
Autonomous Vehicle End-to-End Reinforcement Learning Model and the Effects of

Image Segmentation on Model Quality

By

Grant Michael Fennessy

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May 10th, 2019

Nashville, Tennessee

Approved:

Xenofon Koutsoukos, Ph.D.

Gautam Biswas, Ph.D.



ABSTRACT

Autonomous driving has the potential not only to transform people’s lives, but also save

them. Fully understanding state of the art autonomous driving architectures, however, re-

quires a wide breadth of knowledge on available sensors, perception, image segmentation,

localization, path planning, neural networks, convolution, and more. This thesis proposes

a simple end-to-end architecture that has promising behavioral results. Two novel tech-

niques are also introduced: a new exploration algorithm that seeks to produce more robust

training behaviors over simple linear decay models, and a new data splitting technique that

splits a layer into multiple semantically meaningful layers in an attempt to improve feature

recognition by a convolutional neural network. A series of end-to-end models are trained

with access to either a ground truth semantic segmentation perceptor or an image camera

perceptor with a semantic segmentation predictor model. Models are evaluated and re-

sults are compared to see which approach is superior. The perceptor configuration on the

trained models is switched and evaluation is run again to see how the it reacts to a change

in perceptor quality. This thesis hypothesizes that models should be trained on ground truth

semantic segmentation data, even if the trained model will ultimately be evaluated with a

semantic segmenter model, as the model quality should prove superior and training time

can be reduced substantially.

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 End-to-End Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Exploration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Vehicle Perceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Advanced Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Active Perceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Deep-Q Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Dueling DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Carla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Simulator Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Simulator Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



4 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Vehicle Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Semantic Segmentation Perceptor . . . . . . . . . . . . . . . . . . . . 29

4.2 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Depth Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Append Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Frame Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Hypothesis and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The Deeplab Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Probabilistic Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 The Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Depth Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Exploration Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Deeplab Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Post-Train Perception Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 57

6.6 Model Behavior Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

iv



LIST OF TABLES

Table Page

6.1 Results: No Depth Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Results: Depth Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Results: Linear Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Results: Probabilistic Exploration . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Results: Ground Truth Perceptor . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Results: Deeplab Perceptor . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7 Results: Ground Truth to Deeplab Perceptor . . . . . . . . . . . . . . . . . 58

6.8 Results: Deeplab to Ground Truth Perceptor . . . . . . . . . . . . . . . . . 58

6.9 Results: Best Model Extra Training . . . . . . . . . . . . . . . . . . . . . . 60

6.10 Results: Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



LIST OF FIGURES

Figure Page

1.1 Vehicle Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Vehicle Sensors Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 DQN Atari Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 DDQN Atari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Understanding CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Carla Urban Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Carla Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Segmentation Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Depth Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Q Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Deeplab Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Depth Splitting Reward Curves . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Depth Splitting Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Exploration Style Reward Curves . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Exploration Type Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Deeplab Reward Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Deeplab Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7 Semantic Segmentation Switch . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



Chapter 1

Introduction

A Utopian world of self driving cars has been promised for years, but always seems an-

other several years away. Research interest has increased steadily over the last decade, in no

small part due to the economic incentives from major technology companies, the require-

ments for entry into the field are incredibly demanding. Assembling an autonomous vehicle

requires a significant amount of knowledge from several fields, along with the mechanical

engineering expertise of actually modifying a vehicle, be it an small radio controlled car or

full sized automobile. Simulators can prevent the need for physical hardware, but the tran-

sition from simulation back into real life work is not always straightforward. This thesis

seeks to introduce several of the key technologies behind autonomous driving, presents a

simple working architecture, then runs a collection of experiments to demonstrate driving

behaviors. During experimentation, a few simple yet novel techniques are presented and

analyzed.

It is difficult to understate the potential value of fully autonomous vehicles. Removing

the human from the loop can save lives, as humans are known to be erratic drivers who

have difficultly paying attention when mobile phones and other distractions are present. A

fleet of vehicles that can remove human drivers from the loop, all while promising a higher

degree of safety, has the potential to dramatically reduce the number of road related deaths

across the world. A secondary benefit to autonomous driving is increased asset utilization.

Most vehicles are only used for a fraction of the day, while a fully autonomous vehicle can

continue to drive all day, likely even providing income for its owner.

Achieving this dream, however, has proven elusive. A driving agent must have a capac-

ity to detect upcoming obstacles, determine exactly what those obstacles are, understand

how fast those obstacles are moving relative to itself, and then use all that information to

1



Figure 1.1: An illustration of what an end-to-end autonomous agent’s inputs and outputs
might look like [1].

turn the steering wheel and apply throttle and brakes. When compounded with handling

navigation, localization, speed limits, traffic lights, and informative signs, it is clear that the

problem space is incredibly large.

Training models to navigate tight urban roadways and intersections is extremely chal-

lenging. Even when many of the complexities are stripped away, such as pedestrian and

other vehicle avoidance, navigation, and traffic rules, the simple act of remaining within

the lane is easier said than done. This thesis aims to address this challenge by introducing

a simple end-to-end architecture that produces modest driving behaviors. Specifically, the

goal of the autonomous agent is to drive as close to 25km/hr as possible without leaving

narrow urban roads. This requires navigating sharp turns, detecting and understanding lane

markings, and making sense of T intersections.

This architecture is then used as a platform to test two novel techniques: a new explo-

ration algorithm that seeks to produce more robust training behaviors over simple linear

decay models, and a new data splitting technique that splits a layer into multiple seman-

tically meaningful layers in an attempt to improve feature recognition by a convolutional

neural network (CNN).

A comparative study is then launched which focuses on the semantic segmentation per-

ceptor. Two otherwise identical models are trained, where one uses ground truth semantic

2



segmentation, and the other uses Deeplab v3 [2, 3] for semantic segmentation. Each model

is then evaluated while using the other perceptor, emulating either a jump from simula-

tion grade perceptors to real life perceptors, or the improvement in quality of an existing

perceptor.

The proposed architecture is evaluated on how well it can produce the desired driving

behaviors within the allotted training time. The study completes with analysis on where

the architecture succeeded, how the proposed techniques helped reduce training time, and

how the architecture can be augmented moving forward.

In all, the following hypotheses are evaluated:

• Does probabilistic exploration yield better models over linear decay exploration?

• Does depth splitting yield better models over keeping depth as one layer?

• Does a model train better when using a ground truth segmentation perceptor or

Deeplab v3?

• How well does a trained model function if its segmentation perceptor is swapped

out?

A trained model is produced that is capable of driving around a small town within the

Carla simulator [4] for 60km at 16km/hr without colliding with any objects, proving that a

relatively simple reinforcement learning model is capable of attaining modest driving be-

haviors. Switching the perceptor on the trained model from ground truth to Deeplab yielded

only slight changes in performance. Experiments with other models show that splitting the

depth layer into multiple semantically meaningful layers prior to ingestion into a CNN

has an outsized influence on model quality, increasing attained rewards by from 12.2% to

37.4%. The probabilistic exploration style also yielded model quality improvements, with

rewards growing from 27.1% to 37.4% when switching from linear decay ε-greedy explo-

ration to probabilistic ε-greedy exploration. In all, the proposed architecture proves to be a

simple yet effective approach to slow speed autonomous driving.

3



Chapter 2

Related Work

The available literature for topics related to autonomous vehicles is extensive, espe-

cially considering the necessary underlying technologies. Simulator availability, autonomous

vehicle architectures, common perceptors, desired vehicle behaviors, and studies on explo-

ration vs exploitation are discussed in the following sections.

2.1 Simulators

Regardless of which architecture is selected for the autonomous agent, a vast amount of

data needs to be collected for adequate training. Companies like Tesla, Uber, and Waymo

[5, 6, 7] are making headway, but their datasets are proprietary. And even though some

open source datasets do exist [8, 9], their sensor setup might be completely different from

the desired architecture setup. If the two are not a strong fit, then training on one has no

assurance of being useful on the other. Due to the inherent dangers of a vehicle, most or

all training must happen offline, as any mistakes made by the model in practice can be

expensive or at worst deadly.

Some simulators [4, 10, 11] have been created which allow a custom suite of sensors

to be configured. These simulations tend to be faster than real life, can be widely paral-

lelized for little cost, and completely remove the potential for loss of life if a collision were

to occur. The trade-off is, of course, whether or not the simulators are realistic enough to

pose any reasonable degree of comparison between the simulation and the real world. Post-

processing algorithms have been crafted that attempt to convert the simulation generated

images into ones more representative of real life conditions [12, 13], and some simulators

[4, 11] leverage the powerful Unreal Engine 4 [14] to produce extremely high quality and

realistic images. The end goal is to bring deltas between simulation data and real life data

4



to zero, or at least as close to zero as possible. Even if the simulation to real life crossover

for an individual model is not perfect, these simulators have become powerful enough that

proof of concept models can be trained within them and iterated upon very rapidly, making

them fantastic testing grounds for model architectures.

TORCS [10] is an earlier simulator which focuses on race car driving, allowing simpler

models to learn the importance of staying within lane, controlling speed, and avoiding other

vehicles. DeepDrive [11] switches to single lane roads in a more realistic environment with

significant foliage, altitude changes, and urban background scenery, all adding additional

challenge to visual perception and model requirements. Carla [4], the simulator of choice

for this thesis, is placed within a densely populated urban town, featuring other vehicles,

pedestrians, navigation signs, working traffic lights, two lane roads, and a wide variety of

urban roadside scenery.

Some recent work has been conducted on converting image segmentation data into

life-like full color images [13, 12]. This would allow a simulator to be run which only

outputs image segmentation data, from which highly realistic training data images could

be generated. Others have repurposed simulators as dataset generators [15], using available

simulation data to create images with perfect bounding boxes. This would remove the

necessity of human annotators, thus making truly enormous training datasets plausible.

2.2 End-to-End Architectures

End-to-end autonomous architectures are those which directly take inputs from percep-

tors, then yield the vehicle action. This stands in contrast to more modular approaches,

which may have multiple tasks in series or parallel that culminate in a final action decision.

Having higher modularization is beneficial in that it can be easier to understand and verify,

but is often more complex.

End-to-end approaches to autonomous driving are a bit of wishful thinking at the mo-

ment. Though the potential is certainly there [16, 17, 18], progress is a bit slow due to

5



the extraordinarily high state space of a driving agent. The main problem, however, is

the difficulty of actually proving these models work properly given the seemingly limitless

number of edge cases. Some visualization techniques have been posed to address this issue

[19], but it is far from a solved problem. Given the high levels of safety demanded from

autonomous vehicles, a black box approach is much less likely to be approved than a model

that can be split into distinct and more provable components. This is especially true given

how vulnerable modern deep learning techniques are to attacks [20, 1]. That said, end-to-

end frameworks are significantly easier to implement, and as such act as a fantastic entry

point into autonomous vehicle architectures. Using an end-to-end approach as a baseline,

the model can later be modularized as needed to promote the desired functionality.

If a customized vehicle sensor arrangement is to be used, then reinforcement learning

and/or imitation learning is all but required. Imitation learning is a great tool if a suffi-

ciently skilled human operator is available to record a large number of driving episodes,

as is the case of Tesla, which has a fleet of vehicles driven by human operators every day

[21]. When an assumption is made that a simulator is to be used, which is all but required

for those making their first autonomous vehicle, the utility of imitation learning is a bit less

clear. Many simulators have fairly crude left/right and forward/back controls on the key-

board, which makes driving well fairly difficult even for humans. Reinforcement learning,

assuming a strong reward function can be generated, allows the model to learn entirely on

its own without having to devote the human capital.

Deep-Q networks (DQNs) [22] provide a strong discrete state space tool for predict-

ing which action will maximize rewards at any given step. Since they use CNNs such

as VGG13 [23], DQNs are able to quickly process high resolution sensory data. Dueling

Deep-Q networks (DDQN) [24] expand on this idea by computing advantage functions for

actions instead of just calculating pure action reward values. Due to DDQN’s success with

discrete spaces, such as Atari games, it is used as the model for this thesis.

When more computing resources are available, asynchronous advantage actor-critic

6



(A3C) [25] allows highly parallelized learning across multiple agents. A central critic

function acts as a value estimator which learns to update the policies of independent agents,

each of which can explore different parts of the state space. The best parts of each actor’s

learning are brought into the main algorithm, allowing rapid learning when a large number

of actors are made available. This is the algorithm of choice in the Carla [4] paper, but

due to limited resources for this thesis (all experiments run on a single computer with an

NVIDIA 1080 Ti GPU), the benefits of A3C might not have made themselves apparent.

This thesis seeks to present a simple architecture for someone entering the field for the first

time, so no assumptions can be made about the availability of compute clusters.

Though DDQN is proven to be a powerful approach, it does not have any concept of

time. DRQN [26] reconfigured baseline DQN to include a recurrent neural network (RNN)

[27], which allows input and hidden layer results from previous steps to be factored into the

current step’s predictions. This technique allows an internal memory to be formed that can

keep track of previous events, thus allowing more intelligent decisions to be made. Long-

short term memory cells (LSTMs) [28] are another form of memory that can be inserted

into neural networks. LSTMs allow the model to decide what features should be stored in

memory, and when to leverage that memory. Though the addition of memory to models

can produce more robust predictions, they are much more advanced algorithms and as such

are not recommended for those first entering the field. That said, success has been made by

NVIDIA [17] with an end-to-end model that uses LSTMs in a semi-unsupervised fashion

to learn simple driving actions.

2.2.1 Behaviors

When determining whether or not to use end-to-end learning, it is important to charac-

terize the desired agent behaviors in great detail. Agents that are only required to control

steering on the highway, for example, can more easily be formulated as end-to-end prob-

lems. Given the fairly small action space and by extension behavioral requirements (in

7



this case the only behaviors are to follow the road and maintain a predefined speed), it is

less difficult to visualize and thoroughly evaluate a model [1]. Agents responsible for full

environmental navigation, on the other hand, do not have this same luxury. When a single

model is balancing multiple behaviors and a vast array of inputs, it is nearly impossible to

properly evaluate all edge cases, let alone develop a strong understanding of how the model

actually works.

A level 5 autonomous vehicle has a vast array of behavioral requirements [29]. Beyond

simple lane control, the agent must be able to understand and apply the rules laid out by

road signs, avoid all obstacles, navigate in tight and poorly marked locations like park-

ing garages, leverage navigational aids to travel between two arbitrary points, and obey all

road rules such as traffic lights and stop signs. To attain full level 5 autonomy, the vehi-

cle must have no human in-the-loop requirements whatsoever, even emergency takeover

requirements would reduce the vehicle to level 4 autonomy.

Selecting behavioral requirements is a problem in and of itself, but no researcher enter-

ing the field should expect to address higher level behaviors with their first model. Tesla’s

approach with autopilot [5, 30] is an example of starting with a simpler approach first.

Their original Autopilot was just a traffic aware cruise control based on a neural network,

but was later improved to also support automatic lane change and highway navigation. To

this point, this thesis seeks only to address a very simple behavioral space.

2.2.2 Exploration Techniques

Due to the usage of DDQN within this thesis, it is worth discussing modern literature

around exploration vs exploitation, a key component of reinforcement learning.

One of the most commonly used exploration techniques, due to its ease of implemen-

tation, is ε-greedy exploration [31, 32]. Based on some probability, either the greedy best

action is taken (exploitation) or a random action is taken (exploration). #Exploration [33]

attempts to discretize the state space by creating a hash function that converts the state

8



space into some number of buckets. Frequency of state visitation within each bucket is

counted, and an exploration function is developed that prioritizes less frequently visited

buckets.

Bootstrapped DQN [34] attempts to look a few steps in the future to find states that

demand exploration (known as deep exploration), then takes a series of necessary (or at

least assumed necessary) actions to get to that point. Allowing exploration to take place

across multiple time steps is very important, especially as behaviors become increasingly

more complex. An autonomous vehicle operating at a high frame rate, for example, has less

capacity to ”explore” the state space unless it can take several premeditated actions, such

as turning left for several steps in a row. A variant of the Bellman equation that promotes

uncertainty [35] is another example of this type of exploration which can look several steps

into the future for exploration opportunities.

2.3 Vehicle Perceptors

Being able to observe and identify objects in the world is pivotal to an autonomous

vehicle agent. Neural networks have taken the research on object identification by storm,

largely starting with the AlexNet [36] paper, which introduced a CNN to identify what

category of object is in a given image. VGG [23] extends the size of the network with

a repeating convolution+pooling framework that slowly reduces down to a couple fully

connected layers. Deeper models can be hard to train, however, an issue addressed by

ResNet [37], which uses a residual function to pass gradients across layer groupings to

reduce the likelihood that gradients will trend towards zero. With this technique, ResNet

models could be deeper than traditional network architectures without sacrificing learning.

Inception [38] changes this approach, suggesting a wider instead of deeper architecture

where each layer would run multiple sizes of convolution and combine the results.

Many of these algorithms are trained against the ImageNet datasets [36] to allow clear

comparisons. There are a vast array of CNN architectures to choose from these days, but

9



emulating VGG [23] is a fantastic starting place that allows a better understanding of the

mechanics of convolution, which is why a VGG-style approach is used in this thesis.

When multiple objects are in the image, and each object needs to be individually cate-

gorized and located within the image, more advanced algorithms such as YOLO [39] must

be used. Many of these algorithms rely on anchor points that propose regions, which often

results in any given object being identified multiple times, or regions being proposed that

contain multiple objects, only one of which ends up being identified.

A more robust way of identifying objects within an image is to fully categorize every

pixel in a process known as semantic segmentation. An autonomous driving agent that

knows exactly how the road is laid out before it, for example, does not need to bother

processing the different colors of black and gray on the asphalt, and can instead focus on

the more abstract road shape. By leveraging an encoder-decoder configuration, seman-

tic segmentation can use pre-trained encoder models from object identification tasks to

forgo a significant portion of the training effort, as with SegNet’s [40] use of pre-trained

VGG16 models [23]. SegNet maps the max pooling indices from the encoder over to the

decoder, allowing the upsampling to more closely match the underlying features. The origi-

nal Deeplab [2] paper was able to surpass SegNet’s performance with the addition of atrous

rates at the end of the pipeline, designed to expand the field of view when constructing the

final predictions. The latest Deeplab v3 [3] offers one of the best semantic segmentation

accuracy rates available, applying cascading atrous pyramids to allow contextual informa-

tion to be more easily processed. SqueezeDet [41] is a semantic segmentation approach

written explicitly for autonomous driving and tested on the popular KITTI [9] autonomous

driving dataset, which attempted to have the CNN perform both image classification and

boundary box detection.

Given the importance of being able to run image segmentation on autonomous vehi-

cles, but with a very limited amount of resources (both power and chip capability due to

cost), a new generation of segmentation algorithms is on the rise that makes small sacri-

10



fices to accuracy in exchange for large reductions in processing time and energy. Multinet

[42], for example, compresses semantic segmentation and object identification into a sin-

gle architecture. SqueezeNet [43] is very small DNN with the sole purpose of being nearly

as efficient as modern CNNs (such as AlexNet [36]), but significantly smaller. A modi-

fied version of SqueezeNet [44] was even developed with the express purpose of semantic

segmentation on embedded devices for autonomous vehicles. Compressed networks like

these are important developments, but this thesis chooses to leverage Deeplab since their

implementation is open source.

2.3.1 Advanced Vision

More advanced instance-aware segmentation algorithms [45, 46] can not only identify

the category of a pixel, but can detect the differences between two instances of a given

category. In this way, multiple vehicles within a scene can be treated independently as

needed. Though these techniques are potentially very useful, they are not considered entry

level algorithms and are thus reserved for future research.

For tasks that require an understanding of the agent’s location within the world (as

is the case with autonomous driving), simultaneous localization and mapping algorithms

(SLAM algorithms) [47, 48] allow the agent to learn its position from nothing more than

a series of images over time. The technique attempts to identify salient features within

an image frame, then correlates the features to the next frame to map how the world has

changed and, in theory, identify the agent’s position within the world. If the agent then

completes a full loop of some small section of the world, the algorithm is able to detect

this and close the loop on the internal model, improving model accuracy. SLAM models

have demonstrated the ability to run in real time [48], which is critical for autonomous

vehicles. These algorithms are outside the scope of this thesis, however, as SLAM requires

additional downstream processing to fully utilize the predicted mapping.

Others still have shown that the relative velocities of objects in an image can be cal-

11



culated, a growing field known as scene flow [49]. With visible object dynamics properly

measured, agents would be more capable of making intelligent decisions about what ob-

jects pose a threat and how to react to them. Neither SLAM-style approaches nor scene

flow is used within this thesis due to the complexities of downstream processing and data

fusion.

2.3.2 Active Perceptors

Other sensors exist on the market beyond cameras. The most widely used secondary

perceptor is LiDAR [51], a portmanteau of light and radar. Unlike vision, which is a passive

sensor, LiDAR actively emits packets of lasers outside of the human visible light spectrum.

These lasers reflects off of distant objects and are picked up by the sensor, which converts

the travel time of the light into a distance measurement for that point. The LiDAR sensor

quickly sweeps across a predefined angle space (such as -140 degrees to +140 degrees) in

a flat line, generating a point cloud of distance measurements for each angle. A 3D version

of LiDAR also exists, which adds a vertical component to the sweep. Though LiDAR is

highly accurate, it is very expensive, and any form of active sensor has a chance to cause

damage to the agent’s surroundings in as-yet unseen ways. For these reasons, and due to

Figure 2.1: Comparisons between common vehicle sensors [50]. Passive visual is far su-
perior in most situations, but is extremely difficult to parse.

12



the complexity of making use of point clouds, LiDAR is not used in this thesis (though it

is supported within Carla [4]).

An alternative (or supplement) to LiDAR is radar [52, 50], which has fairly high acuity

at a short to medium range. By acting on a different wavelength from light, radar has the

advantage of being able to see well even in poor lighting and extreme weather conditions.

Sonar is actually even better than radar, but only works at very short ranges. When de-

signing an autonomous vehicle, it is incredibly important to understand the physics of each

sensor, what wavelengths propagate well in any given environmental conditions, and how a

combination of sensors pointing in the appropriate directions can yield a universally strong

set of inputs for the underlying model.

13



Chapter 3

Background Material

Autonomous driving architectures require many individual components working in tan-

dem. Multiple technologies from broad backgrounds are included in this pipeline, which

requires a fairly wide set of background knowledge. To help the reader better understand

the content of this thesis, this chapter provides a necessary baseline of knowledge on the

following subjects used in the proposed architecture: reinforcement learning, Deep-Q Net-

works [22], convolutional networks, image segmentation, and Carla [4] (the simulator of

choice for this thesis).

3.1 Reinforcement Learning

Reinforcement learning (RL) is conceptually based on Markov Decision Processes

(MDP). Arulkumaran et. al. [32] has an excellent survey of modern reinforcement learn-

ing, and many of the concepts and understanding in this section are drawn in part from that

paper.

A fundamental assumption behind an MDP is that at any time t, the world can be fully

defined as a state st , which exists within a set of all possible states S. The agent can take an

action at upon the world, which is drawn from a set of possible actions A. Transitions can

then be mapped by way of τ(st+1|st ,at), onto a distribution of possible states st+1. What is

integral to the MDP assumption is that τ does not require knowledge of any previous states

to determine the next world state, just the current state and the action taken.

The transition dynamics of the world typically are not known by the agent, so it must

craft a policy π that forms a probability distribution of what state st+1 is most likely to

occur given a state st and an action at . When presented with a specific state, the policy π

can then be used to determine what action to take in order to maximize the quality of state

14



st+1 from the perspective of the agent. But how is this subsequent state quality measured?

State quality manifests itself by way of the reward function R(st ,at ,st+1), which pro-

vides a quantitative value to a transition that just took place. Assuming the goal of the agent

is to maximize a reward, an optimal policy can be defined as π∗ = argmaxπ E[R|π]. Thus

at any given state, the optimal policy π∗ can be used to calculate a probability distribution

of actions. The action with the highest probability, as defined by π∗, can then be greedily

taken every step to maximize short term reward. To factor in long term reward as well, a

discount factor γ ∈ [0,1] can be applied that will measure future rewards potential, such

that R = ∑
T−1
t=0 γ trt+1.

The goal of a reinforcement learning algorithm is to find the optimal policy. A common

policy solving algorithm is known as the value function, which uses a state-value function

V π(s) = E[R|s,π] to measure the rewards potential of any given state. An optimal state-

value function is then defined as V ∗(s) = maxπ V π(s) ∀s ∈ S. Given an optimal state-

value function, the agent can greedily choose actions that will transition into subsequent

states which have the maximum state-value.

Unfortunately, the transition function is not available to RL agents. To circumvent this

issue, a new function known as the state-action-value, or quality function [53], is defined:

Qπ(s,a) = E[R|s,a,π]. Though similar to the state-value function, the quality function

calculates the expected reward for the transition from s given action a, plus all subsequent

rewards collected by following policy π at state st+1 onward.

The state-value function can then be redefined as V π(s) = maxa Qπ(s,a). If the optimal

Qπ is known, then at each state a greedy selection of action a = argmaxa Qπ(s,a) will pro-

duce the highest reward without having to know the reward function or the state transition

mapping. Learning Qπ can be made simple by leveraging the recursive Bellman equation

[54]:

Qπ(st ,at) = Est+1[rt+1 + γQπ(st+1,π(st+1))]

Instead of recursively running the Bellman equation variant of the Q function, an ar-

15



bitrary starting Qπ can be trained against real life data with the state-action-reward-state-

action (SARSA) algorithm [55]:

Qπ(st ,at)← Qπ(st ,at)+αδ

where α is the learning rate, δ =Y −Qπ(st ,at) is the temporal difference (TD) error and Y

is the target defined as Y = rt + γQπ(st+1,at+1). A near-optimal policy can be achieved by

minimizing the TD error δ , which allows actions to be taken greedily each step, as future

rewards earning potential becomes baked in to the policy by way of γ .

Updating the Q function each step based on an action taken by the policy is called on-

policy learning. Q-learning, on the other hand, uses off-policy training, in which the action

a taken each update is not necessarily the action predicted by the policy π . When learning

off-policy, exploration vs exploitation becomes a crucial balance - will the agent seek the

highest rewards, or will it explore for yet unseen greener pastures? A simple exploration vs

exploitation algorithm is ε-greedy, which will take the greedy action with some probability,

otherwise it will take a random action.

3.2 Deep-Q Network

Learning a Q-function for an extremely large state space can require an impossible

amount of compute power. A simple Atari game, for example, has a state space as defined

by its memory capacity of 18× 2563×210×160 [22]. An autonomous vehicle, on the other

hand, exists in an effectively infinite state space, making storage of all possible states for

the Q-function impossible. Deep-Q Networks (DQN) [22] leverage a neural network as the

Q function, compressing the full world state into that which is made available by the obser-

vation space. At each state, observation data is fed into the DQN, and a prediction of the

action which will produce the best future-looking reward is returned. This thesis leverages

a DQN to make predictions against its observations, so it is important to understand the

16



Figure 3.1: DQN learning to play Atari games [22]. Getting the ball into the corner so that
it bounces around on top is a winning strategy.

underlying mechanics of a Deep-Q Network.

A major point of success for DQN is its capacity to compress the state space. DQN was

first demonstrated against an Atari 2600, which has a number of possible states defined by

its RAM capacity: a massive Q table size of 18× 2563×210×160. Instead of mapping all

of those states, most which will never be visited in a given game, DQN instead uses the

observation space as inputs to the network: 210×160 pixel data. DQN can then extrapolate

the internal state value by way of the observation to produce an action prediction.

By using stochastic gradient descent during training, all neurons have a chance to be

updated at any given training event. This procedure means that training against a specific

state has a high likelihood of changing the way the network perceives other states. In

this way, the model is capable of making modest predictions against states it has not yet

observed. The corollary to this learning benefit, however, is the possibility of catastrophic

forgetting [56, 57], where a neural network is vulnerable to forgetting a set of features if

they are not seen across too many training cycles. Balancing these two forces is at the heart

of neural network model design and training.

17



3.2.1 Queues

When using on-policy training, each step is likely to be very similar to the previous

step, which can cause catastrophic forgetting. In a worst case scenario, the network will

never actually converge as it oscillates between behavioral modes. Adding a cyclical buffer

of observations and resultant rewards can help alleviate this issue, a technique known as

experience replay [22, 58]. When training occurs, a batch of recently visited states is ran-

domly sampled from the buffer, increasing the likelihood of data independence. Batching

has the added advantage of allowing multiple states to be trained against at the same time,

reducing overall training time requirements.

It is often the case, however, that a significant amount of the reward comes from a

small percent of the transitions taken. Prioritized experience replay [59] converts the naive

cyclical queue into a priority queue, where experiences that produce large errors can be

prioritized over those that are predicted perfectly. Priority values within the queue are

assigned to pt = |δt |+ ε , where δt is the model error at the state, and ε is a very small

constant to ensure the priority values are never equal to 0.

A probability can then be established over the priority values: P(i) = pa
i

∑k pa
k
, where a

is a hyperparameter that establishes a balance between pure uniform selection and always

selecting the highest values, and the divisor is the normalization of all priority values in

the queue. To correct the potential bias induced by some states being trained against more

often than others, importance sampling (IS) [59] can be used to reduce learning rates for

frequently visited states. Weight updates are thus reduced by ( 1
N

1
P(i))

b, where N is the

size of the buffer, and b is a hyperparameter that determines to what degree IS should be

utilized. Typically at the start of training b = 0, but is annealed to b = 1 by the end of

training when the model is beginning to converge, as natural occurrence rates are important

to consider during convergence.

18



Figure 3.2: With DDQN, the state function seeks out high value states, while the action
function seeks out best case short term actions, as visualized in the DDQN paper [24].

3.2.2 Dueling DQN

The Q function used by DQN can actually be split into two functions; a state value

function and an advantage function. Dueling DQN [24] takes this approach, rewriting

Qπ(st ,at) = A(st ,at)+V (st), where V (st) is the state value function that maps a specific

state to a reward potential, and A(st ,at) is an advantage function that estimates a rela-

tive reward for taking action at verses other actions at that state. This decoupling allows

the model to develop two different layers of understanding: which states tend to be more

valuable, and actions that can lead towards those more beneficial states. Dueling DQN is

implemented by making an duplicate copy of the fully connected layers in the model; one

for the state value function and one for the advantage function.

Neural networks, however, require training through back-propagation. As a result, there

may be more than one solution for V and S when Q is provided. Subtracting the mean ad-

vantage from all possible actions will result in the chosen advantage becoming 0, allowing

the equation to be trained with a neural network. Thus the two paths can be combined using

the formula:

Qπ(st ,at) =V (st)+(A(st ,at)+
1
A ∑

a′
A(st ,a′))

As a result, DDQN is able to learn more quickly about highly valuable states, along

19



with short term actions that can lead to those states, which is why it was chosen for the

proposed system architecture in this thesis.

3.3 Convolutional Neural Networks

A major beneficial point of DQN is that it allows a convolutional neural network to

exist as the central part of the model. Convolutional neural networks were inspired by the

complexities of image processing with neural networks, the first of which was LeNet [60].

Images pose a different set of problems than other data, as the pixel values are very highly

dependent. Shifting an image right by 1 pixel, for example, does not change the meaning

behind the image, but with a standard neural network it would result in all of the values

becoming mapped completely differently [61].

Standard neural networks are just a series of fully connected layers and activation func-

tions. As the width of the network grows too large, however, the scale can become unruly.

A fairly small image of size 160x160 pixels, for example, would be flattened down to an

array of 25,600 neurons. Even if this layer were immediately followed by a layer with only

1024 neurons, this configuration would require over 26 million parameters. Beyond just

the number of parameters, all neuron pairs are completely independent, so an image will be

processed completely differently if it is shifted to the right by 1 pixel. Convolutional layers

within neural networks address both of these issues.

Instead of fully connecting one layer to another layer, a function is executed that re-

sembles the convolution operator. Convolution is a process in which two functions are

compared for similarity. Imagine two finite waveforms, A and B, overlapping. Waveform

A is fixed and waveform B can be moved from all the way on the left side of waveform A

to the right side. At each possible index (assumed discrete), the overlapping area of the two

wavesforms is measured as a scalar value. This process repeats for all indices, yielding a

vector of cross-correlations between the two waveforms. What is most powerful about this

operator is that if waveform B is a specific pattern, a matching pattern can be detected at

20



Figure 3.3: An example of a 3x3 convolution layer followed by a 2x2 max pooling layer
[19].

any and all points along waveform A.

Convolutional neural networks leverage convolution to try and identify a learned set of

features within an input image. First the features are searched for in the top left corner,

after which a scan is performed all the way across the row, then down to the next row,

eventually ending in the bottom right corner of the image. By using this scan technique,

feature identification becomes translationally invariant.

To better understand how CNNs actually work on a technical level, it is best to start

with a simple two dimensional matrix as an input. Given a 6x6 matrix, the features must

be found. Features are identified with a kernel, a matrix of a small size (often 3x3) that is

overlaid on top of the input data. Element-wise multiplication is performed on the kernel

and the subset of data, then the resultant matrix is summed to produce a single value. The

kernel then ”slides” over to the right by one pixel and the process repeats. Upon reaching

the right side of the data, the kernel resets to the left side but moves down by 1 pixel. When

the process completes, an 4x4 matrix will be produced.

The reduction in size of 2 is because the kernel remains entirely inside the original

image. To retain the same size as the input, padding can be used whereby regions outside

21



of the input data are set to a value of 0, allowing the kernel to be centered on the top left

pixel of the image. The size can also be changed by way of stride, which refers to how

many pixels the kernel shifts each step.

Given the prevalence of RGB image data formats, most image data volume are 3 dimen-

sional matrices. In these scenarios, the kernel is actually also a three dimensional matrix

(in this case now 3x3x3 pixels). But the convolution operation, assuming no padding, will

only yield a matrix of size 1x4x4 since the entire depth of the image is summed into a

single value each step. To produce larger data volumes, multiple kernels can be used, each

producing a new layer. If 32 kernels of size 3x3x3 were used, for example, the result would

be a 32x4x4 data volume. As with neural networks, each convolution operation is typically

followed by a non linear operation such as rectified linear units (ReLU) [62], allowing

these convolution layers to be chained together to produce a non-linear chain of feature

extractors.

Already, these layer types use smaller networks than baseline neural networks. In the

original example, an image of size 3x160x160 is used as input, and 32 kernels of size 3x3x3

are used for convolution. The number of parameters required is only 864! But in this case,

the output data volume is now of size 32x158x158. Getting this down to a smaller size

so that it can be passed into a fully connected layer would require increasing the stride to

reduce the density of kernel operations. This approach, however, is limited by the size of

the kernel being used, as a stride larger than the kernel size would result in unused data.

Even so, just using a kernel size of 2 or more means that features might be missed.

The solution to this problem is the max pool operation, which replaces the convolution

kernel element-wise multiplication operation with a simple maximum operator. In this way,

the features with the highest prevalence are retained, and the weaker ones are dropped.

A standard max pool kernel is of size 2x2 and uses a stride of 2, allowing the data to

effectively be chopped in half across each dimension (except the depth, which remains

constant). If applied to the previous output volume of size 32x158x158, the result would be

22



a data volume of size 32x79x79.

As can be imagined, a series of convolution and pooling layers can simultaneously iden-

tify salient information, while also reducing the data volume down to a more manageable

size, all while keeping the number of parameters to a fairly small number. Often CNNs

will converge to a small size before switching to fully connected layers. Most importantly,

all operations along the way support gradient descent, meaning that the parameters within

the kernels can actually be learned by the network.

3.4 Carla

A properly constructed DDQN model with an underlying CNN is able to make deci-

sions about its observations, but observations for autonomous vehicles carry risk and ex-

pense. This thesis makes use of a simulator to allow the agent to take actions on the world

and observe the produced state spaces. Specifically, Carla [4] is used due to its high level

of polish and its ability to produce ground truth semantic segmentation data.

Carla [4] is an urban town simulator based on Unreal Engine 4 [14] that provides a

platform for autonomous driving research. Two town maps are made available with the

open-source code, each with a different layout and asset collection. A vehicle agent can

then be controlled within the simulation, allowing it to drive around and observe the map.

Pedestrians and other vehicles can be added and controlled, and they all observe actual

traffic patterns and speed limits.

Carla uses an observe, act, update control loop. An observation is provided to the agent,

and the simulation will pause while waiting for an action command from the agent. Once

the command is received, the simulation will progress forward by a predefined number of

milliseconds based on the provided framerate. Once the simulation update has completed,

the loop begins again.

23



Figure 3.4: Carla allows simulations of densely populated urban landscapes [4]. Two
weather patterns are displayed here, showcasing the diversity of available scenes.

3.4.1 Simulator Outputs

Carla is capable of providing a vast amount of information to the agent each update. Ba-

sic information is always provided, such as the vehicle’s speed, but advanced information

can be queried by way of cameras that are attached to the vehicle.

Many valuable statistics are made available by Carla each update, but the most impor-

tant for this thesis are speed, inlane percent, and collision measurement. The vehicle’s

velocity is provided in km/hr. The inlane percent measures how much of the vehicle’s area

is within the proper lane, with a value of 100% being desireable. If the vehicle enters the

opposite lane or starts driving off road, the metric will transition to 0%. The collision mea-

surement is 0 by default, but whenever a collision takes place, it increases as a function

of the vehicle’s speed at the time of collision, thus coarsely measuring the energy of the

impact.

Agents can register cameras onto their vehicle, which provide significantly more in-

formation than the basic statistics. Cameras are registered onto the vehicle with a specific

attachment point relative to the center of the vehicle, a facing orientation (default is straight

ahead), a resolution (number of desired pixels in width and height), and a field of view (de-

fault of 90 degrees). In addition, cameras are registered as one of three types: standard

image - red, green, blue (RGB) data, semantic segmentation, and pixel depth.

24



Figure 3.5: Image Carla cameras from their paper [4]. From left to right: a normal RGB
camera, a depth camera, and a semantic segmentation camera.

The RGB camera is the most straightforward, acting as a standard camera. A data vol-

ume of 3×w× h is sent to the agent every frame, where w is the resolution width, and h

is the resolution height. Data points within the volume are integers ranging from 0 to 255.

Carla has an image quality parameter that determines how much time the simulator will

spend attempting to make photo-realistic images (thanks to the underlying Unreal Engine

4 [14]). When the value is set to low, scenes render more quickly (allowing for faster simu-

lations), but images passed into the RGB camera are more flat and do not look as realistic.

When the quality metric is set to high, the simulation will spend more time rendering, but

the RGB camera will have access to very high quality images.

The semantic segmentation camera acts as a perfect semantic segmentation of the RGB

camera, converting each observed pixel into one of 13 unique categories: unlabeled, build-

ing, fence, other, pedestrian, pole, road line, road, sidewalk, vegetation, car, wall, and

traffic sign. This data can thus be used directly by the agent or used as ground truth for

training semantic segmentation models. Using the semantic segmentation camera directly

by an agent is acceptable for training or demonstrative purposes, but no expectation can be

made that this data will be readily available in a real life scenario. Data is produced by this

camera in a volume of size 1×w×h, where each data point is an integer value between 0

and 12 that is mapped to the categories.

Similar to the semantic segmentation camera, the depth camera converts each pixel in

the RGB cameara into a scalar depth value, representative of the distance from the camera

25



to the first encountered obstacle. Distance is represented in kilometers, and values beyond

1km are clipped to be only 1km. Thus a data volume of 1×w×h is produced, where each

pixel is a float value between 0 and 1. As with semantic segmentation, depth information is

not expected to be readily available in real life scenarios, though there are techniques that

address this problem, such as SLAM [47, 48] and creating estimates from 3D Lidar [63].

3.4.2 Simulator Inputs

Five commands are made available to agents: steering angle, throttle, brake, hand brake,

and toggling reverse. The steering angle expects a value between -1.0 and 1.0, representing

fully turning the wheel left or right. Throttle and brake both require values between 0.0

and 1.0, representing no application and full application on the respective pedal. The hand

brake and reverse toggle are either 0 or 1 depending on if they are enabled.

26



Chapter 4

System Architecture

Can a simple end-to-end autonomous vehicle agent learn to drive at fairly slow speeds

while remaining in lane and not colliding with objects? In an attempt to answer this ques-

tion, a straightforward end-to-end model architecture is proposed. This architecture is ex-

plained in depth in this chapter, followed by explanations on how the architecture is trained,

and how it is evaluated.

The above question can be framed as a primary hypothesis: Can an end-to-end rein-

Figure 4.1: Agent Architecture. Perceptors observe the world state. A selector determines
if the ground truth image segmentation data (class data) is used or if RGB camera data
should be converted into class data by way of Deeplab [3]. The class data is then used
to split the depth data into multiple layers. The data is then fused with the vehicle speed
and passed into a DQN model [22], which outputs a desired action. Finally, a controller
smooths out the actions and sends them to the actuators. The cycle repeats each frame as
the world state changes due to actions taken.

27



forcement learning architecture be trained within a simulator to drive at a constant speed of

25km/hr such that it avoids static obstacles and remains within lane? No requirements ex-

ist for navigation, localization, other vehicle avoidance, pedestrian avoidance, local speed

limit awareness, or even stop sign and traffic light awareness. The architecture could, how-

ever, be expanded piece by piece to include other requirements with future research.

The architecture is designed as three major components: perception, data fusion, and

decision making. Perceptors are responsible for observing the environment (all sensors),

data fusion is responsible for combining said data into a usable form, and the decision

making component is responsible for converting the fused data into vehicle commands

(steering, throttle, and braking). Finally, the architecture is designed to be configurable,

allowing different experiments to be fired off with only configuration file changes.

4.1 Perception

The perception component of the architecture is responsible for collecting all necessary

observation data from the environment. Depending upon the architecture configuration

being executed, one or more of the following data sets is needed from Carla [4] by way

of perceptors: RGB image data, semantic segmentation data, depth data, and the vehicle’s

operating statistics (such as current speed).

4.1.1 Vehicle Cameras

The RGB images, semantic segmentation, and depth data are all received from Carla

by way of cameras placed on the vehicle within the simulation. The three cameras are

all located at the same location on the vehicle, allowing them to have input streams that

are aligned on a pixel-coordinate basis. The cameras are located at the very front of the

vehicle (on the grill), providing sufficient coverage of the road and any potential upcoming

obstacles. During sharp turns it is common for the vehicle to have little to no view of the

road beneath the vehicle, so a 40 degree down pitch on the camera is applied to help provide

28



better road visibility. A standard field of view of 90 degrees is used for all cameras, and the

resolution of each camera is 160x160 pixels.

Semantic segmentation data is received from Carla in the form of an integer between 0

and 12. Since this agent is not learning to navigate, stop at lights or stop signs, or interact

with vehicles and pedestrians, several of the classes are not useful for the purposes of this

architecture. As a result, the number of classes is reduced to 3: roads, road lines, and mis-

cellaneous. All classes other than roads and road lines are converted to the miscellaneous

class.

RGB image data is collected at the highest possible rendering quality, and an assump-

tion is made by this architecture that depth map data is available, allowing it to be used.

In addition to the visual inputs, the perceptor receives basic statistics about the vehicle.

The vehicle’s current speed is used by the model, and several other statistics are plugged

into the rewards calculation, including: percent of the vehicle occupying the wrong side

of the road (other lane), the percent of the vehicle that is off road, and a measurement

representing energy of collisions.

4.1.2 Semantic Segmentation Perceptor

The architecture can be configured with one of two perceptor configurations: receive

ground truth semantic segmentation, or receive RGB data and use that to predict semantic

segmentation.

When using the second configuration, the ground-truth semantic segmentation camera

is replaced with an RGB camera, and an embedded model that generates semantic seg-

mentation predictions. This arrangement more accurately reflects reality, as there does not

currently exist a camera that can produce raw semantic segmentation data in the same way

cameras can produce raw RGB image data. Instead, cameras must ingest RGB data and

make predictions on what category each pixel belongs to.

For this architecture, Deeplab v3 [3] functions as the semantic segmentation predic-

29



Figure 4.2: The semantic segmentation selector is responsible for either using ground truth
segmentation data provided by Carla [4], or using passing RGB camera data into Deeplab
v3 [3] for segmentation.

tor. A custom trained Deeplab model is used by this perceptor, the training of which is

discussed in the Training chapter of this thesis. When deployed, the Deeplab perceptor

outputs a stream of predictions with the same three categories as the ground-truth seman-

tic segmentation perceptor (road, road lines, and miscellaneous), allowing the two to be

interchangeable.

4.2 Data Fusion

Raw observation data must then be fused together and potentially transformed further

before it can be handed off to the underlying model in the form of a single data volume.

Multiple transformation and fusion configurations are made available, and each experiment

is responsible for selecting the desired arrangement. The transformations are: depth split-

ting, appending speed, and frame stacking [22].

4.2.1 Depth Splitting

If depth and semantic segmentation data are directly passed into the internal CNN

model as input layers, the model will have to spend resources learning the relationships

between the two layers. Depth splitting (DS) is a novel technique that attempts to combine

30



the continuous depth information with categorical class information to produce more useful

data to the CNN, allowing it to free up resources that would have otherwise been spent on

learning those relationships.

Depth maps and semantic segmentation data serve very different purposes. Depth maps

provide a continuous understanding of the world, as data contained in adjacent pixels tends

to flow more smoothly. Though it is sometimes possible to make out the outlines of ob-

jects using only depth information, it is not always the case. Road lines, for example, are

typically painted onto roads, meaning they can never be identified using only depth maps.

On the other hand, semantic segmentation data is useful in that it can provide hard

edges between any two regions of differing categories, such as a road and a road line. But

it falls short in that a farther away vehicle should be treated very differently than close up

vehicle. Though the model can learn this to a degree, CNNs are translationally invariant,

Figure 4.3: A breakout of how depth splitting works. The depth values are extracted from
a single layer. Each value is placed into a single new layer depending on the category of
that pixel. In this example, the trees in the top of the depth map can be seen clearly in
the converted other layer, but are absent from the converted roads and road lines layers.
With these split layers, the CNN is now in theory more easily able to parse depth and
segmentation features.

31



not scalar invariant.

Depth splitting attempts to handle some of this fusion ahead of time, freeing up the

CNN’s limited kernel parameters for feature selection that can more easily be processed by

the fully connected layers. DS does this by producing a small number of layers that each

contain depth information about only a single category (such as roads for one layer). By

splitting the data up in this way, the model can learn to process and understand the fading

depth and hard depth edges of a single category at the onset.

As with baseline depth information, the DS volume will be valued from 0.0 to 1.0,

representing extremely close objects (0km) all the way to very distant objects (1km or

farther). The new data volume is allocated with a default value of 1.0 for each cell, which

allows the difference between a close up object of a given category and any adjacent pixels

contained in other categories to be as large as possible. Data is then mapped into the new

DS:

Fc,x,y =


Dx,y Sx,y = c

1.0 otherwise
∀x ∈ X ,∀y ∈ Y,∀c ∈C

where F is the fused data volume, D is observed depth data, S is the observed semantic

segmentation data, X is the set of horizontal pixels, Y is the set of vertical pixels, and C is

the set of semantic segmentation categories.

A normalized version (ranging from 0.0 to 1.0) of the semantic segmentation is then

appended to the data volume, allowing the model to process class information directly in

addition to the previously attached class-separated depth maps.

4.2.2 Append Speed

The append speed transformation will append a new layer onto the data volume which

contains the vehicle’s speed. This speed layer is just a scalar value broadcast out to a

matrix; a normalized version of the speed in km/hr.

Appending the speed as a CNN layer should allow the vehicle’s speed information to

32



propagate through the CNN modeling, thus allowing the model to learn important speed

information throughout the entirety of the kernel layers instead of just in the fully connected

layers at the end of the model. Dedicating an entire layer has a few implications:

• The size of the final observation object is artificially enlarged, reducing the maximum

number of steps that can be stored in the prioritized replay queue with the same

allocated memory footprint (though in theory the data could be stored as a scalar,

and the additional layer can be created on demand before training).

• An additional layer exists going into the CNN, which increases the depth of the first

layer’s kernel by 1, slightly increasing the total model parameters, memory footprint,

and processing time. The parameters and processing times of subsequent layers are

not effected.

• Speed data can be combined with DS data (or raw depth + segmentation data) through-

out the entirety of the CNN.

• When combined with frame stacking, the CNN component of the model can learn

speed and steering change over time more easily than having to analyze differences

in DS data.

4.2.3 Frame Stacking

DQN has no concept of memory - every step is technically independent from the prior

step. This stands in stark contrast to RNNs [27] which have a working memory of previous

steps, or even long-short term memory units (LSTMs) [28] which can dynamically select

what information should be remembered and for how long. To help mitigate this issue with

DQN, especially in a task such as driving where the concept of velocity is critical, multiple

subsequent observations can be sent to the model each step, a concept known as frame

stack [22].

33



Frame stacking is a fairly naive but effective way of solving the memory problem, pro-

viding a very small window into the past observation(s). When applying frame stacking,

multiple steps worth of observations are given to the decision making model at once, al-

lowing them to be processed together.

As with append speed, frame stack increases the size of the data entering the replay

queue, reducing the number of frames that can be stored with a given amount of memory

by an amount proportional to the frame stack size. The first kernel in the CNN also must

have additional parameters to process the initial data volume.

4.3 Decision Making

With the observation data in hand, reinforcement learning is leveraged to determine

what action yields the best future-looking rewards. Specifically, a dueling deep-Q network

with prioritized experience replay [59, 24].

The Q function model used in this architecture is 12 layers deep (16 when counting

max pools), and is structured in a manner loosely similar to a VGG13 network [23]. There

are three convolution ”blocks” in a row, where each block contains three convolution lay-

ers followed by a max pool operation. All convolutions utilize 3x3 kernels, a stride of 1,

and ”SAME” padding. All max pool layers utilize 2x2 kernels, a stride of 2, and ”SAME”

padding. All convolutions and fully connected layers use ReLU [62] as an activation func-

tion unless otherwise specified.

The observation data volume is first passed through a max pool, then through three

similar convolution blocks (A, B, and C). The data volume is then flattened and passed to

two identical structures: the action value and the state value based on the DDQN structure.

The action and state values are combined to produce the final output array.

The three convolution blocks are ordered one directly after the other. Block A uses a

filter depth of 64, block B uses a filter depth of 128, and block C uses a filter depth of 256.

After the convolutions, the produced data volume is flattened. Data is then passed into two

34



Figure 4.4: Architecture of the Q network [53]. Max pool and convolutional layers iden-
tify features in the input data volume, which are then passed through two identical fully
connected networks (the dueling DQN configuration). The final output is a vector of all 40
possible actions, the highest index of which is the action the model wishes to take.

identical streams: the action stream and the state stream. Each stream has a dropout layer

of 0.7 keep probability, a fully connected layer with depth of 2048, another dropout layer

of 0.7 keep probability, another fully connected layer with depth 2048, and a final fully

connected layer with depth 40 (one for each possible action). The final fully connected

layer has no activation function.

The output array of the action stream is then reduced by its own mean and added to the

output array of the state stream to produce the final Q function value. An argmax function

is then used to determine the action index which is estimated to produce the highest future

reward. During training, the selected index is occasionally replaced with a random index

due to the exploration function in ε-greedy fashion. The selected index is then converted

into the discrete steering and throttle command value.

35



The total number of parameters in the network is 115.35M, in large part because of the

first fully connected layer after the convolution being duplicated twice for DDQN (each

requires 52.4M parameters). The network is given 5GB of memory on the GPU while

training, and takes up 1.9GB when saved to disc.

4.4 Controller

Actions that can be sent to Carla each frame are defined as continuous values, but this

architecture discretizes them so as to use the discrete DDQN model. Thus actions are

defined as the Cartesian product of 8 possible speeds (-1.0, -0.5, -0.25, 0, 0.25, 0.5, 0.75,

and 1.0) and 5 possible turning angles (-0.5, -0.25, 0. 0.25, 0.5), yielding 40 actions to

choose from each step. Since Carla expects independent throttle and brake values, the

negative throttle values from DQN are converted into brake values. The handbrake and

reverse actions are not utilized by this architecture.

Given the discrete nature of this action space, the vehicle is prone to jerky driving as it

transitions between steering angles. When compounded with the occasional poor driving

instruction (such as a hard left turn when the vehicle should in fact be going straight), the

vehicle has a hard time driving without zig-zagging. To address this issue, and help re-

duce the potential damage caused by a single step’s bad action command, an exponentially

weighted moving average (EWMA) [64] is used to smooth out the controls:

ct = β ∗ ct−1 +(1−β )∗at

Where ct is the command that will be sent to the vehicle, ct−1 is the last command sent

to the vehicle, at is the action requested by DQN, and β is the percent to which the old

command is favored over the new command. Higher values of β will produce smoother,

but slower movement, which can be dangerous if the vehicle can not turn fast enough to

take turns. Lower values, on the other hand, can produce unrealistic driving conditions,

36



where the vehicle is able to change from a full left turn to a full right turn in only a few

milliseconds.

Movement commands are then bundled up and sent off to the CARLA server, which has

paused the simulation while waiting for a response. Once the packet is received, CARLA

updates the world state based on the provided vehicle control request. A new set of camera

observations are then sent back to the agent, repeating the cycle. A framerate of 50 frames

per second is used by this architecture, yielding an observation and an action every 20

milliseconds.

In theory a proportional-integral-derivative (PID) controller could be used instead of

a simple EWMA controller. A properly tuned PID controller could provide the agent a

higher degree of control over the actions while still retaining the delayed inputs, since PID

controllers can steady out at the control speed faster than an EWMA controller.

37



Chapter 5

Hypothesis and Training

With the vehicle architecture in place, models can be trained. To understand exactly

what models need to be trained, however, a set of secondary hypotheses are formulated

which will help guide the hyperparameters and ideally produce the best possible model:

• Does probabilistic exploration yield better models over linear decay exploration?

• Does depth splitting yield better models over keeping depth as one layer?

• Does a model train better when using a ground truth segmentation perceptor, or

Deeplab v3?

• How well does a trained model function if its segmentation perceptor is swapped

out?

This chapter will discuss in depth the Deeplab model (training and evaluation), how

probabilistic exploration works, the DQN reward function, and the training setup to support

the evaluation of the above hypotheses.

5.1 The Deeplab Model

To leverage Deeplab v3 [3] during the experiments, a model is first trained based off

of CARLA ground truth RGB image data and the associated per-pixel image segmentation

data.

Before any of the experiments are run in full, a handful of test vehicle models are

trained to make sure the vehicle architecture is sufficient. One such model is selected to act

as a collector to train the Deeplab model. This methodology is used so as to separate the

38



Figure 5.1: Four examples of ground-truth class data (left image) alongside the Deeplab
v3 predictions (right image) for that same data. Straightaways are predicted fairly well,
while curves and T-junctions tend to have higher errors. Road lines are predicted surpris-
ingly well, but in turns can have significant missing portions (as seen in the bottom right
example).

Deeplab collected data from bias towards any specific model used within the experimen-

tation proper, amplified by the fact that the experiments are ultimately run with a different

set of hyperparameters and a slightly different CNN architecture for the Q network.

The selected agent is used to collect data on both the train town and the test town. The

agent used for data collection was not perfect, occasionally driving into the other lane or

colliding with objects. For the purposes of training Deeplab, this behavior is necessary.

Since Deeplab is used to train a new model in one of the experiments, it must have a

modest accuracy when it comes to abnormal situations, like driving in the wrong lane.

Without adequate exposure to those states, Deeplab would have poor performance in non-

ideal states, which would put the DQN models attempting to train in said environments at

a disadvantage.

A total of 1.3 million steps worth of RGB image and ground truth class segmentation

pairs were collected on the CARLA train map, and an additional 256,000 steps on the

CARLA test map. At the time the data was collected, four image classes were being used:

39



road, road lines, sidewalks, and miscellaneous. The Deeplab model was then trained using

the Xception65 [65] model with atrous rates of 6, 12, 18 [3] and an output stride of 16. A

learning rate of 1e-6 was used with decay factor of 0.01, and the model was trained off of

a Deeplab v3 Cityscapes pretrained model. A batch size of 4 was used, and one epoch was

run. The trained model has an mIoU [66] of 75.75, which is not terribly below the results

in the Deeplab v3 paper of 81.3. For reference, mIoU is the mean intersection-over-union,

which is the most widely used measurement tool for semantic segmentation [66].

It was later decided to bring the image classes down to 3 by merging the sidewalks cat-

egory into the other category, so another batch of images was collected and a new Deeplab

model was trained using the same hyperparameters. Interestingly enough, this new model

only achieved an mIoU of 64.38. As a result, the model trained on 4 classes is used, and

after each prediction the pixels predicting sidewalks are converted into pixels predicting

other. It is possible that the first model training attempt was a fluke, or that the data col-

lected the second time was poor, but it is worth pursing a follow-on study to see if there is

an advantage to training models in a higher dimensional space, only to reduce the dimen-

sionality during production.

5.1.1 Probabilistic Exploration

Reinforcement learning agents require exploration to attain new experiences, and thus

expand their learning. Coupled with the problem of catastrophic forgetting with neural

networks, it is pivotal to balance highly rewarding scenarios with disastrous ones. A vehicle

can, for example, learn to overfit to more idyllic situations if the exploration value is too

low during convergence. When unfortunate situations present themselves in evaluation, the

model is prone to have forgotten how to recover properly, which can lead to stagnation or

failure.

Further, the meaning behind an exploration percentile can be largely lost when applied

to high enough frame rates. If an agent is processing the world at 50 frames per second, any

40



given ”exploratory” action taken will only last for about 20 milliseconds. With a late-in-

training exploration rate of 10%, these random actions function more as perturbations than

as legitimate behavioral exploration, as a poor decision one frame can be easily corrected

by a few subsequent corrective frames, thus yielding little to no actual exploration.

This architecture introduces the novel concept of probabilistic exploration (PE). Instead

of steadily decreasing exploration rates based on time, a new exploration rate is selected

pseudo-randomly every N steps. That single exploration rate is maintained for N steps,

at which point another exploration value is selected and the process repeats. A probability

distribution is provided as a hyperparameter that maps a probability to an exploration value.

In its simplest form, the distribution is discretized into a small number of buckets. Since

these buckets can be anywhere from 0% to 100% exploration rates, the agent is able to

get the best of both worlds: it can occasionally have low exploration, allowing it to bypass

potentially difficult obstacles that require careful actions, and it can occasionally have high

exploration, allowing it to fail those same obstacles to provide additional learning potential.

Another way to conceptualize this approach is an agent which must cross a bridge to

find a treasure chest. Given a low exploration, a well trained agent can cross the bridge

with ease. Once it has crossed the bridge and reached the other side, an uncharted region,

it benefits more from high exploration, allowing it to fully understand what opportunities

exist. PE allows this scenario to take place, where as linear explore does not.

When training, the architecture allows selecting which configuration to utilize: linear

exploration or probabilistic exploration.

5.2 The Reward Function

Among the RGB, pixel depth, and class segmentation observations read from CARLA,

a host of additional information is provided which is used to determine the reward for the

step. The previous step’s generated observation data volume is then combined with the

action taken and the resultant reward, then placed into the prioritized replay queue [59].

41



The primary objective of the agent is to drive as close to 25km/hr as possible. Moving

at the desired speed is only valuable if the vehicle is remaining in lane, so the speed reward

is 0 if the vehicle is in any way out of the lane. In addition, not moving at all carries a small

penalty to prevent stagnation. Thus the reward for driving is:

Rspeed =


0.0 inlane 6= 100%

1− |speed−25|
25 speed ≥ 1

speed−1
10 otherwise

The vehicle’s driving speed across each step is then tracked with a Bayesian filter

(gamma of 0.99). If at any point after the 600th step in an episode the tracked speed is

less than 1.8km/hr, the episode is terminated. Since CARLA does not report slow speed

collisions, this is important in terminating episodes where the vehicle has crashed into an

object and is unable to move. Some agents also learn to stop in situations that would have

resulted in offroading. This termination condition prevents running unnecessary cycles

against those agents, and keeps their final reward values more accurate.

In addition to receiving no speed reward when out of lane, the agent is given a flat

penalty when in the other lane or when offroading to further incentivize staying in the

correct lane.

Potherlane =


0.3 otherlane

0.0 otherwise

Po f f road =


0.5 o f f road

0.0 otherwise

If at any point the vehicle is more than 50% offroad, the episode terminates. No episode

termination is applied when the vehicle is in the other lane, as this state is much easier to

recover from during an episode, while offroading can often put the agent in states from

42



which recovery is impossible or nearly impossible.

When the vehicle transitions from fully in-lane to partially out of lane, an exiting lane

penalty of 0.1 is applied. This penalty helps make it more clear to the agent exactly when

the out of lane event takes place, allowing it to learn more rapidly to avoid that situation in

the future. Thus the exiting lane penalty is:

PexitingLane =


0.1 exitingLane

0.0 otherwise

Collisions are, as expected, unacceptable events. There is no reason to assume that the

vehicle should be able to recover from a collision in any meaningful way, so any collision

detected results in an immediate termination of the event. In addition, all collisions produce

an immediate penalty:

Pcollision =


100 collision

0 otherwise

Thus the reward for each step is calculated as:

Rstep = Rspeed− (Potherlane +Po f f road +PexitingLane +Pcollision)

5.3 Training Configuration

Tensorflow [67] is used for training, and the open source Tensorflow baselines ”deepq”

project is used to build the DDQN model (though the custom CNN model is built manually

using tensorflow layers) [24].

An Adam optimizer [68] is used with a gamma of of 0.995, grad norm clipping of 10,

and no parameter noise. A prioritized experience replay queue [59] is leveraged with an

alpha of 0.6, a buffer size of 30,000, a beta0 of 0.4, and an eps of 1e-6.

Model training happens in two discrete sections: the first section leverages a learning

43



rate of 1e-4 and trains every 6 steps for 1e6 steps, and the second section has a learning

rate of 1e-5 and trains every 18 steps for 2e6 steps. Training less frequently in the second

section allows the agent to collect a wider variety of experiences between each training

event, in theory promoting richer training queue.

For both the first and second sections, probabilistic exploration N is set to 200 steps.

The first training section has buckets: 10% chance of 0% explore, 20% chance of 15%

explore, 40% chance of 30% explore, 20% chance of 45% explore, and 10% chance of

60% explore. The second training section has buckets: 20% chance of 0% explore, 40%

chance of 10% explore, 20% chance of 20% explore, 10% chance of 30% explore, and 10%

chance of 40% explore.

When using linear decay explore, the first training section decays from 100% to 10%

over time 0% to 10%. The second training section decays from 10% to 5% over time 0%

to 100%.

A batch size of 32 frames is pulled from the queue each training step. No training

starts until 30,000 steps, and the DQN target network is updated every 3,000 steps. Each

episode runs for up to 3000 steps (representative of 60 seconds of real time driving due to

the simulator running at 50 steps per second), prefaced by a 100 step deadzone in which no

actions take place, allowing the episode to fully load. No early stopping is leveraged.

As with all neural networks, hyperparameter selection was a difficult problem to ad-

dress. The fact that multiple controllers are ultimately trained on the same hyperparameters

only aggravated the problem. As a result, dozens of attempts were made to find ”good-

enough” hyperparameters that did the models justice. During the hyperparameter explo-

ration phase, the learning rate, training timesteps, exploration size, and train frequency

were the primary hyperparameters that were modified.

44



5.4 Implementation

All of the code is written in Python3 [69], using Tensorflow [67] for the CNN model,

Tensorflow’s baselines [67] for the DDQN model, numpy [70, 71] for vector mathematics

(namely data fusion), PIL [72] for image processing and recording, and Deeplab v3 [3] for

training the deeplab model. OpenAI’s gym [73] format was used to wrap the training, and

a modified version of the Carla Gym code from project Ray [74] is used for control of the

agent. The code is publicly available at https://gitlab.com/grant.fennessy/rl-carla

45



Chapter 6

Experiments and Results

Evaluation of the hypotheses requires training multiple models from scratch, each with

slightly different configurations. Trained models are then evaluated, with key benchmarks

recorded to allow comparisons between the models. All hypotheses are mapped to archi-

tecture configurations and evaluation techniques. In this chapter, the evaluation techniques,

analytic metrics, and the results of each experiment are discussed. The hypothesis to ex-

periment mappings are:

Does probabilistic exploration yield better models over linear decay exploration?

A model is trained with probabilistic exploration, and another is trained with linear decay

exploration. Both use depth splitting and ground truth perception. Evaluation results are

compared.

Does depth splitting yield better models over keeping depth as one layer? A model

is trained with depth splitting, and another is trained without depth splitting. Both use

probabilistic exploration and ground truth perception. Evaluation results are compared.

Does a model train better when using a ground truth perceptor, or a realistic one?

A model is trained with a ground truth semantic segmentation perceptor, and another is

trained with Deeplab v3 for the semantic segmentation perceptor. Both use probabilstic

exploration and depth splitting. Evaluation results are compared.

How well does a trained model function if a perceptor is swapped out? The model

trained with the ground truth semantic segmentation perceptor is reconfigured to use a

Deeplab v3 perceptor and differences in evaluation results are recorded. Likewise, the

model trained trained with Deeplab v3 semantic segmentation perceptor is reconfigured to

use the ground truth perceptor and differences in evaluation results are recorded. The eval-

uation differences between the two reconfigurations are compared to see which produced

46



more favorable results.

Core Hypothesis: Can a simple end-to-end autonomous vehicle agent learn to

drive at fairly slow speeds while remaining in lane and not colliding with objects? The

best model from all experiments will be evaluated in terms of behavior quality. An final

”extra” third training round is performed against it, evaluation is performed, and behaviors

are observed.

6.1 Evaluation

All experiments are measured by running the experimental model on the test town

within CARLA, which has a different layout, different buildings, and new foliage when

compared to the train town. Unlike training, where vehicle start location and the weather

pattern are chosen at random at the start of each episode, evaluation has a known set of 240

episodes with preset conditions that are run for each experiment. The set of 240 episodes is

comprised of 20 start locations and 12 weather conditions; 6 weather conditions that existed

during training and 6 weather conditions that did not. Episodes run until reaching 3,000

steps or until a termination condition is reached (same termination conditions as training).

Thus the maximum number of steps during evaluation is 720,000.

Experiments are run 3 times each to allow a mean and standard deviation to be devel-

oped. Runs are completely independent and start from scratch.

Evaluation of the secondary hypotheses demands an understanding as to whether or not

the model has improved in quality. Given that the model is a reinforcement learning agent,

the best metric for cross-model evaluation is the reward function. The primary hypothesis,

on the other hand, is independent of the reward function, but instead demands certain be-

haviors are met. Since the primary hypothesis is ultimately evaluated on the best model, all

model evaluations will record both the reward metric and behavioral metrics. The metrics

are as follows:

1. Reward: The sum of all rewards from all steps divided by the maximum possible

47



reward of 720,000 (due to the maximum per-step reward of 1.0). A value of 100%

would imply an agent that drives at exactly 25km/hr on all steps.

2. Drive %: The drive % measures the number of steps that took place during evalua-

tion divided by 720,000. A value of 100% implies that the agent never had an early

termination (due to stagnation, offroading, or collision), while a lower value implies

some degree of failures.

3. Km: Total kilometers driven across all steps in the evaluation. This is ultimately a

function of mean speed and drive %.

4. Km/Hr: Mean speed taken across all steps in the evaluation. Target speed is 25km/hr.

5. Km/OOL: How many kilometers are driven on average between each out of lane

(OOL) infraction. An OOL infraction occurs any time the vehicle exits the lane in

any way. A 2 second timer (100 steps) is kicked off after the infraction is detected,

during which time no additional infractions can occur. Once the timer completes, a

new infraction occurs if the vehicle is still in any way out of lane. Wrapping up the

out of lane infractions into these events helps to filter out instances where the vehicle

just barely nudges out of the lane several times in rapid succession. Ideally this value

is infinite if no OOL instances occur.

6. Km/Collision: How many kilometers are driven on average between each collision

with an object in the environment. Ideally this value is infinite if no collisions occur.

The primary metric for evaluating model train capability is the total accumulated re-

ward (normalized by dividing into the total possible reward). Though the other metrics,

such as the number of kilometers driven per collision, are of paramount importance for

an autonomous driving agent, they act as more of a representation of the reward function

quality than how well the model is trained. As a result, the reward value is leveraged for

48



evaluating model quality during the given experiments, and the remaining metrics are used

to evaluate if the reward function is mapping the desired behaviors.

Training models for the experiments typically take around 37 hours each (68 hours

when using Deeplab), and evaluating models takes around 6 hours each (11 hours when

using Deeplab). Running all of the experiments requires a total of about 29 days worth of

simulation.

6.2 Depth Splitting

The following hypothesis is to be evaluated: Splitting the depth map by class will

produce better models than using depth as a single layer.

To test this hypothesis, two experiments need to be run: an experiment that uses depth

splitting and one that does not. When using depth splitting, the 1x160x160 layer is ex-

panded out into a 3x160x160 data volume. When combined with the image segmentation

data layer and the speed layer, and factoring in a 2x frame stack, depth splitting has a

Figure 6.1: Rewards earned per step throughout training. At 1m steps the second part of
training commences, thus the jump. No depth splitting appears to offer a higher rewards
per step during training.

49



Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 0.1 21.4 01.8 02.1 0.01 0.18
2 12.3 66.4 13.4 05.0 0.03 13.4
3 24.1 63.2 25.6 10.1 0.16 1.35

Mean 12.2 50.3 13.6 5.7 0.07 4.98

Table 6.1: Results of no depth splitting.

Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 58.4 78.9 66.3 21.0 0.05 2.07
2 38.4 71.5 39.9 14.0 0.23 0.67
3 15.5 52.6 19.8 9.4 0.35 0.28

Mean 37.4 67.7 42.0 14.8 0.21 1.01

Table 6.2: Results of depth splitting.

fused data volume of size 10x160x160. Not using depth splitting instead passes the depth

map layer directly into fusion, resulting in a final data volume of size 6x160x160. Aside

from this difference, all other hyperparameters and architectural components are identical

between the two. Both experiments use probabilistic exploration and ground truth image

segmentation data.

Purely from the reward curves, it appears that not using depth splitting is a preferential

strategy. Once the second batch of training kicks in, the models training without depth

splitting reaches a higher running reward value faster, and tends to remain higher for much

longer.

The evaluation results, however, tell a completely different story. Even though the no

depth splitting models are confident in their capacity during training, they have a hard

time performing well in the test environment. In terms of total reward attained, the depth

splitting experiments are significantly better than just passing the depth directly into the

model. Without depth splitting, the model only attains a mean reward percentage of µ =

12.2 with standard deviation of σ = 12.0. Depth splitting, on the other hand, attains values

of µ = 37.4 and σ = 21.5.

50



Figure 6.2: Mean and first standard deviation comparison between the two experiments;
depth splitting and no depth splitting. Depth splitting presents a clear advantage over no
depth splitting.

Comparing the training reward curves with the evaluation results tells a different story.

Given the lower observation space of providing depth as a single layer (no depth splitting),

it makes sense that the model would be able to learn faster, and thus converge and a lo-

cal minima fairly quickly. The model appears to overfit on this limited supply of data,

performing poorly on yet unseen data.

Without depth splitting, the vehicle has a propensity to travel so slow that the associated

behaviors are difficult to properly evaluate. Realistically the model has a hard time training,

and would need additional training before attaining the higher reward values.

Thus the hypothesis can be confirmed with confidence: in this architecture, splitting out

the depth map into multiple layers based on pixel semantic segmentation produces signifi-

cantly better models than just passing the depth map as a single layer into the convolutional

neural network. This makes sense, after all, as all other layers of a CNN typically operate

on depths of 64, 128, 256, or layers, yet often an image with only 3 layers is passed in at

the start. In fact, these results imply that further layer splitting could in fact be beneficial

to the model, allowing it to more rapidly pick out important observation features.

51



6.3 Exploration Style

The following hypothesis is to be evaluated: Using probabilistic exploration will pro-

duce better models than traditional linear decay exploration.

Determining whether or not this hypothesis is correct requires running two sets of ex-

periments, much like the previous hypothesis. A set of 3 models are trained using linear

exploration, and another set of 3 models are trained using probabilistic exploration. Since

the previous depth splitting experiment set used probabilistic exploration, that data is used

for the probabilistic exploration as all hyperparameters and configuration options between

the two are virtually identical.

During learning, the linear exploration models appear to be a good deal better than

those trained on probabilistic exploration. It is worth pointing out, however, that models

trained on probabilistic exploration have a higher propensity to crash if they end up with

a high exploration rate for N steps. This higher crash rate during training can yield fairly

substantial negative rewards, since crashing applies a 100 point penalty.

Figure 6.3: Rewards earned per step throughout training. At 1m steps the second part of
training commences, thus the jump. Linear exploration appears to offer higher rewards per
step during training.

52



Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 30.6 87.0 32.0 9.2 0.12 3.20
2 20.9 90.6 24.9 6.8 0.01 24.9
3 29.7 80.6 32.1 10.0 0.04 2.68

Mean 27.1 86.1 29.7 8.7 0.06 10.27

Table 6.3: Results of linear exploration.

Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 58.4 78.9 66.3 21.0 0.05 2.07
2 38.4 71.5 39.9 14.0 0.23 0.67
3 15.5 52.6 19.8 9.4 0.35 0.28

Mean 37.4 67.7 42.0 14.8 0.21 1.01

Table 6.4: Results of probabilistic exploration. Depth splitting experiment data.

The linear exploration evaluation attains moderate results. All three experiments yield

models that are fairly equal in quality, producing a standard deviation of σ = 5.36 and a

mean of µ = 27.1. On the other hand, the probabilistic exploration experiments yield a

wider range of model qualities. The standard deviation is much higher at σ = 21.5, but this

included higher mean of µ = 37.4. These experiments present an advantage to the use of

probabilistic exploration over linear exploration.

It is worth noting that the probabilistic explorer models tend to drive at much slower

Figure 6.4: Mean and first standard deviation comparison between the two experiments;
probabilistic and linear exploration. Probabilistic exploration presents a clear advantage
over linear exploration.

53



speeds than the linear explorer models. This is paired with higher drive percentiles and

lower collision rates. Though none of the models attain the high reward percentile desired,

implying additional training might be required (or a larger model in the case of underfit-

ting), it appears that the probabilistic exploration models are actually in a more advanced

stage of training than the block exploration models. The reason for this is that the difficulty

level for the vehicles to stay in lane increases exponentially as the vehicle speed increases.

When driving at 10km/hr, a vehicle can provide a few erroneous turn commands in a

row, but still have time to recover before exiting the lane and potentially colliding with an

object. At higher speeds, however, even a few frames in a row of incorrect inputs (such as

a hard right during a left turn) can quickly send the vehicle on an irrecoverable course. The

probabilistic models having a generally higher speed implies that they have more success

at high speeds, while the linear exploration models either stagnate at lower speeds or at

least are not ”confident” enough in the higher speed rewards to drive any faster.

These results indicate that the hypothesis is in fact met: probabilistic models, at least in

this set of experiments, had an increased probability of producing a higher quality model.

The likely cause of this improvement is from the dynamic exploration values alternating

between very high exploration behavior and high exploitation behaviors. The vehicle can

occasionally drive with low exploration, allowing it to test how well it actually understands

the world and train against those deltas. The vehicle can also drive at high exploration, al-

lowing it to experiment with driving faster, accidentally driving out of lane, and experience

colliding with objects. Without this high exploration late in the cycle, the model risks being

either too conservative or catastrophically forgetting important behaviors.

6.4 Deeplab Perception

The following hypothesis is to be evaluated: Does a model train better when using a

ground truth perceptor, or a realistic one?

The models trained with Deeplab have a reward-per-step advantage of about 66%. In

54



Figure 6.5: Rewards earned per step throughout training. At 1m steps the second part of
training commences, thus the jump. During training, Deeplab offers substantially higher
rewards each step.

fact, a few thousand iterations into the second round of training (starting at the 1 millionth

step), the worst Deeplab model’s reward-per-step was never surpassed by even the best

ground truth model’s reward-per-step.

During evaluation, however, models trained with ground-truth segmentation attained a

total reward of 37.4 in comparison to the 28.7 total reward attained by models trained with

Deeplab. That said, training against Deeplab takes around twice as long due to the time

cost of running Deeplab predictions every frame.

From a behavior perspective, ground truth segmentation models tend to have higher

speeds and slightly more unsafe driving characteristics when compared to the Deeplab

models. As discussed previously, an increase in speed can yield a higher likelihood of

collisions while training is taking place. Since the Deeplab models are driving slower, it

is not surprising that the safety behaviors are better, but it might also be a signal that the

models are less mature since they have not yet developed the confidence to drive faster.

The high outliers show that training these models is tenuous, and models should be

55



Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 58.4 78.9 66.3 21.0 0.05 2.07
2 38.4 71.5 39.9 14.0 0.23 0.67
3 15.5 52.6 19.8 9.4 0.35 0.28

Mean 37.4 67.7 42.0 14.8 0.21 1.01

Table 6.5: Results of ground truth model with ground truth evaluation. Depth splitting
experiment data.

Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 38.6 89.3 41.3 11.6 0.04 13.8
2 4.4 72.4 7.8 2.7 0.01 0.1
3 43.1 85.0 46.6 13.7 0.06 23.3

Mean 28.7 82.2 31.9 9.3 0.04 12.4

Table 6.6: Results of Deeplab model with Deeplab evaluation

evaluated regularly and additional training should be induced when results are insufficient.

These results also speak to the issues with deep learning at large - a new architecture can

produce fantastic results, beating the state of the art, but then fail to attain those same

results if trained again from scratch. For any deep learning model of even modest com-

plexity, multiple independent experiments need to be run to highlight the robustness of the

Figure 6.6: Mean and first standard deviation comparison between the two experiments;
ground truth segmentation and Deeplab segmentation. While ground truth seems to have
better results, the outliers are significant enough that the higher mean can not be said to
have statistical significance.

56



methodology.

6.5 Post-Train Perception Adjustment

The following hypothesis is to be evaluated: Changing the perceptor on a fully trained

model will reduce model quality.

If a model is overfitting against its input data, changes to that input data (which is a

function of the perceptors) are theoretically more likely to have a deleterious effect on

model quality. Evaluation of this hypothesis requires taking a trained model, switching out

the perceptor, then re-running the exact same evaluation to see what metrics change.

With only a few minor exceptions with behavioral metrics, changing out the semantic

segmentation perceptor on a model appears to yield reduced model quality. Even when the

perceptor quality is improved, in this case from Deeplab predictions to ground truth, model

performance is likely to take a small hit. This might seem counter-intuitive, as improving

the perceptors should in theory produce better model results.

All of the models originally trained on Deeplab end up driving farther once they are

switched over to ground truth. This increased driving distance is generally paired with a

slight decrease in model speed, which implies the model might be driving more cautiously

and thus less likely to produce an early termination. It is also possible that the uncertain

perception produces less stagnation, thus bumping up total drive time. When paired with

the dramatically increased km per collision rate, however, it becomes fairly clear that these

models are far more likely to second guess themselves and err on the side of caution.

Switching from ground truth to Deeplab yields opposite results. Drive duration tends

to decrease, and almost all behaviors suffer as a result of the reduced perceptor quality.

This is most likely because the model is either overfitting to the high quality data, or fitting

to very minute features that only existed due to perfect segmentation. Given the relatively

short training time, it is highly unlikely that overfitting is the culprit.

What is most interesting with these results is the trend lines suggesting that higher

57



Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 -13.5 -12.0 -18.8 -3.3 +0.04 -1.12
2 -6.3 -13.6 -5.9 +0.7 -0.17 -0.11
3 +3.1 +16.9 +2.8 -1.3 -0.24 +0.06

Mean -5.5 -2.9 -7.3 -1.3 -0.12 -0.39

Table 6.7: Results of models originally trained on ground truth semantic segmentation
being converted to use a Deeplab perceptor.

Run Reward % Drive % Km Km/Hr Km/OOL Km/Collision
1 -0.35 +6.3 +3.9 +0.3 -0.02 -2.5
2 +1.11 +2.5 -0.9 -0.4 +0.01 +1.0
3 -5.21 +1.1 -3.1 -1.1 -0.03 +20.2

Mean -1.48 +3.3 -0.0 -0.4 -0.01 +5.3

Table 6.8: Results of models originally trained on Deeplab being converted to use a ground
truth semantic segmentation perceptor.

quality models will be more likely to suffer a reduction in model quality during the switch,

while lower quality models are more inclined to have increased model quality. This is

likely due to an increase in caution by the agent. While at high speeds, an increase in

caution might extend the drive duration due to fewer accidents, but the overall attained

reward might still be lower. When at lower speeds, however, increased drive distance

attained from cautious driving is more likely to overcome lost speed.

Training an entire Deeplab-based model takes about 70 hours, while those with ground

truth segmentation only take about 35 hours. Models trained with ground truth that are

retrofitted to have Deeplab models actually outperform the Deeplab-based models by about

3.21% reward. These results could mean that models should be trained with the highest

quality data possible, even if that data is of a higher quality than the data available dur-

ing deployment. That said, it might be worth conducting further research by training a

model with 80%-20% ground truth and Deeplab segmentation, drawing from a uniform

distribution each frame. This could produce better results, as the non-perfect data may

help reinforce higher level and thus more generic features, while the higher quality data is

58



Figure 6.7: Chart showing the change in evaluation performance when a model trained
with one perceptor is switched to another perceptor. Left column contains the results of
models evaluated with the same perceptors as they are trained with. The right column
shows the model evaluation results once the perceptor has been flipped either from ground
truth to Deeplab, or vice versa. The blue (dark) lines are models originally trained with
ground truth segmentation, and the green (light) lines are originally trained with Deeplab.
Switching from ground truth to Deeplab appears to produce more significant changes. Bet-
ter performing models tend to become worse when switched, while worse models tend to
improve slightly when switched.

both faster to train against and allows the model to pick up on some of the nuances of the

observation space.

6.6 Model Behavior Success

The best model is the first run of the depth splitting experiment, which attains a reward

of 58.4% of the maximum. To properly evaluate the behaviors, each desired behavior must

be compared to its resultant behavior.

The best model is able to attain a fairly high average speed of 21km/hr in comparison

to the desired 25km/hr. With these higher speeds, however, comes more rigid requirements

for lane-keeping and collision avoidance. Small perturbations in model predictions that are

acceptable at lower speeds can cause a collision while driving at a faster speed. What is

59



Version Reward % Drive % Km Km/Hr Km/OOL Km/Collision
Best 58.4 78.9 66.3 21.0 0.05 2.07
Extra 57.7 94.8 59.5 15.7 0.15 No collisions

Extra+Deeplab 59.5 92.3 60.7 16.4 0.19 15.2

Table 6.9: Adding additional training yields a significant improvement in collision rate
and episode termination rate, but the travel speed is somewhat lower. Both reward per-
centiles are about equal, with the additional training yielded a small reduction. Evaluating
on Deeplab actually yields slightly improved reward values and behaviors (with the excep-
tion of collision rate).

obvious from these results is that the agent, which has an out of lane event roughly every

52 meters, has trouble staying perfectly in lane. The collision rate of approximately one

collision every 480 meters is also unsatisfactory.

With such a short training time of only about 275,000 actual train steps taking place,

however, it is not clear that the agent’s learning capacity has been fully saturated. As

a result, one final experiment is run for 3 million steps, a learning rate of 1e-6, a train

frequency of 18 steps, and exploration blocks with sizes: 60% chance of 0% exploration,

20% chance of 10% exploration, 10% chance of 20% exploration, and 10% chance of 30%

exploration.

From a purely reward driven perspective, the additional training actually lowers the

reward slightly, which implies the architecture as configured has a hard time passing that

level of reward. What is interesting, however, is that the behaviors from the additional train-

ing are significantly better (with the exception of the average speed). Across the 59.5km

travelled during evaluation, not a single collision took place, and the out of lane rate is only

about 35% that of the original model.

The model is then evaluated on Deeplab, and the results are actually a touch better in

most categories. The speed is actually higher than the ground truth segmentation. A small

number of collisions took place, but the out of lane rate improved over the ground truth

segmentation model. Even though the total drive rate is a few percentage points lower, the

60



Behavior Desired Best Extra Extra+Deeplab
Speed in km/hr 25.0 21.0 15.7 16.4

OOL per km 0.0 19.1 6.7 5.2
Collisions per km 0.0 0.5 0.0 0.1

Table 6.10: Behaviors of the best model, along with behaviors of the best model with
additional training. The average speed decreases, but there were no collisions and a reduced
out of lane instance rate. When further evaluated on Deeplab, the speed and out of lane rate
is slightly improved, but there were a few collisions.

accumulated reward ended up being the best of all of the models by a percentage point.

The speed of 16km/hr is very likely a result of the bucketization of the actions. The

model learns that on straightaways it can hold forward with +0.5 throttle and a steering

of 0.0, yielding a speed of about 16.26km/hr. For most of the evaluation, this is the exact

behavior observed by the model that received additional training.

The behaviors on the Deeplab evaluation does not adhere as closely to the +0.5 throttle

consistency, regularly poking above or falling below. This is likely due to the irregular-

ities in segmentation imposed by the switch causing confusion on the model. The fact

that the switch from ground truth to Deeplab actually yields slightly better results in most

categories, however, implies that fairly dramatic shifts in upstream perceptors can actually

improve downstream results.

Given the results, it can be believed that additional training will bring the out of lane rate

even lower. To maintain a speed of 25km/hr, the model would have to alternate between

+0.5 throttle and +0.75 throttle at a perfect rate. Alternatively, additional buckets could be

added to the model output, allowing a higher degree of fidelity by the model when selecting

the desired speed.

61



Chapter 7

Conclusion

This thesis has presented an autonomous vehicle agent that proved able to drive at slow

speeds through a small simulated town. Necessary background material was discussed,

allowing the reader to fully comprehend the components required to make the vehicle op-

erate. The architecture was discussed in full, along with how the agent was trained, and all

of the necessary evaluations the model underwent to provide appropriate metrics for model

comparison. In total 20 experiments were run over the course of 29 days.

The architecture as designed in this thesis is fairly simple, but delivers a fairly high

degree of success. The model proved capable of learning to drive close to the desired

speed, and the final model had no collisions during a 60km driving segment (though it had

regular out of lane events which are of course unsafe). This model was then retrofitted with

a Deeplab v3 [3] and re-evaluated to yield even better results.

A novel technique dubbed probabilistic exploration was introduced, which proved to

yield better model results given the same training window. By expanding the simple ε-

greedy model to alternate between lower and higher exploration rates in large step intervals,

the agent was able to produce better training data for the underlying neural network. This

yielded better performance and a lower likelihood of overfitting.

Depth splitting was also introduced, a novel approach to handling inputs for CNNs.

By splitting out the contents of one layer into multiple semantically meaningful layers,

the CNN was better able to learn features that had a direct impact on prediction quality.

Given the relatively small number of convolution layers in the network, any improvements

in input data formulation are shown to have significant downstream impacts.

One of the most interesting observations of the experiments was that the models that

attained higher rewards during training tended to have worse results during evaluation. Be-

62



yond this, there is no obvious correlation between training step reward and the evaluation

results. The reward curves for each configuration trended together fairly closely, even if

their results were significantly different. As far as experiments in this thesis were con-

cerned, the reward earned per step was an inconsequential value.

It was shown that a model can be trained on a ground truth perceptor, then evaluated

(put into the field) with a non-perfect perceptor. A comparative study was made between

models trained fully on ground truth segmentation then switched to Deeplab, and models

fully trained on Deeplab. Interestingly, models trained on ground truth first and then eval-

uated on Deeplab had higher degrees of success than those trained entirely on Deeplab.

It is important to note that those results might not hold for all configurations. With this

architecture, at least, training with ground truth segmentation was significantly faster and

yielded better results, implying that non-perfect segmenters should not be integrated into

the training pipeline, even if they will be used in production. In fact the best model of this

study was the final ground-truth trained model that was converted to use Deeplab.

7.1 Future Research

Though this architecture proved successful, it is just an introductory example. There

is plenty of room to expand this model with the hopes of improving the task, or even

expanding the task requirements to include pedestrian avoidance, vehicle avoidance, or

even light navigation.

One of the most obvious weaknesses of the existing model is the discretization of the

state space. Increasing the number of buckets may well improve model performance, but

switching wholesale into continuous model configurations [75] also has the potential to

smooth out the model results.

DDQN [24] is a strong modeling framework, but other options exist that could allow

increased parallelism during train time. A3C [25], as used by the Carla paper [4], allows

multiple agents to train in parallel, thus providing a tool to induce a very high amount of

63



learning with the same total amount of time commitment (though extra compute resources

are required). DQN [22] also suffers from the lack of memory, a problem that is only lightly

addressed with the frame stacking [22] technique. Switching over to an DRQN [26] model,

or adding in LSTMs [28] to store important information could produce significantly better

performance.

Another simple component that has room for improvement is the controller, which

currently is just an exponentially weighted moving average. This component could be

swapped out for a more robust PID controller, which can be configured to smooth prediction

data out before sending it to the agent for action, but be more responsive and allow the

model to fully reach the desired speed (due to the integral component of PID).

During training of Deeplab v3 [3], it was noticed that training on a higher output di-

mension and then reducing the output dimensions actually yielded superior results over

just training with a lower number of outputs. This may have been a fluke, but it could be

worth exploring further. An experiment might have 10 superclasses, each comprised of

10 subclasses. One instance would train on the 100 total classes, then run prediction and

pair down to the 10 superclasses before performing accuracy metrics. The second instance

would just train on the 10 superclasses, then run prediction to see how the results compare

to the prior instance.

While probabilistic exploration does appear promising, it can also be combined with

more advanced exploration techniques like bootstrapped exploration [34]. A more robust

probabilistic exploration technique would draw from a distribution of exploration styles,

selecting a new style every N steps. Much in the same way that ensemble collections of

models can have superior performance over a single model, this could allow many proven

exploration methods to be compiled and each have their chance to influence model perfor-

mance.

Depth splitting also has a plethora of extended research opportunities. What is clear is

that selecting what information is provided to a CNN is not the only relevant decision, but

64



also how that information is presented. Almost all image detection algorithms use RGB

input layers, so examples of pre-input information modifications include: adding a black

and white layer, adding a layer with very high contrast, adding a few copies of the base

layers that have slight modifications to scale, etc. A better understanding of exactly what

information CNNs excel at processing could yield significant improvements on almost all

CNNs in operation.

Training on ground truth perceptors then switching to non-perfect perceptors for eval-

uation/production demands further study. Though the results presented in this thesis are a

strong indication that non-perfect perceptors are preferred for the training pipeline, a wider

study should be performed on more model types and configurations. Research can also be

made into adding a ”tail” to training, where the first 90% of the training is performed on

the ground truth perceptors, and the final 10% is performed on the non-perfect perceptors

that will actually be used, allowing the model to more fully adapt and in theory produce

higher quality predictions. If perceptors are later improved or swapped out, only the last

10% of training would need to be re-run instead of the entirety of training.

7.2 Final Comments

Autonomous vehicle agents are one of, if not the, greatest research challenges of this

generation. To properly engage in research, one must understand modern convolutional

neural networks, object detection algorithms, segmentation algorithms, reinforcement learn-

ing or supervised learning techniques, data fusion, and vehicle simulators, and that is just

a drop in the bucket. Production level algorithms require researchers to know all of the

pros and cons of each sensor type, why to use any given sensors, and how to fuse their

data together. Localization algorithms are also incredibly complex, but have the potential

to dramatically improve a vehicle’s understanding of the world.

And it can not be forgotten that any vehicle that may enter production must consider

safety to be paramount. These vehicles are tasked with making transportation safer than

65



human drivers, so they must be able to live up to that measure. This is difficult to properly

measure in and of itself, and requires an incredibly thorough understanding of all compo-

nents in the architecture to have any hope of proving.

Progress has been accelerating lately, so there is hope yet that autonomous vehicles

will one day rule the roads. Though this thesis just scratches the surface, it may well help

bring new talent into the field, further accelerating the trend towards full transportation

autonomy.

66



BIBLIOGRAPHY

[1] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. DeepTest: Automated Test-

ing of Deep-Neural-Network-driven Autonomous Cars. arXiv:1708.08559 [cs], Au-

gust 2017. arXiv: 1708.08559.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. DeepLab: Semantic Image Segmentation with Deep Convolutional

Nets, Atrous Convolution, and Fully Connected CRFs. arXiv:1606.00915 [cs], June

2016. arXiv: 1606.00915.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-

thinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587

[cs], June 2017. arXiv: 1706.05587.

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st

Annual Conference on Robot Learning, pages 1–16, 2017.

[5] Electric Cars, Solar Panels & Clean Energy Storage | Tesla.

[6] Uber - Earn Money by Driving or Get a Ride Now.

[7] Waymo.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv:1604.01685 [cs],

April 2016. arXiv: 1604.01685.

[9] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The

67



KITTI vision benchmark suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361, June 2012.

[10] Bernhard Wymann, Christos Dimitrakakis, Andrew D. Sumner, Eric Espi, and

Christophe Guionneau. TORCS : The open racing car simulator. 2015.

[11] Craig Quiter and Maik Ernst. deepdrive/deepdrive: 2.0. March 2018.

[12] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to Real Reinforcement

Learning for Autonomous Driving. April 2017.

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image

Translation with Conditional Adversarial Networks. arXiv:1611.07004 [cs], Novem-

ber 2016. arXiv: 1611.07004.

[14] Epic Games. Unreal Engine 4.

[15] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar,

Karl Rosaen, and Ram Vasudevan. Driving in the Matrix: Can Virtual Worlds Re-

place Human-Generated Annotations for Real World Tasks? arXiv:1610.01983 [cs],

October 2016. arXiv: 1610.01983.

[16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to End Learning for Self-Driving

Cars. arXiv:1604.07316 [cs], April 2016. arXiv: 1604.07316.

[17] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end Learning of Driving

Models from Large-scale Video Datasets. arXiv:1612.01079 [cs], December 2016.

arXiv: 1612.01079.

[18] Lex Fridman, Jack Terwilliger, and Benedikt Jenik. DeepTraffic: Crowdsourced

68



Hyperparameter Tuning of Deep Reinforcement Learning Systems for Multi-Agent

Dense Traffic Navigation. arXiv:1801.02805 [cs], January 2018. arXiv: 1801.02805.

[19] Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen. How convolutional neu-

ral network see the world - A survey of convolutional neural network visualization

methods. arXiv:1804.11191 [cs], April 2018. arXiv: 1804.11191.

[20] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-

nessing Adversarial Examples. arXiv:1412.6572 [cs, stat], December 2014. arXiv:

1412.6572.

[21] Lex Fridman, Daniel E. Brown, Michael Glazer, William Angell, Spencer Dodd,

Benedikt Jenik, Jack Terwilliger, Julia Kindelsberger, Li Ding, Sean Seaman, Hillary

Abraham, Alea Mehler, Andrew Sipperley, Anthony Pettinato, Bobbie Seppelt, Linda

Angell, Bruce Mehler, and Bryan Reimer. MIT Autonomous Vehicle Technology

Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interac-

tion with Automation. arXiv:1711.06976 [cs], November 2017. arXiv: 1711.06976.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-

len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 518(7540):529–

533, February 2015.

[23] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. arXiv:1409.1556 [cs], September 2014. arXiv:

1409.1556.

[24] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and

69



Nando de Freitas. Dueling Network Architectures for Deep Reinforcement Learn-

ing. arXiv:1511.06581 [cs], November 2015. arXiv: 1511.06581.

[25] Volodymyr Mnih, Adri Puigdomnech Badia, Mehdi Mirza, Alex Graves, Timothy P.

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods

for Deep Reinforcement Learning. arXiv:1602.01783 [cs], February 2016. arXiv:

1602.01783.

[26] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Ob-

servable MDPs. arXiv:1507.06527 [cs], July 2015. arXiv: 1507.06527.

[27] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March

1994.

[28] Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. Neural Compu-

tation, 9(8):1735–1780, November 1997.

[29] On-Road Automated Driving (ORAD) committee. Taxonomy and Definitions for

Terms Related to On-Road Motor Vehicle Automated Driving Systems. Technical

report, SAE International.

[30] Introducing Navigate on Autopilot, October 2018.

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

IEEE Transactions on Neural Networks, 16:285–286, 1998.

[32] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. A Brief Survey of Deep Reinforcement Learning. IEEE Signal Process-

ing Magazine, 34(6):26–38, November 2017. arXiv: 1708.05866.

[33] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John

Schulman, Filip De Turck, and Pieter Abbeel. #Exploration: A Study of Count-Based

70



Exploration for Deep Reinforcement Learning. arXiv:1611.04717 [cs], November

2016. arXiv: 1611.04717.

[34] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep Ex-

ploration via Bootstrapped DQN. arXiv:1602.04621 [cs, stat], February 2016. arXiv:

1602.04621.

[35] Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The Uncer-

tainty Bellman Equation and Exploration. arXiv:1709.05380 [cs, math, stat], Septem-

ber 2017. arXiv: 1709.05380.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification

with Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning

for Image Recognition. arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Go-

ing Deeper with Convolutions. arXiv:1409.4842 [cs], September 2014. arXiv:

1409.4842.

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look

Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs], June 2015.

arXiv: 1506.02640.

[40] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convo-

lutional Encoder-Decoder Architecture for Image Segmentation. arXiv:1511.00561

[cs], November 2015. arXiv: 1511.00561.

71



[41] Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, and Kurt Keutzer. SqueezeDet:

Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Ob-

ject Detection for Autonomous Driving. arXiv:1612.01051 [cs], December 2016.

arXiv: 1612.01051.

[42] Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and Raquel

Urtasun. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving.

arXiv:1612.07695 [cs], December 2016. arXiv: 1612.07695.

[43] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.

Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer pa-

rameters and <0.5mb model size. arXiv:1602.07360 [cs], February 2016. arXiv:

1602.07360.

[44] Michael Treml, Jos Arjona-Medina, Thomas Unterthiner, Rupesh Durgesh, Felix

Friedmann, Peter Schuberth, Andreas Mayr, Martin Heusel, Markus Hofmarcher,

Michael Widrich, Bernhard Nessler, and Sepp Hochreiter. Speeding up Semantic

Segmentation for Autonomous Driving. October 2016.

[45] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware Semantic Segmentation via

Multi-task Network Cascades. arXiv:1512.04412 [cs], December 2015. arXiv:

1512.04412.

[46] Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollar. Learning to Segment Object

Candidates. arXiv:1506.06204 [cs], June 2015. arXiv: 1506.06204.

[47] Sebastian Thrun and John J. Leonard. Simultaneous Localization and Mapping. In

Bruno Siciliano and Oussama Khatib, editors, Springer Handbook of Robotics, pages

871–889. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[48] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. ORB-SLAM: a Versatile and

72



Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5):1147–

1163, October 2015. arXiv: 1502.00956.

[49] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 3061–3070,

June 2015.

[50] Michael Barnard. Tesla & Google Disagree About LIDAR – Which Is Right?, July

2016.

[51] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle Detection from 3d Lidar Using Fully

Convolutional Network. arXiv:1608.07916 [cs], August 2016. arXiv: 1608.07916.

[52] Ben Popper. The billion dollar widget steering the driverless car industry, October

2017.

[53] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3):279–292, May 1992.

[54] Richard Bellman. On the Theory of Dynamic Programming. Proceedings of the

National Academy of Sciences, 38(8):716–719, August 1952.

[55] G. A. Rummery and M. Niranjan. On-Line Q-Learning Using Connectionist Systems.

Technical report, 1994.

[56] RM French. Catastrophic forgetting in connectionist networks. Trends in Cognitive

Sciences, 3(4):128–135, April 1999.

[57] Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed

by learning and forgetting functions. Psychological Review, 97(2):285–308, 1990.

[58] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly. Why there are complemen-

tary learning systems in the hippocampus and neocortex: insights from the successes

73



and failures of connectionist models of learning and memory. Psychological Review,

102(3):419–457, July 1995.

[59] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experi-

ence Replay. arXiv:1511.05952 [cs], November 2015. arXiv: 1511.05952.

[60] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[61] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Al-

saadi. A survey of deep neural network architectures and their applications. Neuro-

computing, 234:11–26, April 2017.

[62] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,

and H. Sebastian Seung. Digital selection and analogue amplification coexist in a

cortex-inspired silicon circuit. Nature, 405(6789):947–951, June 2000.

[63] Y. He, L. Chen, J. Chen, and M. Li. A novel way to organize 3d LiDAR point cloud as

2d depth map height map and surface normal map. In 2015 IEEE International Con-

ference on Robotics and Biomimetics (ROBIO), pages 1383–1388, December 2015.

[64] J. Stuart Hunter. The Exponentially Weighted Moving Average. Journal of Quality

Technology, 18(4):203–210, October 1986.

[65] Franois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions.

arXiv:1610.02357 [cs], October 2016. arXiv: 1610.02357.

[66] Md Atiqur Rahman and Yang Wang. Optimizing Intersection-Over-Union in Deep

Neural Networks for Image Segmentation. In George Bebis, Richard Boyle, Bahram

Parvin, Darko Koracin, Fatih Porikli, Sandra Skaff, Alireza Entezari, Jianyuan Min,

Daisuke Iwai, Amela Sadagic, Carlos Scheidegger, and Tobias Isenberg, editors, Ad-

74



vances in Visual Computing, Lecture Notes in Computer Science, pages 234–244.

Springer International Publishing, 2016.

[67] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Man,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Vigas, Oriol Vinyals, Pete Warden, Martin Wat-

tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. 2015.

[68] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], December 2014. arXiv: 1412.6980.

[69] Python.

[70] Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: Open source scientific

tools for Python. 2001.

[71] Travis E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Platform,

USA, 2nd edition, 2015.

[72] The friendly PIL fork (Python Imaging Library). Contribute to python-pillow/Pillow

development by creating an account on GitHub, February 2019. original-date: 2012-

07-24T21:38:39Z.

[73] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016.

75



[74] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. Ray: A Distributed Framework for Emerging AI Applications.

arXiv:1712.05889 [cs, stat], December 2017. arXiv: 1712.05889.

[75] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv:1509.02971 [cs, stat], September 2015. arXiv:

1509.02971.

76


