ(ଵ), . . , ܵ௡(ଵ), ܵ௡ାଵ(ଶ) , … , ܵଶ௡(ଶ), ⋯ , ܵଶ௡ାଵ(௞) , … , ܵ௠(௞)} (8.1) 

where the superscripts “(∙)” indicate to which target image that atlas was registered. 

The ݇ longitudinal target images provide ݉ registered atlases, where each atlas correspond to one 

time point (target image). The rationale of boosting the registrations is to reconcile the registration errors 

and intensity inhomogeneity among ܂ under the hypothesis that ܂ are similar but not identical to each other. 

In the weighted voting framework, the consensus segmentation ܵ̅ for voxel ݔ on ݐ௧௛ target image is  

ܵ̅௧(ݔ) = ෍ (ݔ)௜௧ݓ ௜ܵ(ݔ) = (ݔ)௧ܟ ∙ ௠(ݔ)܁
௜ୀଵ (8.2) 
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where  ܟ௧(ݔ) = ,(ݔ)ଵ௧ݓ} ,(ݔ)ଶ௧ݓ … , ௠௧ݓ ∑ are spatially varying weights restricted by {(ݔ) (ݔ)௜௞ݓ = 1௠௜ୀଵ . 

Adopting [91], the error ߜ௜௧(ݔ) made by atlas ௜ܵ on ݐ௧௛ target image in the binary segmentation is  ߜ௜௧(ݔ) = ܵ௧் (ݔ) − ௜ܵ(ݔ) (8.3) 

where ܵ௧் (ݔ)  is the hidden true segmentation. ߜ௜௧(ݔ) = 0  indicates the right decision is made, while ߜ௜௧(ݔ) = −1 or 1 means the wrong decision is made. Then, our purpose is to find a set of voting weights 

 
Figure VIII.1 An example of the inconsistency of 3D joint label fusion (JLF) segmentation across 
longitudinal multiple scans from the same subject. The 4DJLF is proposed to improve the 
consistency while maintain the sensitivity. 
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for each target image ௧ܶ that minimize the total expected error between the automated labeled image ܵ̅௞ and hidden true label image ܵ௧் (ݔ)௧ܟ , given by the following energy function ܧఋభ೟ (௫),…,ఋ೘೟ (௫) ቂ൫ܵ௧் (ݔ) − ܵ̅௧(ݔ)൯ଶ|܂, ۷ቃ =  

             = ఋభ೟ܧ (௫),…,ఋ೘೟ (௫) ൤ቀ∑ ௠௜ୀଵ(ݔ)௜௧ݓ ቁଶ(ݔ)௜௧ߜ ,܂| ۷൨  

              = ∑ ∑ ௠௝ୀଵ௠௜ୀଵ(ݔ)௝௧ݓ(ݔ)௜௧ݓ |(ݔ)௝௧ߜ(ݔ)௜௧ߜൣఋ೔೟(௫)ఋೕ೟(௫)ܧ ଵܶ, … , ௞ܶ, ,ଵܫ … ,   ௠൧ܫ
              = ࢚࢞ܟ ࢚࢞ࡹࢀ  ࢚࢞ܟ

(8.4) 

where ࢚࢞ܟ ࢚࢞ܟ is the transpose of vector ࢀ  at voxel ࢚࢞ࡹ .ݔ  is a ݉ × ݉ pairwise dependency matrix that  ࢚࢞ࡹ (݅, ݆) = (ݔ)௝௧ߜ(ݔ)௜௧ߜ)݌ = 1| ଵܶ, … , ௞ܶ, ,ଵܫ … , (௠ܫ (8.5) 

Finally, the estimated weights ܟෝ࢚࢞, which is our target, is derived by  ܟෝ࢚࢞ = arg min࢚࢞ܟ ࢚࢞ܟ ࢚࢞ࡹ)ࢀ + ࢚࢞ܟ(ࡵߙ (8.6) 

where ߙ is a small positive constant (e.g., ߙ = 0.1 in the experiments) and ࡵ is a ݉ × ݉ diagonal matrix. 

The ࡵߙ is used to ensure the unique solution of ܟෝ࢚࢞ . 

2.2. JLF-Multi 

As a baseline, we consider a simple temporal model ( JLF-Multi)to performing the 4D label fusion. 

We assume that each target image in ܂ contributes equally to the label fusion for target ௧ܶ. In this case, Eq. 

8.5 is can be approximated as the following expression ࢚࢞ࡹ (݅, ݆) ∝ ෍ | ௧ܶ(ݕ) − ௜൫ܫ ௜ࣨ(ݕ)൯| ∙ | ௧ܶ(ݕ) − )௝ܫ ௝ࣨ(ݕ))|௬∈஻(௫)  (8.7) 

where the Σ improves the spatial smoothness by adding multiple voxels ݕ in a patch neighborhood (ݔ)ܤ 

(e.g., 2 × 2 × 2 by default), and the non-local patch searching is conducted within a search neighborhood ࣨ(ݕ)  (e.g., 3 × 3 × 3  by default), which are both common practices in state-of-the-art label fusion 

methods [91, 92].  
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2.3. 4DJLF 

In JLF-Multi, each longitudinal target image contributes equally to the 4D label fusion. However, 

this assumption is not always valid. Considering the case that if target images shown a sudden atrophy after 

a time point. The solution to keep sensitivity is that the label fusion on a target image with atrophy should 

trusts much more on the atlases (raters) after the atrophy happened. Herein, we propose the new dependency 

matrix ࡹሷ ࢚࢞ (݅, ݆) by adaptively evaluating the longitudinal raters’ performance on any target image patches 

using a probabilistic model 

 
Figure VIII.2 The 4DJLF framework. First, the same set of atlases are registered to the longitudinal 
target images (3 time points in figure). Then, the ઴ matrices are calculated using Eq. 8.13. Finally, 
the spatial temporal performance of all atlases are model by Eq. 8.14, which leads to the final 
segmentations (“Seg.”). Note that the upper right ૜ × ૜ matrix is identical to Eq. 8.15. The original 
JLF estimates the block diagonal elements of the generalized covariance matrix (highlighted in 
magenta, green, and yellow) which would result in independent temporal estimates. 
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ሷࡹ ࢚࢞ (݅, ݆) = ݌ ቀ ௤ܶ(ݔ), ௥ܶ(ݔ)ቚ ௧ܶ(ݔ)ቁ
∙ ቌ ෍ ቚ ௤ܶ(ݕ) − ௜(௤)൫ܫ ௜ࣨ(ݕ)൯ቚ ∙ ቚ ௥ܶ(ݕ) − ௝(௥)ܫ ቀ ௝ࣨ(ݕ)ቁቚ௬∈஻(௫) ቍ (8.8)

where the new dependency matrix ࡹሷ ࢚࢞ (݅, ݆) not only evaluates the similarity between atlases and 

target images but also considers the longitudinal similarities between target images. The “(ݍ)” and “(ݎ)” 

indicate which atlases that ܫ௜ and ܫ௝ were registered to and the value of ݍ and ݎ are able to be derived from 

Eq. 8.1. Then, probability of using the raters (atlases) from ୯ܶ  and ୰ܶ  given target ௧ܶ  is modeled in a 

conditional probability  ݌ ቀ ௤ܶ(ݔ), ௥ܶ(ݔ)ቚ ௧ܶ(ݔ)ቁ = ൫݌ ௤ܶ(ݔ)ห ௧ܶ(ݔ)൯ ∙ )݌ ௥ܶ(ݔ)| ௧ܶ(ݔ)) (8.9) 

by assuming ୯ܶ and ୰ܶ are conditionally independent, we have 

݌ ቀ൫ ௤ܶ(ݔ)ห ௧ܶ(ݔ)൯ቁ = exp ቌߚ ∙ ෍ ห ௤ܶ(ݕ) − ௧ܶ(ݕ)หቚ ௤ܶ(ݕ) − ௜(௤)൫ܫ ௜ࣨ(ݕ)൯ቚ௬∈஻(௫) ቍ (8.10)

)൫݌ ௥ܶ(ݔ)| ௧ܶ(ݔ))൯ = exp ቌߚ ∙ ෍ | ௥ܶ(ݕ) − ௧ܶ(ݕ)|ቚ ௥ܶ(ݕ) − ௝(௥)ܫ ቀ ௝ࣨ(ݕ)ቁቚ௬∈஻(௫) ቍ (8.11)

where ߚ is a sensitivity coefficient and is empirically set to 100 in the experiments. 

2.4. Relationship between 4DJLF to JLF 

The proposed 4DJLF theory is a generalization of JLF theory, which is not only designed to 

improve the reproducibility but also maintaining the sensitivity compared with JLF. If the ߚ is set to an 

extreme large number, the ݌൫ ௤ܶ(ݔ), ௥ܶ(ݔ)ห ௧ܶ(ݔ)൯ will be extreme large for atlases from other time points, 

but still equals to 1 for the atlases from the target image itself. Therefore, the weights of the atlases from 

other time points will be infinitely close to zero and only the atlases registered to the target time ௧ܶ is 

considered. In that case, the 4DJLF is degenerated to JLF. 

To visualize such relationship (as shown in Figure VIII.2), we redefine the right side of Eq. 8.8 as 
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the Γ௫(݅, ݆) Γ௫(݅, ݆) =  ෍ ∙ ቚ ௤ܶ(ݕ) − ௜(௤)൫ܫ ௜ࣨ(ݕ)൯ቚ ∙ ቚ ௥ܶ(ݕ) − ௝(௥)ܫ ቀ ௝ࣨ(ݕ)ቁቚ௬∈஻(௫)  (8.12)

Then, we define a matrix Φ௣,௤ as the following  

Φ௫(ݍ, (ݎ = ൦ Γ௫(݅ᇱ, ݆ᇱ) Γ௫(݅ᇱ, ݆ᇱ + 1)Γ௫(݅ᇱ + 1, ݆ᇱ) Γ௫(݅ᇱ + 1, ݆ᇱ + 1) ⋯ Γ௫(݅ᇱ, ݆ᇱ + ݇)Γ௫(݅ᇱ + 1, ݆ᇱ + ݇)⋮ ⋱ ⋮Γ௫(݅ᇱ + ݇, ݆ᇱ) Γ௫(݅ᇱ + ݇, ݆ᇱ + 1) ⋯ Γ௫(݅ᇱ + ݇, ݆ᇱ + ݇)൪ (8.13)

where ݅ᇱ = ݍ) − 1) × ݇ + 1 and ݆ᇱ = ݎ) − 1) × ݇ + 1.  

For simplify, we assume three longitudinal target images are used and the first time point is the 

target image (upper row in Figure VIII.2). We use Eq. 8.13 and rewrite the ݌ ቀ൫ ௤ܶ(ݔ)ห ௧ܶ(ݔ)൯ቁ as ݌௫ ቀ భ்்భቁ 

to visualize the ࡹሷ ݐ) at the first time point ࢚ = 1 and the subscript ݔ is omitted for simplicity). 

ሷࡹ ૚  =
ێێۏ
ێێێ
݌Φ(1,1)ۍ ൬ ଵܶܶଵ൰ ݌ ൬ ଵܶܶଵ൰ Φ(1,2)݌ ൬ ଵܶܶଵ൰ ݌ ൬ ଶܶܶଵ൰ Φ(1,3)݌ ൬ ଵܶܶଵ൰ ݌ ൬ ଷܶܶଵ൰Φ(2,1)݌ ൬ ଶܶܶଵ൰ ݌ ൬ ଵܶܶଵ൰ Φ(2,2)݌ ൬ ଶܶܶଵ൰ ݌ ൬ ଶܶܶଵ൰ Φ(2,3)݌ ൬ ଶܶܶଵ൰ ݌ ൬ ଷܶܶଵ൰Φ(3,1)݌ ൬ ଷܶܶଵ൰ ݌ ൬ ଵܶܶଵ൰ Φ(3,2)݌ ൬ ଷܶܶଵ൰ ݌ ൬ ଶܶܶଵ൰ Φ(3,3)݌ ൬ ଷܶܶଵ൰ ݌ ൬ ଷܶܶଵ൰ۑۑے

ۑۑۑ
(8.14) ې

Since ݌ ቀ భ்்భቁ = 1, the ࡹሷ ૚ is further simplified to 

ሷࡹ ૚ =
ێێۏ
ێێێ
ۍ Φ(1,1) Φ(1,2)݌ ൬ ଶܶܶଵ൰ Φ(1,3)݌ ൬ ଷܶܶଵ൰
Φ(2,1)݌ ൬ ଶܶܶଵ൰ Φ(2,2)݌ ൬ ଶܶܶଵ൰ଶ Φ(2,3)݌ ൬ ଶܶܶଵ൰ ݌ ൬ ଷܶܶଵ൰
Φ(3,1)݌ ൬ ଷܶܶଵ൰ Φ(3,2)݌ ൬ ଷܶܶଵ൰ ݌ ൬ ଶܶܶଵ൰ Φ(3,3)݌ ൬ ଷܶܶଵ൰ଶ ۑۑے

ۑۑۑ
ې
 (8.15)

where the ࡹሷ ૚ is identical to the upper right matrix in Figure VIII.2. Here, note that Φ(1,1) is the 

same as the ܯ௫ matrix in JLF [91], which also demonstrates the relationship between 4DJLF and JLF. 

3. Methods and Results 
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3.1. Data and Preprocessing 

Six healthy subjects with total 21 longitudinal T1-weighted (T1w) MR scans (mean age 82.3, 

range:72.5~90.2) were randomly selected from were randomly selected from Baltimore Longitudinal Study 

of Aging (BLSA) [128]. Each image had 170×256×256 voxels with 1.2×1×1 mm resolution. 15 pairs of 

atlases containing both T1w and label images from BrainCOLOR 

(http://braincolor.mindboggle.info/protocols/) were employed. The intensity atlases had 1mm isotropic 

resolution and the label atlases contained 132 labels for entire brain. In order to evaluate the sensitivity, one 

randomly selected T1w image from a healthy subject (age 11) in ADHD-200 OHSU dataset [304] was used 

in the robustness test. 

The 21 longitudinal target images were first affinely registered [89] to the MNI305 atlas 

[171].Then, the spatially aligned longitudinal atlases ܂ = { ଵܶ, ଶܶ, … , ௞ܶ} were derived by rigidly registering 

each target image to the first time point. Then, 15 atlases were non-rigidly registered [88] to all target 

images to achieve the intensity and label atlases in Eq. 8.1 (performed ݉ =  15 × 21  non-rigid 

registrations). The same preprocessing was also deployed on the one AHDH-200 target image.  

3.2. Reproducibility Experiment and Results 

First, JLF approach were deployed on all 21 longitudinal target images independently using default 

parameters. The longitudinal reproducibility of JLF was evaluated by calculating the Dice similarity 

coefficients between all pairs of longitudinal images (Figure VIII.3a). Then JLF-multi and 4D JLF were 

deployed on the same dataset (using the same default parameters as JLF), whose Dice values between all 

pairs of longitudinal images were shown in Figure VIII.3b. To statistically compare the reproducibility 

between methods, Wilcoxon signed rank test and Cohen’s d effect size analyses were performed between 

JLF-Multi vs. JLF and 4D JLF vs. JLF (Table VIII-1). The “*” indicated such difference satisfied (1) p<0.01 

in Wilcoxon signed rank test, and (2) d>0.1 in effect size.  

The temporal changes on volume sizes of whole brain, gray matter, white matter and ventricle for 

all target images were shown in Figure VIII.4. Figure VIII.5 provides two examples of quantitative results 
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from subject 2 and 5 in Figure VIII.4 respectively.   

 

 
Figure VIII.3 Quantitative results. (a) The reproducibility experiment shown that the proposed 
4DJLF had overall significantly better reproducibility than JLF and JLF-Multi. (b) The robustness 
test indicated that 4DJLF maintained the sensitivity as JLF, while JLF-Multi was not able to do so. 
The red “*” means the method satisfied both p<0.01 and effect size>0.1 compared with JLF 
(“Reference”), while the “N.S.” means at least one was not satisfied. The black “*” means the 
difference between two methods satisfied both p<0.01 and effect size>0.1. 
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3.3. Robustness Test and Result 

Second, a robustness test was conducted to evaluate the sensitivity of JLF, JLF-Multi and 4DJLF 

methods. In this experiment, we combined the previously mentioned ADHD-200 image to each target 

image to formed 21 dummy longitudinal pairs. This test simulated the large temporal variations since the 

two images in each pair were (1) independent (2) collected from different scanners, and (3) had at least 60 

years’ difference. Then, the 4D segmentation methods were deployed on such cases to see if the 4D methods 

can maintain the sensitivity compared with JLF. The Figure VIII.3b and Table VIII-2 indicated the 4DJLF 

had “trivial” changes on reproducibility (effect size <0.1) compared with JLF, while JLF-Multi had large 

differences compared with JLF. 

 

Table VIII-1 Quantitative Results of Reproducibility Experiment 

 JLF JLF-Multi 4DJLF 

Dice 
mean 0.9032 0.9213 0.9311 

std. 0.0221 0.0231 0.0119 

Difference to JLF 
p value N/A <0.01 <0.01 

Cohen’s d N/A 0.7983 1.5691 

 

Table VIII-2 Quantitative Results of Robustness Test 

 JLF JLF-Multi 4DJLF 

Dice 
mean 0.9032 0.9138 0.9043 

std. 0.0221 0.0228 0.0224 

Difference to JLF 
p value N/A <0.01 <0.01 

Cohen’s d N/A 0.4703 0.0463 
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Figure VIII.4 This figure demonstrated the longitudinal changes of whole brain volume, gray 
matter volume, white matter volume and ventricle volume for all 6 subjects (21 time points). The 
black arrows indicated that the proposed 4DJLF reconciles some obvious temporal inconsistency 
by simultaneously considering all available longitudinal images. 
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Figure VIII.5 Qualitative results of deploying longitudinal segmentation methods on two examples. 
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4. Conclusion and Discussion 

Herein, we propose the 4DJLF multi-atlas label fusion strategy by modeling the spatial temporal 

performance of atlases. The proposed 4D theory incorporates the ideas from the two major families of label fusion 

theories (voting based fusion and statistical fusion) by generalizing the leading JLF label fusion method to a 4D 

manner.  The results demonstrated that the proposed method was not only able to improve the longitudinal 

reproducibility (Figure VIII.3a, 4 and 5) but also reduces the segmentation errors compared with traditional 

3D JLF (Figure VIII.5). Meanwhile, the 4DJLF did not significantly change the segmentation 

reproducibility when performing on dummy longitudinal pairs of images (Figure VIII.3b). Such result 

indicated that the 4DJLF was able to keep the sensitivity, while the naïve 4D-Multi was not. All experiments 

in this paper are able to be run in a modern Linux workstation (e.g. 12 core CPU, 8G memory). For a representative 

target image (with two other time points available), JLF consumed ≈ 1 hour, 3.7GB RAM using 15 registered atlases; 

JLF-Multi and 4DJLF consumed ≈ 3 hours, 5GB RAM using 45 registered atlases. 

4DJLF demonstrates that temporal covariance matrices can be robustly and efficiently estimated within label 

fusion, and that these statistical properties can be used to improve MAS. There are multiple opportunities where this 

approach could be applied and should be investigated: (1) 4DJLF could be used for online consistency where 

each new volume is fused with 4-D while holding prior segmentation consistent. (2) This work proposed to 

use the naïve intensity similarity in the probabilistic model to evaluate the temporal performance of atlases. 

More advanced statistical label fusion model can be integrated to optimize the probabilistic model using 

maximum likelihood estimation (MLE) or maximum a posteriori probability (MAP).  (3) The sparse 

representation idea could be introduced to the model reduce the computational time. (4) The approach is 

compatible to the previous efforts in longitudinal segmentation (e.g., 4D registration, 4D intensity 

normalization) and could be integrated into a full 4D pipeline. (5) The empirical validation is limited since we 

did not have ready access to manually labeled longitudinal whole brain image with detailed labels. More thorough 

investigation of longitudinal brain atlases will lead to better understandings of consistency, reproducibility, and 

accuracy.
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Chapter IX. Robust Multi-contrast MRI Spleen Segmentation for 

Splenomegaly using Multi-atlas Segmentation 

1. Introduction 

Abnormal enlargement of the spleen, called splenomegaly [1], is a clinical finding in the patients 

with liver disease [2], cancer [3] and infection [4]. To quantify spleen enlargement, non-invasive spleen 

volume estimation approaches have been proposed using different imaging modalities (e.g., ultrasound [5-

8], computed tomography (CT) [9-12], magnetic resonance imaging (MRI) [13, 14]). Slice-by-slice manual 

tracing on three-dimensional (3D) spleen volumes has been regarded as the gold standard of in vivo spleen 

size estimation [14]. However, the manual delineation is resource and time consuming, especially for large 

cohorts. To alleviate manual efforts and accelerate the spleen volume estimation, many endeavors haven 

been made. One direction is to replace 3D delineation with less time consuming one-dimensional (1D) 

manual measurements (e.g., splenic width, length, thickness) [7]. With 1D measurements, the whole spleen 

volume can be estimated using regression models. Another direction seeks to obtain 3D volumetric spleen 

segmentation automatically using medical image segmentation approaches [15]. Previous automatic spleen 

segmentation methods are typically able to be categorized by, but not limited to, shape/contour based 

models [16], intensity based models [17], graph cuts [18], learning based models [19], and atlas-based 

methods [20]. 
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Most previous spleen segmentation methods were proposed using CT imaging since it has been 

used as the standard technique in abdominal imaging [7]. One of the essential benefits for medical imaging 

processing is that the image intensities in CT are the quantitative Hounsfield Unit (HU). The scaled intensity 

feature are essential in the learning based segmentation methods, such as discriminative models [21] and 

vantage point forests (V.P. Forests) [22]. In the past decades, MRI has been successfully used in clinical 

diagnosis and scientific investigations. Compared with CT, MRI eliminates the radiation risk for patients 

[23, 24], and the frequency of clinical abdominal MRI renders MRI based spleen volume estimation 

techniques an attractive target. However, the intensities in clinical acquired MRI are heterogeneous (Figure 

IX.1a) and without absolute scales, such as HU in CT. Therefore, the intensity based segmentation methods 

developed for CT cannot be directly applied on MRI. Relatively few spleen segmentation methods have 

been proposed for MRI. Behrad et al. proposed an MRI spleen segmentation method using neural networks 

and recursive watershed [19]. Farraher et al. achieved accurate spleen segmentation using a semi-automated 

dual-space clustering segmentation technique [25]. Wu et al. integrated Gabor texture features with snake 

post-processing for MRI spleen segmentation [26]. Pauly et al. proposed the supervised regression method 

 

Figure IX.1 (a) presents heterogeneous sequences in clinical acquired abdominal MRI as well as 
the examples of splenomegaly spleens on MRI. (b) shows the spleen size and sequence type of all 55 
MRI.    
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to perform the whole body segmentation on the particular MRI Dixon sequences [27]. The multi-atlas 

segmentation (MAS) method is regarded as state-of-the-art and has been deployed on various scenarios on 

both CT and MRI [28-35]. Yet, MAS has not been applied to spleen segmentation on clinically acquired 

splenomegaly MRI.  

In this paper, (1) we evaluate the performance of Selective and Iterative Method for Performance 

Level Estimation (SIMPLE) atlas selection method [36] based on our previous efforts on CT spleen 

segmentation [31, 32]. (2) For the particular concerns for MRI clinical splenomegaly images, we propose 

the L-SIMPLE method to achieve the robust spleen segmentation using craniocaudal spleen length (L). To 

perform the evaluation and validation, 55 clinical acquired MRI volumes were examined, consisting of 28 

T1-weighted (T1w) and 27 T2-weighted (T2w) scans (Figure IX.1b), which represented the two major 

contrast mechanisms in clinically acquired abdominal MRI.  

This paper extends a previous conference paper [33] in the following ways. First, a more complete 

description of the different MAS methods is provided. Second, a graph cut based refinement is created to 

ensure the topological correctness. Third, more thorough analyses of using craniocaudal spleen length and 

graph cuts are demonstrated.  

2. Methods 

2.1. Multi-atlas Segmentation Framework 

The general MAS framework consists of preprocessing, image registration, atlas selection, label 

propagation and multi-atlas label fusion (MLF) [30]. Briefly, first a target image was preprocessed using 

N4 bias field correction [37] and resampled to 1.5 mm isotropic voxel size using FMRIB's Linear Image 

Registration Tool (FLIRT) [38]. Second, each atlas image was sequentially affinely registered and non-

rigidly registered using DEnsE Displacement Sampling (DEEDS) [39]. Registration accuracy is essential 

in the atlas based segmentation methods; DEEDS was chosen based on its superior performance in a 

relevant comparative evaluation [40]. Third, atlases selection is performed to address substantial 
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registration failures. Finally, MLF was conducted on the selected registered atlases using joint label fusion 

(JLF) [41]. In this paper, a substantial algorithmic focus is on designing and evaluating atlas selection 

methods (Figure IX.2). 

 

2.2. Automated Pipelines 

Two automated pipelines (without manual intervention) were evaluated as shown in Figure IX.2.  

Pipeline 1: Pipeline 1 consisted of a naïve strategy that excluded the atlas selection step in the MAS 

framework (Figure IX.2). Note that registration failures typically occur more frequently in abdominal 

registrations (Figure IX.3) compared with brain registrations. Therefore, using all registered atlas images 

might lead to inaccurate label fusion results (Figure IX.3; blue rectangles). 

 

Figure IX.2 Multi-atlas labeling steps for each of the four pipelines. Pipeline 1 conducted multi-
atlas label fusion (MLF) on all registered atlases without using atlas selection. Pipeline 2 employed 
the SIMPLE atlas selection method before performing MLF. Pipeline 3 used the craniocaudal 
spleen length (L) to guide the atlas selection. Pipeline 4 evaluated the proposed L-SIMPLE method, 
which integrated the feature L to the SIMPLE atlas selection under the Bayesian framework. For 
all pipelines, a post refinement procedure was included to ensure the topological correctness of the 
spleen segmentation (one connected component). 
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Pipeline 2: To alleviate registration failures, the Selective and Iterative Method for Performance 

Level Estimation (SIMPLE) method [36] was used in the atlas selection in Pipeline 2 (Figure IX.2). The 

SIMPLE method was proposed as a voting based label fusion method. In this work, SIMPLE was used in 

the similar way as a recent work [31], where SIMPLE has been applied to the atlas selection by iteratively 

evaluating the Dice similarity coefficient between intermediate segmentation and atlases. 

 

Figure IX.3 This figure presents an example of using different atlas selection strategies. The upper 
panel reflects the registration results of registering each atlas to the target image. The target image 
is shown as the left figure on the lower panel. The registered atlases are arranged based on the Dice 
similarity coefficient (DSC) to the target manual segmentation, whose DSC increased from top left 
to bottom right. Pipeline 1 (in blue rectangles) employed all registered atlases in the label fusion. 
Pipeline 2 (in pink rectangles) performed the atlas selection using SIMPLE method. Pipeline 3 (in 
green rectangles) used the craniocaudal spleen length (L) to guide the atlas selection. Pipeline 4 (in 
yellow rectangles) integrated L and SIMPLE to the proposed L-SIMPLE method under the 
Bayesian framework. In this example, Pipeline 4 chose the better atlas candidates (lower rows in 
upper panel) for the atlas selection, which achieved the highest DSC relative to the manual 
segmentation. 
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2.3. Semi-automated Pipeline using craniocaudal spleen length 

The SIMPLE atlas selection in Pipeline 2 only considered the registered atlas labels in an iterative 

atlas selection manner without taking the anatomical information from the intensity atlases into account. 

Therefore, although the SIMPLE method was able to achieve robust performance on most of the cases, it 

would not be able to select better atlas candidates when multiple registration failures occur in a similar 

fashion (pink rectangles in Figure IX.3). Therefore, we proposed to use craniocaudal spleen length (L) to 

guide the atlas selection (Pipeline 3 in Figure IX.2).  

Pipeline 3: In clinical diagnosis of splenomegaly, one dimensional (1D) measurements had been 

used to estimate spleen volume efficiently. Following [32], the 1D craniocaudal spleen length (L) yielded 

0.8613 Pearson correlation with ground truth on spleen volume estimation using ≈ 1 minute manual efforts. 

Therefore, the craniocaudal spleen length was employed in Pipeline 3 to guide the atlas selection. The 

craniocaudal spleen length was calculated by multiplying slice thickness by the numbers of visible slices 

on axial direction [7]. The number of visible slices is typically derived manually by experts [7].  In this 

study, since we had delineated the whole spleen for all volumes, we derived the numbers of visible slices 

automatically by subtracting the smallest axial slice number from the largest axial slice number that 

contained the spleen label. Then, atlas selection was deployed by choosing the ten atlases whose 

craniocaudal spleen length values were the closest to the target image.  

2.4. Semi-automated Pipeline using L-SIMPLE 

In Pipelines 2 and 3, the SIMPLE and craniocaudal spleen length (L) were used to conduct atlas 

selection respectively. In this paper, we propose the L-SIMPLE method, which employed the craniocaudal 

spleen length as a prior information to guide the SIMPLE atlas selection (Pipeline 4 in Figure IX.2). 

Pipeline 4: In Pipeline 4, the L-SIMPLE method was proposed to perform the atlas selection by 

integrating the craniocaudal spleen length (L) with the SIMPLE approach under a Bayesian framework. A 

probabilistic map was obtained by averaging the ten registered spleen labels, whose craniocaudal spleen 

lengths were the closest to the target image. Then the probabilistic map served as a prior in L-SIMPLE to 
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guide the iterative atlas selection. The inputs of L-SIMPE were (1) The craniocaudal spleen lengths of the 

target image, and (2) registered spleen label atlases ۯ = ,૚ܣ} ,ଶܣ … ,  represented the ݆th ࢐ܣ ெ}, where eachܣ

label atlas in total ܯ  available atlases. The outputs of L-SIMPLE were ܰ  selected atlases ۯᇱ  for the 

following multi-atlas label fusion (ܰ ≤   :The complete L-SIMPLE algorithm was .(ܯ

Step 1) The ۯ were used as all atlases initially. The spleen spatial prior ݌(ܶ) was obtained by 

averaging the ݎ registered label atlases, whose craniocaudal spleen length had the smallest differences 

compared with target image’s craniocaudal spleen length. ݌(ܶ = 1) was the probability prior map of the 

spleen (spleen label was 1), while ݌(ܶ = 0) was the probability prior map of non-spleen tissues as well as 

background. 

Step 2) The iterative atlas selection strategy was performed. ۯ௞ represented the set of the remaining ݊௞ atlases at iteration ݇. For each voxel ݅, the likelihood function of spleen was defined by 

݂൫ۯ௜௞ห ௜ܶ = 1൯ = 1݊ ෍ ௝௜௞௝ୀଵ,ଶ,…,௡ܣ  

݂൫ۯ௜௞ห ௜ܶ = 0൯ = 1 − 1݊ ෍ ௝௜௞௝ୀଵ,ଶ,…,௡ܣ  

(9.1) 

Step 3) Using the prior in step 1 and likelihood function in step 2, the Bayesian posterior probability 

of spleen at voxel ݅ was derived as  

݂൫ ௜ܶ = 1หۯ௜௞൯ = ݂൫ۯ௜௞ห ௜ܶ = 1൯݂( ௜ܶ = 1)݂൫ۯ௜௞൯  

݂൫ ௜ܶ = 0หۯ௜௞൯ = |௜௞ۯ)݂ ௜ܶ = 0)݂( ௜ܶ = (௜௞ۯ)݂ (0  

(9.2) 

Step 4) The intermediate spleen segmentation ܵ at voxel ݅ was obtained by 

௜ܵ = 1 , if ݂൫ ௜ܶ = 1หۯ௜௞൯ ≥ ݂൫ ௜ܶ = 0หۯ௜௞൯     = 0 , if ݂൫ ௜ܶ = 1หۯ௜௞൯ < ݂൫ ௜ܶ = 0หۯ௜௞൯ (9.3) 

Step 5) The one-dimensional weight vector ݓ was defined by the Dice similarity coefficient (DSC) 

between each ܣ௝௞ and ܵ.  
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௝ݓ = DSC(ܣ௝௞ , ܵ) (9.4) 

Step 6) For the ݇+1 iteration, the ۯ௞ାଵ was a subset of ۯ௞ by comparing ݓ௝ with mean (ݓഥ) and 

standard deviation (ߪ௪) of ۯ .ݓ௞ାଵ = ൛ܣ௝௞ൟ, for ݆： ௝ݓ > ഥݓ) −  ௪) (9.5)ߪ

Step 7) If the ݊௞ାଵ (size of ۯ௞ାଵ) was less than the minimum number of atlases ܰ (herein, 10) or ݊௞ାଵ = ݊௞, the L-SIMPLE was terminated and ۯ௞ was returned as selected atlases. Otherwise, the method 

performed another iteration at step 2. 

2.5. Refinement Using Graph Cuts 

Since the MAS segmentation was conducted based on voxel wise voting, spleen topology (one 

connected component) was not guaranteed. Therefore, a post processing step using graph cuts was used to 

ensure the topological correctness of MAS spleen segmentation. The graph cuts method proposed in [31] 

was used in this work, which maximized the Markov random field (MRF) based energy function [42, 43]. 

3. Data 

A clinical cohort containing 55 abdominal MRI volumes was acquired from 26 patients with 

splenomegaly. Eight patients were scanned one time, seven patients were scanned twice, while eleven 

patients were scanned three times. This cohort has two major features. First, the cohort was a multi-contrast 

dataset, which consists of 27 T1w and 28 T2w images. This dataset was used to evaluate the performance 

of the proposed methods on clinically acquired multi-contrast MRI images. Second, the cohort had large 

variations on spleen volume size for splenomegaly, varying from 368 cubic centimeter (cc) to 5670 cc. The 

mean spleen volume was 1881 cc while the standard deviation was 1219 cc.                                                                          

The leave-one-subject-out strategy was employed for the empirical validation, which means that 

the 55 MRI image volumes were used as either atlases or target images in each leave-one-subject-out test. 

To achieve the 3D whole spleen labels on atlases, the manual delineation was obtained on every volume by 

an experienced rater. The whole spleen segmentation for each scan was traced slice-by-slice (axially). 
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4. Experiments and Results 

The Wilcoxon signed rank test [44] was used for statistical analyses.  All statements of statistical 

significance are made using the Wilcoxon signed rank test for p<0.05.  

4.1. Validation the Rationale of Using L  

4.1.1. Experiments 

Fifty-five clinical scans were used to evaluate the rationale of using craniocaudal spleen length in 

atlas selection. We consecutively performed affine and rigid registration using DEEDS registration method 

[39] on all possible combinations between 55 image volumes. (1) Each image was used as a target image. 

(2) All the other available images except the target image’s longitudinal scans were employed as moving 

images, which were then registered to the target image. This strategy was called “leave-one-subject-out”, 

which means the longitudinal scans (three at maximum) for every target image were excluded from the 

atlases. Therefore, 52 to 54 atlases were used for each target image. (3) The affine transformation and non-

rigid transformation field were applied on the spleen labels of source images. (4) The DSC values were 

calculated between source images and target. Finally, affine and non-rigid registrations were performed on 

2890 pairs of source and target 3D volumes using 55 scans. 
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4.1.2. Results 

The registrations were conducted on 2890 pairs of scans. In each pair, the craniocaudal spleen 

length of source and target scan were used as x and y coordinates in the Figure IX.4. The color of each dot 

indicated the DSC value between the registered source spleen label and target spleen label. From the scatter 

plot, the registrations between scans with similar craniocaudal spleen length typically achieved better 

performance on DSC. 

 

Figure IX.4 The scatter plot demonstrated that 2890 registrations have been performed on all 
possible combinations between 55 clinical acquired splenomegaly images. The coordinate of each 
dot corresponded to the craniocaudal spleen length (L) of the source and target scan of the 
registration. The color of each dot indicated the DSC value between the registered spleen label and 
the manual segmentation. 
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Figure IX.5 The qualitative results of four pipelines on the three subjects with largest, median and 
smallest DSC of Pipeline 4 with GC were shown with manual segmentation. For each pipeline, the 
“no GC” indicated the results without Graph Cuts while the “with GC” demonstrated the results 
with Graph Cuts. 

 

 

Figure IX.6 The quantitative results of four pipelines on Dice similarity coefficient (DSC), mean 
surface distance (MSD) as well as Hausdorff distance (HD) are shown in boxplots. The “no GC” 
indicated the results without Graph Cuts while the “w. GC” demonstrated the results with Graph 
Cuts. The statistical analyses were conducted between the proposed Pipeline 4 L-SIMPLE with 
Graph Cuts method (marked as reference “Ref.”) with other approaches. Statistically significant, 
differences are marked with a “*” symbol. Non-significant differences are indicated with “N.S.”  
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4.2. Validation on Four Pipelines 

4.2.1. Experiments 

The same 55 scans were used in the leave-one-subject-out validations on the four different pipelines 

respectively. The selection of atlases and target images was the same as section IV.A “Validation the 

Rationale of Using L”. In these experiments, Pipeline 1 to 4 were deployed as atlas selection and label 

Table IX-1 Performance of Four Pipelines using All 55 Volumes in A Leave-one-subject-out 
approach. 

Measurements 

Automated Semi-automated 

V.P. 

Forest

s [25]  

Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 

No 

GC 

With 

GC 

No 

GC 

With 

GC 

No 

GC 

With 

GC 

No 

GC 

With 

GC 

Dice 

similarity 

(DSC) 

median  0.697 0.861 0.864 0.905 0.908 0.883 0.888 0.900 0.904

mean±std 
0.70 

±0.12  

0.82 

±0.11 

0.83 

±0.11 

0.87 

±0.10 

0.88 

±0.10 

0.87 

±0.0

6 

0.87 

±0.06 

0.88 

±0.0

6 

0.89 

±0.0

6 

Mean surface 

distance 

(mm) 

median  21.42 5.68 5.09 3.24 3.19 4.21 3.67 3.54 3.41 

mean±std 
22.69 

±8.29 

7.23 

±4.80 

6.93 

±5.74 

4.75 

±5.73 

4.83 

±6.04 

4.86 

±2.1

3 

4.52 

±2.41 

3.96 

±2.1

7 

3.97 

±2.4

5 

Hausdorff 

distance 

(mm) 

median  
123.6

4 
51.19 45.44 31.29 31.25 51.31 36.45 34.10 31.65 

mean±std 
135.2 

±48.8 

61.4 

±29.6 

53.4 

±31.3 

39.7 

±28.4 

39.6 

±30.9 

61.8 

±35.

6 

42.6 

±20.9 

38.3 

±15.

8 

37.1 

±18.

2 

DSC<0.8 45 19 15 6 5 8 8 7 6
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fusion as Figure IX.2. 

We also compared our pipelines with a recent learning based method called vantage point forest 

(V. P. Forests) [22]. The code was downloaded from the link in that paper. All the parameters were set to 

the default except the “num_labels”. In this study, we set num_labels = 1 since we only had one spleen 

label. 

4.2.2. Results 

The qualitative results of four pipelines are demonstrated in Figure IX.5. The qualitative results of 

comparing the proposed Pipeline 4 with other method had been shown in Figure IX.6 and Table IX-1. The 

performance of graph cuts using DSC is significantly higher than without graph cuts refinement.   

 

 

Figure IX.7 The correlation analyses between different pipelines with manual segmentation. The 
semi-automated pipelines achieved higher Pearson correlation values than fully-automated 
pipelines and fully-manual L measurements. The “+” and “=” indicated that the Pipeline 3 and 4 
integrated the information derived from Pipeline 1 and 2 plus the craniocaudal spleen length (L). 
The “corr.” reflected the Pearson correlation values. The “no GC” indicated the results without 
Graph Cuts while the “with GC” demonstrated the results with Graph Cuts. 
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4.3. Sensitivity Analyses on Multi-Contrast Scenarios  

4.3.1. Experiments 

The multi-contrast images (e.g., T1w and T2w) in clinical acquired images were heterogeneous on 

both absolute intensity and intensity contrast. In this experiment, we explored the robustness of the MAS 

methods on the multi-contrast images. Moreover, we evaluate the performance of using (1) both T1w 

images as atlases and targets, (2) both T2w images as atlases and targets, (3) T1w images as atlases and 

T2w images as targets, and (4) T2w images as atlases and T1w images as targets.  

 

Figure IX.8 The sensistivty analyses of the proposed L-SIMPLE method on multi-contrast images. 
(a) demonstrates that using both T1w and T2w images as atlases achieved better performance than 
only using T1w or T2w atlases on segmenting T1w images. (b) shows that using both T1w and T2w 
images as atlases achieved better performance than only using T1w or T2w atlases. From (a) and 
(b), it is evident that the performance of using the same sequence on both atlases and targets did 
not yield a significant difference on DSC compared with using the different sequences for atlases 
and targets respectively.  The “*” symbol indicates significant differences. 
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4.3.2. Results 

For T1w target images, using both T1w and T2w atlases achieved significantly higher DSC than 

using all T1w or T2w atlases. For T2w target images, using both T1w and T2w atlases achieved 

significantly higher DSC than using all T1w or T2w atlases. No significant differences were detected. 

5. Discussion 

Fully automated segmentation methods are commonly preferred over manual or semi-manual 

segmentation methods. Therefore, we evaluate the fully-automated Pipeline 1 and Pipeline 2. The results 

demonstrated that the Pipeline 2 was able to achieve 0.9 median DSC on spleen segmentation for 

splenomegaly. However, outliers (e.g., bad segmentations with DSC<0.7) were generated from the 

registration failures. Such poor cases were typically not desired in the clinical scenarios. To alleviate such 

failures, the 1D manual measurement L was introduced to form the Pipeline 3 and Pipeline 4. From the 

validations, the Pipeline 4 achieved more robust segmentations (Pearson correlation > 0.97) without 

sacrificing on segmentation accuracy (DSC>0.9) compared with Pipeline 2. Meanwhile, the number of 

worst cases (DSC<0.8, DSC<0.75 and DSC<0.7) were alleviated when introducing the L. Since manual 

efforts were still required in Pipeline 4, a meaningful future work would be automated craniocaudal spleen 

length estimation using machine learning and artificial intelligence. 

In this work, four atlas selection strategies (none, automated, manual, semi-automated) have been 

evaluated. Other atlas selection methods could be used to further leverage the performance of the atlas 

based spleen segmentation. Craniocaudal length L can be used for spleen volume estimation directly using 

regression models (with 0.816 correlation to the true volume reported in [10]). The proposed pipelines not 

only achieved higher correlation scores but also provided the 3D volumetric segmentations that the 

regression was not able to. The computational time of registering one atlas to target image was typically <5 

min in our experiments. The computational time would be further reduced when performing atlas selection 

(e.g., using the information from spleen length L). Another direction worth pursing using the spleen length 

L and its spatial information to initialize or leverage the image registration. In the future, the publicly 
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available dataset from VISCERAL Anatomy3 challenge could be used to evaluate the proposed method or 

new methods on abdominal organ segmentation [45]. 

6. Conclusion 

In this paper, we have proposed the L-SIMPLE method and evaluated the performance of multi-

atlas segmentation on clinical acquired MRI for splenomegaly patients. The rationale of introducing the 

manual measurement L was illustrated in Figure IX.4. Figure IX.5 and Figure IX.6 demonstrated that the 

fully automated Pipeline 2 (SIMPLE+MLF) and semi-automated Pipeline 4 (L-SIMPLE + MLF) both 

achieved DSC>0.9. By using the feature L, Pipeline 4 achieved 0.97 Pearson correlation with the manual 

segmentation (in Figure IX.7 and Table IX-1), which was better than either fully automated pipelines or 

only using the spleen length L. The performance of all the four pipelines were better than the V. P. Forests 

method, which shown the robustness of the proposed methods on the multi-contrast MRI segmentation. By 

using the prior from the manually traced L, the worst cases of the spleen volume estimations were alleviated 

as shown in Figure IX.6 and Table IX-1.  The number of worst cases (DSC<0.8, DSC<0.75 and DSC<0.7) 

for the Pipeline 3 and 4 were less than Pipeline 1 and 2. Although the improvements on DSC, MSD, HD 

using the graph cuts refinement were not large compared with omitting refinement, the graph cut ensures 

the topological correctness of the final spleen segmentation (one connected component). 

Figure IX.8 evaluated the sensitivity of the proposed method on multi-contrast scenarios. The 

results demonstrated that the proposed method yields consistent segmentation performance even if the 

contrast mechanism of atlases and targets are different (T1w and T2w). Meanwhile, using all available 

atlases, the performance of the segmentation was better than to pre-classify them to T1w atlases or T2w 

atlases. 
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Chapter X. Splenomegaly Segmentation using Global Convolutional 

Kernels and Conditional Generative Adversarial Networks 

1. Introduction 

Spleen volume estimation is essential in detecting splenomegaly (abnormal enlargement of the 

spleen), which is a clinical biomarker for spleen and liver diseases [35, 134]. Manual tracing on medical 

images has been regarded as gold standard of spleen volume estimation. To replace the tedious and time 

consuming manual delineation, many previous works have been proposed to perform automatic spleen 

segmentation on ultrasound [36-38], computed tomography (CT) [39-41, 325, 334] or magnetic resonance 

imaging (MRI) [135, 136, 138, 335]. In recent years, deep learning methods have shown their advantages 

on automatic spleen segmentation compared with traditional medical image processing methods [137]. 

However, the existing deep learning methods are typically deployed on CT images collected from healthy 

populations (e.g., spleen size < 500 cubic centimeter (cc)). When dealing with splenomegaly MRI 

segmentation (e.g., spleen size > 500 cc), we need to overcome two major challenges: (1) the large 

inhomogeneity on intensities of clinical acquired MR images (e.g., T1 weighted (T1w), T2 weighted (T2w) 

etc.), and (2) the large variations on shape and size of spleen for splenomegaly patients [138]. Recently, 

global convolutional network (GCN) have shown advantages in sematic segmentation on natural images 

with large variations by using larger convolutional kernels [139]. Meanwhile, adversarial networks have 

proven able to refine the semantic segmentation results [140].  

In this paper, we propose a new Splenomegaly Segmentation Network (SSNet) to perform the 

splenomegaly MRI segmentation under the image-to-image framework with the end-to-end training. In 

SSNet, the GCN is used as the generator while the conditional adversarial network (cGAN) is employed as 

the discriminator [336]. To evaluate the performance of SSNet, the widely validated Unet [337] and GCN 

were employed as benchmark methods. Sixty clinical acquired MRI scans (32 T1w and 28 T2w) were used 

as the experimental cohort to test the robustness of the proposed SSNet on the multi-contrast scenario. The 
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experimental results demonstrated that the SSNet achieved more accurate and more robust segmentation 

performance compared with benchmark methods. 

 

2. Methods  

The SSNet was designed under the GAN framework, which consisted of both a generator and 

discriminator (Figure X.1). In this section, we introduce each component in the SSNet. 

2.1. Generator of SSNet 

The GCN was employed as the generator in SSNet for the image-to-image segmentation, where 

the input and output images had the same resolution 512 × 512 . Each training image was sent to a 

convolutional layer (kernel size = 1, channels = 64, stride = 2, padding = 3). Then, the “encoder” portion 

(left side of GCN) extracted the feature maps from the convolutional layer using four hierarchical residual 

blocks, which were the same as the ResNet [338]. Then, five GCN units [139] were used to transfer the 

 

Figure X.1 The proposed network structure of the Splenomegaly Segmentation Net (SSNet). The 
number of channels of each encoder is shown in the green boxes, while the number of channels of 
each decoder is two. The image (or feature map) resolution for each level is shown on the left side 
of this figure. 
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feature maps for each layer to two channels using the large convolutional kernels. The equivalent kernel 

size was the resolution of the feature map by assembling two 1D orthogonal kernels [139]. The new feature 

maps with large reception field were further sent to the boundary refinement layer that is defined in [139]. 

Next, the refined feature maps were added to the up-sampled feature maps from the “decoder” portion (right 

side of GCN). Finally, the added maps were further refined by boundary refinement layer and deconvolved 

to the final segmentations. In Figure X.1, the number of channels of each encoder was shown in the green 

boxes, while the number of channels of each decoder was two. The image resolution for each level was 

shown on the left side of Figure X.1. 

2.2. Discriminator of SSNet 

In SSNet, the conditional GAN (cGAN) was used to further refine the segmentation results in the 

end-to-end training[336]. Briefly, estimated segmentation, manual segmentation and input images were 

used under the conditional manner. For the true segmentation, the ground truth for the cGAN was “true.” 

For the segmentation from the generator, the ground truth for the cGAN was “false.” The PatchGAN [336] 

was used as the classifier for the cGAN, which was a compromise solution between classifying the whole 

image and classifying each pixel.  

2.3. Loss Function and Optimization 

The loss function of SSNet was defined as Lossୗୗ୒ୣ୲ in the following equation. Lossୗୗ୒ୣ୲ = Lossୈ୧ୡୣ + λ ∙ Lossୋ୅୒ (10.1)Lossୈ୧ୡୣ represents the Dice loss, which was the negative Dice similarity coefficient (DSC) score 

between the segmentation from the generator and the manual segmentation. The Lossୋ୅୒ indicated the 

GAN loss, which was the binary cross entropy (BCE) loss between the cGAN estimations and true classes. 

The λ was a constant value that decided the weights when adding the two losses. In our study, the λ was 

empirically set to 100. The Adam optimization [339] was used as the optimization function (learning rate 

= 0.00001). 
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3. Experiments  

3.1. Data 

We used 60 clinically acquired abdominal MRI scans (32 T1w / 28 T2w) from splenomegaly 

patients to evaluate the performance of different deep convolutional networks. Images were acquired after 

informed consent and the study was monitored by an approved institutional review board. The data accessed 

in this study was de-identified. Among the entire cohort, 45 scans (24 T1w / 21 T2w) were used as training 

data, while the remaining 15 scans (8 T1w / 7 T2w) were employed as independent validation data. For 

each scan, the MRI volume was resampled to 512 × 512 × 512 resolution to obtain 512 axial, 512 coronal 

as well as 512 sagittal 2D images. The manual segmentations of spleens were traced by an experienced 

rater using the Medical Image Processing Analysis and Visualization (MIPAV) software [11]. From the 

manual segmentations, the minimum size of spleen is 368 cubic centimeter (cc), the maximum size is 5670 

cc, the mean spleen volume is 1881 cc, and the standard deviation is 1219 cc.  
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3.2. Experiments 

Two sets of the experiments were performed to compare the performance of the proposed SSNet 

with Unet and GCN benchmarks. Since it was a 2D segmentation problem, we used the ImageNet [340] 

pertained model as the initialization for each network when the pertained model was available. The first set 

of the experiments only used the axial images as both training and testing images. Then, the 3D volumetric 

spleen segmentations were derived by assembling the testing images slice by slice from the same testing 

scan. For the second set, all axial, coronal and sagittal view 2D images from the 45 resampled training scans 

were used to train three networks: (1) the first network (axial view network) was trained by all axial view 

images, (2) the second network (coronal view network) was trained by all coronal view images, and (3) the 

third network (sagittal view network) was trained by all sagittal view images. In the testing procedure, the 

 

Figure X.2 The testing accuracy of different epochs was shown in this figure. The y axial indicated 
the mean Dice similarity coefficients (DSC) on all testing volumes, while the x axial presented the 
epoch number from one to ten. The dashed curves were the testing accuracy for the case that only 
axial images were used as training and testing images. The solid curves were the testing accuracy 
for the case that all axial, coronal and sagittal view images were used in both training and testing 
scenario. 
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15 independent testing scans were used for an external validation. For each resampled testing scan, all axial 

view 2D images were segmented by the axial view network and then concatenated to a 3D segmentation. 

Similarly, 3D segmentations from coronal and sagittal views for such testing scan were obtained from the 

coronal view network and the sagittal view network. Finally, the three 3D segmentations (for each testing 

scan) were fused to one final segmentation by (1) merging three segmentations from different views to a 

single segmentation using “union” operation, (2) performing open morphological operations to smooth the 

boundaries, and (3) performing close morphological operations to fill the holes.  

 

Figure X.3 The qualitative results of different methods. The segmentation results of Unet, GCN 
and SSNet on using (1) only axial 2D images, and (2) all axial, coronal and sagittal 2D images are 
shown in the figure for different columns. The manual segmentation results for the same subjects 
are presented as well. The results of three subjects were selected from the highest, median and 
lowest DSC from the SSNet’s testing data. 
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3.3. Validation Metrics 

The Dice similarity coefficient (DSC) values relative to the manual segmentation were used as the 

metrics to evaluate the performance of different segmentation methods. All statistical significance tests 

were made using a Wilcoxon signed rank test (p<0.01).  

4. Results 

 

 

Figure X.4 The quantitative results of different methods. The box plots in left panel indicate the 
results of using only axial view images, while the right panel presents the results of using all axial, 
coronal and sagittal images as in both training and testing. The Wilcoxon signed rank tests were 
employed as statistical analyses, where “Ref.” indicates the reference method. The “*” indicates 
the p<0.01 while the “NS” means not significant. 
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Figure X.2 presents the testing accuracy of different methods and experimental strategies as median 

DSC curves for ten epochs. The y axial indicated the mean Dice similarity coefficients (DSC) on all testing 

volumes, while the x axial presented the epoch number. The dashed curves were the testing accuracy for 

the case that only axial images were used astraining and testing images. The solid curves were the testing 

accuracy for the case that all axial, coronal and sagittal view images were used in both training and testing 

processing. From this figure, the mean testing accuracy plots were systematically increased when trained 

with more epochs. For most of the epochs, the proposed SSNet achieved more accurate testing results than 

GCN and Unet on both single view and multi-view training scenarios. 

Figure X.3 presents the qualitative results of different deep learning methods along with the manual 

segmentation. The upper, middle and lower rows were corresponding to the subjects with highest, median 

and lowest DSC values of SSNet using three views. The segmentation results of Unet, GCN and SSNet on 

using (1) only axial 2D images, and (2) all axial, coronal and sagittal 2D images were shown in the figure 

for different columns. The manual segmentation results for the same subjects were presented as the right-

most column. In Figure X.4 presents the quantitative results of different deep learning methods as box plots. 

All the other methods were compared with the proposed SSNet using three view images (“Ref.”). The 

proposed method achieved significantly better DSC results (p<0.01) than methods with “*” except the one 

with “N.S.”. The lowest DSC value of the SSNet is smaller than the benchmark methods. From Figure X.3 

and Figure X.4, the GCN outperformed the Unet by capturing the large spatial variation for the 

splenomegaly segmentation. By adding GAN supervision, the proposed method not only alleviated the 

outliers but also achieved the higher median DSC (0.9262) and mean DSC (0.9260) compared with baseline 

methods. Meanwhile, using richer training data on three imaging views leveraged the segmentation 

performance for a significant margin.  

5. conclusion and Discussion 

We proposed the SSNet to perform the splenomegaly segmentation using MRI clinical acquired 

scans. Richer training data in the form of 2-D triplanar sections improved all methods, but SSNet remained 
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superior than GCN and had fewer outliers than Unet. From Figure X.2, the proposed SSNet achieved 

generally better performance on median DSC compared with benchmark methods on different epoch 

numbers. From Figure X.3 and Figure X.4, the SSNet was shown to achieve more accurate (higher median 

DSC) and more robust (higher lowest DSC) segmentation performance compared with benchmark results. 

The results also demonstrated that using all axial, coronal and sagittal images as both training and testing 

data consistently provided us better segmentation performance than using single axial view. 

The major limitation of this work was that the segmentation was performed on the 2D images, 

which might lose the 3D spatial information. In the future, it would be worth exploring 3D deep neural 

networks to conduct the splenomegaly segmentation. Another interesting direction could be to integrate the 

clinical diagnostic information to the image segmentation using the attention models [341]. 
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Chapter XI. Adversarial Synthesis Learning Enables Segmentation 

Without Target Modality Ground Truth 

1. Introduction 

Splenomegaly, the condition of having an abnormally large spleen (e.g., >500 cubic centimeter), is 

a biomarker for liver disease, infection and cancer. Previous automated methods have been proposed to 

perform segmentation on normal spleens [313, 322] and with splenomegaly [325, 342, 343]. Recently, deep 

convolutional neural network (DCNN) based methods have been used in splenomegaly and shown superior 

performance [155, 344].  However, one major limitation of deploying DCNN methods is that one typically 

has to manually trace a new set of training data when segmenting organs in a new imaging modality or 

segmenting abnormal organs from a new disease cohort. For instance, a DCNN trained with normal spleens 

was not able to capture the spatial variations of splenomegaly (Figure X.1). Therefore, a straightforward 

solution is to manually annotate a set of splenomegaly CT scans. However, manual tracing is resource intensive and 

potentially error prone.  

Image synthesis has been used to segment images for one modality from another [141-144]. 

However, paired images were typically required for traditional methods. Recently, the cycle generative 

adversarial networks (CycleGAN) [145] provided an effective tool for inter-modality synthesis from 

unpaired images [146, 147]. Therefore, one could synthesize the training images and labels for 

splenomegaly patients and labels on one modality (e.g., MRI) while targeting another modality (e.g., CT).  

Upon such idea, Chartsias et al. [148] proposed an CT to MRI synthesis method using CycleGAN and 

trained another independent MRI segmentation network (called “Seg.”) using the synthesized MRI images. 

Although still using manual labels for both modalities, this two stage framework (called 

“CycleGAN+Seg.”) revealed a promising direction: segmentation was possible without ground truth in the 

target modality. 

In this paper, we propose a novel end-to-end synthesis and segmentation network (EssNet) to 
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perform MRI to CT synthesis and CT splenomegaly segmentation simultaneously without using ground 

truth labels in CT. The EssNet was trained by unpaired MRI and CT scans and only used manual labels 

from MRI scans.  

 

2. Data 

Unpaired 60 whole abdomen MRI T2w scans and 19 whole abdomen CT with splenomegaly spleen 

were used as the experimental data, whose imaging parameters and demographic information were 

introduced in [344] and [325]. Six labels (spleen, left kidney, right kidney, liver, stomach and body) were 

manually delineated for each MRI [344], while one label (spleen) was manually traced for each CT scan 

[325]. Additional 75 whole abdomen CT scans with normal spleens [322] were used to train a baseline 

 

Figure XI.1 The upper row shown that carnonical methods trained by normal spleen failed in 
splenomegaly segmentation.  The lower row shown that the proposed EssNet achieved 
splenomegaly segmentation from unpaired MRI and CT training images without using CT labels. 
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DCNN method. 

 

3. Method 

The network structure of EssNet is shown in Figure XI.2, where“ܣ” indicates MR images while 

 ଵܩ) represents CT images. The 9 block ResNet (defined in [145, 345]) was used as the two generators ”ܤ“

and ܩଶ). ܩଵ synthesized an image ݔ in modality ܣ to the generated ܤ image (ܩଵ(ݔ)), while ܩଶ synthesize 

an image ݕ in modality ܤ to the generated ܣ image (ܩଶ(ݕ)). The PatchGAN (defined in [145, 336]) was 

employed as the two adversarial discriminators (ܦଵ and ܦଶ). ܦଵ distinguished if the CT image was real or 

 

Figure XI.2 The left side was the CycleGAN synthesis subnet, where A was MRI and B was CT. 
G_1 and G_2 were the generators while D_1 and D_2  were discriminators. The right subnet was 
the segmentation subnet for an end-to-end training. Loss function were added to optimize the 
EssNet. 
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generated, while ܦଶ determined for the MR image. When deploying such framework on unpaired ܣ and ܤ, 

two training paths (Path A and Path B) existed in forward cycles. The cycle synthesis subnet was basically 

the same as CycleGAN [145]. 

 

Since the aim of the proposed EssNet was to perform end-to-end synthesis and segmentation. The 

segmentation network ܵ was concatenated after ܩଵ directly as an additional forward branch in Path A. The 

9 block ResNet [145, 345] were used as ܵ , whose network structure was identical to ܩଵ . Then, the 

estimated segmentation from generated B was derived.  

Five loss functions were used to train the network. Two adversarial loss functions ℒୋ୅୒ were 

defined as ℒୋ୅୒(ܩଵ, ,ଵܦ ,ܣ (ܤ = ௬~஻[logܧ [(ݕ)ଵܦ + ௫~஺[log(1ܧ − ,ଶܩ)ℒୋ୅୒ [(((ݔ)ଵܩ)ଵܦ ,ଶܦ ,ܤ (ܣ = ௫~஺[logܧ [(ݔ)ଶܦ + ௬~஻[log(1ܧ − (11.1) [(((ݕ)ଶܩ)ଶܦ

Two cycle consistency loss ℒୡ୷ୡ୪ୣ functions were used to compare the reconstructed images with 

real images.  

 

Figure XI.3 The qualitative results of the synthesized images and segmentations in training Path A 
and Path B. 
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ℒ௖௬௖௟௘(ܩଵ, ,ଶܩ (ܣ = ൯(ݔ)ଵܩଶ൫ܩ௫~஺[ฮܧ − [ฮଵݔ       ℒୡ୷ୡ୪ୣ(ܩଶ, ,ଵܩ (ܤ = ൯(ݕ)ଶܩଵ൫ܩ௬~஻[ฮܧ − ฮଵ]  (11.2)ݕ

The segmentation loss function was defined as ℒୱୣ୥(ܵ, ,ଵܩ (ܣ = − ∑ ݉௜௜ ∙ log(ܵ(ܩଵ(ݔ௜)))           (11.3)

where ݉ was the manual labels for image ݔ, ݅ was the index of a pixel. Then, the total loss function was 

defined as ℒ୲୭୲ୟ୪ = ଵߣ  ∙ ,ଵܩ)ୋ୅୒ܮ ,ଵܦ ,ܣ (ܤ + ଶߣ ∙ ℒୋ୅୒(ܩଶ, ,ଶܦ ,ܤ (ܣ + ଷߣ ∙ ℒୡ୷ୡ୪ୣ(ܩଵ, ,ଶܩ +(ܣ ସߣ ∙ ℒୡ୷୪ୣ(ܩଶ, ,ଵܩ (ܤ + ହߣ ∙ ℒୱୣ୥(ܵ, ,ଵܩ  (ܣ
(11.4)

In this work, the lambdas were empirically set to ߣଵ = ଶߣ ,1 = ଷߣ ,1 = ସߣ ,10 = ହߣ ,10 = 1. To 

minimize the ℒ୲୭୲ୟ୪, the Adam optimizer was used [145]. The examples of real, synthesized, reconstructed 

and segmentation images for Path A and Path B were shown in Figure XI.3.  

In testing, only trained network S was used and ܤᇱ represented the testing CT images. the Dice 

similarity coefficient (DSC) values between automated and manual segmentations were used as the metrics 

to evaluate the performance of different segmentation methods. All statistical significance tests were made 

using a Wilcoxon signed rank test (p<0.05). 
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Figure XI.4 The qualitative results of (1) three canonical methods using CT manual labels in CT 
segmentation, and (2) CycleGAN+Seg. and the proposed EssNet methods without using CT manual 
labels. The splenomegaly CT labels were only used in validation and excluded from training for 
(2). Moreover, later methods not only performed spleen segmentation but also estimated labels for 
other organs, which were not provided by canonical methods when such labels were not available 
on CT. 
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4. Results 

The qualitative results of different methods on three subjects (lowest, median and highest DSC for 

the EssNet) were shown in the Figure XI.4. From the results, the EssNet was not only able to perform the 

spleen segmentation, but also estimated segmentations on liver, left kidney, right kidney and stomach. The 

quantitative results of different segmentation strategies on all CT scans were shown in the Figure XI.5 as a 

boxplot. The “*” indicates the difference were significant, while “N.S.” means not significant. 

5. Conclusion and Discussion 

In this work, we proposed the end-to-end EssNet for simultaneous image synthesis and 

 

Figure XI.5 The boxplot results of all CT splenomegaly testing images, where “*” means the 
difference are significant at p<0.05, while “N.S.” means not significant. 
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segmentation. We demonstrate this approach on splenomegaly CT segmentation without using ground truth 

labels in CT. From Figure XI.3, the proposed end-to-end approach was able to achieve MRI to CT synthesis, 

CT to MRI synthesis, and the CT segmentation simultaneously. Figure XI.4 shown that the proposed 

method was not only able to obtain spleen segmentation but also estimate liver, kidney, stomach labels, 

while the canonical methods using CT data only were not able to when such labels were not available on 

CT. Figure XI.5 shown that the SSNet trained by normal spleen CT images was significantly worse than 

other methods. The proposed EssNet method was significantly better than the two stages CycleGAN+Seg. 

method. Without using CT labels, the EssNet achieved the comparable performance as the AGMM MAS 

and ResNet that used CT labels. On the contrary, the performance of CycleGAN+Seg. was significantly 

worse than ResNet. 

This study opens the possibility of using EssNet to perform the segmentations on other modalities 

on which target labels are not known and paired inter-modality data are not available. An interesting 

limitation of this work is that the networks are 2-D (but assessed in 3-D) due to time and memory concerns. 

Either post processing for 3-D consistency or 3D EssNet would be a promising area.
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Chapter XII. Automated characterization of pyelocalyceal anatomy using 

CT urograms in management of kidney stones  

1. Introduction 

Prevalence of kidney stone disease, or nephrolithiasis, has been rising over the last several decades 

and now affects approximately 1 in 11 individuals in the United States [1].  Most stones that do not 

spontaneously pass will require surgical treatment with ureteroscopy (retrograde endoscopy through the 

urethra and bladder), extracorporeal shock wave lithotripsy (stones fragmentation using noninvasive shock 

waves), percutaneous lithotripsy (endoscopy through 1 cm direct puncture into the kidney), or very rarely 

laparoscopic or open surgery. An efficient and effective choice of surgical approach is critical given the 

significant morbidity due to kidney stones, including pain, infection, and renal insufficiency, as well as 

associated costs, which were estimated to be over $5 billion in 2000 [2]. 

In determining an optimal operation, it is essential to consider anatomic factors and stone features 

as these affect treatment success rates [3, 4]. Prior studies correlating specific characteristics of the 

pyelocalyceal anatomy (kidney drainage or collecting system), such as the infundibulopelvic angle (IPA) 

(angle representing the lowest dependent portion of the drainage system), and stone-free rates after surgery 

have utilized 2-dimensional (2D) imaging studies to characterize the 3-dimensional (3D) urinary collecting 

system, a discrepancy that has led to conflicting data [3, 5, 6]. For example, the range of infundibulopelvic 

angles in patients using 2-dimensional retrograde pyelograms are not consistent with those measured from 

3-dimensional resin casts of cadaver kidneys. Furthermore, many of these studies were performed with 

manual measurements of images taken during surgery, meaning the images are not available pre-operatively 

to actually aid in treatment planning. The above indicate a strong need for imaging-based 3D analysis of 

pyelocalyceal anatomy in order to achieve appropriate patient-specific preoperative planning and 

counseling. Abundant availability of computed tomography (CT) scans provides an ideal opportunity to 

develop algorithms for patient-specific computer-aided treatment guidance. In addition, this type of data at 
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a population level will be highly valuable in the development of novel devices for kidney stone surgery and 

general characterization of anatomy.  

 

In this feasibility study, we aimed to automatically identify the 3D structure of the renal collecting 

system anatomy in CT Urograms that could then be used to measure the IPA, a key feature previously 

identified as potentially correlating with success of a given surgical approach. 

2. Methods 

2.1. Patient Selection and Imaging  

The Institutional Review Board approved this study with a waiver of informed consent.  Electronic 

medical records were used to randomly identify patients who had a CT urogram for hematuria workup.  

Exclusion criteria included any treated or untreated kidney pathology including tumors, presence of kidney 

stones, anatomic variants, and chronic renal insufficiency as this affects the rate of contrast excretion.   

 
Figure XII.1 Top: Non-contrast CT with cropped images of the kidney in which pyelocalyceal 
system is not visualized. Bottom: Excretory phase of CT Urogram with cropped images of kidney 
and pye-localyceal anatomy illuminated during excretion of contrast by the kidneys. 
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Images were manually reviewed to confirm good image quality.  All excretory phase sequences in this 

study were performed in the prone position (Excretory Phase in Figure VII.1) at an 8 minute delay per 

institutional protocol with 3mm axial reconstructions.  

 

2.2. Automated Localization and Segmentation of Whole Kidney 

Figure XII.2 demonstrates the workflow of the proposed the algorithm. A SIMPLE context 

learning-based multi-atlas segmentation framework [7] was used to achieve whole kidney segmentation. 

To achieve the SIMPLE framework, 30 pairs of atlases (anatomical CT scans and corresponding labels) 

were obtained from MICCAI 2015 MeDiCAL challenges 

(https://www.synapse.org/#!Synapse:syn3193805/wiki/89480).  Two sets of cropped atlases were then 

formed based on kidney locations (30 pairs each for the left and right kidneys).  The atlases were manually 

 
Figure XII.2 The workflow of the proposed framework. First, the whole kidney was localized and 
segment-ed using multi-atlas segmentation. Then the pyelocalyceal structure was segmented from 
a Gaussian Matured Model and the tree structure was subsequently derived.  Key landmarks 
(yellow dots) were manually identified from the 3D reconstruction and tree structure to con-struct 
an oblique 4mm thick plane from which the IPA was measured. 



170 
 

cropped by an experienced rater using MIPAV software [8].  Next, the left and right kidneys in target CT 

Urogram images were automatically localized and cropped using a random forest based localization method 

[9].  The previously cropped atlases were then registered to the cropped target CT Urogram images using 

affine and non-rigid registrations by NiftyReg [10].  A SIMPLE based context learning procedure was 

performed to select the best 10 registered atlases for each target kidney [11].  Finally, the left and right 

kidney segmentations were derived by performing the joint label fusion (JLF) [12] on the selected atlases. 

2.3. Automated Segmentation of Pyelocalyceal Anatomy and Validation 

Once the kidneys were cropped and segmented from the original excretory phase image, a Gaussian 

mixture model (GMM) was used to segment the pyelocalyceal anatomy within the kidneys. Empirically, a 

threshold (above 100 Hounsfield Unit (HU)) was applied to exclude tissues surrounding the kidney. The 

GMM with three components was then employed on the histogram of remaining intensities. The two 

components (from three total) with higher mean HU score were clustered and identified to be the 

pyelocalyceal anatomy segmentation. The component with smallest mean HU score represented residual 

kidney organ tissue not completed removed in the initial thresholding step.  Finally, a 3D tree structure 

(center line) was derived from the pyelocalyceal anatomy segmentation using the method described in [13].  

Briefly, the method calculated the 3D axis skeleton of 3D binary volume using a parallel thinning algorithm 

based on Eular table.  

All pyelocalyceal segmentations were qualitatively evaluated by a radiologist and rated as having 

excellent, acceptable, or poor accuracy.  A subset of the kidneys that resulted in excellent or acceptable 

segmentations were then manually segmented by a radiologist and the DICE coefficient was calculated.  
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2.4. Measurement of Infundibulopelvic Angle in 2D and 3D images 

The previously described Elbahnasy method for IPA measurement in 2D images was modified to 

allow for IPA measurement using 3D images and the above derived 3D tree structure [14].  Key landmarks 

corresponding to those in the Elbahnasy method were identified by a Urologist in 3D slicer software 

(https://www.slicer.org) using the kidney segmentation, pyelocalyceal anatomy and tree structure derived 

from above automated algorithm. The landmarks were as follows: (1) the center point of the proximal ureter 

at the lowest plane of the kidney, (2) the center point of the renal pelvis along medial margin of kidney, (3) 

a point in the inferior branch of the kidney drainage system.  The three points were used to create a unique 

4mm thick slice from the 3D volume, and the IPA was measured as the angle between the lines connecting 

points (1) and (2), and the center line through the lowest branch of the kidney drainage system.  As a 

 
Figure XII.3 Quantitative results of the segmentation and angle measurements for a single kidney. 
Top row: 3D reconstruction of the kidney, 3D reconstruction of the pyelocalyceal structure, tree 
struc-ture.  Bottom row: Overlays of reconstructions and tree structure, traditional 2D 
measurement [1] of IPA (red lines) using averaged 2D image (blue lines indicate key landmarks), 
and the 3D IPA measurement (red lines) using described method. 
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comparison, traditional 2D measurements of the IPA were performed on the average cropped kidney image 

in the coronal direction (Figure XII.3). 

3. Results 

3.1. Patients 

After exclusion of patients with imaging artifacts or inadequate collecting system distension, 

imaging of 8 renal units from 6 patients were identified to be appropriate for this feasibility study.  Patients 

ranged in age from 42-80 years old and all had normal kidney function.  

3.2. Pyelocalyceal Anatomy Segmentation 

The pyelocalyceal anatomy was appropriately segmented in 8 of the 11 renal units with a rating of 

excellent or accep  by a radiologist. Of these, 6 were manually segmented by the radiologist and 

DICE coefficients ranged from 0.62 to 0.88.  

3.3. Infundibulopelvic Angle 

Figure XII.3 demonstrates the segmentation results, tree structure, as well as 2D and 3D IPA 

measurements from a single example kidney.  The IPA based on the 3D segmentations and tree structures 

ranged from 14.6 degrees to 81.5 degrees while IPA based on 2D reformatted images ranged from 9.4 

degrees to 88.3 degrees (Table XII-1).  Comparisons between the angles based on the 2D and 3D methods 

demonstrated a difference up to 35.6 %  
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4. Discussion 

Kidney stone disease is a chronic condition that often requires many surgeries over a patient’s 

lifetime.  Each surgery is associated with risks and residual stones [346] can have severe consequences so 

appropriate initial surgical intervention is critical.  In addition, anatomic variation may play a role in stone 

formation or burden of disease [347].  Thus, accurate characterization of patient anatomy can have both 

immediate and long-term effects with respect to surgical planning as well as lifelong management, such as 

the interval between imaging studies.  This is the first method known to the authors for automated 

characterization the 3D pyelocalyceal tree. Results demonstrate that this algorithm is technically feasible 

and DICE coefficient indicate good segmentation results. The relative difference in the measured IPA 

between the 2D and 3D techniques was up to 35%.  In fact, while prior studies have indicated that anatomic 

variation may be critical to predicting surgical success, the data are inconsistent and, as this preliminary 

data suggests, part of the discrepancy may be due to inaccuracies from utilization of 2D images.  An inherent 

limitation of such automated algorithms is that the result will only be as good as the initial imaging, and 

Table XII-1 The angles (degree) obtained from 2D and 3D measurements 

Kidney # 

2D 

Measurement

3D 

Measurement

Absolute 

difference 

Percent 

difference 

1 19.2 23.7 4.5 18.99% 

2 16.5 21.9 5.4 24.66% 

3 66.9 70.1 3.2 4.57% 

4 34.2 48.6 14.4 29.63% 

5 57.4 60 2.6 4.33% 

6 9.4 14.6 5.2 35.63% 

7 23.1 19.7 3.4 17.26% 

8 88.3 81.5 6.8 8.34% 
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imaging quality of CT urograms can be dependent on multiple factors such as kidney function and level of 

hydration.  We aim to further automate our algorithm, assess additional anatomic variables, both novel and 

previously described, and then correlate these with stone free rates after stone surgery.  Outcomes from 

such studies may provide valuable tools for patient-specific stone management. 



175 
 

Chapter XIII. Conclusions and Future Work  

1. Summary 

The large-scale medical image processing and analyses are challenging for both brain and 

abdomen. For the brain, we have established an end-to-end large-scale medical image analysis framework 

in investigating lifespan aging by conducting robust and consistent whole brain volume and surface metrics 

(Chapters II, III, IV), controlling inter-subject variations (Chapters V, VI), and conducting robust statistical 

analyses (Chapter VII). We have generalized the multi-atlas label fusion theory from 3D to 4D for 

longitudinal whole brain segmentation (Chapter VIII). For the abdomen, we have proposed splenomegaly 

segmentation methods using multi-atlas approach, deep convolutional neural networks, and synthesis 

learning (Chapter IX, X, XI). Then, we applied abdomen segmentation methods to achieve a tree structure 

of the urinary collecting system, allowing for 3-dimensional characterization of the pyelocalyceal anatomy 

(Chapter XII). 

2. Consistent Whole Brain Segmentation and Cortical Reconstruction 

2.1. Summary 

Whole brain multi-atlas segmentation and cortical surface reconstruction have long been regarded 

as two unrelated techniques. We proposed the first work, MaCRUISE, to combine multi-atlas segmentation 

with cortical surface reconstruction (Chapter III). This method was extended to achieve detailed surface 

parcellation (Chapter IV). Using such technique, 132 volume labels and 98 surface labels were achieved 

from a clinical acquired single T1w MRI scan. 

2.2. Main Contributions 

• MaCRUISE combined the previous independent volume segmentation and surface 

reconstruction into a uniformed and consistent framework.  

• It achieved more robust surface reconstruction and more accurate volume segmentation 
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compared with state-of-the-art methods. 

• Detailed annotations (132 volume labels and 98 surface labels) were achieved from a single 

T1w MRI scan. 

2.3. Future Work 

The processing speed is a major limitation in the MaCRUISE as the multi-atlas segmentation and 

the surface reconstruction are computational expensive. In recent years, the deep learning segmentation 

methods have been shown their advantages, especially on the computational time. Therefore, it is appealing 

if further efforts can be made to integrate the deep learning techniques with whole brain segmentation and 

surface reconstruction.  

3. Large-scale Multi-Site Image Data Analysis 

3.1. Summary 

Recent developments on data sharing and computational power offer us an opportunity to explore 

large-scale medical image data. In this work, we have collected more than 5000 normal MRI scans from 

night projects and most of them are public available. We proposed the MLF algorithm to perform fast whole 

brain segmentation from machine learning perspective (Chapter II). With such large cohort, we presented 

the novel data-driven probabilistic atlas to achieve personalized prior in less than ten minutes (Chapter V). 

To deal with the large variations on imaging sequences and subjects, we proposed the multi-atlas-based 

TICV estimation method (Chapter VI). The TICV measurements were used as linear confounds in life-span 

brain volumetry analysis using C-RCS method (Chapter VII) 

3.2. Main Contributions 

• We revisited the whole brain segmentation problem from machine learning perspective. 

The AdaBoost learning method as well as PCA representation were used in the whole brain 

segmentation.  
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• We reduced the computational time for achieving whole brain segmentation (with 132 

labels) from more than 30 hours to less than 10 minutes using more than 3000 training 

volumes. 

• Data-driven probabilistic atlases were established from a dictionary learned from large-

scale training cohort.  

• Multi-atlas based simultaneous TICV and PFV estimation method was proposed to achieve 

more accurate performance than state-of-the-art methods. 

• We proposed C-RCS regression method to model the non-linear developmental trajectories 

of life-span brain volumetry.  

• We showed the changes of structural connectives and volumetric trajectories from global, 

network, and regional levels. 

3.3. Future Work 

Large-scale medical image analysis has been regarded as one of the major future directions of 

medical image analysis. However, the computational efficiency, the robustness on multi-site even multi-

sequence data, and the large-scale data mining algorithms are among the key barriers in large-scale image 

analyses. The deep learning techniques as well as Big Data mining techniques developed in computer 

vision, machine learning, and bioinformatics are promising solutions for the next generation large-scale 

medical image analyses. 

4. Longitudinal Whole Brain Segmentation 

4.1. Summary 

To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to 

reconcile temporal variations with traditional 3D approaches. We propose the longitudinal label fusion 

algorithm, 4DJLF, to incorporate the temporal consistency modeling via non-local patch-intensity 

covariance models (Chapter XIII). 
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4.2. Main Contributions 

• We generalized the multi-atlas label fusion theory from 3D to 4D for longitudinal 

scenarios. 4DJLF is under the general label fusion framework by simultaneously 

incorporating the spatial and temporal covariance on all longitudinal time points.  

• The proposed algorithm is a longitudinal generalization of a leading joint label fusion 

method (JLF) that has proven adaptable to a wide variety of applications.  

• The spatial temporal consistency of atlases is modeled in a probabilistic model inspired 

from both voting based and statistical fusion. 

4.3. Future Work 

It is challenging to reconcile temporal inconsistency while keep sensitivity. To develop spatial 

temporal consistent whole brain MRI segmentation method is essential, yet challenging task. One major 

limitation is that we did not have a longitudinal MRI cohort with detailed manual segmentations. Therefore, 

it would be valuable if we can provide such validation dataset as a publicly available dataset for the 

community. 

5. Multi-atlas Based Abdomen Image Processing 

5.1. Summary 

Non-invasive splenomegaly segmentation from 3D MRI or CT is challenging given the diverse 

structural variations of human abdomens as well as the wide variety of clinical acquisition schemes. We 

proposed the multi-atlas based fully automated and semi-automated splenomegaly segmentation methods 

(Chapter IX). Then, the multi-atlas segmentation technique was applied to the kidney to get tree structures 

and 3D measurements for renal collecting system (Chapter XII).  

5.2. Main Contributions 

• The automated segmentation method using the selective and iterative method for 
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performance level estimation (SIMPLE) atlas selection was used to address the concerns 

of inhomogeneity for clinical splenomegaly MRI. 

• The semi-automated craniocaudal spleen length-based SIMPLE atlas selection (L-

SIMPLE) was proposed to integrate a spatial prior in a Bayesian fashion and guide iterative 

atlas selection. 

• The graph cuts refinement was employed to achieve the final splenomegaly segmentation 

from the probability maps from multi-atlas segmentation. 

• For the kidney, we propose a novel non-invasive framework that automatically achieves a 

tree structure of the urinary collecting system using CT urograms, allowing for 3-

dimensional characterization of the pyelocalyceal anatomy. 

5.3. Future Work 

For splenomegaly segmentation, the computational time would be further reduced when 

performing atlas selection (e.g., using the information from spleen length). Another direction worth pursing 

is to use the spleen length L and its spatial information to initialize or leverage the image registration. For 

kidney structure analyses, the landmark annotation step can be fully automated in the future. 

6. Deep Learning Based Abdomen Image Processing 

6.1. Summary 

In recent years, deep convolutional neural networks segmentation methods have demonstrated 

advantages for abdominal organ segmentation. First, we proposed the SSNet to address spatial variations 

when segmenting extraordinarily large spleens (Chapter X). The SSNet was designed based on the 

framework of image-to-image conditional generative adversarial networks. Second, we proposed a novel 

end-to-end synthesis and segmentation network (EssNet) to achieve the unpaired MRI to CT image 

synthesis and CT splenomegaly segmentation simultaneously without using manual labels on CT (Chapter 

XI). 
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6.2. Main Contributions 

• For splenomegaly segmentation, we proposed SSNet for the fast splenomegaly 

segmentation. Global convolutional network (GCN) was used as the generator to reduce 

false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false 

positives. 

• We proposed the EssNet that enabled the end-to-end simultaneous synthesis learning and 

segmentation. Using EssNet, we achieved accurate spleen segmentation without having 

ground truth labels in the target modality. 

6.3. Future Work 

The SSNet and EssNet were designed using 2D frameworks rather than 3D due to the limitation 

that we did not have large enough 3D training dataset. A promising direction is to extend the SSNet and 

EssNet from 2D to 3D to have better spatial consistency. Another appealing direction is to combine 

traditional medial image techniques (e.g. registration, preprocessing, postprocessing) with deep learning 

techniques to further leverage the segmentation performance. 

7. Concluding Remarks 

The application of medical image analysis to the large-scale images is a challenging field. In this 

dissertation, we address these challenges by proposing new algorithms and improving already developed 

tools for automated large-scale medical image processing and data.  We have addressed many key obstacles 

for  performing large-scale medical image processing and analyses . Medical image analysis on large-scale 

imgae data is improving and new techniques are constantly emerging. By its nature, medical image research 

is a data intensive and collaborative discipline, which requires the new infrastructures and techniques to 

systematically extract, examine and result in new knowledge. Yet both image processing and data analysis 

for Big Data medical images are still maturing, which still leaves room for either adapting the existing 

techniques for Big Data scenario or even proposing new approaches. The is also room for applying the 
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large-scale medical image analysis on understanding the fundamental problems and diseases in human brain 

and abdomen .
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