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CHAPTER I 

INTRODUCTION 

1.1 Diabetic Retinopathy 

1.1.1 Prevalence & Risk 

 Diabetes mellitus is a set of metabolic diseases in which the body experiences 

high levels of blood glucose, or hyperglycemia, for long periods of time, stemming from 

a defect in insulin signaling.1 There are two primary types of diabetes, Type I is an 

autoimmune disease in which the body’s immune response damages the pancreas and 

impairs its ability to produce insulin.2 Where as in Type II diabetes, which accounts for 

nearly 95% of diabetic cases, the body is able to make insulin, but either makes an 

insufficient amount or has become resistant to the effects. Recent estimates place the 

total worldwide diabetic population at roughly 387 million, with approximately 38.8 

million patients in North America alone.3 

 Both clinical and pre-clinical studies indicate that hyperglycemia is a causative 

factor in the development of microvascular complications associated with diabetes and 

can lead to a number of serious complications that include heart disease, stroke, kidney 

failure, and vision loss. In this context, the primary cause of vision loss is diabetic 

retinopathy (DR), which is damage to the retinal microvasculature caused by diabetes. 

A pooled meta-analysis compiling 35 population-based studies from around the world 

estimated that roughly 34.6% of diabetic patients aged 20-79 had some form of DR, and 

that the condition was vision threatening in 10.2% of those cases.4 This finding applied 

to current estimates of the worldwide diabetic population suggests that there are roughly 

13.4 million cases of DR in North America, and 133.9 million worldwide. 
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 Diabetic 
Retinopathy 

Vision Threatening 
Retinopathy 

Type of Diabetes 

Type I 77.31% 38.48% 

Type 2 25.15% 6.92% 

Duration of Diabetes 

< 10 years 21.09% 3.53% 

10 to < 20 years 54.22% 17.78% 

≥ 20 years 76.32% 40.87% 

HBA1c Levels 

≤ 7.0% 17.99% 5.4% 

7.1 – 8.0% 33.13% 10.82% 

8.1 – 9.0% 43.1% 13.64% 

> 9.0% 51.2% 18.35% 

Table 1. Age standardized prevalence of DR in diabetic subjects 
aged 20-79 years. Vision threatening retinopathy refers to classifications 
of either PDR or DME. Adapted from Yau et al. 2012. 
 

 Incidence of DR in diabetic populations has been shown to correlate with a 

number of key factors (Table 1).4 DR occurs in both Type I and Type II patients, 

although the prevalence of DR is significantly higher in Type I populations (77.31%) 

than in Type II populations (25.16%). This may in part be a result of increased duration 

of disease in Type I versus Type II patients as the onset of Type I typically occurs at a 

much younger age then Type II. In fact, duration of diabetes is the strongest risk factor 

for DR, with the prevalence increasing from 21.09% during the first 10 years of disease, 

to 54.22% in years 10 through 20, and climbing to 76.32% in cases of longer than 20 

years. Blood glucose control is another major risk factor, and in clinical settings is 

typically evaluated by measuring hemoglobin A1c (HBA1c) levels. Increased HBA1c levels 

coincide to an increased prevalence of DR, with levels of ≤7% and >9% yielding 
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prevalence rates of 17.99% and 51.2% respectively. Studies have shown that instituting 

increased blood glucose control can slow the progression of DR pathology, but does not 

reverse existing pathology.5,6 

1.1.2 Clinical Classification & Treatment 

 Clinically DR falls into two main classifications, non-proliferative diabetic 

retinopathy (NPDR) and proliferative diabetic retinopathy (PDR), based on the absence 

or presence of retinal neovascularization. NPDR occurs early in disease progression 

and is initially characterized by microvascular complications such as microaneurysms 

and small hemorrhages.7,8 These initial pathologic features of NPDR are not vision 

threatening in and of themselves, but increases in their presence and severity are 

predictive of disease progression.7,9 In later more severe stages of NPDR, capillary 

degeneration and nonperfusion become more prominent pathologic features of the 

diseased vasculature, and over time lead to localized retinal ischemia.10 Retinal 

ischemia results in tissue hypoxia that, while not measured or evaluated clinically, is 

believed to drive the retinal neovascularization that defines PDR. The newly formed 

blood vessels that comprise neovascular tufts found in PDR are leaky and fragile and 

can easily rupture leading to vitreous hemorrhages and sudden vision loss.10,11 In 

addition, if left untreated these aberrant vessels can intertwine with the vitreous collagen 

fibers and detach the retina resulting in severe, and often irreversible, vision loss.11  

 While retinal neovascularization and detachment are serious vision threatening 

complications of DR, the most common cause of vision loss in diabetic patients is 

diabetic macular edema (DME). DME can occur in both NPDR and PDR, and is a result 

of blood retinal barrier (BRB) breakdown and fluid leaking out of the compromised 
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vasculature into the macula, the area of the retina responsible for high acuity vision, 

causing it to swell and blurring vision.10,12 

 A number of therapeutic treatments for addressing DR pathology have been 

developed, of which retinal photocoagulation was for many years the gold standard. In 

this procedure a focused laser is used to energize and denature cellular proteins 

resulting in localized necrosis and tissue coagulation. In cases of DME, laser treatment 

is applied around the macula and typically focuses on sites of retinal hemorrhaging and 

vascular damage, preventing further leakage and allowing the eye to clear built up fluid. 

Focal laser treatment can also be used in cases of NPDR and PDR to cauterize specific 

sites of vascular leakage and neovascularization before the occurrence of DME. In 

cases of early and developing PDR, pan-retinal photocoagulation can be used to ablate 

large portions of the peripheral retina, which serves the dual purpose of both reducing 

tissue hypoxia by killing off oxygen utilizing neurons and killing the glial cells that 

produce pro-angiogenic growth factors in response to tissue hypoxia.13 Unfortunately, 

this form of treatment also results in reduced peripheral and night vision, which has lead 

to the development of therapies that target specific inflammatory cytokines and growth 

factors known to contribute to DR pathology.14 

 Targeting retinal inflammation and inflammatory cytokines in diabetes extends 

back as early as 1964, when it was reported that diabetic patients taking anti-

inflammatory medication for rheumatoid arthritis had a lower than expected incidence of 

DR.15 More recently, nonsteroidal anti-inflammatory drugs such as aspirin and other 

cyclooxygenase (COX) inhibitors have been investigated as potential treatments. So far, 

high doses of aspirin (900mg/day) have been shown to minimize the development of 
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retinal microaneurysms in patients with early NPDR, and topical administration of COX-

2 inhibitors have been shown to have a similar benefit, while avoiding the deleterious 

effects of systemic COX-2 inhibition.16-18 Several therapies targeting the pro-

inflammatory cytokine tumor necrosis factor alpha (TNFα) are also currently being 

evaluated for the treatment of DR, with early trials of the monoclonal antibody Infliximab 

(Remicade®) proving efficacious in the treatment of DME.19-21  

 To date, the most successful therapy for the treatment of DR pathology has been 

a class of vascular endothelial growth factor (VEGF) antagonists, which includes 

pegaptanib (Macugen®, Pfizer), bevacizumab (Avastin®, Genentech), and ranibizumab 

(Lucentis®, Genentech). Originally developed to address neovascular pathology 

associated with age-related macular degeneration (AMD), these compounds have 

proven efficacious in treating both pathologic retinal edema and neovascularization, and 

become established clinical treatments for DME and PDR.22-27 VEGF plays a prominent 

role in retinal neovascular pathology, and as such anti-VEGF therapies have proven 

particularly efficacious in the treatment of PDR. However, studies in patients with DME 

have shown that nearly 50% present with persistent retinal edema even after multiple 

treatments.28 Add to this, concerns that chronic administration of anti-VEGF therapies 

may cause adverse effects in the neural retina, and there is a clear need for additional 

therapeutic options to address DR pathology.29,30  

1.1.3 Retinal Inflammation & Resulting Pathology 

 The temporal and spatial relationships between retinal inflammation and the 

onset of microvascular complications is tightly correlated and this underlies subsequent 

pathology.31-34 Inflammation is the body’s defense against pathogens, and a critical step 
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in the response to tissue damage. Although there are no pathogens associated with DR, 

hyperglycemia has been linked with increased formation of advanced glycation end 

products, overproduction of reactive oxygen species, and accumulation of polyols, all of 

which are known to increase the production of inflammatory cytokines.35-38 TNFα, 

chemokine (C-X-C) motif) ligand 10 (CXCL10), chemokine (C-X-C) motif) ligand 11 

(CXCL11), Interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), and VEGF 

are just some of a host of cytokines found to be increased in vitreous samples taken 

from DR patients, and increased levels of TNFα, IL-6, and VEGF have been shown to 

correlate with increased progression and severity of DR.39-46 Together, these cytokines 

activate a number of signaling pathways that contribute to DR related pathologies.47,48 

 The earliest and most direct way in which inflammatory cytokines drive DR 

pathology is through modulation of the BRB. As it does in the brain, the BRB tightly 

regulates the flow of fluids and solutes between the vasculature and surrounding retinal 

tissues, and BRB breakdown results in the increased vascular permeability endemic to 

DR pathology. Upregulated inflammatory cytokines including TNFα, IL-6, and VEGF 

have all been identified as factors capable of inducing changes in the tight junctions that 

regulate BRB resistance and directly increase vascular permeability.12,49-52 

 Another important aspect of the inflammatory response is the recruitment of 

leukocytes to infected and damaged tissue. Increased numbers of leukocytes have 

been observed in both the retinal and choroidal vessels of diabetic patients and 

monkeys.53-55 There is also a sustained increase in the number and adherence of retinal 

leukocytes in rodent models of diabetes that is correlated with the progression of 

pathology such as BRB breakdown and endothelial cell death.56 The adhesion of 
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leukocytes or other myeloid derived cells to the vascular endothelium is termed 

leukostasis, and this interaction is facilitated by a number of inflammatory cytokines and 

adhesion molecules. 

 During leukostasis, adhesion molecules expressed by vascular endothelial cells 

interact with ligands expressed on the surface of circulating leukocytes in a well-defined 

process that includes tethering, adhesion, and transmigration (Figure 1). The various 

steps of this leukocyte recruitment cascade are mediated by different sets of adhesion 

molecules. The selectin family of adhesion molecules, P-selectin and E-selectin, 

mediate the initial contact and tethering of circulating leukocytes to the vascular 

endothelium through binding to sialyl-Lewis X ligands on the leukocyte cell surface.57-60 

After the selectins initiate contact with the leukocytes, immunoglobulin superfamily 

molecules such as intercellular adhesion molecule 1 (ICAM1) and vascular cell 

adhesion molecule 1 (VCAM1) are involved in reducing the rolling velocity of captured 

leukocytes and firmly adhering them to the endothelium.60-62 Endothelial ICAM1 and 

VCAM1 interact with integrins such as LFA-1, Mac-1, and VLA-4 expressed by 

leukocytes in order to facilitate this adhesion.62 Chemokine (C-X3-C motif) ligand 1 

(CX3CL1), which is also known as fractalkine, is a membrane bound chemokine that 

participates in the firm adhesion of leukocytes by binding to the CX3CR1 receptor on 

the leukocyte cell surface, and also contributes to the next phase of the cascade by 

stimulating leukocyte transmigration.63-66 During transmigration, activated leukocytes can 

extravasate into the surrounding tissue along cell-cell junctions. This process is 

facilitated by adhesion molecules such as platelet endothelial cell adhesion molecule 1 

(PECAM1) and vascular adhesion protein 1 (VAP1).60,67 
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Figure 1. Leukocyte capture and adhesion to the vascular endothelium. Selectin family adhesion 
molecules E-selectin and P-selectin are involved in the initial association of circulating leukocytes with the 
luminal surface of EC. Once they begin to associate with the EC surface, ICAM1 and VCAM1 further slow 
the movement of leukocytes and firmly adhere them to the endothelial surface. CX3CL1 contributes to 
firm adhesion of the captured leukocytes and helps stimulate transmigration. This extravasation through 
cell-cell junctions is mediated by PECAM1 and VAP1. 
 
 Many of the cell adhesion molecules involved in leukostasis have been 

implicated in the progression of DR pathology, either through increased expression or 

increased levels of the cleaved protein in serum and vitreous samples. For instance, 

cleaved E-selectin levels were increased in serum from diabetic patients, and increased 

vitreous levels were seen in patients with PDR, suggesting that increased E-selectin 

correlates with DR progression.68-71 ICAM1 is the adhesion molecule most closely tied to 

DR pathology, as it is known to be highly expressed in retinal blood vessels of diabetic 

patients, and its expression correlates with increased leukocytes in the retinas of these 

patients.69-72 Furthermore, inhibition of ICAM1 in animal models of DR attenuates not 

only retinal leukostasis but also subsequent endothelial cell death and vascular 

leakage.56,73 Similarly, VCAM1 is also upregulated in retinal vessels of diabetic animals 

while inhibition of the VCAM1 and VLA-4 interaction has been shown to reduce 

leukocyte adhesion, vascular leakage, and inflammatory cytokine production.74 This 

combined with increased levels of soluble VCAM1 in patients with DR suggests a clear 

contribution of VCAM1 to DR pathology.68-71 CX3CL1 is also known to be increased in 

Circulation & Rolling Transmigration Firm Adhesion Tethering 

E-selectin 
P-selectin 

ICAM1 
VCAM1 

CX3CL1 PECAM1 
VAP1 
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the vitreous of patients with PDR, and in addition to its function as an adhesion protein, 

the cleaved form is known to serve as a leukocyte chemoattractant.75-77  

 Increased expression and production of a number of inflammatory cytokines and 

leukocyte chemoattractants is another feature of retinal inflammation that contributes to 

retinal leukostasis and other microvascular complications.34,48,78 TNFα and VEGF are two 

such inflammatory cytokines that are found to be elevated early on in the pathogenesis 

of DR, and correlate with increased progression of pathology.42,44-47 In addition to their 

influence on vascular permeability, both cytokines have been shown to induce adhesion 

protein expression in vascular endothelial cells as well as induce production of 

chemokines such as CXCL10, CXCL11, and MCP-1.52 These chemokines, in addition to 

being found increased in vitreous of patients with DR, have well defined roles as 

leukocyte chemoattractants.79-84 

 The increased retinal leukostasis that results from activation of the leukocyte 

recruitment cascade is an important pathogenic feature of DR and can contribute to 

pathology associated with NPDR, PDR, and DME.48,78,85 This contribution is typically 

attributed to either tissue inflammation or retinal capillary occlusion (Figure 2). In the 

context of tissue inflammation, leukocytes are recruited and adhere to sites of initial 

inflammation and vascular damage. Once there, the leukocytes induce further 

inflammation and vascular damage by secreting inflammatory cytokines, growth factors 

and proteases that result in endothelial cell damage, increased vascular permeability, 

and recruitment of more leukocytes.56,73,85 This activity becomes a perpetuating cycle of 

tissue inflammation and vascular damage that eventually leads to more significant 

vascular complications such as BRB breakdown, microaneurysms, and ultimately retinal 
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edema. Another way that retinal leukostasis contributes to the progression of DR 

pathology is through capillary occlusion, in which adherent leukocytes block or impede 

blood flow in smaller capillaries leading to tissue ischemia, endothelial cell death, and 

the development of acellular capillaries downstream.78 The loss of healthy and patent 

blood vessels to a given area results in focal ischemia and tissue hypoxia which give 

rise to retinal neovascularization through well-established mechanisms.   

 
Figure 2. Contributions of leukostasis to DR pathology. Leukostasis can help drive DR pathology 
through either increased tissue inflammation or retinal capillary occlusion. Adherent and extravasated 
leukocytes secrete a number of inflammatory cytokines and proteases that act on nearby endothelium to 
induce endothelial cell damage, BRB breakdown, microaneurysms, and retinal edema, compounding the 
inflammation that originally induced leukostasis. In addition, adherent leukocytes can block or disrupt 
blood flow in smaller capillaries, leading to acellular capillaries, focal ischemia, increased growth factor 
production, and ultimately neovascularization downstream of the obstruction. 
  
 Neovascularization is the defining pathology associated with PDR and is a 

common pathologic feature of other retinal diseases such as retinopathy of prematurity 

(ROP) and AMD. In all of these, neovascularization represents a common outcome from 

multifaceted and disparate processes, but is broadly the result of ischemia and resulting 

tissue hypoxia. In response to retinal hypoxia, numerous growth factors are produced 

which stimulate angiogenesis in the surrounding tissue, though VEGF is commonly 

Tissue Inflammation Retinal Capillary Occlusion 

Endothelial Cell Death 
Acellular Capillaries 

Focal Ischemia & Hypoxia 
Neovascularization 

Endothelial Cell Damage 
Blood-Retinal-Barrier Breakdown 

Microaneurysms 
Retinal Edema 

VEGF 
TNFα 

MMP 
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accepted as the most critical regulator in this context.86,87 In addition to its effects as a 

pro-inflammatory cytokine, VEGF is also a powerful driver of angiogenesis and 

stimulates pro-angiogenic cell activities such as proliferation, migration, and tube 

formation. Retinal hypoxia, which occurs in DR as a result of focal ischemia due to 

reduced vascular function or capillary occlusion, is known to regulate VEGF on multiple 

levels including transcription, mRNA stability, translation, and secretion, and increased 

VEGF levels have been tied to the transition between NPDR and PDR.88,89 

1.2 Nuclear Factor of Activated T-cells 

1.2.1 NFAT Family Transcription Factors 

The nuclear factor of activated T-cells (NFAT) family of transcription factors are a 

set of five proteins grouped together for their similarity to Rel/NF-kB family transcription 

factors.90 Four of the protein isoforms are regulated by the serine phosphatase 

calcineurin (CN) and as such are denoted as NFATc1, NFATc2, NFATc3, and 

NFATc4.91 The fifth isoform, NFAT5 (also known as TonEBP), is involved in regulating 

cellular tonicity, and although it shares a conserved DNA-binding domain with other 

NFAT isoforms, it lacks the CN-binding domain essential for activation of NFATc1-4.91,92 

CN activation of NFATc1-4 is regulated by the phosphorylation status of a conserved 

Ca2+/CN-dependent translocation (CAT) domain, consisting of a 300 amino acid region 

located at the N-terminal of the DNA binding domain, and encoded by a single exon in 

all four proteins (Figure 3).93,94 In a static state, the CAT-domain is heavily 

phosphorylated, but activated CN dephosphorylates this domain to reveal a nuclear 

localization sequence (NLS) that leads to increased nuclear accumulation and 

increased affinity of NFAT for target DNA sites.95,96 CN binding to and dephosphorylation 
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of NFAT further serves to mask a nuclear export sequence (NES) within the CAT 

domain that helps direct NFAT back to the cytosol when revealed.96 

 
Figure 3. Conserved domains present in all CN-dependent NFAT proteins. The CAT domain is 
conserved between all NFAT forms. Red dots represent sites of phosphorylation altered by CN activity. 
 
1.2.2 NFAT signaling Pathway 

 The canonical NFAT signaling pathway is triggered by an initial rise in 

intracellular Ca2+ levels from either extracellular sources or intracellular stores (Figure 

4). Increased Ca2+ is bound by both calmodulin and CN which then complex to activate 

CN. Once active, CN binds NFAT proteins via a discrete NFAT-specific binding site, 

dephosphorylating the transcription factor and causing it to translocate to the 

nucleus.96,97 Once in the nucleus, NFAT dimerizes with a variety of DNA binding partners 

to regulate target gene transcription.96 NFAT kinases eventually rephosphorylate the 

NFAT proteins leading to their export from the nucleus.97 

 There are a number of well-established ways for Ca2+ to enter the cell, and 

common mechanisms of cell entry include ion channels such as voltage-operated 

channels (VOC), second messenger-operated channels (SMOC), and store-operated 

channels (SOC), as well as the Na+-Ca2+ exchanger (NCX).98,99 In addition to these 

mechanisms, G-protein-coupled receptor and tyrosine kinase receptor signaling can 

stimulate NFAT activity through second messenger activation of InsP3 which binds to 

InsP3 receptors on the endoplasmic reticulum causing Ca2+ dumping and increased 

cytosolic Ca2+.100,101  NFAT signaling has been shown to be exquisitely sensitive to both 
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the mode of entry and the localization of the resulting Ca2+. For instance, in immune 

cells SOC mediate Ca2+ entry into the cell and a sustained low amplitude increase in 

Ca2+ is important for effective NFAT activation, however in neuronal cell populations 

VOC play a more prominent role in Ca2+ entry and the transient spikes in ion 

concentration are sufficient for NFAT activation.98,99 Calcium release from intracellular 

stores, and mediated by G-protein-coupled receptor and tyrosine kinase receptor 

signaling is an inducer of NFAT activity in both vascular smooth muscle cells (VSMC) 

and endothelial cells.100,102-106 

 
Figure 4. Canonical NFAT signaling pathway. Intracellular Ca2+ levels rise in the cell, either by import 
through various ion channels or as a result of dumping from intracellular stores, and activate the 
calmodulin/CN enzyme complex. CN dephosphorylates and activates NFAT transcription factors, which 
then translocate to the nucleus, where they can cooperate with multiple transcriptional partners to 
regulate gene expression. NFAT proteins are rephosphorylated by NFAT kinases and exported from the 
nucleus. This pathway can be pharmacologically inhibited using the CN inhibitors CsA and FK-506 and 
the NFAT-specific inhibitor INCA-6. 
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 Increased cytosolic Ca2+ is bound by the calcium-dependent protein calmodulin, 

which undergoes a conformational change that enables it to complex with CN and form 

a calcium-regulated enzyme complex.96,107 CN is itself also a heterodimer of two CN 

subunits, a catalytic phosphatase subunit (CNa) and a regulatory subunit (CNb), and 

bound Ca2+ is critical for proper activation of both.96,108 CN complexes with 

phosphorylated NFAT proteins pre and post Ca2+ activation, which is believed to 

account for the rapid speed of NFAT dephosphorylation and translocation in response 

to Ca2+ flux.108,109 Efficient dephosphorylation of NFAT has been shown to require a 

direct docking interaction with CN, and the protein is quickly rephosphorylated by NFAT 

kinases in the nucleus when this interaction is disrupted.96 As a result, pharmacologic 

disruption of the CN/NFAT signaling pathway, can be achieved using the small 

molecule inhibitors Tacrolimus (FK-506) and inhibitor of NFAT-calcineurin association-6 

(INCA-6). FK-506 is an FDA-approved and widely used small molecule immuno-

modulator that complexes with immunophilin FKBP12 to bind CN and block its 

activation by Ca2+/calmodulin, where as INCA-6 is a small organic molecule that 

competitively binds to the discrete NFAT-binding site on CN, effectively blocking 

NFATc1-c4 without disrupting additional CN phosphatase activities.110-115  

 Once in the nucleus, NFAT proteins can elicit target gene expression through a 

number of different interactions. Depending on the context, NFAT isoforms can act as 

homodimers, heterodimers, or can complex with other transcription factors to induce 

target gene expression. Identified NFAT binding partners include AP-1 in immune cells, 

GATA4 in cardiac muscle cells, MEF2 in skeletal muscle cells, and NF-κB in 

cardiomyocytes.116-119 NFAT kinases such as glycogen synthase kinase 3 (GSK-3), dual-
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specificity tyrosine-(Y)-phosphorylation regulated kinase 1 (DYRK1), and casein kinase 

1 (CK1), also interact with NFAT in the nucleus, phosphorylating the protein and 

promoting its export to the cytosol.97,109,120,121	
   

1.2.3 NFAT in Ocular Disease 

 NFAT was first identified in immune cells as an inducer of early T-lymphocyte 

activation genes.122 Subsequently its role has been well defined in the context of 

immune cell signaling and differentiation, and there is also considerable literature on the 

role of NFAT in the vasculature, with critical roles identified in vasculogenesis, valve 

development, and hypertrophy.91,93,123-126  

 Comparatively, the role of NFAT in ocular disease is considerably less well 

defined, though CN/NFAT signaling is already an established therapeutic target in this 

context. The CN-inhibitor FK-506 (also known as Tacrolimus and marketed as Prograf® 

and Advagraf®) is used both as an immunosuppressant to prevent tissue rejection in 

corneal transplants, and as a therapy for patients with severe refractory uveitis.127-130 

These current applications relate more to the role of NFAT in immune cell signaling and 

activation, then to any ocular tissue specific feature of NFAT signaling. Recently though, 

studies have identified roles for NFAT related to both retinal ganglion cell apoptosis in 

retinal degeneration and myocilin expression in glaucoma, and there is growing 

evidence that NFAT may be a valuable therapeutic target for the treatment of DR.131-134 

 Hyperglycemia is a critical feature leading to the microvascular complications of 

DR pathology, and has been tied to NFAT signaling in other tissues. In VSMC, elevated 

glucose stimulates increased production of extracellular nucleotides, which signal 

through GPCR to induce Ca2+ flux and stimulate NFAT translocation.104 Ca2+ entering 
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the cell through the SOC channel, TRPC1, also activates NFAT transcription in VSMC, 

and high glucose has been shown to increase expression of TRPC1 expression in 

bovine aortic endothelial cells.135 Glucose is also known to induce NFAT-dependent 

gene transcription in pancreatic β cells, as well as inhibit the expression of nuclear 

kinase GSK-3.104,136	
   Thus, hyperglycemia may set the stage for unrestricted NFAT 

transcriptional activity, both by increasing NFAT activation and reducing its deactivation. 

 NFAT activation has also been tied to inflammatory cytokines critical to DR 

pathology and progression, particularly TNFα and VEGF. TNFα is known to activate 

NFAT signaling in macrophages, as well as induce intracellular calcium flux in 

endothelial cells through receptor signaling and phospholipase C (PLC).137-139 VEGF also 

induces intracellular Ca2+ flux through receptor activation of PLC and serves as an 

additional driver of NFAT-dependent transcription.105,106,140-143 Notably, VEGF stimulates 

NFAT translocation in human pulmonary valve endothelial cells, intestinal microvascular 

endothelial cells, and HUVEC.140,144,145 NFAT-dependent gene transcription has been 

shown to occur in endothelial cells, and identified NFAT gene targets include GM-CSF, 

TF, SELE, IL6, VCAM1, ICAM1, CCL2, and CXCL2.141,142,146-153 This group of genes 

regulates tissue inflammation and related processes that may drive the progression of 

retinopathy.103,140,152,154-158 
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CHAPTER II 

The Effects of Pharmacologic NFAT inhibition on TNFα-Treated Human Retinal 
Microvascular Endothelial Cells 

 
2.1 Overview 

 TNFα has been identified as playing an important role in pathologic complications 

associated with diabetic retinopathy, such as retinal inflammation and leukostasis. 

However, the transcriptional effects of TNFα on retinal microvascular endothelial cells 

and the different signaling pathways involved are not yet fully understood. In the present 

study, RNA-seq was used to initially profile the transcriptome of human retinal 

microvascular endothelial cells (HRMEC) treated with TNFα in the presence or absence 

of the NFAT-specific inhibitor INCA-6, in order to gain insight into the effects of TNFα on 

HRMEC and identify any involvement of NFAT signaling.  

 Differential expression and pathway analyses revealed that TNFα treatment 

significantly upregulated the expression of transcripts associated with cytokine-cytokine 

receptor interactions, cell adhesion molecules, and leukocyte transendothelial migration. 

Additional analysis comparing TNFα-treated samples to those co-treated with INCA-6, 

highlighted a small subset of transcripts whose expression were significantly reduced by 

NFAT inhibition, and more then half of which encode for proteins involved in leukocyte 

recruitment and adhesion. 

 Based on these initial findings, the functional effects of pharmacologic NFAT 

inhibition were further evaluated in vitro using a parallel plate flow chamber (PPFC) 

assay, as well as in vivo using a mouse model of retinal leukostasis. In both cases, 

NFAT blockade reduced TNFα-induced cell adhesion to retinal endothelial cells, 

highlighting a functional role for NFAT signaling in TNFα-induced retinal leukostasis. 
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2.2 Results 

2.2.1 RNA-seq analysis of TNFα treatment and pharmacologic NFAT inhibition in 
HRMEC 
 
RNA-seq quality, alignment, and differential expression  

 In order to profile the transcriptional effects of TNFα in HRMEC, and determine 

what role NFAT signaling might play in this context, we conducted an RNA-seq using 

HRMEC treated with vehicle, TNFα (1ng/ml) plus vehicle, or TNFα plus INCA-6 (1µM). 

Each treatment group contained 3 independent samples, and there was no statistical 

difference between the number of sequence reads in each group (p=0.21). Total reads 

among the 9 samples varied between 24,038,972 and 35,171,982 over a total of 33,240 

unique transcripts, and between 2,119 and 5,365 reads were removed from each 

sample due to low quality. The remaining reads from each sample were mapped using 

TopHat to align the transcripts, and roughly 97% of the transcripts mapped to the UCSC 

human genome hg19. This data is summarized in Table 2.  

 Control TNFα TNFα + INCA-6 

 1 2 3 Avg 1 2 3 Avg 1 2 3 Avg 

Total 
Reads (m) 36.4 39.0 33.0 36.2 43.0 34.3 38.4 38.6 29.0 36.9 29.5 31.8 

Reads 
Removed 2328 5365 2161 3285 3089 2701 3006 2932 2085 2724 2119 2309 

% Mapped 96.1 97.8 96.0 97.0 96.6 98.1 97.1 97.0 97.9 97.9 97.9 98.0 

Table 2. Summary of reads mapping to the human genome. Analysis was done using TopHat v2.0.9 
 
 After alignment, differential expression was determined using three different 

algorithms: DESeq, edgeR, and baySeq. Comparisons were made between the TNFα-

treated and control samples, and the TNFα-treated and TNFα plus INCA-6 treated 

samples, and the differentially expressed transcript lists were restricted to those 

considered significantly changed (false discovery rate (FDR) <0.05) by all three 
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algorithms. Compared to control, TNFα treatment changed the expression of 744 

transcripts, of which 579 were upregulated, and over 50% of those were upregulated by 

more than 2-fold (Figure 5). Comparison of the TNFα plus INCA-6 and TNFα-treated 

samples revealed only 18 genes that were differentially expressed. A summary of this 

data is provided in Table 3. 

 
Figure 5. Volcano plot of transcripts induced by TNFα. 
Red circles indicate upregulated genes while green circles 
indicate downregulated genes. Circle size indicates gene 
rank using MultiRankSeq. 

 
 
 

Transcripts 
with FDR < 0.05 

Upregulated 
Transcripts 

Downregulated 
Transcripts 

TNFα vs Control 744 579 165 

TNFα + INCA-6 vs TNFα 18 5 13 

Table 3. Summary of RNA-seq differential expression analysis. 
 
The effect of TNFα treatment on HRMEC gene expression 

The top 10 transcripts upregulated and downregulated by TNFα treatment of 

HRMEC are summarized in Table 4. The products of several of these genes have well 

characterized roles in leukostasis. Notably VCAM1, ICAM1, and CXCL10, genes known 

for their roles in vascular adhesion, were three of the highest expressed genes in the 
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TNFα-treated samples, and the gene with the lowest expression was KCNK2, a 

potassium channel that negatively regulates leukocyte transmigration.159 

Ensembl Gene ID Gene Symbol Log2 Fold Change p-Value FDR 

Upregulated Transcripts  

ENSG00000162692 VCAM1 9.052 <0.00001 <0.00001 

ENSG00000169245 CXCL10 8.405 1.83E-94 1.17E-91 

ENSG00000049249 TNFRSF9 8.143 1.04E-105 8.28E-103 

ENSG00000237988 OR2I1P 7.842 3.18E-67 1.37E-64 

ENSG00000173391 OLR1 7.711 5.57E-23 7.71E-21 

ENSG00000213886 UBD 7.619 3.41E-22 4.51E-20 

ENSG00000267607 CTD-2369P2.8 7.481 1.05E-20 1.30E-18 

ENSG00000023445 BIRC3 7.101 <0.00001 <0.00001 

ENSG00000235947 EGOT 6.770 2.96E-12 2.03E-10 

ENSG00000090339 ICAM1 6.670 <0.00001 <0.00001 

Downregulated Transcripts 

ENSG00000250961 CTD-2023N9.1 -1.848 3.59E-06 0.000115 

ENSG00000107562 CXCL12 -1.894 3.26E-07 1.26E-05 

ENSG00000171227 TMEM37 -1.902 1.14E-16 1.12E-14 

ENSG00000226808 LINC00840 -1.966 1.36E-06 4.79E-05 

ENSG00000164089 ETNPPL -2.442 5.27E-05 0.001298 

ENSG00000003137 CYP26B1 -2.572 3.28E-37 7.89E-35 

ENSG00000162009 SSTR5 -2.709 2.12E-13 1.63E-11 

ENSG00000187513 GJA4 -2.865 2.62E-08 1.21E-06 

ENSG00000232259 RP11-4C20.3 -2.868 5.51E-06 0.000172 

ENSG00000082482 KCNK2 -2.950 7.59E-06 0.00023 

Table 4. Top 10 upregulated and downregulated transcripts by TNFα in HRMEC. Fold 
changes and p-values reported were calculated by the edgeR algorithm. 

 
In order to further characterize the differentially expressed genes, pathway 

analysis was conducted using the database for annotation, visualization and integrated 
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discovery (DAVID) annotation tool and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database, to identify pathways which were significantly enriched (p<0.05). 

According to the KEGG database, 19 pathways were enriched by TNFα-treatment, 

several of which are related to retinal inflammation and leukostasis, including cytokine-

cytokine receptor interaction (44 transcripts), chemokine signaling (27 transcripts), cell 

adhesion molecules (19 transcripts), and leukocyte transendothelial migration (13 

transcripts; Figure 6). 

Figure 6. KEGG pathway enrichment in TNFα-treated HRMEC. Pathway enrichment was determined 
using DAVID and a p<0.05. 
 
The effect of INCA-6 on TNFα-treated HRMEC 

 As previously mentioned, co-treatment with INCA-6 changed the expression of 

18 genes compared to HRMEC treated with TNFα alone. Of those 18 genes, 13 were 

0 2 4 6 8 10 12 14 

hsa05332:Graft-versus-host disease 

hsa04010:MAPK signaling pathway 

hsa05220:Chronic myeloid leukemia 

hsa05221:Acute myeloid leukemia 

hsa05416:Viral myocarditis 

hsa04722:Neurotrophin signaling pathway 

hsa04670:Leukocyte transendothelial migration 

hsa04630:Jak-STAT signaling pathway 

hsa04612:Antigen processing and presentation 

hsa04623:Cytosolic DNA-sensing pathway 

hsa05222:Small cell lung cancer 

hsa04514:Cell adhesion molecules (CAMs) 

hsa05200:Pathways in cancer 

hsa04210:Apoptosis 

hsa04622:RIG-I-like receptor signaling pathway 

hsa04620:Toll-like receptor signaling pathway 

hsa04621:NOD-like receptor signaling pathway 

hsa04062:Chemokine signaling pathway 

hsa04060:Cytokine-cytokine receptor interaction 

-log10(p value) 



 
22 

also differentially expressed in TNFα-treated cells compared to control. INCA-6 

exacerbated the effects of TNFα on three of these genes (FRY, TNIP3, SQSTM1), and 

INCA-6 counteracted the TNFα-induced expression of the other 10 genes (Table 5). 

Ensembl Gene ID Gene 
Symbol 

Log2 Fold Change 
Control vs TNFα 

Log2 Fold Change 
TNFα vs INCA-6 

p-Value FDR 

ENSG00000006210 CX3CL1 6.438 -1.177 1.64E-19 7.43E-16 

ENSG00000169245 CXCL10 8.405 -0.983 2.95E-09 4.26E-06 

ENSG00000169248 CXCL11 3.988 -0.765 3.10E-14 1.09E-10 

ENSG00000227507 LTB 4.569 -0.732 1.65E-07 0.000145 

ENSG00000102934 PLLP 1.757 -0.716 8.91E-09 1.01E-05 

ENSG00000162692 VCAM1 9.052 -0.624 4.59E-22 2.43E-18 

ENSG00000121858 TNFSF10 1.627 -0.616 4.93E-11 1.20E-07 

ENSG00000146374 RSPO3 1.144 -0.597 5.70E-11 1.29E-07 

ENSG00000188015 S100A3 4.052 -0.581 8.14E-07 0.000549 

ENSG00000143387 CTSK 1.681 -0.548 8.57E-08 7.99E-05 

Table 5. Genes that were significantly upregulated by TNFα and downregulated by INCA-6. Fold 
changes and p-values reported were calculated by the edgeR algorithm. 
 

Figure 7. KEGG pathways enrichment in INCA-6 treated HRMEC. Pathway enrichment was 
determined using DAVID and a p<0.05. 
 

Notably, four of the genes significantly inhibited by INCA-6 treatment, CX3CL1, 

CXCL10, CXCL11, and VCAM1 have established roles in the recruitment and adhesion 

of leukocytes to vascular endothelium, suggesting that NFAT signaling plays a role in 

TNFα-induced leukostasis. This assertion is further supported by KEGG pathway 

enrichment analysis, which identified involvement of the INCA-6 inhibited genes in both 

cytokine-cytokine receptor interaction (5 transcripts) and chemokine signaling pathways 

(3 transcripts; Figure 7). 
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qRT- PCR validation of RNA-seq 

 In order to confirm the RNA-seq findings, five different genes were validated by 

performing qRT-PCR on the sequenced samples as well as samples from a second 

biologically independent experiment (Figure 8). qRT-PCR analysis showed that TNFα 

treatment caused upregulation of CXCL10, CXCL11, SELE, ICAM1, and VCAM1 in 

HRMEC (p<0.0001), and INCA-6 significantly reduced expression of CXCL10, CXCL11, 

and VCAM1, but not SELE or ICAM1 compared to TNFα-treated cells (p<0.0001). This 

qRT-PCR data is consistent with the RNA-seq findings, showing similar patterns for 

both TNFα-induced changes and the effect of NFAT inhibition. 

 
Figure 8. qRT-PCR validation of differentially expressed RNA-seq genes. Black bars indicate fold 
change from the RNA-seq data calculated by edgeR. Fold change for qRT-PCR (gray bars) was 
determined by the relative Ct method normalized to β-actin (*** p<0.001). 
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2.2.2 Effect of pharmacologic NFAT inhibition on TNFα-induced PPFC cell 
adhesion 
 
 Based on the RNA-seq findings that pharmacologic NFAT inhibition reduced the 

TNFα-induced expression of proteins heavily involved in leukocyte recruitment and 

adhesion, PPFC was used to determine whether these changes manifested in a 

functional effect on TNFα-induced leukostasis. In the PPFC assay PBMCs are flown 

over a treated endothelial monolayer in a context designed to mirror physiologic 

conditions, after which the number of adherent PBMCs are counted and serve as an in 

vitro measure of leukostasis. 

 
Figure 9. Effect of INCA-6 treatment on TNFα-induced PBMC adhesion. HRMEC monolayers were 
treated with TNFα (1ng/ml) in the presence or absence of the NFAT-inhibitor INCA-6 (1µM) for 4hrs. 
Monolayers were placed in a parallel plate flow chamber and PBMCs were flown over the monolayer for 
7min.  Non-adherent cells were then washed off and the remaining adherent cells counted. Co-treatment 
with INCA-6 significantly reduced TNFα-induced PBMC adhesion. Each bar represents the mean ± SEM 
(n=4). * = p<0.05 
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 HRMEC monolayers were treated with vehicle, TNFα (1ng/ml), or TNFα plus 

INCA-6 (1µM) for 4hrs prior to being assayed in the flow chamber. TNFα treatment 

induced a 37-fold increase in PBMC adhesion compared to non-stimulated controls, and 

co-treatment with INCA-6 reduced this effect by 58.9% (p<0.0001 and p=0.0222, Figure 

9). This finding highlights a functional role for NFAT signaling in TNFα-induced PBMC 

adhesion in HRMEC. 

2.2.3 Effect of pharmacologic NFAT inhibition on TNFα-induced retinal 
leukostasis 
 
 Given the identified involvement of NFAT signaling in both TNFα-induced 

expression of leukocyte recruitment and adhesion proteins, and the adhesion of PBMCs 

to HRMEC monolayers, a proof of principal study was conducted to determine whether 

these effects translated to pathologic changes in a mouse model of TNFα-induced 

retinal leukostasis. In this study, injection of TNFα (50ng/ml) induced a 2.1-fold increase 

in retinal leukocyte adhesion after 6hrs compared to control (p=0.0023), and co-injection 

of INCA-6 (25µM) reduced this effect by 79.2% (p=0.0089, Figure 10). 
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Figure 10. Effect of INCA-6 treatment on TNFα-induced retinal leukocyte adhesion. C57BL/6 mice 
received intravitreal injections of vehicle (0.1% DMSO in PBS), TNFα (50ng/mL) or TNFα plus INCA-6 
(25µM) 6hrs prior to perfusion with saline and concanavalin A. Adherent leukocytes were then counted in 
flat-mounted retinas. Co-injection of INCA-6 significantly reduced TNFα-induced retinal leukocyte 
adhesion. Each bar represents the mean ± SEM (For Vehicle, n=5; for TNFα + Vehicle, n=9; for TNFα + 
INCA-6, n=6). ** = p<0.01 
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2.3 Conclusions 

This study provides a characterization of the effect of TNFα on retinal 

microvascular endothelial cells. Furthermore, it elucidates a role for pharmacologic 

NFAT inhibition in both TNFα-induced expression of leukocyte recruitment and 

adhesion proteins, and TNFα-induced leukocyte adhesion.  

RNA-seq analysis revealed that TNFα stimulated the differential expression of a 

number of genes, particularly those related to cytokine-cytokine receptor interaction, cell 

adhesion, and leukocyte transendothelial migration. Three of the genes most highly 

upregulated by TNFα were ICAM1, VCAM1, and SELE, which code for adhesion 

proteins ICAM1, VCAM1, and E-Selectin. These proteins are known to be regulated by 

TNFα and have been shown to mediate the effect of TNFα on leukocyte adhesion in 

other endothelial cell types.160,161 Genes coding for the cytokines CXCL10, CXCL11, and 

MCP-1, were also all notably upregulated by TNFα, and these proteins play well-defined 

roles in the recruitment of leukocytes to inflamed or damaged endothelium.79-81,162 

Additionally, the gene with the largest reduction in expression by TNFα was KCNK2, 

which encodes the TWIK-related potassium channel-1 (TREK1). Blockade of TREK1 

channel activity or reduced expression of KCNK2 has been shown to increase leukocyte 

transmigration across brain endothelial cells.159  

In addition to characterizing the effect of TNFα on RMEC, this study also 

provides the first insight into how NFAT family transcription factors modulate TNFα 

signaling in the retinal endothelium. TNFα is known to activate NFAT signaling in 

macrophages, and a number of studies have shown a role for NFAT-induced TNFα 

expression, but to date none have looked at a role for NFAT downstream of TNFα in 
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endothelial cells.137,163,164 Our study found that INCA-6 reduced expression of a small 

subset of genes that were upregulated by TNFα. Interestingly, this subset included the 

previously discussed VCAM1, CXCL10, and CXCL11, as well as CX3CL1 and 

TNFSF10. CX3CL1 is an inflammatory cytokine that, in its soluble form, assists in 

recruitment of leukocytes to areas of inflammation and in its membrane-bound form aids 

in leukocyte tethering and adhesion, while TNFSF10 is the gene encoding TNF-related 

apoptosis-inducing ligand (TRAIL), a cytokine that promotes endothelial cell apoptosis 

in addition to leukocyte adhesion.165,166 These initial findings suggested that TNFα 

regulates leukostasis at least partially through NFAT signaling. 

In order to test whether the observed changes in TNFα-induced gene expression 

have a functional impact on TNFα-induced leukocyte adhesion, the effect of NFAT 

inhibition on TNFα-stimulated HRMEC was evaluated using a PPFC assay. In this 

assay, TNFα-stimulation increases the capacity of endothelial monolayers to capture 

and firmly adhere PBMC flowing over the monolayer under physiologic conditions. 

Previous studies using this technique have shown that siRNA and pharmacologic 

treatments that directly target leukocyte adhesion proteins CX3CL1 and VCAM1, two of 

the NFAT regulated gene targets identified via RNA-seq, reduce the ability of leukocytes 

to adhere to the monolayer. Accordingly, treatment with INCA-6 significantly reduced 

TNFα-induced PBMC adhesion to the treated monolayers, indicating a functional impact 

of NFAT signaling on TNFα-induced cell adhesion.  

 As a final proof of concept we evaluated the effect of pharmacologic NFAT 

inhibition, in a mouse model of TNFα-induced retinal leukostasis. Intraocular injection of 

TNFα leads to increased leukocyte adhesion to the vascular endothelium, and provides 
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an acute way to model a chronic pathology that may take months or years to develop in 

diabetics. Co-injection of INCA-6 significantly reduced TNFα-induced leukocyte 

adhesion to the retinal endothelium, and confirmed a functional role for NFAT signaling 

in TNFα-induced retinal leukostasis. 
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CHAPTER III 

Analysis of NFAT Isoform-Specific Roles in TNFα-Treated Human Retinal 
Microvascular Endothelial Cells 

 
3.1 Overview 

 Initial studies using the pharmacologic NFAT inhibitor INCA-6 revealed a role for 

NFAT signaling in TNFα-induced retinal leukostasis (Chapter II). These studies 

identified NFAT signaling as a regulator of TNFα-induced leukocyte adhesion protein 

and chemoattractant expression in HRMEC and established a functional role for NFAT 

signaling in TNFα-induced cell adhesion. However, as INCA-6 is a general inhibitor of 

all four CN-dependent NFAT isoforms it remained to be seen what role individual 

isoforms play in this context. 

 In order to investigate this, the present study required development of a protocol 

for the effective transfection of HRMEC and identification of siRNA oligonucleotides 

capable of targeting the individual NFAT isoforms. With this accomplished, the 

contribution of individual-isoforms in TNFα-induced expression of known NFAT gene 

targets was systematically evaluated, as were the isoform-specific contributions to 

TNFα-induced cytokine production. This evaluation revealed distinct and at times 

counteractive roles for the individual isoforms in TNFα-treated HRMEC, and identified 

NFATc2 and NFATc4 as important regulators of TNFα-induced leukocyte adhesion 

protein expression and cytokine production. Lastly, transfected monolayers were 

assayed under flow conditions to confirm that the observed isoform-specific effects 

resulted in functional changes in TNFα-induced cell adhesion. Accordingly, NFATc2 and 

NFATc4 knockdown reduced TNFα-induced PBMC adhesion, highlighting the functional 

importance of their role in TNFα-stimulated HRMEC. 
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3.2 Results 

 
Figure 11. Effect of isoform-specific siRNA on NFAT-isoform expression in HRMEC. HRMEC were 
transfected with either control or isoform-specific siRNA for 36hrs. Total RNA was then collected and 
expression was analyzed using qRT-PCR. A) NFATc1 Expression. Transfection with NFATc1 siRNA 
inhibited NFATc1 expression by 82%. B) NFATc2 Expression. Transfection with NFATc2 siRNA 
inhibited NFATc2 expression by 78%. C) NFATc3 Expression. NFATc3 siRNA inhibited NFATc3 
expression by 77%. NFATc2 and NFATc4 siRNA also inhibited NFATc3 expression by 37% and 27% 
respectively. D) NFATc4 Expression. NFATc4 siRNA inhibited NFATc4 expression by 70%. Each bar 
represents the mean ± SEM (n=9). ** = p<0.01, *** = p<0.001 
 
3.2.1 Identification and evaluation of isoform-specific siRNA 

 In order to evaluate the role of individual NFAT isoforms in signaling pathways 

first identified via pharmacologic NFAT inhibition, oligos targeting individual isoforms 

were identified. Commercially available oligos were systematically evaluated individually 

and in combination, to identify the oligo or oligo cocktail that yielded optimal target 

knockdown. In total, 4 oligos targeting NFATc1, 4 oligos targeting NFATc2, 6 oligos 

targeting NFATc3, and 9 oligos targeting NFATc4 were evaluated before sufficient 
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knockdown was established. In HRMEC, the selected NFATc1 directed oligos were 

found to knock down NFATc1 expression by 82%, while NFATc2, NFATc3, and 

NFATc4 directed siRNA knockdown expression of their target isoform by 78%, 77%, 

and 70% respectively (Figure 11). NFATc2 and NFATc4 directed siRNA also reduced 

NFATc3 expression by 37% and 27%, though this is not due to any overlap in the target 

sequences. Additionally, the effectiveness of isoform-specific siRNA at 24, 36, and 

48hrs post transfection was evaluated and no significant changes in target knockdown 

were detected over this time course (Appendix A). 

3.2.2 Effect of NFAT isoform-specific knockdown on TNFα-induced adhesion 
protein expression 
 
 The previous studies using RNA-seq established that TNFα-stimulation of 

HRMEC resulted in increased expression of the leukocyte adhesion proteins CX3CL1, 

VCAM1, E-Selectin, and ICAM1, and that NFAT blockade inhibited the induction of both 

CX3CL1 and VCAM1. In order to determine what role individual NFAT isoforms play in 

this context, HRMEC were transfected with either control or isoform-specific siRNA, 

then treated with TNFα (1ng/ml) for 4hrs, and evaluated using qRT-PCR. 

 TNFα-stimulation of cells transfected with control siRNA resulted in a 266-fold 

increase of CX3CL1 expression compared to non-stimulated control siRNA cells 

(p<0.0001, Figure 12A). NFATc2 siRNA knockdown reduced this effect by 45.6% 

(p=0.0238), while NFATc3 knockdown increased CX3CL1 expression by 90.3% 

(p<0.0001). TNFα-stimulation also induced a 56-fold increase in VCAM1 expression 

(p<0.0001), which NFATc2 knockdown again inhibited by 34.9% (p=0.0468, Figure 

12B). 
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Figure 12. Effect of isoform-specific siRNA knockdown on TNFα-induced leukocyte adhesion 
protein expression. HRMEC transfected with either control or isoform-specific siRNA were treated with 
TNFα (1ng/ml) for 4hrs. Total RNA was then collected and expression was analyzed using qRT-PCR. A) 
CX3CL1 Expression. Transfection with NFATc2 siRNA reduced TNFα-induced expression of CX3CL1 
and NFATc3 siRNA exacerbated the induction. B) VCAM1 Expression. NFATc2 siRNA inhibited TNFα-
induced VCAM1 expression. C) SELE Expression. NFATc2 and NFATc4 siRNA both inhibited TNFα-
induced expression of SELE, while NFATc3 siRNA increased the effect. D) ICAM1 Expression. NFATc1 
siRNA exacerbated TNFα-induced ICAM1 expression while NFATc2 siRNA inhibited the induction. Each 
bar represents the mean ± SEM (n=9). * = p<0.05, ** = p<0.01, *** = p<0.001 
 
 INCA-6 treatment had no significant effect on SELE or ICAM1 expression in 

either the RNA-seq or qRT-PCR validation studies, though both have been identified as 

NFAT signaling targets in an endothelial cell context. This suggested that either NFAT-

regulation of these targets is endothelial cell type specific, or that some aspect of 

pharmacologic NFAT inhibition masked this effect in previous studies. As a result, the 

isoform-specific evaluation of TNFα-induced leukocyte adhesion proteins was expanded 

to include SELE and ICAM1. 
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 TNFα-stimulation increased SELE and ICAM1 expression by 136- and 24-fold 

respectively (p<0.0001 and p<0.0001, Figure 12C and 12D). Interestingly, both 

NFATc2 and NFATc4 knockdown reduced TNFα-induced SELE expression, by 44.3% 

(p=0.004) and 37.3% (p=0.0121) respectively, while NFATc3 knockdown increased 

expression by 42.5% (p=0.0033). NFATc2 knockdown also reduced ICAM1 expression 

by 32.6% (p=0.0077), while NFATc1 knockdown actually increased expression by 

29.3% (p=0.0091). These later findings identify an expanded role for NFAT signaling in 

the expression of TNFα-induced leukocyte adhesion, and suggest that the lack of 

isoform specificity with pharmacologic NFAT inhibition may mask certain NFAT-

dependent effects. 

3.2.3 Effect of NFAT isoform-specific knockdown on TNFα-induced cytokine 
production 
 
 TNFα-stimulation of HRMEC also increased expression of numerous soluble 

inflammatory cytokines, including CXCL10, CXCL11, MCP-1, and IL-6. All of these have 

been identified as NFAT signaling targets in an endothelial cell context, though only 

CXCL10 and CXCL11 were inhibited by INCA-6 in the previous study. In order to 

determine what roles individual NFAT isoforms play in the production of these soluble 

cytokines, transfected HRMEC were treated with TNFα (1ng/ml) for 6hrs and 

conditioned media were collected and assayed for cytokine production using enzyme-

linked immunosorbent assays (ELISA).  

 TNFα-stimulation induced a 4.1-fold increase of CXCL10 protein in conditioned 

media (p<0.0001), which was inhibited by 58.1% through NFATc4 knockdown 

(p=0.0369, Figure 13A). TNFα-stimulation also resulted in a 2.17-fold increase of 

CXCL11 in conditioned media (p<0.0001), which NFATc4 knockdown reduced by 
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105.7% (p=0.0004), completely inhibiting the effect of TNFα-stimulation (Figure 13B).  

NFATc4 knockdown also inhibited TNFα-induced MCP-1 protein in conditioned media, 

reducing the 2.4-fold increase by 69.67% (p<0.0001 and p=0.0066, Figure 13C). Lastly, 

TNFα-induced a 3.9-fold increase of IL-6 protein in conditioned media, which was 

unaffected by transfection with any of the NFAT isoform-specific siRNA (Figure 13D). 

 
Figure 13. Effect of isoform-specific siRNA knockdown on TNFα-induced cytokine production. 
HRMEC transfected with either control or isoform-specific siRNA were treated with TNFα (1ng/ml) for 
6hrs. Conditioned media was then collected and analyzed for secreted cytokines using ELISA. 
Transfection with NFATc4 siRNA reduced TNFα-induced levels of A) CXCL10 B) CXC11 and C) MCP-1 
in conditioned media. D) IL-6 Protein. Isoform-specific siRNA did not affect TNFα-induced IL-6 levels in 
conditioned media. Each bar represents the mean ± SEM (n=9). * = p<0.05, ** = p<0.01 
 
3.2.4 Effect of NFAT isoform-specific knockdown on TNFα-induced PPFC cell 
adhesion 
 In order to assess the functional effects of isoform-specific changes in TNFα-

induced HRMEC, monolayers were transfected with either control or isoform-specific 
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siRNA and evaluated using a PPFC cell adhesion assay. TNFα treatment (1ng/ml for 

4hrs) of monolayers transfected with control siRNA induced an 11.5-fold increase in 

PBMC adhesion compared to non-stimulated controls (p<0.0001, Figure 14). 

Monolayers transfected with NFATc2 and NFATc4 siRNA reduced TNFα-induced 

PBMC adhesion by 55% (p=0.0013) and 38.4% (p=0.0289), respectively, while 

transfection with NFATc1 and NFATc3 siRNA had no significant effect on TNFα-induced 

cell adhesion. 

 
Figure 14. Effect of isoform-specific siRNA knockdown on TNFα-induced PBMC adhesion. HRMEC 
monolayers transfected with either control or isoform-specific siRNA were treated with TNFα (1ng/ml) for 
4hrs. Monolayers transfected with NFATc2 and NFATc4 siRNA significantly reduced TNFα-induced 
PBMC adhesion. Each bar represents the mean ± SEM (n=5). * = p<0.05, ** = p<0.01 
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3.3 Conclusions 

The previous study revealed a general role for NFAT signaling in the response of 

HRMEC to TNFα-stimulation, and identified a functional role in TNFα-induced cell 

adhesion (Chapter II). The present study builds upon those early findings, using 

isoform-specific siRNA to identify new, discreet, and at times counteractive roles for the 

individual NFAT isoforms in this context. 

The identification and verification of isoform-specific siRNA was a critical first 

step in being able to evaluate the role of individual NFAT isoforms. At the start of this 

study, no protocol had been established for the effective transfection of primary human 

retinal microvascular endothelial cells, and early efforts using Lipofectamine® (Life 

Technologies; Carlsbad, CA), DharmaFECT (GE Healthcare; Little Chalfont, U.K), and 

Polyjet™ (SignaGen® Laboratories, Rockville, MD) techniques proved unsuccessful. 

Eventually, a successful protocol was adapted using a combination of Virofect and 

Targafect reagents (6.2.1), and oligos targeting the individual isoforms could be 

evaluated.  

Considerable effort was put into identifying oligos that could effectively 

knockdown the target isoform at a low concentration (75nm) and with minimal effect on 

other isoforms. Table 8 identifies the oligos identified for each target and used in 

subsequent studies. In the end, greater than 70% knockdown was achieved for all of the 

isoforms, and only NFATc3 expression was affected by siRNA targeting a different 

isoform. In this instance both NFATc2 and NFATc4 siRNA knocked down expression of 

NFATc3 by roughly 30%. This was not due to an overlap in the target sequence. 

NFATc2 has previously been shown to play a role in the expression of other NFAT 
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isoforms, and this is believed to be responsible for the effect seen here, though there 

are no reports to date that have evaluated the role of either NFATc2 or NFATc4 in 

NFATc3 expression. In both cases, it is believed that this minimal reduction had no 

effect on the subsequent studies, as NFATc2 and NFATc4 knockdown both caused 

significant effects that were counter to those seen by the more significant NFATc3 

knockdown via NFATc3 siRNA.  

 Having established the appropriate techniques and reagents to evaluate the roles 

of individual NFAT isoforms, isoform-specific siRNA was used to further elucidate the 

contributions of NFAT signaling in TNFα-induced gene expression. The first two targets 

analyzed were CX3CL1 and VCAM1, which had been identified as NFAT-regulatory 

targets in the RNA-seq study. Isoform-specific siRNA revealed that NFATc2 knockdown 

negatively regulated both CX3CL1 and VCAM1 expression, and that NFATc3 

knockdown increased TNFα-induced upregulation of CX3CL1. The latter finding showed 

that individual NFAT isoforms can play counteractive roles in endothelial cell activities, 

and highlights the importance of evaluating isoforms individually. 

 Given these initial findings, the study was expanded to examine the role of NFAT 

isoforms in TNFα-induced SELE and ICAM1 expression. SELE is the gene that codes 

for E-selectin, and both E-selectin and ICAM1 are adhesion proteins known to mediate 

TNFα-induced leukocyte adhesion. While the previous study did not find any significant 

effect of NFAT inhibition on TNFα-induced expression of either target, investigators 

working in other endothelial cell systems have identified a regulatory role for NFAT in 

the expression of both.103,148,155,167 Isoform-specific siRNA knockdown showed that this 

incongruity was due to counteracting effects of individual isoforms that were masked by 
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inhibition of all four calcineurin-dependent isoforms with INCA-6. Both NFATc2 and 

NFATc4 knockdown significantly reduced TNFα-induced expression of SELE, while 

NFATc3 increased its expression. In the case of ICAM1 expression, NFATc2 again 

inhibited TNFα-induction and NFATc1 knockdown exacerbated the induction. 

 The previous analyses using INCA-6 also highlighted a role for NFAT signaling in 

the regulation of TNFα-induced chemokines CXCL10 and CXCL11. CXCL10 and 

CXCL11 both serve as ligands for the CXCR3 receptor and are known to play a role in 

leukocyte recruitment to sites of endothelial inflammation.79-81 While this activity would 

not be expected to manifest functionally in an in vitro PPFC model for TNFα-induced 

leukocyte adhesion, leukocyte recruitment is a critical feature of TNFα-induced 

leukostasis in vivo. Accordingly, the effect of isoform-specific siRNA on TNFα-induced 

protein secretion for each of these cytokines was measured. In this context, NFATc4 

siRNA proved to be the most potent regulator of TNFα-induced cytokine secretion, 

inhibiting both CXCL10 and CXCL11 levels in conditioned media. As was the case with 

E-selectin and ICAM1, MCP-1 and IL-6 are inflammatory products known to be 

upregulated by TNFα-stimulation and identified as NFAT-regulatory targets in other 

endothelial cell populations.150,167 As such, they were included in this study, and NFATc4 

siRNA was again found to reduce TNFα-induced levels in the case of MCP-1, though 

TNFα-induced secretion of IL-6 was unaffected by all isoforms. Taken together, these 

findings (summarized in Table 6) identify a strong role for NFATc2 in the expression of 

TNFα-induced leukocyte adhesion proteins, as well as NFATc4 in the production of 

TNFα-induced leukocyte chemoattractants. Interestingly, a separate study evaluating 

the role of individual NFAT isoforms in VEGF-induced cytokine production, found that 
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NFATc1 siRNA reduced VEGF-induced IL-6 levels (Appendix B), indicating that not 

only is the relationship between NFAT and a particular target stimuli dependent, but that 

the isoforms involved may be as well.  

 TNFα-Induced 
Fold Change 

NFATc1 
siRNA 

NFATc2 
siRNA 

NFATc3 
siRNA 

NFATc4 
siRNA 

Adhesion Protein Expression 

CX3CL1 266 – ↓ 46% ↑ 90% – 

VCAM1 56 – ↓ 35% – – 

SELE 136 – ↓ 44% ↑ 42% ↓ 37% 

ICAM1 24 ↑ 29% ↓ 33% – – 

Secreted Cytokines 

CXCL10 4.1 – – – ↓ 58% 

CXCL11 2.8 – – – ↓ 106% 

MCP-1 2.4 – – – ↓ 70% 

IL-6 3.9 – – – – 

Table 6. Summary of the effects of isoform-specific siRNA on TNFα-
induced induction in HRMEC. 
 

 In order to again test whether the observed findings had a functional impact on 

TNFα-induced leukocyte adhesion, the effect of isoform-specific siRNA was evaluated 

in a PPFC assay. The previous study using this technique showed that pharmacologic 

NFAT inhibition, which reduced both CX3CL1 and VCAM1 expression, significantly 

reduced TNFα-induced PBMC adhesion, and additional studies have shown that 

treatments directly targeting E-Selectin and ICAM1 also reduce the ability of leukocytes 

to adhere to the monolayer. Based on this, it was hypothesized that transfecting 

monolayers with siRNA specific for NFAT isoforms shown to reduce TNFα-induced 

expression of these genes would lead to decreases in TNFα-induced PBMC cell 

adhesion. Accordingly, transfection with NFATc2- and NFATc4-directed siRNA was 

found to reduce TNFα-induced PBMC cell adhesion. One might expect that conversely, 
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transfection with NFATc1 and NFATc3 siRNA, which increased TNFα-induced 

expression of these targets, might increase TNFα-induced PBMC adhesion, but neither 

NFATc1 nor NFATc3 knockdown had an effect on PBMC adhesion. In the case of 

NFATc1 siRNA this is likely due to the observed effect on ICAM1 expression being of 

minimal influence in the whole of the assay, and in the case of NFATc3, which had 

significant effects on both CX3CL1 and SELE expression, there being little room at the 

upper threshold of the assay for significant increases to TNFα-induced PBMC adhesion.   

Collectively, these studies show a clear role for NFAT signaling, particularly 

NFATc2 and NFATc4, in the response of HRMEC to TNFα. Additionally, the isoform-

specific effects identified in this study highlight the unique contributions of individual 

NFAT isoforms, as well as the need to target them individually. 
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CHAPTER IV 

The Role of NFAT signaling in VEGF-Treated Human Retinal Microvascular 
Endothelial Cells 

 
4.1 Overview 

 The previous studies examined the role of NFAT signaling in TNFα-induced 

retinal leukostasis (Chapter II & III), a pathogenic feature of early DR that contributes to 

microvascular complications and disease progression. An important aspect of this 

disease progression is the development of retinal neovascularization, which defines 

PDR, and can develop as a result of vascular complications or occlusions caused by 

leukostasis. VEGF, a powerful regulator of vascular permeability in early NPDR and 

DME, is also a critical driver of this late neovascular pathology in PDR, and therapeutics 

targeting the VEGF-signaling pathway have become the primary form of clinical 

treatment.  

 VEGF is a known inducer of NFAT activity in endothelial cells, and the present 

study evaluates the potential contributions of this activity to retinal neovascularization 

and PDR. Immunocytochemistry was initially used to confirm that VEGF stimulates 

NFAT nuclear translocation, a surrogate measure of NFAT activity, in HRMEC. After 

which, the inhibitor INCA-6 was used to evaluate the effect of NFAT blockade on 

HRMEC proliferation and tube formation in vitro. Lastly, the functional effects of 

pharmacologic NFAT inhibition were evaluated in vivo using a rat model of oxygen-

induced retinopathy. NFAT inhibition reduced neovascularization in this context, 

highlighting an additional role for NFAT signaling in retinal neovascularization and PDR 

pathology. 
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4.2 Results 

4.2.1 VEGF induction of NFATc1 nuclear translocation in HRMEC 

 NFAT nuclear translocation was used as a surrogate measure to initially 

determine whether VEGF-induced NFAT activity in HRMEC. Cells were cultured on 

chamber slides and treated with VEGF (25ng/ml) for 30mins before being fixed and 

stained for NFAT isoforms c1-c4. All four isoforms were found to be present in cultured 

HRMEC, however only NFATc1 exhibited clear translocation to the nucleus in response 

to VEGF treatment (Figure 15). This translocation was effectively blocked by co-

treatment with the NFAT-specific inhibitor INCA-6 (1.0µM). 

 
Figure 15. Effect of VEGF treatment on NFATc1 nuclear translocation in HRMEC. VEGF treatment 
(25ng/ml) resulted in nuclear translocation of NFATc1 after 30mins, and this was effectively inhibited by 
treatment with INCA-6 (1.0µM). 
 
4.2.2 Effect of pharmacologic NFAT inhibition on in vitro angiogenesis 

 Based on the initial finding that VEGF stimulates NFAT translocation in HRMEC, 

the contribution of NFAT signaling to in vitro models of angiogenesis were evaluated, 

starting with VEGF-induced HRMEC proliferation. HRMEC were treated with VEGF 

(25ng/ml) and increasing concentrations of the pharmacologic inhibitor INCA-6, and 

proliferation was assayed using uptake of bromodeoxyuridine (BrdU). NFAT blockade 

Vehicle VEGF VEGF + 1µM INCA-6 
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was found to significantly inhibit VEGF-induced proliferation at both 1.0 (p=0.003) and 

2.5µM (p<0.001), while also inhibiting serum-stimulated proliferation at 2.5µM (p<0.003; 

Figure 16). Notably INCA-6 treatment did not alter baseline proliferation at any of the 

tested concentrations in the absence of VEGF or serum stimulation. 

 
Figure 16. Effect of INCA-6 treatment on HRMEC proliferation. HRMEC proliferation was stimulated 
with either VEGF (25ng/ml) or 10% serum. INCA-6 treatment significantly decreased both VEGF and 
serum-induced HRMEC proliferation, but did not affect baseline proliferation. Each bar represents the 
mean ± SEM (n=21). ** = p<0.01. *** = p<0.001. 
 
 Another in vitro assay of angiogenic cell behavior is tube formation, which 

models the ability of cells to reorganize and form vessels in angiogenesis. When 

cultured on Matrigel, HRMEC generate capillary-like structures that can be measured 

and quantified. To investigate whether NFAT signaling also contributes to this 

angiogenic cell behavior, HRMEC were plated on Matrigel and stimulated with 10% 
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serum in the presence or absence of the inhibitor INCA-6. Similar to the proliferation 

studies, INCA-6 significantly inhibited tube formation at 1.0 (p<0.001) and 2.5µM 

(p<0.0001; Figure 17). 

 
Figure 17. Effect of INCA-6 treatment on HRMEC tube formation. HRMEC tube formation was 
stimulated with 10% serum. INCA-6 treatment significantly decreased tube formation. A) Contrast 
enhanced representative images from treated wells. B) Quantification of tube measurements. Each bar 
represents the mean ± SEM (n=9). *** = p<0.001. 
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4.2.3 Effect of pharmacologic NFAT inhibition on retinal neovascularization 

 The proliferation and tube formation studies demonstrate that NFAT inhibition 

influences the HRMEC response to VEGF and serum stimulation in in vitro models of 

angiogenesis. Accordingly, the efficacy of pharmacologic NFAT inhibition was tested in 

vivo using a rat model of oxygen-induced retinopathy. This model results in the 

development of pre-retinal neovascular tufts, similar to those seen in PDR, which can 

be stained and quantified. 

 In this context, NFAT inhibition via INCA-6 decreased the amount of retinal 

neovascularization in a dose-dependent manner, with significant inhibition seen at 5.0 

and 25.0µM concentrations (p<0.03, Figure 18). The CN-inhibitor FK-506 was also 

tested in this model, and a dose-dependent effect of efficacy was again observed, with 

significant inhibition seen at 5.0 (p<0.05) and 25.0µM concentrations (p<0.02). In order 

to determine whether treatment with these inhibitors also had an effect on normal 

vascular development, the total vascular area of treated retinas was also assessed and 

no significant changes were observed in any of the treatment groups (Figure 19A).  

 Lastly, the potential toxicity of INCA-6 and FK-506 treatment was assessed by 

identical treatment of room air animals at the highest concentration of both inhibitors 

(25.0µM), and no effect was seen on the rate or architecture of early physiologic retinal 

vascular development (Figure 19B). 
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Figure 18. Effect of pharmacologic NFAT inhibition on oxygen-induced retinal neovascularization. 
INCA-6 and FK-506 significantly inhibited the severity of OIR in a dose-dependent manner. A) 
Representative quadrants from treatment groups. B) Quantification of neovascular area, relative to the 
vehicle injected control. Each bar represents the mean ± SEM (For no injection, n=16; for vehicle n=23; 
for INCA-6 2.5 µM, n=12; for INCA-6 5.0 µM, n=16; for INCA-6 25.0 µM, n=11; and for FK-506 2.5, 5.0 
and 25.0 µM, n=7). * = p<0.05. 
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Figure 19. Effect of pharmacologic NFAT inhibition on normal vascular development. A) Effect of 
inhibitors INCA-6 and FK-506 on intraretinal vascular area in rat OIR.  INCA-6 and FK-506 did not 
significantly affect the intraretinal vascular area of treated retinas.  Each bar represents the mean ± SEM 
(For no injection, n=16; for vehicle n=23; for INCA-6 2.5µM, n=12; for INCA-6 5.0µM, n=16; for INCA-6 
25.0µM, n=11; and for FK-506 2.5, 5.0 and 25.0µM, n=7). B) Effect of inhibitors INCA-6 and FK-506 on 
retinal vasculature in room air rats. Treatment with INCA-6 or FK-506 did not significantly alter retinal 
vascular development in room air animals. 
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4.3 Conclusions 

 VEGF is a critical signaling peptide in the development and progression of DR 

pathology, playing a role in both early microvascular complications and late 

neovascularization.44-46,87-89 This study evaluated the contribution of NFAT signaling in the 

context of this later proliferative feature, and demonstrated that NFAT signaling plays a 

critical role both in in vitro models of retinal angiogenic cell behavior and in an in vivo 

model of retinal neovascularization. 

 VEGF is an established activator of the NFAT signaling pathway and has been 

shown to stimulate the translocation of different isoforms in various cellular 

contexts.106,143 For instance, VEGF stimulates NFATc1 translocation In human 

pulmonary valve endothelial cells, and NFATc2 translocation in HUVEC and intestinal 

microvascular endothelial cells.140,144,145 As a result, this study began by evaluating the 

effect of VEGF on NFAT localization, and found that in HRMEC, NFATc1 is the isoform 

translocated to the nucleus as a result of VEGF treatment (Figure 15). This VEGF-

induced NFATc1 translocation was abolished by co-treatment with the pharmacologic 

NFAT-inhibitor INCA-6.  

 Based on this initial finding, the effect of pharmacologic NFAT inhibition was 

evaluated in vitro using angiogenic cell behavior assays that measure cell proliferation 

and tube formation. NFAT blockade was found to inhibit both VEGF- and serum-

induced cell proliferation (Figure 16), as well as serum-induced tube formation (Figure 

17). Notably, serum includes a number of pro-proliferative factors in addition to VEGF, 

such as EGF, FGF, and IGF. In the proliferation assays, serum stimulation induced a 

greater proliferative response than VEGF stimulation. Moreover, optimal INCA-6 
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treatment completely inhibited VEGF-induced HRMEC proliferation, but was less 

effective in inhibiting serum-induced proliferation. One explanation for these findings is 

that the inhibition of serum-stimulated proliferation by INCA-6 was largely or wholly due 

to inhibition of the contribution of VEGF. Together, these in vitro studies indicate that 

NFAT signaling mediates angiogenic cell behaviors in both a cell type known to 

contribute to pathological retinal neovascularization and in response to a stimulus 

known to contribute to retinal neovascularization. 

 To further evaluate the role of NFAT signaling in retinal neovascularization, the 

effect of pharmacologic NFAT inhibition was tested in vivo using a rat model of oxygen-

induced retinopathy. In this context, INCA-6 significantly reduced the severity of pre-

retinal neovascularization, as did treatment with the CN inhibitor FK-506 (Figure 18). 

FK-506 inhibits the NFAT signaling pathway upstream from INCA-6 by complexing with 

FKBP12 to bind CN and prevent its activation and phosphatase activity, and the finding 

that it caused a similar reduction in neovascularization further confirms the role of NFAT 

signaling in this pathology.110-113 Collectively, these studies identify the presence of a 

VEGF-activated NFAT isoform in HRMEC, show a clear effect of NFAT inhibition in both 

in vitro angiogenic cell behaviors and an in vivo model of ocular neovascularization, and 

suggest that NFAT signaling exerts a pro-angiogenic influence in HRMEC downstream 

of VEGF. 
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CHAPTER V 

DISCUSSION 

5.1 The role of NFAT signaling in TNFα-induced retinal leukostasis 

 TNFα is a powerful inducer of vascular inflammation and a well-established 

contributor to the development of DR. Not only is it found elevated in the vitreous fluid of 

patients with PDR, but it is known to help regulate vascular permeability, induce 

vascular inflammation and damage, and promote leukostasis, all of which are important 

features of DR progression.34,40,47 For these reasons TNFα has garnered growing 

attention as a potential therapeutic target for the treatment of DR pathology, and 

multiple clinical trials have been conducted evaluating the efficacy of FDA-approved 

TNFα-directed therapies in this context. Thus far the results of these trials have been 

mixed. The recombinant fusion protein Etanercept (approved to treat psoriasis) showed 

no significant benefit in patients with DME, though systemic treatment with the TNFα-

antagonist Infliximab (approved to treat Crohn’s disease) proved initially efficacious and 

administration by intravitreal injection is currently being evaluated.19,20 This latter study 

highlights the potential of TNFα-directed therapies in the treatment of DR, while the 

former makes it clear that there is a need for improved treatments that target the 

pathogenic features of TNFα-signaling in this context. 

 With this backdrop, the two initial studies described herein focus on the role of 

NFAT signaling downstream of TNFα-stimulation in HRMEC. HRMEC are a main 

component of the retinal microvasculature and serve as the primary cell type throughout 

these studies, because DR is first and foremost, a disease of microvascular 

complications. Prior to these studies, the role of NFAT signaling had not been evaluated 
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in HRMEC, though it had been studied in other endothelial cell populations including 

HUVEC. Those studies identified NFAT transcription factor signaling as playing a critical 

role in the expression of target genes critical to both inflammation and angiogenesis. 

Additionally, studies in immune cells had previously identified TNFα as an inducer of 

NFAT activity, as well as intracellular calcium flux, a key component of the NFAT 

signaling pathway. Based on this, we evaluated the effect of pharmacologic NFAT 

inhibition in TNFα-stimulated HRMEC via RNA-seq analysis. 

 The RNA-seq analysis served the dual role of characterizing the effects of TNFα-

stimulation on HRMEC and evaluating the effect of NFAT inhibition in this experimental 

context. TNFα stimulation proved to be a powerful inducer of transcript expression in 

HRMEC, and pathway analysis revealed that this induction was largely related to 

inflammation, leukocyte recruitment, and leukocyte adhesion. These findings were 

predictable based on TNFα’s reputation as a mediator of vascular and retinal 

inflammation, but still serve to confirm and add resolution to that relationship in HRMEC. 

The most significant finding to come out of the genomics study was that pharmacologic 

NFAT blockade inhibits the TNFα-induced expression of a small subset of transcripts, 

most of which are related to leukocyte chemoattraction and adhesion. This was the first 

insight into how NFAT-family transcription factors modulate TNFα signaling in the retinal 

endothelium, and strongly suggested a role for NFAT signaling in TNFα-induced retinal 

leukostasis. 

 To further evaluate that point, the functional effect of pharmacologic NFAT 

inhibition was evaluated in both in vitro and in vivo models of TNFα-induced leukostasis.  

The PPFC assay serves as an in vitro model for leukostasis, and in this experimental 
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context TNFα-treatment increases PBMC adhesion to endothelial cells through 

upregulation of leukocyte adhesion proteins such as E-selectin, ICAM1, VCAM1, and 

CX3CL1. All of these proteins have been shown to promote cell adhesion in similar flow 

models, and the expression of all of them was increased as a result of TNFα-stimulation 

in the RNA-seq study. Importantly, VCAM1 and CX3CL1 were also both inhibited by 

NFAT blockade, leading us to hypothesize that pharmacologic NFAT inhibition would 

reduce TNFα-induced PBMC adhesion under our experimental conditions. Accordingly, 

NFAT inhibition reduced PBMC adhesion to the endothelial monolayer, and the effect is 

largely attributed to NFAT inhibition of TNFα-induced VCAM1 and CX3CL1, as the other 

NFAT-dependent transcripts involved in leukostasis are chemoattractants, which serve 

no functional role in our PPFC model. Lastly, we evaluated the effect of pharmacologic 

NFAT inhibition in an in vivo model of TNFα-induced retinal leukostasis, and found that 

NFAT blockade significantly reduced TNFα-induced leukocyte adhesion to the retinal 

vasculature. Unlike in the PPFC assay, NFAT inhibition of additional TNFα-induced 

transcripts CXCL10 and CXCL11 may contribute to this effect as chemokines and 

leukocyte chemoattractants play a prominent role in this model by helping to recruit 

leukocytes to the retina.  

 Taken together, these initial studies identify a clear role for NFAT signaling in 

TNFα-induced retinal leukostasis. Which, given the importance of TNFα-signaling and 

retinal leukostasis in the progression of DR, suggests that NFAT signaling may 

represent an attractive target for therapeutics aimed at retinal leukostasis. Considering 

this, there are two logical extensions of this initial study. The first is an expansion of the 

in vivo studies to evaluate the effects of NFAT blockade on leukocyte adhesion and 
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subsequent pathologies in diabetic animals. The TNFα-induced retinal leukostasis 

model employed in these studies is an effective proof-of-principle study to evaluate the 

effects of pharmacologic NFAT inhibition in an acute inflammation context. Given the 

efficacy of NFAT blockade in this model, the next step is to look at the effect of NFAT 

inhibition in a chronic disease setting, and to expand the evaluation to include in vivo 

measurements of retinal cytokine production, vascular permeability, and endothelial 

apoptosis, all of which are lesions of DR that develop in diabetic animal models and 

have been tied to retinal leukostasis. 

 The second extension of these initial studies identifying NFAT signaling as a 

modulator of TNFα-induced retinal leukostasis, is a more thorough evaluation of the 

specific NFAT isoforms involved in this context. The inhibitor used in the previous 

studies, INCA-6, is NFAT-specific in that it binds to the discrete NFAT-binding site on 

CN preventing NFAT-dephosphorylation and activation without altering any other CN 

activity. However, it is also a general NFAT-inhibitor in that it is capable of blocking all 

CN-dependent NFAT isoforms through this mechanism. As a result, while these initial 

studies identified a clear role for NFAT signaling in TNFα-induced retinal leukostasis, 

they also revealed very little about the specific isoforms involved.  

 To address this gap in understanding, and to further characterize the involvement 

of NFAT signaling in TNFα-induced retinal leukostasis, we developed the techniques to 

target individual NFAT isoforms and utilized these techniques to evaluate the role of 

each isoform in TNFα-stimulated HRMEC. This study revealed unique roles for the 

individual isoforms in the regulation of TNFα-induced adhesion proteins and cytokines 

identified by the RNA-seq study, as well as identified additional NFAT gene targets that 
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had not previously been detected with pharmacologic inhibition (Figures 12 & 13). In 

short, NFATc2 siRNA inhibited TNFα-induced CX3CL1, VCAM1, SELE, and ICAM1 

expression while NFATc4 siRNA inhibited SELE expression as well as TNFα-induced 

increases in soluble CXCL10, CXCL11, and MCP-1. Conversely, NFATc1 siRNA 

increased TNFα-induced ICAM1 expression and NFATc3 siRNA increased CX3CL1 

and SELE expression. This analysis was followed up with another PPFC study, looking 

at the role of individual NFAT isoforms in TNFα-induced leukocyte adhesion (Figure 

14). In this context, NFATc2 and NFATc4 siRNA caused a decrease in TNFα-induced 

PBMC cell adhesion. Collectively, these studies highlight the unique contributions of 

individual NFAT isoforms in the response of HRMEC to TNFα, and identify NFATc2 and 

NFATc4 as potentially valuable therapeutic targets for the treatment of TNFα-induced 

retinal leukostasis. 

 The identification of NFATc2 and NFATc4 as regulators of TNFα-induced retinal 

leukostasis raises a number of additional questions suitable for investigation, most of 

which are related to mechanism of action. To date our studies have highlighted a clear 

role for NFAT signaling in TNFα-stimulated endothelial cells but have yet to identify a 

mechanism of action for these effects. TNFα is known to stimulate NFAT activity and 

intracellular Ca2+ flux, but the particulars of this activation have not been evaluated in 

HRMEC. Studies evaluating the effect of TNFα on intracellular Ca2+ are needed in order 

to fully understand how NFAT signaling comes into play downstream, and whether there 

is indeed direct activation of NFAT by TNFα. Initial efforts to address this later point 

using an NFAT-directed luciferase reporter indicate that TNFα does indeed induce 
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increased NFAT activity (Appendix C), though additional efforts to measure this activity 

in conjunction with isoform-specific siRNA knockdown have proved unreliable. 

 Another important question remaining is whether NFATc2 and NFATc4 act 

through direct binding and transcription of the target DNA sites. All of the targets 

evaluated here have been identified as NFAT target genes, but our analysis has not 

established whether there is direct transcription of these targets by NFAT. With the 

identification of NFATc2 and NFATc4, it is now considerably more feasible to do a 

ChIP-Seq assay to look at the direct binding of one or both of these isoforms to target 

gene sequences. Another aspect of target gene expression worthy of future 

investigation is the identification of NFAT transcriptional partners. Upon translocation to 

the nucleus, NFAT dimerizes with other transcription factors, and identification of those 

binding partners through co-immunoprecipitation would offer considerable insight into 

mechanism of action. 

 Lastly, a critical final step for evaluating the potential of NFATc2 and NFATc4 as 

therapeutic targets in DR would be to evaluate the effect of targeting one or both in vivo, 

using first the TNFα-induced leukostasis model and then ultimately a diabetic animal 

model. NFATc2 and NFATc4 knockout mice have both been generated, but have a 

number of confounding issues, including defects in immune cell production, a feature 

that would complicate their use in this context. Generation of conditional knockout mice 

is the most thorough way to evaluate the effect of these isoforms in the retinal 

endothelium under disease conditions. However, a more manageable approach might 

be to use intraocular injection of adeno-associated virus (AAV) transfection vectors to 

target individual isoforms via siRNA. This is not a technique that our lab currently 
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employs, so there would be considerable assay development and troubleshooting 

required, though the potential impact of the study is enticing.  One thing to consider with 

regard to targeting individual NFAT isoforms in vivo is that there may be a beneficial 

effect of targeting both NFATc2 and NFATc4. The conserved nature of NFAT isoforms 

suggests that they play redundant roles in some contexts, so there may be an increased 

effect on a shared target such as E-selectin. Likewise, the fact that NFATc2 plays a role 

primarily in leukocyte adhesion protein expression while NFATc4 is prominently 

involved in the regulation of leukocyte recruitment proteins could result in a synergistic 

effect from targeting both in vivo. There may also be an increased effect on TNFα-

induced PBMC adhesion in our PPFC assay, which would be relatively easy to evaluate 

before considering translation to the in vivo setting. 

5.2 The role of NFAT signaling related to VEGF 

 The latter study presented herein focuses on the role of NFAT signaling in 

response to VEGF, another important signaling molecule in the development and 

progression of DR. VEGF, like TNFα, is able to induce microvascular complications and 

inflammation in the retina, and is known to both be present early in the progression of 

DR and contribute to the development of retinal leukostasis and vascular permeability in 

animal models of diabetes. VEGF also has a prominent well-established role in the 

development of retinal neovascularization, the critical pathology associated with PDR. In 

fact, anti-VEGF therapies including pegaptanib (Macugen®, Pfizer), bevacizumab 

(Avastin®, Genentech), and ranibizumab (Lucentis®, Genentech) have been proven 

highly efficacious in treating ocular neovascularization, and have recently become the 

primary means of addressing this pathology in PDR.168,169 Despite their efficacy and 
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broadening use, a number of concerns about the continued and prolonged use of 

current therapies targeting this pathway remain. The requirement for frequent 

intravitreal injections and fluctuating levels of the antagonist in the eye between 

injections are both major therapeutic limitations, and there are concerns surrounding 

potential long-term effect of chronic treatment on retinal neurons that express the VEGF 

receptor and the potential for increased sensitivity to the growth factor in various ocular 

vascular beds. Endopthalmitis, inflammation of the intraocular cavity, is also a concern 

with the injection based treatment, occurring at a rate as high as 1.3% of patients per 

year in clinical studies, making morbidity and vision loss from treatment a rare but 

significant complication.170 Lastly, anti-VEGF treatment doesn’t work as effectively for 

everyone, and approximately 20% of patients have no response to treatment. Despite 

these concerns, VEGF antagonists have revolutionized the practice of ophthalmology, 

and clinical results clearly point to a continued need for ways to influence VEGF 

signaling in the context of ocular neovascularization. 

 With this backdrop, the final study presented herein focused on the role of NFAT 

signaling downstream of VEGF in both in vitro and in vivo models of retinal 

neovascularization. Prior to this work, the relationship between NFAT activity and VEGF 

signaling had not been examined in HRMEC, though VEGF had been described as an 

inducer of NFAT translocation and activity in a number of endothelial cell 

populations.140,144,145 In these previous studies, VEGF was found to preferentially activate 

either NFATc1 or NFATc2 depending on the cell type, leading us to begin our 

evaluation by looking at the effect of VEGF treatment on NFAT isoform translocation in 

HRMEC (Figure 15). This study revealed that, similarly to human pulmonary valve 
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endothelial cells, VEGF treatment induces nuclear localization of NFATc1 in HRMEC.144 

Subsequent studies evaluated the role of pharmacologic NFAT blockade in in vitro 

angiogenic cell behavior assays, and found that INCA-6 treatment inhibited both VEGF- 

and serum-induced cell proliferation (Figure 16), as well as serum-induced tube 

formation (Figure 17). Based on these findings, we further evaluated the effect of 

pharmacologic NFAT blockade in vivo using both INCA-6 and the CN inhibitor FK-506 in 

a rat model of oxygen induced retinopathy (Figure 18). In this context, both INCA-6 and 

FK-506 significantly inhibited retinal neovascularization, without affecting normal intra-

retinal vascular development. The efficacy obtained with FK-506 treatment is 

particularly interesting, as FK-506 marketed as Prograf® and Advagraf®, is approved for 

clinical use, both as an immunosuppressant to prevent organ rejection in organ and 

tissue transplant patients, and as a therapy for patients with severe refractory uveitis.127-

130 This feature could facilitate future translation to clinical use targeting retinal 

angiogenesis, but currently serves to highlight the efficacy and utility of targeting this 

pathway therapeutically.  

 Interestingly, the efficacy observed using either inhibitor in our in vivo model was 

greater than what might be predicted based on inhibition of HRMEC angiogenic 

behaviors in our in vitro experiments. One explanation might be that NFAT inhibition 

affects another, unrelated aspects of neovascularization. Indeed, preliminary studies in 

our lab (Appendix D) and in the context of corneal neovascularization, suggest a 

potential role for NFAT signaling in the regulation of retinal VEGF expression.171  To test 

whether our CN/NFAT inhibitors achieved significant efficacy in part by inhibiting VEGF 

expression, we measured in vivo retinal VEGF protein levels after INCA-6 treatment as 
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well as the effect of INCA-6 on hypoxia-induced Müller cell VEGF production in vitro and 

found no effect (Appendix E). This suggests that the efficacy observed in vivo is largely 

due to inhibition of VEGF-stimulated NFAT signaling in HRMEC, though there could be 

additional, as yet unidentified, mechanisms that also contribute.  

 While the downstream targets of NFAT signaling were beyond the scope of this 

initial analysis, they are an intriguing avenue for further study. As was the case with our 

pharmacologic evaluation of NFAT signaling in the context of TNFα-induced activities, 

the logical extension of this VEGF study is to focus on the role of individual NFAT 

isoforms. The nuclear translocation analysis suggested that NFATc1 may be an 

important player in VEGF-signaling, and this can be confirmed using the tools 

developed in Chapter III to evaluate the effect of isoform-specific siRNA on HRMEC 

proliferation and tube formation. Based on this evaluation, the isoform, or isoforms, 

identified as critical regulators of these angiogenic cell behaviors in HRMEC should be 

further characterized in relation to VEGF signaling. The studies in Chapter II and III 

benefited greatly from having a restricted list of gene targets to characterize, and as a 

result a beneficial next step in this study would be an RNA-seq using VEGF and 

NFATc1 siRNA, or siRNA directed at another critical isoform, to identify VEGF-induced 

gene targets that are altered by this treatment. An alternative strategy would be to focus 

on the binding targets of the given isoform and conduct a ChIP-seq assay under VEGF-

stimulated conditions to identify direct binding interactions associated with that particular 

isoform. From an in vivo perspective, targeting critical isoforms through use of AAV 

vectors as previously discussed, would be the ideal way to pair any isoform-specific 

effects identified in vitro with pathological effects in vivo.	
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 Perhaps the most exciting future direction related to retinal VEGF and DR 

progression involves the further analysis of NFAT signaling in Müller glia as it relates to 

VEGF production. As previously discussed, VEGF plays a prominent role in early 

microvasculature complications and inflammation related to NPDR, and has been found 

elevated in vitreous prior to the onset of the PDR pathology looked at in Chapter IV. 

Interestingly, genetic disruption of Müller cell-derived VEGF in a mouse model of 

diabetes dramatically reduced inflammation-related features of DR, including 

leukostasis and vascular permeability, suggesting that Müller cell-derived VEGF drives 

pathogenic events occurring in NPDR.172 Furthermore, high glucose has been reported 

to both increase intracellular Ca2+ levels and stimulate VEGF expression in Müller cells, 

suggesting a potential role for NFAT signaling in this context.173-177 Our own preliminary 

studies investigating the link between hyperglycemia, NFAT signaling, and VEGF 

induction show that both high glucose and thapsigargin (a small molecule that increases 

cytosolic Ca2+ levels) induce VEGF, HIF-1a, and COX-2 expression in primary human 

Müller cells, and that NFAT blockade using FK-506 reduces high glucose-induced 

VEGF levels in culture media (Appendix D). This latter finding establishes a clear 

connection between NFAT-signaling and high glucose-induced Müller cell VEGF that is 

worthy of continued investigation. Use of the isoform specific siRNA identified in 

Chapter III in conjunction with a recently developed Müller cell specific transfection 

protocol, offer an established route toward identifying isoform-specific effects in this 

context and identification of one or more critical isoforms will allow for a more thorough 

analysis of mechanism of action. Notably, the potential role of NFAT signaling in Müller 

cells will be particularly important to keep in mind in the context of the proposed in vivo 
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studies involving diabetic animals, as hyperglycemia is the central driver of pathology in 

those models, and it will be difficult to attribute any particular effect to a given cell type 

using pharmacologic inhibition. While the interconnectedness of roles for NFAT in both 

the glial cells producing cytokines critical to DR pathology as well as the endothelial 

cells responding to them convolutes their study in complex in vivo systems, it also 

strengthens the case for therapeutics targeting NFAT as a treatment for DR. 
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CHAPTER VI 

METHODS 

5.1 Methods used in Chapter II 

5.1.1 Retinal microvascular endothelial cell culture 

 Primary HRMEC (catalog #ACBRI 181) were purchased from Cell Systems 

(Kirkland, WA) and were cultured in flasks coated with attachment factor (Cell Signaling; 

Danvers, MA). Growth medium consisted of endothelial basal medium (EBM; Lonza; 

Walkersville, MD) supplemented with 10% FBS (Sigma Aldrich; St. Louis, MO) and 

endothelial cell growth supplements (EGM SingleQuots; Lonza). All cultures were 

incubated at 37°C, in 5% CO2 and 95% relative humidity. Passage 3 cells were used for 

these experiments. 

5.1.2 Treatment and RNA isolation 

 HRMEC were cultured to near confluence in 6-well dishes coated with 

attachment factor, before being serum starved (0.5% FBS in EBM) for 12hrs. Cells were 

then treated with TNFα (1ng/ml, Sigma-Aldrich) in the presence or absence of INCA-6 

(1µM, Tocris; Minneapolis, MN). After 4hrs of treatment, cells were washed with cold 

Phosphate Buffered Saline (PBS; Invitrogen; Grand Island, NY) and total RNA was 

collected using an RNeasy kit (Qiagen; Valencia, CA, USA), according to the 

manufacturer’s instructions. 

5.1.3 RNA-seq and analysis 

cDNA library preparation and sequencing 

 Total RNA samples were submitted to the Vanderbilt VANTAGE core for 

sequencing. RNA sample quality was confirmed using the 2100 Bioanalyzer (Agilent 
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Technologies; Santa Clara, CA). All RNA samples had an RNA integrity number > 9.0. 

Samples were prepared for sequencing using the TruSeq RNA Sample Prep Kit 

(Illumina; San Diego, CA) to enrich for mRNA and prepare cDNA libraries. Library 

quality was assessed using the 2100 Bioanalyzer. Sequencing was performed using a 

single read, 50 bp protocol on the Illumina HiSeq 2500 (Illumina). The sequence data 

can be found at the NCBI Short Read Archive with accession number SRP047271.    

 Alignment and differential expression 

 Sequence alignment and differential expression analyses were expedited using 

the Vanderbilt VANGARD core. Alignment to the UCSC human reference genome hg19 

was performed using TopHat v2.0.9 with default parameters.178 Mapped reads were 

then analyzed for differential expression using MultiRankSeq, which utilizes DESeq, 

edgeR, and baySeq algorithms.179 Comparisons were made between the TNFα-treated 

group and the control group, and between the TNFα group and the TNFα plus INCA-6 

group. Transcripts were filtered to those having a false discovery rate (FDR) < 0.05 in all 

three methods.      

Pathway analysis 

 DAVID v6.7 was used for pathway enrichment analysis.180,181	
   Lists of differentially 

expressed genes were submitted to the DAVID website and compared to a background 

of human reference genes. Pathway enrichment was determined using the KEGG 

Pathway annotation. Pathways were considered significantly enriched with p<0.05.  

qRT-PCR validation 

 cDNA was reverse transcribed using the High-Capacity cDNA Archive Kit 

(Applied Biosystems; Carlsbad, CA) according to the manufacturer’s instructions. 
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Quantitative real-time RT-PCR was performed by co-amplification of the gene of interest 

(CXCL10, CXCL11, SELE, ICAM1, or VCAM1) vs. β-actin (endogenous normalization 

control), using gene-specific TaqMan Gene Expression Assays (Applied Biosystems; 

Table X). Expression data was analyzed using the comparative Ct method. Analysis 

was done not only on the samples submitted for RNA-seq, but also on samples from 

additional biologically-independent experimental replicates. 

Gene Target Catalog No. 

β-actin Hs99999903_m1 

CX3CL1 Hs00171086_m1 

ICAM1 Hs00164932_m1 

NFATc1 Hs00542678_m1 

NFATc2 Hs00905451_m1 

NFATc3 Hs00190046_m1 

NFATc4 Hs00190037_m1 

SELE Hs00950401_m1 

VCAM1 Hs01003372_m1 
Table 7. Taqman gene expression assays used. 
All assays obtained from Applied Biosystems. 
 

5.1.4 Parallel plate flow chamber assay 

 HRMEC were grown to confluence on attachment factor-coated glass slides, 

before being switched to 2% medium (2% FBS and EBM) for 8hrs. Monolayers were 

then stimulated for 4hrs with 2% medium, 2% medium plus TNFα (1ng/ml), or 2% 

medium plus TNFα and INCA-6 (1uM) in 2% medium. After treatment, slides were 

mounted in a rectangular parallel plate flow chamber (GlycoTech; Gaithersburg, MD) 

with a flow width of 1.00cm and chamber height of 0.005in. A syringe pump (World 

Precision Instruments; Sarasota, FL) was used to pull PBMC (Sanguine Biosciences; 
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Valencia, CA) suspended in Hank’s Buffered Salt Solution (HBSS; Life Technologies; 

Carlsbad, CA) at a concentration of 2.5x105 cells/ml, across HRMEC monolayers at a 

shear stress of 1dyn/cm2 for 7min. Non-adherent cells were washed off with HBSS at 

2dyn/cm2 for 2min. Eight fields of view were captured from each slide using an IMT-2 

inverted microscope (Olympus; Tokyo, Japan) and Q-Color3 digital camera (Olympus) 

at 20X magnification, then manually counted by two masked observers. Adherent cell 

counts of all the captured fields of a single slide were averaged and reported as 

adherent cells per mm2. 

5.1.5 Retinal leukostasis assay 

 All experiments were approved by the Vanderbilt University Institutional Animal 

Care and Use Committee and were performed in accordance with the ARVO Statement 

for the Use of Animals in Ophthalmic and Vision Research. Six-week old male C57BL/6 

mice were procured from Charles Rivers (Wilmington, MA). Mice received a 2µl 

intravitreal injection of TNFα (50ng/ml) plus vehicle (0.1% DMSO in PBS) or INCA-6 

(25µM).  6hrs later, mice were anesthetized with ketamine and xylazine and perfused 

with 0.9% saline, followed by FITC-conjugated concanavalin-A (40mg/ml in 2.5ml PBS). 

Residual non-adherent leukocytes were washed out using saline perfusion. Retinas 

were dissected in 4% paraformaldehyde, flat-mounted, and imaged with an AX70 

upright scope (Olympus) and DP71 digital camera (Olympus) at 4X magnification, then 

manually counted by two masked observers. Retinal leukocyte counts for an entire 

retina were averaged and reported as retinal leukocytes per mm2. 
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5.1.6 Statistical analyses 

 Data were analyzed with commercial software (JMP; SAS Institute, Cary, NC) 

using analysis of variance (ANOVA) and Dunnet’s post hoc analyses with probability < 

0.05 considered statistically significant. 

5.2 Methods used in Chapter III 

5.2.1 HRMEC culture and transfection 

 Primary HRMEC were cultured as described in 5.1.1. For transfection, cells were 

cultured in six-well dishes and 1ml of fresh media was added to each well 30min before 

treatment. For each well, 4µl of 10uM siRNA (Table X), 9µl Targefect Solution A 

(Targeting Systems, El Cajon, CA) and 18µl of Virofect (Targeting Systems) were added 

to 250ul Optimem (Life Technologies) in a separate tube and inverted 12 times between 

the addition of each reagent. Mixed reagents were incubated at 37°C for 25min and 

periodically inverted, before being added to each well.182 Cells were incubated with 

transfection reagents for 12hrs, before being washed and treated with fresh media. 

siRNA Target Sequence Company Catalog No. 

Control 5’-AATTCTCCGAACGTGTCACGT-3’ Qiagen 1022076 

NFATc1 
5’-CCGGGACCTGTGCAAGCCGAA-3’ Qiagen SI03082422 

5’-TCCGACATTGAACTTCGGAAA-3’ Qiagen SI00099512 

NFATc2 5’-CTGGTCTATGGCGGCCAGCAA-3’ Qiagen SI00099512 

NFATc3 5’-CCGGGAGACTTCAATAGATGA-3’ Qiagen SI00157997 

NFATc4 5’-AAGGCTTACAGCACTATATGA-3’ Santa Cruz sc-38115 

Table 8. Selected siRNA oligos for individual NFAT isoforms. NFATc1 siRNA was 
a cocktail of the two oligos listed. 

 
5.2.2 qRT-PCR analysis of transfected HRMEC 

 HRMEC were seeded in 6-well plates at 2 x 105 cells/well and maintained under 

growth conditions. At 75% confluence, HRMEC were transfected with Control, NFATc1, 
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NFATc2, NFATc3, or NFATc4 siRNA as described above. 12hrs post-transfection, cells 

were switched to 2% medium for 12hrs, before being placed in 0.5% medium for an 

additional 8hrs. Cells were then stimulated with 0.5% medium or 0.5% medium plus 

TNFα (1ng/ml) for 4hrs. After treatment, cells were washed with cold PBS and total RNA 

collected using an RNeasy kit. Total RNA was reverse transcribed and qRT-PCR was 

performed by co-amplification of the gene of interest (NFATc1, NFATc2, NFATc3, 

NFATc4, CX3CL1, VCAM1, SELE, or ICAM1) vs β-actin, using gene-specific TaqMan 

Gene Expression Assays (Table 7). Expression data was analyzed using the 

comparative Ct method. 

5.2.3 Soluble protein quantification 

 HRMEC were seeded in 6-well plates and grown to 75% confluence, before 

being transfected with Control, NFATc1, NFATc2, NFATc3, or NFATc4 siRNA as 

described above. 12hrs post-transfection, cells were switched to 2% medium for 12hrs, 

before being placed in 0.5% medium for an additional 6hrs. Cells were then stimulated 

with either 0.5% medium or 0.5% medium plus TNFα (1ng/ml) for 6hrs. After treatment, 

culture medium was collected and assayed for secreted CXCL10, CXCL11, MCP-1, and 

IL-6 protein concentrations using protein specific colorimetric sandwich ELISA kits (R&D 

Systems; Minneapolis, MN). Cells were washed with cold PBS and lysed using CellLytic 

lysis buffer (Sigma Aldrich), and the concentration of cell lysates was determined using 

a bicinchoninic acid assay (Pierce; Rockford, IL). Secreted protein concentrations were 

normalized to total protein of corresponding cell lysates and reported as pg/mg of total 

cellular protein. 
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5.2.4 Parallel plate flow chamber assay 

 HRMEC were grown to confluence on attachment factor-coated glass slides and 

transfected with Control, NFATc1, NFATc2, NFATc3, or NFATc4 siRNA as described 

above. 12hrs post-transfection, cells were switched to 2% medium for an additional 

20hrs. Cells were then stimulated with fresh 2% medium or 2% medium plus TNFα 

(1ng/ml) for 4hrs. After treatment, slides were mounted into the parallel plate flow 

chamber and assayed as described in 5.1.7. 

5.2.5 Statistical analyses 

 Data were analyzed with JMP using ANOVA and Dunnet’s post hoc analyses 

with p<0.05 considered statistically significant. 

5.3 Methods used in Chapter IV 

5.3.1 Immunocytochemistry 

 HRMEC were cultured on multi-well glass slides to near confluence, before being 

serum starved for 12hrs. Cells were then treated with VEGF (25ng/ml, Millipore; 

Billerica, MA) in the presence or absence INCA-6 (1.0µM).  Thirty mins after treatment, 

cells were fixed with 4% paraformaldehyde and 1% Triton X-100 in PBS.  Wells were 

then incubated with primary antibody (NFATc1: sc-13033; Santa Cruz Biotech) 

overnight at 4°C. After incubation, wells were washed and incubated with secondary 

antibody. Samples were viewed and imaged with a Zeiss LSM 510 inverted confocal 

microscope (Carl Zeiss Microscopy LLC; Thornwood, NY). 

5.3.2 HRMEC proliferation assay  

 HRMEC were seeded at 3 X 103 cells/well in a 96-well plate containing standard 

growth medium for 8hrs to allow them to settle and attach. Cells were then serum-
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starved for 12hrs before being treated with either 10% serum or VEGF (25ng/ml in 

medium containing 0.5% serum) in the presence or absence of the inhibitor INCA-6 

(0.5, 1, or 2.5µM). After 24hrs of treatment, cells were labeled with BrdU labeling 

solution for an additional 12hrs, and BrdU incorporation was quantified using a 

colorimetric BrdU ELISA (Roche; Indianapolis, IN), according to the manufacturer’s 

instructions. Absorbance values were normalized to the 0.5% serum control for each 

experiment. 

5.3.3 HRMEC tube formation assay 

 24-well tissue culture plates were coated with 350µl of growth factor-reduced 

Matrigel® (Becton Dickenson, Franklin Lakes, NJ). HRMEC were seeded at 2.5 X 104 

cells/well and treated with 10% serum in the presence or absence of INCA-6 (1 or 

2.5µM). Tubes were imaged 12hrs after treatment, using a Nikon Eclipse Ti microscope 

(Nikon; Melville, NY, USA) and Nikon DS-Fi1 camera at 2X magnification. Image J 

software (NIH; Bethesda, MD, USA) was used to determine the mean tube length per 

unit area, and these values were normalized to a 0.5% serum control for each 

experiment. 

5.3.4 Oxygen-induced retinopathy model 

 All animal procedures used in this study were approved by the Vanderbilt 

University Institutional Animal Care and Use Committee and were performed in 

accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision 

Research. Within 8 hrs after birth, litters of Sprague-Dawley rat pups and their mothers 

(Charles Rivers) were transferred to oxygen exposure chambers in which they were 
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subjected to alternating 24hr periods of 50% and 10% oxygen for 14 days.183 On 

postnatal day 14 [14(0)], the oxygen-exposed rats were removed to room air.  

Intravitreal Injections 

 Rats were anesthetized by isoflurane (Butler Animal Health Supply; Dublin, OH) 

inhalation and a drop of 0.5% proparacaine (Allergan; Hormigueros, PR) was topically 

applied to the cornea before intravitreal injection. The globe was penetrated 

approximately 0.5 mm posterior to the ora ciliaris, using a 30-gauge needle with a 19° 

bevel and 10-µL syringe (Hamilton Co.; Reno, NV). The needle was advanced to the 

posterior vitreous at a steep angle to avoid contact with the lens. The injection bolus (5 

µL) was delivered near the trunk of the hyaloid artery proximal to the posterior pole of 

the retina.184-186 After injection, a topical antibiotic suspension (Vigamox; Alcon 

Laboratories; Fort Worth, TX) was applied. Non-injected eyes were also treated with 

topical proparacaine and antibiotic to control for the potential of these agents to 

influence retinal vessel growth. Subsets of oxygen-exposed rats were administered 

vehicle (0.1% DMSO in PBS) INCA-6 (2.5, 5, or 25µM) or FK-506 (2.5, 5, or 25µM; 

Tocris) by intravitreal injection on days 14(0) and 14(3). Non-injected animals were used 

as controls. Age matched room air pups, also received two injections of either vehicle, 

INCA-6 (25µM), or FK-506 (25µM) on days 14(0) and 14(3).  

Quantification of Retinal Neovascularization 

 On day 14(6), all rats were sacrificed and their retinas dissected. After dissection, 

the retinal vasculature was stained for adenosine diphosphatase activity, according to 

well-established procedures.183,184 Images of adenosine diphosphatase-stained retinas 

were digitized, and pre-retinal vessel tufts were measured by computer-assisted image 
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analysis. Data are reported in square millimeters. The data shown is normalized to 

neovascularization values from vehicle-treated eyes of each experimental group. 
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APPENDIX A 

Sustained knockdown of NFATc1 expression 

 
Sustained knockdown of NFATc1 expression. HRMEC were transfected with control or NFATc1 
siRNA for 24, 36, and 48hrs before collection and qRT-PCR analysis. *** = p<0.001 
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APPENDIX B 

Effect of NFATc1 siRNA on VEGF-induced IL-6 

 
Effect of NFATc1 siRNA on VEGF-induced IL-6 production. HRMEC transfected with either control or 
NFATc1 siRNA were treated with VEGF (25ng/ml) for 12hrs. Conditioned media was then collected and 
analyzed for secreted Il-6 using ELISA. ** = p<0.01 
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APPENDIX C 

Effect of TNFα treatment on NFAT-luciferase activity 

 
Effect of TNFα treatment on NFAT-luciferase activity. HRMEC were transfected with either a control 
or NFAT-luciferase reporter construct for 24hrs, after which cells were treated with TNFα (1ng/ml) for 4hrs 
then lysed and assayed for luciferase activity. * = p<0.05 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Control NFAT-Reporter NFAT-Reporter 

R
el

at
iv

e 
Lu

ci
fe

ra
se

 U
ni

ts
 

TNFα-Induced NFAT-Luciferase Activity  

* 

TNFα (1ng/ml)  



 
76 

APPENDIX D 

Effect of pharmacologic NFAT inhibition on high-glucose induced VEGF 
production in Müller cells 

 

 
High glucose induction of VEGF in Müller cells is Ca2+- and CN-dependent. A) 
Treatment of primary human Müller cells with glucose (25mM) for 24hrs induced 
expression of the target genes VEGF, HIF-1a, and COX-2, relative to normal glucose. 
B) This induction was mimicked by increasing intracellular calcium levels with TG 
(100nM) over the same time in normal glucose. C) High glucose treatment for 48hrs 
caused a 2.4-fold increase in secreted VEGF. This induction was eliminated by co-
treatment with FK-506 (1µM). D) Treatment with 100nM thapsigargin for 24hrs caused a 
3.2-fold increase in secreted VEGF. NG = normal glucose; HG = high glucose; TG = 
thapsigargin. * =p<0.05; ** =p<0.01 
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APPENDIX E 

Effect of pharmacologic NFAT inhibition on hypoxia induced VEGF  

 

 
A) Effect of INCA-6 on hypoxia induced Müller cell VEGF. INCA-6 treatment did not 
significantly affect hypoxia induced VEGF production. Each bar represents the mean ± 
SEM (n=9). B) Effect of INCA-6 on retinal VEGF levels in OIR retinas. INCA-6 
treatment did not significantly affect retinal VEGF protein levels following OIR treatment. 
Each bar represents the mean ± SEM (n=9). 
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