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CHAPTER I
INTRODUCTION

Among the algorithmic properties most investigated by algebraists is the problem of when a
given computably axiomatizable class I of first-order structures will have computable first-order
theory too. This problem was investigated for varieties of groups and rings beginning in the 1950s,
with signal contributions from Tarski and his students in the USA ([TMR53], [Szm55]) and from
the Russian school of Luzin, Ershov et al. ([Mal65], [Ers72], [Zam76], [Zam?78]).

For many but not all interesting classes K, it was shown that not only is Th (K) undecidable,
but Th (Kgy,) will frequently be so as well, where g, denotes the class of all finite structures in .
We will say that K is (finitely) decidable if Th (KC) (resp. Th (Kgy)) is a computable set of sentences.

For example, any variety of groups has decidable theory iff it contains only abelian groups (as
is showed in [Szmb5] and [Zam78]). Szmielew actually showed more: the theory of abelian groups
has effective A-elimination for a nice class A of definable properties, most of which are trivial in
the case of finite groups; one can use this to show without too much difficulty that every prevariety
of finite abelian groups has decidable theory. (For an exposition of this in modern notation, consult
[EFT2].) Together with the famous construction by Olshanskii of a variety of groups whose smallest
nonabelian member is infinite ([Ols91]), shows that a variety can be undecidable and simultaneously
finitely-decidable. (Zamyatin had given an earlier example of this for varieties of rings in [Zam76].)
Kharlampovich and Sapir give a detailed survey of decidability and other algorithmic properties in
varieties (mostly associative and Lie varieties) in [KS95].

We restrict our attention in this paper to varieties of abstract algebras in a finite language. The
natural questions here are: given a computably axiomatizable variety V (in particular, a variety
of the form HSP (A) for some finite algebra A), is Th (V) (resp. Th(Vg,)) a computable set
of sentences? One immediately sees that Th (V) is computably enumerable, so the decidability
problem for V is equivalent to the computable enumerability of the set of sentences refutable in
some member of V; on the other hand, it is also clear that the set of sentences refuted in some
finite member of V is computably enumerable, while the set of sentences true in all these algebras
may not be.

In [MV89], McKenzie and Valeriote showed that locally-finite decidable varieties have a very
restricted structure theory. Such a variety must decompose as the varietal product of a discriminator

variety, a variety of modules, and a strongly-abelian variety. In particular,

Corollary I.1. If V is a locally-finite variety with decidable first-order theory, then every strongly-

solvable congruence of an algebra in V is strongly-abelian.

While the analogues betwen the decidability problem and the finite decidability problem are
strong, not all the necessary conditions for decidability transfer down; Corollary I.1 does, however,

as we will show in this paper (Theorem B).



One of the properties that does not continue to hold is the direct decomposition theorem. In
[Idz97], P. Idziak gave a characterization of finitely-decidable locally-finite varieties with modular
congruence lattices; this characterization essentially gives a recipe for building a variety with no
possible direct decomposition into discriminator and affine varietal factors. One goal of Chapter
VI is to suggest a potential reformulation of the direct product criterion to make it work in the

finitely-decidable setting.

I-A. Results and outline of arguments

Our overall goal in this paper is to generalize as many properties as possible from the theory
of congruence-modular locally-finite finitely-decidable varieties to the non-modular setting. (See

Chapter II for definitions and notations.) The following are our main results:

Theorem A. Let S be a finite, subdirectly-irreducible algebra belonging to a finitely-decidable,
locally-finite variety. Then the strongly-solvable radical Rad,(S) is comparable to every congruence

on S, and s either Tg or meet-irreducible with boolean-type upper cover.

Theorem B. If A is a finite algebra in a locally-finite, finitely-decidable variety, then every

strongly-solvable congruence of A is strongly-abelian.

Theorem C. IfV is a finitely-generated, finitely-decidable variety, then V has a finite residual

bound. In particular, every algebra in V is residually finite.

Theorem D. Let A be an algebra in a finitely-decidable variety. Let o > 1 4 be the strongly-
solvable radical of A, and let
tV:ClXCQX"‘XCK—)CO

be a o-sorted term operation of A. Then the essential arity of t is no greater than the mazimal

arity of a o-sorted decomposition term on Cy.

(See Definition II.14 for the meaning of o-sorted map.)

The plan of attack is as follows: We prove Theorem A in Chapter III. Then in Chapter
IV, we employ three semantic interpretation constructions of increasing length and complexity to
prove Theorem B. (This chapter makes the most difficult reading of the dissertation.) Chapter
V culminates in the proof of Theorem C, in which I employ some old methods from the study of
congruence-modular varieties and correct a mistake in a paper of McKenzie and Snow.

After this, we veer off into the territory of multi-sorted structures: Chapter VI defines two
constructions which take an ordinary single-sorted algebra, especially one which looks like a good
candidate for generating a finitely-decidable variety, and return a multi-sorted algebra which better
controls the propagation of nonabelian behavior in the variety this algebra generates. Lastly,
in Chapter VII, we use the more complicated of these constructions to generalize a theorem of
Valeriote. The original theorem provided an obstruction to finite decidability for strongly-abelian

varieties based on bounding the arities of term operations; the use of multi-sorted structures allows



us to remove the hypothesis of strong abelianness (at the cost of making the statement of the

theorem more opaque).



CHAPTER II
DEFINITIONS AND LOGICAL PRELIMINARIES

All numbered environments, such as theorems, definitions, etc will be numbered in a single
sequence within their respective chapters. The end of a proof will be marked with a box as usual,

the end of a claim will be marked with a numbered turnstile.

II-A. Algebraic basics

Throughout the paper, an algebra will be a structure in a first-order language with only operation
(and constant) symbols. We denote algebras in bold face A, and their underlying sets in lightface
A. 14 and T4 denote respectively the discrete and total equivalence relations on A, which are
congruences of every algebraic structure on A.

As usual, a congruence of an algebra A is an equivalence relation preserved by all basic op-
erations of A. The lattice of congruences of A will be denoted Con(A). If Con(A) has a least
nontrivial congruence u, we call A subdirectly-irreducible and p its monolith. More generally, min-
imal nontrivial congruences are called atoms.

A polynomial operation is a function
tA
Tlyeoo T > T (X1, 0o Thy Qg 1y -+ 5 Q)

for some L-term ¢t and some elements a; € A. The set of all polynomial operations of k£ or fewer
variables is denoted Poli(A). Unless otherwise specified, all first-order languages in this paper
have only finitely many basic symbols, all of which are operations (or constants). (An important
exception to this rule is the non-indexed algebras described on page 9.)

A class V of algebras is said to be residually k if for each A € V and each a # b € A there exists
a homomorphism from A onto a some algebra B with |B| < k, separating a from b. “Residually
w” is usually called “residually finite”. A residual bound for V is any cardinal x such that V is

residually k. If every finitely generated A € V is finite, we say V is locally-finite.

1I-B. First-order properties and theories

If A a structure in the first-order language L, the theory Th(A) of A is the set of all £-sentences
true in A. If K is a class of L-structures, Th (K) is the set of all sentences true in all members of
K. We write Kgy for the class of all finite members of K and Thg, (K) for Th (Kgy).

A class K of L-algebras is a variety if it is axiomatized by some set of equations, that is, sentences

of the form
Vi t1 (V) = t2(V)

for some terms of the language. Equivalently, and more usefully for us, K is a variety iff it is closed



under taking direct products, subalgebras, and surjective homomorphic images. (Cf [MMTS87],
[BS81].) For a given algebra A (resp. class K of algebras) we denote the smallest variety containing
it by HSP (A) (resp. HSP (K)). A basic theorem originally due to Birkhoff asserts that if V is a
variety and x any cardinal, then V contains a free algebra on k generators. If k < w, elements of

this algebra are in canonical bijection (up to Th (V)-equivalence) with £-terms in x variables.

11-C. The decidability and finite decidability problems

For a given finite structure A, it is a trivial matter to determine whether a given first-order sentence
holds in A; the same is not true for the problem of determining whether that same sentence holds

throughout some variety containing A, such as HSP (A).
Fact II.1. Let A be any finite algebra, V = HSP (A).

1 V is locally-finite and computably axiomatizable; it follows that Th (V) is computably enu-

merable. We will say that V is decidable if this set of sentences is computable.

2 The complement of Thgy(V), the set of all sentences falsified in some finite member of V,
is computably enumerable. We will say that V is finitely-decidable if this set of sentences is

computable.

There do exist finite algebras A such that HSP (A) is undecidable and/or finitely undecidable.
For example, by [Zam78], any non-abelian finite group generates an undecidable variety; for many
other instances of undecidable and/or finitely undecidable varieties, see [Mal65], [Ers72|, [Zam76],
[Idz86], [MV89], [1188], [Idz89a], [Idz89b], and [Jeo99].

As the alert reader has seen in Fact II.1, there is a fundamental asymmetry between decidability
and finite decidability, as in the one case it is the set of provable sentences which is easily shown to
be enumerable, while in the other it is the refutable sentences. This asymmetry is not just apparent:
the two properties are in fact completely independent. Specific examples of the four possibilities
are given in [Szmb55], [I188], [Ols91], and [Je0o99].

The principal tool this investigation will employ in establishing undecidability is the method of
interpretation. The reader is referred to standard texts [Hod93, Chapter 5], [BS81, Section V.5],

for full details; our conventions will be as follows:

Definition II.2. Let Ly be a single- or multi-sorted first-order language, with sort symbols
81,...,5¢, function symbols fi(v1,...,va(s,)), and predicate symbols 7;(v1,. .., Var(r,))- An in-
terpretation of the structure

M= (sM sV MM

% %

into the structure N (of a possibly different language L;) will mean a family of definable subsets
of N which jointly produce an isomorphic copy of M. (We allow finitely many parameters from N

in the definitions.) More precisely, the interpretation consists of Lj-formulas



e WHO;(v) for each sort symbol s;;

e EQ(v1,v2)

e Fi(vo,v1,...,vary,) for each f;;

® Ri(v1,...,Var(yy)) for each r;;
such that

e the extensions of the WHO; in N are nonempty and disjoint;

e EQ(z,y) holds only if WHO;(z) A WHO;(y) holds for some 1 < i < m, and on each WHO;,

the formula defines an equivalence relation =;

e for all function symbols f with type signature

f(Sil, .. 7Siar(f)) — Sy,
corresponding to the formula F(vp, ... s Var(f))s

— if N | F(xg, 1, ... ,l’ar(f)) then WHO,, (), .. . 7WHOiar(f) ({Ear(f));

— for all 2y € WHOy; (N),..., Za(p) € WHOiMU)(N) there exist elements z} ~ z1, ...,
Tap(p) ® Tar(f) and zg so that N = F(zo, 21, ..., 25,)); and

— if

N = F(20,21, -, Tar(y))
N = F(y0. Y1s- - - Yar(f))

and
T1 R YLy -5 Zar(f) = Yar(f)
then zg ~ o,
inducing an operation WHO(f) on the indicated =-classes;

e for all predicate symbols r with type signature

7(Siqy- -, Siar(r))

corresponding to the formula R(vy, ... 7Uar(r))7
N |= R(x1, ..., Zar(r))

only if
N ’: WHO;, (z1) A--- A WHOiar(r) (xar(r))



inducing the quotient predicate
WHO(r)(21/ =,y Tan(r)/ R) = 3] R @1, B R Tar(ry R(TY, - T )

on ~-classes;

(sM s M ML) 2 (WHO,/ &, ..., WHO,/ &~ WHO(f,), ..., WHO(ry), .....)

Frequently the equivalence relation EQ will be true equality, in which case we will not mention

it explicitly.

Observe that if an undecidable class Gg, of finite structures interprets into Kg, as above, then
not only K but every class K’ D K of structures in the language is finitely undecidable as well: we
say that IC is hereditarily finitely undecidable.

The classes we will be interpreting will be the class of graphs and the class £, defined below.
For this investigation, a graph is a first-order structure G = (V; E), where E® is a symmetric,
irreflexive binary relation. We will not enforce the distinction between an ordered edge (x,y) and
an unordered edge {x,y} for symmetric graphs. (It follows from our definition that graphs in our
sense do not possess multiple edges between a single pair of vertices.) It was shown by Ershov and
Rabin in the 1960s that graphs are both undecidable and finitely undecidable.

&, is the class of structures E = (I; Ro, R1) where each R; is a binary predicate symbol whose
interpretation in the structure is an equivalence relation on I, such that ROE NRE = 1;. We will
sometimes refer to Th (&) as the theory of two disjoint equivalence relations. [BS81, Corollary
5.16] shows that the theory of this class is undecidable and finitely undecidable.

(In fact, it can be shown that for each of the above classes, Th (K) is computably inseparable

from the set of sentences finitely refutable in IC; but we will not need this stronger property.)

II-D. Abelian algebras, solvability, and TCT

Modern investigations in universal algebra are greatly aided by the linked toolboxes of the theory
of solvable and strongly-solvable algebras and congruences (see for example [FM87]) and the “tame
congruence theory” developed by McKenzie and Hobby in [HMS88].

Let A be any algebra, and «, 3,y be congruences (or more generally, any binary relations) on

A. A is said to satisfy the term condition C(a, ;) if the implication

—

t(c_ﬁ, bl) E,y t(al, 52)
)
t(c_ig, 51) E,y t(ag, 52)



is valid for all terms ¢ and all tuples @ =, @ and by =3 by. If R,.S C A, then we will write
C(R, S;v) when we mean C(R?,5%;7). If v < 8 € Con(A) and C(3,3;7), then we say that 3 is
abelian over ~y. If C(B, B; L4) then we say that § is an abelian congruence. If C(T 4, T 4; L 4) then
we say that A is an abelian algebra.

We can always transform a failure

of C(«, ;) into one

s(af, b)) = s(aj, by)
but (I1.2.1)
s(ab, by) # s(ay, By)

where a-shifting occurs in only one variable. The same is not true in general for the g-shifted
variables; however, this is possible in the special case where all the elements in 51, 52 are taken
from some U C A such that every operation on U is realized by a polynomial of A. We leave the
verification of this to the reader.

Another asymmetry between the roles played by the first two variables of the term condition has
to do with congruence generation. If R is a binary relation on A, then C(R, ;) holds iff C(p, 8;7)
does, where p is the least congruence of A identifying all the pairs in R U~. By comparison,
C(a, R;7) holds iff C(c, S;7), where S is the reflexive, symmetric subalgebra of A? generated by
R.

If v < 8 € Con(A), we say that [ satisfies the strong term condition over 7, or that f is

strongly-abelian over ~, if for all terms ¢ and tuples a1 =g do, 51 =3 gg =3 53,

t(CTl, 51) =~ t(d% 52)
U
t(c_il, 53) =~ t(a% 53)

If C(B, B;7), this condition is equivalent to the apparently weaker condition
ay =3 as & 51 =3 52 & t((_il, 51) =y t((_ig, 52) = Vi,) t(&l, 61) =y t(_'i, EJ)

which is easier to use.

If A is a locally-finite algebra and a~ < at € Con(A), we say that a™ is (strongly) solvable



over o if every chain of congruences

" =By <P < < Bmo1<Bm=ar

admits a refinement

am =0 <N< < Ya1 <m=ar

such that each 7,11 is (strongly) abelian over ~;.

Let A be an algebra. For any subset W C A, the non-indexed algebra Ay induced by A on
W is defined to have underlying set W, and a basic operation f(v1,...,t;) for each polynomial
f € Poli(A) such that f(W*) ¢ W. We do not usually wish to specify any more parsimonious
signature for an induced algebra; even if the signature of A was finite, Ay, is not in general
representable as a first-order structure in any finite language.

If A is a finite algebra and and o < 8 in Con(A) (that is, 5 is an upper cover of « in the
order-theoretic sense), an (a, 3)-minimal set U C A is an inclusion-minimal polynomial image
e(A) of the algebra, where e € Pol;(A) is required to be idempotent (e o e = €) and to preserve
the a-inequivalence of some pair (a,b) € 3\ a. Clearly, every («, ) minimal set has at least two
elements. If U is (o, 3)-minimal, a f|;-class which properly contains two or more ay-classes is
called a trace. The union of the traces included in U is called the body of U; the remainder is called
the tail.

Theorem I1.3 (Fundamental Theorem of Tame Congruence Theory, [HM88, Theorem 2.8, Theo-
rem 4.7, Lemma 4.8]). Let A be a finite algebra with congruences o < 3.

(1) All (a, B)-minimal sets Uy, Us are polynomially isomorphic, in the sense that there exists

f € Poli(A) which maps Uy bijectively to Uy in such a way that every induced operation
lo € U2U 5

in the signature of Ay, is the f-image of an operation
t € UlU '

in the signature of Ay, .

(2) Let N C U be any trace in an (o, B)-minimal set. If A|n/ayy is isomorphic to the two-
element boolean algebra, the two-element lattice, or the two-element semilattice, then we say

3 4
that the covering is of (respectively) boolean type (o < ), lattice type (o < 3), or semilattice
5
type (o < ). (This is well-defined by (1).)

(3) If none of these possibilities occur, then A|y /oy is an abelian algebra, and is either isomor-

2
phic to a finite module over some ring, in which case the cover is of affine type (o < ); or



1
isomorphic to a finite G-set for some finite group G (unary type, o« < 3). In the former case,

B is abelian over a but not strongly-abelian; in the latter, B is strongly-abelian over .

We will write typ {A} C {1,2,3,4,5} for the set of tame congruence types which appear in
Con(A).
Let i # j be tame congruence types. We will say that the algebra A satisfies the (i, j)-transfer

principle if, for all covering chains

there exists

and likewise

Fact I1.4. Let V be a finitely-decidable variety.
(1) V omits the lattice and semilattice tame congruence types.
(2) The (1,2), (2,1), (3,1), and (3,2) transfer principles hold throughout V; in particular,

(3) If S € Vis a finite subdirectly-irreducible algebra with boolean-type monolith, then typ {S} =
{3}. If the monolith is affine, then typ{S} C {2,3}, and if the monolith is unary, then

typ {S} C {1,3}.

2,3
(4) If A € V and a < f, then all (o, §)-minimal sets have no tail. In the boolean case, this
means that each minimal set contains just two elements, and every possible operation from

this set to itself is realized by a polynomial of the algebra.

Proof. (1) is proved in [HM88, Theorem 11.1]; it is a consequence of the fact that (finite) graphs
interpret semantically into each of
HSP ({{0,1}; 1))

and
HSP (({0,1}; A, V)

(2) is proved in [VWO92] and [Val94]; (3) follows immediately. (4) is also proved in [VW92]. O

It follows by [HM88, Theorem 8.5] that any locally-finite, finitely-decidable variety omitting the
unary type is congruence-modular.

The following fact will be of use later in the paper:
Theorem II.5 ([HM88, Chapter 7]). Let A be any finite algebra.

(1) Each of the relations

a X <= a is connected to B via covers of type 1

10



and

a B < ais connected to B via covers of types 1 and 2
is a lattice congruence of Con(A).

(2) If « < B and v € Con(A) is any other congruence, and if the interval from « to B contains
only covers of type 1, then the same is true for each of the intervals yAa < yAB, yVa < yVE.

It follows that for every finite algebra A, the sets of congruences ~S-equivalent (resp. -
equivalent) to L 4 have largest elements, which we call the strongly-solvable radical Rad, (A) and
solvable radical Rad(A) of A.

II-E. Powers and subpowers

If A is an algebra and I is an index set, the direct power A! has its expected meaning. Elements

of this power will be denoted in one of two ways:

X = <1’i>z‘el

X =q, S b\ll 2] Clelse

where Iy and I; (and any other sets which appear) are of course understood to be disjoint subsets
of I.
A subalgebra
B <A!

is a subpower of A. A subpower is subdirect if, for each 7 € I and each a € A there is some x € B
with 2° = a, and diagonal if, for each a € A, the point a = a|; belongs to B.

If B < A, then every congruence of A’ restricts to a congruence of B; when no confusion can
result, we will let it be clear from context whether we are referring to o € Con(A') or a € Con(B).
We allow the same abuse of language for other subsets of B.

If A is an algebra, U C A, and B < A, we will frequently be interested in subsets of the form

U N B. If the meaning is clear from context, we will usually abbreviate this to U’.

Proposition I1.6. Let A be any algebra, and let e € Poly(A) be idempotent (that is, eoe = e).
Then if U = e(A), and if B < A is any diagonal subpower of A, then U' N B is an A-definable
subset of B.

I

Proof. Since B contains the diagonal, the function e = e’ is realized as a polynomial of B. U/ N B

is the set of fixed points of this polynomial. O

Indeed, for any such diagonal subpower and for each k, the map

Pol (A) — Pol,(B)

f(vl,...,fk):t(vl,...,vk,al,...,ag)»—>t(v1,...,vk,a1,...,ag):fI

11



is an embedding (of clones), which we will make continual use of.

Lemma I1.7. Let A;, 1 < i < p be finite algebras with trivial strongly-solvable radical. Then every
i

has trivial strongly-solvable radical.

1
Proof. We show the contrapositive: suppose that Lp < « is an atom of Con(B). Then there is
some projection congruence n; such that a\VV7n; > n;. By Theorem IL.5, since Lp % a, ) Xav IR

it follows that the strongly-solvable radical of A; sits above oV ;. O

If Ay,..., A, B are as in the previous Lemma, and all belong to some finitely-decidable variety,
then we can conclude (via the transfer principles) that in fact B has no unary-type covers anywhere
in its congruence lattice. This remains true if we introduce finitely many constant symbols in such
a way that each element of each A; is named by at least one constant symbol; call these expansions
(A;; 4;). Lemma IL.7 implies that HSP ({(A;; A;)}?_;) is modular (since all minimal sets will have
empty tails), and so has Day (or Gumm) terms.

In particular, if we are considering a fixed finite B < [, A;, we may introduce constant symbols
for each element of B and interpret them in the A; via their coordinate projections. Then (B; B)
has Day terms, which become Day polynomials when we reduct back out to the original language.
It follows that all the nice properties of congruence-modular varieties, such as most of the theory
of commutators, hold for B.

It is an open problem whether the finite decidability of
HSP (A4,...,A))
implies the finite decidability of
HSP ((A1; A1), ..., (Ap Ap))
The best we can say is that the latter variety must be w-structured, in the sense of [MV89].

II-F. Multi-sorted structures

In the latter portion of the paper, we will begin to deal with multi-sorted algebras. The following

definitions will be of use there:

Definition II.8. Let
Xy x XoX--x X, by

be a function. We say that f depends essentially on its i*" variable if there exist a # a’ € X; and
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bj € Xj (j #1i) so that
f(bl,bg,...,bi_l,a,bi+1,...,bn) 75f(bl,bg,...,bi_l,a/,bi+1,...,bn)

(Clearly, if f depends on its i*® variable, it follows that |X;| > 1.)

In particular, if f is a term of the (ordinary first-order) algebra A, unless otherwise specified
each X; is A; if M is a multi-sorted algebra, the default assumption is that each X; is the entire

sort associated to the corresponding input variable of f.

Definition I1.9. Let A be a finite set. We say that the operation d(v1,...,vk) is a decomposition

operation on A if
e d(A,...,A) C A
e the action of d on A depends on all its variables;
e d(z,...,x) =z for all x € A; and

d(d(l‘l,l, v ,1‘17K),d($271, v ,1‘2yK), e ,d(.%'K71, e ,a;KK))
= (11.9.1)

d(z11,222,. .., K K)

for all z; ; € A.

Typically, we will have in mind an algebraic structure on A or perhaps on some superset of A.
If the operation d is a term operation (resp. polynomial operation) of the structure A, we will call

it a decomposition term (resp. decomposition polynomial).

Proposition I1.10 ([MV89, Lemma 11.3]). If A is a strongly-abelian algebra having an idempotent
term t(vy,...,vK) depending essentially on all its variables, then A has a decomposition term of

arity K.

It follows that in such an algebra, if ¢ is a term which depends on all its variables and such that
t(z,x,...,x) is a permutation, then there is a decomposition term of the same arity as t.

Decomposition operators have a nice description in the case where A is strongly-abelian:

Proposition I1.11 ([MV89, Lemma 11.4]). If A is a finite strongly-abelian algebra and K the
largest arity of a decomposition term d on A, then there exist finite sets A1, ..., Ax and an iso-

morphism ¢ from A to a structure B with underlying set A1 x --- X A such that, if we denote
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then

ar a; ax ay

2 2 1 2

al a/2 GK a2
Blp(ar) pla), . pla) =¢ |ad | 2 TE ]| =

In [MV89, Theorem 11.9], McKenzie and Valeriote showed that

Theorem 11.12. If A is strongly-abelian and K the largest arity of a decomposition term over A,
then any other term’s depending on more than K variables implies that Th (V) and Thay(V) are

undecidable for any variety V containing A.

Our goal is to generalize this result to algebras A which are not themselves strongly-abelian,

but do contain nontrivial strongly-abelian congruences.

Proposition I1.13. Let A be a finite algebra with a strongly-abelian congruence 7. Let C C A be

any T-class; then the non-indexed algebra
A|C’ = <C7 {f\C: f € POl(A)v f(C,C, v 70) - C}>

1s strongly-abelian.

It would be natural to search for a generalization of Theorem II.12 by looking at polynomials
which restrict to decomposition operations on 7-classes; however, we found this approach to have

attendant difficulties. Instead, we make the following definition:

Definition II.14. Let A be an algebra with a congruence «, let ¢(v1,..., v, Vp1, ..., Vsrm) be a
term, and let Cy, C1, ..., Cyrym be a-blocks such that ¢(Cy, ..., Cpip) € Cp and the action of ¢ on
the rectangle C} x - - - X Cyy,, depends only on some subset of the first ¢ variables. We will call the
restriction of ¢ to the rectangle C; x --- x Cp an “a-sorted term operation”, and use a symbol ¢ for
such a restricted operation. (Formally, we should specify what subset of the variables of ¢ we are

selecting as the domain of £, but this will be clear from context.)
In the course of proving Theorem D, we will need the following definitions:
Definition II.15. Let A be any algebra.

(1) We say that a term t(v1, . . ., vy,) is left-invertible at v; if there exists a term r(vg, Vp41, - - - 5 Untk)
such that

AEv=r{tv,. . ,0),Unt1s---,Vk)

(2) Likewise we call t(v1,...,v,) right-invertible if there exist terms s;(vo,...,v¢), 1 < i < n,
such that
A ): t(Sl(UQ, .o ,Ug), “ee ,Sn(vo, .. .,U@)) =9
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CHAPTER III
CONGRUENCE GEOMETRY OF THE STRONGLY-SOLVABLE RADICAL
Our goal in this section will be the proof of Theorem A.

I11-A. Coherence

Before we get directly to matters of decidability, we will need some preliminary technical material

of general algebraic interest.

Lemma III.1. Let S be a subdirectly-irreducible algebra in a finitely-decidable variety with unary-
type monolith . Then the centralizer of p, the greatest congruence ¢ such that C((,u; L), is

strongly-solvable.

Proof. This is proved in [IV01, Theorem 4]. O
1
Lemma IIL.2. Let A be a finite algebra with L4 <&, and let U be (L, 6)-minimal.

(1) If Dy,..., Dy are d-classes, then every mapping
fiDyx---xDyp—=U

(where f € Polp(A)) depends on no more than one of its variables.

(2) (Maroti’s Lemma) If 6 < 8 in Con(A) and C(83,6; L), and By, ..., By are -classes, then
for every mapping
f:ByxByx---xBp—>U

(where f € Polp(A)) there exists 1 < j < k so that

—

T=5y and xj = y; = f(Z) = f(¥)

Proof. The second statement is Lemma 7.2 of [IMV09]; the first statement is a special case of the
second (or can be proved independently, as in [HM88, Theorem 5.6]). ]

Definition III.3 ([Kea93, Definition 4.1]). Let a < 3 be a congruence cover of the finite algebra
A, and let v € Con(A). Let T denote the set of all («, 3)-traces in A. We say that (a, ) is

~v-coherent if

& C(v.Bnia) = C(v,B;0)

NeT

If @« = L then we will say that 8 is 7-coherent. Note, that since all («, §)-traces are polynomially
isomorphic, C(7, B5; @) holds for all N € T'iff it holds for any such N.
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1 3
Lemma II1.4. Let A be any finite algebra with congruences 1. < § and o < B, such that f =
Cg((0,1)) for some (hence any) («, B)-trace {0,1}. Assume further that =C(j3,d; L). Then there

exists a polynomial p(x,y) = p(z,p(z,y)) taking values in some (L, d)-minimal set U, so that
(1) If 6 is B-coherent, then p(0,y) collapses traces to points and p(1,u) = u for allu € U;

(2) If 0 is (B-incoherent, then p(0,u) = u = p(1,u) for all u € U, but for some ¢ € U, ¢ =5 d,
d¢ U,

p(o, C) = p(()? d)
but

p(L,c) #p(1,d)
witnesses the failure of centralization.

Proof. Suppose first that § is S-coherent. Then for some (L, d)-trace N included in some minimal
set U, we have ~C(3, N; L). Since 3 is generated by {0,1}, C({0,1}, N; L) must already be false.

Choose a witnessing package

—

t(0,¢) = t(0,d)
but
H1,8) £ 1(1,d)

where we may choose t so that its range lies entirely in U. The polynomial mapping (1, ¥) is essen-
tially unary as a mapping from N into U; say it depends on y1, and let p(z,y) = t(z,y, ¢z, c3, . .. ).
Then p(1,¢1) = (1,8 # t(1,d) = p(1,d1) while p(0,¢1) = p(0,d;). Iterating p in the second
variable if necessary, we get a polynomial satisfying the Lemma.

The other case requires a bit more work.

Assume now that for all traces NV, we have C(8, N; L). As in the first case, =C([3,; L) implies

that =C({0, 1}, d; L) already. Take a witnessing package

-

t(0,¢) = t(0,d)
but
t(1,8) # t(1,d)
where we may assume that the image of ¢ is contained in some (L, d)-minimal set Uy. The map
t(0,%) : 1/ x ¢2/d x --- — Uy depends only one one variable, say y,, and likewise £(1,%) on yy, .
Claim II1.4.1. ky = k1

Suppose the Claim were false. Let q(z,y) = t(x,c1,...,Cky—1,Y, Cky+1,---)- Then q(0,cx,) =
q(0,y) for all y =5 1.
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Now, since ¢, =5 dy,, there exists a sequence
Cky = Q0,Aa1,-..,0p = dk1 (HI.4.2)

where each pair {a;, a;+1} belong to a (L, d)-trace N; (i < £) included in a minimal set U; = e;(A).
Since ¢(1,ap) # q(1, ar), there must exist some ¢ < ¢ such that ¢(1,a;) # ¢(1,a,+1). But we have
already seen that ¢(0,a;) = ¢(0, a;+1), contradicting C({0,1},d|y,; L). This proves the Claim, and
we may set k := kg = k. —11r4.1
Let ag, a1, ..., ap be the sequence defined in (I11.4.2); our assumption that {0, 1} centralizes NV;
means that for each i < ¢, ¢(0,y) is injective on N; iff p(1,y) is.
Let i be the first index for which ¢(1,a;) # ¢(1,a;+1); then

Q(Ov dk) = Q(Ov Ck) = Q(O> aO) = Q(Oa al) == q(0>ai)
but
Q(lvdk) a Q(lack) = Q(lvao) = Q(laal) == Q(Lai)

Then with ¢ = a;, d = d, U = U;, and p(vp,v1) equalling an iterate of e; o g(vp,v1) such that
p(z,p(z,y)) = p(z,y) for all x,y € A, the conclusions of the lemma are satisfied. O

1 3
Lemma IIL.5. If 1o <6, a < 3, K ={0,1}, and U are as in the statement of Lemma II1.4, and
N C U is a trace, then at least one of C(K,N; L) and C(N, K; L) must fail. In both cases, the

failure is witnessed by a binary polynomial which takes K x N into U.

Proof. In the case where ¢ is S-coherent, the polynomial p found in that Lemma witnesses =C(K, N; L1).
So let C(3,N; L) for all (L, d)-traces N, and fix witnesses

¢ =p(0,c) = p(0,d)
but

c= p(l,C) 7& p(l, d)

where ¢ € U, ¢ =5 d ¢ U, and the range of p is contained in U. We aim to show that C(N, K; 1)
fails, and that its failure is witnessed by a binary polynomial of the claimed kind.
Let

CZaOaala"'aaf—laaé:d

be a walk from ¢ to d through traces (see the discussion following Equation (III.4.2)). Since

p(0,a;) =5 p(0,a0) = ¢ = p(1,a0) =5 p(1, a;)
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for all i < ¢, we know that p(K,c/d) C N. Now let {a;,aj+1} C N; be the first step where

p(0,a;) = p(1,q )
but

p(()’ aj-‘rl) 7é p<17 aj—f—l)

By hypothesis, j > 0. It follows that at least one, and hence both, of p(0,y) and p(1,y) are
polynomial isomorphisms from N; to N. Let ¢ € Pol;(A) be the inverse isomorphism to p(0,y),

where ¢(a) = a; and ¢(a’) = aj41. Then

p(0,q(a)) = p(0,a;) = p(1,a;) = p(1,q(a))
but

p(0,q(a’)) = p(0,a;41) # p(1,a541) = p(1,4(a"))

so that p(z,¢(y)) witnesses ~C(N, K; L) as required. O

II1-B. Proof of Theorem A

1 3
Lemma IIL.6. Let A be a finite algebra, L < 0 and o < [, and let K = {0,1} be (o, 5)-
minimal, where = Cg((0,1)). If ~C(K,d; L) and C(J, K; L), then HSP (A) is hereditarily finitely

undecidable.

In other words, the centralizer of a boolean neighborhood must be disjoint from any of the
unary-type atoms (or at least those which that neighborhood does not itself centralize), if A is to

live in a finitely-decidable variety.

Proof. Fix a (L, p)-minimal set U. By Lemma IIL5, for any (L,d)-trace N C U, at least one
of C(K,N; 1) or C(N,K; 1) must fail. But if =C(N, K; L) then —C(d, K; L), contrary to the
assumptions of the Lemma.

Hence —C(K, N; L). Choose a witnessing package

Q(Oa C) = Q(O? d)
but

q(1,¢) # q(1,d)

Without loss of generality, we can assume that ¢(1,u) = u for all u € U.
Our plan is to semantically interpret the class of graphs with at least three vertices into diagonal
subpowers of S. So let G = (V, E) be such a graph, and let I = V x {+,—} = V*. Define
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D = D(G) < A' to be generated by the diagonal together with the points

Xg = 1\{1)*,1}*} @ 0|else (all v € V)
Xg = d|{v+,w+} D Clelse (all e= <v,u)> S E)

X+ = dy+ @ ¢y -

Let ¥” and x° enumerate the respective sets of generators.

Observe that there cannot be any nonconstant polynomial map from N to {0, 1}. This implies
that D N {0,1}! consists of all points which are constant on each set {v*,v~}; in other words,
D (9,131 is canonically isomorphic to the boolean algebra 2", This subset is definable (Proposition
I1.6), as is its set of atoms {Xﬁ : v € V'}; by abuse of language, we will allow ourselves to quantify

over these atoms by saying things like “there exists a vertex XE .

Claim III1.6.1. The set of those x € D of the form d|{w1+ wi} @ Celse for two distinct vertices

wy,wy € V is definable (using the parameter X€/+)-

It is sufficient to show that for x € U/ N D, x = dl{wiw;} & Clelse 1E

0 (0, + %) = a (X, + X ) (IIL.6.2)
and
q ((Xﬁl + X X) =q ((Xﬁ1 + X, c) (I11.6.3)

(where + is boolean join and ’ is boolean complement).

The direction (=) is a straightforward computation. For the reverse direction,
(&S {wii_v w;_} = xi = q(laxi) = Q(L (X(\5/+)Z) =d
from equation (I11.6.2), and similarly
icfu,wy} = 2'=q(la") =q(1,0q)) = ¢
while equation (II1.6.3) yields
) + o+ i_ iy _ _
Z¢{w17w2} = x —p(l,x)—p(l,c)—c

The proof of the claim is then accomplished by existentially quantifying Xtﬂm , ng. 6.1
. E
Claim II1.6.4. If x = d\{wf,w;} & Clelse € D then wy — wy.

To see this, let x = d|{w1+7w2+} D Clelse = t(x?,x?) € D for some polynomial ¢ € Poljy |1 |z|+1(A).

Without loss of generality, t’s image is contained in U. By inspecting the v~ coordinates, we see
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that for any v € V
t(0,...,0,1,0,...,¢,...,¢) =c¢

(the 1 occurring in the v'" place). Fix any w € V; then

2 =t (@)@

Moreover, since (Y?)?" = (¥?)?" for all v and C(6,{0,1}; L), one has

In other words,

for all ¢ € I.

But as a polynomial on U, t((¥?)”",#) depends only on one variable, say t((x*)*", %) = f(yx),
with y; corresponding to a generator Xi € X% k is either an edge of G or V. Since ¢, d are taken
from the same trace and f does not collapse traces to points, we must have that x = f (Xi) and
ot = 27 iff (x3)" = (x%) for all 4,5 € I; since |[V| > 2 and x has d at only has two coordinates (out
of at least six), k must be the edge (w1, ws). —11L.6.4

We can now complete the semantic interpretation: V is defined as the atoms of {0,1}! N D, and
v -z w iff there exists x as in Claim II1.6.1 such that XE and Xg are the two atoms witnessing the
truth of the formula in that Claim. O

Lemma IIL.7. If S is a finite, subdirectly-irreducible algebra with unary-type monolith, and the
strongly-solvable radical of S is incomparable to some congruence of S, then HSP (S) is hereditarily

finitely undecidable.

Proof. Let S be subdirectly-irreducible, with unary-type monolith y; let 5 be incomparable to the
strongly-solvable radical o. Without loss of generality (see Fact 11.4), typ {S} = {1,3}, and some
lower cover of 3 is (strictly) below . Choose 5 A o L a<o;clearly BAoc=aA B =:af i 8.
Choose an (af3, 8)-minimal set, which we may take without loss of generality to be polynomially
isomorphic to the two-element boolean algebra {0,1}; similarly without loss of generality, f =
Cg((0,1)); also choose a (af, a)-minimal set U containing elements ¢ =,\qg d.
Now, by Lemma III.1, the centralizer of p is solvable; hence =C({0, 1}, u; L). By Lemma IIL.6,

we may assume that the centralizer of {0, 1} is the trivial congruence: for any a; # a2 in S, there
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exists a polynomial ¢(z, 7) and tuples by, b1 from {0,1} so that

t(a1,bo) = t(a1,b1)
but
t(az, bo) # t(az, b1)

Since Sjfo,1) is a boolean algebra, the discussion after equation (I1.2.1) shows that we can transform

this package into one using a binary polynomial:

s(a1,0) = s(a1, 1)
but
s(ag,0) # s(ag,1)

witnessing that {aj, as} does not centralize {0, 1}.

Our strategy is to interpret the class of graphs with at least five vertices into HSP (S), so let
G = (I, E) be any graph. Define D = D(G) < S’ to be the subalgebra generated by the constants
together with all points

Xf = 1|7, D 0|else (2 € I)
and
Xe = dyij) ©Cese  (e=1{i,j} € E)

By the usual arguments, {0, 1}/ C D is a definable subset, as is the set of its atoms.

Let Xf be any atom in {0,1}!. Let y, z be any elements of D. Then

p(0,y) = p(x.y)

v

p(0,2) = p(x!, 2)

for all p € Poly(S) if and only if y* and 2* are congruent modulo the centralizer of {0, 1}, i.e. are
equal. But S only has finitely many binary polynomial operations; hence the above condition is a

first-order property ‘I’(Xf ,¥,%): we have proved
Claim IIL7.1. If s€ S, i € I, y € D then ' = s iff ®(x7,y, s).

Or in plainer English: D knows its own product structure. 171
In particular: the set of those x € U/ N D of the form di{ig,ir} © Cletse for precisely two vertices

10,71, is a definable subset. The generators x& belong to this set.
Claim TIL7.2. If ig # i1 and x = dj(jo i1} © Clese € D then ig 1.

So let
X = d|{io,i1} @ Clelse = f()zﬁv )Za)
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belong to D, where f € Polj;;g((S) takes values in U and X, X7 enumerate the two sets of
generators.

Let 5 € I be any vertex. Then
= 1 (@Y, &) =6 £ (@) @) =Za £ (@0, 7)) = o =4 of

Hence
x =g f (7))

But considered as a mapping from a-classes into U, f((x?)%,#) depends modulo o3 on no more
than one of the edge-variables, say f((x¥?)%, ) = g(ve) for some e = {jo, 71} € F; since x is not
constant modulo a8, g cannot collapse traces to points, implying that x = g(xg ) has the same
af-equivalence pattern as x&. The two equal coordinates of x must match two equal coordinates
of x% such that all other coordinates have a different value; since |V| > 4, the only set of such
coordinates is {jo, j1}; but this implies x = x&, as desired. 11172

We have shown that we can definably recover the edge relation of G on a definable set in
bijection with the vertex set of G. O

The investigations of congruence modular finitely-decidable varieties identified quite early how
constrained the congruence geometry of such varieties must be. In particular, it was discovered
that the congruences above the solvable radical of a subdirectly-irreducible algebra in such a variety

were forced to be linearly ordered. Lemma III.7 allows us to remove the hypothesis of modularity:

Lemma ITI.8. Let S be a finite subdirectly-irreducible algebra with unary-type monolith. If the con-
gruence interval above the solvable radical of S is not linearly ordered, then HSP (S) is hereditarily

finitely undecidable.

Proof. Due to the transfer prinicples (see Fact I1.4), we already know that typ {S} C {1, 3}; without
loss of generality, the solvable radical Rad(S) < T g and every cover above Rad(S) has boolean type.
If Rad(S) were to have just one upper cover, then S/Rad(S) would be subdirectly-irreducible with
boolean monolith; Idziak’s characterization ([Idz97]) implies then the whole interval [Rad(S), T]
would be a chain. Hence it suffices to show that the radical having at least two upper covers ag, g
leads to a contradiction.

Theorem II1.7 implies that every subcover of Rad(S) is meet-irreducible, so without loss of
generality (by passing to a quotient by such a subcover) we may assume that L i Rad(S) =: u.
Let K, = {04, 14} be respectively (u, aq)-minimal sets (a € {0,1}).

We know that —=C(K,, u; L) for a = 0, 1, since each of these sets generate a congruence above

the centralizer of . By Lemma II1.6, we may also assume that =C(u, K4; L). Let

po(c, 00) = polc, 1p)
but

po(d,00) # po(d, 1o)
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witness this latter failure. Observe that po(d,00) =, po(d,1p); hence there exists ¢ € Pol;(S)
taking Ky injectively into some (L, pu)-trace N. Since u = Cgg({q(09),q(1p))), we must have
-C({q(00),q(10)}, Ki1; L). Choose a witnessing package

P1(q(00),01) = p1(q(00), 11)
but

p1(q(1o0),01) # p1(q(lo), 11)

Our strategy is to interpret the undecidable class & (see page 7) into the diagonal subpowers of
S. So let E = (I; Ry, R1) = &, and define a diagonal subpower D = D(E) < 8! as the subalgebra
consisting of all x € S’ such that x is ap-constant on each block of R; and aq-constant on each
block of Ry. Note that, since 0p, 1y are ag-congruent but not aj, a point x € Ké belongs to
D iff it is constant on each Rg-block. We conclude that Dk, is canonically isomorphic to the
boolean algebra 27 /Ro. the corresponding facts hold mutatis mutandis for K 1[ . Furthermore, these
two subsets are uniformly definable (by Lemma I1.6). Let AT,(v) be a formula asserting that v
is an atom of the boolean algebra D, , and let H be the (definable) set of pairs (y,z) such that
y = lo|p, ® Oojerse is a Ko-atom and z = 115, @ O1jese is & K;-atom.

Now, for each pair (y,z) € H, the blocks coded by the two points are either empty or share one
i € I. Write y > z if the intersection is nonempty. It suffices to show that the relation y i z is
definable. Why is this so? Since Ry N R; is trivial, every ¢ € I corresponds canonically to exactly
one (y;,z;) € H, namely y; = (10)‘2-/]%0 @ (00)|else and z; = (11)|i/R1 o (01)|else' These two points are
p<-related by construction. But if b is definable, the structure E can be recovered on the underlying
set > = {(y;,2;): @ € I} using the first-order theory of D, since (i,j) € Ry (resp R1) iff y; = y;
(resp z; = z;j).

To this end, observe: if (y,z) € H and i € I,

pi(ay’),z") # p1(a(y’),01) <= 2" # 01 and y' # 0g

It follows that

p1(q(y).z) # p1(q(y),01)
()
Pl(Q(yi)Ji) # p1(q(yi),01) for some 1 € 1

)

y' = 1g and 2 = 1, for some i € I

)

y Xz O

Proof of Theorem A. Let S be a finite, subdirectly-irreducible algebra with unary-type monolith,
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and belonging to some finitely-decidable variety V. If Rad,(S) = Tg then we are done. If not,
then Lemma II1.7 tells us that Rad,(S) is comparable to every congruence of S. The transfer
principles tell us that the affine tame-congruence type does not appear in Con(S); since V is
finitely-decidable, it follows that every upper cover of Rad,(S) is of the boolean type. Lemma III.8
now implies that the radical has only one upper cover. Since S/Rad,,(S) is subdirectly-irreducible
with boolean monolith and belongs to the finitely-decidable variety V), its congruence lattice is a

chain of boolean-type covers. O
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CHAPTER IV
STRONGLY-SOLVABLE IMPLIES STRONGLY ABELIAN

The goal of this chapter is to prove Theorem B. The arguments in this chapter are highly
technical; we have not at this time found any way to reduce their complexity. However, at a
high level, each of the main semantic interpretations found below can be read as asserting some
kind of “sparseness” in subalgebra or congruence generation resulting from assumptions of strong
solvability.

Denis Osin is fond of saying that group theory is infinitely distorted in mathematics, in the sense
that there are theorems about groups whose shortest purely group-theoretic proof requires heroic
strength of mind to read (never mind to discover), but whose proofs in The Book pass through
other seemingly unrelated fields of mathematics. It may well be the case that something similar
holds here.

IV-A. The radical centralizes minimal sets

The semantic interpretations constructed in this chapter (and following ones) depend on our ability
to define the strongly-solvable radical uniformly in a variety. The conclusions of the following lemma
can be shown to hold for either of the solvable radical, or the strongly-solvable radical, of any finite
algebra A ; however, the proof of this more general theorem is no more enlightening for our purposes,

so we omit it.

Lemma IV.1. If A is any finite algebra in a finitely-decidable variety with strongly-solvable radical
o, there exists a first-order formula with parameters from A which defines the congruence o' /0,
uniformly for all D/O, where I is any index set, A < D < Al is any diagonal subpower, and
O <ol ND € Con(D).

Proof. The argument comes from the theory of snags (see [HM88] Chapter 7). Let F(A) denote
the collection of all idempotent polynomials with nontrivial range, and for each e € E(A) choose
p € Pol3(A) which is Malcev on the image of e if any such polynomial exists; if none, then let p

be second projection. Then we have that a pair (x,y) fails to belong to o iff there is a congruence

2,3
cover a < 3 below Cg((x,y)) iff the following first-order formula is satisfied:

V.V oe plef(y) ef (x),ef(x)) = plef(z),ef(x), ef(y))

ecE( )fePoll(A)

7 plef(x),ef(x),ef(x)) = ef(z)

The formula is clearly false if every cover below (x,y) has type 1, while a cover of boolean or affine

type will guarantee the formula’s truth, since the minimal sets of that cover have empty tails and
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hence Malcev polynomials. This proves that the indicated formula defines [the complement of] o
in A!, and its truth is preserved by factoring out by congruences under o.

Now since the defining formula is quantifier-free, it is preseved in subpowers. Finally, if x =, r y,
e € E(A), p(vi,v2,v3) = vy and f € Poli(A),

plef(y), ef(x),ef(x)) = plef(x),ef (x),ef(y)) = plef(x),ef(x),ef (x)) = ef (x)

which is preserved under factoring out ©. On the other hand, if 2% #, 3, then the polynomials

which witness
ef(y") =o plef(y'),ef(a'), ef (2')) #g ef (2')
(0 being the projection of O into the ith coordinate) also witness it in D. O

Lemma IV.2. Let S be a subdirectly-irreducible algebra with unary-type monolith p and strongly-
solvable radical o which is abelian over p but not over Lg. Let U = e(S) be any (Lg, n)-minimal
set. If C(o, ;L) fails in S, then HSP (S) is hereditarily finitely undecidable.

Proof. Since C(u, pyrr; L) always holds, we may climb the congruence lattice until we get a cover

1
p < 6 < 01 < o such that C(o, pyr; L) holds and C(61, p1r7; L) does not. Fix a (6, ¢1)-minimal set
U’ = ¢€'(S) with trace N’ containing fp-inequivalent elements ag, a1. Since these elements generate

01 over f, already —=C(Cg((ao, a1)), jtj7; L), and we may take a witnessing package

t(ao, bo) = t(ag, by)
but
t(a1,bo) # t(ay, br)

There is no loss of generality in assuming that the image of ¢ is contained in U.

Since p is strongly-abelian, we may assume that bo and 51 differ only in one place (say the first),
so that for q(v1,v9) = t(v1,v2,b2,...,), the polynomial g(ag, ) is constant on p-blocks while the
polynomial ¢g(aj,x) permutes U. (Observe that q(z,y) € U for any =,y € S.) Of course we may
by iterating g guarantee that for each v’ € U’, the operation ¢(u/,z) is idempotent. The same
argument shows that for each v’ € U’, q(u/, z) is either the identity on U (in which case we call v
permutational) or else squashes each p-block of U to a point (at which we call u’ collapsing). Since
C(bo, ptr7; L), these two properties are invariant under fp-congruence.

Let N C U be any trace; we have that q(ag, N) = mg for some my € U. In fact, since o is

abelian over u, we have

q(ao, mo) = q(ai, mp)
|3

mo = q(ao,u) =4 q(a1,u) = u for any u € N
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and thus mg € N; more generally, we have that the polynomial v; — g(ag,v1) retracts each trace
down to one of its points. Since N was a trace, there exists some my # mg in N, which we fix for
future use.

We want to semantically embed graphs into the diagonal subpowers of S, so let G = (V| E) be
a graph. Our index set I will equal V U {oc}. Our subpower S[G] will be the subalgebra of S’
generated by the diagonal together with

e for each vertex v € V, the element
8v = A1|{v,00} D aglelse
e for each edge {v1,v2} € E, the element

Buive = A1|{vy,v2,00} 2] Qg |else

and

e the element

Xoo = M|y D M1

Recall our notational convention (page 11) that for s € S we will use a boldface s to denote the
corresponding diagonal element; let § be a fixed enumeration of these diagonal elements. Observe
that each generator, and hence every element of S[G], is constant modulo 6;; and that x is also

constant mod 6y (indeed, mod u).

Claim IV.2.1. Every element of (U’)! N S[G] assumes at most two values (mod 6), with one

E
supported either on all of I, or on {v, 00} (for some v € V'), or on {vy,v2,00} (for some vy — vg).

(As on page 11, we will drop the “ N S[G]” when the context is unambiguous.)

Let x = t(u,y .-y Zuyugs - - - s Xoos S) Tepresent an arbitrary element of S[G] all of whose coordi-
nates lie in U’. Without loss of generality (by precomposing with €’) ¢t respects U’; but then this
operation is sensitive (mod ) to changes (mod 1) in no more than one of its variables. Since all
generators are constant (mod 6;), we conclude that the blocks of I on which x is constant (mod
0p) coincide with those of whichever generator sits at the active place. H1v.e1

We now identify a subset I of the universe, definable (using parameters for the diagonal elements
and Yoo) and a definable preorder < on T

Set

I={xe (U q(x,mp) = mg & q(x, Xoo) = Xoo

and preorder it by

x <y <= Yu,veU gq(x,u)=qxv) = qly,u) =q(y,v)
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Since the sets U! and (U’)! are definable (Proposition I1.6), it follws that < and its associated
equivalence relation ~ are definable too. Let EQ(v1,v2) be a formula defining the equivalence ~.

The second conjunct defining I" implies that if x € I' then x is permutational at infinity. (So,
for example, I' contains a; but not ag.) The first implies that any non-permutational factor of x
must collapse N to mg. If x € T', uj,up € U', and 2 is not permutational, then ¢(x,u;) = ¢(x, us)
implies u} =, u}.

Claim IV.2.2. For x € ', define

supp(x) = {i € I : 2" is permutational}

={iel: q(:pi,mﬁ =my}

(We already know that each support is either I or one of the sets {v1,v2, 00} (v1 = vg) or {v, 00}
(v e G).) Then
x <y <= supp(x) 2 supp(y)

(=): If v € supp(y) \ supp(x), take u = ¢(gy, m1). Then

q(X,1) = Xoo = ¢(X, Xoo)
but

q(y,u)j, = q(y",;m1) = m1 # mo = q(¥, Xoo) v

S0 X L y.
(«): For t,u € U', q(x,t) = q(x,u) is equivalent to

tlsupp(x) = Ujsupp(x) and for v ¢ supp(x), t' =, u’
which implies

tisupp(y) = UJsupp(y) and for v ¢ supp(y), t* =, u’

which is equivalent to ¢(y,t) = ¢(y,u). “1v.as

As an immediate consequence, we have that every x € I' is ~ to exactly one of {a;} U {gy,v, :
vy = va} U{gy : v € V}. The quotient partial order on I'/ ~ has height two, with a; at level zero,
all the edges at level one and all the vertices at level two.

Let WHO(v1) be a formula asserting that v; € T' and vy is at <-level two. We have just
observed that the map w — g,/ ~ is a bijection of V' with the extension of WHO(v;) modulo ~
(which was already found to be a definable equivalence relation). Let EDGE(v;, v2) be a formula
asserting that there exists y € I' at <-level one such that y < v1 & y < v3. Then these formulas

recover the structure of G. O]
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IV-B. The action of the twin group

Definition IV.3. Let A be any algebra, U C A, and o be the strongly-solvable radical of A. We

write

(1) 6{} := Poli(Ajy) N &(U) for the group of permutations of U realized as polynomials of A,

and

(2) Tf} for the subgroup consisting of those f € 6{} such that for some term ¢(vg,...,v,) and

some d =, € we have

-

Ay v = t(vo, €) & f(vo) = t(vo,d)
(Such a permutation is known as a o-twin of the identity.)

A straightforward computation shows that T"[} is normal in 6{}.

Note that there is nothing special about the radical in this context; we can define a-twins for
any congruence «, but since we will be exclusively concerned with o-twins in this investigation, we
will leave the definition more specialized so as to avoid needing a third parameter in the symbol
T4.

1
Proposition IV.4. Let A be a finite algebra. If L 4 < p in Con(A) and U is (L, u)-minimal, then
(1) 6‘3 acts transitively by polynomial isomorphisms on the set of traces inside U
(2) the action of &% on the body of U has at most two orbits;

(3) if some f € 6"(} nontrivially permutes some trace, then 6"(} acts transitively on the body of
U.

Proof. That Gﬁ acts on traces is an easy consequence of the fact that p is a congruence of the
algebra.
To transitivity: p is generated by any of its nontrivial pairs, so let N; C U (i = 1,2) be traces

containing elements a; # b;. Then we can string a chain of elements

ag =Ug # UL F# -+ F Uyl = bo

where {u;,uj41} = {fj(a1), fj(b1)} for some f; € &#. Then f,,,(N1) = Np. This argument actually
shows that by € &% (a1) U &A(b1), which proves the second and third statements. O

Lemma IV.5. Let S be a finite subdirectly-irreducible algebra with type-1 monolith p and strongly-
solvable radical o satisfying C(o,o;p). Let U = e(S) be a (L, u)-minimal set. If TF nontrivially
permutes some trace, then HSP (S) is hereditarily finitely undecidable.

Proof. The last statement of Proposition IV.4 ensures that 6(5] acts transitively on the body of U;

the same may not be true of the induced action of T%, but elementary group theory shows that
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6% /T [S] acts in a well-defined and transitive way on the orbits of the action by T(S]. Since the action
of 62 is transitive, we will use the symbol O(a) exclusively to refer to the orbit of the element
a € Body(U) under the action by T%.

Claim IV.5.1. For each ¢ € Body(U),
|O(c)NN|>1

where N is the trace containing c.

Let g(a) =b =, 1 a and f(c) = a, where g € T% is the hypothesized nontrivial permutation of
a trace and f € 63. Then f~togo f(c) =,\L ¢, which proves the claim. H1vs1

By Lemma IV.2, we may assume that C(c, y1/7; 1). This immediately implies that if ¢(vo, . .., vn)
is any term and ¢ =, dj and if t(U,E),t(U,cf) C U then these two polynomials are either both
permutations of U or both collapse traces into points.

Our plan is a bit more complicated this time around. Instead of semantically embedding
graphs into diagonal subpowers of S, we will embed them into algebras C|[G| = D(G)/0O, where
D(G) < S’ is a diagonal subpower of S and © < of. We will not attempt to show that © is a
definable congruence, uniformly or otherwise.

Fix your favorite graph G = (V, E). Define V* = {v*,v™: v € V} (the disjoint union of two
copies of V), and set I = V* LI {co}; each of the sets {vF,v™} as well as {co} will be called a
“vertex block” or “V-block”. Let D = D(G) < S’ be the diagonal subpower generated by the set

I" which is the union of the following three disjoint sets:

e T is the set of those x € U’ which are constant on each V-block and constant (mod o) on
all of I.

e I'y is the set of those x € 8! such that for some a € Body(U), 2% € (a/c) NO(a) for all i € I,

w

+ - . + - . .
and for one v € V, 2 =)\ | 2V , while for all w # v, 2" = 2" . For convenience, if x and

v are as just described, we write Label(x) = (v, z*" ).

e I'p is like I'y; but instead of having one nonconstant vertex block, each point will have two,

at the blocks of v and w, where v -z w, and write Label(x) = (v, 2w, x“’+>.

We will refer to the non-constant vertex blocks as “spikes”.

Observe that since each generator is constant modulo o, every element of D is too.

Claim IV.5.2. DNU! C I, and for every polynomial f € 6]3 and every v € V, the v™ component

of f is the same function as the v~ component.

(As is our convention, 6]3 should really more precisely be 65, Ap: but that would be cumber-
some.)
Both parts of the claim are consequences of Maroti’s Lemma. To the first: let y = et(To,I'v,I'g)

be a typical element of D N U!. There is one special input place where this term is sensitive to
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changes by pu; at all other places, flatten out all the spikes so that y = et/(I'g,x) where x € T is
the element at the special place. Then if x € I'g or if et/(I'g, -) is not injective on U’ then at each
coordinate t/ (Fou, -) collapses 1 into points; under those hypotheses, y € I'y.

On the other hand, if et'(I'g,-) permutes U!, then y has the same spike pattern that x had
(since every element of I'g is constant on V-blocks); furthermore, if x € I'yy UT' g, we can conclude
that y takes all its values from one Tg-orbit, since all the coordinatewise polynomials et’ (Fou, )
are o-twins, and hence all in the same coset mod T[S]. But this means that y € I" already.

Similarly for the second part of the claim: let f(vo) = et(vo,I') € G2 then it is not possible for
the special variable to be anything except the first. The claim follows, since the other parameters
only vary up to p on vertex blocks. H1vs.2

In fact, let T'(vp, ..., v,) be a universal term for TS, i.e. there exist pairwise-o tuples {d;: g€
TS} so that g(vo) = T'(vo, d;) for all g. (We leave it to the reader to verify that such a term exists.)

Vi{oe} as polynomial permutations of U’; it

Then this term allows us to realize the full product Tg
follows that 6]3 is isomorphic to the inverse image of the diagonal subgroup under the canonical
projection

e — (ef/TE)

We still have to define the congruence ©. This is done as follows: © will be generated by
identifying those pairs (x,y) such that

e x,yeTlyandforalliel,a’ =5 y', or

e x,y € I'y, Label(x) = Label(y) = (v,a) and for all i # v™, 2' =, ', or

e x,y € I'p, Label(x) = Label(y) = (v,a,w,b), and for all i # v, wt, 2’ =, ¢".
and we set C = C[G] = D/O. We will usually write, e.g., I" instead of I'/© when context makes it
unambiguous.
Claim IV.5.3. O consists of just the generating pairs and no more.

To see this, let (x,y) be a generating pair and f € Poly (D). Then (f(x),f(y)) is clearly a
generating pair if f collapses u to points, or if x and y belong to I'g, so let f € 65. Then if
x,y € I'y with Label(x) = Label(y) = (v,a) then

a=a" =y = fa) = [7) = [y")
o =uy' = @) = fY)

so (f(x),f(y)) is again a generating pair. The proof for generating pairs from I'g is identical.

By Lemma IV.1, ¢! is a uniformly definable congruence; it follows that quantification over any
of the groups Tll?, 61]?, Tlg, 619 is uniformly first-order in the respective algebra. Of course, we also
have that I' (respectively U’ /©) is a definable subset of both algebras as well, since it consists of

precisely the fixed points of the polynomial retraction e.
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Claim IV.5.4. (i) If g € T9, a =, b and g(a) =, a then g(b) =, b.

(ii) To N U is uniformly definable (using at most n - |T%| parameters) in C.

The first part is true because C(o, o; p):

where T'(vo, ..., vy) is the universal term for T(S] defined above. To the second: for each g € T% let

C4 be constants so that
T('769) = ile D 910

Then for x € U! we have
T(x,6g) =0 x = g@™) =,

Hence
xely = Vge TP <T(x, ¢y) =0 x — T(x, &g) =0 x)

(where &g are the obvious diagonal elements), while if x € 'y (resp. I'g) with label (v, a) (resp.

(v,a,w,b)) and g(a) =, | a then g(z*>) =, > so
T(x,¢y) =e x and T'(x, &g) Fo X

v
We are almost done: for the last step, define a preorder < on I' \ Ty by

XKLy <:>E|f€6(S]E|g€T19 [gf(x) = v&
Vh € TF [hgf(x) #o gf(x) — h(y) Zo y]]

Claim IV.5.5. (i) If x,y € T'y (resp. I'g) are labeled by the same vertex (resp. edge), they are
< -equivalent.

(ii) Ifx,y € 'y (resp. I'g) are labeled by different vertices (resp. edges), they are <-incomparable.
(iii) f x € T'g and y € 'y then x L y.

(iv) If x € Ty,y € I'g, then x < y iff x is labeled by one of the endpoints of the edge which
labels y.

All parts of this claim are straightforward:

(i) Say x,y € I'g, Label(x) = (v,a1,w,b1) and Label(y) = (v, a2, w,b2). Then O(a;) = O(b;)
(j € {1,2}), and we can choose f € 62 so that fO(a1) = O(a2). Then we can choose
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{9'}ier € T(S] so that g*f(a1) = a2, g“f(b1) = ba, and ¢'f(2%) =, y' for all other i, and set
g = @ g". Then in fact gf(x) =g y so x < y holds automatically. The proof is the same for

I'y, except easier.

(ii) Say x has a spike at a V-block where y does not, say at v. Then for every f € 6% and every
g e T?, gf(x) has a spike at v, which y does not. Assume gf(x) =, y. Choose h € Tg
such that hg" f(z¥") =1 g*f(z¥"); then h(y" ) =, " . Let h € TS be h on {v*} and the

identity on all other vertex blocks; then
hgf(x) #e gf(x) &h(y) =e y

(iii) The same as in (ii).

(iv) The direction (=) is the same as in (ii). For (<), assume that Label(x) = (v, a1), Label(y) =
(v,a2,w,b). Choose f € GIS] with f(a1) = ag, and for i # v* choose g' € T% so that
g f(z") =, v, ¢¥ = id, g = P, ¢'; then we have z := gf(x) =, y and 2V = y”+. Conse-
quently, if h(z) Zeg z then either

for some i € I, in which case h(y') #, y', or

vt

R =R £ =y
so in either case h(y) #o y. “1viss

This completes the proof of the lemma, since up to <«-biequivalence, vertices of G correspond
precisely to <-classes at level zero, edges to classes at level one, and two vertices are joined iff there

is a class properly dominating both. ]

IvV-C. The strongly-solvable radical is abelian

Lemma IV.6. Let S be a finite subdirectly-irreducible algebra with unary-type monolith y and
strongly-solvable radical o satisfying C(o, o5 ), C(o, pu; L), and C(u, 05 L) but not C(o,0; L). Then
HSP (S) is hereditarily finitely undecidable.

Proof. Choose a package

¢ = to(ag, bo) = to(ao, by)

but

mo = to(ar,bo) # to(ar, b1) = my

witnessing ~C(o, 0; L), where ap/0 = a1/0 =: A and by =, bj. Since C(o, 03 1), mo =, mq, and

we may suppose that the range of to(vo, ..., vy) is included in a (L, x)-minimal set U. Denote the
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trace containing the m; by M.

We will be working with diagonal subpowers X < S’ and their quotients Y = X /O, where
O <o =0lNX2¢c Con(X). Lemma IV.1 once again implies that o is a definable congruence in
all such Y.

We will wherever possible refer to elements of Y with x rather than x/0, with the understanding
that x € S' is one representative. (Of course, this will necessitate showing that certain properties
are well-defined.)

For such algebras Y, and y1,¥y2 =» BO define
EY(¥1,¥2) = {x =, a9: Y [ to(x, 31) = to(x,¥2)}

In particular, we have

ES(by,by) C A

and there is no loss of generality in assuming that the Ej are chosen so that their equalizer set is
maximal for being properly included in A.

We will be using ¢-tuples extensively, so to avoid a proliferation of vector notation we will
reserve the letters b, y, z for ¢-tuples and a, z for single elements.

The plan is as follows: We want to interpret the class of graphs with at least three vertices into
HSP (S). Given such a graph G = (V, E), we will choose an index set I and a diagonal subpower
D < S, which will depend only on V, and then a congruence © € Con(D) below o (in fact, below
pl), which will depend on both V and E, and set C = D/O. © will be sparse in a sense we will
make precise. Then we will define a set B C C¥¢, and show that a preorder < recovering the index
set I is definable there; vertices will interpret as unions of two <-biequivalence classes, and the
edge relation from G will be first-order definable on these vertices. Here “definable” will include
reference to |A| 4+ 1 parameters (in addition to the diagonal).

We begin with a graph G = (V, E), and set [ = V* U {oco} as in Lemma IV.5. Define D < S’
to be the subalgebra consisting of all elements which are constant modulo o. By the same logic
applied in Claim IV.5.2, 6]3 consists of those f € (6%)1 such that all f? belong to the same coset
modulo T%. (Here the coordinate functions FU7, f*7 may be different.) The relation C(o, ;L)
implies that a polynomial f(vy) = t(vo,d) whose image is contained in U is either a permuation
of U at all coordinates or collapses traces to points at all coordinates. We note for future reference
that

Claim IV.6.1. if f1, f> € 6[5] belong to the same coset modulo TP, and if fi(M) = M = fo(M)
then by Lemma IV.5 f1|M = fz\M

In particular, this is true if these are the coordinate functions of some f € G]L:,?. “1vel
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Let C = D/O, where O is the congruence on D generated by identifying

Myt © Mo\ {ot} =6 Mijv- © 1Mo\ {v-} (veV)
Mot wrty © 10[1\ (ot} =6 Mo w=} © M|\ v w-) (v w)
Claim IV.6.2. (i) © < uf, and if x; =g X3 then 25° = z%°.
(ii) Oy has blocks of cardinality 1 and 2 only.

(iii) If x1,x2 € U! and x; =g X3, then the set of coordinates where they differ is either empty,
E
one V-block {vt, v}, or two V-blocks {v",v™,w™,w™} where v — w.

The first statement is clear. To see (ii), first observe that if f € Pol; (D) \ &P then

£(m1 oy © monwry) = flmor) = £ma -y © mojn fo-1)

so it suffices to consider images of generating pairs under permutations f € 6]3. Next, since 68 / TE
acts on orbits and since we may assume that O(mg) # O(mq), we may conclude that any image
f(m1){u+) ®mo|n (o+}) takes values in one orbit at all coordinates except v+ and in a different orbit
there, and similarly for the other elements involved in the generating pairs. We prove the claim for
generators of the vertex type; the edge-type argument is no different.

Given any putative O|;-block of more than two elements, we can find a subset of three elements

of the form

x1 = fi(mary @ mojngory) = B2y © mojn ory) = X2

?
y1 = fi(mi -3 & mojn (o) = fa(ma -y © mojn(o-3) = y2

or vice versa. The first line shows that £, Lofy (M"Y = M!; but since £y Yof, € TR, it must fix M!
pointwise. Hence y; = yo.

Looking a little more closely at the argument, we see that in fact a pair of unequal elements
x1,%Xy € Ul are O-related iff they are the image of a generating pair under some f € 65. Claim
(iii) follows immediately. 1ve2

With this claim in hand, it is well-defined to speak of x*° for x € C. Furthermore, by Claim
IV.6.1, the image of any member of a generating pair under f € 65’ cannot be a constant element.
(In other words, the constant elements of U’ are isolated modulo ©.)

Throughout the remainder of the proof, any ¢-tuple y or z will be assumed to be o-congruent

to by, and to satisfy the condition

¢ = to(ag, bo) =6 to(ao,y) (IV.6.3)

(which is clearly first-order in C). Since c is isolated, this is in fact an equality. (For instance,

every (-tuple from {bg, b1 }! satisfies this condition, and our life would be much easier if we could
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work with just that set. The following can be read as a way of coming as close to this as feasible.)

Claim I'V.6.4. Define a parameter b = b1, ®bo|1\ {oo} Which will be fixed throughout the remainder
of the proof. The predicates

ES(y*°,b) = A
and
ES(y™,b1) = A
(in the free variable y) are definable using b together with |A| other parameters.
This is because

ES(y™,b0) = A <= )\ ajoc ® a1\ (o} € ES(b0, )
a€A

Es(yoo,bl) =A <— /\ oo EB(I0|[\{OO} S EC(bl,y)
acA

We will not name or even make explicit mention of the parameters a|o, @ ao|1\ {0} any more,
but they are implicitly present in all that follows. “1ve4a

The next claim does most of the heavy lifting in this lemma.

Claim IV.6.5. Suppose y satisfies condition (IV.6.3) and that ES(y>,b;) = A. Then the set

P(y) = @Es(bovyi) @ (A\ES(bo,b1)) | /©

is a definable subset of C.
To show this, we will need one auxiliary definition which will be repeatedly useful:

Definition. If Es(yfo, b)) = A= Es(ygo, b1), write y; o y9 if the following equivalent conditions
are satisfied:

(1) ES(yi, %) = A for all i # oo
(2) E€(bo,b) € E€(y1,y2)

To see that these conditions are in fact equivalent, in the direction (1) = (2), if to(x,bg) =6
to(x,b), then

to (x>, y7°) = to(x™,bo) = to(2™,b1) = to (x>, y3°)
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so that to(x,y1) is in fact equal to tp(x,y2). Conversely, fix i # co and a € A. We know that

¢ =to(ao,y1) = to(ao, y2)
and
to(aj; @ aojp\ {1}, Po) = tolay; @ ao|p\ g4y, b)
hence

to(a); © aon\ (4}, y1) =e to(a;; ® aon (i}, y2)

and these elements do not differ except possibly at i; hence they are in fact equal, showing that

tO(aa y’i) = to((l, yé)

Note that condition (2) is clearly first-order.

Now to the proof of Claim IV.6.5: let y be as in the statement, and let z be the tuple which
agrees with by at oo and with y everywhere else, so z «x y.
Now assume further that x € P(y). Then

to(x,bo) = to(x,2z) and
to(x,b) = to(x,y) and
to(x, bo) #e to(x,b)

‘We have shown

x € P(y) = 3z =, bg ES(2®,by) = A and z  y and
x € E€(bg,z) NEC(b,y) and
X ¢ Ec(b()?b)

Next, we show that the converse holds as well.

Assume the following:

x € A but not in P(y) (IV.6.6)
z =, by with ES(2®°,by) = A (IV.6.7)
zZ XYy (IV.6.8)
x € E€(by,z) NE€(b,y) (IV.6.9)

We must show that x € E€(byg, b).
By (IV.6.6), we know that for some i # oo, ' ¢ ES(bo,y"). By (IV.6.8), ES(y, 2%) = A for all
i 7 00.
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Working in D, define elements

ugo = to(x,bo) to(x,2) = ug;
uy = to(x,b) to(x,y) =un

Our assumptions imply the following:

ugp = ugy since ES(y>°,b) = A (IV.6.10)
UGy = UQy by (IV.6.7) (IV.6.11)
i # 00 = uhy = ul, (obvious) (Iv.6.12)
i # 00 = uhy = uly by (IV.6.8) (IV.6.13)
U =6 up by (IV.6.9) (IV.6.14)
U =e u by (IV.6.9) (IV.6.15)
ujp # un by (IV.6.6) (IV.6.16)

Together, these imply that ugg # ug; also.

Choose f € G so that {f(uy0), f(u11)} is a generating pair for ©, and let w;; = f(u;;). Then
(IV.6.10)-(IV.6.16) are still true of the w;;. By definition, wig, wi1 € MY’ the same is true of
W00, Wo1, which is shown as follows: for i # oo, wéj = w’ij € M, while at oo we can use C(o,0; 1)

to get

fto(ao, bo) = f*to(ao,b1)
|3

woi = woo = fto(2™,b0) =4 fCto(x™,b1) = wiy € M

Similarly, we may choose g € &P so that {g(woo),g(Wo1)} is a generating pair for ©, whose
nontriviality is guaranteed by (IV.6.16). But we have g*(M) = M for all i € I, so we may assume
(by Claim IV.6.1) that ¢ = ¢/ = g for all 4, € I.

Now: since {wig,wi;1} form a generating pair for © and since |V| > 3, there exists v € V so

+ + .
that wj, = w}; . This value cannot be m1, so we have

Hence
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which implies g(mg) = mo (since {g(woo), g(Wo1)} are a generating pair). But then

(8(wWo0))™ = mo = (g(wo1))™

4
wgp = Mo = Wy = Wiy = Wiy
4
Woo = W1p
U
Ugo = U1g
I
x € E€(by, b)
This completes the proof of Claim IV.6.5. “1v.6s

The foregoing claim implies that the mapping
y = ES(bo,y")
on the set of those points y =, by such that
ES(y>®,b1) = A

is invariant modulo ©. Let y be such a point. For any a € A, a € E€(b,y) iff a belongs to all the
factor sets ES(bg,y") (i # oo). It follows that the set B of those y such that

ES(bg, b1) C ES(bg, ') for all i # oo and ES(y>°,b;) = A
that is, those y such that
ES(bo, y') € {ES(bo, b1), A} for all i # oo

is definable (by asserting that a € E€(b,y) for each a € ES(by,b;)). We may define a preorder on
B by
y1 <y2 < P(y2) € P(y1)

(Note the reverse inclusion.) Because we chose ES(bg, b;) maximal, the associated partial order is
isomorphic to the boolean algebra with 2|V| atoms. Indeed, each tuple b1ji,c0 @ bo1\fi,00} SitS at
<-level 1; we denote the elements at <-levels one and two by B; and By respectively. Let WHO (vg)
be a formula (in the parameters we have already mentioned) asserting that vy € Bj.

For y € By, let x(y) denote the (unique) coordinate i # oo such that ES (b, y*) = ES(bo, by) C A.
If x(y) € {vt,v"} we set |x|(y) = v.
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Assume that |x|(y1) = |x|(y2). Then either x(y1) = x(y2), which we know to be definable, or

for some v € V we have x(y1) = v* and x(y2) = v~ (or vice versa). Define
b = b1+ oo B bojeise DT = b1jp— 00 E bojelse
Then b*, b~ € By, x(y1) = x(b™), and x(y2) = x(b™). Next define
T =bipt Dbojerse 2 = bijp- @ bojese
Then zT o b™, z~ o« b™, and
to(ar,z") = mij+ @ Mojere =0 M- B Mojese = to(ar, z")
We have shown that for y1,y2 € B,

IXI(y1) = Ix[(y2) = C = x(y1) = x(y2) or
31]3, V4, VU5, Vg, WHO(’Ug) & WHO(’U4) &
xX(y1) = x(vs) & x(yz2) = x(va) &
vy X v3 & vg X vg &

to(a1,vs) = to(a1,ve)

Let the last formula be denoted EQ(y1,y2), with the understanding that the variables v3 through

vg are really £-tuples.

Claim IV.6.17. The converse holds too; that is, the formula EQ(v1,v2) defines the equivalence
relation |x|(vi) = |x|(v2) on Bj.

To show this, let x(y1) = v, say, and x(y2) ¢ {v",v™}; we must show ~EQ(y1,y2). To this

end, let y3,y4 € By with x(y3) = x(y1), x(y4) = x(y2), and let z5 x y3, zg < y4. Then for ¢ # oo,
to(ay, 2t) = to(a1,vs) and to(a1, 25) = to(a1,y}) by the definition of the relation <. Hence

If i = oo then tg(ay, 28) = to(a1,bo) = to(ar, 24)
If i = vT then to(a1, 28) = to(ay,y3) # to(a1,bo) = to(a1, ys) = to(a, 25)
If i = x(y2) then to(ay, 28) = to(a1,v4) = to(a, bo) # tolar,yy) = to(a, 25)
Otherwise to(a1, 2t) = to(a1, y3) = to(ay, bo) = to(ay,y}) = tolay, 2)

We have that to(ap,z5) differs from tg(aj,z¢) in exactly two coordinates, which do not form a
V-block; hence these two elements are not ©-congruent. This proves the claim. H1v.e.17

All that remains is to show that the edge relation is recoverable, so suppose v — w, |x|(y1) = v
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and [x[(y2) = w. Let x(yif) = 0", x(y;) = v7,x(yi) = w", x(y) = w™, and define
sz)rw - b1|v+,w+,oo D b0|else b;w = b1|v*,w*7oo S2) bO\else

We have b}, b, € B, yi!, vy, < bl,, and y,,y,, < by,. Next define

+ -
Zyw = bl|v+,wJr ® b0|else Zyw = bl\v*,w* @ bO\else
+ + - -
Then z,, < b}, z,,, x b,,, and

to(ar, z,,,) = M1+t S Mojelse =6 M= 1 B Mojelse = to(A1,Zpy,)
We have shown that for y1,ys € By,

B
IX|(y1) — x|(y2) = Fvs,...,v10 /\ v € B1 & /\ vj € By &
3<j<6 T<j<8

IxI(vs) = |x|(va) = [x](y1) # [x|(y2) = Ix|(v5) = [x](ve) &

x(v3) # x(v4) & x(vs) # x(v6) &
v3, V5 K v7 & v4,v6 K v3 &

Vg X V7 & V10 X U§ & to(al,vg) = tg(al,vl[))

Call this formula EDGE(y1,y2) (again all variables v3 through vig are secretly ¢-tuples).

Claim IV.6.18. The converse holds too; that is, the formula EDGE(vy,v3) recovers the edge

relation of G on Bi/|x|.

The proof is similar to the last claim’s. Assume |x|(y1) # |x|(y2) and |x|(y1) i Ix|(y2). Let

¥3,...,¥8,%9,Z10 be as in the statement. Then since zg x y7 and z19 x yg, for all ¢ # co we have

to(a1,y7) = tolar, z5)  to(a1,yg) = to(a1, 21p)
By assumption, ES(by, 25°) = A = ES (b, 2§5), so in particular

to(at, z9°) = to(ar, bo) = to(a1, 275)
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Now for i € V*

If i € {x(ys): x(y5)}
then to(a1, 25) = to(a1,y%) # to(ar, bo) = to(ar,ys) = to(as, z1o)

If i € {x(y4), x(¥6)}
then ¢y(aq, 253) = t0<a17y%) = to(a1,bo) # to(a1, yg) = to(a1, ZiO)

Otherwise

to(a1, z5) = to(ar, yh) = to(a1, bo) = tolar,ys) = tola1, z}o)

Hence to(a1, zg) differs from to(ay, z19) on a set of precisely four coordinates {v™, v™,w™, w™} where
v i w. It follows that

to(ai, z9) #Ze to(ai, z10)

which proves the Claim. “1v6.18
We have shown that the hereditarily undecidable class of finite graphs can (with possibly finitely
many exceptions) be interpreted uniformly into finite members of HSP (S); hence this variety is

hereditarily finitely undecidable. O

Lemma IV.7. The strongly-solvable radical of every finite algebra lying in a finitely-decidable

variety is abelian.

Proof. Let S be a counterexample of minimum possible cardinality, with strongly-solvable radical

o. We aim for a contradiction.
Claim IV.7.1. S is subdirectly-irreducible.

To see this, let

t(al, 61) = t(al, 52)
but
t(az, b1) # t(az, b2)

witness =C (0, 03 Lg), and let o be maximal for separating t(as, b1) from t(as, by). Then o is meet-
irreducible and « V o is strongly-solvable over . Then the strongly-solvable radical of S/« is not
abelian, so if @« > 1 g then S/a would be a smaller counterexample. v

Let 1 denote the monolith of S. Again by minimality, we also have that C(o,0;u). Of course,
since ¢ is nontrivial, the monolith has unary type. By Lemma III.1, the centralizer of u is a
strongly-solvable congruence. We have that S satisfies all the hypotheses of Lemma IV.2, but by
assumption, HSP (S) is not finitely undecidable; hence we must have that for all (_Lg, u)-minimal
sets U, C(a, pyur; L)-
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Now by Lemma IV.5, we have that for any (L, u)-minimal set U, the action of T% inside any
trace N C U is trivial.

Claim IV.7.2. C(u,0; 1); equivalently, [u, o] = L.

Suppose otherwise. Choose a witnessing package

t(a1,b1) = t(a1, ba)
but
t(az, b1) # t(ag, by)

such that aj, az belong to some trace N inside a (L, u)-minimal set U and the polynomial (v, . .., vg)

respects U. Then it is not possible for either of the functions
fi(vo) = t(vo, bi)

(i =1,2) to collapse traces to points; hence these two functions are twin elements of GISJ.

But then the first line (equality) says that fy ' o fi(a1) = ay, implying that f;'o fi(N) = N;
but the second line yields fy Lo fi(ag2) # ay. This contradiction proves the claim. —1v.7.9

By Theorem 4.5 of [Kea93], Claim IV.7.2 implies that p is o-coherent. We have already
shown that the hypothesis of the coherence property, & 5 C(o, pn; L), holds; hence we have both
C(u,o; L) and C(o, p; L).

This shows that S satisfies all the hypotheses of Lemma IV.6. Since our assumption was that
HSP (S) is not finitely undecidable, we must have C(o,0; L). But this contradicts our choice of S

as a counterexample. ]

IV-D. Proof of Theorem B

We have spent considerable effort to show that failures of abelianness in strongly-solvable congru-
ences are bad. But could it not be the case that a strongly-solvable congruence could be abelian

but not strongly-abelian? It turns out the answer is no:

Lemma IV.8 ([MV89, Theorem 7.4]). If F is a finite algebra with a strongly-solvable congruence
which is abelian but not strongly-abelian, then HS(F?) contains an algebra with a strongly-solvable

congruence which is not abelian.

Proof. Let 0 € Con(F) be strongly-solvable and abelian, but not strongly-abelian. If o is not
abelian over some congruence beneath it, we are done; so without loss of generality o is strongly-
abelian over every nontrivial congruence L < a < o. (Else pass from F to its quotient by a

congruence maximal for o not being strongly-abelian over it.) We have that

oxo=n" (o) Any' (o)
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is a strongly-solvable congruence of F2.
Let

c1 = t(al, 51) % t(ala 52) =C3
ca = t(az, b1) # t(as, by) = 1

witness the failure of strong abelian-ness of ¢ over Lp. Since o is strongly-abelian over every
nontrivial o < o, it follows that ¢; =, co =, c¢3 for all such «; in particular, there is only one
congruence atom p = Cg((c1, c2)) = Cg({(c1, c3)) below o.

Since C(o,0; L), for any polynomial p(z) € Poli(F) we have

pler) = p(t(ar,b1)) = p(t(az, b)) = p(c2)
0 (IV.8.1)

p(es) = p(t(a1,b2)) = p(t(az, b2)) = p(c1)

Our proof will proceed somewhat differently depending on whether aj, as could be chosen p-

equivalent. If this is not possible, then for all polynomials s and all m; =, m2 and i =, o,
s(ml, ﬁl) = S(mg, ’JQ) = S(ml, ﬁl) = s(ml, ’JQ) = S(mg,ﬁl) (IV.S.?)

In both cases, let C < F? be the subalgebra generated by the diagonal together with (Z;) Then
as subalgebras, C < o, and if a; =, az then C < p. Let 8 € Con(C) be generated by identifying

(2) =g (E?) We will show that o x o is not abelian over 3.

Claim IV.8.3. (2) is isolated mod f; that is, there do not exist f € Poly(F) and (e”) € C such

ha . . "
. ()= () o (flee ) = (4)

Suppose first that a; could not be chosen p-congruent to as. By equation (IV.8.2), ¢ =
flea,€1) = f(er,€2) = da; it follows by equation (IV.8.1) that ¢; = f(c1,€1) = f(cs,€1) = dy. This
contradiction proves the first case of the claim.

In the other case, assume that a; =, a2, so that C is a subalgebra of u, which is a strongly-

abelian congruence. The equality f(c1,€1) = f(ca,€2) implies that
c1 = f(c2,€2) = f(ca,€1) = f(c1,€2) = da

Equation (IV.8.1) implies that f(c3,é1) = ¢1 too. “rvss
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With the previous claim in place, the following failure of the term condition
()= () G) = () () = ()
== t 5 — EB t R — =
() as by as bo 1
()= (G 2o (C2)-(2)) = )
Co as by as bo 1
shows that o x o is not abelian over f. ]

Proof of Theorem B. By Lemma IV.8, if A is any finite algebra whose strongly-solvable radical
is not strongly-abelian, then HSP (A) contains a finite algebra whose strongly-solvable radical is

nonabelian. By Lemma IV.7, such an algebra cannot lie in any finitely-decidable variety. O
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CHAPTER V
RESIDUAL FINITENESS

The goal of this chapter is to prove Theorem C. For the remainder of this section, fix a finitely

generated, finitely-decidable variety V, say V = HSP (K), where K is a finite set of finite algebras.

Lemma V.1. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

is of boolean type.

Proof. We will show that in fact every finite subdirectly-irreducible
S € HSP (K)

with boolean-type monolith already belongs to HS(K).
So let S be a quotient of

p
B< HAZ»
=1

where each A; € K and p is the smallest number of factors for which such a representation exists;
say S & B/m, where 7 is meet-irreducible, with upper cover p such that typ(mw,u) = 3. The
minimality of p implies that each 9; = /\,; 7; has no congruence 6 above it such that B/ = S; in
particular, for each i, 7; V7w > pu.

Choose some (7, p)-minimal set U = e(B). Then U has empty tail and only one trace, so
U={x,y}. Let 8 =Cg({x,y)), and observe that =7V .

Claim V.1.1. Con(B) = I[L, x| U I[5,T].

The disjointness is obvious. Let 8 £ w. Then 6 V m > u, and in particular identifies x and y.

String a chain of elements between them:

X=92|=r20=¢ =pZn=¢y
and hit this chain with e:
x=¢e(x)=ge(z1) =re(z2) =g =re(zn) =pely)=y
The resulting chain is in U, so the 7-links are trivial, implying that x =¢ y, as claimed. “vi1

We have already seen that 7; € w for any 1 < i < p; by the claim, each 7; identifies x and y.

But now observe that if p were to be greater than 1, we would have

<XaY> E’f}lmﬁQZJ—

which would be absurd. Hence p = 1 and the theorem follows. O
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Lemma V.2. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

s of affine type.
The proof adapts from, but corrects an error in, [MS05] Section 12.

Proof. Let S € HSP (K) be subdirectly-irreducible with affine monolith; say S = B/w, where

p
B<, [[A:  (Aiek)
1=1

Without loss of generality C = HS(K), and the representation is minimal in the sense that S is not
representable in this way by fewer than p factors from I, and moreover if 3; € Con(A;) and S is a
quotient of a subalgebra of [, A;/f; then all §; are trivial.

Claim V.2.1. Let o; denote the strongly-solvable radical of A;, and o1 x --- X 0, = 0 € Con(B).
Then o < .

Suppose this were false. Let
1
1 <a < at <o

2,3 1 2,3
such that o= < 7w but # < 8~ < BT = o' V«. Then the covers a~ < a™ and B~ < ST are
projective, which is absurd (cf. Theorem IL.5). vai

Our minimality assumption implies now that each A; in the representation of B has trivial
strongly-solvable radical. By Lemma I1.7, B has Day polynomials; hence the term condition on
congruences of B is symmetric in the first two variables.

It follows by Theorem 10.1 of [FM87] that S/¢ € HS(K), where ¢ denotes the centralizer of the
monolith y; in particular,

1S/¢| < max{|A|: A € K}

We will be done if we can show that there is also a bound on the number of elements of each
¢-block. From now on we will forget about B and work only in S. Let {C; =r;/( : 1 <i < /{} be
an injective enumeration (with fixed representatives) of the (-classes, C any fixed one of them, and
U a (Lg, u)-minimal set containing a monolith pair {0,a}.

As before, we have a Malcev polynomial m(vy,v2,v3) on U; furthermore, if @ C U denotes the
(-class of 0 in U, then m respects (). Since the tail of U is empty, S|y is then an abelian Malcev
algebra. By a standard argument, the operation m(x,y,2) = x — y + z defines an abelian group

operation on () under which 0 is the identity element.

Claim V.2.2. The set of polynomial functions

R={f(v) € Poh(Sig) : f(0) =0}

is a ring of endomorphisms of Q (under pointwise addition and function composition), and the size
of R is bounded independent of S.
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The only nontrivial piece of the first part is that each such f respects addition:

fl@)=flz—y+y)+f0)=fly—y+0)+ f(z) = f()
A2
flx+y)=flx=0+y)+ f(0) = fly —0+0)+ f(z) = f(y) + f(x)

The second comes from the fact that each f € R is given by an £ + 1l-ary term operation in a

uniform way: if f(x) = t(z, 3) then

0 =¢(0,5) —t(0,5) = t(0,7) — t(0,7)
4
t(z,8) = t(z,5) — (0, 5) = t(x,7) — t(0,7)

where 7 denotes the chosen representatives of the (-classes. Hence |R| < |Fy(1+ ¢)|. dv.22
Now: for any s; # so € S, there exists a polynomial f(vg) = t(vg, §) so that ¢(s1,5) = 0 and
t(s2,8) = a. In particular, if s = 0, s2 € @ then we may take f € R.
What this shows is that Q is subdirectly-irreducible as an R-module. By Theorem 1 of [Kea91],
Q<RI
Now we are almost done: we have already noted that for each c¢,d € C' there exists a term
t(vo, ..., v|g)) with t(c, ) = 0, t(d, 5) = a. One has
et(d, §) — et(d, §) = et(d, ) — et(d,T)
)
a = et(d,s) — et(c, 5) = et(d, ) — et(c,T)

where all these values must lie in ). Hence the map

C - FV(1+€)Q
25 (et(x,7): t € Fy(l+0)

is injective.

‘We have shown
1| < |QIFvU+Ol < |RIFVIFOl < |F,(1 + £)[Fv(+0]
which, combined with the fact that
<|C|- A
S| < |C max(|A|)

completes the proof. O
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We will need the following technical lemma limiting the number of variables which can be

independent (modulo a strongly-abelian congruence) in a polynomial operation.

Lemma V.3. Let A be a finite algebra in a locally-finite variety V, and  a strongly-abelian
congruence on A, and t(vy, ¥, ...,7p) be any polynomial operation of A. Let M = log|Fy (¢ + 2)|.
Then there exist subsets v; C U; of size no more than M, such that for any B-blocks By, ..., By the
mapping

Axﬁlx--'xég—)A
(a,b1,...,bg) — t(a,by, ..., by (V.3.1)

depends only on the variables vy and v;.

Proof. For simplicity, we show the case £ = 2. Let t(vo,v1,... ,vlfl,v%, . ,vé”) be our term, and

let 251 > |Fy,(4)].

For S C {1,...,k1} let ps(vo,x,y,v2) be the substitution instance of ¢ obtained by identifying
all v} to the single variable vy, and substituting x for v} if i € S and y if not. Then by Pigeonhole,
there exist S # S’ so that V |= pg = pgr. Say k1 € S but not S’; we claim that no mapping as in
(V.3.1) can depend on v},

To see this, let a € A, b,c € By, and d € By. Let gg(vo, x,y,vfl,vg) be like pg, except that v]fl

is left unsubstituted, and likewise for ¢g:. Then
QS(aa bv ¢, b7 d) =dqs (CL, bv GG, d)

But now since § is strongly-abelian, if £ =5 b and § =g d, the strong term condition gives that

so t is insensitive to changes modulo 3 in the vlfl coordinate. Similarly, if 22 > |Fy,(4)| then ¢ is
insensitive to changes mod 3 in some coordinate vi. The general result now follows by a downward

induction. O

Lemma V.4. V contains only finitely many subdirectly-irreducible finite algebras whose monolith

1 of unary type.

Proof. Let S € V be subdirectly-irreducible with unary-type monolith

p = Cgs((c,d))

We already know that typ {S} C {1,3}. By Theorem B, the strongly-solvable radical o is a strongly-
abelian congruence. Theorem A tells us that either 0 = Tg or is meet-irreducible with upper cover
of boolean type. In either case,

{:=|S/c| < Mpool
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(where Mo denotes the maximum cardinality of a finite SI in V with boolean-type monolith).
Fix some enumeration (§1,...,5;) of S with each o-block B; enumerated together. We must now
put a uniform bound on the size of o-blocks.

Let B be any o-block. Since any unequal pair of elements generates a congruence above u, we
have that for any b # b’ € B, there exists a unary polynomial p(vg) = t(vo, 51,...,5z) such that
p(b) = ciff p(b') # c. By Lemma V.3, these terms depend (up to changes mod o) on vg and subsets
3;, 1 < i < {, each of size no more than M :=log(Fy (£ +2)). Let P = B} x --. x BM.

For b € B, we define a subset G(b) C Fy(1+ ¢M) to consist of those terms ¢(x, %) such that for
some p' € P, t(b,p) = c. Observe that for any b # bg, at least one of G(b1), G(b2) is nonempty.

Claim V.4.1. The mapping b +— G(b) is injective.

Let by # by, and assume towards a contradiction that G(b1) = G(bz). Choose a term t and a
p1 € ¥ so that ¢ = t(b1,p1) # t(b2,p1). Then t € G(b1) = G(b2), so we can choose pa € ¥ so that

t(ba, p2) = c. Hence we have a failure

c=1t(by,p1)  t(b1,p2)
c# t(bz,p1) t(be,p2) =c

of the strong term condition, since the entries are equal along the diagonal but not along the rows
and columns. This contradicts the strong abelianness of o. Hva1

We have just shown that
|B‘ < 2|FV(1+€M)\

which is uniformly bounded in V. This completes the proof. O

Proof of Theorem C. Since V is locally-finite, it suffices to prove that V contains only finitely many
finite subdirectly-irreducible algebras. (It is a well-known result, originally due to Quackenbush,
that an infinite SI algebra in a locally-finite variety has arbitrarily large finite SI subalgebras
generated by a monolith pair together with other elements.) Since V is finitely-decidable, it omits
the semilattice and lattice types altogether; and Lemmas V.1, V.2, and V.4 combine to show that

there are only finitely many SIs in V with monoliths of the boolean, affine, or unary types. ]
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CHAPTER VI
TWO MULTI-SORTED CONSTRUCTIONS

We will be building two multi-sorted languages from which to effect an interpretation. While
it is possible to formalize multi-sorted model theory entirely in a usual first-order setting, this
formalization takes away much of the naturality of the multi-sorted definition. In particular, the
first-order formalization “gets wrong” the structural operations of direct product and substructure;

these are key for us, since we will be constructing varieties in our sorted model classes.

Definition VI.1. For our purposes, if L is a finite multi-sorted first-order language, every sort
must have nonempty extension in every L-structure. It follows (cf [ARV12]) that the Birkhoff

variety theorem holds without modification for L-structures.

Notation VI.2. Every atomic formula ®(vy,ve,...) of a multi-sorted language must implicitly or
explicitly determine what sort each variable must be assigned from. We call this the type signature

of the formula. In particular, for a term ¢ we write

t(Sl, SQ, .. ) — Sy
to denote that the formula

t(x1,z2,...) =x0
is meaningful only if ¢y € Sy, z1 € S1, T2 € Sa, and so forth.

For the remainder of this and the next section, fix a finite (single-sorted) algebraic language L

and a finite L-algebra A with a congruence o whose congruence classes are C1,...,Cjy.

VI-A. The sorted language L® corresponding to a congruence «

Definition VI.3. The multi-sorted first-order language L% will have the following nonlogical sym-
bols:

For each 1 <i < M, the language will have a sort symbol (7).

For each basic operation symbol f(vi,...,v,) of L and all indices 1 < iy,..., 4, < M, L* will

have a basic operations symbol f;,..;, of type signature

fhln (<Z1> ’ <12> ) <Zn>) - <ZO>

where
1A
Cz'l Xoee XC@'n —)Cio.

Construction VI.4. (1) We define an L%-structure A% in the natural way: each sort



and if z;, € ¢, for 1 <k <mn,

f{?azn(l'h . .,xn) = fA(:L’l,. . .,.fUn).

B

(2) More generally, let B be any L-structure such with a congruence a® such that there exists

an isomorphism ¢: A /o — B/a®. Define an L%structure B® by declaring

and defining the basic operations

i]?-(iin(mh oo )‘Tn) = fB(xl, e 73377,)
for any xx € ¢(C;, ). Note that the isomorphism ¢ will usually be clear in practice, so we do
not include it as a visible parameter in the symbol B®. Similarly, we will usually refer to the

distinguished congruence of B as a rather than oB.

Proposition VL.5. Let M = B® and N = C~.

(1) Let D < B have nonempty intersection with each a-class; then D satisfies the hypotheses of
Construction VI.4(2), and D® is a substructure of M. Moreover, every substructure of M is

obtained in this way.

(2) Let 8 < « be a congruence on B; then B/0 satisfies the hypotheses of Construction VI.4(2),
and (B/60)® is a homomorphic image of M. Moreover, every homomorphic image of M is

obtained in this way.

(3) Let D < B x C be the subalgebra consisting of all pairs (b, c) such that ¢~ 1(b/a) = p~(c/).
Then D satisfies the hypotheses of Construction VI.4(2), and D® is the product of M and N

in the sense of L*. (This generalizes to any number of factors.)

As mentioned above, the classical proof that a class is equationally axiomatizable iff it is closed
under taking products, substructures, and homomorphic images is valid for multi-sorted algebras,
so it makes sense to talk about the variety V(A%) = HSP (A®). A representation of the free
algebras in this variety as subalgebras of a direct power of A% where the index set is itself a power
of A%, does exist; but is not straightforward to write down, and one is better off thinking of free
algebras as algebras of terms. Note that the trivial algebra in this variety is the one where each

sort is a singleton, i.e. (A/a)”.

Lemma VI.6. (1) The sorted structure B® is abelian (resp. strongly-abelian) if and only if the

congruence o was a (strongly) abelian congruence of B.

(2) If A belongs to a finitely-decidable variety and « is a (strongly) solvable congruence, then
HSP (A%) is a (strongly) abelian variety.
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Proof. (1): A failure of the (strong) term condition C(a, a; L) in B is readily convertible into a
failure of the corresponding condition C(T, T; L) in B%, and vice versa.

(2): By Theorem B, (strongly) solvable congruences in HSP (A) are (strongly) abelian.

If HSP (A®) were to fail to be (strongly) abelian, this failure would be witnessed in a finitely
generated, and hence finite, structure M. We may suppose M = N /¥, where N is a substructure
of a direct power (A%)~.

As we saw in Lemma VL5, this direct power is the image under o of the subalgebra P of AX
consisting of all a-constant tuples. Since any failure of (strong) abelianness would project to a
failure at some coordinate,

oF =aXn(PxP)

is (strongly) abelian. Hence (A®)% is (strongly) abelian.
We know that N = B for some B < P, and moreover that

o® =aP N (B x B);

it follows any failure of (strong) abelianness in B would have represented one in P already. Hence
N is (strongly) abelian.

Finally, we have that there must exist # € Con(B) such that (B/6)* = N/¢¥ = M. But since «
is (strongly) abelian in B, 6 is (strongly) solvable, and hence (strongly) abelian as well; and just
as in (1) any witness to the failure of the (strong) term condition C(T, T;¢) in N would give rise

to a failure of the corresponding condition C(c, «;0) in B. O

Corollary VI.7. If A belongs to any finitely-decidable variety and « s either the solvable radical
or the strongly-solvable radical of A, then HSP (A®) semantically interprets into HSP (A).

Proof. The key observation is that, by Lemma IV.1, each of the congruences in the statement of
the theorem is uniformly definable in HSP (A), and our construction guarantees that o® is the
(strongly) solvable radical of B whenever o was of A.

Let c¢i,...,cp be new constant symbols. Take any M = B® € HSP (A®), where M and B
can be taken to be on the same underlying set. First, assign ¢; to an arbitrary element of ¢(C;)
for each i. Then one can recover the sort of x by asserting that z and ¢; are congruent modulo
the radical; likewise the assertion fi,..;, (z1,...,7n) = mo is true in M iff each 7 =gaq(B) i, and
f(z1,...,2) =z in B. O

It follows that whenever HSP (A®) is finitely axiomatizable (which happens, for instance, when
the variety is strongly-abelian), then the (finite) undecidability of HSP (A®) implies the (finite)
undecidability HSP (A) too.
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VI-B. The sorted language A®° corresponding to a strongly-abelian congruence a

The construction in the previous section required no assumptions about «. If, however, « is
strongly-abelian, then we can introduce a further sorted construction, generalizing that effected
by McKenzie and Valeriote in [MV89, Chapter 11]. For the remainder of this section, we add the
assumption that « is strongly-abelian.

Recall (Proposition I1.13) that each induced algebra

A|Ci = <CZ ; {f & PO|(A): f(CZ, .. ,CZ) - CZ}>

is a strongly-abelian algebra. For each 1 < ¢ < M, let K; be the greatest arity of a decomposition
a-sorted term operation on C;. (See Definition I1.9 for a review of decomposition operators.) Fix
operators

di(’Ul, oo 71}Ki) = Di(vl, ey Un, (_i)
witnessing this; that is, d; is a K;-ary decomposition operator on C; and D;(Z,ad) = D;(Z,d’)
whenever 7 € C; and @ =, d’. By Proposition II.11, this determines a product decomposition

Ci = 0@1 X X Cz,KZ

Definition VI.8. The multi-sorted first-order language L® will have the following nonlogical
symbols:
For each 1 <i < M and each 1 < j < Kj, the language will have a sort symbol (i, j).

For each a-sorted term operation

f(vl,...,vn) :t(vl,...,vn,c_i): Cz'l X Czn _>C7lo

(@€ G,y x---xC; ) and each 1 < j < K the language L will have a basic operation of type
declaration
(i,1) (i, 1) -+ (in, 1)
tgl"'inin+1"'in/ : : . : - <ZO7«7> :
<i1’Ki1> <i27Ki2> T <Zn7Kln>
Note that every term t(v1,...,v,) of A is automatically a a-sorted term operation when re-

stricted to any product of n a-classes, so the entire atomic diagram of A is encoded in that of
A We will see in a moment that A® is strongly-abelian; it follows that the language L®* may
be taken to be finite.

Proposition VI.9. Every term in the language L is obtained from one of the basic operations

tgl“‘in by possibly identifying some variables of the same sort.

The proof (by induction) is left to the reader.
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Construction VI.10. (1) We define an L*-structure A®” analogously to our definition of A®

in Construction VI.4(1): each sort

. LA

(,,7)7 =Cij
Now if tgl“'inin+1"‘in/ is a basic operation symbol and z ; € Cj, j for 1 <k <nand 1< j <
K, , set

Tk

T2

Ty = ) (1<k<n)
T, K,

and choose any a € Cj X oo X Cin/' Let

n+1

o,1
€0,2
A - ,
tM (21, ..y xp,d) =20 =
I07Ki0
It now makes sense to define
11 Ta1 o Tpd
j 1,2 T22 t Tp2
R : : . : = 0,
T1,K; T2K Tn, K,

i io in
(2) The foregoing construction generalizes to any L-structure B having a congruence o® such that
there exists an isomorphism ¢: A/a — B/a®, and such that the same terms D; (v, .. ., UK,y sUn!)
define decomposition a-sorted terms on the classes ¢(C;), with constants taken from the same
classes ©(Ci,,),---,(Ci ,). (We do not require that no decomposition operator on ¢(C;)

have larger arity.)

Under these hypotheses, each o class ¢(C;) decomposes into a product of K; factors as

above, and the analogous definition produces a well-defined L _structure B*.

We state without proof the analogues of the lemmata of Section VI-A., since all the proofs

differ only in the bookkeeping:
Proposition VI.11. Let M = B® qnd N = C*,

(1) Let D < B have nonempty intersection with each a-class; then D satisfies the hypotheses of
Construction VI.10(2), and D s a substructure of M. Moreover, every substructure of M

is obtained in this way.
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(2) Let 6 < a be a congruence on B; then B/0 satisfies the hypotheses of Construction VI.10(2),
and (B/H)ab 18 a homomorphic image of M. Moreover, every homomorphic image of M is

obtained in this way.

(3) Let D < B x C be the subalgebra consisting of all pairs (b, c) such that ¢~ 1(b/a) = o~ (c/c).
Then D satisfies the hypotheses of Construction VI.10(2), and D s the product of M and

N in the sense of L*. (This generalizes to any number of factors.)

Lemma VI.12. (1) The smallest equationally axiomatizable class containing A® s the closure
of {Aal’} under HSP; this class is aziomatized by the set of all equations which hold in A®.

This variety is finitely axziomatizable.

(2) The sorted structure B® is abelian (resp. strongly-abelian) if and only if the congruence o

was a (strongly) abelian congruence of B.

(3) If A belongs to a finitely-decidable variety and « is a (strongly) solvable congruence, then
HSP (AO‘I’) is a (strongly) abelian variety.

(4) If A belongs to any finitely-decidable variety and « is the strongly-solvable radical of A, then
HSP (A®) semantically interprets into HSP (A).

Proof. The only new statement here is that HSP (Ao‘b) is finitely axiomatizable.
It is well known (e.g. [MV89, Theorem 0.17]) that an (ordinary single-sorted) algebra X is
strongly-abelian if and only if for each term t(v1, ..., v,) there exist equivalence relations E1, ..., E,

on X such that for all x1,y1...,%n,yn € X,

Hx1,y .y n) = Y1, yn) <= (z1,101) € E1, ..., {(Tn,Yn) € En.
Likewise, a congruence « is strongly-abelian iff for each term ¢ and all a-classes
% Cy

Ciy X -+ xCj

in

there exist equivalence relations Ej on Cj, such that for all x,y, € C;, ,

ey, o oyxn) =tY1, .- yn) <= (z1,91) € E1,...,(Tn,yn) € En.

It follows that such a term action cannot depend on more than logy(|Cj,|) of its variables; in
HSP (Ao‘b), this means that the basic operation t{l_

log,(|Ci, |)-max; K; variables. Since there are only finitely many equations using this many variables,

4, can only depend essentially on at most

and since HSP (A“b) is axiomatized by the subset of these which are true in A®”, we are done. [
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CHAPTER VII
ARITY BOUNDS IN HSP (A”)

This chapter is devoted to the proof of Theorem D. Most of the technical work is done by the

following theorem, whose proof will occupy the first two sections:

Theorem VII.1. Let A be a finite algebra in a variety where every strongly-solvable congruence

is strongly-abelian. Let o be the strongly-solvable radical of A,

Cil X oo X Cin —t> CZ (VH.l.l)
be any o-sorted term operation, and let K;, be the greatest arity of a o-sorted decomposition term

on Cy,. If the map in (VIL.1.1) depends essentially on more than K;, variables, then the class of
bipartite graphs interprets semantically into HSP (A"b).

The construction and proof that follows is based on a construction first developed by Matt
Valeriote for his thesis, and subsequently used in [MV89] and [HV91].

VII-A. Preparatory lemmas

In this section, let A be a fixed finite algebra satisfying the hypotheses of Theorem VIL.1. As
before, we choose a fixed enumeration Cq,...,C )y of the o-classes. Fix o-sorted decomposition

terms

~ K;
di(vl,...,UKi):Di(vl,...,’l)](i,a):Cl- —>Cz
of maximal arity.

Proposition VIL2. The algebra A% is essentially unary if and only if every o-sorted term oper-

ation

t

Ci1 X oo xCy = Cz'o (VII.2.1)

in

depends on at most K;, variables.

Proof. We prove each contrapositive.
(=): Let the action of ¢t(v1, ..., vk, +1,...) on the box in Equation (VIL.2.1) depend essentially

on at least the first K;, + 1 variables. Choose a witnessing assignment

t(a,ba, ..., by) #t(d,ba, ..., by)

in the first variable: then for some 1 < 5 < Kj,

t(a, bg, PN ,bn) 7éj t(a', bz, PN ,bn)

57



where

)
z? y? , ,
r~jy <= = _,y= _ and a2/ =y’ (VIL.2.1)
.ﬁUK yK

For this j, the term tg1~~-z‘n depends on one of the variables in its first column. Similarly, for each

of the variables v, ... s UK, +1 One of the terms t{l,_in depends on a variable in the corresponding
column. Now use the pigeonhole principle to get one of the ¢; , depending on at least two
variables.

(=):

Claim VII.2.2. If tgl“'in depends in A on the variable in column ¢ and row r, then in A the
operation

di, (yl,...,yj_l,t(dil (m%,...,xl 1) yee s di, (x}“...,:cn >> ,...,yKiO)

depends on . (as well as on each of the ys).

To see this, pick a witnessing package

1 1 1 1 1 1
bl bbb b) bl by oo b

; b oo b2 ; b3 b b2
By : : : 7 by : / :
. . a . . . a .

K; K; i K; K i

byt by e b byt by bhn

Upstairs in A this becomes

t(b1y ooyl by) g t(by, ... d . by)

(see Equation VII.2.1) which is what we need. vir2.2
Now, let s be any term of L?” which depends in A% on two of its variables. Without loss of

enerality, we may take s to be equal to ¢/ since identification of variables can never increase
} 11

i)

essential arity. Let s depend on v], UZ,, ; then the term

di, <y1,...,yj,1,t<di1 (m%,...,xl 1) ooy di (m}l,...,xn >> ,...,yKiO)

depends on all the y variables and z,, 337;,/ O
Lemma VIL.3. Let t(vi,ve,...,v,) be an L% -term.
(1) If the formula t(vi,vi,vs,...,vy) = v1 is well-formed and holds universally in A% then t is

essentially unary in A%,
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(2) If for some terms si(v1,va,...), the formula
t(s51(7), s2(V), ..., s, (V) = 01

is well-formed and holds universally in A (in which case we call t right-invertible) then t is

essentially unary in A.

Proof. (1) For any ys3, 5, .., Yn, Yy, in the appropriate sorts, the ranges of the polynomials
t(”la”?a?j)) t(’Ul,’Ug,y,)

are not disjoint. Since A is strongly-abelian, all such polynomials must in fact be equal.

Let ¢ be a specialization of sfm._, for some term s(x1,x2,...) in L. Since v, ve have the same
sort as t, we may as well assume that v, represents the j coordinate of x1, and similarly for

v9. The operation

9(?!173/27 e ,jj_l,flfl,(EQ, s 73/j+17- . '7yKiO)

dio(y17y27 <o Y1, S(xla zg,.. -)7 Yj+1y--- 7yKZ-O)
then depends only on the variables shown (i.e. not on x3,...) as a function on

CioX--'XCiOXOiOXCZ'OXCiSX"'XCiZXOiOX"'XOiO—)CZ'O
—_— —_—

j—1 n—j

and is idempotent on the variables in sort (ig, j). Hence A has a o-sorted term

g(?/h cee 7yj*1axlal‘25yj+1v ce. 7ZUKZ»O)

which is an idempotent operation on Cj;, and depends on all the y;. By maximality this
operation cannot depend on both x; and x9, implying that ¢ did not depend on both v; and

v9 to begin with.

(2) Let vi,..., 0" be variables of the first input sort of s. By part (1), the term

t(s1(vi,va,...),52(V1,v2,...), ., Sp_1(v], V2. ..), 80 (U], v2,...))
depends on none of vy, ..., v, and on only one of v}, v?. Proceeding inductively, we see that
c1 2 n _ 1 2 n
t(vy,v1, .., 07 vg, ) = t(s1(vy,v2, .. L), S2(VT, V2, )y ey SR (VT V2,4 L)
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depends on just one variable, say v, and in fact

£(1 2 n 1
t( 1,'1)17...,'01,'1)2,...):'1)1.

We claim that ¢ depends only on its first variable. To see this, let ai,az,db, ..., an,al, b be

any elements of the appropriate sorts. Define

u=t(a,az,...,an)
o =t(ay,dy,... al)
g2 = s2(a2, b)

q/2 = 82((1/2, g)

q’:l = Sn(a;w b)

Then since the ranges of t(v1,as, ..., ay,) and t(v1,q, . .., q,) both contain u, these two poly-

nomials must be equal; likewise the polynomials ¢(v1,d},...,al) and t(v1,¢5,...,q,). But

=,

w=t(s1(u,0), G2, qn) = t(s1(w, 0), Gy - . .. )
\
t(UlaQQ7 .. aQn> = t(vhq,Qa oo 7q;L)

which shows that

t(UbaZ?' . 'aan) = t(vlqua . 7%1)
= t(vla(Iéa . 7(];1)

=t(vy,ab,...,a,)

Since ay, aj, were arbitrary, we are done.

O]

Lemma VIL4. If A% is not essentially unary, then there is an L7-term depending essentially in

A% on at least two variables and not left-invertible at either.

Proof. We show how to take a term depending essentially on v, v and invertible at v1, and produce
a new term depending essentially on vy and at another variable vy (possibly of a different sort than
v1) and not invertible at vg. We will then show that if we started with a term which was not
left-invertible at vy, then the new term we construct still has this property.

Assume that t(vy,ve,...,v,) depends essentially on v; and vg, and that

S(t(v1, .y Vn), Vptl,--.) = V1 (VIL.4.1)
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The same logic used in part (1) of Lemma VII.3 guarantees that s cannot depend on any variable
except the first, so we will write s(z) as if it were a unary term.
Let

f(vo, V2, ..., Un) = t(s(vg),v2, ..., Up)

Since s maps the output sort of ¢ onto the sort of v in A°”, this new term # must depend essentially

on vy and vs.
Claim VII.4.2. ¢ is not left-invertible at vg.

Suppose elsewise: let

r(f(vo,vg, cey ) = Vg

Define another term

q(vo, vo, vy, W) = t(f(vo, Vo, W), vh, W)

(where W/ = vs3, ..., v,). Then on the one hand

t(vg, va, W) = 7(t(t(vo, vo, T), vy, 1))

= r(q(vo, v2, vy, W)
so ¢ must depend essentially on vo. But on the other hand

q(vo, v2, vy, W) = t f(vo,vg,zﬁ),vé,tﬁ)

which does not depend on vs. A vira.2
Lastly, we must show that if  were left-invertible at vy then ¢ would already have been. This

is not hard: suppose
vy = ro(t(vo, va, . .., vn)) = 7(t(s(vg), vay . .., Up))
Again using the logic of part (1) of lemma VIIL.3, the term
r(t(s(vo), v, ..., vn))

can only depend on vg; since by Equation (VIL.4.1), v; € ran(s) (considered as elements of the free

algebra FV(Agb)(vo, v1,v2,...)), we must have that ro inverts ¢ as well. O

Construction VIL.5. Let X be any sorted family of generators for a free algebra F = F(X) in
V(A?). Let fy be an arbitrary fixed element of F', and let F/ = F(X U {z}), where z is a new free
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generator of the same sort as fj.

Generate a congruence 6 € Con(F’) from all pairs

(t(fo, @), t(2, 1))

such that @ € F and t(vo, ¥) is not left-invertible at vg. (Observe that if a term g € F' occurs as the
second member t(z, @) of such a pair, by freeness we get that ¢t does not depend on its first variable,

so that the pair is in fact trivial.)

Lemma VIL.6. Let F,F', and 0 be as in Construction VIL5. If a € F and a =4 b, then either

a=">b or (a,b) is a generating pair.

Proof. Suppose we have basic nontrivial #-links a—c—b, where

(a,c) = (t1(fo, u1),t1(2, u1))
Case 1:
(¢, b) = (pa(t2(fo, t2)), p2(ta(z, u2)))

where pa(vo) = ga(v, 2, W) € Poly(A?") for some terms g, € F.
We have

c=ti1(z, 1) = g2(ta(fo, U2), 2, W2)

and since z is a free generator, we may substitute any term for z in the above equation. In particular,

a = t1(fo, U1) = g2(t2(fo, U2), fo, Wa)
b= g2(t2(z,11’2),z,w2) (VH.G.l)

We will be done with Case 1 if we can establish

Claim VII.6.2. go(ta(vo,U2), vo, W2) is not left-invertible at vy.

Suppose the contrary, say
7(g2(t2(vo, t2), vo, W2)) = vo (VIL6.3)

By Lemma VII.3, the term

r(g2(t2(vo, Ua), v1, Wa))

must depend only on vy or v1, and because of Equation (VII.6.3) must project to the active variable.
Moreover, it cannot be vy, since then this would be a left-inversion of t3(vg, @W2). But if v; were the

active variable, we would have

v1 = 1(g2(t2(vo, U2), v1,W2)) = 1(g2(t2(fo, U2), v1,W2)) = 7(t1(v1,U1))

contradicting our assumption that t; (v, @) was not invertible. 4 viLe.2
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Now Equation (VII.6.1) shows that (a,b) is a generating pair.

Case 2: As before,
(a,c) = (t1(fo, 1), t1(2, 1))

but now
(¢, b) = (p2(t2(z, @), p2(t2(fo, U2)))

with ps a polynomial as before. Since

—

CcC = tl(z,ul) = gQ(tQ(Z, 62), Z, 1172)

and z is a free generator, the same equation holds under any substitution for z:

a = t1(fo, 1) = g2(t2(fo, U2), fo,W2)

—

b = go(t2(fo, t2), z, W)

As before, the following claim suffices:
Claim VII.6.4. go(t2(fo,U2),vo,W2) is not left-invertible at vy.
If it were, so
7(g2(t2(fo, U2), vo, Wa)) = vo

then the range of this polynomial contains the whole sort of fy. In particular,

7(c) € ran (r(g2(ta(2, U2), ®,wa))) Nran (r(ga(t2(fo, Ua), ®, w2)))

By strong abelianness, the two polynomials in the above equation should be equal, contradicting

our original assumptions. AviL6.4
O]

Proposition VIL.7. Let F, ¥, and 6 be as in Construction VIL5. Then z is isolated (mod 6).

Proof. Let {z,z} = {p(t(fo,%)),p(t(z,1))} be a basic #-pair, where p(vg) = g(vo, z, W) as in the
previous lemma.

First suppose
z = p(t(z, 1)) = g(t(z, @), z,0)

Then by Lemma VIL.3, (g(t(vo, @), v1, %) depends only on one variable, either vy or v;. Moreover,
vp is not a possibility, since then ¢ would be left-invertible. We conclude that g(t(vo, @), v1, W) = v;
throughout HSP (A?).

Next suppose

z = p(t(fo, @) = g(t(fo,u), z, W)
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Then g(t(vo, @), v1, W) is right-invertible; invoking Lemma VII.3 again, this term is essentially unary,

and since fy € I’ and z is not, the dependency must be on wvq; hence
g(t(U07 ﬁ)7 U1, QB) =

is valid in HSP (A).

In either case, we conclude that z = x. O

The content of the previous two lemmas is that, for F, F’, fo, and 6 defined in this way, and for
C = F’/0, we have that F is an isomorphic substructure of C, and fy and z are indistinguishable
by the action of non-left-invertible terms t(e, @) taken from F.

Recall that since A%’ is strongly-abelian, there is an upper bound on the essential arity of terms
over this algebra. (For example, |A| - max; K; would work.) Let T be a finite set of L?” terms such
that every term operation of A is given (up to renaming of variables) by one of the terms in 7'

For each sort (i, j), let Ny; ;y C T be the set of all terms t(vo, v1,...) such that vo has sort (i, j)

and t is not left-invertible at vg. Then the relations

a gy b <= /\ Vi t(a, @) = t(b, U)
tEN; 5

together comprise a definable equivalence relation on any M € HSP (A”b). We will usually write
ig)

It is clear from the definition that a o< b in a product [] .y B, if and only if a® o< b” in each
stalk.

a « b instead of a o

Proposition VIL.8. If s(vg,v1,...,v,) is a right-invertible term depending only on vy, then for any
M € HSP (A"b), anya x b€ M, and any x1,...,x, € M of the appropriate sorts, s(a,x1,...Ty) x

s(byx1,...2p).

Proof. Say the sort of vy is (i, 7). Let
s(to(y,2),v1,...,v0n) =y
and let t(vo, ..., ve) € Ny 5. It suffices to show that
t(5(v0, -+, Vn), Vnt1, -+, Vnye) € Ny jy

too.

Suppose otherwise: then for some essentially unary term r(vp,...) we have

r(t(5(V0, . ., V), Unats -+ s Unie)) = Vo
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Then

tO(ya 5) = T(t(s(t()(yv Z)v s 7”71)7 Un+1,--- 7vn+f))
= T(t(ya Un+1,--- 7vn+€))
y = s(to(y, 2),v1,...,05)
= S(T(t(yu Un+1,--- 7vn+€))7 V1, 71}77,)
contradicting our assumption that ¢ was not left-invertible at its first variable. O

VII-B. Proof of Theorem D

We are now ready to prove Theorem VII.1.

Proof. Let A be a finite algebra with strongly-solvable radical ¢ such that every strongly-solvable
congruence in HSP (A) is strongly-abelian, and suppose that A’ is not essentially unary. By
Lemma VII.4, we may fix a term ¢(v1,...,vy) depending essentially on v1, vy but not left-invertible
at either. Let X be a sorted collection of free generators: one w; ; for each sort (i,j), as well as

two generators ag, a1 of the sort of v1 and two more by, by of the sort of vs. Let

0 = 01,02, B i) € Pob(F(X))
and define elements

0= agp * bo

1= ap * bl

2 =a1 * by

3= ap * b1

(These elements are all distinct since * depends on both variables.) Let (ig, jo) be the type of these
four elements, and let C = F’'/6, where F’ and 6 are built according to Construction VIL5, with 0
playing the role of fy. As we remarked before, F < C.

We first observe that, by construction, for any #(vo, ..., vn) € N j,) and any @ € F,
C Et0,7) =t(z,u)
Since C is strongly-abelian, it follows that the polynomials ¢(0,e) and ¢(z, e) are equal: that is,
CE0xz.
Claim VII.1.1. {0,1,2,3} are pairwise x-inequivalent.

We will show that 0 ¢¢ 1; the remaining cases are similar.

65



Suppose for the sake of contradiction that 0 oc 1. Observe that 0 o< 1 in F also.
Subclaim VII.1.1a. Under the hypothesis that 0 o« 1, 3 is isolated modulo 8 = Cgg((0,1)).

To see this, let 3 € {g(0, %), g(1, %)} for some term g. Then we have
3=uayxb; = g(ag* b, W)
for b either by or by; since ag appears on the right but not the right and F is free,
g(ag x b, @) = g(ay * b, @)

Thus the polynomial is not injective on (ig, jo), so g(vo, @) cannot be left-invertible, and hence
belongs to N iy-
Our assumption that 0 o< 1 now forces ¢g(0, @) to be equal to g(1, d). —VIL11a

In particular, 2 #g 3. But then

ag * by =g ag * by
but
ay x by #g a1 * by

so [ is not abelian. This is a contradiction; the remaining five cases are proved analogously. vi1.1.1

Our plan is to semantically interpret the class of bipartite graphs without isolated vertices into
HSP (A""). (It is well known that the theory of bipartite graphs is computably inseparable from
the set of sentences false in some finite bipartite graph.) Our strategy will be to define an algebra
D(G) for each graph G, and then to show that certain relations are uniformly first-order definable
in these algebras. (Here “uniformly” means that the respective relations are defined via the same
first-order formulas for all D(G); the subsets defined by these formulas in algebras in HSP (A" b)
but not of the form D(G) may be quite strange and bear no resemblance to the relations we intend.)

For us, a bipartite graph will be a two-sorted structure G = <RG, BE . EG>, where E has type
signature (R, B).

Construction VIL.9. Let G be a bipartite graph. We define a subpower D = D(G) < C! as
follows: the index set T' = R® LI B® LI {&%, #}, and D is generated by all points

Ly = T|p x e X)
Xv = A1)y ® Q0 |else € RG)
v € B)

e = (v,w) € E®)
e = (v,w) € E°)

Xe, o = 2\1; D 1|w D ) D O|else

(
(v
Xv = b1}y © bojelse (
(
Xeh =2 @l ® 20 ©Ojee
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We let

Xr = {xv:v € R®}
X5 = {xv:v€G®}
XE = {Xe,-YnXe,Q e ¢ EG}

By abuse of notation, X will still denote the set of diagonal generators ¢,. We will suppose that
we have constant symbols for all the ¢, so that X (and hence F, the subalgebra generated by X)
is a uniformly definable subset of D.

Note that D is not quite a diagonal subpower; it contains all diagonal elements from F, but
none of those from C\ F.

Claim VII.1.2. If for some term ¢ and elements X of D, #(xy,...,x,) is equal to one of the

non-diagonal generators, then ¢ is right-invertible (and hence essentially unary).

Suppose first that t(x1,...,%X,) = xuv € Xgr. Then

ap = xy =t(zy,...,z;)

and all the elements in this equality belong to F'. Since F is free, this is precisely the statement
that t is right-invertible.

The case where v is a blue vertex is the same.

Next let t(x1,...,Xp) = Xc,a- Then

z = (XG,J-).‘ = t<x.1'.7 SR x#)

so that in ¥, 2 =g t(y1,...,yn) for yx/0 = :L‘;: By Proposition VIL.7,

Hyr, - yk) = 2

once again showing that t is right-invertible. Hvirie
The set NRINV C D of all x such that

x is neither diagonal nor in the image of any term which is not right-invertible.

is uniformly first-order, and we have just shown that every off-diagonal generator lies in this set.
While it would be nice if this were actually the set of off-diagonal generators, this might be too
much to ask.

To get around this, define z < y in D if for some essentially unary term t(vp,...) we have
x = tP(y,...). Then < is a definable preorder, and its associated partial order ~ is of course

definable too, as is the property of being in a maximal ~-equivalence class.

Claim VII.1.3. The map x — x/ ~ is a bijection of off-diagonal generators to <-maximal ~-

classes containing a member of NRINV.
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To prove this, we must first show that no two distinct off-diagonal generators are <-related.
This is done by exhaustive case analysis; none of the cases are hard, but there are a lot of them.
We show two, and leave the rest to the skeptic.

For our first model case, suppose v is a red vertex and x, < X, & for some e. Then for some

essentially unary term t(vp,...),

Xv = t(Xe,uYn)
a0 = (xo)® =t ((Xe,.,,)* . ) = 1(0,...) = t(ag * b, ...)

Since ag, by were free generators, this would imply that the operation vy * vy is left-invertible at vy,
a contradiction.

Next suppose X¢ & < Xv».- Then

Xed = t(Xvs - - )
o= (ea* =t ()t ) e F

a contradiction. The rest of the cases are handled similarly.

So we have that if we have generators x; < X9 then x; = x3. Now: suppose that y € NRINV.
We have y = t(xy,...,X,) for some term ¢ and some generators x;. But by assumption, ¢ is
right-invertible, hence depends only on one variable (say the first). In other words y < x;. Hence
every maximal ~-class containing a member of NRINV contains a generator.

Lastly, if x¢ is an off-diagonal generator and xgy € NRINV, then x¢ <y < x; for some generator
X1. By the previous part, xo = x;. This shows that the ~-class of every off-diagonal generator is
maximal. mAGIRE:

Let GEN be the set of all elements of D ~-equivalent to an off-diagonal generator. As we have

just seen, this set is uniformly definable: y € GEN if and only if
y € NRINV and for all y’ e NRINV, y <y’ —y' <y.

We want to be able to distinguish between edge-type and vertex-type generators. To do this,
first observe that for any edge e, x¢ & X X¢ & since the relation holds in every factor. This prompts
us to set EDGEGEN to be the subset of GEN consisting of all x such that

There exist X',y € GEN with x ~ x/, x £y, and X' xx y.

This set is clearly definable.

Claim VII.1.4. For y € GEN, y € EDGEGEN if and only if the (unique) generator in y/ ~ has
edge type.

By construction, each x. 4 and each x.a belong to EDGEGEN. Also, EDGEGEN is clearly a

union of ~-classes.
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Hence it suffices to show that y, ¢ EDGEGEN for any vertex v. Suppose this were false: then
we would have elements x ~ y, and y +¢ x, with x oc y. Let v be the generator ~-equivalent to y.

Since x ~ xy, they are connected by essentially unary terms

X:fl(Xv) Xv:fQ(x)

and likewise

y=a() v=90()

Since all four of these elements are in GEN, the terms fi, gr must in fact be right-invertible. By
Proposition VII.8,

v =92(y) < g2(x) = g2 © f1(Xv)

Note that go o f1 is right-invertible.
Case 1: v = xy, for some w # v.

Without loss of generality, w is a red vertex. We have x’ = X;)Y', SO

ao=7*ocg20 i) =20 A(Y) x 1 =
which is impossible.
Case 2: v = X & for some edge. Then e contains an endpoint w # v, which we may suppose
again to be red.
Since x¥ = x¥,

2=9"xgao fi(x¥) = g20 ilx®) xcy* =z

But this is likewise impossible. A VIL1.4
With this in hand, we know that the set VERTEXGEN of all x € GEN which are not in EDGEGEN
is (uniformly first-order) definable. This set is, of course, better known as the set of all x which
are ~-equivalent to one of the x,.
Lastly, let EDGE(z,y) be a formula asserting that

x € VERTEXGEN and y € VERTEXGEN and there exist 2’ ~ x, y ~ y and w €
EDGEGEN such that w o< 2’ * ¢/

Claim VIIL.1.5. For x,y € VERTEXGEN, D = EDGE(x,y) iff there exists an edge e = {v, w} such
that x ~ x, and y ~ xq-
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(«<=): If the red vertex v has an edge to the blue vertex w, then

Xo * Xw = (@10 ® aojeise) * (D1)w @ bojelse)
= ay * by, ® ag * b1}y, D ag * bojelse
=2, @ 11y B Ojeree
o 2jy @ Ly ® 24 D Ojeise

= Xe.b

(=): Assume EDGE(x,y). Fix

X'~ X~ Xy
Y~y ~ X

/ /
X kY X W~ Xed

(The proof is the same if w ~ x. a.)

Since all these points are members of GEN, we may choose right-invertible terms so that

Xed = f(W) X' =g(xo) ¥ =h(xw)

Then f is right-invertible and

fw) oc f(x'*y") = f(9(xv) * h(xw))

We will be done if we can show that e = (v, w).
If this were false, we could choose an endpoint u € e\ {v,w}, which we may suppose is red.
Then

Xi=x*=a =x*=0
SO
2=xcqa=f(w") o< flg(xy)*h(xz))
= Flg0x®) # h(x®)) o fwh) = x¥, =2
a contradiction. Aviris

Observe that since G has no isolated vertices, the subsets VERTEXRED and VERTEXBLUE
of VERTEXGEN consisting of those x which are ~-equivalent to a red (resp. a blue) vertex are
definable using the EDGE relation.

The foregoing shows that

(VERTEXRED/ ~, VERTEXBLUE/ ~ ; EDGE)
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is isomorphic to our original bipartite graph G; since all the relations in this isomorphism are

uniformly definable, we have effected a semantic embedding of bipartite graphs into HSP (A"b). O

Proof of Theorem D. Theorem VII.1 shows that, if A has a o-sorted term operation depending on
too many variables, then HSP (A"b) is hereditarily finitely undecidable. But we have already seen
in Lemma VI.12 that HSP (A"I’) semantically embeds into HSP (A). Since semantic interpretability

is transitive, we are done. O
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CHAPTER VIII
NEXT STEPS

Pawel Idziak is fond of saying that if you want to prove something is undecidable, use local
structure; if you want decidability, think global. We have followed the first part of this maxim in this
paper, by compressing “bad behavior” down to minimal sets and finding small sets of parameters
which ensure that the propagation of the behavior through subpower generation is well-controlled.

However, all the results in this paper are, in a sense, negative; we do not provide any sufficient
conditions guaranteeing that HSPg, (A) has decidable theory. A very few such conditions exist in
the literature; as mentioned, the most comprehensive is that given by Idziak in [Idz97], which not
only provides sufficient conditions, but characterizes finitely-decidable congruence-modular varieties
up to the (still wide-open) problem of determining for which finite rings R the variety of R-modules
is finitely-decidable. In particular, the construction provides an effective procedure for answering
the finite decidability problem for HSPg, (A) so long as all congruence covers in this prevariety
have the boolean type.

The other broad sufficient condition is provided by Valeriote and McKenzie; it asserts that
a strongly-abelian locally-finite variety is either semantically bi-interpretable with a multi-sorted
unary variety whose free algebra is chain-preordered by divisibility, or else (by a variant of the
construction in Chapter VII) admits a semantic interpretation of graphs. The latter theorem was
generalized in [HV91] to remove the hypothesis of local-finiteness; their proof allows the variety to
be multi-sorted.

In the case of decidable varieties, [MV89, Chapter 13] shows that an ordinary single-sorted
variety which is abelian and which does not decompose as the varietal product of affine and strongly-
abelian subvarieties must be undecidable and finitely undecidable. Hart, Starchenko and Valeriote
subsequently pushed the model-theoretic method further in [HSV94], which showed that for any
variety V, either V decomposes as the varietal product of an affine subvariety and a strongly-abelian
subvariety, or V is large in the sense of stability theory: it must have continuously many countable
models and fail to be superstable.

These two last-mentioned proofs have radically different character from each other; and my
immediate project is to understand the details of each, and determine if either can be adapted (or
an entirely new method developed) to show the following:

Suppose we consider finite algebras A such that the solvable radical o = Rad(A) is comparable
to every congruence of A. (This is not as restrictive as it sounds; one can show that in every variety
which we might hope to show is finitely-decidable, every algebra is residually in this class.) Let
01,09 be respectively the least congruence below Rad(A) such that the included interval consists

of only unary-type (resp. affine-type) covers.
Problem 1. (1) Show that A is the direct product (in the sense of L7) of (A /o1)? and (A /02)°.

(2) Show that HSP (A7) is the varietal product of HSP ((A/o1)?) and HSP ((A/02)?).
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If this is done, it should become manageable to establish necessary and sufficient conditions,
as in [Idz97], for a computable reduction of Th (V) to the theory of some modules obtainable in a
nice way from the affine part of the variety. (This is accomplished, Pawel would say, by thinking
globally and very hard.)

This would do for finitely-generated varieties. The corresponding problems for locally-finite
varieties which are not finitely-generated may not be much harder, though there are open questions

here which sound like they ought to be easy, and are not:

Problem 2. It is known that every finitely-generated discriminator variety is decidable. Charac-

terize the decidability of locally-finite discriminator varieties.

Lastly, in all cases that I am aware of, the theory of a locally-finite variety is either computable

or equivalent to the Halting Problem.

Problem 3. (1) Does there exist a locally-finite variety whose first-order theory is undecidable

but properly Turing-below (7

(2) Does there exist a locally-finite variety whose set of finitely-refuted sentences is undecidable

but properly Turing-below §/?
(3) Given an arbitrary c.e. Turing degree D, does there exist a variety V such that Th (V) =p D?

(4) Given an arbitrary IT; Turing degree D, does there exist a variety V such that Thg, (V) =7 D?
It is, naturally, of interest to know if the latter two can be answered affirmatively if we require

the language of V to be finite.
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